
VulANalyzeR: Explainable Binary Vulnerability Detection
with Multi-Task Learning and Attentional Graph Convolution

LITAO LI∗, STEVEN H. H. DING∗, YUAN TIAN∗, BENJAMIN C. M. FUNG†,
PHILIPPE CHARLAND§, WEIHAN OU∗, LEO SONG∗ and CONGWEI CHEN∗, ∗ School of
Computing, Queen’s University, Canada, §Mission Critical Cyber Security Section, Defence R&D Canada,
Canada, and † School of Information Studies, McGill University, Canada

Software vulnerabilities have been posing tremendous reliability threats to the general public as well as
critical infrastructures, and there have been many studies aiming to detect and mitigate software defects at
the binary level. Most of the standard practices leverage both static and dynamic analysis, which have several
drawbacks like heavy manual workload and high complexity. Existing deep learning-based solutions not only
suffer to capture the complex relationships among different variables from raw binary code, but also lack the
explainability required for humans to verify, evaluate, and patch the detected bugs.

We propose VulANalyzeR, a deep learning-based model, for automated binary vulnerability detection, CWE
type classification, and root cause analysis to enhance safety and security. VulANalyzeR features sequential
and topological learning through recurrent units and graph convolution to simulate how a program is executed.
The attention mechanism is integrated throughout the model, which shows how different instructions and
the corresponding states contribute to the final classification. It also classifies the specific vulnerability type
through multi-task learning as this not only provides further explanation but also allows faster patching for
zero-day vulnerabilities. We show that VulANalyzeR achieves better performance for vulnerability detection
over the state-of-the-art baselines. Additionally, a Common Vulnerability Exposure (CVE) dataset is used to
evaluate real complex vulnerabilities. We conduct case studies to show that VulANalyzeR is able to accurately
identify the instructions and basic blocks that cause the vulnerability even without given any prior knowledge
related to the locations during the training phase.

CCS Concepts: • Security and privacy→ Software reverse engineering; • Computing methodologies
→ Neural networks.

Additional Key Words and Phrases: Binary Vulnerability Detection; Multi-Task Deep Learning; Attentional
GCNN; Explainability

1 INTRODUCTION
Vulnerability detection is a constantly studied problem in the security community, due to the
potential severe hazards being caused by vulnerabilities. Many cyber attacks are rooted in software
vulnerabilities. Unlike malware, these vulnerabilities are difficult to detect since they go beyond a
simple inference of the program functionalities and require a deep understanding of the complex
relationships among the variables. According to Common Vulnerability Exposures (CVE) statistics,

Authors’ address: Litao Li∗, Steven H. H. Ding∗, Yuan Tian∗, Benjamin C. M. Fung†,
Philippe Charland§, Weihan Ou∗, Leo Song∗; Congwei Chen∗, ∗ School of Computing, Queen’s University, 99 University
Ave, Kingston, Canada and § Mission Critical Cyber Security Section, Defence R&D Canada, , Valcartier, Canada and †
School of Information Studies, McGill University, 845 Rue Sherbrooke O, Montreal, Canada, *{litao.li,steven.ding,y.tian,
weihan.ou,leo.song,congwei.chen}@queensu.ca, ben.fung@mcgill.ca, philippe.charland@drdc-rddc.gc.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
XXXX-XXXX/2023/4-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: April 2023.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Li, et al.

the number of published vulnerabilities has more than doubled from 6,447 in 2016 to 14,714 in 20171.
Modern vulnerabilities also become more difficult to manage and discover, and bug patches cannot
catch the speed of growing vulnerabilities [1, 2]. Nowadays, software engineering technologies
grow more abstractive, and uncontrolled code clone becomes a prevalent issue. The abstraction
can hide “unnecessary" details that the programmers overlook and that are leveraged by hackers,
thus causing vulnerabilities hard to avoid [3]. Existing dynamic and static approaches for detecting
vulnerabilities in both source and binary code have proven to be quite effective, but still have many
drawbacks. For example, static-based tools, such as Flawfinder [4] and RATS [5], involve heavy
manual work of domain experts, who are constantly in critical shortage in the cybersecurity job
market. Dynamic program analysis is also very costly, due to the path explosion problem and
could lead to poor program coverage. In comparison, data-driven approaches can make up for
the aforementioned disadvantages. Data-driven models usually require far less manual input and
feature crafting, since they can learn generalizable patterns from the data with a careful design.
These models may take longer in the training stage compared to certain static or dynamic analysis
techniques, but can provide far superior speed during inference.
Vulnerability detection is usually conducted at two levels, namely source and binary code

levels. Research on source code level has shown promising results [6, 7]. However, since source
code is often not available in many scenarios, end-users or edge devices have difficulties and
limited resources to determine, evaluate, and verify if a particular program or a 3rd-party library
contains vulnerabilities. Binary vulnerability detection then becomes applicable in a wider range
of situations. When compared to its source code equivalent, binary code detection is significantly
more challenging because of the loss of much syntactical and semantic information during the
compilation process from source code.

A few studies have already applied deep learning for vulnerability detection at binary level [8, 9],
and the results are quite effective. However, these existing methods can still be hard to use in
practice. First, these models simply output a binary classification of either vulnerable or non-
vulnerable, without providing any information about the location of the vulnerability. Engineers
would still need to track the program variables and path to find the exact location, thus leading
to high costs. Another drawback is that the current approaches do not differentiate the types of
vulnerability, such as Common Weakness Enumeration (CWE)2 types during the inference stage.
Engineers need to investigate the program based on the types of vulnerabilities and take actions
accordingly. If both the location of the detected vulnerability and its CWE type are available as
explanations, along with the vulnerability detection output returned by deep learning models,
there would be much less human effort involved to validate the model output and derive actionable
insights.

We consider the drawbacks of the existing techniques and propose VulANalyzeR, a deep learning-
based model for explainable vulnerability detection and CWE classification. To briefly show its
importance, consider a sample output of VulANalyzeR on a vulnerable program related to CWE
121-stack-based buffer overflow, as shown in Fig. 1. The model not only predicts the vulnerability
and CWE type but also highlights the instructions we should pay attention to in the assembly code.
Blue and orange highlighting corresponds to basic blocks and instructions, respectively, and the
opacity indicates the score of each element. The scores are calculated from the attention weights,
which will be discussed in detail in Section 3.4. The weights are obtained from the neural network
model, which is optimized to detect vulnerabilities. The scores can then be interpreted as how much
each basic block or instruction contributes to the final classification. To understand the code more

1Statistics on Common Vulnerabilities and Exposures (CVE) Details
2Common Weakness Enumeration (CWE)

, Vol. 1, No. 1, Article . Publication date: April 2023.

https://www.cvedetails.com/
https://cwe.mitre.org/

VulANalyzeR 3

TwoIntsClass * classTwo = new(data) TwoIntsClass;

/* Initialize and make use of the class */

classTwo->intOne = 5;

classTwo->intTwo = 10;

/* FLAW: sizeof(data) < sizeof(TwoIntsClass)

then this line will be a buffer overflow */

printIntLine(classTwo->intOne);

Probability of Vulnerability based on Assembly Code: 99%
Predicted CWE type: CWE121. Related blocks and instructions:

Original source code (CWE121 – Stack-based Buffer Overflow):

Fig. 1. VulANalyzeR’s output highlighting the vulnerable basic blocks and instructions. The vulnerability
happens when the data array for one integer has been assigned with two integers, thus causing a buffer
overflow (see the source code above). The blue color highlights related basic blocks and the orange color
highlights related instructions. The color intensity indicates the score of a basic block or an instruction. In
this case, the model highlights the correct block where two integers are assigned to the data object. It also
captures 0ah and rax which correspond to the two integers. The size of the stack frame that contains the
data array, 40h, is also highlighted. VulANalyzeR does not require the source code part and is not given
any location related hints in training.

easily, the source code is shown on top of the figure. A potential buffer overflow could occur when
the sizeof(data) is less than sizeof(TwoIntsClass). In this case, the array size of the data is 1
and TwoIntsClass object contains two integers. On the bottom, the block loc_100001770 has the
highest score of 1.0, which indicates that most attention has been paid to this block. This block
tries to write two integers into the data buffer, which is exactly where the vulnerability is located.
VulANalyzeR also provides a finer granularity - the individual token level. It highlights 0ah, which
is 10 in the source code, as well as the register holding this value. rax is highlighted, as it contains
5, the first integer.
To the best of our knowledge, combining both explainability and CWE classification into vul-

nerability detection has not yet been well studied in the literature at either the binary or source
code level. There are previous works that aim at providing explainable results for vulnerability
detection [10, 11]. However, these require further perturbed processing and manual selections to
extract important tokens or segments from the code, which is inefficient and require additional
work besides the model training. VulANalyzeR can combine the training and explainabililty in
one architecture and provides an end-to-end learning paradigm. To summarise, we make the
contributions as the following:
• Automated and data-driven end-to-end binary vulnerability detection that requires minimal
domain knowledge and abandons manual feature crafting.

, Vol. 1, No. 1, Article . Publication date: April 2023.

4 Li, et al.

…
mov eax, [ebp+data]
mov [ebp+eax*4+buffer], 1
mov [ebp+i], 0
jmp short loc_8000061
cmp [ebp+i], 9
mov eax, [ebp+i]
mov eax, [ebp+eax*4+buffer]
push eax
call printIntLine
add esp, 4
add [ebp+i], 1
mov eax, [ebp+data]
mov [ebp+eax*4+buffer], 1
mov [ebp+i], 0
jmp short loc_8000061
cmp [ebp+i], 9
mov eax, [ebp+i]
mov eax, [ebp+eax*4+buffer]
push eax
call printIntLine

Assembly CodeBinary File

01010101101010010
00010010101001010
10110101001000010
01010100101010110
10100100001001010
10010101011010100
10000100101010010
10101010100110010
01001010010000100
10101011010100100
00100101010010101
01101001010101101
01001000010010101
00101010110101001
00001001010100101
01011010100100001
00101010010101010
011001001001010…

mov eax, [ebp+data]
mov [ebp+eax*4+buffer], 1
mov [ebp+i], 0
jmp short loc_8000061

loc_800006B:
cmp [ebp+i], 9
jle short loc_8000057

loc_8000057:
mov eax, [ebp+i]
mov eax, [ebp+eax*4+buffer]
push eax
call printIntLine
add esp, 4
add [ebp+i], 1

Control Flow Graph (CFG)

IDA/Ghidra

Model Input

Parse

𝑆 – Extracted instructions from
basic blocks
- mov, eax, ebp, …
- cmp, ebp, i, ebp, jmp, …

…

𝐴 – Adjacency matrix for basic

block links by “CALL” and “JMP”

related operations.

