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ABSTRACT

Three-dimensional (3-D) cluttered scenes consist of many small occluding surfaces

that are distributed over a volume. It is challenging to perceive such scenes due to limited

visibility from occlusions. Nonetheless, occlusions can serve as a relative depth cue where

points that are deeper in the clutter are less visible. In this thesis, we examine how well

the human visual system uses information from occlusions paired with luminance cues for

two types of perceptual tasks: (1) discriminating the depth of two target surfaces in the

clutter and (2) discriminating the density of two halves of the clutter i.e. front versus back

or left versus right. For the first task of discriminating depth, we tested the interaction be-

tween occlusions, color, and depth-luminance covariance (DLC). We tested both negative

DLC i.e. dark-means-deep and positive DLC i.e. bright-mean-deep. For the second task

of discriminating density of two halves of the clutter, we measured observers’ bias and

sensitivity for different parameters of clutter, namely the area and density of the occluders

and the overall level of occlusion. We also ran model observers that compared the image

occupancy of the two halves in order to gain more insight into the information available

from the luminance, occlusion, and rotational motion cues for different scene parameters

and for different tasks, namely front-back or left-right. In our research overall, we found

that occlusions and luminance cues provide vital information for discriminating 3-D clut-

ter. However, the information available is dependent on the task. For depth discrimination,

we show that occlusions can help determine the sign of the DLC to resolve depth order,

although there is a prior for negative DLC when the colors of the targets versus distractors

differ. For more volume-dependant tasks such as density discrimination, we find that there
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is a subtle interplay between scene parameters such as occlusion, density, and area of the

surfaces. For the front-back task, the level of occlusion affects the bias to see the front

or back as denser, where low occlusion results in back bias and high occlusion results in

front bias; also the front bias is reduced when using opposite luminance (white-black) on

each half over using DLC. Weber fractions for the front-back task decrease as the density

of surfaces increases, and for the left-right task they decrease as density increases and in-

crease as the area of the surfaces increases. We find that varying density versus area has

different effects on Weber fractions even though by design their variations produce the

same changes in occlusion and image occupancy.
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ABRÉGÉ

Les scènes trois dimensionelles (3-D) composées de nombreuses petites surfaces sont

difficile à percevoir en raison que les occlusions limitent la visibilité. Néanmoins, les oc-

clusions peuvent servir comme indice de la profondeur relative où les points plus profonds

sont moins visibles. Dans cette thèse, nous examinons dans quelle mesure le système

visuel humain utilise les informations d’occlusions avec des indices de luminance pour

deux types de tâches de perception: (1) la discrimination de la profondeur de deux sur-

faces cibles dans la scène et (2) la discrimination de la densité de deux moitiés de la

scène, c’est-à-dire avant contre arrière ou gauche contre droite. Pour la premiére tâche de

la discrimination de la profondeur, nous avons testé l’interaction entre les occlusions, la

couleur, et la covariance profondeur-luminance (DLC). Nous avons testé les deux signes

de la DLC, c’est-à-dire DLC négative où les surfaces plus profonds sont plus sombres, et

DLC positive où les surfaces plus profonds sont plus brillantes. Pour la deuxième tâche de

la discrimination de la densité des deux moitiés, nous avons mesuré le biais et la sensibilité

des observateurs pour différents paramètres, à savoir la densité et la superficie des surfaces

occluseurs, et le niveau d’occlusion. Nous avons aussi testé des observateurs modèles qui

comparent l’occupation de l’image des deux moitiés afin de mieux comprendre les infor-

mations disponibles des indices de luminance, d’occlusion, et du mouvement rotatif pour

différents paramètres de la scène et pour différentes tâches. Dans notre recherche, nous

avons trouvé que les indices d’occlusions et de luminance fournissent des informations
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essentielles pour la perception des scènes tridimensionnelles à plusieurs surfaces. Cepen-

dant, les informations disponibles dépendent de la tâche. Pour la discrimination de la pro-

fondeur, nous montrons que les occlusions peuvent aider à déterminer le signe de la DLC

pour résoudre l’ordre de profondeur, bien qu’il y ait un prior pour la DLC négative quand

les couleurs des cibles et distracteurs diffèrent. Pour la discrimination de la densité, nous

constatons une interaction subtile entre les paramètres de la scène tels que l’occlusion,

la densité et la superficie des surfaces. Pour la tâche avant-arrière, le niveau d’occlusion

affecte le biais, où une faible occlusion engendre un biais de voir l’arrière plus dense, et

une occlusion élevée engendre un biais de voir l’avant plus dense. Le biais frontale est

réduite lorsqu’on utilise une luminance opposée (blanc-noir) sur chaque moitié au lieu de

la DLC. Les fractions de Weber pour la tâche avant-arrière diminuent quand la densité

des surfaces augmente, et pour la tâche gauche-droite, ils diminuent quand la densité aug-

mente et ils augmentent quand la superficie des surfaces augmente. Nous constatons que

la densité par rapport à la superficie des surfaces ont des effets différents sur les fractions

Weber même si, par conception, leurs variations produisent les mêmes changements dans

le niveau d’occlusion et de l’occupation de l’image.
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CHAPTER 1

Introduction

1.1 Motivation

Visualization of data is important for gaining insight to large amounts of information

in problems arising in science, engineering and medicine. Typically, data sets are three-

dimensional (3-D) in nature and contain many overlapping surfaces that are distributed

over a volume. We will refer to such scenes as 3-D cluttered scenes. Examples from

ecological perspectives may contain the foliage of bushes, shrubs, trees, as well as tall

grass. Other examples can be found in the form of scientific visualizations, such as 3-

D representations of biomolecules or of medical 3-D volume data such as a group of

2-D slice images obtained using magnetic resonance imaging (MRI). Such volume data

may also contain semi-transparent surfaces to help reveal underlying structures in 3-D

representations.

There have been few studies that examined how well human observers perceive 3-D

cluttered scenes. When 3-D clutter contains opaque occluding surfaces, the visibility of

underlying surfaces is reduced. Despite the challenge of occlusions, it has been shown

that the visual system often is able to judge depth in 3-D clutter. For example, motion

parallax and binocular disparity cues can be used to judge the depth order of two surfaces

within the clutter [Langer, Zheng, and Rezvankhah, 2016], as well as the depth range of

the clutter [van Ee and Anderson, 2001]. Langer et al. [2016] also showed that the visual

system relies on probabilistic occlusion cues for judging depth order in 3-D clutter, where
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the visibility of surfaces decreases with depth, and so the relative visibility of two surfaces

within the clutter is a cue to their relative depth.

For volume data, such as 3-D medical data, a method known as Direct Volume Ren-

dering (DVR) is commonly used to map data to color and opacity. In this case, occlusions

may take the form of semi-transparent surfaces which increase the visibility of underly-

ing structures, but may also lead to ambiguous spatial structure, such as ambiguous depth

order [Boucheny, Bonneau, Droulez, Thibault, and Ploix, 2009] [Kersten, Stewart, Troje,

and Ellis, 2006].

The motivation for the PhD research is to advance our perceptual understanding of 3-

D cluttered scenes. Most cues from the human vision literature have not been extensively

studied for viewing 3-D clutter. In this thesis, we explore cluttered stimuli that repre-

sent simplified, controllable forms of cluttered natural environments. In the manuscripts

presented in Chapters 3 and 4 of the thesis, we explore how human observers use occlu-

sion and luminance cues to perceive local and global structures in 3-D cluttered scenes.

Specifically, we focus on two types of perceptual tasks: (i) a depth discrimination task

where observers judge the relative depths of two target surfaces in the clutter, where the

clutter obeys either a negative (dark-means-deep) or positive (bright-means-deep) depth-

luminance covariance (DLC) (Chapter 3) and (ii) a task where observers judge whether

there is a spatial change in two halves of the cluttered volume. More specifically, we mea-

sure how well observers can detect differences in density between the two halves of the

volume (Chapter 4). We address how the parameters of the clutter, namely the density and

area of the surfaces, affect the perception of the clutter. We also compare DLC+/- to only

having black or white delineate each half of the clutter.
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As part of the thesis work, we derived a DLC function that models ambient occlusion

(AO) in 3-D cluttered scenes. The model is based on the ideas of Langer and Zucker

[1994]’s cloudy day rendering model and Langer and Mannan [2012]’s probabilistic model

of surface visibilities in 3-D clutter. The details of the derivation are found in Appendix

2.A. We use this DLC function for the stimuli in Chapter 3, where we examine both

negative and positive signs of DLC in our experiments to determine when brighter surfaces

appear closer. Note that the DLC functions used in the stimuli of Chapter 4 did not exactly

follow this model. The Stimuli in Chapter 4 needed a DLC function that was more tailored

to the task, which we describe in the Preface of Chapter 4.

1.2 Organization of Thesis

This thesis is presented in manuscript-based format, where Chapter 3 and Chapter 4

contain manuscripts that have been published or submitted to Journal of Vision. These

manuscript chapters contain our work on depth and density discrimination, respectively.

Before presenting the manuscripts, we include a preliminary Chapter 2 that includes back-

ground information about ambient occlusion (AO), depth-luminance covariance (DLC),

aerial perspective, transparency and volume rendering. These topics form the basis of our

motivation to pursue perceptual studies on complex 3-D cluttered scenes. Chapter 2 has an

Appendix 2.A where we derive AO models for 3-D clutter. Note that Appendix 2.A.1 has

also been published in Appendix 3.B of the manuscript in Chapter 3. Chapter 2, Section

2.2 describes our early stimuli that explored opaque versus transparent, and DLC versus

equiluminant occluder conditions. The insights we have gained from these stimuli have

set the motivation for the work in our manuscripts of Chapters 3 and 4. In Chapter 5, we
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present a comprehensive discussion and conclusion on all our findings. We also include

Appendix A which outlines our procedure for gamma correction.

1.3 Contribution to Original Knowledge

Our results contribute to our knowledge of the underlying performance of human

visual perception of 3-D cluttered scenes. Our findings may also offer insights to the

fields of computer graphics and visualization, in the form of guidelines for displaying 3-D

cluttered scenes. The main contributions of our work are as follows:

• In the Appendix 3.B of Chapter 3, we present a depth-luminance covariance model

for 3-D cluttered scenes that is based on Langer and Zucker [1994]’s cloudy day

rendering model and Langer and Mannan [2012]’s probabilistic model of surface

visibilities in 3-D clutter. This model can be used as an approximation to ray-cast

ambient occlusion rendering. For more details, also consult Appendix 2.A of the

thesis.

• In Chapter 3, we present new ideas for investigating and understanding human depth

perception from luminance variations in 3-D clutter, where the observer’s task was

to discriminate the depth of two target surfaces embedded in clutter. We investi-

gated interactions between occlusions, DLC-/+, and color for depth discrimination.

We found that when the colors of the targets are different from distractors, human

observers have a prior for DLC- (dark-means-deep). When the colors of targets and

distractors were the same, human observers perform similarly well in DLC- (dark-

means-deep) and DLC+ (bright-means-deep) conditions.

• In Chapter 4, we present a density discrimination study in 3-D clutter that addresses

occlusion effects. The observer’s tasks were to discriminate density in the front
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versus the back half, or the left versus the right half of a cluttered volume. We mea-

sured bias and sensitivity for different parameters of the clutter, namely the density

and area of the surfaces, the level of occlusion, and the type of luminance varia-

tion. For human observers, we show that the bias depends on the level of occlusion:

when the level of occlusion is low, the bias to judge the back as denser is consistent

with previous studies that used overlaid planes, and when the level of occlusion is

higher, the bias crosses over to the front. Using a white-black luminance that clearly

segmented the two halves reduces the front bias over using DLC. Weber fractions

are also lower for white-black than for DLC. Weber fractions for human observers

decrease as density increases for both front-back and left-right tasks which is consis-

tent with previous work. The area of the elements did not affect Weber fractions for

the front-back task, perhaps due to competing effects between the occlusion level

and the likelihood of depth reversals. Weber fractions increase as area increases

for the left-right task due to increased occlusion. We compared human observers

that judge density to model observers that judge the image occupancies of the two

halves against a known expected difference. For model observers, we show that the

expected difference for the front-back follows a similar trend as the biases of the

human observers, with a roughly constant offset between them. The trend in Weber

fractions for model observers is similar human observers; however, for model ob-

servers the trend can be explained by the variation in the number of pixels in the two

halves, i.e. when density increases and area decreases, there is less variation in the

number of pixels which results in lower Weber fractions.
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CHAPTER 2

Background

In this chapter, we present the motivation for our research and describe previous work

to provide context for the manuscripts presented in Chapters 3 and 4. We describe pertinent

optical models, as well as their applications for rendering cluttered scenes.

2.1 Ambient Occlusion

2.1.1 Introduction

In order to render 3-D images, we rely on optical models that define the relationship

between light and the particles in the volume. An optical model is useful in applications

which map 3-D data to physical quantities that describe light interactions at the respective

point in 3-D space. An example application is Direct Volume Rendering (DVR), which

maps measurements from imaging devices or simulations to optical properties, such as

color and opacity.

In the interaction between light and matter, light may be absorbed, scattered, or emit-

ted by the medium. Because the solution to the complete light transport equation is com-

putationally expensive, simplified models are commonly used. Models that only consider

the emission-absorption components are generally used for DVR. There also exists a tech-

nique known as Aerial Perspective (or fog) that simulates the scattering of light through

atmospheric particles by reducing the contrast of an object relative to its background as

its distance to the viewer increases. Kersten et al. [2006] and Kersten-Oertel et al. [2014]
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have shown that fog is an effective depth cue for volumetric scenes with many occluding

surfaces that are opaque or semi-transparent.

The models above only convey illumination cues within the volume particles with-

out taking into account illumination effects from external light sources such as shadows.

Such effects can provide additional depth cues, enhance the perception of small-scale spa-

tial structures, and introduce greater realism. There exist global illumination techniques

to compute these effects which are unfortunately expensive and therefore unsuitable for

interactive rendering. However, there does exist a cheap approximation to global illumi-

nation known as ambient occlusion for adding shadows to objects lit with environment

lighting [Christensen, 2002, Gritz et al., 2002, Landis, 2002]. Soft shadows are provided

by darkening surfaces that are partially visible to the environment. The overall effect

mimics how a scene would appear on a cloudy day and has been shown to enhance depth

perception. Langer and Zucker [1994] showed that under diffuse lighting, such as on a

cloudy day, surface concavities tend to be darker because the fraction of the diffuse source

that is visible tends to be lower in a concavity. Langer and Bülthoff [2000] showed that, for

smooth surfaces rendered under uniform diffuse illumination, the visual system takes ac-

count of luminance and, to some extent, surface normal variations when comparing depths

of neighbouring surface points.

True ambient occlusion (AO) is traditionally obtained by estimating the percentage of

rays cast about a hemisphere that reach the skylight. This is given by the ambient occlusion

integral defined as follows. The luminance of a surface point Xp = (Xp,Yp,Zp) depends on

the amount of hemispheric sky that is visible from it. The directions of the hemispheric sky

are parametrized by polar angle θ and azimuth φ, and V (Xp,θ,φ) is the visibility function
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which equals 1 if the hemispheric sky is visible from point Xp in direction (θ,φ), and 0

otherwise. This yields the following expression for luminance at a surface point Xp,

L(Xp) =
1
π

∫ 2π

0

∫ π/2

0
V (Xp,θ,φ)cosθsinθdθdφ. (2.1)

The double integral above integrates over concentric circles of radius sinθ to obtain the

surface area of the unit hemisphere. This area is weighted by Lambert’s cosine law, which

states that luminance from a Lambertian surface is proportional to the cosine of the angle

θ between the direction of the incident light ray and the surface normal. The total surface

area of the cosine-weighted hemisphere is π, but we integrate only over the visible portions

of the hemisphere. Dividing this result by π returns the luminance, a value between 0 and

1.

Equation 2.1 is difficult to solve analytically. A common technique is to sample rays

using Monte Carlo sampling: this randomly samples cosine-weighted light directions over

the hemisphere. The technique is by definition heavily dependent on scene geometry,

because of ray-object intersections, and becomes increasingly expensive as the number of

surfaces increases.

There exist several approximations of AO in the literature. Langer and Zucker [1994]

derive constraints for surface aperture where ray directions are bounded by a cone cen-

tered on the surface normal. Another method known as directional occlusion shading

(DOS) [Schott et al., 2009] also uses a cone instead of a hemisphere but the cone is cen-

tered along the viewing direction instead of the surface normal. Miller [1994] considers

the geometric local and global accessibility of a point in order to darken deep areas of

the scene that are not easily accessible (accessibility shading). Similarly, Stewart [2003]
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shades a surface point according to uniform diffuse lighting that is blocked only by nearby

occluders (vicinity shading). In screen-space ambient occlusion (SSAO) [Kajalin, 2009],

shading happens in the pixel shader where pixel depth is used to form an AO map, there-

fore applying AO as a post-processing step that is independent of scene complexity.

Some groups have derived mathematical models to approximate ray-cast AO for

foliage-like cluttered scenes consisting of hundreds or thousands of small occluders. Re-

searchers of botany have developed numerical models that describe how light penetrates

different levels in a canopy and how the distribution of leaves or crops affects illumination

within the canopy [Nilson, 1971] [Cescatti, 1997]. Reeves and Blau [1985] approximated

the amount of light falling on a tree leaf through leaf self-shadowing. Luminance depended

on the depth of the leaf and decreased exponentially with depth.

Hegeman, Premoze, Ashikhmin, and Drettakis [2006] derived a qualitative model of

AO for trees based on the ideas in Reeves and Blau [1985]. They created a model to obtain

a visually plausible estimation of AO that may not necessarily be physically accurate. They

imposed certain restrictions, such as assuming that a tree is contained within a sphere and

assuming that luminance varies as a function of tree density only and not occluder (leaf)

size and shape.

2.1.2 Theoretical Models

We present a high level description of our AO models, and we invite the reader to refer

to Appendix 2.A for details of the derivation. The models we present borrow from the ideas

of Nilson [1971], Cescatti [1997], Reeves and Blau [1985], and Hegeman et al. [2006].

Our models are also based on the ideas of Langer and Mannan [2012] that show how the

probabilities of visible gaps, as viewed from the perspective of an observer, depend on the
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area A and density η of surfaces in the clutter, where the surfaces are assumed to be disks.

