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ABSTRACT

Smeared crack analysis models, based on nonlinear fracture mechanics concepts,
have been developed to investigate the fracture behaviour of concrete gravity dams, The
proposed constitutive models have been implemented in a finite element analysis
computer program for nonlinear static and seismic analyses of plain concrete structures.
Extensive verifications of the computational models have been carried out by studying
the nonlinear static response of notched concrete beams, a model concrete dam, and a
full scale concrete gravity dam: ali experimentally or numerically investigated in the
past. Seismic fracture and energy response of Koyna Dam, a classic example of seismic
induced cracking in concrete dams, has also been studied. Finally, the seismic fracture
behaviour of a typical concrete gravity dam has been investigated, considering severe
ground motions and winter temperature effects as expected in Eastern Canada. Reduced
frequency independent models of dynamic interactions in the dam-reservoir-foundation

system have been considered in the nonlinear seismic analyses.
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RESUME

Des modeles de fissuration diffuse basés sur la mécanique nonlinéaire des fractures
ont été développés pour I'étude des réponses statiques et sismiques des barrages-poids
en béton. Les modgles constitutifs proposés ont été implantés dans un nouveau logiciel
d’éléments finis pour les analyses statiques et sismiques nonlinéaires des structures de
béton non-armé. Plusieurs vérifications des modeles proposés ont été faites par 1’étude
statique nonlinéaire de poutres, d’un modele réduit de barrage, et d'un barrage de
pleine grandeur, qui ont tous été testés expérimentalement ou analysés dans le passé.
La fissuration sismique et la dissipation de 1’énergie du barrage Koyna, un exemple
classique de la fissuration sismique des barrages de béton, ont aussi été étudiées.
Finalement, la fissuration sismique d’un barrage-poids typique, scumis au secousses du
sol et aux conditions séveres des températures hivernales qui peuvent étre anticipées au
Québec, a été analysée. Une modélisation réduite et indépendante des fréquences a été
considérée pour représenter les interactions dynamiques dans le systtme barrage-
fondation-réservoir.

iii



ACKNOWLEDGEMENTS

The author would like to express his sincere gratitude to Professor Pierre Léger
for his profound interest in the research topic, and constant guidance during the course
of this research. His tireless effort to provide with computing and relevant facilities,
both at McGill University and at Ecole Polytechnique, Montreal, is gratefully
acknowledged. Computing equipments available through a joint grant from NSERC,
Hydro-Quebec, and Alcan, have been extensively used to produce a significant portion
of the results presented in this thesis.

The deepest gratitude goes to the Canadian Commonwealth Scholarship and
Fellowship Plan for an excellent feliowship that permitted the author to conduct this
research. Thanks are also due to Professor B. Stafford Smith for his personal guidance
during the author's early days in Canada. Limited financial supports available through
teaching, research assistantship, and the Emil Nenninger Memorial Fellowship from the
Department of Civil Engineering and Applied Mechanics are thankfully acknowledged.
Final thanks are due to Mr. Aniruddha Bhattacharyya for his help in preparation of the
thesis.

iv



TABLE OF CONTENTS

ABSTRACT ... i i e e e ii
RESUME ..ttt it e it ettt i e et e 11
ACKNOWLEDGEMENTS ... .. ... it iennenan iv
TABLE OF CONTENTS . ... .. .. i i it v
LISTOFFIGURES . . . .. .. i i i it ittt X
NOTATION ...ttt it et e et e e e XV
CHAPTER | INTRODUCTION ... ... i iiiiiennvnnnas 1
LLIOVERVIEW . . . i i e e ittt e e e 1
1.2 DEFINITION OF THE RESEARCH PROBLEM ................ 5
1.3OBIECTIVES OF THERESEARCH ............¢¢0ctiiunnn, 7
1.4 ORIGINAL CONTRIBUTIONS OFTHETHESIS ............... 8
1.5 ORGANIZATIONOFTHETHESIS . . .. ... ... it e v 9

CHAPTER 2 SEISMIC FRACTURE ANALYSIS OF CONCRETE GRAVITY
DAMS - STATE-OF-THE-ART . . . .. ............... 13

2.1INTRODUCTION . ... ittt iiiiesnannanensnnnn 13

2.2 DYNAMIC INTERACTIONS IN THE DAM-RESERVOIR-FOUNDATION

SYSTEM .. i it i i i et e 15
2.3 FINITE ELEMENT REPRESENTATIONOFCRACKS . ........... 17
2.3.1 Discrete crack propagation model \DCPM) ................ 17
2.3.2 Smeared crack propagation model (SCPM) ................ 18
2.4 CONSTITUTIVE MODELS FOR CRACK PROPAGATION ......... 19



2.4.1 Strength based criteria
2.4.2 Fracture mechanics Criteria . . .« v v v v vt e e e o s e et e en e on s 20

2.4.3 Conservation of fracture energy in smeared crack models . ... ... 25
2.4.4 Shear resistance of fractured concrete ... ................ 31
2.4.5 Post-softening behaviour of concrete . .. .... ... . ..., . ... 32
2.5 MATERIAL PARAMETERS FOR FRACTURE PROPAGATION
ANALYSIS .. . e KX
2.5.1 Strength-of-material parameters . . .......... 00t 35
2.5.2 Linear elastic fracture mechanics parameters .. ............. 36
2.5.3 Nonlinear fracture mechanics parameters . ................ 37
2.6 PAST INVESTIGATIONS ON SEISMIC FRACTURE OF CONCRETE
GRAVITY DAMS . . .. i ittt e it i 38
2.7 CONCLUSIONS ..ttt i i e i e e e e e 44
CHAPTER 3 CONSTITUTIVE MODELS FOR FRACTURE ANALYSIS OF
CONCRETE GRAVITYDAMS .. ................. 46
B INTRODUCTION ... . i ittt i ittt ana e annnn 46

3.2 PRE-SOFTENING STRESS-STRAIN BEHAVIOUR OF CONCRETE ... 48

3.2.1 Non-seismic loads/ deformations . ..................... 49
3.228eismicloadeffects . .......... ... . ... e, 50
3.3 THE CRITERION FOR INITIATION OF STRAIN SOFTENING . ... .. 51
3.4 FRACTURE ENERGY CONSERVATION . ..........c vt uvnn 53
3.5 CONSTITUTIVE RELATIONSHIPS DURING SOFTENING ........ 54
3.5.1 The total stress-strain relationship . . . .. .............. ... 55
3.5.2 The incremental stress-strain relationship ................. 57
3.5.3 Constitutive models for softening stress-strain behaviour ... ... .. 57
3.6 SHEAR DEFORMATIONS IN FRACTURED ELEMENTS ......... 58
3.7 CLOSING AND REOPENINGOFCRACKS . ........cuitvuunnn 59
3.8 FINITE ELEMENT IMPLEMENTATION OF THE CONSTITUTIVE
MODELS ...... ¢ttt ittt sanannanas 60
3O SUMMARY ... i e e e e 66

vi



CHAPTER 4 FINITE ELEMENT ANALYSIS OF SMEARED FRACTURE

PRCPAGATION IN CONCRETE STRUCTURES ....... 68
4.1 INTRODUCTION .. .. i e i st i e n e 68
4.2 NONLINEAR STATIC ANALYSIS UNDER SPECIFIED
DISPLACEMENT .. ... it i i ittt it v e 71
4.3 NONLINEAR STATIC ANALYSIS UNDER AN INDIRECT
DISPLACEMENT CONTROL . .........c0i it 75
4.4 NONLINEAR TIME DOMAIN ANALYSIS OF CONCRETE GRAVITY
N L . 77
4.4.1 Viscous damping of concrete in gravitydams . . .. .. ......... 79
4.4.2 Dynamic interactions in a dam-reservoir-foundation system . ... .. 81
4.4.3 Numerical integration of the dynamic equilibrium equations . . .. .. 82
4.4.4 Seismic energy balance inthedam .............. ... ..., 84

4.5 COMPUTATION OF ENERGY DISSIPATION IN THE STRUCTURE DUE

TOTENSILEFRACTURE ........... ... i 86
4.6 LONG TERM EFFECTS IN TEMPERATURE STRESS ANALYSIS . ... 87
4.7 SUMMARY ... i e e s e e e 89

CHAPTER 5 STATIC FRACTURE RESPONSE OF PLAIN CONCRETE

STRUCTURES SUBJECTED TO MODE I LOADING .... 90
S.TINTRODUCTION ...ttt ittt it tes st e naanan %0
5.2 ANALYSIS OF THE SIMPLE TENSION SPECIMEN ............ 92
5.3 NOTCHED BEAM UNDER THREE-POINT LOADING ........... 93
5.4 ULTIMATE RESPONSEOF THEBEAM .. .......... v 95

5.5 FINITE ELEMENT MESH OBJECTIVITY AND THE FRACTURE
PARAMETERS ... ... ittt iii s 96

vii



5.7 COMPUTATIONAL EFFICIENCIES OF THE TMS AND THE SMS
MODELS

CHAPTER 6 STATIC FRACTURE RESPONSE OF PFLAIN CONCRETE
STRUCTURES SUBJECTED TO MIXED MODE LOADING 105

6.1 INTRODUCTION

6.2 ANALYSIS OF A SHEAR BEAM WITH SINGLE NOTCH ........ 108

6.3 ANALYSIS OF A MODEL CONCRETE DAM

6.4 FRACTURE ANALYSIS OF A FULL SCALE CONCRETE GRAVITY DAM

SUBJECTED TO RESERVOIR OVERPRESSURE . . . . .......... 13
6.4.1 Structural resistance to the reservoir overflow ............. 115
6.4.2 Predicted crack profiles and the dissipated fracture energy . . . . .. 117
6.4.3 Influences of the fracture energy value . . .. .............. 117
6.4.4 Responses predicted by the FCM-VSRF ... .............. 120
6.4.5 Ultimate resistance of thedam . . . ... ......... .. ..o 120

6.5 COMPARATIVE EVALUATION OF THE CRCM AND THE FCM-VSRF 122

6.6 CONCLUSIONS

CHAPTER 7 SEISMIC FRACTURE AND ENERGY RESPONSEOF KOYNA

DAM . . e e 125
TLINTRODUCTION ...ttt ittt it iiinnstannenenns 125
T2SYSTEM ANALYSED ... .. ... .. ittt cinnn 127
7.3 SEISMIC FRACTURE RESPONSEOF THEDAM . ............ 129
7.4 SEISMIC ENERGY RESPONSE AND CHANGES IN FUNDAMENTAL

PERIOD OFTHEDAM ... ... .. .. it it ii e 132

7.5 SENSITIVITY OF THE PREDICTED RESPONSE TO MODELLING
PARAMETERS AND ASSUMPTIONS . . .. ........ .ot 134

7.5.1 Local instability in finite element fracture analysis . . ... ...... 135

viii



7.5.2 Influences of the linear viscous damping model . ........... 136
7.5.3 Influences of the elasto-brittle viscous damping model . ....... 138

7.6 INFLUENCES OF THE WESTERGAARD RESERVOIR INTERACTION
MODEL ON THE FRACTURERESPONSE ................. 141

TTCONCLUSIONS . ... e s et i e s ieen o 143

CHAPTER 8 SEASONAL TEMPERATURE EFFECTS ON SEISMIC
FRACTURE RESPONSE OF CONCRETE GRAVITY DAMS 145

B.1INTRODUCTION . ... ittt ittt i it i ins e 145
8B.2SYSTEM ANALYSED .. ... ... ittt iiiiiieninerenas 147

8.3 SEASONAL TEMPERATURE DISTRIBUTIONS INSIDE THE DAM .. 149

8.4INPUTGROUND MOTION ... ... ittt i iiin e ane e 151
8.5 SEVERE WINTER TEMPERATURE EFFECTS ON SEISMIC FRACTURE
RESPONSEOFTHEDAM ... ... ...ttt 152
8.6 RESERVOIR AND FOUNDATION INTERACTION EFFECTS ON SEISMIC
FRACTURE RESPONSEOF THEDAM . ........ 0 v v 155
87 CONCLUSIONS ... . it i i it i e 158
CHAPTER Y9 CONCLUSIONS .......... it iiiininnnann. 159
9.1 SUMMARY OFTHETHESIS .........¢c0i ittt nnnns 159
9.2CONCLUSIONS ... .....itiiiii it ttenennennnsnnnnas 163
9.3 RECOMMENDATIONS FOR THE INDUSTRIAL APPLICATION OF
NUMERICAL MODELS .......... .0ttt ennnnnns 165
9.4 FUTURE RESEARCH AND DEVELOPMENTS ............... 167

ix



Figure 1.1
Figure 1.2

Figure 1.3

Figure 1.4

Figure 1.5 Validation of fracture theories and models (adapted from Lombardi'**).7
Figure 1.6 Organizationof thethesis. . . .................... ... 10
Figure 2.1 Numerical models for seismic fracture analysis of concrete gravity
dams. ... e e i e e s 13
Figure 2.2 Dynamic interactions in the dam-reservoir-foundation system (Léger et
) B 15
Figure 2.3 (a) Discrete crack analysis (adopted from Carpinteri et al. ), and (b)
smeared crack analysis. ............ ... ... oL 17
Figure 2.4 Modes of failure: (a) mode 1, (b) mode II, and (¢} mode I11. . . .. 20
Figure 2.5 Fracture process zone (FPZ): (a) LEFM, and (b) NLFM. ..... 21
Figure 2.6 NLFM models: (a) fictitious crack model, and (b) crack band model, 24
Figure 2.7 Strain softening constitutive models: (a) development of cracks (adapted
from Nomura et al. ''*), (b) fracture energy conservation, (c) limitations
of the linear softening model, and (d) adjustment of constitutive models
depending on the element size. . .................... 26
Figure 2.8 Size adjustment of the constitutive relationship in smeared crack
MOdelS. + . v v v vt ittt e e e e 29
Figure 2.9 Closing and reopening of partially formed cracks. .......... 30
Figure 2.10 (a) Apparent tensile strength, and (b) the dynamic load effects. .. 36

LIST OF FIGURES

A typical gravity dam-reservoir-foundation system. . . ... ... .. 2
Safety evaluation of concrete dams (adapted from Lombardi '™). . 3

(a) No-tension analysis, and (b) a possible crack profile threatening the
structural integrity. . ... ... ... . e e 4

A progressive strategy for safety evaluation of concrete dams. ... 5

Figure 2.11 Past investigations on seismic cracking of concrete gravity dams. . 39



Figure 3.1
Figure 3.2

Figure 3.3

Figure 3.4
Figure 3.5
Figure 3.6

Figure 3.7

Figure 3.8
Figure 4.1
Figure 4.2

Figure 4.3

Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7

Figure 4.8

Figure 4.9
Figure 4.10

Figure 5.1

Figure 5.2

Strain softening model for concrete fracture analysis. . ....... 48
Nonlinear smeared fracture model. ................ ... 50

(a) The local axis system, (b) the decomposition of strain, (¢) the SMS

model, and (d) the TMSmodel. ..................... 54
The state determination of fractured elements. . .. .......... 61
Computation of the element response. . . .. ... .o v v v v v 63
Déﬁn'ition of the characteristic dimenston, h.. ............. 64

The spurious localization of cracks caused by the wide variation of element
size in successive Jayers. . . . ... . i e i e e e 65

Significant features of the smeared crack analysis model. ... ... 67
Element response computation in a smeared crack analysis. .... 69
Nonlinear analysis for gravity and temperature loads. ........ 70

Computation models to predict nonlinear static and seismic responses of

CONCTEte SITUCLUTES. & v v v v v v v v v v v et v en v e s e anns 72
Failure behaviour of a beam under three-point loading. ....... 73
Fracture analysis under incremental displacement control. ... .. 74
Post failure behaviour of concrete structures. .. ........... Ip]

Fracture analysis under indirect displacement control. ........ 78

(a) Dynamic interaction effects of the reservoir and the foundation, and
(b) the Westergaard " added mass. .......... ceeeeaa.. 81

Seismic fracture analysis of concrete gravity dams. . . ........ 83
Long term effects on the temperature induced stresses. ....... 88

Fracture responses of concrete structures subjected to mode I static
loading. ......... e r et e e eo.. 90

Analysis of a simple tension specimen: (a) the finite element model, (b)
the force-displacement response, and (c) the energy response. ... 93

xi



Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

The notched beam under three-point loading.

(a) Linear elastic stress distribution on the cross-section at mid-span, and
(b) force-displacement response of the beam.

Different finite element meshes of the notched concrete beam. ... 97

Sensitivity of the structural resistance to (a) the finite element mesh
refinement, and {b) the constitutive parameter ;. . .......... 98

(a) Energy response of the beam, and (b) the propagation of softening and
Crack tiPS. v v v i v ittt i e 99

Influences of the notch depth on (a) the crack propagation, and (b) the
force-displacement response. . ............ .00 100

(a) The computer execution times of SMS and TMS analyses, and (b)
computational instability of the TMS model. . ............ 102

Fracture analyses of concrete structures subjected to mixed mode
a1 107

Single notched shear beam (dimensions in mm).

Response of the shear beam: (a) snap-back in the force displacement
response, (b) approximate experimental crack profile, (¢} crack profile
predicted by the CRCM, and (d) crack profile predicted by the FCM-
VORE. & ittt i i e e e 109

Finite element model of the notched dam and the applied loads. . 112

Response of the model dam: (a) the total applied load versus the CMOD,
and (b) crack profiles in the structure, .. .............. 113

Finite element models of Koyna Dam subjected to reservoir overflow.
CCCCC 4 & F 9§ 4 W 8 8 F F B 8 B F P P P B oL OFE T E s s e s st s 114

(a) Structural resistance to reservoir overflow, (b) a change in the

geometric configuration, (c) influences of the notch depth, and (d)

influences of the mesh refinement (Mesh 1 and Mesh 2 in Fig. 6.6).
........................................ 116

(a,b) Crack profiles corresponding to the instance .of horizontal

displacement at the top = 45mm, (c) dissipated fracture energy, and (d)
the deformed configuration corresponding to the state in (b). ... 118

Xii



Figure 6.9

Figure 6.10

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 7.6

Figure 7.7

Figure 7.8

Figure 7.9

Figure 7.10

Figure 7.11

Figure 7.12

(a) Sensitivity of the structural resistance to the fracture energy value, (b)
the crack profile for G;=200 N/m (displacement at the top = 45mm),
(c,d) responses predicted by the FCM-VSRF. ............ 119

Incremental load analysis of the dam: (a) the ultimate resistance, and (b)
the crack profile at the instance of horizontal displacement at the top =
2L 0 B 1 1 121

(2) The tallest non-overflow monolith of Koyna Dam, (b) the
experimentally observed fracture response of a 1:150 scaled model
(adopted from Hall™). .. ......... ... ..., 126

(a) A finite element model of Koyna Dam (dimensions in m), and (b) the
Koyna accelerograms. . ... ..... i ivvenuannnnann 127

(a) Time histories of horizontal displacement at the top of the dam, and
(b,c,d) seismic fracture response of the structure. . . ........ 130

Time histories of (a) the major principal stress, ¢,, and (b} the crack-
mouth-opening displacement (CMOD). . ............... 131

Deformed configurations of thedam. ................. 132

(a,b,c) Energy response of the dam, and (d) changes in the fundamental
pericdofdam. . ....... ... i e 133

Effects of assuming a=0: (a) energy balance error, and (b) local
instability in the finite elementmodel. ................ 135

(a,b,c) Responses obtained with the LDM (5% damping in the fundamental
mode), (d) cracking response obtained for 3% damping. ..... 137

Fracture response predicted using the elasto-brittle damping model. 138

Influences of mesh refinement on the fracture response predicted using the
elasto-brittle dampingmodel. ........... ... . 139

Influences of the damping mode! and the mesh refinement on energy
dissipations due to (a) viscous damping and (b) tensile fracture (Eqn.
L T 140

Influences of the reduced material resistance (¢;=1.0 MPa, G;=100 N/m)

on the fracture response predicted using the quasi-linear damping
model. .. ... i i i e e 141

xiii



Figure 7.13 Influences of the Westergaard added mass on fracture response of the

Figure 8.1

Figure 8.2
Figure 8.3

Figure 8.4

Figure 8.5

Figure 8.6

Figure 8.7

Figure 8.8

Figure 8.9

1 1 142
Seismic and thermal exposure of concrete dams in Quebec (adopted from
Légeretal. ™). ... ... it e e 146
Finite element models of a tall concrete gravity dam. . ...... 147

A finite element model of thermal analysis.
(a) Critical winter temperature distribution (°C), and (b) the corresponding
principal tensile stresses including seif-weight and hydrostatic pressure

effects (MPa) (Temperature data adopted from Venturelli and Léger'"),
........................................ 150

(a) Elastic response spectra of the accelerograms, and (b,c) time histories
of the accelerograms (data adopted from Légeretal.'™). .. ... 152

Crack profiles in the dam: (a) without temperature effects, and (b) with
temperature loads (t=6.640sec). . ........ e e 153

Crack openings on two facesof thedam. . .. ............ 154

Consistent frequency-domain and time-domain models. (Léger and
Bhattacharjee'®) . . . ... ... ... e 156

Fracture response of the dam considering (a) reservoir interaction effects
only, and (b) both reservoir and foundation interaction effects. . 157

xiv



NOTATION

Following is a list of principal symbols used in the manuscript. All symbols are
defined in the text when they appear.

MATHEMATICAL SYMBOLS:

{}
[]
(L Ir

LATIN SYMBOLS:

a
a,
A

Vector of the specified parameter.
Matrix of the specified parameter.
Transpose of the vector or matrix.

Mass proportional damping factor.

Notch depth=d,.

Thermal expansion coefficient.

Stiffness proportional damping factor.
Strain-displacement transformation matrix.

Foundation added damping in the horizontal direction.
Foundation added damping in the vertical direction.
Computed response of the indirect displacement control analysis
parameter,

Reservoir added damping in the horizontal direction.
Element damping matrix.

Time dependent element damping matrix.

Damping matrix of the entire structural system.
Foundation added damping matrix.

Reservoir added damping matrix.

Frequency dependent system damping matrix.
Structural dimension.

Maximum aggregate dimension,

Depth of crack penetration.

Notch depth=a,.

Differential increment of the relative displacement.
Differential increment of the ground displacement,
Differential increment of the total displacement.
Differential volume,

Dynamic magnification factor of the apparent tensile strength.
Dynamic magnification factor of the fracture energy.
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Konax

K

Kg¥
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ch

Stress-strain relationship matrix in the undamaged state.

Total stress-strain relationship matrix in the local coordinate
directions.

Total stress-strain relationship matrix in the global coordinate
directions,

Total crack stress-strain relationship matrix in the local directions.
Incremental stress-strain relationship matrix in the global
coordinate directions.

Incremental crack stress-strain relationship matrix in the local
coordinate directions.

Young’s modulus of concrete.

Energy dissipation due to damping in the structure.

Energy dissipated due to tensile cracking in the structure.
Absolute kinetic energy of the system.

Work done by pre-seismic applied forces.

Absolute seismic input energy.

Work done by nonlinear restoring forces.

Damaged secant modulus during the tensile strain soflening
process.

Tangent softening modulus.

Recoverable strain energy in the system.

Applied load.

Static compressive strength of concrete.

Norm of residual forces in a nonlinear analysis.

Vector of total applied load.

Time dependent applied load vector.,

Equivalent load vector for the specified temperature condition.
Acceleration due to gravity.

Energy dissipation in each element due to tensile strain softening.
Static fracture energy of concrete.

Dynamic fracture energy of concrete.

Shear modulus of the virgin material.

Softened shear modulus of a cracked element in the local
coordinate directions.

Characteristic dimension of the crack band.

Maximum characteristic dimension that can be applied with a
strain softening constitutive model.

load or time step no.

Element designations.

Iteration no. in a particular load or time step.

Maximum number of iterations allowed in a load or time step.
Foundation added stiffness in the horizontal direction.
Foundation added stiffness in the vertical direction.

Stress intensity factors.

Static fracture toughness of concrete.
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lch
M_H
[m]
M]

[MI]x
[M(@)]
[N]

Py

P,
{p}
T

.
I .

I,

{r},{r(u)}

EEEEccC

oo g e

X
.

My :

Element stiffness matrix.

Time dependent element stiffness matrix.

Element stiffness matrix at the initial elastic state.

Stiffness matrix of the entire structural system.

Foundation added stiffness matrix.

Reservoir added stiffness matrix.

Frequency dependent system stiffness matrix.

Material characteristic dimension.

Reservoir added mass in the horizontal direction.

Element mass matrix.

Mass matrix of the entire structural system.

Foundation added mass matrix.

Reservoir added mass matrix.

Frequency dependent system mass matrix.

Crack strain transformation matrix.

Load resistance of a beam under three-point loading when the
stress at the notch-tip is equal to the tensile strength a,.
Ultimate load resistance of a beam under three-point loading.
Dead load vector.

Restoring forces in the degrees-of-freedom under applied loading.
Restoring forces in the degrees-of-freedom under specified
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CHAPTER 1
INTRODUCTION

1.1 OVERVIEW

Safety of concrete dams is a world wide concern due to vested socic-economic
interests involved with these infrastructures. The general concern has been raised
particularly due to the aging and deterioration of numerous existing dams that were built
during the early part and the middle of this century. Periodic assessment of the safety
of existing dams is increasingly becoming a mandatory requirement on the part of utility

companies responsible for maintenance and operation of the installations.

Concrete gravity dams constitute a significant proportion of existing dam structures
in the world. A typical gravity dam section and the different environmental phenomena
influencing the behaviour of the structure are illustrated in Fig. 1.1. The elaboration of
a comprehensive safety evaluation procedure for these structures is a complex
engineering problem due to intricate influences of several phenomena on the loading and
the structural resistance, These are, for example, temperature effects, creep, shrinkage,
mass swelling caused by hydration heat of cement and alkali-aggregate reaction,
hydrostatic pressure, seismic excitations and the consequent dynamic interactions with
the reservoir and the foundation, tensile fracture of mass concrete, and nonlinear
deformations in the construction joints. Among the various internal and external factors,
seismic safety of concrete dams has evoked the deepest concern among the industrial as
well as the research communities. Practical experience about the structural resistance of
concrete gravity dams, subjected to severe ground excitations, is very limited, and there
is a lack of confidence regarding the safety of large concrete dams exposed to strong
seismic environments (Hall ). Numerical simulations are very feasible, if not the only

method, for comprehensive evaluation of the seismic safety of concrete dams.
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Figure 1.1 A typical gravity dam-reservoir-foundarion system.

Mass concrete dams are likely to experience cracking due io the low tensile
resistance of concrete. The safety assessment of concrete gravity dams inevitably relates
to the cracking behaviour of concrete (Fig. 1.2). In general, most concrete dams present
cracks. However, the surface micro-cracking does not endanger the structural safety of
dams (Fanelli *). Cracks penetrating deep inside a dam (sometimes going through the
thickness) constitute engineering concern, because, such cracks may considerably alter
the structural resistance, and thereby endanger the safety of the installation. It is
expected that under normal load actions from self-weight, hydrostatic pressure, and
ambient temperature, concrete dams experience no cracking of structural significance,
The accepted seismic design philosophy for concrete dams is to assume linear elastic
response under moderate intensity earthquakes, often referred as the operating basis
earthquake (OBE). During the most severe ground excitations, the maximum credible
earthquake (MCE), potential crack formations can not be excluded from the design
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Figure 1.2 Safety evaluation of concrete dams (adapted from Lombardi '),

considerations (Rescher "), A rational design approach is to expect moderate damage
under the maximum credible earthquake without endangering the ability of a dam to

retain the reservoir pressure (USBR ).

In the past design methodology for concrete dams, the earthquake effects have
usually been taken into consideration by a seismic coefficient to define the additional
static lateral load as a certain percentage of the self-weight of dams. Due to uncertainties
regarding the tensile resistance of concrete, a 'no-tension’ design criterion is satisfied
assuming a linear stress distribution over the uncracked portion of presumed horizontal
crack planes (Fig. 1.3(a)). However, the traditional *no-tension’ analysis of concrete
dams with horizontal cracks may not guarantee a solution that would be on the safe side
(BaZant , Gioia et al. ). The US Army Corps of Engineers has developed guidelines
for evaluating the cracking hazard by linear dynamic analyses of gravity dam monoliths
(Guthrie ™). The procedure requires linear dynamic analyses of dam-foundation-

reservoir systems with a variable critical damping ratio, depending on the intensity of
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tensile stresses in the dam. A significant feature of the proposed 'pseudo-nonlinear’
transient seismic analysis procedure is the adjustment of damping ratio to represent the
energy dissipation caused by nonlinear behaviour of the structure. The procedure,
however, provides no specific recommendations about the orientation of expected crack
planes, that is crucial in determining the sliding stability of a cracked dam. In fact, it
is very difficult to make reasonable predictions about the crack profiles from linear
analysis results, because, upon initiation of a crack, extensive stress redistribution will
take place, resulting in a crack profile that may be different altogether from the zones
of principal stress concentrations predicted by the linear analysis. A crack profile
gradually dipping downward from the upstream face towards the downstream face (Fig.
1.3(b)), if emerges in reality, will make the structure vulnerable to sliding and
overturning instability. Nonlinear analyses are required to predict a realistic crack
profile for application in the post-earthquake stability analysis, and also to determine the
safety of dams and the potential collapse mechanisms during the earthquake. Progressive
damage under cyclic loading, and the energy dissipation characteristics of a dam
undergoing nonlinear behaviour can be realistically addressed in such analyses. The
International Commission on Large Dams (ICOLD *) recommends that full, nonlinear,

dynamic analysis be carried out to assess the safety of important dams under extreme
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intensity earthquakes, that produce internal forces exceeding the elastic strength capacity
of dams. Evaluation of the possible crack profiles and the corresponding structural
resistance is of topmost necessity to ensure a safe operation of the structures. The
engineering community involved with dam safety problems is actively seeking reliable

and efficient constitutive models to investigate the cracking response of concrete dams.

1.2 DEFINITION OF THE RESEARCH PROBLEM

A progressive strategy to determine the safety of concrete gravity dams is outlined
in Fig. 1.4. The key issue in a numerical simulation procedure is the constitutive model

for concrete cracking. Extensive research has been performed over the last two decades

(1) Static (4) Nonlinear
, - Model for concrete cracking ~®  seismic
analysis .
analysis
(2) Free-vibration (3) Linear !
— analysis —®  seismic
analysis
-self-weight -seismic input motion (PGA, TH) -time-domain
-hydrostatic -dam-reservoir-foundation interaction solution
pressure -frequency-domain or time-domain strategy
-temperature methodology

e

(5) Damage prediction

(6) Safety index

(7) Aseismic provisions

Figure 1.4 A progressive strategy for safety evaluation of concrete dams.



to comprehend the fracture behaviour of structural concrete having relatively small size
aggregates. The concrete fracture theories and the relevant computational models have
been primarily developed to predict the contribution of concrete fracture resistance on
the ultimate strength of elementary structural members subjected to monotonic static
loads. Fracture behaviour of concrete under oscillating dynamic loads, particularly for

dam concrete, has not been adequately investigated in the past.

