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Nonlinear mechanics of cracks subjected to
indentation1

A.P.S. Selvadurai

Abstract: The paper presents the application of a boundary element technique to study the behaviour of plane cracks
that are located at corner regions of an elastic solid and open during indentation. In particular, the surfaces of the planes
on which indentation takes place also exhibit Coulomb frictional responses and degradation in the friction angle with
plastic energy dissipation. An incremental boundary element formulation, in which special singularity elements model the
behaviour at the crack tip, is used to examine the crack problems. The methodology is applied to investigate the mode I
stress intensity factor at the crack tip located at the base of a V-notch in a test specimen.

Key words: indented cracks, boundary element modelling, Coulomb friction, stress intensity factors.

Résumé : Cet article traite de l’utilisation de la technique des éléments limites pour étudier le comportement de fissures
planes situées dans les coins d’un solide élastique et qui s’ouvrent durant le retrait. Plus particulièrement, les surfaces
planes où a lieu le retrait démontrent aussi des comportements de frottement solide et une dégradation de l’angle de
frottement avec une dissipation plastique de l’énergie. Une formulation incrémentielle d’éléments limites est utilisée pour
étudier les problèmes de fissures lorsque des éléments singuliers spéciaux sont utilisés pour modéliser le comportement à
l’extrémité des fissures. La méthode est utilisée pour étudier le facteur d’intensité des contraintes de Mode I à l’extrémité
de fissures situées à la base d’une encoche en V dans un spécimen d’essai.

Mots clés : fissures en retrait, modélisation des éléments limite, frottement solide, facteurs d’intensité des contraintes.

[Traduit par la Rédaction]

1. Introduction

The stress analysis of flaws, such as cracks and inhomo-
geneities located in brittle solids (composites, ceramic mate-
rials, concrete, rocks, and so on), is important in assessing
fracture and failure evolution in these materials. In classical
treatments of the behaviour of such defects, the brittle medium
is assumed to be elastic and the loads are applied in a man-
ner that does not induce any nonlinear effects, either within
the crack region or within the regions in contact (Murakami
1987; Sih 1991; Broberg 1999). The extension of these stud-
ies to include nonclassical phenomena, including interactions
between the crack faces and closure of the crack tip, becomes
important in a number of areas of application, including materi-
als science, civil engineering, and geomechanics, where either
alterations in material properties or dominant induced com-
pressive loads normal to the crack surfaces can initiate interac-
tion between the crack surfaces. Such interactions are generally
nonlinear, and the presence of the nonlinearity in the mechan-
ics of the contact zone makes the analytical approach to these
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crack problems quite restrictive. The analytical study of crack
problems becomes almost intractable when complicated forms
of frictional contact phenomena, influence of separation and
slip zones, interaction of contacting regions with neighbouring
cracks, etc., need to be considered. In materials engineering in
particular, interfaces between geomaterial regions can exhibit
a variety of nonlinear phenomena, including Coulomb friction,
finite friction, interface plasticity, interface damage, asperity
degradation, viscoplasticity, and creep (Michałowski and Mroz
1978; Selvadurai and Voyiadjis 1986; Selvadurai and Boulon
1995; Darve 1990; Desai 2000). Computational approaches are
therefore of particular interest in the study of contact phenom-
ena where interface nonlinearity becomes a dominant feature.
Extensive advances have been made in the application of finite
element techniques to the study of contact phenomena associ-
ated with nonlinear interfaces. Detailed accounts of these de-
velopments are given by Zienkiewicz and Taylor (2000), Wrig-
gers and Wagner (2000), and Willner (2003), among others.
In this paper, however, the boundary element method is used
to examine contact problems dealing with nonlinear effects at
the contact zone. The boundary element method is particularly
useful when nonlinear contact phenomena are restricted to pre-
defined contact zones. Andersson (1981) and Andersson and
Allan-Persson (1983) were some of the earliest to use bound-
ary element techniques to study frictional contact problems.
Selvadurai and Au (1985, 1988, 1989) and Selvadurai (1991,
1993, 1995, 2005) also used these procedures to examine the
influence of interface nonlinearity on the behaviour of planar
cracks located in elastic media. Applications of the boundary
element method to the study of crack extension in brittle elastic
media are also given by Aliabadi (1997), Selvadurai and ten
Busschen (1995), and Selvadurai (1994, 2000).
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Fig. 1. Opening of a crack at the base of a notch by the frictional indentation with a rigid wedge.

