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ABSTRACT 

Assessing the relative influence of biotic (i.e. species interactions) and abiotic (i.e. the 

environment) processes on the distribution of population abundance is a 

fundamental but controversial issue in ecology. Scale-dependent frameworks predict 

that the influence of biotic processes is confined to local populations, whereas 

abiotic processes control regional patterns of abundance. In this thesis, I show that 

the relative influence of local biotic and regional abiotic processes does not depend 

on their respective spatial scales but rather on the properties of dispersal. 

I develop and validate a theory of marine metacommunities that 

demonstrates that local biotic processes (succession, predation) interact with limited 

dispersal to control the distribution of population abundance in space (1,800 km) 

and time (6 years) of the mussel M. californianus and the barnacle B. glandula along the 

West coast of the United States, despite strong environmental forcing by regional 

abiotic processes. This interaction between local biotic processes and limited 

dispersal leads to patterns of connectivity at spatial scales (~450 km) that are much 

larger than the scale of dispersal (~100 km).  

I then investigate the implications of this theory for the design of marine 

reserve networks. I show that the application of current marine reserve theory, which 

advocates the use of the scale of dispersal as the distance between reserves in order 

to maintain connectivity, leads to a reduction in both mean abundance and 

persistence in these systems because it limits natural patterns of connectivity. 

However, using the scale of connectivity imposed by the interaction between local 
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processes and limited dispersal maximizes mean abundance and persistence inside 

and outside of reserves, thus simultaneously satisfying conservation and fishery goals. 

In more complex spatial food webs, I show that the rate of dispersal controls 

the destabilizing effect of abiotic processes: low rates of dispersal facilitate abiotic 

destabilization, whereas high rates of dispersal limit environmental destabilization. 

Irrespective of dispersal rate, food webs undergo dynamic shifts in the relative 

importance of biotic and abiotic processes. 

RÉSUMÉ 

Le contrôle relatif qu’exercent les facteurs biotiques (interactions entre espèces) et 

abiotiques (l’environnement) sur la distribution des populations est une question 

fondamentale et controversée en écologie. Les théories hiérarchiques postulent que 

l’influence des processus biotiques est limitée aux petites échelles spatiales, tandis que 

les processus abiotiques contrôlent la distribution des populations à l’échelle 

régionale. Dans cette thèse, je montre que l’influence relative des processus 

abiotiques et biotiques dépend non pas de leur échelle spatiale, mais des 

caractéristiques de la dispersion des organismes.  

Je développe et valide une théorie des méta communautés marines qui 

démontre que les processus biotiques locaux (succession, prédation) interagissent 

avec la dispersion locale afin de contrôler la distribution de l’abondance des 

populations de moule (M. californianus) et de balane (B. glandula) à l’échelle 

continentale (1 800 km) sur une période de 6 ans. Les processus biotiques 

maintiennent ce contrôle malgré l’action des processus abiotiques à l’échelle 

régionale. Cette interaction synergétique entre les processus biotiques locaux et la 
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dispersion locale génère des patrons de connectivité à des échelles spatiales (~ 450 

km) qui excédent largement l’échelle de dispersion (~ 100 km).  

Cette interaction a des implications fondamentales pour la conception des 

réserves marines. En effet, la théorie actuelle préconise de séparer les réserves 

marines par l’échelle de dispersion afin de maintenir la connectivité entre les réserves. 

Je montre que cette conception des réserves marines réduit l’abondance moyenne et 

la persistance des populations parce qu’elle limite la formation de patrons de 

connectivité à grande échelle. Lorsque la distance entre les réserves est basée sur 

l’échelle des patrons de connectivité, les réserves marines maximisent l’abondance et 

la persistance des populations qui se trouvent à l’intérieur et à l’extérieur des réserves. 

Ainsi, ce type de réserve marine peut être utilisé pour conserver les espèces et gérer 

la pêche simultanément.  

Je montre que dans des systèmes écologiques plus complexes comme les 

chaînes alimentaires, le taux de dispersion contrôle l’effet déstabilisant des processus 

abiotiques: un faible taux de dispersion facilite la déstabilisation alors qu’un fort taux 

de dispersion limite la déstabilisation. Je montre aussi que peu importe le taux de 

dispersion, l’influence relative des processus biotiques et abiotiques sur les chaines 

alimentaires varie dans le temps. 

TABLE OF CONTENTS 
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Note on the structure of the thesis 

This is a manuscript-based thesis; I have used connecting statements to provide 

logical bridges between each chapter. Since each chapter contains a review of the 

literature, the general introduction that follows presents the overarching theme of 

the thesis and some background material on my main study system, the intertidal 

ecosystem of the West coast of the United States. 

Novelty and impact of thesis research 

In this thesis, I present and validate a novel framework to elucidate the processes 

that govern the spatiotemporal distribution of population abundance in model and 

natural systems. 

In chapter 1, I apply spatial synchrony analysis to simple models and survey 

data to show that local biotic processes affecting population abundance interact with 

limited dispersal to control the distribution of population abundance at the 

continental scale despite regional environmental forcing. To my knowledge, this is 

the first study to show that the properties of spatial synchrony can be used to infer 

both the scale of dispersal and the relative importance of biotic and abiotic factors 

for the distribution of mussel population abundance along the West coast of the 

United States. Using a series of models, I show that these results are general and 

apply to any spatial ecological system undergoing local population fluctuations and 

limited dispersal. These results highlight the importance of including cross-scale 
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interactions between local processes and dispersal to understand the distribution of 

population abundance at the continental scale and predict the effects of global 

climate change. 

In chapter 2, I extend the model and analyses developed in chapter 1 to 

understand the relationship between population abundance, recruitment and the 

environment in intertidal systems along the West coast of the United States. I show 

that limited dispersal generates a persistent match between patterns of recruitment 

and the environment and an intermittent mismatch between patterns of population 

abundance and recruitment. To my knowledge, this is the first study that explains the 

paradoxical mismatch between patterns of population abundance and recruitment 

observed in intertidal systems along the coasts of the Western United States and 

Chile. This work shows that even perfect knowledge about recruitment (or its 

environmental correlates) cannot be used to successfully predict the distribution of 

population abundance when dispersal is limited. Overall, this study emphasizes the 

importance of adopting a balanced approach that integrates processes affecting adult 

abundance and recruitment to better understand intertidal systems. 

In chapter 3, I show that the results of chapters 1-2 have important 

implications for the design of marine reserve networks. I show that by neglecting to 

account for population dynamics, current marine reserve networks can lead to 

reduced mean abundance and persistence in both protected and unprotected areas. 

However, when they account for the consequences of population dynamics, marine 

reserve networks can maximize mean abundance and persistence in both protected 

and unprotected areas, and thus satisfy both fishery and conservation goals. To my 

knowledge, this is the first study that demonstrates the conditions under which the 
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consequences of population dynamics must be considered in order to design 

effective marine reserve networks. 

In chapter 4, I show how local population dynamics, dispersal and regional 

environmental variability interact to control the stability of spatial food webs. To my 

knowledge, this is the first study to demonstrate that dispersal mediates the 

destabilizing effect of regional environmental variability by controlling the dynamics 

of food webs at local and regional scales. This study highlights how two components 

of environmental change (low dispersal due to habitat fragmentation and 

environmental variability) can interact synergistically to reduce food web stability in 

natural systems. 

GENERAL INTRODUCTION 

Determining the relative influence of biotic (i.e. species interactions) and abiotic (i.e. 

the environment) factors on the distribution of population abundance and 

community structure is a fundamental but controversial issue in ecology 

(Andrewartha and Birch 1954, Nicholson 1957, Ricklefs 2008). This controversy has 

been rehashed several times since its inception, and each iteration has introduced 

new terminology to emphasize a different perspective (density-dependent vs. density-

independent: Andrewartha and Birch 1954, Nicholson 1957, intrinsic vs. extrinsic: 

Grenfell et al. 1998, stabilizing vs. equalizing: Chesson 2000, deterministic vs. 

stochastic: Coulson et al. 2004, endogenous vs. exogenous: Melbourne and Hastings 

2009). Overall, proponents of the biotic regulation perspective emphasize negative 

feedbacks that buffer population fluctuations and thus promote persistence, whereas 

proponents of the abiotic limitation perspective contend that negative feedbacks are 
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weak or inexistent and that populations essentially undergo (extremely slow) random 

walks to extinction (Murdoch 1994). Hence, resolving this debate has fundamental 

implications for both our perception and the preservation of natural systems. Indeed, 

if ecological systems are governed mainly by abiotic limitation, they may be 

extremely vulnerable to environmental variability induced by global climate change 

(Walther et al. 2002). 

Current frameworks addressing this debate advocate a scale-dependent or 

hierarchical approach, whereby the effects of biotic processes are circumscribed to 

local spatial scales whereas abiotic processes dominate at regional spatial scales 

(Turner et al. 2001, Willis and Whittaker 2002, Pearson and Dawson 2003). A similar 

scale-dependent approach has been proposed to explain the distribution of 

population abundance and community structure in my main model system, the rocky 

intertidal. 

THE RELATIVE IMPORTANCE OF BIOTIC REGULATION 

AND ABIOTIC LIMITATION IN THE ROCKY INTERTIDAL: 

A SCALE-DEPENDENT APPROACH 

At the local scale 

The rocky intertidal is well represented globally and has been studied extensively in 

Europe (Connell 1961a, b), North America (Paine 1966, 1984), Australia 

(Underwood 2000), Chile (Navarrete et al. 2005, Lagos et al. 2007, Lagos et al. 2008, 

Navarrete et al. 2008) and New Zealand (Menge et al. 2003). Early studies identified 

consistencies in the spatial distribution of population abundance and community 

structure across rocky intertidal zones in the United Kingdom and the West coast of 
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the United States (Connell 1961a, b, Paine 1966, Connell 1970, Dayton 1971, Paine 

1984). These regular and consistent spatial patterns were attributed to the joint 

effects of biotic and abiotic processes: the distribution of species abundance is 

limited by predation (Connell 1961a, Paine 1966) in the lower intertidal and 

desiccation stress in the upper intertidal (Connell 1961b). Within this zone, biotic 

processes in the form of competition (Connell 1961b, a, Dayton 1971, Paine 1984) 

and keystone predation (Paine 1966) largely govern the distribution of population 

abundance and community structure. 

However, other studies found no evidence of these consistent spatial 

patterns within the rocky intertidal (Underwood 1978, Underwood et al. 1983, 

Underwood et al. 2000). Instead, these studies discovered that patterns of population 

abundance, community structure and species interactions were highly variable and 

dependent upon recruitment1 (Underwood 1978, Underwood et al. 1983, 

Underwood et al. 2000). Since many intertidal species possess a sessile adult stage 

and a planktonic larval stage (Grantham et al. 2003), this finding led to a shift in 

focus from local biotic processes affecting adults to regional abiotic processes 

controlling the recruitment of larvae to explain patterns of population abundance 

and community structure (Underwood 1978, Underwood et al. 1983, Underwood et 

al. 2000). 

                                                

1 Recruitment is defined as the arrival of propagules in a location. 
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At the regional scale 

Early work attempting to predict patterns of population abundance and community 

structure at the regional scale assumed that populations were open: large-scale larval 

dispersal2 was assumed to decouple local recruitment from adult dynamics 

(Roughgarden et al. 1985, Iwasa and Roughgarden 1986, Johnson 2005). By 

decoupling recruitment from adult population dynamics, open system theory relies 

entirely on abiotic processes affecting recruitment to explain the regional 

spatiotemporal patterns of variability observed in intertidal systems (Gouhier and 

Guichard 2007). Indeed, in order to accommodate the variable patterns of 

recruitment and adult abundance observed in natural systems, early models were 

modified to allow variable recruitment in time and space in response to abiotic 

processes such as nearshore oceanographic regimes (Lewin 1986, Roughgarden et al. 