Concrete dams, generally not reinforced, are spatially configured 1o utilize the
applied loads in normal operating conditions, such as the reservoir pressure in arch
dams and the self-weight in gravity dams, to induce pre-compression inside the
structure. Seismic excitations may result in removal of the pre-compression in certain
parts of the structure. The fracture resistance of concrete plays a vital role at that state
to determine the extent of cracking in the dam. The behaviour of mass concrete is
considerably different from the structural concrete behaviour, due to the use of relatively
large size aggregates and different construction methodology in dams. Constant exposure
of dams to open atmospheric conditions, and the enormous size of these mass concrete
structures also contribute to that difference in constitutive behaviour. Characterization
of the behaviour of dam concrete is a formidable task due to the requirement of very
large specimen sizes that make a realistic representation of the material embedded with
large size aggregates. Few numerical investigations have been performed in the past
using conventional static fracture models to predict the cracking behaviour of concrete
dams subjected to non-seismic loading conditions (Ayari *, Gioia et al. ™, Ingraffea ¥7,
Linsbauer et al. '™%), Some of these models have also been applied with limited

success to predict the seismic cracking behaviour of concrete gravity dams.

The extrapolation of fracture theories, derived on the basis of observed structural
concrete behaviour, requires an adequate validation scheme to ensure a reliable
prediction of the structural behaviour of dams (Fig. 1.5). Specific considerations are
required in seismic fracture analyses, such as the strain rate effects, interaction with the

generally used viscous damping model, and the closing and reopening of cracks. Finite
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element discretization of the giant structures, and mesh objectivity of the predicted
response deserve special considerations. Seismic energy dissipation characteristics of
concrete dams need to be investigated rigorously. Influences of severe environmental
distress, such as the effects of seasonal temperature changes, should also be taken into
consideration in the numerical models for concrete dams in Eastern Canada. Finally,

guidelines for industrial application of the proposed constitutive models are strongly

required.

1.3 OBJECTIVES OF THE RESEARCH

The following objectives have been considered in this research:

e to determine the state-of-the art of numerical models for fracture analysis of concrete

gravity dams;



e todevelop a nonlinear smeared fracture analysis model for investigating the cracking
behaviour of mass concrete structures;

e to implement the constitutive models in a finite element analysis computer program
for fracture analysis under static and seismic loading conditions;

e to develop a computational strategy for post-failure analysis of plain concrete
structures subjected to static loading;

e to validate the proposed fracture analysis models by investigating the fracture
response of concrete structures - experimentally and/or numerically studied by other
researchers;

e to investigate the seismic fracture and energy response of concrete gravity dams;

e to investigate the influences of severe winter temperature condition on the seismic
safety of concrete gravity dams located in Eastern Canada;

e toinvestigate the influences of dynamic interactions in the dam-reservoir-foundation
system, on seismic fracture response of dams, and

e to provide recommendations for industrial application of the nonlinear fracture

mechanics techniques in static and seismic analyses of concrete dams.,

1.4 ORIGINAL CONTRIBUTIONS OF THE THESIS

To the best of the author's knowledge, the following items can be considered as

original contributions of this thesis:

e A critical review of concrete constitutive models and their applications to seismic
fracture analysis of gravity dams has been presented.

e Smeared crack analysis models have been developed based on the nonlinear fracture
mechanics criteria, to apply in static and seismic fracture analyses of mass concrete
structures,

e The strain softening of concrete due to micro-cracking, biaxial effects on the

softening initiation criterion, shear deformations in the fracture process zone and the



subsequent rotation of crack directions, the dynamic magnification of fracture
parameters, opening-closing-reopening of cracks, and the pre-seismic gravity and
temperature load effects have been considered in the development of constitutive
models.

e Anincremental-iterative analysis technique has been developed to predict the ultimate
resistance and the post-failure behaviour of plain concrete structures.

e Computational efficiencies of the tangent modulus approach and the damaged secant
modulus approach, in finite element implementation of the strain softening
constitutive models, have been investigated.

e An extensive validation procedure has been undertaken by predicting the static
fracture response of plain concrete structures subjected to mode-I and mixed-mode
loading conditions, and also by predicting the fracture response of a full scale gravity
dam, all experimentally or numerically investigated in the past.

» A nonlinear fracture mechanics approach, in the framework of a smeared crack finite
element analysis model, has been applied to predict the seismic fracture and energy
response of concrete gravity dams. Influences of different viscous damping models
on the seismic response of concrete dams have been studied.

e Severe winter temperature effects, and dynamic interactions with the reservoir and
the foundation, have been considered in the fracture analysis of a standard section
dam.

1.5 ORGANIZATION OF THE THESIS

Constitutive models and the finite element analysis program have been developed
assuming that the structural behaviour can be represented with a plane stress finite
element model. Figure 1.6 outlines the organization of the thesis.

Following the introduction of the thesis in this chapter, Chapter 2 presents a
comprehensive review of the literature relevant to the main theme of the thesis. Spatial
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representation of cracks in a finite element model, various constitutive models that are
generally applied in fracture analysis of concrete structures, and the material parameters
required for the application of available constitutive models in dam fracture analyses are
primarily reviewed in that chapter. A critical appraisal of the past investigations on

seismic fracture response of concrete gravity dams is also presented.

Chapter 3 introduces the constitutive models developed for smeared fracture analysis
of plain concrete structures. Different features of the proposed fracture analysis models,
such as the softening initiation criterion, the strain softening of concrete and the fracture
energy conservation, numerical simulation of the strain softening behaviour, shear
deformations in the fracture process zone and the subsequent rotation of crack
directions, and the opening-closing-reopening of cracks under oscillating loading

conditions are outlined in this chapter.

Chapter 4 presents the nonlinear solution algorithms, adopted for the static fracture
analysis under incremental force/displacement loadings, and for the time domain seismic
fracture analysis of concrete dams. An indirect displacement control analysis technique
is developed to predict the ultimate resistance and the post-failure behaviour of plain
concrete structures subjected to static loads. The energy response of structures, the
modelling of dynamic interactions in a dam-reservoir-foundation system, the viscous
damping models for seismic fracture analyses of concrete gravity dams, the convergence
indices of nonlinear solution algorithms, and the long term relaxation of temperature

induced stresses are also discussed in this chapter.

Application of the computational models to predict the static fracture response of
concrete members, subjected to mode I type loading conditions, is presented in Chapter
5. Computational efficiencies of the tangent modulus approach and the damaged secant
modulus approach to model the strain softening behaviour of concrete, and the energy
response of a simple beam subjected to the three-point loading are also investigated in
this chapter.

11



Chapter 6 is devoted to predict the static fracture response of plain concrele
structures subjected to mixed mode loading conditions. A notched beam subjected to
shear loading, a model concrete gravity dam subjected to equivalent hydraulic loading
conditions, and a full size concrete gravity dam subjected to the reservoir overflow are
considered for investigations. The indirect displacement control analysis technique is
applied to predict the post-failure behaviour of these plain concrete structures.

Application of the constitutive models to predict seismic fracture and energy
responses of Koyna Dam, that experienced significant cracking due to an earthquake,
is presented in Chapter 7. Sensitivity of the predicted response to analysis parameters

and modelling assumptions is investigated in this chapter.

Chapter 8 presents a case study, investigating the seismic fracture response of a
typical concrete gravity dam located in Eastern Canada. The severe winter temperature
effects on seismic fracture response of the dam are specifically investigated in this
chapter. The influences of reservoir and foundation interactions on seismic fracture

response of the gravity dam are also studied.

Finally, the conclusions of this research program, and the recommendations for
industrial application of the nonlinear fracture analysis model to predict the static and
seismic responses of existing concrete dams are presented in Chapter 9,

Recommendations for future research in this area are also listed in that chapter.

12



CHAPTER 2

SEISMIC FRACTURE ANALYSIS OF CONCRETE
GRAVITY DAMS - STATE-OF-THE-ART

2.1 INTRODUCTION

A comprehensive model for seismic fracture analysis of concrete gravity dams

comprises of three principal components, as outlined in Fig. 2.1: (i) a numerical scheme

SPATIAL DISCRETIZATION
— OF THE SYSTEM

-Finite Element Method (FEM)
-Boundary Element Method (BEM)

Y

DYNAMIC INTERACTIONS IN THE
DAM-RESERVOIR-FOUNDATION

SYSTEM

-Frequency domain models
-Time domain models

Y

- S~ FRACTURE ANALYSIS MODEL
Spatial CONCRETE CONSTITUTIVE
representati BEHAVIOUR AND CRACK
Figure 2.1 Numerical of cracks PROPAGATION CRITERIA
models for seismic
Sracture analysis of -Discrete models -SOM, LEFM, NLFM
concrete gravity dams. -Smeared models

for spatial discretization of the system, (ii) a modelling procedure to take account of the
dynamic interactions in the dam-reservoir-foundation system, and (iii) a fracture analysis
model. The finite element method (FEM) has long been used for spatial discretization

of concrete structures in both linear elastic and nonlinear analyses. Although fracture
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analysis using the boundary element method (BEM) has been presented in the literature
(Pekau et al, '), extensive application of the method needs further compelling
evidences regarding the reliability and computational efficiencies of the procedure.

Discussions on fracture modelling procedures will be limited to finite element analysis
techniques only.

The reservoir and foundation interaction effects have been rigorously considered in
the past to study the linear elastic response of concrete dams subjected to a moderate
intensity operating basis earthquake (OBE). A brief summary of various analytical
models to take account of dynamic interactions in a dam-reservoir-foundation system is
presented in section 2.2.

The fracture analysis model is by far the most important part of a nonlinear seismic
response study of concrete dams. Several analytical methods have been proposed in the
literature for two-dimensional finite element crack propagation analyses of concrete
structures. Due to the lack of consistent results, and virtually impossible verifications
because of the limited field experience in seismic cracking of concrete dams, the
selection of a reliable constitutive model has become a complex task. Unlike the
circumstances in an arch dam, where the nonlinear joint behaviour in the arch direction
could be a decisive factor in determining the seismic stability of the structure (Niwa and
Clough''"), the structural response of gravity dams is mainly determined by gravitational
forces. The concrete gravity dam monoliths, usually not keyed or lightly grouted, are
expected to vibrate independently under severe ground excitations (Chopra *'). Hence,
two dimensional fracture propagation models seem appropriate for nonlinear seismic
response analyses of concrete gravity dams. A state-of-the-art review on constitutive
models for the two-dimensional finite element crack propagation analysis of concrete
dams is presented in this chapter. Relative merits of various modelling procedures are
critically examined. Special emphasis is put on the application of these models in
seismic analyses of concrete dams, and the limitations of past investigations are

examined, The phenomena of water penetration and uplift pressure on crack-open
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surfaces (Amadei et al. ', Ayari?), the total/effective stress behaviour under pore water
pressure (ICOLD ™), and the hydrodynamic pressure gradient inside cracks (Tinawi and
Guizani '), will not be discussed here. General aspects regarding the seismic analysis
of concrete dams can be found in ICOLD**, Jansen %2, NRC ', and Priscu et al. '?,

2.2 DYNAMIC INTERACTIONS IN THE DAM-RESERVOIR-
FOUNDATION SYSTEM

Dynamic interaction effects of the reservoir and the foundation are numerically
modelled by adding mass, stiffness and damping terms to the corresponding dam system
properties. Generally speaking, these added quantities are frequency-dependent.
However, both frequency-dependent and independent approaches have been considered
in the literature to model some or all of the interaction effects. Figure 2.2 summarizes
the most commen modelling procedures and solution techniques for a typical dam-

reservoir-foundation system subjected to seismic excitations.
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Figure 2.2 Dynamic interactions in a dam-reservoir-foundation system (Léger et al. *)

15



One of the earliest attempts to model the reservoir interactior. effects was due to
Westergaard *°, The hydrodynamic pressures were assumed (o be generated by a
parabolic body of incompressible water moving in unison with a rigid dam (Fig. 2.2).
A deficiency of the traditional incompressible water approximation is that the
hydrodynamic wave absorption effects of underlying reservoir bottom sediments cannot
be taken into account (NRC '"). Performance of the Westergaard added mass technique
can be significantly enhanced by assigning damping properties on the upstream face of

dams to simulate the energy dissipation in the reservoir (Léger and Bhattacharjee '™).

Rigorous frequency-domain models of the reservoir and foundation interaction effects
have been developed by A. K. Chopra and his co-workers (Chopra *, Dasgupta and
Chopra*, Fenves and Chopra %). Dynamic interactions with the reservoir and the
foundation have been observed to significantly influence the linear elastic seismic
response of dams. The finife element analysis programs EAGD-84 (Fenves and
Chopra®) and EACD-3D (Fok et al. %) are widely used in frequency domain analyses
of two and three dimensional dam-reservoir-foundation models. El-Aidi and Hall*"*
have conducted nonlinear seismic analyses of the Pine Flat Dam, taking into account
some aspects of the reservoir and foundation interactions effects. The foundation has
been modelled as a three-dimensional half-space with arbitrary dimensions. Frequency-
independent foundation stiffness and damping coefficients have been derived by
averaging the frequency-dependent properties. The reservoir has been modelled by using
displacement based finite elements - the so called "mock” fluid elements (Cook et al. 42).
Energy radiations in the reservoir upstream direction and at the reservoir bottom are
approximately modelled by applying non-reflecting boundary conditions. Time-domain
models to represent the dam-reservoir-foundation interaction effects in finite element
analyses are also available in Fenves and Vargas-Loli %, Kuo®, Léger et al. *, and
Wilson and Khalvati ', Boundary element methods are being increasingly used to model
the reservoir and the foundation in seismic analyses of concrete dams (Feltrin et al. @,
Humar and Chandrashaker %, Medina et al. ).
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2.3 FINITE ELEMENT REPRESENTATION OF CRACKS

Two approaches have generally been followed for the spatial representation of tensile
crack propagation in finite element analysis of concrete structures; the discrete crack
model and the smeared crack model. Both models have been used over the decades
because of the advantages and the inconveniences that they bring to the constitutive

models in finite element crack propagation analysis of concrete structures.
2.3.1 Discrete crack propagation model (DCPM)

In the DCPM (Ngo and Scordelis ''®), cracks are represented as discrete gaps along
the inter-element boundaries. The propagation of cracks is determined by strength or
fracture mechanics based constitutive models. The progressive physical discontinuity in
a structure is reflected instantaneously in the finite element model by modifying the

mesh during the analysis (Fig. 2.3(a)). It is generally argued that the nonlinear response
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Figure 2.3 (a} Discrete crack analysis (adopied from Carpinteri et al. *°), and
(b) smeared crack analysis.
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of concrete dams is dominated by a few discrete long cracks. From this consideration,
the discrete crack model may be a sensible choice for dam fracture analysis. Specific
advantages of the DCPM are the abilities to consider explicitly the vvater penetration and
uplift pressure inside cracks, the aggiegate interlock in a rough crack, and the direct
estimation of crack-opening-displacement (COD) profile. The principal disadvantages
in applying this model are the difficulty and high computational cost due to continuous
change of the finite element topology during the analysis, and the non-objective effects
of finite element meshes and crack length increments. A special case of discrete crack
modelling is the application of interface elements to represént the a priori weak joints
in the system, such as the dam-foundation interface and construction joints (Goodman
et al. ™, Graves and Derucher , Hall and Dowling ™, Hohberg *, Léger and Katsouli®’,
O’Connor ''%).

2.3.2 Smeared crack propagation model (SCPM)

In the SCPM (Rashid '**), fracture propagation is idealized as a blunt front smeared
over a band of fiuite elements. After the initiation of fracture process, determined by
a suitable constitutive model, the pre-crack material stress-strain relationship is replaced
by an orthotropic relationship. The material reference axis system is aligned with the
fracture direction in orthotropic formulations. The tension stiffness normal to a crack
plane is either eliminated suddenly or a gradual stress release criterion is applied. Thus,
only the constitutive relationship is updated with the propagation of cracks, and the finite
element mesh is kept unchanged (Fig. 2.3(b)). The main advantage of this model lies
in its simplicity and cost effectiveaess, although the physical nature of crack
representation is questionable. The tendency of smeared crack models to cause diffused
crack patterns, and the directional bias caused by a slanted finite element mesh are still
significant coinputational difficulties. However, the model is very effective in complex
structural analyses, such as the seismic response study of concrete gravity dams, when

the location and orientation of cracks may not be known a priori. Moreover, pre-
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existing diffused crack patterns in a structure can be efficiently represented by the

smeared crack finite element model.

2.4 CONSTITUTIVE MODELS FOR CRACK PROPAGATION

A comprehensive constitutive model for fracture propagation analyses should
describe the pre-fracture material stress-strain behaviour, the fracture initiation and
propagation criteria, and the closing and reopening of cracks in a cyclic load analysis.
The usual practice in concrete fracture analyses is to presume a linear elastic behaviour
before the onset of tensile fracture process. The behaviour of concrete under high
compressive loads is predominantly nonlinear. However, the maximum compressive
stress in concrete gravity dams is expected to be low even under severe ground
excitations., A reasonable assumption of linear elastic behaviour under compressive

loading has been applied in almost all previous investigations related to dams.

The general practice in concrete fracture analyses is to assume the initiation of new
cracks in a homogeneous structure, when the principal tensile stress reaches the tensile
strength of concrete. The diversity in various fracture analysis models lies in the
definition of fracture propagation criteria after a crack is introduced in the structure.
Major developments in the realm of crack propagation analysis and their relative merits

are discussed in the following sections.

2.4.1 Strength based criteria

The early investigations on cracking of concrete structures have mostly applied
simple criteria based on the concepts of strength of material (SOM). A crack is assumed
to propagate when the predicted stress or strain at the crack-tip exceeds a critical value
representing the tensile strength of material. A sudden release of stress on the fracture
plane is commonly assumed upon reaching the peak tensile strength. The gradual release
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of stress with increasing strain has also been used, mainly for the numerical stability of
finite element crack propagation analyses (Lin and Scordelis '™). The SOM criteria of
crack propagation have been used in both discrete (Skrikerud and Bachmann "% and
smeared (Bathe and Ramaswamy®) crack propagation finite element models. Comparison
of the computed tensile stress with the material tensile strength is not rational in a
cracked structure, because, spurious results may be obtained depending on the size of
finite elements lying ahead of the propagating crack. The lack of finite element mesh

objectivity of the SOM criterion has been demonstrated in BaZant and Cedolin '

2.4.2 Fracture mechanics criteria

Fracture mechanics is the theory to deal with propagation of cracks, and is based on
the concept of energy dissipation in the structure undergoing fracture process. It has
been recognized only recently that the tensile failure mechanism in concrete structures
is different from the usual strength based concept, due to the progressive growth of
fracture process (ACI?). Three elementary modes of failure are recognized in the

fracture theory (Fig. 2.4). Modes I and II, the opening mode and the planar shear mode,

(a) (b) (c)

tensile fracture planar shear fracture tearing fracture

Figure 2.4 Modes of failure: (a) mode I, (b) mode 1l, and (c} mode lI.

are usually considered in a two-dimensional fracture analysis. The third one, tearing
mode (mode III), is considered in three-dimensional fracture propagation studies.

Fracture mechanics crack propagation models can be broadly classified into two
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categories: the linear elastic fracture mechanics (LEFM) models, and the nonlinear

fracture mechanics (NLFM) models.

According to LEFM, the fracture process occurs right at the crack-tip and the entire
material volume remains elastic (Fig. 2.5(a)). The stress field around the tip of a sharp

(a) ®)
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Figure 2.5 Fracture process zone (FPZ): (a) LEFM, and (b) NLFM.

crack is characterized by the stress intensity factors, K;, determined from linear elastic

solutions:
K, o1
Ky 7080 %13

where o are the near crack tip stresses, r and # are polar co-ordinates, and K, Ky, and
K,y are the stress intensity factors (SIF) associated with three fundamental fracture
modes. Once the SIF have been numerically (or analytically) computed, and the material
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fracture toughness, K., experimentally determined, a suitable functional relationship is

applied as a criterion for propagation of existing cracks:
J Kp Ky Ky Kp) = 0 (2.2)

Several functional forms of Eqn. (2.2) have been proposed in the literature. A review
of various developments in the relevant field is available in Ayari®, In LEFM models,
a sudden release of stress is assumed with the extension of cracks. Most investigators
adopt the discrete crack propagation finite element model (DCPM) or an equivalent
technique with the LEFM crack propagation criteria. Pekau et al. '"'?* have developed
discrete crack analysis models to apply the LEFM criterion in boundary element models

of concrete structures.

The question of whether or not the fracture process in concrete can take place at a
localized point has been a subject of intense debate for quite long time. In reality, the
fracture process zone (FPZ) must have a finite size (Fig. 2.5(b)). It is argued that the
LEFM can be applied if the FPZ is much smaller than the dimension of the structure
under consideration. Very large concrete structures, such as dams, are usually cited as
the possible candidates for application of LEFM models. However, no rigorous
experimental evidence has ever been put forward appraising the extent of FPZ in the
dam concrete. The disregard of nonlinear behaviour in the FPZ is an assumption of
unknown consequences in determining the local fracture behaviour of structures. It
seems appropriate to consider the nonlinear behaviour in the FPZ, if the localization of
crack profiles is a primary objective of the finite element analysis. In a gravity dam, a
relatively stiff structure, crack opening displacements may be very small, which means
that a long fracture process zone may exist (Dungar et al. **). Moreover, the size of FPZ
may not be negligible in comparison to the dimension of concrete gravily dams around
the neck region, which is the most critical location for seismic induced cracking. Hence
the argument of a small fracture process zone in comparison to the thickness of the
structure, usually cited to apply LEFM models, may not be true even for concrete
gravity dams. The choice between LEFM and NLFM models may also be influenced
by the strain rate under consideration. Under very slowly applied loads (BaZant et al. %),
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and also under impulsive loads (Du et al. *, Yon et al. '), the concrete fracture
behaviour seems to be adequately predicted by the LEFM models. In the intermediate
range from short term static loading to seismic induced strain rates, the NLFM models
considering the strain softening behaviour in the FPZ appear to be more appropriate.

The primary characteristic of nonlinear fracture mechanics (NLFM) theory is the
recognition of strain softening behaviour of concrete in the FPZ, Two apparently
different models have been proposed in the literature considering only mode I nonlinear
fracture propagation in concrete, The most referenced work is due to Hillerborg et al.*,
where the existence of FPZ has been characterized as a fictitious crack lying ahead of
the real crack tip (Fig. 2.6(a)). The behaviour of concrete in the FPZ is represented by
a diminishing stress, o, versus crack-opening-displacement (COD), 6, relationship; the
tensile resistance is ceased at a critical COD value, §; (Fig. 2.6(a)). The area under a
o-6 curve represents the energy, G, dissipated during fracture process on a unit area:

Gy = [ o(3)dd (2.3)
G, is a material property and often referred as the fracture energy or the specific
fracture energy. The special feature of Hillerborg's fictitious crack model is the
dissipation of energy over a discrete line crack. This basic nature of the model has made
its extensive applications possible in discrete crack propagation analyses. In some recent
studies, the key assumption of Hillerborg's model, that the tensile stress at the tip of a
fictitious crack is equal to the tensile strength of concrete, has been modified using the
concept of singular stress distribution at the fictitious crack tip (Yon et al. '2), LEFM
models, in the context of a discrete crack propagation analysis, have also been modified
to take account of the effects of FPZ, using additional material parameters. The two-
parameter model proposed by Jenq and Shah® is one those equivalent elastic crack
models.

BaZant and Oh ¥ have proposed that the energy dissipation in a heterogeneous
material like concrete must involve a finite volume. The fracture process is assumed to
propagate as a blunt front (Fig. 2.6(b)). The width of a blunt crack (or a band of micro-
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Figure 2.6 NLFM models: (a) fictitious crack model, and (b) crack band model.

cracks), w,, represents the zone over which the distribution of micro-cracks can be
assumed uniform. The strain softening behaviour of concrete in the FPZ is represented

by a stress-strain relationship (Fig. 2.6(b)) and the fracture energy, Gy, is given by:

G, =w, ]; “r o(e)de (2.4)
An inherent characteristic of the proposed crack band model is the smeared nature of
crack distribution over a band width, w,, which is usually assumed three to four times

the maximum aggregate dimension., Smeared nature of the crack band model is a -
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tempting feature for application in finite element analyses when the direction and the
location of a crack propagation are not known a priori. Application of the crack band
model in its original form to smeared fracture propagation analyses requires the size of
finite elements be limited to three or four times the maximum aggregate dimension; a
size often considered stringent for any practical finite element analysis of large concrete
structures. Special finite element techniques have been proposed to ease this limit on the
element size by smearing the fracture process effects over a zone of finite elements, and
the average stress-strain relationship is adjusted to conserve the fracture energy
(Dahlblom and Ottosen*, de Borst and Nauta’, Oliver '*'). Key issues pertinent to the
finite element implementation of the fracture energy conservation principle are discussed

in the following sections.
2.4.3 Conservation of fracture energy in smeared crack models

The development of cracks in concrete passes through stages, as outlined in Fig.
2.7(a). Generally a linear elastic relationship is assumed until the peak strength, o;, is
reached, followed by a linear strain softening at the post-peak phase. The area under the
average stress-strain curve of a finite element, undergoing the fracture process, is
adjusted such that the dissipated fracture energy, Gy, for a unit area of crack extension,
remains independent of the element characteristic dimension, h, (Fig. 2.7(b)). Slope of
the softening branch, E' (Fig. 2.7(b)), is adjusted according to the following relationship

to conserve the fracture energy:
oz,E

a7 - 2EG,/h,

Et= (2.5)
If the peak strength, o;, the elastic modulus, E, and the fracture energy, G;, are known
for the material, the strain softening modulus for a particular element size, h., can be
determined from Eqn. (2.5). For cracks parallel to the sides of a square shaped element,
the characteristic dimeusion, h,, can be taken equal to the element dimension across the
crack plane (Fig. 2.7(b)).
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Figure 2.7 Strain softening constitutive models: (a} development of cracks (adapted from
Nomura et al.''8), (b) fracture energy conservation, (c) limitations of the linear softening

model, and (d) adjustment of constitutive models depending on the element size.

In finite element analyses, the softening modulus defined by Eqn. (2.5) is generally
applied to determine the degradation of material strength and stiffness (E) properties
(Fig. 2.7(b)) (BaZant and Oh ). The restoring energy capacity of strain softening
elements, however, does not follow that degradation pattern; it rather varies depending
on the element size, that represents a zone of homogeneous material behaviour. The

curve AB in Fig. 2.7(c) is the locus of points representing a constant recoverable tensile

strain energy per unit volume:
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%ole:1 = —;o,e, = constant (2.6)

A softening relationship following the no-decay curve AB would imply that the material
stiffness, E', is degraded with increasing strain, but the strain energy restoring capacity
remains unchanged. Apparently, the curve AB in Fig. 2.7(c) represents the upper-bound
of all softening models. To compare with the linear softening model, two structural
concrete elements of characteristic dimensions 34.0 mm and 12.7 mm, subjected to a
uniaxiai loading condition, are considered. The material properties of peak strength
0;=22.886 MPa, fracture energy G,=40.29 N/m, elastic modulus E=27413 MPa, and
the maximum aggregate size d,=12.7 mm are taken as reasonable estimates of structural
concrete properties (BaZant and Pfeiffer ). Using the above mentioned properties, line
AC in Fig. 2.7(c) represents the linear softening relationship corresponding to the
element characteristic dimension of 34.0 mm, which is slightly smaller than 3d, - the
optimum size of finite elements recommended by BaZant and Oh ¥ for crack band
analysis. Slope of the line AC, that approximately follows the curve AB in average

sense, is equal to the empirical definition of the softening modulus:

gt - “0482E
0.391+¢, '’

given by BaZant and Oh * to apply with the crack band model. When the element size

(data in MPa) (2.7)

is reduced to 12.7 mm, one-third of the recommended crack-band width, the linear
softening line AD (Fig. 2.7(c)) proceeds wide apart from the no-decay curve before
approaching to zero tensile resistance at a finite strain, that has been calibrated to
conserve the fracture energy. This situation implies that the restoring energy capacity
of the element does not begin to decline after reaching the peak strength even though
the stiffness and the strength of the material start to degrade. The progress of softening
along most part of the line AD will involve a positive external work done on the finite
element, since the internal restoring energy increases with an increasing tensile strain.
The local adjustment of constitutive formulations with a linear softening model, thus,
violates the fundamental nature of unstable softening behaviour after reaching the peak

strength. The precise shape of softening curves, therefore, exerts a significant influence
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on the predicted response (ACI?. A bi-linear softening curve is often applied to
interpret the experimentally determined fracture energy values (Brilhwiler*, Nomura
et al. %), The 'nonlocal’ damage mechanics concept (BaZant and Lin %) is a possible
remedy to the shortcomings of local smeared fracture models in the cases of extreme
finite element mesh refinement. However, the application of ’nonlocal' model is
impractical in large scale structural analysis, such as for dams, where the refinement of
finite element meshes and the associated spatial averaging of local response quantities
are generally limited by computational costs. A linear softening model, applied with
element sizes not less than three to four times the maximum aggregate dimension, is a

reasonable choice for fracture analyses of massive concrete gravity dams.