This paper considers an incremental boundary element ap-
proach for modelling the mechanics of cracks loaded by wedge-
type indenters that exhibit Coulomb friction on the contacting
surfaces (Fig. 1). The frictional effects continue to materialize
as the wedge indentation forces exert additional stresses in the
interface region. For the class of wedge indentation problems
considered in this paper, the tips of the cracks remain open
throughout the application of the load to the wedge indenter.
This provides a plausible model for evaluating the stress inten-
sity factors at the crack tip, without ambiguity.

2. An incremental boundary element
formulation

The boundary element modelling of elastic continua is a well-
established computational procedure (Brebbia et al. 1984; Gaul
et al. 2003). Because the treatment of nonlinear effects at con-
tacting surfaces has to be approached in an incremental fash-
ion, a brief outline is given here of the incremental form of
the boundary integral equation applicable to an elastic medium
without body forces. Considering the source point (P), we have

[1] Cij (P )u̇j (P )+
∫
S

T ∗
ij (P ,Q)u̇j (Q) dS

=
∫
S

U∗
ij (P ,Q)ṫj (Q) dS

where (Q) denotes a general field point; u̇j (Q) and ṫj (Q) are
the jth components of the incremental displacements and trac-
tions, respectively; S is the boundary of the body; Cij (P) is a
constant (equal to 0 if (P) is outside the body, equal to δij (Kro-
necker’s delta function) if (P) is inside the body, equal to δij /2
if (P) is located at a smooth boundary, and is a function of the
discontinuity at a corner and Poisson’s ratio if (P) is located at a
corner); and i and j are (1,2) or (x,y) for two-dimensional prob-
lems. Also in eq. [1], U∗

ij (P,Q) and T ∗
ij (P,Q) are, respectively,

the fundamental solutions applicable to the displacements and

tractions and are given by

[2] U∗
ij (P ,Q) = 1

8πG(1 − ν)

[
(3 − 4ν)δij ln

(
1

r

)
+ r,ir,j

]

and

[3] T ∗
ij (P ,Q) = − 1

4π(1 − ν)r

{[
(1 − 2ν)δij

+ 2r,ir,j
]
r,n − (1 − 2ν)

[
r,inj − r,j ni

]}

respectively, where G and ν are the shear modulus and Poisson’s
ratio of the medium, respectively; r is the distance between the
source (P) and the field (Q) points; and ni is the ith component
of the outward unit normal vector to S. The boundary integral
equation can be reduced to a matrix equation by discretizing the
boundary S into elements with a piecewise continuous variation
in the displacements and tractions over the element. Consider-
ing all locations of (P) on S, one can obtain a system matrix
equation relating the displacements and tractions on the bound-
ary. For a well-posed problem, the boundary conditions should
be prescribed as follows:

(a) on a boundary S1, with known displacements ūi ,

[4] u̇i = ūi

(b) on a boundary S2, with known tractions t̄i ,

[5] ṫi = t̄i

(c) on a boundary S3, where there is coupling between the
displacement and the tractions,

[6] ṫi = E
(ep)
ij

(
u̇+
j − u̇−

j

)

whereE(ep)
ij is a nonlinear constitutive relationship at the bound-

ary; and the term in parentheses refers to the incremental
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relative displacement at the interface. It is also possible to in-
troduce into eq. [6] an initial traction state derived through con-
sideration of a previous history of loading. The boundary con-
ditions (eqs. [4]–[6]) should make up the complete boundary
(i.e., S = S1 ∪ S2 ∪ S3). Applying boundary conditions of
eqs. [4] and [5] to the boundary element method system matrix
and omitting the boundary condition of eq. [6], we can write

[7]

[−g11 h12
−g21 h22
−g31 h32

]{
ṫ1
u̇2

}

+
[
h13 −g13
h23 −g23
h33 −g33

]{
u̇3
ṫ3

}
= ḟ

{
B1
B2
B3

}

where ḟ is a loading factor; {B} is the vector from prescribed
boundary values; [hij ] and [gij ] are the coefficients matrices
from the fundamental solutions; and the suffixes indicate the
location of the boundaries S1, S2, and S3. Equation [7] cannot
be solved, because the boundary condition on S3 has not been
applied. This is, however, the boundary element method system
equation, with the boundary condition on S3 to be determined.

