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ABSTRACT

This thesis presents a more accurate and efficient method for the study of finite span wings in steady
and unsteady supersonic flows with more computing efficiency.

For steady flows, the boundary conditions are expressed in terms of the source distributions over
wing surfaces. Specific theoretical solutions are derived for the calculations of pressure coefficient
distribution and the lift, pitching moment, and rolling moment coefficients. The present solutions
have been validated for delta and trapezoidal wings by comparison with high order conical flow
results based on the theory developed by Carafoli, Mateescu, and Nastase. An excellent agreement
was found between these results.

For unsteady flows, the boundary conditions of finite span wings are modeled by using pulsating
sources distributing over the wing surface. The present method leads to more accurate solutions for
rigid wings executing harmonic oscillations in translation, pitching rotation, and rolling rotation of
various oscillating frequencies. These solutions were found in very good agreement with the
available high order conical flow solutions obtained by Carafoli, Mateescu, and Nastase.

Then the method has been used to obtain solutions for the flexible wings executing flexural

oscillations, which are of interest for the aeroelastic studies in the aeronautical applications.



RESUME

Cette thése présente une méthode pour I'étude des ailes d’envergure finie en écoulement supersonique
stationnaires et non-stationnaires.

Pour les écoulements stationnaires, les conditions de frontiere sont exprimés en termes de
distributions de source sur la surface de l'aile. Des solutions théoriques spécifiques sont dérivés pour
les coefficients aérodynamiques de pression, de portance et des moments de tangage et de roulis. Les
solutions obtenus ont été validées pour les ailes delta et les ailes trapézoidales par comparaison avec
des résultats d'écoulement conique d'ordre supérieur basés sur la théorie développée par Carafoli,
Mateescu, et Nastase. Un excellent accord a été trouvé entre ces résultats.

Pour les écoulements instationnaires, les conditions de frontiére des ailes d'envergure finie sont
modelés en employant des sources pulsatoires distribuées sur la surface de l'aile. La méthode
présentée méne a des solutions plus précises pour les ailes rigides exécutant des oscillations
harmoniques en translation, et rotation de tangage et de roulis a des diverses fréquences d'oscillation.
Ces solutions ont été trouvées dans une bonne concordance avec les solutions disponibles basées sur
les écoulements conique d'ordre supérieur, obtenues par Carafoli, Mateescu, et Nastase.

Aprés la validation, la méthode a été utilisée pour obtenir des solutions pour les ailes flexibles
exécutant des oscillations en flexion, qui sont d'intérét pour les études aéroélastiques dans les

applications aéronautiques.
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NOMENCLATURE

“ 9 > R/ &L =T

speed of sound

pressure

density

Mach number

free stream velocity

speed of sound in the free stream

pressure in the undisturbed free stream

density in the undisturbed free stream

free stream Mach number (M= Us / ax)

ratio of specific heat coefficients at constant pressure and volume (¥ =1.4 for air)
Mach angle, 4 =sin™ (/M)

wing sweep angle

deflexion angle of the wing surface

root chord

span of trapezoidal wing

span of delta wing; semi-span of trapezoidal wing

flow velocity

reduced frequency

angular frequency

velocity potential in steady flows; total reduced velocity potential in unsteady flows
perturbation velocity potential in steady flows; total velocity potential in unsteady flows
angle of attack

rolling angle

specific area containing series of infinitesimal sources

specific area covered by the forward Mach cone within A

total delta wing surface area; half of the total trapezoidal wing surface area; exponent used

normal unit vector to wing surface
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i,j, k

components of the normal unit vector to wing surfaces along axes x,, x,, and x;
coordinates of sources distributing over the wing surfaces

Cartesian coordinates

non-dimensional conical coordinates (y =x,/ x:; z=x;/ x\)

Busemann geometrical transformation coordinates

homogeneous coordinates

auxiliary functions of the upper integral limits for two specific integration domains
coefficients of binomial series

amplitude of the vertical oscillatory translation

phase angle of the vertical oscillatory translation

complex amplitude of the vertical oscillatory translation ( h= h,e'")

amplitude of the rolling oscillatory rotation

phase angle of the rolling oscillatory rotation

complex amplitude of the rolling oscillatory rotation (i =y e’ )

amplitude of the pitching oscillatory rotation

phase angle of the pitching oscillatory rotation

complex amplitude of the pitching oscillatory rotation (é =@,e'"")

unit vectors along axes X, X,, and X,

perturbation velocity (q = ui + vj + wk)

perturbation velocity in the x; direction

perturbation velocity in the x; direction

perturbation velocity in the x; direction

reduced downwash (W = w/e’ )

analytical complex function of perturbation velocity in the x; direction (Re[ %] = u)
analytical complex function of perturbation velocity in the x, direction (Re[ 7] =v)
analytical complex function of perturbation velocity in the x; direction (Re[2¢] = w)
time

analytical function with respect to the complex variable x

the degree of the homogeneous polynomial

the highest degree of the homogeneous polynomial



c coefficients of the geometry of the thin wing surface equation expressed in homogeneous

polynomial
w,,, coefficients of the downwash equation expressed in homogeneous polynomial
Cp pressure coefficient
é’p reduced pressure coefficient
C, lift coefficient
C, reduced lift coefficient
C.» pitching moment coefficient
ém reduced pitching moment coefficient
C. rolling moment coefficient
éml reduced rolling moment coefficient

Exponents used: a, b, m,n, k, q,j, 2. 1,p, s, S, r, R, t, iy, iy
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CHAPTER 1

INTRODUCTION

1.1 Literature review
In the past few decades, the steady and unsteady supersonic flows over wings have been
investigated theoretically and experimentally, using various mathematical, numerical, and
experimental approaches. The problem of predicting accurately the aerodynamic characteristics of
wings of various plane forms is among the most important ones that have been studied in the
development of the aeronautical sciences. The invention of the digital computer and its introduction
into the world of science and technology has led to the development, and increased awareness, of
the analytical and computational methods for achieving more accurate solutions to the complexity of
the physical world. Following is a brief literature review on which the present work is based.
Theoretically, the behavior of supersonic flow can be described by fundamental equation
systems, but one may think that the analytical results is often no practically possible to describe
completely the evolution of the system in its full complexity. Therefore, approximate numerical
solutions have been sought based on finite difference and finite volume approaches. MacCormack
et al. [13], [14] & [28]-[32] developed an explicit technique for numerical solutions in the form of
the finite difference expression of governing equation systems based on predictor-corrector method.

Jameson et al. [13]-[20] highlight the considerable flexibility of the application to the explicit finite



volume method for the analysis of wings and aircraft configurations by introducing the artificial
dissipation for flux term calculation. Mateescu et al. [45] compared their numerical results with
those given by MacCormack et al. and Jameson et al.. Mateescu et al. developed the biased-flux
method to approximate and evaluate directly the direction of perturbation propagation of different
flux variables. He determined the optimum values for upwind and downwind bias factor by
carrying out series of numerical experiments and resulted in more accurate solutions.

On the other hand, analytical solutions can be applied to advanced and conceptﬁal designs
embedded with reasonable linearized assumptions, which will reduce the complexity of the original
basic equations and make them tractable w1th1n certain limits. For long time, scientists have been
concentrated in the studies of triangular and polygonal wing plan forms in supersonic flows based
on theory of conical flows and high order conical motions, established by Carafoli, Mateescu, and
Nastase [2], Mateescu [36] & [38]-[41], Paul Germain [9]-[12], and Krasilsciova [24]-[26]. Carafoli
et al. established a unified method on the basis of high order conical flows, delivering series of
analytical solutions to all these problems and for the actual calculation for cases of isolated simple
wings, cruciform wings, and wings with vertical plane tail, simple or cruciform wings fitted with a
body, and so on, which could be applied to practical aeronautical applications.

The analytical approach of supersonic flows past oscillating wings carried out by Carafoli et
al. was based on the frequency expansion method. This method determined the unsteady pressure
coefficients and the unsteady lift, pitching moment, and rolling moment coefficients of polygonal
wings with subsonic or supersonic leading edges executing harmonic oscillations in supersonic
flows. However, the high order conical flow solutions provided zero real values of the reduced

pressure coefficient and the reduce lift and moment coefficient in the cases of oscillatory translation
and rolling oscillation. -
Pines et al. [54] developed a numerical scheme based on the Mach Box method by frequency

expansion technique to obtain generalized forces on an oscillating flexible and rigid wing in



supersonic flows with both subsonic and supersonic leading edges. Their procedure is limited to
Mach number to 1.414 and higher. Zartanian’and Zsu applied Bassel functions series representation
of the integral to implement the Mach Box method and improved by Fenain M. and Guirand-Wallee
D. [7] in 1967. Improving on the work done by Chipman [4] analytically refined the Mach Box
method, greatly increasing the accuracy of the supersonic oscillatory pressure distribution.
Although the improvement in the accuracy has been obtained, the grid refinement implies an
important increase in the computational running time. Accordingly, Appa and Smith [49]
introduced triangular elements representation and linear distribution of sources over wing surfaces.
This produces more accurate geometric representation of the wing with fewer elements on the wing

and the finite element grid does not change with the Mach number.

1.2 Aims and scope of this thesis
In the light of considerable researches done regarding the analysis of steady and unsteady superéonjc
flows, the difficulties of fitting rigorously the body geometry and the requirement of improving
computing efficiency are inherent deficiency of some of the previous studies in terms of the
accuracy of solutions and calculation complication. Rather, the main concern of this thesis is to find
out an analytical method of approach with more accuracy and better computational efficiency in
calculations of the aerodynamic forces and moments coefficients for general wing configuration not
only for the steady flows, but also for the unsteady flows past wings executing higher oscillations
frequency.

The present thesis consists in the presentation of the new analytical solutions for the study of
the steady and unsteady flows past fixed and oscillating rigid wings and past flexible wings

executing flexural oscillations. A summary of the content of the thesis is given in the following.



Chapter 2 is dedicated to the problem formation of the steady and unsteady supersonic flows
past fixed and oscillating thin wing plan form. The wing geometry and boundary conditions, the
governing potential equation, and equations of aerodynamic forces and moments coefficients are
presented.

In Chapter 3, previous method and analytical solutions based on high order conical flows
theory developed by Carafoli, Mateescu, and Nastase [2], [38]-[41], are presented.

Chapter 4 is devoted to the presentation of theory and fundamentals of source distribution on
the wing in supersonic flows and the determination of the velocity potential equations of the
distribution of sources in steady state and pulsating sources over wing surfaces executing unsteady
motions.

In chapter 5, the analytical solutions for steady cases are presented for delta and trapezoidal
wings in supersonic flows. The present solutions are validated by comparison with the previous
results observed using the theory of high order conical flows.

In chapter 6, analytical unsteady solutions are presented for the rigid delta and trapezoidal
wings executing harmonic oscillations in translation and pitching and rolling rotation. Then, the
method has been used to study the flexible wings executing flexural oscillations, which are of
interest for the aeroelastic studies in the aeronautical applications.

Chapter 7 presents a summary of results and discussion for various cases of steady and
unsteady flows past rigid wings and flexible wings executing the flexural oscillations by the method
presented in Chapter 4, 5 and 6. The solutions for the rigid wings have been validated by
comparison with the previous results based on high order conical flows.

The last chapter is devoted to conclusions and suggestions for further research work.



CHAPTER 2

PROBLEM FORMULATION

2.1 General geometrical configuration of polygonal wings and

boundary condition

In supersonic flows, the leading edges and the ridges play fundamental roles in unified theory of

angular wings based on high order conical flows. First, let’s consider an orthogonal system
OX,X,X,,with axis OX, parallel to the free stream velocity, U, (Fig. 2.1). The edges, such as O4,

and OA4, in delta wing, O,0,,04, and O4, in trapezoidal wing, are called leading edges; while
A4, are called tailing edges. The Mach cone is defined by the Mach angle, x4, and the circle

representing the intersection of this cone with physical plane normal to OX, at distancex, =1 is

called the Mach circle with radius equal to tanu =1/B, where B = ,/M 2 —1. The position of

leading edges can be defined by two angles, x, and y,, and their traces in the physical plane at
x, =1are [, =cot 7, and /, =cot y,. When the leading edges are situated outside the Mach cone,
i.e., /, and /, are larger then the radius of Mach circle, 1/B, they are denoted as supersonic leading

edges.
The geometry of the thin wing surface is defined by the equation x, = Z(x,, x.), where Z(x,, x.) can

be defined in the form as a superposition of homogeneous polynomials in x, and x,.



N
Z= Z Crgg®l X3, 2.1.1)

where N is the degree of the homogeneous polynomial of the highest order and the coefficients, ¢c,_, ,

are constants.

The deflexion angle, 7, of wing surfaces with respect to the free stream direction can be

expressed as

N
tanr=—=> Y (n-ql,, X ""'xi . (2.1.2)

Generally, we denote f as function of wing surface suitable for both fixed situation and general
unsteady motion in uniform flows and can be written as f{r, t) = fx,, X;, X;, t) = 0. And the normal unit

vector to the wing surface can be defined by,

n= —V—L (2.1.3)
/1
Let’s denote the perturbation velocity on the wing surface by q,, with which is satisfied the continuous
equation and we have
L4 vf=0. (2.1.4)

As well, the boundary condition on the wing can be defined as

q-n=V:-n=Ux+q)-n=0, (2.1.5)
or we can reorganize the boundary condition equation like

q-n=-U,-n+q,-n, (2.1.6)
where V =Uy + q = (U cosa + w)i + vj + (U sina + w)k is the fluid velocity on the wing surface;

however, q is equal to zero for the undisturbed portion outside the Mach cone.



By substituting the definition of normal unit vector, the boundary condition can then be
expressed in terms of Vfand it shows
q-Vf=-Us-Vf +q,-Vf. 2.1.7

Let’s take account of the material derivative of fand we have

%{ Z +VVf= f —+ Uat QVf= 2 A -+ (Uat VVf=0. (2.1.8)

Accordingly, the boundary condition for wings executing unsteady motion can be rearranged as,

U,sina+w=(U,_cosa +u)= g +v g f. (2.1.9)
ox, Ox, at
For wings in steady state, we have,
of
U,sina+w=(U, cosa+u)——+v (2.1.10)
o, o,

The perturbation velocity # and v are assumed small, and hence the boundary condition on the

wings executing unsteady motions can then be recast in the form as

N n-1
w=-U_sina+U, cosa—+ ZZ Wgi gkt % +g—j:. (2.1.11)
n=l g=0

And for wings in steady state, we have

. 6 N n-1 -
w=-U,sina+U, cosa-L = DI IR s (2.1.12)
1 n=1 q=0
N n-1 .
n-g-1_q :
where w,___, - are constants and Z Z W, 1% | X5 is part of the downwash velocity expressed by

n=1 g=0

the geometry of the thin wing surface. According to the linearized theory, each specific solution of a
single polynomial of order (n-1) is sufficient for problems with more general geographical

configurations. Hence, the part of the downwash velocity based on the geometry of the thin wing

n-1

surface in (n-l) order can be replaced by Z W, gig

n—-q-1_gq
X Xy

g=0



\ Mach Cone

Figure 2.1 Geometry of delta and trapezoidal wings at an incidence « in uniform free stream Ul.

x:AX;

Figure 2.2 Geometry of thin wings of longitudinal cross-section at root chord at an incidence, a, in
uniform free stream U..



2.2 The potential flow model with small disturbance approximation

Compared to the full system of Navier-Stokes equations, the potential flow model is the simplest
mathematical description of inviscid and irrotational flows. As known from Prandtl’s boundary layer
analysis, this is a valid approximation for flows in high Reynolds numbers outside viscous regions
developing in the vicinity of solid surface. Thus, the curl of the velocity is zero; i.e., Vx¥ =0, where
V is the three-dimensional velocity field. Basically, the three-dimensional velocity field of the
potential flows is the gradient of one specific scalar property, defined as the velocity potential
functions, @, and can be expressed by a single velocity potential function as ¥V = V.

According to the non-viscous approximation, the entropy is constant along streamlines and the

flow is isentropic throughout the whole flow field. Hence the equation of isentropic flow can be

written as Ly = const., where 7y is the ratio of specific heat coefficients at constant pressure and

P

constant volume (y = 1.4 for air). The speed of sound for isentropic assumption can be expressed as

a=\/;/z=,/;/RT. (2.2.1)
P

And the continuity and momentum equations can be expressed as

% 1 v(p7)=0, | 2.2.2)
or

_d_V=§K+V(lV2)+(vXV)x;7 =5_V+v(lV2) _ (2.2.3)
o \2 a2 p

The rate of change of pressure with respect to density is an isentropic change and thus we have

IX{E:_Z_E > E:V[Lﬁj. (2.2.4)
p r-lp P y=1p

By substituting Eq.(2.2.4) and ¥ = V® into Eq.(2.2.3), the momentum equation can be recast by the

following two forms as

al.@.v(l[ﬂ).,_lvp = V[a_q’_,__l_[/? +_Z/_£J
P

0, (2.2.5)
ot 2 o 2 y=1p



and

V(a_mlyzj:_lvp:_azlvp > d(a¢+ Ly )=-ldp=—azldp. (2.2.6)
o 2 P fo, o 2 P P

Substituting Eq.(2.2.6) into the continuity equation, Eq.(2.2.2), we have

1o, 5¥P i yp—o5 vi-L VV(IVZ a¢]+ 0 [1V2+a—¢’) 0. (@27)
p ot P a 2 o) ot\2 ot

And from the Eq.(2.2.5), the pressure equation in differential form and finite form are presented,

respectively.
d(@]ded—p:d 9 1y, v Py, (2.2.8)
ot yo, o 2 y=1p
ad iy VP ons (Bernoulli-Lagrange equation) (2.2.9)

o 2 y—=1p

In turn, because of the complexity of the direct application to coordinate systems and in
accordance with employing the small disturbances approximation, we assume that the free stream
velocity U is disturbed due to additional small velocity in the vicinity of the wing surface. The
projection of small disturbing velocity on each orthogonal axis is u, v, w, respectively. Let’s denote

(o(x, ¥, 2, t) as the disturbance velocity potential and the total velocity components is written as

V =V® = (Uscosa + ui + vj + (U sina + wk, (2.2.10)
where q = ui + vj + wk, u=a—¢, v=a—¢, w= 6(p ,and ®=U (xcosa+zsma)+¢
ox dy oz’
As aresult,
V2=U2+u2+w2=Ui+2Uw%0, (2.2.11)
1; 2 5¢
V| =V = V| U, == |=V(U u), (2.2.12)
2 ox
2
VV(le)zVV(Uw 8¢) ~U2 1200 (2.2.13)
2 ox ox o’

10



2 2 2 2 '
VV(%)N(Uw+u)a¢+va¢+wa¢~U o9 2.2.14)

ot otox  otdy otz " otox
2
Q(leszw ou_y 9% (2.2.15)
or\ 2 ot ot

In addition, the Bernoulli-Lagrange equations, Eq.(2.2.9), can also be recast as
2 2 2

a_¢+lV2 +a_=lUi+ 9o - 9

o 2 y-1 2 y—-1 y-1

= const , (2.2.16)

where a® =a? —yT_l(W -U* + a—w)za2.

Accordingly, by substituting Eq.(2.2.12) ~ (2.2.16) into Eq.(2.2.7), the differential velocity

potential equation for unsteady potential flow is written as

T2l T oxor

2 2 2 2 2
we.le. Lo 1 (0., Te)
z a,

U
where M, =—=, B=,M. -1, ,u=tan“%.
- a

0

Also, for steady flows, the velocity potential equation is simplified as

2 2 2 : .
_pr e, 020 %0 (2.2.18)

axZ ay2 622

11



2.3 Low frequency harmonic motion of wings in supersonic flows

According to the assumption of small disturbances, the low frequency harmonic motion of wings can
be decomposed into three elementary parts: the vertical linear translation, h(t), the pitching rotation,
0(t), with respect to axis OXj,, and the rolling rotation, yw(f), with respect to OX;. All three

elementary parts are defined as follows.

h(t) = by cos(@t + 1, ) = Re|fz- ¢ | = Re[p, - /@], (2.3.1-a)
8(t)'= 6, cos(ot + vy, ) = Rel_é e J= Re[&o -e‘(“"”""’)], (2.3.1-b)
1//(t)1= ¥, cos(a)t + l//v,)= Re[lﬁ e’ ] = Relt//0 -ei("’”‘””)j, (2.3.1-¢)

where @ and ¢ are the frequency of the oscillatory motions and the time, respectively. In linear vertical

translation oscillations, A, and y, are the amplitude and the phase angle. Similarly, 8, and v, are
the amplitude and the phase angle of the pitching rotation oscillations, and , and y,, are the
amplitude and the phase angle of the rolling rotation oscillations. If taken as complex forms, the
complex amplitudes are defined as A = he"", O =0,e™ , =" .
In addition, the velocity potential for harmonic motion can be written as [52]
o(x,,%,,%,,t)=U_e" "™ D(x,,x,,x,), (23.2)

where CD(xl,x2,x3) is independent of time and represents the total reduced velocity potential.

