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ABSTRACT 

Almost all eukaryotic mRNAs maintain a 3’ poly(A) tail that is bound by the cytoplasmic poly(A) 

binding protein (PABPC). PABPC can regulate mRNA translation and turnover by interacting with 

translation initiation factors and mRNA decay machineries. PABPC is highly conserved in 

eukaryotes, from yeast to humans, with the prototypical PABPC (PABPC1) being ubiquitously 

expressed in most mammalian tissues, albeit at different levels. PABPC1 binds the translation 

initiation factor 4G (eIF4G), an interaction that stimulates translation in certain contexts. Here, we 

uncover a new mammalian-specific PABPC that is coded by the X-linked ampliconic gene 

Pabpc1l2a/b. PABPC1L2 is predominantly expressed in neural tissues in neurons, which we have 

subsequently named neural PABP (neuPABP) and is a bona fide poly(A) binding protein. neuPABP 

expression is temporally regulated, with its expression peaking during neuronal maturation in 

synaptogenesis. neuPABP localizes in neurons to the soma and to postsynaptic densities. In 

contrast to PABPC1, neuPABP contains only the first two RNA recognition motifs (RRMs) and 

maintains a unique N-terminal domain of unknown function (DUF) not found in other PABPCs. 

RNA-immunoprecipitation-Seq analyses indicate that neuPABP interacts with select RNA 

populations, namely brain-specific non-coding RNAs (BC1 and BC200) and nuclear-derived 

mRNAs coding for ribosomal and mitochondrial proteins. In contrast to PABPC1, which associates 

with actively translated mRNAs, neuPABP associated mRNAs are translationally dormant. In 

support of this, our data suggest that while neuPABP has maintained functional RRMs for poly(A) 

RNA binding, it has evolutionarily diverged to not bind eIF4G, and as a consequence, inhibits 

protein synthesis in vitro.  
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These seminal findings presented in my thesis provide evidence that mammals have expanded 

their repertoire of PABPCs in the brain by coding for a predominantly neuronal protein, neuPABP. 

The ability of neuPABP to localize to the postsynaptic terminals, and associate with translationally 

inactive mRNA subpopulation, suggests a function of neuPABP in regulating local mRNA 

translation in neurons. In support of this, we demonstrate neuPABP is a protein that does not 

stimulate translation initiation. Moreover, the classes of mRNAs that we identify as neuPABP 

targets, are of utmost importance, as their protein products are required for ribosomal and 

mitochondrial biogenesis and repair in neurites, as many studies suggest. Our data also highlights 

lncRNA BC1 as a top neuPABP interactor, which intriguingly mirrors the developmental 

expression pattern of neuPABP, and is previously suggested to inhibit local mRNA translation in 

dendrites. These data have revealed a new PABPC in the mammalian brain, which may function 

to regulate local protein synthesis, a prerequisite for synaptic plasticity in learning and memory.  
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RÉSUMÉ 

Presque tous les ARNm eucaryotes ont une queue poly(A) en 3' qui est liée par la protéine 

cytoplasmique de liaison poly(A) (PABPC). La PABPC peut réguler la traduction et le 

renouvellement des ARNm en interagissant avec les facteurs d'initiation de la traduction et les 

mécanismes de décroissance des ARNm. La PABPC est très conservée chez les eucaryotes, de la 

levure à l'homme, la PABPC prototypique (PABPC1) étant exprimée de manière ubiquitaire dans 

la plupart des tissus des mammifères, bien qu'à des niveaux différents. PABPC1 lie le facteur 

d'initiation de la traduction 4G (eIF4G), une interaction qui stimule la traduction dans certains 

contextes. Nous découvrons ici un nouveau PABPC spécifique aux mammifères, codé par le gène 

ampliconique lié à l'X Pabpc1l2a/b. La PABPC1L2 est principalement exprimée dans les tissus 

neuronaux, dans les neurones, que nous avons par la suite nommée PABP neuronale (neuPABP) et 

qui est une véritable protéine de liaison poly(A). L'expression de la neuPABP est régulée 

temporellement, avec un pic d'expression pendant la maturation neuronale dans la synaptogenèse. 

La neuPABP se localise dans les neurones au niveau du soma et des densités postsynaptiques. 

Contrairement à PABPC1, neuPABP ne contient que les deux premiers motifs de reconnaissance 

de l'ARN (RRM) et conserve un domaine N-terminal unique de fonction inconnue (DUF) que l'on 

ne retrouve pas dans les autres PABPC. Les analyses d'immunoprécipitation-Seq de l'ARN 

indiquent que la neuPABP interagit avec certaines populations d'ARN, à savoir les ARN non 

codants spécifiques du cerveau (BC1 et BC200) et les ARNm d'origine nucléaire codant pour des 

protéines ribosomiques et mitochondriales. Contrairement à PABPC1, qui s'associe à des ARNm 

activement traduits, les ARNm associés à neuPABP sont dormants sur le plan de la traduction. A 

l'appui de ce constat, nos données suggèrent que si le neuPABP a conservé des RRM fonctionnels 
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pour la liaison à l'ARN poly(A), il a divergé au cours de l'évolution pour ne pas lier l'eIF4G et, par 

conséquent, inhibe la synthèse protéique in vitro.   

 

Les résultats fondamentaux présentés dans ma thèse prouvent que les mammifères ont élargi leur 

répertoire de PABPC dans le cerveau en codant pour une protéine essentiellement neuronale, la 

neuPABP. La capacité de la neuPABP à se localiser dans les terminaux postsynaptiques et à 

s'associer à une sous-population d'ARNm inactive sur le plan de la traduction suggère une fonction 

de la neuPABP dans la régulation de la traduction locale de l'ARNm dans les neurones. À l'appui 

de cette hypothèse, nous démontrons que la neuPABP est une protéine qui ne stimule pas l'initiation 

de la traduction. De plus, les classes d'ARNm que nous identifions comme cibles de neuPABP sont 

de la plus haute importance, car leurs produits protéiques sont nécessaires à la biogenèse et à la 

réparation des ribosomes et des mitochondries dans les neurites, comme le suggèrent de 

nombreuses études. Nos données mettent également en évidence l'ARNnc BC1 en tant 

qu'interacteur principal du neuPABP, qui reflète de manière intrigante le modèle d'expression 

développementale du neuPABP, et qui a déjà été suggéré pour inhiber la traduction locale de 

l'ARNm dans les dendrites. Ces données ont révélé l'existence d'un nouveau PABPC dans le 

cerveau des mammifères, dont la fonction pourrait être de réguler la synthèse locale des protéines, 

une condition préalable à la plasticité synaptique dans l'apprentissage et la mémoire. 
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1. INTRODUCTION 

Earliest microfossils provide evidence that first single cell eukaryotes appeared around 1.5 billion 

years ago (1). During the course of evolution, eukaryotic single cell organisms formed symbiotic 

associations for survival in the ever-changing environment, which gave rise to the complex 

multicellular lifeforms of today. Multicellular organisms have acquired complex, yet efficient 

mechanisms to respond and adapt to their environment through intricately modulating the gene 

expression programs in different cell types.   

 
1.1. GENE EXPRESSION IN EUKARYOTES 

The gene expression programs in eukaryotes differ greatly from prokaryotes. Unlike prokaryotes, 

where transcription and translation can occur concurrently in the cytoplasm (2-5), eukaryotes have 

ingeniously compartmentalized different steps of gene expression. Genes are first transcribed into 

precursor-mRNAs (pre-mRNAs) in the nucleus, and after several steps of post-transcriptional 

processing, mature mRNAs are exported into the cytoplasm for translation. This decoupling of 

translation from transcription may have imparted eukaryotes with a superior multi-dimensional 

gene expression control. Indeed, eukaryotic gene expression can be regulated at both transcription 

and translation level by complex molecular machines. Of importance are the mRNA stability 

complexes, which can greatly influence the spatiotemporal gene expression, especially when 

protein synthesis rates are tightly regulated, thus providing eukaryotes with the “third axis” of gene 

expression control. In both the nucleus and cytoplasm, several post-transcriptional modifications 

are added onto an mRNA molecule. These modifications on an mRNA molecule are absolute 

requirements for efficient nuclear export, translation, and stability by preventing its untimely 
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demise in the cytoplasm. Therefore, mRNA has emerged as a central molecule that carries genetic 

codes for the synthesis of a functional protein in the cytoplasm.  

 

Overview: A complex life of mRNA 

The life-cycle of mRNA begins with its transcription from the DNA, followed by translation using 

ribosomes, and finally degradation by RNA decay machines. Since its inception, mRNA is 

decorated by an array of RNA binding proteins (RBPs) that regulate every aspect of gene 

expression control. RBPs associate with mRNAs via RNA-binding domains (RBD), and influence 

mRNA export, transport/localization, translation, and stability.   

 

Gene expression begins in the nucleus where a DNA template is transcribed into a precursor 

mRNA copy (pre-mRNA) by the coordinated action of RNA polymerase II and other DNA binding 

proteins like transcription factors, and coactivators [(6-8), (Figure 1)]. During the process of 

transcription, a 5’ m7G-cap structure is added to the pre-mRNA as soon as it reaches 20-30 

nucleotides in length (9). The 5’ end capping is carried out by a series of enzymatic steps, which 

include removal of a phosphate group, addition of a GMP group, and finally transfer of a methyl 

group to the guanine (10). The cap structure is bound by a heterodimer of cap binding proteins 

(CBP), CBP20 and CBP80 (11-14). Most pre-mRNAs contain exons that are alternated by introns. 

A multi-megadalton pre-mRNA splicing machinery called spliceosome removes the intronic 

regions and joins the exons, thus forming exon-exon junctions (15-18). After splicing, a complex 

called exon-junction complex (EJC) is deposited some ~20-25 nucleotides upstream of the exon-

exon junctions, which has a major implication for translation “go ahead”, and nonsense mRNA 

mediated decay (NMD) (19, 20). The 3’ end of the mRNA is finally processed by a cleavage event  
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Figure 1. mRNA life cycle. In the nucleus, DNA template is transcribed into pre-mRNA 
containing exons and exons. Introns are spliced-out and mRNAs are decorated with terminal 
modifications: 5’ cap and 3’ poly(A) tails. After splicing, exon-exon junctions are deposited with 
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exon junction complexes (EJCs), and mRNA cap and poly(A) tail is bound by cap-binding proteins 
(CBPs) and nuclear poly(A) binding protein (PABPN1), respectively. mRNA is exported into the 
cytoplasm where it undergoes “pioneer-round of translation” to determine the quality of transcript 
by checking for premature termination codons (PTCs). In which case, the nonsense mRNA 
mediated decay (NMD) pathway is triggered. EJCs are removed by the ribosomes in the pioneer 
round of translation. A transcript can either serve as a template for protein synthesis by canonical 
translation or undergo reversible translation repression or ultimate decay.   
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followed by the addition of a poly(A) tail (~200-250 nucleotides) by the poly(A) polymerase 

enzyme (PAP) (21). The newly synthesized poly(A) tail is coated by the nuclear poly(A) binding 

protein (PABPN1) (21). Finally, the mature RNA is exported into the cytoplasm by a protein 

complex called the transcription-export complex (TREX) via the nucleopore complex (NPC) (22-

24). The export of mRNA is facilitated by various factors, including CBP80 and PABPN1 that are 

bound to the 5’cap structure and poly(A) tail, respectively (13, 14, 25). Moreover, the cytoplasmic 

poly(A) binding protein (PABPC) has been suggested to shuttle into the nucleus and replace 

PABPN1 prior to mRNA export (26, 27).   

 

The 5’ cap structure of mRNAs undergoing their first, or pioneering, round of translation upon 

export to the cytoplasm are bound by the CBP20/80 heterodimer rather than the eukaryotic 

initiation factor (eIF), eIF4E (28, 29). Briefly, during this process the CBP20/80 heterodimer binds 

to a non-canonical translation initiation factor called middle-domain of eIF4G (MIF4G)-

containing protein, CTIF (CBP20/80-dependent translation initiation factor). CTIF interacts with 

CBP80 and ribosome-bound eIF3, thus recruiting the ribosomes (29). During the pioneering round 

of translation, ribosomes normally encounter EJCs upstream of the stop codon and remove them; 

however, EJCs deposited downstream of a premature stop codon would trigger an NMD response 

to decay the mRNA (13, 30-32). After an mRNA has passed the “quality check” of NMD in the 

pioneer round of translation, eIF4E replaces CBP20/80 heterodimer from the 5’ cap, which 

assembles the canonical translation factors, including the eIF4F complex for subsequent rounds of 

translation (28).  
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mRNAs are vulnerable to deadenylation and decay in the cytoplasm and poly(A) tails are trimmed 

to an average poly(A) tail length of 50-100 nucleotides, as opposed to ~250 in the nucleus (21, 33-

35). Several major deadenylase machineries, including the PAN2-PAN3 and CCR4-NOT 

complexes, trim the mRNA poly(A) tails, and can instigate an mRNA decay regime by the mRNA 

decapping complexes (DCP1-DCP2) and exoribonucleases (XRN1) (36-41).  

 

mRNA 5’ Capping  

All eukaryotic mRNAs contain a specialized “cap” structure at their 5’ end. This structure is 

composed of a N7-methylguanosine residue (m7G) linked to the first nucleotide of an mRNA. A 

majority of the mRNAs utilize the m7G-cap for their translation by recruiting several translation 

initiation factors (41-43). Moreover, the m7G-cap plays important roles in: stabilizing the mRNAs 

against exonucleases, pre-mRNA splicing, polyadenylation, and mature mRNA export from the 

nucleus (44-50). 5’ end capping is the first cotranscriptional modification on an RNA polymerase 

II transcribed transcript and generally occurs when the pre-mRNA reaches 20-30 nucleotides in 

length (9, 51). Capping requires three enzymatic steps for its addition. The first step is carried out 

by the enzyme called RNA triphosphatase (TPase), which involves the removal of ɣ-phosphate 

from the 5’ triphosphate end of the nascent transcript to generate a 5’ diphosphate end. The second 

step involves the activity of an enzyme called RNA guanylyltransferase (GTase), which transfers 

a GMP group derived from the hydrolysis of a GTP molecule onto the 5’ diphosphate RNA. Thus, 

forming a 5’-5’ triphosphate linkage between the first base of the nascent RNA and the guanosine 

capping base of GMP. The final step requires the activity of yet another enzyme called guanine-

N7-methytransferase (MTase), which adds a methyl group to an amine group at the 7th position 

(N7) of the guanine cap, which forms the “cap 0” structure (10). Further, other methyltransferases 
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can add a methyl group to the 2’O of  +1 ribose to generate “cap 1” structure (52). Interestingly, 

while in yeast each enzymatic activity of capping is carried out by one enzyme, in metazoans, an 

enzyme called capping enzyme is responsible for both triphosphatase and guanylyltransferase 

functions (53-56). The capping enzyme complex is recruited to the transcribing pre-mRNA during 

the elongation step via its interaction with the phosphorylated C-terminal domain (CTD) of RNA 

polymerase II (57, 58). The CTD also stimulates pre-mRNA splicing by interacting with the 

spliceosome machinery (59),  and 3’ end processing by interfacing with the cleavage stimulation 

factor (CstF) and cleavage and polyadenylation specific factor (CPSF) (60).   

 

3’ Poly(A) tail synthesis 

Most Eukaryotic mRNAs contain a homopolymeric polyadenylated sequence at their 3’ end, with 

the exception being the replication-dependent histone proteins coding mRNAs (61). Poly(A) tail 

is added to the pre-mRNA co-transcriptionally during 3’ end processing (62), and plays an 

important role in mRNA export to the cytoplasm (63-66). Eukaryotic mRNAs maintain an average 

poly(A) tail length of ~200 nucleotide (67). However, in yeast, the average mRNA poly(A) tail 

length is ~50 nucleotide (68). The length of poly(A) tail is determined by several sequence 

elements in the 3’UTR region of mRNAs. In the nucleus, unprocessed pre-mRNAs undergo 

cleavage at poly(A) cleavage site which is 10-30 nucleotide downstream of the poly(A) signal 

(PAS) hexamer sequence “A[A/U]UAAA” (69-71). PAS provides binding platform to CPSF 

complex, and its catalytic subunit CPSF73 carries out the cleavage in coordination with the subunit 

CPSF100 (72-76). Additionally, CstF complex is recruited to a GU-rich sequence present 

downstream of the cleavage site and is required for stimulation of the cleavage event (77, 78). 

After cleavage, the cleavage/polyadenylation machinery recruits the poly(A) polymerase (PAP) 



Sharma, Sahil 
 

 27 

enzyme to mRNAs in a close proximity to their 3’ ends (79, 80). PAP adds the initial poly(A) tail, 

which is bound by the nuclear poly(A) binding protein PABPN1 (81). PAP binds CPSF and 

PABPN1 simultaneously, which in turn synergistically enhances its poly(A) polymerase activity 

(82). Interaction of PAP with either of these factors alone imparts only a modest polymerase 

activity (82). Therefore, both “AAUAAA” hexamer for CPSF binding, and initial oligo(A) tail for 

PABPN1 binding are necessary for a cooperative addition of a long poly(A) tail. However, as the 

poly(A) tail length reaches ~200-250 nucleotide and gets coated by multiple PABPN1 molecules, 

this leads to a disruption of the binding between CPSF and PAP. As a consequence, the 

polyadenylation reaction stops, and PAP dissociates from the mRNAs (21).  

 

Alternative polyadenylation 

 Many mRNAs contain more than one PAS-hexamer sequence in their 3’ UTRs, and alternative 

usage of these sequences can generate mRNA isoforms with diverse 3’ ends, a phenomenon named 

alternative polyadenylation (APA) (83). The 3’ UTR length is an important factor in determining 

mRNA translation, stability, and subcellular localization (84). The process of cleavage and 

polyadenylation by the multi-subunit CPSF complex is tightly regulated and the availability of 

each member protein can affect the pre-mRNA 3’end processing, which can generate alternative 

3’ UTR-length isoforms (84-87).  These isoforms can include or exclude various cis-regulatory 

elements in their 3’ UTRs like microRNA binding sites, RNA binding proteins (RBPs) binding 

sites, and RNA secondary structures. This can directly influence the mRNA stability, steady states, 

translation efficiency, as well as mRNA transport (88-93). APA isoforms can be generated by two 

methods. In first method, multiple PAS sites are present in tandem in the terminal exon, therefore, 

alternate usage of  these sites gives rise to isoforms with variable 3’ UTR lengths, although coding 
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identical proteins (94). In second method, PASs can be present in the introns, and their usage gives 

rise to truncated protein coding isoforms (95, 96).  In neurons, dendritic delivery of mRNAs is 

prerequisite for efficient local translation and synaptic plasticity (97). Indeed, APA isoforms of 

genes like Impa1, BDNF, CaMKII⍺, and Importin-β1 are differentially localized in neuronal 

compartments, where isoforms generated from distal PASs are preferentially localized into the 

neurites (84, 98, 99). The current evidence also suggests that many mRNAs, including PSD-95 

and CaMKII⍺ use cis-acting elements in the 3’ UTRs for their dendritic delivery (93). This 

highlights the role of APA in differential subcellular localization of mRNA isoforms.  The use of 

distal PASs for APA leads to the generation of mRNA isoforms with longer 3’ UTRs, which may 

harbour miRNA targeting sites. This leaves certain mRNA isoforms more susceptible for miRNA-

mediated silencing, whereas short 3’ UTR isoforms are resistant (90). The role of APA in 

translation is best described for BDNF mRNA. BDNF protein is encoded by two 3’ UTR isoforms. 

At rest, BDNF protein output is mainly contributed by the short 3’ UTR isoform, while the long 3’ 

UTR isoform is translationally supressed. However, after neuronal activation, the long 3’ UTR 

isoform in contrast to the short 3’ UTR isoform, associates rapidly with polyribosomes for 

translation (100). In cancer cells, mRNA isoforms with short 3’ UTRs are often accumulated (90). 

These isoforms typically exhibit longer RNA half-lives and overexpress proteins, for example, the 

expression of a short 3’ UTR isoform of the protooncogene IGF2BP1/IMP1 leads to oncogenic 

transformation of cell lines (90).  

 

Cytoplasmic polyadenylation 

Some mRNAs can also undergo polyadenylation in the cytoplasm, but require the PAS as well as  
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a U-rich cytoplasmic polyadenylation sequence element (CPE, ‘UUUUA1-3U’) in their 3’ UTRs 

(101, 102), which is usually within 20-100 nucleotide upstream of the PAS sequence (102-105). It 

is estimated that approximately 30-40% of mRNAs in vertebrate species harbour CPEs that may 

be subjected to CPE-mediated translational control (106). Cytoplasmic polyadenylation and its 

role in translation regulation was first described in Sea Urchin and Xenopus oocytes (107-110). 

Similarly, CPE-mediated polyadenylation and translational control has been suggested in mouse 

oocytes (111). In early oocytes, the mRNAs are stored in dormant states containing short poly(A) 

tails; however, as the oocytes mature the mRNA poly(A) tails get elongated, which facilitate their 

efficient translation (112-115). In Xenopus oocytes, a distinct cytoplasmic polyadenylation element 

binding protein (CPEB) binds the CPE and facilitates mRNA polyadenylation in the cytoplasm 

(116). In the nucleus, CPSF and CPEB bind the mRNA PAS and CPE sequences, respectively, and 

are exported into the cytoplasm. A scaffold protein called symplekin contacts both CPSF and 

CPEB, and helps CPEB to recruit a non-canonical poly(A) polymerase called germline 

development 2 (Gld2) and a poly(A) ribonuclease (PARN) (117). A balance between the antagonist 

activity of these two proteins maintains short poly(A) tails on mRNAs (117). CPEB 

ribonucleoprotein complex also contacts a protein called maskin, which binds the 5’ cap-bound 

translation initiation factor (eIF4E), and prevents the assembly of eIF4F translation initiation 

complex (118). However, after progesterone hormone stimulation, CPEB gets phosphorylated by 

a kinase called aurora A (119), which causes the release of PARN from the CPEB-RNP complex 

(117), promotes a strong CPSF-CPEB interaction (120), and enhances Gld2 mediated 

polyadenylation of mRNAs (117).     
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Exceptions to the rule: mRNAs lacking poly(A) tails 

Interestingly, not all capped mRNAs undergo polyadenylation, for example, replication-dependent  

histone mRNAs do not contain a poly(A) tail and are transcriptionally upregulated only during the 

S-phase of cell cycle by a transcription factor called NPAT, to provide abundant supply of histone 

proteins necessary for the packaging of newly replicated DNA (121, 122). Histone pre-mRNAs 

contain a unique and highly conserved stem-loop structure in their 3’ UTR (123). An RNA-protein 

complex called U7-snRNP-complex, which consists of a 60 nucleotide U7-snRNA, a cleavage 

factor called CFSF73, which is the same cleavage factor utilized by the canonical cleavage-

polyadenylation machinery, and several other proteins including the histone stem-loop binding 

protein (SLBP), binds the histone pre-mRNAs by base-pairing (124). The U7-snRNP-complex 

once recruited to the histone pre-mRNAs, cleaves immediately downstream of the stem-loop 

structure, leaving only a 4-5 nucleotide long tail (124).  In contrast to other mRNAs, replication-

dependent histone mRNAs do not undergo polyadenylation after the cleavage event. The SLBP 

remains bound to the stem-loop of mature histone RNAs, and accompanies them during translation 

and decay  (125-127). Importantly, this highlights the conservation of CPSF73 cleavage factor 

between two functionally distinct mRNA 3’ end processing machineries.   

 

Mature polyadenylated mRNAs are ultimately exported to the cytoplasm where 5’ cap and poly(A) 

tails are thought to play an important role in mRNA fate determination. Poly(A) tail length is highly 

regulated in the cytoplasm by a number of RNA binding proteins whose binding can either stabilize 

the mRNA or accelerate its decay (37, 128, 129). One such class of protein is the cytoplasmic 

poly(A) binding protein (PABPC). Although PABPC lacks nuclear localization signal (NLS), it 

can still shuttle between nucleus and cytoplasm and bind mRNA poly(A) tails in the nucleus (26). 
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After nuclear localization, although not well understood, PABPC may displace PABPN1 from 

mRNA poly(A) tails and facilitate their export to the cytoplasm (26). In the cytoplasm, mRNA 

poly(A) tails are bound by PABPC, which plays a critical role in mRNA fate determination, 

including mRNA translation, stability and turnover.  

 

1.2. TRANSLATION INITIATION  

Canonical mode of translation initiation 

mRNA translation initiation is a crucial step in protein synthesis orchestrated by numerous 

eukaryotic initiation factors (eIFs). Several of these initiation factors assemble at the 5’ end of an 

mRNA to facilitate ribosome recruitment (Figure 2). One such initiation factor is a scaffold protein 

eIF4G, which simultaneously binds the mRNA cap binding protein eIF4E and an ATP-dependent 

RNA dead-box helicase protein eIF4A (130-132). This forms the eIF4F complex bound to the 

mRNA 5’ cap structure (132, 133). eIF4G further interacts with eIF3 to recruit the 43S-preinitiation 

complex. The 43S-preinitiation complex consists of a 40S small ribosomal subunit bound by eIF3, 

eIF1A, and eIF2-GTP-Met-tRNAi ternary complex (132, 134). Once the 43S-preinitiation 

complex is assembled on the mRNA 5’ end, a step requiring ATP hydrolysis, it then traverses the 

mRNA 5’ UTR to scan for a canonical AUG start codon in a favourable Kozak sequence context 

“(A/G)CCAUGG” (135-137). This leads to the formation of a 48S-preinitiation complex at the 

start codon  (132, 138). To facilitate the joining of a 60S ribosomal subunit and form a functional 

80S ribosome, initiation factors are released from the preinitiation complex by the GTP-hydrolysis 

activity of eIF2. This activity of eIF2 is promoted by eIF5, a GTPase-activating protein (GAP) 

(139-141). The functional 80S ribosome once assembled begins polypeptide synthesis in the 

elongation step of translation.  
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Figure 2. Canonical 5’ cap dependent translation initiation. Several initiation factors (eIFs) 
orchestrate translation initiation process. The cap-binding protein eIF4E is bound on the 5’ cap 
structure and recruits a scaffold protein eIF4G, which simultaneously binds the RNA helicase, 
eIF4A, this forms the eIF4F complex. The eIF4F complex recruits the 40S ribosomal subunit and 
eIF2-GTP-Met-tRNAi ternary complex containing 43S-preinitiation complex via eIF4G-eIF3 
interactions, which leads to the formation of 48S-preinitiation complex. The 48S complex scans 
the 5’ UTR for a suitable AUG codon. Finally, the 60S ribosomal subunit is recruited to form a 
functional 80S ribosome for translation.  
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Role of PABPC in translation initiation 

PABPC is characterized as a translation initiation factor important for stimulating translation (142). 

PABPC favours translation initiation by simultaneously binding the mRNA poly(A) tail and 

scaffold protein eIF4G [(142, 143), (Figure 3A)]. This interaction bridges the 5’ and 3’ ends and 

allows for the mRNA to attain a circular conformation (144, 145). This circular model of mRNA 

is believed to be energetically favourable for ribosome subunit recycling and initiation of multiple 

round of translation from the same mRNA molecule (145, 146). PABPC interacts with the N-

terminus of eIF4G through RRM2 (143), and disrupting this interaction by a mutation (M161A) 

in PABPC RRM2, has implications for translation initiation complex assembly and protein 

synthesis (142, 147). As PABPC-eIF4G contact stimulates translation in in vitro cell free systems 

like Krebs extracts (142),  in in vivo systems like Xenopus oocytes this contact is important for 

their maturation (148). Expressing a mutant eIF4G that cannot interface with PABPC RRM2, leads 

to the inhibition of progesterone-induced oocyte maturation (148). This effect comes from the 

reduced translation efficiency of polyadenylated RNAs.  

 

In oocytes and early embryos, PABPC levels are low (149, 150), transcriptional programs are shut 

down due to a highly condensed chromatin configuration (151-156), and maternal mRNAs are 

stored as short poly(A) tailed transcripts in stable cytoplasmic granules (157, 158). Cytoplasmic 

polyadenylation during early embryogenesis translationally activates these mRNAs and plays an 

important role in maternal to zygotic transition (101, 109, 110, 158, 159). The low levels of PABPC 

in these early developmental systems, therefore, confers the poly(A) tail length as a major 

determinant of translation efficiency as mRNAs with longer poly(A) tails can compete better for 

the limited quantity of PABPC to stimulate their translation (160). While this poly(A) tail length 
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bias disappears after overexpression of PABPC in Xenopus oocytes, overexpression of PABPC 

(M161A) mutant diminished the translation of both short and long poly(A)-tailed RNAs (160). 

This highlights the importance of poly(A) tail length in PABPC limiting systems, and that in 

conjunction, PABPC-eIF4G interaction is required to achieve a greater translation efficiency in 

early developmental systems.   

 

In postembryonic systems, like Drosophila S2 cells and human cells, the PABPC and eIF4G 

cooccupancy on mRNAs is strongly correlated; however, poly(A) tail length does not influence 

PABPC occupancy (161). In HeLa cells, PABPCs are not limited (162), and they contain two 

PABPC paralogs namely, PABPC1 and PABPC4 (163). PABPC1 is the major PABPC in these 

cells, and surprisingly, PABPC1 protein amounts are in three-fold excess over the cytoplasmic 

poly(A) RNAs (162). In HeLa cells the poly(A) tail length and translation efficiency are weakly 

correlated with the strongest correlation observed only for mRNAs with tail length of 

<20nucleotides (164). Since, majority of mRNAs maintain tail lengths longer than 20 nucleotides, 

the poly(A) tail length and translation efficiency are not correlated globally in HeLa cells (164). 