3. Interface responses

The study of interface responses has been a topic of interest to
scientists and engineers alike and can be attempted at a variety
of levels, ranging from local-scale models to phenomenological
approaches. The former consider a level of refinement that is
not accounted for in a purely phenomenological approach (Be-
lak 1993; Bushan 1995). This level of refinement is a drawback,
because it requires the determination of sophisticated constitu-
tive parameters through experimentation; furthermore, the in-
terpretation of such experiments can be attempted only through
a set of phenomenological models themselves. For engineer-
ing purposes, therefore, it is desirable to adopt a purely phe-
nomenological approach to formulate an interface constitutive
response. The elementary models of interface behaviour that as-
sume either completely smooth or bonded conditions represent
extremes of the phenomenological approach. Other nonlinear
forms of interface responses are derived from consideration of
conventional models of Coulomb friction, plasticity, and dila-
tant phenomena that account for a local-scale structure and the
incorporation of damage and degradation to account for deteri-
oration of the interface with progressive wear (Johnson 1985;
Selvadurai and Yu 2005).

This paper considers a treatment of the interface response
that can be represented by the dilation models proposed by
Plesha (1987), Selvadurai and Au (1988), and Nguyen and Sel-
vadurai (1998). For example, by assuming that the interface is
aligned with the x axis, we can show a relative displacement
occurring between both sides of the interface. Given the gen-
eral framework originally proposed by Fredriksson (1976), the
incremental form of the relative displacement can be expressed
as

[8] Ṙi = u̇i (x, 0+)− u̇i (x, 0−)
which can be considered a combination of elastic and plastic
components. For example,

[9] Ṙi = Ṙ
(e)
i + Ṙ

(p)
i

Fig. 2. The dilatant interface.

where (e) and (p) refer to the elastic and plastic components,
respectively. The elastic displacements at the interface can be
determined from the following incremental elastic constitutive
relationship:

[10] ṫi = E
(e)
ij Ṙ

(e)
j

where E(e)ij is the elastic stiffnesses at the interface. Under the
application of loads, the constitutive relation defined by eq. [10]
is valid only if the traction field at the interface does not violate
the yield criterion applicable to the interface. Considering the
dilative nature of the interface, we adopt a failure criterion of
the form

[11] F(ti) =
{
(tx cosα + ty sin α)2

}1/2

+ µ(tx sin α − ty cosα)

where µ is the coefficient of friction at the interface of the
contacting planes; and α is the asperity angle, as defined by
Fig. 2. When the asperity angle reduces to zero, eq. [11] reduces
to Coulomb frictional behaviour, i.e.,

[12] F(ti) = |tx | − µty

At yield, the irreversible plastic deformation can be obtained
from a flow rule similar to that used in conventional plasticity
theory (Drucker 1966; Chen 1975; Davis and Selvadurai 2002)

[13] Ṙ
(p)
i =




0 if F < 0 or Ḟ < 0

λ̇ ∂�
∂ti

if F = Ḟ = 0

where λ̇ is a plastic multiplier; and � is the plastic potential
function, which is given by

[14] � =
{
(tx cosα + ty sin α)2

}1/2

If we adopt conventional formulations of the theory of plasticity,
we can write the incremental form of the elastoplastic stress–
strain relationship as

[15] ṫi = E
(ep)
ij Ṙj

where E(ep)
ij is the elastoplastic stiffness at the interface, which

is given by

[16] E
(ep)
ij = E

(e)
ij − 1

ψ

∂F

∂tl
E
(e)
lj E

(e)
im

∂�

∂tm

and ψ is defined as

[17] ψ = ∂F

∂tl
E
(e)
lm

∂�

∂tm
− ∂F

∂W
(p)
x

Ẇ
(p)
x
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where W(p)
x is given by txṘ

(p)
x , which is the term correspond-

ing to the plastic work of the tractions tangential to the failure
plane. This plastic work is responsible for the degradation of
the asperity angle, which, for example, can be expressed in the
form

[18] α = α0 exp
{
−cW(p)

x

}
whereα0 is an initial asperity teeth angle, and c is referred to as a
degradation constant. In instances where the elastic stiffnesses
at the interface have only the normal and shear components
(i.e., E(e)ij = 0 when i �= j ),

[19] E
(ep)
11 = E

(e)
11

{
1 − 1

ψ
E
(e)
11
∂F

∂tx

∂�

∂tx

}

[20] E
(ep)
22 = E

(e)
22

{
1 − 1

ψ
E
(e)
22
∂F

∂ty

∂�

∂ty

}
and

[21]
E
(ep)
12

(∂F/∂ty)/(∂�/∂tx)
= E

(ep)
21

(∂F/∂tx)/(∂�/∂ty)