1987, Roughgarden et al. 1988, Alexander and Roughgarden 1996). However, these 

models can neither generate nor explain the persistent mismatch between patterns of 

recruitment and patterns of abundance observed in natural systems (Menge et al. 

2009). 

A synthesis integrating the effects of local biotic and regional 

abiotic processes 

Recently, a synthesis integrating local biotic processes and regional abiotic processes 

was proposed in order to address the mismatch between patterns of recruitment and 
                                                

2 Dispersal is defined as the movement of propagules from their birthplace to a 

different location. 
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patterns of abundance. Using the West coast of the United States as a model system, 

Roughgarden et al. (1988) proposed that oceanographic processes controlling 

recruitment determine the relative importance of regional abiotic and local biotic 

processes. Specifically, a strong and persistent latitudinal gradient in oceanographic 

conditions is hypothesized to determine the distribution of population abundance 

and community structure by controlling larval recruitment (Roughgarden et al. 1988, 

Connolly and Roughgarden 1998, 1999, Connolly et al. 2001).  

In California, strong and persistent upwelling currents transport intertidal 

larvae offshore. Only during brief and infrequent relaxation events do offshore 

currents subside and return larvae to the shore where they can settle onto the 

intertidal and metamorphose into adults (Roughgarden et al. 1988, Connolly and 

Roughgarden 1998, 1999, Connolly et al. 2001). Using closed (no dispersal of larvae 

from one population to another) competition and predator-prey models, Connolly 

and Roughgarden (1998, 1999) predicted that by limiting recruitment, oceanographic 

conditions in California lead to low abundance and weak species interactions 

(Roughgarden et al. 1988, Connolly and Roughgarden 1998, 1999, Connolly et al. 

2001). In the Pacific northwest, relaxation events are much more frequent and lead 

to a large supply of recruits. Using the same closed models, Connolly and 

Roughgarden (1998, 1999) predicted that large larval supply leads to higher 

abundance and stronger species interactions (Roughgarden et al. 1988, Connolly and 

Roughgarden 1998, 1999, Connolly et al. 2001).  

Hence, this theory predicts that the importance of local biotic processes 

(species interactions) depends entirely on the effects of regional abiotic processes 

(upwelling currents) on larval supply: when abiotic processes limit larval supply, adult 
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abundance and community structure are more likely to reflect patterns of 

recruitment; when abiotic processes do not limit larval supply, patterns of adult 

abundance and community structure are more likely to reflect the effects of local 

biotic processes (Connolly and Roughgarden 1998, 1999). However, experimental 

tests have failed to find the predicted latitudinal gradient in the strength of biotic 

interactions (Menge et al. 2004). The mismatch between patterns of recruitment and 

adult abundance thus remains unresolved (Lagos et al. 2007, Broitman et al. 2008). 

BUILDING AN ALTERNATIVE FRAMEWORK: COUPLING 

ADULT POPULATIONS AND RECRUITMENT IN SPACE AND 

TIME 

So far, all attempts to predict spatiotemporal variability in population abundance and 

community structure have relied almost entirely on variability in abiotic processes 

affecting recruitment (Roughgarden et al. 1987, Roughgarden et al. 1988, Connolly 

and Roughgarden 1998, 1999, Connolly et al. 2001). Hence, these efforts will always 

predict a match between the regional abiotic processes affecting patterns of 

recruitment and population abundance. We need to integrate another source of 

variability in order to explain the observed mismatch between patterns of 

recruitment and adult abundance in space and time. 

 One source of variability that has not been integrated into these models is 

the potential effect of biotic processes on the dynamics of adult populations at 

regional scales. Indeed, when coupled with limited dispersal, these biotic processes 

(Connell 1961a, b, Paine 1966, Paine and Levin 1981, Paine 1984) have been shown 

to generate complex regional patterns of abundance in space and time (Jansen and de 
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Roos 2000, Guichard et al. 2004, Guichard 2005, Gouhier and Guichard 2007). 

However, this source of variability remains largely untapped because classical models 

assume that populations are either demographically open (no coupling between 

recruitment and adult abundance) or closed (no coupling between populations). 

Hence, local biotic processes cannot generate variability in time and space in these 

systems. Only if we relax the assumption of demographic openness can we turn to 

local biotic processes as an alternative (or supplementary) source of regional 

variability in recruitment and adult abundance. 

So, how valid is the assumption of demographic openness in marine systems? 

A recent meta-analysis of 300 studies has shown that pelagic larval duration, the 

main justification for the assumption of demographic openness, is a poor predictor 

of the scale of dispersal and connectivity3 in marine populations (Weersing and 

Toonen 2009). Hence, long pelagic larval durations do not necessarily lead to 

dispersal and connectivity over large spatial scales, let alone demographic openness. 

Consistent with this finding, tagging experiments (Jones et al. 1999, Jones et al. 2005) 

and genetic analyses (Palumbi 2003, Taylor and Hellberg 2003, Puebla et al. 2009) 

have shown large local retention of larvae and strong spatial genetic structure in coral 

reef fishes despite their long (> 3 week) pelagic larval durations (Cowen et al. 2000). 

Local retention of larvae (Becker et al. 2007) and strong genetic differentiation at 

small scales (25-42 km) (Gilg and Hilbish 2003) have also been documented in 

marine invertebrates despite their long pelagic larval duration. It thus appears that 

                                                

3 Connectivity is defined as the level of demographic coupling between segregated 

populations due to the exchange of propagules via dispersal. 
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effective dispersal distances may well be limited in marine systems despite the 

potential for large-scale dispersal afforded by strong currents and long pelagic larval 

durations. 

Based on this evidence, I relax the assumption of demographic openness and 

build an alternative framework that explores the joint effects of biotic and abiotic 

processes on regional patterns of population abundance, recruitment and community 

structure. Using this framework, I demonstrate that dispersal controls the relative 

importance of local biotic and regional abiotic processes in spatial ecological systems 

(Fig 1).  

DESCRIPTION OF THE SURVEYS OF POPULATION 

ABUNDANCE AND RECRUITMENT USED TO VALIDATE 

MODEL PREDICTIONS  

In order to test and validate the model predictions generated in chapters 1-2, I used 

spatially-explicit survey data on the recruitment and adult abundance (percent cover) 

of mussels (M. californianus) and barnacles (B. glandula) collected by the Partnership 

for Interdisciplinary Studies of Coastal Oceans (PISCO). The adult abundance 

surveys were conducted once a year between 1999-2004 for 48 sites located along a 

1850 km stretch of the West coast of the United States. At each site and for each 

species, the mean annual abundance was determined by averaging the percent cover 

found within thirty 0.25 m2 quadrats placed randomly along three 50 m transects 

located in the mid-intertidal zone (i.e. 10 random quadrats per transect). 

 Annual larval recruitment of barnacles and mussels was measured from 1997 

to 2005 at 30 sites along a 1320 km stretch of the West coast of the United States 
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using standard procedures. Mussel recruitment was quantified using standardized 

plastic mesh collectors and barnacle recruitment was quantified using 10x10 cm 

plexiglass or PVC plates covered with tape. These materials were used because they 

emulate the characteristics of the preferred settlement substrate for barnacle and 

mussel larvae. Recruits from 5-8 replicates were counted in the laboratory and 

standardized to the number of individuals per plate (100 cm2) for barnacles and the 

number of individuals per collector (~100 cm3) for mussels. Recruitment was 

measured on a monthly basis and the results were subsequently averaged to provide 

annual estimates of barnacle and mussel recruitment for each site. 

 The data from these annual adult abundance and recruitment surveys have 

been thoroughly vetted for accuracy by the PISCO staff and have been the subject of 

numerous scientific publications. In chapter 1-2, I use these datasets to validate novel 

model predictions regarding the relative contribution of biotic and abiotic factors to 

spatiotemporal patterns of population abundance and recruitment in intertidal 

communities along the West coast of the United States. 

SUMMARY OF CHAPTERS 

In chapter 1, I develop and validate a theory of marine metapopulations that 

demonstrates that dispersal is critical for predicting the distribution of population 

abundance of the dominant mussel M. californianus along the West coast of the 

United States (Fig 1). Using dynamic metapopulation models and survey data, I show 

that local fluctuations generated by biotic processes (succession, predation) interact 

with limited dispersal to govern the distribution of mussel abundance in space (1,800 

km) and time (6 years), despite strong environmental forcing by regional abiotic 
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processes. By comparing the spatial patterns of abundance generated by the models 

and the survey data, I estimate that the mean scale of dispersal of M. californianus is 

approximately 100 km (~6% of the spatial extent of the survey data). The cross-scale 

interaction between local biotic processes and limited dispersal shows the limitations 

of the scale-dependent approach (Turner et al. 2001, Willis and Whittaker 2002, 

Pearson and Dawson 2003) and the importance of dispersal (Connolly and 

Roughgarden 1998, 1999) for predicting the distribution of abundance of the mussel 

M. californianus along the West coast of the United States.  

In chapter 2, I extend the theory developed in chapter 1 from populations to 

communities and determine the relative importance of local biotic processes and 

regional abiotic processes for patterns of recruitment (8 years, 1,330 km) and 

abundance in the mussel M. californianus and the barnacle B. glandula along the West 

coast of the United States (Fig 1). I show that despite strong environmental forcing 

by regional abiotic processes, the interaction between local biotic processes and 

limited dispersal controls the distribution of population abundance and recruitment 

in natural mussel and barnacle populations. Furthermore, I show that patterns of 

recruitment invariably match the environment, whether populations are controlled 

by regional abiotic processes or the interaction between local biotic processes and 

limited dispersal. Since these patterns of recruitment are universal, they cannot be 

used to assess the relative importance of biotic and abiotic processes for the 

distribution of adult population abundance. This could explain why establishing a 

link between patterns of recruitment and abundance has proven so difficult (Lagos et 

al. 2007, Broitman et al. 2008, Lagos et al. 2008, Navarrete et al. 2008). 
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In chapter 3, I focus on the implications of chapter 1 and 2 for the design of 

effective marine reserve networks (Fig 1). Current marine reserve theory emphasizes 

the importance of maintaining connectivity by using the scale of dispersal as the 

distance between individual reserves (Botsford et al. 2001, Botsford et al. 2003, 

Gerber et al. 2003, Shanks et al. 2003, Sale et al. 2005, Halpern et al. 2006). However, 

chapters 1 and 2 show that local biotic processes interact with dispersal and generate 

patterns of connectivity at spatial scales that are much larger than that of dispersal. 

Under these conditions, I show that using the scale of dispersal as the size and 

spacing of marine reserves reduces mean abundance and persistence by 

compromising natural patterns of connectivity. However, using the scale of natural 

patterns of connectivity as the size and spacing of reserves maximizes mean 

abundance and persistence inside and outside of reserves. Hence, such marine 

reserve networks can simultaneously satisfy conservation and fishery goals (Hastings 

and Botsford 2003). Overall, this chapter emphasizes the distinction between the 

scale of dispersal (potential connectivity) and the scale of connectivity (realized 

connectivity) and strongly advocates the use of the latter for the size and spacing of 

marine reserves. 