1 0 … 1

0 1 … 0

… … … …

0 1 1 1

Block 0 Block 1

Block 0

Block N…

Block 1

…

Block N

IDA/Ghidra

Fig. 2. Binary file processing and transformation for model input. The 3-step data pre-process: disassembling
binary files to assembly instructions; parsing and merging CFGs and Call Graphs; and extracting instruction
and adjacency matrices.

• Combining sequential learning and topological learning to capture the semantics of instructions
and complex structural relationships of binary code, and enhance the detection capability.

• Integrated multi-head attention mechanism to provide interpretable results for security engineers.
• Multi-task learning for classifying CWE types while augmenting vulnerability detection accuracy.
• Benchmarking of state-of-the-art data-driven methods for vulnerability detection and CWE
classification on both synthetic datasets and real Common Vulnerability Exposures (CVE).
The rest of the paper is organized as follows. Section 2 defines the problem, including the input,

output, and model. We also introduce relevant notations. In Section 3, we elaborate on the technical
details of our model design and methodology we used. Section 4 presents our benchmark and
case study: dataset description and statistics; experiment setup; results and comparison with the
state-of-the-art methods. Section 5 discusses the existing work in dynamic analysis and deep
learning methods for binary vulnerability detection. Section 6 concludes this paper. Our code is
available at 3.

2 PROBLEM DEFINITION
Before diving into the methodological details, we first formally introduce the related notations and
define the studied problem. The input to the overall model is a binary file. G = (𝑺,𝑨) combines
all the Control Flow Graphs (CFGs) in the binary file where 𝒔 ∈ 𝑺 denotes the sequence of
instructions within a basic block, and 𝑨 denotes the adjacency matrix where the rows/columns
represent nodes, and values represent the existence of an edge. An edge is created between two
basic blocks if they are connected in a CFG or in the function call graph. We use a neural network
as a function 𝑓 parameterized by 𝜃 to model the relationship between a graph G and the output
signals 𝑦. Specifically, there are two output signals: the probability of being vulnerable 𝑦vul and the
probability distribution over CWE categories 𝑦cwe. Overall, given a graph G = (𝑺,𝑨) constructed
from a binary file, we apply a learning function 𝑓 : G → (R,R |CWE |) and obtain 𝑦vul, 𝑦cwe.

3Github Repository

, Vol. 1, No. 1, Article . Publication date: April 2023.

https://github.com/lxdragoon/VulANalyzeR

VulANalyzeR 5

3 METHODOLOGY
In this section, we discuss the 6-component design of VulANalyzeR. For each component, we first
discuss the design concern, which is the rationale for choosing the design in certain ways. Then,
we show the technical details, such as neural network architectures.

The first component 𝑓𝑝 pre-processes and transforms binary programs into the input form in
which deep learning algorithms can consume and learn from. This can be done by parsing control
flow graphs G, to extract instruction information 𝑺 and graph structures 𝑨.

𝑺,𝑨 = 𝑓𝑝 (G)

The second component 𝑓𝑠 models the instructions 𝑺 of basic blocks, which are sequences of
operations and operands. The output is a learned instruction representation 𝑽𝑠 .

𝑽𝑠 = 𝑓𝑠 (𝑺)

The third component 𝑓𝑔 aggregates the instruction representation 𝑽𝑠 with graph structure informa-
tion 𝑨 to learn the graph representation 𝑽𝑟 through a graph neural network.

𝑽𝑟 = 𝑓𝑔 (𝑽𝑠 ,𝑨)

The fourth component 𝑓𝛼 implements a specific aggregation mechanism, a multi-head attention
that is used in order to explain the model result and locate the vulnerability. The output 𝑮𝑟 is
a learned graph representation, while the 𝑠𝑐𝑜𝑟𝑒 indicates the amount of attention paid to each
instruction token or basic block.

𝑮𝑟 , 𝑠𝑐𝑜𝑟𝑒 = 𝑓𝛼 (𝑽𝑟)
The fifth component 𝑓𝑐 is a multi-task design in order to classify the both the vulnerability 𝑦vul and
CWE type 𝑦cwe.

𝑦vul, 𝑦cwe = 𝑓𝑐 (𝑮𝑟)
The last component 𝑓𝑣 creates visualization of explainable results from the model output 𝑦vul, 𝑦cwe
and output 𝑠𝑐𝑜𝑟𝑒 from intermediate component.

𝑣𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑓𝑣 (𝑦vul, 𝑦cwe, 𝑠𝑐𝑜𝑟𝑒)

3.1 Preparing Model Input
In order to properly feed data into a neural network, choosing the kinds of data and input format
is critical, as it directly influences the performance and learning quality. We have two aspects of
design concerns that guide us through on how to transform a binary program into appropriate
numerical values.

Design concern 1:Which formof binary program should be used?Deep learning and neural
networks are computer programs that take numerical vectors as input. Binary code in its original
form consists of numerical values of 0’s and 1’s, which in theory can be absorbed by algorithms and
learned. This form of input is also used in applications such as malware detection [12]. However, it
can be difficult for the neural network to learn the functionality and vulnerability patterns, due to
the lack of syntactical structure This is especially true for vulnerability detection, where the model
needs to understand nuanced relationships among program variables. Also, an analyst would not
be able to understand the output, even if the model makes the correct prediction. Therefore, we
need to represent the binary code in another form that would enable analysts to understand the
semantics and structure of binary code. We choose assembly code as the form to represent binary
code. Assembly code can be obtained from object files via dissembling techniques, and it captures
the relative syntactical and structural information of binary code.

, Vol. 1, No. 1, Article . Publication date: April 2023.

6 Li, et al.

Design concern 2: How to represent the structure of binary code? Assembly code, as
a linear layout of instructions, misses important structures that embed the actual flow of code
execution. When modeling source code, existing studies have proposed multiple ways to model
source code. One may transform the source code into abstract syntax trees and perform tree-based
neural network for classification [13]. Others treat programs as natural language text and then
apply off-the-shelf natural language processing techniques to model code in a linear fashion [14].
These representations have been shown to be effective in vulnerability discovery on source code.
Recent research that involves assembly code also heavily leverages the graph structure of the
assembly code to simulate program execution [15]. In general, the binary file can be broken down
into a few levels: A binary file contains multiple assembly functions; each assembly function can be
represented as a CFG with interconnected basic blocks; and each block contains non-branching and
non-referred instructions. In rule-based vulnerability static analysis, CFGs are analyzed to identify
vulnerabilities [16] as well. There are several forms we can choose to represent a binary program:
CFGs, data flow graphs, and instructions. Representing the entire file as a list of instructions does
not capture the data flow and call relationships in the program. Data flow graphs possess the call
relationships, but lack the information of higher level functionality of each element. CFGs are
the most suitable in this case, since we can model the program path, while clearly separating the
functionality of each basic block.
With the design concern 1 and 2 in mind, we choose to first use a disassembler to obtain

assembly code from binary code. The assembly code is then further processed and parsed into
CFGs as G. While each function contains a CFG, we merge them into a large graph by using
the function call information. Note that the binary file contains information, such as comments,
strings, and file names that should not be fed into a neural network, as they do not contribute to
differentiating vulnerable code. These additional pieces of information are discarded, since they can
be easily manipulated and cause false positives. Even though we have not used strings in the data
segment, which may help identify string formatting vulnerabilities (CWE 134), we still achieve good
performance in this category. All basic blocks are extracted from G, and we obtain the instructions
𝒔 ∈ 𝑺 within each basic block. We only include operations and operands from the instruction 𝒔. To
transform the operations and operands into numerical values, we map them into arbitrary index
values, and denote the transformed indices as 𝑡𝑜𝑘𝑒𝑛𝑡 at time step 𝑡 . The learning of the sequential
dependencies between these tokens is further elaborated in Section 3.2. For structural information,
we obtain the adjacency matrix 𝑨 by parsing G and extracting the “call" statements between the
basic blocks. This is used in Section 3.3, where we model the graph structure using a graph neural
network 𝑓𝑔. 𝑨 is important to create the edges in the graph so the structure can be represented.
The process for preparing the data input is shown in Fig. 2.

3.2 Modelling Assembly Instructions
After obtaining 𝑺 and𝑨, we first aim at teaching the model to understand the semantics of assembly
language and model the sequential dependencies of instructions and variables contained in 𝑺 . This
component simulates how humans read and understand assembly code.

Design concern 3: How to learn assembly language semantics and capture dependencies
between variables? Assembly code, as a low-level programming language, behaves similarly to
natural languages where it is interpreted in a particular sequence. Each token in the assembly code
has a particular meaning, and the tokens are not independent. For example, “add” is semantically
similar to “addc”. To capture their relationships, we need to learn a numeric vector to represent each
token’s semantic meaning, since treating them as a discrete signal will ignore such relationships.
Additionally, similar to natural languages, it is interpreted in a particular context and in a dynamic
order. This means the existence of a token impacts the functionality of others in prior or later time,

, Vol. 1, No. 1, Article . Publication date: April 2023.

VulANalyzeR 7

and the same tokens do not represent the same semantics in different locations, correspond to the
program states.

