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ABSTRACT 

This thesis presents a more accurate and efficient method for the study of finite span wings in steady 

and unsteady supersonic flows with more computing efficiency. 

For steady flows, the boundary conditions are expressed in terms of the source distributions over 

wing surfaces. Specific theoretical solutions are derived for the calculations of pressure coefficient 

distribution and the lift, pitching moment, and rolling moment coefficients. The present solutions 

have been validated for delta and trapezoidal wings by comparison with high order conical flow 

results based on the theory developed by Carafoli, Mateescu, and Nastase. An excellent agreement 

was found between these results. 

For unsteady flows, the boundary conditions of finite span wings are modeled by using pulsating 

sources distributing over the wing surface. The present method leads to more accurate solutions for 

rigid wings executing harmonic oscillations in translation, pitching rotation, and rolling rotation of 

various oscillating frequencies. These solutions were found in very good agreement with the 

available high order conical flow solutions obtained by Carafoli, Mateescu, and Nastase. 

Then the method has been used to obtain solutions for the flexible wings executing flexural 

oscillations, which are of interest for the aeroelastic studies in the aeronautical applications. 



RÉSUMÉ 

Cette thèse présente une méthode pour l'étude des ailes d'envergure finie en écoulement supersonique 

stationnaires et non-stationnaires. 

Pour les écoulements stationnaires, les conditions de frontière sont exprimés en termes de 

distributions de source sur la surface de l'aile. Des solutions théoriques spécifiques sont dérivés pour 

les coefficients aérodynamiques de pression, de portance et des moments de tangage et de roulis. Les 

solutions obtenus ont été validées pour les ailes delta et les ailes trapézoïdales par comparaison avec 

des résultats d'écoulement conique d'ordre supérieur basés sur la théorie développée par Carafoli, 

Mateescu, et Nastase. Un excellent accord a été trouvé entre ces résultats. 

Pour les écoulements instationnaires, les conditions de frontière des ailes d'envergure finie sont 

modelés en employant des sources pulsatoires distribuées sur la surface de l'aile. La méthode 

présentée mène à des solutions plus précises pour les ailes rigides exécutant des oscillations 

harmoniques en translation, et rotation de tangage et de roulis à des diverses fréquences d'oscillation. 

Ces solutions ont été trouvées dans une bonne concordance avec les solutions disponibles basées sur 

les écoulements conique d'ordre supérieur, obtenues par Carafoli, Mateescu, et Nastase. 

Après la validation, la méthode a été utilisée pour obtenir des solutions pour les ailes flexibles 

exécutant des oscillations en flexion, qui sont d'intérêt pour les études aéroélastiques dans les 

applications aéronautiques. 
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NOMENCLATURE 

a speed of sound 

p pressure 

p density 

M Mach number 

Uoo free stream velo city 

aoo speed of sound in the free stream 

poo pressure in the undisturbed free stream 

Poo density in the undisturbed free stream 

Moo free stream Mach number (Moo = Uoo / aoo) 

r ratio of specifie heat coefficients at constant pressure and volume (r=1.4 for air) 

Ji Mach angle, Ji = sin -1 (1/ M 00 ) 

X wing sweep angle 

T de flexion angle of the wing surface 

Co root chord 

b span of trapezoidal wing 

1 span of delta wing; semi-span oftrapezoidal wing 

V flow velocity 

A reducedfrequency 

OJ angular frequency 

<l> velocity potential in steady flows; total reduced velocity potential in unsteady flows 

cp perturbation velocity potential in steady flows; total velocity potential in unsteady flows 

a angle of attack 

f3 rolling angle 

A specifie area containing series of infinitesimal sources 

(J' specifie area covered by the forward Mach cone within A 

S total delta wing surface area; half of the total trapezoidal wing surface area; exponent used 

n normal unit vector to wing surface 

ix 



nI, n2, n3 components of the normal unit vector to wing surfaces along axes XI, X2, and X3 

q l , q 2 coordinates of sources distributing over the wing surfaces 

XI, X2, X3 Cartesian coordinates 

y, z non-dimensional conical coordinates (y = X2 / XI; Z = Xl/XI) 

X, if' 'f Busemann geometrical transformation coordinates 

X, y homogeneous coordinates 

X; ,X; auxiliary functions of the upper integrallimits for two specific integration domains 

en coefficients of binomial series q 

ho amplitude of the vertical oscillatory translation 

If/ h phase angle of the vertical oscillatory translation 

h complex amplitude of the vertical oscillatory translation (h = hoeill/h
) 

If/ 0 amplitude of the rolling oscillatory rotation 

If/ 11/ phase angle of the rolling oscillatory rotation 

it complex amplitude of the rolling oscillatory rotation (it = If/oeill/'/') 

Bo amplitude ofthe pitching oscillatory rotation 

If/ (J phase angle of the pitching oscillatory rotation 

il complex amplitude of the pitching oscillatory rotation (il = Boeill/O
) 

i, j, k unit vectors along axes XI, X2, and Xl 

q perturbation velocity (q = ui + vj + wk) 

u perturbation velocity in the Xl direction 

v perturbation velocity in the X2 direction 

w perturbation velocity in the X3 direction 

w reduced downwash ( w = w/ eimt 
) 

cJtt analytical complex function of perturbation velocity in the Xl direction (Re [ cJtt] = u) 

11 analytical complex function of perturbation velocity in the X2 direction (Re[1I] = v) 

0Jf analytical complex function of perturbation velocity in the X3 direction (Re[OJf] = w) 

t time 

~-q-r, q,r analytical function with respect to the complex variable X 

n the degree of the homogeneous polynomial 

N the highest degree of the homogeneous polynomial 

x 



Cn_q,q coefficients of the geometry of the thin wing surface equation expressed in homogeneous 

polynomial 

Wn_q,q coefficients of the downwash equation expressed in homogeneous polynomial 

Cp pressure coefficient 
~ 

Cp reduced pressure coefficient 

Cl lift coefficient 

Cl reduced lift coefficient 

C m2 pitching moment coefficient 

C m2 reduced pitching moment coefficient 

C ml rolling moment coefficient 
~ 

C ml reduced rolling moment coefficient 

Exponents used: a, b, m, n, k, q,j, g,j,p, s, S, r, R, t, il> i2 
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CHAPTERI 

INTRODUCTION 

1.1 Literature review 

In the past few decades, the steady and unsteady supersonic flows over wings have been 

investigated theoretically and experimentally, using various mathematical, numerical, and 

experimental approaches. The problem of predicting accurately the aerodynamic characteristics of 

wings of various plane forms is among the most important ones that have been studied in the 

development of the aeronautical sciences. The invention of the digital computer and its introduction 

into the world of science and technology has led to the development, and increased awareness, of 

the analytical and computational methods for achieving more accurate solutions to the complexity of 

the physical world. F ollowing is a brief literature review on which the present work is based. 

Theoretically, the behavior of supersonic flow can be described by fundamental equation 

systems, but one may think that the analytical results is often no practically possible to describe 

completely the evolution of the system in its full complexity. Therefore, approximate numerical 

solutions have been sought based on finite difference and finite volume approaches. MacConnack 

et al. [13], [14] & [28]-[32] developed an explicit technique for numerical solutions in the form of 

the finite difference expression of goveming equation systems based on predictor-corrector method. 

Jameson et al. [13]-[20] highlight the considerable flexibility of the application to the explicit finite 



volume method for the analysis of wings and aircraft configurations by introducing the artificial 

dissipation for flux term ca1culation. Mateescu et al. [45] compared their numerical results with 

those given by MacCormack et al. and Jameson et al.. Mateescu et al. developed the biased-flux 

method to approximate and evaluate directly the direction of perturbation propagation of different 

flux variables. He determined the optimum values for upwind and downwind bias factor by 

carrying out series of numerical experiments and resulted in more accurate solutions. 

On the other hand, analytical solutions can be applied to advanced and conceptual designs 

embedded with reasonable linearized assumptions, which will reduce the complexity of the original 

basic equations and make them tractable within certain limits. F or long time, scientists have been 

concentrated in the studies of triangular and polygonal wing plan forms in supersonic flows based 

on theory of conical flows and high order conical motions, established by Carafoli, Mateescu, and 

Nastase [2], Mateescu [36] & [38]-[41], Paul Germain [9]-[12], and Krasilsciova [24]-[26]. Carafoli 

et al. established a unified method on the basis of high order conical flows, delivering series of 

analytical solutions to all these problems and for the actual calculation for cases of isolated simple 

wings, cruciform wings, and wings with vertical plane tail, simple or cruciform wings fitted with a 

body, and so on, which could be applied to practical aeronautical applications. 

The analytical approach of supersonic flows past oscillating wings carried out by Carafoli et 

al. was based on the frequency expansion method. This method determined the unsteady pressure 

coefficients and the unsteady lift, pitching moment, and rolling moment coefficients of polygonal 

wings with subsonic or supersonic leading edges executing harmonic oscillations in supersonic 

flows. However, the high order conical flow solutions provided zero real values of the reduced 

pressure coefficient and the reduce lift and moment coefficient in the cases of oscillatory translation 

and rolling oscillation. 

Pines et al. [54] developed a numerical scheme based on the Mach Box method by frequency 

expansion technique to obtain generalized forces on an oscillating flexible and rigid wing in 
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supersonic flows with both subsonic and supersonic leading edges. Their procedure is limited to 

Mach number to 1.414 and higher. Zartanian and Zsu applied Bassel functions series representation 

of the integral to implement the Mach Box method and improved by Fenain M. and Guirand-Wallee 

D. [7] in 1967. Improving on the work done by Chipman [4] analytically refined the Mach Box 

method, greatly increasing the accuracy of the supersonic oscillatory pressure distribution. 

Although the improvement in the accuracy has been obtained, the grid refinement implies an 

important increase in the computational running time. Accordingly, Appa and Smith [49] 

introduced triangular elements representation and linear distribution of sources over wing surfaces. 

This produces more accurate geometric representation of the wing with fewer elements on the wing 

and the finite element grid does not change with the Mach number. 

1.2 Aims and scope of tbis tbesis 

In the light of considerable researches done regarding the analysis of steady and unsteady supersonic 

flows, the difficulties of fitting rigorously the body geometry and the requirement of improving 

computing efficiency are inherent deficiency of sorne of the previous studies in terms of the 

accuracy of solutions and calculation complication. Rather, the main concem ofthis thesis is to find 

out an analytical method of approach with more accuracy and better computational efficiency in 

calculations of the aerodynamic forces and moments coefficients for general wing configuration not 

only for the steady flows, but also for the unsteady flows past wings executing higher oscillations 

frequency. 

The present thesis consists in the presentation of the new analytical solutions for the study of 

the steady and unsteady flows past fixed and oscillating rigid wings and past flexible wings 

executing flexural oscillations. A summary of the content of the thesis is given in the following. 

3 



Chapter 2 is dedicated to the problem formation of the steady and unsteady supersonic flows 

past fixed and oscillating thin wing plan form. The wing geometry and boundary conditions, the 

goveming potential equation, and equations of aerodynamic forces and moments coefficients are 

presented. 

In Chapter 3, previous method and analytical solutions based on high order conical flows 

theory developed by Carafoli, Mateescu, and Nastase [2], [38]-[41], are presented. 

Chapter 4 is devoted to the presentation of theory and fundamentals of source distribution on 

the wing in supersonic flows and the determination of the velocity potential equations of the 

distribution of sources in steady state and pulsating sources over wing surfaces executing unsteady 

motions. 

In chapter 5, the analytical solutions for steady cases are presented for delta and trapezoidal 

wings in supersonic flows. The present solutions are validated by comparison with the previous 

results observed using the theory ofhigh order conical flows. 

In chapter 6, analytical unsteady solutions are presented for the rigid delta and trapezoidal 

wings executing harmonic oscillations in translation and pitching and rolling rotation. Then, the 

method has been used to study the flexible wings executing flexural oscillations, which are of 

interest for the aeroelastic studies in the aeronautical applications. 

Chapter 7 presents a summary of results and discussion for various cases of steady and 

unsteady flows past rigid wings and flexible wings executing the flexural oscillations by the method 

presented in Chapter 4, 5 and 6. The solutions for the rigid wings have been validated by 

comparison with the previous results based on high order conical flows. 

The last chapter is devoted to conclusions and suggestions for further research work. 
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CHAPTER2 

PROBLEM FORMULATION 

2.1 General geometrical configuration of polygonal wings and 

boundary condition 

In supersonic flows, the leading edges and the ridges play fundamental roles in unified theory of 

angular wings based on high order conical flows. First, let's consider an orthogonal system 

OX,X2X 3 , with axis OX, parallel to the free stream velocity, U 00 (Fig. 2.1). The edges, such as OA, 

and OA2 in delta wing, 0,°2, OA, and OA2 in trapezoidal wing, are called leading edges; while 

A, A2 are called tailing edges. The Mach cone is defined by the Mach angle, Ji, and the circle 

representing the intersection of this cone with physical plane normal to OX, at distance x, = 1 is 

called the Mach circle with radius equal to tan Ji = 1/ B, where B = ~ M ~ -1. The position of 

leading edges can be defined by two angles, %, and %2' and their traces in the physical plane at 

x, = 1 are l, = cot %, and l2 = cot %2. When the leading edges are situated outside the Mach cone, 

i.e., Il and 12 are larger then the radius of Mach circle, liB, they are denoted as supersonic leading 

edges. 

The geometry of the thin wing surface is defined by the equation X 3 = Z(x" x2), where Z(x" x 2) Can 

be defined in the form as a superposition ofhomogeneous polynomials in x, and x2• 
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(2.1.1) 

where N is the degree ofthe homogeneous polynomial of the highest order and the coefficients, C n-q,q , 

are constants. 

The deflexion angle, r, of wing surfaces with respect to the free stream direction can be 

expressed as 

az N n-l 

tan - - "" ( )c n-q-l q r - - - ~ ~ n - q n_q,qX1 X 2 • 

&1 n=l q=O 

(2.1.2) 

GenèraIly, we denote f as function of wing surface suitable for both fixed situation and general 

unsteady motion in uniform flows and can be written asj(r, t) = j(x" x2, x3, t) = O. And the normal unit 

vector to the wing surface can be defined by, 

_ "If 
n- 1Vfl ' 

(2.1.3) 

Let's denote the perturbation velocity on the wing surface by qb, with which is satisfied the continuous 

equation and we have 

af 
-+qb' Vf=O. at (2.1.4) 

As weIl, the boundary condition on the wing can be defined as 

qb . n = V . n = (U", + q) . n = 0, (2.1.5) 

or we can reorganize the boundary condition equation like 

q . n,= - U oo ' n + qb . n, (2.1.6) 

where V = Uoo + q = (Uoocosa + u)i + vj + (Uoo sina+ w)k is the fluid velocity on the wing surface; 

however, q is equal to zero for the undisturbed portion outside the Mach cone. 
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By substituting the definition of normal unit vector, the boundary condition can then be 

expressed in terms ofVfand it shows 

q • Vf = - UCX)· Vf + qb • Vf. (2.1.7) 

Let's take account of the material derivative offand we have 

(2.1.8) 

Accordingly, the houndary condition for wings executing unsteady motion can he rearranged as, 

(2.1.9) 

F or wing~ in steady state, we have, 

U <Xl sin a + W = (U <Xl cos a + u) af + v af . 
&1 &2 

(2.1.10) 

The perturbation velocity u and v are assumed small, and hence the boundary condition on the 

wings executing unsteady motions can then he recast in the form as 

_ U· U af af _ ~ ~ n-q-I q af 
w-- <Xlsma+ <Xlcos a -+-- L..JL..Jwn-q-1qx1 x 2 +-. 

&1 at n=1 q=o' at 
(2.1.11 ) 

And for wings in steady state, we have 

af N n-I 

W = -U <Xl sina + U <Xl cosa- = LL Wn_q_l,qX;-q-Ixr , 
&1 n=1 q=O 

(2.1.12) 

N n-I 

where wn_q_l,q are constants and LL Wn_q_l,qX;-q-Ixr is part of the downwash velocity expressed by 
n=1 q=O 

the geometry of the thin wing surface. According to the linearized theory, each specific solution of a 

single polynomial of order (n-l) is sufficient for prohlems with more general geographical 

configurations. Hence, the part of the downwash velocity based on the geometry of the thin wing 

n-I 

surface in (n-l) order can be replaced hy L Wn_q_l,qX;-q-Ixr • 

q=O 
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Figure 2.1 Geometry of delta and trapezoidal wings at an incidence a. in uniform free stream U.,. 
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Figure 2.2 Geometry of thin wings of longitudinal cross-section at root chord at an incidence, o., in 

uniform free stream U.,. 
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2.2 The potential flow model with small disturbance approximation 

Compared to the full system of Navier-Stokes equations, the potential flow model is the simplest 

mathematical description ofinviscid and irrotational flows. As known from Prandtl's boundary layer 

analysis, this is a valid approximation for flows in high Reynolds numbers outside viscous regions 

developing in the vicinity of solid surface. Thus, the curl of the velocity is zero; Le., Vx V = 0, where 

V is the three-dimensional velocity field. Basically, the three-dimensional velocity field of the 

potential flows is the gradient of one specifie scalar property, defined as the velocity potential 

functions, <1>, and can be expressed by a single velocity potential function as V = V<I>. 