= 1

ψ
E
(e)
11 E

(e)
22

which is applicable to a dilatant interface model. For a Coulomb
frictional interface, the limiting case of eqs. [19]–[21] gives

[22] E
(ep)
11 = E

(ep)
22 = 0

and

[23]
E
(ep)
12

µ sin(−tx) = E
(ep)
22

Using the above relationships, one can arrive at the exact
Coulomb relationship (Michałowski and Mroz 1978; Desai and
Siriwardane 1984; Lubliner 1990; Davis and Selvadurai 2002):

[24] ṫx = −µ sin(tx)ṫy

Equations [19]–[24] are applicable for the case where the
interface is aligned with the x axis. These developments can be
extended to the situation in which the interface can be aligned
at an arbitrary orientation to the reference coordinate system.

3.1. Contact and separation processes
During incremental analysis of an interface contact prob-

lem, within an increment of loading, processes such as separa-
tion, reestablishment of contact, slip, and adhesion can occur
in distinct regions of the interface. Analytical constraints can
be placed on these processes, and we will discuss these, recog-
nizing plausible physical characteristics associated with such
responses.

3.1.1. Separation
In a loading sequence, the normal tractions at an interface

region can become tensile. Because the contact response of ad-
missible interfaces is generally unilateral (i.e., unable to with-
stand tension) for a region undergoing separation, the total trac-
tions resulting from the summation of the incremental boundary
conditions of eq. [5] should be zero.

3.1.2. Recontact
A region of a contact zone that has experienced separation can

also reestablish contact when the relative normal displacement
across the separated interface region is greater than or equal to
the initial gap. In such a case, the boundary conditions change
from a type given by eq. [5] to the one given by eq. [4].

3.1.3. Slip
When the tractions satisfy the failure condition given by

eq. [11], slip will occur and the interface condition given by
eq. [6] can be applied, with the stiffness coefficients now de-
fined by eq. [16].

3.1.4. Adhesion
When the conditions do not violate the failure criterion given

by eq. [11], the boundary conditions at the interface can be inter-
preted through eq. [6], with the stiffness coefficients interpreted
appropriately. In a solution scheme, with every increment, all
of the above four conditions must be checked to obtain a stable
condition at the interface.

4. Boundary element modelling of crack tip
behaviour

For the discretization of a boundary region that does not con-
tain a crack tip, quadratic elements can be employed. In this
case, the variation in the displacements and tractions within the
element can be described by

[25]
ui
ti

}
= a0 + a1ζ + a2ζ

2

where ζ is the local coordinate associated with the element; and
ai(i = 0, 1, 2) represents the constant of interpolation. In the
definition of the stress state at the crack tip in an elastic medium,
however, the stress state is singular, and the corresponding dis-
placements at the crack tip are given by

[26]
4Gux√
r/2π

= KI

[
(2k − 1) cos

θ

2
− cos

3θ

2

]

+KII

[
(2k + 3) sin

θ

2
+ sin

3θ

2

]

[27]
4Guy√
r/2π

= KI

[
(2k + 1) sin

θ

2
− sin

3θ

2

]

+KII

[
(2k − 3) cos

θ

2
+ cos

3θ

2

]

where the crack is considered to be aligned parallel to the x axis;
r, θ are the polar coordinates relative to the crack tip;KI andKII
are the mode I and mode II stress intensity factors for the crack-
opening and crack-shearing modes, respectively; k = (3 − 4ν)
for plane-strain problems; and k = (3 − ν)/(1 + ν), for plane-
stress problems. To capture the order of the stress singularity
at the crack tip, Cruse and Wilson (1977) introduced a singular
traction boundary element where the traction variations take the
form

[28] ti = c0√
r

+ c1 + c2
√
r
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Fig. 3. Node arrangement for calculation of stress intensity
factors at a crack tip.

where ci(i = 0, 1, 2) are constants. The accuracy of result-
ing formulations has been examined in detail, and references
to comparison exercises are given by Aliabadi (1997). Other
examples are also given by Selvadurai and Au (1988, 1989),
Selvadurai and ten Busschen (1995), and Selvadurai (2000).