Generally, in deep learning, the relationship among different signals (which is a token in assembly
code in our case) is captured by an embedding layer. Each unique discrete token is mapped to
a numeric vector to be learned. As mentioned in 3.1, the operations and operands are extracted
for each basic block and are in the form of pairs. We concatenate the instructions to obtain a
sequence of tokens in the form of [operation_1, operand_1, operation_2, operand_2, ...], denoted as
𝒔. Different 𝒔 are expected to have varied lengths. The number of tokens within a basic block is 𝒔𝑖 :
𝒔𝑖 ∈ R0,..., |𝑠𝑖 | , where |𝑠𝑖 | denotes the length of instruction 𝒔𝑖 in the form:

𝒔𝑖 = 𝑡𝑜𝑘𝑒𝑛1, 𝑡𝑜𝑘𝑒𝑛2, 𝑡𝑜𝑘𝑒𝑛3, ...𝑡𝑜𝑘𝑒𝑛 |𝑠𝑖 |
An embedding layer is denoted as a function 𝑓𝑒 , which is parameterized by a vector for each

token jointly trained with the other components of our model. The output of 𝑓𝑒 is then the initial
embedding vector 𝒗𝑡 at time 𝑡 : 𝒗𝑡 = 𝑓𝑒 (𝑡). The embedding matrix is also denoted as 𝑽 .
To capture the semantics and the contexts of the instructions as described in design concern

3, sequence models are a typical choice to model temporal relationships. We adopt the Recurrent
Neural Network (RNN) for this requirement. RNN is designed for sequence learning, where they
are able to learn dynamic behavior of sequences in conjunction with the embedding layer. RNN
models, such as Long-Short-Term-Memory (LSTM) [17] and Gated Recurrent Unit (GRU) [18] are
both the state-of-the-art sequence models, that are able to capture the dependency between input
in long sequences, which is a normal characteristic of assembly language. Bi-directional design is
beneficial, since it combines two levels of RNNs, one going forward from the beginning and the
other going backward from the end. It can mitigate the problem where learning tends to focus
more heavily towards the end of the sequence.
We use two bi-directional GRU layers, since in our experiment, GRU outperforms LSTM for

both accuracy and training time. GRU [19] updates the state 𝑟𝑡 at every time step 𝑡 by a linear
interpolation between previous state 𝑟𝑡−1 (1) and the candidate activation 𝑟𝑡 (3).

𝑟𝑡 = (1 − 𝑧𝑡)𝑟𝑡−1 + 𝑧𝑡𝑟𝑡 (1)
𝑧𝑡 = 𝜎 (𝑾𝑧𝑣𝑡 + 𝑼𝑧ℎ𝑡−1) (2)

𝑟𝑡 = 𝑡𝑎𝑛ℎ(𝑾𝑣𝑡 + 𝑼 (𝑞𝑡 ⊙ 𝑟𝑡−1) (3)
𝑞𝑡 = 𝜎 (𝑾𝑟𝑣𝑡 + 𝑼𝑟𝑟𝑡−1) (4)

Note 𝑧𝑡 (2) is an update gate; 𝑞𝑡 (4) is a reset gate;𝑾𝑧 , 𝑼𝑧 ,𝑾𝑟 , 𝑼𝑟 ,𝑾 , and 𝑼 are all weight matrices;
⊙ represents element-wise multiplication; and 𝜎 denotes a 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function.
The first Bi-GRU layer 𝑓𝑠1 takes the output from embedding layer 𝑣𝑡 and returns the forward em-

bedding matrix 𝑹 𝑓 1 and backward embedding matrix 𝑹𝑏1: (5). The two sequences are concatenated
into 𝑹1 (7)

𝑹 𝑓 1, 𝑹𝑏1 = 𝑓𝑠1 (𝑽) (5)
𝑹 𝑓 2, 𝑹𝑏2 = 𝑓𝑠2 (𝑹1) (6)
𝑹1 = 𝑹 𝑓 1 ⊕ 𝑹𝑏1 (7)
𝑹2 = 𝑹 𝑓 2 ⊕ 𝑹𝑏2 (8)

where ⊕ denotes concatenation of two matrices. 𝑹1 is fed into the 2nd Bi-GRU layer 𝑓𝑠2. Similarly,
forward embedding matrix 𝑹 𝑓 2 and backward embedding matrix 𝑹𝑏2: (6) are obtained. Eventually
the output 𝑹2 can be concatenated as shown in (8).
Sometimes, GRU may fail to model the long term dependency. Attention mechanism is able to

better capture the dependency between distant words or tokens, as the length of the sequence

, Vol. 1, No. 1, Article . Publication date: April 2023.

8 Li, et al.

Embedding

Bidirectional
GRU layers

GRU GRU GRU GRU…

GRU GRU GRU GRU…

…

RNN
embedding

GRU GRU GRU GRU…

GRU GRU GRU GRU…

Tokens 𝑡𝑜𝑘𝑒𝑛0
push

𝑡𝑜𝑘𝑒𝑛1
ebp

𝑡𝑜𝑘𝑒𝑛|𝑠𝑖−1|
jne

𝑡𝑜𝑘𝑒𝑛|𝑠𝑖|
loc_xx

A vector for each
attention head

…

Compute
Keys

+

…………

Compute
Values

𝑣𝑤1 𝑣𝑤2
𝑣𝑤𝑛−1

𝑣𝑤𝑛

…

…
Attention score =

softmax(Keys)

…

…

Layer 1 Layer 𝑙

Form a graph
with other

nodes
…

Updated node
representation

Graph convolution

+

Concatenate

Node
(basic block)
representation

Fig. 3. Neural network design. Tokens are first fed into a embedding layer to produce the embeddings for two
stacked bi-directional GRU layers. After, the GRU layer output is aggregated through multi-head attention to
produce the node representation. The GCN then consumes the node embedding with adjacency matrix to
learn the updated embedding 𝑉 ′

𝑟 through multiple convolution layers.

becomes larger by providing a shortcut to connect the each timestamp to the final layer output.
More importantly, attention allows analysts to visualize that the same tokens do not carry the same
information in different locations, thus providing explainability. The explainability is explicitly
discussed in Section 3.4. In our design, we use multi-head self-attention to aggregate the output 𝑹2
as shown in Fig. 3.
Multi-head attention is preferred over single-head attention, since multi-head is able to accom-

modate the required expressiveness of natural languages [20]. The attention layer calculates the
key 𝑺𝑤 and value 𝑺𝑣 separately from 𝑹2:

𝑺𝑤 = 𝜎 (𝑹2 ×𝑾𝑠2𝑤) (9)

𝑺𝑣 = 𝜎 (𝑹2 ×𝑾𝑠2𝑣) (10)
Where𝑾𝑠2𝑤 and𝑾𝑠2𝑣 are weight matrices. The attention score per head for each time step is then
calculated through 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑺𝑤) ∈ [0, 1]. These attentions scores are extracted directly from this
layer to show which instructions contribute most to the results (importance of the instruction
tokens). The representation for each node 𝑽𝑠 (11) is the dot product of key and value.

𝑽𝑠 = 𝑺𝑤 · 𝑺𝑣 (11)

The node representation vector 𝒗𝑠 ∈ 𝑽𝑠 is then fed into the graph neural network to learn the
structure and interaction among the nodes, which is discussed next.

3.3 Modelling Graph Structure Information
In the last section, we have obtained the representation 𝑽𝑠 for basic blocks through the sequence
model 𝑓𝑠 . However, the control flow graph, which connects these basic blocks and implies the flow
of execution, is not yet considered.

Design concern 4: How to model the program execution flow? Sequence models, such as
RNN, can potentially capture the full program semantics if the program is always running in a
top-down linear order. However, a program’s execution flow is more dynamic than linear, and basic
blocks in CFGs are linked based on jump-related and call-related operations. Their relationships
can be cyclic, and a sequence model cannot consider this aspect. In order to match the structural

, Vol. 1, No. 1, Article . Publication date: April 2023.

VulANalyzeR 9

nature of code, Graph Neural Network (GNN) [21] should generally provide a better framework
in the CFG level, when cyclic control flows happen very often. In particular, graph convolution
network (GCN) [22] is a type of GNN that can pass the learned information for one node to its
linked neighbor in a recursive manner, simulating the process of passing one program state in a
basic block to its linked basic block. Asm2Vec [15] uses random walk to simulate program execution.
Instead, we use graph convolution to simulate the dynamics of path traversal which is guided by
the content rather than doing this randomly. The information contained in a graph includes both
node representation and edge direction. Such information allows the network to simulate execution
path and model the functionality at the same time. Thus GNN is more powerful when the input is
CFGs.
The main input needed for a GNN is a node feature matrix and adjacency matrix. We use

the node representation matrix 𝑽𝑠 from GRU layers as a node feature input and the adjacency
matrix 𝑨 is extracted from Section 3.1. It should be noted that in our case, a node is a basic block,
which contains non-branching and non-referred instructions. One layer in this case represents
one message passing between neighboring nodes for aggregating information and calculates the
new graph states. Because of this design, the number of layers represents how many degrees the
message is able to propagate to other nodes, thus capturing the overall graph structure.

We use GCN shown on the right side of Fig. 3 to aggregate neighboring node information with
multiple layers. In each layer, the information of a node 𝑖 is propagated by its neighbor through a
forward update. The forward update of GCN can be formulated as:

ℎ𝑙+1𝑖 = 𝜎 (
∑︁
𝑗 ∈N𝑟

𝑖

𝑔(ℎ𝑙𝑖 , ℎ𝑙𝑗)) (12)

where ℎ𝑙𝑖 ∈ R𝑑𝑙 is the hidden state of a basic block 𝑖 during layer 𝑙 , with 𝑑𝑙 being the hidden
dimension of layer 𝑙 . N𝑟𝑖 denotes the set of neighboring nodes of node 𝑖 which can be obtained from
𝑨𝑖 .𝑔 is a message passing function from block 𝑗 to block 𝑖 , and in our case, is a linear transformation.
𝜎 is an activation function, in which we used 𝑅𝑒𝐿𝑈 . ℎ0 is the output vector 𝒗𝑠 from the sequence
model.