Substitute Eq.(2.3.2) into Eq.(2.2.17) and the unsteady velocity potential equation can be recast as

2 2 2 2
_Bzac?+ad2)+ad2)=/121+123 ®~0, (2.3.3)
o’ ox  ox, B

2 2
where A:ﬂ— and k=—ﬂl+B = M .
U, B? B?

12



Er

For equation of a point on the general wing model surface, P, (x,,x, ) represents a summation of

the homogeneous polynomials, P, (x1 , X, ), of various orders with respect to x, and x..

g@ﬂg=§g@JJ. (2.3.4)
The equation of a point on the wing surface can also be expressed in terms of the variation in time in
harmonic oscillatory motions and we have

Z=e"P(x,,x,). (2.3.5)
In turn, by considering the harmonic oscillatory motions with three elementary motions, Eq.(2.3.5)
can then be expressed as

Z = h(t)—x, tan(6(1)) + x, sin(y (1)) . (2.3.6)

As well, based on the small disturbance assumption, tan(d) ~ 8;sin(y) ~ v , Eq.(2.3.5) becomes

z=mﬂ-%mn+%w@=em@—%é+%¢%wmp@pﬁx (2.3.7-a)
where
N A ~
P(xl,x2)=ZPn(xl,x2)=h——x10+x2lﬁ. (2.3.7-b)
n=0

Apply the equation of points on the surface of wings to the boundary condition equation in
Eq.(2.3.6), the boundary condition of wings executing harmonic oscillatory motions with small angle

of attack can then be recast as

w=‘6(o~ oz oZ

——~U,—+ (2.3.8-2)
o, ox, or

= Uweiwt (M+&P(xl,x2 )J (238-b)
) Ox, U,

=U, e (-G +ilh-x0+x)). (2.3.8-c)

13



!
The vertical downwash, w, can also be written directly from Eq.(2.3.2) as

w=28 _y am) O _p; iy, (2.3.9-2)
x4 Oxs

where w is denoted as the reduced downwash and can then be expressed explicitly as follows.

52001 ierk) 00

o, U o,

4]

(2.3.9-b)

In turn, Eq.(2.3.9-b) can be written successively by taking gx?_ in Eq.(2.3.8-b).

3

od | QA a_¢ _ e—i/al(aP(xl,,xz)_l_ io

=2 e — e
o, U ox, ox, U

0

P(x,,x, )j =e ™ W(x,x,). (23.9<)

oo

Under the assumption of high order conical flows, k is very small, and expand e™™ by Taylor
expansion neglecting terms in k and higher.
e =1+ike, +O(k?). (2.3.10)

Substitute Eq.(2.3.10) into Eq.(2.3.9-c), and one has

: 2 2
W:e‘”"‘l(a},(xl’x2)+ i P(xl,xz)}=—gx£—ﬂ.2xl 123 P+1°/?{P+x1 1B G_PJ

6x1 l]w 1 ? 1;2 Ehh
2
z—aiﬂ'ﬂ P+x1£—aﬂ (2.3.11-a)
Ox, B ox
By taking account of P(x,,x,) in Eq.(2.3.7-b), the reduce downwash becomes
s pofa 2B 41s
w=—¢9+1){h—x1 7 6’+x21//). (2.3.11-b)

From Eq. (2.3.11-b), the total reduced velocity potential, @, consist of real and imaginary parts.

N N
Q=@ +ild"=» @, +il) D), , (2.3.12)
n=1 n=0

where N is the highest order of the polynomial P(xl,xz). Consequently, the total reduced velocity

potential of the second order of the polynomial P(x,,x,) (N = 1) is ® =, +il(@"+®"). And

14
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reduced downwash can be expressed in complex form as

2 ' [ ' ” ”
w=-0+il h—x,—z—l—g—-:—l0+x2:/9 _ o +i/16q) _ %% +iA 09} +aq>2 , (2.3.13)
B ox,  ox, o, ox, o,
' ” ” 2
where 2212 4, O _j 0na P2 2B *ls. 0
o, o, or, B

All those reduced downwash velocity coefficients for harmonic motions can then be determined as

~

why =0, (2.3.14)
. | (2.3.15)
: 2 A
wh=-28 *1g (2.3.16)
B
s 2.3.17)

15



2.4 Aerodynamic forces and moments coefficients of wings

The pressure coefficient equation in the first approximation, denoted by Cp, is defined as

Cp=PPn _ 2 (L—J 2.4.1)
_1_ p U2 7M poo
2 [
Based on Eq.(2.2.6), the pressure difference equation can be given as
M=—é‘(a—¢+lV2)=l(V2—Uj,)+a—(sz®u+—a—£. 2.4.2)
O, or 2 2 ot ot

As a result, the pressure coefficient equation for unsteady case becomes

2 6(0 6(0 i(ot+hx,) t(wt+kx od il
Cp=——|U, —+—|=—2e ! +iA+k N——D|. 243
S ( ~ax, 6t] [ " )CD} o

Taking account of the total reduced velocity potential of the second order, ® = ®! +iA(®7+ D),

Cp=-2e m[?ﬁ’i-ﬁ(@'_gz 00", My, 2P ﬂ

o, B O, ox,
_ppi oD, 1); ®! - B? o(@; +(D2)+Mf,x1 oD, ) (2.4.4)
axl B 2 oxy

For steady flow, we have

2 Op u
Cp=- =-2—. 2.4.5
P20 T (2.4.5)

0

The lift coefficient, pitching moment coefficient, and the rolling moment coefficient are
calculated by integrating the pressure coefficient equation, Eq.(2.4.4) and (2.4.5), over the wing area.
As far as the thin wing plan form is concerned, the pressure difference across the wing profile in
dimensionless form as

ACp=Cp,-Cp, =-2Cp. (2.4.6)
) u

16



;
Thus, the dimensionless lift coefficient (C,), pitching moment coefﬁcient (C,,), and rolling moment

coefficient (C,, ) equations are defined as

-2 ~2
€= [cpaa= ~ [Cpx,dx,dy . (2.4.7)
S S
~2 ~2 )
Cpy =—— [x,Cpdd =—= [Cpx}ax,dy. (2.4.8)
Scy § 8¢, §
c =—2 xCM~iICx2dxd (2.4.9)
ml S(2b) } 2 LD S@b) } pxy yax,ay . 4.

We consider an element d4 of the wing on both surfaces as dd4 = dx,dx, = x,dx,dy and generally
denote by S the total delta wing surface area or half of the total trapezoidal wing surface area, co the

root chord, and 2b the total wing span at x, = 1.0.

17



CHAPTER 3

PREVIOUS STUDIES - ANALYTICAL METHOD
BASED ON THEORY OF CONICAL FLOWS AND
SOLUTIONS TO STEADY AND UNSTEADY FLOWS
PAST SUPERSONIC WINGS

3.1 Compatibility relation of conical motions in supersonic flows

The perturbation velocity, ¢, can be expressed as the gradient of the perturbation velocity

potential ¢.

q=uitvj+twk =V, ' (3.1.1)
where q, '=—a£=u, q, =a—(0=v,and q; =i¢-)-=w.
- Ox Ox, O

Accordingly, the perturbation velocity potential in steady case can be recast as

_pou v ow

+ =0. (3.1.2)
axl axZ 6x3
Then, differentiating Eq.(3.1.2) above with respect to x,, x;, and x, one has
_pr % O O (3.13)
Ox; Ox; Ox,

where g, =§x—¢,k= 1,2,3.

k

18



i
Based on the theory of conical motions and the assumption of small disturbances, developed by
Busemann in 1935, the non-dimensional coordinates are given as y = 3;1 and z= z—3 . In general, we
1 1
can denote g, as function of y and z and thus Eq.(3.1.3) can be recast by y and z.
(- 17323;2)661—"2%r (1- B*z? )aazz—q;‘- 2Bzyzg;%— 2B2y%£— 2322%‘12—"= 0.  (3.14)

Let’s consider the Busemann geometrical transformation as

* y * 4 2{.,2 2
=y=—=——and z' = =—————,/1—Bi +z i, 3.15
YRt TPt 4 @.15)
and thus Eq.(3.1.4) can be recast in the form of Laplace equation; i.e., g, becomes harmonic function

in Busemann’s auxiliary plane (%, 7 F ig. 3.1), and can be related to its corresponding harmonic

functions, denoted as g,. As a result, and complex variable, x, in Busemann’s auxiliary plan is

defined as
X=y +i3/. (3.1.6)
And the harmonic functions in terms of the complex variable, x, can be expressed as

2 2
?_L§+a_‘1;=o, : - (.1.7)
* 62*

oy
where ¢, =—a—£,k= 1,2, 3.
ox,

The perturbation velocities can be expressed as the real part of the associated analytical complex

functions and are shown as
u(%a 3'/) = Re[ MJC)], %x) = u(%s 3/) +i u'(g/, })a
Wy P =Re[ 7@] 7@ =y P)+ivigs ). (3.18)

Wiy, 2)=Re[HX)], #(x) =wly, 2)+iw'(y, 2).
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Figure 3.1 Conformal transformation of wing geometry with supersonic edges

Additionally, the curl of the velocity field is zero (Vxq = 0) and we have

ou o & _ow o (3.1.9)
ax2 axl ax3 axZ axl ax3

Similarly, by taking account of the Busemann geometrical transformation, the irrotationality

conditions can be expressed in complex form as

du = xd¥ = —2 dw. (3.1.10)

Ji- B2

This is the compatibility relation in the study of conical flow motions.

20



3.2 Compatibility relation of high order conical motions in supersonic

flows
Conical flow motion of order » with respect to the vertex O, is the flow for which the disturbance
velocity potential (o(x1 » X, ,x3) is an n-th order homogeneous function with respect to x,, x,, and x,. It
follows that the n-th order derivatives of the velocity potential are constants on any radius vector
issuing from vertex O, whence they are zero order homogeneous functions in this manner; e.g., the
true conical flow is defined by » = 1. Accordingly, let’s denote ¢, , , by the derivative of the
disturbance velocity potential of order p with respect to x,, or order g with respect to x., and of order »

with respect to x;. Explicitly, it is shown as

ap+q+r¢

<z (3.2.1)
Ox Ox] Ox;

Ppar =

If we consider nisequaltop +q +r, ¢, .. =@, is homogeneous function of zero order, which

=q=r.q,r
plays the same part as the perturbation velocity #, v, and w in the true conical flow motion (n = 1),

since the perturbation velocity , v, and w are also zero order homogeneous functions. In other word,

@yygrq, Can be expressed as harmonic function in Busemann’s auxiliary plane (y.,p) and the

corresponding conjugate harmonic function can be denote by ¢, . .. Therefore, let’s denote
Fa-qrqr a8 the analytical function in terms of the complex variable x and we have

Fograe= Cugorgr VI Orgrgr (3.2.2)

In tﬁrn, we consider (n-1) order derivatives of the function ¢ with respect to x,, x,, and x;,

respectively. Here we choose ¢, , ,, as example and its corresponding disturbance velocities are zero

order homogeneous functions.

_ 00,100 0P-10,0 0Pu10,0 _

u,= o, =@poo> Va = 2x, =@uag0s Wn = o, =@Ppa01-

(3.2.3)
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These zero order homogeneous functions are the disturbance velocities », v, w of a true conical flow
motions (n = 1), which represent the real part of the analytical functions %,7,%¢. Namely, u,, v,,
and w, represent the real parts of analytical functions F o0, %110, and F.101, replacing the
analytical functions %, 7,and %, respectively for unified mathematical expressions in the assumption
of high order conical flows. The compatibility relation, Eq.(3.1.10), can also be recast in terms of

analytical functions for cases in high order conical flow motions in the form as

ix

J1-B2x?

d%hoo =-xdF1,10 = d%i0,1. (3.2.9)

According to Eq.(3.2.4), we first consider the first two left hand side terms with successive

sequential functions as
d 00 = (%) dFgqo = (X" dFgrigro= ... (3.2.5)

Similarly, by considering the first and the third terms of Eq.(3.2.4), we obtain

V1- B%x? V1-B%x?

As well, relations between F.qq0 in Eq.(3.2.6) and %o in Eq.(3.2.5) can be obtained as

r r-1
d%i00 = [L) d Hror= (_vc__} dFr1,001= .. (3.2.6)

dFrgq0 = L) dFngrars (3.2.7)
1- B*x?
de%l-r’(),r = ('X)q deg;]-q.r,q,r. (3 .2.8)

Substituting Eq.(3.2.7) into (3.2.5) and Eq.(3.2.8) into (3.2.6) leads to the general compatibility

relation shown as

ix
J1-B2x?

which is valid ifand only if 0 < g +r <n.

d'g;l,(),o = ('X)q( J d “a-qran (3.2.9)
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3.3 High order conical flow solutions of fixed wings placing in steady

supersonic flows

In the first place, a thin wing surface can generally be defined in the form as a superposition of
homogeneous polynomials in x, and x,, so as the perturbation downwash, w, expressed by the

homogeneous polynomials of order (n-1).

R | n—1
= n-q-1,.9 __ ,.n-1 q
w= Z WogargXl X3 =X Z W gig¥ s 3.3.1)
q=0 q=0
X2

where x = y=y= o for x; is equal to zero.
1

On the other hand, the perturbation downwash, w, can be carried out by the compatibility relation
known as'Eq.(3.2.4) in terms of the real part of the analytical function #2,.1.

u™D = "y =Re[x" W) (3.3.2)
The analytical function of perturbation axial velocity, #, is presented with respect to several wing
models of interest in this study; e.g., steady thin delta wing with supersonic leading edges with (a)
symmetry of incidence, & = -w,,x, /U, , (b) antisymmetry of incidence, a = -w,x, /U, and the
thin trapezoidal wing placing in incidence, & = —-w,ox, /U, , with supersonic leading edges without

the intersection of Mach lines from both sides.

3.3.1 High order conical flow solutions to thin delta wing with supersonic leading

edges and symmetry of incidence

The analytical function corresponding to the disturbance axial velocity, u, can be expressed by theory

of high order conical flows of order 1 and 2 and shown as

n-1 E[%J 2,.2
Un1= YK, qx"[cos'1 A+ Bi)1 - Bx) +(-1)? cos™ ___(1+Bl)(1+Bx)]+ > D, 1—32)6 , (3.3.3)
2 V" 2B0-% \ 2B(+x) A
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where E (t) represents the greatest integer which does not exceed t. Following are the constants in the

above equation, which are calculated in terms of the coefficients of the downwashes, Eq.(3.3.1).

) \
Kg=-o_ Bl frn=1. (3.3.4)
7B B** -1

And for n =2, we have

2
K, =_W[(B212 — 2wy — By (3.3.5)
2

[ — B2 wy ), (3.3.6)

2Bl
D,, = _;Jm)[w10 +lw,, . (3.3.7)
By Eq.(2.4.5), the pressure coefficient of n-th order conical flows can be calculated by taking the real

part of @y.1, which is equal to up.;.

(1)
Cp™ =2 ”U = —2x" ’(‘J—‘ (3.3.8)

0 o0

Accordingly, the total pressure coefficient of the complex wing with multiple components can be

expressed as

u Ny N
Cp=-2—= —22 xp L = ZCp(") 3.3.9)
U n=1 Uoo n=1

0

As well, calculation of the lift coefficient and the pitching moment coefficient can be performed by

integrating Cp™ in Eq.(2.4.7) and (2.4.8), respectively.

-2 4
C" == |CpPx,dx,dy=———— | u, & 3.3.10
! S ! " x,dx,dy (n+1)SU.. L 19y ( )
e = =2 [cpxidvdy = ————— [ u,ady = 2 L@ (3.3.11)
"8 g (n+2)SU, + " n+2
Explicitly, forn =1 and 2,
[n272 _
cp =2 NBT =1y (3.3.12)

BI
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4r [ 1
c® =W[ B2 _I(Kzo + 2K21) -5 Dzo] (3.3.13)

The pitching moment coefficients forn=1 and 2 are

2

C = -3—C1‘" (3.3.14)
CcO = % c® (3.3.15)

3.3.2 High order conical flow solutions to thin delta wing with supersonic leading
edges and antisymmetry of incidence

The analytical function corresponding to the disturbance axial velocity, #, can be expressed by theory

of high order conical flows of order 1 and 2 and shown as

ol og! 1+B)(1-B og! B 4 11-BX
O ,/‘“B”,‘i;)")] P

n 2
E(—Z— 1
+ 0, 24 % " cosh™ FOeE (3.3.16)

q=0 x
where E (t) represents the greatest integer which does not exceed t. The constants, K, q have the same

values as indicated in Eq.(3.3.4) ~ (3.3.6), while the remaining for order n =2 is

2Wo (3.3.17)
T

Oy =-

Accordingly, Eq.(3.3.8) can be applied for the calculation of »n-th order pressure coefficient,

Cp™. The rolling moment coefficients, C™, can be expressed by integrating Cp™ in Eq.(2.4.9)

and we have
4
m _ Cp™x 2 yd,dy = . 3.3.18
ml S(2b)-[ P ly "1 2)SU.2) Lun-lydy ( )

25



]

Explicitly, forn =1 and 2, we have

cO = %\/3212 ~1K,,, (3.3.19)

272
C =———f——[\/32l2 —1(1(20 +M1K21J ! Qz,]. | (3.3.20)

+_._____
2BU,, 3B%I? 3B*I?

3.3.3 High order conical flow solutions te trapezoidal thin wing with supersonic
leading edges
For thin trapezoidal wing with supersonic leading edges and symmetric in respect of axis OX,, the

general expression for the analytical function of disturbance axial velocity for order of 1 and 2 is

n-1 — n-2 _ 2.2
U nr= Z K, x* cos™ (+Bhd-59 +H, x cos™ Jﬂ +Zanx"J1 32 * . (3.3.21)
porrd 2B(l —x) i 2 pr B

Following are the constants in the above equation, which are calculated in terms of the coefficients of

the downwashes, Eq.(3.3.1).

Forn=1,
Ky=-uw_ Bl h 2 (3.3.22)
7B \/B?*? -1 B
Forn=2,
21
K, =T_3_[(2-15e212)w10 + 1wy, (3.3.23)
7z'(Bl —])A
K= [wy + B ) (3.3.24)
(B —1)"
2 2
Hy =- ;VB” , Hy =- ;2‘ , (3.3.25)
Wy, + Bl - Bw,
=- . 3.3.26
(B -1 (3:320)
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Applying formulae (3.3.21) and (3.3.8), the pressure coefficients of n-th order conical flow can
be calculated. In turn, based onEq.(2.4.7) ~ (2.4.9), calculations of the lift coefficient and the pitching

moment coefficient need to be based on the calculation of the integration of the pressure coefficients
over half of the symmetric trapezoidal wing, which can be divided into four portions: (a) §O and S,

the left hand side of surface, outside the Mach cone, (b) S, the wing surface covered by the Mach cone,

and (c) S}, the right hand side of surface, also outside the Mach cone (Fig. 3.2).

SI=I+I+I+I | (3.3.27)

X2
—

<V

Figure 3.2 The separation of half trapezoidal thin wing surface into §0 , So, Si, and S;.
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On wing portions, §0 , Sy, and S}, the velocity » and w are expressed by homogeneous polynomials in

terms of x, and x, and thus we have E,x/"'x;™', where E,, isa constant. This term can be seen as the

expression of the aerodynamic characteristics acting on any point on the elementary surface
dx,dx, = x,dx,dy . As a consequence, the integration over each portion of wing surface can be

performed separately as follows.

(a) For integral domain, §0 and Sy,

[, xF x5 dad, + [E,x0x dvyd, = E ( [ xp { yabe,dy + [ [xprrtyax dy]
S, So

X

__Ly [i_ L }Em, (3.3.28)

r p (p+r)B’

(b) For integral domain, S,

IEprxl Py gy dx, = E (Jij: perl e g dy) (p+r)r|: (%)r:|Epr . (3.3.29)
St

(c) For integral domain, S;, we apply Eq.(3.3.19) to the equations for calculation of those specific

. .- . . ST 1 1
aerodynamic characteristics of which the integration limits are from — 3 to —.