The softening modulus E', given by Eqn. (2.5), becomes steeper for an increasing
value of h, (Fig. 2.7(d)) up to a certain limit; afterwards an unrealistic snap-back
appears in the tensile stress-strain relationship of concrete. In the limit case, the
softening constitutive model degenerates to the traditional elasto-brittle failure criterion,
dissipating the stored elastic strain energy instantly upon reaching the tensile strength
of material. The maximum finite element size, h,™*, that can be modelled with a linear
strain-softe.aing constitutive model is determined from Eqn. (2.5) as follows:
2EG,

B <

uz, (2.8)
For typical dam concrete properties of E=30000 MPa, G;=200 N/m, and ¢,=2 MPa,
the limiting value is h™*<3 m. This limit on maximum dimension, given by Eqn.
(2.8), was considered stringent in the past, for large scale finite element analyses at a
reasonable cost. To circumvent this limit on the size of finite elements, and at the same
time respect the principle of conservation of energy, one proposition is to reduce the
fracture initiation stress, o;, with the increasing finite element size, and assume an
elasto-brittle failure criterion for element sizes greater than h™* (Fig. 2.8(a)). This is
the so called Size Reduced Strength (SRS) criterion (BaZant and Cedolin ', BaZant '%),
The size reduced strength criterion (or in other words the elastic fracture criterion) can

be criticized for two reasons; (i) the size independent critical COD value, 6, of no
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tensile resistance, implied by the conservation of fracture energy in a nonlinear fracture
model is violated (Fig. 2.8(b)), and (ii) when applied with a strength based crack
initiation criterion, the principle of fracture energy conservation is likely to be violated
in the interior elements as well as in the exterior element (Fig. 2.8(c)). A significant
numerical side effect of the elasto-brittle SRS failure criterion is the generation of
spurious shock waves in the finite element model (El-Aidi and Hall ). Constitutive
models with a constant softening modulus, E', and a size reduced softening initiation
stress (Fig. 2.8(d)) for conserving the fracture energy (BaZant '*), appear to be based on
weaker theoretical considerations and non-existent experimental justifications. Moreover,
a size dependent reduction of the peak strength towards a zero value is neither realistic
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nor can be justified numerically (Tang et al. "), The limit on maximum size of finite

elements, thus, appears to be a requirement to ensure the reliable application of

nonlinear fracture mechanics criteria in a smeared crack propagation analysis.

" 'he application of NLFM models in dynamic analyses requires the definition of

unloading/ reloading behaviour during the fracture process. Very few studies have been

reported in the literature on this aspect. BaZant and Gambarova '’ proposed a nonlinear

stress-strain relationship for closing/reopening behaviour of partially open cracks, as

depicted in Fig. 2.9(a). A simplified secant modulus formulation (Fig. 2.9(b)) was
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Figure 2.9 Closing and reopening of partially formed cracks.
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adopted by de Borst and Nauta *’ to represent the closing of partially open cracks.
Gambarova and Valente ™ assumed a sudden stress release when the closing of partially
open cracks was detected at any instant of the fracture process (Fig. 2.9(c)). Dahlblom
and Ottosen ** proposed the following relationship for closing/reopening behaviour of
partially fractured concrete:

e=[+(1-H)———le,,  Oshsl 2.9)
ag

where A is the ratio between the residual strain upon closing of cracks and the maximum
strain of open cracks (Fig. 2.9(d)). It appears that the techniques applied by de Borst
and Nauta¥, and Gambarova and Valente ™, are subsets of this generalized model with
A=0 and 1 respectively. The physical behaviour of concrete during closing and
reopening of partially formed cracks is yet to be investigated rigorously.

2.4.4 Shear resistance of fractured concrete

After the initiation of fracture process on a plane perpendicular to the direction of
principal tensile stress, it is not unlikely that shear deformations will occur.on the
partially formed fracture planes, resulting in a rotation of the principal stress directions.
Bazant and Oh " ignored the shear deformation on fracture planes, and the material
stiffness matrix was derived considering only the normal strain components. This
formulation is not compatible with the linear elastic isotropic stiffness matrix of the
initial state. The shear deformation in FPZ was latter considered in the so called 'crack
band microplane model’ (Bazant and Gambarova "), Gambarova and Valente ™ retained
the initial shear modulus unchanged until the complete fracture had taken place, and
applied an aggregate interlock model at the post-softening state. The concept of simple
shear 'retention’ factor (Suidan and Schnobrich '”) was adopted by de Borst and Nauta®,
and Gajer and Dux ¥, to derive the shear stiffness of crack bands. The simplified
approach of applying a constant shear resistance factor ignores the dependence of crack
shear stiffness on the crack-opening-displacement (COD), and causes significant stress
locking in smeared crack analyses (El-Aidi, Rots'*), Definitions for variable shear
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resistance factor were also proposed for partial alleviation of the stress locking problem
(Dahlblom and Ottosen *%).

The ’fixed’ smeared crack models, where the fracture plane is fixed perpendicular
to the major principal stress direction at the instant of softening initiation, gencraily
cause a significant stress locking due to the zigzag propagation of crack bands in a finite
element model. In reality, cracks of one direction at a local point may close and lock
in shear while cracks of another direction may form (BaZant and Lin?), In some
computational models, the orthotropic material reference axis system is rotated when the
principal stress direction deviates by a certain amount from the direction that initiates
the crack (Cope et al. **, Gupta and Akbar ™). In a strain softening constitutive model,
the rotating principal stresses (o|, 0,) and principal strains (¢,, €;) can be maintained

coaxial by using an implicit definition for the softened shear modulus, G* (BaZant "):
Gr= "% (2.10)
2(e -€y)
A special numerical technique to represent non-orthogonal multiple crack formations was
developed by de Borst and Nauta . However, the non-orthogonal crack model
occasionally results in an ill-conditioned element stiffness matrix under closely aligned
cracks (Gajer and Dux *®). The effect of non-orthogonal multiple cracks on the fracture
energy dissipation is also an unknown phenomenon. Rots and de Borst '** proposed a
shear-softening constitutive mode! based on the concept of mode II fracture energy
dissipation, which seems to be controversial in concrete fracture analyses. The spurious
stress locking of continuum mechanics models can also be relieved by using the isotropic
damage mechanics models, that are more appropriate to model the volumetric

degradation of concrete properties, such as mass swelling in dams (Cervera et al. *%),
2.4.5 Post-softening behaviour of concrete

The post-softening deformation of concrete is essentially a discontinuous

phenomenon. Several analytical models have been proposed to represent the aggregate
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interlock behaviour of cracked concrete (BaZant and Gambarova ', Chen and
Schnobrich®, Reinhardt and Walraven '*2, Riggs and Powell ¢, Skrikerud and Bachmann
48 Walraven'*¥), A comparative study on different rough crack models is available in
Feenstra et al, %', Feltrin et al. *% applied the aggregate interlock model at the post-
softening phase of the Hillerborg's fictitious crack model, in seismic fracture analyses
of concrete gravity dams. Application of an aggregate interlock model in standard
smeared crack analyses, where continuous shape functions are used to derive the finite
element stiffness matrices, may cause an unpredictable behaviour of the computational
model. Substitution of the standard finite elements with specially derived joint elements,
or application of the discoutinuous shape functions (Droz #, Ortiz et al. ') may be
considered to represent the post-softening behaviour of concrete. A recent experimental
investigation on dam concrete, reported by Briihwiler and Wittmann*, has shown that
the crack does not travel around the aggregates; it goes straight through them. The
roughness on resulting fracture planes, thus, will be mild providing low shear resistance.

A very special post-fracture problem, associated with dynamic analyses, is the
modeliing of contact-impact phenomenon occurring upon closing/reopening of cracks.
Special numerical techniques to simulate the impact behaviour in discrete crack models
have heen proposed in the literature (Ayari and Saouma’, Pekau et al. ). El-Aidi and
Hall * have presented a discussion on numerical difficulties arising from high velocity
closing/ reopening of cracks in smeared crack analyses. The viscous damping in finite
elements, and the energy dissipative numerical integration schemés generally ensure
adequate stability of smeared cracks analyses under closing/reopening conditions (as will
be demonstrated in chapter 7 of this thesis).

2.5 MATERIAL PARAMETERS FOR FRACTURE PROPAGATION
ANALYSIS

The present development of numerical analysis models is relatively ahead of the

vusrent knowledge of material behaviour, especially under transient conditions. Material
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parameter data determined from reliable experimental studies is limited in the literature
of dam concrete. Recent experimental investigations, such as the one by Briihwiler
(Brithwiler ¥, Brithwiler and Wittmann %), are revealing significant differences in the
mechanical properties of structural concrete and mass concrete. Ideally, the selection of
material properties for safety analyses of concrete dams should be dealt with on a case-
to-case basis, because, the material properties may vary widely from dam to dam.
However, a review of literature is presented here to establish a reasonable limit of

parametric values.

Poisson’s ratio, ¥, and elastic modulus, E, are applied to represent the elastic
behaviour of concrete in all analyses, irrespective of the constitutive model selected for
propagation of cracks. Jansen® has suggested the Poisson’s ratio between 0.17 to 0.28
for one year old dam concrete. A value of 0.20 has been applied almost universally in
the past studies. Briihwiier*' has observed the reduction of Poisson's ratio with an
increasing compressive strain rate applied to concrete cylinders. However, the influences
of rate sensitive » may be insignificant in comparison to the influences of other material
parameters. The static elastic modulus for one year old dam concrete is suggested by
Jansen * in the range of 28000-48000 MPa. A 25% magnification of the static modulus
is often assumed in approximate dynamic analyses of concrete dams (CEA*, NRC '),
‘The Young’s modulus of concrete is generally considered less sensitive to strain rate
than the tensile strength, or even not affected at all (Reinhardt ™). Simple or few cycles
of compression pre-loading may also cause a complete elimination of the strain rate

sensitivity of Young’s modulus (Brithwiler and Wittmann 32),

The following sections briefly review the material parameters generally used in three
major crack propagation criteria: strength of material, linear elastic fracture mechanics,
and nonlinear fracture mechanics. Special material parameters used in the equivalent
elastic crack models, such as the critical crack tip opeaing displacement (CTOD,), are
not considered in the discussions.
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2.5.1 Strength-of-material parameters

The governing material parameter in SOM based fracture propagation models is
either the critical stress or the critical strain, that are usually determined from direct
tension or split cylinder tests. From a rigorous study with some 12000 published test
results, Raphael ' has proposed the following relationship between tensile and
compressive strengths of concrete under static loading:

o, = 0324f° % MPa @2.11)
where f°, and o, are static compression and tensile strengths of concrete in MPa. The
tensile strength of concrete increases significantly with the increasing rate of applied
loading. In the limited dynamic tests performed on mass concrete, the dynamic load rate
effect is observed to be higher than that in usual structural concrete. Raphael '*® has
proposed a dynamic magnification factor of 1.5 to amplify the tensile strength of
concrete in dynamic analyses. Briihwiler and Wittmann ¥ have observed a dynamic
magnification of up to 80% in the investigated strain rates between 10 to 102 per sec,
and this magnification decreases significantly due to the compression pre-loading on
tested specimens.

A confusion, however, exists about the inteipretation of tensile stresses computed
from finite element analyses. Since the pre-peak stress-strain relationship is assumed to
be linear elastic in most analyses, some investigators have suggested to compare the
predicted tensile stresses with the apparent strength of material (Fig. 2.10(a)).
Experimental evidences seem to support an apparent static tensile strength about 30%
higher than the value given by Eqn. (2.11) (Raphael'*®). However, a similar magnitude
of increase in the dynamic tensile strength (Raphael P is not justified due to the
reduced near-peak nonlinearity of stress-strain relations under dynamic loads (Fig.
2.10(b)) (Bhattacharjee and Léger %),
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Figure 2.10 (a) Apparent tensile strength, and (b) the dynamic load effects.

2.5.2 Linear elastic fracture mechanics parameters

The principal parameter applied in LEFM crack propagation models is the fracture
toughness, K,., of concrete. A handful of experimentally determined K, values of dam
concrete is available in the literature. Saouma et al. " have found a K, value of 1.1
MPa/m. Linsbauer '® has reported K,. values in the range of 2.0 to 3.5 MPa/m. The
following guideline has been proposed by Saouma et al. ' to select K,.; zero value as
a first approximation, should the response be unacceptable, a value of K. =1.0 MPaym
is used, and if this value still results in unacceptable crack lengths, laboratory
experiments may be performed on recovered core specimens. Due to multiaxial
confining stresses in the field condition, in situ values of the fracture toughness may be
three times the unconfined laboratory test values (Saouma et al, '*!'¥), The fracture

toughness can also be estimated from the following well known relationship (Irwin *):

K, = G.E (2.12)
where E is the elastic modulus, and G, the fracture energy. The strain rate sensitivity
of K, for mass concrete is not well addressed in the literature. In a seismic analysis of

Koyna Dam, Ayari and Saouma® have assumed an arbitrary dynamic magnification
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factor of 60, which seems too high for concrete. Brithwiler*' has predicted the rate

sensitivity of K. to be lower than that of concrete tensile strength.
2.5.3 Nonlinear fracture mechanics parameters

The fracture energy, Gy, is applied in conjunction with the elastic modulus, E, the
peak tensile strength, ;, and a desired shape of the strain softening curve to define the
entire constitutive behaviour of concrete in a nonlinear fracture mechanics model. The
peak strength, ¢;, beyond which the strain softening process occurs, is usually assumed
equal to the tensile strength, o, The fracture energy, G, is generally determined from
three-point loading tests (BaZant and Pfieffer?®) or from wedge splitting tests (Briihwiler
and Wittmann ), Empirical relationships have been proposed to determine the fracture
energy value from standard material parameters (BaZant and Oh **, Oh and Kim %%,
Those relationships have been derived using the experimentally determined results,

obtained with small size aggregates that are normally used in structural concrete.

Limited results have been reported from experimental investigations on concrete
collected from dam construction sites (Briihwiler?!, Briihwiler and Wittmann*2). The G,
value under a static loading condition has been determined to be in the range of 175 to
310 N/m, which is two to three times larger than that of structural concrete. Fracture
energy values of the specimens subjected to compressive pre-loading have been found
considerably low. The G, parameter determined under simulated seismic loading rates
has shown substantial strain rate sensitivity, and a maximum 80% dynamic
magnification over the pseudo-static value has been observed. Briihwiler and Wittmann*
have attributed the rate sensitivity of G, mainly to the rate sensitivity of tensile strength,
o.. Influences of specimen size and aggregate dimensions on the fracture energy
parameter, G, have been discussed in Dungar et al, ** and Saouma et al. %, BaZant and
Prat 2 have investigated the influences of working temperature on the fracture energy
value. Laboratory tests performed by Briihwiler and Saouma?® have shown significant
reductions of the fracture properties of concrete with an increased water pressure inside
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the crack. Biaxial and triaxial loads may have moderate effects on fracture energy
dissipation characteristics.of the mass concrete (Kreuzer et al.%),

2.6 PAST INVESTIGATIONS ON SEISMIC FRACTURE OF CONCRETE
GRAVITY DAMS

Several attempts have been made in recent years to investigate the fracture response
of concrete dams. The simulation of crack profiles in concrete dams, under static and
environmental load effects, has attracted considerable attention of several investigators
(Ayari®, Cervera et al. %%, Gioia et al. ™, Ingraffea®, Linsbauer et al. '™'*), Unlike
the static response, the nonlinear seismic response of concrete gravity dams is a little
understood phenomenon due to the limitations in previous studies. Hall” has presented
a comprehensive review on dynamic response of concrete dams, based on field,
experimental and corroborative numerical observations. Past earthquake experiences do
not appear to provide a reasonable confidence about the seismic safety of large concrete
dams with a full reservoir. Additional reviews of numerical and experimental
investigations on nonlinear seismic response of concrete gravity dams have been
presented by El-Aidi * and Donlon®'. A bibliography on performance of dams during
earthquakes is available in USCOLD ', Significant contributions made in the realm of
nonlinear seismic behaviour of concrete gravity dams are reviewed in the following.

The linear seismic response study of Koyna Dam in India and the Pine Flat Dam in
USA, performed by Chopra and Chakrabarti %, is worth mentioning because that was
one of the early finite element investigations predicting possible seismic cracking in
concrete gravity dams. Both dams were analysed for the 1967 Koyna earthquake without
considering reservoir and foundation interaction effects. Linear elastic analyses showed
high tensile stress concentrations, with a maximum value of 6.9 MPa, at the elevation
of change in the downstream slope of the unusually shaped Koyna Dam (Fig. 2.11(a)).
The corresponding tensile stress value in the standard section of Pine Flat Dam was 5.5
MPa. These high tensile stress concentrations, that were attributed to the high frequency
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Figure 2.11 Past investigations on seismic cracking of concrete gravity dams.
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content of the particular earthquake and the heavy crest mass inevitably present in most

gravity dams, indicated seismic vulnerability of the structures under strong ground
excitations.

The first rigorous nonlinear finite element analysis of a concrete gravity dam was
performed by Pal '3, The highest monolith of Koyna Dam was analysed assuming a
rigid base and no reservoir interactions. A nonlinear stress-strain relationship including
approximate strain rate effects was applied in the analyses. The propagation of cracks
was determined by a smeared crack mode! with the strength of material failure criterion,
The predicted crack profiles penetrated only little inside the dam and spread in the
vertical direction (Fig. 2.11(b)). The crack pattern was found to be very sensitive to the
selected material strength parameter and the degree of refinement of finite element

meshes - a standard problem with the strength based failure criterion.

Chapuis et al. *® applied a hybrid smeared-discrete crack model in seismic crack
analysis of the Pine Flat Dam, subjected to an artificial accelerogram in the horizontal
direction with a peak ground acceleration (PGA) equal to 0.1 g. The hydrodynamic
forces on the rigid base dam, calculated from linear elastic analyses of a coarse finite
element model of the dam-reservoir system, were applied on a finer mesh of the dam
in nonlinear seismic analyses. A smeared representation of the crack profile was applied
in the seismic analysis, followed a LEFM based localized discrete crack propagation
analysis for the surrounding region of the crack tip subjected to the same displacement
field. A crack in the top region of the dam propagated horizontally from the upstream
face for a brief instance, and then gradually dipped downward (Fig. 2.11(c)). The
inadequate mesh refinement reportedly infiuenced the computation.

A rigorous discrete crack propagation finite element analysis of the Koyna Dam,
with no reservoir and foundation interactions, and subjected to an artificially generated
ground motion, was performed by Skrikerud and Bachmann 4, The tensile strength

criterion was used for initiation and propagation of cracks. Discrete cracks were
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represented along the inter-element boundaries by splitting the finite elements and often
moving the existing nodes to accommodate the crack extension. Special ’crack
elements’, capable of representing the aggregate interlock mechanism, were introduced
along the inter-element cracks. The number of cracks predicted in the analysis increased
considerably, when the tensile strength was reduced from 3 MPa to 2 MPa. The crack
pattern was not influenced by the aggregate interlock model; but the pattern changed
substantially with the refinement of finite element mesh. A remarkable crack branching
was visible in the presented results (Fig. 2.11(d)). The assumption of discrete crack
propagation with increments equal to the lengths of finite element boundaries, and the

use of a strength based criterion apparently resulted in the mesh dependent response,

Mlakar ' studied the seismic response of three concrete gravity dams of different
heights, subjected to 1966 Parkfield earthquake. A smeared crack model based on the
critical tensile stress failure criterion was employed. Reservoir interaction effects were
taken into consideration through an added mass technique. The study demonstrated an
important aspect of the occurrence of tensile cracks depending on the height of dam.
Cracks appeared at the base of a short dam, and in the top region of the tallest dam. As
expected for standard smeared crack models applied with strength based criterion, the

crack zones spanned over several elements in the vertical direction (Fig. 2.11(e)).

Droz * investigated the seismic fracture response of a concrete gravity dam using
the LEFM crack propagation criterion. Crack profiles were spatially represented using
a special finite element formulation based on discontinuous shape functions: an approach
conceptually equivalent to the discrete crack model. The analysis predicted localized
crack profiles propagating deep inside the dam (Fig. 2.11(f)).

A numerical investigation on seismic response of the 122 m high Pine Flat Dam
(USA) was performed by Vargas-Loli and Fenves ', A full reservoir model including
energy dissipation mechanisms was adopted in the analysis; foundation interaction
effects were not considered. The 1952 Taft and the 1971 Pacoima ground motions were
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scaled in magnitude to induce cracking in the structure. A smeared crack model was
adopted in the finite element analysis scheme. The elasto-brittle tensile failure criterion
was employed assigning the lowest strength of 3.66 MPa to the largest eiement, and
proportionately increased strengths to smaller elements, resulting in a maximum value
of 5.03 MPa, This selection criterion of tensile strength implied the conservation of
fracture energy at a leve! about 30 times higher than the value assumed appropriate for
the material, The computed crack pattern was diffused over a significant portion of the
dam height (Fig. 2.11(g)). Reservoir interaction effects were observed to cor"iderably
influence the response of the dam. Computations in several analyses ceased, and that
were presumed as signs of imminent failure of the structure. Numerical instabilities may
be attributed to the sudden release of very high internal strain energy, stored in the
elements that were assigned arbitrary high tensile strengths. The results should be

interpreted with caution due to the limitations of the applied constitutive model.

El-Aidi and Hall **® investigated seismic response of the Pine Flat Dam, subjected
to 1940 El Centro earthquake, that was scaled in amplitude by a factor of 1.5. Dam-
reservoir-foundation interaction effects, inciuding the cavitation in water, were
considered. The smeared crack propagation ahead of a crack tip or at a known location
of stress singularity, was governed by the elasto-brittle size reduced strength model
(similar to that in Fig. 2.8(a)). Initially the dam was analysed for a priori known
location and orientation of weak planes. Substantial sliding of the order of 1.04 m was
predicted with a pre-determined cr.. *k plane sloping downward from the upstream face
towards the downstream face. A homogeneous dam was then analysed with no prior
defects in the structure. The crack profile determined from an automated analysis was
reported to be unrealistic (El-Aidi and Hall ¥), The analyst’s choice was therefore
incorporated in the solution procedure to guide the smeared crack profile in a desired
direction (Fig. 2.11(h)). The coarse finite element mesh reportedly influenced the
propagation of cracks. Nevertheless, the study provided a significant insight into the
various aspects of applying the smeared crack propagation finite element models in
seismic analysis of large concrete dams.
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Donlon (Donlon®', Donlon and Hall %) performed shaking table tests on three small
scale models of the top profile of Pine Flat Dam, fulfilling the strength, stiffness and
density requirements of the laws of similitude. Interesting observations were made using
a high speed photography, regarding the mechanism of crack propagation from one side
of the dam to the other. Cracics propagated into the interior in one swing, and extended
to the opposite face probably from the old tip during the other swing (Fig. 2.11(i)).
Fulfilment of the crack propagation criterion at the old crack tip, rather than the
fulfilment of a new crack initiation criterion on the opposite face, possibly resulted in
an all through crack plane. The fractured models showed significant stability even under
very strong excitations. However, pertinent limitations of the shaking table test, such
as the unscaled fracture parameters and the inadequate representation of reservoir and

foundation interaction effects, should be taken into consideration to interpret the results.

In a preliminary study performed by Ayari and Saouma®, a linear elastic fracture
mechanics criterion was applied with the discrete crack propagation finite element
model, in a seismic analysis of Koyna Dam, without considering reservoir and
foundation interaction effects. Cracks initiated on both faces of the dam, at the elevation
of a sharp change in the downstream slope, where a significant stress concentration is
expected (Fig. 2.11(j)). However, the crack trajectories propagating from two sides did
not appear to merge, which might be the consequence of a very high dynamic

magnification of the fracture toughness value assumed in the analysis.

Feltrin et al. 2 studied the seismic response of Pine Flat Dam using a boundary
element technique to represent the reservoir interaction effects; the foundation condition
was assumed rigid. Hillerborg’s fictitious crack model was applied to determine the
propagation of discrete cracks. Finite element mesh of the dam was updated with the
extension of cracks, and aggregate interlock elements were introduced along the inter-
element discrete cracks: a technique similar to that adopted by Skrikerud and
Bachmann'*. The dam with an empty reservoir did not experience any cracking when
subjected to thic horizontal component of 1952 Taft ground motion (PGA=0.18g). A
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crack appeared at the heel of the dam followed by few more in the top region when the
reservoir interaction effects were included (Fig. 2.11(k)). Use of the discrete crack
model with a nonlinear fracture mechanics criterion predicted localized crack profiles

in the dam. In a latter study (Feltrin et al. ), the aggregate interlock mechanism was

observed to cause branching of the primary crack profiles.

Simulating a crack trajectory by nonlinear analyses was the highlight of most
previous investigations. Reviewing the past investigations, it is apparent that tall gravity
dam monoliths would experience seismic cracking in the heel and in the top region at
about the elevation of the downstream slope change. However, the expected crack
profile and the extent of cracking are not reliably known from the previous studies.
Moreover, with all the nonlinear analyses performed so far, the question about the
safety of concrete dams during strong ground excitations is still unresolved. In one past
investigation (Léger and Katsouli *?), eftorts were made to define specific criteria for the
seismic safety of concrete gravity dams, that were allowed to uplift and slide along the
dam-foundation interface. Most of the past investigations, except the ones by E!l-Aidi
and Hall*® and Hall et al. *, considered uniform structures with no pre-existing defects.
The initial stresses and strzins, induced by changes in the environmental factors, have
not been considered ir the previous nonlinear seismic response studies. Effects of
seasonal temperat:ze changes and mass swelling, on the normal behaviour of concrete
dams, have been extensively reported in the literature (Cervera et al. ¥, Mamet et
al."'®, Tahmazian et al. **). However, a methodology to consider the initial stress-strain

effects in nonlinear seismic response analyses of concrete dams is yet to be developed.

2.7 CONCLUSIONS
Presently, nonlinear solution methods can be applied with parametric analyses for
a posteriori determination of the causes of cracking in concrete dams. The a priori

determination of the nonlinear seismic response of concrete dams is, however, a difficult
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task duc to the lack of general confidence in nonlinear analyses. The predicted response
is often very sensitive to the modelling parameters and assumptions. State-of-the-art
numerical techniques are still unable to provide reasonable predictions about the safety
of concrete dams during earthquakes. However, a rational choice of computational
models may help to identify the potential path of crack extensions during severe ground
excitations, The predicted crack profile can be considered favourable or unfavourable
depending on its orientation. A crack profile sloping upward from the upstream side
towards the downstream face of a gravity dam is usually considered favourable in the
presence of reservoir pressure. A crack profile with the reverse slope may be
unfavourable from safety considerations of the top profile. After a realistic prediction
of crack profiles from nonlinear analyses, sliding and overturning stabilities of the top

profile can be determined from separate analyses (Saini and Krishna '*%).

Crack propagation analyses performed with the conventional tensile strength based
criterion have been found unreliable in general. Nonlinear fracture mechanics criteria,
applied with a smeared crack propagation technique, appear to be promising for
predicting the crack profiles at a reasonable cost. An energy based safety criterion can
also be developed within the framework of a nonlinear fracture mechanics analysis
procedure. The presently available computer programs, implementing the conventional
strength based smeared crack analysis models, can be adapted for the nonlinear fracture
mechanics constitutive models. The limit on maximum element sizes should not be a
major drawback of nonlinear smeared fracture models. The refinement of finite element
meshes can be localized along the path of expected crack extensions from few trial
analyses. The initial analysis may start with a relatively coarse finite element mesh,
followed by an adaptive approach to refine the mesh in required zones. The material
parameters in a nonlinear analysis should be selected with caution. Data obtained from

laboratory tests may not be always representative of the actual field behaviour of
concrete dams.
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CHAPTER 3

CONSTITUTIVE MODELS FOR FRACTURE ANALYSIS
OF CONCRETE GRAVITY DAMS

3.1 INTRODUCTION

Development of a constitutive model for crack propagation analyses is strongly
influenced by the numerical technique adopted for spatial discretization of cracks.
Continuum mechanics approaches to represent the tensilc crack propagation are very
efficient for applications in complex structural analyses when the location and the
orientation of crack profiles are not known a priori. Extensive behavioura! studies of
concrete dams, under a wide range of modelling assumptions, can be performed using
the cost effective local smeared fracture models. A discrete crack analysis may be

performed for a posteriori validation of the smeared crack analysis resuits.

Smeared crack aualyses, using the traditional tensile strength based crack
propagation criteria (Rashid '*'), have long been criticised for mesh dependent response
predictions (Bazant and Cedolin '"). The strain sofiening crack band constitutive model,
derived on the basis of fracture energy conservation principle (BaZant and Oh "), was
a significant achievement in finite element analysis of concrete fracture problems.
However, the direction of fracture propagation was not rigorously addressed in the crack
band model. Crack constitutive models, fixing the local crack band at the initial
inclination, generally result in a severe stress locking due to the zigzag propagation of
crack profiles in a continuous finite element mesh. The constitutive framework proposed
by de Borst and Nauta #’ allows non-orthogonal multiple crack formations to alleviate
the stress locking in smeared crack analyses. In this approach, element stiffness matrices
are derived using an incremental stress-strain relationship with the negative softening
modulus, that may occasionally result in an ill-conditioned stiffness matrix. Moreover,
the angular spacing of non-orthogonal cracks requires to be limited by a hypothetical
minimum admissible value for numerical stability reasons (Gajer and Dux %).
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Application of the rotating crack concept (Cope et al. **, Gupta and Akbar %) may also
alleviate the stress locking in smeared crack analyses (Rots **°}. The directional
sensitivity of a crack band propagation in slanted finite element meshes may be
climinated using a ‘nonlocal’ constitutive model (Bafant and Lin %), However,
application of the 'nonlocal’ model in dam fracture analyses is limited, because of the
requirement of an extremely fine mesh, and high computational costs related to the
spatial averaging of local response quantities. The definition of constitutive parameters
to obtain a mesh objective response, the interaction between two or more damaged
zones, and the unloading/ reloading under damaged conditions need to be addressed
mor. rigorously in i nonlocal formulation, The localized smeared fracture models are
very promising for application in the analysis of complex structural systems, because
of the significantly less computationzl cost and the simplified definition of material
constitutive behaviour. The extension of local fracture models to transient and three-

dimensional analyses is also relatively simpler.

Most of the existing smeared crack models have been primarily developed for
fracture analysis of small scale structures, subjected to monotonic static loading
conditions., A general constitutive framework, applicable to both static and seismic
fracture analyses of mass concrete structures, has been lacking in the literature. The
purpose of this chapter is to develop smeared crack propagation models for static and
seismic fracture analyses of concrete gravity dams. Different features of the constitutive
models will be considered for investigations in the subsequent chapters.