Note that the number of layers indicates the degree that information is propagated in a graph. In
smaller graphs, this should intuitively be set to a lower number, since duplicated information is
propagated more than once, and hence this could lead to overfitting. We denote the output at the
final layer as 𝑽𝑟 ∈ R𝑛×𝑑𝑓 , which is the node representation from the graph model, while 𝑑𝑓 denotes
the output dimension in the final layer.

3.4 Explainability and Actionability
Design concern 5: How to define explainability in the context of binary code vulnerability
detection? Explainability in deep learning has been a challenging problem, since humans and
algorithms do not communicate using the same language. In practical scenarios, explainability is
application- and context-dependent. For different applications, one has different ways to present
what to explain. For example, in object recognition, one can define explainability of the prediction
as the part of the image upon which the model is making the decision. In our context, when a user is
trying to validate a vulnerability identified by a machine learning model, we believe two important
pieces of information should be available. The first one is the locations of the vulnerability root
cause, corresponding to the program states of those particular locations. The second one is the
type of vulnerability, corresponding to the inner working of why certain locations are vulnerable.
These two pieces of output information provide actionable insights for end-users to evaluate, verify,

, Vol. 1, No. 1, Article . Publication date: April 2023.

10 Li, et al.

Node representation 𝑉𝑟

Compute
Keys 𝑉𝑤

Attention Scores:
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝑤)

…

+

……………
……………

Compute
Values 𝑉𝑟′

𝑣𝑤1 𝑣𝑤2
𝑣𝑤𝑛−1

𝑣𝑤𝑛

𝑣𝑟1 𝑣𝑟2 𝑣𝑟𝑛−1 𝑣𝑟𝑛
…

+

𝐺𝑟 Graph representation

…

…

Weighted
average of
score based
on the scores

A vector for each
attention head

Concatenate

Fig. 4. Weighted Average Multi-Head Attention.𝐺𝑟 can be obtained by the aggregation of node representation
𝑽𝑟 through multi-head attention mechanism. Firstly, this component of the model consumes 𝑽𝑟 with 𝑛

nodes,to computes the keys 𝑽𝑤 and values 𝑽 ′
𝑟 . 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑽𝑤) computes the score for each node and the graph

representation 𝐺𝑟 can be calculated by a weighted average.

and patch the found vulnerability. The locations can be found and highlighted by the attention-
based node aggregation method explained later in this section, where the output for the type of
vulnerability is achieved by the multi-task learning method presented in Section 3.5.

Design concern 6: Which granularity level should be used to indicate the location of
vulnerability?When identifying a vulnerability, one can narrow the focus to a particular token,
an instruction, a basic block, or a function. Different granularity levels show different details to
analysts and therefore, highlighting the tokens of assembly code on top of the highlighted basic
blocks will be the most beneficial, as it gives the most specific information to act upon (see Fig. 1 for
an example). It should be noted that the highlighted tokens correspond to the cumulative program
state learned through the neural network at that particular location. One highlighted token does
not mean that the same token should be highlighted at a different location. For the tokens, we
already have a multi-head attention mechanism on the top of the RNN outputs for instruction-level
aggregation in Section 3.2. The score matrix 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑺𝑤) already indicates which instruction is
more important compared to the rest in a basic block. For the basic blocks, which correspond to
the nodes in the graph, we also need a mechanism to score and aggregate them into a unified
graph-level representation.

, Vol. 1, No. 1, Article . Publication date: April 2023.

VulANalyzeR 11

With the stated design concern 6 in mind during the development, we adopt a multi-head
attention mechanism with key and value to aggregate the node representations to a graph represen-
tation. As shown in Fig. 4, first the value matrix 𝑽 ′

𝑟 ∈ R (𝑛×𝑑𝐺) is calculated through a multi-layer
perceptron (MLP) transformation:

𝑽 ′
𝑟 = 𝜎 (𝑽𝑟 ×𝑾𝑛2𝑔) (13)

where𝑾𝑛2𝑔 ∈ R𝑑𝑓 ×𝑑𝐺 is the transformation weight matrix to obtain the node representation with
the desired graph embedding dimension 𝑑𝐺 . The next step is to obtain the attention weight matrix
𝑽𝑤 ∈ R𝑑𝑓 ×ℎ for each node with another MLP transformation:

𝑽𝑤 = 𝜎 (𝑽𝑟 ×𝑾𝑛2𝑤) (14)

Similar as the last transformation,𝑾𝑛2𝑤 ∈ R𝑑𝑓 ×ℎ is the matrix to calculate the attention weight
for ℎ heads. Then, a softmax for each dimension is applied to obtain a score for each node 𝑖 . This
means: ∑︁

𝑖∈𝑛𝑜𝑑𝑒𝑠
𝑽𝑤

𝑗

𝑖
= 1,∀𝑗 ∈ ℎ (15)

In order to apply the attention weights to the node representation, the shapes need to be consistent.
This can be done by forcing the graph representation dimension 𝐺𝐷 to be multiples of attention
heads ℎ. Then 𝑉 ′

𝑟 is reshaped into 𝑉 ′
𝑟 ∈ R𝑛×ℎ×(𝑑𝐺 /ℎ) and computes the weighted average by

multiplying 𝑉𝑤 along the ℎ dimension. This yields the weighted node representation 𝑉𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 ∈
R𝑛×𝑑𝐺 . Finally a concatenation or summation can be used to reduce to a graph representation vector
𝐺𝑟 ∈ R𝐺𝐷 . Note that during inference, the attention scores for the basic blocks can be obtained
directly from the model weights 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑽𝑤).

3.5 Multi-task learning
Our model needs to perform two classification tasks given a particular G, namely vulnerability
detection and CWE type classification. This section discusses how we design the model to learn
both tasks efficiently and augment both task performance.
Design concern 7: How to work with two different objectives? There are several options

to learn multi-task in deep learning. The first method is to learn both tasks independently, which
means the knowledge is not shared across the models. The model weights are optimized solely based
on one objective. The second design is to combine the labels of CWE and vulnerability to produce 2
× number of CWEs, i.e. the labels become cwe121_good and cwe121_bad. Although this setup allows
one set of parameters to be optimized for both tasks, it assumes that cwe121_good and cwe121_bad
are completely separated/independent. In fact, they do share information, since both relate to a
specific type of program functionality. It is also possible to use soft parameter sharing between
models [23], but this approach is prone to over-fitting, which is already likely during original model
training. Instead, we can utilize multi-task learning model to combine CWE classification (recognize
the category of the functionality) and vulnerability detection with hard parameter sharing [24].
This way, the knowledge can be transferred between functionality recognition and vulnerability
detection. The advantage is that one set of weight parameters is learned to perform both tasks
simultaneously and is less likely to over-fit to one particular task. In the multi-task learning with
hard parameter sharing, CWE labels cannot be further splitted into vulnerable and non-vulnerable
labels. This ensures unbiased learning for both vulnerability detection task and CWE classification
task.

, Vol. 1, No. 1, Article . Publication date: April 2023.

12 Li, et al.

Given the learned graph representation 𝑮𝑟 from component 𝑓𝛼 and a learning function 𝑓𝑐 , i.e.,
our neural network, two results can be obtained:

𝑦vul, 𝑦cwe = 𝑓𝑐 (𝑮𝑟)

Notice that at the end of a training epoch, two objective functions are integrated, namely binary
cross entropy loss (𝐿𝑣𝑢𝑙) for vulnerability detection, and a multi-class cross entropy loss (𝐿𝑐𝑤𝑒) for
cwe classification. Each loss is then separately back-propagated and all weights are updated. This
allows the parameters to reflect both objectives and learn from them.

3.6 Output Visualization for Explainable Classification
In this section, we present how we translate the attention weights to scores for visual highlights.
Such results allow for analysts to easily understand the attention paid to each basic block or token
in a binary file. Example highlights can be found in Fig 1 and the examples in case studies 4.5.

The attention is defined as a score ∈ [0, 1] that is associated with a specific element (instruction
or basic block). Section 3.2 and Section 3.4 have demonstrated how we can obtain such scores
𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑽𝑤) (for basic blocks) and 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑺𝑤) (for tokens) through multi-head attention mech-
anism. Given a test sample G, we first feed it into the trained neural network. Then, we directly
collect the scores from the corresponding intermediate layers. The higher the score, the more a
basic block or instruction contributes to the final classification. We use two separate colors to
highlight the scores, where blue highlights basic blocks and orange highlights instructions. The
opacity of the highlighted color indicates the magnitude of the score (ranging from 0-1) where
more opaque color means higher score. Since the attention weights are based on multi-head, the
final score is aggregated using max instead of average from all heads. The opacity of the highlight
color is calculated as:

𝑜𝑝𝑎𝑐𝑖𝑡𝑦𝑏𝑙𝑜𝑐𝑘 =
𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑽𝑤)

𝑚𝑎𝑥 (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑽𝑤)
× 255

𝑜𝑝𝑎𝑐𝑖𝑡𝑦𝑡𝑜𝑘𝑒𝑛 =
𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑺𝑤)

𝑚𝑎𝑥 (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑺𝑤)
× 255

Note that the sum of scores for all basic blocks or all instructions within a basic block is not then
equal to 1, due to the max operation. For all the examples shown in this paper, we select the top-3
basic blocks and show all their highlighted tokens.