In chapter 4, I extend the theory developed in the first three chapters to 

investigate the role of dispersal for the maintenance of stability in spatial ‘keystone’ 

food webs (one generalist predator, two consumers, one resource; Fig 1). In this 

keystone food web, the predator preferentially consumes the superior competitor 

and, in doing so, generates asynchronous fluctuations among competitors 

(compensatory dynamics) that maintain food web persistence (McCann et al. 1998, 

Vasseur and Fox 2007, Gouhier et al. 2010). Here, I show that the stabilizing effect 
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of these compensatory dynamics depends on the rate of dispersal. Low rates of 

dispersal dampen and desynchronize fluctuations among food webs, thus facilitating 

environmental destabilization. However, high rates of dispersal induce synchronized 

fluctuations among food webs that mitigate environmental destabilization (Gouhier 

et al. 2010). Regardless of dispersal, I show that abiotic and biotic processes interact 

to govern food web dynamics: food webs alternate between periods of biotic 

regulation and periods of abiotic limitation (Gouhier et al. 2010). These dynamic 

switches in the dominance of abiotic limitation and biotic regulation have important 

implications for assessing their relative importance in natural systems (Houlahan et 

al. 2007). 
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Figure 1: Overarching theme of the thesis and main results.
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ABSTRACT 

Determining the relative importance of local and regional processes for the 

distribution of population abundance is a fundamental but contentious issue in 

ecology. In marine systems, classical theory holds that the influence of demographic 

processes and dispersal is confined to local populations whereas the environment 

controls regional patterns of abundance. Here, we use spatial synchrony to compare 

the distribution of population abundance of the dominant mussel M. californianus 

observed along the West coast of the United States to that predicted by dynamical 

models undergoing different dispersal and environmental treatments in order to infer 

the relative influence of local and regional processes. We reveal synchronized 

fluctuations in the abundance of mussel populations across a whole continent 

despite limited larval dispersal and strong environmental forcing. We show that 

dispersal among neighboring populations interacts with local demographic processes 

to generate characteristic patterns of spatial synchrony that can govern the dynamic 

distribution of mussel abundance over 1,800 km of coastline. Our study emphasizes 

the importance of dispersal and local dynamics for the distribution of abundance at 

the continental scale. It further highlights potential limits to the use of ‘climate 

envelope’ models for predicting the response of large-scale ecosystems to global 

climate change. 

INTRODUCTION 

Synchronized fluctuations in abundance among spatially-segregated populations are 

common in nature and can be used to quantify and understand the distribution of 

abundance in space and time (1). Synchrony can be induced by local intrinsic 
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processes such as dispersal among populations and strong interactions with mobile 

predators, or regional extrinsic processes such as spatially-correlated environmental 

variability (1). Although these processes are well known, identifying their relative 

contribution to patterns of synchrony remains a challenge (1). Recent work has 

shown that when the processes that contribute to synchrony can be studied in 

isolation, be it via natural barriers to dispersal among populations (2, 3) or 

experimental manipulation (4), synchrony patterns can be ascribed to their 

underlying cause. However, when intrinsic and extrinsic causes of synchrony co-

occur, as is the case in most systems, assigning synchrony patterns to any specific 

causal process becomes onerous (1). Here, we show that in marine populations 

experiencing both intrinsic and extrinsic sources of synchrony, the shape of spatial 

synchrony patterns can be used to infer the cause of synchrony and explain the 

regional distribution of abundance. 

  Marine population theory has relied mostly on the environment to explain 

the regional (>1,000km) dynamics of populations. This focus is motivated by the 

lengthy pelagic larval stage commonly found in marine organisms, during which the 

larvae can be transported over large distances by strong nearshore currents (5). The 

potential for large-scale transport, along with the difficulties associated with 

measuring larval dispersal, has prompted many studies to assume either completely 

closed (no exportation of larvae to other populations) or completely open (no 

coupling between larval production and recruitment) demography (5, 6, but see 7, 8). 

This assumption, typically associated with equilibrium dynamics at the local scale, has 

emphasized the effect of large-scale heterogeneity in nearshore environmental 

conditions on recruitment (i.e. supply-side theory) to explain the regional dynamics 
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of marine populations (6, 9). However, recent progress on the quantification of larval 

dispersal distance has motivated the relaxation of demographic openness in several 

marine species (10-12). In light of these recent developments, we relax the 

assumptions of demographic openness and local equilibrium dynamics and compare 

the distribution of population abundance predicted by dynamical metapopulation 

models undergoing different dispersal and environmental treatments to that of the 

dominant mussel Mytilus californianus observed along the West coast of the United 

States in order to assess the relative importance of nearshore environmental 

heterogeneity and dispersal. 

RESULTS AND DISCUSSION 

The role of the environment in natural mussel populations 

We first focus on the role of environmental heterogeneity by quantifying the strength 

and the consistency of the relationship between nearshore environmental conditions 

and the abundance (% cover) of M. californianus. Although nearshore environmental 

conditions have a strong effect on patterns of recruitment (13, 14), that effect seems 

lost on the regional distribution of M. californianus cover (15) (Fig 1A). Indeed, the 

spatial correlation between the environmental conditions and the mean annual M. 

californianus cover is relatively weak and inconsistent through time (Fig 1A), regardless 

of the temporal lag used (Fig S1), the temporal scale over which the environment is 

averaged (Fig S2) or whether the analysis explicitly accounts for the spatial 

heterogeneity observed in nearshore conditions (Fig S3). This weak spatial 

correlation reflects the mismatch between the persistent spatial gradient in the 

environment and the spatiotemporal variability in the cover of M. californianus (Fig 
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S3). This mismatch leads to local correlations whose strength and sign vary in space 

and time (Fig S3). Once spatially averaged, these highly variable local correlations 

lead to weak and inconsistent spatial correlations at the regional scale (Fig 1A, S2). 

Spatial synchrony, which measures the correlation in the time series of pairs of sites 

as a function of the lag distance that separates them (see Materials and Methods), 

more succinctly reveals the same discrepancy between the persistent spatial gradient 

in nearshore environmental conditions and the more complex spatiotemporal 

patterns in the cover of M. californianus (Fig 1B). All environmental variables undergo 

a slow and statistically significant linear decrease in synchrony with increasing lag 

distance (Fig 1B, see Materials and Methods and table 1 for statistical details). 

However, the cover of M. californianus shows a statistically significant nonlinear 

pattern, oscillating between synchrony and asynchrony with increasing lag distance 

(Fig 1B, table 1). This discrepancy suggests that intrinsic processes (i.e. dispersal and 

species interactions) rather than local nearshore environmental conditions may 

control the spatial synchrony patterns exhibited by M. californianus. 

The effect of dispersal and species interactions on natural and 

model mussel populations 

To elucidate how dispersal and species interactions can generate the complex spatial 

synchrony patterns observed in natural M. californianus populations, we develop 

metapopulation models that describe disturbance-succession (16, 17) and predator-

prey (18-20) dynamics in a network of mussel populations connected by dispersal. 

Dispersal was implemented as a symmetrical kernel in the successional model (see 

Materials and Methods) and as a symmetrical and uniform nearest-neighbor process 
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in the predator-prey model (see Supporting Information). We subjected these 

metapopulation models to environmental variability treatments based on the 

nearshore environmental conditions observed along the West coast of the United 

States by varying mussel fecundity (21) according to a linear spatial gradient (i.e. 

spatial environmental variability) and a linear spatial gradient with normally-

distributed white noise (i.e. spatiotemporal environmental variability; see Materials 

and Methods). We now perform a factorial experiment on the metapopulation 

models by using different dispersal and environmental treatments in order to assess 

the relative importance of dispersal and environmental variability for generating 

nonlinear spatial synchrony patterns of abundance that are compatible with those 

observed in natural mussel populations. 

When there is no dispersal (i.e. full local retention of larvae), regional mussel 

dynamics is strictly controlled by environmental heterogeneity. Under this scenario, 

the model metapopulations experiencing either spatial or spatiotemporal 

environmental variability predict a weak and inconsistent spatial correlation between 

the mussel cover and the 1-year lagged environmental conditions (Fig 2A,B). This 

weak and inconsistent relationship is compatible with the results from our survey 

data (Fig 1A) and previously published accounts (15). However, model 

metapopulations predict that environmental variability induces a rapid decay in the 

spatial synchrony pattern of the mussel cover that is incompatible with the nonlinear 

spatial synchrony pattern observed in natural populations of M. californianus (Fig 

2C,D). We now introduce dispersal among populations and vary the environment 

and the scale of dispersal to determine their relative contribution to spatial 

synchrony. 
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When dispersal is limited to neighboring populations (herein limited dispersal; 

8.6% of the spatial domain for results in Fig 3-4), model metapopulations 

undergoing either spatial or spatiotemporal environmental variability predict a weak 

and inconsistent relationship between mussel cover and 1-year lagged environmental 

conditions (Fig 3A,C) that is similar to the one observed in the survey data (Fig 1A). 

However, regional dispersal (44% of the spatial domain in Fig 3-4) leads to a strong 

and dynamical relationship between the mussel cover and the environment (Fig 

3B,D) that is inconsistent with the weak spatial correlation observed between 

populations of M. californianus and nearshore environmental conditions (Fig 1A). This 

suggests that limited dispersal between fluctuating populations might be an 

important driver of abundance in natural populations of M. californianus. Indeed, this 

role of limited dispersal is made more evident through the analysis of spatial 

synchrony. 

In metapopulations experiencing limited dispersal, both the successional 

model (Fig 4A,C,E) and the predator-prey model (Fig S4A,C,E) accurately predict 

the nonlinear spatial synchrony pattern observed in natural populations of M. 

californianus, regardless of environmental variability. In contrast, in metapopulations 

undergoing regional dispersal, both the successional model (Fig 4B,D,F) and the 

predator-prey model (Fig S4A,C,E) predict that the spatial synchrony pattern 

displayed by mussels will match the quasi-linear decay displayed by the environment, 

despite the strong but inconsistent spatial correlation between the environment and 

mussel cover (Fig 3B,D). Hence, in successional and predator-prey metapopulation 

models, limited dispersal is critical for the emergence of nonlinear spatial synchrony 

patterns that are compatible with those observed in natural populations of M. 



 

 8 

californianus. Nonlinear spatial synchrony patterns arise because limited dispersal (Fig. 

S5) couples neighboring populations and thus allows local fluctuations (Fig. S6) to 

scale-up and generate complex, non-stationary spatiotemporal patterns at the 

regional scale (Fig S7,S8) that are robust to environmental forcing (Fig 4B,D,F; Fig 

S4B,D,F). This cross-scale interaction between local population dynamics and 

limited dispersal is a general property of metapopulations (Fig 4,S4) that merely 

requires that local populations undergo sustained fluctuations (Fig S6) and that the 

average dispersal distance represents 3-10% of the spatial domain (Fig S5). Regional 

dispersal prevents these cross-scale interactions by spatially synchronizing population 

fluctuations across the entire metapopulation and thus generating regular regional 

oscillations characterized by stationary and quasi-linear spatial synchrony patterns 

(Fig 4B,D,F, Fig S4B,D,F, Fig S9-S10). 

The shape of spatial synchrony can thus be used to determine the relative 

influence of cross-scale interactions and environmental forcing on the distribution of 

abundance in space and time. This can be achieved by fitting nonlinear and linear 

statistical models representing respectively cross-scale interactions and 

environmental forcing to the observed spatial synchrony patterns, and then 

comparing their performance using model selection (see Data analysis and Fig S5). 

Using spatial synchrony to quantify the scale of dispersal in 

natural populations 

Our metapopulation models show that the shape of nonlinear spatial synchrony 

patterns can be used to quantify the scale of dispersal. Indeed, the spatial range, 

defined as the lag distance at which synchrony first reaches zero (22), is 
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systematically associated with the average dispersal distance in both our successional 

model (Fig 4A,C,E) and our predator-prey model (Fig S4A,C,E) when dispersal is 

limited. Applying this result to our survey data, we estimate that the scale of dispersal 

of M. californianus is approximately 100 km (i.e. 6% of the domain). This estimate falls 

within the 95% confidence interval of dispersal distances documented for other 

bivalve species (72-220 km, see (11)) and is very similar to the scale of dispersal (97-

115 km) of more closely related Mytilus species in other systems (11). Our estimate is 

based on the number of recruits that survive to the adult stage and is smaller than 

the 250 km estimate derived empirically by measuring the density of settlers in the 

same system (23). This is because spatial synchrony estimates integrate post-

settlement processes that can limit the effective scale of dispersal. 