Additionally, although PABPC occupancy on mRNAs corelates positively with translation 

efficiency, the correlation is weak when compared with mRNA stability (161). Interestingly, the 

depletion of PABPC from HeLa cells only establishes a weak correlation between poly(A) tail 

length and translation efficiency, thus indicating that factors other than excess PABPC are 

responsible for this diminished correlation (160). Even though depletion of PABPC does not 

appear to strongly impact translation, the effects are significant on global protein synthesis, and 

the depletion strongly impacts the stability of short-tailed abundant cytoplasmic mRNAs that are  
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Figure 3. Role of PABPC in translation initiation. (A) The eIF4F complex is recruited to the 
5’capped and PABPC-bound polyadenylated mRNA. The interaction between eIF4G and PABPC 
bridges mRNA 5’- and 3’-ends which stimulates translation in in vitro and several early 
developmental systems. (B) In postembryonic system, PABPC does not appear to stimulate 
translation, however, promotes poly(A) trimming by PAN2-PAN3 and CCR4-NOT deadenylase 
complexes, and prevents further mRNA decay by blocking uridylation by TUT4/TU7.  
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generally stable namely, nucleus encoded ribosomal and mitochondrial proteins coding transcripts 

(128, 160). Interestingly, these classes of mRNAs are previously shown to have higher occupancies 

of PABPC, eIF4E, and eIF4G (161). As a consequence of their reduced stability, PABPC depletion 

in HeLa cells leads to an increase in the median poly(A) tail length of mRNAs as they are not 

efficiently destabilized i.e., their decay rates are slower (128, 160). Poly(A) tail lengths of mRNAs 

that are destabilized after PABPC depletion ranges from 10-135 nucleotides, with mRNAs having 

tail length around 25 nucleotides showing the strongest destabilization effects (160). It is unclear 

as to why mRNAs with longer poly(A) tails are degraded inefficiently in PABPC limited system; 

however, one possibility is deadenylation impairment in PABPC depleted systems. PABPC can 

promote deadenylation in cooperation with a major deadenylation complex called CCR4-NOT 

complex [(37), (Figure 3B)]. Even though PABPC promotes deadenylation of a transcript, it 

prevents 3’ terminal uridylation by terminal uridylyl transferases, TUT4 and TUT7, which marks 

mRNAs for decay by recruiting mRNA decay factors (37). Interestingly, in PABPC depleted 

system, mRNAs with short poly(A) tails are destabilized by terminal uridylation and in a 

deadenylation independent manner through decapping and 5’ to 3’ decay (128, 160).  Therefore, 

in post-embryonic HeLa cells, establishing a strong correlation between poly(A) tail length and 

translation efficiency is challenging, as limiting PABPC leads to mRNAs destabilization of short-

tailed mRNAs rather than their inefficient translation. The impact of PABPC on translation is 

suggested to be a context dependent phenomenon, where in actively dividing cell lines where 

PABPC is abundant, it plays a role in maintaining the stability of transcripts (128, 160), while in 

PABPC-limited systems, like oocytes, PABPC has a greater influence on mRNA translation (148, 

160).  
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Whether PABPC directly influences translation in terminally differentiated cells, like neurons, is 

not clear. A recent study suggests that there is only a modest correlation between poly(A) tail length 

and translation efficiency in neurons and vast majority of translational changes are comparable to 

other post-embryonic cells (165). This study highlights that only a subset of mRNAs undergoes 

cytoplasmic polyadenylation to enhance their translation after neuronal stimulation. A bulk 

majority of the RNA did not get their poly(A) tails elongated for efficient translation. However, as 

neurons respond to external stimuli through local protein synthesis in the synaptic terminals (166),  

away from the cell bodies, a more rigorous analysis is needed to investigate the correlation between 

poly(A) tail length and translation efficiency in the synaptic compartments (165).  

 

Poly(A) tail-independent mRNA translation  

In metazoans, the majority of histone proteins are coded for by replication-dependent histone 

genes. Importantly, the mRNAs coded by these genes are a unique class of RNA polymerase II 

transcripts, which are unadenylated (167). These mRNAs code for all core histone proteins, 

including H2A, H2B, H3 and H4. The 3’ end of replication-dependent histone mRNAs is formed 

by endonucleolytic cleavage of their pre-mRNAs (123). The replication-dependent histone 

mRNAs, unlike other mRNAs, end in a conserved 26-nucleotide sequence which forms a 16-

nucleotide stem-loop structure (123). A protein called the stem-loop binding protein (SLBP) 

recognizes this stem-loop and plays important roles in regulating histone pre-mRNA processing, 

mRNA translation, and degradation (125, 126, 168, 169). SLBP stimulates the translation of 

capped and histone stem-loop containing artificial mRNAs in Xenopus oocytes and its stimulatory 

effect increases during oocyte maturation  (125, 169, 170). SLBP can interact with eIF3 and PAIP1 

directly; however, it stimulates translation by playing a role in 40S ribosomal subunit recruitment, 
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and physically associating with eIF3 and eIF4G in mammalian cells (169, 171).  SLBP works in 

coordination with a protein called SLBP-interacting protein (SLIP1) to stimulate translation 

[(172), (Figure 4A)].  SLBP simultaneously binds SLIP1 and the stem-loop structure, and SLIP1 

in turn interacts with eIF4G. This facilitates bridging of the 5’ and 3’ ends, which stimulates 

translation in the absence of PABPC-eIF4G interaction on non-polyadenylated histone mRNAs 

(172).  

 

IRES-mediated translation initiation 

The recruitment of preinitiation complex on mRNA is a rate limiting step in translation (173-176). 

While all cellular mRNAs are expected to be capped, and therefore, are capable of  binding eIF4F 

complex to initiate their translation, some mRNAs with highly complex 5’ UTRs and high GC 

content do not conform to the canonical cap-dependent scanning mode of translation initiation 

(177, 178). To overcome this limitation, especially under stress conditions, several cellular mRNAs 

(like viral RNAs) are capable of utilizing the complex structural elements in their 5’ UTRs called 

IRES (Internal ribosome entry sites) to initiate translation (177, 179, 180). Some IRESes can 

directly interact with the ribosome bound initiation factors like eIF3, therefore, reducing the 

requirement of 5’ end bound eIF4F complex for ribosome recruitment [(181), (Figure 4B)]. 

IRESes can also directly recruit ribosomal subunits, therefore negating the requirement of 

initiation factors altogether (182-184).   

 

In neuronal dendrites, several RNAs have been identified to utilize IRES elements for their 

translation (180). Specifically, Arc, Map2, Dendrin, Neurogranin, and CaMKII⍺  contain complex 

IRES elements in their 5’ leader sequences that have the potential to initiate translation in dendrites. 

Interestingly, these RNAs have the ability to utilize both 5’ cap-dependent and IRES-mediated  
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Figure 4. Replication-dependent histone mRNA and IRES-mediated translation. (A) Histone 
mRNAs contain a stem-loop structure in their 3’ UTRs, and are not polyadenylated.  A stem-loop 
binding protein (SLBP) binds this structure, and binds eIF3 and  SLBP-interacting protein (SLIP1). 
SLIP1 interacts with eIF4G subunit of eIF4F complex to promote translation. (B) Shows an 
example of IRES-mediated translation initiation. eIF3 can directly interact with IRES-elements in 
several mRNAs to recruit 43S-preinitiation complex, therefore, bypassing the 5’cap dependency.   
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mechanisms for their translation (180). Therefore, mRNA sequence characteristics can play an 

important role in determining their translation fate.    

 

non-AUG codon mediated translation initiation 

The majority of cytoplasmic mRNAs that conform to the canonical mode of translation initiation 

utilize the AUG triplet codon in a Kozak context “(A/G)CCAUGG” (135-137), which is 

recognized by the initiator tRNA bound to the eIF2-GTP-Met-tRNAi ternary complex, which 

codes for the first methionine amino acid (132, 134). A pioneer work by Kozak utilizing 153 

eukaryotic transcripts suggests that for an efficient utilization of AUG as a start codon, it must 

contain a purines “A/G” at -3 position and “G” at +4 position (135). Some mRNAs however, do 

not contain the AUG codon, and therefore, rely on other less-efficient codons like “GUG”, “CUG”, 

or “UUG” (185-188). Non-canonical start codons are rarely used in eukaryotes and are less 

efficient than AUG (188), even when present in favourable consensus Kozak sequence (136). The 

efficient utilization is these codons is dictated by important factors like, sequence context of their 

embedment, GC-rich leader sequence, and downstream secondary structures (189). The presence 

of a downstream secondary structure favours the usage of a non-canonical start codon like GUG 

(189), probably by slowing down the scanning 40S ribosomal subunit (189). A good example of a 

non-AUG codon-initiated translation event is NAT1 (or eIF4G2). NAT1 mRNA translation is 

initiated from a GUG codon present in Kozak context, with a predicted hairpin structure 

downstream (190). The c-Myc oncogene is a unique example where the gene contains three exons 

and codes for two highly related proteins (191). These proteins differ only at the N-terminus, where 

the smaller form is initiated by a canonical AUG codon in exon-2, while the longer form is CUG-
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initiated in exon-1 (192). The presence of an alternate translation initiation site is suggested to 

contribute to the oncogenic properties of c-myc (192).   

 

In neurons, non-AUG translation is linked to neurological disorders associated with microsatellite  

expansion (193). Several genes accumulate abnormally long stretches of nucleotide repeats, which 

triggers repeat associated non-AUG (RAN) translation of their mRNAs. The translation of these 

mRNAs leads to the accumulation of homopolymeric protein products in the brain as toxic 

aggregates, which causes neuron cell death (193-196). For example, expansion of CAG-repeats in 

Htt and Atxn1 genes, leads to the synthesis of poly-glutamine stretch containing proteins, which 

causes huntingtin disease and spinocerebellar ataxia, respectively (195, 197). Similarly, expansion 

of CGG-repeats in the 5’ leader sequence of fragile X protein (FMRP) coding gene Fmr1, leads to 

neurodegeneration triggered by a loss of FMRP. A normal CGG-repeat length in Fmr1 mRNA is 

around 30 repeats; however, the repeats can get expanded to more than 200, which leads to 

transcriptional silencing of Fmr1 gene by a widespread cytosine methylation (198, 199). In 

contrast, if the CGG-repeats are in between 55-200,  the gene transcription remains active, but 

codes for a toxic homopolymeric protein product (200). The expanded CGG-repeats lead to a non-

AUG translation initiation upstream of the repeats, and leading to the synthesis of a poly-glycine 

stretch containing protein (201). The poly-glycine stretch containing protein accumulates in 

neuronal inclusions in the brain, thus leading to a neurodegenerative disorder Fragile X-associated 

tremor/ataxia syndrome (FXTAS) (200). Therefore, there is a plethora of nucleotide-repeat 

disorders in which RAN translation occurs and induces toxicity by various means: RNA gain of 

function and protein loss/or gain of function.  
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Mechanistically how a non-AUG codon is recognized by the Met-tRNAi can be explained by the 

fact that during the elongation phase codon-anticodon interactions take place in the A-site of a 

traversing ribosome; however, for the start codon recognition, the Met-tRNAi base pairs in the P-

site, where the Watson-Crick base pairing is not enforced as strictly, therefore, allowing codons 

other than AUG to be used, albeit less efficiently (202, 203).  

 

1.3. MAJOR mRNA DECAY MACHINERIES 

Deadenylation  

In the nucleus, most mRNAs acquire long poly(A) tails reaching a length of 200-250 nucleotides 

(21, 204, 205). However, mRNA poly(A) tails are subjected to extensive shortening in the 

cytoplasm, and most mRNAs maintain a median poly(A) tail length of 50-100 nucleotides (33-

35). mRNA deadenylation is the first and often a rate-limiting step in mRNA decay, making it an 

important regulatory step in translation silencing [(206) (Figure 5)]. In the cytoplasm, mRNA 

deadenylation is mainly carried out by two deadenylation complexes, namely PAN2-PAN3 and 

CCR4-NOT (36, 37, 207, 208). However, CCR4-NOT serves as the predominant deadenylase 

complex in the cytoplasm, as its depletion causes major deadenylation defects (37, 207, 209, 210). 

mRNA deadenylation occurs in two steps where, PAN2-PAN3 trims excessively long poly(A) tails 

to a length of ~110-150 nucleotides, at which point CCR4-CNOT complex takes over and rapidly 

deadenylates the poly(A) tails (37, 211).  Interestingly, the depletion of PAN2-PAN3 from cells, 

leads to an accumulation of very long poly(A) tails ( >150 nucleotides), whereas depletion of a 

catalytic subunit of CCR4-NOT complex, leads to a strong accumulation of poly(A) tails of ~150 

nucleotides in length (37).  

 



Sharma, Sahil 
 

 43 

PAN2-PAN3 deadenylase complex is conserved from yeast to mammals. PAN2-PAN3 is a 

heterotrimeric complex consisting of a PAN3 dimer and a PAN2 monomer (212, 213). The 

catalytic activity of PAN2-PAN3 complex resides in the exonuclease subunit PAN2 (214). The 

PAN2 subunit belongs to a DEDD class of hydrolytic 3’ exonucleases (208, 215). The N-terminus 

of PAN3 subunit contains a PAM2-motif for PABPC-binding (213, 216), and a zinc finger domain 

for RNA binding (213). Therefore, PAN3 plays a role in the recruitment of PAN2-exonuclease to 

the mRNAs. The PAN3-PABPC interaction is stimulatory for PAN2-PAN3 deadenylase activity in 

yeast and humans (217, 218). A study analysed the cryoEM structure of PAN2-PAN3 in complex 

with poly(A90) RNP and Pab1 (36). The structure shows that PAN2-PAN3 recognizes the 

oligomerization interface between two Pab1 molecules (2nd and 3rd Pab1 protomers) via PAN2-

WD40 domain, and therefore, can sense the poly(A) tail length. Interestingly, deleting the WD40 

domain of PAN2, severely impacts the deadenylase activity of the PAN2mutant-PAN3 complex 

(36). Notably, PAN3 directly interacts with GW182, therefore, the deadenylase complex can be 

recruited to miRNA (microRNA) targets (219). In mammalian CCR4-NOT complex, 

CNOT7/CNOT8 (or yeast CAF1) and CNOT6/CNOT6L (or yeast CCR4) subunits are the 

exonucleases. CNOT7/CNOT8 catalytic subunit is a member of  DEDD class of exonucleases, 

which requires a divalent ion for its activity (220), whereas the CNOT6/CNOT6L catalytic subunit 

belongs to the exonuclease-endonuclease-phosphatase (EEP) family of proteins, which requires 

Mg2+ ions for its activity (221). A study demonstrated that CAF1/CNOT7 trims poly(A) sequence 

not bound by PABPC, while CCR4/CNOT6 deadenylates PABPC-protected poly(A) tails,  thereby 

releasing PABPC (37). The CCR4-NOT complex also contains other non-catalytic subunits 

namely, CNOT1, CNOT2, CNOT3, CNOT4, CNOT9, CNOT10, and CNOT11 (222, 223). The 

largest among these, CNOT1, is a scaffold protein which contacts most other subunits (224). The  
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Figure 5. mRNA turnover pathways. A mature mRNA containing long poly(A) tails is exported 
into the cytoplasm where it is bound by PABPC. The mRNA poly(A) tails undergo trimming first 
by PAN2-PAN3 deadenylase complex and then by CCR4-NOT complex. mRNAs poly(A) tails 
are trimmed such that it can no longer accommodate a PABPC molecule (<25 adenosines). At this 
point, mRNA can be degraded by 3’-5’ exonucleases of exosome complex. Alternatively, 3’end 
are uridylated by TUT4/TU7. Uridylated 3’ends are bound by LSM1-7 complex which assembles 
the mRNA decapping complex (DCP1-DCP2). Decapping is enhanced by decapping enhancers 
like EDC4. The decapped mRNAs are susceptible to degradation by 5’-3’ exonuclease XRN1.   
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middle domain in CNOT1, named MIF4G (middle domain of eukaryotic initiation factor eIF4G), 

binds CAF1/CNOT7, which in turn binds CCR4/CNOT6 (225). CNOT1 depletion destabilizes the 

CCR4-NOT complex and leads to the degradation of most of its subunits, and cell death by 

apoptosis (226). CCR4-NOT complex also interacts with several other proteins, including TOB 

family, GW182 of miRISC mRNA silencing complex, RNA binding proteins like A-rich element 

(ARE) binding protein Tristetraprolin (TTP), and Pumilio response element (PRE; 

‘UGUANAUA’, ‘N’ is any nucleotide) binding protein Pumilio (129, 227-232). TOB proteins 

contain a PABPC-interacting PAM2 motif, and interact with CCR4-NOT complex through CNOT1 

scaffold (227, 233). Therefore, TOB can recruit the CCR4-NOT complex to PABPC-containing 

mRNAs. Moreover, TOB proteins also interact with CPEB and can recruit the CCR4-NOT 

complex to CPE-containing mRNAs (234, 235). The interaction between GW182-CNOT1 and 

GW182-CONT9 recruits CCR4-NOT complex to miRNA targets (219, 228, 236). CCR4-NOT 

complex directly interacts with RNA binding proteins TTP and Pumilio via CNOT1 and CNOT1-

CNOT2-CNOT3 subunits, respectively (129, 229). These studies highlight a vast protein 

interaction network involved in CCR4-NOT complex recruitment to regulate deadenylation and 

ultimately the decay of distinct mRNA populations.  

 

Decapping 

Generally, mRNA deadenylation is followed by mRNA decapping (237). The 5’ m7G-cap structure 

protects the mRNA from decay by blocking the 5’-3’ exonucleases (41). To initiate decapping, the 

deadenylated 3’ end of an mRNA gets uridylated (oligoU-track), which stimulates decapping 

[(238), (Figure 5)]. Terminal uridylation was first observed in miRNA-directed cleavage products 

in plants as well as in mammalian cells (239). Interestingly, replication-dependent histone mRNAs 
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that lack poly(A) tails, also get uridylated (240). Terminal uridylyl transferase enzymes 

TUT4/TUT7 uridylate mRNAs that have short poly(A) tails (<25 nucleotides) (241), which can 

no longer accommodate a PABPC molecule (242, 243). Therefore, PABPC protects mRNAs from 

uridylation by TUT4/TUT7 (37, 241). After uridylation, a multi-subunit complex called “LSM1-7 

complex” binds the terminal “oligoU” track of the mRNA (244-247). LSM1-7 complex contains 

seven “Sm-like” folds containing proteins that are related to small-nuclear RNA (snRNA) binding 

“Sm-complexes” (248). Sm folds are domains with high affinity for U-rich sequences (249). Next, 

the LSM1-7 complex recruits the DCP1-DCP2 decapping enzyme via its interaction with Pat1 

(250-253). DCP2 catalytic subunit belongs to the Nudix-family of pyrophosphatases, which 

hydrolyzes the removal of 5’ m7G-cap, by releasing a m7GDP and leaving the terminal 5’ 

monophosphate end vulnerable to decay by 5’-3’ exoribonuclease, XRN1 (39-41, 254). 

Interestingly, RNA polymerase I and III transcripts that lack 5’ m7G-cap, usually maintain 5’ tri- 

or diphosphate, which would prevent their decay by XRN1 (255, 256). While in yeast, DCP1 and 

DCP2 can interact directly, in metazoans, DCP2 requires a scaffold protein called enhancer of 

decapping (EDC4) to enhance its enzymatic activity (38). EDC4 binds DCP1, DCP2, and XRN1, 

and plays an important role in the assembly of decapping complex (38). Alternatively, mRNAs are 

also degraded from 3’-5’ direction by exonucleolytic RNA exosome machinery (257).    

 

miRNA-mediated mRNA decay 

microRNAs (miRNAs) are highly abundant small non-coding RNAs (~22 nucleotides) encoded 

by most eukaryotic genomes (258). miRNAs post-transcriptionally regulate the gene expression 

by mainly repressing the protein synthesis (259-261). miRNAs base-pair with the target site in 

partial complementarity (259, 260); however, require perfect Watson-crick base pairing centered 
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on nucleotides numbered 2 to 8 in the 5’ region of miRNAs called “miRNA seed” sequence (262, 

263). Several mRNAs harbour miRNA-target sites in their 3’ UTRs and occasionally the CDS 

region (258, 264). miRNAs induce gene silencing via formation of a miRNA-induced silencing 

complex (miRISC). The miRISC consists of a miRNA as a core component, which is bound by 

Argonaute protein and glycine (G)-tryptophan (W) repeats containing 182 kDa protein GW182 

[(258), (Figure 6A)]. The miRNA-Ago2 complex recognizes the target mRNA by base pairing, 

and Ago2 then recruits GW182 via direct interactions to form miRISC (265). One of the first 

studies in miRNA target recognition was done in C. elegans (266, 267), where a small RNA 

encoded by lin-4 gene was found to be complementary to lin-14 mRNA (267). It was found that 

lin-4 coded small RNA negatively regulates the LIN-14 protein levels. Similarly, let-7 RNA was 

found to have complementarity to the 3’ UTRs of several heterochronic genes lin-14, lin-28, lin-

41, lin-42, and daf-12 (268). miRISC can destabilize the mRNA by triggering its deadenylation by 

directly recruiting the CCR4-NOT complex via GW182-CNOT1 and GW182-CNOT9 interactions 

(219, 228, 236). It can also recruit PAN2-PAN3 deadenylase complex via GW182-PAN3 

interactions (219). Additionally, the GW182 protein can interact with  PABPC as it contain a 

PAM2-motif in its C-terminus (269). In Drosophila and human cell lines, the GW182-PABPC 

interaction is demonstrated to be a requirement in miRNA mediated translation repression and 

mRNA deadenylation (269, 270).     

 

Nonsense mediated decay (NMD) 

The NMD pathway was first described as a surveillance pathway in yeast (271), and thereafter in 

other eukaryotes. In humans, it was first described for β-globulin mRNA expression in β-o-

thalassemia. They found that when β-globulin mRNA was carrying nonsense mutations, its levels  
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Figure 6. miRNA-mediated decay and NMD pathways. (A) Shows an mRNA containing 
microRNA (miRNA) targeting site in its 3’UTR. A miRNA-Argonaute (Ago) complex base-pairs 
with the target site, and recruits GW182 protein to form “miRNA induced silencing complex” 
(miRISC). The GW182 protein interacts with PABPC and can recruit deadenylase complexes 
PAN2-PAN3 and CCR4-NOT to decay mRNAs. (B) Shows a normal scenario where a ribosome 
engaged in translation elongation causing the release of an exon-exon junction complex (EJC) 
upstream of the stop-codon. However, interruption of the ORF by a premature-termination codon 
(PTC), leads to the assembly of NMD factors (UPF1, UPF2, UPF3), on the downstream EJC and 
terminating ribosome. This recruits endonuclease SMG6 and CCR4-NOT complex to decay 
abnormal transcripts.  
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were rapidly reduced by degradation (272). The responsibility of  NMD pathway is to safeguard 

against the abnormal transcriptional products which could generate toxic proteins. The 

transcription machinery can occasionally make errors during alternative splicing or by randomly 

inserting mutations, and as a result, produce mRNAs harbouring premature-termination codons 

(PTC) (273). Intriguingly, it is estimated that NMD targets alternative splicing isoforms of as much 

as 30% of the expressed genes (274-276). This reflects the probability of errors committed during 

transcription and the importance of NMD pathway in cellular quality control. In humans, the 

premature termination of translation at a PTC leads to the assembly of a multiprotein complex, 

which carries out the degradation of an mRNA (276). The core NMD factor involved in 

orchestrating the degradation process is an ATP-dependent RNA-helicase, up frameshift 1 (UPF1) 

(277, 278). The ATP-dependent helicase activity of UPF1 is essential for the NMD (279). UPF1 

forms the UPF1-3 complex with two other proteins namely, UPF2 and UPF3 (276). UPF1 interacts 

with eRF3 on terminating ribosomes when a PTC is encountered, which prevents the canonical 

eRF3-PABPC interaction required during normal translation termination [(280, 281), (Figure 

6B)]. NMD activation also depends on the presence of one or more exon junction complexes 

(EJC), which are deposited ~20-25 nucleotides upstream of the exon-exon junctions after introns 

are spliced out (19). The presence of a PTC approximately 30 or more nucleotides upstream of an 

EJC is suggested to trigger NMD activation (282). While traditionally NMD was suggested to 

target aberrant mRNAs harbouring PTCs during the pioneer round of translation (30), many studies 

have now suggested that NMD can also destabilize mRNAs during canonical translation (283). 

Importantly,  NMD can target specific mRNAs lacking PTCs, but contain long 3’UTRs and may 

harbour an EJC downstream of the physiological stop codon(284, 285).  
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For example, Arc mRNA contains two conserved introns in its long 3’UTR and is rapidly regulated 

by EJC-dependent NMD (286).  

 

When a ribosome encounter a PTC, UPF2 and UPF3 assemble on the downstream EJC (287, 288), 

UPF1 binds eRF1-eRF3 complex on the terminating ribosome (280), and simultaneously binds the 

ATP-dependent RNA helicase DHX34 and serine/threonine protein kinase SMG1 (289). SMG1 

phosphorylates UPF1, which leads to its dissociation from eRF3 and DHX34, and association with 

EJC-UPF2-UPF3 complex to form the decay inducing complex (289, 290). Phosphorylated UPF1 

binds other NMD factors like SMG5, SMG7, and SMG6 (276). SMG5-SMG7 dimerize and recruit 

mRNA decay complex CCR4-NOT (291), while endoribonuclease SMG6 carries out 

endonucleolytic cleavage of the mRNA (292). Other than the mRNAs harbouring PTC in the 

coding region, mRNAs with extended 3’UTRs are also targets of NMD (293). NMD plays a critical 

role in embryonic development in animals. For example, in zebra fish and mice, knocking down 

NMD factors like Upf1, Upf2, Smg1, Smg5, and Smg6 is embryonic lethal (274, 294-298). 

Moreover, in humans, NMD defects are linked to neurodevelopmental disorders (299).   

 

1.4. CYTOPLASMIC POLY(A) BINDING PROTEINS 

Expanded repertory of cytoplasmic poly(A) binding proteins  
Cytoplasmic PABPs (PABPCs) are evolutionarily well conserved from yeast to humans. While 

yeast and Drosophila genomes encode one PABP each: Pab1 and pAbp, respectively (300-302), 

C. elegans contain two PABP genes namely, Pab-1 and Pab-2 (303). In higher order metazoans, 

like mammals, several cytoplasmic PABPs have been identified, which include (i) a well 

characterized and ubiquitously expressed PABPC called PABPC1 (304), (ii) testis-specific PABP 
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(tPABP) expressed in round spermatids (305), (iii) inducible PABP (iPABP) expressed in activated 

T-cells (306), (iv) ovary-specific PABPC5 (307), and (v) embryonic PABP (ePABP) expressed in 

oocytes and early embryos [(149), (Figure 7)].  

 

Mammalian PABPCs 

PABPC1 

PABPC1 is an extensively studied gene that is evolutionarily well conserved and is ubiquitously  

expressed among various mammalian tissues (304). PABPC1 contains four RNA Recognition 

Motifs (RRMs), a proline-rich linker domain, and a C-terminal ‘MLLE’ domain (302). RRMs 1 

and 2 preferably bind poly(A) sequences, while RRMs 3 and 4 bind both poly(A) and A/U rich 

sequences equally well (243, 308). A single PABPC1 covers ~23-27 adenosines  (242, 243), and 

multiple PABPC1 molecules can oligomerize on poly(A) sequences via interactions between the 

linker domain of one PABPC1 and RRM2 of an adjacent molecule (36, 309-311). PABPC1 utilizes 

RRM2 to directly interact with eIF4G (143), an interaction that stimulates mRNA translation in 

vitro and in Xenopus oocytes (142, 148), contexts where mRNA poly(A) tail length correlates with 

translational efficiency (142, 148, 312). Notwithstanding that PABPC1 stimulates mRNA 

translation stimulation in certain systems (148, 160), recent reports have shown that PABPC1 plays 

a negligible role in enhancing the translation efficiency of the transcriptome in post-embryonic 

mammalian cell lines (128, 160).  

 

PABPC1 uses its C-terminal “MLLE” domain to directly bind PABPC-interacting proteins, 

including PAIP1, PAIP2, and eRF3 (313-317).  Interestingly, PAIP2 inhibits mRNA translation by 

binding to PABPC1 and displacing it from mRNA poly(A) tails. Moreover, PABPC1-PAIP2  
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Figure 7. Mammalian PABPC family. Several mammalian PABPC family members are shown. 
Like PABPC1, tPABP, iPABP, and ePABP contain a proline-rich linker region and MLLE-domain. 
All PABPCs, including PABPC5 contain RNA-recognition motifs (RRMs).  
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interaction protects PAIP2 from E3 ubiquitin ligase-mediated ubiquitination and subsequent 

degradation (313, 318). The PABPC MLLE domain also interacts with several other proteins that 

play important roles in regulating mRNA decay. These include the PAN2-PAN3 deadenylase 

complex, which trims excessively long poly(A) tails (36), as well as proteins that recruit the CCR4-

NOT deadenylase complex (i.e., Tob proteins and the miRNA-associated protein 

GW182/TNRC6).  PABPC has been shown to promote poly(A) tail trimming by CCR4-NOT 

complex, but prevents premature 3’ terminal uridylation (37), and blocks deadenylation-

independent decay of transcripts coding for proteins with constitutive functions (128).    

 

Testis-specific PABPC (tPABP) or PABPC3 

PABPC3 mRNA expression is first detected when germ cells (spermatogonia) enter meiosis, with 

its expression peaking in early postmeiotic stages in round spermatids (319, 320). The expression 

further decreases significantly at the end of spermatogenesis (319, 320). In mammalian testis, 

PABPC3 binds mRNAs in both translated and non-translated states (319). This suggests a role of 

PABPC3 in both mRNA storage and translational regulation during development (319). The 

stabilization of mRNA during spermatogenesis is very crucial where transcription is mainly active 

during the early stages of meiosis (321-323). Therefore, the mRNAs are stored as RNPs and are 

translated in later stages (319, 324). PABPC3 protein expression peaks during this time in round 

spermatids (305), and therefore, may play a role in storing the mRNAs as RNPs and regulating 

their translation (305, 319, 325). Similar to PABPC1, PABPC3 contains four RRMs and a C-

terminal MLLE-domain (305, 326). Human PABPC3 shares ~92% sequence identity with 

PABPC1, and binds poly(A) sequences with affinity similar to PABPC1 (305, 320).   
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Inducible PABP (iPABP) or PABPC4  

PABPC4 expression was first described in activated T-cells, where its expression is rapidly 

upregulated after T-cell activation, with a very low expression in resting human T cells (306). This 

contrasts PABPC1, which is expressed in both resting and activated T-cells at comparative levels 

(306). PABPC4 has been suggested to play an important role in erythroid differentiation by 

stabilizing a subset of mRNAs that contain AU-rich elements in their 3’ UTRs and short poly(A) 

tails (327). PABPC4 depletion in mouse erythroleukemia cells alters the ratio of long versus short 

poly(A) tails of PABPC4-target mRNAs, for example, α-globin and Samd9l mRNA isoforms 

containing short poly(A) tails (<30 adenosines) are selectively lost after PABPC4 depletion, while 

the long poly(A) tail containing mRNA isoforms remain unaffected (327). Additionally, the 

depletion of PABPC4 from an erythroblast cell line inhibits erythroid maturation, thereby 

indicating a role of PABPC4 in this developmental context (327). Moreover, multiple PABPCs can 

cooperate to support their function. For example, in HeLa cells, although PABPC4 is relatively 

less abundant than PABPC1 (162, 163, 328), it can still compensate for the loss of PABPC1 to 

support cell viability (128).   