4 DATASET, EXPERIMENT AND RESULTS
This section describes the datasets used to evaluate VulANalyzeR, including the distribution and
statistics of certain aspects of the datasets. A complete experiment set-up is shown in order for
others to replicate the experiment. We also discuss the types of metrics used for the evaluation.
The experiment is divided into four parts to separately evaluate our contributions, including
vulnerability detection, CVE evaluation, CWE classification, and explainability. The datasets in the
experiment include the NDSS18 dataset, Juliet Test Suite, and a real world CVE dataset.
The NDSS18 source code dataset is derived from the National Institute of Standards and Tech-

nology (NIST): NVD4 and the Software Assurance Reference Dataset (SARD) project5. The NDSS18
source code was first posted [6, 7] and then compiled into binary code [8]. It contains a total of
32,281 binary files. The binary functions can be further split into Windows and Linux platforms,

4National Institute of Standards and Technology
5Software Assurance Reference Dataset

, Vol. 1, No. 1, Article . Publication date: April 2023.

https://nvd.nist.gov/
https://samate.nist.gov/SRD/index.php

VulANalyzeR 13

Table 1. Number of nodes and sequence length distribution (NDSS18)

mean std min 25% 50% 75% max
Node Count 16 30 2 8 11 16 309

Seqequence Length 17 22 1 1 9 24 231

Table 2. Number of nodes and sequence length distribution (Juliet)

Length mean std min 25% 50% 75% max
Node Count 117 111 3 81 85 96 1184

Sequence Length 16 16 1 6 10 26 245

and two CWEs (119 399). The labels for vulnerabilities are almost balanced within both the Win-
dows and Linux platform. The second dataset is the Juliet Test Suite6, which is a synthetic dataset
containing 118 different CWEs. A total of 83,624 binary files are in the dataset, where the labels
are equally split into vulerable and non-vulnerable files. Table 1 and 2 show that the statistics for
sequence length and number of blocks distribution are similar in both datasets.

On top of these two datasets, we also include real Common Vulnerability Exposures (CVE) cases
collected by Yaniv et. al. [25]. The corresponding CWEs include CWE 119 and CWE 78, which were
ranked 1st and 11th in 2019 according to the CWE archive7. There is a total of 8 different CVE’s
in our testing dataset, which are: cve-2014-0160, cve-2014-6271, cve-2015-3456, cve-2014-9295,
cve-2014-7169, cve-2011-0444, cve-2014-4877, and cve-2015-6826. In total, there are 3,379 samples,
where 60 of those are vulnerable. The ratio of positive samples in the CVE dataset is less than 2%,
which is extremely imbalanced.

4.1 Experiment Setup
Variants of VulANalyzeR.Weperform an evaluation for four tasks, namely vulnerability detection,
CWE classification, model explainability, and real world CVE detection. We have developed several
variants of VulANalyzeR in this section to compare the results between different neural network
setups. The First variant is VulRN, which is based solely on RNNwithout using the GCN to learn the
CFG structure. The advantage of using RNN only is the shallower complexity and also faster training
time. This is mainly served as a baseline to check if the model is able to learn the vulnerability
solely based on the natural language aspect of the program. The next variant is VulGCN, which is
similar to VulRN. VulGCN uses only GCN to learn the CFG structure information, without learning
the dependency between instructions. However, the embedding layer remains in this setup, in order
to transform the index of each token into a more meaningful representation. The node feature for
GCN input is aggregated by a 1-dimensional pooling layer from the embedding layer. The third
variant is VulRGCN, which is very similar to VulANalyzeR, but without any attention mechanism.
The design rationale behind this setup is to have a baseline for sanity check, to ensuring that the
addition of attention mechanism does not lower the performance. Note that all three variants still
learn multi-task objectives to classify both vulnerability and CWE types.

Evaluation. In both vulnerability detection and CWE classification, we follow the same experi-
mental protocol used in [8, 26], and split both NDSS18 and Juliet datasets as follows: 80% for training,
10% for validation, and 10% for testing, stratified by the vulnerability label. In CVE evaluation, we
first evaluate by using the model trained on NDSS18 for direct testing. Then we also show the
6Juliet Test Suite
7Top-25 Common Weakness Enumeration (CWE)

, Vol. 1, No. 1, Article . Publication date: April 2023.

https://samate.nist.gov/SARD/testsuite.php
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html

14 Li, et al.

results by uptraining the model on a small portion, which is 20%, from the CVE’s. All evaluation is
conducted on the testing set. In terms of vulnerability detection, which is binary classification, we
define vulnerable as positive and non-vulnerable as negative. Metrics include 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛,
𝑟𝑒𝑐𝑎𝑙𝑙 , 𝐹1𝑠𝑐𝑜𝑟𝑒 and area under the receiver operating characteristic curve (𝐴𝑈𝐶).

𝐴𝑈𝐶 is calculated by plotting the false positive rate 𝐹𝑃𝑅 = 𝐹𝑃
𝑇𝑁+𝐹𝑃 against the true positive

rate 𝑇𝑃𝑅 (same as 𝑟𝑒𝑐𝑎𝑙𝑙) set at maximum 200 different thresholds. Since CWE classification is
a multi-class classification task, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙 , 𝐹1, and 𝐴𝑈𝐶 work differently than the binary
classification task. In this case, each of the above metrics is first calculated for each class, then the
weighted average of all metrics is calculated by the support (numbers of instances in the classes)8.

Table 3. Hyper-parameter Setup

Hyper-parameters Set of Value Best Value Effect
Batch Size [16, 32, 64, 128] 64 fastest
Epochs [10, 30, 50, 70] 50 best AUC

Dimension RNN [32, 64, 100, 128] 100 best AUC
Dimension GCN [32, 64, 100, 128] 100 best AUC
Dropout GCN [0, 0.3, 0.5] 0.2 best AUC
Dropout Final [0, 0.3, 0.5] 0.3 best AURROC

Hyper-parameters. In terms of hyper-parameter tuning, Table 3 shows the hyper-parameters
we choose to investigate during the training process and the best one is obtained through the
validation set performance. The metric used to determine the best set of hyper-parameter is
validation 𝐴𝑈𝐶 . Batch size contributes little to the model performance, but a greater batch size
can significantly reduce training time. However, the largest value we can use without running out
of memory is 64. The number of epochs is set to be 50, as it yields the best performance, and a
larger number will lead to over-fitting. The hidden dimension for RNN layer is set to be 100 for one
direction, which means the bi-directional RNN layer will concatenate the forward and backward to
dimension of 200. The hidden dimension for GCN layer is also 100, as it yields the best performance.
We also use a dropout rate of 0.2 in the GCN layer and a dropout rate of 0.3 in the final dense layer
for better generalization, as these provide a better results in validation set AUC. In terms of other
setups, all experiments are conducted on a Windows 10 machine with 32gb ram, one Titan V and
Ryzen 9 3900x with 12 cores.

4.2 Vulnerability Detection
In this task, we evaluate the performance of VulANalyzeR using both NDSS18 and Juliet dataset
separately. The baselines include the existing state-of-the-art approaches on these two sets of data
as well as our variants, VulRN, VulGCN, and VulRGCN.
In terms of existing benchmarks for NDSS18, two papers [8, 26] use the binary NDSS18 for

vulnerability detection. We include these binary benchmarks only because we are able to employ
the same compiler options and conduct fair comparison. Other source code benchmarks should
not be used to direct evaluation, as they use different data processing, which is not available
at the binary level. In particular, the binary benchmarks introduce several techniques, which
are MD-CWE, MD-CKL, MD-RKL, MDSAE-NR and TDNN-NR. Since both papers separate the results into
Windows, Linux and combined platforms, we present our evaluations in the same way for consistent

8sk-learn metrics: precision score

, Vol. 1, No. 1, Article . Publication date: April 2023.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html##sklearn.metrics.precision_score

VulANalyzeR 15

comparison. Table 4 shows the results of all considered approaches on the NDSS18 dataset. In terms
of overall performance on both platforms, VulANalyzeR achieves the best accuracy of 89.53% and
AUC of 96.79%. In terms of improvement, VulAnalyzer can achieve 13.6%-28.9% higher AUC, and
2.3%-18.9% higher accuracy over five considered benchmarks. Most of the benchmarks have high
recall (∽98%) with lower precision. We consider the balance to be more important as high false
positive rates can lead to more expensive cost on the user side, and 94% recall is also not considered
a low value. Note that our GCNN model achieves the highest precision score of 87.09%, and the
overall AUC and accuracy are almost on par with the state-of-the-art benchmarks. Additionally,
Table 5 shows the breakdown of vulnerability detection by the two CWE types for the NDSS18
dataset, where the results are similar and accurate.

Table 4. NDSS18 Vulnerability Detection by Platform

Windows
Models Accuracy Recall Precision F1 AUC

VulANalyzeR 85.19 92.10 80.95 86.17 94.25
VulRN 80.72 77.99 82.56 80.21 91.17
VulGCN 83.12 81.96 84.07 83.01 93.64
VulRGCN 85.24 95.09 79.56 86.63 94.76

MD-CWE [8] 84.50 97.20 77.70 86.40 84.40
MD-CKL [8] 83.20 97.70 75.80 85.40 83.00
MD-RKL [8] 80.80 86.90 77.60 82.00 80.70

MDSAE-NR [26] 86.40 98.20 79.50 89.00 86.30
TDNN-NR [26] 85.20 97.90 78.30 87.10 85.40

Linux
Models Accuracy Recall Precision F1 AUC

VulANalyzeR 94.79 96.65 93.40 95.00 98.85
VulRN 91.03 89.96 92.31 91.18 98.01
VulGCN 90.61 87.79 93.22 90.42 98.01
VulRGCN 93.13 97.50 89.78 93.48 98.83

MD-CWE [8] 86.90 97.80 80.60 88.30 86.80
MD-CKL [8] 85.90 97.20 79.50 87.40 85.70
MD-RKL [8] 82.70 81.30 83.90 82.60 82.70

MDSAE-NR [26] 88.60 99.10 84.40 90.20 87.70
TDNN-NR [26] 87.30 98.90 84.10 89.30 87.40

All
Models Accuracy Recall Precision F1 AUC

VulANalyzeR 89.53 94.18 85.36 90.10 96.79
VulRN 85.38 83.47 87.09 85.24 94.89
VulGCN 86.48 84.59 88.12 86.32 95.81
VulRGCN 88.79 96.18 83.93 89.64 96.66

MD-CWE [8] 85.30 98.10 78.40 87.10 85.20
MD-CKL [8] 82.30 98.00 74.80 84.00 82.10
MD-RKL [8] 75.30 87.80 70.50 78.20 75.10

MDSAE-NR [26] 87.50 99.30 81.20 89.80 87.10
TDNN-NR [26] 86.60 98.70 80.30 88.30 86.30

, Vol. 1, No. 1, Article . Publication date: April 2023.