B

As a consequence, the lift coefficient and pitching moment coefficient of conical flows for order of 1

and 2 are presented as follows.

co = W(me + 2Bme) (3.3.30)
co = 50 ;’+ N [2BJ3272—_—1(2K20 +1K, )+ 4Dy, + 6B*bH,, +(1 -632b2)H2,](3.3.31)
cO = 33(72”—)?]—( 2K B -1+ 3Bwa) (3.3.32)
Cc? = 1232(% A [6BJE?— 1(2K,, +1K,, ) +12D,, +16B%bH,, +3{1 - 4sz2)1121](3 3.33)
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3.4 High order conical flow solutions to wings executing unsteady

motions in supersonic flows

According to Eq.(2.4.4), the pressure coefficient of wings executing unsteady motions linearized by

theory of high order conical flows is recalled as

CP=—2ei“"[ai—i[d)' B2 oo +M2x1 o ]il
ox ox

o, B’ . :
e 00 pa ADIHOI) a 01 (3.4.1)
2 o1
o, B o, ox,

where @ = @’ +ildD" = ®! +il(®7+ D).

It follows that the calculation of the pressure coefficient in unsteady cases consists of calculations of

the reduced velocity potential and the perturbation axial velocity.

oD 6<I)’ a(D" oo’ ul
== 2= = +id "*‘ 3.4.2
o on Z Z (34.2)
=x""u = xl'"1 Re[ 2¢'14], (3.4.3)
1
O _ =x/u’ = x Re[#",). (3.4.4)
2
Namely, for case whenn =1,
w2001 g 0P 0P ) (3.4.5)
ox, ox, ox
oD, , ,
axll =u, =Re[2"0], (3.4.6)
am”‘ a@” 14 n
6xll- +—5x—1— =ug + x,u; = Re[@"o] + x;Re[%"]. (3.4.7)
Additionally, @] can be express as
®; = xuj + 3,9 = %, (1] +W6)=Re[x1xf@l'od(—l—)]- (3.48)
X
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By substituting Eq.(3.4.6) ~ (3.6.8) into (3.4.1), the reduced pressure coefficient can be recast as

Cp =—2{u(', —;iz(dfl - B*(u! +x1u1")+Mix,u(',)]. (3.4.9)
3.4.1 Calculation of the reduced pressure coefficient for thin delta wing
For thin delta wing with supersonic leading edges, ug, u; , and u; are calculated by substituting wy,

in Eq.(3.3.4), wj, in Eq.(3.3.4), and w}, and w;, in Eq.(3.3.5) ~ (3.3.7), where wy,, wg,, wj, and

wp, have been delivered in Eq.(2.3.14) ~ (2.3.17), respectively.

2 A o [@+BI-Bx) . [(+BI)1+Bx)
w2 U+ DR+ Ox) 3.4.10
> ﬂ./———Bz,z_l["“ \/ 2BU-x) >\ 2B(+%) (3.4.10)
2kl L [0+B1-Bx) [(@+Bi)1+Bx)
M=t ~T AT rreAT 3.4.11
%0‘ 751/3212_1[005 \/( 2B( - x) o8 \/ 2B(l+x) | ( )

, 2 1 [s2B%+1 . 1 . [(+BI\i-Bx)
w1=;(3212_1)3,2’0 = (B2 = 2)+ x)+ 1> (1 - B2kx)|cos™ \/(—ZMT—T

L N’

[ 2B . 1 . [0+BI)1+B
21 02332”(1(3212 ~2)- x)-w2(1+321x)_ cos™ \/(—J'zéé(—:;)—x)

+;(B212 _1)3/2 i

2 Bl  A2B*+1 [1-B*x? .
+;(le2_1)0 2 ‘f Fra (3.4.12)

Q) =x, _ 0 [(l —x)cos™ \/———(1 +21;I(3(1;fx) +(I + y)cos™ \/ (1 2?;2(1;)&)} . (3.4.13)

v BY* —1
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Accordingly, the general equation of ép can be calculated in terms of the real part of @/'y, 24",

#",, and ).
A 4 . 4 |(L+BI)1- Bx) o [(t+ BIY1+ Bx)
Cp=——_ l(6,-idh 1 (REBENZ OX) | ot [ DAL BX)
p=— /—lez_l{( 0~ °){°°S \/ 2BU-x) %\ 2B(+%)
) 2 272 2 2
i (6,32 —Bﬁz—(2+l )x/l_%ll—z-?lx g |0+ BIYI- Bx)
B’ -1 B* -1 2B(I - x)
2 272 2 2
6,3+ -B£2+(2+1 )x/l+%ll-|2-lzilx ot |0+ BIYL+Bx)
B -1 B’ -1 2B(I +x)
2 2.2
_g, 2B AN B X (3.4.14)
B*  JB**-1

For the reduced lift coefficient, we apply the similar formulae from the steady conical motions

and obtain respectively.

~ 4 ) 2B% -1
C = E[ao + 1,1(90 _EEZ__h" H ) (3.4.15)

For the reduced pitching and rolling moment coefficients, we have

A 118 , 2B* -1 8

Cm2 = EI:EOO +1/1(00 T—Eho ji|, (34.16)
A 27

le = IZ?EI//O. (3417)
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3.4.2 Calculation of the reduced pressure coefficient for thin trapezoidal wing

For case of thin trapezoidal wing with supersonic leading edges, u,, u, , and u, are calculated by
substituting wy, in Eq.(3.3.22), wg, in Eq.(3.3.22), and wy, and wy, in Eq.(3.3.23) ~ (3.3.26), where
Woos Woo» Wip and wy, have been carried out in Eq.(2.3.14) ~ (2.3.17), respectively. Explicitly, the
real parts of %'y, "y, @"1, and @] calculating as follows are devoted to calculating the reduce

pressure coeflicient for thin trapezoidal wing.

2 4 L [A+BIYi+Bx) 26 . [1+Bx
o 20 ost |1 Bx 3.4.18
e TN \/ BU+x) B\ 2 (3.4.18)

2 W L [Q+B1+Bx) 2h . [1+Bx
%n __= A WA AN . 3.4.19
T JB? -1 oo8 \/ 2B(l+ x) 7B e08 2 ( )

", =£ 1 |:ész+1(l(B 12—2)+x)+l//l (1 B lxi| -1 /(1+BIX1 Bx)

n (3212 _1)3’2 B’ 2B(I - x)
2| ,2B*+1 . 4 [(1+ Bx 1- 32 2
+”—B{9 5 —Wx}cosl TR 212 [10232+1) W , (3.4.20)
26( - x) (t+BIY1-Bx) 29 1+ Bx
D =x| 2L LR, ki) , 3.4.21
1 le\/lez—lco \/ 2B(1-x) 1B N2 (420

Accordingly, substituting real parts of @'y, %"y, %"\, and @] into Eq.(3.4.9) follows the resultant

form of the calculation of the reduced pressure coefficient.
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CHAPTER 4

ANALYSIS OF SUPERSONIC FLOW ON WING SURFACE
BY METHOD OF SOURCE DISTRIBUTION

4.1 Velocity potential of sources distributing over wing surface in steady

supersonic flow

In the first place, a three dimensional source with intensity g placed in a uniform supersonic flow
characterized by M., = 2.0 is described in Cartesian coordinate system with origin, O, and three axes,
Ox,, Ox,, and Ox,, where Ox, is parallel to the free stream velocity and the source is placed in plane
Ox.x, (Fig. 4.1); e.g., we may specify the location of the source on plane Ox.x, at x, =&, x, =¢,,
x, =0. we denote as an arbitrary point and thus

As well, the velocity potential equation in respect to P(x,,x,,x,) within the velocity field in

steady flow is recalled as

2 2 2
-Bza‘f+a"j+a‘f=o, @.1.1)
o’ ox,) o,

where @ is denoted as the perturbation velocity potential with respect to point P in space (x;,x,,x;).
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X1

Figure 4.1 A single source situated in uniform supersonic flow

In turn, Eq.(4.1.1) can be recast in the form as the Laplace’s equation by considering the
coordinate transformation with the following three relations.

x, =iBX|,x, = X,, x;=X;. 4.1.2)
And the velocity potential equations becomes

62 o 62 ~ 62 A
ox,.? ox,’ ox,

=0, (4.1.3)

where ¢ is a harmonic function with respect to point P in the transformed space (X,, X;, X,) and
represents the velocity potential of a fictitious incompressible flow éround point P, situated in the new
space. Therefore, this incompressible flow potential can be determined with the methods discussed
for the wings in incompressible flow. Accordingly, the velocity potential, ¢, of this incompressible

flow of point P(X,,X,,X,) related to the source with intensity ¢ can be determined as

o=— 9 (4.1.4)

4n \/(Xx _51')2 +(X2 "55)2 +X32 .
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As a result, the perturbation velocity potential of point P related to a source with intensity ¢ in the

original coordinate system (x,,x,,x,) is carried out and shown as follows.

p= 4 :
'\/(xl _‘fl)2 - szxz _fz)2 +x32_

Following is the determination of the velocity potential, @, of point P in space (x,,x,,X;)

(4.1.5)

corresponding to sources distributing over a specific area, A, on plane Ox.ux, (Fig. 4.2). Firstly, the
intensity of source related to the specific location (£,,&, ) is assumed uniform within the infinitesimal
area d&,d¢, and proportional to a given function f (f, ,&, ). Explicitly, the intensity of source related

to the specific location (£,,&,) is denoted as ¢, and expressed as

g:= f(&,&,) dEdE,. | (4.1.6)

Ax.

X

Figure 4.2 Distribution of series of sources in specific area A
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Based on Eq.(4.1.5), the perturbation velocity potential of point P related to a source placed in the

specific location (fl ,&, ) with intensity g is expressed as

do /(61,8 Jgde,
\/(xl 4:1)2 Bz( Xy '“4:2)2 +x32_

where dg is a real value, and it follows that the denominator of Eq.(4.1.7) is supposed to be larger

: @.1.7)

than zero.
(xl_51)2_B2|-(x2“§2)2+x32120- 4.1.8)
Mathematically, Eq.(4.1.8) represents the hyperbolic cones and the major axis is parallel to Ox, axis

and the slope of asymptotes is % . In other words, such hyperbolic cone can be seen as the Mach cone

specified by the Mach angle, u = tan™ % in aerodynamic point of view. In this sense, only sources

located inside the area, o, covered by the forward Mach cone (Fig. 4.2) with the vertex, P(x,,x,,X;)
and the specific area, A, count on the contribution to the calculation of the velocity potential of point

P. Thus, the velocity potential, ¢, related to sources distributing inside the area, o, is expressed as

olx,,x,,%,)= Hdco d¢,dé,. (4.1.9)

In turn, the perturbation downwash can be written as the derivative of @ with respect to x, based on

Eq.(4.1.9) due to the boundary condition as introduced in Eq.(2.1.10).

_0p _
% "o ( ) J'd¢xl§,d§2] (4.1.10)

Denote the perturbation velocity potential of point P related to sources distributing in the infinitesimal

integration domain 8,6, by d¢. Then

dé,
o 162 ) |44, : 4.1.11
. fé: : .!‘ : I\[ B2l(x2—§2)2+x32_ ( )
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X

Figure 4.3 Coordinates system and integral limits for the downwash calculation

Firstly, we perform the integration with respect to variable £, in Eq.(4.1.11) and the upper and lower

integration limits with respect to variable &, (Fig. 4.3) are expressed as b, =x, —& and b, =x, +¢.

g d, i By-g) |
b \/(xl_fl)z”le(x2“§2)2+x32, B \/(xl"fl)z_Bzx; lb.
2 Be (4.1.12)

B Jwm-&)y-Bx
As well, the integration limits, b, and b,, are situated on the boundary of the hyperbola, and one

obtains that

Be=ql(x, - &) - B2, (4.1.13)

Thus, Eq.(4.1.12) becomes

b,

.[ dé,
b \/(xl -&) _le.(xz -&) +x; |

(4.1.14)

SR
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P(x1,x2,x3)

X3 cotu= Bxs
-> a2=Xi - Bxs

-

Figure 4.4 Calculation of the integral limit ‘a;’

Secondly, we perform the integration with respect to variable & with integration limits a, and a; in
Eq.(4.1.11) and the perturbation velocity potential of point P related to sources distributing in the

infinitesimal integration domain &&,6¢, is carried out as
§¢’=f(§n§z)‘:§ '[dfx =f(fl’fz)%(a2 _a1)=f(§1’§2)%(x1 — Bx, "al)s 4.1.15)

where a, is equal to x; — Bx, as shown in figure 4.4.

Accordingly, the perturbation downwash, w, is calculated as

w=%"-’3—=—zy’(él,§z). (4.1.16)

And thus f(£,,£,) can be expressed in terms of the function of downwash as

f(§1,52)=—%- | 4.1.17)
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As a consequence, the velocity potential of point P related to sources distributing in the integration

domain o with intensity proportional to the magnitude of w(‘fl & )becomes

a;

1% " w(£,, £, )dE,
@ =-—|ds, . (4.1.18)
”“I b‘!\/(xl_51)2_32[("2_52)2""‘324

And for point P located on plane Ox.x,, the velocity potential equation of point P related to sources

distributing in the integration domain o can be expressed as

olx,.x,)= -% fjﬂ%é)dfldé’z , (4.1.19)

where R = \/ (x, = &) —B*(x, - £&,) and w(£,,£,) can be defined in the form as a superposition of

homogeneous polynomial in £, and &, with respect to each location of a source in the integration

domain o .
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4.2 Velocity potential of pulsating sources distributing over wing

surface in supersonic flows

A three dimensional pulsating source with intensity ¢ in supersonic flow is of interest for

analyzing wings executing unsteady motions. And as could be recalled, the velocity potential

equation of point P(x,,x,,x;) in the unsteady supersonic flow is expressed as

2 2 2 2 2
-Bzaf”+a“’+a‘”=L 6¢+2Uwa¢ . 4.2.1)
2 2 2 2
x> ot ozt allot Oxot

By considering the velocity potential of point P(x,,x,,x;) for harmonic motion [52] shown as
o(x,,%,,%,,8)=U_e " D(x,,x,,%,), (4.2.2)

where ®(x,,x,,x,;) is the reduced velocity potential of point P(x,,x,,x;),

Eq.(4.2.1) can be recast as

2 2 2 2
P e Wi BPRLY iP.
ox® ox, o, B B

2 2
_AM, O=K’D, (4.2.3)

AM M
where we denote 4 = -l—]al— by the reduced oscillating frequency, K = B°° ,and k=-K B°° .

0

According to the boundary condition of the Mach cone, all the perturbation velocity, u, v, w,

disappear outside of the Mach cone; i.c., the perturbation velocity potential, ¢, is also zero.
O=0u=—=0,yv=—=0,w=—=0. (4.2.4)
And similar to the steady supersonic flow, only sources distributing in area o covered by the

forwarded Mach cone with the vertex point P and the specific area, A, contribute to the calculation of

the velocity potential of point P. Explicitly, the boundary condition is recalled as

R=(c &) - B|(x, - &) +(x, - &) 2 0. 4.2.5)
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M
Let’s consider Eq.(4.2.4) by the Lorenz transformation, including 7 =¢ - K —I;’—xl , the reduced

" velocity potential of point P can be expressed as

D(x,,%,,%;)= D, (R)D, ()P, (F) , (4.2.6)
where y = and 6 =tan™ 13—_—53
x =& x, ~¢&,

In this study, all wings are restricted to planar thin wing plan form (i.e., x, =&; =0) and this

condition leads to 8 =0 and ®@,(€)=1. As well, with the regard of non-singularity solution even

when x, = £, taking @, () as unit is a way for it. Accordingly, ®(x,,x,,x, )can be recast as
®(x,,x,,%, )= @, (R). (4.2.7)

Thus, the derivative of @ in respect to x, in first order is shown as

0 _o0, &R

= ) (4.2.8)
Oox, OR ox,
And then the derivative with respect to x, in second order is
2 2 2 2
0 (I; = 9 q;‘ R + 9, [ 9 If . (4.2.9)
ox,” OR" \ 0Ox, OR | ox,

Similarly, the derivative of @ in respect to x, and x; in second order are shown as

2?0 o°®, (R o0, (R 4210
o’ R \ox,) TR \oxl ) (42.10)
2 2 2

o’d 0’0, (oR) o0, (R nll
2 ok \ox,)  oR\owl) 421D
3 3 3

where
R _x-& 62122 _-B|x, —52)23 —(x, —53)2], (4.2.12)
x R ox R
OR =—B2(x2"§2) azR=_le(xl_51)2_32(x3_§3)2j (4.2.13)
6x2 R s 6x22 R3 ? Ty

41



oR =Bl =&) 4 R _~Bfw &) Bl -5)]

42.14
o, R ax; R’ (3219

Substitute Eq.(4.2.9) ~ (4.2.14) into the velocity potential equation in terms of the reduced velocity

potential as introduced in Eq.(4.2.3), and we have

&{_Bz "Bz[(xz _52)2 +(x3 _63)2]_*__32[("1 _4:1)2 '"B2(x3 _53)23]“32[("1 _é:l)z +(x2 _52)2]}_*_

OR R ‘ R
o, {- pla=é) 8 -5) + =) ]} = K*®,(R). 42.15)
OR R R |

After simplifying the whole set of Eq.(4.2.15), the velocity potential equation in terms of the reduced

velocity potential of point P can be recast as

d’®, 2do, K
+— +
dR> R dR B’

@, =0. (4.2.16)
Mathematically, Eq.(4.2.16) is a homogeneous ordinary differential equation with respect to single
variable, R, and one of the non-trivial general solutions of this O.D.E. can be written by

D, (R) =%cos[%R). 4.2.17)

Likewise, the velocity potential of point P on wing surface in steady supersonic flow can then be
applied to wings executing unsteady motions in terms of all time-independent variables and the

non-trivial solution shown in Eq.(4.2.17).

(D(xl,x2 )=—— j [wg.6)— cos( )d.fldfz , (4.2.18)
where W =e ™ W(é‘1 ,&,). According to the discussion of boundary condition in chapter 2.1, W is

fully dependent on the geometry of the wing model surface. Replace w by W in Eq.(4.2.18) and put
one e’ inside the integral and set ¢ ™™ outside the integral; that’s it, Eq.(4.2.18) becomes

(I)(xl,xz)=—;1r—e‘”°“ [ i@e‘“‘rfl cos( )dfld.fz (4.2.19)
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And fo(gl,gz) can be defined as a superposition of homogeneous polynomial in &, and &, with
respect to each location of a pulsating source in the integration domain o . Explicitly, w(£,,£,) in

steady case and Vf/(fl ,&,) in unsteady case can then be unified in the form as

wo(En8) =3 w, , Eel, (4.2.20)

n=0 j=0

where N and w, ;i = 0...N and j = 0...N are determined with the regard of physical conditions ’

imposed on the wing model directly.
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CHAPTER S

PRESENT STEADY FLOW SOLUTIONS FOR FIXED
WINGS

5.1 General steady flow solutions for thin wings
The velocity potential of point P has been carried out by performing the integral of downwash in the
integration domain o covered by the forward Mach cone and the fixed wing surface in supersonic

flows. Accordingly, the axial disturbance velocity, », can be written in the form as

_6¢(x1,x2)___1_ 0 w(&,,&,) |
u= T ﬂaxl(ﬂ 2Rdgdg, |, (5.1.1)

where R=\/(x1 -&) -Bx, -&) .

Let’s consider the coordinate transformation with the following two relations.

Xex —& and ¥ =222 (5.1.2)
1 1 x _é
1 1

Thus, equations w(&,,£,), R, and d&,d&, in Eq.(5.1.1) can then be recasted as functions of the

transformed variables X and Y.

44



N =n

wo(&,6) =3 w,; &7 & = Zzw-,j - XY (x, - XYY

n=0 j=0 n=0 j=0
N n n-j J & ) .
=3 w,,; ZZC""C’ 1) PR RED Cat) SR B (5.1.3)
n=0 j=0 k=0 g=0

where C;™/ and C; are coefficients of Newton binomial formula.