Norlinear behaviour in the fracture process zone (FPZ), which is significantly large
for dam concrete, has been cunsidered in the smeared crack propagation models. Figure
3.1 represents the general framework of a strain softening constitutive model applicable
to concrete fracture analyses. Following features of the proposed constitutive model are
discussed in the subsequent sections: (i) the pre-softening material behaviour, (ii) the
criterion for softening initiation, (iii) the fracture energy conservation, (iv) the numerical
simulation of strain softening behaviour, (v) shear deformations in the fractured
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elements, (vi) the closing and reopening of cracks, and (vii) the finite element
implementation of constitutive models. The strain rate sensitivity of concrete behaviour
under seismic loading conditions is also discussed, A linear elastic relationship is

assumed between compressive stresses and strains. The tensile stresses and strains are
referred as positive quantities in the presentation,

A iy
o’I'I
tansile strain Pre-softening stress-
softening strain relationship
{o} = [D] {¢}
g y
Criterion for
& softening initiation
Static -,  Fracture energy
/ Dynamic \ conservation
\ Y
- strain rate effects Constitutive relations
- long term load effects »|  during softening
- rotation of the fracture band {0} = [D], {¢}
- closing and reopening of cracks
Figure 3.1 Strain softening model for concrete Finite element
Sfracture analysis. implementation

3.2 PRE-SOFTENING STRESS-STRAIN BEHAVIOUR OF CONCRETE

In the finite element analysis, the mechanical stresses and strnins at a material point
are algebraically related as,

{0} = [D]{e} G.1)
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where [D] is the constitutive relationship matrix, {¢} the vector of stress components
o, 0, etc., and {e} the corresponding strain vector. Assuming a linear elastic isotropic

behaviour, the matrix [D] for a plane stress finite element model is given by:

1 v 0
E v 1 0 (3.2
D] = _ .
[ 1-v2 0 0 12_"

where E is the Young's modulus, and v the Poisson’s ratio. Definition of the Young's
modulus is somewhat ambiguous, because, creep effects exist even for an extremely
short duration of loading. The strain which corresponds to a service range stress (usually
less than 40% of the ultimate strength), applied over a duration between 0,001 to 1 day,
is considered as the ‘elastic’ strain (BaZant?'), and the ratio between the applied stress
and the measured ’elastic’ strain is taken as the Young’s modulus. Short-term laboratory
tests with recovered dam concrete specimens can be performed to determine the value
of E. Constitutive behaviour of concrete under static and seismic loadings are discussed

in the following sections.
3.2.1 Non-seismic loads/ deformations

Under statically applied loads, the Young's modulus, E, determines the complete
elastic resistance of the material. The mechanical strains under non-seismic loads are

decomposed into two components:

(o} = [D]{e)
- [Dl({e,) +(e,h) G-3)

where {¢.} is the mechanical strain due to applied loads, and {¢} is the mechanical
strain due to external and internal restraints to the volumetric deformations caused by
temperature change, swelling etc. The short term elastic medulus, E, will be used to
determine the strain {¢, } and the cor:csponding stress response under the applied loads
of self weight, hydrostatic pressure etc. The long term creep effects under 'constant’
applied loads will not be considered in the present constitutive modelling procedure.
However, an approximate procedure to take account of the long term relaxation effects
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under imposed volumetric deformations, such as due to temperature changes, will be
discussed in section 4.6.

3.2.2 Seismic load effects

The finite element resistance to applied dynamic loads (Fig. 3.2(a)) is expressed as:
. [mlad} + [l 4d) + {r@@) = {fO) ©-4)

where the first two components represent the inertia and the viscous resistance of lhe

material, and the third component represents the clastic resistance. The elastic
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Figure 3.2 Nonlinear smeared fracture model.

a

component is determined using the standard stress-strain relationship (Eqn. 3.1), which
in turn is influenced by the Young’s modulus of concrete, Any arbitrary dynamic
amplification of the Young’s modulus is unwarranted in a rigorous finite clement

analysis with explicit considerations for the inertia and the viscous resistance
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components. Moreover, review of the published experimental results (Brooks and
Samaraie >, Brithwiler ¥, Reinhardt '**) does not justify a strong dynamic magnification
of the elastic modulus of concrete. Selection of a strain rate independent elastic
modulus, and calibration of the viscous damping resistance of the material using the
assumed elustic properties of the structure, appear to be consistent for nonlinear seismic

analyses of concrete dams.

3.3 THE CRITERION FOR INITIATION OF STRAIN SOFTENING

The stress-strain relationship of concrete becomes considerably nonlinear near the
peak strength (Fig. 3.2(b)). In the post-peak strain softening phase, coalescence of the
micro-cracks causes a gradual reduction of the stress resistance. The area under the
uniaxial stress-strain curve up to the peak, defined in Eqn. (3.5), is taken as the index

for softening initiation:

E
U0=]:|0de =L€i=i=.gi (3'5)

where o; is the apparent tensile strength, calibrated such that a linear elastic uniaxial
stress-strain relationship up to o; will preserve the value U, (Fig. 3.2(b)). Assuming E=
100000,, the tensile stress-strain relationship specified in the CEB code (Hilsdorf and
Brameshuber *) provides an apparent tensile strength approximately 40% higher than
the true static strength o,. However, an apparent tensile strength, not exceeding the true
strength of concrete by an amount of 30%, seems to be a reasonable assumption
(Raphael '), In finite element analyses, the softening under a static load is assumed to
initiate when the tensile strain energy density, ‘20.¢, (o, and ¢, are the major principal
stress and the major principal strain, respectively), becomes equal to the material
parameter, U,

2
1 0
20 = U= ops (0,20 3-6)
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Taking square roots of both sides, the biaxial effect in the proposed strain softening
initiation criterion (Eqn. 3.6) is represented as,

R U P § G.7
o, Ee,

Figure 3.2(c) schematically represents a biaxial failure envelope as defined by Eqn.
(3.7). The principal stress and strain, ¢, and ¢,, at the instant of softening initiation
under statically applied loads, are designated by g, and ¢, respectively (Fig. 3.2(d)).

Under dynamic loads, the pre-peak nonlinear behaviour decreases with increasing
values of both ¢, and ¢ (Fig. 3.2(b)) (Brooks and Samaraie **), The dynamic
amplification of the material parameter U, can be considered through a constant
magnification factor, DMF,, as follows:

°2

o
U' = —— = (DMF.)? (3.8)
o >F (DMF,)*U,

where the primed quantities correspond to the dynamic constitutive parameters. All three
components of the material resistance under applied dynamic loads, as expressed in Eqn.
(3.4) and in Fig. 3.2(a), should be considered to determine the applied stress ‘on the
eleinent at a particular instant. Howev.,, in the present modelling procedure, only the
elastic component of stresses in an element, determined using the usual stress-strain
relationship (Eqn. 3.1), will be compared with the assumed material resistance. The
DMF, in Eqn (3.8), therefore, does not embody the increased material resistance due
to viscous and inertia effects; only the effects due to a change in the cracking
mechanism under dynamic loads are represented. The micro-cracks under rapidly
applied loads may be forced through relatively stronger aggregate particles rather than
around the aggregates, thereby causing an increased tensile resistance of the macroscopic
structure (Reinhardt '**). Compression pre-loadings, on the other hand, may reduce the
strain rate sensitivity of tensile strength (Brihwiler and Wittmann %), A 10-20%
dynamic magnification of the apparent tensile strength may be assumed in seismic
analyses of concrete dams. The presence of free water in concrete may not have

significant influences for the seismic induced strain rates (Rossi '*”). Under dynamic
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loading, the material parameter U, in expression (3.6) is replaced by the corresponding
dynamic value, U’,. At the instance of softening initiation under a dynamically applied
load, the principal stress, o, and the principal strain, ¢,, are respectively designated by

d,” and ¢,”, as shown in Fig. 3.2(d).

3.4 FRACTURE ENERGY CONSERVATION

The tensile resistance of concrete is assumed to decrease linearly from the pre-
softening undamaged state to the fully damaged state of zero tensile resistance (Fig.
3.2(d)). Slope of the softening curve is adjusted such that the energy dissipation due to
a unit area of crack plane propagation is conserved. The static fracture energy, G;, is
magnified by a dynamic magnification factor, DMF;, to represent the increased fracture

energy dissipation under dynamic loads:

G,/ = DMF, G, 3.9)
The dynamic magnification of fracture energy can be mainly attributed to that of tensile
strength (Brilhwiler and Wittmann 3, Reinhardt and Weerheijm ). DMF; can therefore
be assumed equal to DMF.. In finite element analyses, the final strains of no tensile
resistance for static and dynamic loadings are respectively defined as (Fig. 3.2(d)),

ef = EEL ; ef’ = 2Gf (3.10)
coh, ay h,

where h, is the characteristic dimension defined in section 3.8. The dynamic
magnification of constitutive parameters is schematically demonstrated in Fig. 3.2(d).
A pre-seismic state in the linear elastic range (line ab in Fig. 3.2(d)) will proceed
through line ab” in dynamic analyses until the dynamic su.tening initiation criterion is
satisfied. Upon satisfaction of this criterion, the dynamic softening model (line b’c” in
the figure) determines the element behaviour. If an element has been softening in the
pre-seismic state, the static softening model (line be in the figure) governs the element
behaviour until the complete fracture takes place.
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3.5 CONSTITUTIVE RELATIONSHIPS DURING SOFTENING

After the initiation of softening process, a smeared band of micro-cracks is assumed
to appear in the direction perpendicular to the principal tensile strain. The material
reference axis system, referred as the local axis system, is aligned with the principal

strain directions (directions n-p in Fig. 3.3(a)). Two approaches have been considered
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Figure 3.3 (a) The local axis system, (b) the decomposition of strain, (c) the SMS
model, and (d) the TMS model.

for numerical simulation of the softening phenomenon: (i) the secant modulus stiffness
(SMS) based on the concept of stiffness degradation, where the constitutive relationship
is defined in terms of total stresses and strains, and (ii) the tangent modulus stiffness
(TMS), where element stiffness matrices are derived using an incremental stress-strain
relationship. Features of the two softening models are discussed in the following
sections. Discussions on the shear deformation in strain softening material is deferred
until the section 3.6. Only the static constitutive parameters, €, and ¢, are shown in Fig.
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3.3 for the brevity of presentations. However, the principles discussed in the following

sections are applicable to dynamic analyses as well.

3.5.1 The total stress-strain relationship

The total strain in softened concrete can be decomposed into the elastic concrete

strain and the crack strain as follows,

€, = € te, 3.11)
Yoo = Yrp*Vrp

where ¢, and 1, are respectively normal and shear strains, the subscripts 'n’ and ’p’

refer to the crack normal and parallel directions, and the superscripts e’ and cr’ stand

for elastic and crack components respectively. The decomposition of normal strain is

pictorially represented in Fig. 3.3(b). The local crack strains, {e, , v,,~"}", can be

transformed to the global coordinate directions using the following relationship:

e cr 2 .

x cos‘® ~c0s0sind e
e,} = sin® cosBsin® nt (e} = [N1ehi, (3.12)
Yy ZicosOsin® cos?6-sin?@) U w

where @ is the angle between the global x-axis and the normal to the fracture plane (Fig.
3.3(a)). Considering that uncoupled normal and shear deformations occur on the crack
plane, the crack stress-strain relationship in the local coordinate directions can be
defined as,

EE}
ocf s 0 ecr
ot =| EE S TRl G HIC
Fp 0 LG n

1-p
where E is the elastic modulus, E.* the damaged Young’s (secant) modulus in the crack
normal direction (Fig. 3.3(c)), and u is the ratio between the softened shear modulus,
G, and the pre-softening shear modulus, G (discussed later in section 3.6). After
algebraic manipulations, the total stress-strain relationship matrix in the global
coordinate system, [D],, is obtained as (de Borst and Nauta¥’):
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[Pl = D] - [DYINI([D]Z +N}T[D]IND) ™ [N)T[D] (3.14)

where [D] is the elastic constitutive relationship matrix defined in Eqn. (3.2).

The constitutive matrix of Eqn. (3.14) is equivalent to the conventional formulation,

D1, = (11710, [T} (3.15)

where [T] is the strain transformation matrix defined as:

cos?0 sin’0 cosOsind _
[T] =| sin% c0s’®  -cosBsind @.16)
~2c0s0sin® 2cosOsin® cos’0-sin’0
and [D],, is the local stress-strain relation matrix defined from the degradation concept:

(O £
E nv
(p1,, = - 1oqv? | n=— @17
1-nv 0 0 B E
2(1+v)

where 5 (0 <7 <1) is the ratio between the softened Young's modulus, E,' (Fig. 3.3(c)),
in the direction normal to the fracture plane, and the initial isotropic elastic modulus,
E. The total stress-strain relationship matrix, defined by Eqn. (3.17), is similar to the
formulation presented by BaZant and Oh ', except that they did not include the shear
deformation, and the consequent rotation of fracture bands in the constitutive
formulation. The present formulation, with the degraded shear modulus term (defined
in section 3.6), maintains a backward compatibility with the pre-softening elastic
formulation when n=1 and pu=1. The total stress-strain relationship matrix, [D],,
defined using a degraded elastic modulus, E;, is hereafter referred as the secant
modulus stiffness (SMS) of the material. During a monotonic increase of the tensile
strain, €, in the crack normal direction, the secant modulus in the corresponding
direction, E;', gradually decreaces until finally reaching a zero value after complete
fracture, €,> ¢, or ¢~ (Fig. 3.3(c)). The constitutive relationship matrix, [D],, is updated
as the modulus, E;", decreases. The direction of softening, 8, may also change during
the softening process. During unloading and reloading, when the strain, ¢,, is Jess than
the previously attained maximum value, ¢,,, (Fig. 3.3(c)), the secant modulus, E',

remains unchanged; the parameter u, however, changes during that process.
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3.5.2 The incremental stress-strain relationship

The incremental stress-strain relationship during the progress of softening can be
defined using the tangent softening modulus, E} (Fig. 3.3(d)). Assuming uncoupled
normal and shear deformations, the incremental crack strains, {A€}y.a , and stresses,

{Ac}y , in the local axis system, are related by (de Borst and Nauta*):

EE,
- 0
[D)s = | E-E, (3.18)
o tog
1-p

The tangent formulation, {D];", of Eqn. (3.18) can be substituted for [D),* in Eqn.
(3.14) 10 obtain the tangent constitutive matrix, [D};, representing the incremental
stress-strain relationship in global coordinate directions. The constitutive matrix, {D];,
is hereafter referred as the tangent modulus stiffness (TMS). During the monotonic
softening of elements, ¢, exceeding e,,, at successive steps, the tangent softening
modulus, E;, in the linear softening model remains unchanged until complete fracture
takes place. The constitutive matrix, [D];, remains unchanged as the softening
progresses from e, to & (Fig. 3.3(d)), provided tne direction of fracture remains
unchanged and the parameter u is assumed constant. At completely fractured state,
€,> ¢, the tangent modulus E,' becomes zero, and requires updating of the TMS matrix.
In the case of unloading before complete fracture, ¢,<e,,,, the secant unloading
modulus, Ef, (Fig. 3.3(d)), is used instead of E} in Eqn. (3.18). The tangent
constitutive matrix, [D};, during unloading, virtually becomes identical to the

constitutive matrix, [D],, that relates the total stresses to the total strains.

3.5.3 Constitutive models for softening stress-strain behaviour

Two numerical models, depending on the use of constitutive formulations to derive

the element stiffness matrix, are considered for finite element analyses:
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SMS model: The total stress-strain relationship matrix, [D],, is used to determine the
stiffness matrices of softened elements (Fig. 3.3(c)). The stresses in element integration

points are computed from total strains using the most recent secant modulus constitutive
matrix, [D],.

TMS model: The tangent constitutive matrix, [D];, is used to determine the stiffness
matrices of softened elements. The stress response at individual integration point is,
however, not computed from incremental strains. Instead, the stresses at integration
points are computed from the total strains using the constitutive relationship matrix,
[D),, derived to represent the average resistance of an element (discussed in section 3.8),
A distinct feature of the presented TMS model is the adoption of a hybrid approach of
computing the element stiffness matrix from the tangent constitutive model, and

determining the stress response at integration points from the total strains (Fig. 3.3(d)).

3.6 SHEAR DEFORMATIONS IN FRACTURED ELEMENTS

The isotropic behaviour of a finite element is terminated after satisfaction of the
softening initiation criterion. The orthotropic material reference axis system is aligned
with the principal strain directions at the instance of softening initiation. In subsequent
load steps, shear deformations in the crack band may cause rotation of the principal
stress directions, thereby requiring re-alignment of the material reference axis system.
The principal stresses and strains can be maintained coaxial in a rotating reference axis
system by using an implicit definition of the softened shear modulus term, G, given
in Eqn. (2.10). Using the stress-strain relations in Eqn. (3.17) and the definition of the
softened shear modulus in Eqn. (2.10), the shear resistance factor u is defined as:

E_—-€
w2 (DT, spsd) (3.19)
1-nv?  €,-¢€,

Here ¢, and ¢, are the normal strain components in the directions normal and parallel

to the fracture plane, respectively. With the progression of softening, the shear
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resistance factor, p, decreases and may finally reach a zero value. The constitutive
matrices arc updated as the parameter, u, changes its value. The following options have

been considered with respect to the erientation of crack bands in finite element analyses.

Coaxial rotating crack model (CRCM): The local axis system n-p is always kept
aligned with the directions of principal strains , ¢ and ¢,. In this model, the strains e,

and ¢, are respectively ¢, and ¢, at the newly oriented material reference state.

Fixed crack model with a variable shear resistance factor (FCM-VSRF): In this
model, the local reference axis system is first aligned with the principal straii directions
at the instant of softening initiation, and kept non-rotational for the rest of analysis. In
the fixed crack model, the shear resistance factor, u (Eqn. 3.19), is derived using the
strain components ¢, and ¢, corresponding to the fixed local axis directions (which are
not necessarily coaxial with the principal stress directions). The variable shear resistance
factor, defined in Eqn. (3.19), takes account of deformations in both lateral and normal

directions of the fracture plane.

I'he fixed crack model can also be applied in the usual form with a constant shear
resistance factor, u. Application of this procedure in finite element analyses will be
discussed in Chapter 5.

3.7 CLOSING AND REOPENING OF CRACKS

Under reversible loading conditions, the tensile strain, ¢, in an element may
alternately increase and decrease. With the reduction of ¢,, the shear resistance factor,
p, increases gradually, The softened Young’s modulus in the direction n, E,* (which
may have reached a zero value), is substituted by the undainaged initial value, E, if the
parameter p is greater than a threshold value p.. Parametric analyses have shown that

the seismic fracture response of concrete gravity dams is not affected by the value of
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p. varying between 0.90-0.9999. A relatively flexible tolerance, u,=0.95, can be used
to minimize spurious stiffness changes during the closing of cracks. When ¢,>0 in
subsequent load steps, the value of u is computed using the damaged value of 3, attained
in the previous tension cycles, to determine the reopening of cracks. If ¢ becomes less
than g, the element behaviour is determined by either the reloading or the re-opening
path, depending on the final state attained in previous tension cycles. The appropriate
value of damaged secant modulus, E, is reused in the constitutive formulations at that
state. Figure 3.4 summarizes the criteria for closing and reopening of cracks, as
implemented in the finite element analysis procedure.

A novel feature of the proposed crack closing/reopening criterion is the residual
strain upon closing of cracks. Substituting the parameter g, for u in Eqn. (3.19), and

rearranging the terms, the crack normal strain at the instance of closure is given by:

_ (-m)v+(1-nv3)1-p,)

(1) +0v3(1-p.,)
The crack closure strain, often observed in experimental investigations, and also

considered empirically in the past numerical models (Fig. 2.9), is implicitly defined in
the proposed numerical model. For g, =1, the residual strain upon closing of a crack
is obtained from Eqn. (3.20) as ¢,=-ve,. With this relation, the tensile stress in a crack

normal direction evidently becomes zero at the instance of crack closure. In a special

(-€) (3.20)

case, when ¢,~0, the normal strain at crack closure approaches to a zero value, as
depicted in Fig. 3.4.

3.8 FINITE ELEMENT IMPLEMENTATION OF THE CONSTITUTIVE
MODELS

Four node isoparametric elements are considered for finite element implementation
of the constitutive models. The 2 by 2 Gauss integration rule is used to compute the
element stiffness matrices in order to prevent the occurrence of spurious zero energy
modes to the maximum possible extent (de Borst and Rots*, Molenkamp et al. ).
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During analyses, total strains are computed at each integration point, and the average
of Gauss point strains is taken as representative of the behaviour of the element as a
whole (Hinton and Campbell ™). The principal strains computed from average strain
response of the element, and the characteristic dimension, h, (defined below), are used
to determine the constitutive model parameters. The total stress-strain relationship
matrix, [D],, in the post-elastic state, thus represents the average resistance of the
element. The stresses at individual Gauss points are computed from the respective total
strains using the most recent [D], matrix. Smearing of the fracture energy dissipation
over the entire element area, and determination of the constitutive parameters based on
the average element response, help to suppress spurious deformation modes that may
arise at individual Gauss points during the curvilinear crack propagation in finite element
models. The element stiffness matrix is updated using either the TMS or the SMS
mode! =< described in section 3.5.3. Figure 3.5 demonstrates the finite element
implementation of constitutive models,

The characteristic dimension, h,, represents the width of a crack band, over which
the fracture energy is dissipated in a finite element model. In elementary fracture
problems with a known location and direction of fracture propagation, the finite element
meshes can be oriented to bound the crack band by parallel sides of the elements (Fig.
3.6(a)). The definition of characteristic dimension in that situation is obviously defined
by the element dimension across the direction of crack band propagation. In the case of
an oblique crack propagation in a relatively irregular finite element mesh (Fig. 3.6(b)),
h, will be approximately defined as the square root of an element area; a more rigorous
definition of the characteristic dimension is available in Oliver'?, Finite element meshes
will be adequately refined in the expected zones of a fracture band propagation to
conserve the fracture energy without violating the maximum admissible element
dimension, defined in Eqn. (2.8).

In conventional smeared crack analysis models, the energy dissipation over two or
more adjacent integration points in parallel (Fig. 3.6(c)) leads to a mesh sensitive response
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prediction, because, in reality the fracture energy is dissipated locally owing to the

propagation of a discrete sharp crack, In the crack-band model, which BaZant and Oh'’
proposed as a smeared equivalence of the Hillerborg’s fictitious crack model %2, the
energy dissipation was assumed to take pinrce over a one element wide band. The crack

band model was initially based on the premise of a constant strain condition prevailing

in a finite element; thus effectively excluding the application of higher order elements

in the analysis. In the incremental constitutive formulation of de-Borst and Nauta®’, the

response quantities are computed at each integration point of finite elements; the size

adjustment of constitutive relations and the resultant fracture energy dissipation need to
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Figure 3.6 Definition of the characteristic dimension, h,.

be determined on the basis of local response quantities. Artificial measures, such as
attributing fractions of the fracture energy to the parallel integration points within a
quadrilateral finite element (Dahlblom and Ottosen *%), are sometimes undertaken to
achieve a mesh objective response. In the present finite element implementation of
constitute models, the artificial splitting of fracture energy to individual Gauss points is
avoided by determining the constitutive parameters based on the average response of
each element. The fracture energy is thereby dissipated over an entire element area. The
energy dissipation in a finite element analysis with size adjusted constitutive relations

still may not be objective, if the blunt fracture front is subdivided into more than one
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element (Fig. 3.6(d)). An approximate value of h, (Fig. 3.6(d)) may be used to reduce

the amount of fracture energy dissipation in individual elements on the crack band.,

The size adjustment of softening response for individual elements may cause a
spurious localization of cracks in seismic analyses of concrete dams, when the size of

elements in succe:si, 2 layers varies widely (Fig. 3.7). Stress wave propagation in a
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softening behaviour
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Figure 3.7 The spurious localization of cracks caused by the wide variation of element
size in successive layers.

dynamic analysis may cause all elements between i, and i, in Fig. 3.7 to soften in a
particular interval of time. In the absence of any physical discontinuity to cause a crack
localization, the element with faster post-peak stiffness degradation (the biggest element)
will induce a spurious crack in the finite element model. To avoid such spurious
localization of cracks in seismic fracture analyses, the zone of a structure having
homogeneous material properties should be subdivided into a nearly uniform grid. In the
case of a nonuniform finite element mesh, an approximate average value of h, can be

applied to represent a uniform material softening behaviour over the particular zone.
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3.9 SUMMARY

The key features of proposed smeared crack propagaticn models are summarized in
Fig. 3.8. The following properties have been considered in the development of
numerical models: (i) the strain softening of concrete due to micro-cracking, (ii) the
biaxial effect on the softening initiation stress, (iii) the conservation of fracture energy,
(iv) the softening of shear resistance with a progressive evolution of micro-crack damage
in finite elements, (v) the dynamic magnification of concrete fracture parameters, and
(vi) the closing and reopening of cracks under cyclic loading conditions. The localized
strain softening behaviour of concrete has been modelled by two approaches: (a) the
stiffness degrading model (SMS) based on a total stress-strain relationship, and (b) the
tangent softening model (TMS) based on an incremental stress-strain relationship. Either
a coaxial rotating constitutive formulation (CRCM) or a fixed crack mode! with the
variable shear resistance factor (FCM-VSRF) can be applied in crack propagation
analyses of concrete structures. The residual strain upon closing of a crack has been

implicitly defined using a novel crack closing/reopening criterion.

In the proposed numerical models, the continuum mechanics formulations are
retained during the post-softening deformations of finite elements. Although perfect rigid
body opening and sliding modes of deformation are not reproduced in this approach, the
adoption of a shear softening relationship efficiently alleviates the stress-locking in
smeared crack analyses. The finite element solution strategies, developed for nonlinear
static and seismic analyses of plain concrete structures, will be presented in the next
chapter. Computational efficiencies of the SMS and the TMS models will be examined
in chapter 5. Chapter 6 will investigate the relative performances of the CRCM and the
FCM-VSRF. Efficiency of the shear softening relationship in alleviating the spurious
stress locking response of smeared crack models will be particularly studied in that
chapter. Seismic fracture analyses of concrete gravity dams will be performed in
chapters 7 and 8. The sensitivity of predicted responses to mesh refinement and different

modelling assumptions will also be examined during the course of analyses,
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CHAPTER 4

FINITE ELEMENT ANALYSIS OF SMEARED FRACTURE
PROPAGATION IN CONCRETE STRUCTURES

4.1 INTRODUCTION

A nonlinear finite element analysis computer program has been developed to predict
the FRACture and DAMage (FRAC_DAM) response of plain concrete structures
subjected to seismic, static, and temperature loading conditions. The finite element
solution initially starts with the elastic stiffness matrix of uncracked elements. Among
all candidate elements that want to initiate softening at a particular iteration, an element
with the highest tensile strain energy density, '2o;¢,, is allowed to soften first. The
fracture propagation in a structure is achieved by allowing one new element to soften
per iteration; several iterations may be performed in a particular load step. Figure 4.1
summarizes the crack propagation algorithm, as performed in a particular iteration of

the nonlinear static and seismic response analyses.

Smeared crack analysis of concrete structures can be performed with either of the

following structural stiffness matrix formulation strategies:

Newton-Raphsen {NR) technique: The structural stiffness matrix is updated at each
iteration until convergence is achieved at a particular load step. Several updating of the
stiffness matrix may be required within a load step.

Modified Newton-Raphson (mNR) technique: The structural stiffness matrix is
updated only at the beginning of each load step, and constant stiffness iterations are

performed within the step to reduce the unbalance between applicd loads and restoring
forces of the structure,
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Crack propagation analysis of a structure, subjected to incremental applications of

the specified static or seismic loads, may be preceded by a single step nonlinear static

analysis for existing gravity loads (self-weight, hydrostatic pressure etc.) and

temperature condition. Figure 4.2 summarizes the key steps involved in that analysis

step. The long term effects on the temperature induced stresses will be discussed in

section 4.6.

In an incremental static analysis, the nonlinear pre-peak response of a structure can

be predicted by solving the standard finite element equilibrium equations:
K1 {Au}) = {Af)
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Figure 4.2 Nonlinear analysis for gravity and temperature loads.

where [K] is the stiffness matrix, and {Af} and {Au} are the vectors of applied
incremental loads and unknown incremental displacements. This standard analysis
procedure can not be applied to determine the post-peak softening response of structures.

Two analysis methods: (i) the applied displacement control (secticn 4.2), and (ii) an
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incremental-iterative method with the indirect displacement control (section 4.3), will
be considered to predict the nonlinear static response of concrete structures. Various
features of the nonlinear seismic analysis procedure, such as the time domain solution
of dynamic equilibrium equations, modelling of the material damping effects, and the
dynamic interactions in dam-reservoir-foundation systems will be discussed in section
4.4, The computation of energy dissipation due to tensile fracture in the structure will
be described in section 4.5. Figure 4.3 presents a general framework of the
computational model developed for fracture analyses of concrete structures subjected to

static or seismic loading conditions.

4.2 NONLII. AR STATIC ANALYSIS UNDER SPECIFIED
DISPLACEMENT

The ultimate resistance and the post-failure behaviour of simple contrete structures
can be predicted by specifying the displacements at one or more control points (Fig.
4.4), The structural degrees-of-freedom (DOF) can be separated into two groups:

(i) DOF with specified displacement conditions:

{u.r}l = {us}i-l + {Aus} “.2)
(ii)) DOF under applied loading conditions:
‘f,,}g = [falg-l + {Af;} (4'3)

where the subscript 's’ refers to the DOF subjected to snecified deformation conditions,
and 'a’ to other DOF that may be subjected to app!.c« Joad:: The structural equilibrium

equations under incremental displacements and loads can be expressed as;

K, K,| jAu, Af,
(K K_,]‘ {Au,}! = {Ar,}' i @9

33
where {Ar,} is the increment of unknown reaction forces at the displacement specified
DOF, and {Au,} is the unknown displacement increments at other DOF. Partitioning the
sysiem equilibrium equations, the displacement increments at unknown DOF can be

obtained solving the following reduced system of equations (4.5):
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(K], (Au,), = (Af,}-[K,], (Au) = (A} (4.5)
The logical diagram for smeared fracture analysis of concrete structures, subjected to

incremental displacement loading, is shown in Fig. 4.5.

Unbalance between the applied loads, {f,}, and the restoring forces at corresponding
DOF, {r,}, is computed aiter each iteration:

INAHERTAPERI N (4.6)

The residual norm is defined as;

fo = max|AL |7 @.7)
max| r |;

where max | Af;" | }* is the maximum force unbalance at DOF not subjected to specified
displacements, and max | r | * is the maximum of restoring forces among all DOF. A
relatively fine convergence tolerance (TOL=0.001) is assumed in the finite element
analyses discussed in Chapter 5. The maximum number of iterations (k,,,) required to
satisfy this convergence criterion varies depending on the stiffness formulation model
(TMS or SMS) and the iteration procedure (NR or mNR) adopted in the analysis. The

computational efficiencies nf different numerical schemes are investigated in Chapler S.
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4.3 NONLINEAR STATIC ANALYSIS UNDER AN INDIRECT
DISPLACEMENT CONTROL

The direct displacement control analysis technique can be efficicntly applied when
displacements at the control points experience a monotonic increase. In special cases,
(Fig. 4.6(a)), the load-displacement response at control points may show a snap-back
behaviour (Fig. 4.6(b)). Moreover, when a structure is subjected to load applications
at several points (Fig. 4.6(c)), the algebraic relation between the displacements at
different application points may not be known before hand. Special response quantitics,
such as the crack mouth opening displacement (CMOD), crack mouth sliding
displacement (CMSD), incremental crack length (ICL), or the displacement al a selected
point, that exhibit a monotonic increase during ioad applications (Fig. 4.6(d)), arc often
considered as the control parameters in experimental investigations of notched concrete
members. The selected control parameter is measured during the course of investigation,

and used as a feed-back signal to adjust the loads applied to the structure.