According to the non-viscous approximation, the entropy is constant along streamlines and the 

flow is isentropic throughout the whole flow field. Hence the equation of isentropic flow can be 

written as L = const., where y is the ratio of specifie heat coefficients at constant pressure and 
pr 

constant volume (y = 1.4 for air). The speed of sound for isentropic assumption can be expressed as 

(2.2.1) 

And the continuity and momentum equations can be expressed as 

(2.2.2) 

dV ev ( 1 2) ( -) - ev (1 2) 1 -=-+V -v + VxV xV=-+V -v =--Vp. 
~ & 2 & 2 p 

(2.2.3) 

The rate of change of pressure with respect to density is an isentropic change and thus we have 

fdp =..-L P ~ Vp =V(..-LpJ. 
P y-1 P P y-1 P 

(2.2.4) 

By substituting Eq.(2.2.4) and V = V<I> into Eq.(2.2.3), the momentum equation can be recast by the 

followingtwo forms as 

ev' (1 2) 1 (eep 1 2 Y pJ -+V -v +-Vp=V -+-v +--- =0, 
et 2 p et 2 y-l p 

(2.2.5) 
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and 

( 
aep 1 2 ) 1 2 1 (aep 1 2 ) 1 2 1 V -+-V =--Vp=-a -Vp ~ d -+-V =--dp=-a -dp. 
at 2 p P at 2 p P 

(2.2.6) 

Substituting Eq.(2.2.6) into the continuity equation, Eq.(2.2.2), we have 

l ap + V V P + VV = 0 ~ VV __ 1 [-VV(!V2 + aep) +~(!V2 + aep)] = o. 
p at p a2 2 at at 2 at 

(2.2.7) 

And from the Eq.(2.2.5), the pressure equation in differential form and finite form are presented, 

respectively. 

d(8<I»+VdV+ dP =d(8<I> +!V2+~P)=0. 
at p at 2 y-1 P 

(2.2.8) 

8<1> +!V2 +~ p = const. (Bernoulli-Lagrange equation) 
at 2 y-1p 

(2.2.9) 

In tum, because of the complexity of the direct application to coordinate systems and in 

accordance with employing the small disturbances approximation, we assume that the free stream 

velocity U 00 is disturbed due to additional small velocity in the vicinity of the wing surface. The 

projection of small disturbing velocity on each orthogonal axis is u, v, w, respectively. Let's denote 

ep(x, y, z, t) as the disturbance velocity potential and the total velocity components is written as 

V = V<l> = (U<x>cosa + u)i + vj + (U<x> sina+ w)k, (2.2.10) 

where q = ui + vj + wk, U = aep , v = aep , w = aep , and <l> = U 00 (x cos a + z sin a)+ ep 
a:x ay az 

As a result, 

V2=U2+U2+W2=U2+2U aep 
00 00 ô.x ' (2.2.11) 

(2.2.12) 

(2.2.13) 
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(2.2.14) 

(2.2.15) 

In addition, the Bernoulli-Lagrange equations, Eq.(2.2.9), can also be recast as 

ôep 1 2 a2 1 2 a~ a~ 
-+-V +--=-U +--=--=const 
ôt 2 y-1 2 '" y-1 y-1 ' 

(2.2.16) 

where a2 = a2 _ y-1 (V 2 _U 2 +2 ôep) ~ a2. 
'" 2 ôt '" 

Accordingly, by substituting Eq.(2.2.12) ~ (2.2.16) into Eq.(2.2.7), the differential velocity 

potential equation for unsteady potential flow is written as 

(2.2.17) 

U'" ~ 2 -1 1 where M", =-, B= M", -1, ,u = tan -. 
a", B 

Also, for steady flows, the velocity potential equation is simplified as 

2 ô2ep ô2ep ô2ep 
-B -+-+-=0 

ôx2 ôy2 ôz2 
(2.2.18) 
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2.3 Low frequeney harmonie motion of wings in supersonie flows 

According to the assumption of small disturbances, the low frequency harmonic motion of wings can 

be decomposed into three elementary parts: the verticallinear translation, h(t), the pitching rotation, 

O(t), with respect to axis OX2, and the rolling rotation, If!(t) , with respect to OX\. AlI three 

elementary parts are defined as follows. 

(2.3.1-a) 

(2.3.1-b) 

(2.3.1-c) 

where OJ and t are the frequency of the oscillatory motions and the time, respectively. In linear vertical 

translation oscillations, ho and If! h are the amplitude and the phase angle. Similarly, Bo and If! (J are 

the amplitude and the phase angle of the pitching rotation oscillations, and If! 0 and If! '1/ are the 

amplitude and the phase angle of the rolling rotation oscillations. If taken as complex forms, the 

In addition, the velocity potential for harmonic motion can be written as [52] 

(2.3.2) 

where <l>(xl , X 2 ' x3 ) is independent of time and represents the total reduced velo city potential. 

Substitute Eq.(2.3.2) into Eq.(2.2.17) and the unsteady velocity potential equation can be recast as 

(2.3.3) 

OJ 1+B 2 M! 
where Â=- and k=-Â 2 =-Â-

2
-· 

U oo B B 
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For equation of a point on the general wing model surface, Pn (Xl' X2 ) represents a summation of 

the homogeneous polynomials, Pn (Xl' x2 ), ofvarious orders with respect to XI and x2• 

N 

Pn (Xl ,X2 )= L Pn (Xl ,X2 )· (2.3.4) 
n~O 

The equation of a point on the wing surface can also be expressed in terms of the variation in time in 

harmonic oscillatory motions and we have 

(2.3.5) 

In turn, by considering the harmonic oscillatory motions with three elementary motions, Eq.(2.3.5) 

can then be expressed as 

Z = h(t) - Xl tan(O(t» + X 2 sin(",(t». (2.3.6) 

As well, based on the small disturbance assumption, tan(O) ~ 0; sin(",) ~ '" , Eq.(2.3.5) becomes 

(2.3.7-a) 

where 

N .... 

p(XI' xJ = L Pn (Xl' x2 ) = h - Xl 0 + x 2/f/ . (2.3.7-b) 
n=O 

Apply the equation of points on the surface of wings to the boundary condition equation in 

Eq.(2.3.6), the boundary condition ofwings executing harmonic oscillatory motions with small angle 

of attack can then be recast as 

(2.3.8-a) 

(2.3.8-b) 

(2.3.8-c) 
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The vertical downwash, w, can also be written directly from Eq.(2.3.2) as 

(2.3.9-a) 

where w is denoted as the reduced downwash and can then be expressed explicitly as follows. 

A 8<1> 1 -i(lllt+kx ) arp w=-=--e 1_. 

&3 U ao &3 
(2.3.9-b) 

In turn, Eq.(2.3.9-b) can be written successively by taking arp in Eq.(2.3.8-b). 
. &3 

w = 8<1> = __ I_ e-i(lllt+kxl ) arp = e-ikxl (ap(x"x2 ) + im p(x x )) = e-ikxl W(x x). (2.3.9-c) 
& U & & u "2 1'2 

3 ao 3 1 ao 

Under the assumption of high order conical flows, k is very small, and expand e -ikxl by Taylor 

expansion neglecting terms in k and higher. 

e±ikxl = l±ikX'1 +O(k 2
). 

Substitute Eq.(2.3.10) into Eq.(2.3.9-c), and one has 

By taking account of p(x1 ,x2 ) in Eq.(2.3.7-b), the reduce downwash becomes 

(2.3.10) 

(2.3. ll-a) 

(2.3.1I-b) 

From Eq. (2.3.l1-b), the total reduced velocity potential, <1>, consist ofreal and imaginary parts. 

N N 

<1> = <1>' + iÂ<I>" = L <I>~ + iÂ L <1>:+1 , (2.3.12) 
n=1 n=O 

where N is the highest order of the polynomial p(xl , x2 ). Consequently, the total reduced velocity 

potential of the second order of the polynomial p(xp x2 ) (N = 1) is <1> = <l> ~ + iÂ( <1> ~ + <1>; ) • And 
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reduced downwash can be expressed in complex form as 

(2.3.13) 

00>; ~ OO>~ ~ OO>~ 2B 2 + 1 ~ ~ 
where --= -(), --= h, and --= -Xl 2 (}+x 2'1f· 

ôx3 ôx3 ôx3 B 

AlI those reduced downwash velocity coefficients for harmonic motions can then be determined as 

W~o =-Ô. (2.3.14) 

(2.3.15) 

" 2B
2 + 1 ()~ wlO = - 2 • 

B 
(2.3.16) 

, ~ 

woo = 'If . (2.3.17) 
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2.4 Aerodynamic forces and moments coefficients of wings 

The pressure coefficient equation in the first approximation, denoted by Cp, is defined as 

Based on Eq.(2.2.6), the pressure difference equation can be given as 

p- p", =_8(arp +!V2 )=!(V2 _U 2 )+ arp ~U u+ arp. 
p", at 2 2 '" at '" at 

As a result, the pressure coefficient equation for unsteady case becomes 

(2.4.1) 

(2.4.2) 

Taking account of the total reduced velocity potential of the second order, <I> = <I>; + iÂ.( <I> ~ + <I> ~ ) , 

For steady flow, we have 

Cp=-~ arp =-2~. 
Uoo &1 U", 

(2.4.4) 

(2.4.5) 

The lift coefficient, pitching moment coefficient, and the rolling moment coefficient are 

calculated by integrating the pressure coefficient equation, Eq.(2.4.4) and (2.4.5), over the wing area. 

As far as the thin wing plan form is concemed, the pressure difference across the wing profile in 

dimensionless form as 

IJ.Cp= Cpf -CPu = -2Cp. (2.4.6) 
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Thus, the dimensionless lift coefficient ( Cl ), pitching moment coefficient ( C m2)' and rolling moment 

coefficient ( C ml ) equations are defined as 

(2.4.7) 

(2.4.8) 

(2.4.9) 

We consider an element dA of the wing on both surfaces as dA = dxl dx2 = XI dxl dy and generally 

denote by S the total delta wing surface area or half of the total trapezoidal wing surface area, Co the 

root chord, and 2b the total wing span at XI = 1.0. 
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CHAPTER3 

PREVIOUS STUDIES - ANALYTICAL METHOD 

BASED ON THE ORY OF CONICAL FLOWS AND 

SOLUTIONS TO STEADY AND UNSTEADY FLOWS 

PAST SUPERSONIC WINGS 

3.1 Compatibility relation of conical motions in supersonic flows 

The perturbation velocity, q, can be expressed as the gradient of the perturbation velocity 

potential rp. 

q = ui + vj + wk = Vrp, (3.1.1) 

8rp 8rp 8rp 
where ql=-=U, q2 =-=v, and q3 =-=w. 

, &1 &2 &3 

Accordingly, the perturbation velocity potential in steady case can be recast as 

_ B2 8u + av + aw = 0 . 
&1 &2 &3 

(3.1.2) 

Then, differentiating Eq.(3.1.2) above with respect to Xl, X 2 , and X 3, one has 

_B2 8qk + 8qk + 8qk =0 
&2 &2 &2 ' 

1 2 3 

(3.1.3) 

8rp _ 
where qk =-, k-l, 2, 3. 

&k 

18 



Based on the theory of conical motions and the assumption of small disturbances, developed by 

Busemann in 1935, the non-dimensionai eoordinates are given as y = ~ and z = ~. In general, we 
Xl Xl 

ean denote qk as funetion of y and z and thus Eq.(3.1.3) ean be reeast by y and z. 

{1_B2y2)8
2qk +{1_B2Z2)8

2qk _2B2yz82qk _2B2y8qk _ 2B2z 8qk =0. 
ay2 8z2 ay8z ay 8z 

Let's eonsider the Busemann geometrieal transformation as 

y" = Lb = Y 2 2 and z· = '2-- = Z 2 2 ~1- B2 (y2 + Z2 ) , 
d I-Bz () I-Bz 

(3.1.4) 

(3.1.5) 

and thus Eq.(3.1.4) ean be reeast in the form ofLaplaee equation; i.e., qk beeomes harmonie funetion 

in Busemann's auxiliary plane (if' 1) (Fig. 3.1), andean be related to its eorresponding harmonie 

funetions, denoted as q~. As a result, and eomplex variable, X, in Busemann's auxiliary plan is 

defined as 

And the harmonie funetions in terms of the eomplex variable, X, ean be expressed as 

8ep _ 
where qk =-, k-1, 2, 3. 

&ck 

(3.1.6) 

(3.1.7) 

The perturbation velocities ean be expressed as the reai part of the associated analytieal complex 

funetions and are shown as 

(3.1.8) 
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t 

Z=.!!...­
Xl 

t 

Figure 3.1 Confonnal transfonnation ofwing geometry with supersonic edges 

Additionally, the curl of the velocity field is zero (Vxq = 0) and we have 

Bu av av aw aw Bu 
--=--,--=--,and--=--
ôx2 ôx\ ôx3 ôx2 ôx\ ôx3 

(3.1.9) 

Similarly, by taking account of the Busemann geometrical transfonnation, the irrotationality 

conditions can be expressed in complex fonn as 

ix 
dôlt=-xdj/= dq)f. 

.J1- B 2x2 
(3.1.10) 

This is the compatibility relation in the study of conical flow motions. 

20 



3.2 Compatibility relation of high order conical motions in supersonic 

flows 

Conical flow motion of order n with respect to the vertex 0, is the flow for which the disturbance 

velocity potential tp(xl , x2 ,x3 ) is an n-th order homogeneous function with respect to XI' X 2, and x3• It 

follows that the n-th order derivatives of the velocity potential are constants on any radius vector 

issuing from vertex 0, whence they are zero order homogeneous functions in this manner; e.g., the 

true conical flow is defined by n = 1. Accordingly, let's denote tp p, q, r by the derivative of the 

disturbance velo city potential of order p with respect to XI, or order q with respect to X 2, and of order r 

with respect to x3 • Explicitly, it is shown as 

(3.2.1) 

Ifwe consider n is equal to p + q + r, tpp,q,r = tpn-q-r,q,r is homogeneous function ofzero order, which 

plays the same part as the perturbation velocity u, v, and w in the true conical flow motion (n = 1), 

since the perturbation velocity u, v, and w are also zero order homogeneous functions. In other word, 

tpn-q-r,q,r can be expressed as harmonic function in Busemann's auxiliary plane (/f'l') and the 

corresponding conjugate harmonic function can be denote by tp~-q-r,q,r. Therefore, let's denote 

~-q-r,q,r as the analytical function in terms of the complex variable X and we have 

rJJ: = m + i m' <TJl-q-r,q,r 't'n-q-r,q,r 't'n-q-r,q,r· (3.2.2) 

In turn, we consider (n-1) order derivatives of the function tp with respect to XI, X 2, and X 3, 

respectively. Here we choose tpn-I,O,O as example and its corresponding disturbance velocities are zero 

order homogeneous functions. 

u = Ôtpn-I,O,O _ tp V _ Ôtpn-I,O,O - tp W = Ôtpn-I,O,O 
n ôx - n,O,O' n - ôx - n-I,I,O' n ôx = tpn-I,O,1 • 

1 2 3 

(3.2.3) 
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These zero order homogeneous functions are the disturbance velocities u, v, w of a true conical flow 

motions (n = 1), which represent the real part of the analytical functions Olt, "fi, O)f. Namely, Un' V n' 

and W n represent the real parts of analytical functions ~,o,o, ~-l,l,O, and ~-I,O,I, replacing the 

analytical functions Olt, "fI,and O)f, respectively for unitied mathematical expressions in the assumption 

ofhigh order conical flows. The compatibility relation, Eq.(3.1.1O), can also be recast in terms of 

analytical functions for cases in high order conical flow motions in the form as 

ix 
d~oo = -x d~-11 0 = .J d~-1 0 1· , , , , 2 2 ' , 

1-B x 
(3.2.4) 

According to Eq.(3.2.4), we tirst consider the tirst two left hand side terms with successive 

sequential functions as 

d~,o,o = (-x)q d~-q,q,o = (_x)q-1. d~-q+l,q-l,O = (3.2.5) 

Similarly, by considering the tirst and the third terms ofEq.(3.2.4), we obtain 

d~oo = (.J ix Jr d ~-rOr= (.J ix Jr-l d~-r+lOr-1 = ... 
, , 2 2 ' , 2 2 ' , 

1-Bx 1-Bx 
(3.2.6) 

As weIl, relations between ~-q,q,O in Eq.(3.2.6) and ~-r,O,r in Eq.(3.2.5) can be obtained as 

d~-q,q,o = (.J ix 2 2 Jr d~-q-r,q,r, 
1-B x 

d~-r.o,r = (-x)q d~-q-r,q,r. 

(3.2.7) 

(3.2.8) 

Substituting Eq.(3.2.7) into (3.2.5) and Eq.(3.2.8) into (3.2.6) leads to the general compatibility 

relation shown as 

d~,o,o = (-X)q(.J ix Jr d ~-q-r,q,r, 
1- B2x 2 

(3.2.9) 

which is valid if and only if 0 ~ q + r ~ n . 
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3.3 High order conical flow solutions of fixed wings placing in steady 

supersonic flows 

In the tirst place, a thin wing surface can generally be detined in the form as a superposition of 

homogeneous polynomials in Xl and X2, so as the perturbation downwash, w, expressed by the 

homogeneous polynomials oforder (n-l). 

n-l n-l 
_ '" n-q-l q _ n-l'" q 

W - L..J wn_q_l,qXl X 2 - Xl L..J Wn-q-l,qY , (3.3.1) 
q=O q=O 

where X = 't = y = ~, for X3 is equal to zero. 
Xl 

On the other hand, the perturbation downwash, w, can be carried out by the compatibility relation 

known as Eq.(3.2.4) in terms of the real part of the analytical function ~n-l. 

(n-l) _ n-l - R [ n-l l'iU ] 
U - Xl Un-l - e Xl -evn-l. (3.3.2) 

The analytical function of perturbation axial velocity, CW, is presented with respect to several wing 

models of interest in this study; e.g., steady thin delta wing with supersonic leading edges with (a) 

symmetry of incidence, a = -WIOXI / U OC! , (b) antisymmetry of incidence, a = -WIOXI / U OC! , and the 

thin trapezoidal wing placing in incidence, a = -WIOXI / U OC! , with supersonic leading edges without 

the intersection of Mach Hnes from both sides. 

3.3.1 Higb order conical flow solutions to tbin delta wing witb supersonic leading 

edges and symmetry of incidence 

The analytical function corresponding to the disturbance axial velocity, u, can be expressed by theory 

ofhigh order conical flows of order 1 and 2 and shown as 

l'ill = ~K q[ -1 (1+Bl)(l-Bx) (l)q -1 (1+Bl)(1+BX)] E~2)D 2q~1-B2X2 (333) 
'U'n-l L n,qX cos + - cos + L n, 2qX 2" • 

q=o 2B(l-x) 2B(l +X) q=O B 
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tl 

where E(t) represents the greatest integer which does not exceed t. F ollowing are the constants in the 

above equation, which are calculated in terms of the coefficients of the downwashes, Eq.(3.3.l). 

2w BI . 
Kto = -~ ; for n = l. 

1[B ~B212_1 
(3.3.4) 

And for n = 2, we have 

(3.3.5) 

(3.3.6) 

(3.3.7) 

By Eq .(2.4.5), the pressure coefficient of n-th order conical flows can be calculated by taking the real 

part of <Un-}, which is equal to Un-l. 