Spatial synchrony reveals the relative influence of intrinsic and 

extrinsic processes on the distribution of population 

abundance 

Theory has shown that local dynamics and limited dispersal can lead to complex 

spatial (24, 25) or spatiotemporal (26, 27) patterns at the regional scale that can 

promote coexistence (28), stability (27, 29), persistence (26, 29, 30) and functioning 

(24, 25) in spatial ecological systems. Similar complex spatiotemporal patterns have 

also been used to describe insect (31) and epidemic (32) outbreaks at regional and 

continental scales. However, linking local dynamics and limited dispersal to regional 

patterns has typically required extensive time series and characteristic spatial 

signatures such as Turing structures (24, 25), travelling waves (26, 31) or power laws 

(33). Here, we extend these theories by showing that in systems lacking these 
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characteristic spatial signatures, the shape of spatial synchrony patterns can be used 

to infer the joint effect of local dynamics and dispersal on the regional distribution of 

abundance. Hence, our framework moves away from the use of correlations between 

abundance and the environment to infer the causal effect of abiotic processes on 

biological patterns. Instead, by partitioning long non-stationary time series into 

smaller quasi-stationary time series and applying spatial synchrony analysis, we show 

that the spatial and temporal properties of spatial synchrony patterns can be used to 

determine the relative influence of intrinsic and extrinsic factors on the regional 

distribution of abundance in natural systems: limited dispersal interacts with local 

intrinsic fluctuations to generate nonlinear and non-stationary spatial synchrony 

patterns that are robust to environmental forcing, whereas regional dispersal 

facilitates environmental forcing and leads to stationary and linear spatial synchrony 

patterns. 

 Our results have important implications for identifying the processes that 

control the distribution of species abundance in natural systems and for predicting 

their response to global climate change. A popular approach for understanding and 

predicting species abundance distributions is to build species’ ‘climate envelopes’ by 

either mapping the current species distribution to climate variables via correlation 

techniques or by determining the physiological tolerances of individual species (see 

review in 34). This climate envelope can then be used to predict the future 

distribution of species under various climate change scenarios (34). However, climate 

envelope models have been criticized because they do not integrate the effects of 

species interactions and dispersal on the distribution of population abundance (35-

38). A recent synthesis proposes integrating the effects of dispersal and species 
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interactions into climate envelopes by adopting a hierarchical modeling framework 

(34). According to this hierarchical framework, species interactions and dispersal 

control the distribution of species abundance at smaller spatial scales (<200 km) 

whereas climate dominates at larger spatial scales (>200 km) (34). Here, we have 

shown that despite strong regional environmental forcing, local dynamics interact 

with limited dispersal to control the distribution of population abundance at scales 

that are much larger (>1,000 km) than that of dispersal (~100 km). Hence, our work 

suggests that processes occurring at small spatial scales can interact synergistically to 

control the distribution of population abundance at large spatial scales. Such cross-

scale interactions demonstrate the limitations of adopting climate envelope models 

based on hierarchical frameworks to understand the distribution of species 

abundance and predict the effects of global climate change. 

Overall, by applying spatial synchrony analysis to a large dataset of mussel 

populations along the West Coast of the United States, our study provides the first 

evidence that limited connectivity among local populations affects the dynamic 

distribution of abundance over >1,000 km. Our work supports the suggested shift 

toward a more dynamical approach to regional conservation, one that emphasizes 

patterns and processes across scales instead of those limited to the scale of the 

environment or dispersal. 

MATERIALS AND METHODS 

Data collection 

Abundance (percent cover) of M. californianus was quantified annually from 1999 to 

2004 at 48 sites located along the West coast of the United States and stretching 
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from southern California to northern Washington (40) (32.7 °N to 48.4 °N). For 

each site, the cover of M. californianus was surveyed in 10 randomly placed 0.25 m2 

quadrats for each of three 50 m transects located within the mid-intertidal zone. 

Mean annual sea surface temperature (SST, in °C), chlorophyll-a concentration (chl-

a, in mg/m3) and upwelling index (in m3/s/100 m of coastline) data from 1997 to 

2003 occurring within a 0.2 degree radius (1 degree radius for upwelling) of each of 

the 48 sites were obtained respectively from the Advanced Very High Resolution 

Radiometer (NOAA), the Sea-viewing Wide Field-of-view Sensor (NASA) and sea 

level pressure maps (Pacific Fisheries Environmental Laboratory). These 

environmental data series were validated by comparing them to in situ buoy 

measurements (see Data validation in Supporting Information). 

Data analysis 

Prior to conducting spatial synchrony analysis, all variables were detrended by 

subtracting the global mean time series from each site’s time series in order to 

remove any bias caused by common large-scale trends (41). The distances between 

all pairs of sites were then computed and used to group the detrended time series 

data into equally-spaced distance bins (66 km wide). The coefficient of synchrony for 

each bin was calculated by computing the correlation coefficient between the time 

series of all pairs of sites within the bin. The extent of the spatial synchrony analysis 

was restricted to half of the spatial domain in order to avoid large discrepancies in 

the number of pairs of sites within each bin (22). Statistical significance was 

determined by using a one-tailed test (α=0.05) on 10,000 Monte Carlo 

randomizations (22). Specifically, for each bin, the p-value was calculated by 
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shuffling the data pairs within the bin 10,000 times, computing the coefficient of 

synchrony for each randomization and then calculating the proportion of 

randomizations with a coefficient of synchrony greater than or equal to that obtained 

with the original data. The same one-tailed randomization technique was used to 

assess the statistical significance of the correlation between the annual cover of M. 

californianus at year i and each environmental variable at year i-1 (1-year lag). We used 

a 1-year lag because it corresponds to the temporal scale at which the correlation 

between the annual cover of M. californianus and each nearshore environmental 

variable is statistically significant (Fig S1). 

 We used model selection to detect linear and nonlinear spatial synchrony 

patterns in the environmental (SST, chl-a, upwelling index) and M. californianus 

datasets. For each dataset, we fit a linear statistical model m
linear

 and a nonlinear 

statistical model m
nonlinear

 to the spatial synchrony pattern: 

m
linear

= a ⋅ l + b      (1) 

m
nonlinear

= a ⋅ cos
l

max(l)
⋅ 3π⎛

⎝⎜
⎞
⎠⎟
+ b   (2) 

where l  is the lag distance vector, a,b  represent fitted coefficients and 

l

max(l)
⋅ 3π  is the normalized lag distance vector scaled to the domain 0,3π[ ] . This 

scaling of the lag distance vector allows the cosine function in the nonlinear model 

m
nonlinear

 to fit modal patterns of spatial synchrony over the spatial domain. For each 

statistical model, we calculated the Akaike Information Criterion corrected for small 

samples (42): 
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AICc = −2 log(L) + 2K +
2K K +1( )
n − K −1

  (3) 

where L  represents the maximum likelihood, K = 3 represents the number of 

parameters in each statistical model and n  represents the number of samples. The 

statistical model with the smallest AICc  value was selected for each dataset (42). 

The successional model 

The successional model describes local disturbance and recovery dynamics in a 

network of mussel populations that are connected by dispersal (17). Within 

populations, the successional dynamics observed in natural intertidal systems (16, 43) 

are represented as a mean-field implementation of a spatial process affecting the 

proportional abundance of (i) the dominant mussel m( ) , (ii) the wave disturbance 

w( )  and (iii) the empty substrate s( )  (44). A maximum fraction α0 =1 of the 

proportional abundance of the dominant mussel species m( )  can be displaced by 

wave disturbances w( ) . A proportion 1− δ0( )  of disturbances displaces mussels 

through a density-dependent contact process with aggregation (Moore 

neighborhood, q = 8 ), while a proportion δ0 =10
−3  of disturbances is density-

independent. This disturbance dynamic is based on the assumption that wave 

disturbances destroy the byssal thread attachments of mussels around the edges of 

disturbed areas, thus making them temporarily more susceptible to further 

disturbance (44, 45). Hence, newly disturbed areas allow the local propagation of 

wave disturbances to adjacent mussel beds. Once the disturbance has propagated 

away from the newly disturbed area, the area transitions from the ‘wave disturbed’ 

state to the ‘empty substrate’ state. Similarly to disturbance, a maximum fraction 
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α2 = 0.65 of the empty substrate s( )  can be colonized by mussels. A proportion  

δ2 = 0.1 of colonization occurs through a density-independent process, while the 

remaining colonization is density-dependent 1− δ2( ) . Mussel colonization also 

depends on the production and recruitment of larvae. Within populations , larval 

production is a function of local mussel proportional abundance mx  and fecundity 

fx  f = 5.25( ) . The recruitment rate Cx
t  is described by a Poisson process (46) 

Cx
t = 1− e−βx

t

, where βx
t  integrates (i) the total number of larvae produced and 

retained in populations x  at time t  and (ii) the total number of larvae produced in 

other populations  and dispersed to populations  at time t . The dynamics of the 

model are represented by the following integro-difference equation system for 

populations  in a metapopulation consisting of n = 256  populations: 

wx
t+1 = α0mx

t δ0 + 1− δ0( ) 1− 1− wx
t( )q( )( )

sx
t+1 = wx

t + sx
t −α2Cx

t sx
t δ2 + mx

t 1− δ2( )( )
mx

t+1 = 1− wx
t − sx

t  (4)

 

with: 

Cx
t = 1− eβx

t

βx
t = mx

t fx 1− d( ) + my
t fy dD x − y( )dy∫

D( x − y ) =
3 x − y 2

2
e− x− y

3

x = u
2

n
L −1⎛

⎝⎜
⎞
⎠⎟

L = 0,...,n −1[ ]
 (5)
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where  is the symmetrical mussel dispersal kernel resulting from larval 

transport at a constant speed and with a time-dependent settlement rate (double 

Weibull distribution (47)), d  represents the proportion of larvae being dispersed, u  

represents the scale of dispersal and L represents a zero-based vector of population 

locations. We vary dispersal by manipulating d , the proportion of larvae being 

dispersed (d = 0  means that all larvae are retained locally, whereas d = 1  means that 

all larvae are dispersed), and u , the scale of dispersal (u = 2  corresponds to regional 

dispersal and u = 10  corresponds to limited dispersal). We assumed periodic 

boundary conditions for all simulations and set the dispersal rate to d = 1  (i.e. no 

local retention) unless otherwise specified (i.e. Fig 2 where d = 0 ). All successional 

model simulations were performed for 256 populations and the results were analyzed 

over 2000 post-transient time steps. Because our goal was to test the importance of 

local ecological processes and dispersal, all parameter values detailed above were 

selected to be representative of the broad parameter space characterized by 

spatiotemporal heterogeneity (17, 39). Here, we further assess the model’s sensitivity 

to dispersal distance and to fecundity f as a means to determine the role of 

environmental variability in marine metapopulations. 

Environmental variability can have a significant impact on the productivity of 

intertidal populations (21, 48). Here, we implement this effect by varying mussel 

fecundity spatially and spatiotemporally. Specifically, the spatial environmental 

treatment consists of varying the mussel fecundity f linearly from 3 to 7.5 over the 

entire spatial range . We generate the spatiotemporal environmental 

treatment by adding normally-distributed white noise with zero mean and variance 
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σ 2 = 2.7  to the previously described spatial variation in fecundity f = 5.25( ). The 

spatial and spatiotemporal environmental treatments thus preserve the same mean 

fecundity as the successional model undergoing no environmental variability. These 

spatial and spatiotemporal treatments were chosen to roughly mimic the spatial and 

spatiotemporal properties of the environment along the West coast of the United 

States. Applying the same spatial and spatiotemporal treatments to the mussel 

growth rate  yields qualitatively similar results. 