(a)

| fu A (b)

/ snap-back
-1——/

A
cMsDyt

= ©) L

£A ()

ultimate resistance

control parameter

Figure 4.6 Post failure behaviour of concrete structures.
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Special numerical techniques have been proposed in the literature to predict post-
bifurcation and post-failure responses of strain softening solids. Carpinteri et al. have
applied the ICL control method in discrete crack analysis of a model dam. A similar
technique with the dynamic relaxation solver (Underwood %2 has also been considered
by Bittencount et al, ®. The standard ‘arc length’ method (Crisfield ¥) may fail to
converge in the fracture analysis of concrete structures, due to the highly localized
nature of failure or bifurcation modes (de Borst*’). Consequently, a modified strategy
has been proposed using only a few dominant DOF in the constraint equation that
determines the load increment during iterations (de Borst *°). A similar technique is
applied in the following incremental-iterative analysis procedure, developed in this

research, to predict the post-failure behaviour of plain concrete structures.

In the failure analysis of concrete structures, two DOF, DOF,, and DOF,, are
selected such that the relative displacement between them shows a monotonic increase
during the course of analysis. The computed relative displacement is taken as the control
parameter to adjust the applied loads on the structure during iterations. The fundamental
assumption in the proposed load adjustment procedure is that the applied load vector,
{f}, is directly proportional to the controlling response parameter. The target response
(TR) of the controlling relative displacement parameter is increased in discrete steps:

TR, = TR, +ATR (4.8)
and the structural equilibrium equations are solved at the beginning of each step for the
following differential load, {Af};:

ATR
{ar}, = ()
i m‘ -1

(f}; = {f]1-|+{Af};
The difference between the target response, TR, and the computed response, CR, is

4.9)

determined at each iteration:
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CR} = u(DOF,)-uw(DOF,)
i m,-cn,*l (4.10)
CR}

¢

R

nerm

where k is the iteration number. 1f R, is greater than a specified tolerance, the total

applied loads on the structure are adjusted during the iteration:

TR, , .
()i = C—‘klf}’i‘ @.10)

i
Several iterations may be performed at each step to minimize the unbalance between the

applied loads, {f}, and the restoring forces {r}:

(AF)F = 1} - (N} (4.12)
The residual norm is defined as:
A k
= m (4.13)
norm k
max| r Ii

where max | Af | ¥ is the maximum unbalance force among all DOF, and max | r | *
is the maximum of restoring forces. Figure 4.7 summarizes the key steps involved in
this analysis procedure, that will be applied in Chapter 6 to predict the fracture response
of plain concrete structures. The convergence tolerance (TOL) has been assumed to be
0.001 in the analyses. The Newton-Raphson iteration technique with the SMS stiffness
formulation method has been adopted in the analyses, presented in Chapter 6.

4.4 NONLINEAR TIME DOMAIN ANALYSIS OF CONCRETE GRAVITY
DAMS

The dynamic equilibrium equations of a concrete gravity dam under seismic

excitations, including the pre-seismic applied forces, are expressed as,
(M) +[C){u) +{r} = -IMUi ) +{p} = {f) (4.14)
where [M] is the mass matrix, {C] the damping matrix, {r} the vector of restoring

forces, {p} the vector of pre-seismic applied loads, {it}, {0}, and {u} are acceleration,
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Figure 4.2
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Figure 4.7 Fracture analysis under indirect displacement control.

velocity, and displacement vectors respectively, and {i,} is the vector due to uniform

free-field accelerations in horizontal and vertical directions, Self-weight and hydrostatic
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pressure loads generally contribute to the vector {p}. The row-sum lumped formulation
(Zienkiewicz and Taylor '®*) has been used to develop the mass matrix, [M], of the dam
finite element model. The reservoir added mass may also contribute to the system mass
matrix, {M}, when dynamic interactions with the reservoir are taken into consideration.
The restoring force vector, {r}, can be computed from the contributions of each finite
element integration point using the standard assembly procedure. The damping matrix,
[C], includes the viscous effects of the material as well as the added damping terms
representing energy dissipations due to reservoir and foundation interaction effects.
Modelling of the material damping effects, dynamic interactions in the dam-reservoir
foundation system, numerical integration of the dynamic equilibrium equations, and
computation of the energy balance error in nonlinear seismic analyses are discussed in

the following sections.
4.4.1 Viscous damping of concrete in gravity dams

Phenomenological modelling of the material damping mechanisms is very uncertain
due to the lack of experimental resuits on the behaviour of mass concrete under seismic
loading conditions. Small amplitude forced vibration tests are often conducted to
Aetermine the amount of damping on the vibration modes of concrete dams, The
equivalent linear viscous damping matrix in the dynamic equilibrium equations (4.14)

is usually expressed as:

[C] = alM] +b[K] (4.13)
where [M] and [K] are respectively mass and elastic stiffness matrices of the structure,
and ’a’ and ’b’ are the proportionality factors, calibrated to provide the desired amount
of damping, usually 3 to 7 percent, in two selected vibration modes of the dam. Non-
viscous energy dissipation mechanisms in a concrete gravity dam system, such as (i) the
added damping effects due to dynamic interactions with the reservoir and the foundation,
and (ii) the structural damping due to frictional losses at the interfaces will also
contribute to the damping matrix, [C], calibrated on the basis of over all modal response

of an existing dam. Moreover, the calibration of material viscous effects, based on the
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modal response of concrete dams, is yet to be justified through experimental
investigations, and by rigorous finite element analyses using phenomenological models

of the material strain rate effects (Biéanié and Zienkiewicz %),

The stiffness proportional damping term is considered in the present investigations
as an approximate representation of the material viscous properties. The proportionality
factor, b, is calibrated to provide a specified amount of damping in the initial
fundamental mode of dams. The mass proportional term is excluded to avoid undesirable
restraining effects on the fracture response of finite elements (El-Aidi and Hall *’).
However, the stiffness proportional damping matrix, represented by the term [c] in Fig
3.2(a), may contribute to a significant part of the element resistance under dynamically
applied loads. If this damping term is retained constant in the smeared crack analysis
of concrete dams, significant tensile forces may be carried across the cracked elements,
providing misleading prediction about the severity of cracking in the structure (as will
be shown in Chapter 7). The following finite element damping models are considered
1o determine their influences on the seismic fracture response of concrete gravity dams.
The structural damping matrix, [C], is assembled from the contributions of all finite

elements and added damping terms (if considered in the analysis).

Lincar damping model (LDM): The element damping matrix, {c] (Eqn. 3.4), is defined

as follows:
[e] = bIA], (4.16)
where [K], is the initial elastic stiffness matrix of the element. The damping matrix, [c],

defined in Eqn (4.16), is retained constant throughout the analysis.

Quasi-linear damping model (QDM): The material damping matrix is assumed

proportional to the instantaneous stiffness of the element:
[c®)] = bk@®] 4.17)
where [k(t)] is the nonlinear stiffness matrix of the element. The element stiffness is

degraded with progressive evolution of micro-crack damage. To avoid artificial
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restraints on the crack opening in damaged clements, the viscous resistance of the
softening material is also assumed to decrease proportionally, The clement regains pre-
softening damping properties after closing of the crack. Damping resistance of the bulk
of the material, behaving linearly outside the localized tensile cracking zones, will

remain largely unaffected in the quasi-linear model.

Elasto-brittle damping model (EDM): The damping resistance of an clement is
assumed tu be completely lost ([c]=[0]) instantly afler initiation of the tensile softening
process, and maintained at that condition for the rest of analysis. Only the linear

elastically behaving finite elements contribute to the structural damping matrix [C].
4.4.2 Dynamic interactions in a dam-reservoir-foundation system

The dynamic interactions in dam-reservoir-foundation systems can be represented
by adding mass, damping, and stiffness terms to the system property matrices in Eqn.
(4.14). Figure 4.8(a) shows the added properties to be considered in the scismic analysis

of concrete gravity dams. In the time domain seismic analysis, the reservoir interaction

(a) (b)

H
Mz

o\

\\ J K"
A Cf'

K I |.IJCE

Figure 4.8 (a) Dynamic interaction effects of the reservoir and the foundation, and
(b) the Westergaard '™ added mass.
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effects are often represented by a parabolic body of water mass (Fig. 4.8(b)), forced to
move in unison with the dam (Westergaard ). The foundation added stiffness and
damping terms can be determined using the analytical expressions available in Wolf'®',
Rigorous modelling procedures to take account of reservoir and foundation interaction
cffects in the time domain seismic analysis of concrete gravity dams will be discussed

in Chapter 8.

4.4.3 Numerical integration of the dynamic equilibrium equations

Due to cracking in concrete dams, the restoring force vector, {r}, the stiffness
matrix, [K]}, and the damping matrix, [C], may vary with time. The dynamic
equilibrium equations (4.14) are solved in time-domain at discrete steps, At. Using the
o integration method (Hilber et al. '), equations (4.14) can be recast in the following

incremental form for a particular iteration, k, at a time step, i,

—B;tz[M+yAtC+(l+¢)BM2K]‘}'-I(AM? = {f1+ p;rz[M]{u,_1+Atﬁ,_l+(%-B)M2-
+[C1}! [F.L_t(ul-l+Atal-l+(_;:-B)Atzﬁi-l) -G +(-v)Atd,

ralrl,
—ﬁ—;t—lewArCﬂ"{uﬁ" -}k
(4.18)

The parameters a (-Ya <a<0), 8=(1-a)*/4, and y=(14-a) determine the characteristics
of the numerical integration procedure, This integration scheme degenerates to the
Newmark average acceleration method (Newmark ') when a=0. The numerical
dissipation parameter, a, has been applied only on the elastic resistance part of the finite
element equilibrium equations. However, that can be extended to include inertia and
damping components as well. The nonlinear time domain solution scheme adopted for
seismic fracture analysis of concrete gravity dams is outlined in Fig. 4.9. The Newton-
Raphson iteration technique, with the SMS stiffness formulation method, will be applied
in all seismic analyses to minimize the unbalance between dynamic force components.

The convergence norm used during iterations, f,..,, is defined in Eqn. (4.19):
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Figure 4.9 Seismic fracture analysis of concrete gravity dams.
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4.19)

norm
where max | Af}Y, is the absolute maximum of unbalance forces on the right hand side
of equations (4.18) after the iteration k, and max|f|; is the absolute maximum of forces
applied at the time step i. The solution advances to the next time step when f,,,, is less
than a specified tolerance, TOL (assumed between 10" and 10, or the number of
iterations in a time step exceeds a pre-assigned value, k,, (assumed 10 for a small time
step of 0.002 sec in Chapter 7). Any unbalance at the local level is taken account of,
by enforcing the dynamic equilibrium condition during the computation of velocity and

acceleration vectors:

L), = (), +Q-y)At(a},_, + B':r{ul-u‘_,-Am‘_l-(%—B)Atzz'ii_l}

(@), = M1 S+ edr), - [C)a) - redir))

The additional convergence check of nonlinear dynamic solutions, based on the energy

(4.20)

balance error at each time step, is discussed in the following section.

4.4.4 Seismic energy balance in the dam

The energy calculations under seismic loading conditions are performed using the
absolute energy terms (Uang and Bertero '*'). The dynamic equilibrium equations (4.14)
can be rearranged as follows,

[M1{i) + [CHaY + {r) = {p} (4.21)
where the vector {ii,} represents the absolute acceleration, which is the sum of the

relative acceleration, {ii}, and the ground acceleration, {3,}. The dynamic equilibrium

of cnergy components can be obtained by integrating equations (4.21) with respect to

the relative displacement, u:

[ i) MY {du} + [y TCY{du} + [{r) T{du) = [{p}Tidu) 4.22)
Replacing {du} with {du-du,}, where u, and u, are the total displacement and the ground

displacement respectively, the first term in equation (4.22) can be rearranged as follows:
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Juaa M da) = 1) MM du,) - [ i) TIM ()
=2 {ah ) TIMI,) - [ ) TM) ()

Substituting the above expression in equation (4.22),

(4.23)

24
%{a,}’"[mw,} + (1) ICN e} + [ () Ada) = [(i) I ) + [ 1p) Thaw) Y

The first term in equation (4.24) represents the absolute kinetic energy, X, which can
be evaluated in a time step using the absolute velocity vector, {i,}, of that instance. The
trapezoidal integration rule is applied to evaluate the other integral terms that

successively represent the following energy components:

Energy dissipation due to damping mechanisms (EV):
EF = B+ A I+ G TCY, byt (4.25)
Internal work done by nonlinear restoring forces (E®):
ER = Efﬁ%[rﬁq_l] Tu,-u, ) (4.26)
Absolute seismic input energy (E9):

1 . .
E = ES, +E[ut,i+u,l-l}T[M]{ug.l_ug.l-ll (4.27)

[
Work done by pre-seismic applied loads (E"):

El = Ef +1pY tuu,_,) (4.28)

The energy balance error is computed as a percentage of the absolute seismic input
energy:

(EC+E?)-(EX+E®
EQ
A seismic analysis is abandoned when the energy balance error exceeds 10%, a

moderate value also assumed by Ayari and Saouma®. The energy convergence criterion

Error =

*EN) v 100% (4.29)

was also used by Mlakar ''"? in smeared crack analysis of concrete gravity dams.
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4.5 COMPUTATION OF ENERGY DISSIPATION IN THE STRUCTURE DUE
TO TENSILE FRACTURE

Equation (4.26), that computes the internal work done by nonlinear restoring forces,
can be applied in both static and seismic fracture analyses of concrete structures. The
internal work done, E¥, contributes to two energy components: (i) the stored elastic
energy in the system, EY, and (ii) the energy dissipation due to tensile fracture, E¥. EV
in any load step can be computed by summing the contributions of all finite element

integration points:
EY - Z-;-{O]T[E}AV (4.30)

where AV is the volume associated with individual integration point. The fracture

energy dissipation in the entire siructure, E¥, can be determined from:

Ef = Ef~E"-ED (4.31)
where E," is the initial elastic strain energy in a system due to the application of self-

weight, hydrostatic pressure, and temperature changes.

The energy dissipation due to tensile fracture can also be approximated by summing
the dissipated energy in all softening elements. Assuming that a directly proportional
relationship exists between tensile stresses and strains in the crack normal direction, the
amount of dissipated energy in an element, that has attained the average maximum

tensile strain value, e, (6. <¢ or ) (Figs. 3.3(c,d)), is given by:

1 E:
8 = EEeo(l"ﬂ) Ve, Tl‘—'?" (4.32)

where V is the volume of the element. The final strain of no tensile resistance, ¢ (or
&), is substituted for ¢,,, in Eqn. (4.32) for completely cracked elements. ‘the total
dissipated energy in the structure, EF, is the sum of dissipations, g;, in all softening
elements. Computation of energy dissipation by this approach is approximate since the
Puisson's effect has not been considered in Eqn. (4.32). The element characteristic

dimension, over which the fracture energy dissipation occurs, is also defined
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approximately. Comparison of the results obtained by the two proposed approaches will

be presented in Chapter 5.

4.6 LONG TERM EFFECTS IN TEMPERATURE STRESS ANALYSIS

During an internal temperature change from a reference state of ‘T, to the current

state T, the unrestrained thermal strain, €', in a two-dimensional case is given by:

| Q-1
[eT] — e;' = (T'To) (4.33)
T 0
xy

where A is the coefficient of thermal expansion, that is assumed independent of the
temperature within the range of seasonal variations in the vicinity of dams. The
unrestrained strain due to temperature changes, {¢'}, can be modelled as a pscudo-load,

{f"}, applied on the structure:

(/) = [ BYTID] {eT} dV (4.39)
where [B] is the strain-displacement transformation matrix, and [D] the constitutive
relation matrix (Eqn. 3.2), derived using the short term Young’s modulus of concrete.

The displacement, {u}, corresponding to this pseudo-load can be obtained by solving the
following system of equations:

(K1 {u) = {f7) (4.33)
where [K] is the structural stiffness matrix. Assumting that the entire mechanism

develops instantly at a time t, the elastic strain, e,, caused by external and internal

restraints to the temperature induced volumetric changes can be obtained as:

{e ) =[B] {u} - {e7} (4.36)

The seasonal temperature change in concrete dams, induced by climatic variations,
develops over a relatively long period of time, causing a part of the predicted elastic

strain, {e}, to be offset by creep effects. The resultant behaviour in a uniaxial case can
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be idealized as a gradual development of internally induced residual elastic strain, ¢,

over the time period (t-t°) (Fig. 4.10(a)). Assuming that the Young’s modulus, E,

A @ b)

P

\€1=(1"/’)€T

=[(1-$)ANT,T)

»
time

Figure 4.10 Long term effects on the temperature induced stresses.

remains constant over this time period, the relaxation process can be expressed as:

€y
1+xd(tt)

[l - x¢(t,t')' ]er (4.37)
1+xd(st’)
=(1 - M =M
4= ¥er ¥ Texee)
where x is the ageing coefficient (BaZant '°) that accounts for creep under gradually

applied stress, and ¢(t,t”) is the usual creep coefficient. The parameters x and ¢(t,t")
can be determined from data available in the literature (Ghali and Favre ™). The
relaxation factor, ¢, in Eqn. (4.37), can have a value between 0.0 to 1.0; the upper

bound represents the situation where the induced elastic strain has been completely offset

€,=

i]

by creep effects, and the lower bound represents the situation where no such effects
exist. In the linear elastic range, the relaxation process in a uniaxial case can be
predicted by using a modified value of the thermal expansion coefficient A (Fig.
4.10(b)). This approximate procedure will be adopted in the analysis of concrete dams
(Fig. 4.2). No further relaxation is applied to the elastic strain predicted from finite

element analyses (Fig. 4.1). However, a rigorous finite element investigation would
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require a coupled temperature-creep stress analysis with difterent creep effects for
tensile and compressive strains in finite elements. Use of a code specified effective
modulus in two or three dimensional finite element models of concrete dams is a gross
simplification of the actual constitutive behaviour (BaZant ®'). Viscoclastic material
models may be considered to study the fracture response of concrete under long term
load effects (BaZant and Chern '*, de Borst **),

4.7 SUMMARY

Nonlinear static and seismic analysis algorithms for the smeared fracture analysis
of concrete structures have been developed in this chapter. Static fracture responses of
plane concrete structures, subjected to mode I loads, will be investigated in Chapter 5,
using the direct displacement control analysis technique. The indirect displacement
control analysis technique, developed in section 4.3, will be applied in Chapter 6 to
study the static failure behaviours of a notched shear beam, a model concrete dam, and
a full scale concrete gravity dam. All these structures have been experimentally or
numerically investigated in the past. Predicted responses will be compared with the
results published in the literature. Seismic fracture response of Koyna Dam, that
experienced severe cracking during a seismic event, will be investigated in Chapter 7
to validate the application of numerical models in nonlinear seismic analyses. Encrgy
response of the dam, and the influences of different modelling parameters and
assumptions on the predicted fracture response, will also be studied. Finally, the
numerical models will be applied to predict the seismic fracture response of a standard
section concrete gravity dam in Chapter 8. Seasonal temperature effects, and energy
dissipations due to dynamic interactions with the reservoir and the foundation, will be
considered in that chapter. Recommendations for industrial applications of the numerical
models, to determine the fracture responses of existing concrete gravity dams, will be
provided in Chapter 9.
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CHAPTER 5

STATIC FRACTURE RESPONSE OF PLAIN CONCRETE
STRUCTURES SUBJECTED TO MODE I LOADING

5.1 INTRODUCTION

Fracture responses of a simple tensile specimen and a beam under ihree-point
loading (Fig. 5.1) are mode I type, because no shear deformations occur in the fracture

process zone. Directions of the fracture band propagation are also known a pricri. Finite

Analysis of a simple tension specimen

T e

(section 5.2)

Y

Analysis of a notched concrete beam
* ul, rS

I

(section 5.3)

]

Ultimate response Finite element mesh Fracture energy
of the beam »| objectivity and the | dissipation and damage
(section 5.4) fracture parameters in the structure
(section 5.5) (section 5.6)

Computational efficiencies of

TMS and SMS models
(section 5.7)

\

Conclusions

Figure 5.1 Fracture responses of concrete structures subjected to mode 1 static loading.
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element meshes can be oriented such that the crack band is bounded by two parallel
sides of square elements (Fig. 3.6(a)). The fixed smecared crack model with a constant
shear resistance factor, g, can be applied to predict the predominantly modc 1 fracture
response of simple concrete structures. Elementary fracture specimens, such as a wedge
splitting specimen (Brithwiler *') or a notched beam under three-point loading (BaZant
and Pfieffer ), are extensively used in experimental investigations to determine the
concrete fracture energy (Shah and Carpinteri '*%). Numerical simulations of the tested
fracture specimens are conducted to calibrate the fracture energy of concrete, using
known values of the elastic modulus and the tensile strength, and a specified shape of
the tensile strain softening curve. The main objectives of this chapter arc to validate the
finite element crack propagation analysis models, elaborated in chapters 3 and 4, by
investigating the mode I fracture response of concrete structures subjected to static
loads, and to demonstrate the importance of fracture energy conservation principle in

obtaining a mesh objective response from smeared crack analyses.

A simple tension specimen, and a simply supported notched concrete beam under
three-point loading are considered for numerical investigations (Fig. 5.1). The
elementary tension specimen, similar to that investigated by Oliver'?, is considered for
a preliminary validation of the finite element computational models. The notched
concrete beam under three-point loading is identical to that experimentally and
numerically investigated by BaZant and Pfieffer®®. Parametric analyses are performed
with the notched beam, to determine the influences of material parameters and
constitutive modelling assumptions on the finite element analysis results. Finite element
mesh objectivity and energy dissipation characteristics of the structural components are

also investigated in this chapter. Figure 5.1 outlines the organization of this chapter.

The softening response of concrete structures has been independently investigated
in the past using two computational techniques: (i) the stiffness degrading model based
on a total stress-strain relationship (BaZant and Oh '%), and (ii) the tangent softening

model based on an incremental stress-strain relationship (de Borst and Nauta v').
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However, the relative advantages and inconveniences of using the two different
simulation techniques of the concrete strain softening behaviour have not been
investigated in the past. Section 5.7 in this chapter is particularly devoted to investigate
the numerical efforts required by the two element stiffness formulation models: TMS
and SMS models, that have been presented in Chapter 3. The displacement control
analysis program, discussed in section 4.2, is applied to predict softening responses of
the tension specimen and the beam under three point loading; physical snap-back
behavicur is not expected for any of the structures considered here. The loading
condition is assumed to be such that the material properties are defined with strain-rate

independent parameters.

5.2 ANALYSIS OF THE SIMPLE TENSION SPECIMEN

A simple tension specimen under the constant stress state is considered first to
validate the computer implementation of numerical models. Finite element model of the
unit thickness structure, similar to that investigated by Oliver '¥, is shown in Fig.
5.2(a). The strain softening response of a similar simple tension specimen was also
considered by de Borst* to investigate the post-bifurcation stability of local smeared
crack nnalysis models. However, the present investigation is limited to predicting the
overall force-displacement and energy response of the specimen. The material properties
are arbitrarily selected as, E=20000 MPa, »=0.0, 0;=2 MPa, and G;=40 N/m. A non-
zero shear resistance factor, u, is required to ensure stability of the solution in this
particular uniaxial case. However, the response is independent of the value assumed.
The softening is limited only in the elements adjacent to the rigid boundary by artificial
initiation of softening in those elements. The force displacement response and the energy
dissipation in the structure are shown in Figs. 5.2(b) and 5.2(c). Due to a pure uniaxial
stress field, the two approaches of computing the dissipated fracture energy: one from
the difference between the external work done and the recoverable internal strain energy

(Eqn. 4.31), and the other directly from the element stress-strain responses (Eqn, 4.32),
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Figure 5.2 Analysis of a simple tension specimen: (a) the finite element model, (b) the
Sorce-displacement response, and (c) the energy response,

have provided identical results. Force-displacement and energy responses, obtained by

the SMS and the TMS models, virtually overlap with the theoretical solution in this

particular case. However, a significant difference exists in computational times of the

two numerical models, which will be discussed in the following example.

5.3 NOTCHED BEAM UNDER THREE-POINT LOADING

One of the several concrete beams tested by BaZant and Pfeiffer?’, 0.3048 m deep,
38.1 mm thick, and made with a maximum aggregate size of 12.7 mm, is considered

here for parametric studies (Fig. 5.3(a)). The only material parameter determined from
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Figure 5.3 The notched beam under three-point loading.

laboratory tests was the compressive strength of concrete, f*.=33.5 MPa (4865 psi).
For numerical investigations, the following material properties are assumed after BaZant
and Pfeiffer

E=57000,/f psi o,=6‘ﬁ:' psi
«27413MPa ~2.886 MPa 5.1
G,=40.29 Njm v=0.18

The fracture energy value was calibrated by BaZant and Pfeiffer”® to provide a close
prediction of the peak load resistance, as observed in the laboratory test. A typical finite
element model having 24 subdivisions along the depth of the beam, d, with a
characteristic dimension, h,=d/24, is shown in Fig. 5.3(b). The notch at the centre-
bottom is modelled by assigning a null stiffness and strength to the finite elements,
shown shaded in the figure. Displacement control analyses have been performed by
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applying a displacement increment, Au,=1.0x10* m, at the two surface nodes adjacent
to the centre line of the beam (Fig. 5.3(b)). The constitutive parameter ¢, (section 3.3)

has been assumed equal to o, in all analyses, except the case discussed in section 5.5.

5.4 ULTIMATE RESPONSE OF THE BEAM

The ultimate load resistance determined in the laboratory experiment was P,=7.784
kN, which was the average response of three same size specimens tested. Applying the
elastic bending theory, the load at the centre of the beam that causes the crack-tip stress
equal to o, (Fig. 5.4(a)) is, P,=6.206 kN, giving a P/P, ratio of 1.254 for the
experimental response. Three analyses of the finite element model (Fig. 5.3(b)) have
been performed; one for the TMS model applied with the Newlon-Raphson iteration

technique, and two analyses for the SMS model applied in conjunction with the Newton-
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Figure 5.4 (a) Linear elastic stress distribution on the cross-section at mid-span, and
(b) force-displacement response of the beam.
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Raphson and the modified Newton-Raphson methods. The force-deformation responses
of these analyses are presented in Fig. 5.4(b). Two analyses with the SMS model
provided identical responses. The TMS model also provides a response that is almost
identical to the SMS model predictions. Applying the elastic bending theory, the total
load on the beam to cause the tensile stress at the crack tip equal to a;, under the loading
configuration of Fig. 5.3(b), is determined to be P,=6.31 kN. The ultimate resistance
obtained from numerical analyses is 6.8 kN, giving a P,/P, ratio of 1.08, which is about
16% less than the experimental result. The response predicted from numerical analyses
is, however, approximate due to uncertainties related to the material properties that are
not known precisely. The sensitivity of predicted peak response, to the assumed material
parameter values and the finite element model used in the analyses, is discussed in the
following section. In a laboratory test situation, the beam response is also influenced by

the self-weight which has not been included in the present analyses.

5.5 FINITE ELEMENT MESH OBJECTIVITY AND THE FRACTURE
PARAMETERS

The most important verification of any softening model, to apply in finite element
fracture propagation analyses, is the mesh objectivity. Three finite element models with
different characteristic dimensions of the crack band, h,=d/6, d/12, and d/24, have been
considered to study the softening response of the beam in Fig. 5.3(a) (d=0.3048 m).
The energy conserving SMS model has been applied to determine the peak response of
all three finite element models, using the material properties assumed earlier. A series
of analyses has also been performed using the conventional elasto-brittle strength-of-
material (SOM) concept of fracture analysis, where no post-peak tensile resistance is
assumed to exist. Using the elastic bending theory, loads causing the crack-tip tensile
stress equal to g, are determined as Py=6.65 kN, 6.42 kN, and 6.31 kN, respectively
for h,=d/6, d/12, and d/24 models. The value of P, varies with the value of h, since the

spacing, over which the loading is applied (Fig. 5.5), varies in three finite element
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Figure 5.5 Different finite element meshes of the notched concrete beam.

models. The ratio of peak load resistance, P,, determined from finite element analyses,
to P, is plotted against the d/h, ratio in Fig. 5.6(a), for all analyses. The inadequacy of
SOM criterion becomes evident as the fineness of the finite element model, d/h,,
increases. On the other hand, the P,/P, ratio obtained with the energy conserving model
is almost independent of the finite element mesh refinement. The structural response,
thus, appears to be independent of the width of crack bands in the mode I static fracture
analysis, The difference between finite element analysis results and experimental

findings, does not appear to depend on the refinement of finite element meshes.

The transition parameter between the pre-peak linear elastic state and the post-peak
softening state is not uniquely defined in the literature, The finitc element model of 24
subdivisions (h,=d/24), has been reanalysed with an increased value of o; (=1.3 g).
The predicted force-deformation response is compared with the previous analysis results,
obtained with o;=¢,, in Fig. 5.6(b). The peak structural resistance is moderately
sensitive to the softening initiation parameter. A 30% increase in o; value causes about
a 10.3% increase of the peak structural resistance, although the same amount of fracture
energy, G;=40.29 N/m, is conserved in two cases. The sensitivity would be much

higher if the responses of un-notched beams are compared. In a subsequent analysis, the
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Figure 5.6 Sensitivity of the structural resistance to (a) the finite element mesh
refinement, and (b) the constitutive parameter o,.

peak response has been observed to increase by 7.4% if the fracture energy G is
increased by 30%, while the softening initiation parameter is assumed constant at g;=a,.
Difference between the numerically predicted response and the experimental observation
may have been caused by uncertainties related to these fracture parameters. The shear
resistance parameter, u, has not been a critical factor in relation to the peak response
of the particular beam under consideration. This behaviour can be attributed to the fact

of a dominant mode I fracture propagation under the applied loading configuration.