(n-l) 

Cp(n) = _2_u _ = -2xt 1 U n-1 • 

Uoo Uoo 

(3.3.8) 

Accordingly, the total pressure coefficient of the complex wing with multiple components can be 

expressed as 

N N 

Cp=-2~=-2Ixtl Un_1 = ICp(n) 
U 00 n=l U 00 n=l 

(3.3.9) 

As weU, calculation of the lift coefficient and the pitching moment coefficient can be performed by 

integrating Cp(n) in Eq.(2.4.7) and (2.4.8), respectively. 

c(n) = - 2 JCp(n)x dx dy = 4 r U dl} 
, S Sil (n + l)SU 00 l, n-l 'J 

(3.3.10) 

e(n) = - 2 Je (n) x 2 dx dy = 4 r u d = n + 1 c(n) 
m2 S SPI 1 (n + 2)SU 00 l, n-l ~ n + 2 ' 

(3.3.11) 

Explicitly, for n = 1 and 2, 

(3.3.12) 
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(2) 41l' [.J 2 2 ( 1 ) 1 ] Cl = B 1 -1 K 20 +-K2l +-D20 
3BlU", 2 2B 

The pitching moment coefficients for n = 1 and 2 are 

C(l) = ~C(l) 
m2 3 ' 

(3.3.13) 

(3.3.14) 

(3.3.15) 

3.3.2 High order conical flow solutions to thin delta wing with supersonic leading 

edges and antisymmetry of incidence 

The analytical function corresponding to the disturbance axial velocity, u, can be expressed by theory 

of high order conical flows of order 1 and 2 and shown as 

l'iU = ~y ~[ -1 (l+Bl)(l-B.1) -(-l)q -1 (1+Bl)(l+B.1)] ~)D ,,""1~1-B'x' 
'U-'n-l ~_/~,t(" cos cos + L.J n,2q+IX ' n2 

q=o 2lXl-x) 2lXl + x) q={J lJ 

E(n;2) 

"Q 2q+1 h-I Œ + L.J n,2q+lx cos -2 -2 ' 
q=O B x 

(3.3.16) 

where E(t) represents the greatest integer which does not exceed t. The constants, Kn,q have the same 

values as indicated in Eq.(3.3.4) ~ (3.3.6), while the remaining for order n = 2 is 

Q 
__ 2wlo 

21 - • (3.3.17) 
1l' 

Accordingly, Eq.(3.3.8) can be applied for the ca1culation of n-th order pressure coefficient, 

Cp(n). The rolling moment coefficients, C~~), can be expressed by integrating Cp(n} in Eq.(2.4.9) 

and we have 

c(n} =~fc (n}x 2 dxd = 4 ru dy 
ml S(2b) SPI Y 1 Y (n + 2)SU",(2b) l, n-IY • 

(3.3.18) 
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Explicitly, for n = 1 and 2, we have 

C(l) = 27r ~B2/2 -lK 
ml 3BU 10' 

00 

(1) _ 7r [.J 2 2 ( 2B2/2 + 1 JI] Cm1 - B 1 -1 K 20 + 2 2 IK21 +-2-2 Q21 • 
2BUoo 3B 1 3B 1 

(3.3.19) 

(3.3.20) 

3.3.3 Higb order conical flow solutions to trapezoidal tbin wing witb supersonic 

leading edges 

For thin trapezoidal wing with supersonic leading edges and symmetric in respect of axis OXh the 

general expression for the analytical function of disturbance axial velocity for order of 1 and 2 is 

Following are the constants in the above equation, which are calculated in terms of the coefficients of 

the downwashes, Eq.(3.3.1). 

For n = 1, 

K -_ 2woo BI H __ 2woo 
10 - .D 1 2 2 ' 10 - .D 

7rD"BI-l 7rD 
(3.3.22) 

For n = 2, 

(3.3.23) 

(3.3.24) 

(3.3.25) 

(3.3.26) 
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Applying formulae (3.3.21) and (3.3.8), the pressure coefficients of n-th order conical flow can 

be calculated. In turn, based on Eq .(2.4. 7) ~ (2.4.9), calculations ofthe lift coefficient and the pitching 

moment coefficient need to be based on the calculation of the integration of the pressure coefficients 

over half of the symmetric trapezoidal wing, which can be divided into four portions: (a) 80 and So, 

the left hand side of surface, outside the Mach cone, (b) Si, the wing surface covered by the Mach cone, 

and (c) SI, the right hand side of surface, also outside the Mach cone (Fig. 3.2). 
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XI 

(3.3.27) 

y 

Figure 3.2 The separation of halftrapezoidal thin wing surface into 80 , So, Si, and SI. 
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On wing portions, So' So, and SI, the velocity u and w are expressed by homogeneous polynomials in 

terms of XI and X2 and thus we have E prxrl X;-l , where E pr is a constant. This term can be seen as the 

expression of the aerodynamic characteristics acting on any point on the elementary surface 

dxl dxz = Xl dxl dy. As a consequence, the integration over each portion of wing surface can be 

performed separately as follows. 

(a) For integral domain, S'oand So, 

(3.3.28) 

(b) For integral domain, SI, 

(3.3.29) 

(c) For integral domain, Si, we apply Eq.(3.3.19) to the equations for calculation ofthose specific 

d . h .. f h' h h . . 1" fr 1 t 1 aero ynamlc c aractenstIcs 0 w lC t e mtegratIon lmIts are om - - 0 -. 
B B 

As a consequence, the lift coefficient and pitching moment coefficient of conical flows for order of 1 

and 2 are presented as follows. 

CCl) = 27r (K.J BZl z -1 + 2BbH ) 
1 B(2b + I)U ct:J 10 10 

(3.3.30) 

c?) = 2 7r [2B.JBZ/Z -1(2Kzo +/KzJ+4D20 +6B2bH20 +(1-6B2b2W21](3.3.31) 
3B (2b+l)Uoo 

C(l2) = 27r (2K lO .JB212 -1 +3BbH10 ) (3.3.32) 
m 3B(2b + I)U 00 

C~~ = 2 7r [6B.JB212 -1(2K2o +IK21 )+12D20 + 16B2bHzo +3(1-4B2bZ)nzJ(3.3.33) 
12B (2b +1)Uoo 
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1.[: 

3.4 High order conical flow solutions to wings executing unsteady 

motions in supersonic flows 

According to Eq.(2.4.4), the pressure coefficient of wings executing unsteady motions linearized by 

theory of high order conical flows is recalled as 

C - 2 iOJl[a<D' iÀ (rh, E 2 à<D" M 2 à<D']J p - - e Ox - E2 'V - &+ ",XI Ox 
1 1 1 

(3.4.1) 

where <D = <D' + iÀ<D" = <D~ + iÀ(<D~ + <D;). 

It follows that the calculation of the pressure coefficient in unsteady cases consists of calculations of 

the reduced velocity potential and the perturbation axial velocity. 

~~, ~"N !:Irh' N ~" 
U = _U'V_ = _u'V_ + iÀ_U'V_ = I_U'V_n + iÀ I ~, 

Oxl Oxl Oxl n=1 Oxl ,,=0 Oxl 

(3.4.2) 

0<1>' 
" ,,-1, ,,-IR [1'i1~' ] fu = XI un_1 = XI e "W n-l , 
1 

(3.4.3) 

O<I>~+I _ x"u" - x" Re[lJlt" ] Ox -In-I n· 
1 

(3.4.4) 

Namely, for case when n = 1, 

1 

U = __ 1 +iÀ __ 1 + __ 2 , 0<1>" (à<D" 0<1>" ] 
Oxl Oxl Oxl 

(3.4.5) 

a<D~ , 1'i1~' ] --= Uo = Re[ "W 0 , 
Oxl 

(3.4.6) 

à<D~ 0<1>; " "R [1'i1~" ] + R [/i}~" ] --+ -- = Uo + XI u i = e ~w 0 Xl e "W 1 . 
Oxl , Oxl 

(3.4.7) 

Additionally, <D ~ can be express as 

<D~ = XIU~ + x2 v~ = XI (u~ + yv~) = Re [XI X J lJlt'Od(:)]. (3.4.8) 
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By substituting Eq.(3.4.6) ~ (3.6.8) into (3.4.1), the reduced pressure coefficient can be recast as 

(3.4.9) 

3.4.1 Calculation of tbe reduced pressure coefficient for tbin delta wing 

For thin delta wing with supersonic leading edges, u~, u; , and u; are calculated by substituting w~o 

in Eq.(3.3.4), w;o in Eq.(3.3.4), and w;o and W;I in Eq.(3.3.5) ~ (3.3.7), where w~o, w;o' w;o and 

W;I have been delivered in Eq.(2.3.14) ~ (2.3.17), respectively. 

(3.4.10) 

(3.4.11) 

(3.4.12) 

<1> , . 2é [(1 ) -1 
1 = XI ~ -x cos 

7r B2/2_1 
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" Accordingly, the general equation of Cp can be calculated in terms of the real part of CI/I'o, CI/I"o, 

(3.4.14) 

F or the reduced lift coefficient, we apply the similar formulae from the steady conical motions 

and obtain respectively. 

(3.4.15) 

For the reduced pitching and rolling moment coefficients, we have 

(3.4.16) 

(3.4.17) 
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3.4.2 Calculation of the reduced pressure coefficient for thin trapezoidal wing 

For case of thin trapezoidal wing with supersonic leading edges, u~, u; , and u; are calculated by 

substituting w~o in Eq.(3.3.22), w;o in Eq.(3.3.22), and w;o and W;I in Eq.(3.3.23) ~ (3.3.26), where 

W~o' w;o, w;o and W;I have been carried out in Eq.(2.3.14) ~ (2.3.17), respectively. Explicitly, the 

real parts of 6lt'o, 6lt"o, 6lt"I, and <1>; calculating as follows are devoted to calculating the reduce 

pressure coefficient for thin trapezoidal wing. 

2ê -1 ~1+BX 
, ~--;--O------;-----<- + - cos --

1rB 2' 
(3.4.18) 

2h -1 ~1+BX 
~-~----:-----<- - -cos --

1rB 2' 
(3.4.19) 

2ê -1 ~(1+BX)] ~-~----:---<- + -cos , 
1rB 2 

(3.4.21) 

Accordingly, substituting real parts of 6lt'o, 6lt"o, 6lt"J, and <1>; into Eq.(3.4.9) follows the resultant 

form of the calculation of the reduced pressure coefficient. 
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CHAPTER4 

ANALYSIS OF SUPERSONIC FLOW ON WING SURFACE 

BY METHOD OF SOURCE DISTRIBUTION 

4.1 Velocity potential of sources distributing over wing surface in steady 

supersonic flow 

In the first place, a three dimensional source with intensity q placed in a uniform supersonic flow 

characterized by Moo = 2.0 is described in Cartesian coordinate system with origin, 0, and three axes, 

OX" Ox2, and Ox3, where Ox, is parallel to the free stream velocity and the source is placed in plane 

OX,X2 (Fig. 4.1); e.g., we may specify the location of the source on plane OX,X2 at XI = Çl' X2 = ç 2 , 

X 3 = 0 . we denote as an arbitrary point and thus 

As weIl, the velocity potential equation in respect to P(Xp X2 ,X3 ) within the velocity field in 

steady flow is recalled as 

(4.1.1) 

where cp is denoted as the perturbation velocity potential with respect to point P in space (XI' X2 , x3 ) • 
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Figure 4.1 A single source situated in uniform supersonie flow 

In turn, Eq.( 4.1.1) ean be reeast in the form as the Laplace 's equation by considering the 

coordinate transformation with the following three relations. 

(4.1.2) 

And the velocity potential equations becomes 

(4.1.3) 

where fp is a harmonie function with respect to point P in the transformed spaee (Xl, X 2, Xl) and 

represents the velo city potential of a fictitious incompressible flow around point P, situated in the new 

space. Therefore, this incompressible flow potential can be determined with the methods discussed 

for the wings in incompressible flow. Accordingly, the velocity potential, fp, of this incompressible 

flow of point P(X, , X 2' X 3) related to the source with intensity q can be determined as 

(4.1.4) 
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As a result, the perturbation velocity potential of point P related to a source with intensity q in the 

original coordinate system (Xp X2,X3) is carried out and shown as follows. 

(4.1.5) 

Following is the determination of the velocity potential, rp, of point P in space (xl' X 2 ' x3 ) 

corresponding to sources distributing over a specifie area, A, on plane OXIXl (Fig. 4.2). Firstly, the 

intensity of source related to the specifie location (q" q 2) is assumed uniform within the infinitesimal 

area dq, dq 2 and proportional to a given function /(q" q 2)' Explicitly, the intensity of source related 

to the specifie location (q, ,q2) is denoted as qs and expressed as 

(4.1.6) 

x, 

XI 

Figure 4.2 Distribution of series of sources in specifie area A 
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Based on Eq.( 4.1.5), the perturbation velocity potential of point P related to a source placed in the 

specifie location (~I' ~ 2) with intensity qs is expressed as 

(4.1.7) 

where drp is a real value, and it follows that the denominator of Eq.(4.1.7) is supposed to be larger 

than zero. 

(4.1.8) 

Mathematically, Eq.(4.1.8) represents the hyperbolic cones and the major axis is parallel to OXI axis 

and the slope of asymptotes is ...!.-. In other words, such hyperbolic cone can be seen as the Mach cone 
B 

specified by the Mach angle, J.l = tan -1 ! in aerodynamic point of view. In this sense, only sources 
B 

located inside the area, (j, covered by the forward Mach cone (Fig. 4.2) with the vertex, P(x l , X 2 ' x3 ) 

and the specifie are a, A, count on the contribution to the calculation of the velocity potential of point 

P. Thus, the velocity potential, rp, related to sources distributing inside the area, (j, is expressed as 

(4.1.9) 

In turn, the perturbation downwash can be written as the derivative of rp with respect to x, based on 

Eq.(4.1.9) due to the boundary condition as introduced in Eq.(2.1.10). 

(4.1.10) 

Denote the perturbation velocity potential of point P related to sources distributing in the infinitesimal 

integration domain 8~18~ 2 by &/1. Then 

(4.1.11) 

36 



XI 

XI 

Figure 4.3 Coordinates system and integrallimits for the downwash calculation 

Firstly, we perform the integration with respect to variable Ç2 in Eq.(4.1.11) and the upper and lower 

integration limits with respect to variable Ç2 (Fig. 4.3) are expressed as bl = x2 - 6 and b2 = X 2 + 6. 

(4.1.12) 

As well, the integration limits, b l and b2, are situated on the boundary of the hyperbola, and one 

obtains that 

(4.1.13) 

Thus, Eq.(4.1.12) becomes 

b
2 dÇ2 1l 

l~(XI _çJ2 -B 2 [(X 2 -Ç2Y +x;]= B· 
(4.1.14) 
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1 

XII 

X3 cot,u = BX3 

-> 8.2 = Xl - BX3 

Figure 4.4 Calculation of the integrallimit 'a2' 

XI 

Secondly, we perform the integration with respect to variable ql with integration limits al and a2 in 

Eq.( 4.1.11) and the perturbation velocity potential of point P related to sources distributing in the 

infinitesimal integration domain t5q1t5Ç2 is carried out as 

(4.1.15) 

where a2 is equal to XI - BX3 as shown in figure 4.4. 

Accordingly, the perturbation downwash, w, is calculated as 

(4.1.16) 

And thus f(ql' q 2) can be expressed in terms of the function of downwash as 

(4.1.17) 
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As a consequence, the velocity potential of point P related to sources distributing in the integration 

domain a with intensity proportional to the magnitude of w(ç!, ç! ) becomes 

(4.1.18) 

And for point P located on plane OX1X2, the velocity potential equation of point P related to sources 

distributing in the integration domain a can be expressed as 

qJ(Xp X2)= -~ fJW(Ç~Ç2) dç!dç2' 
1ru 

(4.1.19) 

homogeneous polynomial in ç! and Ç2 with respect to each location of a source in the integration 

domain (]'. 
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4.2 Velocity potential of pulsating sources distributing over wing 

surface in supersonic flows 

A three dimensional pulsating source with intensity q in supersonic flow is of interest for 

analyzing wings executing unsteady motions. And as could be recalled, the velocity potential 

equation of point P( Xl' X 2 ,x3 ) in the unsteady supersonic flow is expressed as 

(4.2.1) 

By considering the velocity potential of point P(x1 , X 2 ' x3 ) for harmonic motion [52] shown as 

(4.2.2) 

where <I>(x l , x 2 ' x 3 ) is the reduced velocity potential of point P(xl , X2 ' x 3 ) , 

Eq.( 4.2.1) can be recast as 

(4.2.3) 

where we denote Â =..!!!...- by the reduced oscillating frequency, K = ÂM 00 ,and k = _ K M 00 • 

Uoo B B 

According to the boundary condition of the Mach cone, all the perturbation velocity, u, v, w, 

disappear outside of the Mach cone; i.e., the perturbation velocity potential, cp, is also zero. 

8<1> a<D a<D 
<1>=0 u=-=O v=-=O w=-=O. , ax ' ax ' ax 

1 2 3 

(4.2.4) 

And similar to the steady supersonic flow, only sources distributing in area (T covered by the 

forwarded Mach cone with the vertex point P and the specific area, A, contribute to the calculation of 

the velocity potential ofpoint P. Explicitly, the boundary condition is recalled as 

(4.2.5) 
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Let's consider Eq.(4.2.4) by the Lorenz transformation, including T = t - K M 00 XI' the reduced 
B 

velocity potential of point P can be expressed as 

<1>(Xp X2 ' x3 ) = <1>1 (R)<1> 2 (1fI)<1> 3 (0) , (4.2.6) 

R x -~ 
where lfI = and 0 = tan -1 3 3. 

XI-~I X2-~2 

In this study, aH wings are restricted to planar thin wing plan form (Le., x3 = ~3 = 0) and this 

condition leads to 0 = 0 and <1> 3 (0) = 1. As weH, with the regard of non-singularity solution even 

(4.2.7) 

Thus, the derivative of <1> in respect to Xl in tirst order is shown as 

8<1> 8<1> 1 8R 
-=---- (4.2.8) 

And then the derivative with respect to XI in second order is 

8
2

<1> = 8
2

<1>1 (8RJ2 + 8<1>1 (8
2
RJ. 

& 2 8R 2 & 8R & 2 1. 1 1 
(4.2.9) 

Similarly, the derivative of <1> in respect to X2 and Xl in second order are shown as 

82
<1> = 82

<1>1 ( 8R J2 + 8<1>1 (82 
R J. 