Model analysis 

We applied the spatial synchrony and model selection methods (see Data analysis) 

used on the survey data to the post-transient time series of the successional and the 

predator-prey (see Supporting Information) models in order to assess their ability to 

generate nonlinear spatial synchrony patterns that are compatible with those 

observed in natural populations of M. californianus. Specifically, the model time series 

(2000 post-transient time steps) was split into 10-time step windows and spatial 

synchrony analysis was conducted over each window. We chose 10-time step 

windows in order to approximate the temporal extent of our intertidal survey data. 

However, our results are robust to window size (Fig S5B,D,F). For each time 

window, we fit the same linear m
linear( )  and nonlinear m

nonlinear( )  statistical models 

described in the Data analysis section to the spatial synchrony patterns generated by 

the metapopulation models. For each time window, the nonlinear statistical model 

was selected if AICc nonlinear < AICc linear  (42). The model spatial synchrony patterns 

presented in all figures were computed by averaging the spatial synchrony patterns 
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from all 10-time step windows in which the nonlinear statistical model was selected. 

When no compatible synchrony pattern exists for the entire model time series (i.e. 

for the regional dispersal treatment), the spatial synchrony patterns from n randomly 

selected time windows are computed and averaged (where n corresponds to the 

number of compatible synchrony patterns for the limited dispersal treatment). This 

allows for unbiased comparisons across dispersal treatments. 
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FIGURE LEGENDS 

Figure 1: The dynamics of M. californianus cover and the environment along the West 

coast of the United States. (A) The correlation between the mean annual M. 

californianus cover and the 1-year lagged mean annual (i) sea surface temperature (SST, 

dark blue squares), (ii) chl-a concentration (chl-a, green diamonds), (iii) upwelling 

index (light blue triangles) and (iv) the first axis of the principal component analysis 

of all three environmental variables (PCA axis 1, red circles) at each site. (B) Spatial 
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synchrony of the mean annual (i) M. californianus cover (red circles), SST (dark blue 

squares), chl-a (green diamonds) and upwelling index (light blue triangles). The 

curves correspond to nonlinear (M. californianus) and linear (chl-a, SST, upwelling 

index) statistical models fitted to each dataset (see Materials and Methods). Full 

circles indicate statistical significance (α=0.05). 

Figure 2: The dynamics of the annual mussel cover in successional model 

metapopulations undergoing no dispersal and environmental variability. (A, B) The 

correlation between the model mussel cover and the 1-year lagged environment at 

each site during a randomly selected 100-time step window. (C,D) The coefficient of 

synchrony of the model (i) mussel cover (blue solid curve, mean±S.E) and the (ii) 1-

year lagged environment (green dashed curve, mean±S.E). The spatial synchrony of 

the annual M. californianus cover from the West coast of the United States is also 

depicted to facilitate comparisons (red circles). (A) and (C) correspond to spatial 

environmental variability whereas (B) and (D) correspond to spatiotemporal 

environmental variability. Full circles indicate statistical significance (α=0.05). 

Figure 3: Time series of the correlation between the annual mussel cover in the 

successional model and the 1-year lagged environment at each site. (A, B) The 

correlation time series for metapopulations undergoing spatial environmental 

variability and (A) limited (8.6% of the domain) or (B) regional (44% of the domain) 

dispersal. (C, D) Correlation time series for metapopulations undergoing 

spatiotemporal environmental variability and (C) limited or (D) regional dispersal. 

Full circles indicate statistical significance (α=0.05). 

Figure 4: Spatial synchrony of annual mussel cover in the successional model for 

metapopulations undergoing different environmental and dispersal treatments. (A, B) 
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No environmental variability and either (A) limited or (B) regional dispersal. (C, D) 

Spatial environmental variability and either (C) limited or (D) regional dispersal. (E, 

F) Spatiotemporal environmental variability and either (E) limited or (F) regional 

dispersal. The spatial synchrony of the mussel cover in the successional model is 

represented in blue solid curves (mean±S.E) while that of the 1-year lagged 

environment is represented in green dashed curves (mean±S.E). The spatial 

synchrony of annual M. californianus cover from the West coast of the United States is 

also depicted to facilitate comparisons (red circles). The scale of dispersal is 

represented by the blue vertical dotted line. The spatial extent of the limited dispersal 

treatment corresponds to 8.6% of the domain while that of the regional dispersal 

treatment corresponds to 44% of the domain. Full circles indicate statistical 

significance (α=0.05). 

TABLES AND FIGURES 

Table 1: Fitting linear and nonlinear statistical models to the spatial synchrony 

patterns observed in the survey datasets. 

 Linear statistical model Nonlinear statistical model 

Dataset n p-value R2 AICc n p-value R2 AICc 

chl-a 14 0.007 0.420 0.07 14 0.54 0.033 8.34 

SST 14 8.6*10-6 0.82 -10.48 14 0.77 0.007 13.36 

Upwelling 14 7.3*10-7 0.88 1.26 14 0.48 0.043 30.26 

M. californianus 14 0.58 0.03 5.11 14 3.7*10-4 0.67 -9.89 
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SUPPORTING INFORMATION 

Data validation 

We used remote sensing data to quantify sea surface temperature (SST), chlorophyll 

a concentration (chl-a) and upwelling currents (upwelling index) instead of in situ 

measurements because the former had greater temporal and spatial coverage. 

Additionally, the broad spatial extent of remote sensing data can often better reflect 

the spatially-integrated environmental conditions experienced by intertidal 

populations (1). Both the SST and chl-a data had a nominal resolution of 4 km, 

whereas the upwelling index had a coarser resolution of 1 degree (~111 km). Since 

remote sensing data are prone to errors due to cloud cover and aerosols that can 

influence captured irradiances, we excluded low quality data points characterized by 

high cloud/aerosol cover from the analysis (2). Additionally, outliers were removed 

from the remote sensing data series by computing the filtered mean (2) of each 

variable for each site: 

   (1)
 

where p represents the total number of points within 0.2 degrees (1 degree 

for upwelling) of the site, N is the total number of points within 1.5 standard 

deviations of the mean . These filtered environmental data series were then 

validated by using reduced major axis regression (2) to relate them to in situ buoy 

measurements (chl-a: R2=0.42, p-value=0, n=583; SST: R2=0.60, p-value=0, n=536). 
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Quantifying the relationship between M. ca l i fornianus  and the 

environment 

In many marine species, individuals begin their lives as water-borne planktonic larvae 

and eventually settle onto the intertidal to become sessile adults. This bipartite 

lifecycle has important implications for identifying the relative influence of pre- and 

post-settlement processes on population dynamics and community structure. 

Nearshore current patterns such as coastal upwelling, which describes the offshore 

transport of the warm top water layer and the consequent rise of cold and nutrient-

rich water to the surface, has been identified as a potentially critical process 

controlling recruitment in intertidal communities located along the coasts of New 

Zealand (3), Chile (4) and the West coast of the United States (5). Along the West 

coast of the United States, the pronounced spatial gradient in coastal upwelling has 

been linked to patterns of recruitment (5-7). Indeed, offshore transport due to 

coastal upwelling is weaker and less persistent north of Cape Blanco (43 °N) than it 

is south of Cape Blanco (5, 6). This major spatial discontinuity in coastal upwelling 

conditions has lead to the hypothesis that environmental conditions affecting pre-

settlement processes are more likely to play an important role in adult intertidal 

communities south of Cape Blanco, where recruitment is environmentally-limited, 

than they are North of Cape Blanco, where recruitment is not environmentally-

limited (5-7). 

We tested this hypothesis by examining the relationship between the mean 

annual cover of M. californianus and 1-year lagged, multi-year averaged environmental 

conditions in each region. We chose a 1-year lag because it corresponds to the 
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temporal scale at which the correlation between the cover of M. californianus and each 

environmental variable is statistically significant (Fig S1). In both regions, the spatial 

correlation between the environment and the cover of M. californianus varies in time, 

regardless of whether the environmental conditions are averaged over two or three 

years (Fig S2). The spatial correlation between the growth of the mean annual M. 

californianus cover and the environment is equally variable in time for both regions. 

This indicates that the relationship between M. californianus cover and the 

environment is inconsistent in both regions. However, this inconsistency could be 

the product of the coarse division of the study system into a non-environmentally 

limited northern region and an environmentally-limited southern region. To test this 

hypothesis, we further examined this relationship by relating the 1-year lagged mean 

annual environmental time series to the mean annual M. californianus cover time series 

at each of the 48 sites (Fig S3). Although all environmental variables show a 

persistent spatial structure (Fig S3A,C,E), the sign and strength of the local 

correlation between the environmental time series and the M. californianus time series 

is highly variable in space (Fig S3B,D,F). Once averaged spatially, these variable local 

correlations lead to weak and inconsistent spatial correlations at the regional scale 

(Fig S2). Overall, these results indicate that the persistent latitudinal gradient seen in 

all environmental variables is not reflected in the cover of M. californianus. 
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Identifying the necessary conditions for the occurrence of 

cross-scale interactions between local fluctuations and limited 

dispersal 

Cross-scale interactions in a predator-prey metapopulation 

We have shown that local fluctuations and limited dispersal interact across spatial 

scales ranging from that of local ecological processes to the scale characterizing the 

regional distribution of abundance. Such cross-scale interactions lead to nonlinear 

patterns of spatial synchrony that are robust to both spatial and spatiotemporal 

environmental variability affecting either growth or fecundity in the discrete time 

successional model (Fig 4). Now, we examine the generality of this phenomenon in 

metapopulation models by adopting a spatially-explicit version (8, 9) of the 

continuous time Rosenzweig-MacArthur predator-prey model (10): 

 

dMx

dt
= rxMx 1−

Mx

K

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ −

aMxPx
b + aMx

− cMx + c

n
Mi

i≠x

n

∑
dPx
dt

= aMxPx
b + aMx

− Px m + c( ) + c

n
Pi

i≠x

n

∑
 (2) 

where the prey (mussels Mx ) at site x  has growth rate rx = 0.5, carrying 

capacity K = 30 and the predator (Px ) at site x  has mortality rate m = 0.1, encounter 

rate a = 0.2 and half saturation constant b =1. Both the predator and the prey 

migrate to their n  nearest-neighbors with a migration rate of c = 0.1. We used these 

parameter values to illustrate the spatial dynamics of Eq. 2 and detail the generality 

of our results in the next sections. We assume symmetrical dispersal, equal dispersal 

scales for the predator and the prey, and periodic boundary conditions. All 
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simulations were run for 100 sites and the results were analyzed over 2000 post-

transient time steps using the model selection methods described in the Model 

analysis section of the main text. We adopted the same spatial and spatiotemporal 

treatments used in the successional model. Specifically, the spatial environmental 

treatment consisted of varying the mussel growth rate  linearly from 0.2 to 0.8 over 

the entire spatial range r = 0.5( ). We generated the spatiotemporal environmental 

treatment by adding normally-distributed white noise with zero mean and variance 

σ 2 = 0.2  to the previously described spatial variation in the mussel growth rate 

r = 0.5( ). The spatial and spatiotemporal environmental treatments thus preserved 

the same mean mussel growth rate as the predator-prey model undergoing no 

environmental variability. As with the successional model, we vary dispersal and the 

environment to determine their relative influence on spatial synchrony patterns of 

mussel abundance in natural and model metapopulations. 