5.6 ENERGY DISSIPATION AND DAMAGE IN THE BEAM

Energy response of the beam, obtained during a SMS analysis with the NR iteration
technique (discussed in section 5.4), is shown Fig. 5.7(a). Separate presentations for the
other two analyses, using the TMS model and the SMS model with a mNR technique,
are unwarranted since almost identical responses were obtained from three analyses. The

internal recoverable strain energy in Fig. 5.7(a) reaches the peak value almost
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Figure 5.7 (a) Energy response of the beam, and (b) the propagation of softening and
crack tips.

simultaneously with the ultimate load resistance, and then drops sharply showing a
nearly brittle behaviour, The total energy dissipation due to local tensile softening in
finite elements is insignificant, compared tc the total internal strain energy (about 12%),
before the structure reaches the peak resistance level. The energy dissipation capacity,
and thereby the sustained damage by the beam, are very limited before the collapse
occurs under the applied loading condition. Upon reaching the peak response, the stored
elastic energy is released instantly, causing a sudden increase of energy dissipation
through tensile fracture. The two approaches of computing the eiergy dissijation (Eqns.
4.31 and 4.32) provide close predictions before the beam passes through the peak load
level. The difference between two approaches emerges during the post-peak response
of the structure. The difference also tends to increase with coarser finite element meshes
and with a reduction of the notch depth,
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The upward propagation of softening front (e, <e, <¢;) with an increasing imposed
displacement is represented in Fig. 5.7(b). The propagation of crack-tip, where the
crack normal strain, ¢, has exceeded ¢, is aiso plotted against the imposed
displacement. In general, the softening-tip appears to lie approximately 50 mm ahead
of the crack-tip. This dimension is about one-fifth of the material characteristic
dimension, 1, =2EG/o? (Hillerborg et al. *3). The crack-tip as well as the softening-tip
extends suddenly by about one-sixth of the beam depth when the structure passes
through the maximum resistance level. Then the load resistance reduces drastically, as
the crack-tip penetrates about one-third the total depth of the structure. The behaviour
of the structure, however, depends also on the initial notch depth. Figure 5.8(a) shows
the influence of the notch depth, d,, on the propagation of cracks as the applied

displacement is increased. For a small notch depth, the crack starts to propagate at a
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Figure 5.8 Influences of the notch depth on (a) the crack propagation, and
(b) the force-displacement response.

relatively high applied displacement, and penetrates instantly to a substantial depth. The
displacement, at which a crack starts to propagate, reduces to a minimum value when
the notch depth is in the range of 1/4 to 1/3 of the beam depth. The crack propagation
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is gradual for a notch depth greater than 1/3 of the beam depth. Force-displacement
responses of the beam, obtained with ditferent notch depths, are shown in Fig. 5.8(b).
The brittle failure mechanism for relatively smaller notch depths is evident in this
presentation. When the notch depth is relatively high, d,/d=1/3, the ¢lastic energy
stored in the structure at the pre-peak state is reduced. Consequently, the energy flux
to the fracture front is also reduced, thus eliminating any sudden growth of crack in the
structure. The towl amount of dissipated energy, before the structure approaches the
ultimate resistance level, varies from 4% to 30% of the stored elastic energy, as the
notch depth increases from 1/24 to 1/2 of the beam depth. A catastrophic failure
scenario is, thus, expected for an undamaged or lightly damaged structure. The notch
sensitivity of force-displacement responses of the concrete beam, predicted here, is

analogous to the behaviour reported by Karihaloo and Nallathambi *,

5.7 COMPUTATIONAL EFFICIENCIES OF THE TMS AND THE SMS
MODELS

The computer execution times of three analyses, discussed in section 5.4, are plotted
against the applied displacements in Fig. 5.9(a). The SMS model, applied with the
Newton-Raphson iteration technique, takes the maximum time for solution, because of
the repeated changes in secant modulus stiffness of the softening elements. The
computer execution time required by the SMS model is reduced substantially when
applied with the modified Newton-Raphson method, since the stiffness matrix of the
structure is updated once in each displacement step. The computer execution time
required by the TMS model is significantly less than that required by SMS model
analyses. Use of the tangent stiffness formulation during strain softening, and at the
same time computing stresses from the total strains using a secant stress-strain

relationship, appear to be an efficient solution strategy.
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Figure 5.9 (a) The computer execution times of SMS and TMS analyses, and
(b) computational insrability of the TMS model.

However, the TMS model may not always provide a stable response in finite
element analyses. The use of a negative softening modulus in the element stiffness
formulation may cause ill conditioning of the structural stiffness matrix. One such
situation has been encountered when the TMS model is applied with the Newton-
Raphson method to analyse the beam of Fig. 5.3(a) with a relatively coarser finite
element model having 12 subdivisions along the depth (h,=d/12, d=0.3048 m). SMS
and TMS models provide identical force-displacement responses up to the peak (Fig.
5.9(b), d=0.3048m). In the post-peak phase, the analysis with TMS model fails to
satisfy the convergence criterion even after 100 iterations within a displacement step.
The spikes in the force-displacement curve of TMS analysis correspond to the un-
converged solution states. With the increased size of finite elements, the linear softening
curve becomes steeper, meaning a higher negative modulus, E.!, applied to formulate
the incremental stress-strain relation of Eqn. (3.18). To further investigate the influences

of mesh coarseness on the stability of TMS model, one analysis has been performed by
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scaling the geometric dimensions of the beam to half, but still modelling with 12
elements along the depth of the beam (h,=d/12, d=0.1524 m). The softening modulus
of finite elements in this reduced model corresponds to the same value, obtained for the
elements in the full size mode! of d=0.3048 m and h.=d/24. A stable force-deformation
response is predicted without any convergence problem (Fig. 5.9(b)). The peak response
of the reduced size beam is predicted to be 4.25 kN, which is about 8% less than the
laboratory test value of 4.64 kN (Baiant and Pfeiffer™\. In subsequent analyses of the
full size finite element model (d=0.3044m, h,=d/24), the TMS model has been
observed to become unstable for an initial notch depth, d,, less than 1/6 of the beam
depth. The application of modified Newton-Raphson technique has been observed to
eliminate the unstable behaviour of the TMS model. The instability can also be
suppressed by using a high value of the shear resistance factor, u=1.0. The value of
p=1.0 corresponds to the situation of permitting only mode 1 (opening mode)
deformations in the crack band. However, computational efficiencies of the TMS model,
observed during the fine mesh analysis (Fig. 5.9(a)), may diminish in the analysis of a
structure subjected to mixed mode loading; since a shear softening model, possibly with

a rotating crack formulation, needs to be considered.

5.8 CONCLUSIONS

Computational efficiencies of two numerical models, developed to simulate the
localized softening behaviour of concrete, have been investigated. The stiffness
degrading model (SMS), that uses a total stress-strain relationship to derive clement
stiffness matrices, appears to provide a stable response even with a relatively coarse
finite element model of structures. The model is computationally intensive since the
secant stiffness properties change with the progression of element softening. However,
the gradual change in element stiffness properties makes the solution algorithm very
stable, which is of great importance in nonlinear response studies. The stiffness

degrading model can also be adapted without a significant increase in computational
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efforts to take account of the nonlinear stress-strain curves at both pre-peak and post-
peak states. The variable shear resistance factor, either in a fixed crack analysis or in
the framework of a rotating crack model, can also be accommodated without a

significant increase in the computational cost.

In the alternative tangent modulus stiffness model (TMS), element stiffness matrices
are determined based on an incremental stress-strain relationship, but the stresses at
Gauss inlegration points have been computed from the total strains using a total stress-
strain relationship derived for the entire element. The proposed approach ensures the
correct fracture energy dissipation in strain softening elements. With the linear softening
model and a constant shear resistance factor, the tangent mode! appears to be
computationally efficient, and numerically stable, provided that an adequately refined
finite element mesh is used. However, the computational efficiency of this model is
expected to diminish when applied with a variable shear resistance model, which is
required in most practical fracture problems. Moreover, a solution becomes non-

convergent when the model is applied with relatively large size elements.

The traditional tensile strength based failure analysis has been found to be extremely
sensitive to the refinement of finite element meshes. The energy conserving nonlinear
smeared fracture model has provided a finite element mesh objective response of the
concrete beam. The size of finite elements, representing the width of smeared crack
bands, may not be limited to any minimum value in the mode I static fracture analysis
of notched beams, subjected to a three-point loading configuration. The structural
response has been moderately influenced by the constitutive model parameters of
softening initiation and fracture energy dissipation; but not by the width of crack bands.
Hence, the proposed finite element crack propagation analysis model can be applied to
calibrate the fracture energy value of concrete, by a numerical simulation of the
experimentally determined ultimate resistance of notched concrete beams under three-

point loading,
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CHAPTER 6

STATIC FRACTURE RESPONSE OF PLAIN CONCRETE
STRUCTURES SUBJECTED TO MIXED MODE LOADING

6.1 INTRODUCTION

Cracking in concrete dams is inevitable due to the low tensile resistance of concrete.
Evaluation of possible crack profiles, and the corresponding structural resistance, are
of topmost necessity to ensure safe operation of these structures. The discrete crack
propagation model, with linear elastic fracture mechanics (LEFM) crack propagation
criterion, has been applied in the past to investigate the static fracture response of
concrete gravity dams (Ayari®, Gioia et al. ™, Ingraffea®, Linsbauer et al. '"'**), The
application of traditional LEFM criterion in concrete fracture analysis has always been
questionable, because of the development of significantly large fracture process zone
(FPZ) in concrete. This is even more true for usual dam concrete that has substantially
large material characteristic length (Briihwiler and Wittmann *?). Standard LEFM
fracture analysis, that results in a pair of traction free surfaces instantly upon fulfilling
the propagation criterion, appears to have limited resemblance with the fracture process
behaviour of concrete. Carpinteri et al. * applied the Hillerborg’s cohesive crack model
(Hillerborg et al. *) to investigate the fracture response of a model concrete gravity dam
subjected to equivalent hydrostatic pressures. The use of discrete crack model in fracture
analysis of huge concrete gravity dams remains limited, because of tremendous
computational costs. Although nonlinear smeared fracture models have been applied to
study the behaviour of elementary beams under flexural or shear loading, application of

these models in fracture analysis of concrete dams has not been completely explored yet.

Depending on the type of loading and the elevation of cracking zones, the fracture
in concrete gravity dams is expected to develop under a combination of flexure and
shear type forces. The nonlinear response of notched concrete beams subjected to mode

I loading conditions (for example, beams under three-point loading), can be predicted
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using the fixed smeared crack models, without considering shear deformations in the
constitutive formulations {BaZant and Pfieffer ?%), or with a constant shear resistance
factor (as demonstrated in Chapter 5). However, in most practical fracture problems,
shear deformations may ensue a rotation of crack bands in the finite elements. Crack
constitutive models fixing the loc2! crack band at the initial inclination, result in a severe
stress locking due to the zigzag propagation of crack profiles in a continuous finite
element mesh. The stress locking phenomenon has been observed to cause spurious
diffusions of cracking and overly stiff responses of investigated structures. The rotating
crack concept, introduced by Cope et al. **, and Gupta and Akbar ™, can be applied to
consider mixed mode deformations in the fracture process zone. Rots'* used a non-
orthogonal multiple crack formation mode! (de Borst and Nauta*’) to simulate the mixed
mode deformations in the FPZ. A new crack was allowed to form as the principal stress
direction deviated by an infinitesimal amount from the existing crack normal direction,
The model appeared to provide a better prediction of the post-failure snap-back
behaviour of a single-notched shear beam, in co. parison to that obtained using the fixed

crack model with a constant shear resistance factor.

The purpose of this chapter is to investigate the applications of localized strain-
softening constitutive models, namely (i) the coaxial rotating crack model (CRCM)
(section 3.6), and (ii) the fixed crack model with a variable shear resistance factor
(FCM-VSRF) (section 3.6), in studying the two-dimensional cracking behaviour of
concrete structures subjected to mixed mode static loading conditions. The SMS
formulation is applied to simulate the strain softening behaviour of finite elements. The
smeared crack models are applied first to investigate the response of a single notched
shear beam, tested by Arrea and Ingraffea’®, and also analysed by other investigators (de
Borst *°, Gerstle and Xie ™, Rots and de Borst ™*%, Rots '*%). The single notched beam
under shear loading is supposedly a ’classic’ example of physical snap-back behaviour
at the structural level (de Borst*’). Investigation of this problem is, therefore, intended
to validate the indirect displacement control analysis technique, developed in section 4.3.

The proposed analysis technique is applied subsequently to determine the ultimate
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resistance and the post-failure behaviour of a model dam, tested and analysed by
Carpinteri et al. . Final analyses are performed for a full scale concrete gravity dam
subjected to reservoir overpressure, Analysis of the full scale dam is similar to that
preformed by Gioia et al. ™, Sensitivities of the predicted fracture response of the full
scale dam to geometric configurations and finite element analysis parameters, such as
mesh refinement, notch depth, and fracture energy value, are discussed in section 6.4.
Application of the standard incremental load control analysis technique to determine the
ultimate resistance of the full scale dam is presented in section 6.4.6. Figure 6.1
represents the organization of this chapter.

Analysis of a shear beam with single notch
section 6.2

\

Analysis of a model concrete dam
section 6.3

Y

Fracture response of a full scale gravity dam subjected
to reservoir overflow
section 6.4

Comparison of CRCM and FCM-VSRF analyses -
section 6.5

1

Conclusions

Y

Figure 6.1 Fracture analyses of concrete structures subjected to mixed mode loading.

Structural resistances and crack profiles obtained from the present analyses are
compared with the results published in the literature. The completely cracked condition
of a finite element is indicated by shading the entire element area in finite element
meshes. The incomplete fracture condition is indicated by a dot at the element centre.
Elements that never softened will be kept unmarked in the illustrations. The loading
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conditions are assumed to be such that the material properties are defined with strain-

rale independent parameters.

6.2 ANALYSIS OF A SHEAR BEAM WITH SINGLE NOTCH

The unreinforced single notched shear beam, experimentally investigated by Arrea
and Ingraffea?, is considered first to validate the finite element implementation of the
constitutive models. The plane-stress finite element model of the 156 mm thick shear

beam is shown in Fig. 6.2. In the laboratory test, a load was applied at point C of the
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Figure 6.2 Single notched shear beam (dimensions in mm).

highly stiff steel beam ACB. The notch at the bottom of the concrete beam, and the load
application point C, were on the line of asymmetry. The crack mouth sliding
displacement (CMSD) was used as a feed-back signal to control the applied load in the
experimental study. In the present numerical investigation, loads are applied directly on
the concrete beam at points corresponding to A and B, according to the proportion

shown in Fig. 6.2. The CMSD is used as the indirect displacement control analysis
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parameter to capture the snap-back response of the beam, as was predicted by other

investigators (de Borst**, Rots and de Borst '*, Rots '**). The constitutive parameters are

taken as, E=24800 MPa, »=0.18, 6;=2.8 MPa, and G;=100 N/m (Rots **).

The applied force P versus the vertical displacement at point C, obtained with two
constitutive models: (i) the CRCM, and (ii} the FCM-VSRF, together with the response
obtained by Rots '*, are shown in Fig. 6.3(a). The displacements at points A and B of

the concrete beam have been interpolated to obtain the vertical displacement at point C,

assuming that the steel beam ACB used in the experiment was infinitely stiff. The snap-
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Figure 6.3 Response of the shear beam: (a) snap-back in the force-displacement
response, (b) approximate experimental crack profile, (c) crack profile predicted by the
CRCM, and (d) crack profile predicted by the FCM-VSRF.
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back response of the structure, as evident in Fig. 6.3(a), has been well reproduced by
the proposed indirect displacement control analysis procedure. However, the predicted
snap-back behaviour can not be compared with the experimental results since the
displacement at point C has not been reported in the referred literature. The predicted
peak responses are, however, within the range of experimental results. The peak
response obtained using the CRCM is in excellent agreement with the results obtained
by Rots '* who used a non-orthogonal crack formation mode! (de Borst and Nauta*’) to
simulate the effects of crack band rotation in the strain softening elements. Rots'*,
however, obtained a relatively higher post-failure residual strength. The use of
quadrilateral elements, instead of triangular elements as used by Rots ', and the
determination of constitutive parameters based on the average response of an element,
have provided a softer response in the present study. The FCM-VSRF provides a
relatively higher peak resistance, and also a higher post-peak response. However, the
proposed variable shear resistance factor formulation provides a significantly better

response than that obtained by using non-zero constant shear resistance factors (Rots '*%).

The crack profile observed in the laboratory test is approximately represented in Fig.
6.3(b). Rots'** performed a discrete crack analysis of the beam using interface elements
along the a priori known crack trajectory. The peak structural resistance was predicted
to be in the range obtained by the CRCM analysis, and the applied force, P, approached
an almost zero value at the end of analysis. Neither of the smeared crack models, used
in the present study, has predicted a structural resistance approaching to a zero value
at the end of analysis. This discrepancy in the post-peak response may be attributed to
the incorrect crack profiles predicted by the smeared crack propagation models (Figs.
6.3(c) and 6.3(d)). The smeared crack profiles start to propagate with a steep vertical
slope, and eventually get restrained by highly compressed elements underneath the
applied load at point B. Close observation of the analyses have revealed that, although
the elements in neighbourhood of the notch-tip start to soften initially at slanted angles,
the vertical mesti lines in the course of analyses result in a vertical orientation of crack

planes in those elements. n a subsequent analysis (not presented here) with the smeared
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band of fracture forced to follow approximately the profile shown in Fig. 6.3(b), the
peak resistance of the structure has been predicted to be very high. Analyst's
interference with the direction of a fracture band propagation in smeared crack analyses

is possibly undesirable due to the misleading prediction of structural resistances.

6.3 ANALYSIS OF A MODEL CONCRETE DAM

Carpinteri et al. * tested two 1:40 scaled models of a gravity dam subjected to
equivalent hydraulic loads. Material properties of the model dam were reported to be
E=35700 MPa, v=0.1, ¢,=3.6 MPa (0,=0, assumed), and G,=184 N/m. Density of
the material is assumed to be 2400 kg/m’. Following an unsuccessful experimental
attempt to simulate the prototype self-weight effects, the repaired first model, that failed
prematurely along the foundation interface, and the second model, were tested without
any adjustment for the self-weight condition. In the present study, only the second
model is analysed, and the predicted responses are compared with the reported
experimental and discrete crack analysis results of Carpinteri et al. . The plane stress
finite element model of the 30 cm thick dam model, and the applied loads are shown in
Fig. 6.4. The crack mouth opening displacement (CMOD) is applied as the control
parameter in nonlinear analyses performed using the CRCM and the FCM-VSRF. The
applied hydraulic load versus the CMOD responses are presented in Fig. 6.5(a). Both
smeared crack models provide very close predictions of the ultimate resistance of the
structure (within 4% of the experimental result). The CMOD responses predicted by
smeared crack models are relatively high. The discrete crack analysis prediction of
CMOD, obtained by Carpinteri et al.*, is approximately in between the experimental
result and the smeared crack analysis results obtained here. Refinement of the finite
element mesh did not influence the CMOD response in smeared crack analyses. The
geometric configuration adopted in the finite element model of the structure, might have

contributed to the apparent discrepancy in the CMOD response.

111



The continuity of 0.248m
displacement field, a— 1‘
inherent in smeared
fracture analyses, enabled

to predict long stretches

of the post-failure

EAUAVANAN
EAANAN 2.4m

response, as observed in
Fig. 6.5(a). The FCM-

VSRF analysis provided a *. P \\\\\\§\\\\\

relatively stiffer post-peak CMOD

response in this case as ! R EEEERRRRREN R\

well.  Crack profiles AR \\\ \\\\\\\\\\\\QQ\\\\\ Y
obtained from (two 11711 [TTTTTT]]0.15m

NN \\\\\\ ANNS AN NNN \\\\
smeared crack analyses I‘ N 2 0m N

are compared with the

Figure 6.4 Finite element model of the

reported experimental and notched dam and the applied loads.

discrete crack analysis
results in Fig. 6.5(b). The horizontal mesh lines seem to cause a horizontal propagation

of the crack profile in the CRCM analysis. On the other hand, the FCM-VSRF provides
a considerably better performance in predicting the crack profile of this particular case.
The stress locking developed due to a fixed crack direction in the finite elements
probably gives rise to high internal forces, that are able to overcome the restraining
effects of mesh lines, and drive the crack profile downward. As the crack front
propagates forward in the CRCM analysis, the crack bands in elements behind the
fracture front orient themselves parallel to the general direction of the crack profile.
With a decreasing applied force in the post-peak phase, there is an increasingly less
restraint to the forward propagation of a horizontal crack. In the absence of any
mechanism to retard the propagation of cracks, the post-peak resistance of the structure
diminishes with an increasing CMOD response. An interesting observation can be made

from Fig. 6.5 (b), regarding the discrete crack profile predicted by Carpinteri et al. %,
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Figure 6.5 Response of the model dam. (a) the total applied load versus the CMOD,
and (b) crack profiles in the structure.

The profile tips downward right from the beginning, and propagates at a nearly constant
slope showing a significant deviation from the experimentally observed crack profile.
The discrete crack propagation technique does not appear to be significantly better than
the smeared crack analysis models in predicting the crack profile of the particular
problem under investigation. However, the behaviour of crack propagation models, as
observed in the model dam analysis, can not be extrapolated directly to protolype dam
analysis, since the self-weight of the model was not scaled to simulate the situation of

a full size dam. Analyses of a full scale concrete gravity dam are presented in the
following section.

6.4 FRACTURE ANALYSIS OF A FULL SCALE CONCRETE GRAVITY
DAM SUBJECTED TO RESERVOIR OVERPRESSURE

The Koyna Dam, analysed by several investigators over the last decades, is

considered to study the behaviour of smeared fracture models. Plane stress finite
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clement models of the dam and the applied loads are shown in Fig. 6.6. The geometric
configuration of finite element models is similar to that reported in the literature
(Chopra and Chakrabarti *), except for the upstream face slope which has been assumed

straight vertical in the present models, The dimension, d, at the elevation of change in
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Figure 6.6 Finite element models of Koyna Dam subjected to reservoir overflow.

the slope of the downstream face, is varied in subsequent analyses to determine its
influences on the structural resistance. The following material properties are assumed
in the analyses: E=25000 MPa, »=0.20, ¢;=1.0 MPa, and mass density=2450 kg/m’,
Two fracture energy values, G;=100 N/m and 200 N/m, are considered for parametric
investigations. Analyses are performed with the self-weight and the full reservoir
pressure load, prior to the incremental application of the hydrostatic pressure that
corresponds to a reservoir overflow condition, The horizontal displacement at the top
upstream point of the dam is considered as the indirect displacement control parameter
in these analyses. Nonlinear response of the structure is investigated for the single crack

propagating from a pre-assigned imperfection, located on the upstream side at the
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elevation of downstream slope change. Cracking at that location was reported to be most
critical to the ultimate structural resistance (Gioia et al. ™). Water penetration and uplift
pressure inside the cracks are not considered in the analyses presented here. Results

obtained from the present analyses are compared with those reported by Gioia et al. ™,

6.4.1 Structural resistance to the reservoir overflow

Resistance of the dam to the reservoir overflow versus the horizontal displacement
at the top of the dam is presented in Fig. 6.7(a). The solid curve in the figure represents
the structural resistance predicted with the finite element model in Fig 6.6(a) (d=19.3
m). The analysis has been performed with the CRCM assuming G,=100 N/m. Figure
6.7(a) also reproduces two curves from Gioia et al. ™ who performed a plasticity based
analysis assuming a peak tensile strength equal to 1.0 MPa, and another analysis using
the LEFM criterion with a material fracture toughness value of K,.=1.0 MPay/m. The
initial displacement at the top of the dam corresponds to a loading combination of sclf-
weight and full reservoir pressure with no overflow. Structural resistance predicted by
the nonlinear smeared fracture model appears to lay slightly below the response
corresponding to the LEFM analysis. However, the predicted response is very sensitive
to the dimension, d. A preliminary analysis with an increased value of d=22 m (Fig.
6.7(b)) predicted a significantly higher structural resistance, as represented by the dotted
curve in Fig. 6.7(a). The exact dimension adopted by Gioia et al. ™ is not precisely
known. However, the plasticity based analysis appears to provide the most unrealistic
structural resistance.

The depth of an initial imperfection, placed on the upstream side at the elevation of
downstream slope change, has been varied between a,=0.05 d to 0.20 d, to investigate
its influences on the structural resistance (Fig. 6.7(c)). Resistance of the structure with
a relatively smaller initial imperfection (a;=0.05 d) increases initially, and then drops
suddenly for a short instance. The structural resistance again starts to increase, and

uitimately stabilizes at a level higher than the initial hump in the resistance curve. The
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Figure 6.7 (a) Structural resistance to reservoir overflow, (b) a change in the geometric
configuration, (c) influences of the notch depth, and \1) influences of the mesh
refinement (Mesh 1 and Mesh 2 in Fig. 6.6).

initial peak resistance, which corresponds to the instance of a brief unstable crack
propagation, is dependent on the initial notch depth. However, the ultimate structural
response is not sensitive to the depth of initial imperfection in this particular case. The
sensitivity of predicted response to the finite element mesh refinement is shown in Fig.
6.7(d). The initial peak structural resistance, prior to the brief unstable crack growth,
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is slightly reduced due to the mesh refinement. Nevertheless, a mesh independent

ultimate resistance has been predicted for the dam subjected to a reservoir overflow,
6.4.2 Predicted crack profiles and the dissipated fracture energy

The crack profiles obtained in CRCM analyses of the finite element mesh 1 (Fig.
6.6(a)), are identical for different initial notch depths; consequently the profile of only
one case (3;=0.1 d) is shown in Fig. 6.8(a). After a stretch of horizontal propagation,
the crack profile gradually curves downward due to the increasing compressive stresses
on the downstream side. The crack profile predicted in the case of relatively finer mesh
is presented in Fig. 6.8 (b). The predicted crack profiles appear to be independent of
the refinement of finite element models. The dissipated fracture energies in tv.o finite
element models are also approximately similar (Fig. 6.8 (c)). An amplified eformed
configuration of the dam, corresponding to the cracking response in Fig. 6.8(b), and the
discrete crack response reported by Gioia et al. P, are shown in Fig. 6.8(d). The CRCM
appears to provide a crack response very similar to that obtained from the discrete crack
analysis. The external forces due to self-weight and hydrostatic pressure are strong
enough to overcome the spurious influences of mesh lines on the predicted fracture
response of a full scale dam. Curvature of the crack profile, however, depends on the
elevation of initial imperfection, due to the variation of self-weight and hydrostatic
pressure intensities with the height.

6.4.3 Influences of the fracture energy value

The finite element mesh 1 (Fig. 6.6(a)), with an initial notch depth of a,=0.10 d,
has been analysed with two values of G;, 100 and 200 N/m, to study the sensitivity of
the predicted response to this constitutive parameter. Structural resistances obtained with
the CRCM are presented in Fig. 6.9(a). The initial peak resistance corresponding to the
brief unstable growth of the crack has been increased due to an increase in G, value.

The ultimate responses are, however, very similar for two cases. The stabilizing effects
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of self-weight and hydrostatic pressure are so dominant that the fracture energy value,

that determines the evolution of damage at the local finite element level, does not induce
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a significant change in the structural resistance after the initial peak. The crack profile
obtained from the analysis with G,=200 N/m (Fig. 6.9(b)) is very similar to that in Fig.
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6.8(a), which was obtained with G,=100 N/m. The structura! redistribution of internal
resistances to self-weight and hydrostatic pressure loads, thus, appears to have relatively
greater influence on the ultimate resistance than that of the local material resistance to

fracture propagation (the value of Gp).
6.4.4 Responses predicted by the FCM-VSRF

The finite element mesh 1 (Fig. 6.6(a)), with an initial notch depth of 2,=0.10 d,
has been analysed with the FCM-VSRF, assuming G,=100 N/m. The structural
resistance predicted from an indirect displacement control analysis is compared with the
corresponding result obtained with the CRCM, in Fig. 6.9(c). The FCM-VSRF analysis
predicts a relatively higher ultimate resistance of the structure. The crack profile
obtained in the FCM-VSRF analysis (Fig. 6.9(d)) is not significantly different from that
obtained in the CRCM analysis (Fig. 6.8(a)).

6.4.5 Ultimate resistance of the dam

The resistance of a notched dam, observed in the analyses presented in Figs. 6.7 to
6.9, generaily increases with increasing reservoir overflow. A nonlinear analysis can,
therefore, be performed by applying the equivalent hydrostatic pressure loading in
discrete steps without any indirect displacement control. Moreover, the incremental load
analysis is more efficient to determine the ultimate resistance, since the indirect
displacement control parameter (horizontal displacement at top of the dam) increases at
a fast rate as the structure approaches towards the ultimate resistance. Figure 6.10(a)
compares the response predicted by the incremental load analysis with that obtained
earlier using the indirect displacement control technique. Responses predicted by the two
analysis techniques are almost identical, except during the instance of a brief unstable
crack growth, when the displacement in the load control analysis increases suddenly
from 22.7 mm to 29.7 mm. However, the crack propagation is stabilized thereafter, and
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the structural resistance increases gradually; a behaviour also observed during the
indirect displacement control analyses of the system,
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Figure 6.10 Incremental load analysis of the dam: (a) the ultimate resistance, und (b)
the crack profile at the instance of horizontal displacement at the top = 94.5 mm.

The incremental load control analysis has indicated an approximately 5% force
unbalance (Eqn. 4.13) after 100 iterations, at the load level equivalent to a reservoir
overflow of 11.2 m, and the horizontal displacement at the top of the dam has increased
to 94.5 mm ( Fig. 6.10(a)). Figure 6.10(b) shows the crack profile at that instance of
analysis. Apparently, the finite e]ément model has been unable to contain the profile
within a narrow band at the ultimate state. Nevertheless, failure of the structure appears
to be caused by a secondary crack band, emanating from the primary crack profile. The
maximum compressive stress near the neck region of the dam has reached only about
10 MPa, which is not high enough to cause the crushing failure of concrete.
Continuation of the analysis a few steps beyond the first unconverged solution state
(overflow=11.2 m) has predicted a rapid increase of the displacement ( more than 300

mm) at the top of the dam, which probably indicates the overturning instability of the
top part. '
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6.5 COMPARATIVE EVALUATION OF THE CRCM AND THE
FCM-VSRF

Analyses of the shear beam and the model dam reveal that the peak structural
resistance can be reasonably predicted using the CRCM. The FCM-VSRF provides a
stiffer response in general, due to the significant stress locking in finite element models.
In the shear beam problem, spurious mechanisms, arising due to the inaccurate
prediction of crack profiles, result in considerable post-peak structural resistances for
both smeared crack models. The CRCM prediction of a crack trajectory in the model
dam appears to be influenced by the finite element mesh lines. In the FCM-VSRF
analysis of the model dam, an increasing stress locking mechanism develops with the
advancement of a fracture band, which together with the restraining effects of self-
weight and applied forces propels a curvilinear crack band extension. The stress locking
of fixed crack analysis models is a mesh dependent phenomenon (Droz **). The
refinement of finite element mesh, however, has not been observed to influence the
crack profiles predicted by the CRCM.