& 2 8R2 & 8R & 2 2 2 2 
(4.2.10) 

82
<1> = 82

<1>1 ( 8R J2 + 8<1>1 (82 
R J 

& 2 8R 2 & 8R & 2 ' 
3 3 3 

(4.2.11) 

where 

8R = XI - ~I 8 2 R _ - B
2 l(x2 - ~2 Y - (X3 -;3 Y J 

&1 R' -&-1-2 - R 3 
(4.2.12) 

(4.2.13) 
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(4.2.14) 

Substitute Eq.(4.2.9) ~ (4.2.14) into the velocity potential equation in terms of the reduced velocity 

potential as introduced in Eq.(4.2.3), and we have 

(4.2.15) 

After simplifying the whole set ofEq.( 4.2.15), the velocity potential equation in terms of the reduced 

velocity potential of point P can be recast as 

d
2

<1>1 +~ d<l>l + K
2 

<1> = O. 
dR 2 R dR B 2 

1 
(4.2.16) 

Mathematically, Eq.(4.2.16) is a homogeneous ordinary differential equation with respect to single 

variable, R, and one of the non-trivial general solutions ofthis O.D.E. can be written by 

<1>1 (R) = ~ cos( ~ R ). (4.2.17) 

Likewise, the velocity potential of point P on wing surface in steady supersonic flow can then be 

applied to wings executing unsteady motions in terms of all time-independent variables and the 

non-trivial solution shown in Eq.( 4.2.17). 

<I>(XI,X2)= -~ JJW(~I'~2)~COs(KR)d~ld~2' 
;ro- R B 

(4.2.18) 

where w = e -ik';l W(ql , q 2 ). According to the discussion of boundary condition in chapter 2.1, W is 

fully dependent on the geometry of the wing model surface. Replace w by W in Eq.(4.2.18) and put 

one e ikx
, inside the integral and set e-ikx

, outside the integral; that's it, Eq.(4.2.18) becomes 

<I>(xp x,) = - ~ e -Ox, fi w (Ç~ ç,) e"(" -<,) cos( ~ rç1dç, . (4.2.19) 

42 



And W(~P~2) can be defined as a superposition of homogeneous polynomial in ~I and ~2 with 

respect to each location of a pulsating source in the integration domain (J". Explicitly, w(~p ~ 2) in 

steady case and W (~p ~ 2) in unsteady case can then be unified in the form as 

N n 

WO(~P~2)= LLWn-j,j~rj~i , (4.2.20) 
n=O j=O 

where N and Wi,j; i = O ... N and j = O . .. N are determined with the regard of physical conditions 

imposed on the wing model directly. 
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CHAPTER5 

PRESENT STEADY FLOW SOLUTIONS FOR FIXED 

WINGS 

5.1 General steady flow solutions for tbin wings 

The velocity potential of point P has been carried out by performing the integral of downwash in the 

integration domain u covered by the forward Mach cone and the fixed wing surface in supersonic 

flows. Accordingly, the axial disturbance velocity, u, can be written in the form as 

(5.1.1) 

Let's consider the coordinate transformation with the following two relations. 

X2 -;2 
X=XI -;1 and Y= . 

XI -;1 
(5.1.2) 

Thus, equations W(;I,;J, R, and d;ld;2 in Eq.(S.1.1) can then be recasted as functions of the 

transformed variables X and Y. 
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N n N n 

WO(qpq2)= LLwn-J,Jqt-Jqi = LL Wn-J,J (Xl -Xt-1(X2 -XY)1 
n;O J;O n;O J;O 

where C;-J and ct are coefficients of Newton binomial formula. 

The Jacobean of the coordinate transformation is calculated as 

[

Ôql 
ôX 
ôq2 
ôX 

And thus 

(5.1.3) 

(5.1.4) 

(5.1.5-a) 

(5.1.5-b) 

Substitute the Eq.(5.1.3), (5.1.4), and (5.1.5-b) into the perturbation velocity potential, ffJ, in terms of 

variables X and Y and one has 

(5.1.6) 

where 

(5.1.7) 

(5.1.8) 

The calculation of integral ID has to be performed based on the specifie geometrical configuration of 

delta and trapezoidal wings separately. The following two sections are the detailed analytical 

solutions of the calculation ofintegral with which the both wing plan forms are concemed. 
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The axial perturbation velocity, u, is given by the following equation. 

_ Bep __ !{~ ~ L- [~~( _ . _ k}xn- j -k-l j-q/ n-j-k j-q B/o ]} u - - L.JL.J Wn_j,j 0 L.JL.J n J 1 X 2 0 +X1 X 2 • 
fuI li n=O j=O k=O q=O fuI 

(5.1.9) 

Accordingly, the pressure coefficient, Cp, ofwing in steady flow can be calculated as 

As well, the lift coefficient, Cl, pitching moment coefficient, Cm2, and rolling moment coefficient, C ml, 

can be calculated as follows. 

For calculation of the lift coefficient, 

-2 J Cl =- CpxIdx1dy 
S s 

For calculation of the pitching moment coefficient, 

For calculation of the rolling moment coefficient, 

-2 J 2 C =-- ex dx 
ml S(2b) SPI Y Idy 
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5.2 Calculation of integral for thin delta wing in steady supersonic flow 

Let's consider figure 5.1 and the integration domain, (J", representing the specifie area ofwing surface 

covered by the forward Mach cane with the vertex at point P, can be split inta two sections as M>A' 10 

and M>OA' 2. 1t follows that the integral 10 for thin delta wing can then be written related to domains 

M>A'IO and M>0A'2, respectively. 

(5.2.1) 

The integrallimits in respect ofboth triangular domains are defined by the location of each point 

P(XI' x2 ) on wing surface with variable, y = x2 / Xl and can be expressed in the fonn as functionj{y). 

/ 
/ 

/ 
/ 

/ 

1 

/ 
/ 

/ 
/ 

/ 

lIB 

o 

'---S(~I.~ ) 

Y=l/B 

o 

lIB 
1 

Xl X, 

Figure 5.1 Integrallimits of the thin delta wing 
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Explicitly, the integrallimits,j(y), with respect to Y are expressed as 

1 1 
For tan Il = - :::; y :::; l, f(y) = - . 

B B 

1 1 
For --:::;y:::;-, f(y)=y. 

B B 
(5.2.2) 

1 1 
For -1 :::; Y :::; --, f(y) = - - . 

B B 

And for the integral limits with respect to X, we denote X; and X; by auxiliary functions 

representing the upper integrallimits for integration domains M>A' 10 and M>A' 20, respectively. 

For M>A' 10 domain, we have 

(5.2.3-a) 

For M>A'20 domain, we have 

• 1 + Y 
XIlPA'o = X 2 = XI --· 

2 1 +Y 
(5.2.3-b) 

Accordingly, 10 can be recast as follows by considering all these integrallimits in Eq.(5.2.1). 

X
·k+q+lyq 1 X.k+q+lyq 

= rII(Y) 1 dY + fi 2 dY 
LB (k+q+l)9l Jf(y) (k+q+I)9l 

[ (1 )lk+q+1 q [(1 )]k+q+1 1 yq 
= XI - Y 1 [-I(Y) Y dY + XI + Y lB dY. 

k + q + 1 li (1 - Y)k+q+1 9l k + q + 1 .Ir(Y) (1 + Y)k+q+1 9l 
(5.2.4) 
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In turn, we consider yq = [/- (z - y)]q in the tirst integral and yq = [-1 + (z + y)]q in the second 

integral shown in Eq.(5.2.4) and these two relations can he recast by the Newton binomial formula. It 

follows that the two integrals in Eq.(5.2.4) can be recast as 

(5.2.5-a) 

(5.2.5-b) 

where g = k + q - f + 1 and denote the integrals of two kinds above by Ig and Jg, respectively. 

1 = rf(y) 1 dY 
g li (/- y)g 91 ' 

(5.2.6-a) 

1 

J=r'ii 1 dY. 
g Jf(y) (1 + y)g 91 

(5.2.6-b) 

Analytically, IntegraIs in Eq.(5.2.5-a) and (5.2.5-b) can be solved by using the recurrence 

formulae. Let's take Eq.(5.2.6-a) as an example. Firstly, denote the an auxiliary integral by Ag and the 

following equation can be carried out straightforward as 

On the other hand, Ag can also be integrated by part and we have, 

(5.2.8) 
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By arranging Eq.(5.2.7) and Eq.(5.2.8) together, the recurrence formulae for integral, Ig, are given as 

1 [~1- B
2 
[r(y)Y 2 3 - 2g 2 g - 2 ] 

l g = ( 2 2) (\r ] -1 + B 1 l g-1 + B -- l g-2 ,for g ~ 2 . 
1-BIg -IJJ - f(y) g g -1 g-1 

(5.2.9-a) 

Ig = ~ [sin-1(Bf(Y»)+;]. for g = O. (5.2.9-b) 

l = 2 cos-1 

g ~B2f-l 
J -'---...,..-'---'-'--,,......-'- , for g = l , (5.2.9-c) 

[
(y) 1 f1(Y) 1 f1(Y) 1 

where Ig = 1 ( ) dY, Ig-l = 1 ( ) 1 dY, Ig_2 = 1 ( ) 2 dY ... 
li 1 - Y g 9l li 1 - Y g- 9l li 1 - Y g- 9l 

Similarly, the recurrence formulae for the integral, J g , are given as 

1 [~I-B2[r(y)Y 2 3-2g 2 g-2] > 
J g = ( 22) (\r ] _) +B 1 Ig_) +B --Ig_2 ,for g_2. (5.2.10-a) 

1-BIg -IJJ + f(y) g g -1 g-1 

J g = ~[; -sin-)(Bf(Y»)].for g=O. (5.2.10-b) 

--'-------'--:,...:.:..-:.~--:-~ , for g = l , (5.2.1O-c) 

As a consequence, the integral, 10 , and its derivative with limits are given separately in terms of the 

position of point P(x),x2 ). 
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'f 

For position outside the Mach cone to the right, ! ~ y ~ 1 and f (y) = ! . 
B B 

[ (1 _ )]k+q+1 1 yq 
1 = XI Y rB dY 

o k+q+1 l~(/-yy+q+l9l ' 
(5.2.11) 

a _/[ (1 )]k+q BI yq d 
- 10 - XI - Y 1 ( )k 1 Y . 
fui li 1 - Y +q+ 9l 

(5.2.12) 

For position inside the Mach cone, _! ~ y ~! and f(y) = y. 
B B 

(5.2.13) 

~ 1 - I[x (1 - )]k+q f yq dY + [XI {f - y)y+q+1 a (f yq dY) + 
fui 0 - 1 Y ~ (1 _ y)k+q+1 9l k + q + 1 &1 ~ (1 _ Y)k+q+l9l 

where the derivative of integral li y: 1 dY and ~ y: 1 dY with respect to XI can be 
li (1- Y) +q+ 9l ~ (1 + Y) +q+ 9l 

derived as 

a ( yq ) q al X q al - f dY = "(_1)1 cqF-I_g = __ 2 "(_1)1 Cqlq-I - g 
~. ! (1 y)k+q+l'" L.J 1 ~. 2 L.J 1 ;)., ' 
UXI B - ~ 1=0 UXI XI 1=0 voY 

(5.2.15) 

(5.2.16) 

where the derivative of Ig and Jg with respect to y are then given by the recurrence formulae as 

follows. 
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For g ~ 2, 

-= +BI +B ----. 
8Ig 1 [(g -1~1- B2y2\_ B2y(/_ y) 2 3- 2g aIg _1 2 g - 2 8Ig_2] 

ay I_B2/2 (g-IX/-y)g~1-B2y2 g-1 ay g-1 ay 
(5.2.17) 

aJg = 1 2 2 [(g -1~1- B
2 
y2\_ B2y(1 + y) + B2/3-2g aJg_I + B2 g- 2 aJg_2]. 

ay I-B 1 (g-IX/+y)g~I-B2y2 g-1 ay g-1 ay 
(5.2.18) 

For g= 1, 

8Ig 1 
(5.2.19) = ay (/- y}J1- B2y2 

8Jg -1 
(5.2.20) = ay (1 + y}J1- B2y2 

For position outside the Mach cone to the 1er t, -1 ~ y ~ _! and f(y) = _!. 
B B 

[ fi )]k+q+1 1 yq 
1 = XI \: + Y lB dY 
o k+q+1 l.~.(z+yy+q+l91 

(5.2.21) 

8 _ [(1 )~k+q El yq d 
-10 -1 XI + Y 'J 1 f )k 1 Y 
&1 li \1 + Y +q+ 91 

(5.2.22) 

In turn, considering the definition ofthe lift coefficient, pitching moment coefficient, and rolling 

moment coefficient in Eq.(5.1.11), (5.1.12), and (5.1.13), the integration of 10 are essential at this 

stage. The detailed expressions for performing integrals in the calculation of the aerodynamic 

coefficients are given in Appendix C. 
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5.3 Calculation of integral for tbin trapezoidal wing in steady 

supersonic flow 

For analysis ofthin trapezoidal wing situated in steady supersonic flow, let's consider figure 5.2 

on which the calculation of integral is based. Because of the nature syrnmetry with respect to OXI, the 

analysis of the aerodynamic characteristics can he performed in half of the wing. As weIl, we have 

two identical high-order conical motions at points 0 1 and 02, which are symmetric with respect to 

OXI axis but independent to each other; Le., the interference of the two Mach cones is assumed small. 

o 01 
X, 

Y=llB 

Y=llB 

01 Al 
lIB lIB y 

1 

Xl 

Figure 5.2 Integrallimits of the thin trapezoidal wing 
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Likewise, the integration domain, (J", representing the specifie area of wing surface covered by the 

forward Mach cone with the vertex at point P, can be split into two sections as M>A' 10 and M>0A'2. 

The integrallimit in respect of variable X in domain M>A'20 can be expressed as follows, while in 

domain M>A' 10, the integrallimit in respect of variable X is the same in Eq.(5.2.3-a). 

(5.3.1) 

Accordingly, the integral 10 in respect ofthin trapezoidal wing can be recast as 

X
·k+q+lyq 1 X·k+q+lyq 

= rfl(Y) 1 dY + ri 2 dY 
lB (k+q+l)9l Jf(y)(k+q+l)9l 

[ (1 _ )]k+q+1 yq k+q+1 1 yq 
= XI Y [I(Y) dY + XI (B -dY. 

k + q + 1 B (/- Y)k+q+1 9l k + q + 1 .Ir(Y) 9l 
(5.3.2) 

The analytical solutions to the tirst integral in Eq.(5.3.2) have been carried out in Eq.(5.2.5-a), 

(5.2.6-a), and (5.2.9-a) ~ (5.2.9-c) by the recurrence formulae. Similarly, the second integral in 

Eq.(5.3.2) can also be ca1culated by the recurrence formulae. 

1 

Denote ri Y P9ldY by Jp , where p is the power of Y and equal to q. Jf(y) 

J = cl- YP9ldY = cl- Y
P
9l

2 
dY = cl- YP(l- B

2
y

2 
)dY 

P Jf(y) Jf(y) 9l Jf(y) 9l 

= ri Yp dY _ B2 ri y
p

+
2 

dY. 
Jf(y) 9l Jf(y) 9l 

(5.3.3) 
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On the other hand, by integrating by parts, integral J p is given by 

1 
~ 1 yp+1 li 1 yp+I B2y 
J = lByP~dY=-- + lB -- dY 

p Jf(y) p + 1 f(y) Jf(y) p + 1 .Jl- B2 y 2 

(5.3.4) 

By rearranging Eq.(5.3.3) and Eq.(5.3.4), the recurrence formulae for integral Jp are given by 

J = ~ ~dY= P-l(~I-B2(f(Y)Y (f(y))P-I +J - J forp~2. 
p Jf(y) ~ B 2 P P -1 p 2 , 

(5.3.5) 

J = ~ ~dy=1..(1[ -sin-I(Bf(Y))) forp=O. 
p Jf(y) ~ B 2 ' 

(5.3.6) 

Jp = ~y)~dY=;2 ~1-B2(f(Y)Y ,forp=l, (5.3.7) 

1 yP 1 yp-2 
where Jp = lB -dY and Jp_2 = lB --dY. 

Jf(y) ~ Jf(y) ~ 

As a result, the analytical solutions to integral, 10 , and its derivative in respect to XI with limits for thin 

trapezoidal wing are given separately based on the location ofpoint P(x I ,x2 ). 

For position in area SI, 1.. ~ y ~ II and f(y) = 1... 
B B 

[ (1 _ )lk+q+1 1 yq 
1 = XI Y J lB dY 

o k+q+l li(/-yy+q+l~ . 
(5.3.8) 

a _ I[ ( )]k+q 111 
yq -10 - XI 1-Y 1 ( )k 1 dY. 

&1 B 1 - Y +q+ ~ 
(5.3.9) 
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For position in area Si, -~ ~ y ~ ~ and f(y) = y. 
B B 

[(1 )]k+q+l q k+q+l 1 yq 
1 = Xl -y [lCY) Y dY+ Xl fB -dY. 

o k+q+l li (/-Y)k+q+lm k+q+l.1tCY) m (5.3.10) 

X
l
k+q fB-dY + Xl fB-dY , 

1 yq k+q+l a ( 1 yq J 
~ !li k + q + 1 ax1 ~ !li 

(5.3.11) 

where the derivative of integral fi y: 1 dY and ~ yq dY with respect to XI can be derived as 
li (l - Y) +q+ m ~ m 

a ( yq ) q al q al - f dY = "(_1)1 Cql q- I -g = -~ "(_1)1 cqr-I - g 

ax ~ (1 y)k+q+l m L..J 1 ax 2 L..J 1 ~, ' 
1 B - n 1=0 1 XI 1=0 v)' 

(5.3.12) 

The derivatives of Ig and J g with respect to y are derived based on the recurrence formulae. 

(5.3.14) 

For g= 1, 

(5.3.15) 
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Forp = 0, 

(5.3.l6) 

Forp = 1, 

(5.3.17) 

k+q+1 1 yq 

1 = XI lB -dY 
o k+q+11~ 9{ . 