 

PABPC4 mRNA levels in skeletal muscles are highly upregulated compared to other tissues, where  

PABPC1 levels are low (306). This suggests a compensatory role of PABPC4 in skeletal muscles, 

where it may contribute to maintain a repertoire of PABPC. However, at protein level, PABPC4 

levels are downregulated after differentiation of mouse C2C12 cells (329), similar to PABPC1 

(304). In this context, PABPC4 has been shown to directly contact nuclear receptor corepressor 1 

(NCoR1) (329). In mice, muscle-specific deletion of NCoR1 improves glucose and fatty acid 

metabolism (330). Downregulation of PABPC4 after C2C12 differentiation leads to NCoR1 
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ubiquitination and degradation, and artificially maintaining PABPC4 levels lead to a stabilization 

of NCoR1 levels (329). Therefore, downregulation of PABPC4 after C2C12 differentiation 

suggests an adaptive response to maintain healthy mitochondrial function in skeletal muscles by 

promoting the degradation of NCoR1 (329). Similar to PABPC1, PABPC4 contains four RRMs 

and a C-terminal MLLE-domain (306, 326). Human PABPC4 shares ~79% sequence identity with 

PABPC1 and binds both poly(A) and poly(U) sequences, and its affinity to poly(A) sequences is 

similar to PABPC1 (306). 

PABPC5 

Pabpc5  is an X-linked gene coding for a protein with four RRMs, but unlike other PABPCs lacks  

the linker region and C-term MLLE-domain entirely (307, 326). Pabpc5 mRNA is expressed in 

fetal brain and several adult tissues (307). The location of Pabpc5 on X-chromosome is in 

proximity to translocation breakpoint defects linked with premature ovarian failures, therefore, 

making Pabpc5 a potential gene for this phenotype (307). Human PABPC5 shares ~64% identity 

with both PABPC1 and PABPC4.  

 

ePABP or PABPC1L1 

ePABP was first identified in Xenopus oocytes as an ARE-elements binding protein (150). Xenopus 

ePABP shares 72% identity with both frog and human PABPC1 (150). ePABP is the predominant 

PABPC expressed in oocytes and early embryos (150). ePABP protein can be detected in stage I-

VI oocytes, mature oocytes, and throughout the early embryonic development stages, but is absent 

in mature tissues (150, 331). In contrast, PABPC1 is barely detected in oocytes, but its expression 

is turned on after the onset of zygotic transcription (149, 150, 155, 332, 333). In oocytes, poly(A) 

tail length is an important determinant of translation efficiency, where mRNAs with longer poly(A) 
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tails are efficiently translated (102, 110, 334). ePABP has been demonstrated to protect poly(A) 

tails from deadenylation, similar to PABPC1 (150). ePABP stimulates translation of reporter 

mRNAs injected into oocytes and associates with endogenous mRNAs in polysomes (331). ePABP 

was initially identified as Xenopus specific protein that is not conserved in other vertebrates (150); 

however, now it has been identified in various mammals and is present in the genomes of other 

vertebrates (149, 331, 335, 336).  ePABP contains four RNA recognition motifs and a C-terminal 

MLLE domain (150, 331), and maintains interactions with PABPC1-interacting proteins like 

eRF3, eIF4G, and PAIP1 (331). Therefore, ePABP is suggested to play an important role in 

regulating mRNA translation and stability during early development. 

 

1.5. NEUROGENESIS AND NEURON MATURATION  

Neurons are arguably the most complex of all the cells in vertebrates, in both structural and 

functional dimensions. In 1873, an Italian pathologist Camillo Golgi made a landmark contribution 

to the field of neuroanatomy. He invented a method called silver staining of the brain, which helped 

to visualize the nerve cells for the first time in great details (337). However, it was Spanish 

anatomist Santiago Ramón y Cajal who, by using Golgi’s method of staining, gave the idea that 

the brain is composed of individual nerve cells, which were later named neurons (338-340).  

 

Neurogenesis 

All neurons in the mammalian brain are derived from neural epithelium cells (or neural stem cells) 

during brain development (341). Neural stem cells have the quality of self-renewal and 

multipotency i.e., they can self-proliferate as well as give rise to multiple types of differentiated 

cells like neurons, astrocytes, and oligodendrocytes. During early brain development, neural stem 
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cells undergo symmetric cell divisions to self-renew and proliferate [(342), (Figure 8)], but after 

the onset of neurogenesis switch to asymmetric cell divisions (343). Through asymmetric cell 

divisions, neural stem cells can generate a daughter stem cell and a fate-restricted progenitor-like 

radial glial cell (RG), or directly a neuron (343, 344). As neurogenesis progresses, neural stem 

cells are essentially replaced by RG cells (345, 346). During neurogenesis, RG cells undergo 

asymmetric cell divisions to generate a daughter RG cell and a terminally differentiated neuron 

cell (344, 347, 348). RG cells display a characteristic bipolar morphology with the nucleus in the 

ventricular/subventricular zone and a long radial fiber extending to the pial surface (345). This 

morphology of RG cells helps to support neuronal migration. Neurons produced earlier during 

neurogenesis migrate along the radial fibers of RG cells to form the subpial preplate zone (345). 

Subsequent waves of neurons produced in the ventricular zone form cortical plate by migrating 

into the preplate and splitting it into outer superficial molecular cell layer (or layer I), which 

consists of Cajal-Retzius neurons, and a deep subplate. Neurons produced successively migrate 

through the subplate until reaching below the layer I, and therefore, form different cortical layers 

in an inside-out fashion (VI, V, IV, III, II, I) (349, 350). The RG cells not only generate the neurons, 

but are also the progenitor cells for astrocytes and oligodendrocytes during gliogenesis (345, 351). 

In mice, neurogenesis begins around embryonic day E9-E10, peaks at E15, and completes around 

E16-18.5 (352, 353). On the other hand, gliogenesis begins later during embryonic development 

around E15 and continues into first few postnatal weeks (354).  

 

The idea that neurogenesis ceases to occur in postnatal brain is challenged by numerous studies. A 

study provided the first evidence of adult neurogenesis forming dentate granule cells in the dentate 

gyrus region of rat hippocampus (355, 356). Moreover, multipotent neural stem cells have been  
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Figure 8. Cortical neurogenesis in mice. Prior to neurogenesis, the neural progenitors divide by 
symmetric divisions to proliferate. However, after the onset of neurogenesis (roughly embryonic 
day 10, E10), switch to asymmetric divisions to form one neuron cell and one progenitor cell. The 
brain cortex is generated in inside-out fashion where newly generated neurons migrate outward to 
form outer layers of the cortex (VI, V, IV, III, II). Neurogenesis peaks at E15 and completes around 
E18. After birth, neurons undergo extensive dendritogenesis and synaptogenesis as a part of the 
neuron maturation process.  
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derived from the striatum of adult mouse brain (357, 358). Although neurogenesis has been 

documented in adult mammalian brain, it is restricted to mostly two neurogenic regions namely, 

dentate gyrus and subventricular zone of the lateral ventricles (359, 360). With the application of 

BrdU as a lineage tracker, neurogenesis is also suggested to occur in adult human hippocampus 

(361). Therefore, adult mammalian brain retains the ability to produce new neurons, albeit in a 

limited capacity.   

 

Neuron Maturation 

An overview of Neuronal structure and function  

A mature neuron can be divided into these sub-compartments: a cell body that contains a small 

volume of cytoplasm and a nucleus, an axon that contains axoplasm and displays a tree-like 

branching at the tip, and numerous projections emanating from the cell body with branched-

patterns called dendrites (337, 339, 362). In a neuron, an impulse (or signal) travels along the 

length of its axon and gets relayed onto the dendrites of neighbouring neurons through a 

specialized structure called synapse (363-369). Therefore, neurons receive signal through the 

dendrites and transmit it to other cells via axon terminals. Electron microscope imaging and 

biochemical analyses of isolated synaptic terminals reveal that axon terminals are crowded with 

vesicles (363, 370, 371). These vesicles contain neurotransmitters, which are released at the 

synapse by exocytosis through the axonal membrane (372-375). The released neurotransmitter 

binds to its receptors on dendritic terminals and triggers a downstream signaling cascade, leading 

to the local protein synthesis from available mRNA pool (166, 376-378), thereby enabling rapid 

changes in synaptic connectivity.  
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Synaptogenesis  

The cerebral cortex of mammalian brain requires a very precise neuronal circuitry for its proper 

function. To form this complex wiring in the brain after neurogenesis, neurons establish contacts 

with each other by extending their axonal and dendritic terminals. This extension is guided by a 

structure at the tip of the developing neurites called growth cone (379, 380). In year 1890, a pioneer 

work by Cajal in three days old chick embryos, led to the discovery of axonal growth cones. Cajal 

made an observation that the axonal tip of a commissural neuron attained a triangular shape “cone-

like lump with a peripheral base” (362). Growth cone receives chemical cues from other cells in 

its extracellular vicinity for axonal or dendritic guidance (381), and ultimately, its precise 

integration with a synaptic counterpart to form a specialized structure called synapse. The growth 

cone migration during neurite extension is dependent on microtubule cytoskeletal rearrangements 

and several signaling molecules, including Ca2+, small GTPases, and mitogen activated protein 

kinases (MAPKs) link external signaling cues to microtubule dynamic assembly and stability 

(382). A synapse represents the linkage between presynaptic and postsynaptic terminals of 

neurons. Physiologically, the presynaptic terminal releases a chemical signal messenger called a 

neurotransmitter (like glutamate) into the space between the two synaptic terminals called synaptic 

cleft (374), the neurotransmitter then binds to a receptor on the post-synaptic terminal (like NMDA 

receptor), and triggers a signaling cascade downstream, thus providing the basis of neuron 

communication. Generally, two types of synaptic transmission modalities can be described in the 

mammalian brain, namely, chemical synapse and electrical synapse (383-385). While chemical 

synapses use neurotransmitters for communication, electrical synapses transmit signal by 

transporting charged ions and/or messenger proteins via gap junctions (386, 387). These gap 

junctions are established between the pre- and post-synaptic terminals with the help of 
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transmembrane proteins called connexin proteins (387). In contrast to chemical synapses, an 

important quality of electrical synapses is that the flow of signal is bidirectional i.e., messenger 

molecules can flow back and forth across gap junctions. Electrical synapse was initially thought 

to be a precursor synapse in development to the later forming chemical synapse, which is the most 

abundant synapse-type in adult brain (388, 389). However, growing evidence suggests that both 

type of synapses are essential for synaptic transmission in adult brain and act synergistically. For 

example, an electron microscope connectome of rabbit retina reveals that as much as 20% of the 

total synapses in retina are electrical in nature (390-392).  

 

In general, axons form the presynaptic terminal, while the postsynaptic terminal is formed by the 

dendritic spines. Although action potential in a neuron travels from the dendritic terminal to the 

axonal terminal, in 1952 Cajal made observations that several neuron types in the mammalian 

brain either lack dendrites or an axon, or the axon emerges from a dendrite. For example, Dorsal 

Root Ganglion (DRG) neurons have a unipolar morphology  and contain only an axon (393, 394), 

while dopaminergic neurons in the substantia nigra pars compacta have an axon which is 

emanating from the dendrites (394). Moreover, granule cells in the olfactory bulb lack axons, 

release neurotransmitters from their dendrites, and form dendrodendritic synapses with mitral cells 

(395). These exceptional examples highlight  the complexity of neural circuitry for proper 

communication.  

 

Synaptic pruning and programmed cell death 

During early postnatal days of brain development, neurons establish excessive number of synapses 

(396). In humans, synaptic density approaches its maximum during early childhood, and shows a 
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decline during late childhood and adolescent years before stabilizing at sexual maturity (396-400). 

The mitochondrial caspase-3-protease (CASP3) is localized in dendrites and its activity is linked 

to synaptic pruning (401). Activation of CASP3 induces long-term depression (LTD), and AMPA 

receptor endocytosis, thus reducing the synaptic strength and leading to the loss of synapse (401, 

402). In line with this, mice lacking CASP3 display defects in spine pruning (401). CASP2 

activation also displays similar phenotypes in mice (403). A defect in synaptic pruning can lead to 

neurodevelopmental disorders. Some studies have found that adolescent with autism spectrum 

disorder (ASD) have excessive number of synapses due to reduced developmental spine pruning, 

which is correlated to overactive mTOR and impaired autophagy (404). In contrast, brains of 

individuals with schizophrenia have excessive synaptic pruning (405). Embryonic brains are also 

reported to generate neurons in excess which are eliminated during postnatal brain development. 

Neurons that do not establish relevant connections are eliminated by apoptosis (406-408), a 

program mediated by key apoptotic protein families, including Bcl-2. The Bcl-2 family contains 

anti-apoptotic as well as pro-apoptotic proteins. For example, Bcl-2 and Bcl-xL are both anti-

apoptotic proteins, which dimerize and inhibit proapoptotic members like Bax (409, 410). 

Knocking out Bax in mice leads to an increase in neuron numbers in superior cervical ganglia and 

facial nuclei (411). Therefore, apoptotic programs are active during brain development and act by 

eliminating excess neurons and refining synaptic connections.  

 

1.6. LOCAL TRANSLATION FOR SYNAPTIC PLASTICITY  

In adult mammalian brain, new synaptic connections are constantly formed between neurons by 

cytoskeletal rearrangements. The cytoskeletal reorganization is necessary during nervous system 

development and in adulthood to ensure proper neuronal structure. The dynamic changes in 
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cytoskeleton provide neurons with the flexibility to establish and consolidate new synaptic 

connections quickly during the process of learning and memory formation. Neurons are highly 

specialized cells that can have neurites growing up to one meter in length. Therefore, to function 

properly, neurons rely heavily on intricate molecular networks of mRNA transport and local 

translation. Recent advancements in high-throughput sequencing have reliably identified 

thousands of mRNAs and translation machinery components enriched in neurites. Several studies 

over the years have now shown that mRNAs are quickly translated in neurites upon stimulation 

(412, 413). Many mRNAs are stored in liquid-liquid phase separated structures called ‘RNA 

granules’. The RNA granules are transported by molecular motor proteins into the neurites and 

release mRNAs for translation after stimulation. Understandably, these mechanisms are necessary 

to give neurons the ability to produce proteins, including the ones required for structural 

rearrangements directly within the neurites, without having to constantly rely on the cell body. 

This ability of the brain to constantly rearrange neural networks has earned it the title ‘plastic 

organ’.   

 

RNA transport in Neurons  

mRNA availability in neurites is a prerequisite for local mRNA translation and synaptic plasticity. 

Therefore, mRNAs are actively transported to dendrites and axons in a translationally repressed 

state (414-417). RNA cargo transport is facilitated by molecular motors proteins like kinesin and 

dynein, which ensure the precise delivery of mRNAs [(418), (Figure 9)]. The cytoskeleton plays 

a vital role in mRNA trafficking by serving as a track for molecular motor proteins (418). The role 

of cis-acting elements and trans-acting factors in RNA transport, the role of cytoskeletal and motor  
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Figure 9. mRNA transport in neurons. Shows a depiction of a section of neuronal dendrite. 
RNAs are packaged into RNA transport granules for dendritic transport. RNA transport granules 
contain several RNA binding proteins and both 40S and 60S ribosomal subunits indicating 
“elongation-stalled” ribosomes. The RNA granules are docked onto the motor proteins (kinesin 
and dynein) via adapter proteins (RNA binding proteins, or other intermediate proteins), and are 
transported along the length of microtubules. Alternatively, several RNAs can be transported as 
RNPs (not containing ribosomes) to distal dendritic sites. After stimulation, mRNAs are released 
from the granules and RNPs for their local translation to support synaptic plasticity.  
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proteins in facilitating this transport, and packaging of mRNAs into RNA transport granules are 

discussed in detail below.   

 

cis- and trans-acting elements in RNA transport  

Zip codes 

Recent advances in RNA deep-sequencing methods, have identified a myriad of RNA species 

localized in the neuronal processes (97, 378, 419-422). Various cis-acting elements within the 

RNAs and trans-acting factors like RNA-binding proteins are involved in transporting RNAs in 

neurons. For example, several mRNAs contain localization elements (or ‘zip codes’) in their long 

3’ UTRs for dendritic transport (93, 423-429). A well-studied example is β-actin mRNA that 

contains a  54-nucleotide  zipcode  in its 3’ UTR, which is bound by the zipcode-binding protein 

(ZBP1) that plays a role in its transport (423, 424, 430). Similarly, ZBP1 is also involved in the 

dendritic transport of Spinophilin mRNA, where ZBP1 knockout mice have reduced dendritic 

localization of Spinophilin mRNA (431). Interestingly, ZBP1-β-actin RNP colocalizes with 

huntingtin, and microtubule motor proteins, kinesin (KIF5A) and dynein in rodent neurons, thus 

highlighting the role of molecular motors in transporting ZBP1-associated RNA cargos (432).   

 

G-quadruplex 

Several mRNAs contain a secondary structure called ‘G-quadruplex’ in their UTRs, or although 

less common in coding regions (93). The consensus sequence of a G-quadruplex is                

(DWGG-N0-2)4, where D means any nucleotide except ‘C’ and ‘W’ stand for either A or U (433, 

434). A significant number of well-defined dendritic mRNAs contain this structure, among these 

are PSD-95, CaMKII⍺, MAP1b, APP,  and PP2Ac (93, 433, 435-439). An important trans-acting 



Sharma, Sahil 
 

 66 

factor fragile X protein (FMRP), binds the G-quadruplex structure on these mRNAs through 

FMRP-RGG box (433, 440), and regulates their stability, translation, and transport (436, 437, 439, 

441). Interestingly, in FMR1-kockout CAD cells, mRNAs that contain G-quadruplexes in their     

3’ UTRs are less enriched in neurites (441). Agreeably, subcellular fractionation and transcriptomic 

analyses on neurons derived from fragile X-syndrome (FXS) patients, reveals that the transcripts 

enriched for G-quadruplex are less neurite-enriched (441). The function of FMRP in                           

G-quadruplex-dependent RNA transport appears independent of its function in ribosome stalling, 

as a mutant-FMRP that cannot bind ribosomes can still promote localization (441, 442). 

Mechanistically, how FMRP localizes its target mRNAs is still evolving; however, its interaction 

with the kinesin motor protein KIF3C suggests that FMRP can function as an adaptor between 

RNP complexes and motor proteins for RNA cargo transport (443).   

 

Cytoplasmic polyadenylation element (CPE)  

The CPEB protein facilitates the transport of CPE-containing mRNAs to dendrites (429, 444). 

While many mRNAs, including Arc, CaMKII⍺, BDNF, and trkB, are actively transported to the 

neurites after synaptic stimulation (445, 446), not all mRNAs contain the consensus CPE. 

Interestingly, several dendritic mRNAs, including CaMKII⍺ and Map2 contain CPEs in their 

3’UTRs (429, 447). Specifically, the CPEB protein is demonstrated to transport the CPE-

containing mRNAs, CaMKII⍺ and Map2 to dendrites, and directly interact with the molecular 

motor proteins, kinesin and dynein (429). Importantly, disrupting the interaction between CPEB 

and motor proteins also reduces the Map2 mRNA localization to dendrites (429). The mRNAs in 

CPEB-RNP particles are translationally dormant, for example, CPEB3 negatively regulates the 

translation of various synaptic plasticity-related mRNAs, like PSD95 and NMDAR subunits 
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coding mRNAs: NR1, NR2A, and NR2B (448).  Therefore, CPEB is a relevant trans-acting factor 

that binds CPEs and plays pivotal roles in mRNA localization and translation regulation.  

 

Transporting brain-specific non-coding BC RNAs   

The genomes of rodents and primates have independently acquired a gene that codes for a small 

non-coding RNA, which is specifically express in the brain called brain cytoplasmic (BC) RNA 

(449, 450). Rodent brains express a unique 152-nucleotide non-coding RNA named brain 

cytoplasmic 1 (BC1), which localizes to neuronal dendrites (449, 451-455). Similarly, the primate 

brain expresses a 200-nucleotide long non-coding RNA named brain cytoplasmic 200 (BC200) 

(450, 456), which is localized into the neurites, similar to BC1 (457, 458). BC RNAs are 

structurally similar (459), but were acquired independently. BC1 is coded by a gene derived from 

retrotransposition of  tRNAAla (460), while BC200 RNA coding gene is a member of Alu family 

of interspersed repetitive DNA elements (450, 456).  BC RNAs are predicted to contain a 5’ stem-

loop structure, a unique 3’ region, and an internal A-rich region [(459, 461), (Figure 10)]. Both 

BC RNAs are RNA polymerase III transcripts containing terminal ‘UUU’, and are not 

polyadenylated (456, 462). The 5’ stem-loop structure acts as a cis-acting element and recruits 

several trans-acting factors for dendritic localization (452, 463). Mutations in the 5’ stem-loop 

disrupts the dendritic localization of BC RNAs, indicating the dendrite targeting role of this 5’ 

structure (452). Interestingly, the localization of BC1 RNA to the dendrites is microtubule-

dependent, and disrupting microtubule assembly with a microtubule cytoskeleton disrupting agent, 

nocodazole, restricts BC RNA in the soma of neurons (464). FMRP was previously shown to bind 

the 5’ stem-loop of BC RNAs, therefore, FMRP could act as a trans-acting factor for their 

localization (465, 466); however, later studies suggested that FMRP and BC RNAs do not interact 
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Figure 10. BC RNAs structure. Predicted structures of BC1 and BC200 RNAs by Vienna RNA 
Websuite (467), showing internal adenosine stretches in open conformation. BC1 RNA shows the 
5’ stem-loop structure and a 3’ unique region.  
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directly, thereby casting a doubt over this interaction (468). Additionally, BC1 is highly enriched 

in RNP-particles containing a brain predominant RNA binding protein called Staufen (469). 

Staufen interacts with the motor protein kinesin, and therefore, may plays a role in BC1 RNA 

transport (469, 470). BC RNAs provide binding platform for several other RNA binding proteins, 

including PABPC1 and SYNCRIP, which can bind the internal A-rich regions (308, 471). BC1 

RNA has been reported to repress translation in vitro and BC1-knockout mice have dysregulated 

levels of synaptic plasticity related genes like PSD-95, FMRP, GluRI, GluRII (472-474). It is 

currently unclear how BC RNAs regulate the translation initiation; however, in vitro studies 

suggest that BC1 RNA can bind PABPC1, and its 5’ stem-loop structure can bind the RNA helicase 

eIF4A (472), hence BC1 may regulate their availability for the translation initiation complex 

assembly. These studies highlight a potential role of dendritically-localized non-coding BC RNAs 

in regulating local translation in dendritic compartments.  

 

The granule theory of RNA transport  

In neurons, diverse mechanisms exist for RNA transport to distal dendritic sites. While many 

mRNAs are transported as RNP particles, some mRNAs prefer liquid-liquid phase separated dense 

structures called RNA transport granules (RNA granules hereafter). These specialized structures 

can be found in different cell types, including oligodendrocytes, oocytes, and neurons (475-477). 

The neuronal RNA granule contains different types of mRNA, RNA binding proteins, 40S and 60S 

ribosomal subunits, elongation factors (eEF1⍺), microtubules-related proteins (Tubb2a, Tubb3, 

Map1a, Map2) and motor proteins (Kif1c, Kif5a, Dynll1, Dynll2) (477, 478). This reflects that the 

RNA granules are translationally competent, associate with the cytoskeleton, and are presumably 

motile. Indeed, in neurons RNA granules are easily visible in dendrites as distinct motile structures 
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with average motility of 0.1µm/sec (477). The neuronal soma also contains RNA granules; 

however, their high density in soma obscures their distinct morphology. This suggests that RNA 

granules are packaged in soma for dendritic transport. Studies over the years have demonstrated 

that neuronal RNA granules contain 80S ribosomes stalled at the pre-translocation step of 

translation elongation (478, 479). It is suggested that neuronal stimulation or depolarization leads 

to the release of mRNAs from the RNA granules into the actively translating mRNA pool (416).  

 

RNA binding proteins in RNA granules 

Several RNA binding proteins that are implicated in RNA transport are present in neuronal RNA 

granules, for example, FMRP, Staufen, PABPC1, SYNCRIP, and PUR⍺ (478-481). RNA binding 

proteins play pivotal roles in phase-separating target mRNAs into RNA granules, thus regulating 

their translation and stability during transport. Our understanding on whether these proteins play 

independent or coordinated roles in RNA granule assembly, is still evolving. Several important 

RNA granule proteins are discussed below.  

 

FMRP 

The RNA binding protein FMRP is a component of RNA granules, which is involved in RNA 

trafficking into dendrites (480, 482). FMRP interacts with its target RNAs through RGG box, 

which leads to ribosome stalling and translation repression (479, 480). FMRP also binds directly 

to the L5 protein in large ribosomal subunit (483, 484), and cryo-EM analysis of FMRP-ribosome 

complex predicts that KH1 and KH2 domains (K-homology) of FMRP may prevent tRNA from 

accessing the P-site on ribosome (483). However, FMRP lacking the RGG box binds ribosomes, 

but does not display a strong translation inhibition (483). This indicates that the RNA binding 
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ability of FMRP is prerequisite for its translation inhibition properties, and that the simultaneous 

interaction with the ribosomes is beneficial but not absolutely required. Transcriptome analysis on 

RNA granules has revealed that one-third of known FMRP target RNAs are packaged into RNA 

granules (480). Importantly, FMRP is highly enriched in the RNA granules, and less localized in 

polysomes (479, 480). Therefore, it is suggested that ‘FMRP-stalled’ polysomes are directly stored 

as RNA granules (479, 480).  

 

Staufen 

Staufen, a double-stranded RNA binding protein, is also involved in RNA transport in neuronal 

dendrites (485), and is critical for healthy spine morphology (486). It binds a stem-loop structure 

in target RNAs called Staufen response element (SRE) (487). The RNA targets of Staufen include 

members of G protein-coupled receptor family (GPCR), and majority of Staufen targets are 

localized to neurites (488). Staufen transports RNAs in RNP particles and RNA granules (469). 

Staufen containing RNP particles are enriched in dendritically localized non-coding RNA BC1, 

which does not associate with ribosomes (489). Staufen interacts with the motor protein kinesin 

and plays a role in RNA cargo transport (469, 470). Proteomic analysis of Staufen containing RNA 

granules has identified their components which includes, 40S and 60S ribosomal subunits, FMRP, 

PABPC1, motor proteins, and cytoskeletal proteins (485, 490). Therefore, Staufen transports 

RNAs in two distinct structures: : (i) small RNP particles that contain RNA-protein complexes, 

but lack ribosomes, and (ii) large dense RNA granules that contain ribosomes as well as RNA-

protein complexes.   
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PABPC1 

PABPC1 is consistently detected in RNA granules; however, its role is not clear (478, 480). 

PABPC1 is classified as a translation initiation factor that stimulates translation in certain contexts 

(142, 148), while as an mRNA stability factor in postembryonic systems (128, 160). The presence 

of PABPC1 in translationally dormant RNA granules is contrary to its function in translation; 

however, it may play a dual role in mRNA translation and stability after their release from the RNA 

granules. A recent study shows that PABPC1 and FMRP can physically interact, and this 

interaction enables FMRP to protect mRNAs from deadenylation (491). This suggests a possible 

role of FMRP in sequestering PABPC1 and bound mRNAs into RNA granules. Moreover, 

PABPC1 molecules can multimerize on mRNA tails (36), which may further support its phase 

separation into these dense RNP structures.  

 

SYNCRIP 

SYNCRIP (also known as hnRNPQ) is a predominantly cytoplasmic protein which belongs to a 

big family of heterogeneous nuclear ribonucleoproteins (hnRNPs). SYNCRIP is an RNA binding 

protein that was identified as a component of RNA granules in hippocampal neurons (492). 

SYNCRIP containing RNA granules are enriched in neuronal soma and localize to the neurites. 

Time-lapse microscopy experiments reveal that SYNCRIP containing granules are motile, and can 

travel bidirectionally in the neurites (492). The disruption of microtubules with the drug 

nocodazole prevents the movement of these granules, indicating that SYNCRIP-containing RNA 

granule motility is microtubule-dependent (492). Moreover, colocalization studies show that 

SYNCRIP is present in Staufen-containing RNA granules. SYNCRIP RNA interactome analysis 

has identified mRNAs targets for this protein. Many of these mRNAs code for proteins related to 
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neurogenesis, neuronal migration, and neurite outgrowth (493). Additionally, SYNCRIP targets 

GAP-43 mRNA, which codes for a neuronal protein that facilitates axonal growth by regulating 

actin cytoskeleton dynamics (494). SYNCRIP translationally represses GAP-43 mRNA by binding 

to a G-quadruplex structure in its 5’ UTR (494). Therefore, SYNCRIP regulates protein synthesis 

of its target mRNAs and is transported in RNA granules.   

 

PUR⍺ 

PUR⍺ was first described as a transcription factor that binds a single stranded purine-rich  

(Adenosine repeats) element upstream of c-myc gene (495, 496). However, many studies have now 

shown that PUR⍺ is localized in the dendrites of hippocampal neurons (497). It has emerged as a 

major RBP involved in RNA transport in neurons, and is present in an RNA granule associated 

with the kinesin motor protein, KIF5 (498). It colocalizes with Staufen-containing RNA granules, 

and associates with several dendritically localized mRNAs, like Map2 and non-coding RNAs BC1 

and BC200 (497-499). One study showed that in mature neurons, 47% of Staufen containing RNA 

granules are positive for PUR⍺. Interestingly, PUR⍺-containing RNA granules are stationary under 

resting conditions; however, quickly localize into dendritic spines after activation of postsynaptic 

metabotropic glutamate receptor 5 (mGluR5) (499). The localization of  PUR⍺-containing RNA 

granules to dendrites is dependent on microtubules, as microtubules disrupters, like nocodazole 

and colchicine inhibit this localization (497). Moreover, PUR⍺ also colocalizes in FMRP- and 

Staufen-containing RNP complexes, and attaches to rough endoplasmic reticulum via kinesin 

motor protein KIF5 (500). These studies highlight PUR⍺ as a major component of RNA granules  

in neurons.  
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PABPC1 is not only present in FMRP-containing RNA granules, but also colocalizes with Staufen-

containing RNA granules in rat brain (485). Similarly, FMRP,  Staufen, PUR⍺, SYNCRIP and 

other known RNA granule proteins can also colocalize in one subpopulation of granules and not 

in others (498, 500-502). This highlights that RNA granules are dynamic structures that contain 

overlapping protein components. However, as mRNAs that are localized in RNA granules may 

still maintain their poly(A) tails, it is not surprising that PABPC1 is sequestered into multiple 

neuronal RNA granule populations.   

 

After correct delivery of mRNA cargo to distal neurites, neurons localize the RNAs in close 

proximity to the sites where their protein products are needed. This is usually done by docking the 

RNA cargo to the cytoskeleton via motor proteins (503, 504). The mRNAs are stored in repressed 

state and await synaptic activation (414-417). The steps involved in synaptic stimulation, and in 

response, local proteome modulation are discussed below.  