R =X+1-B*Y? = X%, where R=+/1- BY?. (5.1.9)

The Jacobean of the coordinate transformation is calculated as

9% 9
gé gii =X. (5.1.5-a)
X oY
And thus
d&dé, = Xdxdy . (5.1.5-b)

Substitute the Eq.(5.1.3), (5.1.4), and (5.1.5-b) into the perturbation velocity potential, ¢, in terms of

variables X and Y and one has

PX,Y)= ——{ZZW,, L O[sz:x x ]} (5.1.6)

=0 j=0 k=0 g=0
where
I, = j MdXdY (5.1.7)
L,=Cy7Cl(-1). (5.1.8)

The calculation of integral I, has to be performed based on the specific geometrical configuration of
delta and trapezoidal wings separately. The following two sections are the detailed analytical

solutions of the calculation of integral with which the both wing plan forms are concerned.
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The axial perturbation velocity, u, is given by the following equation.

=0 j=0 k=0 g=0

n-j J ol,
=5x_1=__{zzwn” 0[22(" Jo kIR g ) &,}} (5.1.9)

Accordingly, the pressure coefficient, Cp, of wing in steady flow can be calculated as

Cp=—2-g—= {ZZW_“ o[izj:(n—j—k)xl’"f"” I, +x{'"_kx2‘qgi }}.(5.1.10)
1

w© oo n=0 j=0 k=0 g=0

As well, the lift coefficient, Cj, pitching moment coefficient, C, and rolling moment coefficient, C i,
can 'be calculated as follows.

For calculation of the lift coefficient,

-2 _
Cr=— [cpxiasx,ay
N

f{zzw-,,[iizo((n—k—q)!( ka4 ) ey + J‘( rhege ax‘ o 4 dy]]} .

n=0 ;=0 k=0g=0

For calculation of the pitching moment coefficient,

m2

-2
C ., =—= {Cpxidx,d
SCOJP1 ly

n=0 j=0 k=0g=0

cos,,{ZZw -“{ZZlo[n —k-q I(Jé"’“’*‘f")ld’qdw Jle"“"“y“’ % dndyﬂ} (5.1.12)

For calculation of the rolling moment coefficient,

C C dx
ml S(Zb)'[ ley dy

N n -j J

—i{ZZm_j,j['iZE((n-k—q) [ty randy+ j(ﬂ"‘“q*zw'*‘)% d&dy)]}- (5.1.13)

(D)S7 |70 k=0g=0
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S.2 Calculation of integral for thin delta wing in steady supersonic flow

Let’s consider figure 5.1 and the integration domain, o , representing the specific area of wing surface
covered by the forward Mach cone with the vertex at point P, can be split into two sections as APA',0

and APOA',. It follows that the integral I, for thin delta wing can then be written related to domains

APA';0 and APOA’,, respectively.

k+ k+ k+
I, = ILX—S’:YidXdY=AP££X ;Yq dXdY+AP.£LX ;Yq dXdy . (5.2.1)

The integral limits in respect of both triangular domains are defined by the location of each point

P(x,,x,) on wing surface with variable, y = x, /x;, and can be expressed in the form as function fy).

O Xa

-

X2

wd Y=y=x:/x:
A2 ( v}
/\ S(§|,§z)
/
/ \ ‘\\ o
r=1B/ / M >’\
[N\
// s !J}l \ Y=1/B
// XY | P(XI, x:)\
/ \
/ \
/ \
/ \
/ \
Ao D / O \ D1 Al
[( < , 8 e MIB ] )J y
S
XiVx.

Figure 5.1 Integral limits of the thin delta wing
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Explicitly, the integral limits, fy), with respect to Y are expressed as

1

For tan,u=ESySl, f(y)=%.

1 1
For - —<y<—, =y. 52.2
or —Z<ys<— =y (5.2.2)

1

1
For -I<y<-—, =——.
or y<-3 SO Z

And for the integral limits with respect to X, we denote X, and X, by auxiliary functions
representing the upper integral limits for integration domains APA";O and APA",0, respectively.

For APA’;0 domain, we have

.-
Xuvgo =X} =5, ; . (5.2.3-a)

For APA’,O domain, we have

I+y

X spao =X, =xll+—Y.

(5.2.3-b)

Accordingly, I, can be recast as follows by considering all these integral limits in Eq.(5.2.1).

q
Y° ixay

Io=ILXk;quXdY If Xk;quan IES

APAO APOA,

()Y + +
- By (f‘x“dx)dnj"y)m(fx“dx)d

1
[f(y)X Y? Y+F , Y dy
5 (k+g+DR TN (k+g+DR

sk+q+1 sk+g+1 q

3 era q g+l 9
T e e Pt e 629
k+q+l 5 (-DMR krg+l JO@rDTR
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In turn, we consider ¥ =[/ - (/- Y)J in the first integral and Y? = [-71+(@+Y)f in the second

integral shown in Eq.(5.2.4) and these two relations can be recast by the Newton binomial formula. It

follows that the two integrals in Eq.(5.2.4) can be recast as

(2] Y? Z Y f ()
—dY = -1y Ci* 4 ————dY 5.2.5-
,[/% (l _ Y)k+q+1 fz=:‘) ) [B l Y)g ( a)
. Y? g ! 1
B~ gr=%(-17’cC [ —; ) &} 5.2.5-b
f(y) (l + Y)k+q+1 ; ) I;y) (l + Y)g m ( )

where g =k +q - f +1 and denote the integrals of two kinds above by I, and J, respectively.

of (¥) 1

= ————ar, 5.2.6-
s (-YFm 262
1
1
J, = Ey)ﬁ)g—mdy' (5.2.6-b)

Analytically, Integrals in Eq.(5.2.5-a) and (5.2.5-b) can be solved by using the recurrence

formulae. Let’s take Eq.(5.2.6-a) as an example. Firstly, denote the an auxiliary integral by 4, and the

following equation can be carried out straightforward as

2 ) 2 2
y =[f1(y) R dY—fl(y) R dY=[f(y)1_B [[-@-7)] .

= -vE T % (-YFw 5 (-YvPR
—(-p) V1 v+ 281 [ ————dr - B W_ 1 4y .(527
( )[% (-v)¥®m 5 (- )gl fﬂ (-vF?n (:27)

On the other hand, 4, can also be integrated by part and we have,

4= 0 R e J1- B (f(»)) _ B? [f(y) Y Q¥ (528)
5 (-YF  (g-N-7»F (g )¥5 -y} V1-Br?
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By arranging Eq.(5.2.7) and Eq.(5.2.8) together, the recurrence formulae for integral, I, are given as

1 1-Bf)]  .3-2g ,8-2
I, = B*&—< >2. (5.2.9-
¢ (I—lez)[(g—l)[l—f(y)]gl+Bl z—1 I, + g—llg_z ,for g=22 (5.2.9-a)
1, = %[Sin'l (Bf(y))+ﬂ, for g=0. (5.2.9-b)
I, =——2——cos"1 \/(1—Bf(y))(1+Bl) ,for g =1, (5.2.9-¢)
B -1 2B(I- f())

» 1 f (¥) 1 of () 1
here I = {\"————av, I = [ ————av, I ,=["————dr
WASE e f%_ (-rEm = [% (-vF'm 7 [% (-Y)F?®

Similarly, the recurrence formulae for the integral, J, , are given as

for g=22. (5.2.10-a)

¢ 1-B0)| (g -+ O g-1 " g-1 %)

J, %B’- —sin™ (Bf(y))], for g=0. (5.2.10-b)

1+ Bf())1+ BI) for g=1, (5.2.10-c)

2 . \/
Jg = coS
JB -1 2B(I+ £(»))

1 A S R
where J, = Em(ny)gmdy’ T = f(y)(l”)gﬂmdy, Ty = J;y>(1+y)g*2mdy"'

As a consequence, the integral, I, and its derivative with limits are given separately in terms of the

position of point P(x,,x,).
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1 1
For position outside the Mach cone to the right, m <y<l and f(y)= 3

) e WG
I, = 1k+q+l (l Y)k+q+1 (5.2.11)
0 e+ ! Y?
5110 =[x, (- »)* @mdy. (5.2.12)
For position inside the Mach cone, —% <y< flz_ and f(»)=y.
_ k+q+1 +q+1 1
;=) GIN \(£7) Ml - AR (5.2.13)

"7 k+g+l L (-DR k+g+l ¥ (+D)'R

k+g+1
aa—lo =l[x1(l—y)k+qf " dY+[x‘(l ) (_[/ —LdY]+
1

F(-1MR k+q+1 S

Ix, 0+ ) f——————dﬁM '[———dY (5.2.14)
! (+ )R k+g+1 d+N*R )

dY with respect to x, can be

q ! q
where the derivative of integral f1 ~—-—}—’k+TdY and f—ﬁ—
(- R (+N"R

derived as

d Y? g p o,
- — -1 C"l”f LN (-1y cul ==, 5.2.15
axl(fl(l—y)’”q“% )Z Y o ffz ) o 21

B 7=0

o f__Y"_dy =Zq: 1y cur Y my (-1)"‘fcqlq-f% (5.2.16)
o, | ¥ (+7)""R & x4 o

where the derivative of I, and J, with respect to y are then given by the recurrence formulae as

follows.
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For g=>2,

B 2.2 2 ]
o, __1 (g_ql—By»_By(l_y)+3213“2g61g“+Bzg‘2alg‘2. (5.2.17)
& 1-B1'| (g-1NI-y)1-B*’ g-1 & g-1 &
i 2.2 2 7]
Jy 1 (e-th-5]-5 y(l+y)+le3—2ga]g_l+B2g_2a]'2 . (5.2.18)
& 1-B| (q-1)+y)fy1-B*y? g-1 o g-1 & |
Forg=1,
alg ‘_ 1 2.1
RN e G2
e i (5.2.20)
&  (I+yN1-By* o
For position outside the Mach cone to the left, —/ < ys——}E and f (y)=—%.
k+g+1 1 q
P L)) iy - ¢ ——dY (5.221)
k+g+l  5(+Y7)"""R
1 q
—6-10 =[x, (I + y)* f _ Yy (5.2.22)

axl % (l + Y)k+q+1 R

In turn, considering the definition of the lift coefficient, pitching moment coefficient, and rolling

moment coefficient in Eq.(5.1.11), (5.1.12), and (5.1.13), the integration of I, are essential at this
stage. The detailed expressions for performing integrals in the calculation of the aerodynamic

coefficients are given in Appendix C.
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5.3 Calculation of integral for thin trapezoidal wing in steady

supersonic flow

For analysis of thin trapezoidal wing situated in steady supersonic flow, let’s consider figure 5.2
on which the calculation of integral is based. Because of the nature symmetry with respect to OX, the
analysis of the aerodynamic characteristics can be performed in half of the wing. As well, we have
two identical high-order conical motions at points O; and O,, which are symmetric with respect to

OX, axis but independent to each other; i.e., the interference of the two Mach cones is assumed small.

X2
a2
X:

1.0

c=Db

VX, Vx.

Figure 5.2 Integral limits of the thin trapezoidal wing
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Likewise, the integration domain, o, representing the specific area of wing surface covered by the
forward Mach cone with the vertex at point P, can be split into two sections as APA’1O and APOA',.
The integral limit in respect of variable X in domain APA’,O can be expressed as follows, while in
domain APA’;0, the integral limit in respect of variable X is the same in Eq.(5.2.3-a).

X=X, =x. (5.3.1)

Accordingly, the integral /, in respect of thin trapezoidal wing can be recast as

10=‘jLXk;quXdY_ HX Y xay + [ Xk;quXdY

APOA,

‘ 1 q
_ ot ( f‘ X’”qujdn Y—( f "*"dX)d
7 R () R

wk+q+1 wk+g+1

1 q
[f(y) X, Y1 A + F X, Y ar
2 (k+q+DR YW (k+q+1DR

[x-pf f(y) Y? x Loy

day + B —__dY. 532
k+g+l & (-D'R k+q+1Ly)9% (53-2)

The analytical solutions to the first integral in Eq.(5.3.2) have been carried out in Eq.(5.2.5-a),
(5.2.6-a), and (5.2.9-a) ~ (5.2.9-c) by the recurrence formulae. Similarly, the second integral in

Eq.(5.3.2) can also be calculated by the recurrence formulae.

1
Denote _E))’ PRAY by J »» Where p is the power of ¥ and equal to g.
i Y

_ i 1 rqp?2 1 p_22
J,=EY’RdY = |? Yde=B Y'i-B7Y dYy

L 162 o R () R
1 r 1 p+2

F Ear-pfp T ar. (5.3.3)
() R Y R
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On the other hand, by integrating by parts, integral J , is given by

1
- 1 p+lig 1 p+l 2

Jp=_|f(l)”’9%dY=Y +;()Y B{ =dY
y p+l,, YVp+1y1-BY

__Vl—lj(f(y)) (FOP" + B’ ﬁ; Ye® v (5.3.4)

B +1 p+17» R

By rearranging Eq.(5.3.3) and Eq.(5.3.4), the recurrence formulae for integral J , are given by

1 2 2
j v p-11-B(0) Sy
=Jow T i 22. 53.5
7y f(y)gndY sz( -1 (f(J’)) +J,, |, forp (5.3.5)
1
7 1 1(r . 4
= B __ — | Z_ _
Ip f(y)SRdY 3(2 sin” (Bf (¥ ))),forp 0. (5.3.6)
PFoYoR B? J ,
~ 1 YP _ 1 Yp_z
=18 — |B
where J, =V w dY and J,, & -

As a result, the analytical solutions to integral, I,, and its derivative in respect to x, with limits for thin

trapezoidal wing are given separately based on the location of point P(x,,x,).

For position in area S,, %s y<l, and f(y)= -;;

_ k+q+1 1
10=[x1(l N "y (5.3.8)
k+g+1 S (@-7)*""R

0 keg [ Ye
h =1x, (1 - y)["? f% mdy. (5.3.9)
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1
For position in area S;, —% <y< 3 and f(y)=Yy.

e q k+g+l 1 q
balt=) fi” Y __gr+ s L gy, (5.3.10)
k+g+1 5 (- R k+g+1Y0 R

k+q+1
&gl oLy ) [f__’”i_dyJ+
1

I,=

(- R k+q+1 F(-DFR
) qu xk+q+1 a Yq
X, *"f—dh L 2| [B—dr|, (5.3.11)
R k+q+10x, R

q ] ya
where the derivative of integral f Y dY and f% dY with respect to x, can be derived as

% (l _ Y)k+q+1 iR

q q ol g 6]
9 fl__ik_l_dy =Y (1Y cust ZE =Ty (1Y cur £, (5.3.12)
o\ "F(-1)"TR f=0 Ox, X oy

B 7=0

o gyt ) &, yp-1a[J1-B% . 5
ay |= = yie+J,,
Ox, e

Ox, X szﬁy p-1

(_pr aJ
_ll’zl B Y 1-By xyP? 22| for p22. (5.3.13)
X B’p p_lwﬂ—B2y2 ay

The derivatives of I, and J . With respect to y are derived based on the recurrence formulae.

For g2>2,
oI —-1)1-B*y*|-B*y(l - _ -
s 1 -8BV BN y) 1032800 og=20ea| (55
&y 1-B| (g-1)i-y)fy1-B*) g-1 & g-1
Forg=1,
ol 1

g _

» (- yWi-B%?

(5.3.15)
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6 1 2
; _1[ fzdy]z_y_
ox, Ox R X, 1- B*y?

In turn, calculations of the lift coefficient and the pitching moment coefficient for trapezoidal

wing models in steady supersonic flow are performed by integrating the integral /, for half of the

wing plane form. As can be seen in figure 5.2, the half wing plane form is divided into four integral

(5.3.16)

(5.3.17)

(5.3.18)

(5.3.19)

domains: 50 and Sy, the first and second parts of the left hand surface outside the Mach cone, S;, the

surface inside the Mach cone, and S, the right hand surface outside the Mach cone. Within these

specific integration domains, I, is zero and J, is constant for integration domains in S, and Sy, and

for integration domain within S,, J ¢ 18 Zero, and I, is constant. For integration domain inside the

Mach cone, both J . and I, are function of y and thus, detailed expression used in the calculation of

the aerodynamic coefficients are given in Appendix C.
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CHAPTER 6

PRESENT UNSTEADY FLOW SOLUTIONS FOR
OSCILLATING WINGS

6.1 General unsteady flow solutions for oscillating thin wings

Firstly, the reduced pressure coefficient of oscillating thin wings derived by Eq.(2.4.3) is recalled as

Cp=2e'| 02 A | opm| 02k g 6.1.1)
o, B o M

where the analytical solutions to gxg and @ are essential at this stage. According to Eq.(4.2.19), ®

1

has been carried out explicitly and recalled as

L ([ 06D atna) o f KR
(xy,3,) == e o ﬂ—;e'z_ek( %) cos =5 |aGde, (6.1.2)
Let’s also consider the coordinate transformation with the relations as shown in Eq.(5.1.2) and

W(&,&,), R, d&dE,, e | and cos(%) in Eq.(6.1.2) can be recast as functions of the

transformed variables X and Y. Firstly, ¢4 and cos(%) can be expressed analytically by

Taylor expansion series as
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Jy )
e i8) = % = +ikX+—;—'(ikX)2 +%(ikX)3 +..=14+ Z_i'(iu)f' =1+S,, (6.1.3)
! : I Ji¢

where S, = Z sz Y.

Ji -]1'

2 4 6
cos[ﬁj=cos ﬁSR =1—l Kiﬂ +—1— ﬁiﬂ 1 —k)—(—iR +
B M, 2\ M, 4\ M, 6\ M,

_1+Z(2 )(—1)12( )Zh =1+38,, (6.1.4)

J2=1

2/,

where S, (1)~ ( j .

2oy
ik(x-&) KR : teq 1

Thus the product of e and cos 3 by Taylor expansion series is expressed as

kX cos[%ﬂ%) =1+8,+8,+5,S,. (6.1.5)

=]

According, by substituting Eq. (5.1.3) ~ (5.1.5), and (6.1.5) into Eq.(6.1.2), the reduced velocity

potential, ®, can be recast as

(X, Y)——— iy ﬂ: wy (X, Y)— (1+S +S, +8,8, )dXdY
=0, +0, +D, +D,,, (6.1.6)
where
@, = ——:;e_"“‘ j lwo (X,Y)-i%dXdY, | (6.1.7)
0, =—%e"k"‘ Iiwo(X,Y)%SldXdY, (6.1.8)
@, =——71?e“”“1 [ LWO(X,Y)%SZdXdY, (6.1.9)
D, = —%e_”“' H’)WO(X,Y)%SISZdXdY. (6.1.10)
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By substituting the unified expression of w, (X Y ) with homogeneous polynomial series in X and Y,

all above equations from (6.1.7) ~ (6.1.10) can then be recast as

S
.

n=0 j=0

Zj:x ik }} (6.1.11)

0 =0

=
It

k+q
where I, = JIX—WdXdY and L, = C;/Ci(-1)"".

Lix ™ xd I, }} (6.1.12)
Xk+q+syq

where I, = H—————dXdY and L, =—(ik)s.

Mcﬂ

=0 j=0 k=0 g=0 s

(1
—

i N n g
e Z W, Lo Z
n

.

n=0 j=0

e
[l

0 g=0 r=1 ¢

©, =-— ""“{ZZW,.,, { ZZ L™ x{ 1 }} (6.1.13)

0

k+q+2r v, q-2142r ’ 2r
where I, = “;X ’ ;q dXdY and L, =((_71)—)—(ML) C’( BZ)H
r

N n [ i 8 R r o
2 wn—j,jLOI: 220 Luxl”""‘xé“’lu]}, (6.1.14)

X k+q+s+2r Y q-2t+2r

where [, = H

And the derivative of ® with respect to x, is calculated as

o0 _ 0%, + 9P, + 9P, + ol . (6.1.15)
axl axl 6xl a‘xl axl
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Likely, each term of Eq.(6.1.15) can be derived separately as

a_;.Q:(—ik)(DO -%e-”“*{zz W, [iz:n =R, +x1"-f-"xr’Z}. (6.1.16)
1 1

n=0 j=0 k=0 g=0

%% (ik)D, __e_zloq{zzw_“ ["izzL{n =R -q]1+x1"-f—kx{ﬂ1%H}. (6.1.17)
oD L=l

®: (-, ——e-'bﬂ{zz zzzze[n SRR )} ©1.18)
ax] n=0 j=0 k=0 q¢=0 r=1 =0 &l

n—jjSRr

( lk)(Dlz"'—e_'b‘{ZZ n_” E z E E EZ{(n—j—k))q"f-k—lxzj—qln.Hq"j—k —q%jil}(6ll9)

n=0 j=0 | k=0g=0 5=1 r=1 t=0

Accordingly, the reduced pressure coefficient can then be expressed by method of pulsating sources

distribution over wing surfaces by substituting Eq.(6.1.11) ~ (6.1.14) and Eq.(6.1.16) ~ (6.1.19) into

Eq.6.1.1).