We show that in the predator-prey model, limited dispersal is critical to the 

occurrence of nonlinear spatial synchrony patterns of mussel abundance that are 

compatible with those observed in natural populations along the West coast of the 

United States (Fig S4). In the absence of any environmental variability, nonlinear 

spatial synchrony patterns arise because of the cross-scale interaction between local 

mussel population fluctuations and limited dispersal (Fig S4A). These patterns are 

robust to both spatial (Fig S4C) and spatiotemporal (Fig S4E) environmental 

variability. Regional dispersal, however, prevents the occurrence of cross-scale 

interactions and leads to regional synchrony in the absence of environmental 
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variability (Fig S4B). Regional dispersal also facilitates environmental forcing in 

response to either spatial (Fig S4D) or spatiotemporal (Fig S4F) variability.  

Hence, even though the successional model and the predator-prey model 

have fundamental differences in terms of their ecological structures (populations vs. 

communities), mathematical properties (continuous vs. discrete), dispersal 

mechanisms (nearest neighbor vs. dispersal kernel), connectivity rates (10% dispersal 

rate vs. 100% dispersal rate), perturbation types (biotic vs. abiotic) and spatial extents 

(256 sites vs. 100 sites), they both predict the occurrence of nonlinear spatial 

synchrony patterns in response to the cross-scale interaction between local 

fluctuations and limited dispersal. 

Relation between dispersal and cross-scale interactions 

We have shown that the cross-scale interaction between limited dispersal and local 

fluctuations yields nonlinear spatial synchrony patterns, whereas regional dispersal 

and environmental forcing lead to linear spatial synchrony patterns (Fig 4,S4). Hence, 

the linearity of spatial synchrony patterns can be used to ascertain the relative 

importance of cross-scale interactions and environmental forcing in natural 

populations. However, since the nonlinear spatial synchrony patterns are also non-

stationary (Fig S7,S8), one must not rely on the specific characteristics of any single 

spatial synchrony pattern, but rather identify the nonlinear properties that describe a 

family of spatial synchrony patterns. Here, we use model selection (see Data analysis) 

to determine the relative importance of cross-scale interactions and environmental 

forcing by detecting nonlinearities in the spatial synchrony patterns of 

metapopulation models for a range of dispersal scales. 
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Our results show that in the successional and predator-prey models, 

nonlinear spatial synchrony patterns occur over the same limited range of dispersal 

scales (Fig S5A,C,E). Indeed, regardless of environmental variability, the nonlinear 

model is selected when the scale of dispersal is less than 10-15% of the spatial 

domain and systematically rejected when dispersal occurs over more than 10-15% of 

the spatial domain (Fig S5A,C,E). Hence, model selection methods based on linearity 

can be used to determine whether spatial synchrony patterns are the product of (i) 

the cross-scale interaction between limited dispersal and local intrinsic fluctuations or 

(ii) regional dispersal and environmental forcing. 

Relation between local fluctuations and cross-scale interactions 

We have shown that cross-scale interactions between local fluctuations and limited 

dispersal can occur in both the successional and the predator-prey model. Their 

occurrence is dependent upon the scale of dispersal, which must be limited to 3-10% 

of the spatial domain (Fig. S5A,C,E). Additionally, cross-scale interactions depend 

upon the existence of strong local fluctuations. We now demonstrate this 

dependence by analyzing the dynamics of the predator-prey model. Under spatially-

homogeneous conditions (i.e. zero net migration and identical environmental 

conditions across all sites), the predator-prey metapopulation model can be analyzed 

as a series of uncoupled predator-prey populations. The stability of each predator-

prey population can be ascertained by deriving the zero net growth isoclines (ZNGI) 

of the predator (M*) and the prey (P*):  

P* = r

aK
bK + M aK − b( ) − aM 2[ ]

M* = mb

a 1−m( )
  (3.1, 3.2) 
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The equilibrium dynamics of this predator-prey system depends on the 

modal shape of the prey ZNGI and where the prey and predator ZNGIs intersect. 

When the predator and prey ZNGIs intersect in the ascending section of the prey 

ZNGI 
dP*

dM
> 0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , the equilibrium is unstable and the system undergoes stable limit 

cycles. When the ZNGIs intersect in the descending section of the prey ZNGI 

dP*

dM
< 0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , the equilibrium is stable (11). We now identify the conditions under 

which the system transitions from stable equilibrium dynamics to stable limit cycles 

(i.e. the Hopf bifurcation point) by differentiating equation 3.1 and solving 

dP*

dM
M =M *

= 0 : 
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dM
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⎥ 

= 0   (4) 

The sign of the derivative and the stability of the system depend upon the 

bracketed term in equation 4. After some algebra, it is possible to transform the 

bracketed term and show that the stability of the system is linked to the critical 

parameter Kcritical : 

Kcritical =
b m +1( )
a 1− m( )   (5) 

The dynamics of the system thus directly depend on the carrying capacity K: 

when K > Kcritical , the system undergoes stable limit cycles whereas when K < Kcritical

, the system reaches a stable equilibrium. For our particular model parameterization 

(b=1, a=0.2, m=0.2), Kcritical = 7.5 . By varying K across the Kcritical = 7.5  threshold, 
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we show that cross-scale interactions, as manifested by the occurrence of compatible 

nonlinear spatial synchrony patterns, are directly linked to the system’s transition 

from stable equilibrium dynamics to stable limit cycles (Fig S6). 

Our results are thus robust to the specifics of our models: cross-scale 

interactions merely require that local populations undergo sustained fluctuations (Fig 

S6) and that dispersal occur over 3-10% of the spatial domain (Fig S5A,C,E). 

Robustness of nonlinear spatial synchrony patterns to window size 

All spatial synchrony analyses of the model data were performed over 10-time step 

windows in order to approximate the temporal extent of our survey data. However, 

our results are robust to window size. Indeed, regional dispersal never leads to 

nonlinear spatial synchrony patterns in either the successional or the predator-prey 

model, regardless of environmental variability or window size (Fig S5A,C,E). 

However, when dispersal is limited, the predator-prey and successional models 

generate nonlinear spatial synchrony patterns for a range of window sizes (Fig 

S5B,D,F). Hence, regardless of window size, nonlinear spatial synchrony patterns 

remain a signature of metapopulations experiencing limited dispersal. The robustness 

of spatial synchrony to window size means that the occurrence of cross-scale 

interactions can be detected in natural systems for which data availability is limited to 

short temporal scales that do not integrate many cycles of abundance fluctuations. 
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Dispersal mediates pattern formation in dynamical 

metapopulations 

Dispersal is a key process that has important consequences for the regional 

distribution of abundance. In marine systems, dispersal has been shown to directly 

mediate the correlation between predator abundance and prey recruitment. Indeed, 

predator abundance and prey recruitment of non-dispersing predator and prey 

species pairs were strongly correlated, whereas no relationship existed between 

predator abundance and prey recruitment for dispersing predator and prey species 

pairs (12). Dispersal can also affect the regional distribution of abundance indirectly 

by interacting with local processes to modulate spatial heterogeneity and pattern 

formation (13-15). Here, we compare the qualitative patterns observed in the 

successional model time series to the quantitative spatial synchrony patterns 

presented in the main text in order to further clarify the role of dispersal. 

When dispersal is limited and there is no environmental variability, the 

metapopulation mussel cover exhibits non-stationary (i.e. transient) spatial patterns 

(Fig S7 A) that lead to nonlinear spatial synchrony patterns characterized by different 

spatial scales (Fig S7B,C,D). Importantly, even though these patterns are non-

stationary, the spatial range of synchrony (i.e. the lag distance at which synchrony 

first reaches zero) remains constant and equal to the average scale of dispersal (Fig 

S7B,C,D). The addition of spatiotemporal (Fig S8) environmental variability leads to 

the formation of spatial waves of high mussel abundance at sites with high fecundity 

(i.e. central sites) that slowly propagate throughout the metapopulation. However, 

these environmentally-mediated spatial waves do not affect the non-stationary and 
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nonlinear spatial synchrony patterns generated by local fluctuations and limited 

dispersal (Fig S8B,C,D). 

Metapopulations characterized by regional dispersal and no environmental 

variability undergo synchronized regional fluctuations (Fig S9A) that lead to 

stationary and uniform patterns of spatial synchrony (Fig S9B,C,D). It is important 

to note that even though these metapopulations undergo strongly synchronized 

regional fluctuations (Fig S9A), spatial synchrony analysis shows very low levels of 

synchrony across the entire spatial range (Fig S9B,C,D). This is because the mussel 

abundance time series was detrended by removing the mean regional time series 

before performing spatial synchrony analysis. Hence, our spatial synchrony analysis 

focuses on the spatial trends of synchrony instead of the absolute strength of 

synchrony. The addition of spatiotemporal environmental variability (Fig S10) leads 

to the formation of fronts that originate from highly fecund central sites. These 

fronts propagate extremely rapidly across the entire metapopulation and lead to 

stationary and linear spatial synchrony patterns (Fig S10B,C,D).  

These results thus show how dispersal modulates pattern formation in 

metapopulations. Furthermore, they show that spatial synchrony can be used to 

quantify complex spatiotemporal patterns and link them to their underlying 

mechanisms. 
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FIGURE LEGENDS 

Figure S1: Temporal structure of the correlation between the annual cover of M. 

californianus and the environment for all 48 sites. Spatial correlation (red circles) 

between the annual cover of M. californianus and mean annual (blue curves) (A) SST, 
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(B) chl-a, and (C) upwelling index across all sites as a function of lag time (number of 

years). The vertical dashed line indicates the 1-year lag used to correlate the cover of 

M. californianus in year i to the environmental conditions in year i-1. Full circles 

indicate statistical significance (α=0.05). 

Figure S2: Time series of the correlation between the annual M. californianus cover 

and the multi-year average environment at 48 sites located along the West coast of 

the United States. The correlation between mean annual M. californianus cover and 

each 1-year lagged, (A, C, E) 2-year averaged or (B, D, F) 3-year averaged 

environmental variable for (A, B) all 48 sites, (C, D) sites located North of Cape 

Blanco (43°N) and (E, F) sites located South of Cape Blanco. The 1-year lagged, 

multi-year averaged environmental variables are SST (dark blue squares), (ii) chl-a 

(green diamonds),  (iii) upwelling index (light blue triangles) and (iv) the first axis of 

the principal component analysis of all three environmental variables (red circles). 

Full circles indicate statistical significance (α=0.05). 

Figure S3: The spatial structure of both the environment and the correlation 

between the environment and the annual M. californianus cover time series at 48 sites 

located along the West coast of the United States. (A, C, E) The spatial structure of 

the mean annual (A) chl-a, (C) SST and (E) upwelling index from 1999 to 2002 (dark 

blue circles: 1999, red squares: 2000, light blue triangles: 2001, black diamonds: 

2002). The vertical dashed line depicts an upwelling index of zero. (B, D, F) The 

spatial structure of the correlation between the mean annual M. californianus cover 

time series and the 1-year lagged mean annual time series of (B) chl-a, (D) SST and 

(F) upwelling index. Blue circles indicate negative correlations and red circles indicate 
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positive correlations. The size of each circle is proportional to the absolute value of 

the correlation, with the largest circle representing a correlation of 0.95.  

Figure S4: Spatial synchrony of annual mussel cover in the predator-prey model for 

metapopulations undergoing different environmental and dispersal treatments. (A, B) 

No environmental variability and either (A) limited or (B) regional dispersal. (C, D) 

Spatial environmental variability and either (C) limited or (D) regional dispersal. (E, 

F) Spatiotemporal environmental variability and either (E) limited or (F) regional 

dispersal. Spatial synchrony in the predator-prey model annual mussel cover is 

represented in blue solid curves (mean±S.E.) while that of the 1-year lagged 

environment is represented in green dashed curves (mean±S.E.). The spatial 

synchrony of the annual M. californianus cover from the West coast of the United 

States is also depicted to facilitate comparisons (red circles). The scale of dispersal is 

represented by the vertical dotted line. The spatial extent of the limited dispersal 

treatment corresponds to 6% of the domain while that of the regional dispersal 

treatment corresponds to 80% of the domain. Full circles indicate statistical 

significance (α=0.05). 