(5.3.18) 

(5.3.19) 

In turn, calculations of the lift coefficient and the pitching moment coefficient for trapezoidal 

wing models in steady supersonic flow are performed by integrating the integral 10 for half of the 

wing plane form. As can be seen in figure 5.2, the half wing plane form is divided into four integral 

domains: So and So, the first and second parts of the left hand surface outside the Mach cone, Si, the 

surface inside the Mach cone, and S1, the right hand surface outside the Mach cone. Within these 

specific integration domains, 1 g is zero and Jg is constant for integration domains in 80 and So, and 

for integration domain within SI, Jg is zero, and Ig is constant. For integration domain inside the 

Mach cone, both Jg and Ig are function of y and thus, detailed expression used in the calculation of 

the aerodynamic coefficients are given in Appendix C. 
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CHAPTER6 

PRESENT UNSTEADY FLOW SOLUTIONS FOR 

OSCILLATING WINGS 

6.1 General unsteady flow solutions for oscillating tbin wings 

Firstly, the reduced pressure coefficient of oscillating thin wings derived by Eq.(2.4.3) is recalled as 

CA _ 2 ikx, [8<l> iÀ. rn] _ 2 ikx, [8<l> ik rn] p-- e ----v -- e ----v 
8x B 2 8x M 2 

' 1 1 <:J) 

(6.1.1) 

where the analytical solutions to 8<l> and <l> are essential at this stage. According to Eq.( 4.2.19), <l> 
8x1 

has been carried out explicitly and recalled as 

<l>(Xp X2) = - ~ e-ikx, fL W(Ç~Ç2) eik(xd"d cos( ~ )dÇ1dÇ2 . (6.1.2) 

Let's also consider the coordinate transformation with the relations as shown in Eq.(5.1.2) and 

W(~I'~2)' R, d~ld~2' eik(xdd , and cos( ~) in Eq.(6.1.2) can be recast as functions of the 

transformed variables X and Y. Firstly, eik(X,-çd and cos( ~) can be expressed analytically by 

Taylor expansion" series as 

58 



(6.1.3) 

(6.1.4) 

Thus the product of e ik(x)-q)) and cos( ~) by Taylor expansion series is expressed as 

(6.1.5) 

According, by substituting Eq. (5.1.3) ~ (5.1.5), and (6.1.5) into Eq.(6.1.2), the reduced velocity 

potential, cD, can be recast as 

where 

cD o = - ~ e-
ikx

) fI wo(x,Y) ~ dXdY, 

cD I = - ~ e-
ikx

) JI wo(x,Y) ~ Sl dXdY , 

cD 2 = -! e-
ikx

) JI wo(x,y)~ S2 dXdY , 

cD l2 = _!e-ikx
) JI wo(x,Y)~SIS2dXdY. 

1r ) 9l 

(6.1.6) 

(6.1.7) 

(6.1.8) 

(6.1.9) 

(6.1.10) 
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By substituting the unified expression of Wo (X, y) with homogeneous polynomial series in X and Y, 

aH above equations from (6.1.7) c-- (6.1.10) can then be recast as 

(6.1.11) 

X k+qyq 

h - fI dX.d d L- - Cn-iCi ( l)k+q w ere 10 - 9t Y an 0 - k q - • 

(6.1.12) 

xk+q+syq _ 1 s 

where Il = fI dXdY and LI = -(ik) . 
9t s! 

(6.1.13) 

(6.1.14) 

And the derivative of <l> with respect to Xl is calculated as 

B<l> a<I> 0 a<I> 1 a<I> 2 B<l> 12 -=--+--+--+--. 
&1 &1 &1 &1 &1 

(6.1.15) 
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Likely, each term ofEq.(6.1.15) can be derived separately as 

W o =(-ik\m _-.!..e-ilaj{~~w .L [~~(n-J'-k)xn-j-k-1xj-qI +xn-j-kxj-q 8Io]}. ax f'Vo L.JL.J n-j,j 0 L.JL.J 1 2 0 1 2 Br 
1 7r n=O j=O k=O q=O 1 

(6.1.16) 

Accordingly, the reduced pressure coefficient can then be expressed by method of pulsating sources 

distribution over wing surfaces by substituting Eq.(6. 1. 11) ~ (6.1.14) and Eq.(6.1.16) ~ (6.1.19) into 

Eq.(6.1.1). 

êp=~±twn-j,j{ÏtIa[((n-k-q)x;rk-q-1yj-q +iÂx;rk-qyj-q{Io + ±~II + ±tI -J2 + ±±t~l12) 
7r n=O j=O k=O q=O \ s=1 1'=1 1=0 s=1 1'=1 1=0 

(6.1.20) 

where Â = ~ by taking the root chord Co = 1.0. 
U", . 

The present solutions to the calculation of the reduced lift coefficient, the pitching moment 

coefficient, and the rolling moment coefficient can be carried out by performing the integration of 

Eq.(6.1.20) through the who le wing area denoted by S directly. 
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+ iÂ( f xr J-k+1 yJ-q 1 odx l dy + t LI f xrJ- k+
1 
yJ-q Il dxldy + 

s s=1 S 

+ iA( f x;-j-k+2 yJ-q l odx
l
dy + ± LI f x;-j-k+2 yj-q I

l
dx

l
dy + 

S s=1 S 
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R r S R r LLL2 Jx;-i-k+lyi-q+112dxldy + LLLL;2 JX;-i-k+lyi-q+ll12dxldy 
r=1 1=0 S s=1 r=1 1=0 S 

+ ÎÂ( J Xl
n - J-k+2 yJ-q+llodx ldy + t LI J x;- J-k+2 yJ-q+ll,dx ldy + 

S s=1 S 

R r S R r 

LL~ JX;-J-k+2yJ-Q+112dxldy+ LLLL;2 JxrJ-k+2yJ-Q+II12dxldy 
r=1 1=0 S s=1 r=1 1=0 S 
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6.2 Calculation of integral for oscillating th in delta wing 

In order to accomplish the calculations of those aerodynamic coefficients for thin delta wing 

executing harmonic oscillations in supersonic flows, the integrals, 1o, ft, h, and lu, and their 

derivatives in respect to Xl would need to be performed exc1usively on the basis of the geometrical 

configuration. For convenience, we arrange the calculation of integral systematically and denote the 

general integral by Ii i defined as 
1>2 

where il and i2 are powers of variables X and Y, respectively and 9l = ,JI- B2y 2 
• 

Thus, the integrals, 1o, Il, h, and lu, can be defined in terms of il and i2 as 

• For integral 1o, il = k + q and i2 = q. 

• For integral lI, il = k + q + s and i2 = q. 

• Forintegralh, il =k+q+2r and;2 =q-2t+2r. 

• For integral I}2, il = k + q + s + 2r and i2 = q - 2t + 2r . 

The expressions for these integrals perform in this case are given in Appendix D. 

In turn, calculations of the lift coefficient, pitching moment coefficient, and the rolling moment 

coefficient can then be performed by integrating I
il

';2 over the delta wing surface denoted as S. The 

detailed expressions for performing the integral for Ii i used in the calculation of the aerodynamic 
1· 2 

coefficients are given in Appendix C. 

64 



6.3 Calculation of integral for oscillating thin trapezoidal wing 

For trapezoidal wings executing unsteady motions in supersonic flows, the calculations ofthose 

aerodynamic coefficients can be carried out by performing the calculation of integrals, 10, h h 1]2, 

and their derivatives with respect to XI. Similarly, we denote the general integral by 1;; and we have 
1>2 

(6.3.1) 

where il and i2 are powers of variables X and Y, respectively. 

Accordingly, the integrals, 10, h h 1]2, respectively can be expressed in terms of il and i2 as 

• For integral 10, il = k + q and i2 = q 

• For integral h il = k + q + s and i2 = q 

• For integral h, il = k + q + 2r and i2 = q - 21 + 2r 

• Forintegral1]2, il =k+q+s+2r and i2 =q-21+2r 

The expressions for these integrals perform in this case are given in Appendix D. 

In turn, the calculations of the lift coefficient, pitching moment coefficient, and rolling moment 

coefficient for trapezoidal wing executing unsteady motions are performed by integrating the general 

integral 1. . for half of the trapezoidal wing. As one may recall by considering Figure 5.2 again, we 
'1"2 

notice that for integration domain within So and So, 1 g is zero, and J g is constant, while within the 

integration domain, SI, Jg is zero, and Ig is constant, instead. And for integration domain inside the 

Mach cone, both Jg and Ig are function of y. Accordingly, the detailed expressions used in the 

calculation ofthe aerodynamic coefficient are given in Appendix C. 

65 



CHAPTER 7 

RESULTS AND DISCUSSION 

7.1 Steady flow results for delta wiogs 

The validation of the present method will first be devoted to the cases of thin delta wing in a uniform 

supersonic flow characterized by Moo = 2.0 with: (a) symmetry of incidence, a = -WIOX1 / U 00' and (b) 

antisymmetry ofincidence, a = -W01 X 2 / U 00. The semi-span, l, atxI = 1.0 is equal to 0.75 and forthis 

geometrical configuration, both leading edges are outside the Mach cone with the vertex located at the 

wing apex and can be considered as supersonic leading edges. As can be seen in both figures 7.1 and 

7.2, the variations of u(l) / WIO and u(l) / WOI, which are proportional to the pressure coefficient, are 

plotted in the spanwise cross-section at XI = 1.0 and in the longitudinal section at X2 = 0.2, respectively. 

The present solutions are compared in the same figures with the results obtained by the theory ofhigh 

order conical flows (Carafoli, Mateescu, Nastase, [2]). An excellent agreement was found between 

these results. 

As well, the lift coefficient, the pitching moment coefficient, and the rolling moment coefficient 

are also calculated and presented in the following tables 7.1 and 7.2. 
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CI Cm2 Cm1 

Present solutions -0.00226 -0.00170 0 

High order conical flow solutions -0.00226 -0.00170 0 

Table 7.1 CI, Cm2, and Cm1 for steady thin delta wing with supersonic leading edges and symmetry 

incidence a = -WlOX1 / U 00 • 

CI Cm2 Cm1 

Present solutions 0 0 0.00031 

High order conical flow solutions 0 0 0.00032 

Table 7.2 CI, Cm2, and Cm1 for steady thin delta wing with supersonic leading edges and antisymmetry 

incidence a=-w01 x2 /Uoo • 

Albeit results obtained in steady thin delta wing by both methods are in very good agreement, the 

present method developed in this thesis permits an enhanced flexibility to cope with cases in higher 

order approximations without deteriorating the ca1culation efficiency. AIso, with the comparlson to 

the previous method, the present method can easily be applied to unsteady cases from steady solutions 

directly without further magnificent modification throughout the whole equation system. 
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Figure 7.1 The longitudinal and spanwise variation of the axial velocity for steady thin delta wing with 

supersonic leading edges and symmetry of incidence a = -WIOXI / U..,. (root chord, Co = 1.0; 

semi-span, 1 = 0.75; Mach number, Mx, = 2.0) 
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Figure 7.2 The longitudinal and spanwise variation of the axial velocity for steady thin delta wing with 

supersonic leading edges and antisymmetry ofincidence a = -W01X2 / U «J. (root chord, Co = 
1.0; semi-span, 1 = 0.75; Mach number, Mn = 2.0) 
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7.2 Steady flow results for trapezoidal wings 

Similarly, we consider the thin trapezoidal wing with wing span, b, is equal to 1.0 and the wing 

semi-span, l, is 0.75, placing in a uniform supersonic flow, characterized by MGO = 2.0 with incidence 

a = -WIOXl 1 U 00' The spanwise variation of the perturbation axial velocity in the cross-section of 

trapezoida1 wing plan form is plotted in figure 7.3. The present solutions are compared in the same 

figures with the results obtained by the theory of high order conical flows (Carafoli, Mateescu, 

Nastase, [2]). These results are in excellent agreement. 

In addition, the corresponding aerodynamic characteristics coefficients are calculated and 

presented in table 7.3. 

Cl Cm2 Cm} 

Present solutions -0.00185 -0.00129 0 

High order conical flow solutions -0.00185 -0.00129 0 

Table 7.3 CI, Cm2, and Cm} for steady thin trapezoidal wing with supersonic leading edges for 

a = -WIOXl lU 00' 
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Figure 7.3 The spanwise variation of the axial velo city for steady thin trapezoidal wing with 

supersonic leading edges and incidence a = -W10X1 / U..,. (root chord, Co = 1.0; span, b = 

1.0; semi-span, 1 = 0.75; Mach number, Moo = 2.0) 
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7.3 U nsteady Dow results for oscillating rigid wings 

7.3.1 Case ofwings executing oscillatory vertical translation 

We first consider that each point over wing surface executes oscillatory movement of small amplitude, 

which can be defined by, 

Z = h(t) = eim
( ho; P = ho 

In this case, the boundary condition can be expressed by 

w = iÂho = Woo ' À = OJ/Uoo 

(7.3.1) 

(7.3.2) 

The numerical results were obtained forvarious reduced frequency À as 0.0147, 0.0735, 0.147, 0.735, 

and 1.0, where ho = 0.02. 

7.3.1.1 Thin delta wing executing oscillatory vertical translation 

In this case, results of the spanwise variation of the real and imaginary parts of the reduced pressure 

coefficient over right hand side of wing surface along the wing trace at XI = 1.0 are plotted in figures 

7.4, 7.5, 7.6, 7.7 and 7.8. The imaginary part of the present solutions is plotted in the same figure with 

the results obtained by the theory of high order conical flows (Carafoli, Mateescu, Nastase, [2]). A 

very good agreement was found for small oscillating frequency. For oscillations at higher frequency, 

the agreement, however, starts to deteriorate for wing surface near and outside the Mach cone due to 

the approximation introduced in high order conical flow solutions. The real part of the reduced 

pressure coefficient is assumed zero in the high order conical flow solutions due to the approximation 

made in the frequency expansion method related to the unsteady formulation using high order conical 

flows. The present solutions, however, are more accurate and provide non-zero solutions to the 

calculation of the reduced pressure coefficients even though it is comparatively small corresponding 

to the imaginary part for small oscillating frequency. For higher oscillating frequency, the real part of 

72 



the present solutions is no longer negligible compared to the related imaginary part, Le., the present 

method proves to be more accurate especially for oscillations in higher frequency. This is due to the 

consideration of the complete goveming equation for unsteady flows related to the unsteady 

formulation by using pulsating sources distribution over thin wing surface. 

The results of the reduced lift coefficient and pitching moment coefficient are presented in tables 

7.4, 7.5, 7.6, 7.7 and 7.8. An excellent agreement was found in imaginary part of specifie 

aerodynamic characteristics calculated by both methods for small oscillating frequency. The 

agreement, however, becomes worse for higher oscillating frequency. AIso, the present method is 

more accurate because the real part of the reduced lift and pitching moment coefficients can be 

ca1culated not only for small but also for higher oscillating frequency. For the high order conical flow 

solutions, the real part of the reduced lift coefficient and the reduced pitching moment coefficient are 

assumed zero due to the approximation related to the unsteady formulation using high order conical 

flows. 

A A 

CI Cm2 

REAL lMAG REAL IMAG 

Present solutions -0.00006 -0.03396 -0.00004 -0.02264 

High order conical flow solutions 0 -0.03396 0 -0.02264 

Table 7.4 êl and êm2 for thin delta wing executing oscillatory vertical translation (À = 0.0147) 
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A A 

CI Cm2 

REAL IMAG REAL IMAG 

Present solutions -0.00139 -0.16977 -0.00104 -0.11318 

High order conical flow solutions 0 -0.16981 0 -0.11321 

Table 7.5 ê[ and êm2 for thin delta wing executing oscillatory vertical translation (À. = 0.0735) 

A A 

C[ Cm2 

REAL IMAG REAL IMAG 

Present solutions -0.00554 -0.33934 -0.00415 -0.22619 

High order conical flow solutions 0 -0.33962 0 -0.22641 

Table 7.6 ê[ and êm2 for thin delta wing executing oscillatory vertical translation (À. = 0.1470) 

A A 

c[ Cm2 

REAL lMAG REAL IMAG 

Present solutions -0.13268 -1.66087 -0.09903 -1.10211 

High order conical flow solutions 0 -1.69809 0 -1.13206 

Table 7.7 ê[ and êm2 for thin delta wing executing oscillatory vertical translation (À. = 0.7350) 

A A 

C[ Cm2 

REAL IMAG REAL IMAG 

Present solutions -0.23783 -2.20994 -0.17696 -1.45908 

High order conical flow solutions 0 -2.31033 0 -1.54022 

Table 7.8 ê[ and êm2 for thin delta wing executing oscillatory vertical translation (À. = 1.0) 
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Figure 7.4 The real and imaginary parts of the reduced pressure coefficients for thin delta wing 

executing harmonie vertical translation oscillations. 

(The reduced frequency of oscillations, Â = 0.0147; spanwise variation at Xl = 1.0; root 

chord, Co = 1.0; semi-span, 1 = 0.75; Mach number, Mao = 2.0) 
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Figure 7.5 The real and imaginary parts of the reduced pressure coefficients for thin delta wing 

executing harmonie vertical translation oscillations. 

(The reduced frequency of oscillations, Â = 0.0735; spanwise variation at Xl = 1.0; foot 

chord, Co = 1.0; semi-span, 1 = 0.75; Mach number, ~ = 2.0) 
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Figure 7.6 The real and imaginary parts of the reduced pressure coefficients for thin delta wing 

executing harmonic vertical translation oscillations. 

(The reduced frequency of oscillations, À.. = 0.1470; spanwise variation at XI = 1.0; root 

chord, Co = 1.0; semi-span, / = 0.75; Mach number, Moo = 2.0) 
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Figure 7.7 The real and imaginary parts of the reduced pressure coefficients for thin delta wing 

executing harmonie vertical translation oscillations. 

(The reduced frequency of oscillations, Â = 0.7350; spanwise variation at Xl = 1.0; root 

chord, Co = 1.0; semi-span, 1 = 0.75; Mach number, Mc., = 2.0) 
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Figure 7.8 The real and imaginary parts of the reduced pressure coefficients for thin delta wing 

executing harmonie vertical translation oscillations. 

(The reduced frequency of oscillations, Â = 1.0; spanwise variation at Xl = 1.0; root chord, 

Co = 1.0; semi-span, / = 0.75; Mach number, Moo = 2.0) 
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7.3.1.2 Thin trapezoidal wing executing oscillatory vertical translation 

Present solutions of the spanwise variation of the real and imaginary parts of the reduced pressure 

coefficient oftrapezoidal wing are plotted in figures 7.9, 7.10, and 7.11. The imaginary part of the 

present solutions is compared in the same figures with the results obtained by the theory ofhigh order 

conical flows (Carafoli, Mateescu, Nastase, [2]). An excellent agreement was found in these results. 

The present solutions are more accurate and provided non-zero solutions to the real part of the reduced 

pressure coefficient, while the high order conical flow solutions are assumed zero due to the 

approximation made in the frequency expansion method using high order conical flows. 

The reduced lift coefficient and pitching moment coefficient are calculated by present method 

and are presented in table 7.9. However, high order conical flow solutions are not available in this 

case. 

" " 

Present solutions 
CI Cm2 

REAL lMAG REAL IMAG 

Â = 0.0147 -0.00008 -0.03396 -0.00006 -0.01852 

Â = 0.0735 -0.00189 -0.16974 -0.00159 -0.09257 

Â = 0.1470 -0.00754 -0.33913 -0.00636 -0.18483 

Table 7.9 ê, and ê m2 for thin trapezoidal wing executing oscillatory vertical translation. 
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Figure 7.9 The real and imaginary parts of the reduced pressure coefficients for thin trapezoidal wing 

executing harmonie vertical translation oscillations. 