T w0 j=0 k=0 =0 r=t =0 s=1 r=l 1=0

o0y SRR (5178 »» VAN

ol, -0, {&&+0, S& &+ a
L (ax +Y L—L+) L2§+ZZ L, axn)]} (6.1.20)
1 1

s=] ax] r=1 =0

where A = Ui by taking the root chord ¢, = 1.0.

o0

The present solutions to the calculation of the reduced lift coefficient, the pitching moment

coefficient, and the rolling moment coefficient can be carried out by performing the integration of

Eq.(6.1.20) through the whole wing area denoted by S directly.
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6.2 Calculation of integral for oscillating thin delta wing

In order to accomplish the calculations of those aerodynamic coefficients for thin delta wing
executing harmonic oscillations in supersonic flows, the integrals, Iy, I;, L, and I, and their
derivatives in respect to x, would need to be performed exclusively on the basis of the geometrical

configuration. For convenience, we arrange the calculation of integral systematically and denote the

general integral by 7, , defined as

i v, _ i, +1 i i+l 1 i
1, = [[55axay= (=)l [r— N 1550 Sl R G
R i +1 5 (-N"™R i +1 »(I+N)"R

where i, and i, are powers of variables X and Y, respectively and R =+1- B’Y? .

Thus, the integrals, Iy, I, I, and I;,, can be defined in terms of i, and i, as
e Forintegral [), i =k+q and i, =¢q
o Forintegral I;, iy =k+q+s and i, =q.
e Forintegral [, iy =k+q+2r and i, =q—2t+2r.
e Forintegral I;z, iy =k+q+s+2r and i, =q—-2t+2r.

The expressions for these integrals perform in this case are given in Appendix D.

In turn, calculations of the lift coefficient, pitching moment coefficient, and the rolling moment

coefficient can then be performed by integrating 7, , over the delta wing surface denoted as S. The

detailed expressions for performing the integral for /, , used in the calculation of the aerodynamic

coefficients are given in Appendix C.
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6.3 Calculation of integral for oscillating thin trapezoidal wihg

For trapezoidal wings executing unsteady motions in supersonic flows, the calculations of those

aerodynamic coefficients can be carried out by performing the calculation of integrals, Iy, I}, I, I;2,

and their derivatives with respect to x,. Similarly, we denote the general integral by 7, , and we have

1 E

Lo =] %_ . (li 1—+y1)]';+1 f:) o I;;“srz ar + :1+11 %y)%:—dY (6.3.1)
where i, and i, are powers of variables X and Y, respectively.
Accordingly, the integrals, Iy, I), I, I;,, respectively can be expressed in terms of i, and i, as

e Forintegral [y, i, =k+q and i, - q
e Forintegral [}, iy =k+q+sand i, =¢q
o Forintegral I, iy =k+q+2r and i, =q—-2t+2r
o Forintegral I;, i =k+q+s+2r and i, =q—2t+2r
The expressions for these integrals perform in this case are given in Appendix D.
In turn, the calculations of the lift coefficient, pitching moment coefficient, and rolling moment

coefficient for trapezoidal wing executing unsteady motions are performed by integrating the general

integral I, , for half of the trapezoidal wing. As one may recall by considering Figure 5.2 again, we
notice that for integration domain within §0 and Sy, 1, is zero, and J ¢ 18 constant, while within the
integration domain, Sy, J . 1szero, and I, is constant, instead. And for integration domain inside the

Mach cone, both J . and I, are function of y. Accordingly, the detailed expressions used in the

calculation of the aerodynamic coefficient are given in Appendix C.
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CHAPTER 7

RESULTS AND DISCUSSION

7.1 Steady flow results for delta wings
The validation of the present method will first be devoted to the cases of thin delta wing in a uniform
supersonic flow characterized by M., = 2.0 with: (a) symmetry of incidence, a = -w,x, /U, , and (b)

antisymmetry of incidence, & = —w,,x, /U, . The semi-span, /, at x, = 1.0 is equal to 0.75 and for this
geometrical configuration, both leading edges are outside the Mach cone with the vertex located at the
wing apex and can be considered as supersonic leading edges. As can be seen in both figures 7.1 and
7.2, the variations of ¥ / w,, and #" / w.,, which are proportional to the pressure coefficient, are
plotted in the spanwise cross-section at x, = 1.0 and in the longitudinal section at x, = 0.2, respectively.
The present solutions are compared in the same figures with the results obtained by the theory of high
order conical flows (Carafoli, Mateescu, Nastase, [2]). An excellent agreement was found between
these results.

As well, the lift coefficient, the pitching moment coefficient, and the rolling moment coefficient

are also calculated and presented in the following tables 7.1 and 7.2.
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CI Cm2 Cm]

Present solutions -0.00226 -0.00170 0

High order conical flow solutions -0.00226 -0.00170 0

Table 7.1 C;, Cp2, and C,; for steady thin delta wing with supersonic leading edges and symmetry

incidence a =-w,,x, /U .

& ’ Cn2 Cmi
Present solutions 0 0 0.00031
High order conical flow solutions 0 0 0.00032

Table 7.2 Cj, Cpa, and C,,; for steady thin delta wing with supersonic leading edges and antisymmetry

incidence @ =-wyx, /U .

Albeit results obtained in steady thin delta wing by both methods are in very good agreement, the
present method developed in this thesis permits an enhanced flexibility to cope with cases in higher
order approximations without deteriorating the calculation efficiency. Also, with the comparison to
the previous method, the present method can easily be applied to unsteady cases from steady solutions

directly without further magnificent modification throughout the whole equation system.
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Figure 7.1 The longitudinal and spanwise variation of the axial velocity for steady thin delta wing with
supersonic leading edges and symmetry of incidence & = -w,yx, /U, . (rootchord, co=1.0;
semi-span, / = 0.75; Mach number, M, = 2.0)
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Figure 7.2 The longitudinal and spanwise variation of the axial velocity for steady thin delta wing with
supersonic leading edges and antisymmetry of incidence & = —wyx, /U, . (root chord, ¢o =

1.0; semi-span, / = 0.75; Mach number, M, = 2.0)

69



7.2 Steady flow results for trapezoidal wings

Similarly, we consider the thin trapezoidal wing with wing span, b, is equal to 1.0 and the wing
semi-span, /, is 0.75, placing in a uniform supersonic flow, characterized by M, = 2.0 with incidence
a =-wyx, /U, . The spanwise variation of the perturbation axial velocity in the cross-section of
trapezoidal wing plan form is plotted in figure 7.3. The present solutions are compared in the same
figures with the results obtained by the theory of high order conical flows (Carafoli, Mateescu,
Nastase, [2]). These results are in excellent agreement. |

In addition, the corresponding aerodynamic characteristics coefficients are calculated and

presented in table 7.3.
G Cm2 Cmi
Present solutions -0.00185 -0.00129 0
High order conical flow solutions -0.00185 -0.00129 0

Table 7.3 Cj, Cmz, and Cn; for steady thin trapezoidal wing with supersonic leading edges for

a=-w,x/U,.
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Figure 7.3 The spanwise variation of the axial velocity for steady thin trapezoidal wing with
supersonic leading edges and incidence @ = -w,yx, /U, . (root chord, co = 1.0; span, b =
1.0; semi-span, / = 0.75; Mach number, M., = 2.0)
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7.3 Unsteady flow results for oscillating rigid wings

7.3.1 Case of wings executing oscillatory vertical translation
We first consider that each point over wing surface executes oscillatory movement of small amplitude,

which can be defined by,
Z=h(f)=e""hy; P=h, (7.3.1)

In this case, the boundary condition can be expressed by
w=ilhy=wy, A=w/U, (7.3.2)

The numerical results were obtained for various reduced frequency A as 0.0147,0.0735, 0.147, 0.735,

and 1.0, where A, =0.02.

7.3.1.1 Thin delta wing executing oscillatory vertical translation

In this case, results of the spanwise variation of the real and imaginary parts of the reduced pressure
coefficient over right hand side of wing surface along the wing trace at x, = 1.0 are plotted in figures
7.4,7.5,7.6,7.7 and 7.8. The imaginary part of the present solutions is plotted in the same figure with
the results obtained by the theory of high order conical flows (Carafoli, Mateescu, Nastase, [2]). A
very good agreement was found for small oscillating frequency. For oscillations at higher frequency,
the agreement, however, starts to deteriorate for wing surface near and outside the Mach cone due to
the approximation introduced in high order conical flow solutions. The real part of the reduced
pressure coefficient is assumed zero in the high order conical flow solutions due to the approximation
made in the frequency expansion method related to the unsteady formulation using high order conical
flows. The present solutions, however, are more accurate and provide non-zero solutions to the
calculation of the reduced pressure coefficients even though it is comparatively small corresponding

to the imaginary part for small oscillating frequency. For higher oscillating frequency, the real part of
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the present solutions is no longer negligible compared to the related imaginary part, i.e., the present
method proves to be more accurate especially for oscillations in higher frequency. This is due to the
consideration of the complete governing equation for unsteady flows related to the unsteady
formulation by using pulsating sources distribution over thin wing surface.

The results of the reduced lift coefficient and pitching moment coefficient are presented in tables
7.4, 7.5, 1.6, 7.7 and 7.8. An excellent agreement was found in imaginary part of specific
aerodynamic characteristics calculated by both methods for small oscillating frequency. The
agreement, however, Becomes worse for higher oscillating frequency. Also, the present method is
more accurate because the real part of the reduced lift and pitching moment coefficients can be
calculated not only for small but also for higher oscillating frequency. For the high order conical flow
solutions, the real part of the reduced lift coefficient and the reduced pitching moment coefficient are

assumed zero due to the approximation related to the unsteady formulation using high order conical

flows.

o Coa
REAL IMAG REAL IMAG
Present solutions -0.00006 -0.03396 -0.00004 -0.02264
High order conical flow solutions 0 -0.03396 0 -0.02264

Table 7.4 C , and ém2 for thin delta wing executing oscillatory vertical translation (A = 0.0147)

73




¢ ¢
REAL IMAG REAL IMAG
Present solutions -0.00139 -0.16977 -0.00104 -0.11318
High order conical flow solutions 0 -0.16981 0 -0.11321

Table 7.5 C, and C,, for thin delta wing executing oscillatory vertical translation (A = 0.0735)

REAL IMAG REAL IMAG
Present solutions -0.00554 -0.33934 -0.00415 -0.22619
High order conical flow solutions 0 -0.33962 0 -0.22641

Table 7.6 C , and émz for thin delta wing executing oscillatory vertical translation (A = 0.1470)

REAL IMAG REAL IMAG
Present solutions -0.13268 -1.66087 -0.09903 -1.10211
High order conical flow solutions 0 -1.69809 0 -1.13206

Table 7.7 C , and (f'm2 for thin delta wing executing oscillatory vertical translation (A = 0.7350)

REAL IMAG REAL IMAG
Present solutions -0.23783 -2.20994 -0.17696 -1.45908
High order conical flow solutions 0 -2.31033 0 -1.54022

Table 7.8 C, and C,, for thin delta wing executing oscillatory vertical translation (A = 1.0)
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Figure 7.4 The real and imaginary parts of the reduced pressure coefficients for thin delta wing
executing harmonic vertical translation oscillations.

(The reduced frequency of oscillations, 4 = 0.0147; spanwise variation at x; = 1.0; root
chord, ¢o = 1.0; semi-span, / = 0.75; Mach number, My, = 2.0)
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(2) Real part of the reduced pressure coefficients
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Figure 7.5 The real and imaginary parts of the reduced pressure coefficients for thin delta wing
executing harmonic vertical translation oscillations.
(The reduced frequency of oscillations, A = 0.0735; spanwise variation at x; = 1.0; root
chord, co = 1.0; semi-span, / = 0.75; Mach number, M, = 2.0)
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Figure 7.6 The real and imaginary parts of the reduced pressure coefficients for thin delta wing

executing harmonic vertical translation oscillations.

(The reduced frequency of oscillations, A = 0.1470; spanwise variation at x; = 1.0; root
chord, ¢y = 1.0; semi-span, / = 0.75; Mach number, M, = 2.0)
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Figure 7.7 The real and imaginary parts of the reduced pressure coefficients for thin delta wing
executing harmonic vertical translation oscillations.
(The reduced frequency of oscillations, A = 0.7350; spanwise variation at x; = 1.0; root
chord, ¢y = 1.0; semi-span, / = 0.75; Mach number, M, = 2.0)
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(2) Real part of the reduced pressure coefficients
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Figure 7.8 The real and imaginary parts of the reduced pressure coefficients for thin delta wing
executing harmonic vertical translation oscillations. _
(The reduced frequency of oscillations, A = 1.0; spanwise variation at x; = 1.0; root chord,
¢o = 1.0; semi-span, / = 0.75; Mach number, My, = 2.0)
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7.3.1.2 Thin trapezoidal wing executing oscillatory vertical translation
Present solutions of the spanwise variation of the real and imaginary parts of the reduced pressure
coefficient of trapezoidal wing are plotted in figures 7.9, 7.10, and 7.11. The imaginary part of the
present solutions is compared in the same figures with the results obtained by the theory of high order
conical flows (Carafoli, Mateescu, Nastase, [2]). An excellent agreement was found in these results.
The present solutions are more accurate and provided non-zero solutions to the real part of the reduced
pressure coefficient, while the high order conical flow solutions are assumed zero due to the
approximation made in the frequency expansion method using high order conical flows.

The reduced lift coefficient and pitching moment coefficient are calculated by present method
and are presented in table 7.9. However, high order conical flow solutions are not available in this

casc.

CA'I ém2
Present solutions
REAL IMAG REAL IMAG
A =0.0147 -0.00008 -0.03396 -0.00006 -0.01852
A=0.0735 -0.00189 -0.16974 -0.00159 -0.09257
A=0.1470 -0.00754 -0.33913 -0.00636 -0.18483

Table 7.9 C , and C‘mz for thin trapezoidal wing executing oscillatory vertical translation.
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Figure 7.9 The real and imaginary parts of the reduced pressure coefficients for thin trapezoidal wing
executing harmonic vertical translation oscillations.
(The reduced frequency of oscillations, 4 = 0.0147; spanwise variation at x; = 1.0; root
chord, ¢p = 1.0; span, b = 1.0; semi-span, / = 0.75; Mach number, M, = 2.0)
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Figure 7.10 The real and imaginary parts of the reduced pressure coefficients for thin trapezoidal wing
executing harmonic vertical translation oscillations.
(The reduced frequency of oscillations, A = 0.0735; spanwise variation at x; = 1.0; root
chord, co = 1.0; span, b = 1.0; semi-span, / = 0.75; Mach number, M, = 2.0)
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(a) Real part of the reduced pressure coefficients
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Figure 7.11 The real and imaginary parts of the reduced pressure coefficients for thin trapezoidal wing
executing harmonic vertical translation oscillations.
(The reduced frequency of oscillations, A = 0.1470; spanwise variation at x; = 1.0; root
chord, ¢ = 1.0; span, b = 1.0; semi-span, / = 0.75; Mach number, M, = 2.0)
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7.3.2 Case of wings executing oscillatory pitching rotation

For case of wings executing oscillatory pitching rotation, we first consider that each point over wing

surface executes oscillatory movement of small amplitude, which can be defined by,

Z =-x,0(t) = —x,6'"" =™ (-x,6,); P=-x,06,. - (7.3.3)
The boundary condition can be expressed by,

w=-6, —il0,x, =wy +wx;; A=0/U,. (7.3.4)
The numerical results were calculated for various reduced frequency A as 0.0147, 0.0735, 0.147, 0.735,

and 1.0, where 6, =0.02.

7.3.2.1 Thin delta wing executing oscillatory pitching rotation

For delta wing, results of the spanwise variation of the real and imaginary parts of the reduced
pressure coefficient over the right hand side of wing surface along the wing trace at x, = 1.0 are plotted
in figures 7.12, 7.13, 7.14, 7.15, and 7.16. The real and imaginary parts of the present solutions are
compared in the same figures with the results obtained by the theory of high order conical flow
(Carafoli, Mateescu, Nastase, [2]). An excellent agreement in real and imaginary parts was found for
small oscillating frequency. For higher oscillating frequency the agreement, however, starts to
deteriorate, especially in real part solutions for wing surface near and beyond the Mach cone. This is
mainly due to the approximation related to the unsteady formulation using theory of high order
conical flows.

The results of the reduced lift coefficient and the reduced pitching moment coefficient are
presented in tables 7.10, 7.11, 7.12, 7.13, and 7.14. An excellent agreement was found in real and
imaginary parts based on results for small oscillating frequency. The agreement starts to deteriorate

for delta wing executing in high oscillating frequency.
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¢, ¢
REAL IMAG REAL IMAG
Present solutions 2.309 0.019 1.540 0.014
High order conical flow solutions 2.309 0.019 1.540 0.014

Table 7.10 C , and ém for thin delta wing executing oscillatory pitching rotation (A = 0.0147)

¢

REAL IMAG REAL IMAG
Present solutions 2.310 0.094 1.540 0.071
High order conical flow solutions 2.309 0.094 1.540 0.071

Table 7.11 € , and C’mz for thin delta wing executing oscillatory pitching rotation (A = 0.0735)

o
REAL IMAG REAL IMAG
Present solutions 2.310 0.189 1.540 0.141
High order conical flow solutions 2.309 0.189 1.540 0.142

Table 7.12 C , and émz for thin delta wing executing oscillatory pitching rotation (A = 0.1470)

él
REAL IMAG REAL IMAG
Present solutions 2.326 0.937 1.553 0.702
High order conical flow solutions 2.309 0.943 1.540 0.708

Table 7.13 C , and émz for thin delta wing executing oscillatory pitching rotation (A = 0.735)
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¢, C.,
REAL IMAG REAL IMAG
Present .solutions 2.331 1.264 1.556 0.946
High order conical flow solutions 2.309 1.284 1.540 0.963

Table 7.14 C , and C‘mz for thin delta wing executing oscillatory pitching rotation (A = 1.0)
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(a) Real part of the reduced pressure coefficients
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Figure 7.12 The real and imaginary parts of the reduced pressure coefficients for thin delta wing
| executing harmonic pitching rotation oscillations.
(The reduced frequency of oscillations, 4 = 0.0147; spanwise variation at x; = 1.0; root
chord, co = 1.0; semi-span, / = 0.75; Mach number, M, = 2.0)
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(a) Real part of the reduced pressure coefficients
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Figure 7.13 The real and imaginary parts of the reduced pressure coefficients for thin delta wing
executing harmonic pitching rotation oscillations.
(The reduced frequency of oscillations, 2 = 0.0735; spanwise variation at x; = 1.0; root
chord, ¢y = 1.0; semi-span, / = 0.75; Mach number, M = 2.0)
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5 (a) Real part of the reduced pressure coefficients
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Figure 7.14 The real and imaginary parts of the reduced pressure coefficients for thin delta wing
- executing harmonic pitching rotation oscillations.
(The reduced frequency of oscillations, 4 = 0.1470; spanwise variation at x; = 1.0; root
chord, ¢g = 1.0; semi-span, / = 0.75; Mach number, M = 2.0)
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Figure 7.15 The real and imaginary parts of the reduced pfessure coefficients for thin delta wing

executing harmonic pitching rotation oscillations.

(The reduced frequency of oscillations, A = 0.735; spanwise variation at x; = 1.0; root
chord, ¢y = 1.0; semi-span, / = 0.75; Mach number, M, = 2.0)
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Figure 7.16 The real and imaginary parts of the reduced pressure coefficients for thin delta wing
executing harmonic pitching rotation oscillations.