Figure S5: Using model selection to detect nonlinear spatial synchrony patterns in 

the mussel cover time series of metapopulation models. (A, C, E) The percentage of 

nonlinear models selected as a function of the scale of dispersal for successional 

(blue) and predator-prey (red) metapopulations undergoing (A) no environmental 

variability, (C) spatial environmental variability or (E) spatiotemporal environmental 

variability. (B, D, F) The percentage of nonlinear models selected as a function of the 

size of the time window for successional (blue solid curve) and predator-prey (red 

dashed curve) metapopulations undergoing limited dispersal and (B) no 
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environmental variability, (D) spatial environmental variability or (F) spatiotemporal 

environmental variability. 

 Figure S6: The occurrence of nonlinear spatial synchrony patterns in the mussel 

cover time series of the predator-prey metapopulation model. The percentage of 

nonlinear spatial synchrony models selected in a predator-prey metapopulation 

undergoing limited dispersal (6% of the spatial domain) and no environmental 

variability (blue solid curve) and the minimum/maximum mussel abundance across 

the entire metapopulation (red circles) as a function of the critical parameter K. The 

transition from stable equilibrium dynamics to stable limit cycles occurs for 

K > Kcritical = 7.5 and coincides with the selection of nonlinear spatial synchrony 

models. 

Figure S7: The time series of the mussel cover from the successional model with 

sample spatial synchrony analyses for a metapopulation undergoing limited dispersal 

and no environmental variability. (A) The time series of the metapopulation mussel 

cover (color bar) and sample synchrony profiles (B, C, D) taken at three randomly-

selected 10-time step windows indicated by the red outlines. (B, C, D) The blue solid 

curve indicates the spatial synchrony of the mussel cover and the blue vertical dotted 

line indicates the scale of dispersal.  

Figure S8: The time series of the mussel cover from the successional model with 

sample spatial synchrony analyses for a metapopulation undergoing limited dispersal 

and spatiotemporal environmental variability. (A) The time series of the 

metapopulation mussel cover (color bar) and sample synchrony profiles (B, C, D) 

taken at three randomly-selected 10-time step windows indicated by the red outlines. 

(B, C, D) The blue solid curve indicates the spatial synchrony of the mussel cover, 
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the green dashed curve indicates the spatial synchrony of the environment and the 

blue vertical dotted line indicates the scale of dispersal. 

Figure S9: The time series of the mussel cover from the successional model with 

sample spatial synchrony analyses for a metapopulation undergoing regional dispersal 

and no environmental variability. (A) The time series of the metapopulation mussel 

cover (color bar) and sample synchrony profiles (B, C, D) taken at three randomly-

selected 10-time step windows indicated by the red outlines. (B, C, D) The blue solid 

curve indicates the spatial synchrony of the mussel cover and the blue vertical dotted 

line indicates the scale of dispersal. 

Figure S10: The time series of the mussel cover from the successional model with 

sample spatial synchrony analyses for a metapopulation undergoing regional dispersal 

and spatiotemporal environmental variability. (A) The time series of the 

metapopulation mussel cover (color bar) and sample synchrony profiles (B, C, D) 

taken at three randomly-selected 10-time step windows indicated by the red outlines. 

(B, C, D) The blue solid curve indicates the spatial synchrony of the mussel cover, 

the green dashed curve indicates the spatial synchrony of the environment and the 

blue vertical dotted line indicates the scale of dispersal. 
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CONNECTING STATEMENT 

In the previous chapter, I developed and validated a theory of marine 

metapopulations that showed how local processes can interact with limited dispersal 

to control the regional distribution of population abundance in space and time. I 

now extend the theory to marine metacommunities and investigate the implications 

for understanding the relationship between oceanographic conditions, recruitment 

and adult cover in intertidal communities. 
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ABSTRACT 

Patterns of (adult) population abundance and community structure reflect a 

combination of local and regional processes. In marine intertidal systems, early work 

emphasized the importance of local post-settlement processes (i.e. species 

interactions) whereas recent studies have focused on the role of regional pre-

settlement processes (i.e. oceanographic conditions) controlling recruitment. Theory 

has attempted to reconcile these two perspectives by predicting that a persistent 

latitudinal gradient in oceanographic conditions produces a corresponding gradient 

in both recruitment and the strength of post-settlement processes. According to this 

theory, post-settlement processes corrode the relationship between oceanographic 

conditions and adult abundance at local scales and thus generate the observed 

mismatch between patterns of oceanographic conditions, recruitment and adult 

abundance. However, experiments have revealed no such latitudinal gradient in 

either the strength of post-settlement processes or their corrosive effect on the 

relationship between oceanographic conditions, recruitment and adult abundance.  

Here, we develop and validate a theory of dynamic marine metacommunities 

that demonstrates that dispersal controls the relative influence of pre- and post-

settlement processes on patterns of recruitment and adult abundance. In the absence 

of dispersal, regional pre-settlement processes generate matching spatiotemporal 

patterns of recruitment and adult abundance; post-settlement processes merely 

corrode the relationship between oceanographic conditions, recruitment and adult 

abundance at local scales. However, limited dispersal interacts with post-settlement 

processes and generates non-stationary spatiotemporal patterns of adult abundance 

at regional scales. This regionally constructive effect of post-settlement processes 
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causes an intermittent mismatch between the spatiotemporal patterns of recruitment 

and adult abundance, despite a strong and persistent match between oceanographic 

conditions and recruitment. 

Hence, our work potentially resolves the relative importance of pre- and 

post-settlement processes in intertidal systems and in doing so, explains the 

relationship between the spatiotemporal patterns of oceanographic conditions, 

recruitment and adult abundance. Limited dispersal promotes the regionally 

constructive effect of post-settlement processes and leads to a mismatch between the 

spatiotemporal patterns of oceanographic conditions, recruitment and adult 

abundance. The lack of dispersal allows regional pre-settlement processes to 

dominate and generate matching spatiotemporal patterns of recruitment and adult 

abundance at regional scales. 

INTRODUCTION 

Ascribing natural patterns of (adult) population abundance and community structure 

to their causal processes is a fundamental goal of ecology. In marine systems, seminal 

studies identified consistencies in the spatial patterns of population abundance and 

community structure across rocky intertidal zones (Connell 1961a, b, Paine 1966, 

Connell 1970, Dayton 1971, Menge 1976, Lubchenco and Menge 1978, Paine 1984). 

These rather strict spatial zonation patterns were attributed to the joint effects of 

species interactions and the environment. That is, the distribution of species 

abundance was generally thought to be limited by predation (Connell 1961a, Paine 

1966) in the lower intertidal and desiccation stress in the upper intertidal (Connell 

1961b). Within the zone located between the lower and upper intertidal, competition 
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(Connell 1961a, b, Dayton 1971, Menge 1976, Paine 1984), predation (Paine 1966, 

Dayton 1971, Menge 1976, Lubchenco and Menge 1978) and disturbance (Dayton 

1971, Sousa 1979) were believed to govern the distribution of population abundance 

and community structure. 

However, other studies found that patterns of population abundance, 

community structure and species interactions were more dependent upon 

recruitment (Underwood 1978, Menge and Lubchenco 1981, Underwood et al. 1983, 

Gaines and Roughgarden 1985, Menge 1991, Underwood et al. 2000). Since many 

intertidal species possess a sessile adult stage and a planktonic larval stage, this 

perspective emphasized the importance of pre-settlement processes (i.e. regional 

oceanographic conditions) affecting recruitment instead of local post-settlement 

processes (i.e. species interactions) to explain patterns of population abundance and 

community structure (Underwood et al. 1983, Gaines and Roughgarden 1985). 

 Using the California Current Large Marine Ecosystem (CCLME) as a model 

system, Roughgarden et al. (1988) attempted to reconcile these conflicting findings 

by proposing that oceanographic processes controlling recruitment determine the 

relative importance of regional pre-settlement and local post-settlement processes. 

This theory, herein referred to as the latitudinal gradient hypothesis (Fig 1), is based 

on the existence of a strong and persistent latitudinal gradient in oceanographic 

conditions along the West coast of the United States (Roughgarden et al. 1987, 

Roughgarden et al. 1988, Strub and James 1988, Connolly and Roughgarden 1998, 

1999, Connolly et al. 2001). Indeed, the California Current System bathing the West 

coast of the United States is characterized by strong equator-ward winds that 

generate coastal upwelling currents (Huyer 1983, Hickey 1998). These wind-driven 
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coastal upwelling currents cause the offshore movement of the warm, nutrient-poor 

surface layer of the water via Ekman transport (Mann and Lazier 2006) and its 

subsequent replacement by deep, cool and nutrient-rich water (Huyer 1983, Hickey 

1998, Mann and Lazier 2006). This offshore transport entrains intertidal planktonic 

larvae into upwelling fronts (Roughgarden et al. 1988, Farrell et al. 1991, Connolly 

and Roughgarden 1998). When the equator-ward winds relax, the upwelling fronts 

move onshore and allow the larvae to settle onto the intertidal zone and 

metamorphose into sessile adults (Farrell et al. 1991, Connolly and Roughgarden 

1998). Since (i) upwelling currents are stronger and more persistent, (ii) the upwelling 

season longer and (iii) the upwelling fronts farther from the shore in California than 

in the Pacific Northwest, these upwelling currents are more likely to limit 

recruitment in California than in the Pacific Northwest (Roughgarden et al. 1988, 

Connolly and Roughgarden 1998).  

Based on theses observations, Roughgarden and Connolly (1998, 1999) used 

closed (no dispersal) competition and predation models to predict that pre-

settlement processes controlling recruitment are more likely to govern community 

structure in California, where recruitment is limited, abundance is lower and species 

interactions are weaker (Connolly and Roughgarden 1998). In contrast, they 

proposed that post-settlement processes are more likely to control community 

structure in the Pacific Northwest, since recruitment is not limited, abundance is 

higher and species interactions are stronger (Connolly and Roughgarden 1998). The 

latitudinal gradient hypothesis thus predicts that a persistent gradient in 

oceanographic conditions will lead to a gradient in both the strength of post-
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settlement processes and their corrosive effect on the relationship between 

oceanographic conditions, recruitment and adult abundance (Fig 1).  

Some evidence is consistent with this hypothesis. Recruitment of mussels 

and a barnacle, Balanus glandula is dramatically higher in the northern than in the 

southern CCLME (Broitman et al. 2008).  Phytoplankton abundance is also far 

greater in the northern CCLME (Barth et al. 2007). However, surveys and 

experiments have revealed no clear latitudinal gradient in either the strength of post-

settlement processes or their corrosive effect on the relationship between 

oceanographic conditions, recruitment and adult abundance (Menge et al. 2004, 

Gouhier et al. in press). Spatiotemporal patterns of adult abundance do not simply 

reflect the latitudinal gradient observed in oceanographic conditions and recruitment 

(Broitman et al. 2008, Gouhier et al. in press). Hence, the corrosive effect of post-

settlement processes is insufficient to explain the observed mismatch between 

oceanographic conditions, recruitment and abundance in intertidal communities 

along the West coast of the United States. 

Recent modeling efforts indicate that local post-settlement processes such as 

competition and predation can interact with limited dispersal to generate complex 

regional patterns of population abundance in space and time (Gouhier et al. in press). 