The incorporation of a special singularity element permits the
evaluation of the stress intensity factors at the crack tip. Gen-
erally, for the problems with in-plane deformations discussed
here, only the mode I and mode II stress intensity factors are
relevant. The increments in these stress intensity factors can
be determined by a displacement correlation method, which
makes use of the increments of the nodal displacements at four
locations, A, B, C, and E, and the crack tip D (Fig. 3). The in-
cremental estimates for the stress intensity factors are given by

[29] K̇I = 2G

(k + 1)

√
2π

l

{
4[u̇y(B)− u̇y(C)]

+ u̇y(E) − u̇y(A)
}

[30] K̇II = 2G

(k + 1)

√
2π

l

{
4[u̇x(B)− u̇x(C)]

+ u̇x(E) − u̇x(A)
}

where l is the length of the crack-tip element; and points A, B,
C, E, and D are as indicated in Fig. 3.

5. Localized iterative solution procedures
In the solution of the nonlinear interface problem, the con-

ditions on the surface S3 need to be determined during the in-
cremental iterative analysis. These conditions can only be de-
termined after the boundary element matrix eq. [7] has been
solved. The repeated solution of the boundary element matrix
equation can be computationally inefficient, particularly when
the general class of three-dimensional problems is examined.
A way to improve the efficiency of the solution procedure is
to eliminate beforehand the unknowns corresponding to the

boundary location on S1 and on S2. Performing this operation,
we obtain

[31]


∇11 h̄12

0 ∇22
0 0


{

ṫ1
u̇2

}

+

h̄13 −ḡ13
h̄23 −ḡ23
h̄33 −ḡ33


{

u̇3
ṫ3

}
= ḟ



B̄1
B̄2
B̄3




where ∇ii (i = 1, 2) are the upper triangle matrices; and the
other matrices [h̄ij ] and [ḡij ] are the reduced versions of [hij ]
and [gij ], respectively. Equation [31] can be split into two parts,
as follows:

[32]

[∇11 h̄12
0 ∇22

]{
ṫ1
u̇2

}
= ḟ



B̄1
B̄2
B̄3


 −

[
h̄13 −ḡ13
h̄23 −ḡ23

]{
u̇3
ṫ3

}

This is a back-substitution equation for the unknowns {Ṫ1}
and {u̇2}. The back substitution can be applied either currently
or when the values of {u̇3} and {ṫ3} are determined. The com-
putational efficiency of the back-substitution procedure is gov-
erned by the size of the domains S1 and S2. Equation [32] can,
however, be used at every iteration and increment step. The
third row of eq. [31] can be written as

[33]
[
h̄33

] {u̇3} − [ḡ33]
{
ṫ3
} = ḟ

[
B̄3

]
Equation [33] can be solved together with the interface con-

dition, which can be expressed by

[34]
[
K(ep)

] {
ṫ3
} = {0}

Equation [33] can be regarded as a family of parallel planes
in the {u̇3} versus {ṫ3} space. The location of the parallel plane is
controlled by the increment ḟ . For an elastic interface, eq. [34]
also represents a plane and the intersection of the solutions, as
shown in Fig. 4. The solution procedure during an increment
follows the sequence 0 → 1 → 1′ → 2 → 2′ →, etc. The
convergence is achieved by assigning an acceptable tolerance
to the iteration. In this procedure, the iteration for the condition
on S3 is performed locally, and the boundary element system
matrix is eliminated only once for any number of increments.

6. A frictional indentation problem
In this paper, we combine the procedures for describing the

nonlinear incremental boundary element formulation, the tech-
nique for modelling the crack-tip behaviour, and the localized
iterative procedures described in the previous sections to exam-
ine certain problems related to the opening of cracks extending
from notches located at the boundaries of the elastic regions.
The opening of the cracks is due to indentation by a rigid inden-
tor that is subjected to a total force P . The parameters required
for the computational modelling are the coefficient of friction
at the interface region (µ); the asperity degradation parameter
(c); the geometry of the crack in relation to certain character-
istic dimensions associated with the corner region (l/H); and
the relative magnitudes of the nondimensional shear and normal
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Fig. 4. The iteration procedure for the nonlinear analysis: (a)
incremental analysis; (b) iteration within an increment, detail at A.

elastic stiffnesses, as defined by Ẽ(e)11 /G and Ẽ(e)22 /G, whereG
is the shear modulus of the elastic material. (Note that as per
eq. [10], the stiffnesses E(e)11 and E(e)22 are expressed in units of
force/(length)3 to provide tractions with units of stress. In the
normalization of these stiffnesses, we can define nondimen-
sional parameters Ẽ(e)11 /G and Ẽ(e)22 /G, where Ẽ(e)11 = E