(The reduced frequency of oscillations, A = 1.0; spanwise variation at x; = 1.0; root chord,
co = 1.0; semi-span, / = 0.75; Mach number, M., = 2.0)
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7.3.2.2 Thin trapezoidal wing executing oscillatory pitching rotation
Present solutions of the spanwise variation of the real and imaginary parts of the reduced pressure
coefficient of trapezoidal wing are plotted in figures 7.17, 7.18, and 7.19. The results of the real and
imaginary parts of the reduced pressure coefficients are in very good agreement and presented in the
same figures in comparison with those obtained by the theory of high order conical flows (Carafoli,
Mateescu, Nastase, [2]) in lower reduced frequency. However, for oscillations in higher reduced
frequency, differences between two solutions are observed in light of the fact that the right hand side
of the potential equation is neglected in the method by theory of high order conical flows.

The reduced lift coefficient and the reduced pitching moment coefficient are calculated by the

present method and multiplied by 1000 for clear presentation in table 7.15.

1000C, 1000C,,
Present solutions
REAL IMAG REAL IMAG
A =0.0147 2309.325 13.37868 1259.645 8.524725
A=0.0735 2309.223 66.89601 1259.574 42.62622
A=0.1470 2308.886 133.8084 1259.227 85.26791

0.0735, and 0.1470)
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Table 7.15 C , and émz for thin trapezoidal wing executing oscillatory pitching rotation (A = 0.0147,
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Figure 7.18 The real and imaginary parts of the reduced pressure coefficients for thin trapezoidal wing
executing harmonic pitching rotation oscillations.
(The reduced frequency of oscillations, A = 0.0735; spanwise variation at x; = 1.0; root
chord, ¢o = 1.0; span, b = 1.0; semi-span, / = 0.75; Mach number, M, = 2.0)
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(a) Real part of the reduced pressure coefficients
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Figure 7.19 The real and imaginary parts of the reduced pressure coefficients for thin trapezoidal wing
executing harmonic pitching rotation oscillations.

(The reduced frequency of oscillations, A = 0.1470; spanwise variation at x; = 1.0; root
chord, ¢ = 1.0; span, b = 1.0; semi-span, / = 0.75; Mach number, M, = 2.0)
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7.3.3 Case of wings executing oscillatory rolling rotation

We consider that each point over wing surface executes oscillatory rolling rotation of small amplitude,

which can be defined by,
Z =x,w(t) = x, 0" =e™ (x,p,); P=x,,. (7.3.5)

In turn, the boundary condition can be expressed by
W= iAxX,p, =wyX,. (7.3.6)
The numerical results were calculated for various reduced frequency A as 0.0147, 0.0735, 0.1470,

0.735, and 1.0, where i, =0.02.

7.3.3.1 Thin delta wing executing oscillatory rolling rotation

Present solutions to the spanwise variation of the real and imaginary parts of the reduced pressure
coefficient over the right hand side of thin deltg wing surface along the wing trace at x, = 1.0 are
plotted in figures 7.20, 7.21, 7.22, 7.23, and 7.24. The imaginary part of the present solutions is
compared in the same figures with the results obtained by the high order conical flow solutions. An
excellent agreement was found for small oscillating frequency. However, the agreement starts to
deteriorate for wing surface near and outside the Mach cone for high oscillating frequency. The
present solutions are more accurate and provided non-zero solutions for the real part of the reduced
pressure coefficients even it is small compared to the imaginary part of the solutions for small
oscillating frequency. For high oscillating frequency, the weight of the real part of the present
solutions is increasing and cannot be neglected with comparison of the imaginary counterpart so that
the present method proves to be more accurate in this respect. Nevertheless, the high order conical
flow solutions provided zero real values due to the approximation made in the frequency expansion

method related to the unsteady formulation using high order conical flows.
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The results of the reduced rolling moment coefficient are presented in tables 7.16, 7.17, 7.18,
7.19, and 7.20. Obviously, all results are in a very good agreement in imaginary part by the present
solutions and high order conical flow solutions for oscillations at small frequency. However, for high
oscillating frequency, the agreement becomes worse and the difference of the results from both
methods goes up to around 28%. However, due to the approximation made in the frequency
expansion method‘using the high order conical flows, the high order conical flow solutions provided
zero values of the reduced lift coefficient and the reduced pitching moment coefficient, while the
present solutions are more accurate and provide non-zero solutions in the calculation of the

aerodynamic coefficients accordingly.

Com
REAL IMAG
Present solutions 0.00003 - 0.00314
High order conical flow solutions 0 0.00318

Table 7.16 ém for thin delta wing executing oscillatory rolling rotation (A = 0.0147)

Co
REAL IMAG
Present solutions 0.00077 0.01570
High order conical flow solutions 0 0.01592

Table 7.17 éml for thin delta wing executing oscillatory rolling rotation (A = 0.0735)
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Yy

REAL IMAG
Present solutions 0.00308 0.03127
High order conical flow solutions 0 0.03184

Table 7.18 ém for thin delta wing executing oscillatory rolling rotation (A = 0.1470)

CA’ml
REAL IMAG
Present solutions 0.0723 0.1343
High order conical flow solutions 0 0.1592

Table 7.19 C‘ml for thin delta wing executing oscillatory rolling rotation (A = 0.735)

o
REAL IMAG
Present solutions 0.1268 0.2166
High order conical flow solutions 0 0.1557

Table 7.20 éml for thin delta wing executing oscillatory rolling rotation (A = 1.0)
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Figure 7.20 The real and imaginary parts of the reduced pressure coefficients for thin delta wing
executing harmonic rolling rotation oscillations.
(The reduced frequency of oscillations, A = 0.0147; spanwise variation at x; = 1.0; root
chord, ¢y = 1.0; semi-span, / = 0.75; Mach number, M., = 2.0)
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Figure 7.21 The real and imaginary parts of the reduced pressure coefficients for thin delta wing

executing harmonic rolling rotation oscillations.

(The reduced frequency of oscillations, 4 = 0.0735; spanwise variation at x; = 1.0; root

chord, ¢o = 1.0; semi-span, / = 0.75; Mach number, My, = 2.0)
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Figure 7.22 The real and imaginary parts of the reduced pressure coefficients for thin delta wing
executing harmonic rolling rotation oscillations.
(The reduced frequency of oscillations, A = 0.1470; spanwise variation at x; = 1.0; root
chord, ¢y = 1.0; semi-span, / = 0.75; Mach number, My, = 2.0)
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Figure 7.23 The real and imaginary parts of the reduced pressure coefficients for thin delta wing
executing harmonic rolling rotation oscillations.

(The reduced frequency of oscillations, A = 0.735; spanwise variation at x; = 1.0; root
chord, ¢y = 1.0; semi-span, / = 0.75; Mach number, M, =2.0)
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Figure 7.24 The real and imaginary parts of the reduced pressure coefficients for thin delta wing
executing harmonic rolling rotation oscillations.

(The reduced frequency of oscillations, A= 1.0; spanwise variation at x; = 1.0; root chord,
co = 1.0; semi-span, / = 0.75; Mach number, My, = 2.0)
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7.3.3.2 Thin trapezoidal wing executing oscillatory rolling rotation
Present solutions of the spanwise variations at x;, = 1.0 of the real and imaginary parts of the reduced
pressure coefficient of the thin trapezoidal wing are plotted in figures 7.25, 7.26, and 7.27. The
imaginary part of the present solutions is plotted in the same figures in comparison to the high order
conical flow solutions (Carafoli, Mateescu, Nastase, [2]). An excellent agreement was found among
them. The real part of the reduced pressure coefficients is calculated by the present method and
non;zero solutions are presented. However, the high order conical flow solutions provided zero real
values, on which an approximation made in the frequency expansion method related to the unsteady
formulation is based.

The reduced rolling moment coefficients are calculated by the present method and presented in
table 7.21, while the previous results by the theory of high order conical flows are not available in this

case.

CA‘ml
Present solutions
REAL IMAG
A=0.0147 0.000004 0.00037
A =0.0735 0.00009 0.00184
A =0.1470 0.00036 0.00366

Table 7.21 éml for thin trapezoidal wing executing oscillatory rolling rotation (A = 0.0147, 0.0735,

and 0.1470)
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Figure 7.25 The real and imaginary parts of the reduced pressure coefficients for thin trapezoidal wing

executing harmonic rolling rotation oscillations.

(The reduced frequency of oscillations, A = 0.0147; spanwise variation at x, = 1.0; root
chord, co = 1.0; span, b = 1.0; semi-span, / = 0.75; Mach number, M, = 2.0)
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Figure 7.26 The real and imaginary parts of the reduced pressure coefficients for thin trapezoidal wing
executing harmonic rolling rotation oscillations.
(The reduced frequency of oscillations, A = 0.0735; spanwise variation at x; = 1.0; root
chord, ¢ = 1.0; span, b = 1.0; semi-span, / = 0.75; Mach number, My = 2.0)
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Figure 7.27 The real and imaginary parts of the reduced pressure coefficients for thin trapezoidal wing

executing harmonic rolling rotation oscillations.

(The reduced frequency of oscillations, A = 0.1470; spanwise variation at x; = 1.0; root
chord, ¢o = 1.0; span, b = 1.0; semi-span, / = 0.75; Mach number, My = 2.0)
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4

7.4 Unsteady flow results for flexible wings executing flexural

oscillations
In this section, the flexural harmonic oscillating deformation of wings in supersonic flows are
analyzed by method of distribution of pulsating sources. Likely, equations of any point over wing
surface executing flexural harmonic oscillations in two directions, which are along Ox, and Ox, axes,
respectively, can be described by two homogeneous polynomials.

Z, =e" P,(x,,x,) = g, x' e . (7.4.1)

Z, =e"“ Py(x,,x,) = g,x.e'" . (74.2)

Constants, g, and g,, are coefficients of homogeneous polynomials, and the boundary conditions are

given as
. P,
W, = (ﬁ + mg} =2g,x, +iAgx], (7.4.3)
ox, :
W, = (-‘9—1—)2— + iszj =ilg,x;. (7.4.4)
Ox

The numerical results are obtained for the reduced frequency A as 0.0147, where g, and g, are equal to
0.02.
The spanwise variations of the reduced pressure coefficients at x, = 1.0 are plotted in figures

7.28 and 7.29 for thin delta wing and figures 7.30 and 7.31 for thin trapezoidal wing.
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7.4.1 Thin delta wing executing flexural harmonic oscillatory deformation

(a) Real part of the reduced pressure coefficients
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(b) Imaginary part of the reduced pressure coefficients
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Figure 7.28 The real and imaginary parts of the reduced pressure coefficients for thin delta wing
' executing flexural oscillations, Z = g,xe" .
(The reduced frequency of oscillations, A = 0.0147; spanwise variation at x; = 1.0; root
chord, ¢p = 1.0; semi-span, / = 0.75; Mach number, M, = 2.0)
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Imaginary part of the reduced pressure coefficients

0.016

0.014

0.012

— 0.010

ot
e g,

0.008

IMAG( ,

0.006

0.004

0.002

| ' L

|

0000 1 1 _1 1 1
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

y
— Present solutions

Figure 7.29 The imaginary part of the reduced pressure coefficients for thin delta wing executing
flexural oscillations, Z = g,x2e' ,
(The reduced frequency of oscillations, 4 = 0.0147; spanwise variation at x; = 1.0; root

chord, ¢y = 1.0; semi-span, / = 0.75; Mach number, M, = 2.0)
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7.4.2 Thin trapezoidal wing executing flexural harmonic oscillatory deformation

(a) Real part of the reduced pressure coefficients
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Figure 7.30 The real and imaginary parts of the reduced pressure coefficients for thin trapezoidal wing
executing flexural oscillations, Z = g,x7e"
(The reduced frequency of oscillations, A = 0.0147; spanwise variation at x; = 1.0; root

chord, ¢o = 1.0; span, b = 1.0; semi-span, / = 0.75; Mach number, M, = 2.0)
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Imaginary part of the reduced pressure coefficients
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Figure 7.31 The imaginary part of the reduced pressure coefficients for thin trapezoidal wing
executing flexural oscillations, Z = g,x>e’” .
(The reduced frequency of oscillations, A = 0.0147, spanwise variation at x; = 1.0; root

chord, ¢p = 1.0; span, b = 1.0; semi-span, / = 0.75; Mach number, M., = 2.0)
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CHAPTER 8

CONCLUSION

This thesis presents a method for the study of finite span wings in steady and unsteady supersonic
flows.

For steady flows, the method uses a distribution of sources, which are integrated over the
surface of the wing. Specific theoretical solutions have been derived for the pressure coefficient and
the lift, pitching moment, and rolling mofnent coefficients. The present solutions have been
validated for delta and trapezoidal wings by comparison with the results obtained by Carafoli,
Mateescu, and Nastase [2], [38]-[41], using the high order conical flows method. An excellent
agreement was found between these results.

The method of solutions for unsteady flows uses pulsating sources distributing on the wing
surface, which are integrated over the surface of the oscillating wings. Specific theoretical solutions
have been derived for the unsteady pressure coefficient and the unsteady lift, pitching moment, and
rolling moment coefficients.

The present unsteady solutions have been validated for delta and trapezoidal wings executing
harmonic oscillations in translation, pitching rotation and rolling rotation of various frequencies by
compassion with the results obtained by Carafoli, Mateescu, and Nastase [2], [38]-[41], using tﬁe

high order conical flows method. The present solutions were found in very good agreement with the
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previous results available for small oscillating frequency. This agreement between the two methods
starts to deteriorate for high oscillating frequency due to the approximation introduced in high order
conical flow solutions. Moreovér, the present solutions is proved to be more accurate and provided
non-zero solutions for the real part of the reduced pressure coefficient, and the reduced lift and
moment coefficients in the case of oscillatory translation and rolling oscillation. In these cases, the
high order conical flow solutions only provided zero real values due to the approximations made in
the frequency expansion method. Nevertheless, the actual real values obtained in the present
unsteady solutions are small in the case of low frequencies but they are increasing for higher
oscillating frequencies.

The method has then been applied for the analysis of wings with flexural oscillations, which
are of interest for the aeroelastic studies in the aeronautical applications.

Recommendation for future study: The present method can be extended in the future for
the trapezoidal and rectangular wings with subsonic leading edges. Also worthy of future research
are the exponentially decaying amplitude in harmonic motions and wing surface deformation. This

could be a very interesting problem as often being cases in practice.
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Appendix A: Derivation of ®| related to the calculation
of the reduced pressure coefficient by

theory of high order conical flows

A-1: Case of thin delta wing

r A1 _ a [+BhH(a- Bx) os™! (1+BD(1+ Bx)
QI_R{’“"‘IU"d(xﬂ R{ m/B - [ S T J J

Ry, 2 I[  [ABOA-BY | M&l_%’i_l)d(l) )
B 12 2B(l-x) 2B(l +x) x

For the 1* integral, by method of integration by parts, we first set # and dv and then du and v are
calculated straightforward as

= cos! \/(1+ BI)(1- Bx) e JB? 1 " (A2)
2B(I-x) 2 —x)W1-B’x?
v = d(lj, yol (A-3)
X X
Then,

Jeos” (L+ Bly(1— Bx) d( 1 )_ 1 [A+BD(A=Bx) - VB -1
2B(I - x) x) x 2B(I - x) x(I - %) _,_m

_ 272 _ 1
=lcos-‘ (1+ B Bx)_Il(lJr 1 J Bl 1dx
X 2B(l-x) I\x I-x)]|241-B%x2

—lcos"\/(”Bl)(l"Bx)-lj B** -1 dx—lf VB2I* -1 0
x 2B(I-x) 1720 —x)\1- B> ! % 2xy1- B?x?

Lo [(A+B)(1-Bx) 1 og! [1+Bh1-By \/3212 r 1 (Ad)
X 2B(l —x) 2B(l - x) x 1— Bz 2
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The 2™ integral can be calculated in the same manner as

Icos‘l \/(1+Bl)(l+Bx)d(lj=lcos—1 \/(1+Bl)(1+3x) J' —vB’I* -
x

2B(I +x) x 2B(l +x) x(I+x) 21— 32 7
_1 o [+BD(A+BY) I ( ] VB -
T x 2B(l +x) x Il+x 2,/1 32 2

(+BD1+Bx) 1; —-+B¥*-1 VBH? -1 1
=—co +—_[ dx+ I
x 2B +x) 1791+ x)1- B x1-Bx?

1 f(1+Bl)(1+Bx) Lo f(1+BI)(1+Bx)+\/lez—1 I 1 &, (A-S)
x 2B(l+x) 1 2B(l+x) 2 x/1-Bx?

Accordingly, @ for thin delta wing is calculated as

dx

,_ 26, (1+ BI)(1- Bx) ., [a+B+Bx ]
D, ——————” O 1|:(l x)cos” \/ 28— +(/+x)cos \/ 2BU+7) ] (A-6)

A-2: Case of thin trapezoidal wing

. (Y] 210 L [a+BD(-Bx) 26, [a+Bx)) (1
(I)l—Re[xlxIUod[xj] Re[xlxj(——”mcos \/_“2B(l—x) +7chos 5 Jd(xﬂ

_ 20 L [A+BDA-Bx) (1) 20 ¢ [(+Bx) (1 .
_xlxRe{——————ﬂmlicos\/ 2507 d(x]+”Bx_[cos — d(xﬂ. (A-7)

The first integral is obtained already for case of thin delta wing. The second integral is calculated by

parts and we set # and dv and then du and v are calculated straightforward as

[1+Bx _B
u=cos” , du=———o—dx. (A-8)
2 21— B2x?
dv= d[l), pal. | (A-9)
X X

Icos"l (1+Bx (_) 1. /1+Bx N N (A-10)
2 x) x X \1- BZ 2
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Accordingly, @; for thin trapezoidal wing is calculated as

, : _, [a+By1-By 9,- 1 2% ,[+Bx 6 1 }
@ =x, xR (I-x)cos’ dx+—cos +— dx
b {m}BZIZ 2B(-x) x\/le2 -1 B ”Jx\/lez -1

=x1xR5[ 20 ((1+Bl)(1 BY 29 1+Bx] A1)
VB 11 2B(I-x)

Appendix B: REAL PART OF SPECIFIC INVERSE
TRIANGULAR FUNCTIONS

In this part, the limits of the following triangular functions are presented as references for several
calculations in this study. '

' Z N e l l )
> Yy B
Rel cos-! (1+ Bl)(1- Bx) _Jcos™! (1+ BI,)(1- Bx) . ye(—lz,—l—
2B, %) e 2B, —x) B
2=0 0 ye(=w,-1,)ull,,o)
r p 3 1
i =
5 ye( 2 BJ

Re{cos" \/(1 +BL){1+ Bx)] e \/(1 +BL)+BY | (_ 1 11)
2B(12 +X) x=y 2B(12 +X) B )
15

2=0 0 ye (— ,—1, )u l
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Appendix C: Integrals related to the calculation of C,, C,,,

and C,, based on method of source distribution

C-1: Case of thin delta wing in steady supersonic flows

For calculation of the lift coefficient, C,:

(n k- Q)[ _E e ly’_q)loxldxldy

k i—q 7 j—q— g+
_(k+nq+1)(;:]+2 {Z(‘l)fcq’q f[Z( e [y lfngJ

1,=0

+Z( 1)/ Ccar’ [Z( 1yl [ (+y)yrata, dyﬂ (C-1)

L _l: (xln_k_qyj_q )loxldxldy

9

i=q
C‘I]q ! 1 ’n CJ q7J-9-4 - k+q+t1+11
(k+q+1)(n+3 {Z [Z( [( gdy)

=0 4,=0

+Z( )y~ cu’ (Z( 1y~ cn [ @+ y)roi, dy]:] (C-2)

1,=0

,[1 .I (xln_k_qy i )in x,dx,dy

1

{Z(—l)fcql" fﬂ(z( Vo sl ) s dy]

n+2 1;=0

+Z(_ 1)q qulq—fﬂ(Z( 1)1 q-1, Cj—qu-q A [ (l+y)k+q+"‘J dy]:l

1=0
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1

Y er Sereme{(ra)

j—g+1
N i (_1)q—f Cj‘{l‘l—f l:J"qz (_ 1) J—q+i-tg C tjﬁ'-q+1 l J-q+l—g ( L(l +y)k+q+l+ts d]g )J} (C-3)
/=0

1,=0

For calculation of the pitching moment coefficient, C,,:

(n—k~ q)[, f(x{‘ Hdy Y xidndy

“Gra +k1)(3 n 3){2(" 1y e f(Z( e [ (=), dy}

£,=0

1,0

g 4 i i i +q+t+
+fz=o(- )" cur’ [Z(— 1yt [1 (1 +y)er ngdyH. (C-4)