16 Li, et al.

Table 5. NDSS18 Vulnerability Detection by CWE

CWE119
Models Accuracy Recall Precision F1 AUC

VulANalyzeR 88.96 95.59 85.05 90.01 96.8
VulRN 85.73 84.3 87.81 86.02 95.21
VulGCN 90.25 95.48 83.25 88.95 97.87
VulRGCN 89.33 96.41 85.03 90.36 97.14

CWE399
Models Accuracy Recall Precision F1 AUC

VulANalyzeR 88.15 95.0 79.99 86.8 96.16
VulRN 83.14 76.66 81.17 78.85 92.74
VulGCN 85.89 83.23 88.87 85.96 95.59
VulRGCN 85.38 94.35 75.91 84.13 95.84

Table 6. Juliet Vulnerability Detection (CWE121 Only)

Models Accuracy Recall Precision F1 AUC
VulANalyzeR 99.68 100.0 99.38 99.69 99.99

VulRN 96.81 98.44 95.48 96.94 99.03
VulGCN 100.0 100.0 100.0 100.0 100.0
VulRGCN 99.04 99.68 98.46 99.07 99.96

i2v/CNN [27] 87.6 NA NA NA NA
i2v/TCNN [27] 96.1 NA NA NA NA
w2v/CNN [27] 87.9 NA NA NA NA
w2v/TCNN [27] 94.2 NA NA NA NA

i2v [28] 96.81 97.07 96.65 96.85 NA
bin2img [28] 97.53 97.05 97.91 97.47 NA
w2v [28] 96.01 96.07 95.92 95.99 NA
gcn [29] 97 NA NA NA NA

Table 7. Juliet Vulnerability Detection Result (All CWE)

Models Accuracy Recall Precision F1 AUC
VulANalyzeR 99.54 99.85 99.24 99.54 99.93

VulRN 94.87 95.28 94.49 94.89 98.65
VulGCN 99.69 99.59 99.80 99.69 99.96
VulRGCN 98.64 99.32 97.99 98.65 99.78

The Juliet dataset has a different evaluation setup than NDSS18, since the Juliet is much larger,
and all of the existing benchmarks only cover a portion of the CWEs within the dataset. We will
first show the overall performance on the entire dataset, which totals 83,624 files. Table 7 shows
the VulANalyzeR and all variants perform well across all metrics. VulANalyzeR and GCNN both
achieved over 99.5% accuracy and over 99.9% AUC. Even though the Juliet dataset is a synthetic

, Vol. 1, No. 1, Article . Publication date: April 2023.

VulANalyzeR 17

Table 8. Vulnerability Detection - Comparison with VYPER

CWE121 CWE134 CWE78
Models TP rate TN rate TP rate TN rate TP rate TN rate

VYPER[30] 0.00 99.00 100.0 100.0 73.00 100.0
VulANalyzeR 99.38 100.0 100.0 99.11 99.34 98.75

CWE122 CWE415 Average
Models TP rate TN rate TP rate TN rate TP rate TN rate

VYPER[30] 14.00 98.00 100.0 100.0 57.40 99.40
VulANalyzeR 100.0 97.95 98.86 100.0 99.52 99.12

dataset, we still consider the model to be very successful at learning the vulnerability patterns. In
the benchmarks from [27, 28], only CWE121 is shown, where the authors use Instruction2Vec (i2v),
CNN and Word2Vec (w2v), and have reported 5 versions, namely i2v/CNN, i2v/TCNN, w2v/CNN,
w2v/TCNN, and bin2img. The evaluation of CWE121 can be found in Table 6, where VulANalyzeR,
VulGCN and VulRGCN all achieved over 99% accuracy and 99% AUC. VulGCN in particular has
correctly identified all CWE121 without any false positives or false negatives. Another benchmark
is [29], which uses a graph convolution network (gcn) similar to VulGCN, but with different methods
for constructing the feature matrix. The author reports the overall accuracy of 97% for 30 different
CWEs, where the model is trained on each individual CWE. Note that VulANalyzeR is trained with
all CWEs combined and still achieves the overall accuracy of 99.54%.

We also include a comparisonwith a dynamic analysis-based technique for vulnerability detection.
VYPER [30] is a method based on concolic execution of binary code and is used for comparison
with VulANalyzeR. In the experiment, VYPER reports 5 different CWEs from the Juliet Test Suite.
However, they only include the true positive rate (TPR) and true negative rate (TNR) as metrics.
Since we cannot directly calculate the other metrics, TPR and TNR are used for comparison. Table
8 shows the performance on 5 different CWEs. We can observe that although VYPER is able to
achieve a high TNR across all CWEs, the reported TPR (or recall) on CWE121 and CWE122 is
only 0% and 14% respectively, which indicates its problem in identifying vulnerable programs.
VulANalyzeR, by contrast, consistently achieves a very high average TPR of 99.52% and average
TNR of 99.12% at the same time for all CWEs.

4.3 Real World CVE Detection
On top of the evaluation on two synthetic datasets, we evaluate the performance of VulANalyzeR
on real world CVE dataset. The CVE dataset is significantly more complex and larger compared
to the training dataset. To evaluate, we uptrain the previous NDSS18 model using only 20% of
CVE samples. We want to test the model’s ability to quickly adapt to other types of vulnerabilities.
This is a valid approach since in our opinion, many existing CVE’s are extremely useful to help
identify patterns and used as uptraining resources. We report that the AUC is 83.54%, the accuracy
is 99.31%, the recall is 63.89%, the precision is 95.83%, and the F1 score is 76.67%. Considering that
the dataset is very imbalanced with less than 2% vulnerable samples, we believe that the model is
able to capture existing CVE’s. There are very few false positives, which indicates that the model is
efficient at identifying vulnerability. Note that even though the accuracy is nearly 100%, it is due to
the imbalance of the dataset, and the model has predicted many negatives. There are more false
negatives than false positives, which can be a future direction for improvement.

, Vol. 1, No. 1, Article . Publication date: April 2023.

18 Li, et al.

4.4 CWE Classification
This part illustrates the evaluations for multi-class classification of CWE types. Note that the CWE
classification shares the same model parameters as vulnerability detection (hard parameter sharing)
as we design it to be a multi-task learning model. Since no benchmarks are currently available for
CWE classification, we compare VulANalyzeR with our own variants, including VulRNN, VulGCN,
and VulRGCN. Table 9 shows the NDSS18 evaluation on CWE classification. Since NDSS18 only
contains CWE119 and CWE399, the task is effectively a binary classification task. VulRGCN is able
to achieve the best for all 5 metrics, mostly at around 99.9%. We consider all models to be effective
at this task with over 99% accuracy and since CWE119 is the most common vulnerability, having
the ability to detect CWE119 is valuable in real world scenarios.

Table 9. NDSS18 CWE Type Classification

Models Accuracy Recall Precision F1 AUC
VulANalyzeR 99.60 99.60 99.60 99.60 99.80

VulRN 99.1 99.1 99.1 99.1 98.42
VulGCN 99.68 99.68 99.68 99.68 99.79
VulRGCN 99.77 99.77 99.77 99.77 99.93

The Juliet dataset contains 118 different CWE types, which provides a wider coverage of various
vulnerabilities. Table 10 shows the results and this time, VulANalyzeR and VulGCN both have all 5
metrics above 90%, and achieve around 33% higher accuracy than VulRN and VulRGCN.

Table 10. Juliet CWE Type Classification

Models Accuracy Recall Precision F1 AUC
VulANalyzeR 91.61 91.61 94.52 92.52 99.88

VulRN 69.74 69.74 79.63 73.45 98.15
VulGCN 92.63 92.63 94.63 93.26 99.91
VulRGCN 68.42 68.42 82.42 72.65 98.59

The performances of VulAnalyzer and its variants on two tasks, i.e., vulnerability detection and
CWE classification, are reversely related in the Juliet and NDSS18 datasets. In NDSS18, the accuracy
is very high (over 99%) for CWE classification, but lower (slightly under 90%) for vulnerability
detection. On the other hand, the model accuracy and AUC for the Juliet dataset are both near 100%
for the vulnerability detection task, but lower for CWE classification, compared to NDSS18. Since
NDSS18 is a more realistic dataset, vulnerability patterns are harder to generalize. The relatively
lower accuracy (around 90%) for CWE label classification in Juliet could be due to the imbalance
of CWE labels distribution, as many CWEs only have less than 100 samples. In the next part,
we further discuss on how to utilize all the outputs from VulANalyzeR in order to investigate
vulnerabilities in binary files.

4.5 Case Study: Explainability
We show several case studies to validate the effectiveness of attention mechanism in vulnerability
explainability. We compare the highlighted code areas, which are determined by the attention
scores, with the real patched code location using the Juliet dataset. We also manually validate

, Vol. 1, No. 1, Article . Publication date: April 2023.

VulANalyzeR 19

Bad case Good case
memset(data, 'A', 100-1); /* fill with 'A's */
data[100-1] = '\0'; /* null terminate */

memset(data, 'A', 50-1); /* fill with 'A's */
data[50-1] = '\0'; /* null terminate */

Fig. 5. VulANalyzeR result with highlighted basic blocks and instructions: CWE121 Character Allocation

the model output based on the correctness of the vulnerability detection, CWE classification, and
locality.