 

Synaptic stimulation  

Chemical synapses are the most common type of synapses in the brain. Synaptic transmission via 

a chemical synapse involves these steps: (i) transmission is initiated when an action potential 

reaches the axonal terminal causing it to depolarize and leading to, (ii) the influx of Ca2+ ions into 

the pre-synaptic terminal through voltage gated ion channels, (iii) the influx of Ca2+ ions activates 

the fusion of synaptic vesicles to the pre-synaptic membrane and release of neurotransmitter (like 

glutamate) by exocytosis into the synaptic cleft, (iv) glutamate binds to its receptors, mainly AMPA 

and NMDA, present on the excitatory post-synaptic membrane, which are ligand-gated ion 

channels, (v) the binding of glutamate to AMPAR leads to the influx of Na+ ions into the post-
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synaptic terminal through AMPAR-ion channel, therefore, making it locally depolarized, and (vi) 

the glutamate binding to the NMDAR and simultaneous depolarization through AMPAR, causes 

Ca2+ influx through NMDAR-ion channel, thus leading to a further depolarization of post-synaptic 

terminal (505). The Ca2+ ion is an important second messenger that links membrane depolarization 

to downstream cell signaling cascades. These downstream biochemical machineries determine the 

strength and duration of a synaptic connection by regulating the local proteome abundance.    

 

Local protein synthesis: Important players  

As mentioned earlier, a myriad of studies have demonstrated that many mRNAs are transported to 

the neurites (97, 378, 419-422). Apart from mRNAs, the translation machinery i.e., ribosomes are 

also present in synaptic terminals (166, 419, 506, 507). Moreover, the mRNAs coding for 

translation factors, as well as the proteins themselves are transported to the synapse (97, 166, 478, 

508, 509). Collectively, this gives synaptic terminals the ability to modulate their local proteome 

effectively. In fact, many studies have now proved that active protein synthesis takes place in pre- 

and postsynaptic terminals (166, 419, 510, 511). The ability of neurons to actively synthesize 

proteins at synaptic sites, supports the synaptic changes required during long-term memory 

formation (512). Several signaling molecules and effector proteins exert a tight control over protein 

synthesis in synaptic terminals, as discussed below.  

  

 CaMKII⍺ as a central molecule 

The influx of Ca2+ ions activate downstream effector proteins that can sense elevated calcium 

levels. A calcium effector protein calmodulin binds up to four Ca2+ ions, which leads to its 

activation (513). Ca2+/calmodulin complex binds to a serine/threonine protein kinase enzyme 
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called Ca2+/calmodulin dependent protein kinase II (CaMKII⍺) and activates its kinase activity 

(514). After its initial activation, CaMKII⍺ autophosphorylates (Thr286) itself for a long lasting 

Ca2+ independent activity (515-518). CaMKII⍺ is highly expressed in the hippocampus and cortex, 

reaching 2% and 1.3% of the total protein content, respectively (519). It is highly enriched in post-

synaptic compartments and associates with NMDAR after autophosphorylation (520-523). Among 

many of CaMKII⍺ downstream substrates are included, mitogen activated serine/threonine protein 

kinase (MAPK) family members and protein kinase B (PKB/Akt) (524, 525). Three major types 

of MAPKs include extracellular signal-regulated protein kinase 1/2 (Erk1/2), c-Jun N-terminal 

kinase (JNK), and p38 MAPK. The phosphorylated PKB/Akt stimulates the activity of its 

downstream target, mTORC1 (mammalian target of rapamycin complex 1), an important 

serine/threonine kinase which is sensitive to nutrient conditions and regulates the translation 

initiation (526, 527).  

 

The ability of CaMKII⍺ to sense the elevated Ca2+ levels, and potentiate downstream signaling 

cascades, suggests its role as a central molecule in neuronal synaptic signaling. It is responsible 

for orchestrating the activation of key downstream kinases, which are important for regulating the 

mRNA translation. The important pathways linking synaptic stimulation to protein synthesis are 

as follows.  

 

Translation initiation control 

Translation initiation is tightly regulated by mTORC1, which can sense extracellular cues like 

nutrient abundance (527, 528). Akt directly phosphorylates tuberin (TSC2), an inhibitor of 

mammalian target of rapamycin (mTOR) activity. Phospho-inhibition of TSC2 by Akt, leads to 
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mTOR activation via its binding to the GTP-binding protein, RHEB. mTORC1 acts as a kinase to 

phosphorylate its targets: eukaryotic translation initiation factor binding protein (4E-BP1), and 

protein S6 kinase (S6K). Phosphorylation of 4E-BP1 leads to its dissociation from eIF4E. The free 

eIF4E can bind the mRNA 5’cap and together with eIF4G and eIF4A, assembles the eIF4F 

complex for translation initiation by ribosome recruitment (134). Remarkably, a study 

demonstrated that inhibiting cap-dependent translation initiation leads to the depletion of 

polyribosomes from dendritic spine heads (511). Thus, indicating that cap-dependent translation 

initiation plays an important role in maintaining the local proteome in dendritic spines (511, 529). 

In line with this study, inhibiting the interaction between translation initiation factors eIF4E and 

eIF4G, which is required for ribosome recruitment, has profound effects on initial fear memory 

consolidation, but not on pre-existing memory reconsolidation (530). Phosphorylation of S6K 

activates its kinase activity, which then phosphorylates the small ribosomal protein subunit, RPS6. 

The significance of this phosphorylation still remains elusive; however, one study found that 

phosphorylation of RPS6 promotes the translation of mRNAs with short open reading frame (ORF) 

(531). Interestingly, in neurons, RPS6 protein is shown to get phosphorylated during neuronal 

activity (532).  

 

Translation elongation control 

While above studies highlight how protein synthesis is regulated at the translation initiation step, 

many mRNAs that are transported in neurites are repressed in the translation elongation step, as 

they contain stalled ribosomes awaiting reactivation  (533). The phosphorylation state of the 

elongation factor-2 (eEF2) acts as a toggle switch for synaptic plasticity. eEF2 catalyzes the GTP-

hydrolysis-dependent translocation of a ribosome on mRNA during polypeptide synthesis (534). 
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Phosphorylation of eEF2 by a kinase, eEF2K (or CaMKIII), renders it inactive, which stalls 

translation in the elongation step (535). Importantly, during stimulation-mediated 

neurotransmission i.e., neurotransmitter release, Ca2+ influx and depolarization of post-synaptic 

terminal, eEF2 remains dephosphorylated (active), which favours protein synthesis (536). 

However, during the events of “spontaneous” neurotransmitter release (at rest), when the action 

potentials are absent (537, 538), eEF2 is immediately phosphorylated (inactive) by eEF2K (536, 

539). Intriguingly, stimulation of synaptosome preparations with the neurotransmitter glutamate 

mimic N-methyl-D-aspartate (NMDA), leads to the phosphorylation of eEF2 and overall decrease 

in protein synthesis (540). In contrast, the translation of CaMKII⍺ is rapidly upregulated following 

NMDAR activation (540). Therefore, while the overall mRNA translation is reduced after eEF2 

phosphorylation, for unknown reasons, the translation of some synaptically important mRNAs, 

like CaMKII⍺, Arc, and MAP1B is elevated (540-544). This suggests that eEF2 acts as a regulatory 

effector that couples synaptic activation to local mRNA translation.  

 

Yet another elongation factor, eEF1A provides a regulatory link between synaptic activity and 

translation. eEF1A is a G-protein that utilizes a GTP molecule and bring in an aminoacylated tRNA 

to the A-site of a traversing ribosome during translation elongation. The eEF1A-GDP is then 

recycled back to GTP-bound state by eEF1B, a guanine nucleotide exchange factor (545).  Other 

than a role in protein synthesis, eEF1A also associates with F-actin filaments and plays a non-

canonical role in actin cytoskeleton rearrangements (546-548). eEF1A has two isoforms, eEF1A1 

and eEF1A2. The expression of eEF1A2 progressively increases during neuron maturation, where 

eEF1A2 becomes the predominant isoform (549). During glutamate mediated synaptic activity 

through metabotropic glutamate receptors (mGluR1 and mGluR5), eEF1A2 gets phosphorylated 
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in c-Jun N-terminal kinase (JNK)-dependent manner (550), which leads to its dissociation from 

eEF1B, thereby reducing protein synthesis (545, 549). Astonishingly, eEF1A2 phosphorylation 

also affects its association with actin fibers, where non-phosphorylated form can associate with F-

actin filaments which reduces actin dynamics and spine density (549). In contrast, the 

phosphorylated eEF1A2 dissociates from the F-actin filaments, which allows for actin cytoskeletal 

remodeling and normal spine density (549). Therefore, eEF1A2 is suggested to link local protein 

synthesis and cytoskeletal modifications to synaptic plasticity.   

 

Stimulus-dependent cytoplasmic polyadenylation  

Synaptic stimulation has been shown to activate the cytoplasmic polyadenylation of several 

mRNAs, which favours their translation (447). Several mRNAs have CPE elements in their             

3’ UTRs as a signal for polyadenylation. For example, CaMKII⍺ mRNA has two CPEs and 

undergoes polyadenylation at synapses, which upregulates its protein synthesis (447). Other 

examples include mRNAs: Map2, Rcm3 (calmodulin), and Abp (AMPA receptor binding protein) 

(429, 551). Interestingly, in post-synaptic density fractions and pyramidal neurons, CPEB is shown 

to get phosphorylated after CaMKII⍺ activation (552). Moreover, inhibiting CaMKII⍺ activity 

abolishes CPEB phosphorylation (552). The phosphorylated CPEB binds CPEs and recruits the 

polyadenylation machinery (119, 120, 552). While several RNAs undergo stimulus-dependent 

cytoplasmic polyadenylation, majority of mRNAs do not, as they lack canonical CPEs. 

Interestingly, a recent study demonstrated that only a subset of mRNAs underwent cytoplasmic 

polyadenylation after neuronal stimulation (165). In this study only a modest correlation was 

established between poly(A) tail length and translation efficiency. However, as this correlation was 
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calculated from the totality of a neuron cell, investigating a correlation between poly(A) tail length 

and translation efficiency in the synaptic compartments would be more appropriate (165).  

 

Collectively, these studies inform us how synaptic activity is propagated by sensors (receptors like 

NMDAR, mGluR) on to downstream effectors (like translation initiation and elongation factors), 

which play important roles in modifying the local proteome, and as a result, in modulating the 

synaptic architecture. Therefore, neurons can effectively modify their proteome in the axons and 

dendrites, which gives them the ability to form new synaptic connections and store memory. This 

quality of neurons to alter the synaptic structure in an activity-dependent manner forms the basis 

of synaptic plasticity, which is described below.  

 

Synaptic plasticity  

The ability of neurons to form and strengthen new synaptic connections and retract or erase the 

connections that are not meaningful, is important to achieve a well-refined neural network in the 

brain. To achieve this functionally ‘optimized’ and energetically ‘favoured’ network, neurons 

modify the efficacy of synaptic connections via many intricate systematic mechanisms. The 

synaptic plasticity can be achieved by two main principles, as follows.  

 

Long-term potentiation (LTP) 

LTP is a form of synaptic plasticity involving persistent strengthening of synapses between neurons 

which generally leads to a long-lasting excitatory postsynaptic potentials (EPSPs). Early studies 

on LTP were carried out using live rabbits and guinea pig hippocampal slices (553-555). In these 

studies, LTP was achieved when a microelectrode was used to apply a brief high frequency 
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stimulus to the Schaffer collaterals (axon) of a pyramidal neuron in the CA3 region, and EPSPs 

were recorded from a postsynaptic CA1 pyramidal neuron  (554). Remarkably they observed that 

a persistent increase in the EPSPs was observed only when the post-synaptic membrane was briefly 

depolarized by applying a current through the recording electrode in conjunction with the axonal 

stimulus (554). Even though these early studies demonstrated methods in achieving long-lasting 

potentiation after synaptic stimulation, the underlying biochemical pathways remained elusive. 

However, decades of extensive studies have now uncovered the biochemical mechanisms 

important for eliciting LTP. These include the neurotransmitter release at the synapse, calcium 

signaling, post-synaptic membrane depolarization, local protein synthesis, and cytoskeletal 

rearrangements (377, 556-561). Therefore, the two main steps involved in eliciting a strong LTP 

are: induction and maintenance. For a strong induction, the synapse after receiving an action 

potential should have enhanced pre-synaptic neurotransmitter release by exocytosis, and high 

membrane density of the AMPA receptors on the post-synaptic terminal (562-565). Several factors 

can contribute to an enhanced neurotransmitter release. For example, in cultured hippocampal 

neurons brain derived neurotrophic factor (BDNF) is reported to enhance the release of 

neurotransmitter from synaptic vesicles by exocytosis and this is dependent on post-synaptic 

tyrosine kinase B receptor activation (563, 566-570). The synapses formed between mossy fibers 

of dentate gyrus granule cells and pyramidal neurons of CA3 region of hippocampus represent a 

unique form of LTP induction. Unlike the classical form of LTP that requires NMDA receptor 

activation and a rise in post-synaptic Ca2+ concentration, LTP of mossy fibers-CA3 pyramidal 

neuron synapse is NMDAR-independent, as it cannot be blocked by NMDAR antagonists (571-

574). Therefore,  it is generally accepted that this form of LTP is expressed pre-synaptically by 
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Ca2+ uptake through voltage gated calcium channels, thereby increasing the release of 

neurotransmitter (575).  

 

Most LTP studies are conducted on excitatory synapses between Schaffer collateral axons of CA3 

pyramidal neurons and dendrites of CA1 pyramidal neurons of hippocampus (554, 576, 577). At 

these synapses, LTP can be triggered by a short high frequency pulse stimulation, which can last 

for days in animal brain (578, 579). The early phase of LTP requires post-synaptic changes such 

as: activation of NMDAR, Ca2+ influx, and CaMKII⍺ autophosphorylation for enhanced activity 

(505). Early phase of LTP also requires AMPAR insertion into the PSD membrane by fusion of 

AMPAR-containing endosome vesicles (562, 565, 580-588). Interestingly, Ras-ERK pathway is 

implicated in the exocytosis of AMPAR-containing vesicles (588, 589). However, a long-lasting 

increase and maintenance of LTP, i.e., a phase that would last weeks or even months, requires local 

protein synthesis, a phase  called “late-phase” of  LTP (590-592). The ability to maintain the 

strength of LTP for a long duration is regarded as the mechanism for memory formation (593). 

Intriguingly, inhibiting the key mTOR pathway via using protein synthesis inhibitors like 

rapamycin, or disrupting eIF4E-eIF4G interactions, impairs long-term memory storage and 

learning (530, 590, 593-595).  

 

Long-term depression (LTD)  

In simple terms, LTD, in contrast to LTP, is described as weakening of strength between synapses. 

Just like LTP, early experiments that described LTD were also done on excitatory synapses between 

Schaffer collateral axons of CA3 pyramidal neurons and dendrites of CA1 pyramidal neurons of 

hippocampus (596). Earlier studies found that a series of low frequency 1-3Hz stimulation of 
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Schaffer collateral axons consistently induced a depression in the post-synaptic action potential of 

CA1 pyramidal neurons, which lasted for hours and could be reversed by short high frequency 

50Hz stimulation (596, 597). Mechanistically, LTD induction was shown to be dependent on 

continued activation of NMDAR  by a low frequency stimulation that is below the threshold of 

synaptic potentiation induction (596, 598). Even though both LTP and LTD induction is dependent 

on post-synaptic intracellular Ca2+ concentration and the activation of CaMKII⍺ (599-601), the 

molecular mechanisms that contribute to LTD induction are not fully understood. The consequence 

of LTD is a marked decrease in the density of AMPAR by endocytosis and ultimate elimination of 

depressed synapses (602-605).     

 

These studies suggest that both LTP and LTD appear to work in coordination to maintain a balance 

between establishment and elimination of synapses in an activity-dependent manner. This in part 

is contributed by the number of AMPARs at the post-synapse, which determine the amplitude of 

depolarization currents (EPSPs), and therefore, the synaptic strength. As many studies have now 

concluded, for a long-term maintenance of synaptic connections, continued protein synthesis is a 

required phenomenon in synaptic terminals.  

 

mRNA decay overview in neurons 

In neurons, post-transcriptional mechanisms to regulate gene expression are of utmost importance. 

Similar to how neurons have developed intricate mechanisms to stabilize mRNAs, prior to their 

translation in space and time, they have also invested extensively in mechanisms to decay mRNAs. 

One such mechanism that has gained quite a bit of limelight in recent years is NMD pathway. It 

has become clear that NMD isn’t merely an RNA surveillance pathway, but also plays significant 
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roles in degrading normal mRNA that do not harbour PTCs (276, 606, 607). Genome-wide studies 

in yeast and other eukaryotes have confirmed that NMD not only regulates aberrant RNAs, but 

also normal mRNA steady states. NMD-dependent degradation of normal RNAs is established by 

utilizing an EJC in the 3’UTR downstream of the stop codon (608, 609). NMD plays an important 

role in axon guidance by regulating the spatial and temporal expression of ROBO proteins. These 

proteins are located at the tip of extending axons, and are produced from alternatively spliced 

mRNA isoforms Robo3.1 and Robo3.2. Both ROBO3.1 and ROBO3.2 proteins are extensively 

studied for their role in axon guidance in “commissural” axons (610). Importantly, the Robo3.2 

isoform codes for a smaller protein due to the insertion of a stop codon upstream of an exon-exon 

junction by frameshift mutation. This mRNA is a classical NMD target, however, it escapes NMD 

and is accumulated in axons in a translationally repressed state. Intriguingly, Robo3.2 mRNA gets 

the opportunity to generate ROBO3.2 protein after the axons have reached spinal midline, and is 

eventually decayed by NMD (611). Arc mRNA is an unusual case, where after neuronal 

stimulation, it is not only transcriptionally upregulated, by its decay is also accelerated (612). Arc 

mRNA 3’ UTR contains two exon-exon junctions after splicing, and therefore, contains two EJCs 

downstream of the stop codon (286), which can trigger NMD response (613). Interestingly, 

knocking down UPF1 (core NMD factor) leads to upregulation of Arc mRNA, thus suggesting that 

the expression of Arc is regulated by NMD (286, 611). These examples highlight that NMD not 

only surveys the transcriptome for quality control, but also plays an important role in 

spatiotemporal expression of synaptically important genes. While NMD is exemplified to regulate 

normal mRNA turnover, it generally requires the presence of an EJC downstream of the stop codon 

for its assembly (276, 285). Similar to Arc mRNA, many dendritically localized mRNAs contain 

alternatively spliced 3’UTRs, which may harbour EJCs downstream of  the stop codon (97, 614-
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618). However, how and if NMD is relevant for the turnover of these synaptically localized 

mRNAs, is unclear. Nevertheless, NMD appears to be an important pathway for normal brain 

function as knocking out relevant NMD factors like UFP2 results in reduced spine density and 

impaired LTP induction in mouse hippocampus (614).  

 

miRNA-mediated gene silencing programs are also active in synaptic terminals. Currently, 20 or 

more miRNA species are known to be present in the dendrites of vertebrate neurons (619). 

Moreover, miRNAs are actively transcribed and transported into synaptodendritic compartments 

upon stimulation, where they are suggested to regulate local translation (619-624). While miRNA 

are generally linked to gene silencing by mRNA degradation, in certain systems including neurons, 

miRNAs are also suggested to repress mRNA translation in a reversible manner (625-627). 

Unexpectedly, miRNAs can even upregulate translation in certain context (627). A study showed 

that miRNA let-7 can induce translation of its target mRNAs in cell cycle arrested cells; however, 

as expected, still represses translation in actively dividing cells (627). Interestingly, the levels of 

miRNA in neurons corelate with the activity. For example, in mouse retinal neurons, a miRNA 

cluster miR-183/96/182 and miRNAs miR-204 and miR-211 are transcriptionally upregulated 

during visual stimuli and rapidly degraded during dark adaptations (620). Similar correlation can 

also be observed in hippocampal neurons (620).  These studies highlight a remarkable adaptation 

of mRNA decay machineries to preserve local transcriptome and support a healthy neuronal 

function.  
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2. RATIONALE AND HYPOTHESES 

Investigating Pabpc1l2a/b: a newly acquired mammalian-specific PABPC1-like gene 

The function of prototypical PABPC i.e., PABPC1, is extensively studied in many contexts. 

PABPC1 stimulates mRNA translation in vitro and during early development by simultaneously 

binding the mRNA poly(A) tails and the 5’cap-bound eIF4F complex via direct interactions with 

the eIF4G scaffold subunit (142, 148). The crystal structure of PABPC1-eIF4G interaction has 

revealed the contact sites between PABPC1 RRM2 and eIF4G N-terminus (143). Higher order 

metazoans have acquired several PABPCs, many of which display tissue-biased expression 

patterns. During evolution, mammals further expanded their genetic repertoire of PABPC-like 

genes by acquiring an X-linked ampliconic gene, Pabpc1l2a/b. While a previous study detected 

Pabpc1l2 mRNA expression in mouse testis and brain tissues (628), several databases have 

computationally predicted that Pabpc1l2a/b is a pseudogene. However, a comparative sequence 

analysis of PABPC1L2 compared to PABPC1 suggested that there is evolutionary pressure on 

PABPC1L2 to be able to bind RNA. With this in mind, I set out to test the hypothesis that 

Pabpc1l2a/b indeed codes for a novel poly(A) binding protein in mammals that post-

transcriptionally regulates gene expression. The overarching goal of my Ph.D. work has been 

to broadly investigate Pabpc1l2a/b, determine if it expresses a functional protein, and to determine 

the role of this protein in post-transcriptionally regulating gene expression.   
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3. RESULTS 

PREFACE: Uncovering a mammalian neural-specific poly(A) binding protein with unique 

properties  

In sections 3.1 to 3.5., from Sharma et al., 2023, which is published in Genes & Development, 

we set out to characterize the expression and shed light on the function of previously 

uncharacterized mammalian X-ampliconic ‘PABPC-like’ gene, Pabpc1l2a/b (collectively 

Pabpc1l2). To this end, we have identified neural specific expression of Pabpc1l2 mRNA and 

PABPC1L2 protein, which we have subsequently named neural PABP (neuPABP) as it is 

predominantly expressed in the brain.  neuPABP maintains a unique architecture as compared to 

other PABPCs, containing only two RNA recognition motifs (RRMs) and maintaining a unique N-

terminal domain of unknown function.  neuPABP expression is activated in neurons as they mature 

during synaptogenesis, where neuPABP localizes to the soma and postsynaptic densities.  

neuPABP interacts with the non-coding RNA BC1, as well as mRNAs coding for ribosomal and 

mitochondrial proteins.  However, in contrast to PABPC1, neuPABP does not associate with 

actively translating mRNAs in the brain.  In keeping with this, we show that neuPABP has evolved 

such that it does not bind eIF4G and as a result fails to support protein synthesis in vitro.  Taken 

together, these results indicate that mammals have expanded their PABPC repertoire in the brain 

and propose that neuPABP may support the translational repression of select mRNAs.  
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3.1. Pabpc1l2 is predominantly expressed in neural tissues  

The human X-chromosome contains a two-copy ampliconic Pabp-like gene, Pabpc1-like 2 

(Pabc1l2a/b), with both copies lacking introns and being over 99% identical to each other at the 

nucleotide level (Figure 11B).  Pabc1l2a/b is conserved among mammals (629), and is predicted 

to code for a truncated open reading frame as compared to PABPC1, containing only the first two 

RRMs (Figures 11A and 12). To assess Pabpc1l2 expression in adult mice, we isolated total RNA 

from adult mouse tissues and carried out semi-quantitative RT-PCR and RT-qPCR reactions using 

Pabpc1l2-specific primers.  We observed Pabpc1l2 mRNA expression in the mouse brain tissues 

(e.g., cortex and hippocampus) but could not detect its expression in any other somatic tissues 

(Figures 11C and 13).  In keeping with this, Pabpc1l2 gene expression was consistently detected 

in the postnatal brain of P7 and 10W mice in neural cells as assessed by single-cell RNA-

sequencing analyses. Detection rate was higher in neurons, lower in glial cells (oligodendroglial 

cells and astrocytes), and negligible in microglia and other non-neural cell types (Figures 14 and 

15). We also analyzed Pabpc1l2 gene expression across human tissues using publicly available 

data from the NIH Genotype-Tissue Expression project (630).  In keeping with data acquired from 

mouse tissues, Pabpc1l2 mRNA was also primarily detected in human brain tissues (Figure 16).   

 

While mouse Pabpc1l2 is predicted to code for a protein that contains only two RRMs and is 

classified by the NCBI as a putative pseudogene (NM_001384267.1), the predicted amino acid 

sequence across these motifs is highly conserved in PABPC1L2 homologs, sharing a high degree 

of identity and homology with the first two RRMs of PABPC1 (Figure 12). This suggests that as 

opposed to Pabpc1l2 being a pseudogene, there  has been evolutionary  pressure on it to maintain  
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Figure 11. PABPC1L2 (neuPABP) displays a neural-specific expression pattern. (A) 
Schematic representation of  PABPC1 and PABPC1L2 domain organization. (B) Schematic 
diagram of human X-chromosome showing position of Pabpc1l2 ampliconic gene. (C)  Semi-
quantitative RT-PCR analysis of Pabpc1l2 and Actin mRNAs from multiple adult mouse tissues 
(C57BL/6J; Age: 5 months). (D)  Western blotting of PABPC1, neuPABP, GAPDH and Actin on 
lysates prepared from select adult mouse tissues(C57BL/6J;Age:5months).   
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Figure 12. Comparative sequence analysis. Comparative sequence analysis of Human (Hs) and 
mouse (Mm) PABPC1 with human, mouse, rat (Rn) and bat (Pk) PABPC1L2 predicted open 
reading frames.  Regions containing RNA recognition motifs (RRMs) are marked by arrows.  The 
peptide sequence used for antiserum production to generate a mouse PABPC1L2-specific antibody 
is boxed. 
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Figure 13. RT-qPCR analysis of (A) Pabpc1l2 and (B) Pabpc1 mRNAs from multiple adult 
mouse tissues (C57BL/6J; Age: 5 months). An in vitro transcribed RLuc spike-in RNA was used 
for normalization across tissues. Expression of Pabpc1l2 and Pabpc1 in the brain cortex was set 
to ‘1’ to assess the differential expression of both genes in select neural and non-neural tissues. 
Error bars represent SEM from three biological replicates (n=3).   
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Figure 14. Pabpc1l2 is expressed in neural cells at age of P7 (C57BL/6J; Age: Postnatal day 7) 
(A) Left: UMAP plot of single nuclei RNA-seq of adult mouse cortex (N =6,890). Cells are colored 
by cell class. Right: UMAP plots displaying the expression of Pabpc1l2 in each cell class. Cells 
that do not belong to the corresponding cell class are colored in gray. Detection rate and mean 
expression for (B) Pabpc1 and (C) Pabpc1l2 in each cell class. The number of cells detected in 
each cell class is shown as a fraction.  
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Figure 15. Pabpc1l2 is expressed in neural cells at age of 10 weeks (C57BL/6J; Age: 2.5 months 
(or 10 weeks)). (A) Left: UMAP plot of single nuclei RNA-seq of adult mouse cortex (N = 16,153). 
Cells are colored by cell class. Right: UMAP plots displaying the expression of Pabpc1l2 in each 
cell class. Cells that do not belong to the corresponding cell class are colored in gray. Detection 
rate and mean expression for (B) Pabpc1 and (C) Pabpc1l2 in each cell class. The number of cells 
detected in each cell class is shown as a fraction.  
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Figure 16. RNA expression of Pabpc1 and Pabc1l2a/b across human tissues. Data was acquired 
from the Genotype-Tissue Expression (GTEx) database. Data is expressed as Transcripts Per 
Kilobase Million (TPM). 
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an open reading frame. To determine if Pabpc1l2 is expressed at the protein level, we generated a 

polyclonal antibody  that recognizes a peptide corresponding to the predicted mouse PABPC1L2 

C-terminus (ERGAWARQSTSADFKDFD), a unique sequence that is not present in other proteins, 

including other PABPCs, including PABPC1 (Figure 12).  To evaluate the specificity of our 

antibody, we transiently transfected HeLa cells with a plasmid coding for PABPC1L2 and carried 

out western blotting on lysates (Figure 17A). Importantly, our antibody identified ectopic 

PABPC1L2 in transfected cell lysates, but no corresponding band was observed in lysates derived 

from non-transfected cells. In keeping with Pabpc1l2 mRNA expression patterns, western blotting 

analysis of mouse tissues using our antibody only detected a protein in neural tissues (Figures 

11D, 17B and 18).  In contrast, PABPC1 was detected in all somatic tissues, albeit at different 

levels of expression (Figure 11D).  Thus, these data suggest that PABPC1L2 displays a neural-

specific expression pattern, hence we termed it, neural PABP (neuPABP).  

 

3.2. neuPABP contains a unique N-terminal domain of unknown function 

Mouse Pabpc1l2 mRNA is predicted to contain a 301 nt 5’UTR and an open reading frame (ORF) 

encoding a short protein (229 amino acids): neuPABP.  However, endogenous neuPABP migrates 

at a higher position on SDS-PAGE (~48 kDa) than what would be predicted by its ORF.  Using 

5’RACE, we verified that the predicted Pabpc1l2 mRNA 5’ terminus is accurate (Figure 19). 