(The reduced frequency of oscillations, Â. = 0.0147; spanwise variation at Xl = 1.0; root 

chord, Co = 1.0; span, b = 1.0; semi-span, 1 = 0.75; Mach number, Mo = 2.0) 
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Figure 7.10 The real and imaginary parts of the reduced pressure coeffi'cients for thin trapezoidal wing 

executing harmonic vertical translation oscillations. 

(The reduced frequency of oscillations, Â = 0.0735;spanwise variation at Xl = 1.0; root 

chord, Co = 1.0; span, b = 1.0; semi-span, 1 = 0.75; Mach number, ~ = 2.0) 
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Figure 7.11 The real and imaginary parts of the reduced pressure coefficients for thin trapezoidal wing 

executing harmonic vertical translation oscillations. 

(The reduced frequency of oscillations, .il. = 0.1470; spanwise variation at Xl = 1.0; root 

chord, Co = 1.0; span, b = 1.0; semi-span, 1 = 0.75; Mach number, Mo = 2.0) 
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7.3.2 Case of wings executing oscillatory pitching rotation 

For case of wings executing oscillatory pitching rotation, we first consider that each point over wing 

surface executes oscillatory movement of small amplitude, which can be defined by, 

Z=-xJB(f)=-XJÔe imi =eiml(-xJBo}; P=-xJBo' 

The boundary condition can be expressed by, 

w = -Bo -ï)"BOxJ = woo + wlOxJ; Â = m/Uoo ' 

(7.3.3) 

(7.3.4) 

The numerical results were calculated forvarious reduced frequency À, as 0.0147, 0.0735, 0.147, 0.735, 

and 1.0, where 80 = 0.02 . 

7.3.2.1 Thin delta wing executing oscillatory pitching rotation 

F or delta wing, results of the spanwise variation of the real and imaginary parts of the reduced 

pressure coefficient over the right hand side of wing surface along the wing trace at XI = 1.0 are plotted 

in figures 7.12, 7.13, 7.14, 7.15, and 7.16. The real and imaginary parts of the present solutions are 

compared in the same figures with the results obtained by the theory of high order conical flow 

(Carafoli, Mateescu, Nastase, [2]). An excellent agreement in real and imaginary parts was found for 

small oscillating frequency. For higher oscillating frequency the agreement, however, starts to 

deteriorate, especially in real part solutions for wing surface near and beyond the Mach cone. This is 

mainly due to the approximation related to the unsteady formulation using theory of high order 

conical flows. 

The results of the reduced lift coefficient and the reduced pitching moment coefficient are 

presented in tables 7.10, 7.11, 7.12, 7.13, and 7.14. An excellent agreement was found in real and 

imaginary parts based on results for small oscillating frequency. The agreement starts to deteriorate 

for delta wing executing in high oscillating frequency. 
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CI Cm2 

REAL lMAG REAL IMAG 

Present solutions 2.309 0.019 1.540 0.014 

High order conical flow solutions 2.309 0.019 1.540 0.014 

Table 7.10 ê 1 and ê m2 for thin delta wing executing oscillatory pitching rotation (À = 0.0147) 

A A 

CI Cm2 

REAL lMAG REAL IMAG 

Present solutions 2.310 0.094 1.540 0.071 

High order conical flow solutions 2.309 0.094 1.540 0.071 

Table 7.11 êl and ê m2 for thin delta wing executing oscillatory pitching rotation (À = 0.0735) 

CI Cm2 

REAL lMAG REAL lMAG 

Present solutions 2.310 0.189 1.540 0.141 

High order conical flow solutions 2.309 0.189 1.540 0.142 

Table 7.12 ê l and êm2 for thin delta wing executing oscillatory pitching rotation (À = 0.1470) 

A A 

CI Cm2 

REAL lMAG REAL IMAG 

Present solutions 2.326 0.937 1.553 0.702 

High order conical flow solutions 2.309 0.943 1.540 0.708 

Table 7.13 ê l and êm2 for thin delta wing executing oscillatory pitching rotation (À = 0.735) 
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" " 
CI Cm2 

REAL lMAG REAL IMAG 

Present solutions 2.331 1.264 1.556 0.946 

High order conical flow solutions 2.309 1.284 1.540 0.963 

Table 7.14 êJ and êm2 for thin delta wing executing oscillatory pitching rotation (À. = 1.0) 
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Figure 7.12 The real and imaginary parts of the reduced pressure coefficients for thin delta wing 

executing harmonic pitching rotation oscillations. 

(The reduced frequency of oscillations, Â. = 0.0147; spanwise variation at Xl = 1.0; root 

chord, Co = 1.0; semi-span, 1 = 0.75; Mach number, Ma, = 2.0) 
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Figure 7.13 The real and imaginary parts of the reduced pressure coefficients for thin delta wing 

executing harmonie pitching rotation oscillations. 

(The reduced frequency of oscillations, Â = 0.0735; spanwise variation at Xl = 1.0; root 

chord, Co = 1.0; semi-span, 1 = 0.75; Mach number, Mo = 2.0) 
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Figure 7.14 The real and imaginary parts of the reduced pressure coefficients for thin delta wing 

executing harmonic pitching rotation oscillations. 

(The reduced frequency of oscillations, Â = 0.1470; spanwise variation at Xl = 1.0; root 

chord, Co = 1.0; semi-span, 1 = 0.75; Mach number, Mo., = 2.0) 
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Figure 7.15 The real and imaginary parts of the reduced pressure coefficients for thin delta wing 

executing harmonic pitching rotation oscillations. 

(The reduced frequency of oscillations, Â = 0.735; spanwise variation at Xl = 1.0; root 
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Figure 7.16 The real and imaginary parts of the reduced pressure coefficients for thin delta wing 

executing harmonic pitching rotation oscillations. 

(The reduced frequency of oscillations, .Â. = 1.0; spanwise variation at Xl = 1.0; root chord, 

Co = 1.0; semi-span, 1 = 0.75; Mach number, Mx, = 2.0) 
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7.3.2.2 Thin trapezoidal wing executing oscillatory pitching rotation 

Present solutions of the spanwise variation of the real and imaginary parts of the reduced pressure 

coefficient of trapezoidal wing are plotted in figures 7.17, 7.18, and 7.19. The results of the real and 

imaginary parts of the reduced pressure coefficients are in very good agreement and presented in the 

same figures in comparison with those obtained by the theory ofhigh order conical flows (Carafoli, 

Mateescu, Nastase, [2]) in lower reduced frequency. However, for oscillations in higher reduced 

frequency, differences between two solutions are observed in light of the fact that the right hand side 

of the potential equation is neglected in the method by theory ofhigh order conical flows. 

The reduced lift coefficient and the reduced pitching moment coefficient are calculated by the 

present method and multiplied by 1000 for clearpresentation in table 7.15. 

A A 

Present solutions 
1000C1 1000Cm2 

REAL lMAG REAL IMAG 

À = 0.0147 2309.325 13.37868 1259.645 8.524725 

À = 0.0735 2309.223 66.89601 1259.574 42.62622 

À = 0.1470 2308.886 133.8084 1259.227 85.26791 

Table 7.15 ê1 and êm2 for thin trapezoidal wing executing oscillatory pitching rotation (À = 0.0147, 

0.0735, and 0.1470) 

92 



2 

1.8 1---

1.6 -

1.4 
~ 

~1r::t:.lO 1.2 U li 
1 -<Il 

'----../ 
~ 

~ 0.8 

0.6 

0.4 

0.2 

o 

(a) Real part of the reduced pressure coefficients 

-a- Present solutions 

-Ir- High order conical flow solutions 
1 

1 

1 

1 

~---1 

1 

1 

1 

1 
1 
1 

1 

1 

1 

1 

1 
1 ! 

~~. - -

------T 
1 
1 

/: 
FIJI 

1 

1 

1 

1 

1 

1 

1 
1 
1 

1 

1 

1 

1 
1 
1 

1 

1 

1 

! 1 

o 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 
X2 

0.03 
(b) Imaginary part of the reduced pressure coefficients 

0.025 

~ 0.02 

I:l..Ir::t:.l
O 

U li 
1 -<Il 

'----../ 
C!) 0.015 

~ 
0.01 

0.005 

-a- Present solutions 1 r r-- 1 

j -Ir- High order conical flow solutions 1 

1 

1 1 

1 1 

1 1 j 1 1 

1 1 

1 1 

1 1 

1 - - 1 

1 1 -u- 1 

1 -~ 
1 - - - 1 - 1 

1 

'Il 1 

1 

1 

1 

1 ~ 1 

1 1 

1 1 

1 1 

0 

o 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 

Figure 7.17 The real and imaginary parts of the reduced pressure coefficients for thin trapezoidal wing 

executing harmonic pitching rotation oscillations. 

(The reduced frequency of oscillations, Â = 0.0147; spanwise variation at Xl = 1.0; root 

chord, Co = 1.0; span, b == 1.0; semi-span, 1 = 0.75; Mach number, Moo = 2.0) 
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Figure 7.18 The real and imaginary parts of the reduced pressure coefficients for thin trapezoidal wing 

executing harmonic pitching rotation oscillations. 

(The reduced frequency of oscillations, Â = 0.0735; spanwise variation at Xl = 1.0; root 

chord, Co = 1.0; span, b = 1.0; semi-span, 1 = 0.75; Mach number, Mo = 2.0) 
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Figure 7.19 The real and imaginary parts of the reduced pressure coefficients for thin trapezoidal wing 

executing harmonic pitchlng rotation oscillations. 

(The reduced frequency of oscillations, Â = 0.1470; spanwise variation at Xl = 1.0; root 

chord, Co = 1.0; span, b = 1.0; semi-span, 1 = 0.75; Mach number, Mao = 2.0) 
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7.3.3 Case of wings executing oscillatory rolling rotation 

We consider that each point over wing surface executes oscillatory rolling rotation of small amplitude, 

which can be defined by, 

In tum, the boundary condition can be expressed by 

W = iÂx21f10 = W 01 X2 • 

(7.3.5) 

(7.3.6) 

The numerical results were calculated for various reduced frequency Â as 0.0147, 0.0735, 0.1470, 

0.735, and 1.0, where If/o = 0.02. 

7.3.3.1 Thin delta wing executing oscillatory rolling rotation 

Present solutions to the spanwise variation of the real and imaginary parts of the reduced pressure 

coefficient over the right hand side of thin delta wing surface along the wing trace at Xl = 1.0 are 

plotted in figures 7.20, 7.21, 7.22, 7.23, and 7.24. The imaginary part of the present solutions is 

compared in the same figures with the results obtained by the high order conical flow solutions. An 

excellent agreement was found for small oscillating frequency. However, the agreement starts to 

deteriorate for wing surface near and outside the Mach cone for high oscillating frequency. The 

present solutions are more accurate and provided non-zero solutions for the real part of the reduced 

pressure coefficients even it is small compared to the imaginary part of the solutions for small 

oscillating frequency. For high oscillating frequency, the weight of the real part of the present 

solutions is increasing and cannot be neglected with comparison of the imaginary counterpart so that 

the present method proves to be more accurate in this respect. Nevertheless, the high order conical 

flow solutions provided zero real values due to the approximation made in the frequency expansion 

method related to the unsteady formulation using high order conical flows. 
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The results of the reduced rolling moment coefficient are presented in tables 7.16, 7.17, 7.18, 

7.19, and 7.20. Obviously, aIl results are in a very good agreement in imaginary part by the present 

solutions and high order conical flow solutions for oscillations at smaIl frequency. However, for high 

oscillating frequency, the agreement becomes worse and the difference of the results from both 

methods goes up to around 28%. However, due to the approximation made in the frequency 

expansion method using the high order conical flows, the high order conical flow solutions provided 

zero values of the reduced lift coefficient and the reduced pitching moment coefficient, while the 

present solutions are more accurate and provide non-zero solutions in the calculation of the 

aerodynamic coefficients accordingly. 

Cm! 

REAL IMAG 

Present solutions 0.00003 0.00314 

High order conical flow solutions 0 0.00318 

Table 7.16 êm! for thin delta wing executing oscillatory rolling rotation 0 .. = 0.0147) 

A 

Cm! 

REAL lMAG 

Present solutions 0.00077 0.01570 

High order conical flow solutions 0 0.01592 

Table 7.17 êm! for thin delta wing executing oscillatory rolling rotation (1.. = 0.0735) 
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A 

Cml 

REAL IMAG 

Present solutions 0.00308 0.03127 

High order conical flow solutions 0 0.03184 

Table 7.18 ê ml for thin delta wing executing oscillatory rolling rotation (À. = 0.1470) 

A 

Cml 

REAL lMAG 

Present solutions 0.0723 0.1343 

High order conical flow solutions 0 0.1592 

Table 7.19 Cml for thin delta wing executing oscillatory rolling rotation (À. = 0.735) 

A 

Cml 

REAL lMAG 

Present solutions 0.1268 0.2166 

High order conical flow solutions 0 0.1557 

Table 7.20 ê ml for thin delta wing executing oscillatory rolling rotation (À. = 1.0) 
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Figure 7.20 The real and imaginary parts of the reduced pressure coefficients for thin delta wing 

executing harmonic rolling rotation oscillations. 

(The reduced frequency of oscillations, Â = 0.0147; spanwise variation at Xl = 1.0; root 

chord, Co = 1.0; semi-span, 1 = 0.75; Mach number, Moo = 2.0) 

99 



,----..... 

a-I-~ 1 ~ 
~ 

'----" 
o..."l 

~ 

0.0004 
Ca) Real part of the reduced pressure coefficients 

0.0002 

0.0000 

_-D-----o--a--a~. 1 -
u' __ " 1 

_.o.····/·..a····--_··..a··-·-_ ... 1 , 
lJ 1 

1 , 
1 A ,--' 

.. ' - - - - - -

-0.0002 

-0.0004 

-0.0006 

-0.0008 

-0.0010 

, 
1 f 

1 0.1 0.2 0.3 0.4 0.5 b : 0.6 0.7 
1 

O. \ 
1 

\ 1 ! 
1 \ 1 1 \ 
1 \ 1 

\1 1 
\ ~ 
~ ! 

1 -
-a- Present solutions :\ 

j 
1 

~ --Ir- High order conical flow solutions 
1 Q L_ 

I \ / 1 

1 \ i 
1 q d 
1 

1 "- , 
1 c_a 

-0.0012 
y 

(b) Imaginary part of the reduced pressure coefficients 
O~=---~--~~~~~------~--~~----~------~-----

1 

8 

0.1 0.4 0.5 : 0.6 0.7 0.8 

-0.02 

,----..... -0.04 

a-I ~ 1 ] 
~ 

'----" 
\.:) -0.06 

~ -a- Present solutions 

--Ir- High order conical flow solutions 
-0.08 

-0.1 

-0.12 
y 

Figure 7.21 The real and imaginary parts of the reduced pressure coefficients for thin delta wing 

executing harmonie rolling rotation oscillations. 

(The reduced frequency of oscillations, À = 0.0735; spanwise variation at Xl = 1.0; root 

chord, Co = 1.0; semi-span, 1 = 0.75; Mach number, Ma, = 2.0) 

100 



(a) Real part of the reduced pressure coefficients 
0.002 

0.001 

0.000 1 

,,----..., 
O.l 0.2 0.3 0.4 0.5 : 0.6 0.7 0.8 

I:).,I~ y ~~ -0.001 

1 

1 

'------" 
.....:j 

~ -0.002 

-a-- Present solutions 

-0.003 
-A- High order conical flow solutions 

-0.004 

-0.005 
y 

(b) Imaginary part of the reduced pressure coefficients o ~==~~--~~~~~~------~--~~----~~~--~------
1 

0.1 : 0.6 0.7 0.8 

-0.05 

-0.1 

-a-- Present solutions 

-0.l5 -A- High order conical flow solutions 

-0.2 

-0.25 
y 

Figure 7.22 The real and imaginary parts of the reduced pressure coefficients for thin delta wing 

executing harmonie rolling rotation oscillations. 

(The reduced frequency of oscillations, À = 0.1470; spanwise variation at Xl = 1.0; root 

chord, Co = 1.0; semi-span, / = 0.75; Mach number, Moo = 2.0) 
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Figure 7.23 The real and imaginary parts of the reduced pressure coefficients for thin delta wing 

executing harmonie rolling rotation oscillations. 

(The reduced frequency of oscillations, Â = 0.735; spanwise variation at XI = 1.0; root 

chord, Co = 1.0; semi-span, 1 = 0.75; Mach number, Moo = 2.0) 
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Figure 7.24 The real and imaginary parts of the reduced pressure coefficients for thin delta wing 

executing harmonic rolling rotation oscillations. 

(The reduced frequency of oscillations, .Â. = 1.0; spanwise variation at Xl = 1.0; root chord, 

Co = 1.0; semi-span, 1 = 0.75; Mach number, M.o = 2.0) 
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7.3.3.2 Thin trapezoidal wing executing oscillatory rolling rotation 

Present solutions of the spanwise variations at Xl = 1.0 of the real and imaginary parts of the reduced 

pressure coefficient of the thin trapezoidal wing are plotted in figures 7.25, 7.26, and 7.27. The 

imaginary part of the present solutions is plotted in the same figures in comparison to the high order 

conical flow solutions (Carafoli, Mateescu, Nastase, [2]). An excellent agreement was found among 

them. The real part of the reduced pressure coefficients is calculated by the present method and 

non-zero solutions are presented. However, the high order conical flow solutions provided zero real 

values, on which an approximation made in the frequency expansion method related to the unsteady 

formulation is based. 

The reduced rolling moment coefficients are calculated by the present method and presented in 

table 7.21, while the previous results by the theory ofhigh order conical flows are not available in this 

case. 

" Cml 
Present solutions 

REAL IMAG 

1..=0.0147 0.000004 0.00037 

1..=0.0735 0.00009 0.00184 

1..=0.1470 0.00036 0.00366 

Table 7.21 êm1 for thin trapezoidal wing executing oscillatory rolling rotation (À = 0.0147, 0.0735, 

and 0.1470) 
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Figure 7.25 The real and imaginary parts of the reduced pressure coefficients for thin trapezoidal wing 

executing harmonic rolling rotation oscillations. 

(The reduced frequency of oscillations, Â = 0.0147; spanwise variation at Xl = 1.0; root 

chord, Co = 1.0; span, b = 1.0; semi-span, 1 = 0.75; Mach number, Moo = 2.0) 
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Figure 7.26 The real and imaginary parts of the reduced pressure coefficients for thin trapezoidal wing 

executing harmonie rolling rotation oscillations. 