We randomly pick three target vulnerable files for our case study, each of which contains one of
the three major CWE types in the Juliet dataset, i.e., CWE121, CWE416, and CWE78. These three
CWE types were chosen, since they are rated as the top ones9 in 2019, among all CWEs in the Juliet
dataset. The Juliet dataset is synthetic and therefore, allows us to understand the vulnerabilities
more easily. Similar to our result demonstration in the introduction, we show the corresponding
source code for these binary files, since it is readily available and can also be used to validate if the
results are indeed helpful. However, it should be noted that the original source code is much longer
than what we show in the paper. Due to the space limit, we only show the basic blocks that directly
lead to the vulnerabilities. On top of the vulnerable code, we also show the corresponding patched
cases for comparison. In each figure, the basic blocks are highlighted in blue, while the instructions
are highlighted in orange. The opacity indicates the score of an element, where a more opaque color
means a higher score. Recall from Section 3.4 that the score is calculated from 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑉𝑤) and
obtained from the intermediate layer. Since these scores are optimized through back-propagation,
higher scores then directly contribute more to the final classification.

4.5.1 CWE121: Stack-Based Buffer Overflow. Fig. 5 shows part of a program associated with
CWE121 (i.e., stack-based buffer overflow), where the program tries to allocate an array filled with
“A"s to a buffer 𝑑𝑎𝑡𝑎 with len(data) = 50. The vulnerable case would fill the buffer with 100
“A"s, which is longer than the buffer size, thus causing an overflow. The patched code instead only
assigns the array with a length less than or equal to the buffer size. In the model output for the
vulnerable code, the block loc_100001630 has the highest score and this is the block that writes
the values into the buffer. The model is able to identify the following highlighted instructions
representing both the content and the register that holds the length of the content.

mov edx 63h
mov byte ptr rcx 63h

9CWE Top 25 2019

, Vol. 1, No. 1, Article . Publication date: April 2023.

https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html

20 Li, et al.

Bad case Good case
data = new char;

*data = ‘A’;

delete data;

/* use after free*/
printHexCharLine(*data);

data = new char;

*data = ‘A’;

delete data;

/* not using the deleted data */
printLine("Benign, fixed string");

Fig. 6. VulANalyzeR result with highlighted basic blocks and instructions: CWE416 Use-After-Free

The context of instructions are important, as the model does not simply highlight the same instruc-
tion everywhere it appears. For example, mov appears multiple times within the basic block, but
only the ones that impact the vulnerability have higher scores. This implies the model is able to
learn the overall state of the program and embed such information into the hidden dimension. The
second and third highest block in the bad case are blocks that jump to C++ functions like strlen
and strncat. These two blocks are more related to CWE classification than vulnerability detection,
since the model optimizes these two objectives simultaneously. On the right hand side, the model
captures strncat and memset with equal scores in the good case. The model tends to explain the
classification of CWE121 while focusing less on explaining why the code is non-vulnerable in this
particular case.

4.5.2 CWE416: Use-After-Free. The second case study looks at a program associated with CWE416:
use-after-free vulnerability, where a data array is used again after it has been deleted (freed) from
the system. Fig. 6 shows both the good and bad cases, with highlighted vulnerability-related code
identified by VulANalyzeR. As seen in the bad case, data is used again for printing out after having
being deleted from the system, while the good case avoids this. Taking a look at the model output
from the bad case, it first highlights the zdlpv operation, which corresponds to delete in the
source code. This already indicates that the vulnerability is related to a deleted variable. The third
highest block is simply a jmp operation, but if we track down the destination, this block jumps to
another block, where the deleted data array is used again. This helps the analyst limit the possible
options to only a few CWEs. In fact, this also leads to the root of the vulnerability with some simple
analysis.

4.5.3 Case Study 3: CWE78: OS Command Injection. The third example is related to CWE78: OS
command injection vulnerability, as shown in Fig. 7. By glancing at the source code for the good
and bad cases, the difference is that the command data is hard coded in the good case, while it
is read from a file in the bad case. One can maliciously inject code into the system through the
command. In order to distinguish the difference between the vulnerable and non-vulnerable code
in this case, the model needs to first learn about the nature of the vulnerability. At the bottom of
the figure, both the bad and good case results assign the highest scores to the blocks where popen

, Vol. 1, No. 1, Article . Publication date: April 2023.

VulANalyzeR 21

Bad case Good case
fgets(data+dataLen, (int)(100-dataLen), p)

...

/* read command from external source */
pipe = POPEN(data, "w");

strcat(data, "*.*");

break;

/* read command from static string */
pipe = POPEN(data, "w");

Fig. 7. VulANalyzeR result with highlighted basic blocks and instructions: CWE78 OS Command Injection

is jumped to, indicating that the functionality of the program relates to the systm process. The
result for the bad case identifies fgets in the third highest block, which hints that the vulnerability
is associated with a command read from file. The result for the good case captures strcat, which
is the program state that copies the fixed string to the buffer. The results in this case are able to
clearly identify the exact location of the vulnerability, as well as its type. The explanation is also
easily interpretable by an analyst.
These three case studies do not contribute in the same way to help an analyst interpret the

results, as the nature of the problem is different among the vulnerabilities. The first case (CWE121)
requires an analyst to compare numbers between buffer size and data length, which is harder to
capture at first glance, since the results are in assembly code. However, knowing that the CWE
type is a buffer overflow helps to narrow down the scope. The second case (CWE416) requires an
extra step to track down another basic block required to identify the exact problem. Again, the
CWE classification provides such a hint. The CWE78 case is more obvious. The highlighted basic
blocks and instructions directly provide explanations to both vulnerability and CWE classifications.
Overall, the combination of basic block and instruction level attention provides more intuitive
results than considering only one granularity level of attention.

Overall, VulANalyzeR is shown capable of accurately detecting binary vulnerabilities and their
root causes. An important question is whether our model can detect more complex vulnerabilities,
which are common in real world scenarios. Since synthetic datasets are simple and convenient to
obtain, we mostly train the model in this study to demonstrate the capability of our model design.
For more complex patterns, VulANalyzeR can reach a desired level of efficacy by uptraining the
model using small amount of data. In section 4.3, our model can output an AUC of 83.54% even with
a heavy class unbalance in the CVE dataset, which is a complicated and large dataset. Additionally,
VulANalyzeR can also locate the trigger conditions of detected vulnerabilities by combining both
the root cause and the predicted CWE type. Analysts can track down the associated variables and
operations, given the knowledge of what the vulnerability is and where it takes place in the code.

, Vol. 1, No. 1, Article . Publication date: April 2023.

22 Li, et al.

5 RELATEDWORK
This section discusses the related work for vulnerability detection in terms of both binary and
source code. The survey [31] discusses the vulnerability detection in both source and binary code. It
extensively shows two systems, namely Mayhem [32] andMechanical Phish, which uses Driller [33].
Both methods are categorized as dynamic analysis and suffer from the trade-off between coverage
and precision. Moreover, scalability and performance is also hard to achieve using these methods.

We also surveyed research on source code vulnerability detection, since some of the techniques
are able to provide design process and ideas for binary code. VulDeePecker [6] is a system that splits
source code into “code gadgets", which are few lines of code semantically related to each other. They
use the “code gadgets" to feed into a Bi-LSTM network to learn the representation and predict the
vulnerable “code gadgets". Although this approach targets source code, it inspired us to use a more
granular level for assembly codes. which can be basic blocks instead of functions. Another paper [7]
suggests the combination of source code and build process information. The drawback is that the
source code is not always compilable, hence the difficulty is using this system. Deep representation
was also researched at the binary [8] and source code level [9]. As a drawback, these approaches can
lose the ability to explain the results of how vulnerable code is different from non-vulnerable code.
Another paper extracts features from CFGs and DFGs, and uses similarity measures to identify
vulnerabilities [34]. While this approach tackles the generation of semantics at the binary level, the
detection is purely based on cosine similarity, which does not provide explainable results. Another
work introduces a tool to embed graph using neural networks [35]. Although the domain and task
are different, we can borrow the idea and use a similar approach to embed the CFGs for binary code.
Explainable source code vulnerability detection has been studied recently [10, 11]. Both papers
are similar and use perturbed samples to identify important parts of the source code that lead
to the causes or indicate the patterns of vulnerabilities. The drawback of these methods is that
they require additional processing or training on top of the vulnerability detection, which lead to
inefficiency and a lack of robustness. Moreover, there is currently a complete lack of explainable
binary vulnerability detection methods available.

We further investigated more generalized deep learning-based techniques. Firstly, for modeling
instructions, the techniques should apply to natural language-like data for learning instruction
information. RNNs, such as LSTM and GRU as well as their variants have been considered [36, 37].
CNN and textCNN are also implemented for vulnerability detection [7, 38]. Additional techniques,
such as initial embedding used by the aforementioned papers including word2vec [39] can be helpful.
Graph Neural Networks (GNNs) focuses less on vulnerability detection, as these techniques usually
only apply to graph structured data. The following specific implementation were investigated to
understand how we can utilize GNNs. We conduct research on a survey for GNN [40], which is
the use of end-to-end graph learning aiming at performing different kinds of graph operations.
GNNs have many variants, but a lot of them have the same underlying structure. Some interesting
works include adversarial graph learning [41] and inductive graph representation learning [42].
In particular, previous works utilize GNN combined with other networks for code similarity and
vulnerability detection, based on graph structure data, such as CFGs [43, 44].

6 CONCLUSION
Automated binary vulnerability detection is an important task for many security applications,
from organization to edge device security. With the advancement of deep learning, data-driven
approaches allow for a faster and more scalable detection. However, existing data-driven models
still lack good performance and more importantly, the ability to explain the results. We therefore
have designed VulANalyzeR, which is a deep learning approach to tackle this problem. On top of

, Vol. 1, No. 1, Article . Publication date: April 2023.