The parameters A and η define a visibility factor λ = ηA. For clutter that begins at depth

Z = Z0, the probability that a point Xp at depth Zp is visible is,

p(V (Xp)) = exp{−λ(Zp −Z0)}. (2.2)

This probabilistic model assumes that the distribution of the clutter elements follows a

Poisson process and that the disks are frontoparallel, i.e. the surface normal face the Z

direction.

If we consider the visibility function V (Xp,θ,φ) in Equation 2.1 as a random vari-

able, we can compute the probability that the hemispheric sky is visible along a ray using

Equation 2.2. By plugging Equation 2.2 into Equation 2.1, we can obtain the expected lu-

minance of a surface point Xp as follows. When integrating over ray directions (θ,φ), the

term 1/(cos θ) compensates for the length of ray passing through the clutter at incidence

angle θ. We assume the disks have surface normal facing the Z direction and so the area

of these disks are foreshortened by cosθ. The cosine terms cancel out, and the solution to

the integral in Equation 2.1 is,

E[L(Xp)] = exp{−λ(Zp −Z0)}. (2.3)

We use the model above as our DLC function in Chapter 3, where the luminance

of a surface decreases exponentially with its depth Zp. The model above is based on

strong assumptions such that the clutter is uniform and infinite along XY as though it is

an infinite hedge, and that the clutter elements are disks that are frontoparallel. While it is

not physically accurate, it still captures a shadowing effect that is perceptually acceptable
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as we shall explore in the next subsection. See Figure 2–1 (a) for an example of ray-cast

AO in a cluttered hedge (which was a time-consuming computation) and see Figure 2–1

(c) for AO rendered using the above model (Equation 2.3).

We also derived AO models for when occluders are randomly oriented in the scene.

Our probabilistic visibility function is slightly different because when the disks are ran-

domly oriented, the foreshortening of the disks will not depend on cosθ. Rather they will

depend on a constant factor. A randomly oriented disk is expected to have half the pro-

jected area of a frontoparallel surface when a disk is projected on a plane perpendicular to

ray direction (θ,φ). Therefore, λ = ηA
2 and,

p(V (Xp,θ,φ)) = exp{−λ
(Zp −Z0)

cosθ
}. (2.4)

So far, we have considered disks that were only lit from the front of the volume at

depth Z = Z0. When disks are randomly oriented, they can receive light from both the

front and the back of the volume located at depth Z = Z1. The probability that a ray cast

from point Xp to the back of the volume reaches the sky is:

p′(V (Xp,θ,φ)) = exp{−λ
(Z1 −Zp)

cosθ
}. (2.5)

To determine the expected luminance of a point, we consider rays cast both toward

the front and the back of the volume using a separable equation, where the first term

accounts for the front rays and the second term accounts for the back rays. Let θn be the

angle between the disk’s surface normal and the Z direction. In the following equation,

the cosine terms account for the horizon cut-off, e.g. any rays that are cast at an angle less

than π
2 are considered front rays and any rays that are cast at an angle greater than π

2 are
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Figure 2–1: Example ray-cast AO rendering of (a) Infinite Hedge and (b) Sphere. Example
qualitative AO model rendering of (c) Infinite Hedge and (d) Sphere.
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considered as back rays [Horn and Sjoberg, 1979],

E[L(Xp)] = cos2(
θn

2
)∗ 1

π

∫ 2π

0

∫ π/2

0
p(V (Zp,θ,φ)cosθsinθdθdφ (2.6)

+ cos2(
π−θn

2
)∗ 1

π

∫ 2π

0

∫ π/2

0
p′(V (Zp,θ,φ))cosθsinθdθdφ. (2.7)

Note that the above models need to be numerically evaluated as they do not have

closed-form solutions like the model in Equation 2.3. In the next subsection, we compare

the above models to ray-cast AO. We used scenes consisting of either frontoparallel or

randomly oriented square surfaces. We show that the models in Equations 2.6 and 2.7

capture ray-cast AO in clutter, but that AO can also be approximated using the closed-

form Equation 2.3 because the surface orientation minimally affects luminance in 3-D

clutter.

In Appendix 2.A, we also present the sphere model analogue to the infinite hedge

model. The hedge model assumes infinite clutter on XY , whereas the clutter contained in

the sphere is finite. We will similarly compare the theoretical model to ray-cast AO for

cluttered spheres in the Appendix 2.A. Figure 2–1 (b) and (d) compare the ray-cast AO

and the qualitative AO model rendering of the sphere, respectively.

2.1.3 Simulation Results

We ran simulations over 100 scenes to compare our theoretical models to ray-cast am-

bient occlusion. Our model was evaluated using Matlab 2016a. To evaluate the model, we

discretized the double integral by k = k1k2 light directions ωl=1,...,k =(θi=1,...,k1 ,φ j=1,...,k2),
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where Δθ = π
2k1

, and Δφ = 2π
k2

, and θi = iΔθ and φ j = jΔφ,

∫ 2π

0

∫ π/2

0
p(V (Xp,θ,φ))cosθsinθdθdφ ≈ 1

π

k2

∑
j=1

k1

∑
i=1

p(V (Xp,θ,φ))cosθi sinθiΔθΔφ.

(2.8)

For the discretized integral, we used k = k1k2 = 1000∗1000. The larger the k values, the

finer the discretization, and the better the approximation of the integral. We evaluate the

integral at a series of points over an interval, which we define below.

Our ray-cast scenes contained many occluding square surfaces. We used clutter den-

sity η = 0.125 square centres per cm3. Our theoretical models are based on disks and

so the average projected area of an unoccluded square at a given depth would need to be

equal to the area of an unoccluded disk at that depth [Langer and Mannan, 2012]. In the

scene, we used width w = 1 cm for each square, and in the model we defined A = w2

2 for

randomly oriented clutter. X and Y ranges were both 80 cm in length, and the Z range

was 20 cm. The X and Y ranges were made larger than the Z range because the model as-

sumes infinite clutter about X and Y . Otherwise, the empirical data would deviate from the

model because of an increasing number of rays hitting the X and Y walls. We examined

squares along the center of the volume (X ,Y ) = (0,0) and at eleven specific depths be-

tween Z = [0,20] cm. Note that in viewer coordinates, the depths are between Z = [60,80]

cm because the viewer is located at Z = 0, the near plane is located at Z0 = 60 cm, and the

far plane is located at Z1 = 80 cm.

We obtained values from ray-cast ambient occlusion using a cosine-weighted hemi-

sphere with 128 rays. This was costly to render, but we did so in order to obtain true AO
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values to compare to our model. In Figure 2–2, we plotted luminance values for fron-

toparallel squares from Equation 2.3 for the purpose of showing that it can approximate

the model in Equation 2.6. In Figure 2–3, we plotted luminance values for center squares

at the eleven specific depths, with normals oriented at π
6 , π

3 , and π
2 radians to the Z-axis.

To account for horizon cut-off in our simulation, we consider the following: for front-lit

hedge (Equation 2.6), rays are only cast frontward (all rays that are greater than π
2 radi-

ans from the Z direction are considered occluded), while for back-lit (Equation 2.7), rays

are only cast backward. For front-and-back-lit (the summation of Equations 2.6 and 2.7),

rays are cast in all directions. The mean luminance for each point was obtained over 100

scenes.

2.1.4 Discussion

There is a non-zero standard deviation in the plots for the AO model because the lu-

minance for the ray casting will not depend only on the orientation and depth of surfaces;

it will also depend on the details of the particular clutter. As the density increases and the

area of the occluders shrinks (holding λ constant) the standard deviation of the luminance

will decrease. When density is larger and area is smaller, there is less variability in the

number of pixels the square occupies [Langer and Mannan, 2012]. To put it another way,

larger squares subtend larger visual angles, and thus variations in position and orientation

of the squares contribute to a greater variance in the number of pixels occupied. This

concept is related to some ideas we present in Chapter 4, where we show how higher stan-

dard deviation due to larger squares results in a decrease in model observers’ sensitivity to

differences in image occupancy.
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Figure 2–2: Mean luminance as a function of depth for a surface with normal parallel to
the Z direction with frontoparallel (red) and randomly oriented (green) surrounding clutter.
We plotted both the true ray-cast AO luminance values (dots), as well as the modeled
luminance values (lines) of Equations 2.3 and 2.6, for frontoparallel and random orientated
occlusions respectively. Error bars show standard deviation for 100 scenes.
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Figure 2–3: Mean luminance as a function of depth for orientations π
6 ,

π
3 ,

π
2 , as per the (a)

front-lit model in Equation 2.6, (b) back-lit model in Equation 2.7 and (c) front-and-back-
lit models in Equations 2.6 + 2.7. Error bars show standard deviation for 100 scenes.
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Figure 2–4 shows standard deviation increasing as occluder width increases. We

plotted standard deviation for ray-cast AO in the hedge with randomly oriented squares

for 100 scenes. We varied the width of the squares over 0.25, 0.5, 0.75, and 1 cm with

corresponding densities 2, 0.5, 0.22, 0.125 occluder centers per cm3. Higher densities

for smaller occluders became very expensive to compute; however we expect that as the

occluder area reduces to zero (in which case occluders would just be a set of points), the

standard deviation also reduces to zero.

Figure 2–4: Standard deviation over 100 scenes as a function of occluder width while
keeping λ constant. When λ is kept constant, the standard deviation increases as the den-
sity decreases and the area of the occluders increases.

2.1.5 Conclusion

In random cluttered scenes, we can use the models to render AO as an alternative to

raycasting which is an expensive computation in scenes containing many small occlud-

ing surfaces. For the cases where there is no closed-form solution, one can numerically
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evaluate the AO integral over a set of inputs, and store these in a precomputed look-up

table.

If the goal is not to be 100% physically accurate but rather to avoid precomputation

and run-time costs while still getting a visually plausible result, one can compute a best

fit to the solution of the integral. For an even faster solution, one can use the approximate

closed-form solution as seen in Equation 2.3. This closed-form solution represents a depth-

luminance covariance (DLC) where luminance varies as a function of depth. In order to

allow luminance to vary with both depth and orientation, we can multiply the equation

by the cosine terms to obtain the luminance for any orientation. With such separable

equations, we conclude that for random scenes containing many small occluding surfaces,

AO is simply a Depth-Luminance Covariance (DLC) modulated by orientation.

In Chapter 3, we evaluate the use of DLC as a cue to depth. In pilot experiments,

we tested whether the depth of two target surfaces embedded in clutter was perceived

differently in clutter that was rendered with a simple DLC model in Equation 2.3 versus

a model that more accurately captures AO such as the modulated DLC in Equations 2.6

+ 2.7. We found that observers were not so sensitive to the subtle luminance variations

caused by the orientations of the surfaces in our cluttered stimuli. The two models are

almost the same, with orientation factored in for the latter. Thus, it was not surprising that

observers performed the same when the models essentially produced the same luminance.

Therefore, we chose to simply use DLC in Equation 2.3 to study how luminance variations

affect human observers’ perception of depth in 3-D clutter.
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2.2 Transparency

2.2.1 Introduction

Renderings of clouds, smoke, medical data, etc. may contain elements that are semi-

transparent. There are different ideas on how the human visual system perceives trans-

parency. Early theories are based on Metelli [1974]’s physical model of reflectance and

transmittance. The physical model is based on a disc with an open sector that rotates over

a bipartite background. When the rotation is very fast, it leads to the percept of a trans-

parent surface. Based on this physical set-up, Metelli derived models for the reflectance

and transmittance of the transparent surface, as well as the physical constraints that must

be met to achieve perceptual transparency.

Singh and Anderson [2002] suggests that the human visual system makes errors in es-

timating the transmittance of a transparent surface, and so perceptual transparency should

not be based on physical properties such as transmittance and reflectance. They argue that

perceived transmittance is based on the Michelson contrast, i.e. it is proportional to the

ratio of the contrast of the transparent region to the contrast of the underlying surface.

Anderson and Winawer [2005] present illusions that show identical texture patches

appearing either white or black depending on their surroundings. For the dark surrounding

the patches appear white and partially occluded by dark semi-transparent clouds; for the

light surrounding the same patches appear black, visible through light semi-transparent

clouds. This suggests that the human visual system segments an image based on contrast.

That is, the regions that produce the highest contrast against their surrounds are seen in

plain view, and the lower contrast areas are seen through a contrast-reducing medium.
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Layered random dot stereograms can be thought of as partly transparent layers, i.e.

the opacity within each layer is randomly chosen to be either 0 or 1. Stereo matching for

such displays is generally regarded to be difficult [Akerstrom and Todd, 1988], although

Tsirlin et al. [2008] showed that humans can segregate up to six simultaneous overlaid

surfaces.

Typical studies on transparency considered only few layers. Volume-rendered scenes

are generally more complex and may contain many occluding semi-transparent surfaces

over a continuum of layers rather than a finite discrete set. Our experiments below will

explore these type of stimuli. Although volume rendering is a classical technique in com-

puter graphics and visualization, only a few studies have examined how well it provides

quantitative depth information. Boucheny et al. [2009] conducted experiments involv-

ing depth discrimination in semi-transparent objects obtained with DVR. Subjects were to

determine the depth order of two semi-transparent cylinders that had different widths, dif-

ferent luminances, and constant opacity. When the two cylinders were displayed statically,

the observers had difficulty interpreting the transparent volumes correctly. However, in a

dynamic context where the object rotated around a vertical axis, viewers were provided

with strong dynamic cues to depth and were able to answer correctly. But this required

careful tuning of luminance and constant opacity. Similarly, Kersten et al. [2006] com-

pared monocular versus stereo viewing of a rotating semi-transparent cylinder, and asked

subjects to judge the direction of rotation. Performance was at chance in a monocular

viewing condition but well above-chance under stereo viewing.

In the next section, we describe stimuli from our initial attempts for experiments that

explore depth-luminance covariance cues in semi-transparent versus opaque clutter.
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2.2.2 Stimuli

Prior to our manuscript work in Chapters 3 and 4, we provide a high-level description

of our initial attempt for experiments. We tested how human observers perceive opaque

versus semi-transparent surfaces which often are used in volume rendering. We also com-

pared two luminance conditions: DLC- and uniform luminance. We viewed the stimuli

using a stereo display coupled with head-tracking.

Our scenes consisted of two red target squares surrounded by 113 occluding surfaces.

We refer to these as distractors. The task was to determine which of the target squares

is closer to the human observer. Our stimuli had either opaque distractors, or partially

transparent distractors with opacity α = 0.4. See Figures 2–5 and 2–6 for examples of the

transparent cluttered scene and opaque cluttered scene, respectively.

The red target squares always had luminance (1,0,0). However, we manipulated the

luminances of the distractors. We either distributed the luminances according to negative

depth-luminance covariance (DLC-) i.e. deeper surfaces are darker, or we used equilu-

minant surface elements (namely 0.8 in [0,1]). For the DLC- condition, a mapping from

depth to surface luminance was chosen. These stimuli were designed before we developed

models to capture AO in 3-D clutter as seen in Section 2.1, and so we chose to use a simple

function where equal steps in depth gave equal steps in brightness (see the DLC function

used in Chapter 4). Stimuli were gamma-corrected.

2.2.3 Discussion

The motivation for our stimuli was to determine whether DLC- would improve the

depth perception of the red squares. In these particular stimuli, we were interested in deter-

mining whether DLC- could indirectly aid human observers in their task of discriminating
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(a) Uniform (b) DLC-

Figure 2–5: Transparent occluders. Side blue opaque occluders were used to prevent depth
reversals.

(a) Uniform (b) DLC-

Figure 2–6: Opaque Occluders.
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the depths of the two red squares whose colors remained unchanged. We found that the

thresholds for depth discrimination were lower (i.e. performance was better) for DLC-

than uniform for opaque occluders. This suggests that DLC cues not only improve the

3-D depth perception of the distractors themselves as expected from previous DLC stud-

ies, DLC may also improve the depth perception of the targets that are embedded within

the clutter. The idea here is that the distractors could provide a spatial frame of reference

in which the depths of the targets can be compared. This pilot study provided limited

evidence in support of this intriguing result and so we conducted further experiments in

Chapter 3 to confirm and elaborate on it. In those experiments, we examine both negative

and positive signs of DLC (DLC-/+), and we vary the luminance and colors of the targets,

and background. We examine how the DLC sign of the occluders can influence when the

brighter target appears closer or farther.

For the transparent conditions (i.e. opacity condition with α = 0.4), DLC- apparently

offers no benefit over uniform. The reason DLC- did not improve performance in the

transparent case may be that the visual system has difficulties disentangling transparency

effects from surface color effects. Similar difficulties have been shown even in scenes with

two layer transparency [Singh and Anderson, 2002], so it should hardly be a surprise that

these difficulties exist for our cluttered scenes.

We used a display that combined motion parallax and stereo, as this has been shown to

improve depth perception. Cho et al. [2014] carried out depth discrimination and ordering

tasks in which the stimuli consisted of volumetric tubes that mimicked a 3-D medical

scan of networks of blood vessels. Stereo was found to be a stronger cue than motion

for volumetric data, and stereo and head-tracking together provided better performance
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than each of these cues on their own. However, a study by Kersten-Oertel et al. [2014]

suggested that shading cues such as aerial perspective give better depth perception than

these cues. We decided to use mono displays for the rest of the thesis, and focus on the

luminance cues. In Chapter 3, we show that human observers are very capable of depth

discrimination in monocularly-viewed scenes with DLC.

Appendix

2.A Derivation of Ambient Occlusion Models in 3-D Clutter

2.A.1 Hedge Models

Front-Lit

Our DLC- model combines the ideas of Langer and Zucker [1994]’s cloudy day ren-

dering model and Langer and Mannan [2012]’s probabilistic model of surface visibilities

in 3-D clutter. The former model assumes the scene is illuminated by a uniform hemi-

spheric sky, centered in the Z axis direction. The latter model assumes a 3-D cluttered

scene which begins at depth Z = Z0 and has infinite extent in the X and Y directions.

Under the cloudy day rendering model, illumination is assumed to be diffuse and

non-directional. The luminance variations consider cast shadows only, but ignore in-

terreflections. Thus, the luminance of a surface point Xp = (Xp,Yp,Zp) depends on the

amount of hemispheric sky that is visible from it. The directions of the hemispheric sky

are parametrized by polar angle θ and azimuth φ, and V (Xp,θ,φ) is the visibility function

which equals 1 if the hemispheric sky is visible from point Xp in direction (θ,φ), and 0

otherwise. This yields the following expression for luminance at a surface point Xp,

L(Xp) =
1
π

∫ 2π

0

∫ π/2

0
V (Xp,θ,φ)cosθsinθdθdφ. (2.9)
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The double integral above integrates over concentric circles of radius sinθ to obtain the

surface area of the unit hemisphere. This area is weighted by Lambert’s cosine law, which

states that luminance from a Lambertian surface is proportional to the cosine of the angle

θ between the direction of the incident light ray and the surface normal. The total surface

area of the cosine-weighted hemisphere is π. We integrate only over the visible portions

of the hemisphere and so dividing the result by π returns the luminance, a value between

0 and 1.