The discrete crack propagation analysis of the model dam, performed by Carpinteri
et al, ¥, provides a rather interesting observation regarding the performance of the
incremental crack length control analysis, that was applied with the Hillerborg’s
fictitious crack model. In the cohesive discrete crack model, orientation of the
incremental crack profile segment is fixed instantly upon reaching the tensile strength
limit in a tip element. Any subsequent rotation of the crack segment is expected to
involve a stiff scenario with elastic deformations of the material on two sides of the
fictitious crack. In a heterogeneous material like concrete, with aggregates of different
sizes embedded in the cement paste, the strain softening degradation of material
properties occurs over a finite band area (BaZant and Oh '¥), The final crack trajectory
is expected to emerge during the progress and reorientation of softening in that band.
This behaviour of concrete in the FPZ can be effectively simulated in the context of a

continuum mechanics formulation.
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Cracking response of the full scale concrete gravity dam, subjected to a reservoir
overflow, appears to be significantly different from that of the model dam, which has
been investigated without any self-weight simulation. After a brief unstable penetration
of the crack, the full scale dam shows a remarkable redistribution of the internal
resistance, that stabilizes the crack propagation, and thereby increases the load resistance
capacity of the structure. The ultimate resistance of the structure considerably exceeds
the initial peak load corresponding to a brief unstable crack penetration. Finite element
analysis parameters, such as the mesh refinement and the fracture energy value, and the
depth of initial imperfections in the structure, do not induce significant changes in the
ultimate structural resistance. The localized deformations due to tensile cracking of the
dam, as predicted by the smeared crack analysis models, are similar to those observed
in the discrete crack analysis by Gioia et al. ™. Two smeared crack analysis models, the
CRCM and the FCM-VSREF, have predicted similar curvilinear crack trajectories in the
dam. Spurious influences of the finite element mesh lines seem to be relatively
insignificant in the analysis of massive concrete structures, where the redistribution of

internal resistances exerts the most dominant influence on the ultimate structural

response.

6.6 CONCLUSIONS

In the shear beam analysis, the FCM-VSRF appears to provide a substantially higher
post-peak resistance. A similar trend is observed in the model dam analysis as well. In
light of those observations, the FCM-VSRF appears to be less reliable than the CRCM
in predicting the post-peak structural resistance. Although the discrepancy between two
models is not substantial in the Koyna dam analysis, the FCM-VSRF may not yield an
acceptable post-peak structural response under different loading conditions and failure
scenarios. The CRCM has performed consistently better than the FCM-VSRF in all
three cases investigated here. Effectiveness of the CRCM, in alleviating the stress

locking disturbances of smeared crack analyses, also needs to be verified for many other
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failure scenarios expected for concrete dams. Behaviour of this model in predicting the
scismic fracture response of concrete gravity dams, one of the most hazardous scenario

of dam safety investigation, will be examined in the following chapters.

The indirect displacement control analysis technique, developed in section 4.3, has
provided favourable post failure responses of the shear beam and the model dam.
However, application of the standard incremental load control analysis technique may
be more efficient to predict the ultimate resistance of a full scale dam. The considerable
redistribution of internal resistances in the full scale Aam results in a stable crack growth
with an increasi.g structural resistance against the reservoir overflow. The gradually
dipping crack profile, from the upstream face towards the downstream face, may result
in a sliding or overturning instability of the top part. However, more rigorous analyses
should be performed considering the water penetration and uplift pressure inside cracks,
to obtain quantitative information about the ultimate structural resistance of concrete

gravity dams.
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CHAPTER 7

SEISMIC FRACTURE AND ENERGY RESPONSE OF
KOYNA DAM

7.1 INTRODUCTION

Cracking of concrete is an important factor to consider in the seismic safety
evaluation of gravity dams. Severe cracking during the maximum credible carthquake
(MCE) may adversely affect the safety of dams. Review of the most recent numerical
investigations, presented in Chapter 2, reveals a trend of developing computationaily
expensive discrete crack analysis models to predict the seismic cracking behaviour of
concrete gravity dams. The smeared crack analysis technique is generally criticised for
predicting diffused crack patterns. The diffusion of micro-cracking due to a stress wave
propagation is not unrealistic (Freund ). However, an evident localization of the
damage zone with the progression of analysis was lacking in the early investigations.
The relatively localized smeared crack profile predicted by El-Aidi and Hali*, was
largely dictated by the analyst’s choice. Improved performances of the continuum
mechanics models, and particularly of the CRCM, have been demonstrated in Chapter
6, for monotonic static load cases.

The practical experience about structural resistance of concrete gravity dams,
subjected to severe ground excitations, is very limited. A ’classic’ example on seismic
cracking of concrete gravity dams is related to Koyna Dam in India, The dam was
designed 17 satisfy the traditional *no-tension’ criterion with a seismic load coefficient
of 0.05, applied uniformly over the height. The 1967 Koyna earthquake, Richter scale
magnitude 6.5, induced significant cracking damages on either the upstream or the
downstream face, or on both faces of the taller non-overfiow monoliths of the dam
(Chopra and Chakrabarti “®). Apparently, the cracks penetrated all the way from the
downstream face to the upstream face at the elevation where slope of the downstream
face changes abruptly (Fig. 7.1(a)) (Hall ™, Saini and Krishna '*°). Shaking table tests
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Figure 7.1 (a) The tallest non-overflow monolith of Kovna Dam, (b} the experimentally
observed fracture response of a 1:150 scaled model (adopted from Hall™).

on Koyna Dam models, performed at the University California, Berkeley and by the US
Army Corps of Engineers (Hall ™), evidenced an all through cracking at the elevation
of downstream slope change (Fig. 7.1(b)). Numerical investigations on the seismic
response ¢f Koyna Dam, performed by Ayari and Saouma®, Chopra and Chakrabarti °,
Pal '3, and Skrikerud and Bachmann ', have been reviewed in Chapter 2, Apparently,
no past numerical investigation has satisfactorily explained the mechanism of developing
an all through crack profile in the dam.

The objective of this chapter is to investigate the seismic fracture response of Koyna
Dam by using the CRCM presented in Chapter 3. The nonlinear time domain solution
alporithm, detailed in Fig. 4.9, is applied wi the SMS formulation (section 3.5.3) to
simulate the strain softening behaviour of finite eiements, Seismic fracture and energy
responses of the tallest non-overflow monolith of Koyna Dam are discussed. Influences
of different modelling assumptions and material parameters, on seismic cracking
response of the concrete dam are also investigated,
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. 7.2 SYSTEM ANALYSED

A finite element modeli of the tallest non-overflow monolith of Koyna Dam is shown

in Fig. 7.2(a). The upstream face of the dam has been assumed straight vertical, which
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Figure 7.2 (a) A finite element model of Koyna Dam (dimensions in m), and
(b) the Koyna accelerograms.

is a slight deviation from the actual configuration (Chopra and Chakiabarti*’). A plane
stress finite element idealization has been adopted since the dam monoliths were not
grouted, and possibly vibrated independently during the ground excitation (Chopra and
Chakrabarti *°, Hall ). The dam has been subjected to self-weight and hydrostatic
pressure loads to determine the pre-seismic state. No cracking has been predicted at that
state in the analyses presented here. Seismic analyses have been performed with
transverse and vertical components of the Koyna accelerogram (Fig. 7.2(b)), that was
recorded during the seismic event by a strong motion accelerograph located in a rigid
gallery (Chopra and Chakrabarti **), Numerical integrations have been performed with

a small time step of 0.002 sec, to have very few new elements initiate softening in a
. time step.
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The elastic material properties, E=31027 MPa, »=0.20, and mass density =2643
kg/m?®, and the first four fundamental periods of the finite element model, T,=0.330
sec, T,=0.125 sec, T,=0.092 sec, and T,=0.063 sec are consistent with those reported
in the literature (Ayari and Saouma®, Chopra and Chakrabarti ). The constitutive
parameter, ¢;, has been assumed 1.5 MPa, which is consistent with the static fracture
toughness value, K,.=1.5 MPa/m, assumed by Ayari and Saouma® The fracture
energy, G,, has been assumed 150 N/m, that is typical for concrete normally used in
dams (Briihwiler and Wittmann ¥), The dynamic magnification parameters have been
assumed as DMF,= DMF,;=1.20 in all analyses.

Time domain solutions with different values of the algorithmic damping parameter,
o, varying between -0.20 to -0.05, generally predicted identical responses of the
structure. Seismic fracture and energy responses of the dam, predicted by the QDM
(quasi-linear damping model) (section 4.4.1), and assuming a=-0.1, are presented in
sections 7.3 and 7.4. The amount of damping in the initial fundamental mode response .
of the dam has been assumed 5% in all analyses except a case with 3% damping, briefly
mentioned in section 7.5.2. Influences of different viscous damping models and mesh
refinement on seismic fracture response of the dam are discussed in section 7.5.
Considering the principal objective to investigate the performance of the proposed
fracture analysis model, dynamic interactions in the dam-foundation-reservoir system
have not been modelled rigorously in this chapter. The foundation condition has been
assumed rigid in all analyses. Dynamic interactions with the reservoir, modelled in the
simplest form using the Westergaard '* added mass technique, have been considered in

the final analysis presented in section 7.6.

Cracking in zones A and B (Fig. 7.2(a)) are mainly discussed, since that region of
the dam reportedly experienced significant damage due to the earthquake. Finite
elements at the completely cracked and open condition are indicated by shading the
respective areas on the finite element mesh. Closed and incomplete fracture conditions
are represented by dots in the element centres. Elements that never softened are
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unmarked in the presentations. Amplified deformed configurations of the structure are

also presented in the illustrations.

+.3 SEISMIC FRACTURE RESPONSE OF THE DAM

The time history of horizontal displacement at the top of the dam, shown in Fig.
7.3(a) (=-0.10), is used here as a reference to describe the evolution of cracking in
zones A and B of the dam. During the upstream movement of dam (3.946 scc, Fig.
7.3(a)), the elements in zone A soften, and finally a localized band of cracked clements
emerges in that zone (Fig. 7.3(b)). The average crack propagation velocity of the first
horizontal stretch has been computed to be about 200 m/s, which is a typical value for
crack propagation in concrete (Reinhardt and Weerheijm ™). The finite element fracture
analysis model, applied with the QDM, appears to provide a reasonable estimate of the
crack propagation velocity in concrete dams, The crack on downstream side closes when
the top of the dam swings towards the downstream direction (4.144 sec, Fig. 7.3(a)).
The elements in zone B begin softening at that instance; however, no localization takes
place on the upstream side. When the top swings towards the upstream direction again
(4.338 sec, Fig. 7.3(a)), the downstream crack re-opens and propagates deep inside the
dam (Fig. 7.3(c)). During the next reversal of dam’s movement (4.542 sec, Fig. 7.3(a)),
the elements in zone B soften further with the eventual localization of a crack band, that
meets the downstream crack profile in the dam interior (Fig. 7.3(d)). The upstrcam
crack profile, approximately 4.67 m in length, has evolved within a single time step
between 4.490 sec and 4.492 sec. The evolution of an ali through crack profile,
predicted with the smeared crack model, is consistent with the response observed in the
shaking table tests (Fig. 7.1(b}).

Time histories of the major principal stress in elements i, and i,, as identified in Fig,
7.3(d), are shown in Fig. 7.4(a). Evidently, the rotating constitutive formulation has

been very effective to eliminate an artificial tensile stress build up in the fully cracked
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Figure 7.3 (a) Time histories of horizontal displacement at the top of the dam, and
(b,c,d) seismic fracture response of the structure.

element i,. The gradual degradation of viscous damping resistance in the cracked

element also effectively eliminates the tensile stresses in the adjacent element i). The

maximum compressive stress in the vicinity of the closed crack mouth remuins low (8
MP3). A similar behaviour has also been observed for the cracking in zone A. The time
histories of crack-mouth-opening-displacement (CMOD), computed as the relative
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Figure 7.4 Time histories of (a) the major principal stress, a,, and (b) the crack-mouth-
opening displacement (CMOD).

vertical opening between two surface nodes at the crack mouths, are shown in Fig,
7.4(b). The alternate opening and closing of two crack mouths on two faces of the dam
indicates a stable response of the separated top part. The peak CMOD on the upstream
face is about 6.4 mm, and remains «.pen for a considerable amount of time, that may
permit water penetration in the crack during the seismic event. Deformed shapes of the
dam at three instances of significent openings of the twe ~rack mouths, as shown in Fig.
7.4(b), are represented in Fig. 7.5. The smeared crack propagation model, together with
the degrading damping model (QDM), appears to reproduce the localized deformations
very well. The finite element analysis performed for 8 sec duration of the scismic
excitations has not predicted any dynamic instability of the separated top part of the
dam. This behaviour is consistent with that experienced in the actual structure as well
as in the subsequent model tests. Nevertheless, the present analysis is not claimed to
have corroborated the observed behaviour perfectly, since reservoir and foundation
interaction effects, generally considered important to determine the dynamic response
of concrete gravity dams, have nct been considered in the present analysis. The material
parameters have also been defined approximately in the analysis. Sensitivity of the
predicted response to modelling parameters and assumptions is discussed in section 7.5
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Figure 7.5 Deformed contigurations of the dam.

7.4 SEISMIC ENERGY RESPONSE AND CHANGES IN FUNDAMENTAL
PERIOD OF THE DAM

The seismic input energy, E?, the kinetic energy, EX, and the dissipated damping
energy, E°, obtained from the analysis discussed in section 7.3, are presented in Fig.
7.6(a). The viscous damping mechanism dissipates most of the seismic energy imparted
to the dam. The internal strain energy, EV, and the dissipated fracture energy, E* (Eqn.
4.31), obtained from the same analysis are presented in Figs. 7.6(b) and 7.6(c)
respectively. The non-zero value of E" (84 kN-m) at the beginning of time history (Fig.
7.6(b)) corresponds to the pre-seismic internal strain energy due to self-weight and
hydrostatic pressure loads. The dissipated fracture energy, EF, does not appear to have
a significant influence on the total strain energy in the structure. Evidently, the total
energy dissipation due to tensile fracture is insignificant compared to the magnitude of
other c¢nergy components. This observation, however, does not undermine the
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Figure 7.6 (a,b,c) Energy response of the dam, and (d) changes in the fundamental

period of dam.

importance of the fracture energy parameter, Gg, that determines the evolution of micro-

crack damage in finite elements

Recalling that the fracture energy dissipation due to a unit crack length extension has
been assumed to be 180 N/m in the seismic analysis, the total dissipated fracture energy,
19.2 kN-m in Fig. 7.6(c), should correspond to an approximate crack length of 106 m.
The crack length at (ae heel of the dam is about 28 m, and this leaves a length of the

top crack about 78 m, which is more than twice the actual length traversed by the crack
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band. The slanted finite element mesh has caused the crack band to diffuse over more
than one element, particularly during severe deformations of the cracked elements, when
the dam swings towards the upstream direction at 4,336 sec (Figs. 7.3(c) and 7.5). The
diffusion of micro-cracking, caused bty the viscous damping model, has also contributed
to the excessive fracture energy dissipation in the finite element analysis. Influences of
different viscous damping models on seismic fracture response of the dam are discussed

in section 7.5.

The time history evolution of the fundamental period of the dam is shown in Fig.
7.6(d). The maximum amplification of fundamental period occurs at 4.404 sec,
following the event of a peak CMOD response of the downstream crack (4.336 sec, Fig.
7.4(b)). The second highest amplification occurs at 4.528 sec, immediately preceding
the peak CMOD response of the upstream crack (4.534 sec, Fig. 7.4(b)). For the crack
profile sloping upward from the upstream face, the downstream crack opening appears
to be more damaging to the structural integrity. A positive value of the fundamental
period has been obtained at the end of each time step using the subspace iteration
technique (Oughourlian and Powell '), This observation indicates the stability of the
finite element analysis, and possibly of the structure as well. The energy balance error,
that is presented in Fig. 7.7(a) with other parametric results, has remained much below
1% at the end of the analysis.

7.5 SENSITIVITY OF THE PREDICTED RESPONSE TO MODELLING
PARAMETERS AND ASSUMPTIONS

The numerical integration parameter, o, has been introduced in Eqn. (4.18) to
suppress the spurious high frequency deformation modes that may arise in a smeared
fracture analysis under seismic loadings. The local instability caused by a zero value of
« in a subsequent seismic fracture analysis is discussed in section 7.5.1. Artificial

restraints on the cracking of finite elements, that may be caused by a linear viscous
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damping model (section 4.4.1), are investigated in section 7.5.2. Influences of the
elasto-brittle damping model (section 4.4.1) on seismic fracture response of the dam are
studied in section 7.5.3. Sensitivily of the seismic fracture response of dam to material

parameters and mesh refinement, is also discussed in that section.

7.5.1 Local instability in finite element fracture analysis

An analysis has been performed assuming the numerical integration parameter ao=0
(Eqn. 4.18), to determine the influences of high frequency modes that may causc a local
instability in the finite element fracture analysis of concrete structures. The cracking
response of dam in this analysis has followed the same sequence, as described for the
analysis with a non-zero o parameter (Fig. 7.3). The CMOD responses on the upstream
and the downstream sides, and the deformed configurations at the instances of significant
crack opening are identical to those in Figs. 7.4 and 7.5, until the solution with a=0
collapses with a high energy balance error (about 12%) at 4.652 sec (Fig. 7.7(a)). No

apparent discrepancies are obvious in the time-history of horizontal displacement at the
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Figure 7.7 Effects of assuming a=0: (a) energy balance error, and (b) local instability
in the finite element model.
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top of the dam (Fig. 7.3(a)). The deformed configuration at that instance (4.652 sec)
reveals a local instability in the finite element model (Fig. 7.7(b)). The mode of global
deformation also appears to be of high order. Parametric analyses with the constitutive
model parameter, u., in the range of 0.90-0.9999, have not eliminated the instability in
this particular case. Application of the four point integration rule does not appear to
ensure the local stability in strain softening quadrilateral elements, especially when the
cracks begin to close under cyclic loading conditions. This observation is consistent with
the prediction of de Borst and Rots*®, who anticipated such spurious mechanisms from
the cigen-property analysis of strain softening elements. Suppression of the high
frequency deformation modes by using a non-zero « parameter effectively eliminates the
local instability in strain softening finite elements. Preliminary analyses have shown that
the optimum value of « may be influenced by the value of g, that determines the
closing and reopening of cracks in finite elements (section 3.7). However, the value of
« in the range of -0.20 to -0.05 has been found to be adequate with y, varying between
0.95 to 0.9999. Effects of the spurious local deformation modes may also be eliminated
by considering only the contributions of few dominant modes in a nonlinear time history
analysis (Léger and Dussault'®),

7.5.2 Inftuences of the linear viscous damping model

A seismic fracture analysis of the finite element model in Fig. 7.2(a) has been
performed using the LDM (Eqn. 4.16), where the viscous damping matrix is kept
constant irrespective of the cracking condition in finite elements. This analysis has
predicted a very diffused crack pattern (Fig. 7.8(a)), and no evident localization of the
crack profile is observed in the deformed configuration of the dam (Fig. 7.8(b)). The
solution has remained very stable even with a=0, and the maximum energy balance
error has been less than 0.003 % after 6 seconds of analysis. Time histories of the major
principal stress in elements i, and i, (Fig. 7.8(a)) are shown in Fig. 7.8(c)). Retention
of the linear (constant) damping term in the cracked element, i,, helps to transmit

significant tensile stresses in the adjacent element i,. These tensile stresses are negligible
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Figure 7.8 (a,b,c) Responses obtained with the LDM (5% damping in the fundamental
mode), (d) cracking response obtained for 3% damping.

in Fig. 7.4(a), when the QDM is used. The fictitious tensile stresses sustained by the

constant damping term in cracked elements has resulted in a higher diffizsion and less
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penctration of the crack zone inside the dam. A reanalysis with reduced amount of linear
damping, 3% damping in thc initial fundamental mode, has predicted the coalescence
of cracks in zones A and B (Fig. 7.8(d)). However, the spurious diffusion of micro-
cracking along the height of the dam in zones A and B is still very significant.
Apparently, the viscous damping model is more responsible than the smeared crack

finite element models for predicting diffused crack patterns in the past investigations.

7.5.3 Influences of the elasto-brittle viscous damping model

Figure 7.9 illustrates the seismic fracture response of Koyna Dam, predicted using
the EDM, where the viscous resistance of an element is completely eliminated after the
soflening initiation. The cracking response obtained by using this damping model is
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Figure 7.9 Fracture response predicted using the elasto-brittle damping model.

more severe than that predicted using the QDM (Fig. 7.3). Complete elimination of the
viscous damping tern.s in the EDM analysis has resulted in a relatively deeper

penetratior. of the downstream crack profile at the first instance (3.970 sec). The
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upstream crack profile has also localized earlier (4. 190 sec), and subscquently merged
with the downstream crack profile. The average crack propagation velocitics have been
computed to be 400 m/s and 550 m/s for downstream and upstream crack extensions
respectively. A subsequent EDM analysis with a refined finite element mesh has
predicted the following crack profiles in Fig. 7.10, that are almost identical to those in

Fig. 7.9, The crack propagation velocities during the extensions of downstream and
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Figure 7.10 Influences of mesh refinement on the fracture response predicted using
the elasto-brittle damping model.

upstream cracks in the refined mesh analysis are 320 m/s and 400 m/s respectively,
which are slightly less than those of the coarse mesh analysis. Use of the EDM has
significantly reduced the diffusion of micro-cracking along the height of dam in zones
A and B of both finite element meshes (Figs. 7.9 and 7.10). However, the crack
propagation velocity is relatively higher with this damping model, which is the
consequence of a brittle elimination of the viscous damping resistance in strain softening
elements. The diffusion of crack bands during severe deformations of the cracked

elements is existent in both analyses (time=4.334 sec in Fig 7.9, and 4,340 sec in Fig.
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7.10). The energy dissipations due to viscous damping and tensile fracture, obtained
from the EDM analyses of two meshes, are compared in Fig. 7.11 with the results

oblained from the QDM analysis of the coarse mcsh. The total viscous energy
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Figure 7.11 Influences of the damping model and the mesh refinement on energy
dissipations due to (a) viscous damping and (b) tensile fracture (Eqn. 4.31).

dissip.tion has not been significantly influenced by either the damping model or the
refinement of finite element mesh. The difference in fracture energy dissipation, as
observed in the presentation, is difficult to qualify since the crack bands have been

significantly diffused during severe deformations of the cracked elements.

The early localization as well as the propagation of cracks, observed in EDM
analyses, is also dependent on the constitutive parameters assumed in a seismic fracture
analysis. Figure 7.12 demonstrates the crack propagation sequence, predicted by a QDM
analysis, when the fracture parameters have been reduced by a factor of 1.5 (0;=1.0
MPa, G,=100 N/m) uniformly over the entire structure. The sequence of cracking in
this particular QDM analysis is similar to that of EDM analyses (Figs. 7.9 and 7.10).
Comparison with the previous QDM results (Fig. 7.3) reveals that the relatively milder
degradation of element stiffness and damping terms during the softening phase has
caused a higher diffusion of micro-cracking on both faces of the dam in the present

analysis. However, the final crack trajectory is localized, and extends from one face to
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Figure 7.12 Influences of the reduced material resistance (o,=1.0 MPa, G,=100 N/m)
on the fracture response predicted using the quasi-linear damping model.

the other. A subsequent QDM analysis with an increased pre-softening resistance (o;=2
MPa, G,=200 N/m) (not presented here) has shown a cracking response similar to that
in Fig. 7.3, but with a reduced diffusion of micro-cracking in the vertical direction, The
exact instance of a crack localization on the upstream face is, thus, influenced by the
damping model as well as by the fracture parameters used in an analysis. Mevertheless,
the final crack trajectory in Koyna Dam is not strongly dependent or Zither the viscous

damping model or the fracture parameters when varied within a reasonable range.

7.6 INFLUENCES OF THE WESTERGAARD RESERVOIR
INTERACTION MODEL ON THE FRACTURE RESPONSE

This particular seismic fracture analysis of the finite element model in Fig. 7.2(a)
has been performed using the QDM, to investigate the influences of the reservoir
interaction effects, that are represented by the Westergaard '** added mass technique.

The analysis has been performed with no reduction of the fracture parameters assumed
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in scction 7.2. Cracks in zones A and B have localized exactly at the same elevations
predicted from the analysis without reservoi: added mass (shown in Fig. 7.3). The
evolution of crack profiles and the CMOD responses obtained from this analysis are

shown in Fig. 7.13. Following a significant penetration of the downstream crack (Fig.
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Figure 7.13 Influences of the Westergaard added mass on fracture response of
the dam.
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7.13(a)), the upstream crack propagates deep inside the dam, and merges with the
downstream crack profile (Fig. 7.13(b)). During a subsequent rcopening of the
downstream crack (Fig. 7.13(c)). severe deformation demands on the structure, due to
the added mass effects, cause a significant branching of the crack trajectory. Despite a
relatively higher number of significant openings of the two crack mouths (Fig. 7.13(d)),

the stability of the separated top profile is maintained with the added mass effects.

7.7 CONCLUSIONS

The seismic fracture response of Koyna Dam has been favourably reproduced by
using the nonlinear smeared fracture model. A crack trajectory has been predicted
propagating through the entire thickricss at about the elevation of the downstream slope
change. Nevertheless, the gravitational effect has been adequate to sccure stability of the
top profile of the dam. The predicted cracking response and the stability of the structure
are consistent with those observed in the actual structure as well as in the subsequent
mode] tests. The development of a significant separation at the base of the dam does not
appear to decrease the seismic damage in the top part. The ultimate stability of the
structure against sliding and overturning, however, should be decided from a scparate

analysis which is beyond the scope of continuum mechanics models.

The exact instance of a crack evolution on the upstream side may be dependent on
the damping model and the material parameters applied in an analysis. The lincar
damping mode! provides artificially restraints on the evolution of cracking damage in
finite elements, and therefore, this model is not recommended for seismic fracture
analysis of concrete gravity dams. The final crack trajectories computed with two other
damping models, QDM and EDM, are not significantly different. The refinement of
finite element mesh and the variation of fracture parameters within a reasonable range
have also predicted similar behaviour. The Westergaard added mass model, which is

generally considered conservative, has not caused dynamic instability of the structure.

143



The total fracturc energy dissipation is insignificant compared to the magnitude of
other energy components. However, the fracture energy, G;, is an important constitutive
parameter to determinc the seismic safety of concrete dams. The conservation of fracture
energy and the evolution of cracking damage in finite elements are basically determined
by this paramecter. Nonlinear finite element analysis results should be rigorously
scrutinized to make an effective prediction about the seismic safety of concrete dams.
The convergence index of nonlinear solutions, for example the energy balance error,
may indicate an instability in the computational model, and not necessarily failure of the
actual structure, The dynamic magnification of constitutive parameters should be
sclected on a rational basis, since the viscous damping model significantly modifies the
clement behaviour. Application of a phenomenological mizel for the material damping
cffects is largely dependent on the availability of adequate experimental data, which is

lacking particularly for the mass concrete.

The present study has shown that the continuum mechanics approach can effectively
predict the localized cracking response of concrete gravity dams, provided the
deformation demand on cracked elements is not very severe. Under high intensity
deformations, a smeared crack analysis with quadrilateral elements appears to predict
diffused crack patterns, causing an increased amount of fracture energy dissipation in
the finite element model. Local adjustment of the softening constitutive model, even
with a reduced value of the fracture energy parameter, does not appear to cause a
significant reduction of the total dissipated energy. The averaging process of local
response parameters should be carried over more than one element with a spatial
distribution function to reduce the energy dissipation in individual elements on the crack
band. Higher order finite elements may also be considered to obtain more localized
defortnations caused by the cracking damage. However, the material behaviour in a
completely cracked condition may be better idealized with discrete mechanics models
such as interface joint elements or discontinuous shape functions. The diffusion of
cracked zones may still exist, as was predicted by Feltrin et al. ® using an aggregate

interlock model in the post-softening phase of the discrete crack analysis.
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CHAPTER 8

SEASONAL TEMPERATURE EFFECTS ON SEISMIC
FRACTURE RESPONSE OF CONCRETE GRAVITY DAMS

8.1 INTRODUCTION

The recent earthquake activities in Eastern Canada, particelarly thc 1988 Sagucnay
earthquake (M5.9), have raised considerable concerns regarding the seismic safety of
existing concrete dams in that region. Moreover, the seasonal variation of ambient
temperature has been observed to play a significant role in the degradation of strength
and stiffness properties of the critically ageing dams (Tahmazian et al. !, Veltrop et
al.'), Figure 8.1 indicates the locations of main concrete dams (avove 25m in height)
in the province of Quebec, the yearly normal freezing index in degree days ('C), and
the epicentral location of the 1988 Saguenay earthquake that contained high energy in

the frequency range of concrete gravity dams.

A comprehensive seismic safety evaluation of concrete dams requires the modelling
of ground motions at the site, analytical models to represent the dynamic interactions
in a dam-reservoir-foundation system, and the determination of structural response under
the combined action of self-weight, hydrostatic and hydrodynamic pressures,
temperature changes, and seismic excitations. Long term volumetric deformations caused
by alkali-aggregate reactions, shrinkage, and creep effects may also have significani
effects on the initial conditions at which the earthquake strikes a dam. The progressive
degradation of structural resistance over the service life of a dam requires several
seismic safety evaluations, considering the initial conditions at different critical instances
(NRC ). The definition of a proper load combination for the dam safety evaluation
may make a difference between an adequate safety margin or costly repairs and
structural modifications (Léger et al. '*).
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Figure 8.1 Seismic and thermal exposure of concrete dams in Quebec.
(adopted from Léger et al. ')

The main objective of this chapter is to investigate the influences of severe winter
temperature conditions on the seismic fracture response of concrete gravity dams. The
temperature gradient inside a relatively old concrete dam is predominantly determineu
by the seasonal temperature and climatic variations. A critical internal temperature

distribution, obtained from rigorous heat transfer analyses (Venturelli and Léger'?), is
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applied with self-weight and hydrostatic pressure loads to determine the pre-seismic
stress-strain state inside a 90 m high concrete gravity dam. Seismic fracture response
of the dam is investigated by considering progressive complexity in the analytical models
to represent dynamic interactions in the dam-reservoir-foundation system. The 1988
Saguenay earthquake, modified to represent a possible maximum credible scenario in

Eastern Canada (Léger et al. '%"), is considered in seismic fracture analyses.