While it is possible that neuPABP maintains post-translational modifications that may alter its 

molecular weight, another explanation for this discrepancy is that the predicted ORF encoding 

neuPABP is incomplete. Thus, we set out to verify the sequence of full-length neuPABP.  To this 

end, endogenous neuPABP was immunoprecipitated from adult mouse cortex lysate and subjected 

to mass spectrometry  analysis  to  determine  if  neuPABP  peptide  coverage  extends  beyond  its  
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Figure 17. neuPABP antibody validation and probing of neural tissues (A) Western blot 
analysis using a PABPC1L2(neuPABP)-specific antibody of lysates generated from HeLa cells or 
HeLa cells transfected with a PABPC1L2-expressing plasmid.  (B) Western blot analysis of 
neuPABP, Actin and GAPDH from lysates derived from adult mouse cortex, cerebellum, olfactory 
and hippocampus (C57BL/6J; Age: 5 months).    
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Figure 18. Quantification of PABPC1 and neuPABP expression in neural tissues. Western blot 
analysis on total lysates generated from adult mouse cortex, hippocampus, cerebellum and 
olfactory (C57BL/6J; Age: 5 months). Lysates were resolved by SDS-PAGE and western blot 
analysis was performed using antibodies against PABPC1 and neuPABP.  Lysates were run 
alongside standard curves of recombinant His-tagged PABPC1 and Maltose binding protein 
(MBP)-tagged neuPABP to determine PABPC1 and neuPABP protein levels. PABPC1 and 
neuPABP levels vary between 370-180 fmol and 180-90 fmol, respectively among neural tissues.  
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Figure 19. 5'RACE analysis of Pabpc1l2 mRNA. RNAs were isolated from mouse primary 
neuronal cultures at DIV7, using Trizol reagent. RNAs were decapped, dephosphorylated, an 
adapter was ligated to the 5'end, and reverse transcribed (A) An adapter-specific forward and 
Pabpc1l2-specific reverse primer was used for PCR reaction. PCR products were cloned into 
pDONR221 (B) and sequenced. (C) Sequencing chromatogram showing the adapter sequence 
ligated to the Pabpc1l2 mRNA 5’end.  
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Figure 20. Nucleotide and amino acid sequence of mouse PABPC1L2 (neuPABP). Predicted 
ATG is boxed whereas the translation initiator GTG is red.  Amino acids corresponding to the 
predicted neuPABP are highlighted yellow, whereas additional N-terminal peptides identified by 
mass spectrometry are highlighted green.  
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Figure 21. Comparative sequence analysis. Comparative sequence analysis of Human (Hs), 
Mouse (Mm) and Rat (Rn) PABPC1L2 open reading frames. Regions containing RNA recognition 
motifs (RRMs) and domain of unknown function (DUF) are marked by arrows.  
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predicted N- and C-termini.  While we were unable to detect additional peptides C-terminal to the 

neuPABP stop codon, our analysis identified significant peptide coverage corresponding to the 

Pabpc1l2 mRNA 5’ UTR that is in frame with the predicted neuPABP open reading frame (Figure 

20).  This additional N-terminal sequence (83 amino acid) suggests that mouse neuPABP is 312 

amino acids in length with a short (24 amino acid) conserved N-terminal domain of unknown 

function (DUF) comprised almost exclusively of valine, glutamate, and alanine amino acids. 

Interestingly, similar to the sequence conservation in RRMs, the DUF region is also predicted to 

be highly conserved across mammalian species (Figures 21 and 22A). This region has no initiator 

ATG codon; however, GTG at positions 53-55 (Figure 20) would code for the N-terminal valine 

identified by mass spectrometry analysis. Moreover, the sequence flanking this codon 

(gcggcgaccGUGgcg) is very similar to the Kozak consensus sequence for non-AUG initiators 

(gccgcca/gcc(nonAUG)ga/cu) (631, 632). To test this, a modified neuPABP ORF, along with all 5’ 

terminal nucleotides, was fused to a C-terminal V5 tag and subsequently transfected into HeLa 

cells (Figure 22B).  Western blotting with a V5 antibody demonstrated that this construct produced 

a ~48 kDa protein, similar to the size of endogenous neuPABP (Figure 22C).  Moreover, mutating 

the initiator GUG in our construct to AUG generated a protein of similar size.  This is in contrast 

to a construct with the predicted neuPABP ORF, which generated a significantly smaller protein 

(~28 kDa).  Collectively, these data indicate that Pabpc1l2 encodes a GUG-initiated ORF and that 

neuPABP contains a unique N-terminal domain that is not found in other PABPCs. 

 

3.3. neuPABP is a bona fide PABP that is expressed during neuronal maturation  

neuPABP is predicted to contain two RRMs that maintain a high degree of identity to RRMs 1 and 

2 of PABPC1 (Figure 12).  To determine if neuPABP can bind to RNA, we purified  
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Figure 22. neuPABP is a GUG-initiated protein with a misannotated N-terminal extension. 
(A) Schematic diagram of predicted and revised neuPABP open reading frame, along with 
predicted AUG and validated GUG initiator codons, respectively. N-terminal region (highlighted 
in orange) corresponds to domain of unknown function (DUF) that is predicted to be conserved 
between human, mouse, and rat neuPABP. (B) Schematic diagram of mouse neuPABP expression 
constructs containing C-terminal V5 tags. (C) Western blot analysis of HeLa cells transfected with 
plasmids encoding V5-tagged predicted neuPABP or containing the Pabpc1l2 5’UTR containing 
the GTG codon or ATG codon.  
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recombinant (GST)-tagged neuPABP and carried out an in vitro selection— called  RNAcompete 

(633) — by incubating GST-neuPABP with a complex collection of short RNAs. RNAcompete 

analysis identified ‘AAAAAA’ as the consensus binding motif for neuPABP, indicating the 

neuPABP is a true poly(A) binding protein (Figure 23A).  To determine the affinity of neuPABP 

for poly(A) RNA, we purified recombinant PABPC1 and neuPABP (Figure 23B) and  carried out 

electrophoretic mobility shift assays using a 32P-end labelled (A)25 oligoribonucleotide (Figure 

23C).  In keeping with the RNA compete data, we observed that neuPABP bound (A)25 RNA with 

an affinity similar to that of PABPC1. Moreover, a secondary shift in neuPABP binding suggests 

that two neuPABP proteins can bind 25 As, as compared to PABPC1 where only a single protein 

can bind (242, 243).    

 

Nuclear/cytoplasmic fractionation experiments on lysates derived from adult cortex tissue indicate 

that like PABPC1, neuPABP is a cytoplasmic PABP (Figure 24A).  We next set out to determine 

the temporal expression of neuPABP during mouse brain development.  To this end, we isolated 

the brains of mice at ages E13, E16, E18 as well as several postnatal ages.  Lysates generated from 

isolated tissues were then resolved by SDS-PAGE and analyzed using antibodies against PABPC1, 

neuPABP, actin and beta-tubulin III (controls) (Figure 24B). Strikingly, we observed that PABPC1 

and neuPABP displayed opposing temporal expression patterns during brain development. 

PABPC1 was high expressed in embryonic tissues, but its levels were significantly lower in 

postnatal brain tissues. In contrast, neuPABP was barely detectable in embryonic brain tissue. 

However, its expression steadily increased during postnatal brain development, reaching a 

maximum at around P17 and remaining at this level into adulthood (Figure 24B). Interestingly, 

this period of expression coincided with synaptogenesis, where synapses are formed between 
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neurons and is one of the key events that takes place in rodents during the first few postnatal weeks 

of life (634). To determine if neuPABP displays a similar expression pattern during neuronal 

maturation in mice, we isolated mouse primary cortical neurons from P0 pups and cultured them 

to promote their maturation in vitro.  Lysates were then generated from cultured neurons and 

resolved by SDS-PAGE. Similar to what we observed over the course of mouse brain development, 

neuPABP levels were barely detectable in newly cultured neurons.  However, neuPABP expression 

rapidly increased over time, with its expression pattern overlapping with that of the synaptic 

marker PSD-95 (Figure 24C).  Moreover, neuPABP levels in mature neurons approached those of 

PABPC1 as assessed by western blots using recombinant proteins ladders for direct comparisons 

(Figure 25).  

 

In keeping with its expression during synaptogenesis, we also detected the subcellular localization 

of neuPABP in the synaptosomes, following synaptosome fractionation of mouse cortex.  neuPABP 

was detected by western blotting in the PSD-95-enriched post-synaptic density (PSD) fraction 

(Figure 24D), whereas neuPABP was barely detectable in the non-PSD fraction, which was 

enriched in synaptophysin.  This contrasts with PABPC1, which was equally detectable in both 

PSD and non-PSD fractions. In keeping with these data, proteomic analyses of isolated human 

neural tissues identified neuPABP peptides in synaptosomes and post-synaptic densities (635, 

636). Taken together, these data indicate that neuPABP is a bona fide poly(A) binding protein 

whose expression coincides with synaptogenesis.  
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Figure 23. neuPABP specificity for poly(A) RNA. (A) Summary of RNAcompete experiments 
for GST-neuPABP.  The sequence logo of the neuPABP RNA binding motif, along with the scatter 
plot displaying the Z scores and motifs for the two halves of the RNA pool (setA and setB) are 
shown. (B) Recombinant PABPC1 and neuPABP were analyzed by SDS-PAGE and Coomassie 
blue staining. (C) High-affinity binding of neuPABP to oligo(A) RNA.  EMSA was carried out as 
described in methods.  A constant amount of 32P-oligo(A)25 RNA was incubated with specific 
concentrations of neuPABP or PABPC1.  The Kd value of ~50 nM was calculated from three 
biological experiments for both PABPC1 and neuPABP. Recombinant GST (control) did not lead 
to a gel shift of radiolabelled oligo. 
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Figure 24. neuPABP  is expressed during neuronal maturation. (A) Subcellular fractionation 
of adult mouse brain cortex (C57BL/6J; Age: 2 months) shows cytoplasmic localization of both 
neuPABP and PABPC1. GAPDH and hnRNPA1 were used as markers for cytoplasmic and nuclear 
fractions, respectively. (B) Western blot analysis of PABPC1, neuPABP, Actin and beta-tubulin III  
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on lysates prepared from mouse brain cortices isolated at different stages of embryonic and 
postnatal development. (C) Western blot analysis of neuPABP, PSD-95 and beta-tubulin III on 
lysates prepared from mouse primary cortical neurons.  Neurons were isolated from p0 pups and 
cultured for defined days in vitro (DIV).  (D) Western blot analysis of subcellular fractions of adult 
mouse cortex (C57BL/6J; Age: 6 months) prepared by synaptosome fractionation.  Lysates were 
probed with the postsynaptic (PSD) marker PSD-95, the presynaptic marker synaptophysin (Syn), 
as well as neuPABP, PABPC1 and GAPDH. Cortex homogenates (H) were generated and 
supernatant (S2) and the crude synaptosomal pellet (P2) were acquired after high-speed 
centrifugation of S1 supernatant . The crude synaptosomal fraction was further fractionated into 
Triton X-100 soluble non-PSD fraction (extra-synaptic) and Triton X-100 insoluble PSD-
containing fraction (synaptic).   
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Figure 25. PABPC1 and neuPABP display equivalent expression in mature neurons. Western 
blot analysis of lysate generated from cultured mouse primary neurons (DIV20) and probed with 
antibodies against PABPC1 and neuPABP.  Lysates were run alongside standard curves of 
recombinant His-tagged PABPC1 and Maltose binding protein (MBP)-tagged neuPABP to 
determine PABPC1 and neuPABP protein levels. PABPC1 and neuPABP levels displayed 1:1 ratio 
in mature neurons.   
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3.4. neuPABP interacts with BC1 RNA and select non-translating mRNAs. 

As our data indicate that neuPABP can bind poly(A) RNA with similar affinity to PABPC1, we 

next wished to determine if neuPABP is associated with actively translating mRNAs. To this end, 

we isolated polysome profile fractions derived from P9 mouse cortex lysate (Figure 26A) and 

assessed the distributions of PABPC1 and neuPABP by western blotting (Figure 26B).  Consistent 

with many studies, we observed PABPC1 throughout the polysome gradient, including in heavy 

polysome fractions that contain highly translated mRNAs (637, 638). In stark contrast, the vast 

majority of neuPABP did not sediment in heavy polysome fractions. Instead, neuPABP sedimented 

in early fractions, including those that contain free ribonucleoprotein (RNP) complexes, with a 

small amount of neuPABP in fractions that contain 40S subunits (Figure 26B). These data suggest 

that unlike PABPC1, neuPABP is not associated with actively translating mRNAs.  

 

We next set out to identify RNAs associated with neuPABP by carrying out RNA-

immunoprecipitation sequencing (RIP-Seq). Briefly, neuPABP-interacting RNAs were 

immunopurified with anti-neuPABP antibody from adult mouse hippocampal lysates in three 

biological replicates and sent for deep sequencing to identify neuPABP-enriched RNAs (Figures 

26C- E).  The most highly enriched RNA associated with neuPABP was BC1 (brain cytoplasmic 

1) (Figure 26D), a neuron-specific non-coding RNA that contains an internal stretch of adenosines 

(Figure 27A) (461, 462). BC1 has been reported to play a role in translational repression and like 

neuPABP, also sediments in early polysome gradient fractions containing free RNP complexes 

(Figures 27B-D) (466, 472).  Interestingly, BC1 RNA is developmentally upregulated in neurons 

(453), which mirrors the developmental expression of neuPABP (Figure 28). To verify that 

neuPABP can interact with BC1 RNA, HeLa cells were transfected with plasmids encoding  
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Figure 26. neuPABP localizes with early RNP fractions on polysome gradients and interacts 
with specific RNAs. (A) Polysome profile traces of lysates prepared from mouse cortices 
(C57BL/6J; Age: p9). (B) Lysates were fractionated by sucrose gradient centrifugation. Fractions 
were subsequently collected, TCA precipitated and resolved by SDS-PAGE and western blotting 
was subsequently performed using antibodies against neuPABP, PABPC1 and a ribosomal protein 
marker (RPS6). (C) Immunoprecipitation of neuPABP from adult mouse hippocampus (C57BL/6J; 
Age: 6 months). Immunoprecipitated complexes were subjected to SDS-PAGE and western 
blotting was performed using anti-neuPABP and anti-GAPDH antibodies. neuPABP-enriched 
RNAs were isolated using RNA purification kit (Qiagen) and identified by RNA-seq (D) Volcano 
scatter plot for the most significantly enriched RNAs with neuPABP vs IgG control (threshold set 
at Log2 FC≥1.5 and p-value at p<1E-20). BC1 RNA and mRNAs encoding ribosomal proteins 
(red) and nuclear-encoded mitochondrial proteins (blue) were enriched. (E) Top Wikipathway 
(WP) and associated gene ontology (GO) terms (cellular component) significantly enriched among 
proteins coded for by neuPABP-enriched mRNAs (FC≥2). The number above each column 
represents the number of genes associated with its corresponding term. (F) RT-qPCR analyses of 
neuPABP-enriched transcripts identified by RNA-seq. neuPABP was immunoprecipitated from 
adult mouse hippocampi (C57BL/6J; Age: 6 months) and associated RNAs were Trizol extracted. 
Error bars represent SEM from biological replicates (n=3), data points for biological replicates are 
shown as solid circles. Data were normalized to an in vitro transcribed RLuc spiked-in RNA.  
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Figure 27. neuPABP and PABPC1 display similar binding strength to BC RNAs. (A) Predicted 
structures of BC1 and BC200 RNAs by Vienna RNA Websuite (467),  showing internal adenosine 
stretches in open conformation. (B-D) Lysates from adult mouse cortices (C57BL/6J; Age: 3 
months) were fractionated by sucrose gradient centrifugation. (B) Shows polysome profile traces 
of the lysates. (C) Fractions from the polysome gradient were subsequently collected, RNA was 
Trizol extracted, reverse transcribed and semi-quantitative-PCR analysis was carried out on 
lncRNA Bc1 and Actin. (D) In parallel, qPCR analysis was carried out on BC1, and data was 
normalized to an Input sample (total cortex RNA) to calculate the percent distribution across 
fractions, error bars represent SEM from biological replicates (n=4). (E) Immunoprecipitation of 
V5-tagged neuPABP and V5-tagged PABPC1 from HeLa cells. (F) RNA immunoprecipitation 
(represented as Log2FC vs IgG) of BC1 and BC200 RNAs by V5-tagged neuPABP and V5-tagged 
PABPC1. A Histone RNA (1H4H), which lacks a poly(A) tail, was used as a negative control. Data 
were normalized to an in vitro transcribed RLuc spiked-in RNA. Error bars represent SEM from 
biological replicates (n=3), with data points for biological replicates shown as solid circles.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Sharma, Sahil 
 

 114 

 

 
Figure 28. BC1 and neuPABP mirror expression during brain development (A) RT-PCR 
analysis of Bc1 and Actin (control) RNAs, and western blot (WB) analysis of neuPABP, PABPC1 
and beta-tubulin III on lysates prepared from mouse primary cortical neurons.  Neurons were 
isolated from p0 pups and cultured for defined days in vitro (DIV).  (B) RT-qPCR analysis of Bc1 
RNA from mouse brain cortices isolated at different stages of embryonic and postnatal 
development. An in vitro transcribed RLuc spike-in RNA was used for normalization. Expression 
of Bc1 in adult (P90) brain cortex was set to ‘1’ to access the differential expression at different 
stages of brain development. Error bars represent SEM from three biological replicates (n=3).   
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V5-tagged neuPABP or V5-tagged PABPC1 and a plasmid that expresses the BC1 RNA. Ectopic 

PABPC1 and neuPABP, which were expressed at similar levels, were immunoprecipitated with V5 

antibody and BC1 RNA association was assessed by RT-qPCR (Figures 27E and F).   We also 

tested if V5-tagged neuPABP could interact with BC200 RNA, a primate- and neuron-specific 

non-coding RNA that also contains a stretch of internal adenosines and that is expressed in Hela 

cells (Figure 27A) (456, 457, 639). While neither V5-neuPABP or V5-PABPC1 co-precipitated a 

histone mRNA (1H4H) lacking a poly(A) tail (control), BC1 and BC200 RNAs were equally 

enriched with both poly(A) binding proteins (Figures 27E and F). In addition to interacting with 

BC1, our gene set enrichment analyses of neuPABP-interacting RNAs displayed an enrichment of 

mRNAs coding for ribosomal proteins and proteins with mitochondrial functions (Figures 26D 

and E), which were subsequently validated by RT-qPCR analysis from hippocampal lysates 

(Figure 26F). These included ribosomal protein-encoding mRNAs (RPS29 and RPS14), 

mitochondrial protein-encoding mRNAs (ATP5J2 and NDUFA2). In contrast, other mRNAs 

coding for neuron-specific proteins (MAP2, PSD-95 and beta Tubulin III) displayed significantly 

lower enrichment with neuPABP.  

 

As our data show that neuPABP sediments in early RNP fractions that contain untranslated RNAs, 

we next set out to determine if neuPABP directly binds the identified target RNAs in RNP fraction. 

As native RNA-protein interactions can be preserved by crosslinking, we formaldehyde-

crosslinked adult mouse cortex tissue prior to generating lysates and carrying out polysome 

profiling. Early RNP fractions were isolated from polysome gradients (Figures 29A and B) and 

immunoprecipitated  with  IgG  (control)  or  neuPABP  antibody to  isolate  neuPABP-associated  
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Figure 29. neuPABP associates with untranslated mRNAs present in early RNP fraction.  
Cortices of adult mice (C57BL/6J; Age: 6 months) were triturated, and formaldehyde crosslinked. 
Lysates were prepared and fractionated by sucrose gradient centrifugation. (A) Ribosome traces 
of lysates prepared from formaldehyde crosslinked adult mouse cortices (C57BL/6J; Age: 6 
months). (B) Free RNP fractions (depleted of ribosomal subunits) were collected from the 
polysome gradient, resolved by SDS-PAGE and western blotting was performed using antibodies 
against RPS6, neuPABP, PABPC1 and GAPDH. (C) Immunoprecipitation of neuPABP from free 
RNP fractions from (B). Immunoprecipitated complexes were resolved by SDS-PAGE and western 
blotting was performed using antibodies against neuPABP, PABPC1, and GAPDH. (D) RT-qPCR 
analysis of neuPABP-associated RNAs isolated from (C). Error bars represent SEM from 
biological replicates (n=3) and data points for biological replicates are shown as solid circles. A 
mitochondrial mRNA (mt.ND1) was used as a negative control. Data was normalized to an in vitro 
transcribed RLuc spiked-in RNA. 
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RNAs (Figure 29C). Importantly, while early RNP fractions contained both neuPABP and 

PABPC1, PABPC1 did not co-precipitate with neuPABP (Figure 29C). Nevertheless, BC1, and 

mRNAs coding for ribosomal and mitochondrial proteins were enriched with neuPABP as assessed 

by RT-qPCR analyses (Figure 29D). In contrast, neuPABP pulled down significantly lower levels 

of two mRNAs coding for neuronal-specific proteins (PSD-95 and MAP2) and failed to interact 

with a mitochondrially-encoded ND1 mRNA (control). Taken together, these data indicate that 

neuPABP interacts with BC1 non-coding RNA and select translationally inactive mRNAs 

populations.   

  

3.5. neuPABP has lost its ability to interact with eIF4G and represses mRNA translation in 

vitro 

Our data suggest that neuPABP associates with an abundant non-coding RNA, BC1.  However, it 

also interacts with specific mRNAs that polysome profiling indicates are not being translated. As 

neuPABP is not associated with actively translating mRNAs, we next assessed the impact of 

neuPABP on protein synthesis using a Krebs cell-free in vitro translation (IVT) system. This 

system was previously used to biochemically determine that PABPC1 can function as a translation 

factor (142). To this end, we generated recombinant glutathione S-transferase (GST)-tagged 

neuPABP  (Figure 30A) and added it to our IVT system.  In contrast to recombinant glutathione 

S-transferase (GST), which did not affect protein synthesis, GST-tagged neuPABP inhibited the 

expression of a firefly luciferase (FL)-encoding polyadenylated mRNA in a dose-dependent 

manner (Figure 30B).  In contrast, addition of neuPABP had no observable impact on the 

expression of an unadenylated FL reporter mRNA (Figure 31). Collectively, these data suggest 

that neuPABP can repress the translation of polyadenylated mRNAs in vitro. 
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Figure 30. neuPABP represses translation in vitro and does not interact with eIF4G. (A) 
Recombinant GST and GST-tagged neuPABP were prepared and were analyzed by SDS-PAGE 
and Coomassie blue staining. (B) Capped poly(A)+ luciferase reporter RNA was incubated in 
Krebs-2 extract.  Reactions were supplemented with either buffer alone (Control), recombinant 
GST-neuPABP or GST alone, as indicated.  Normalized luciferase activity was measured relative 
to control. Error bars represent SEM from biological replicates (n=3). A two-tailed Student t-test 
(equal variance) was conducted (versus control) to access significance, p-values<0.003, 
represented as ‘**’, were calculated in GST-neuPABP treatment groups. (C) Immunoprecipitation 
of V5-tagged neuPABP, PABPC1WT or PABPC1M161A from HeLa cells.  Immunoprecipitated 
complexes were subjected to SDS-PAGE and western blot analysis was performed using anti-V5, 
anti-eIF4G, anti-PAIP2 and anti-GAPDH antibodies. (D) Recombinant glutathione-S-transferase 
(GST) or GST-tagged eIF4G41-244 were incubated with maltose-binding protein (MBP)-tagged 
PABPC1RRM1+2, or neuPABP.  Precipitated proteins were separated by SDS-PAGE and 
visualized by Coomassie blue staining.  
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Figure 31. neuPABP represses translation in cap- and poly(A) dependent manner. Capped 
poly(A)+ or poly(A)- luciferase reporter RNA was incubated in Krebs-2 extract.  Reactions were 
supplemented with either recombinant GST-neuPABP or GST alone (control), as indicated. 
Normalized luciferase activity was measured relative to GST. Error bars represent SEM from 
biological replicates (n=3). A two-tailed Student t-test (equal variance) was conducted (versus 
GST) to access significance, p-value<0.001, represented as ‘***’, was calculated in GST-neuPABP 
treatment of Capped poly(A)+ luciferase reporter RNA. 
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PABPC1 stimulates mRNA translation by directly binding to eIF4G via RRM2 (142, 143). 

neuPABP also contains RRM2, yet paradoxically represses protein synthesis in vitro.  To test if 

neuPABP can bind eIF4G, HeLa cells were transfected with plasmids encoding V5-tagged 

neuPABP, wild-type PABPC1 or a PABPC1 mutant (M161A) that disrupts its interaction with 

eIF4G (control) (142). V5-PABPC1WT,  V5-PABPC1M161A and V5-neuPABP were affinity-purified 

with V5 antibody and co-immunoprecipitating proteins were resolved by SDS-PAGE followed by 

western blotting (Figure 30C).  As expected, V5-PABPC1WT co-precipitated both eIF4G and 

Paip2, whereas V5-PABPC1M161A failed to efficiently interact with eIF4G.  As neuPABP lacks a 

C-terminal MLLE domain, it was not surprising that it did not interact with Paip2, which uses this 

domain to interact with PABPC1 (315). However, even though neuPABP contains RRM2, it failed 

to associate with eIF4G.  To determine if neuPABP can directly contact eIF4G, we performed in 

vitro pull-down assays using a recombinant GST-tagged fragment of eIF4G (amino acids 41-244) 

that directly binds PABPC1 (142), and maltose-binding protein (MBP)-fused neuPABP or a 

PABPC1 fragment containing RRMs 1 and 2 (Figure 30D). In keeping with previous reports, GST-

eIF4G41-244 efficiently bound MBP-PABPC1RRM1+2.  However, MBP-neuPABP failed to bind to 

this eIF4G fragment.    

 

PABPC1 utilizes several amino acids in RRM2 to directly contact eIF4G (143) (Figure 32A).  

While neuPABP also contains RRM2 and binds poly(A) RNA, a comparative sequence analysis 

of the neuPABP RRM2 reveals non-conservative substitutions in two of the amino acids that 

PABPC1 utilizes to interact with eIF4G.  In addition, while neuPABP maintains a methionine 

corresponding to M161 in PABPC1, it also contains an adjacent phenylalanine substitution.  
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Figure 32. neuPABP has been selected to not bind eIF4G. (A) Schematic diagrams of PABPC1 
and neuPABP domain organization, along with a comparative sequence analysis of human (Hs) 
and mouse (Mm) PABPC1 with human, mouse, and bat (Pk) neuPABP RRM2.  Amino acids that 
play a role in PABPC1 binding to eIF4G are denoted with a green dot.  Corresponding amino acids, 
or those in proximity to eIF4G-intearcting residues, are red. (B) Recombinant glutathione-S-
transferase (GST)-tagged eIF4G41-244 was incubated with maltose-binding protein (MBP)-tagged 
PABPC1RRM1+2, neuPABPWT  or neuPABPMUT (Ile221Thr, Phe265Leu, Tyr268Asp).  Precipitated 
proteins were separated by SDS-PAGE and visualized by Coomassie staining. (C) Recombinant 
GST, GST-tagged neuPABPWT and neuPABPMUT proteins were analyzed by SDS-PAGE and 
Coomassie blue staining. (D) Capped poly(A)+ luciferase reporter RNA was incubated in Krebs-
2 extract.  Reactions were supplemented with either recombinant GST, GST-neuPABPWT or GST-
neuPABPMUT, as indicated.  Normalized luciferase activity was measured relative to GST. Error 
bars represent SEM from biological replicates (n=3). A two-tailed Student t-test (equal variance) 
was conducted (versus GST) to access significance, p-value<0.004, represented as ‘**’, was 
calculated in GST-neuPABPWT treatment.   
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To determine if the  ability of  neuPABP  fails to bind eIF4G  due to substitutions in these key 

amino acids, we mutated these corresponding amino acids in tandem in MBP-neuPABP to those 

in PABPC1 [MBP-neuPABPMUT(Ile221Thr, Phe265Leu, Tyr268Asp)].  While  GST-eIF4G41-244 

did not interact with MBP-neuPABPWT, it efficiently bound MBP-neuPABPMUT (Figure 32B). 

Moreover, while GST-neuPABPWT repressed protein synthesis in vitro, incubating GST-

neuPABPMUT in Krebs extract did not (Figures 32C and D). Taken together, these data suggest 

that neuPABP does not support mRNA translation due to its inability to interact with eIF4G.  

 

The RESULTS sections 3.1 to 3.5 are from the published manuscript: 

Title: Uncovering a mammalian neural-specific poly(A) binding protein with unique properties. 

Authors: Sahil Sharma*, Sam Kajjo, Zineb Harra, Benedeta Hasaj, Victoria Delisle, Debashish 

Ray, Rodrigo L Gutierrez, Isabelle Carrier, Claudia Kleinman, Quaid Morris, Timothy R. Hughes, 

Roderick McInnes, and Marc R. Fabian  

Journal: Genes and Development (Impact factor: 12.89)  

*First author 
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PREFACE: neuPABP binds to non-translating RNAs in synapses  

In sections 3.6 to 3.8, we set out to study the cellular localization and investigate the function of 

neuPABP in neuronal RNA metabolism. To this end, we have identified neuPABP as a synaptically 

localized RNA binding protein that binds to select neurite-enriched RNAs. Importantly, while 

PABPC1 also associates with neuPABP targeted mRNAs, we show that neuPABP and PABPC1 

interact with the RNAs in a mutually exclusive manner. We also show that in contrast to PABPC1, 

which associates with actively translated mRNAs, neuPABP associates with translationally 

dormant synaptic RNAs. Additionally, similar to other well-known neuronal RNA granule 

proteins, like PUR⍺	and	SYNCRIP,	neuPABP is enriched in RNA granules and colocalizes with the 

RNA granule marker protein, PUR⍺ in neuronal soma and dendrites. Finally, we show that BC1 

RNA levels are elevated in the brain tissues of a neuPABPKO mouse model that we have acquired 

recently. Finally, we demonstrate that neuPABP specifically represses cap- and poly(A)-dependent 

translation with no impact on IRES-mediated translation of a bicistronic reporter in cellulo.  
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3.6. neuPABP binds neurite-enriched RNAs and is enriched in synaptic non-translating RNP 

fractions  

Our RIP-seq data from mouse hippocampus showed that neuPABP binds select classes of nuclear-

encoded mRNAs (ribosomal and mitochondrial proteins) and the neuron-specific non-coding BC1 

RNA (Figures 26C-F). Interestingly, numerous transcriptomics studies have now identified RNAs 

localized in neuronal neurites, including mRNAs coding for ribosomal and mitochondrial proteins 

(97, 166, 378, 419-422). To specifically study the localization of neuPABP associated RNAs in 

neurites, we compared our list of 196 neuPABP bound RNAs (FC≥2) with two studies that focused 

on the local transcriptomes in neuronal dendrites [(97, 422), Figure 33A]. Our comparison yielded 

a list of 128 neuPABP-bound RNAs that were reported to localize in neurites by both studies 

(Figure 33B). The list included many large and small ribosomal subunit proteins coding mRNAs 

(37 mRNAs), as well as mitochondrial proteins coding mRNAs (23 mRNAs). These analyses 

suggested that majority of neuPABP bound RNAs are present in dendritic compartments. This led 

us to ask if neuPABP associates with target RNA in synaptic fractions. To this end, we fractionated 

adult mouse brain cortex tissue and collected synaptosome fractions. The quality of synaptosome 

fraction was confirmed by western blot analyses for pre- and postsynaptic marker proteins, 

synaptophysin (Syn) and PSD-95, respectively, in comparison to total brain homogenate. 