[1 _[ (xln_k_qyj_q )IOxlzdxldy

(k+q+1)(n+4){z(_1)fcqlq f(z( e .[ -y, dy]

1,0

+Z( l)q-f quq f[Z( I)J-q-tz Cj—qu q-1, [ (l+ )k+¢J+tz+1J dy]ji (C-5)
1,=0

f, ey siandy

1

{2( 1) cqlq—f“(Z( 1 ¢/t [ (-y)rer, dyJ

1;=0

+Z( l)‘I‘qulq—fH(Z( )! q-1, Cj qu—q 1, ‘[ (l+y)k+q+f4J dy]:l
14=0
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(n+2)(/1+q+l) {ZO:( yGr f[,;( lysqﬂqﬂlmﬂ;s(-[l(l_y ywwd]g)}

—g+1
2 qfcqzq-{ﬂ e 0 "”J]}' oo

ts=0

For calculation of the rolling moment coefficient, C,,:

(n=k=g) [, [ (7o' y7 o Yoy, dy

n—k S 179-f
(k+q+1)(nq+3){z(—l) i (

Z ( l)ts Cj q+llj q+1-t5° -[ (l _y)k+q+15+l Igdy)

t5=0

+Z( )q qulq—f[ z ( )j g+l-tg C_]—q+llj—q+1—t6 [ (l+ )k+q+16+1J dy]:i . (C-7)

[ [y o2 v,y

Z ( 1)15 Cj q+llj q+1-t5 [ (l_y)k+q+15+l Igdy

150

“(k+q +1)(n +4)[Z(— 1y quq-f(

N g o
' fzo(_ l)q_f C; lq-f[ Z (_ 1)"_q+l_t6 C tjﬁ —q+1 [ j-g+1-ts L (l + y)k+q+16+1 Jg &

t5=0

. (C-8)

| S

[ [y Sty
1

n+3

t;=0

|:Z( l)f quq f+1( z ( 1)r7 C]—q+llj g+l-t; [ (l_y)k+q+t7 IgdyJ

j~q+1
+ i(_ l)q-f C} 19~ £+ [ji (_ 1)j—q+1—ts C;i_qﬂ I J-q+l~tg L (l + y)k+q+t8 Jg dy]il
=0 1=0
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f=0 ty=0

J—q+2

- f—q+2—t)g j-q+2 1 j—q+2-t) +q+l+
S| e (popea)). e

t,o=0

From Eq.(C-1) ~ (C-9), let’s consider the following four general integrals with limits for case of thin

delta wing. For integration limit of y between —/ and —% » I, is zero, and J, is constant, and for

. . e 1 . .
integration limit of y between 2 and [, J ¢ 1S zero, and / ¢ 1s constant. Thus, one concludes that

0
[e-yy1,a - [,%(l vl dy + f_ (-y)'1,dy + j'.g(l—y)’"lgdy. (C-10)
0 0
L(l—y)'"dlg = L%(l—y di, + E(l—y)mdlg + E(l— "dl, . (C-11)
0
‘ L(l+y)"Jgdy = L%(l+ y)'J dy + [tl?% (+y)yJ,dy + £(1+ "Jdy . (C-12)

0 0
L(l+y)"dlg = [1119(7/){.; + ﬁ(l+y)"ng + M@. (C-13)

Derivations for integrals in Eq.(C-10) ~ (C-13) are also solved by applying the recurrence formulae
and presented in the following section.
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C-2: Case of thin trapezoidal wing in steady supersonic flows

For calculation of the lift coefficient, C,:

(n—k—=g) [l Wy vy =(n—k—q) [l 'y Yo vidndy+(n—k—q) ~ [y Yoy

N S0 So+S;+8,

=(n-k- q)M Xy i dy + (k- qff X0y ) dedy

(n k- q)( b) - J -——1- + n—k- 9 N q79-f 'S _1Yr /ap)-94
kg +)n+2fn+q)-Gi- 1)]Jp( BJ (k+g+1)n+2) {fz( ey LZ:;( yc

1 1 1
x( [ @-y)r o dy+ £(1 ) A Igdyﬂ ’{ff y i T,dv+ [ yj“’jpdyJ}. (C-14)
. B B

B

I(xln_k_qyj_q o X dx, dy = J-(xln_k_qyj_q o X dx,dy + I(xln_k—qyj-q )onldxldy

S S, So+S;+8;

= _[ [_Z_ (xln_k_qyj_q )onldxldy + E:I(xln—k—qyj—q )onldxldy

_ —-b j—q+1

J L 1 : S a79-f & t =4 1i-g
B Ee) v et e M ) *W{E“” i LE,(“) c

) 1 1 1
X(B(l— P dy+ [ 1y Igdyﬂ +[[,,»Ey""7pdy +[ y""jdeJ}- (C-15)
B B B

J(xln_k_qy )inxldxldy = J(x;'—k_qyj_q )Ex{O—xldx1dy+ j (xn k_qyj q)zxixldx dy

1 So 1 So+8;+8,

= [ Lolreye ) omdsay + [} ooy ) S ontnay

X

(n+2)[(51f3;)_q+1(] ] ( 1) {2( 1y cue- M{Z( 1) cpapes

£,=0
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1 r (N
X(E—(’ ) Ly (=) Igdyﬂ ' [ [#y747 dy+ ﬁy!“’J,,dYJ}
B B ;

1

m{ﬂ Iy cue [ji -1y CH“IJ"I*‘“%[ [ (—yyroe dlgﬂ +( ﬁ% ¥y dJ, ]}

f=0 ;=0 B

(C-16)

For calculation of the pitching moment coefficient, C_,:

(k- q)I( oy dndy=(n—k—g) [lxi -y o dndy+ln—k—g) - [ty ey

So Sp+S;+S)

=(n-k —q)j: ﬂ(x{""‘q“y"“’ Woxidx,dy +(n~k-g) _[f j:(xl” kel i )1 x2die, dy

—(n i q)( b)J - 7(-L +& : Wy’ H_ h -7+
(k+q+1Xn+31(n+q) (-2 )]J( Bj '(k+q+1)(n+3){f§( 1) il L;)( 1) Gl

B

1 1 o 1 o
x(ﬁ(l ~y)* T dy + E( — y)frar IgdyJ +( [bB y T+ [ y""dey)}. (C-17)
B B

I("qujq)lxldXdy J’(nkq jq)[xdxdy+ I(nqujq)lxdxdy
s

So+S8;+S;

£[ xl_k_qyj q)l xlzdx dy+_[] _[ T qyjﬂq)[oxlzdxldy

( b)j g+l 1 1 q f ares g & a1t
g+ n+ N+ a)-G -9 ° 7(-3) +W5{,§(‘” ! Lé“l) G

[ Pa-yyrdy+ ﬁ(l—y)"*‘“"*‘lgdyﬂ +( [fyf“'ipdw f_ yf‘“’ipdy]}. (C-18)
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[lagemay s )gxixfdxldﬁ [ )inxfdxldﬁ [ oy )gxixfdxldy
S

1 S, 1 So+5,+5; 1

= [ [2 ey q)gx" xidady+ [ [ (e ry -")Zx" xR dv,dy

X1

GG ) s B e

1 [ U
X[E(l __y)k+q+t3 Igdy+ ,E(l _y)k+q+t3 Igdyﬂ_',[[ba yj_qudy+ Eyj—qudy]}
B B B

1

aErer| Serarres puora) foea, | o

=0 B

For calculation of the rolling moment coefficient, C,,:

(n—k—q) f( ey ) o vk dy=(n—k—q) I( ity ) ol yandy+(n—k—q) [y ot vy

So So+S;+5,

=(n—k- q)f[ xp oy vy + (= k= g) [ (607 y70 Y oxd yebeydy

_(n k )( b)] g+2 l kg ] g —
(k+q+1Xn+3i(n+q) (] 1)] ( ) (k+q+1Xn+3{ZI l)fcql l:; )C l

1 1 1
% [ E(l _ y)k+q+15+l Igdy + £(l _ y)k+q+ts+l Igdy]} + [ [bEyj—q+] -7de} + .[Elyj—qﬂjpdyJ} . (C'ZO)
B B

B
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[lar-a 779 ), x2 yatv,dy = I oy o yavdy+ [y o v, dy
N

So+S;+S;

'[[ nkq fq)lxlydxdy+f[ nkq jq)lxlydxdy

) ~( 1

STy e de e L

1 1 1
x [ [-yyrostr dy+ ﬂ(l — y)rest IgdyJ:l + [ [Zy7 T, av+ [ y"q“jpdyj} .(C-21)
B B . B

ol

teayi-0) %o " ol N
Sj(xl o q)axl X vy = I( Ty )ax? xfydxldy+so+g+sl(x1 Ty )8x(: x; ydx,dy
- [%(xrk_qy " )in(:?lz yaedy+ [ (er40y” 4)2,1: x2 ydx, dy

e e A R DT D C’]

t;=0

1 | .
X[E(I _y)k+q+t7 Igdy + _E(l __y)k+q+t7 Igdy]:|+[L§yJ—q+ljpdy+ ‘Flyj—qnjpdy]}
B B B

F—mr_

B B

@TXI:W.__&;{;( 1)/6}114 f|: ; 1)( Cy—q+21}—q+2—tg(E Y<+q+1+¢9 dlg]J +( ly""+2d7,, J} .
(C-22)

Similarly, detailed solutions for integrals in Eq.(C-14) ~ (C-22) with limits are solved by the
recurrence formulae and one may refer to the following sections.
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C-3: Case of oscillating delta wing in supersonic flows

For calculation of the lift coefficient, C,:

(n—k- q)[f (epriy

x,dx,dy

iy

f=0 =0

n-k q f iy yiy—f t, J—q71J-9-t 1,+t,+1
-1y C* P U - 1
(11+1)(n k- q+11+2){z ) (Z( -[( D

+Z(—1)‘2 ol (Z( 1yl [ (+y)yry, dy]:|. (C-23)

1,=0

.[1 .E (xln—‘k—qy o i, X106, Ay

1

(’ +1Xn k—q+i +3)|:Z(—1)fclzllrf(2( l)t' C’ 97J-9-h [ (l hﬂlﬂ]gdy)

4,=0

1,0

+Z( 1): fC’2l'2‘f[2( 1yl [ ((+yyry, dyn (C-24)

ol .
,[1 I(x Ly )_gxﬁ x,dx,dy

1

1,=0

= T o +2|i2(—l)fClzlrz—f+l(z( l)fscj 97J-9-4 [ (l y),l+,31 dyJ

+z(_1),2_fc,2,,2-,+1(2( yrec [ 4 y), dyj]

t,=0

1 |’ s jgrlyjgtts -~
(n—k~ q+ll+2)(zl+1){fz( l)fczl”[z( 1f G’ v (L(l—y) ’ dlg)
=0

ts=0

i —q+1 ) . . . !
+l§( ,2 fC,zl,z_fI: Z ( 1)]—q+1—¢6 C’js—q+llj—q+1—¢6(L(l+y)t|+l+t5 d]gJ } (C-25)

16=0
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For calculation of the pitching moment coefficient, C,,:

n k- q)[_l: nkquj—q il,izxfdxldy

= n-k 9 S Cihpi-f ’1 CJ 9]J-974 '1'*"1*'11
G+ n—k- q+zl+3)[z -y et (Z( .[(l sV

7=0 1,=0

iy . i Jq mty v jmq 7 gt ity
_,_g)(_l),z fozlz f(z(_l); q Ct/2 a7/-12 L(l+y) f ngdyJ]. (C-26)

1,=0

L f(xln_k_qyj_q iy xlzdxldy

=0

1 1V S el J'-KI—Ili _ )t
TG )=k q+,1+4)[2( 1y Cii (Z( 1y ¢ L(z ») Igdy]

i . o J=q o o ety
+fz=0(_1)u—fc}21:2—f(2(_ 1)1 q-1 erz q]J-4 .[l(l+y) : ngdyJ:|, (C-27)

1,=0

ol .
J, ey )—;ﬂz—xfdxldy

1

[Z(— 1y c*zz'ff“[Z( 1) clor _[ (-y)yi, dy]

£,=0

n—-k—q+i +2

+z 1)12—f szltz—-fH[Z( 1)1“1*14 C]*'Il] q-t, [ (l+y)11+14J dy]jI

1,20

(n k— q+ll+2Xz]+1) =

g lycszf[ﬂ ﬁsCéﬂ*‘l““*(ﬂ’—yf‘“”””g)]

s=0

i -q+1 ) . . ,
+ ;( zz—f Ctz ltz-f Ii Z ( l)f‘q+l"'6 C'é i (L(I + y)ll e d]g ):|} . (C'28)

16=0
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For calculation of the rolling moment coefficient, C,, :

(n k- q)[l I(xln_k_q_lyj—q )[il,iz xlzydxldy

n—-k—gq

s e UL

Z ( l)ts CJ q+llj g+1-t5 [ (l y)t,+ts+ll dy]

15=0

1,=0

iy o i rie Jj—g+l g+t e fmasy sl s
+;(_l)lz fclez f[z (_1)1 g+1-t Ctjs q llj g+l [1(l+y) 1 ngdy]], (C-29)

[1 .[ (xln_k—qy e )[il X1 yax,dy

=0 15=0

1 i pi—f f +1 +1-t 1+t+1
2 ]2 1 sch IJ‘I 5 l Y | d
(11+1)(n k— q+11+4)|:Z C l [Z( ) ‘[( § y]

iy . o Jj=g+1 ol i e
+§(—l)’2_fcj?lu—f( Z (_1)1 g+1 '6Cé q llj g+t L(l+y) ' ngdyJ:|. (C-30)

t5=0

ol .
[ ey o) 2o v ay

1

1

— n . q+l +3|:Z( l)fCtzltz—fH( z ( 1)17 C_] q+llj—q+l—l‘7 [ (l y)t,+t7I dy]
1

f=0 £,=0

+Z( l)lz—f Clzllz f+1( ZO ( )1 q+1-tg C, q+ll_/ q+l-tg [ (I+y)1,+r3J dyj:|
ty=

(n—k— q+111 +3)(i+) {ZO:( IYCZIIZ_f[;( 1)'9C’fﬁlﬂw{L(l—y)i'+lﬂ°d1)g) }

to=0

A —q+2 . ) ) .
+j§( ,2 fC,z l,2_f|: Z ( 1)j-q+2~-tlo qu—q+211—q+2—¢m(‘[l(l +y)l|+1+tlo d]g ):l}. (C-3 1)

For the calculation of finite integrals of I, J; , dl;, and dJ; with integral limits for case of delta

wing, one may refer to the following section for detailed discussion.
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C-4: Case of oscillating trapezoidal wing in supersonic flows

For calculation of the lift coefficient, C,:

(n~k—q) j( oy wdndy=(n—k—g) oy L vdvdy+ -k ~q) oty vy

S So+S8;+5)

—(n k- qI[ ”k"’_y’q ,,xldxdy+(n k- qf_lj "k_‘”y" i i, 1, dy

—(n—k—g)-b)y™" (1
G+ -k +i)-(g-2)[(- k+zl)—(j—1)]J"( B)

n—k- q Z( Cizl"z“f Fjiq(_ l)tl C/9]i-an
(11+1)(n k— q+zl+2) 4 i

| =0

! LI Lo
x( B (-y)y™* 1 dy+ ﬁ(l— vy dy ]{ L, ByI ] dy+ ﬁ y’_"dey]}. (C-32)
B B

B

[lytayr-a)r, , xandy = ("’“' o) mdndy+ [ 1y )L xdndy
S

So+S;+5;

= _E [_b_ Xy i, X1 dy + _[f_[(xln_k_qyj_q i X1, dy

—(-p)y™ 1 | 1 B
G Dok 1)-lg =3 —k+i)-G-2)] ( J i) e q+,1+3){f§( de

[Z( l)tl CJ a7J q—tl(f (l y)11+t1+11 dy+ ,[(l y),1+r1+11 dy]:l_'_(LEyj—qudy_’_ Byj—qudy]}

4=0

(C-33)
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_\OI, | ol 5
I(xl"—k—qyl-q )_ﬂxldxld-y = I(xln —k— qyj"q )_Iil’i.xldxld‘y_*_ j. (xl —k—qy ) ;.lxllz dx d.y
So+S;+8

k o, g Ox,

= [ [5Gy )%xlmldy+ [ e "y”")%xldxldy

X 1 1

- —(-p)y™ 1 . 1 e
_[("—k”l)—(q—2)I(n—k+il)—(j—1)]J”( B) "—k—q+i1+2{,2=0( 1y Cpl

[Z( | il ”(f(l yyreI dy+ [(l y)yreI, dyﬂ ([fyj"’jpdy+ [‘li y""jpdyJ}

1,=0

1 1 1 . .
Y|y (g yrsar ||+ | By dr, |
(n—k- q+11+2)(11+1){;( y ho; f [B ﬂ [f%y ”J}

B

(C-34)

For calculation of the pitching moment coefficient, C,,:

(n—k—q) j( ey, dndy=(n—k—q) [l Wi+ n-k=g) foareriyialy,  xiddy

S Sp+5;+5)

_(n k- q)_l:[ x[ ety e ,l,ledxdy+(n k- q)fi ”k"' "’)I,],2 L dy

~(n—k—g)-5)™"" 7 (1), n—k—q N gt
(11+11(n k+ll) (q 3)1( k+’1)_(j_2)]Jp[ B) (11+IXn k— q+zl+3 {Z( 1)’C21

{Z( 1)"C’ 9779~ 'l[f (l y)|+tn 1 dy+ L(l y jreal g @J:|+[[b%yj—qudy+ Eyj—qudy]}

1,=0

(C-35)

130



I( nqu ,,ilezdxldyz I( n-k—q Jq)I‘H2 dxdy+ J' nkq jq)1’1’2
3 g

S, So+S;+5

f[ Xyl ,,zxfdxdy+f£ 9y xR dy

_( py 1 ; "
(11+1)[(n k+i)-(g-d@m-k+i)-(-5)]" ( ) (i, +)n—k— q+ll+4{2(—1YC'l

[Z( 1y clor ‘1[ - y)"*"*‘l dy + £(1 "”‘“Igdyﬂ+[ L%y""jpdy+ [‘li y’“qipdyj}

4=0

(C-36)

J‘(xl'"k—qyj_q )%xfdx,dy = I(x{""‘"y"" )a;c—"’ xidx,dy + I (x1 ey )a;xixlzdxldy

N 1 S, 1 So+5;+8; 1

= J:[l; (xl'"k Ty’ q)aéj‘ciz x?d,dy + _[J I ke y I ")%xfdxldy

X, 1 1

—=b - 7 1 S iy pip—f+1
=[("—k+i1)_(‘1_3)1(”‘k+i1)‘(j—2)]Jp(_§j+n k- q+zl+3{2(—l) €yl

[Z( l)t; CJ q7)-4- 5([ (l y)l|+13] dy+ L(I y)1,+t3l dy]:l ([;yj—qudy+ El_yj—qudy]}

1,=0

— q+ll1 oY {Z( 1y car= { D1 CJ“HIIJ“H-:S( E s dIgJ] + ( [‘i yidJ, ]} :

/=0 ts=0 B

(C-37)
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For calculation of the rolling moment coefficient, C,,

(n—k~ q)f( ey, wvdsdy=(n—k-gq) fle oy )I Jxiydsdy+n—k—q) [ty ), yady

S So+Si+8;

=(n—k- q)j:[ (ot o), xydedy +(n—k =) [ [ (eroty ), , xlydndy

—(n—k—g)-5)y"" ~(_ 1), n-k—gq Vet
LB (i e e A G I e I

J-g+l 1 . 1 . ~ ] . ~
X |: Z ( ts Cj—q+llj_q+]_ts ( Bl ll+t5+l Igdy+ £(I - .y)llwﬁ1 Igdy]] + ( LB yj_q+l‘]pdy+ Eyj_qﬂ‘]pdy]
B

t;=0 B B

(C-38)

[Geytayr=a ), , x? v, dy = I( rkay i) xiydedy+ [y TNl ydndy
N

Sy+8+85)

I[ "kq ’q)l,l,leydxd)/+f£ pokea "’)I,,xlydxdy

- —(-py? 1Y), s
G-k +i)-(g- -k +i)- (, 2)]"” ( ) "G+ - k_q+ll+4{21 Y

i—g+1 1 1 1
xlji (_ l),s C ljs-_q+1 ] j—q+]—ts[ B (l _y)i1+ts+l Ig dy + E (I_y)i,+ts+l Ig dy\]] +( E y j—q+ljp dy + E y j—q+l"7p dyj}
B B

ts=0 B

(C-39)
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f(x{""'qy"q)%xfydxldy= (x{'""“’y"")%xfydxldy+ | (x{"""’y"")%xfydxldy
So So+5;+8, 1

§ ox, ox,

_ b( nk—q jqallxlz dx,d n—k—q jq%zdx
f[(xl y )ax Xy y+ff )3x1 x2 ydx,dy

X 1

b)j - 1 v C” iy=f+l
[(n k+’1) (q 3)I(n k+11) (] 1)] ( ]+n k— q+11+3{2(_1) i

=0 B

=g+l } ] . . L e
x[jz (~1)r eyt (E(l -y dy+ £(l —y) Igdyﬂ+[ﬁyf“”vpdy+ ﬁy""*‘J,,dy]}
B B

1 1 1
1 Czl’z‘f 1 Cj—q+211—q+2—¢9 x+1+'9 dl Ja2 gy (L
= q+z1+3)(z]+1){f§( ' [2 ! [E H (Ey ]}

(C-40)

Similarly, detailed equations for solving integrals in Eq.(C-32) ~ (C-40) are solved by the recurrence

formulae and given in the following sections.