VulANalyzeR 23

vulnerability detection, which is a binary classification task, we also implemented new features
in our model, including explainability, vulnerability localization, and CWE classification. These
features are very valuable to analysts in order to better understand the vulnerability and find
solutions more efficiently. Specifically, the result explanations provided by VulANalyzeR are in two
folds. Firstly, VulANalyzeR identifies and highlights the specific blocks and instructions, that are
related to the vulnerability to support vulnerability root cause analysis. Secondly, VulANalyzeR
provides CWE type for the detected vulnerability to help engineers verify the model output and
take actions accordingly. The above explanations are technically achieved by attention mechanism
and multi-task learning. While the added features are successful, as shown in the experiments, we
also achieved 2.3%-18.9% higher accuracy and 13.6%-28.9% AUC for vulnerability detection over the
state-of-the-art benchmarks for both datasets (NDSS18 and Juliet Test Suite). More importantly, our
approach is able to detect real world CVE’s, which are significantly more complex and imbalanced
than the synthetic benchmarks. Our case studies showing the highlighted locations accurately
reflect the root causes of the corresponding vulnerabilities, thus reducing manual efforts in locating
and verifying vulnerabilities in the binary code.
The current state of VulANalyzeR also possesses a few limitations. The first limitation is the

inability to classify a full range of CWE types, due to the incomplete datasets used during training.
Although VulANalyzeR is able to detect themost impactful CWE types, the number of CWE types for
NDSS18 and Juliet amounts to 120, which is less than the existing total number. Another limitation
is that the scores used for highlighting tokens or basic blocks can contribute to either vulnerability
detection or CWE classification task, without the guarantee of being equally distributed. This is due
to the nature of back-propagation during neural network training, where the model parameters are
adjusted with different values, based on the loss of objectives.

ACKNOWLEDGMENTS
This research is supported by Defence Research and Development Canada (contract no. W7701-
176483/001/QCL).

REFERENCES
[1] N. Alexopoulos, S. M. Habib, S. Schulz, and M. Mühlhäuser, “The tip of the iceberg: On the merits of finding security

bugs,” ACM Transactions on Privacy and Security (TOPS), vol. 24, no. 1, pp. 1–33, 2020.
[2] K. A. Farris, A. Shah, G. Cybenko, R. Ganesan, and S. Jajodia, “Vulcon: A system for vulnerability prioritization,

mitigation, and management,” ACM Transactions on Privacy and Security (TOPS), vol. 21, no. 4, pp. 1–28, 2018.
[3] D. Gollmann, “Software security–the dangers of abstraction,” in IFIP Summer School on the Future of Identity in the

Information Society. Springer, 2008, pp. 1–12.
[4] “Flawfinder home page,” Available at http://https://dwheeler.com/flawfinder/.
[5] “Rough auditing tool for security,” Available at http://https://github.com/andrew-d/rough-auditing-tool-for-security.
[6] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong, “Vuldeepecker: A deep learning-based system for

vulnerability detection,” arXiv preprint arXiv:1801.01681, 2018.
[7] J. A. Harer, L. Y. Kim, R. L. Russell, O. Ozdemir, L. R. Kosta, A. Rangamani, L. H. Hamilton, G. I. Centeno, J. R. Key, P. M.

Ellingwood et al., “Automated software vulnerability detection with machine learning,” arXiv preprint arXiv:1803.04497,
2018.

[8] T. Le, T. Nguyen, T. Le, D. Phung, P. Montague, O. De Vel, and L. Qu, “Maximal divergence sequential autoencoder for
binary software vulnerability detection,” in International Conference on Learning Representations, 2018.

[9] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel neural source code representation based on
abstract syntax tree,” in Proceedings of the 41st International Conference on Software Engineering. IEEE Press, 2019, pp.
783–794.

[10] Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with fine-grained interpretations,” arXiv preprint
arXiv:2106.10478, 2021.

[11] D. Zou, Y. Zhu, S. Xu, Z. Li, H. Jin, and H. Ye, “Interpreting deep learning-based vulnerability detector predictions
based on heuristic searching,” ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 30, no. 2, pp.

, Vol. 1, No. 1, Article . Publication date: April 2023.

http:// https://dwheeler.com/flawfinder/
http:// https://github.com/andrew-d/rough-auditing-tool-for-security

24 Li, et al.

1–31, 2021.
[12] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. K. Nicholas, “Malware detection by eating a whole exe,”

inWorkshops at the Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
[13] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning code fragments for code clone detection,” in

2016 31st IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 2016, pp. 87–98.
[14] F. Wu, J. Wang, J. Liu, and W. Wang, “Vulnerability detection with deep learning,” in 2017 3rd IEEE International

Conference on Computer and Communications (ICCC). IEEE, 2017, pp. 1298–1302.
[15] S. H. Ding, B. C. Fung, and P. Charland, “Asm2vec: Boosting static representation robustness for binary clone search

against code obfuscation and compiler optimization,” in 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
2019, pp. 472–489.

[16] Y. Zheng and X. Zhang, “Path sensitive static analysis of web applications for remote code execution vulnerability
detection,” in 2013 35th International Conference on Software Engineering (ICSE). IEEE, 2013, pp. 652–661.

[17] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual prediction with lstm,” Neural computation,
vol. 12, no. 10, pp. 2451–2471, 2000.

[18] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural networks on sequence
modeling,” arXiv preprint arXiv:1412.3555, 2014.

[19] ——, “Empirical evaluation of gated recurrent neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555,
2014.

[20] Z. Yang, Z. Dai, R. Salakhutdinov, and W. W. Cohen, “Breaking the softmax bottleneck: A high-rank rnn language
model,” arXiv preprint arXiv:1711.03953, 2017.

[21] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural network model,” IEEE
Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80, 2008.

[22] R. v. d. Berg, T. N. Kipf, and M. Welling, “Graph convolutional matrix completion,” arXiv preprint arXiv:1706.02263,
2017.

[23] S. Ruder, “An overview of multi-task learning in deep neural networks,” arXiv preprint arXiv:1706.05098, 2017.
[24] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp. 41–75, 1997.
[25] Y. David, N. Partush, and E. Yahav, “Statistical similarity of binaries,” Acm Sigplan Notices, vol. 51, no. 6, pp. 266–280,

2016.
[26] M. A. Albahar, “A modified maximal divergence sequential auto-encoder and time delay neural network models for

vulnerable binary codes detection,” IEEE Access, vol. 8, pp. 14 999–15 006, 2020.
[27] Y. J. Lee, S.-H. Choi, C. Kim, S.-H. Lim, and K.-W. Park, “Learning binary code with deep learning to detect software

weakness,” in KSII The 9th International Conference on Internet (ICONI) 2017 Symposium, 2017.
[28] Y. Lee, H. Kwon, S.-H. Choi, S.-H. Lim, S. H. Baek, and K.-W. Park, “Instruction2vec: Efficient preprocessor of assembly

code to detect software weakness with cnn,” Applied Sciences, vol. 9, no. 19, p. 4086, 2019.
[29] S. Arakelyan, C. Hauser, E. Kline, and A. Galstyan, “Towards learning representations of binary executable files for

security tasks,” arXiv preprint arXiv:2002.03388, 2020.
[30] E. H. Boudjema, S. Verlan, L. Mokdad, and C. Faure, “Vyper: Vulnerability detection in binary code,” Security and

Privacy, vol. 3, no. 2, p. e100, 2020.
[31] T. N. Brooks, “Survey of automated vulnerability detection and exploit generation techniques in cyber reasoning

systems,” in Science and Information Conference. Springer, 2018, pp. 1083–1102.
[32] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing mayhem on binary code,” in 2012 IEEE Symposium on

Security and Privacy. IEEE, 2012, pp. 380–394.
[33] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller:

Augmenting fuzzing through selective symbolic execution.” in NDSS, vol. 16, no. 2016, 2016, pp. 1–16.
[34] J. Gao, X. Yang, Y. Fu, Y. Jiang, and J. Sun, “Vulseeker: a semantic learning based vulnerability seeker for cross-platform

binary,” in Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. ACM, 2018,
pp. 896–899.

[35] J. Schrouff, K. Wohlfahrt, B. Marnette, and L. Atkinson, “Inferring javascript types using graph neural networks,” arXiv
preprint arXiv:1905.06707, 2019.

[36] F. Wu, J. Wang, J. Liu, and W. Wang, “Vulnerability detection with deep learning,” in 2017 3rd IEEE International
Conference on Computer and Communications (ICCC). IEEE, 2017, pp. 1298–1302.

[37] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “Sysevr: A framework for using deep learning to detect software
vulnerabilities,” arXiv preprint arXiv:1807.06756, 2018.

[38] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir, P. Ellingwood, and M. McConley, “Automated
vulnerability detection in source code using deep representation learning,” in 2018 17th IEEE International Conference
on Machine Learning and Applications (ICMLA). IEEE, 2018, pp. 757–762.

, Vol. 1, No. 1, Article . Publication date: April 2023.

VulANalyzeR 25

[39] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations of words and phrases and
their compositionality,” in Advances in neural information processing systems, 2013, pp. 3111–3119.

[40] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey on graph neural networks,” arXiv
preprint arXiv:1901.00596, 2019.

[41] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, W. Li, X. Xie, and M. Guo, “Learning graph representation
with generative adversarial nets,” IEEE Transactions on Knowledge and Data Engineering, vol. 33, no. 8, pp. 3090–3103,
2019.

[42] R. A. Rossi, R. Zhou, and N. K. Ahmed, “Deep inductive graph representation learning,” IEEE Transactions on Knowledge
and Data Engineering, vol. 32, no. 3, pp. 438–452, 2018.

[43] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-based graph embedding for cross-platform
binary code similarity detection,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 363–376.

[44] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vulnerability identification by learning comprehensive
program semantics via graph neural networks,” in Advances in Neural Information Processing Systems, 2019, pp.
10 197–10 207.

, Vol. 1, No. 1, Article . Publication date: April 2023.

	Abstract
	1 Introduction
	2 Problem Definition
	3 Methodology
	3.1 Preparing Model Input
	3.2 Modelling Assembly Instructions
	3.3 Modelling Graph Structure Information
	3.4 Explainability and Actionability
	3.5 Multi-task learning
	3.6 Output Visualization for Explainable Classification

	4 Dataset, Experiment and Results
	4.1 Experiment Setup
	4.2 Vulnerability Detection
	4.3 Real World CVE Detection
	4.4 CWE Classification
	4.5 Case Study: Explainability

	5 related work
	6 Conclusion
	References