Importantly, only a minimal contamination was observed for a glial marker protein, GFAP 

(Figures 34A and B). Synaptic localization was confirmed for neuPABP, PABPC1, and PABPC-

interacting protein (PAIP2) which was shown previously to regulate PABPC1 function in synaptic 

terminals (640). Importantly, both neuPABP and PABPC1 were present in equal amount in 

synaptosomes as assessed by western blotting using recombinant proteins ladders for direct 

comparisons (Figure 34C).  
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Figure 33. neuPABP bound RNA targets are neurite-enriched. (A) Shows an intersection 
between neuPABP bound RNA target list (FC≥2) and two studies that identified dendritic 
transcriptome, as represented by a Venn diagram. The sizes of the circles are arbitrarily relative to 
each gene list’s log2 (number of genes in the list). 128 genes were common in all three lists. Some 
of the top neuPABP targets, including (Bc1, Rps29, Atp5j2, Atp5e) were present in either one of 
the lists. (B) Shows a list of ribosomal and mitochondrial proteins coding mRNAs identified 
among the 128 common genes.  
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Figure 34.  neuPABP and PABPC1 have comparative levels in synaptic terminals. (A) Shows 
a schematic representation of a synapse showing pre- and postsynaptic terminals. (B) Western blot 
analysis of subcellular fractions of adult mouse cortex (C57BL/6J; Age: 7 months) prepared by 
synaptosome fractionation. Equal amounts of lysate fractions were probed with the postsynaptic 
(PSD) marker PSD-95, the presynaptic marker synaptophysin (Syn), glial marker GFAP, as well 
as neuPABP, PABPC1, PAIP2, β-tubulin III and GAPDH. Cortex homogenates (H) were generated 
and the crude synaptosomal pellet (P2) was acquired after high-speed centrifugation of S1 
supernatant. (C) Western blot analysis on lysates generated from adult mouse synaptosomes 
(C57BL/6J; Age: 7 months; shown as n=3). Lysates were resolved by SDS-PAGE and western blot 
analysis was performed using antibodies against PABPC1 and neuPABP. Lysates were run 
alongside standard curves of recombinant His-tagged PABPC1 and Maltose binding protein 
(MBP)-tagged neuPABP to determine PABPC1 and neuPABP protein levels, respectively. Both 
PABPC1 and neuPABP protein levels vary between 180-90 fmol in synaptosomes.  



Sharma, Sahil 
 

 130 

Next, we set out to study the interaction between neuPABP and target RNAs in synaptosomes. To 

preserve native RNA-protein interactions, we formaldehyde crosslinked the synaptosomes prior to 

generating lysates. Lysates were immunoprecipitated  with  IgG  (control)  or  neuPABP  antibody 

to  isolate  neuPABP-associated RNAs (Figure 35A). As expected, dendritically localized BC1 

RNA, and mRNAs coding for ribosomal and mitochondrial proteins were enriched with neuPABP 

as assessed by RT-qPCR analyses (Figure 35B). In contrast, neuPABP pulled down significantly 

lower levels of mRNAs coding for neuronal-specific proteins, including (MAP2, PSD-95, Arc, 

and β-tubulin III), and failed to interact with a mitochondrially-encoded ND1 mRNA (control). In 

parallel, we immunoprecipitated PABPC1 from formaldehyde crosslinked synaptosome lysates to 

isolate PABPC1 associate RNAs (Figure 35A). As anticipated, PABPC1 strongly associated with 

BC1 RNA (641), and mRNAs coding for ribosomal and mitochondrial proteins as assessed by RT-

qPCR analyses (Figure 35C). In contrast to neuPABP, PABPC1 associated with mRNAs coding 

for neuronal-specific proteins (MAP2, PSD-95, Arc, and β-tubulin III), albeit at lower levels as 

compared to ribosomal and mitochondrial protein-encoding mRNAs (Figure 35C). Importantly, 

while neuPABP and PABPC1 have overlapping RNA targets, neither neuPABP  nor PABPC1 co-

precipitated each other (Figure 35A). In addition, we carried out polysome profiling on isolated 

adult mouse synaptosomes (Figure 35D) to determine if PABPC1 and neuPABP associate with 

actively translating mRNA fractions. While PABPC1 associated with polysomes, the majority of 

neuPABP sedimented in early fractions that contain free ribonucleoproteins (RNPs), and 40S 

ribosomal subunits (Figure 35E). Collectively, these data indicate that neuPABP interacts with 

dendritically localized non-coding RNA BC1 and select translationally dormant mRNA 

populations in synaptic terminals.  
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Figure 35. neuPABP and PABPC1 bind overlapping neurite-enriched RNA targets with 
different translation status. (A) Immunoprecipitation of neuPABP and PABPC1 from 
formaldehyde crosslinked adult mouse synaptosome fraction (C57BL/6J; Age: 7 months). 
Immunoprecipitated complexes were resolved by SDS-PAGE and western blotting was performed 
using antibodies against neuPABP, PABPC1, and GAPDH. (B) RT-qPCR analyses of neuPABP-
associated RNAs and (C) PABPC1-associated RNAs. Error bars represent SEM from biological 
replicates (n=3) and data points for biological replicates are shown as solid circles. A mitochondrial 
mRNA (mt.ND1) was used as a negative control. Data were normalized to an in vitro transcribed 
RLuc spiked-in RNA. (D) Polysome profile traces of lysates prepared from adult mouse 
synaptosome (C57BL/6J; Age: 6 months). (E) Lysates were fractionated by sucrose gradient 
centrifugation. Fractions were subsequently collected, TCA precipitated and resolved by SDS-
PAGE and western blotting was subsequently performed using antibodies against neuPABP, 
PABPC1 and a ribosomal protein marker (RPS6). 



Sharma, Sahil 
 

 132 

3.7. neuPABP is enriched in neuronal RNA granule-containing fraction 

In neurons, mRNA are stored in translationally dormant state during dendritic transport (415, 478, 

479, 621, 642, 643). Neurons achieve this  by packaging mRNAs into liquid-liquid phase separated 

large RNA-protein complexes called RNA transport granules (416). These RNA granules are 

transported along the length of microtubular cytoskeleton by motor proteins, and release mRNAs 

for translation at a particular destination (498). Several RNA binding proteins prevent mRNA 

translation during transport, including FMRP, SYNCRIP, Staufen, and PUR⍺ (479, 492, 494, 499, 

644). We identified neuPABP localization into synaptosomes (Figures 24D and 34B). Moreover, 

our in vitro translation assays classified neuPABP as a putative translation repressor (Figures 30B, 

31 and 32D), and polysome fractionation from synaptic terminals and neuPABP RNA co-

immunoprecipitation analyses from cortical RNP fractions showed that neuPABP associated RNAs 

are translationally inactive (Figures 35E and 29). This raised the possibility that neuPABP may 

be a component of neuronal RNA granules. To test this possibility, we carried out RNA granule 

fractionation from adult mouse cortex (416, 478), and assessed the distribution of neuPABP by 

western blotting (Figures 36A-C). Similar to other known neuronal RNA transport granule marker 

proteins (PUR⍺ and SYNCRIP), neuPABP and PABPC1 were enriched in RNA granule fraction, 

when compared to total cortex lysates (Figure 36C). Importantly, the presence of both 40S and 

60S ribosomal subunit proteins  (RPS6 and RPLP0) suggest the presence of intact ribosomes in 

neuronal RNA granules (478, 479), therefore negating stress granule enrichment which contain 

only the 40S ribosomal subunit (645). Interestingly, β-tubulin III enrichment suggested RNA 

granule association with microtubules, as has been reported previously (478, 490). In contrast, 

translation initiation factors (eIF4E), GAPDH, and synaptic vesicle protein synaptophysin were 

not enriched (Figure 36C).  
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Figure 36. neuPABP is a component of neuronal RNA granule. (A) A schematic representation 
of a sucrose gradient used for neuronal RNA granule isolation from adult mouse brain cortex 
(C57BL/6J; Age: 6 months). Lysates were fractionated by sucrose gradient centrifugation. 
Fractions were subsequently collected, TCA precipitated and resolved by SDS-PAGE, (B) shows 
the Ponceau stained membrane of resolved proteins and (C) shows western blot analyses using 
antibodies against neuPABP, PABPC1, ribosomal subunit proteins (RPS6 and RPLP0), RNA 
transport granule marker proteins (PUR⍺ and SYNCRIP), β tubulin III, eIF4E, synaptophysin 
(Syn), and GAPDH.  
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Figure 37. neuPABP colocalizes with PUR⍺ in neuronal soma and neurites 
Immunofluorescence analysis (IF) on mouse primary cortical neurons.  Neurons were isolated 
from p0 pups and cultured for 12 days in vitro (DIV). At DIV5 neurons were infected with a 
lentivirus coding for a V5-tagged neuPABP protein. IF analysis was performed on DIV12 using 
antibodies against V5-tag and PUR⍺ (granule marker), DAPI was used to stain the nuclei. Images 
were acquired using a laser scanning microscope (Zeiss),  and processed using ImageJ software. 
A colocalization analysis was performed for red (594nm), and green (488nm) channels using 
Coloc2 plugin in Fiji (ImageJ). Using the Coloc2 plugin, an average Pearson correlation coefficient 
(r=0.84) was calculated for colocalized pixels from three neurons (n=3). White arrows indicate 
colocalization of V5-tagged neuPABP (red) with PUR⍺	(green).		
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We also tested neuPABP colocalization with an RNA granule marker protein, PUR⍺ in cultured 

neurons (498). To overcome the limitations of our neuPABP antibody for immunofluorescence, we 

expressed a V5-tagged neuPABP protein in mouse primary neurons, and carried out 

immunofluorescence analyses (Figure 37). Our analyses revealed a strong correlation between 

neuPABP and PUR⍺ colocalization signal (Average Pearson correlation coefficient, r=0.84). Taken 

together, these data suggest that neuPABP, apart from its localization in free RNP fractions, is 

indeed localized in neuronal RNA granules, and likely binds to mRNAs that are being transported 

in dendrites.  

 

3.8. neuPABP knockout mice have elevated BC1 levels and neuPABP overexpression inhibits 

protein synthesis in cellulo 

Dysregulation of local mRNA translation in dendrites leads to diverse nervous system disorders, 

including spinal muscular atrophy (SMN) (646) and Fragile X syndrome (647). Given the presence 

of neuPABP in synaptic terminals and its association with translationally dormant mRNAs and 

abundant  non-coding  BC1  RNA, the loss  of  neuPABP could impact local translation of its 

mRNA targets and BC1 RNA function. To test this, we were successful in generating Pabpc1l2a/b 

knockout (neuPABPKO) mouse (Figures 38A and B). Recently, PABPC depletion in human cell 

lines was reported to severely impact the stability of selective classes of mRNAs (128, 160), which 

included neuPABP associated ribosomal and mitochondrial proteins coding mRNAs. Therefore, to 

study the impact of neuPABP on the target RNA abundance, we isolated total RNA from wild-type 

(WT) and neuPABPKO mouse brain and carried out RT-qPCR analyses. While neuPABP target 

mRNA abundance was not altered in neuPABPKO mice neural tissues, possibly due to other 

PABPCs (like PABPC1) compensating for the loss of neuPABP, we observed significantly elevated  
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Figure 38. neuPABPKO mouse brain has elevated BC1 levels. (A) Schematic representation of 
Pabpc1l2a/b CRISPR knockout (neuPABPKO) mouse generation. Single guide RNAs (sgRNA) 
were designed to guide Cas9 nuclease to cleave at sequences flanking Pabpc1l2a and Pabpc1l2b 
genes. Mouse genotyping shows that both genes were deleted, as shown by the 400bp and 700bp 
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PCR products amplified from the gene flanking sequences left after deletion. (B) Pabpc1l2a/b 
knockout was further confirmed by RT-qPCR and western blot analyses on wild type (WT) and 
neuPABPKO brains. Data were normalized to an in vitro transcribed RLuc spiked-in RNA. Error 
bars represent SEM from biological replicates (n=3). (C-E) Steady state comparisons of neuPABP 
target RNAs in the (C) brain cortices (C57BL/6J; Age: 7 to 12 months; n=7), (D) synaptosome 
fractions (C57BL/6J; Age: 7 to 12 months; n=7), and (E) hippocampi (C57BL/6J; Age: 7 months; 
n=6) of WT and age-matched neuPABPKO mice. Data were normalized to an in vitro transcribed 
RLuc spiked-in RNA. Error bars represent SEM from biological replicates and data points for 
biological replicates are shown as solid circles. (F) Polysome profile traces of lysates prepared 
from hippocampi (C57BL/6J; Age: 6 months) of WT and neuPABPKO mice. Lysates were 
fractionated by sucrose gradient centrifugation. Fractions were subsequently collected, RNAs were 
Trizol extracted, and RT-qPCR analyses were performed on two of the neuPABP target RNAs (G) 
(Rps29), and (H) (Atp5j2) to calculate percent RNA distribution in polysome fractions, as a 
comparison between WT and neuPABPKO hippocampi. Data were normalized to an input sample 
(total hippocampus RNA) to calculate the percent distribution across fractions, error bars represent 
SEM from biological replicates (n=3).  
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levels of BC1 RNA in the brain cortices of neuPABPKO mice [(n=7), (Figure 38C)]. Similarly, 

elevated levels of BC1 were found in synaptosomes (n=7), and hippocampi of neuPABPKO mice 

[(n=6), (Figures 38D and E)]. We also carried out polysome profiling from WT and neuPABPKO 

mouse hippocampi (Figure 38F) and assessed the distribution of select mRNAs across polysome 

gradients by RT-qPCR. Our analyses did not suggest  any  impact  on  basal  translation  efficiency   

of   these  target  mRNAs  in  neuPABPKO hippocampi, as assessed by the mRNA distribution in 

polysome fractions (Figures 38G and H).   

 

In neurons, several RNA binding proteins that regulate mRNA translation are rapidly transported 

into dendrites and/or accumulated in synaptic terminals after stimulation, including FMRP, FUS, 

and several heterogeneous nuclear ribonucleoproteins hnRNPs (483, 648-651). While it is 

currently unknown how and if stimulation leads to neuPABP accumulation in synaptic terminals, 

and whether it can actively impact local translation in neurons, we investigated the role of 

neuPABP in translation by utilizing a human neuroblastoma cell line —SH-SY5Y. We used a 

bicistronic reporter system that contains a Renilla luciferase ORF (RL) that is translated in 5’ cap 

and 3’ poly(A) tail-dependent manner, while a Firefly luciferase ORF (FL) that is translated by 

Hepatitis C virus (HCV)-IRES in 5’ cap and 3’ poly(A) tail-independent manner (Figure 39A). 

We cotransfected this reporter along with a FLAG-tagged neuPABP construct  into  SH-SY5Y 

cells. A GFP expressing construct was used for normalization (Figures 39B and C). Our data show 

that adding increasing amounts of neuPABP repressed the translation of RL reporter in a dose-

dependent manner (Figure 39B). As expected, neuPABP had no impact on the translation of IRES-

controlled FL reporter (Figure 39C). Therefore, neuPABP has the capacity to inhibit cap- and 

poly(A) tail-dependent translation in human cells.                                                                                                     
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Figure 39. neuPABP expression inhibits protein synthesis in cellulo. Schematic diagram of a 
RL-HCV-FL reporter mRNA. (B and C) SH-SY5Y cells were transfected with the bicistronic 
reporter plasmid, along with increasing amounts of a plasmid encoding Flag-tagged neuPABP 
protein or GFP (control). Lysates were prepared for Western blotting and luciferase assays. 
Normalized RL luciferase activity (RL/FL ratio) was calculated and plotted relative to a GFP 
control. Raw Firefly relative light units were also plotted. Error bars represent SEM from 
biological replicates (n=4). A two-tailed Student t-test (equal variance) was conducted (versus 
control) to access significance, p-values<0.001, represented as ‘***’. 
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4. COMPREHENSIVE DISCUSSION  

4.1. Overview 

Here, we have identified a novel tissue-specific mammalian poly(A) binding protein, neuPABP. 

neuPABP is coded for by the X-linked pabpc1l2 ampliconic gene, and is a 312 amino acid protein 

in mouse. neuPABP displays a brain-specific expression pattern, and is predominantly expressed 

in postnatal neurons as they mature during synaptogenesis and is maintained thereafter. While 

other PABPCs contain four RRMs, neuPABP contains only two RRMs that correspond to RRM1 

and RRM2 of PABPC1.  Moreover, while neuPABP lacks the linker region and MLLE domain, it 

contains a unique N-terminus region not found in other PABPCs, the function of which is not 

known. A comparison between neuPABP and PABPC1 protein sequences suggests that neuPABP 

RRMs are evolutionarily well conserved (~85% identity) with several conservative amino acid 

substitutions. As expected from sequence homology, neuPABP binds poly(A) RNA with a 

comparative affinity to PABPC1, but cannot bind PAIP2. Intriguingly, although neuPABP 

maintains RRM2, it has evolutionarily drifted from PABPC1 such that it is unable to bind eIF4G, 

and as a consequence, fails to support translation in vitro. Moreover, we show that neuPABP has 

the ability to repress cap-and poly(A) dependent translation in cellulo. In keeping with these 

findings, our polysome profiling and RNA-sequencing data from mouse brain indicate that 

neuPABP associates with select mRNAs populations that are translationally suppressed, as well as 

the neuronal-specific non-coding RNA BC1.  
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4.2. neuPABP represents a novel neural poly(A) binding protein. 

PABPCs are evolutionarily conserved in eukaryotes. While yeast code for one PABPC, Pab1, 

mammals have evolved to code for several PABPCs. Although the prototypical PABPC i.e., 

PABPC1 is ubiquitously expressed among different mammalian tissues (149, 304), other PABPCs 

display a tissue-biased expression pattern. For example, PABPC3 (or tPABP) is expressed in round 

spermatids in testis (305), PABPC1L1 (or ePABP) is expressed during oocyte maturation and early 

embryonic development (149), and PABPC4 (or iPABP) is expressed in activated T-cells (306). 

neuPABP therefore represents a new PABPC that mammals have added to their repertoire that is 

expressed in the brain.   

 

neuPABP displays a temporal expression pattern during neuronal maturation  

Similar to other PABPCs acquired by metazoans, such as ePABP (149, 150), neuPABP also 

displays a unique tissue-specific and temporal expression pattern.   neuPABP protein is barely 

detectable in embryonic brain tissues. However, its expression rapidly increases in the postnatal 

brain. In contrast, PABPC1 is highly abundant in the embryonic brain, while its expression steadily 

decreases during postnatal brain development. This is reminiscent of ePABP expression pattern 

during early development (150, 332). ePABP is expressed during oocyte maturation and early 

embryo development stages; however, its expression is turned off after the onset of zygotic 

transcription (150, 331, 332). PABPC1 on the other hand, is barely detectable in oocytes and early 

embryos (150, 331). We show that neuPABP expression steadily increases in neurons as they 

mature, reaching levels similar to those of  PABPC1 in mature neurons. Interestingly, the temporal 

expression pattern of neuPABP coincides with synaptogenesis, which takes place during the first 

few postnatal weeks of rodent brain development (634). During this period, neurons establish 
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excessive number of synapses (396), which are eventually pruned during the later stages of brain 

development to fine tune the brain neurocircuitry (406). Whether neuPABP plays a role in 

maintenance of relevant synapses remains to be established. However, it is tempting to speculate 

that neuPABP plays a role in neuronal circuits given that neuPABP is upregulated during postnatal 

brain development and localizes to synaptic terminals. 

 

Several important RNA binding proteins are temporally expressed during brain development. For 

example, the fragile X protein, FMRP, whose loss leads to a neurodevelopmental disorder (652), 

is highly expressed during early postnatal weeks of brain development, while the expression 

decreases around postnatal day 14 (p14) to p30 (653, 654). The DNA/RNA binding protein 

transactive response DNA-binding protein (TDP-43), which is implicated in familial and sporadic 

ALS, is also developmentally regulated (655). TDP-43 is highly expressed during embryonic brain 

development; however, displays a progressive decrease in protein levels during postnatal brain 

development. Interestingly, the single stranded DNA/RNA binding protein, PUR⍺, whose loss 

leads to severe neurological problems manifested by seizures and early death, is developmentally 

upregulated in postnatal brain and peaks around p15 (656). While these RNA binding proteins are 

highly conserved from fly to humans (657-659), neuPABP represents a mammalian-specific neural 

RNA binding protein.   

 

neuPABP is coded from a highly conserved X-ampliconic gene in placental mammals 

The X-chromosome in placental mammals differ from marsupials in terms of newly acquired genes 

on XAR region (X added region), while genes in XCR (X conserved region) region share 

orthologues on marsupial X-chromosome (660, 661). Even though Pabpc1l2 ampliconic gene 
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containing palindrome is located on Xq13.2 (628, 662), a chromosomal location within the XCR 

region of placental X-chromosome, similar orthologues are not present on marsupial X-

chromosome. This suggests that Pabpc1l2 gene was independently acquired after eutherian-

metatherian divergence. While majority of single- and multi-copy genes on X-chromosome are 

shared between mouse and human, most ampliconic genes were independently acquired (629). In 

1967, Susumu Ohno made a prediction that the gene content of X-chromosome in placental 

mammals would be highly conserved. While this holds true for the vast majority of single copy 

genes, most X-ampliconic genes are the exceptions to this rule (629). Remarkably, only a small 

number of (33 out of 107) ampliconic genes on human X-chromosome share orthologues on mouse 

X-chromosome, and these include Pabpc1l2 ampliconic gene (629). This indicates that Pabpc1l2 

ampliconic gene, after its acquisition, is evolutionarily maintained in placental mammals. 

Intriguingly, a study that focused on identifying postmeiotic expression of X-linked multicopy 

genes in mouse tissues, identified Pabpc1l2 mRNA expression in testis and brain (628). In 

agreement with this study, we detected Pabpc1l2 mRNA in neural tissues, however, we did not 

detect Pabpc1l2 mRNA or protein in testis.   

 

The mammalian X-chromosome has been shown previously to have acquired genes with cognitive 

functions (663-666). Based on OMIM database, X-chromosome is densely packed with genes 

involved in healthy cognition, with ~10% of the total genes on X-chromosome associated with 

mental disability (664). Various protein components of neuronal complexes (NMDA/MAGUK) 

that are localized to the postsynaptic terminal, are encoded on the X-chromosome (667). Many of 

the genes on the X-chromosome encode for proteins with function such as ion channels, receptors, 

transcription factors, and DNA/RNA binding proteins (667). For example, the X-linked  fmr1 gene, 
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which codes for the RNA-binding protein, FMRP, plays a role in cognition, with its loss leading 

to intellectual disability and autism (668, 669). Neuroligin 3 (NLGN3) is also a great example of 

an X-linked gene with neuronal function, which is located on Xq13.1 in proximity to Pabpc1l2 

gene. Neuroligin 3 is a cell surface protein involved in remodeling synapses, and is implicated in 

autism spectrum disorder [(ASD), (670)]. Based on these examples, it is plausible that neuPABP 

may play a role in cognition.  

 

neuPABP ORF is initiated from a non-canonical GUG codon 

Translation in eukaryotes is mostly initiated at an AUG codon present in an optimal Kozak context 

[(A/G)CCAUGG), (135-137)]. Recent scientific leaps in ribosome footprinting techniques have 

revealed that translation can be initiated from near cognate non-AUG codons that resemble AUG 

codon but differ by only one nucleotide, for example, CUG, GUG, and UUG (185-187, 190).  The 

usage of non-canonical start codons is a rare phenomenon in eukaryotes as these codons are less 

efficient than AUG  (188), even when embedded in a favourable consensus Kozak motif (136). 

Why is initiation from a non-AUG codon favoured? The answer may lie in the sequence context 

surrounding the non-AUG start codon. For example, the translation initiation of NAT1/eIF4G2 is 

initiated at a GUG codon (190), which is present in an optimal Kozak motif and is predicted to 

contain a secondary hairpin structure downstream of the GUG codon. The presence of a 

downstream secondary structure favours the usage of a non-canonical start codon like GUG (189), 

presumably by slowing down the scanning 48S preinitiation complex (189). Importantly, the GUG 

codon mediated translation initiation of NAT1 is conserved across species (190). Similar to NAT1, 

the translation of Pabpc1l2 ORF is also GUG-initiated. The nucleotide sequences around Pabpc1l2 

GUG codon i.e., “ACCGUGG”, are evolutionarily conserved and present in optimal Kozak 



Sharma, Sahil 
 

 145 

context [(ACCAUGG), (136)]. These nucleotide sequences with purines ‘A’ at -3 position and ‘G’ 

at +4 position, may favour the efficient usage of the GUG as a start codon (136, 188). Interestingly, 

the 64-nucleotide region downstream of Papbc1l2 GUG codon is evolutionarily well-conserved, 

highly GC rich, and based on RNA structure prediction tools, like Vienna RNA websuite, may 

form a GC base paired secondary structure (467). Therefore, these qualities of Pabpc1l2 mRNA 

5’ end may have allowed for the usage of GUG as a start codon. In support of this, we show that 

GUG codon is able to initiate Pabpc1l2 mRNA translation in cell lines and generate a protein of 

similar size to endogenous neuPABP.  These observations collectively suggest that well-conserved 

sequence determinants proximal to the Pabpc1l2 GUG codon, as well as downstream RNA 

secondary structure favors the non-AUG translation of Pabpc1l2 mRNA.   

 

4.3. neuPABP localizes to synapses and associates with neurite-enriched RNAs  

The significance of RNA binding proteins (RBPs) at the synapse can be deciphered from patients 

where their complete loss or mutation can lead to impaired synaptic plasticity and neurological 

disorders (671). For example, mutations in the RNA binding proteins fused in sarcoma (FUS) and 

transactive response DNA-binding protein (TDP-43) lead to neurodegenerative diseases, including 

amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FD), respectively (672, 673). 

Similarly, mutations in Fmr1 gene, which codes for FMRP, can also cause fragile X syndrome 

even in the absence of classical CGG-repeat expansions (674). Importantly, impaired RNA 

metabolism is at the heart of these diseases, where the loss of RBP function can affect the transport 

and local translation of their mRNA targets (675). These examples highlight the importance of 

RBPs in healthy neuronal function. Here, we have identified a new RBP, neuPABP, that is localized 

into the postsynaptic terminals and associates with several synaptically important RNAs that we 



Sharma, Sahil 
 

 146 

have identified. To effectively respond to external stimuli and propagate synaptic transmission, 

neurons rely on local protein synthesis in synapses (166). To do so, neurons have developed 

ingenious methods to transport RNAs as well as translation machinery components to the distal 

dendritic/axonal structures (419). This feature gives neurites the autonomy to modulate their local 

proteome to accommodate rapid synaptic changes, without having to rely on the cell body. 

Numerous transcriptomics studies over the years have now identified thousands of RNA species 

in the neurites (97, 166, 378, 419-422). Several RBPs are required for transporting RNAs in 

neurons, which include FMRP, Staufen, TDP43 and PUR⍺ (479, 492, 494, 499, 644, 676). RNA 

transport is achieved by the concerted action of RNA-bound RBPs and cytoskeleton (microtubules 

or actin filaments), which acts as a highway for RNA cargo transport (677). Importantly, RNA 

transport requires motor proteins (kinesin and dynein), which link up RNA cargos to the 

cytoskeleton and move them to distant dendritic location in ATP hydrolysis-dependent manner 

(677, 678). Our neuPABP-enriched transcriptome study from mouse hippocampus has identified 

its RNA targets. Two main classes of mRNAs are enriched with neuPABP:  mRNAs coding for 

ribosomal and nuclear-encoded mitochondrial proteins. Intriguingly, ribosomal protein coding 

mRNAs have been shown to localize to dendritic processes by many studies (97, 378, 419-422, 

679). Remarkably, one study showed that ribosomal proteins are locally synthesized and 

incorporated into functional ribosomes in dendrites (419). By utilizing metabolic labeling and mass 

spectrometry, this study uncovered a unique method of ribosome recycling and repair that is 

independent of the canonical ribosome biogenesis in the nucleolus and soma (680, 681). Similarly, 

mitochondrial protein coding mRNAs are also transported into axons and presynaptic terminals, 

where their local translation provides proteins for healthy mitochondrial function (682). These 

studies highlight the importance of mRNA transport in maintaining a local mRNA pool, which is 
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ultimately translated into healthy ribosomal and mitochondrial functions. Therefore, the 

identification of neuPABP target mRNAs is of high significance, as they code for protein 

components of core translation and metabolism machineries.  

 

While neuPABP and its target mRNAs localize to neurites and synaptic terminals, a question 

became apparent: does neuPABP associate with its target RNAs in synaptic terminals? Our 

neuPABP formaldehyde-crosslinked immunoprecipitation (CLIP) data from synaptosome 

preparations show that the ‘biased’ binding preference of neuPABP toward ribosomal and 

mitochondrial protein coding transcripts also holds in synaptic terminals. Previous studies have 

identified several synaptic proteins coding transcripts (Map2, PSD95, Arc) in synaptic terminals 

(426, 445, 683). Even though these transcripts localize in dendritic terminals, neuPABP only shows 

a weak association with them. Interestingly, our CLIP data for PABPC1 show that while PABPC1 

associates with mRNAs coding for neuronal-specific proteins (MAP2, PSD-95, Arc, and β-tubulin 

III), the enrichments are not as dramatic as for the  ribosomal and mitochondrial proteins coding 

mRNAs. Remarkably, this pattern for PABPC1 RNA binding preference has been reported by a 

previous study, albeit in actively dividing HEK293T cells (684). This study showed that PABPC1 

associates with mRNAs that are generally stable and have longer-half lives, which included 

ribosomal protein coding mRNAs. Moreover, recent studies suggested that PABPC1 serves an 

important function in stabilizing two main classes of transcripts: ribosomal proteins coding and 

mitochondrial protein coding mRNAs (128, 160). Therefore, our CLIP analyses in synaptosomes 

extends these findings for PABPC1 to terminally differentiated neurons. Nevertheless, our data 

suggests that both neuPABP and PABPC1 have overlapping targets in synaptic terminals. Do 

neuPABP and PABPC1 bind the mRNA targets simultaneously? Fascinatingly, our CLIP data 
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suggest that even though neuPABP and PABPC1 share common mRNA targets, our co-IP data 

show that neuPABP-bound RNAs do not contain PABPC1 and vice versa. This highlights that 

neuPABP and PABPC1 bound mRNAs represent different subpopulations of the same mRNA 

species.  

  

The top neuPABP target RNA that we have identified is the highly abundant brain specific non-

coding RNA, BC1. Intriguingly, our work matches well with previous studies that show that BC1 

RNA is developmentally upregulated in neurons (453), which mirrors the developmental 

expression of neuPABP. The BC RNAs (BC1 and BC200) localize to dendrites and regulate 

mRNA translation (463, 472), and contain a dendritic targeting element in their 5’ stem-loop 

structure (452, 463).  Moreover, this stem-loop structure may serve as a binding platform for 

several RBPs, like FMRP, to facilitate the dendritic transport of BC RNAs (465, 466). BC RNAs 

also contain an internal stretch of A-rich sequence which can provide binding site for poly(A) or 

A/U rich RBPs, like neuPABP, PABPC1, and SYNCRIP (459, 461). 