For a 3-D cluttered scene, we consider visibility V (Xp,θ,φ) as a random variable.

We compute the probability that the hemispheric sky is visible along a ray, p(V (Xp,θ,φ)),

as done in Langer and Mannan [2012]. To get a closed form model of p(V (Xp,θ,φ)),

we assume the elements of the clutter are disks of area A, and we assume that the spatial

distribution of the disks is a Poisson process with density η which is the average number of

disk centers per unit volume. The parameters A and η can be lumped together as a single

constant λ = ηA.

The function p(V (Xp,θ,φ)) can be written in terms of Zp only as follows. The length

of any ray from Xp = (Xp,Yp,Zp) to the edge of the clutter is (Zp −Z0)/cosθ, where the

term 1/(cosθ) accounts for the greater path length of a ray with greater polar angle θ. To

simplify the integral, we assume the elements of the clutter have surface normal facing the

Z direction and so the area of these clutter elements are foreshortened by cosθ in the ray

direction (φ,θ). Then, the Poisson model yields:

p(V (Zp,θ,φ)) = exp{−λcosθ(Zp −Z0)/cosθ}. (2.10)
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The cosθ terms cancel out and so p(V (Zp)) depends only on depth,

p(V (Zp)) = exp{−λ(Zp −Z0)}. (2.11)

Then, the expected visibility of the sky in direction (θ,φ) is computed as,

E[V (Zp)] = 1 · p(V (Zp))+0 · (1− p(V (Zp))) = exp{−λ(Zp −Z0)}. (2.12)

Using the definition of luminance of a surface point L(Xp), we use the above to

compute the expected luminance of a surface point E(L(Xp)). The linearity property of

expectation allows us to integrate over the expected visibilities of rays along individual

directions,

E[L(Xp)] = E[
1
π

∫ 2π

0

∫ π/2

0
V (Xp,θ,φ)cosθsinθdθdφ], (2.13)

=
1
π

∫ 2π

0

∫ π/2

0
E[V (Xp,θ,φ)]cosθsinθdθdφ, (2.14)

=
1
π

∫ 2π

0

∫ π/2

0
E[V (Zp)]cosθsinθdθdφ. (2.15)

The resulting expected luminance of point Xp, written in terms of Zp only, is given by,

E[L(Zp)] =
1
π

∫ 2π

0

∫ π/2

0
exp{−λ(Zp −Z0)}cosθsinθdθdφ, (2.16)

Integrating the last equation yields,

E[L(Zp)] = exp{−λ(Zp −Z0)}. (2.17)

This is the rendering model that we use for DLC-, namely luminance is chosen to be

proportional to E[L(Zp)]. The rendering model is based on several assumptions. First,

the illumination arrives from a hemisphere centered at the Z axis, and this illumination
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hemisphere has uniform luminance over all directions. Second, the clutter has infinite XY

extent, which is not the case for cluttered scenes in our stimuli. Third, the luminance

variations consider cast shadows only, but ignore interreflections. Fourth, the elements

of the clutter have normals parallel to the Z direction. Because the model is based on

rather strong assumptions, we cannot and do not claim that this model is photorealistic

for the given scenes. Rather the model is meant to capture a qualitative shadowing effect

that does occur in real scenes, namely when clutter such as foliage is illuminated under

approximately diffuse light.

Thus far, we modelled the luminance of a frontoparallel surface surrounded by fron-

toparallel occluders. We can extend the above to model the luminance of a frontoparallel

surface that is surrounded by randomly oriented occluders. When occluders are randomly

oriented in the scene, the foreshortening of the disks will not depend on cosθ as as they

previously did. Rather they will depend on a constant factor. A random oriented disk is ex-

pected to have half the projected area of a frontoparallel surface (when a disk is projected

on a plane perpendicular to ray direction (θ,φ)). Therefore we have λ = ηA
2 .

p(V (Zp,θ,φ)) = exp{−λ(Zp −Z0)/cosθ}, (2.18)

and therefore,

E[L0(Xp)] =
1
π

∫ 2π

0

∫ π/2

0
exp{−λ(Zp −Z0)/cosθ}cosθsinθdθdφ. (2.19)

Unlike Equation 2.16, the above integral does not have a closed-form solution. There-

fore, we can numerically estimate it by evaluating the integral over a set of points in an
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interval. Note that the above integral still models AO for surfaces with normal paral-

lel to the Z direction, but now the difference is that surrounding occluders are randomly

oriented. To generalize the model to compute the luminance for a surface of arbitrarily

oriented normal with randomly oriented occluders, we can approximate how luminance

depends on both depth d and orientation θn using a separable function:

E[Lθn
(Xp)] = cos2(

θn

2
)E[L0(Xp)], (2.20)

where θn is the angle between the surface normal and the Z direction. The cosine term

accounts for the horizon cut-off, i.e. any rays that are cast at an angle greater than π
2 are

considered as occluded because they cannot penetrate the back of the volume [Horn and

Sjoberg, 1979].

Back-lit

The previous front-lit model only considered rays cast forward and cut off rays that

penetrated the back of the volume. To consider the backward cast rays, we modify the

probabilistic visibility function that a point at depth Zp sees through the hedge by now

considering distance from the back of the volume at depth Z1:

p′(V (Zp,θ,φ)) = exp{−λ(Z1 −Zp)/cosθ}. (2.21)

Therefore,

E[Lπ−θn
(Xp)] = cos2(

π−θn

2
)

1
π

∫ 2π

0

∫ π/2

0
p′(V (Zp,θ,φ))cosθsinθdθdφ. (2.22)
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Front-and-Back Lit

Recall in the last sections, we modelled AO for an infinitely deep hedge where hemi-

spherical rays were cut-off at the horizon. If we instead consider a hedge of finite depth

Z ∈ [Z0,Z1] where rays can penetrate both the front and back, we need to take into account

all hemispherical rays.

We add Equations 2.20 and 2.22 for a total of front and back rays, again assuming

that surrounding occluders are randomly oriented. We are essentially integrating over

two hemispheres but applying different weights to the front and back hemispheres that

depend on surface orientation, and the weights add up to 1. There is no contribution from

E[Lπ−θn
(Xp)] when θn = 0:

E[L(Xp)] = E[Lθn
(Xp)]+E[Lπ−θn

(Xp)] (2.23)

= cos2(
θn

2
)∗ 1

π

∫ 2π

0

∫ π/2

0
p(V (Zp,θ,φ)cosθsinθdθdφ (2.24)

+ cos2(
π−θn

2
)∗ 1

π

∫ 2π

0

∫ π/2

0
p′(V (Zp,θ,φ))cosθsinθdθdφ. (2.25)

If our goal is obtain a qualitative rendering which is simple but not necessarily phys-

ically accurate, we can approximate AO by replacing the integrals above with Equation

2.17 to give,

E[L(Xp)] = E[Lθn
(Xp)]+E[Lπ−θn

(Xp)] (2.26)

≈ cos2(
θn

2
)∗ exp{−λ(Zp −Z0)} (2.27)

+ cos2(
π−θn

2
)∗ exp{−λ(Z1 −Zp)}. (2.28)

where λ = ηA.
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2.A.2 Sphere Models

We consider a spherical volume with randomly distributed disks of radius R, such

as leaves in a bush. Ambient light would penetrate the canopy from every direction. Let

dn(Xp,θ,φ) be the distance from the disk’s center to the sphere boundary in direction

ω = (θ,φ) centered on the disk’s surface normal n. The probabilistic visibility function is

p(V (Xp,θ,φ)) = exp{−λdn(Xp,θ,φ)}. (2.29)

The directions u = (sinθcosφ,sinθsinφ,cosθ) of the rays are cast about a hemisphere

centered on the disk’s surface normal n. We can compute the distance d in our model

by using the ray-sphere intersection point which would give the length of the ray. The

parametric equation of the ray is x(t) = p+ tu. The expected luminance is given by,

E[L(Xp)] =
1
π

∫ 2π

0

∫ π/2

0
p(V (Xp,θ,φ))cosθ sinθdθdφ. (2.30)

The above model reoriented the hemisphere so that it is centered about the disk’s

surface normal with arbitrary orientation relative to the +Z-axis. Alternatively, we can

approximate the above using a separable equation as done in the hedge models, where we

assume that the surface in question is frontoparallel (i.e. n = (0,0,1)) and account for

orientation using the Horn and Sjoberg [1979] term. The luminance model is given by the

following equation, where the first term accounts for the front-cast rays and the second
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term accounts for the back-cast rays,

E[L(Xp)] = cos2(
θn

2
)∗ 1

π

∫ 2π

0

∫ π/2

0
exp{−λd(0,0,1)(Xp,θ,φ)cosθsinθdθdφ (2.31)

+ cos2(
π−θn

2
)∗ 1

π

∫ 2π

0

∫ π/2

0
exp{−λd(0,0,−1)(Xp,θ,φ)cosθsinθdθdφ.

(2.32)

Again, if we want a quick qualitative approximation, we can use the closed-form

model in the place of the above integrals where we now replace the distance Zp −Z0 in

Equation 2.17 with the distance d from the point to the boundary of the sphere in the

direction of the surface normal n,

E[L(Xp)]≈ exp{−λdn(Xp)}. (2.33)

Or if we want a separable equation,

E[L(Xp)]≈ cos2(
θn

2
)∗ exp{−λd(0,0,1)(Xp,θ,φ)} (2.34)

+ cos2(
π−θn

2
)exp{−λd(0,0,−1)(Xp,θ,φ)}. (2.35)

Sphere Simulation

We compare ray-cast and model values for center squares at eleven specific depths

for normals oriented at 0, π
6 ,

π
3 ,

π
2 radians to the Z-direction (direction to the viewer).

For the raycasted data, 128 rays were cast from each square’s center as usual. The

radius of the sphere was 10 cm. We used 526 randomly oriented surfaces of width w = 1

cm, giving a density of η = 0.125. We chose the width w of each square so that the

average projected area of an unoccluded square at a given depth would be equal to the area
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of an unoccluded disk at that depth [Langer and Mannan, 2012], i.e. A = w2

2 for randomly

oriented clutter.

See Figure 2.A.1 for plots of model simulation and ray-cast data. Equation 2.30 and

Equation 2.31 + 2.32 produced similar results and so we display only results from the

model in Equation 2.30.

Figure 2.A.1: Luminance as a function of depth for orientations 0 to π
2 radians in a spheri-

cal volume. We show the ray-cast values and the model values from Equation 2.30. Error
bars show standard deviation for 100 scenes.
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CHAPTER 3

Signs of depth-luminance covariance in 3-D cluttered scenes

Preface

In this chapter, we examine the role of depth-luminance covariance (DLC) for the

depth discrimination of two targets in 3-D clutter. We define the DLC function according

to the model in Equation 2.3 of Chapter 2, which qualitatively captures a shadowing effect

in real scenes. We use this model to examine both positive and negative DLC, where

positive covariance means that deeper surfaces are brighter and negative covariance means

deeper surfaces are darker. In Section 2.2, we previously addressed depth discrimination

of two targets embedded in clutter, where occlusions obeyed a negative DLC. Our results

suggested that human observers use the luminance information of the occluders to infer

the relative depth of the targets. We elaborate on that result here. In these experiments,

we let the luminance of the targets follow negative or positive signs of DLC. We aim to

determine whether the occluders allow observers to infer the sign of the DLC in order to

determine the relative depth of the two targets. We vary the color of the targets versus

occluding surfaces, which we will refer to as distractors in the manuscript. We address

a long-standing question in depth perception: when do brighter surfaces appear closer or

farther? Our experiments are the first to address this question for 3-D cluttered scenes.
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Abstract

In 3-D cluttered scenes such as foliage, deeper surfaces often are more shadowed and

hence darker, and so depth and luminance often have negative covariance. We examined

whether the sign of depth-luminance covariance plays a role in depth perception in 3-D

clutter. We compared scenes rendered with negative and positive depth-luminance covari-

ance where positive covariance means that deeper surfaces are brighter and negative co-

variance means deeper surfaces are darker. For each scene, the sign of the depth-luminance

covariance was given by occlusion cues. We tested whether subjects could use this sign

information to judge the depth order of two target surfaces embedded in 3-D clutter. The

clutter consisted of distractor surfaces that were randomly distributed in a 3-D volume.

We tested three independent variables: the sign of the depth-luminance covariance, the

colors of the targets and distractors, and the background luminance. An ANOVA showed

two main effects: subjects performed better when the deeper surfaces were darker and

when the color of the target surfaces was the same as the color of the distractors. There

was also a strong interaction: subjects performed better under a negative depth-luminance
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covariance condition when targets and distractors had different colors than when they had

the same color. Our results are consistent with a ‘dark means deep’ rule, but the use of this

rule depends on the similarity between the color of the targets and color of the 3-D clutter.

Keywords: Depth Perception, Depth-Luminance Covariance, Occlusions, Clutter, Visi-

bility.
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3.1 Introduction

3-D cluttered scenes consist of many small surfaces that are distributed over a vol-

ume. Examples include the foliage of bushes, shrubs, trees, as well as tall grass. Depth

perception in 3-D cluttered scenes is challenging since there are many occlusions present

and the surfaces that make up the clutter often are only partly visible. Despite the challenge

of occlusions, the visual system often is able to judge depth in 3-D clutter. For example,

motion parallax and binocular disparity cues can be used to judge the depth order of two

surfaces within the clutter [Langer, Zheng, and Rezvankhah, 2016], as well as the depth

range of the clutter [van Ee and Anderson, 2001]. Langer et al. [2016] also showed that the

visual system relies on probabilistic occlusion cues for judging depth order in 3-D clutter.

The idea is that the fraction of a surface that is visible within 3-D clutter tends to decrease

as the depth of the surface increases, and so the relative visibility of two surfaces within

the clutter is a cue to their relative depth.

The experiments of Langer et al. [2016] considered geometric cues only, however,

namely binocular disparity, motion parallax, and occlusions i.e. visibility. The surfaces in

the clutter had random gray levels and there was no relationship between the luminance

of the surfaces and their depth within the clutter. The experiments we report here take a

different approach. We address scenarios in which luminance depends directly on depth.

Either luminance increases with depth, or luminance decreases with depth. This manip-

ulation explores a long-standing question in depth perception: when do brighter surfaces

appear closer or farther? This question has been addressed using several different scene

configurations in the past. The experiments that we report here are the first to address this

question for 3-D cluttered scenes.
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Here we review previous studies that have examined depth-luminance covariance.

We begin with Schwartz and Sperling [1983] who were the first to consider how depth-

luminance covariance is combined with another depth cue, namely perspective. They used

rotating Necker cubes consisting of lines rendered on a dark background. The luminance

obeyed either a positive or negative depth-luminance covariance. When subjects judged

the direction of rotation of the cube, they used a bright-means-near rule and ignored the

perspective cues. In particular, when the brighter lines were deeper, subjects incorrectly

perceived a deforming cube with the brighter lines in front rather than a rigid cube with

brighter lines in the back. Dosher, Sperling, and Wurst [1986] went further by combining

the depth-luminance covariance cue with binocular disparity, again using rotating Necker

cubes under perspective. They modelled how subjects combined the cues both for static

and dynamic displays. They found that darker lines tended to be perceived as deeper but

that this depth-luminance covariance cue was weighted lower than the binocular disparity

cue.

What might be the ‘ecological optics’ basis for a dark-means-deep rule for the Necker

cube stimuli? Dosher et al. [1986] argued that if 3-D white scene lines were wires (cylin-

ders) which projected to 2-D image lines in a black background, then the width of the

image lines would decrease with distance and so the pixel intensity of the lines should

decrease (from white to grey). The sign of this depth-luminance covariance would re-

verse for the case of black lines on a white background, namely the black lines would be

brighter in the image as their scene depth increased, since a more distant line would project

to smaller pixel sub-areas and the white background would fill the remaining pixel sub-

areas. Schwartz and Sperling [1983] also noted informally that for Necker cubes rendered

38



as black lines on white background, subjects indeed used a bright-means-deep rule rather

than dark-means-deep rule, and suggested that the sign of the depth-luminance covariance

is determined more generally by the contrast of the line with the background rather than

by luminance of the line per se.

Similar observations about contrast and perceived depth have been made for square

patches viewed against a black or white background. When a light gray and a dark gray

square are both viewed against a black background, the light gray square appears nearer.

However, when the same squares are viewed against a white background, the dark gray

square appears nearer [Farnè, 1977, Egusa, 1982]. It has been argued that these contrast

effects are consistent with atmospheric scattering i.e. aerial perspective, namely a distant

object will have lower contrast with the background since the luminance of both the ob-

ject and background contain a common atmospheric component that increases with depth

[O’Shea, Blackburn, and Ono, 1994].

There are other ecological optics theories of why a dark-means-deep or a bright-

means-deep rule might apply in a given situation. Under diffuse lighting such as on a

cloudy day, surface concavities tend to be darker because the fraction of the diffuse source

that is visible tends to be lower in concavities [Langer and Zucker, 1994]. This dark-

means-deep effect is modulated by factors, however, such as local variations in the surface

normal, interreflections, glossiness, and non-uniformity of the diffuse source. Langer and

Bülthoff [2000] showed that, for smooth surfaces rendered under uniform diffuse illumi-

nation, the visual system takes account of surface normal variations to some extent when

comparing depths of neighbouring surface points and thus does not simply discriminate
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depths based on luminance. The question of when the visual system uses dark-means-

deep rule for interpreting shape from shading remains controversial [Tyler, 1998, Chen

and Tyler, 2015, Todd, Egan, and Kallie, 2015].