(The reduced frequeney of oscillations, À = 0.0735; spanwise variation at XI = 1.0; root 

chord, Co = 1.0; span, b = 1.0; semi-span, 1 = 0.75; Maeh number, ~ = 2.0) 
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Figure 7.27 The real and imaginary parts of the reduced pressure coefficients for thin trapezoidal wing 

executing harmonie rolling rotation oscillations. 

(The reduced frequency of oscillations, Â. = 0.1470; spanwise variation at Xl = 1.0; root 

chord, Co = 1.0; span, b = 1.0; semi-span, 1 = 0.75; Mach number, Moo = 2.0) 
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7.4 U nsteady flow results for flexible wings executing flexural 

oscillations 
In this section, the flexural harmonic oscillating deformation of wings in supersonic flows are 

analyzed by method of distribution of pulsating sources. Likely, equations of any point over wing 

surface executing flexural harmonic oscillations in two directions, which are along Ox, and OX2 axes, 

respectively, can be described by two homogeneous polynomials. 

(7.4.1) 

(7.4.2) 

Constants, g, and g2, are coefficients of homogeneous polynomial s, and the boundary conditions are 

glVen as 

(7.4.3) 

(7.4.4) 

The numerical results are obtained for the reduced frequency Â as 0.0147, where g, and g2 are equal to 

0.02. 

The spanwise variations of the reduced pressure coefficients at x, = 1.0 are plotted in figures 

7.28 and 7.29 for thin delta wing and figures 7.30 and 7.31 for thin trapezoidal wing. 
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7.4.1 Thin delta wing exeeuting flexural harmonie oscillatory deformation 
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Figure 7.28 The real and imaginary parts of the reduced pressure coefficients for thin delta wing 

executing flexural oscillations, Z = g\x:e iOJl 
• 

(The reduced frequency of oscillations, Â = 0.0147; spanwise variation at XI = 1.0; root 

chord, Co = 1.0; semi-span, 1 = 0.75; Mach number, Ma:, = 2.0) 
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Figure 7.29 The imaginary part of the reduced pressure coefficients for thin delta wing executing 

flexuraloscillations, Z = g2x;eiœt . 

(The reduced frequency of oscillations, Â == 0.0147; spanwise variation at Xl = 1.0; root 

chord, Co = 1.0; semi-span, 1 = 0.75; Mach number, Nb = 2.0) 
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7.4.2 Thin trapezoidal wing exeeuting flexural harmonie oseillatory deformation 
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Figure 7.30 The real and imaginary parts of the reduced pressure coefficients for thin trapezoidal wing 

executing flexural oscillations, Z = g\x:e iOJl 
• 

(The reduced frequency of oscillations, Â = 0.0147; spanwise variation at Xl = 1.0; root 

chord, Co = 1.0; span, b = 1.0; semi-span, 1 = 0.75; Mach number, Mco = 2.0) 
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Imaginary part of the reduced pressure coefficients 
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Figure 7.31 The imaginary part of the reduced pressure coefficients for thin trapezoidal wing 

executing flexural oscillations, Z = g2x;eitlJl . 

(The reduced frequency of oscillations, Â = 0.0147; spanwise variation at Xl = 1.0; root 

chord, Co = 1.0; span, b = 1.0; semi-span, 1 = 0.75; Mach number, Mo = 2.0) 
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CHAPTER8 

CONCLUSION 

This thesis presents a method for the study of finite span wings in steady and unsteady supersonic 

flows. 

For steady flows, the method uses a distribution of sources, which are integrated over the 

surface of the wing. Specifie theoretical solutions have been derived for the pressure coefficient and 

the lift, pitching moment, and rolling moment coefficients. The present solutions have been 

validated for delta and trapezoidal wings by comparison with the results obtained by Carafoli, 

Mateescu, and Nastase [2], [38]-[41], using the high order conical flows method. An excellent 

agreement was found between these results. 

The method of solutions for unsteady flows uses pulsating sources distributing on the wing 

surface, which are integrated over the surface of the oscillating wings. Specifie theoretical solutions 

have been derived for the unsteady pressure coefficient and the unsteady lift, pitching moment, and 

rolling moment coefficients. 

The present unsteady solutions have been validated for delta and trapezoidal wings executing 

harmonie oscillations in translation, pitching rotation and rolling rotation of various frequencies by 

compassion with the results obtained by Carafoli, Mateescu, and Nastase [2], [38]-[41], using the 

high order conical flows method. The present solutions were found in very good agreement with the 
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previous results available for small oscillating frequency. This agreement between the two methods 

starts to deteriorate for high oscillating frequency due to the approximation introduced in high order 

conical flow solutions. Moreover, the present solutions is proved to be more accurate and provided 

non-zero solutions for the real part of the reduced pressure coefficient, and the reduced lift and 

moment coefficients in the case of oscillatory translation and rolling oscillation. In these cases, the 

high order conical flow solutions only provided zero real values due to the approximations made in 

the frequency expansion method. Nevertheless, the actual real values obtained in the present 

unsteady solutions are small in the case of low frequencies but they are increasing for higher 

oscillating frequencies. 

The method has then beeri applied for the analysis of wings with flexural oscillations, which 

are of interest for the aeroelastic studies in the aeronautical applications. 

Recommendation for future study: The present method can be extended in the future for 

the trapezoidal and rectangular wings with subsonic leading edges. Also worthy of future research 

are the exponentially decaying amplitude in harmonic motions and wing surface deformation. This 

could be a very interesting problem as often being cases in practice. 
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Appendix A: Derivation of <t>~ related to the calculation 

of the reduced pressure coefficient by 

theory of high order conical flows 

A-l: Case of th in delta wing 

<1>; =R{XIX fU~d(!)]=R{XIX J 2lÔ (cos-I (I+BI)(1-Bx) +cos-I (1 + Bl)(1 +BX)]J!)] 
x 7r~B2/2 -1 2B(/-x) 2B(l+x) "lx 

[ 
2ê 1 s( -1 (1 + Bl)(1- Bx) -1 (1 + Bl)(1 + Bx) ]d( 1)] =Re XI X cos +cos - . 

7r~B2/2_1 2B(l-x) 2B(l+x) x 
(A-l) 

F or the 1 st integral, by method of integration by parts, we tirst set u and dv and then du and v are 

calculated straightforward as 

u=cos-I (1+ Bl)(1-Bx) ,du= ~B2/2 -1 dx. 
2B(/- x) 2(1- x)~I- B 2 X2 

(A-2) 

dv = d( ~). v = ~ . (A-3) 

Then, 

1 _ 
= -cos 1 

X 

(1 + BI) (1-Bx) 1 J .JB
2
/
2 

-1 dx 1 J .JB
2
/

2 
-1 dx 

2B(l-x) 1 2(l-x).JI-B2x 2 1 2x.JI-B2x 2 

1 -1 (1 + Bl)(l- Bx) 1 -1 (1 + Bl)(l- Bx) _ ~ B2/2 -1 J 1 dx. 
=-cos --cos 

x 2B(/-x) 1 2B(/-x) 21 x~I-B2x2 
(A-4) 
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The 2nd integral can be calculated in the same manner as 

1 _ 
=-cos 1 

X 

1 -1 (1 + Bl)(1 + Bx) 1 -1 (1+Bl)(I+Bx) +~B212 -1 J 1 dx. 
=-cos +-cos 

X 2B(I+x) 1 2B(I+x) 21 x~I-B2x2 

Accordingly,<l>~ for thin delta wing is calculated as 

(1 + Bl)(1- Bx) (1 ) -1 (1 + Bl)(1 + BX)]. --'----'----'---...:... + + X cos 
2B(l-x) 2B(1 +x) 

A-2: Case ofthin trapezoidal wing 

(A-5) 

(A-6) 

<l>~ =Re[xlxfu~d(!)]=Re[xlxf( 2lé cos-I (1+Bl)(1-Bx) +2é cos-I ~(I+BX))d(!)] 
x 1r~B212-1 2B(I-x) 1rB 2 x 

R 
[ 

2é 1 f -1 (1+Bl)(1-BX)d(l) 2é f -1 ~(1+BX)d(I)] = XI X e x cos - + - x cos - . 
1r~B212 -1 2B(I-x) x 1rB 2 x 

(A-7) 

The first integral is obtained already for case ofthin delta wing. The second integral is calculated by 

parts and we set u and dv and then du and v are calculated straightforward as 

(A-8) 

(A-9) 

f -1 ~1+BXd(I)_ 1 -1 ~1+BX B fI 1 dx cos -- - --cos --+- . 
2 x x 2 2 X~I_B2x2 

(A-IO) 
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Accordingly, <Il; for thin trapezoidal wing is calculated as 

R{ 2B (1 ) -1 (1 + Bl)(1- Bx) 2B -1 ~1 + BX] =xI X -x cos +-cos --. 
7l"~BiI2-1 2B(/-x) 71i3 2 

(A-11) 

Appendix B: REAL PART OF SPECIFIC INVERSE 

TRIANGULAR FUNCTIONS 

In this part, the limits of the following triangular functions are presented as references for several 

calculations in this study. 

(1 + Bli )(1- BX)] = cos-I 

2B(/1 - x) x=y 

z=o 

(1 + BI2 )(1 + BX)] = cos-I 

2B(l2 + x) x=y 

z=o 

2 
(1 + Bli )(1- Bx) 

2B(/1 -x) 
o 

7l" 

2 
(1 + BI2 )(1 + Bx) 

2B(/2 + x) 
o 
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Appendix C: Integrais related to the calculation of CI' C ml' 

and C m2 based on method of source distribution 

C-l: Case of tbin delta wing in steady supersonic flows 

For calculation of the lift coefficient, Cl: 

(C-l) 

(C-2) 
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(C-3) 

For calculation of the pitching moment coefficient, C m2 : 

(C-4) 

(C-5) 
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(C-6) 

For calculation of the rolling moment coefficient, Cml : 

r r ( n-k-q j-q \T 2 dx d id XI Y JLOXI Y 1 Y 
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(C-9) 

From Eq.(C-l) ~ (C-9), let's consider the following four general integrals with limits for case ofthin 

delta wing. For integration limit of y between -1 and _!, 1 g is zero, and J g is constant, and for 
B 

integration limit of y between ~ and l, J g is zero, and 1 g is constant. Thus, one concludes that 
B 

o 
1 1 

L(z -y)mIgdy = fB(1 y)m Igdy + li (/- yt Igdy + i (/- y)m Igdy. 
B B· 

(C-IO) 

(C-ll) 

(C-12) 

(C-13) 

Derivations for integrals in Eq.(C-IO) ~ (C-13) are also solved by applying the recurrence formulae 

and presented in the following section. 
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C-2: Case of th in trapezoidal wing in steady supersonic flows 

For calculation of the lift coefficient, Cl: 

(n-k-q) f(x;-k-q-IyJ-q )IoxI~dy=(n-k-q) f(X;-k-q-IyJ-q )IoxI~dy+(n-k-q) f(X;-k-q-IyJ-q )IOXI~dy 
s ~ ~~~ 

- ( k ) r rb 
( n-k-q-I J-q \T dx d ( k ) (lB r ( n-k-q-I J-q \T dx dy - n - - q ~ ~ XI Y JL OXI 1 y + n - - q lB ~ XI Y JL OXI 1 

XI 

( ri (/- )k+q+fI+II d + f(/_ )k+q+fI+II dyJ] + (ri J-q J d + ri J-q J d J} x l! y g y .I!- y g Lb Y P Y l! Y p Y . 
B B B 

(C-14) 

f{x;-k-q yJ-q Yoxldxldy = f{X;-k-q yJ-q Yox1dx1dy + f{X;-k-q yJ-q Yoxldx1dy 
s ~ ~~~ 

_ -(-by-q+1 J (_!)+ 1 {~J-lYCqlq-/[Ï(-l)IICJ-qIJ-q-l1 
- (k+q+lXn+3X(n+q)-(j-2)] p B (k+q+lXn+3) /=0 / 1

1
=0 Il 

X ( ~ (z - y),.q .. ,.1 1 g<o/ + \ (z - y rq .. ,·1 1 g<o/ J] + ( f.i yJ-q Jp<o/ + ~ yJ-q Jp<o/ J}. (C-15) 
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x( ~ (z - yy+'''' 19dy+ 4(1- y),.q .. , 19dy)] +( r: yj-q]pdy+ ~yj-q]pdy )} 

- 1 {~)-lY Cjlq-f[Jf
l (-ly5C~-q+IIJ-q+I-15(A (l-yrq+I+l5dIg)] +(AyJ-q+IJjp)}. 

(n+2Xk+q+l) 1=0 15;0 B B 

(C-16) 

For calculation of the pitching moment coefficient, C m2 : 

(n-k-q) J(xtk-q-IyJ-q )Iox~~dy=(n-k-q) J(X;-k-q-lyi-q )Iox~~dy+(n-k-q) J(xtk-q-IyJ-q )Iox~~dy 
8 ~. ~~~ 

= (n - k -q) l f~ (X;-k-q-I y J-q ~OX~dxldy + (n - k - q) r: I(x;-k-q-l y J-q ~oX~dxldy 
Xl 

f( n-k-q J-q \T 2dx d - f( n-k-q J-q \T 2dx dy Xl Y JL OXI 1 y - Xl Y JL OXI 1 + 
8 80 

f(X;-k-q yJ-q ~OXl2dxldy 
80+8;+81 

= l f~ (X;-k-q yJ-q )I oX~ dxl dy + r: l (X;-k-q yJ-q )I oX~ dxl dy 
xl 
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x( ~ (z - yY'q.-, Igdy+ 4 (z - yY'q+" Igdy ) H f.i yJ-qJpdy+ ~yJ-qJpdy )} 

1 {t( -ly cpq-/[Jfl (_lys Cfs-q+lzi-q+Hs (A (/- y)+q+I+ts d~)~ + (ftyJ-q+1 df
p
)}. (C-19) 

(n+3Xk+q+1) IdJ IsdJ B ~ B 

For calculation of the rolling moment coefficient, C ml : 

(n-k-q) J{X;-k-q-IyJ-q ~ox~ycbjdy=(n-k-q) J{X;-k-q-IyJ-q ~ox~ycbjdy+(n-k-q) J{X;-k-q-IyJ-q ~ox~ycbjdy 
S So So +S; +Sl 

= (n - k -q) 1 [~{xrk-q-IyJ-q ~OX~ydxldy + (n - k - q) r: 1 (xrk-q-1yJ-q ~ox~ ydxldy 
Xl 

= - (n - k - q x- b y-q+2 J (_!) + n-k-q {q -1 CZq-I[J-q+1 _Ils C!-q+IZJ-q+Hs 
(k+q+1Xn+3X(n+q)-(j-1)] p B (k+q+1Xn+3) fJ y f ~() Is 

x( ~ (1- y)'W",! Igdy+ 4(1- y),.q.-,.! Igdy )]+( f: yJ-.'!Jpdy+ ~yJ-q'!Jpdy )}. (C-20) 
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f( n-k-q i-q \T 2 dx d f( n-k-q i-q \T 2 dx dy XI Y )1 OXI Y 1 [JI = XI Y )1 OXI Y 1 + f(X;-k-q yi-q ~OXI2 ydxldy 
S ~ SO+S,+SI 

f(X;-k-q yi-q ) :0 Xl
2 ydxl dy = J(X;-k-q yi-q ) :0 X~ ydxl dy + f (X;-k-q yi-q ) :0 X~ ydxl dy 

S 1 So 1 SO+S,+SI 1 

( b)i-q+2 ( 1) 1 {q [i-q+1 ] = - - J -- +-- I(-lYCq/q-I +1 I (_lY7Ci-q+l/i-q+I-17 
(n+3X(n+q)-(j-l)] p B n+3 1=0 1 h=O Il 

x( ~ (t - y)k+,H, Ig~ + 4(1- yj'+'H' Ig~ JH r: yj-"IJp~+ ~yl-<'IJp~ J} 

1 {iJ-IY Cjlq-/[if (-lY9C/.-q+2/i-q+2-19(A (/_yf+q+l+t9 d~JJ + (E yi-q+2dJp J}. 
(n+3Xk+q+l) 1=0 19=0 B li 

(C-22) 

Similarly, detailed solutions for integrals in Eq.(C-14) ~ (C-22) with limits are solved by the 

recurrence formulae and one may refer to the following sections. 
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C-3: Case of oscillating delta wing in supersonic flows 

For calculation of the lift coefficient, Cl: 

(n - k - ) r r (x n- k- q- I j-q \T . X dx dy 
q L, ~ 1 Y )l'I,Iz 1 1 

(C-24) 

l ! ( n-k-q j-q )8Iilh dx d 
Xl Y XI 1 Y , 8x 

1 

(C-25) 
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For calculation orthe pitching moment coefficient, Cm2 : 

(n - k - q) L ! (X;-k-q-I yJ-q Yi
l 
,i

2 
XI

2 dxl dy 

r r (xn-k-qyJ-q \T . x 2 dx dl) l, 1 l , '1 "2 1 1 ~ 

l ! ( n-k-q J-q ) 8Iil ,i2 2dx d 
XI Y XI 1 Y , àx 

1 
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(C-26) 

(C-27) 

(C-28) 



For calculation orthe rolling moment coefficient, Cml : 

(n - k - q) { 1 (X;-k-q-l yJ-q Yi, h X~ ydxl dy 

r r (xn-k-qyJ-q \T . x2ydx d') l, l l )l" h Il..,. 

i 1 ( n-k-q J-q ) a/il ,i2 2 dx d 
Xl Y Xl Y l Y , ax 

l 

(C-31) 

F or the calculation of finite integrals of /.g, Jg , d/.g, and dJg with integrallimits for case of delta 

wing, one may refer to the following section for detailed discussion. 
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C-4: Case of oscillating trapezoidal wing in supersonic flows 

For calculation of the lift coefficient, Cl: 

(n - k -q) J(xrk-q-IyJ-q k,i2 x1tUïdy= (n - k-q) J(X;-k-q-IyJ-q ~ilh x1tUïdy+(n - k -q) J(X~-k-q-I yJ-q ~ilh x1tUïdy 
S So So+S,+SI 

- ( k ) r [h ( n-k-q-I J-q \7 dx d ( k ) (lB r( n-k-q-I J-q \7 dx d - n - - q.L !!...- XI Y JL i1>i2 XI 1 Y + n - - q lB.L XI Y JL il ,i2 XI 1 Y 
Xl 