8.2 SYSTEM ANALYSED

Two finite element models of a 90 m high concrete gravity dam, that approximately
corresponds to the taller gravity dams in Quebec (Manic-2 91m, Qutarde-3 84m) arc
shown in Fig. 8.2. The relatively coarser finite element mesh has been applied in heal
transfer analyses to determine the critical temperature condition inside the dam. The

temperature data, computed with the coarser mesh (Venturelli and Léger '*%), has been
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interpolated to determine the temperature state in finer mesh, for application in the

subscquent seismic fracture analyses,

The thermal response of individual monoliths, that are generally not keyed and
lightly grouted in most cases, may be influenced by restraint effects in the longitudinal
direction of a dam. However, during severe ground excita.ons, the monoliths are
expected to vibrate independently with the pre-seismic temperature state remaining
unaltered inside the structure. A two-dimensional plane-stress idealization is considered
to compute the stress response of finite element models. The following material
properties are assumed in smeared fracture analyses: E=27960 MPa, »=0.2, mass
density =2400 kg/m®, 0;=2 MPa, G,=200 N/m, DMF,=DMF;=1.2, and the thermal
expansion coefficient A=8.6x10 /°C with a relaxation factor =0.35 (Léger et al. '®),
The first five periods of vibration of the refined finite element model are computed to
be T,=0.206 sec, T,=0.092 sec, T,=0.075 sec, T,=0.054 sec, and T;=0.004 sec. The
stiffness proportional damping coefficient, b, is calibrated to provide 5% critical
damping in the initial fundamental mode of the dam. The dynamic equilibrium
equations are integrated with a time step of 0.0025 sec, and the algorithmic damping
parameter is assumed a=-0.2. Self-weight, hydrostatic pressure, and temperature (if

applicable) loads are considered to determine the pre-seismic stress state inside the dam.

The temperature condition considered in seismic fracture analyses is presented in the
following section. The seismic input motion, that characterizes a maximum credible
scenario consistent with the tectonic characteristics of Eastern Canada, is discussed in
section 8.4. Section 8.5 is devoted to investipste the influences of severe winter
temperature condition on seismic fracture response of the dam, considering the
Wesltergaard '** reservoir interaction model. More rigorous models to represent the
dynamic interactions with the reservoir and the foundation are progressively taken into
consideration in section 8.6. Parametric investigations to determine the severe winter
temperature effects on seismic safety of concrete gravity dams have also been presented
in Bhattacharjee et al. 7 and Léger et al. '®.
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8.3 SEASONAL TEMPERATURE DISTRIBUTIONS INSIDE THE DAM

The early age thermal behaviour of large concrete dams is mainly determined by
internal heat of hydration and mass cooling systems. However, after many years of
service, the heat of hydration is dissipated, and seasonal temperature changes dominate
the dam’s response. The reference temperature state, around which the scasonal
variation of internal temperature oscillates, is often taken approximately equal to the
long term mean air temperature at the site (Baylosis®, Paul and Tarbox ). Temperature
distributions inside a dam can be determined using either a simplified analysis procedure
(Leliavsky ', USBR'*), or conducting a rigorous finite element analysis of the transicnt
heat flow problem , or from in situ measurements. Figure 8.3 shows a finite clement

model and the thermal boundary conditions that can be considercd in a thermal analysis.
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Figure 8.3 A finite element model of thermal analysis.

Venturelli and Léger '’ have performed rigorous transient heat flow analyses of the

model, considering the solar radiation and the air, reservoir, and foundation temperature
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. data that are characteristic of the lower St. Lawrence region in Quebec, Canada, where

several dams are located.

Figure 8.4(a) shows the critical temperature distribution that induces a high stress
gradient in the vicinity of the downstream face at the top region (Léger at al, '®). The

Figure 8.4 (a) Critical winter temperature distribution (°C), and (b) the corresponding
principal tensile stresses including self-weight and hydrostatic pressure effects (MPa).
(Temperature data adopted from Venturelli and Léger'?)

principal tensile stress contours in the dam, assuming a rigid base, and considering the
critical temperature distribution as well as self-weight and hydrostatic pressure loads,
are shown in Fig. 8.4(b). Significant tensile stresses occur on the downstream side near
the neck region, that is vulnerable to seismic cracking. The maximum tensile stress of
1.6 MPa at the toe (Fig. 8.4(b)) mainly results from the constraint effects caused by a
rigid foundation assumption. The stress response remains linear elastic in all regions of
the dam under the combined actions of self-weight, hydrostatic pressure, and severe

temperature condition. However, the computation of stresses directly in the downstream
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surface nodes may show significant tensile stresses (Léger et al. '), that are capable of
inducing surface cracking in the top region.

8.4 INPUT GROUND MOTION

The expected seismic excitation at a site is generally defined in terms of a smooth
design spectra. Ideally, a series of actual earthquake records, scaled to cover the range
of important structural reriods, should be used in seismic safely evaluation of critical
facilities such as dams. However, the worldwide databare: - deficient in large magnitude
near source records with tectonic environments consiste: * with the Eastern Canadian
condition, which is very rich in high frequency motion. Strong motion accelerograms,
corresponding to a maximum credible scenario likely to occur in Eastern Canada, have
been developed by Léger et al. ' using the Atkinson and Boore* attenuation functions
to obtain a peak ground acceleration (PGA) value of 0.49g. The smooth design spectrum
has been defined for an event of moment magnitude M7, with an epicentral distance of
20 km and a focal depth of 15 km. Spectrum-compatible accelerograms have been
generated by modifying the 1988 Saguenay earthquake records (M5.9) that represent the
best available strong moticn accelerograms to characterize the Eastern Canadian seismic
environment (Léger et al. ''). The recorded acceleration time histories are converted lo
the frequency domain to adjust some of the Fourier amplitudes, while preserving the
original phase angles. This procedure is used to correct the observed spectral
deficiencies in matching the smooth spectra in the frequency range of interest. The
inverse Fourier transform is then used to obtain the spectrum-compatible acceleration
time histories. Figure 8.5(a) shows the smooth target spectra with 5% damping, and the
elastic spectra obtained from the modified horizontal and vertical accelerograms. The
time histories of horizontal and vertical components of the spectrum compatible modified
Saguenay earthquake are shown in Figs. 8.5(b) and 8.5(c).
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Figure 8.5 (a) Elastic response spectra of the accelerograms, and (b,c) time histories
of the accelerograms (data adopted from Léger et al. '*).

8.5 SEVERE WINTER TEMPERATURE EFFECTS ON SEISMIC
FRACTURE RESPONSE CF THE DAM

Two analyses have been performed assuming a rigid base condition and considering
the Westergaard reservoir added mass technique to take account of the reservoir
interaction effects. The elasto-brittle damping model (EDM) has been applied in both
analyses to determine the relative significance of considering severe winter temperature

effects in seismic fracture analyses.

152



The first analysis has been performed without considering any temperature effects
in the dam. This analysis predicts softening of few elements on the downstream side in
the top region of the dam (Fig. 8.6(a)). However, no localized crack band appears in
that region of the dam. Despite the occurrence of a long crack profile along the dam-
foundation interface, the selected ground motion does not appear to be critical to the

safety of the structure when no temperature effects are taken into consideration.

(a) (b)

T

1]
i
380a8
Py
]
nfesebrs
LA
éiiifﬂ éd,
’

e

]
[
o
[
(1
[
4
o
LAY
b
AEEERST
P13

-4

"

»

»

1

b1

A

"

L~

|~

¢

1

|~
MBS
[ |2+

-

AN EERRY T L O L LR CE RN N RN NNNEY,
I T T TV P RN R R TSR ENSN T LTI LR RN YN NN N TTNNY
BT R TR AT LTI T L AL T ST R AT AR EARARS RN !ﬁ«:;\
RUSTULLIRALRCVAR
Figure 8.6 Crack profiles in the dam: (a) without temperature effects, and (b) with
temperature loads (t=06.640 sec).

The second analysis, taking account of the severe winter temperature condition, has
predicted severe cracking in the top part of the dam (Fig. 8.6(b)). Although three cracks
have initiated on the downstream side, only the upper crack has propagated ali the way
up to the upstream side. It thus appears that, even if there are many damaged zones
along the downstream face, a single dominant crack profile will emerge separaling the
top profile from the rest of the dam. The time histories of crack openings on the two

faces of the dam show that the top part sustains a large number of significant crack
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. openings after a complete separation of the top profile at 6.64 sec (Fig. 8.7). However,
the self-weight appears (o be adequate to maintain the stability of the upper potion that

25
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Figure 8.7 Crack openings on two faces of the dam.

responds primarily in a rocking mode. The severe winter temperature distribution
appears to cause an early localization of the all through crack trajectory, and therebv
subjects the dam to a long duration of strong motions at the completely fractured state.
Preliminary analyses by progressively increasing the PGA value of a relatively weaker
input ground motion have also indicated that the critical PGA value, required to initiate
and propagate seismic cracks in the dam, is approximately 30% less when temperature
stresses are included in the analysis (Bhattacharjee et al. '), However, with the presence
of initial defects in the dam, the ground acceleration record of Fig. 8.5 induces an all
through crack profile irrespective of the temperature state considered in seismic fracture
analyses (Léger et al. '®), Application of the quasi-linear damping model (QDM) does

not prevent the occurrence of an all through cracking under that condition.

Limitations of the reservoir and the foundation interaction models should be taken
into consideration during the interpretation of above observations. More rigorous models

. to take account of the dynamic interaction effects are considered in the following section,
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8.6 RESERVOIR AND FOUNDATION INTERACTION EFFECTS ON
SEISMIC FRACTURE RESPONSE OF THE DAM

Dynamic interaction effects of the reservoir and the foundation have been rigorously
considered in the past, using frequency-domain analysis procedures (Chopra*') or using
the boundary element method to model the reservoir and the foundation (Feltrin et al.*?,
Humar and Chandrashaker *, Medina et al. '""). Rigorous finite element modelling of
the reservoir interaction effects (El-Aidi and Hall ¥, Fenves and Vargas-Loli *) is
generally expensive to apply in a nonlinear time-domain scismic analysis. Reduced
frequency-independent models to consider energy dissipations in the reservoir and the
foundation have been presented in Léger and Bhattacharjee '™. A time domain model of
energy dissipation in the reservoir has been developed by providing boundary dampers
on the upstream face of the dam, along with the added mass and/ or stiffness matrices.
The foundation interaction effects have been modeiled by added stiffness and damping
coefficients. A general procedure to develop time-domain models, that are consistent
with the frequency-domain models, is outlined in Fig. 8.8. The added property matrices
in time-domain models are iteratively calibrated so that the low level elastic response,
predicted from the time-domain solution, is similar to that obtained by using the

frequency-dependent system properties.

The frequency dependence of foundation spring and dashpot coefficients is generally
weak enough to assume constant values for these parameters (El-Aidi*), The principal
energy dissipation mechanism in a reservoir involves the absorption of hydrodynamic
pressure waves by the reservoir bottom sediments. This absorption effect has been
considered using a wave reflection coefficient, o, (0 <o, <1), in the past frequency
domain analysis models (Fenves and Chopra%). Preliminary frequency domain analyses
using the computer program EAGD-84 (Fenves and Chopra ) have shown a minor
variation of tensile stresses inside the dam-foundation system, when the reservoir bottom
wave reflection coefficient, «,, is varied between 0.5 and 1.0. A short duration of

ground acceleration records, containing significant energy in the typical frequency range
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(Léger and Bhattacharjee '*)

of interest for seismic analysis of dams, can be considered to calibrate the time-domain
properties, representing an average behaviour over the frequency range of interest. An
elaborate description of the calibration methodology, and extensive comparisons between
frequency-domain and time-domain results have been presented in Léger and
Bhattacharjee '®. In the present investigation, the added system properties have been
calibrated using the modified Saguenay accelerograms (Figs. 8.5(b) and (c)), that are
also applied in the following nonlinear time-domain seismic analyses, The reservoir
added damping terms (Fig. 4.8(2)) have been calibrated to approximately represent the
energy dissipation corresponding to a reservoir bottom wave reflection coefficient
a, = 0.7. The foundation added stiffness terms (Wolf'®') have been calibrated, assuming
the elastic modulus of foundation material to be same as that of dam concrete. The
stiffness proportional foundatic . added damping terms have been determined using the
proportionality factor, b, that has been defined to provide 5% damping in the
fundamental mode of the dam alone.
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The dynamic interaction effects are progressively taken into consideration in seismic
fracture investigations of the dam shown in Fig. 8.2(a), using the input accclerograms
discussed in section 8.4. The first analysis is performed considering the reservoir added
damping and the Westergaard'”® added mass effects, but assuming a rigid foundation
condition. The time-domain seismic analysis is preceded by a static analysis considering
self-weight, hydrostatic pressure, and severe winter temperature loads. The seismic
fracture analysis has predicted an all through crack profile in the top region of the dam

(Fig. 8.9(a)). However, the severity of crack opening is significantly less than that
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Figure 8.9 Fracture responsc of the dam considering (a) reservoir interaction effects
only, and (b) both reservoir and foundation interaction effects.

observed in the previous analysis, where only reservoir added mass, with no added
damping terms, has been considered (Fig. 8.7). Incorporation of the foundation added
flexibility and damping in the second analysis has predicted significantly less scvere
crack profiles (Fig. 8.9(b)). The foundation flexibility and added damping appear to
relieve the upstream face of high tensile stresses that can initiate cracking in top part of
the dam.
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8.7 CONCLUSIONS

When only the reservoir added mass is taken into consideration in seismic fracture
analyses, and not the added damping and foundation flexibility effects, the seismic
induced damage is increased significantly due to the severe winter temperature effects,
Although many cracks can be initiated on the downstream side, a single crack in the
upper part will emerge as the dominant failure machanism. For the selected maximum
credible earthquake (MCE), the severe winter temperature has resulted in early evolution
of the all through crack profile, and thereby subjecled the fractured dam to strong
ground shaking for a considerable period of time. The simultaneous occurrence of MCE
and winter temperature loading is the most severe loading combination applied to the
dam. In a more rigorous safety evaluation procedure, several analyses should be

performed considering the MCE to occur at different instances of a year.

The cracking hazard predicted with the most severe load combination is significantly
reduced when dynamic interaction effects of the reservoir and the foundation are
rigorously taken into consideration. However, extensive parametric investigations with
different dam heights should be performed to conclusively decide on the seismic safety
of concrete gravity dams built in Eastern Canada. Smaller dams possessing relatively
heavier crest mass, and possibly with sharper changes in the downstream slope, may be
prone to severe cracking under the circumstances considered in the present investigation.
Pre-existing damage zones, caused by seasonal temperature changes and other
environmental factors, may expedite significant cracking of concrete dams during

seismic excilations.
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CHAPTER 9
CONCLUSIONS

9.1 SUMMARY OF THE THESIS

Constitutive model of concrete cracking is the key issue in a numerical simulation
of the nonlinear behaviour of mass concrete structures. Concrete fracture theories and
the relevant computational models have been primarily developed in the literature to
predict the fracture response of elementary structural components subjected to monotonic
static loads. The behaviour of dam concrete is considerably different from structural
concrete behaviour. Fracture analysis models deve! =i on the basis of structural
concrete behaviour require adequate validation prior to the application in full scale dam
fracture analyses. The standard LEFM fracture analysis, that results in a pair of traction
free surfaces instantly upon fulfilling the propagation criterion, appears to have limited
resemblance with the fracture process behaviour of concrete. The considerably large
material characteristic length of dam concrete may not be negligible in comparison to
the dimension of concrete gravity dams, especially around the neck region which is the
most vulnerable location for seismic cracking. Moreover, in the range from short term
static loading to seismic induced strain rates, nonlinear fracture mechanics models,
considering the strain softening of concrete in the fraclure process zone (FPZ), appear

to be more appropriate.

The discrete crack propapation mode! is expensive to apply in seismic analyses of
mass concrete dams. Smeared crack models are very efficient to represent the tensile
crack propagation in complex structural analyses, when crack profiles are not known ¢
priori. Fixed smeared crack models generaily cause a significant stress locking due to
the zigzag propagation of crack bands in a finite element model. Shear softening

formulations can be applied to reduce the stress locking in smeared crack analyses.
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Concrete gravity dam monoliths, that are generally not keyed and often lightly
grouted, are expected to vibrate ind- endently during strong ground excitations. A
similar behaviour was observed during the incidence at Koyna Dam. Numerical
simulations of the seismic fracture behaviour of concrete gravity dams can be performed
with plane stress finite element models. Review of the past investigations revealed that,
during severe ground excitations, tall gravity dam monoliths would experience cracking
in the heel, and in the top region at about the elevation of change in the downstream
slope. However, considerable doubts exist about the reliability of computational models
applied in previous investigations, due to the absence of an adequate validation scheme

presented in the literature.

A general constitutive model, applicable to both static and seismic fracture analyses
of plain concrete structures, has been developed. An energy based softening initiation
criterion, the fracture energy conservation during the strain softening response of
concrele, the dynamic magnification of concrete fracture parameters, the closing and
reopening of cracks during seismic excitations, shear deformations in the FPZ and the
subsequent rotation of crack planes, and the pre-seismic gravity and temperature load
effects have been considered in the development of constitutive models. Local strain
responses at Gauss integration points have been averaged over each element to determine
the state of strain softening, and establish the average stress resistance in a finite
element. Smearing of the cracking damage and the consequent energy dissipation over
the entire element area, and the determination of constitutive parameters based on the
average element response ensure the correct energy dissipation and an improved element

behaviour during the curvilinear crack propagation in finite element models.

The strain softening of concrzte has been simulated using two numerical techniques:
(1) the secant stifiness model based on a total stress-strain relationship (SMS model), and
(ii) the tangent softening model using an incremental stress-strain relationship (TMS
model). Two options have been considered with respect to the orientation of crack bands
in the strain softening elements: (i) the coaxial rotating crack model (CRCM) that uses
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an implicit definition of the shecar resistance for fractured clements, and (ii) the fixed
crack model with a variable shear resistance factor (FCM-VSRF). A novel criterion has
been considered to determine the closing and reopening of cracks in scismic {raclure
analyses. The proposed one-parameter criterion is consistent with the continuum
mechanics implementation of constitutive models, and is very efficient in two-

dimensional seismic fracture analyses of concrete dams.

The proposed constitutive models have been implemented in a new compuler
program to predict the FRACture and DAMage (FRAC_DAM) response of plain
concrete structures subjected to static and seismic loads. An indirect displacement
cuntrol analysis procedure has been developed to predict the post-failure behaviour of
concrete siructures subjected to general static loads. Three viscous damping models have
been considered to investigate their influences on seismic fracture response of concrete
gravity dams. The dynamic interactions in a dam-reservoir-foundation sysiem are
considered by adding stiffness, mass, and damping terms to the system property
matrices. A numer cal dissipation parameter, «, has been introducad in the dynamic
equilibrium equations to suppress localized spurious deformation modes, that may arise
in a smeared fracture analysis of concrete dams. A seismic energy balance computation,
and an eigenvalue analysis to determine the fundamental period of the structure, arc
performed at rach time step to monitor the numerical stability of nonlinear finite clement
analyses, and assess the relative significance of seismic input, kinetic, damping,
fracture, and elastic energy components in the system. An approximate finite element
analysis procedure has been developed to take account of the long term relaxation of

temperature induced stresses in the energy based constitutive modelling procedure.

Investigations of ctural behaviour:

A wide variety of structures, experimentally or numerically investigated in the past,

has been considered for validation of the computational models as well as for the
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behavioural investigation of plain concrete structures. Numerical models have been
subjected to progressively complex applied loads and structural systems during the
course of analyses. A simple tension specimen and a notched beam under three-point
loading have been analysed using the displacement control analysis technique. Relative
advantages and inconveniences of using the SMS and the TMS models, to simulate the
strain softening behaviour of finite elements, have been investigated. Rnergy response

and damage in the structure have also been studied.

The indirect displacement control analysis technique has been applied next to predict
the failure behaviour of concrete structures subjected to relatively complex loading
configurations. The snap-back response of a notched shear beam, that was investigated
extensively in the literature, has been studied to validate the analysis procedure. The
method has been subsequently applied to predict the fracture behaviour of a model
concrete dam and a full scale gravity dam. The standard incremental load control
analysis of the full scale dam has also been performed to determine the ultimate
structural resistance. A comparative evaluation of the CRCM and the FCM-VSRF has
been presented. Results obtained from smeared crack analyses have been compared with

those reported in the literature from experimental and numerical investigations.

The seismic fracture response of Koyna Dam, a ’classic’ example of earthquake
induced damage in concrete dams, has been investigated to validate the nonlinear
dynamic analysis models. Parametric analyses have been conducted to determine the
sensitivity of numerically predicted responses to different analysis parameters and
assumptions. Particularly, the interaction between viscous damping models and smeared
crack analysis parameters has been examined. Seismic energy response of the dam has
also been studied. Final analyses have been performed to investigate the severe winter
temperature effects on seismic fracture response of a typical concrete gravity dam in
Eastern Canada. The reservoir and foundation interaction effects on seismic fracture
response of the dam have also been investigated using the frequency-independent
dynamic interaction models.
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. 9.2 CONCLUSIONS

The following conclusions can te made vased on the numerical analyses and the

observed structural behaviour presented in previous chapters:

® The degraded secant modulus approach to simulate the strain softening behaviour of
concrete provides stable response predictions even with relatively coarse finite
element meshes. The computational expense of this approach may not be
significantly different from that of the tangent modulus approach, when applied in

practical structural analyses with a shear softening constitutive formulation.

® The degradation of shear resistance with an increasing cracking damage in finite
element: significantly reduces the stress locking of smeared crack analysis models.
The fracture response of elementary structural members is sensitive lo the
constitutive formulations. Application of the smeared crack models has not produced
perfect crack profiles in the shear beam problem. Horizontal mesh lines in the model
dam apparently influence the crack trajectory predicted by the CRCM. The fixed
crack model, applied with a degrading shear resistance formulation, predicts a crack
profile that is in excellent agreement with the experimentally observed response of
the model dam. However, the fixed crack model is less reliable to predict the post-
failure structural resistance. The discrete crack analysis of model dam, as reported

in the literature, does not appear to perform significantly better than the smeared
crack models.

® The spurious influence of finite element meshes on the behaviour of CRCM is
insignificant in the analysis of a full scale dam subjected to reservoir overflow. The
material resistance to fracture propagation does not appear to strongly influence the
ultimate structural resistance. The considerable redistribution of internal resistances
causes a stable crack growth, and a generally increasing structural resistance against

. the reservoir overflow, The ultimate failure of the structure may be of global nature,
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caused by a sliding or overturning instability of the top part. The application of
standard load control analysis may be more efficient to predict the failure behaviour
of full scale dams. However, more rigorous analyses should be performed
considering water penetration and uplift pressure inside cracks. Structural behaviour
should also be investigated with multiple cracks competing to propagate

simultaneously.

The seismic fracture response of Koyna Dam has been favourably reproduced using
the CRCM. A crack propagates through the entire thickness of the dam at the
elevation of change in the downstream slope. The severity of cracking in the dam
has been similer in two analyses, using the quasi-linear damping model (QDM) and
the elasto-brittle damping model (EDM). The complete elimination of viscous
damping in the strain softening elements causes a relatively faster crack propagation
velocity in an EDM analysis. However, the response is also dependent on the rate
of degradation of the secant modulus during the softening phase. The linear damping
model (LDM) appears to impose artificial restraints on the evolution of cracks in
finite elements, and therefore, not recommended for application in the seismic

fracture analysis of concrete gravity dams.

The severe winter temperature condition apparently reduces the seismic safety
margin of a homogeneous dam with no pre-existing defects. However, physical
factors suc' as a sharp change in the slope of downstream face or a pre-existing
defective zone in the structure, principally determine the fracture response of
concrete dams. Energy dissipations caused by dynamic interactions with the

reservoir and the foundation appear to reduce the severity of cracking in the dam.
In the presence of several cracks competing to propagate from the downstream face,

only one of them propagates through the entire thickness, and separates the top

profile that responds mainly in a rocking mode during subsequent ground shocks.
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@ The total fracture energy dissipation during seismic responses of concrete gravity
dams is insignificant compared to the magnitudes of other energy components, and
particularly in comparison to the viscous damping energy. The seismic fracture
response of concrete gravity dams appears to be of brittle type. After the
localization, cracks propagate with velocities typical of that observed during
experimental investigations of the dynamic fracture behaviour of concrete. The self-
weight of concrete gravity dams appears to be the only mechanism maintaining the

stability during the rocking response of separated top profiles.

9.3 RECOMMENDATIONS FOR THE INDUSTRIAL APPLICATION OF
NUMERICAL MODELS

Utility companies responsible for the operation and maintenance of existing concrete
dams are actively seeking adequately validated computational models to apply in the
periodic safety assessment of the installations. The following recommendations are

presented for industrial application of the analysis procedures developed in this thesis:

® The elastic modulus and the tensile strength of concrete should be determined from
experimental investigations with recovered dam concrete specimens. Any arbitrary
dynamic magnification of the Young's modulus is unwarranted in a rigorous finite
element analysis, with explicit considerations for the inertia and the viscous
resistance of the material. The apparent tensile strength may be assumed 20-30%
higher than the true static strength. A maximum 20% dynamic magnification of the
apparent static strength is recornmended for seismic analyses of concrete dams. The
fracture energy value of concrete can be determined by experimentally measuring
the ultimate resistance of notched concrete beams subjected to three-point loading.
Parametric analyses, similar to those discussed in Chapter 5, can be performed to
calibrate the fracture energy value that closely reproduces the experimentally
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determined uitimate load resistance of the specimens, The dynamic magnification of

fracture cnergy value can be generally assumed equal to that of the tensile strength.

Damping values estimated from the forced vibration test of existing concrete dams
generally include energy dissipations through the reservoir and the foundation. Field
tests with different reservoir levels in different seasons may be conducted for
qualitative determination of the reservoir interaction effects. The interference of
several mode shapes during the forced vibration tests may also lead to a high
damping value, The conservative assumption of elasto-brittle damping model (EDM)

should be applied in the absence of a reasonable material damping value.

Finite element mesh in a zone of homogeneous material should be made uniform to
the maximum possible extent. In the absence of a fairly uniform finite element
discretization, the material parameters must be adjusted to approximately represent
the uniform material softening behaviour over a homogeneous zone, In seismic
fracture analyses of dams, the SMS constitutive model with a linear strain softening
assumption may not be used with an extremely fine mesh, such as element sizes less

than three or four times the maximum aggregate dimension.

Physical defects in a structure, such as a sharp change in the downstream slope and
weak joints or isolated material zones damaged by severe environmental distress,
predominate the seismic fracture behaviour of concrete dams. Such factors must be
explicitly considered in a seismic safety analysis. Severe winter temperature effects

may also expedite cracking in a dam during strong ground motions.

The Westergaard added mass technique, which is generally considered conservative,
can be considered first to investigate the seismic fracture response of concrete
gravitv doms. Rigorous models to represent energy dissipations in the reservoir and
the foundation can be considered only if the dam experiences severe cracking in the

first analysis.
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. @ Nonlinear finite element analysis results should be rigorously scrutinized to make
effective predictions about the seismic safety of concrete dams. The convergence
index of nonlinear solutions, for example the energy balance error, may indicate

instability in the computation, and not necessarily failure of the actual structure.

® The coaxial rotating crack model, that predicted realistic crack profiles of full scale
concrete dams, is recommended for general applications. A fixed crack analysis may
be performed as a subsequent verification of the predicted response. Application of
numerical dissipations through a non-zero a value is recommended to suppress
localized spurious deformation modes that may arise in seismic fracture analyses of

concrete dams.

Finally, the material fracture resistance does not appear to strongly dominate the
ultimate resistance of concrete gravity dams subjected to reservoir overflow or scismic
excitations. The structural safety of dams may not be ensured by concrete tensile
strength alone. Possibly, the structural safety of critical dams will be better protected
by structural modifications such as application of prestressing tendons, reduction of the
crest mass, gradual curvature in the slope of downstream face etc. A pre-assigned weak
point near the top region of a dam may relieve the rest of the dam of experiencing
severe cracking. The suitable positioning of weak points may reduce the risk of a

catastrophic reservoir release in the case of an overturning instability of the separated
top profile.

9.4 FUTURE RESEARCH AND DEVELOPMENTS

The following features can be considered in the future research and development of

computational models to predict the fracture behaviour of mass concrete structures:
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® Horizontal construction joints, that are generally weaker than the virgin material, can

be modelled explicitly in finite element analyses.

Phenomenological modelling of the strain rate effects on concrete behaviour can be
considered in the seismic fracture investigation of concrete dams. The present
conslitutive formulations may be extended to compute the stress response by solving
the dynamic equilibrium equations of individual element. Quantitative information
on the part of stresses sustained by viscous and inertia resistances of a finite element
can be obtainud using this technique. Application of an explicit numerical integration
technigue, instead of the implicit technique as used in this research, may be more

cfficient to solve the system equilibrium equations.

Constitutive models can be implemented with higher order 1inite elements or with
modified element formulations to reproduce the localized cracking damage. The use
of quadrilateral elements in the present investigations could not contain the
curvilinear crack profiles in narrow bands, particularly during the severe
deformation of cracked elements. The averaging of local response quantities may be
carried over more than one element to dissipate the correct amount of fracture
energy in a finite element analysis. After complete cracking, finite element stiffness
matrices may be determined using a discrete mechanics approach instead of
maintaining the continuum mechanics formulation throughout the analysis. The use
of triangular elements in the discretization of gravity dams may be considered to
obtain a uniform element size over a particular homogeneous material zone, The
degradation of Young's modulus during the strain softening phase may be defined
with more rigorous analytical expressions to take account of the Poisson’s ratio
effects on the damage evolution. Nonlinear softening relations may also be
considered for parametric investigations. The present constitutive model can be

extended to consider a second orthogonal crack in the finite elements.

les8



Further parametric investigations can be conducted to determine the fracture
behaviour of concrete dams with different heights, geometric configurations, and
inhomogeneous distribution of material properties. Dynamic interactions with the
impounded reservoir and thic foundation can be considered rigorously in future
developments. Water penetration and uplift pressure inside cracks should also be

considered in fracture analyses of concrete dams,

Apparently, the difference between plane stress and plain strain crack propagation

has not been rigorously considered in the fracture mechanics of concrete structures.

The earthquake effects in fracture analyses of concrete dams can be represented as
imposed displacements of the base, instead of the traditional equivalent incrtia force
representation as adopted in the present study. The stability of nonlinear dynamic

analyses may be better ensured in a dynamic displacem:nt control analysis

procedure.

Experimental investigations may be conducted to correlate the strain rate sensitivity
of concrete behaviour and the modal damping response of small scale laboratory
specimens. The proposed new criteria for softening initiation and crack closing/

reopening may also be validated with relevant laboratory experiments.

Rigorous analytical models can be developed to determine the dynamic stability of

concrete dams at the fractured condition.

Different uncertainties relating to applied loading, numerical analyses, and structural

and material information, may be considered in a probabilistic modelling procedure.
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