 

It is currently unknown how neuPABP is transported to the postsynaptic terminals and if neuPABP 

is even involved in RNA transport. The RBP-RNA cargo transport in neurons is mediated by 

cytoskeleton and motor proteins. Therefore, future studies would entail the disruption of 

cytoskeleton with drugs, like cytochalasin D (actin filaments), nocodazole or colchicine 

(microtubules), and utilize imaging and biochemical techniques to study neuPABP localization. 

Interestingly, a study showed that the dendritic localization of BC1 is obstructed in cultured 

neurons after disrupting microtubules, but not actin filaments (464). Therefore, whether BC1 
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facilitates neuPABP localization into dendritic postsynaptic densities or vice versa,  is of a great 

interest.  

 

neuPABP is a component of RNA transport granules 

In neurons, mRNA are transported and delivered to distal dendritic/axonal sites via various 

methods. While several RNAs are transported as RNPs that lack ribosomal subunits, for example, 

non-coding BC RNAs, some prefer packaging into dense liquid-liquid phase separated structures 

called RNA transport granules. While neuronal transport granules share components with stress 

granules, there is a major key difference. In contrast to stress granules that contain 40S ribosomal 

subunits stalled in translation initiation, transport granules contain 80S ribosomes stalled in 

translation elongation phase (479, 498, 642, 645, 685, 686). Other than ribosomes, several RBPs 

have been identified as key components of transport granules, for example, FMRP, Staufen, PUR⍺, 

PURβ, and SYNCRIP (498). Interestingly, a previous study did not detect the enrichment of 

PABPC1 and translation initiation factors in transport granules (416). However, a recently 

published study carried out proteomic analyses on neuronal transport granules isolated from rat 

brain cortex and human neuroblastoma SH-SY5Y cells (478), and identified several key granule 

marker proteins, including PABPC1. In agreement with this, we also identified PABPC1 

enrichment in our RNA granule fraction. Similarly, we show that neuPABP is enriched in RNA 

granules along with previously identified granule marker proteins, like PUR⍺, SYNCRIP, and 80S 

ribosomal proteins (RPS6 and RPLP0). Moreover, our immunofluorescence imaging data show 

neuPABP colocalization with PUR⍺, a key transport granule protein (498). Live cell imaging 

techniques have revealed the anterograde and retrograde movements of PUR⍺-containing granules 

in neurons, and these movements  are  dependent on myosin Va motor protein that translocate on 
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actin filaments (498, 499). Therefore, future live cell imaging studies coupled with actin 

cytoskeleton disruption agent cytochalasin D, would shed some light on neuPABP-PUR⍺ granule 

dynamics. Additionally, similar to a previous study that coimmunoprecipitated and characterized 

motor protein KIF5-associated RNA granules and their components, which included PUR⍺ (498), 

it will be interesting to examine the association of neuPABP-containing RNA granules with 

cytoskeleton by direct pulldown of motor proteins.  

 

A putative role for neuPABP in translational regulation 

Translational control of gene expression is critical for regulating both general protein synthesis 

and synthesis of specific proteins in response to neuronal activity pertaining to long lasting 

synaptic plasticity (LTP) and memory formation (687-690). In neurons, several RBPs are localized 

into synaptodendritic compartments and regulate temporal protein synthesis to fine tune a synaptic 

response to external stimulus (Figure 40). For example, FMRP regulates mRNA translation by 

stalling the ribosomes in the elongation phase and packaging the stalled polysomes into RNA 

granules for transport (442, 479, 691). HuD (ELAV4), an AU-rich neuronal RNA binding protein, 

localizes to the dendrites after stimulation and supports translation of immediate early gene 

transcripts (Neuritin, GAP-43, CaMKIIα), whose protein products are essential for synaptic 

plasticity (692). PABPC1, an important protein that stimulates translation in vitro and during early 

development (142, 148), is negatively regulated by PAIP2, which binds and displaces PABPC1 

from poly(A) tails (315, 693, 694). Intriguingly, a study showed that PABPC1 increasingly 

associated with CaMKII⍺ mRNA in mouse hippocampus after training. Interestingly, PABPC1 

showed even stronger binding to CaMKII⍺ mRNA in trained Paip2a-/- mice, where CaMKII⍺ 

mRNA showed increased polysome association and protein synthesis (640). Moreover, they saw 
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that Paip2a-/- mice displayed a lower threshold for late phase-LTP induction (L-LTP) and enhanced 

spatial memory formation after weak training, while memory impairment was observed following 

strong training, possibly due to excessive translation stimulation by PABPC1 after Paip2a loss 

(640). These studies highlight that a balanced translation output following stimulus is necessary 

for healthy synaptic function. Unlike PABPC1, which contains MLLE domain for PAIP2 binding, 

neuPABP lacks MLLE, cannot bind PAIP2, and therefore, may not be regulated by PAIP2. 

However, PAIP2 and neuPABP may function independently to regulate PABPC1 function in 

translation by displacement and replacement strategies, respectively. Importantly, our neuPABP 

and PABPC1 CLIP experiments from synaptic terminals suggest that even though both proteins 

share mRNA targets, they do not coexist on the same RNA. This indicates that these proteins may 

bind mRNAs with distinct translation status. Indeed, our polysome profiling data from mouse 

cortex and synaptic fractions shows that neuPABP and PABPC1 have distinct polysome profiles. 

While PABPC1 was detected throughout polysome fractions, including  in heavy polysome 

fractions that contain actively translated mRNAs (637, 638), neuPABP sedimented in early 

fractions that contain untranslated free ribonucleoprotein (RNP) and 40S ribosomal subunits. 

Moreover, our data show that neuPABP directly associates with translationally dormant RNAs in 

the RNP fractions. While it seems clear that neuPABP and PABPC1 bound RNAs have distinct 

translation status, the status of PABPC1 associated RNAs in RNP fractions remains unclear. 

PABPC1 binds poly(A) tails and stimulates translation by contacting eIF4G subunit of eIF4F 

complex (142, 148). In addition, PABPC1 was previously reported to stabilize the eIF4F complex 

on 5’ cap in vitro and in plants (142, 695-697).  
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Figure 40. Model for biological role of neuPABP. (i) neuPABP binds to BC1 RNA and select 
translationally dormant mRNAs which may be transported to post-synaptic compartments.  As 
neuPABP also lacks the PABPC1 MLLE domain, it may protect mRNAs from mRNA decay 
factors that can interact with this domain, including the PAN2-PAN3 complex and Tob, which 
interacts with the CCR4-NOT deadenylase complex. (ii) It is possible that in specific contexts 
(depicted as a question mark), PABPC1 may displace neuPABP from mRNA poly(A) tails, bind 
eIF4G and stimulates their mRNA translation.  
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In line with these studies, our data shows that PABPC1 binds eIF4G both in vitro and in cellulo, 

in contrast, neuPABP fails to interact with eIF4G as it contains non-conservative amino acid 

substitutions in eIF4G binding sites. Do PABPC1-bound mRNAs in early RNP fractions contain 

eIF4F complex? To answer this, it is of interest to us to pulldown neuPABP and PABPC1 from 

early RNP fractions and study if the bound RNAs contain eIF4F complex components. This would 

further enhance our current understanding of neuPABP function in translation regulation.  

 

In vitro protein synthesis assays are important tools to study the impact of a protein on translation. 

These assays have been used previously to investigate proteins with a potential regulatory role in 

translation. For example, PABPC1 was described as a translation factor that stimulates translation 

using an in vitro translation system (142), FMRP, a well-studied protein in neurons was classified 

as a negative regulator of translation by using in vitro protein synthesis assays (691, 698). The use 

of in vitro translation assays have advantages such that the effect of a protein on translation can be 

studied quickly by modulating its concentration or inserting mutations. Therefore, by utilizing in 

vitro translation assay, we have characterized neuPABP as a putative translation repressor.  

 

We have recently generated a Pabpc1l2 knockout mouse. While the distribution profile of 

neuPABP-associated mRNAs in polysomes is similar between Pabpc1l2KO and WT mice 

hippocampi, future studies involving neuron stimulation, for example with BDNF (376, 688, 699), 

would be necessary to challenge the system to study any translation defects. A new method to 

study the synthesis of specific proteins was devised in neurons (700). This method combines 

puromycylation of newly synthesized peptides with proximity ligation assay (Puro-PLA). Briefly, 

neuronal cultures are treated with puromycin, followed by immunofluorescence. Two primary 
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antibodies, one targeting puromycin tag and the other targeting the protein of interest (ideally N-

terminus) are used (419, 700). Next, secondary antibodies coupled to oligonucleotide probes are 

used. When two probes are in close proximity, they ligate with the help of linker oligonucleotides 

and a ligase enzyme to form a circle, which is amplified by rolling circle amplification. The 

amplified circular sequences are then detected by complementary fluorescently-labeled probes. 

Puro-PLA method has been tested extensively in neurons and can detect translation of ribosomal 

protein coding mRNAs in dendrites (419). Utilizing this method, the translation of neuPABP-

associated mRNAs should be studied in WT and Pabpc1l2KO neurons pre-and post-stimulation. 

Moreover, these studies can be coupled with ribosome footprinting to simultaneously access 

mRNA association with translating ribosomes. Local mRNA translation in neurons is required for 

maintaining a long-lasting synaptic strength (L-LTP) (690). Similar to Paip2a-/- mice that 

displayed a lower threshold for L-LTP induction (640), it will be interesting to investigate if 

Pabpc1l2KO mice also display similar electrophysiological phenotypes. Therefore, future studies 

should combine local protein synthesis and electrophysiological studies to better understand the 

impact of local proteome changes on LTP induction in Pabpc1l2KO mice.    

 

Interestingly, our translation assay in SH-SY5Y cells using a bicistronic reporter, demonstrates 

that neuPABP can repress cap- and poly(A) dependent translation in a dose dependent manner. 

These data suggest that the impact of neuPABP on translation can be modulated by a change in its 

levels. Do neurons modulate local concentration of neuPABP in synaptic terminals following 

stimulation? This is an important question that will be addressed in future studies. For example, 

neuron cultures should be stimulated (for example, BDNF or KCl), and synaptic terminals can be 

fractionated to quantify changes in neuPABP protein levels pre- and post-stimulation. Interestingly, 
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our data and previous studies suggest PABPC1 localization in dendritic compartments (641), 

where it associates strongly with CaMKII⍺ mRNA after training in WT and Paip2a-/- mice (640).  

Likewise, a study demonstrated a strong association of HuD with dendritic mRNAs (Neuritin, 

Homer1a, GAP-43, Neuroligins, Verge  and CaMKIIα) after KCl stimulation of cultured neurons 

(692). Currently, it is not known if neuPABP is associated strongly or released from target RNAs 

after stimulation. Therefore, to test this, future studies should focus on CLIP experiments from 

cultured neurons using different stimulation methods. These experiments will deepen our 

understanding of the fate of neuPABP-bound RNAs.  

 

Brain cytoplasmic (BC) RNAs have been extensively reported to localize into dendritic 

compartments, and act by repressing local translation of mRNAs (452, 464, 466, 473, 701, 702).  

Interestingly, BC RNAs are suggested to repress translation by sequestrating eIF4A and PABPC1, 

both of which can bind BC RNAs, and thereby inhibiting the formation of 48S preinitiation 

complex (472), Our polysome profiling data show that both neuPABP and BC1 RNA are localized 

in early RNP fractions that contain untranslated RNAs. Moreover, we show that neuPABP cannot 

bind eIF4G. Therefore, these data collectively suggest a possible unexplored role of neuPABP-

BC1 RNP in translation initiation control in dendrites. Interestingly, a recent study reported the 

expression of BC1 RNA in germinal vesicle (GV) stage oocytes. They showed that BC1 RNA 

overexpression in GV oocytes repressed the translation of an injected luciferase reporter bearing a 

strong 5’ terminal oligopyrimidine (TOP) motif sequence (703). Intriguingly, ribosomal protein 

coding mRNAs that neuPABP targets, are TOP motif-containing mRNAs (704). While neuPABP 

expression in GV oocytes is currently unknown, in neurons BC1-neuPABP may function together 

to regulate TOP mRNA translation. Our RNA abundance analysis from neuPABPKO mouse brain 
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showed significantly elevated levels of BC1 RNA. While the consequences that elevated BC1 

levels may have on neuronal function are currently unclear, a study found elevated levels of BC200 

RNA in Alzheimer’s brain regions that were involved in the disease progression; however, no 

causal link was established (458). How neuPABP regulates BC1 levels and function remains 

unclear.   

 

 More recently, several studies revealed the function of PABPC1 in mRNA stability. These studies 

found that PABPC1 supports the stability of generally stable mRNAs that code for proteins with 

constitutive functions (128). Depletion of PABPC1 from human cell lines led to the degradation 

of these mRNAs which was dependent on 3’ terminal uridylation by TUT4/TUT7 (37, 128, 160, 

241). Therefore, while PABPC1 does promote deadenylation, it seems to prevent mRNA decay by 

preventing terminal uridylation (37). Before we ask if neuPABP can block terminal uridylation, a 

more pressing question is: can neuPABP block deadenylation? Evidently, many factors that 

regulate mRNA stability interact with PABPC1 via MLLE domain. These include: PAN3 subunit 

of PAN2-PAN3 deadenylase complex (36),  Tob proteins and GW182 protein of miRISC complex, 

both of which can recruit CCR4-NOT deadenylase complex to target mRNAs (228, 269, 705-707). 

However, in contrast to PABPC1, neuPABP lacks MLLE domain, and therefore, may not recruit 

deadenylation factors to neuPABP-bound mRNAs. An alternate possibility is that once PABPC1 

bound mRNAs are deadenylated by the concerted action of major deadenylases i.e., PAN2-PAN3 

and CCR4-NOT, short mRNA poly(A) tails (<25 adenosines) that can no longer accommodate a 

PABPC1 molecule (37, 242, 243, 708), may become substrate for neuPABP binding. neuPABP 

contains only two RRMs, which can easily bind very short poly(A) sequences (12-25 adenosines) 

(143, 308, 311). Moreover, neuPABP not only lacks RRMs 3 and 4, but also lacks the linker region 
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that PABPC1 use to oligomerize on mRNA poly(A) tails (36, 708). Specifically, RRM1 of a 

PABPC1 molecule contacts the linker region of an adjacent PABPC1 molecule for oligomerization 

(36, 309-311). Additionally, neuPABP has acquired a new N-terminus that is not present in other 

PABPCs. Together, these unique properties of neuPABP may prevent it from oligomerizing with 

itself or other PABPCs on poly(A) tails. In line with this, our data show that neuPABP and PABPC1 

do not coexist on RNAs. Taken together, it is possible that short-tailed mRNAs prefer neuPABP 

over PABPC1. Consequently, similar to PABPC1, neuPABP may protect its mRNA targets from 

TUT4/TU7 mediated uridylation. To test these possibilities, nanopore sequencing of neuPABP-

associated mRNA poly(A) tails is required. A parallel sequencing experiment on PABPC1-bound 

mRNA poly(A) tails would also be necessary for a direct comparison of poly(A) tail lengths as 

well as 3’end modifications. 

 

In line with previous studies, our data show that PABPC1 can coimmunoprecipitate eIF4G from 

human cell lysates (143). Moreover, PABPC1 and eIF4G cooccupancy on mRNAs correlates very 

strongly in Drosophila and human cell lines (161). In contrast to this, we show that neuPABP not 

only fails to interact with eIF4G in vitro, but is unable to coimmunoprecipitate eIF4G from human 

cell lysates, even when native mRNAs were maintained in RNAse free conditions. This suggest 

that neuPABP-containing mRNAs may not be able to recruit eIF4G. Previous studies suggest that 

eIF4E binds weakly to the 5’ cap, when outside the context of eIF4F complex, however, interaction 

with eIF4G is required for a stable eIF4E-5’ cap binding (695). Do neuPABP bound mRNAs 

maintain a 5’ cap structure and bind eIF4E? Future studies should involve terminator 5’ phosphate-

dependent nuclease assay to examine if neuPABP-bound RNAs still maintain a 5’ cap, as mRNAs 

that lack the 5’cap will be susceptible to degradation by 5’-3’ ribonucleases (709).  
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4.4. Conclusions 

Post-transcriptional regulatory mechanisms are critical in exerting a tight control over 

spatiotemporal gene expression. Neurons have developed intricate mechanisms to transport 

mRNAs and translation regulatory machineries to the neurites, which allows for the synthesis of 

specific proteins in response to synaptic activity. The localized gene expression programs grant 

neurons with the ability to rapidly modify their local proteome to support long lasting synaptic 

plasticity and memory storage. Several RBPs have emerged as key modulators of local protein 

synthesis, and the multifaceted roles they play in RNA fate determination are of great scientific 

interest. Despite the identification of RBPs and RNAs in the neurites,  the precise role of RBPs in 

RNA metabolism is only starting to unravel. Through the work presented in my thesis, I have 

uncovered a new mammalian brain-specific RBP, whose expression peaks in mature neurons, and 

therefore, we have named it neuPABP. Moreover, we were successful in identifying neuPABP-

associated RNAs in the brain, and our work classifies neuPABP as a putative translation repressor. 

This work will facilitate future studies to further investigate the role of neuPABP in regulating 

local mRNA translation. Importantly, the identification of neuPABP associated mRNAs will have 

implications for subsequent studies investigating the impact of local protein synthesis on ribosomal 

and/or mitochondrial functions in neurites. In addition, the identification of neuPABP-BC1 

association is significant, which may shed some light on BC1 functionality. Overall, this work has 

unveiled a new neuronal RBP that may function to regulate protein synthesis of select mRNAs and 

will broaden our understanding about the diverse roles of RBPs in supporting synaptic function.  
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5. METHODS 

5.1. Uncovering neuPABP  

Antibodies 

Antibodies were purchased from Abcam (PABPC1, hnRNPA1, PSD-95, RPS6, Synaptophysin), 

Cell signaling (PABPC1, V5, eIF4G, b-Actin), Biolegend (b3tubulin), Invitrogen (V5-tag), Santa 

Cruz (GAPDH), Sigma-Aldrich (PAIP2).   A peptide encompassing the C-terminal end of mouse 

neuPABP (ERGAWARQSTSADFKDFD) that is not conserved in other mammalian PABPC 

proteins was injected into rabbits for neuPABP antibody production (Thermofisher).   

 

DNA Constructs, cell lines and primary cultures  

Bacterial expression vectors 

N-terminal GST-tagged neuPABP and eIF4G (41-244) expression clones were generated by 

cloning into pGEX-6P1 plasmid (Addgene). neuPABP and eIF4G (41-244) coding sequences were 

PCR-amplified, restriction digested with enzymes BamHI, SalI for neuPABP, and NotI, SalI for 

eIF4G (41-244), and ligated in frame with the N-terminal GST-tag in pGEX-6P1 plasmid, N-

terminal His-tagged PABPC1 expressing pET-28b-PABPC1 plasmid was a gift from Dr. 

Sonenberg at McGill University. N-terminal malE-tagged neuPABP and PABPC1 (RRM1+2) 

expression clones were generated by cloning into pMAL-c5X plasmid (NEB) using restriction 

enzyme sites NotI and SacI. neuPABP and PABPC1(RRM1+2) coding sequences were PCR-

amplified, restriction digested with enzymes NotI and SacI, and ligated in frame with the N-

terminal malE-tag in pMAL-c5X plasmid.  
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Mammalian expression vectors  

C-terminal V5-tagged neuPABP and PABPC1 expression clones were generated by Gateway 

cloning (ThermoFisher). Coding sequences were PCR-amplified using gene-specific gateway 

primers that contained flanking attB sites for recombination with attP sites in the donor 

pDONR221 plasmid, to generate entry clones with attL sites. Further, neuPABP and PABPC1 

expression clones were generated by recombining the attL sites in the pDONR221-neuPABP and 

PABPC1 entry clones and the attR sites in pLEX-307 destination vector (Addgene), and lncRNA 

Bc1 gene sequence was cloned into PLKO.1 puro vector (Sigma). Bc1 gene sequence was PCR 

amplified using primers containing restriction enzyme sites for EcoRI and XmaI, restriction 

digested, and ligated into PLKO.1 puro plasmid that was digested with EcoRI and AgeI (BshTI). 

 

Cell Lines 

Human epithelial carcinoma HeLa cells and Human embryonic kidney HEK293T cells were 

purchased from ATCC. Cell lines were maintained in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 10% fetal bovine serum, 50 U/ml of penicillin and 50 μg/ml of 

streptomycin.  

 

Primary neuronal cultures  

Mouse primary cortical neuron cultures were prepared from P0 pup cortices. Mouse pups were 

collected soon after birth and decapitated as per animal handling protocol. Brains were 

immediately harvested into cold Dulbecco’s modified Eagle’s medium-F12 media (DMEM/F-12), 

and cerebellum and olfactory bulbs were removed. Cortices were gently triturated in pre-warmed 

DMEM/F12 medium by pipetting with Pasteur pipette to get homogenous cell suspension, and 
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centrifuged (700rpm, 2min). Only half of the supernatant was removed from the top, replaced with 

PPD saline (0.1% Papain, 0.01% deoxyribonuclease-I, 0.1% neutral protease-Dispase-II, 10mM 

MgCl2 in HBSS(without Ca2+ and Mg2+)), mixed with Pasteur pipette, incubated (37C, 30min), 

and in between pipetting gently every 10min. Cells were centrifuged (800rpm, 10min), 

resuspended in DNase-I saline (0.1% deoxyribonuclease-I in DMEM), and incubated at (37C, 15 

min). Cells were then collected by centrifugation (800rpm, 10min), resuspended in Complete 

Neuronal medium (Neurobasal medium containing 1X B27 supplement, 2mM L-Glutamine, 0.5X 

Pen/Strep), and plated on Poly-L-Lysine coated culture flasks. 72 hours post-plating, Ara-C 

(Arabinosylcytosine) drug (3uM) was added to control glial cell overgrowth. Sterile conditions 

were maintained throughout the procedure.  

 

5’RACE (Rapid Amplification of cDNA Ends) 

RNAs were isolated from mouse primary neuronal cultures at DIV7, using Trizol reagent. RNAs 

were dephosphorylated using FastAP (Alkaline Phosphatase) kit (ThermoFisher) and decapped 

using RppH (RNA 5' Pyrophosphohydrolase) kit (NEB). RNA adapter: 

(5’GCUGAUGGCGAUGAAUGAACACUGCGUUUGCUGGCUUUGAUGAAA3’) was 

ligated to 5’monophosphate ends of the decapped RNAs by using T4 RNA Ligase 1 (NEB). RNAs 

were reverse transcribed using AffinityScript kit (Agilent). A PCR amplification using KAPA 

HotStart kit (MilliporeSigma) was carried out using adapter specific forward primer: 

(5’GCTGATGGCGATGAATGAACACTG3’) and pabpc1l2 sequence specific reverse primer: 

(5’CACCGGTTGCTGGTAGTTGA3’). A fraction of PCR reaction was further amplified using 

adapter specific forward and pabpc1l2 sequence specific reverse Gateway primers containing attB 

sites: 
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(5’GGGGACAAGTTTGTACAAAAAAGCAGGCTACCGCTGATGGCGATGAATGAACACT

G3’) and 

(5’GGGGACCACTTTGTACAAGAAAGCTGGGTCCCAGGCTGGCCTCCTCAA3’),  

respectively and cloned into a Gateway donor plasmid pDONR™221 (ThermoFisher). Plasmid 

constructs were sequenced to identify pabpc1l2 mRNA 5’end.   

 

Recombinant protein purification  

GST-tagged recombinant proteins were expressed in Rosetta-2(DE3) E. coli cells (Millipore) and 

purified by using Glutathione agarose resin (ThermoFisher). GST cleavage was performed using 

HRV-3C protease (ThermoFisher).  His-tagged recombinant proteins were purified by using Ni-

NTA beads (Qiagen). MBP-tagged recombinant proteins were purified by using Amylose resin 

(NEB). (Note: Recombinant protein purification protocol is detailed in Section 3.2)  

 

GST-pulldown assays 

GST or GST-eIF4G (1-244) recombinant bait proteins (200 pmol) were allowed to bind to 25ul of 

packed glutathione beads in binding buffer (50mM Tris, 150mM NaCl, 0.5% NP-40, 5% Glycerol, 

1.5mM DTT), for 2 hours at 4C, with gentle rotation. MBP-tagged neuPABP or PABPC1 

(RRM1+2) prey proteins (160 pmol) were then added, and the reactions were incubated overnight 

at 4C, with gentle rotation. Beads were washed to remove unbound proteins , boiled in Laemmli 

buffer to release the bound proteins, and resolved on an SDS-PAGE gel. Resolved proteins were 

visualized by Coomassie blue staining.  
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RNAcompete  

The RNA pool generation, RNAcompete pulldown assays, and microarray hybridizations were 

performed as previously described (633, 710, 711). Briefly, RNAcompete experiments employed 

defined RNA pools that are generated from 244K Agilent custom DNA microarrays. Pool design 

is based on a de Bruijn sequence of order 11 that was subsequently modified to minimize secondary 

structure in the designed sequences and minimize intramolecular RNA cross-hybridization. After 

these modifications, not every 11-mer is represented but each 9-mer is represented at least 16 times. 

To facilitate internal data comparisons, the pool is split computationally into two sets: Set A and 

Set B. Each set contains at least 155 copies of all 7-mers except GCTCTTC and CGAGAAG which 

are removed because they correspond to the SapI/ BspQI restriction site used during DNA template 

pool generation. A φ2.5 bacteriophage T7 promoter initiating with an AGA or AGG sequence is 

added at the beginning of each probe sequence in the DNA template pool to enable RNA synthesis. 

The final RNA pool consists of 241,399 individual sequences up to 41 nucleotides in length (633). 

The microarray design is detailed in  (633) and can be ordered from Agilent Technologies using 

AMADID# 024519. In RNAcompete assays, 20 pmoles of GST-tagged neuPABP and RNA pool 

(1.5 nmoles) were incubated in 1 mL of Binding Buffer (20 mM Hepes pH 7.8, 80 mM KCl, 20 

mM NaCl, 10% glycerol, 2 mM DTT, 0.1 mg/mL BSA) containing 20 µL  glutathione Sepharose 

4B (GE Healthcare) beads (pre-washed 3 times in Binding Buffer) for 30 minutes at 4°C, and 

subsequently washed four times for two minutes with Binding Buffer at 4°C. One-sided Z-scores 

were calculated for the motifs as described previously (633). 

 

Electrophoretic Mobility Shift Assay 

150 pmol of RNA oligo(A)25 was 5’ end-radiolabeled with 10 µCi of [g32-P]-ATP (Perkin Elmer)  
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by using the enzyme T4 polynucleotide kinase (ThermoFisher) for 1 hour at 37C. The end-labeled 

oligoribonucleotide was diluted (to 2 pmol per µL) with double distilled water, column purified 

(Roche), 2pmol RNA oligonucleotide was used for each EMSA reaction. RNA-protein EMSA 

binding reactions as well as protein dilutions were made in standard phosphate buffer saline (NaCl: 

137 mM, KCl: 2.7 mM, Na2HPO4: 10 mM, KH2PO4: 1.8 mM ) supplemented with 160ng/mL 

double stranded DNA and 40U/mL RNase inhibitor (Promega). 2 pmol of radiolabelled RNA 

oligonucleotide (per reaction) was mixed with different amounts of recombinant protein (neuPABP 

or PABPC1) in a final reaction volume of 20 uL, and incubated at 30C for 1 hour. Binding reactions 

were supplemented with glycerol containing bromophenol blue dye (to 5% glycerol concentration) 

and were electrophoresed on a 10% non-denaturing polyacrylamide/bis-acrylamide (29:1, w/w) 

gel in Tris-borate-EDTA running buffer (120V, 60-120 min, on ice). Gels were analyzed using a 

PhosphorImager (GE Healthcare). Free RNA as well as gel-shifted RNA bands were quantified for 

each gel lane by ImageJ.  The fraction of bound RNA in each lane was calculated by using the 

expression: bound/(bound + unbound). The dissociation constant (KD) values were  calculated by 

GraphPad Prism software as the protein concentration (nM) at which only 50% of free RNA 

remained unbound.  

 

in vitro translation experiments 

Krebs-2 cell-free lysates were prepared as described previously for in vitro translation experiments 

(712, 713). Capped poly(A)+ and poly(A)- luciferase RNAs were incubated in Krebs-2 extract, in 

vitro translation reactions were incubated at 30C for 1hour, and translation output from the reporter 

mRNAs was accessed by a luciferase assay (Promega). 
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Tissue expression analysis 

Western blotting 

 Adult mice (C57BL/6J; 5 months old) were sacrificed as per animal euthanization protocol, 

different tissues were dissected out, including different brain regions and lysates were prepared in 

a lysis buffer (50mM Tris-HCl (pH-7.5), 150mM NaCl, 0.5% NP-40, 2mM EDTA, 1mM DTT). 

Western blotting was performed to assess the expression of neuPABP PABPC1 and other proteins.  

 

RT-PCR and RT-qPCR analyses 

Adult mice (C57BL/6J; 5 months old) were sacrificed as per animal euthanization protocol. 

Different tissues/brain regions were dissected out and total RNA was isolated using Trizol reagent. 

RNAs were reverse-transcribed (ThermoFisher) and semi-quantitative PCR and qPCR analyses 

were performed to access the differential expression of pabpc1l2 among mouse tissues.  