Kim, Wilcox, and Murray [2016] investigated another aspect of the depth-luminance

covariance by examining situations in which surfaces are perceived to emit or transmit

light. They presented pairs of smooth terrain surfaces, one of which was rendered under

diffuse lighting (‘dark valley’) and the other was depth inverted and assigned the same

luminance at each corresponding surface position (‘bright valley’). The only difference

between the two cases was the depth information given by either stereo or rotational mo-

tion cues. Subjects were asked to judge which surface appeared to glow as if it had a light

source inside or behind it. Subjects consistently chose the depth reversed surfaces (‘bright

valley’) as glowing. Thus, subjects used the geometric cues from binocular disparity and

dynamic occlusion to distinguish the hills and valleys, and subjects interpreted the lumi-

nance variations consistently with the shape defined by the geometric cues. The idea is

similar to an observation by Langer [1999] that, in a photographic negative of a diffusely

illuminated scene, concave regions tend to be brighter. So if the geometric cues that are

given by occlusions constrain the 3-D geometry then the visual system perceives concave

regions as glowing as if there were a light source and interreflections present. The key

insight of Kim et al. [2016] was that this glow effect occurs even without occlusion cues

being present, in particular, in their static binocular condition.

A negative depth-luminance covariance (dark-means-deep) also has been demon-

strated using images of outdoor natural scenes using joint luminance and depth statistics

[Potetz and Lee, 2003, Samonds, Potetz, and Lee, 2012]. These natural image statistics
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findings were consistent with neurophysiological findings that the disparity sensitivity of

many neurons in monkey primary visual cortex covary with the neuron’s local luminance

contrast sensitivity. That is, cells with near or far disparities tend to be sensitive to local

luminance maxima and minima respectively [Samonds et al., 2012]. These effects have

been re-analysed and confirmed by Cooper and Norcia [2014] who also reported on a psy-

chophysical study. Using natural images along with registered depth maps, they showed

the perception of 3-D depth could be enhanced or diminished by biasing the image inten-

sities towards a negative or positive depth-luminance covariance, respectively. For exam-

ple, they found that for scenes that had a positive depth-luminance covariance, reducing

the luminance of the far surfaces enhanced the perception of depth more than reducing

the luminance of the near surfaces. This effect cannot be attributed simply to contrast en-

hancement, since darkening the background of a scene that has a positive depth-luminance

covariance decreases the overall image contrast, yet such a manipulation was found to in-

crease the perception of depth.

Finally, we consider some related work which addressed relationships between per-

ceived depth, luminance, and color. Troscianko, Montagnon, Le Clerc, Malbert, and

Chanteau [1991] showed that perceived surface slant of a tiled plane can increase when

distant tiles are less saturated and both hue and luminance are held constant. They also

showed that slant was not enhanced when luminance and saturation were held constant

and only hue varied. The ecological basis for the saturation gradient effect is similar to

what we discussed above, namely the atmospheric effect of aerial perspective. Here, col-

ors from distant surfaces is less saturated because the color is mixed with the atmosphere

which in their case had neutral hue.

41



A different interaction between depth and color saturation arises from interreflections

between surfaces. For example, in the case of diffuse lighting, surfaces that are deeper in

the clutter tend to be more shadowed, and so a greater percentage of the illumination for

deeper surfaces comes from light reflected off other surfaces. Such interreflection effects

have been observed in more general scenes as well and can lead to hue and/or saturation

gradients as a function of depth [Langer, 1999, 2001, Ruppertsberg, Bloj, and Hurlbert,

2008]. Moreover, there is some evidence that when depth information is given by stereo

cues, the visual system can disentangle the interreflection effects and perceive the surface

color [Bloj, Kersten, and Hurlbert, 1999]. This finding is similar to Kim et al. [2016]’s

finding about stereo and glow discussed above.

The experiments that we report in this paper explored the effect of a depth-luminance

covariance in 3-D cluttered scenes. The geometry of the scenes was similar to that of

Langer et al. [2016] and the experimental procedure was also similar. In each trial, subjects

were shown two target surfaces that were embedded in a cluttered 3-D volume and the task

was to decide which of two target surfaces was closer. Our experiments varied the sign

of the depth-luminance covariance, the background color of the scene (white or black),

and the color saturations of the targets and the clutter surfaces. The sign of the depth-

luminance covariance was given from the ordinal occlusion relationships. Our main goal

was to examine when subjects used the depth-luminance covariance to perform the depth

discrimination task.

The task of judging the depth order of the two targets was challenging for a few

reasons. First, the targets did not overlap in the image and so there is no direct occlusion

cue to determine their depth order. Second, since the targets were partly occluded by the
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random clutter, the target visibility was random. Moreover, we manipulated the clutter

distribution to remove any systematic relation between the relative visibility of the targets

and the depth order of the targets. The only information available for doing the task was

the luminance differences between the targets. There is a limit in how accurately subjects

can discriminate target luminances, however, especially in the presence of clutter since the

clutter can produce local simultaneous contrast effects.

The third reason that the task is potentially difficult is that the correct answer on any

trial depends on the sign of the depth-luminance covariance in the scene. This sign is read-

ily available from occluders in the clutter. In particular, it is available from the luminance

difference between the targets and the distractors that occlude the targets. However, it is

unclear when subjects would take this depth-luminance covariance sign into account. In

particular, in cases of a positive depth-luminance covariance, the positive sign conflicts

with a default dark-mean-deep prior which has been shown in other studies to play a role

in depth perception. A key goal of our experiments is to better understand when subjects

use the sign of depth-luminance covariance.

3.2 Method

3.2.1 Apparatus

Images were rendered using OpenGL (Khronos Group, Beaverton, OR) and were

displayed using a Dell Precision M6700 laptop (Dell, Round Rock, TX) with an NVIDIA

Quadro K4000 graphics card (NVidia, Santa Clara, CA). The laptop’s 17-in. LCD monitor

was set to maximum brightness. A PR650 spectroradiometer (Photo Research, Syracuse,

NY) was used to compute a luminance-to-RGB lookup table for each of the RGB channels.

(For more details on color calibration and choice of colors, see Appendix 3.A.).
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3.2.2 Stimuli

Each scene consisted of two targets and of 1000 distractors. The two targets were

4×4 cm squares that were separated in depth by a variable amount ΔZ, and were separated

horizontally by ΔX = 10 cm. Their XY positions were perturbed in a random XY direction

by up to 1 cm. The targets were oriented so that their normal was parallel to the Z axis.

Each distractor was a 1×1 cm square, randomly oriented in 3-D and randomly positioned

within a bounding box of size 20 cm ×20 cm ×20 cm.

The scene was rendered using perspective projection. The virtual subject’s position

was Z0 = 60 cm from the front and center of the clutter bounding box. The projection plane

(display screen) was located at a depth of 70 cm from the subject, which corresponded to

the center depth of the clutter.

Because the scenes were rendered under perspective projection, there was a size cue

for depth. We removed this size cue for the targets only, similarly to Langer et al. [2016],

by rescaling the height and width of each target to be proportional to its inverse depth.

This ensured that the visual solid angle of a target at any depth (and in the absence of

occlusions) would be equal to the visual angle of a target at the middle depth in the clutter.

To help hide the fact that the two targets had the same visual angle in each trial, we jittered

each target’s aspect ratio so that the target was slightly rectangular, and we rotated each

target by a random amount about the Z axis.

Subjects were seated so that their eye position was 70 cm directly in front of the

screen corresponding to the virtual viewing position used in the rendering. We did not use

a chin rest, so some variability in subject position was allowed. The task was performed

monocularly with the non-dominant eye covered with an eye-patch. The height of each
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subject’s seat was changed so that the subject’s eye would be roughly the same height as

the center of the screen.

The luminance of the targets and distractors varied according to their depth Z as

follows. For negative depth-luminance covariance (DLC-), the luminance was chosen to

be proportional to exp(−λ(Z − Z0)), where Z was the depth (cm) of the center of the

distractor or target and Z0 was the depth where the clutter begins. We chose a decay

factor of λ = .125, based on the density and size of the distractors [Langer and Mannan,

2012]. Thus, the intensities of the surfaces ranged from 1.0 down to exp(−.125× 20) ≈
0.082. For positive depth-luminance covariance (DLC+), luminance was proportional to

exp(−λ(Z0 + 20−Z)). That is, it decayed exponentially with the Z distance to the back

face of the volume. See Appendix 3.B for more details on how the DLC function is chosen.

In natural 3-D cluttered scenes such as foliage, it is common for targets embedded

in the clutter to have a different color than the clutter itself. An extreme example is a red

apple among green leaves. For this reason, we examined depth-luminance covariance not

just for gray level surfaces but also for a few simple combinations of surface color. Three

different colors were used for the targets and distractors: gray, unsaturated green, and high

saturated green. The RGB values for the surfaces were scaled versions of the following:

(1,1,1) for gray, (0.33,0.87,0.33) for unsaturated green, and (0,1,0) for saturated green.

For any depth and for any DLC- or DLC+ condition, we scaled the RGB values so that the

luminance (CIE Y) would depend on the depth, and be the same for any of the three colors

(see Appendix 3.A for more details).

The visibility of a target is a strong cue for target depth [Langer et al., 2016]. Since

the goal of our experiment was mainly to investigate luminance effects, we removed the

45



depth information from the target visibilities. We did so by modifying the distribution of

the distractors in the clutter, namely we removed distractors whose center point occluded

the far target and so the tunnel’s cross sectional area was the same as the far target’s area.

We only removed distractors whose depths were between that of the near and far targets.

See Figure 3–1.

Figure 3–1: Illustration of tunnel for the DLC- condition. The viewing position is from
below. (a) The tunnel removes distractors that are between the depths of the near and far
target and that could occlude the far target. We used the tunnel only in front of the far
target because that was sufficient to equate the expected values of visibility of the two
targets for any depth difference. This illustration does not show the random variations in
the distractors positions and orientations. (b) In Experiment 2, we matched the distractors
that fell in front of the targets (see highlighted black square). See Appendix 3.C for details.

We did not use a tunnel for depth differences ΔZ that exceeded 15 cm. The reason is

that when the scenes are rendered with tunnels for high ΔZ values, these tunnels become

very apparent. In pilot studies we found that subjects became confused in these conditions
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which led to guessing behavior. By not using a tunnel when ΔZ > 15 cm, we gave these

scenes a strong visibility cue which allowed subjects to perform the task easily and ensured

that the staircases were well behaved.

Using a tunnel when ΔZ ≤ 15 cm made the expected visibilities the same for the two

targets for each depth difference. However, typically there were still differences in the

visibilities of the two targets in each trial since the distractors were randomly positioned

and oriented. If subjects were to mistakenly use these random differences in visibility in

each trial as a depth cue, then this would compromise their performance and raise depth

discrimination thresholds. To examine if subjects were indeed doing so, we carried out a

second version of the experiment (Experiment 2) in which we manipulated the distractor

distribution further to reduce the per trial variability in the visibility difference. See the

highlighted area in Figure 3–1 (b) which indicated the distractors that we manipulated and

see Appendix 3.C for the details of the manipulation.

We also ran a third version of the experiment in which subjects were asked to dis-

criminate target luminance rather than depth. That is, we asked them which of the targets

was brighter. This was done for two reasons. The first reason was to reassure us that judg-

ing relative luminance was not itself the limiting factor in our experiments. The second

reason was to reassure us that participants were in fact discriminating depths, rather than

just luminances in the main experiments.

3.2.3 Design

For each experiment, we used 36 different conditions which were defined by the

following combinations (36 = 2×2×3×3):

• sign of depth-luminance covariance (DLC+, DLC-)
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• background color (black, white)

• target color (gray, low or high saturation green)

• distractor color (gray, low or high saturation green)

Figure 3–2 shows examples of DLC- conditions. The rows and columns show the different

distractor and target colors, respectively. Figure 3–3 shows examples of DLC+. For both

figures, we chose backgrounds that are consistent with the depth-luminance covariance,

namely black background for DLC- and white background for DLC+.
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Figure 3–2: Stimuli for dark-means-deep (DLC-) conditions with a black background.
Rows represent distractor color and columns represent target color. On the diagonal, tar-
gets and distractors have the same color.
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Figure 3–3: Stimuli for dark-means-near (DLC+) with a white background. On the diag-
onal, targets and distractors have the same color.
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3.2.4 Procedure

In each trial, subjects were shown a scene consisting of distractors and two target

rectangles. The task was to indicate which target was closer (to the subject) or which

target was brighter, depending on the experiment. Subjects responded by pressing either

the left or right arrow key on the keyboard.

For each experimental condition and for each subject, we estimated a depth discrim-

ination threshold using a 1-up 1-down staircase. The values of ΔZ in the staircase were

chosen to target a proportion correct of approximately 78% [Garcıa-Pérez, 1998]. When

the subject answered correctly or incorrectly, the distance ΔZ between targets was reduced

by a factor 0.8 or was increased by a factor 2.19, respectively. Staircase conditions were

randomly interleaved. Each staircase began at level ΔZ = 5 cm and then terminated after

ten reversals. To compute the thresholds, we averaged the log of the ΔZ values of the last

eight reversals.

Response time was limited to four seconds. If the subject did not respond in some

trial, then a random choice was made and a red X mark would show on the screen. Ad-

ditionally, there was a rest period after every 100 trials for as long as the subject wanted.

The experiment typically lasted around forty-five minutes.

3.2.5 Participants

For Experiment 1, twenty subjects participated with ages ranging from 19 to 44.

For Experiment 2, eight new subjects participated with ages ranging from 19 to 60. For

Experiment 3 (luminance discrimination), eight subjects participated with ages ranging

from 28 to 60. Each subject was paid $10. Subjects had little or no experience with

psychophysics experiments. Each had normal or corrected-to-normal vision. We required
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subjects to pass the Ishihara’s Test Chart for Color Deficiency. Subjects were unaware of

the purpose of the experiments. Informed consent was obtained using the guidelines of the

McGill Research Ethics Board which is consistent with the Declaration of Helsinki.

3.3 Results

Plots of the means and standard errors of the thresholds for all three experiments are

shown in Figure 3–4. For each, we ran three-way repeated measures ANOVA’s to test the

effects of depth-luminance covariance (DLC-, DLC+), background color (black, white),

and equality of target and distractor hue (diagonals versus off-diagonals in the figures).

We report exact p values. A p value smaller than 0.05 was considered to be significant.

These plots pooled the background (black versus white) conditions since this variable did

not have a statistically significant effect (see below).

3.3.1 Experiment 1

A dark-means-deep cue would predict thresholds to be lower for DLC- than DLC+

and this is indeed what we found with means 4.3 cm and 5.8 cm respectively. This dif-

ference was significant (F1,19 = 9.6, p = 0.006). A second main effect was that thresh-

olds were lower when targets and distractors had the same surface color (diagonals) than

when they had different colors (off-diagonals) (F1,19 = 18.1, p = 0.0005) with means 4.5

cm and 5.5 cm respectively. There was an interaction effect between DLC and color

(F1,19 = 31.1, p = 0.00002). When targets and distractors had the same color, thresholds

were just slightly lower for DLC- than for DLC+ with means 4.4 and 4.7 cm respectively.

When targets and distractors differed in color, thresholds were much lower for DLC- than

DLC+ with means 4.2 cm and 6.8 cm, respectively. This suggests that subjects relied on

a dark-means-deep prior more when the colors of targets differed from the colors of the
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distractors. This prior is correct for the DLC- stimuli but is incorrect for the DLC+ stimuli.

We will return to this point in the Discussion section.

We had expected performance to be better when the background was consistent with

the depth-luminance covariance, namely black background in a dark-means-deep con-

dition and a white background in a dark-means-near condition, rather than vice-versa.

However, the mean thresholds for consistent and inconsistent backgrounds were nearly

the same, namely 5.0 cm and 5.1 cm (F1,19 = 0.01, p = 0.64). We therefore pooled the

results for the plots in Figure 3–4 for consistent and inconsistent backgrounds, showing 18

conditions instead of 36.

3.3.2 Experiment 2

The purpose of Experiment 2 was to reduce the per trial visibility difference between

the two targets, in case subjects were mistakenly relying on the visibility difference to per-

form the task. (See Appendix 3.C.) Thresholds indeed were lower overall in Experiment

2 than in Experiment 1, with means 4.56 cm and 5.25 cm, respectively. A one tailed t-test

on the signed differences in the mean thresholds for the 36 conditions of Experiments 1

versus 2 revealed a significant difference (t = 4.67, p < 0.0001).

Otherwise, the general trends were similar to Experiment 1. Some results did not

reach significance, but this is unsurprising since we used only eight subjects for Exper-

iment 2 compared to twenty for Experiment 1. Thresholds were lower for DLC- than

DLC+ with means 3.3 cm and 5.6 cm respectively (F1,7 = 8.1, p = 0.02). Thresholds

were lower for diagonals than for off-diagonals with means 3.9 and 5.0 cm respectively

(F1,7 = 2.76, p = 0.141). The interaction between DLC and diagonal/off-diagonals also

was close to significant (F1,7 = 0.35, p= 0.09). Thresholds were slightly smaller for DLC-
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than DLC+ for the diagonals with means 3.2 and 4.6 cm respectively. Thresholds were

much lower for DLC- than DLC+ in the off-diagonal case, with means 3.3 cm and 6.6

cm respectively. In general, the DLC- thresholds were similar for all conditions, but the

DLC+ thresholds were greater for the off diagonals. Finally, again there was no significant

differences between consistent and inconsistent backgrounds (F1,7 = 0.6, p = 0.48). The

means for a consistent background versus a inconsistent one were 4.3 cm versus 4.6 cm.
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3.3.3 Experiment 3

We ran a control experiment in which subjects were asked to discriminate target lumi-

nance instead of depth. Thresholds were lower in Experiment 3 than in Experiment 1, with

means 1.59 cm and 5.25 cm, respectively. A one tailed t-test on the signed differences in

the mean thresholds for the 36 conditions of Experiments 1 versus 3 revealed a significant

difference (t = 15.26, p < 10−16). This reassured us that judging relative luminance was

not itself the limiting factor in our experiments. This also reassured us that participants

were discriminating depths, rather than just luminances in the main experiments.

We did not run the luminance discrimination task again on the Experiment 2 stimuli,

but we would expect performance there to be as good or better than what we found using

the Experiment 1 stimuli, for the same reason that performance was better in Experiment

2 than Experiment 1.

No significant effects were found between conditions. DLC- and DLC+ had means

1.61 cm and 1.56 cm respectively (F1,7 = 0.58, p = 0.47). Diagonal versus off-diagonal

had means 1.64 cm and 1.53 cm respectively (F1,7 = 2.46, p = 0.16). Consistent and

inconsistent background colors had means 1.58 cm and 1.59 cm (F1,7 = 0.02, p = 0.89).
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Figure 3–4: Mean and standard errors for Exp. 1 and 2 (depth) and Exp. 3 (luminance).
The stimuli of Exp. 3 were the same as Exp. 1. The 3×3 layout of the plots corresponds
to the conditions shown in Fig. 3–2 and 3–3.
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3.4 Discussion

A key finding in our experiments is that subjects behaved as if they used the sign of

the depth-luminance covariance to perform the task. One natural strategy for using the

sign information is as follows. Use the luminance and depth ordering of the distractors

which is given by occlusions to determine the sign of the depth-luminance covariance.