(e)
22 × 1

and Ẽ(e)22 = E
(e)
22 × 1, where unity represents the thickness over

which the plane problem is being analysed.)
For purposes of illustration, the following specific values of

the interface stiffness parameters and the initial stress state are
used in the computations:

[35]
Ẽ
(e)
11

G
= 103; Ẽ

(e)
22

G
= 0.5 × 103

The boundary element discretization of the domain is shown
in Fig. 5. As a result of the symmetry associated with the in-
dentation of the notch containing the crack by the rigid wedge
only the mode I stress intensity factor is developed at the crack
tip. Figure 6 illustrates the variation of the normalized mode I
stress intensity factor, KI/G

√
l, with the normalized indenta-

tion force, (4P/GH 2)× 103, and as a function of the interface
friction µ and the normalized interface asperity degradation
parameter (c/G) = 10−5. Similarly, the results presented in

Fig. 5. Boundary element discretization of the domain.

Fig. 7 are applicable to the case in which the normalized in-
terface degradation parameter is increased by an order of mag-
nitude to (c/G = 10−4). As is evident, the interface friction
has a significant influence on the magnitude of the normal-
ized stress intensity factor KI/G

√
l. The limiting bound for

the mode I stress intensity factor corresponds to the case of
frictionless indentation. The interface degradation parameter
also has an influence on the magnitude of the stress intensity
factor at the crack tip. As the interface degradation property
decreases, the stress intensity factor is amplified for the same
value of the friction coefficient. Alternative representations of
the influence of the asperity degradation parameter are shown
in Figs. 8 and 9 for various values of the relative crack lengths
and the friction coefficient. General conclusions cannot be in-
ferred from this data because of differences in the parameters
associated with the data. It can be concluded that as the rela-
tive crack length increases, the mode I stress intensity factor
is reduced. A further observation is that the case involving a
completely bonded interface between the faces of the wedge
and the indentor does not always represent the condition that
contributes to the lowest stress intensity factor. Interfaces that
experience degradation can result in the lowering of the stress
intensity factor at the crack tip. Finally, we consider an exam-
ple of the use of the boundary element procedure in examining
the mechanics of test procedures that can be used to assess the
fracture toughness of brittle elastic materials, the plane prob-
lem of the indentation of a surface-notched cylinder containing
a basal crack extending in the radial direction and subjected
to indentation by a rigid cylinder (Fig. 10). Admittedly, as the
contact between the rigid cylinder and the faces of the wedge
occurs at a point location, the influences of friction at the con-
tact locations are disregarded. Figure 10 illustrates the manner
in which the mode I stress intensity factor at the basal crack is
influenced by the relative geometric dimensions of the crack.
As with the plane problem in elasticity theory, the stress state
is independent of the elasticity characteristics of the medium;
consequently, the mode I stress intensity factor is independent
of both the elastic modulus and Poisson’s ratio of the cylinder.
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Fig. 6. Mode I stress intensity factor at the crack tip extending from a notch.

Fig. 7. Mode I stress intensity factor at the crack tip extending from a notch.

7. Concluding remarks
The mechanics of cracks can be influenced by the nonlinear

processes that can either be present within the crack region or
be initiated as a result of interaction with a contact region in
the vicinity of the crack. The problem examined in this paper
relates to the latter category, where a crack extending from the

root of a notch is subjected to opening action by a rigid wedge
in frictional contact with the surfaces of the notch. Because the
nonlinear effects are restricted a priori to known surfaces, the
analysis of the resulting nonlinear problem can be achieved by
taking an incremental boundary element approach. It is found
that the result of practical importance to engineering applica-
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Fig. 8. Mode I stress intensity factor at the crack tip extending from a notch.

Fig. 9. Mode I stress intensity factor at the crack tip extending from a notch.

tions, namely, the mode I stress intensity factor at the crack
tip, is influenced by the frictional properties of the contact zone
and the parameter that describes the deterioration of the fric-
tion angle with plastic energy dissipation in shear. In general,
the effect of friction on the contact zones is to reduce the stress
intensity factor due to indentation that is observed at the basal

crack tip. The absence of friction invariably results in a greater
separation of the faces of the wedge, resulting in the genera-
tion of the greatest magnitude of stress intensity factor, which,
for the purely elastic problem, is directly proportional to the
applied load. The decay of the frictional characteristics at the
contact region also contributes to the increase in the stress in-

© 2006 NRC Canada
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Fig. 10. The indentation of a notched cylinder containing a basal
crack.

tensity factor at the crack extending from the base of the wedge
region.
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