 

Single-nuclei RNA-seq data processing  

10x multiome RNA + ATAC data for healthy mouse cortex at postnatal timepoints P7 and 10W 

were obtained from GSE199885. Sequencing reads were reprocessed to allow the quantification 

of Pabpc1l2, as the genomic annotations for Pabpc1l2a/b are absent in the mm10 reference 

genome build used in the original publication (714). A custom reference was built, adding the 

coordinates for Pabpc1l2b (chrX:103,013,563-103,016,208) to the gene annotation. In addition, 

since there is high homology in Pabpc1l2a/b genes resulting in multimapping reads, the sequence 

for Pabpc1l2a (chrX:103,064,742-103,067,538) was masked using bedtools maskfasta. Thus, the 

expression of the two Pabpc1l2a/b genes is profiled as a single feature (Pabpc1l2) in downstream 

analysis, and no attempt is done to distinguish expression of Pabpc1l2a and Pabpc1l2b separately. 
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Sequencing reads were then aligned and demultiplexed using cellranger-arc v2.0.0 (10x 

Genomics) using this modified mm10 reference genome build coupled with the modified Ensembl 

98 gene annotation. Quality control (QC) and data processing steps were performed using Signac 

v1.3.0 (715) and Seurat v4.0.0 (716) as described in the original publication (714). Briefly, QC 

metrics for RNA and ATAC modalities were jointly used to filter cells. In the RNA modality, cells 

were filtered on the number of genes, unique molecular identifiers (UMIs), and mitochondrial 

content. In the ATAC modality, cells were filtered on the number of peaks detected, transcription 

start site enrichment, and nucleosome signal. Next, RNA libraries were scaled to 10,000 UMIs per-

cell, log normalized, and UMI counts and mitochondrial content were regressed out. 10W samples 

were integrated by merging the samples without batch correction, followed with scaling and 

normalization. Dimensionality reduction was performed using PCA on the top 2,000 most variable 

features. The first 25 principal components were used as input for projection into two dimensions 

(uniform manifold approximation and projection (arXiv:1802.03426) and for clustering [shared 

nearest-neighbor algorithm (716)]. Doublets were identified using scDblFinder (717) with the 

recommended cluster-based approach and subsequently the doublets were filtered. Lastly, 

annotations of cell types was performed using four machine learning-based prediction methods 

(SciBet, SingleCellNet, SingleR, and Support Vector Machines) (718-720). For this, two murine 

brain cell type atlases were used:  non-neuronal cell-types were annotated using a developmental 

murine atlas (721). Cells predicted as neurons were subsequently annotated using a more detailed 

neuronal enriched atlas (722). A consensus cell type annotation was assigned when at least two 

methods agreed. Finally, cell type labels were aggregated into broad cell type classes.  
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Subcellular fractionation  

Whole cell, cytoplasmic and nuclear fractions 

The protocol for cell fractionation of mouse brain cortex (C57BL/6J; Age: 2 months) was adapted 

and optimized from a previously published paper describing a rapid and efficient method to sub-

fractionate human cell-lines (723). Briefly, an adult mouse was euthanized as per animal handling 

protocols, brain was dissected out and cerebellum and olfactory bulbs were removed. The brain 

hemispheres were separated, and cerebral cortex was dissected out from one hemisphere. The 

cortex tissue was triturated in phosphate buffer saline (PBS) by pipetting, centrifuged (200X g, 

3min). The pellet was again triturated in PBS and incubated on ice (3min) to allow the tissue 

chunks to settle down. Cell suspension was obtained from the top by avoiding the tissue chunks. 

A part of this cell suspension was then centrifuged (2500 X g, 3 min). The cell pellet thus obtained 

was triturated in Lysis buffer (0.1% NP-40 in PBS) by pipetting 6-7 times using a p1000 

micropipette. One third of this homogenous cell suspension was kept as “Whole cell fraction”, the 

remaining homogenate was pipetted 3 more times, and centrifuged (7000 X g, 30sec). One half of 

the supernatant was kept as “cytoplasmic fraction”, while the remaining supernatant was 

discarded. The pellet was again triturated in the lysis buffer by pipetting 5 times, centrifuged (7000 

X g, 30sec), and supernatant was discarded. The residual pellet was kept as “Nuclear fraction”. 

Laemmli buffer containing Benzonase (Millipore) was added to each collected fraction, and 

western blot analysis was performed for nuclear and cytosolic proteins was performed.  

 

Crude synaptosome preparation  

Subcellular fractionation of adult mouse brain cortex (C57BL/6J; Age: 6 months) was carried out 

using a protocol adapted from (473, 724, 725).  Briefly, adult mouse brain was dissected out and 
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cerebellum and olfactory bulbs were removed. The cortex tissue was homogenized in 

homogenization buffer (320 mM Sucrose, 5 mM HEPES-NaOH (pH 7.4), 2 mg/mL BSA, and 1 

mM EDTA), by 15 strokes using a Dounce homogenizer to obtain brain homogenate fraction (H), 

which was centrifuged (1000 X g, 10 min, 4C) to obtain supernatant S1. The S1 supernatant was 

centrifuged (14000 X g, 20 min, 4C) to obtain cytosolic supernatant S2 fraction, and crude 

synaptosome containing pellet P2 fraction. We further fractionated the crude synaptosomes into 

Triton X-100 detergent soluble “non-PSD” fraction and detergent insoluble “PSD-enriched” 

fraction. P2 fraction was once resuspended in Resuspension buffer (5mM HEPES-NaOH (pH-7.4), 

1mM EDTA), and centrifuged (14000 X g, 15 min, 4C). The washed pellet thus obtained was 

resuspended in Buffer-A (5mM HEPES-NaOH (pH-7.4), 100mM NaCl, 0.5% Triton X-100), 

rotated (15 min, 4C), centrifuged (14000 X g, 15 min, 4C), to obtain Triton X-100 soluble “non-

PSD” fraction as the supernatant. The remaining pellet was resuspended in Buffer-B (5mM HEPES 

NaOH (pH-7.4), 0.15mM NaCl, 1% Triton X-100, 1% SDS, 1% Deoxycholic acid, 1mM DTT), 

rotated (75min, 4C), centrifuged (14000 X g, 15 min, 4C), to obtain Triton X-100 insoluble “PSD-

enriched” fraction as the supernatant. The brain homogenate, cytosolic and crude synaptosomal 

fractions were lysed completely by supplementing with RIPA buffer (10mM Tris-HCl (pH-8.0), 

140mM NaCl, 1% Triton X-100, 0.1% Deoxycholic acid, 0.1% SDS, 1mM EDTA). The buffers 

used in crude synaptosomal preparation were supplemented with Protease inhibitors cocktail and 

1mM Phenylmethylsulfonyl fluoride (PMSF).   

 

Mass-spectrometry analysis 

Adult mouse brain (C57BL/6J; Age: 2 months) was dissected out, cerebellum and olfactory bulbs 

were removed, and cerebral cortex was isolated. Briefly, fresh cortex tissue was triturated in cold 
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phosphate buffer saline by pipetting, and centrifuged (200X g, 3min). Tissue pellet was lysed in a 

lysis buffer (50mM Tris-HCl (pH-7.5), 150mM NaCl, 0.5% NP-40, 2mM EDTA, 1mM DTT), and 

centrifuged (20,000 X g, 15min, 4C) to obtain the lysate. Tissue lysate was clarified with Protein 

G Agarose beads (MILLIPORE), total protein quantified, and immunoprecipitated with neuPABP 

antibody. Protein complexes were eluted with neuPABP-specific peptide 

(ERGAWARQSTSADFKDFD ) and resolved by SDS-PAGE.  Gels were subsequently stained 

with colloidal stain, neuPABP protein was excised, digested with trypsin or subtilisin and analyzed 

by the LDI Proteomics Centre (Montreal, Canada).   

 

Polysome profiling 

Mouse brain (C57BL/6J; p9 mouse pup) was dissected out, and cerebellum and olfactory bulbs 

were removed. The remaining brain tissue was triturated by pipetting in dissection buffer (10mM 

HEPES-NaOH (pH-7.5), cycloheximide (0.1mg/mL)), centrifuged (300 X g, 3 min). The tissue 

pellet was lysed in polysome lysis buffer (10mM HEPES-NaOH (pH-7.5), 150mM NaCl, 5mM 

MgCl2, 0.5mM DTT, 1% NP-40, cycloheximide (0.1mg/mL)), and centrifuged twice (20,000 X g, 

10 min, 4C). Lysates were loaded on a linear sucrose gradient (5-50%), centrifuged (130,000 X g, 

2 hours, 4C). Gradient fractions (4 to 16) were collected as described previously (726), proteins 

were TCA precipitated from each fraction and dissolved in Laemmli buffer to perform western 

blot analysis.  

 

For lncRNA Bc1, polysome fractionation was done from adult mice (C57BL/6J; Age: 3 months). 

RNA from each polysome gradient fraction was Trizol extracted, reverse transcribed and semi-

quantitative-PCR analysis was carried out on lncRNA Bc1 and Actin.  In parallel, qPCR analysis 
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was carried out on lncRNA Bc1 and data was normalized to the total cortex RNA (Input) to 

calculate percent distribution across fractions. 

 

RIP RNA-sequencing (RIP-Seq)  

 Mouse hippocampi (C57BL/6J; Age: 6 months) were dissected out and flash frozen on dry ice. 

Tissue was lysed in a lysis buffer (50mM Tris-HCl (pH-7.5), 150mM NaCl, 0.5% NP-40, 2mM 

EDTA, 1mM DTT), and centrifuged (20,000 X g, 15min, 4C) to obtain the lysate. Tissue lysates 

were clarified with Protein G Agarose beads (MILLIPORE), total proteins quantified, and 

immunoprecipitation carried out by first incubating with antibodies: IgG (control) or neuPABP, 

followed by a pulldown of immunoprecipitants with Protein-G agarose beads. 

Immunoprecipitation of neuPABP was confirmed by western blotting. neuPABP bound RNAs 

were extracted directly from the beads by using an RNA purification kit (Qiagen). Biological 

triplicate libraries were prepared from immunoprecipitated RNAs. RNA was depleted of ribosomal 

RNA and libraries were prepared using the KAPA Stranded RNA-Seq Kit with RiboErase (Roche). 

Sequencing reactions were carried out by paired-end 150 bp sequencing on a Nextseq500 platform 

(Genomics Platform at the Institute for Research in Immunology and Cancer, Montreal). 

Sequences were trimmed for sequencing adapters and low quality 3' bases using Trimmomatic 

version 0.35 (727) and aligned to the reference mouse genome version GRCm38 (gene annotation 

from Gencode version M25, based on Ensembl 100) using STAR version 2.7.1a (728). Gene 

expressions were obtained both as readcount directly from STAR as well as computed using RSEM 

(729) in order to obtain normalized gene and transcript level expression, in TPM values, for 

stranded RNA libraries. DESeq2 version 1.22.2 was then used to normalize gene readcounts (730).   
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Volcano plot and Gene Ontology analysis  

Volcano plot was generated using a list of transcripts with Fold Change≥1.10 (~2200 transcripts 

which had p-value<0.05 . A Log2FC≥1.5 cut-off was further used in Volcano plot to highlight 

highly enriched transcripts. Gene set enrichment analyses for Wikipathway (WP) terms enriched 

among neuPABP-enriched transcripts (FC≥2) were performed using the g:Profiler online platform  

(731).     

 

RNA immunoprecipitation with V5 antibody 

HeLa cells were co-transfected with V5-tagged neuPABP or PABPC1 expressing constructs and a 

lncRNA BC1 expressing plasmid. 48 hours post-transfection, lysates were prepared in a lysis 

buffer (50mM Tris-HCl (pH-7.5), 150mM NaCl, 0.5% NP-40, 2mM EDTA, 1mM DTT) and 

precleared using Protein-G agarose beads (Millipore). Lysates were incubated with rabbit 

antibodies: IgG (control), or V5-tag antibody (cell signaling), followed by a pulldown of 

immunoprecipitants with Protein-G agarose beads. Immunoprecipitation of V5-tagged proteins 

was confirmed by western blotting. Co-immunoprecipitated RNA was extracted by using Trizol 

reagent and reverse transcribed. qPCR analysis was carried out to access fold enrichments (vs IgG 

control) of lncRNAs BC1 and BC200 with V5-tagged proteins. A non-polyadenylated Histone 

(1H4H) mRNA was used as a negative control.  

 

Formaldehyde-crosslinked RNA immunoprecipitation  

Formaldehyde crosslinking of mouse cortex   

Brain cortices of adult mice (C57BL/6J; Age: 6 months) were dissected out and gently triturated 

in dissection buffer (Hank’s balanced salt solution containing 10mM HEPES (pH-7.5)), spun at 
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1000Xg to collect the triturated tissue as a pellet. The pellet was then gently resuspended in 

dissection buffer containing 0.1% Formaldehyde and incubated at room temperature for 10 

minutes. Formaldehyde was quenched by adding Glycine to a final concentration of 200mM, for 

5 minutes. Tissue suspension was chilled on ice and pelleted by spinning at 1000Xg. Tissue pellet 

was washed twice (without resuspending) with dissection buffer containing glycine at a final 

concentration of 200mM.  

 

Tissue lysis and Polysome RNP fractionation  

The crosslinked tissue pellet was lysed in polysome lysis buffer (10mM HEPES-NaOH (pH-7.5), 

150mM NaCl, 5mM MgCl2, 0.5mM DTT, 1% NP-40, cycloheximide (0.1mg/mL)), and 

centrifuged twice (20,000 X g, 10 min, 4C). Lysates were loaded on a linear sucrose gradient (5-

50%), centrifuged (130,000 X g, 2 hours, 4C). Gradient fractions (1,2) corresponding to the RNP 

fraction were collected and combined. Proteins from a part of RNP fraction were TCA precipitated 

and dissolved in Laemmli buffer to perform western blot analysis to access the depletion of 

ribosomal subunits in comparison to the total cortex lysate (Marker: RPS6).   

 

Crosslink-(RNP) RNA immunoprecipitation  

The RNP fraction was diluted (1:2 dilution) in RIPA buffer (25mM Tris-HCl (pH-7.5), 150mM 

NaCl, 2mM EDTA, 1% NP-40, 0.1% SDS, 0.1% Sodium deoxycholate, 1mM DTT), and 

immunoprecipitation was carried out by first incubating with antibodies: IgG (control) or 

neuPABP, followed by a pulldown of immunoprecipitants with Protein-G agarose beads 

(Millipore). Immunoprecipitation of neuPABP was confirmed by western blotting. Co-

immunoprecipitated RNAs were eluted from the beads in elution buffer (50mM Tris-HCl (pH-
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8.0), 2mM EDTA, 1% SDS, 10mM DTT) containing Proteinase-K (NEB) (100U/mL). Reverse 

crosslinking was performed on the thermomixer (1200rpm, 60C for 30 minutes, and 70C for 15 

minutes). Eluted RNAs were further isolated by using Trizol reagent (ThermoFisher). qPCR 

analysis was carried out to access fold enrichments (vs IgG control) of lncRNAs BC1 and other 

neuPABP target and non-target mRNAs. A mitochondrial genome encoded mRNA (mt.ND1) was 

used as a control to negate post-lysis reassociation artifacts.   

 

Statistics 

All experiments were carried out at least in triplicates. Graphs for in vitro translation assays were 

generated using GraphPad Prism software and Excel. Means and standard error of the mean (SEM) 

from biological replicates (n=3) were calculated. For in vitro translation assays, a two-tailed 

Student t-test (equal variance) was carried out to assess the significance of the data in Excel. p>0.05 

are denoted as n.s., p<0.05 as ‘*’, p<0.01 as ‘**’,  and p<0.001 as ‘***’.  

 

The METHODS section 5.1 is from the published manuscript: 

Title: Uncovering a mammalian neural-specific poly(A) binding protein with unique properties. 

Authors: Sahil Sharma*, Sam Kajjo, Zineb Harra, Benedeta Hasaj, Victoria Delisle, Debashish 

Ray, Rodrigo L Gutierrez, Isabelle Carrier, Claudia Kleinman, Quaid Morris, Timothy R. Hughes, 

Roderick McInnes, and Marc R. Fabian  

Journal: Genes and Development (Impact factor: 12.89)  

*First author 
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5.2. neuPABP, a synaptically localized RNA binding protein 

Antibodies 

Antibodies were purchased from Abcam (PABPC1, PSD-95, RPS6, Synaptophysin, GFAP), 

Proteintech (RPLP0), Cell signaling (PABPC1), Biolegend (b-tubulin III), Santa Cruz (GAPDH), 

MBL life science (eIF4E), and Sigma-Aldrich (PAIP2 and FLAG).  A peptide encompassing the 

C-terminal end of mouse neuPABP (ERGAWARQSTSADFKDFD) that is not conserved in other 

mammalian PABPC proteins was injected into rabbits for neuPABP antibody production 

(Thermofisher).  

 

DNA Constructs, cell lines and primary cultures  

Bacterial expression vectors 

N-terminal His-tagged PABPC1 expressing pET-28b-PABPC1 plasmid was gifted by Dr. 

Sonenberg at McGill University. N-terminal malE-tagged neuPABP expression clone was 

generated by cloning into pMAL-c5X plasmid (NEB) using restriction enzyme sites NotI and SacI. 

neuPABP coding sequence was PCR-amplified, restriction digested with enzymes NotI and SacI, 

and ligated in frame with the N-terminal malE-tag in pMAL-c5X plasmid.  

 

Mammalian expression vectors 

The bicistronic luciferase reporter system was a generous gift from Dr. Selena Sagan at McGill 

University. This reporter system contains: a Renilla luciferase reporter, Hepatitis C virus IRES-

element, a Firefly luciferase reporter, and a bovine growth hormone polyadenylation signal 

sequence (bgh-poly(A)), in this order. The transcription of the reporter is under the control of a 
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CMV promoter in a pcDNA3 vector background. N-terminal FLAG-tagged neuPABP construct 

was generated by cloning the coding sequences into pBABE-3XFLAG-puro vector.  

 

Cell Lines 

Human neuroblastoma SH-SY5Y cells were purchased from ATCC. Cell lines were maintained in 

Dulbecco’s modified Eagle’s medium (DMEM/F12) supplemented with 10% fetal bovine serum, 

50 U/ml of penicillin and 50 μg/ml of streptomycin.  

 

Primary neuronal cultures  

Mouse primary cortical neuron cultures were prepared from P0 pup cortices. Mouse pups were 

collected soon after birth and decapitated as per animal handling protocol. Brains were 

immediately harvested into cold Dulbecco’s modified Eagle’s medium-F12 media (DMEM/F-12), 

and cerebellum and olfactory bulbs were removed. Cortices were gently triturated in pre-warmed 

DMEM/F12 medium by pipetting with Pasteur pipette to get homogenous cell suspension, and 

centrifuged (700rpm, 2min). Only half of the supernatant was removed from the top, replaced with 

PPD saline (0.1% Papain, 0.01% deoxyribonuclease-I, 0.1% neutral protease-Dispase-II, 10mM 

MgCl2 in HBSS(without Ca2+ and Mg2+)), mixed with Pasteur pipette, incubated (37C, 30min), 

and in between pipetting gently every 10min. Cells were centrifuged (800rpm, 10min), 

resuspended in DNase-I saline (0.1% deoxyribonuclease-I in DMEM), and incubated at (37C, 15 

min). Cells were then collected by centrifugation (800rpm, 10min), resuspended in Complete 

Neuronal medium (Neurobasal medium containing 1X B27 supplement, 2mM L-Glutamine, 0.5X 

Pen/Strep), and plated on Poly-L-Lysine coated culture flasks. 72 hours post-plating, Ara-C 
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(Arabinosylcytosine) drug (3uM) was added to control glial cell overgrowth. Sterile conditions 

were maintained throughout the procedure.  

 

Recombinant protein purification 

To produce and purify neuPABP and PABPC1 recombinant proteins, E. coli BL2 (DE3) competent 

cells were transformed with pMAL-C5x-nPABP and pET28b-PABPC1constructs.  

 

GST-fusion protein purification  

GST-tagged recombinant proteins were produced by growing the bacterial cultures at 37C, 

followed by induction with 1mM isopropyl-β-D-thiogalactopyranoside (IPTG) for 4 hours. To 

purify recombinant proteins, cells were centrifuged (6000 X g, 15min, 4C), and resuspended in 

Tris-buffered saline solution (containing 1mM PMSF). Cells were lysed by sonication (5 rounds 

of 15sec pulse at 45% amplitude), followed by lysis with 1% Triton X-100 (rotation, 10min, 4C). 

Lysates were centrifuged (20000 X g, 20min, 4C), supernatants were incubated with glutathione 

agarose beads (ThermoFisher) (rotation, 1 hour, 4C), bound beads were washed several times with 

Tris-buffered saline (containing 0.1% Triton X-100), followed by a final wash with standard Tris-

buffered saline. Recombinant proteins were eluted in a GST-elution buffer (50mM Tris-HCl (pH-

8.0), 150mM NaCl, 10mM Glutathione). In some instances, recombinant proteins were eluted from 

the beads by cleaving the GST-tag with a highly specific HRV-3C protease (ThermoFisher). 

Protein concentration was measured by Bradford assay (BIO-RAD), as well as by a comparison to 

BSA protein curve on Coomassie-stained SDS-PAGE gel. 
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His-fusion protein purification 

His-tagged recombinant proteins were produced by growing the bacterial cultures at 37C, followed 

by induction with 1mM isopropyl-β-D-thiogalactopyranoside (IPTG) for 4 hours. To purify 

recombinant proteins, cells were centrifuged (6000 X g, 15min, 4C), and resuspended in high salt 

Tris-buffered saline solution (containing 500mM NaCl, 20mM imidazole, 1mM EDTA, 1mM 

PMSF). Cells were lysed by sonication (5 rounds of 15sec pulse at 45% amplitude), centrifuged 

(20000 X g, 20min, 4C), supernatants were incubated with Ni-NTA agarose beads (Qiagen) 

(rotation, 1 hour, 4C), bound beads were washed several times with high salt Tris-buffered saline 

(500mM NaCl, 20mM imidazole), followed by a final wash with standard Tris-buffered saline 

(containing 20mM imidazole). Recombinant proteins were eluted in a His-elution buffer (Tris 

buffered saline containing 500mM imidazole). Protein concentration was measured by Bradford 

assay (BIO-RAD), as well as by a comparison to BSA protein curve on Coomassie-stained SDS-

PAGE gel.  

 

MBP-fusion protein purification  

MBP-tagged recombinant proteins were produced by growing the bacterial cultures at 37C, 

followed by induction with 1mM isopropyl-β-D-thiogalactopyranoside (IPTG) for 4 hours. To 

purify recombinant proteins, cells were centrifuged (6000 X g, 15min, 4C), and resuspended in 

high salt Tris-buffered saline solution (containing 500mM NaCl, 1mM EDTA, 1mM PMSF). Cells 

were lysed by sonication (5 rounds of 15sec pulse at 45% amplitude), centrifuged (20000 X g, 

20min, 4C), supernatants were incubated with Amylose resin (NEB) (rotation, 1 hour, 4C), bound 

beads were washed several times with high salt Tris-buffered saline (1000mM NaCl), followed by 

a final wash with standard Tris-buffered saline. Recombinant proteins were eluted in MBP-elution 
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buffer (Tris buffered saline containing 10mM maltose). Protein concentration was measured by 

Bradford assay (BIO-RAD), as well as by a comparison to BSA protein curve on Coomassie-

stained SDS-PAGE gel. 

 

Formaldehyde-crosslinked RNA immunoprecipitation from Synaptosome 

Crude Synaptosome preparation  

Subcellular fractionation of adult mouse brain cortex (C57BL/6J; Age: 7 months) was carried out 

using a protocol adapted from (473, 724, 725).  Briefly, adult mouse brain was dissected out and 

cerebellum and olfactory bulbs were removed. The cortex tissue was homogenized in 

homogenization buffer (320 mM Sucrose, 5 mM HEPES-NaOH (pH 7.4), 2 mg/mL BSA, and 1 

mM EDTA), by 15 strokes using a Dounce homogenizer to obtain brain homogenate fraction (H), 

which was centrifuged (1000 X g, 10 min, 4C) to obtain supernatant S1. The S1 supernatant was 

centrifuged (14000 X g, 20 min, 4C) to obtain cytosolic supernatant S2 fraction, and crude 

synaptosome containing pellet P2 fraction.  

 

Formaldehyde crosslinking of crude synaptosome 

The P2 pellet was gently resuspended in HBSS buffer containing 0.1% Formaldehyde and 

incubated at room temperature for 10 minutes. Formaldehyde was quenched by adding Glycine to 

a final concentration of 200mM, for 5 minutes. Tissue suspension was chilled on ice and pelleted 

by spinning (14000Xg, 10 min, 4C). Tissue pellet was washed twice (without resuspending) with 

HBSS buffer containing glycine at a final concentration of 200mM.  
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Crosslink-RNA immunoprecipitation  

The crosslinked P2-pellet was lysed in RIPA buffer (25mM Tris-HCl (pH-7.5), 150mM NaCl, 

2mM EDTA, 1% NP-40, 0.1% SDS, 0.1% Sodium deoxycholate, 1mM DTT) to obtain the lysate. 

Tissue lysate was clarified with Protein G Agarose beads (MILLIPORE), total proteins quantified, 

and immunoprecipitation carried out by first incubating with antibodies: IgG (control), neuPABP, 

and PABPC1 (Abcam, #21060), followed by a pulldown of immunoprecipitants with Protein-G 

agarose beads. Immunoprecipitation of neuPABP, and PABPC1 was confirmed by western 

blotting. RNAs that coimmunoprecipitated with neuPABP and PABPC1 were eluted from the 

beads in elution buffer (50mM Tris-HCl (pH-8.0), 2mM EDTA, 1% SDS, 10mM DTT) containing 

Proteinase-K (NEB) (100U/mL). Reverse crosslinking was performed on the thermomixer 

(1200rpm, 60C for 30 minutes, and 70C for 15 minutes). Eluted RNAs were further isolated by 

using Trizol reagent (ThermoFisher). qPCR analysis was carried out to access fold enrichment (vs. 

IgG control) of lncRNAs BC1 and select mRNAs with both neuPABP and PABPC1. A 

mitochondrial genome encoded mRNA (mt.ND1) was used as a control to negate post-lysis 

reassociation artifacts.   

 

Polysome profiling of Synaptosome 

Subcellular fractionation of adult mouse brain cortex (C57BL/6J; Age: 6 months) was carried out 

using a protocol adapted from (473, 724, 725).  Briefly, adult mouse brain was dissected out and 

cerebellum and olfactory bulbs were removed. The cortex tissue was homogenized in dissection 

buffer (10mM HEPES-NaOH (pH-7.5), cycloheximide (0.1mg/mL)), by 15 strokes using a 

Dounce homogenizer to obtain brain homogenate fraction (H), which was centrifuged (1000 X g, 

10 min, 4C) to obtain supernatant S1. The S1 supernatant was centrifuged (14000 X g, 20 min, 
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4C) to obtain cytosolic supernatant S2 fraction, and crude synaptosome containing pellet P2 

fraction.  

 

The crude synaptosome ‘P2 pellet’ was lysed in polysome lysis buffer (10mM HEPES-NaOH (pH-

7.5), 150mM NaCl, 5mM MgCl2, 0.5mM DTT, 1% NP-40, cycloheximide (0.1mg/mL)), and 

centrifuged twice (20,000 X g, 10 min, 4C) to obtain lysate. The lysate was loaded on a linear 

sucrose gradient (5-50%) and centrifuged (130,000 X g, 2 hours, 4C). Gradient fractions (5 to 17) 

were collected as described previously (726), proteins were TCA precipitated from each fraction 

and dissolved in Laemmli buffer to perform western blot analysis.  

 

RNA granule fractionation 

The protocol for RNA granule fractionation was adapted from published papers with a few 

modifications (416, 478). Briefly, mouse brain (C57BL/6J; Age: 6 months) was dissected out, and 

cerebellum and olfactory bulbs were removed. The remaining brain cortex tissue was triturated by 

pipetting in dissection buffer (10mM HEPES-NaOH (pH-7.5), cycloheximide (0.1mg/mL)), 

centrifuged (300 X g, 3 min). The tissue pellet was lysed in granule lysis buffer (10mM HEPES-

NaOH (pH-7.5), 150mM NaCl, 5mM MgCl2, 0.5mM DTT, 1% NP-40, cycloheximide 

(0.1mg/mL)), and centrifuged twice (20,000 X g, 10 min, 4°C) to obtain lysate. Tissue lysate was 

loaded on a sucrose gradient (5% top (3mL), 35% middle (3mL), and 60% bottom (6mL) cushion), 

centrifuged (130,000 X g, 2 hours, 4°C). The 5% top layer of the sucrose gradient was collected 

as ‘RNP fraction’, the 35% middle layer of sucrose mostly contains polysomes, which was 

carefully removed until 60% sucrose boundary, and discarded. Tube walls and top of the 60% 

sucrose cushion was washed three times with granule lysis buffer (1ml per wash), by carefully 
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dispensing the lysis buffer on to the tube walls. Finally, the 60% sucrose cushion was collected as 

‘RNA granule fraction’. Proteins were TCA precipitated from each collected fraction and western 

blot analysis was performed for neuPABP, PABPC1, ribosomal proteins (RPS6, RPLP0), granule 

markers (PURA, SYNCRIP), microtubule protein (β-tubulin III), translation initiation factor 

eIF4E. A synaptic vesicle protein (Synaptophysin), and GAPDH were used as a control for non-

enrichment. 

 

Bicistronic luciferase assay 

SH-SY5Y cells were co-transfected with the bicistronic luciferase reporter and N-terminally 

FLAG-tagged neuPABP or PABPC1 expressing constructs. 24 hours post-transfection, cells were 

collected and lysed in Passive lysis buffer (Promega), and RL and FL activities were measured 

using Dual-Luciferase Assay (Promega). In parallel, the expression of FLAG-tagged proteins was 

validated by western blot analyses. RL to FL ratios were calculated and plotted as normalized 

luciferase activity. A nuclear GFP expressing construct was used as a control for normalization. 

Experiments were conducted in biological replicates (n=4).  

 

Pabpc1l2a/b knockout (pabpc1l2-/-) mouse generation 

Pabpc1l2a/b knockout (collectively pabpc1l2-/-) mice were generated at the Centre for 

Phenogenomics (Toronto) by coinjecting Cas9 ribonucleoprotein complexes and single guide 

RNAs (sgRNAs) into the zygotes of C57BL/6J mice. Briefly, pabpc1l2a and pabpc1l2b alleles 

were targeted for deletion by generating a sgRNA (sgRNA1):  5’ 

CGAGCCCCCGGCCCGCGTTC 3’ targeting the 5’ of pabp1l2b  and 3’ of pabpc1l2a (based on 

their chromosome location and not transcription start site as pabpc1l2a is antisense), and two 
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sgRNAs (sgRNA2 and sgRNA3): 5’ ACTCTCCTGCACTACAGGTG 3’ and 5’ 

GAAATCATACTACATTTCGA 3’ targeting the intergenic regions separating these two genes.  

The positioning of sgRNAs was as below:  

Gm21998-gRNA1-Pabpc1l2b-gRNA2-Gm9143-gRNA3-Pabpc1l2a-gRNA1-Gm3928 

 

Genotyping PCR primers were designed against the genomic regions (Gm21998, Gm9143, and 

Gm3928) that remained intact after Pabpc1l2a/b gene deletions. A genotyping PCR using the 

KAPA HotStart genotyping kit (MilliporeSigma) was carried out to confirm the deletion of both 

genes. An F1 progeny consisted of heterozygous females and hemizygous males. The F1 progeny 

was crossed (pabpc1l2-/- (male) and pabpc1l2-/+ (female)) to obtain a homozygous female. Finally, 

the pabpc1l2-/- mice were crossed to obtain pabpc1l2 knockout mouse line. The gene knockout 

was also confirmed by RT-qPCR and western blot analyses.  

 

Statistics 

All experiments were carried out at least in triplicates. Means and standard error of the mean 

(SEM) from biological replicates (n=3) were calculated. For in cellulo translation assays and RNA 

steady states from brain tissues, a two-tailed Student t-test (equal variance) was carried out to 

assess the significance of the data in Excel. p>0.05 are denoted as n.s., p<0.05 as ‘*’, p<0.01 as 

‘**’,  and p<0.001 as ‘***’.  
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