With this sign information, compare the two target luminances and choose the closer target

according to the sign of the depth-luminance covariance of the distractors. When the target

and distractor colors differ, rely less on the DLC sign information and instead rely more

on a default dark-means-deep rule or ‘prior’.

While the above strategy seems plausible, there is a second strategy that leads to es-

sentially the same results. This second strategy is based on the contrast between targets

and the distractors that occlude them. Recall that Schwartz and Sperling [1983] and others

suggested that the perceived depth-luminance covariance is determined by the contrast of

an object with the background rather than luminance per se. For our scenes, the direct

relationship between depth and luminance also provides a contrast cue. However in our

case, the cue is not the contrast between the luminance of the targets with respect to the

background. Rather, it is the contrast between the targets and the occluders, namely the

near target has a lower contrast with respect to its occluders than the far target has with

respect to its occluders. To put it more simply, the near targets have a more similar lumi-

nance to their occluders than the far targets do to their occluders. This contrast cue is valid

both in the DLC+ and DLC- conditions. If observers were to base their judgements of

target depth on this contrast cue, then they would behave similarly in the task if they used

the first strategy described above. Our experiment does not allow us to decide which of
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these two strategies better explains their behaviour. Further experiments would be needed

to tease apart these two strategies.

Another key finding is that when the colors of target and distractors differ, subjects

behaved as if they relied more on the dark-means-deep prior. This was somewhat surpris-

ing since the targets informally seem easier to segment from the distractors when the colors

differ, and so one might expect that subjects could more easily compare them. However,

Experiment 3 did not provide any evidence that subjects could discriminate the luminances

of the targets better when the colors of distractors and targets differed. What seemed to

happen in Experiments 1 and 2 when the targets and distractor colors differed is that the

targets were seen as different types of objects than the distractors and so the target lumi-

nances were perceived as less related to the distractor DLC sign. Since there were no depth

cues for the targets other than the DLC cue from the distractors, subjects may have just

relied more on their prior for dark-means-deep.

Another finding worth discussing is that the background seemed to play little role.

The background color is visible outside the X and Y limits of the clutter, but it is sometimes

also visible within the clutter when one can see all the way through. In this case, it is

difficult to perceive that the leaking background is indeed due to background as opposed

to just another occluded surface. In the case that the background color is inconsistent with

the depth-luminance covariance, a sliver of background that is visible within the clutter

might just be perceived as an outlier. Therefore, we believe that it was the luminances

of the clutter rather than the background that provided the main cue that subjects used.

Perhaps in sparser scenes containing fewer occlusions, the background color would have

more of an effect.
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One might ask if there were any other cues present in our stimuli that allowed subjects

to perform the task, for example, perspective cues (size cues) from the distractors. To test

if subjects were using information other than the sign information from DLC, we ran

Experiment 1 again using three subjects (one author and two new naive subjects) and

using equiluminant targets. The mean thresholds over all conditions were 11.5 cm which

is well above the thresholds for the actual Experiment 1 but which is below the 15 cm

limit of ΔZ, where the visibility cue is present for our stimuli. Could it be that subjects

achieved thresholds below 15 cm by using other cues? We believe the answer is no. We

ran a model observer who guesses in conditions when the visibility cue has been removed

(ΔZ ≤ 15) and who answers correctly when the visibility cue is present (ΔZ > 15). We ran

300 staircases for such an observer. The mean threshold was approximately 12 cm which

is similar to our three observers for the equiluminant targets. These results suggest that

subjects relied entirely on the DLC cues, and the prior for DLC- to perform the task in our

two main experiments.

3.5 Conclusion

Our experiments contribute new ideas for investigating and understanding depth per-

ception from luminance variations in complex scenes. In particular, we have shown that

occlusions determine the sign of depth-luminance covariance in 3-D cluttered scenes and

that subjects can make use of this sign information to discriminate the depths of targets

embedded in the clutter. We showed that this sign information was combined with a prior

for ‘dark means deep’ (negative depth-luminance covariance). Interestingly, subjects per-

formed better when targets and distractors had the same color saturation, namely they re-

lied less on a ‘dark means deep’ cue in that case. Further studies are needed to determine
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if there are other interactions of color, luminance, and perceived depth in 3-D cluttered

scenes, for example, if there are interactions with other depth cues such as binocular dis-

parity or motion parallax.

Appendix

3.A Color Calibration

When selecting the colors for the surfaces, we wanted to span as large a range of

luminances as possible. Since the green channel has the largest luminance we used gray

(1,1,1) and saturated green (0,1,0) to define two of our surface colors. As a third color,

we used an unsaturated green which we defined by transforming the saturated green (0, 1,

0) from RGB to CIELUV, reducing the saturation correlate value by 50%, and then apply-

ing the inverse transformation back to RGB. This gave the RGB value (0.33,0.87,0.33).

To transform from RGB to LUV, we first transformed from RGB to XYZ using the M

matrix below, and then from XYZ to LUV.

To ensure that luminance varied with depth in the same manner for each of the three

colors, we needed to know which RGB values of gray and unsaturated green had the

same luminance value (Y ) as the saturated green. We first determined the maximum lu-

minances of gray YGray, unsaturated green YUGreen and saturated green YSGreen using the

transformation between RGB and CIE XYZ below. We rescaled the maximum RGB of

gray (1,1,1) and unsaturated green (0.33,0.87,0.33) by multiplying by YSGreen/YGray and

YSGreen/YUGreen, respectively. This ensured we had the same maximum luminance for

each color. Then, during the experiment, we scaled the RGB values of each surface color

according to its depth depending on the condition.
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The Y values above can be obtained via the transformation between RGB and CIE

XYZ space as follows, ⎡
⎢⎢⎢⎢⎣

X

Y

Z

⎤
⎥⎥⎥⎥⎦
= M

⎡
⎢⎢⎢⎢⎣

R

G

B

⎤
⎥⎥⎥⎥⎦
.

We obtained the columns of M by using the spectroradiometer to measure the XYZ values

for uniform RGB patches of (1,0,0)T , green (0,1,0)T , blue (0,0,1)T . This gave

M =

⎡
⎢⎢⎢⎢⎣

44.5 43.9 20.1

23.5 86.2 7.16

1.08 8.14 107

⎤
⎥⎥⎥⎥⎦
,

where the middle row is the luminance (Y ) of each of the channels in cd/m2. To obtain

the luminances YGray, YUGreen, and YSGreen, we multiplied their corresponding (R,G,B)T

by the middle row of M.

3.B Model of Depth-Luminance Covariance

Our DLC- model combines the ideas of Langer and Zucker [1994]’s cloudy day ren-

dering model and Langer and Mannan [2012]’s probabilistic model of surface visibilities

in 3-D clutter. The former model assumes the scene is illuminated by a uniform hemi-

spheric sky, centered in the Z axis direction. The latter model assumes a 3-D cluttered

scene which begins at depth Z = Z0 and has infinite extent in the X and Y directions.

Under the cloudy day rendering model, illumination is assumed to be diffuse and

non-directional. The luminance variations consider cast shadows only, but ignore in-

terreflections. Thus, the luminance of a surface point Xp = (Xp,Yp,Zp) depends on the

amount of hemispheric sky that is visible from it. The directions of the hemispheric sky
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are parametrized by polar angle θ and azimuth φ, and V (Xp,θ,φ) is the visibility function

which equals 1 if the hemispheric sky is visible from point Xp in direction (θ,φ), and 0

otherwise. This yields the following expression for luminance at a surface point Xp,

L(Xp) =
1
π

∫ 2π

0

∫ π/2

0
V (Xp,θ,φ)cosθsinθdθdφ.

The double integral above integrates over concentric circles of radius sinθ to obtain the

surface area of the unit hemisphere. This area is weighted by Lambert’s cosine law, which

states that luminance from a Lambertian surface is proportional to the cosine of the angle

θ between the direction of the incident light ray and the surface normal. The total surface

area of the cosine-weighted hemisphere is π. We integrate only over the visible portions

of the hemisphere and so dividing the result by π returns the luminance, a value between

0 and 1.

For a 3-D cluttered scene, we consider visibility V (Xp,θ,φ) as a random variable.

We compute the probability that the hemispheric sky is visible along a ray, p(V (Xp,θ,φ)),

as done in Langer and Mannan [2012]. To get a closed form model of p(V (Xp,θ,φ)),

we assume the elements of the clutter are disks of area A, and we assume that the spatial

distribution of the disks is a Poisson process with density η which is the average number of

disk centers per unit volume. The parameters A and η can be lumped together as a single

constant λ = ηA.

The function p(V (Xp,θ,φ)) can be written in terms of Zp only as follows. The length

of any ray from Xp = (Xp,Yp,Zp) to the edge of the clutter is (Zp −Z0)/cosθ, where the

term 1/(cosθ) accounts for the greater path length of a ray with greater polar angle θ. To

simplify the integral, we assume the elements of the clutter have surface normal facing
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the Z direction and so these clutter elements are foreshortened in the ray direction (φ,θ).

Then, the Poisson model yields:

p(V (Zp,θ,φ)) = exp{−λcosθ(Zp −Z0)/cosθ}.

The cosθ terms cancel out and so p(V (Zp)) depends only on depth,

p(V (Zp)) = exp{−λ(Zp −Z0)}.

Then, the expected visibility of the sky in direction (θ,φ) is computed as,

E[V (Zp)] = 1 · p(V (Zp))+0 · (1− p(V (Zp))) = exp{−λ(Zp −Z0)}.

Using the definition of luminance of a surface point L(Xp), we use the above to

compute the expected luminance of a surface point E(L(Xp)). The linearity property of

expectation allows us to integrate over the expected visibilities of rays along individual

directions,

E[L(Xp)] = E[
1
π

∫ 2π

0

∫ π/2

0
V (Xp,θ,φ)cosθsinθdθdφ],

=
1
π

∫ 2π

0

∫ π/2

0
E[V (Xp,θ,φ)]cosθsinθdθdφ,

=
1
π

∫ 2π

0

∫ π/2

0
E[V (Zp)]cosθsinθdθdφ.

The resulting expected luminance of point Xp, written in terms of Zp only, is given by,

E[L(Zp)] =
1
π

∫ 2π

0

∫ π/2

0
exp{−λ(Zp −Z0)}cosθsinθdθdφ.
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Integrating the last equation yields,

E[L(Zp)] = exp{−λ(Zp −Z0)}.

This is the rendering model that we use for DLC-, namely luminance is chosen to be

proportional to E[L(Zp)]. The rendering model is based on several assumptions. First,

the illumination arrives from a hemisphere centered at the Z axis, and this illumination

hemisphere has uniform luminance over all directions. Second, the clutter has infinite XY

extent, which is not the case for cluttered scenes in our stimuli. Third, the luminance

variations consider cast shadows only, but ignore interreflections. Fourth, the elements

of the clutter have normals parallel to the Z direction. Because the model is based on

rather strong assumptions, we cannot and do not claim that this model is photorealistic

for the given scenes. Rather the model is meant to capture a qualitative shadowing effect

that does occur in real scenes, namely when clutter such as foliage is illuminated under

approximately diffuse light.

3.C Manipulating Visibility Cue in Experiment 2

In Experiment 1, the expected visibility was the same between the two targets, but

there was variation in the visibilities of the random distribution of the clutter. This random

variation often led to one target being more visible than the other. Visibility is a cue for

depth discrimination 3-D cluttered scenes [Langer et al., 2016] and so it is possible that

subjects were using the difference in visibility between targets to perform the task, even

though in our stimuli this visibility difference contained no information for doing the task

since the two targets had the same expected visibility for each depth condition.
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In Experiment 2, we therefore attempted to reduce the subject’s use of the visibility

cue by reducing the random visibility differences between targets. We did so in each trial

by matching the number of distractors falling in front of both targets. Specifically, we

matched the number of distractors falling in front of the far target to that falling in front

of the near target. We also matched the X , Y , and Z positions of the distractors relative

to the center of each target, and we matched the slant angles, namely the angles between

the Z axis and the occluder’s surface normal. Note that we only matched the distractors

that occluded the targets. The remaining visibility differences for the two targets were

due to random interactions between the direction (tilt) of each distractor’s orientation, the

variations in aspect ratios and angles of the targets, and parallax between the targets and

distractors, namely the viewing direction from the eye to the left and right targets are

different.

In Figure 3.C.1 (a), we compare the mean target visibilities as a function of depth for

Experiments 1 and 2. Target depths were chosen from Z = {0,2,4, . . . ,20} cm and target

visibilities were defined as the fraction of the target that was visible in the image (which

we measured by counting pixels). In the plots, depths up to 8 cm show the visibilities for

the near targets and depths beyond 12 cm show the visibilities for far targets. At depth

10 cm, there is no distinction between near and far targets. We used 1000 scenes for each

data point in the plot.

The result in Figure 3.C.1 (a) shows that indeed the two targets had same expected

visibility for each depth condition. The plots show an exponential fall in visibility up

to depth Z = 10 cm [Langer et al., 2016] and then a rise in visibility beyond depth 10

cm. This rise is due to the tunnel in front of the far target, namely the size of the tunnel
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increases as the far target depth increases (recall Fig. 3–1). Recall also that the tunnel is

only used when the depth difference is less than 15 cm, and so the near and far targets are

in the depth range 10±7.5 cm. This is why the visibility plot for the far target is so much

lower for Z = 18 cm and 20 cm.

Figure 3.C.1 (b) shows the mean absolute difference in visibility between the near and

far targets as a function of their depth difference ΔZ. Recall that the depths in Figure 3.C.1

(a) were chosen from Z = {0,2,4, . . . ,20} cm. Similarly, the depth differences in Figure

3.C.1 (b) were chosen from ΔZ = {0,4,8, . . . ,20} cm. For ΔZ ≤ 15 cm, the mean absolute

difference in visibility for Experiment 2 was approximately 30% less than Experiment 1.

As expected, this reduction in visibility differences led to an improvement in performance

from Experiment 1 to Experiment 2.
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Figure 3.C.1: (a) The visibility plot compares the mean target visibilities as a function of
depth for Experiments 1 and 2. 1000 scenes were used for each data point. Target depths
were chosen from {0,2,4, . . . ,20} and target visibilities were defined as the fraction of the
target that was visible in the image (which we measured by counting pixels). The error
bars show standard deviations (and not standard error). (b) The plot compares the mean
absolute difference of target visibilities for Experiments 1 and 2 using 1000 scenes for each
data point. Target depth differences Z f ar −Znear = ΔZ were chosen from {0,4,8, . . . ,20}.
The standard deviations are almost identical for Experiments 1 and 2, so to avoid overlap
they are shown only for Experiment 1 (with error bars).
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CHAPTER 4

Density discrimination with occlusions in 3-D clutter

Preface

In the two previous chapters, we explored how occlusions affect the relationship be-

tween luminance and depth, and examined how signs of depth-luminance covariance affect

human observers’ relative depth perception of two targets in 3-D clutter. In this chapter,

we examine how luminance and occlusions affect human observer bias and sensitivity to

a spatial change in a cluttered volume, where we vary the density of surfaces between the

front and back halves and between the left and right halves of the volume. Our scenes are

presented with kinetic depth.

In designing our stimuli, one challenge was to find a luminance cue that helped ob-

servers segment the two halves of the volume. The exponential DLC function used in

Chapter 3 was found to be unsuitable for discriminating between two halves of the vol-

ume. Pilot experiments revealed that observers had difficulty perceiving which surfaces

belonged to the front half versus the back half; for example it was assumed that the middle

brightness 0.5 was located at the middle of the volume, and also the back of the volume

tended to be hidden because of the exponential decay in visibility and luminance. There-

fore, we decided to use a DLC function where equal steps in depth have equal steps in

brightness. We compare DLC to a black-white condition where squares are only black or

only white in each half.
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Most importantly, we examine how different parameters of clutter, namely the area

and density of the squares and the overall level of occlusion affect performance in the

density discrimination tasks. We will see below how these variations result in interesting

effects in observers’ performance. In order to gain further insight on the strategies used

by humans, we also compare to model observers that perform the tasks by comparing the

image occupancy of the two halves.
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Abstract

We examined how well human observers can discriminate the density of surfaces in

two halves of a rotating 3-D cluttered sphere. The observer’s task was to compare the

density of the front versus back half or the left versus right half. We measured how the

bias and sensitivity in judging the denser half depended on the level of occlusion and on

the area and density of the surfaces in the clutter. When occlusion level was low, observers

in the front-back task were biased to judge the back as denser, and when occlusion level

was high they were biased to judge the front as denser. Weber fractions decreased as

density increased for both the front-back and left-right tasks, consistent with previous

findings for 2-D density discrimination. Weber fractions did not vary significantly with

area for the front-back task, but increased with area for the left-right task, and we attribute

this difference to occlusions which have different effects in the two tasks. We also ran

model observers that compared the image occupancies of the two halves against a known

expected difference. As the occlusion level increased, this expected difference followed a

similar trend as the biases of the human observers, with a roughly constant offset between

them. Weber fractions for human and model observers followed some similar trends,
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but there were discrepancies as well which can be partly explained by the information

available to human versus model observers in carrying out their respective tasks.

Keywords: Density perception, numerosity perception, occlusions, clutter, visibility
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4.1 Introduction

Three-dimensional (3-D) clutter consists of many small surfaces that are distributed

randomly in a volume. Examples include foliage and branches of a tree, tall grass, etc.

Little is known about how well the human visual system can judge the spatial distribution

of 3-D clutter. Most studies of 3-D clutter have investigated clutter that is composed of

many points or thin lines. Such studies have typically concentrated on depth cues such

as motion and binocular disparity, and have ignored other cues such as occlusions and

luminance. Occlusions are an important cue for perceiving the spatial distribution of 3-

D clutter since points that are deeper in the volume are less likely to be visible, and so

occlusions provide probabilistic information about depth. For example, Langer, Zheng,

and Rezvankhah [2016] examined 3-D cluttered scenes consisting of squares that were

randomly distributed in a volume, and showed that observers could use occlusion cues

to discriminate the depth of target surfaces embedded in the clutter. Scaccia and Langer

[2018] used similar scenes and showed there was an interaction between occlusion cues

and color + luminance cues. Both of these studies investigated how well observers can

discriminate the depths of two target surfaces within the clutter. In this paper, we address

a different question, namely how well can observers discriminate the density in the two

halves of a 3-D cluttered scene? We use the term ‘density’ rather than ‘number’ for our

experiments, mainly because this is the term we used to explain the task to the subjects.