C-5: Recurrence formulae for the integral I,

Consider the recurrence integral defined as

dy,for a=0. (C-41)

I, = IL
'1 _ BZ y2
First, define an auxiliary integral 4, as

A = jy“,/l B’y’dy = jﬁd BZJ’W@, | (C-42)
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In turn, by integrating by parts for 4, one concludes that

a+2

A = jy“,/l Bzyzdy— ,/1 B*y? + +1j dy. (C-43)
a

1 B2y2

Substituting Eq.(C-43) into the definition of the auxiliary integral 4,, we obtain

; __ya—l ll_Bzyz +(a_1)1
a” aB* aB* Y

The value of integral at a = 0 is given by,

fora>1. (C-44)

I, = j—l———dy = Lin- (By). (C-45)
1- B2y2 B
. . 1 1
The recurrence integral I, is evaluated from y = 3 toy= 3
Fora=0,
! 1 V2
I,=10 y =— (C-46)
341-B%y* B
For a>1,
1 ‘ a-1
L= ===d=-"71,, (C-47)

C-6: Recurrence formulae for the integral I,
Consider the recurrence integral defined as

I, = jy’q/l—Bzyzdy, for 5> 0. (C-48)

Similarly, the recurrence formulae for integral I, is derived as

b1{] _ p2,2\% _
=2 Byzy+ bl . forb>1. (C-49)
(6+2)B (b6+2)B

The value of integral at b = 0 is given by
I, = j 1-B*y*d ——y,/l B*y* + 213 sin(By), for b=0. (C-50)
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In turn, the recurrence integral I, is evaluated from y = —% to y= %

For b=0,

I, = [b1/1—B2y2dy=%. | (C-51)

For b>1

=2l - (C-52)

C-7: Recurrence formulae for integral j(l ~y)'1,dy

Consider the recurrence integral defined as
I = j(l ~yY'1,dy. (C-53)

Forg=1,

N 2 1-By, 1+Bl n — 1-By\1+ Bl
I = C e ~ 2 d
= o) eost PR = (2 Preos  aim) J

u |y zr"+1 1+ BI)1- By «/B P-1& ..
ycrime 1°I_|{|. (C-54
2 [zo [ 2B(l y) 2q+1) Z; ﬂ (€39

21
For g>2,

I = )[j( —yYr e 1~ B2y dy+ BI(3-2g)I;, + B*(g - 2)1g_]

1)(1 B’

g-)]
=ﬂ11?12)|:(lm'(21) ( ) C{m—(g~l)][[m-(g—l)]—a(1 lea+2 )]+le(3—2g)];_l +B2(g_2)I;_2j|’ (C-55)
TN a=0

where from section C.5, I = j

e
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The recurrence integral / ; is evaluated from y = % to y =1, where, is constant, and is given by,
Forg=1,

B .
For g>2,
. 1 ™ 1 3-2g g-2
I "1, dy = I-— Bl I, +B*=—1I, C-57
g f‘;( oy - m+1( B) (1—3212){ g-1 <77 g1 } (€7)
where forg=1, [ S A
Tt B -
The recurrence integral I; is evaluated from y = 1 toy= 1 where /  is function of y, and is
given by,
Forg=1,
! SR AT R212 _1 4
L=Re-yrd = Z( 1y crim (B2)" -1 z B LSear ||, (c58)
B VB 4=0 q+1 2 2(q+1) pary

For g>2,

1

B
L=

B

m~(g-1)]

STt | Pl -1 -2 e

(C-59)
. 1
C-8: Recurrence formulae for integral [5, (-y)yar,
By integrating by parts, we obtain,
1 1 1
Pa-yyar, =0-yy 1,00 +m i @-y)" 1,dy
B B B
=7 lmI 1 ;Il m1r C-60
=15 Le+m [ 0=y 1dy. (C-60)
B
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Thus, forg=1,

mf~—wf~

( _l)m T | m I:mi(_l)‘lcm—llm—l'q[(B_l)qH __lq+1 /lez zltl—ﬂ] ]:I

JB -1 B -1|5 ‘ g+1 T Ag) ¢

(C-61)
For g=>22,

m('TETP

(—l) L By3=28; . p872p
B) (1I-B1)  g-1 g-1

— K””*f;‘”‘(_1ydw1«g—l>lﬁ»ﬂ«g—vh(1 _BI ))wzz(s—zg)r +F(g-), ]
g—lil— lz) a a a2 &t &2y

a0
(C-62)
where I, and [ ; are given as follows for g=1.
G — (C-63)
* JBMA-1
i SR AL /B2
L=pE0-y)"Ldy = Z( 1y criyme E2)" -1 T VBT - qu ‘I,
: N2 r1 2 Agr) i
(C-64)
C-9: Recurrence formulae for integral [(/+y)J, 4
Consider the recurrence integral defined by
Jy=[0+y)J,dy. (C-65)
Forg=1,
1+ ByX1+ Bl 2 - 1+ By)1+ BI
B e R e A e

+1 (1) 79H1 -
chl”_q y™ et o | BiYi+ By JBI Z( I,
~ B lz g+1 2B(l + ) 2(q+1) pr

(C-66)
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For g2>2,

- O N e A R RVARY YR

(g- 1)(1 B?

1 [r~(g-1 el ‘ ‘
=(g—l)(l—lez)H ZC[ tletebe g, B21a+z)]+321(3—2g)1g_1+B’(g—2)1g-2],

a=0

(C-67)

where from section C.5, I, dy and I,

- I I yal 2 dy
\1-B%y’ \J1-B%y
The recurrence integral J ; is evaluated from y=-~/to y = —% , where J _ is constant, and is given

Forg=1,

1 1 n+l P
l+y) T dy=—T]1-—| —Z—. C-68
[ (+y) T dy= 1( B) — (C-68)

For g2>2,

RS 1 1" 1 3-2 -2
Jy =[P+ Jgdy=————(l——] i )[le ng-1+Bz%Jg-z} (C-69)

n+1 B - B*? g-1
_ T
where forg=1, J = ——.
* JBUP -1

The recurrence integral J; is evaluated from y = —% to y =%, where J, is function of y, and is
given by,
Forg=1,

1 Ay e [p212 _1 4

J. =P +y)J,dy= ZC”I” (€] -6 7 381 12(-1)"1q_,, :
5 B 12 q+1 2 2g+1) S
(C-70)

For g>2,

. [n—(g-1)]

Jg = Bl (l +y)" Jgdy: HII_W)[( ZC[n—(g—l)]l["‘(g-l)]—a (I BZI )] + 321(3 _ 28)-];_1 + B2 (g _ 2)];_2:|

(C-71)
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C-10: Recurrence formulae for integral E(I +y)dl,

By integrating by parts, we have
! ' 1 1 o .
Bsyyar, =0+yy 7,00 -n @+ yy s dy = ’(1 —EJ oD =n [ (+yy T dy
B B B Z

(C-72)
Thus, for g =1,

(), {——) ] z 2L [f:cn-llmw(("” -Gt s B g

Bl B -1 g+l 2 2Ag+1)

(C-73)
Forg>2,

‘ g, = 3-2g ,g-2
f l+y l_— 272 B’l Jeat +B’ Joo
3 Bl g-1 g-1

n [n~l—(g-l)k
- Cl-—g-D]jl-1-e-ka(; _ p2 1, B(3-2 B )
(g—lil—lezj[[ Z): ) . o) |+ BUG-28),., + B e -2V,

(C-74)
where J, and J; are given as follows for g = 1.
J - (C-75)
f B -1
! 2 B (i z B -1
5 (1 ] z, iy || -6
Jg ;( +J’) B lec ! ( g+1 ) 2(q+1) ;( ) ga ||+ € )
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C-11: Recurrence formulae for integral J' y"J ,dy

Consider the recurrence integral defined by

J, = Iy”dey
Forp =0,
Ty = [»7, ——Iy { —sin 1(By)}a’y Ey—ﬂ-—fy sin” (By)dy
n+l |
e -1 B Y d
B(n+1)( sin (y)) n+l'[ 1- B%y? 4

1
[—— —sin”! ] m] a(a=nsl)*

Forp=1,

Iy =[y7, dy—— [y"\1-B? 2dy—— bt

ny 1 p_INt
Jp = J-y dey =Wlb(b=n+p—l) +p—Bz—Jp_2,

where from section C-5 and C-6, 1

yn+l
a(a=n+l) = J’.\/—l———Ty_z

(C-77)

(C-78)

(C-79)

(C-80)

dy and I,y = [y"1-By*dy.

. . 1 5 . .
The recurrence integral is then evaluated from y=-b to y = R where J, is constant in such

integration domain, and is given by,

Forp=0,
~y L ey 1 1" el | 7T
Jp = [bBy de_y:;——ﬁ{(—g) —(—b) 1 E

Forp=1,

1
Ty =[FyT,dy=0.
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For p>2,

7= (gl et 3
p= ), VW= . ( )

n+l

~

where, for p =0, 717 =%;forp= 1,

-~
Il
o

The recurrence integral is then evaluated from y = —% toy= %, where J , 1s yet function of y, and

is given by,
Forp=0,
T e 3
J, =8 y'J,dy=- T+ I, - C-84
p %y p Ly B(n+1) n+1 a(a=n+1) ( )
Forp=1,
5 ! 4 2 ! 2.2 2
J,= Blyandy=FEyn 1-B y =§2—Ib(b=n). (C-85)
B B
For p>2,
~ L 1 p-1=
Jp = Blyandy = —p?lb(b=n+p—1) +?Jp—2 . (C'86)
B

C-12: Recurrence formulae for integral [ ,"dJ,

By integrating by parts, we have

L

nfiym
B

B

1
ﬁy”d/,, =y"J,(»)
B

o S PACR (P s (C-87)
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Thus, for p=0,

~ _ -B'f 1
5 y'df, =~ B %— n(—d—B—(n—)—Y—+;Ia(a=n)J . (C-88)

Forp=1
: ~ 2n
Wy, == Dy (C-89)
B
For p=2
1
" 7 ayp-ly 1 1 p-1-
Bly d]p =_(_B y sz Jp_z(_E)_n(WIb(b#ﬂ,_z) +WJP_2 . (C-90)
B

C-13: Integrals related to 7, and J,, for g =1.

Consider the following two integrals of inverse triangular functions given by,

. 1+ BIY1 - By yq+1 1+ BIf1- By \/3212 r yo J |
D e Ky ] —dy, (C-91)
B(i-y 2q+1) ((-yW1-By

[y cos 1+ B+ By) o 1+BI{1+By) VBT -1 yr dy. (C9)
\} 2B(+y) 2BU+y)  2g+) J(l+y>\/1 %

g+ q+1

Note that (y ) and (ly ) can be recast by,
+y
yq+l yq+1 +lq+1 lq+1
- 197 C-93
)"0 - iy ()
yq+1 _ yq+1 +(_-1)qlq+1 ( l)qlq+1 ; i e (_ 1)‘11q+1 .04
(S R 0 R v b S e o (©o

We apply general factorization equation for expanding (y"“ +(-1)"1 "“) and (l ol _ el )

AT SV () YL GY ) (C-95)
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19—yt (- y)zq:l Iyl (C-96)

By arranging the terms, one concludes,

fy cos- \/(1+Bl)(1 By) &

2B(I-y)
y* -1 o [U+BINI-By) VB -1 & y’
=L dy. C-97
g1 \/ 2B(1-y)  2g+) Z '[,/1 By €D

[ cos™ \/(1 +BI)1+By) , &

B(l + y)

) [+ BBy VBRI v
= cos + > (1) led% (C98)
g+1 2B(+y)  20g+1) 3 1- By
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Appendix D: General integral and integration limits for
calculation of aerodynamics coefficients
for delta and trapezoidal wings

D-1: Case of thin delta wing

I, . can be written in the form as

L)

i+l 1

iy iy +1 iy iy
I, = J‘J:X Y* pxay=50=Y) [ r dY+[x‘(l.+y)] AR SR B
1.2 m ll +1 5 (Z_Y)11+liR ll +1 o) (I+Y)’1+ ER

In turn, two 1ntegrals in Eq.(D-1) can be carried out analytically by the Newton binomial formula as

w» Y- 6)) 1
dy = c'zl'z-f — 4y, D-2
; l Y)"+l R ; f (l Y)z, f+1 ( )
1
Yl ir=f iy 1i,—f 1
dy = -1)? C 2% —_— Y. D-3
-[(JI) (] Y)’1+1 R fzo( ) (y) (l Y)n-f+1 ( )

Then, we denote two integrals in Eq.(D-2) and (D-3) by I, and J, respectively, where g =i, — f +1.

of () 1
=i ———ar, (D-4)
s (-YEwm |
1
- 1

Jg = f(y)mdy (D'S)

Analytical solutions can be drawn out successively by means of recurrence formulae technique for 7,

and J, straightforward. We conclude that

J— V1= Bl of + B3 2g1 828721 | for g2 -
= - o |,for g22. (D-6)
¢ 1-B7) (g-)i- g-1 g-1 %
I, =.}B{sin—‘ (Bf(y))+52’—], for g=0. | D-7)
I, =#co (1 B Gy ))(1+Bl) ,for g=1. (D-8)
JBH -1 2B(I- f(»))
) 6%) of () 1
here, 1, Y Y; I , = —_dy
where, f (-1FRn )g Tg = f (-YF'® Y)g"1 lo- '[% (-ry’w
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And

J1-B? i
p— {( VOl a3 281, +B* 8721 | forg22. (D)

CU-BP) g-Di+rF! T g-1 g-1

J, = %B- sin™ (Bf(y))}, for g =0. | (D-10)
2 4 [+ BfO))1+BI)

J =——cos’\/ ,for g=1. (D-11)

* [Br -1 2B(I+ ()

- 1 ! 1 ‘ 1
. — I8 . — |

where, J, = [r R dr; J. = W dr;J, .= T dy

Accordingly, the general integral, I, . , and its derivative with limits are given separately by

considering the location of point P(x,,x,).

For position outside the Mach cone to the right, % <y<land f(y)= % .

i+l 1 iy
y EAGSY) 31 gy (D-12)
1:82 i] +1 E(I_Y)tl+ ER
n M l[xl(l .y)]l1 f (l Y)’1+15R dyY . (D-13)

For position inside the Mach cone, —% <y< 1 and f(y)=y.

B
1 (e iy D GBAN 1 (A27) iy D S (D-14)
iy iy il +1 E(I_Y)iIHER i] +1 (I+Y)il+1§R
i [xl (l y )]I]+1 Y"
—1 =[x, (0 - y)J’ Y
[N [xl( y)] f (l Y)ll+1m 11 +1 fB (l Y)’l+1m +

i Y" [+ o i
I, 1+ p)] '[(I+Y)i‘+lilidY+ i (-I:(HY)"“SRdYJ (D-15)
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iy 1 Yi2
In addition, the derivative of integral fl —YHT—dY and f—m——dY with respect to x, can
(- R (+1)" R

be derived further as follows.

i ool el
i(f _r dY]:Z(—l)fC’fZl’z‘f ﬁ:-x—z (-1 car Eg (D-16)

1 i+
x50 -V)"R = N =

0 ; Y 2 b—f iy gt oJ, X, R iy—f viy pip—f aJ,
| p——————ar |=Y (1) =22 (1) £ -17
axl(f(l+Y)"“iR ) ,z:(:,( ye; ox, x3f=o( )7 oy ®-7

And the derivative of I, and J; with respect to y are then given by the recurrence formulae as,

For g>2,
o, -1 _(g—ljl—Bzyzl—Bzy(l—y)+le3_2g ol +B? g2 alg_z—. (D-18)
¥ 1-BT'| (g-1-yF1-B* g-1 o g-1 o |
aJ, _ 1 (g—111—32)’2‘"B2J’(I+J’)+le3—2g 0y + B g-2d, . (D-19)
d 1-BY? I (g -1 + ) 1- B2y’ g-1 oy g-1 o |
Forg=1,
o, 1 . | (D-20)
¥ (I-yW1-B*y?
oJ -
e S (D-21)
& (I+yW1-B*y?
For position outside the Mach cone to the left, -/ < y < —% and f(y)= —%.
i+l 1 iy
ify = [xl (l+y)] Bl y i +1 (D-22)
i+l A +r)'R
1 i
i[,“iz =[x, + ) [E _r (D-23)

o, s+y)yie
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D-2: Case of thin trapezoidal wing

I, . can be written in the form as

h.h

i iy iy il+l 1 iz
oo = [ dxay = b =) [ — . R 'S (D-24)
s W+l S d-nTR L +1YoR

The analytical solutions to the first integral in Eq.(D-24) have been established in Eq.(D-6) ~ (D-8),

and the second integral can also be solved analytical by the recurrence formulae. We conclude that

1 2 2

+ y? . _p=1[41-B(/() G
=B — = P 2z -

To= b le’{ p-1 GO 4T, |, forpz 2. (0-23)
J = ; =1 f—sin“(Bf( )|, forp=0 (D-26)
r YR B2 YV ), o =T
J =J% de_:Lw/l—Bz(f(y))z forp=1 (D-27)
» YmR B’ ’ ’ -

- 1 r ’ 1 p~2
where JP=P Zv——dYan B Y

() R f(y)

As a consequence, the general integral 7, , and its derivative in respect to x; with limits are

determined as follows based on the location of point P(x,,x,).

For position in area S, ;13— <y<l and f(y)= % .

h+1 1 iy
y N EAGY) s Y gy, (D-28)
158 il +1 E(Z_Y)tl+ ER

(D-29)

L =l l=9)
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For position in area S, —% <y< % and f(y)=y

G-y » . Y" x Ly
o= dy B day. D-30
h i +1 f (-N)"'R ¥ i +1 J:m R (-30)
: [ (- 2 Y
=lx,U-y)' dYy ———dY
’1 iy [xl( y)] f (l Y)IIHER + 11 +1 fB (l Y)zl+1m +

1 11+1 ‘ 1 yriy
x," —dY 0 [ e dYJ. (D-31)

R i +1 ox, R

1 v/i
where the derivative of integral f dY and f %—dY with respect to x, in Eq.(D-31) can

(l Y)l+1m

be given by,

_a_ _l__ —_ S i ’z‘f
ax fl(l_Y)i,HiR ] Z( 1) l ax

1 B 1

ol,
iZ Cyep g ©3)
Xy f=0

o
axl

.[Y‘z dYJ aJp=_Lp—li 1- B%*y? yp_l+j
R Ox, x, B’p oy p-1

y p-1-B al 2 2 -2 a7p—2
=7 +1/1—B y xyF 4+ ,for p>22 (D-33)
x B'p (p—l,/l—Bzy2 o

The derivative of I, and J . With respect to y in the above two equations is given by the recurrence

formulae as,

For g>2
ol —1)1- B%y?| - B*y(l - —2g I )
g1 (s -0t 57| B¢ y)+3213 28 %51 2872062 | (D34
& 1-BI*| (g-1)I-y)\1- B> g-1 o g-1 o
Forg=1,
ol 1

g _

= : D-35
& (I-yW1-B>y ®-39
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- 1
For position in area S, and S,, -/, SyS_E and f(y)=—§-

X

ik

1

i+l

1 B
i +1

1 Y12

R

1
B

dy .
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