J(X;-k-
q 
yJ-q ~il,i2Xldxldy = J(X;-k-

q 
yJ-q ~il,i2Xldxldy + J(X;-k-

q 
yJ-q ~il,i2Xldxldy 

S ~ ~~~ 

x[ %(-1)" C:,-'IJ-o-'{ ~ (1- y)'H"1 Igdy+ 4(1- y)'.H"1 Igdy ) H r: yj-qJpdy+ ~yj-'Jpdy )} 

(C-33) 
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= - - J -- + (-1)1 Ci2t2-f+l ( b)j-q+l ( 1) 1 { j 
[(n - k + il) - (q - 2 )I(n - k + iJ - (j -1)] P B n - k - q + il + 2 ~ f 

(C-34) 

For calculation orthe pitching moment coefficient, Cm2 : 

(n-k-q) f{xtk-Q-lyj-q )Iilhx~~dy=(n-k-q) f{xtk-q-lyj-q )Iilhx~~dy+(n-k-q) ~xtk-q-lyj-q )Iil.i2X~~dy 
8 So 80 +8,+81 

x [~(- q' c t·/ i .,{ ~ (t - y y,H,., I,dy + ~ (t - y y,H, •• I,dy ) H [.li yi-.J,dy + ~ yi' J ,dy )} 

(C-35) 
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J(X;-k-q 
yJ-q )Ii"i

2 
X~ dxl dy = J(X;-k-q 

yJ-q )Ii"i
2 
X~ dxl dy + J(X;-k-q 

yJ-q )Ii"i
2 
X~ dxl dy 

S 80 so+s;+s, 

x[ %(-1)" ctqlj-q~{ ~ (I - yy,#"t Igdy+ ~ (I - yy,#"t Igdy)H fi' yj-qJpdy+ ~yj-qJpdy)} 

(C-36) 

f( ) al . f( ) al . f ( ) al . n-k-q J-q ~ 2dx d _ n-k-q J-q ~ 2dx dy n-k-q J-q ~ 2dx dy 
XI Y XI 1 Y - XI Y XI 1 + XI Y XI 1 

8x - 8x 8x S 1 So 1 So+S,+S, 1 

(C-37) 
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For calculation orthe rolling moment coefficient, Cml : 

(n-k-q) J(xtk-q-lyi-q )Iil>i2x~y~dy=(n-k-q) J(xtk-q-Iy'-q )Iilhx~y~dy+(n-k-q) J(xtk-q-IyJ-q k,i2x~y~dy 
s ~ ~~~ 

- ( k ) r rh ( n-k-q-I J-q \T 2 dx d ( k ) (lB r ( n-k-q-I J-q \T 2 dx dy - n - - q 1 ~ XI Y JL il h XI Y I!Y + n - - q lB 1 XI Y JL il ,i2 XI Y 1 
XI 

(C-38) 

J{X;-k-q yJ-q )Iii ,i
2 
x~ ydxl dy = J{X;-k-q yJ-q )Iii ,i

2 
x~ ydxl dy + J{X;-k-q yJ-q )Iii ,i

2 
xj

2 ydx j dy 
s ~ ~~~ 

(C-39) 

132 



J{ )81. . J{ )81. J ( )81. . n-k-q J-q ~ 2 dx dy _ n-k-q j-q ~ 2 dx dy n-k-q j-q ~ 2 dx dy 
XI Y XI Y 1 - XI Y XI Y 1 + XI Y XI Y 1 ax - ax ax 

S 1 So 1 SO+Si+Sl 1 

(C-40) 

Similarly, detailed equations for solving integrals in Eq.(C-32) ~ (C-40) are solved by the recurrence 

formulae and given in the following sections. 

C-5: Recurrence formulae for the integral la 

Consider the recurrence integral defined as 

(C-41) 

First, define an auxiliary integral Al as 

(C-42) 
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In turn, by integrating by parts for AI, one concludes that 

Substituting Eq.(C-43) into the definition of the auxiliary integral AI, we obtain 

ya-l~I_B2y2 (a-l) 
la = - 2 +--2-l a-2' for a ~ 1. 

aB aB 
The value of integral at a = 0 is given by, 

The recurrence integral la is evaluated from y = -~ to y =~. 
B B 

For a = 0, 

For a ~ 1, 

C-6: Recurrence formulae for the integral lb 

Consider the recurrence integral defined as 

Similarly, the recurrence formulae for integral lb is derived as 

__ yb-l (1- B2 y2 t2 b -1 
lb - ( ) 2 + ( ) 2 lb_2 , for b ~ 1 . 

b+2B b+2B 

The value of integral at b = 0 is given by 

lb = J~I- B2y2 dy =! y~l- B2 y2 +_I-sin-1(By), for b = O. 
2 2B 
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(C-43) 

(C-44) 

(C-45) 

(C-46) 

(C-47) 

(C-48) 

(C-49) 

(C-50) 



ln turn, the recurrence integral lb is evaluated from y = _.l to y =.l. 
B B 

For b = 0, 

lb = r ~1_B2y2dy =~. 
lb 2B 

(C-51) 

For b ~ 1 

1 = b-l 1 
b (b + 2 )B2 b-2· 

(C-52) 

C-7: Recurrence formulae for integral J(l- yt 19dy 

Consider the recurrence integral defined as 

(C-53) 

For g= 1, 

For g~ 2, 

1* = 1 [J(Z- y)[m-<g-l)] ~1- B2y2 dl} + B2Z(3 - 2g)l· + B2 (g - 2)1· ] 
g (g-IX1- B212) 'J' g-l g-2 

a 

where from section C.5, la = J y dy. 
~1_B2y2 
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The recurrence integral 1; is evaluated from y = ! to y = [ , where 1 gis constant, and is given by, 
B 

For g = l, 

1 = l(l-y) 1 dy=- Z-- _ • m 1 ( 1 )m+I 7i 

g B g m + 1 B.,J B2Z2 -1 

For g ~ 2, 

• mil 1 2 3 - 2g 2 g - 2 
( )

m+I [ ] 
Ig = l(l-y) Igdy=-- [-- ( 22) B [ Ig-I +B --lg_2 , 

B m+l B I-B Z g-1 g-1 

7i 
where for g = 1, 1 g = -;::==== 

,J B2[2 -1 

(C-56) 

(C-57) 

The recurrence integral 1; is evaluated from y = _! to y = !, where 1 gis function of y, and is 
B B 

given by, 

For g= 1, 

1; = ft (z_y)m Igdy = 2
2

2 [:t(_I)qc;zm-q((B-
1

r+
I 

_Zq+I 7i + ,JB2Z2 -1 fr-a la]]_ (C-58) 
B ,JB Z -1 q=O q+l 2 2(q+l) a=O 

t. ~ ~ (1-y'fI,dy (g -IX: _ B'Z') [rI'\ -Ir ~l)lftm-(g-I)J-a(I. -B' I~,)) + B'Z(3 - 2gV.-l + B'(g - 2)(g-, ] 

(C-59) 

1 

C-8: Recurrence formulae for integral .Pi (z- yt dlg 
B 

By integrating by parts, we obtain, 

1 1 1 

Ii (z- y)m dlg = (z- yt Ig(Y)I~~ +m Ii (z- yt-I Igdy 
B B B 

(C-60) 
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Thus, for g = 1, 

(C-61) 
For g~ 2, 

1 ()m [ ] mIl 2 3 - 2g 2 g - 2 
ft(/-Y) dIg= 1-- ( 22) BI Ig-l+B --Ig_2 

B B I-B 1 g-1 g-1 

[(

m-l-(g-l)] ~ ] + m ) "(_I\adm-l-(g-I)]zlm-l-(g-I)]--a(I -RI ) +Rl(3-2gh * +R(g-2'1 
(g-IXI-RP f:; J a a 0+2 J1g-1 1 g-2 ' 

(C-62) 

where 1 g and 1; are given as follows for g = 1. 

C-9: Recurrence formulae for integral J{l + yt Jgdy 

Consider the recurrence integral defined by 

(C-65) 

For g= 1, 

(C-66) 
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For g ~ 2, 

J* = 1 [f(Z + y)[n-(g-ll]~I_ B2y2dy + B2Z(3 - 2g).1* + B2(g - 2).1· ] 
g (g -IXl- B2Z2) g-l g-2 

= '" c!n-(g-ll]z[n-(g-ll]-a (1 - B21 ) + B2Z(3 - 2g).l· + B2 (g - 2).1· 1 [([n-(g-ll] ~ 1 
(g-IXI-B2Z2) f::t a a a+2 g-l g-2' 

(C-67) 

q-a a 
where from section C.5, lq_a = f y dy and la = f y dy. 

~1_B2y2 ~1_B2y2 

The recurrence integral J; is evaluated from y = -Z to y = _!, where J gis constant, and is given 
B 

For g = 1, 

(C-68) 

For g ~ 2, 

1 ()n+l [ ] * _ li n _ 1 1 1 2 3 - 2g 2 g - 2 
Jg_f(l+y)Jgdy--Z-- (22)BZ J g_1+B--Jg_2 , 

11 n+l B I-B Z g-1 g-1 
(C-69) 

7r 
where for g = 1, J g = . 

-J B2Z2 -1 

The recurrence integral J; is evaluated from y = _! to y =!, whereJg is function of y, and is 
B B 

given by, 

For g = 1, 

For g~ 2, 

(C-70) 

Jg* = G1(z+y)n Jgdy 1 [([n~~[n-{g_ll]Z[n-{g_ll]-a(1 -B21 )~+B2Z(3-2g).1* +B2(g-2).1· ] 
~ (g-IXI-B2Z2) :z a a a+2) g-l g-2 

(C-71) 
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1 

C-IO: Recurrence formulae for integral .Pi (1 + yt dJg 
B 

By integrating by parts, we have 

(C-72) 

Thus, for g = 1, 

ft (1 + yt dlg = -(/-~)· ~ " 2n [~cn-Ir-l-q((-FI t 1 

_(_/)q+l ;rr + ~ ]f12 -1 IJ-/)a 1 -aJ] 
B B ~/2 -1 ~~/2 -1 q=(J q q+1 2 2(q+1) a--o q 

(C-73) 

Forg ~ 2, 

1 -()n [ ] B n _ 1 1 2 3 - 2g 2 g - 2 
B(/+y)dlg - 1-- ( 22)BI-. -Jg_1 +B--Jg_2 
li B 1-B 1 g-l g-l 

- n '" c1n-l-(g-ll]/[n-l-(g-ll}-a (1 _ B21 ) + B2/(3 - 2g).l' + B2 (g - 2).1' 
[(

[n-l-(g-lll ~ ] 

(g-lX1-B2/2) ~ a a a+2 g-l g-2 
, 

(C-74) 

where J g and J; are given as follows for g = 1. 
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C-ll: Recurrence formulae for integral JyllJpdy 

Consider the recurrence integral defined by 

J; = Jyll Jpdy. (C-77) 

Y 11+1 (Ji . -1 ) 1 
= ( ) --sm (By) +-10(0=11+1)' 

Bn+12 n+l 
(C-7S) 

(C-79) 

(C-SO) 

11+1 

where from section C-5 and C-6, 10(0=11+1) = f y dy and Ib(b=lI) = Jyll Jl- B2 
y2 dy . 

Jl- B2y2 

The recurrence integral is then evaluated from y = -b to y = -~, where Jp is constant in such 
B 

integration domain, and is given by, 

Forp = 0, 

J" = r~ynJ dy=_1 [(_~)II+I -(-bt+1]!!-. 
p lb p n+l B B 

(C-SI) 

Forp = 1, 
1 

J; = [bE ynJpdy = O. (C-82) 
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For p ~ 2, 

J* = ri- n J d = _1 [(_ !)n+1 _ (_ b)n+l] p -1 J . 
p Lb y P y n + 1 B pB2 p-2 

(C-83) 

~ 7l ~ 

where, for p = 0, J p = -; for p = 1, J p = ° . 
B 

The recurrence integral is then evaluated from y = _! to y =!, where Jp is yet function of y, and 
B B 

is given by, 

Forp = 0, 

1 (_ B-1 :+1 1 
Jp• = E~ynJ~pd'l) = - L '" + 1 

'.l' () ,. -- a(a=n+I)· 
B Bn+1 n+1 

(C-84) 

Forp = 1, 

1 1 

J~* - E nJ~ d - 2 E n ~1 B 2 2 dy - 2 1 
p - 1 Y p Y - -2 1 Y - Y - -2 b(b=n)· - B - B 

B B 

(C-85) 

For p ~ 2, 

(C-86) 

1 

C-12: Recurrence formulae for integral E.. y nd7p 

B 

By integrating by parts, we have 

1 1 1 
EJnd7p =ynJp(Y)I~~ -n EJn-IJpdy 

B B B 

(C-87) 
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Thus, for p = 0, 

(C-88) 

For p = 1, 

1 
rB ndl~ _ 2n 1 
1~ y p - - B2 b(b;n-l) • 

B 

(C-89) 

For p ~ 2, 

1 ( J n ~ -1 P -1 ~ 1 1 p -1 ~. E y dl p = -(- B r --2 J p-2 (--) - n --2 Ib(b;n+p-2) + --2 J p-2 • 
li pB B pB pB 

(C-90) 

C-13: IntegraIs related to 1; and J;, for g = 1. 

Consider the following two integrals of inverse triangular functions given by, 

~ B2/2 -1 yq+l ------J dy (C-91) 
2(q+l) (/- y).jl- B2l ' 

(C-92) 

(C-93) 

(C-94) 

We apply general factorization equation for expanding {yq+l + (-I)q zg+l) and Vq+1 
_ yq+l). 

q 

yq+l + (-I)q zg+l = (1 + Y )Ilq-J (- y y , (C-95) 
J;O 
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q 

Iq+l - yq+l = (/- Y )I.lq-i yi • (C-96) 
j=o 

By arranging the terms, one concludes, 

yq+l _[q+l _ 
= cos 1 

q+l 
(C-97) 

q+l + (-l)q [q+l _ 
= y cos 1 

q+l 
(C-98) 
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Appendix D: General integral and integration limits for 

calculation of aerodynamics coefficients 

for delta and trapezoidal wings 

D-l: Case of tbin delta wing 

1. . can be written in the form as 
'} ,12 

In turn, two integrals in Eq.(D-l) can be carried out analytically by the Newton binomial formula as 

(D-2) 

(D-3) 

1 = rf(y) 1 dY 
g li (/- y)g 9{ , 

(D-4) 

1 

J=IB 1 dY 
g Jf(y) (z + y)g 9{ . 

(D-5) 

Analytical solutions can be drawn out successively by means of recurrence formulae technique for Ig 

and Jg straightforward. We conclude that 

--'---------=--,-=-.:.2.--'------~ , for g = 1 . (D-8) 

(
y) 1 (y) 1 r1(Y) 1 

where, Ig = 1 ( ) dY; Ig-l = 1 ( ) 1 dY; Ig_2 = 1 ( ) 2 dY 
li 1 - Y g 9{ li 1 - Y g- 9{ li 1 - Y g- 9{ 
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And 

_ 1 [~1-B2[r(y)y 2 3-2g 2 g-2] > 
J g - ( 22) ('\f ] -1 +B 1 Ig-l +B --Ig_2 ,for g_2. (D-9) 

1-Big -lA! + f(y) g g -1 g-l 

J g = ~[; -sin-1(Bf(y))} for g=O. (D-10) 

J = 2 cos-1 

g ~B212_1 
-'-------'-;-'---'--'-'------:----'- , for g = 1 . (D-ll) 

Accordingly, the general integral, Ij j , and its derivative with limits are given separately by 
l, 2 

considering the location of point P(x1, x2 ) • 

For position outside the Mach cone to the right, .l:s; y:s; 1 and f(y) =.l. 
B B 

(D-12) 

(D-13) 

For position inside the Mach cone, _.l:s; y:s;.l and f(y) = y. 
B B 

(D-14) 

(D-15) 
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In addition, the derivative of integral [1 y

i

2 1 dY and ~ yil 1 dY with respect to XI can 
B (Z- Y)'I+ 9{ ~ (Z + Y)'I+ 9{ 

be derived further as follows. 

(D-16) 

(D-17) 

And the derivative of Ig and Jg with respect to y are then given by the recurrence formulae as, 

For g ~ 2, 

-= +BZ +B ----. 
aIg 1 [(g_I~I_B2y21_B2y(z_y) 23-2gBIg_I 2 g-2 B1g_2] 

ay 1- B2Z2 (g _ t'X/ _ y)g ~1- B2 y2 g -1 ay g -1 ay 
(D-18) 

aJg = 1 [(g-I~I-B2y21-B2y(Z+Y) +B2Z3-2gaJg-1 +B2 g-2aJg_2]. 
ay I-B2Z2 (g-IXZ+y)g~I-B2y2 g-1 ay g-1 ay 

(D-19) 

For g= 1, 

(D-20) 

(D-21) 

For position outside the Mach cone to the left, -1 ~ Y ~ -~ and f(y) = -~. 
B B 

(D-22) 

(D-23) 
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D-2: Case of thin trapezoidal wing 

1 . can be written in the form as 
't,12 

(D-24) 

The analytical solutions to the first integral in Eq.(D-24) have been established in Eq.(D-6) ~ (D-8), 

and the second integral can also be solved analytical by the recurrence formulae. We conc1ude that 

(D-25) 

Jp = cl- ~dy=~(1t -sin-I(Bf(y))),forp=o. 
Jf(y) 9î B 2 

(D-26) 

J = cl- y dY =_1 '1-B2(f(y))2 forp= 1 
p Jf(y) R B 2 'V " 

(D-27) 

1 yP 1 yp-2 
where Jp = fi -dY and Jp _2 = fi --dY. 

Jf(y) 9î Jf(y) 9î 

As a consequence, the general integral Ii i and its derivative in respect to Xl with limits are 
l' 2 

determined as follows based on the location of point P(xp x2 ). 

For position in area SI, ~ ~ y ~ II and f(y) = ~. 
B B 

(D-28) 

(D-29) 
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For position in area &, -~ ~ y ~ ~ andf(y) = y 
B B 

(D-30) 

(D-31) 

yi2 1 yi2 
where the derivative ofintegral fI 1 dYand lB-dY with respect to XI in Eq.(D-31) can 

B (1- Y)'l+ 9{ ~ 9{ 

be given by, 

(D-32) 

The derivative of Ig and Jg with respect to y in the above two equations is given by the recurrence 

formulae as, 

(D-34) 

For g = 1, 

(D-35) 
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Forp = 0, 

(D-36) 

Forp = 1, 

(D-37) 

For position in area 80 and So, -/2 ~ Y ~ _! and f(y) = _!. 
B B 

(D-38) 

(D-39) 
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