Otherwise, there is no meaningful difference between the terms for our stimuli, since the

two quantities are directly related in our stimuli.

Early studies measured how well human observers can directly estimate the number

of dots presented. Taves [1941] and Kaufman, Lord, Reese, and Volkmann [1949] found
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that when the dot number was below seven, observers could count the dots, but for greater

dot numbers the accuracy in estimating the number of dots decreased. A similar effect was

found in studies that measured observers’ ability to detect target patterns of dots against

a noisy random-dot background [French, 1954, Barlow, 1978]. As the number of back-

ground dots increased relative to the number of target dots, the observer’s ability to detect

the target dots decreased.

Subsequent studies considered the relationship between perceived 2-D density and

numerosity. There is some controversy about whether the mechanisms for perceiving the

two are the same or not. Burr and Ross [2008] found that numerosity is a primal visual

property because it is sensitive to adaptation and that observers estimate numerosity in-

dependently of density. This finding was challenged by Durgin [2008] who had shown

that adaptation is determined by texture density and not numerosity [Durgin, 1995]. Other

studies claimed that numerosity and density are not independent. In a task comparing

two separate 2-D patches, Dakin, Tibber, Greenwood, Kingdom, and Morgan [2011] and

Tibber, Greenwood, and Dakin [2012] found similar just noticeable differences (JNDs) in

density and numerosity discrimination. They also showed perceived density and number

were biased by increases in area, such that larger areas were perceived as denser and more

numerous. Bell, Manson, Edwards, and Meso [2015] also found that perceived density

was biased by increases in area, but did not find that perceived numerosity was biased by

increases in area. They also showed that neither perceived density nor numerosity were

biased by increases in volume. Several groups measured Weber fractions for numerosity

discrimination. Burr and Ross [2008] and Ross and Burr [2010] showed that numeros-

ity obeys Weber’s law for low densities. For high densities, Anobile, Cicchini, and Burr
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[2014], Anobile, Turi, Cicchini, and Burr [2015] and Cicchini, Anobile, and Burr [2016]

found that the thresholds increased only with the square root of density, corresponding to

a decreasing Weber fraction. From this, they inferred that there exist different mechanisms

for perceiving numerosity and density at low and high densities.

Other studies have examined density and number perception in depth layers. The

results of these studies are pertinent to our current work as they explore density perception

of the front versus back layers which is related to our task of judging the front versus

back volume. Tsirlin, Allison, and Wilcox [2012] showed that for subjects to segregate

two stereo-transparent planes, a greater inter-plane disparity is needed if the front plane

is sparser than the back plane rather than vice-versa. They also found that for observers

to perceive the front and back planes to be equally dense, the front plane needed to be

more dense. They proposed that this bias was due to a figure-ground effect where the

area between dots is assigned to the back plane. This back plane bias was also found in

a moving dots study by Schütz [2012]. Aida, Kusano, Shimono, and Tam [2015] also

showed that multiple depth layers viewed in stereo were perceived as having more dots

than only one depth layer, even if the total number of dots was the same in the two cases.

Again, this was thought to be due to the overestimation of the back surface.

Our current study considers volumes with many occluding surfaces. Occlusions have

been neglected in previous studies of density estimation in volumes, namely these studies

assumed the 3-D clutter consisted of lines and dots with little or no occlusions. Harris

[2014] examined the perceived depth of cluttered scenes consisting of line elements. Both

disparity gradients and number of elements were varied. Subjects judged a pair of stereo-

transparent planes to have a greater range of depth than a cluttered volume, even if in both
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cases the volume had the same depth and the same number of line elements. There was no

significant effect from using a small versus large number of line elements. Goutcher and

Wilcox [2016] also examined disparity volumes and tested how subjects discriminated

the spread-in-depth and location-in-depth of the volume. They found that subjects used

only the extreme disparity values to make their judgments. Sun, Baker, and Kingdom

[2018] showed that binocular disparity affects perceived simultaneous density contrast

where center and surround dots of a texture are presented at different disparities. They

showed that simultaneous density contrast was reduced with larger plane separation or

larger volumes.

Another variable that has been studied in density estimation is luminance. In non-

overlapping stimuli, Ross and Burr [2010] showed that perceived numerosity varied in-

versely with luminance, whereas perceived 2-D texture density did not. Tibber et al. [2012]

found that varying the luminance contrast, had no effect on numerosity and density dis-

crimination in 2-D. For overlapping surfaces presented with motion and with or without

disparities, Schütz [2012] showed that the bias to see the back plane as more numerous

was reduced when the front and back surfaces were assigned opposite contrast i.e. black or

white dots on a gray background. This was presumably because it was easier to segment

the front and back when they had different luminance than when they had the same lu-

minance. However they found no evidence that a luminance difference facilitated density

discrimination, as the JNDs were not affected.

The studies discussed above involved density or number discrimination of scenes

consisting of dots or lines with little or no occlusion. Our study is fundamentally different

in that we examine density discrimination in 3-D clutter in which occlusion effects are
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significant. We varied the amount of occlusion of surfaces in the 3-D clutter by manipu-

lating both the size and density of the surfaces. The scenes were presented monocularly.

However, a static monocular view of 3-D clutter yields only a weak percept of 3-D vol-

ume. To provide richer depth cues, we rotated each scene back and forth by a small angle.

This gave a strong kinetic depth effect, and the dynamic occlusion cues typically provided

enough information to resolve the two-fold rotation ambiguity.

Our goal was to examine the effects of occlusion when comparing the density in two

halves of a cluttered volume. A brief overview of the experiments is as follows. Experi-

ments 1 and 2 measure performance in discriminating density in the front and back halves

of a cluttered volume. Experiment 1 uses black and white surfaces only, and Experiment 2

uses a luminance gradient namely a depth-luminance covariance. The black-white repre-

sentation in Experiment 1 is similar to many 2-D texture studies and to layer studies such

as Schütz [2012], except that they used two planes rather than two volume halves. The lu-

minance gradient in Experiment 2 is similar to what we used in our previous work where

we examined depth discrimination [Scaccia and Langer, 2018]. Experiment 2 allows us to

compare performance in two types of luminance variation.

Experiments 3 and 4 examine how well observers can discriminate density in the left

versus right halves of a volume. Both Experiments 3 and 4 use black and white surfaces.

Experiments 3 and 4 were done to establish a baseline since the left-right task should be

easier than the front-back task, as we argue below. They also allow us to probe whether

observers use similar strategies in the front-back and left-right tasks, by comparing how

the performance varies over scene parameters in the two different tasks.

79



We also present results for a model observer that counts pixels that correspond to

visible surfaces in the two halves, and that compares the number of pixels or ‘image occu-

pancy’ of the two halves. Our motivation for studying this model observer was two-fold.

First, we wanted to understand the information that is available for doing that version of

the task – namely a pixel level comparison of the two halves, rather than a surface density

comparison. In particular, we wanted to understand how (if at all) this information varied

between density and area conditions of our experiment. Second, we wanted to compare

results of the human and model observers to see if human observers performance followed

that of the model observers, which could indicate that human observers might be influ-

enced by this image occupancy information.

4.2 Method

4.2.1 Subjects

Ten subjects participated in Experiments 1 to 3, with ages ranging from 19 to 71.

The order of experiments 1 to 3 was randomized for each subject. Experiment 4 was

run with six new subjects ages 19 to 61. Each subject was paid $10. Subjects had little

or no experience with psychophysics experiments and were unaware of the purpose of

the experiments. Each had normal or corrected-to-normal vision. Informed consent was

obtained using the guidelines of the McGill Research Ethics Board which is consistent

with the Declaration of Helsinki.

4.2.2 Apparatus

Images were rendered using OpenGL (Khronos Group, Beaverton, OR) and were dis-

played using a Dell Precision T7610 workstation (Dell, Round Rock, TX) with an NVIDIA

Quadro K4000 graphics card (NVidia, Santa Clara, CA). A 27-inch Apple monitor was
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used (Apple, Cupertino, CA). The display was gamma-corrected so that the displayed

luminance values were proportional to the rendered gray level values.

4.2.3 Stimuli

The clutter in each scene consisted of a set of squares which were positioned and

oriented randomly within two halves of a sphere of fixed diameter 24 cm. Each scene was

defined by a mean density η, namely the number of surfaces per cm3, and the area A of

each surface. The total number of surfaces in each scene was N = ηV , where V is the fixed

volume of the sphere. The value N was rounded to the nearest integer. See Table 4–1 for

the values of η, A, and N that were used in the different conditions of the experiments.

The values of η and A in Table 4–1 were chosen such that their product

λ ≡ ηA (4.1)

is constant within each column and increases from left to right. The parameter λ is called

the occlusion factor [Langer and Mannan, 2012]. It is the expected total area of the sur-

faces in the clutter per cm3. The greater the value of λ, the more occlusions tend to occur.

λ = 0.02 λ = 0.04 λ = 0.08

η = 0.06, A = 0.33, N= 434 η = 0.06, A = 0.67, N= 434 η = 0.12, A = 0.67, N= 869

η = 0.08, A = 0.25, N= 579 η = 0.12, A = 0.33, N= 869 η = 0.16, A = 0.5, N= 1158

η = 0.12, A = 0.17, N= 869 η = 0.24, A = 0.17, N= 1737 η = 0.24, A = 0.33, N= 1737
Table 4–1: The 3× 3 table shows values of mean density η, area A, and number N of
surfaces for stimuli in our experiments. The occlusion factor λ = ηA is constant in each
column and increases from left to right. The area A is constant on the main diagonal and
increases on the cross diagonal. The mean density η is constant on the cross-diagonal and
increases on the main diagonal.
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Note that the area A decreases and mean density η increases as one goes down each col-

umn of Table 4–1, and these variations exactly cancel to keep λ constant in each column.

Also, the mean density η increases and area A is constant on the main diagonal (top left

to bottom right), and area increases and mean density is constant on the cross-diagonal

(bottom left to top right). These variations in λ,η and A will be indicated by three arrows

in subsequent figures. 1

Our experiments measure how well observers can discriminate the density of surfaces

in the front versus back halves and the left versus right halves. The levels of Δη in the two

halves were chosen separately for each mean density value η, namely we defined nine

density difference levels:

Δη = {0,±η
4
,±η

2
,±3η

4
,±η}. (4.2)

Thus the density of the two halves of each scene was η± Δη
2 . Examples will be shown

later in Figure 4–2.

We next consider the image formation model. Each cluttered scene sphere was ren-

dered using perspective projection. The minimum and maximum depths of the clutter

were defined to be at Z0 = 58 and Zmax = 82 cm from the virtual subject’s position, that

is, the center of projection. This depth range corresponds to the diameter of the sphere.

1 Note the range of values of density and areas is larger in the central column, namely
a factor of 4 instead of a factor of 2 range. A slightly cleaner design would have had
(η = .08,A = 0.5,N = 579) and (η = .18,A = 0.25,N = 1158) in the top and bottom
elements of the middle column. This would have yielded a gradual change in all the
parameters within the top and bottom rows as well.
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The projection plane or display screen was defined at Zmid = 70 cm which was the center

depth of the sphere. Perspective effects were present, but were relatively weak since many

surfaces were partly occluded and so there was large variation in image sizes of visible

portions of the surfaces.

Scenes were rotated back and forth about the X-axis with an amplitude of 10 degrees

and a rotational velocity of ±10 degrees per second. Each stimulus was presented for four

seconds, namely two periods of motion. The motion gave a strong kinetic depth effect.

Moreover, dynamic occlusions between surfaces typically specified their ordinal depth,

and so there was less of a tendency for depth reversals than what one typically has in

3-D cluttered scenes, namely if one uses small random dots. The motion may also help

segment the front and back halves because the rotation yields opposite motion directions

in the front versus back halves.

In Experiments 1 and 2, the observer’s task was to indicate whether the front or back

half was more dense. In Experiment 1, the squares in the front half had a different color

than squares in the back half (black versus white). WB means white for the front half

and black for the back half, and BW means black for the front and white for the back.

We did not expect a difference between the WB and BW conditions, based on [Schütz,

2012] and [Tibber et al., 2012], but we included the two conditions just to be sure. Figure

4–1 shows examples of WB conditions. The different density and area combinations in

the figure correspond to the entries in Table 4–1. Figure 4–2 (a) shows examples of the

Experiment 1 stimuli for different densities in the two halves. Specifically, the four rows

illustrate density differences Δη =±η
2 ,±η for each of the four Experiments.
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Figure 4–1: Example stimuli for Experiments 1 and 3 (front-back and left-right, WB) at
level Δη = 0. The 3× 3 layout corresponds to Table 4–1. The arrows indicate the direction
in which the variables A,η,λ increase.
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In Experiment 2, we chose the luminance of the squares to vary continuously with

depth Z. For negative depth-luminance covariance (DLC-), the luminance was chosen to

be proportional to ( Zmax−Z
Zmax−Z0

)3, where Z was the depth (cm) of the center of the square,

Z0 and Zmax were the near and far limits of the clutter, as defined earlier. We chose this

power law based on a simple Y
1
3 approximation to the CIELUV’s luminance factor, so that

equal steps in normalized depth Zmax−Z
Zmax−Z0

in [0,1] would have roughly equal steps in bright-

ness (perceived luminance). Similarly, for positive depth-luminance covariance (DLC+),

we chose luminance to be proportional to ( Z−Z0
Zmax−Z0

)3. We used a green background for

Experiment 2 so that subjects could more easily distinguish between the surfaces and the

background. Figure 4–2 (b) shows examples of the Experiment 2 stimuli.

Note that in Experiment 2, surfaces that are near the middle depth all have roughly

the same luminance, regardless of whether they fall in the front half or back half. Thus, it

is inherently difficult from the luminance information to decide if such surfaces belong to

one half versus the other. Although the rotational motion cue provides some information

for segmenting the front and back halves, this motion information is also weakest for

surfaces near the middle depth of the volume, as these surfaces hardly move. For both

of these reasons, for Experiment 2, observers must base their front-back judgment more

on surfaces that are well short of or well beyond the middle depth. Since there is less

information available in Experiment 2, we expect the Experiment 2 task to be more difficult

and performance to be worse than in the Experiment 1 task where surfaces in the two

halves are either white or black. As we will see later, performance was indeed worse for

Experiment 2.
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In Experiments 3 and 4, the observer’s task was to indicate whether the left or right

half of the clutter was more dense. The performance in this task gave us a baseline against

which to compare the front-back performance, and also allowed us to compare human

performance to that of a model observer who used the simple strategy of counting pixels

that correspond to visible surfaces in the two halves. In Experiment 3, the surfaces in

the front and back were WB and BW as in Experiment 1, but now the density was varied

between the left and right halves. In Experiment 4, surfaces on the left and right were white

and black (WB), respectively, or vice-versa (BW). Experiment 4 was added to test whether

having black and white on the left and right halves would give different performance from

having black and white on the front and back halves as in Experiment 3. See Figure 4–2

(c) and (d) for examples of Experiments 3 and 4 stimuli.

The WB and BW scenes in Experiments 1, 3, and 4 were presented on a gray (0.5,

0.5, 0.5) background. The luminance gradient scenes in Experiment 2 were presented on a

green background, which had the same Y value as the gray background. See the Appendix

in Scaccia and Langer [2018] for more details on display calibration and linearization.
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Figure 4–2: Examples of stimuli for Experiments 1-4 at levels Δη = ±η
2 ,±η. In each

case, the values of density η and area A correspond to the middle condition in Table 4–1.

87



4.2.4 Design

Our independent variables within each experiment were area A and density η and

their product λ, and the sign of luminance variation across the volume (WB/BW or DLC-

/DLC+). For each of the four experiments and for each combination of independent vari-

ables the stimulus levels Δη from trial to trial were chosen using a staircase procedure.

We used a 1-up/1-down staircase with the nine stimulus levels Δη which were described

above in Equation 4.2. The staircases targeted a proportion of choosing each of the two

halves in 50% of the trials, i.e. the point of subjective equality (PSE). For each of the

four experiments, the staircases for the different conditions were randomly interleaved.

Each staircase began at a randomly chosen Δη level from the set of nine levels and then

terminated after fourteen reversals.

Our dependent variables were bias α, slope β and derived quantities JND and Weber

fraction, which were defined as follows. Each staircase yielded the fraction of trials in

which the subject chose the front half in Experiments 1 and 2 or right half in Experiments

3 and 4 as being more dense. We used the Palamedes toolbox [Prins and Kingdom, 2018]

to fit a logistic function to these fractions

p(x;α,β) =
1

1+ exp(−β(x−α))

where x is one of the nine density difference levels Δη, α is the bias, and β is the slope.

We defined the just noticeable difference (JND) of density in the two halves to be

value of x−α such that x is the 75% threshold for choosing front or right, so JND ≡
ln(3)

β . We then measured the density discrimination performance in terms of the following
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quantity:
JND
η+ α

2
(4.3)

which we will refer to as a Weber fraction. For the front-back task, the denominator η+ α
2

is the density of the front half at the point of subjective equality (PSE) since, when Δη=α,

the front and back half densities are η+ α
2 and η− α

2 respectively. We used this density of

the front half at the PSE as an estimate of the observer’s perceived mean density, reasoning

that the perceived density should be more reliable for the front half than the back half since

the surfaces in the front are more visible. The Weber fraction is then the JND between the

densities of the two halves, relative to the perceived mean density. Note that for the left-

right task there is no bias and so the perceived mean is identical to the true mean in that

case, and so the Weber fraction would simply be JND
η .

4.2.5 Procedure

Subjects were seated so that their eye position was 70 cm directly in front of the

screen, which corresponded to the virtual viewing position used in the rendering. The

height of each subject’s seat was adjusted so that the subject’s eye would be roughly the

same height as the center of the screen. We did not use a chin rest, so some slight variability

in subject position was allowed. Subjects viewed the stimuli monocularly through the

dominant eye. The non-dominant eye was covered with an eye-patch.

In Experiments 1 and 2, subjects responded by pressing the up or down arrow key

to choose back or front half as denser, respectively. In Experiments 3 and 4, subjects

responded by pressing either the left or right arrow keys to choose the left or right half

as denser. Response time was limited to the four second duration of the stimulus. If the

subject did not respond in some trial, then a random choice was made and a red X would
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show on the screen. There was a rest period after every 100 trials for as long as the subject

wanted. Prior to the experiments, subjects were given a practice session where they viewed

ten trials from each experiment. This was done to ensure they were comfortable with the

task and answering within four seconds. Each of the four experiments typically lasted

around fifteen minutes. For the subjects that ran Experiment 1-3, these experiments were

run in random order.

4.3 Results

For Experiments 1 and 2, we ran two-way repeated measures ANOVAs for bias and

Weber fractions to test the effects of the occlusion factor λ, density η, area A, and the sign

and type of luminance variation. For Experiments 3 and 4, we ran one-way ANOVAs for

each of them rather than two-way ANOVAs that combined them, because these experi-

ments had a different number and different set of subjects.

For all experiments, we found that the sign of the luminance variation had no ef-

fect. Therefore we do not report this factor. Instead we pool these conditions within each

experiment. The lack of effect from sign of depth-luminance covariance is not entirely

surprising, since this information specifies the ordinal depth of the two halves from the

occlusions [Scaccia and Langer, 2018]. Although this information helps to segment the

two halves [Schütz, 2012], this segmentation information is roughly the same for the two

signs.

For all the statistical tests, we report exact p values except if p values are very small.

A p value smaller than 0.05 is considered to be significant.
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4.3.1 Experiments 1 and 2 (front-back)

Figure 4–3 shows the mean of the biases α in Experiments 1 and 2 (front-back).

There was a strong main effect for the occlusion factor λ (F(2,174) = 59.11, p < 10−19),

namely a back bias (α > 0) for small λ, a near-zero bias for the middle λ, and a front

bias (α < 0) for large λ. There was also a main effect for the type of luminance variation

(F(1,174) = 14.64, p < 10−3) with a more negative mean bias for Experiment 2 than

Experiment 1, i.e. a greater bias to see the front as denser for Experiment 2 than for

Experiment 1. There was also an interaction between the factors of λ and the type of

luminance variation (F(2,174) = 4.28, p = 0.015).

To gain some insight into how the biases depend on the occlusion factor λ, we con-

sider image occupancy fractions, that is, the fraction of the pixels that correspond to sur-

faces in each half. Figure 4–4 (a) shows mean image occupancy fractions for the nine

conditions of Table 4–1, specifically for the case of uniform density i.e. Δη = 0. For each

experiment and within each condition, there is little variation in these values from scene

to scene. The error bars show the standard deviations multiplied by 10 to better illustrate

their relative magnitudes.

Within each row of Figure 4–4 (a), the means of front and back image occupancy

fractions each increase with λ, and the difference between the means increases as well.

Another way to view this trend in the image occupancy of the two halves is to let Δη vary

instead of just taking Δη = 0, and to ask the question: what would Δη need to be for the

two halves to have the same image occupancy? The answer depends on the occlusion

factor: for a larger occlusion factor λ, the density difference Δη would need to be more

negative. This effect is illustrated in Figure 4–3 by the black horizontal lines which show
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Figure 4–3: Biases α for human observers in Experiments 1 and 2. The nine plots cor-
respond to the conditions in Table 4–1. Error bars indicate standard error of the mean.
The gray lines indicate the Δη levels in Equation 4.2 which were the levels used in the
experiment. The black lines indicate the Δη levels for which the mean number of pixels of
front and back halves are equal. As we discuss later, these levels correspond to thresholds
τ of a model observer that compares the image occupancies of the two halves.
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Figure 4–4: Mean image occupancy of (a) front and back halves for Experiments 1 and 2,
and (b) left and right halves for Experiments 3 and 4, for each of the nine conditions of
Table 4–1 and for equal density in the two halves (Δη = 0). The means are over 10,000
scenes. Occupancy is defined by the number of pixels of the corresponding front, back,
left or right half sphere, divided by the number of pixels occupied by the image projection
of the spherical bounding volume. Error bars show the standard deviation (not standard
error) multiplied by a factor of 10 to better illustrate their relative magnitudes.
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the level of density difference Δη that would yield equal image occupancy for the front

and back halves for each of the conditions. Note how these Δη values decrease as the

occlusion factor λ increases.

Interestingly, the observer biases α follow a similar trend. However, there is a crucial

difference between these two trends, namely the observer biases are shifted relative to the

density differences that give equal occupancy. In particular, the observer biases are closer

to zero. This implies that observers are not merely judging the relative image occupancy

of the two halves or the relative density of visible surfaces in the two halves, but rather they

are judging the relative density of surfaces in the scene and taking account of the occlusion

effects, albeit with a bias that depends on the amount of occlusion.

As the ANOVAs showed above, luminance type (Experiment 1 versus 2) affected bias

as well. There was a main effect for this factor and there was also an interaction between

luminance type and occlusion factor λ. Such effects are not surprising since the task in

Experiment 2 is inherently more difficult than in Experiment 1, as discussed earlier in

the Stimuli section, and the task is even more difficult when λ is larger. Observers may

change their bias when the task is more difficult, and possibly rely more on perceived

image occupancy than on perceived density in that case.

Figure 4–5 shows the means of the Weber fractions (recall Equation 4.3) for all four

experiments. For Experiments 1 and 2, the occlusion factor λ effect was near significant

(F(1,174) = 2.78, p= 0.057) with Weber fractions decreasing as λ increased. There was a

strong main effect for the type of luminance variation (F(2,174) = 17.71, p < 10−4), with

greater Weber fractions for Experiment 2 (DLC) than Experiment 1 (WB). The greater
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Weber fractions in Experiment 2 is not surprising because the task in Experiment 2 is

inherently more difficult.

To explore the effect of the occlusion factor λ, we examined specific combinations

of density η and area A. There was a main effect for changes in density along the main

diagonal conditions (F(2,54) = 6.34, p = 0.003) and again a main effect for the type of

luminance (Experiment 1 vs. 2) (F(1,54) = 7.18, p= 0.009). On the cross diagonal, there

was no main effect from changes in area (F(2,54) = 0.87, p = 0.42), but there was again

a main effect for the type of luminance (F(2,54) = 8.78, p = 0.004). There was also a

main effect within columns (F(2,174) = 8.1, p < 10−3), with lower Weber fraction as we

move down each column where density increases and area decreases, as well as type of

luminance effect (F(1,174) = 18.8, p < 10−4). This result is consistent with the result

on the main diagonal where density had an effect. We conclude that the near-significant

Weber fraction effect of the occlusion factor λ in both Experiments 1 and 2 was primarily

due to a strong density effect, not to occlusion per se. We will discuss these results further

in the Discussion section.

4.3.2 Experiments 3 and 4 (left-right)

In Experiments 3 and 4, the task was to discriminate density for the left and right

halves (see Figure 4–2 c, d). The left-right biases were all close to zero as expected, and

so we do not show them in Figure 4–3.

For the Weber fractions, we ran one-way ANOVAs for Experiments 3 and 4, as they

had a different number and different set of subjects. There was no significant effect for the

occlusion factor λ, neither for Experiment 3 (F(2,87) = 2.55, p = 0.08) nor for Experi-

ment 4, (F(2,51) = 1.8, p = 0.18). However, there was a strong main effect for density
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(on the main diagonal where area was fixed and density varied) for both Experiment 3

(F(2,27) = 24.3, p < 10−6) and for Experiment 4, (F(2,15) = 10.9, p = 0.001). There

was a weaker but still significant effect of area (on the cross diagonal where density was

fixed and area varied) both for Experiment 3 (F(2,27) = 5.24, p = 0.01) and Experiment 4

(F(2,15) = 7.6, p = 0.005). The density and area effects were in opposite direction, with

Weber fractions decreasing as density increased, and Weber fractions increasing as area

increased. These opposing effects might be the reason why there was no significant effect

from the occlusion factor λ which is the product of density and area. There was also a

main effect within columns, both for Experiment 3 (F(2,87) = 14.62, p < 10−5) and Ex-

periment 4 (F(2,51) = 35.5, p < 10−9), namely Weber fractions decrease moving down

each column of Table 4–1 as density increases and area decreases. This is consistent with

the density and area results found on the main and cross diagonals, respectively, namely

that Weber fractions increased as density increased and as area decreased.

We compared Weber fractions for Experiment 3 versus Experiment 4 using a t-test.

Recall that Experiment 3 had black and white separated in the front and back and Ex-

periment 4 had black and white separated in the left and right halves. We suspected that

Experiment 4 would be easier since subjects would not need to disentangle white versus

black in each half. However, a one tailed t-test on the signed differences of the Weber

fractions showed no significant difference (t = 0.81, p = 0.22).

Finally, we compared Weber fractions for Experiments 1 versus 3. This is an in-

teresting and important comparison because the stimuli for the Δη = 0 level in the two

experiments were the same. The crucial difference between the two is how observers deal

with the more challenging occlusion effects in the front-back task versus the left-right

96



task. In particular, we expected performance to be worse in Experiment 1 since observers

need to account for the different image occupancies of the front versus back which are

due to occlusion, whereas in Experiment 3 (and Experiment 4) observers could perform

the left versus right task in principle by just comparing the overall image occupancy in the

two halves. A one-tailed t-test indeed showed that Weber fractions were much higher for

Experiment 1 than Experiment 3 (t = 6.95, p < 10−6).
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Figure 4–5: Mean Weber fractions for human observers for all four experiments. The nine
plots correspond to the conditions in Table 4–1. Error bars show standard error of the
mean.
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4.3.3 Model observers

To gain more insight into the effect of occlusions on the difficulty of the task, we

present model observers that only compare the image occupancy of the two halves. We

assume that the model observer in each condition is unbiased (α = 0), namely it knows the

expected difference in pixel counts in the two halves. We refer to this expected difference

in each condition as τ. We define the front-back model observers to respond ‘front’ when

the number of front pixels exceeds the number of back pixels by this threshold τ. We

computed τ for each condition in advance, namely it was the mean difference in the number

of pixels from visible front versus back surfaces over 10,000 scenes for that condition and

for the Δη= 0 level. These τ values were computed using the data in Figure 4–4(a), and the

density differences that correspond to the τ values are plotted as black lines in Figure 4–3.

Similarly, the left-right model observers compare the number of pixels corresponding to

surfaces in the left and right halves. In this case the expected difference for the two halves

is zero (τ = 0).

Before we discuss the performance of the model observers, we examine the data in

Figure 4–4 (a). Within each of the three columns of Figure 4–4 (a), the mean image oc-

cupancy of the front half and back half is roughly constant. This is because the expected

value of the number of the image occupancy of the front and back depends only on the oc-

clusion factor λ, which is constant within each column. However, the standard deviations

of image occupancy are not constant within each column but rather they decrease from the

top to bottom, typically by over 30%. The reason is that having a larger number of smaller

surfaces drives the pixel counts of front and back surfaces to be closer to their expected

values. (A similar effect was described in Figure 3 of Langer and Mannan [2012].) It
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follows that the mean difference in the number of pixels of the front and back also will be

constant within each column, and the standard deviations of the front-back difference will

decrease from top to bottom within each column as well. Similarly, for Figure 4–4 (b), the

means for left versus right are the same within each column, but again the standard devia-

tion decreases moving down each column, and so the standard deviations of the difference

will decrease moving down each column. Based on these observations about the standard

deviations, we predicted that the model observer should be more sensitive to density dif-

ferences moving down each column, both for the front-back task and the left-right task.

We will see below that this prediction holds.

Another factor that affects the variation in the visible number of each half is the mo-

tion in the stimuli. Recall that in each trial, the stimulus is not just a static image, but rather

it is a sequence of images i.e. the clutter rotates. Having a sequence of images increases

the chances that any surface point will be visible at some frame during the sequence. To

explore this factor, we compared performance of model observers that used a single frame

to model observers that used multiple frames. The idea is that, by averaging the counts of

the two halves over multiple frames, the model observer can reduce the variance (or stan-

dard deviation) in the pixel counts in the two halves and improve its performance. This

is similar to how human observers can perform the task more easily with rotation present

than with only a static image, as the rotation creates dynamic occlusions which help the

human observer resolve the depth reversal ambiguity.

We compared the Weber fractions of a model observer that used just one frame cor-

responding to 0 degrees rotation with a model observer that used three frames, namely, 0

degrees and ±5 degrees rotation about the X-axis. Using a similar method as in Figure
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4–4, we found that the standard deviations for the image occupancies for each half of the

sphere and for each condition were reduced by approximately 40% in each condition for

three-frame observers relative to the one frame observers. We predicted that these reduced

standard deviations in the image occupancy relative to the fixed differences in the mean

image occupancies would decrease the model observer’s Weber fraction.

Although the model observers only count pixels in the two halves in each frame, these

counts are precise and they turn out to be sufficient for performing the task quite well. To

measure exactly how well, we used a much more refined Δη range for the model observer

experiments. We defined density difference levels for the model observer, by dividing each

of the human observer’s stimulus levels by 10, so the model observer’s levels were

Δη = η f −ηb = {0,± η
40

,±2η
40

,±3η
40

,±4η
40

}.

For each of the conditions of Experiments 1 and 4, we ran model observers on 100 stair-

cases and fit psychometric functions to each staircase.

Figure 4–6 shows the mean of the model observer Weber fractions for the front-

back task (white bars) and the left-right task (black bars). Two observations can be made,

and both follow the predictions above. First, for each column of Figure 4–6, the Weber

fractions indeed decrease as we move down the column. The reason is that when density

η is larger and area A is smaller, there is less variability in the number of front pixels and

back pixels for each condition and so the observer can detect more reliably whether the

difference in front versus back pixel counts is greater than the expected value τ of that

difference. Second, the three frame model observer had lower Weber fractions than the

one frame model observer. Thus, although the rotational motion itself (i.e. the image
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velocities of the surfaces) was not used by the model observer, the motion information did

provide a significant benefit to the model observer, namely by providing more samples for

comparing pixel counts in the two halves.

Finally, the model observer also shows a density effect on main diagonal and an area

effect on cross diagonal. The model observer has no notion of the individual surfaces in the

stimuli. The effects from density and area are due to the occlusion effects just discussed.
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Figure 4–6: Mean Weber fractions for model observers using 1-frame and 3-frame for
front-back and left-right tasks. The nine plots correspond to the conditions in Table 4–1.
Error bars shows standard error of the mean.
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4.4 Discussion

4.4.1 Comparison between human and model observers

We have compared the human observer biases to the model observer parameters in

the Results section, and so we concentrate our discussion here only on the Weber frac-

tions. For the front-back task, Weber fractions for the human and model observers de-

creased moving down each column of the 3 × 3 plots. For model observers, this trend

was explained by a reduced variability in the pixel counts of front and back. For human

observers, the decrease in the Weber fractions was mainly due to density. This density

effect has been shown previously by Anobile and colleagues, namely Weber fractions for

density decrease as density increases. One might have expected an area effect as well,

since increasing the area and holding density fixed creates more occlusions which should

make the task more difficult because the deeper surfaces would be less visible. However,

we did not find an area effect. The reason may be that varying area has a second occlusion

effect that works in the opposite direction. While occlusions typically resolve the depth

reversal ambiguity, they do not always do so: in particular, depth reversals are more likely

to occur when the area of elements is small than when their area is large, that is, when

there are fewer occlusions. When a depth reversal does occur, it tends to produce an in-

correct response and so it follows that the depth reversals tend to produce more incorrect

responses when the area of the elements is smaller. As the two occlusion effects work in

opposite directions, we would expect these effects to partly cancel out – at least for the

front-back task where depth reversals lead to incorrect responses.

For the left-right task, Weber fractions decreased moving down each column of the

3× 3 plots, both for model and human observers. For model observers, this trend was
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explained by a reduced variability in the pixel counts of each half. For human observers,

pixel count variability is unlikely to have played a role since it requires a precision in es-

timating image occupancy of the left and right halves that is presumably far greater than

what humans are capable of. Rather, human observers seemed to show effects for both

density and area, with a stronger main effect for density than for area. Weber fractions

decreased with density which has been shown before by Anobile and colleagues. We-

ber fractions increased with area, with density held fixed, presumably because occlusions

interfered with the visibility of deeper surfaces, as discussed above. Note that in the left-

right task, the depth reversals can also occur when the area of the elements is smaller but

these would not lead systematically to incorrect responses, unlike for the front-back task.

A key difference between the human and model observers is that the model observers

have roughly the same Weber fraction for the front-back task as for the left-right task

within each of the nine conditions, whereas the human observer Weber fractions are larger

for the front-back task than for the left-right task. One reason is presumably that the

model observer knows the expected difference in image occupancy for the two halves in

each condition, whereas the human observer does not. (Recall that the staircases for all

the different conditions were randomly interleaved.) In the front-back tasks, in particular,

human observers not only have to assign the bright and dark luminances to the front and

the back halves, but they also need to compare their densities to some internal standard that

takes account of occlusions. Since there must be some uncertainty in what this internal

standard should be on each trial in the front-back task, human observers naturally perform

worse in this task than in the left-right task.
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Finally, we saw that the single-frame model observers had higher Weber fractions

than the multiple frame model observers. We did not run our experiment on single frame

stimuli for the human observers. The reason is that the one frame task is too difficult. As

one can see by the single frame examples in Figure 4–1, even the front-back ordering can

sometimes be difficult to discern, especially at the lowest values of the occlusion factor λ.

4.4.2 Comparison with previous work

Previous studies used a variety of parameters, including intrinsic parameters such as

the density and area of the elements, and extrinsic parameters such as the overall area of

the stimulus, the number of elements, and eccentricity.

With regard to the front versus back biases, our back bias finding with small occlusion

factor λ was consistent with the back bias found in studies with depth layers [Tsirlin et al.,

2012, Schütz, 2012, Aida et al., 2015]. These studies used a range of parameters and

typically did not allow occlusions. For example, Schütz [2012] used a 2-D density range

of 0.25-2 dots/deg2, an N range of about 20-150 dots, and a fixed 10 degrees diameter

stimulus. Tsirlin et al. [2012] used a fixed density of about 20 dots/deg2, 3000 dots, and

a fixed stimulus size of about 13× 13 degrees. For our stimuli, the density range was

approximately from 1.5 to 6 squares/deg2. Our smallest number of elements was 434 and

our largest was 1737, and the circle bounding our volume had a diameter of 20 degrees.

These values are thus in a similar range as studies above. This suggests that the back bias

is robust to differences in densities, number of elements, and size of stimulus, as well as

differences to the arrangement of the 3-D stimulus (layers or volume), at least when the

amount of occlusion is low.
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Regarding Weber fractions, we found them to decrease as density increased for both

front-back and left-right human observers. We compare our results to Anobile et al. [2014]

who were the first to show how Weber fractions varied with density. Using patches that

were centered 13 degrees left and right of fixation and densities ranging from 0.02 to 4

dots/deg2, they found constant Weber fractions for lower densities and decreasing Weber

fractions for higher densities, where the switch occurred at about 0.2 dots/deg2, depend-

ing on patch area. Anobile et al. [2015] subsequently showed that the switching point

from constant to decreasing Weber fractions depends on eccentricity. For example, using

centrally-presented patches of diameter 8 degrees and presented in sequence, they found

that the switch from constant to decreasing Weber fractions occurred at much higher den-

sities, namely about 2 dots/deg2, and that the switching point decreased when the patches

were presented more peripherally. Our stimuli had diameter of 20 degrees and we did

not control eye movements, and so they are a mix of central and peripheral presentation.

Moreover, while our mean 2-D densities varied from 1.5-6 elements/deg2, our 2-D densi-

ties varied within each stimulus, namely greatest at the center of the projected sphere and

diminishing to zero at the circular edge. Overall though, our 2-D densities and eccentrici-

ties were in the range that was similar to where Anobile and colleagues found decreasing

Weber fractions as density increased, and so our results on decreasing Weber fractions are

consistent with their findings.

As for comparing to previous work on luminance, our stimuli used a combination of

bright and dark elements on a gray background, whereas Ross and Burr [2010] used equi-

luminant dots on a black background. They found that perceived numerosity increases
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with decreasing luminance, but perceived density does not. There was no obvious com-

parison to make because of the differences in stimuli between ours and theirs. Tibber et al.

[2012] varied the luminance so that one patch had twice the contrast of the other, and they

used a gray background. They did not find that such luminance variations affected density

sensitivity. Our results were consistent with this finding.

4.5 Conclusion

Our results provide new insights into the perception of density of 3-D clutter. Most

previous studies ignored occlusion effects, whereas our study addressed occlusion effects

directly. The biases that we found depended on the level of occlusion. The bias to see

the back as more dense in our low occlusion scenes was consistent with previous findings,

which shows that the back bias previously found for overlaid planes with no occlusions

extends to volumes with a low occlusion factor λ. The bias crossed over to the front when

occlusion was higher. This dependence of bias on the level of occlusion has not been

previously reported. We also found that these front and back biases did not depend on the

density η and the area A of the elements per se, but rather they depended on the product of

these two variables, namely the occlusion factor. Finally, we found that the biases roughly

followed the difference in image occupancy: as the occlusion factor increased, there was

a greater bias to see the front as more dense, and this bias roughly followed the difference

in occupancy of the front and back surfaces.

We used several cues to help observers perceive the relative depth of surfaces in the

clutter in the presence of occlusions. We used rotating 3-D clutter rather than static clut-

ter so that the rotation would provide a strong kinetic depth effect, and the occlusions

generally resolved the two-fold ambiguity in the rotation direction, especially with larger
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occlusion levels. The motion also provided a cue for density discrimination, namely it

provided multiple views of the volume which revealed more points that were deeper in

the volume. The rotation may also have helped observers segment the surfaces into front

and back halves since the rotation yields opposite motion directions in front versus back

halves. We also used differences in luminance in the two halves to help observers to per-

ceptually segment the front and back halves of the 3-D clutter. For the front-back task

in particular, we compared a white-black luminance condition versus a depth-luminance

covariance condition. Using black and white in the two halves reduced the front bias and

also increased the sensitivity to density differences, in particular, it decreased the Weber

fractions overall.

We found differences in Weber fractions for the front-back versus left-right tasks. For

the front-back task, Weber fractions decreased when density increased which is consistent

with previous studies. However, the area of the elements of the clutter did not seem to have

an effect. We believe this is because increasing the area leads to two competing effects.

On the one hand, it creates more occlusions which makes the task more difficult because

the back half is less visible, but on the other hand it also reduces the likelihood of depth

reversals and this reduced likelihood of errors makes the task easier. Future work could

address the trade-off of these two competing effects. Note that, for the left-right task, a

depth reversal would itself not lead to an error, and so the only area effect for the left-right

task should be that an increase in area leads to more occlusions which should make the

task more difficult. This would explain why human Weber fractions for the left-right task

increased when area increased.
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In sum, we have seen that human observers use a combination of image cues to dis-

criminate density in 3-D clutter. The effects we found for bias generalize previous results,

and the effects we found for sensitivity (Weber fractions) seems to be consistent with what

has been found for 2-D stimuli in previous studies, where occlusions were not studied. In

3-D clutter the combination of cues is more complicated because the density cues interact

with other cues that are present, in particular, the area and the occlusion factor which is

the product of density and area. One interesting topic for future work is how and why the

Weber fraction varies with combinations of variables. One could also address these effects

with different distributions of clutter and with different viewing conditions as well, for

example, with motion parallax and stereo. There may be a subtle interplay between these

variables, and it would be interesting to explore observer’s strategies to deal with these

subtleties in different tasks and over different ranges of scene and viewing parameters.
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CHAPTER 5

Discussion and Conclusion

The stimuli we explored in the thesis had simple distributions of clutter. In Chapter 3,

the volume had clutter that was uniformly distributed. In Chapter 4, the clutter in each half

of the volume was uniformly distributed but with different densities. In Section 5.1, we

describe more complex distributions of clutter such as clumped clutter that we explored

in our trajectory but remain topics of future work. We describe possible future directions

for depth and density discrimination of clumped clutter. In Section 5.2, we also describe

different depth-luminance models we attempted to study. In Section 5.3, we summarize

the main results of the thesis work and conclude.

5.1 Future work: Perception of Clumped 3-D Clutter

There exist applications that present the challenging situation of non-uniform clutter.

Examples include atoms of a molecule or leaves on a tree where leaves clump together.

Some researchers have modelled clumping phenomena for the foliage case [Nilson, 1971].

One question to explore is: how can human observers use luminance information to

infer the spatial relationships of objects in a clumped cluttered scene? If we consider a

uniform diffuse illumination model i.e. ambient occlusion, we showed in Appendix 2.A,

that for uniform clutter, luminance decreased exponentially with depth and so observers

can use a rule such as “dark-means-deep”. However, in clumped clutter, ambient occlu-

sion would not necessarily exhibit an exponential decrease in luminance throughout the

volume. Depending on the geometry of the scene, it is possible to have a surface that is
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highly occluded and located in a clump that is close to the observer. That surface would be

darker than a surface that is less occluded and located in a further clump. Therefore, on a

global scale, luminance specified by AO may not necessarily be correlated to depth. On a

local scale, if clutter is uniformly distributed within each clump, then luminance correlates

to depth locally. Of course, if we use a DLC function that ignores scene geometry, and

simply shades all surfaces according to their depth in the scene, then luminance correlates

to depth on a global scale. However, it is not clear whether using a luminance cue that

ignores geometry best conveys the clumping properties of the scene.

It would be interesting to show that human observers use a rule that is more so-

phisticated than “dark-means-deep” for clumped cluttered scenes. This would be the

clumped cluttered scene analogue to what was shown in [Langer and Bülthoff, 2000],

that for smooth surfaces rendered under uniform diffuse illumination, the visual system

does not simply discriminate depths based on luminance, but also takes account of surface

normal variations when comparing depths of neighbouring surface points. In order to un-

derstand the spatial relationships of surface elements in clumped clutter, observers would

need to first group surface elements according to the clump they belong to. Second, they

would need to judge the relative depths of the clumps, and third, judge the relative depths

of surfaces within each clump. If luminance cues do not specify the depth relationships,

other cues such as the occlusion relationships between the clumps, binocular disparities,

and motion parallax can help. Another cue worth considering is color or texture. If it is

difficult to see the depths of the clumps relative to one another, or to see where one clump

ends or the other begins, then assigning different colors or textural/material properties to

each clump may help us perceive the distribution of clumps. Such a technique is applied
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in direct volume rendering applications where different materials are assigned different

colors and opacities.

Aside from the depth perception of surfaces in clumped clutter, it would be interesting

to examine how the visual system perceives the clumps themselves within the clutter.

Important applications for detecting clumps in clutter lie in medical imaging, where the

motivation is to find an anomaly within tissue, e.g. a tumor. In foliage-like scenes, a clump

can indicate an object in a tree. A clump-detection experiment would be similar in flavor to

the experiment in Chapter 4, where observers had to detect a spatial change in the clutter.

Possible questions to ask are: how dense should the clump be to be detectable by human

observers? What shading model best shows the clump?

5.2 Other Luminance Models

Another direction for future work is to explore how different luminance models would

affect depth perception. We initially were interested in determining whether luminance

variations caused by surface orientation would affect depth perception. In Appendix 2.A,

we showed that for uniform clutter, the model that considers surface orientation produces

almost the same luminances as the model that does not, and thus had no effect on perfor-

mance. We then attempted to design other experiments that address how arbitrary depth-

luminance models affect depth perception. We considered another type of luminance-

gradient effect where luminance now decreases with distance from a specific point in the

scene, for example, from the middle of the volume. We will call this type of luminance-

gradient effect GLOW. Zavagno [1999] has presented this effect on a 2-D scene where a

luminous mist spreads out from a central area and the background has the same luminance

as the central area. Zavagno et al. reported that neither the central area nor the background
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needed to be at a maximum luminance to be perceived as glowing. Gray centers were also

reported as glowing as long as the background had a relatively high luminance. Also, the

luminance gradient did not need to be linear or continuous for the central area to appear

self-luminous.

Koenderink et al. [2007] explored the GLOW effect in the context of the 3-D visual

light field. A spherical gauge object was introduced into the scene and observers adjusted

its luminance so that it fit with the rest of the scene. This implicitly meant that they

inferred the structure of the light field where three different physical light fields were

used: open sun-light, overcast, and GLOW which had a light source in the center of the

scene. Observers performed well in all scenes except when the gauge object was placed in

a shadowed area of the volume. Observers had trouble detecting cast shadows.

In a 3-D cluttered scene, the occlusions provide ordinal depth information. When

immersed in a light field, the luminances of the occluders provide additional ordinal in-

formation about the occluders. The presence of occluders also reveals the structure of the

light field, as seen in [Koenderink et al., 2007].

We explored GLOW for discriminating the depth of two targets embedded in clutter.

We used the same setup as the experiment in Chapter 3, except we used a sphere instead

of a cube. We found that the way targets are set up for our scenes made it difficult to

discriminate depth. The targets in our experiments are always of equal depth from the

center of the sphere, with some jitter in the X and Y directions. Therefore distance from

the center is almost equivalent for both targets, making their luminance almost equivalent,

as seen in Figure 5–1 (a).
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Figure 5–1: GLOW stimuli. (a) Depth discrimination of two targets with centered GLOW.
(b) Depth discrimination of two virtual light sources.

We explored alternative GLOW stimuli for a depth perception task. For example,

instead of asking observers to discriminate the depth of two shaded targets, we could ask

them to discriminate the depth of two light sources within the clutter. The light sources

could be virtual XYZ-lights such that luminance decreases away from their position, as

shown in Figure 5–1 (b).

Performing the task would require that subjects use information about the global lu-

minance distribution. Occlusions can provide insight on the relative depth of the two

virtual light sources. For example, in Figure 5–1 (b), the further light source has a greater

number of darker squares occluding it than does the closer light source. In Chapter 3, we

showed that occlusions specified the sign of the DLC. We can probably similarly find that

occlusions specify the directions of the GLOW luminance distribution, which would help

infer depth in the scene. This could be another avenue for future work.
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5.3 Conclusion

Our quest to understand the perception of 3-D clutter has led to interesting discoveries

about the roles played by available cues, especially luminance and occlusions. Occlusions

are inherent to 3-D clutter, and provide rich ordinal depth information. We have demon-

strated that this information can be used to determine the sign of the DLC in order to infer

the relative depth of two target surfaces (Chapter 3). This result has also helped observers

resolve the sign of the luminance variation when discriminating the density of the front

and the back halves of a cluttered volume (Chapter 4). We also showed that occlusions

influence the direction of the bias for discriminating the density of the front versus back

of a cluttered volume, where there is a bias to judge the back as denser when occlusion

is low, and the bias crosses over to the front when occlusion is higher. There were also

different effects on sensitivity depending on whether we varied the density or the area of

the elements even if by design both these variations produced the same level of occlusion,

namely Weber fractions decreased with density for both the front-back and left-right tasks

and increased with area for the left-right task.

Evidently, occlusion and luminance cues play vital roles for depth and density dis-

crimination in 3-D clutter. However, there exist scenarios where these cues do not nec-

essarily guide observers to an accurate percept of the scene. For instance, in the depth

discrimination study of Chapter 3, we found that there are subtle interactions between oc-

clusions, color and luminance. When the colors of the targets differ from the distractors,

occlusions do not necessarily help observers infer the sign of the DLC, as there is a prior

for “dark-means-deep” (DLC-). Also, in Chapter 4, we found that for the front-back task,

that there are competing effects between the likelihood of depth reversals and visibility,
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based on the occlusion level. When occlusion is low, a depth reversal is more likely to

occur, but the back elements are more visible. When occlusion is high, depth reversals are

less likely to occur but the back elements are less visible. Also, observers are unaware of

the expected differences in visibility between the front and the back halves for different

levels of occlusion, as this expected value varied with conditions randomly from trial to

trial. This uncertainty could have contributed to the human observer biases.

In the density discrimination tasks of Chapter 4, we had expected human observers

to take advantage of the rich 3-D information provided by the combination of DLC and

motion. Using a luminance cue such as DLC can help resolve any depth order ambiguity.

However, human observers perform better when squares are only black or only white in

each half. Perhaps this is because it is easier to segment the two halves, and human ob-

servers may use motion to obtain more samples of this intensity information from multiple

frames, as done by the model observers.

In conclusion, we have contributed new ideas for understanding the perception of 3-D

clutter. We have shown how observers use the information available from occlusion and

luminance cues for different tasks, namely depth discrimination and density discrimina-

tion tasks in 3-D cluttered scenes. As part of the thesis work, we have also derived an

approximate model for ambient occlusion using a probabilistic model of surface visibil-

ities from occlusions, which we used as a DLC function. We hope that the findings of

this thesis can serve as guidelines for designing perceptually effective renderings of 3-D

clutter, and inspire future research on the perception and visualization of complex 3-D

cluttered scenes.
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APPENDIX A

Gamma Calibration

When displaying stimuli for a psychophysics experiment, it is important that images

are presented as intended. Images produced for a psychophysics experiment may not be

displayed correctly to a monitor because monitors are non-linear with respect to input. We

therefore must gamma-correct the stimuli before displaying them.

In the event that the monitor’s gamma is unknown, or one wishes to verify gamma for

a particular monitor, one may use a visual method or a tool such as a spectroradiometer to

compute a gamma look-up table, as we describe below.

Also, because we use a calibrated monitor for our experiments, it is important that the

brightness setting stay the same each time. This is because changing the brightness setting

might not just scale the brightnesses but may cause a non-linear change, which one would

need to measure in order to correct.

The relationship between the input value of a pixel and the displayed luminance can

be modelled by the power function,

L = Dγ, (A.1)

where L is the displayed luminance, D ∈ [0,1] is the input pixel value, and gamma is

denoted as the positive constant γ > 0. The non-linearity can be corrected by applying the

inverse relationship to the input so that

L = (D
1
γ )γ. (A.2)
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This is known as gamma correction.

Below, we describe how to determine the value of γ either by using visual calibration

which does not require any specialized equipment, or by using a tool (such as a photometer

or spectroradiometer).

Gamma Correction using Visual Calibration

We use visual calibration where two fields are presented side by side [Colombo and

Derrington, 2001]. The right is a patch of pixels for which the voltage can be uniformly

adjusted and the left is a field in which a fraction Q of pixels is set to the maximum voltage

(white, 1) and the rest are set to the minimum (black, 0). The subjects’ task is to adjust the

voltage so that both fields look equally bright. We measure the voltage D which produces

a given fraction Q of maximum luminance Lmax = 1,

L = Dγ = QLmax, (A.3)

e.g. to find the voltage D which produces the color that is halfway between white and

black, we use Q = 0.5 to obtain 50% of the maximum luminance the monitor can produce.

To obtain an estimate of gamma, a smooth curve can be fit to the values of Q and D

using least-squares. We linearize Equation A.3 by applying the natural log to both sides,

γ lnD = lnQ, (A.4)

therefore we can use linear least squares. Alternatively, we can record the values of Q and

D in a look-up table, and use interpolation to obtain D values for intermediate Q values.

Because we are using OpenGL for our experiments, we carry out the visual calibration

using stimuli generated by OpenGL. The adjustable patch of pixels is generated using a
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Figure A–1: Visual Calibration (note the above image is scaled 60%). The left field is a
rectangular wave grating with duty cycle 0.5. The voltage of the right rectangle is adjusted
until the two fields appear equally bright. This is done to measure the relationship between
voltage and displayed luminance.

quad primitive. The observer can adjust the voltage of the quad’s pixels using the up and

down arrows of the keyboard. The other patch is generated as a rectangular wave grating

with white and black bars. The spatial period of the grating is 10 pixels and the duty cycle

(which is the proportion of pixels that are white) is varied from 0.1 to 0.9. We define the

width of a line to be one pixel. E. g. if duty cycle is 0.1, each white line drawn is followed

by nine black lines, for duty cycle 0.2 two white lines are followed by eight black lines,

and so on and so forth. See Figure A–1 for an example with duty cycle = 0.5.

For each duty cycle, we adjust the voltage so that the grating and the patch appear

equally bright, and record when a match is made. The recorded values can be used as

input to a MATLAB routine for the linear least squares solution of gamma in Equation

A.4, or stored in a look-up table.

Gamma Correction using Spectroradiometer

We can alternatively use a spectroradiometer (we use the PR 650 model) to measure

the output luminances of a series of input patches [0.1,0.2, ...,0.9,1.0] in order to compute
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a look-up table. This tool outputs the CIE XYZ values (see Appendix 3.A in Chapter 3)

for a uniform surface patch, where the Y component specifies luminance.

Once we obtain XYZ values for the input patches, we can use interpolation to obtain

estimates for intermediate luminance values. In an application, we can look-up the output

luminance for a given input and apply the correction accordingly.
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