Could this regionally constructive effect of post-settlement processes explain the 

observed mismatch between oceanographic conditions, recruitment and adult 

abundance? Here, we develop and validate a theory of marine metacommunities that 

incorporates both the locally corrosive and the regionally constructive effects of 

post-settlement processes on the relationship between oceanographic conditions, 

recruitment and adult abundance. In the absence of dispersal, the regionally 
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constructive effect of post-settlement processes is suppressed. Post-settlement 

processes merely corrode the matching and persistent spatiotemporal patterns of 

oceanographic conditions, recruitment and adult abundance. When dispersal is 

limited, the regionally constructive effects of post-settlement processes generate 

complex, non-stationary spatiotemporal patterns of adult abundance. This non-

stationarity leads to an intermittent mismatch between the spatiotemporal patterns of 

recruitment and adult abundance, despite a strong and persistent match between 

oceanographic conditions and recruitment. Overall, our work highlights the 

importance of dispersal for understanding the relative importance of pre- and post-

settlement processes for intertidal communities and their effects on the relationship 

between oceanographic conditions, recruitment and adult abundance. 

METHODS 

Data collection 

Adult abundance (adult percent cover) of the mussel M. californianus and the barnacle 

B. glandula was quantified annually from 1999 to 2004 at 48 sites located along the 

West coast of the United States and stretching from southern California to northern 

Washington (from 32.7 °N to 48.4 °N) (Schoch et al. 2006). For each site, the cover 

of M. californianus and B. glandula was surveyed in 10 randomly placed 0.25 m2 

quadrats for each of three 50 m transects located within the mid-intertidal zone. The 

cover of M. californianus and B. glandula was averaged across all 10 replicate quadrats 

and all three transects in order to obtain an estimate of the mean annual cover for 

each species and site. 
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We measured annual larval recruitment of barnacles and mussels from 1997 

to 2005 at 30 sites along the West coast of the United States using standard 

procedures that have been described in detail elsewhere (Menge 1992, Menge et al. 

1999, Broitman et al. 2008). Briefly, mussel recruitment rates were quantified using 

standardized plastic mesh collectors and barnacle recruitment rates were quantified 

using 10x10 cm plexiglass or PVC plates covered with “safety-walk” tape (e.g. Farrell 

et al. 1991). These materials were used because they emulate the characteristics of the 

preferred settlement substrata for barnacle and mussel larvae (Broitman et al. 2008). 

Recruits from 5-8 replicates were counted in the laboratory and standardized to the 

number of individuals per plate (100 cm2) for barnacles and the number of 

individuals per collector (~100 cm3) for mussels. Recruitment was measured on a 

monthly basis and the results were subsequently averaged to provide annual 

estimates of barnacle and mussel recruitment rates for each site. 

Mean annual sea surface temperature (SST, in °C), chlorophyll-a 

concentration (chl-a, in mg/m3) and upwelling index (in m3/s/100 m of coastline) 

data from 1997 to 2005 occurring within a 0.2 degree radius (1 degree radius for 

upwelling) seaward of each of the 48 adult abundance sites and 30 recruitment sites 

were obtained respectively from the Advanced Very High Resolution Radiometer 

(AVHRR; NOAA), the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; NASA) 

and sea level pressure maps (Pacific Fisheries Environmental Laboratory). We used 

remote sensing data to quantify sea surface temperature (SST), chlorophyll-a 

concentration (chl-a) and upwelling currents (upwelling index) instead of in situ 

measurements because the former had greater temporal and spatial coverage. 

Additionally, the broad spatial extent of remote sensing data may better reflect the 
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spatially-integrated environmental conditions experienced by intertidal populations 

(Bustamante and Branch 1996). Both the SST and chl-a data had a nominal 

resolution of 4 km, whereas the upwelling index had a coarser resolution of 1 degree 

(~111 km). Since remote sensing data are prone to errors due to cloud cover and 

aerosols that can influence captured irradiances, we excluded low quality data points 

characterized by high cloud/aerosol cover from the analysis (Bailey and Werdell 

2006). Additionally, outliers were removed from the remote sensing data series by 

computing the filtered mean (Bailey and Werdell 2006) of each variable for each site: 

   (1)
 

where p represents the total number of points within 0.2 degrees (1 degree 

for upwelling) of the site, N is the total number of points within 1.5 standard 

deviations of the mean X . These filtered environmental data series were then 

validated by using reduced major axis regression (Bailey and Werdell 2006) to relate 

them to in situ buoy measurements (chl-a: R2=0.42, p-value<10-4, n=583; SST: 

R2=0.60, p-value=0, n=536). 

The metacommunity model 

The metacommunity model describes disturbance-recovery dynamics in a network of 

(strictly) competitive communities that are connected by dispersal (Guichard 2005). 

Within communities, the successional dynamics observed in natural intertidal 

systems (Paine and Levin 1981, Paine 1984) are represented as a mean-field 

implementation of a spatial process affecting the proportional abundance of (i) the 
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subdominant barnacle A1( ) , (ii) the dominant mussel A2( ) , (iii) the wave disturbance 

W( )  and (iv) the empty substrate S( )  (Guichard et al. 2003). A maximum fraction 

α0 =1 of the proportional abundance of the dominant mussel species A2( )  can be 

displaced by wave disturbances W( ) . A proportion 1− δ0( )  of disturbances displace 

mussels through a density-dependent contact process with aggregation (Moore 

neighborhood, q = 8 ), while a proportion δ0 =10
−3  of disturbances is density-

independent. This disturbance dynamic is based on the assumption that wave 

disturbances destroy the byssal thread attachments of mussels around the edges of 

disturbed areas, thus making them temporarily more susceptible to further 

disturbance (Denny 1987, Guichard et al. 2003). Hence, newly disturbed areas allow 

the local propagation of wave disturbances to adjacent mussel beds. Once the 

disturbance has propagated away from the newly disturbed area, the area transitions 

from the ‘wave disturbed’ state to the ‘empty substrate’ state. Since our 

metacommunity model assumes a strict competitive hierarchy, mussels A2( )  are able 

to colonize a maximum fraction α2 = 0.65 of the proportional abundance of both 

the empty substrate S( )  and barnacles A1( ) , whereas barnacles are only able to 

colonize a maximum fraction α2 = 0.65 of the proportional abundance of the empty 

substrate. For both mussels and barnacles, a proportion  δ2 = 0.1 of colonization 

occurs through a density-independent process while the remaining colonization is 

density-dependent 1− δ2( ) . Mussel and barnacle colonization also depends on the 

production and recruitment of larvae. Within communities , larval production of 

barnacles A1( )  and mussels A2( )  is a function of the local proportional abundance 
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of adults Ai,x  and fecundity fx  f = 3.85( ) . The recruitment rate of barnacles and 

mussels is described by a Poisson process (Caswell and Etter 1999) Ri,x
t = 1− e−βi ,x

t

 

where βi,x
t

 integrates (i) the total number of larvae produced and retained in 

communities x  at time t  and (ii) the total number of larvae produced in other 

communities  and dispersed to communities  at time t . The dynamics of the 

model are represented by the following integro-difference equation system for 

communities  in a metacommunity consisting of n = 256  communities: 

Wx
t+1 = α0A2,x

t δ0 + 1− δ0( ) 1− 1−Wx
t( )q( )( )

Sx
t+1 =Wx

t + Sx
t −α2 A1,x

t 1− δ2( ) + δ2( )R1,xt Sxt −α2 A2,x
t 1− δ2( ) + δ2( )R2,xt Sxt

A1,x
t+1 = A1,x

t +α2 A1,x
t 1− δ2( ) + δ2( )R1,xt Sxt −α2 A2,x

t 1− δ2( ) + δ2( )R2,xt A1,xt
A2,x
t+1 = 1−Wx

t − A1,x
t − Sx

t

 

with:

 
Ri,x
t = 1− eβi ,x

t

βi,x
t = Ai,x

t fx 1− d( ) + Ai,y
t fy dD x − y( )dy∫

D( x − y ) =
3 x − y 2

2
e− x− y

3

x = u
2

n
L −1⎛

⎝⎜
⎞
⎠⎟

L = 0,...,n −1[ ]

 

where  is the dispersal kernel of barnacles and mussels resulting from larval 

transport at a constant speed and with a time-dependent settlement rate (double 

Weibull distribution (Neubert et al. 1995)), d  represents the proportion of larvae 
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being dispersed, u  represents the scale of dispersal and L represents a zero-based 

vector of community locations. 

We used a ‘no dispersal’ and a ‘limited dispersal’ treatment in order to 

untangle the locally corrosive and regionally constructive effects of post-settlement 

processes on the spatiotemporal relationship between the environment, recruitment 

and adult abundance. Under the ‘limited dispersal’ treatment, all larvae disperse to 

neighboring communities (i.e d = 1 , u = 10 : mean dispersal distance represents 

8.6% of the spatial domain), whereas all larvae are retained locally under the ‘no 

dispersal’ treatment (i.e. d = 0 ). All metacommunity model simulations were 

performed for 256 sites with periodic boundary conditions and the results were 

analyzed over 2000 post-transient time steps. Although our model focused on 

disturbance-recovery dynamics, predator-prey dynamics generate similar results 

(Gouhier et al. in press). 

Environmental variability has a significant impact on the productivity of 

intertidal populations (Menge 1992, Menge et al. 1997, Leslie et al. 2005). We 

implement this effect by varying mussel and barnacle fecundity in order to emulate 

the spatiotemporal properties of the environmental conditions observed along the 

West coast of the United States. Specifically, we implement the observed latitudinal 

environmental gradient (Fig 1,S2,S3) by varying mussel and barnacle fecundity f 

linearly from 0.2 to 7.5 over the entire spatial range f = 3.85( )  and adding 

normally-distributed white noise with zero mean and variance σ 2 = 1 . 
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Data and model analysis 

We applied the same analyses to both the survey and the model data. We used the 

correlation coefficient to assess the spatial and temporal properties of the 

relationship between mean annual environmental conditions and both mean annual 

recruitment and mean annual adult abundance. We evaluated the correlation between 

the environment and both recruitment and adult abundance for a number of 

different time lags in order to determine the temporal scale at which the relationship 

was the strongest (Fig S1, Gouhier et al. in press). Based on these results, we used a 1-

year time lag for the adult abundance correlation analysis and no time lag for the 

recruitment correlation analysis. The statistical significance of the correlations was 

determined by using a one-tailed test α = 0.05( )  on 1,000 Monte Carlo 

randomizations (Fortin and Dale 2005, Manly 2006). 

 We used spatial synchrony analysis in order to describe the spatiotemporal 

patterns in the environmental, recruitment and adult abundance data. Prior to 

conducting spatial synchrony analysis, all variables were detrended by subtracting the 

global mean time series from each site’s time series in order to remove any bias 

caused by common large-scale trends (Koenig 1999). The distances between all pairs 

of sites were then computed and used to group the detrended time series data into 

equally-spaced, 41 km-wide distance bins. The coefficient of synchrony for each bin 

was calculated by computing the correlation coefficient between the time series of all 

pairs of sites within the bin. The extent of the spatial synchrony analysis was 

restricted to half of the spatial domain in order to avoid large discrepancies in the 

number of pairs of sites within each bin (Fortin and Dale 2005). Statistical 
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significance was determined by using a one-tailed test α = 0.05( )  on 10,000 Monte 

Carlo randomizations (Fortin and Dale 2005). Specifically, for each bin, the p-value 

was calculated by shuffling the data pairs within the bin 10,000 times, computing the 

coefficient of synchrony for each randomization and then calculating the proportion 

of randomizations with a coefficient of synchrony greater than or equal to that 

obtained with the original data. For the model data, we performed spatial synchrony 

analysis on 10-time step windows in order to approximate the temporal extent of our 

survey data. However, our results are robust to window size (Gouhier et al. in press). 

We present the mean and 95% confidence intervals obtained across all 10-time steps 

windows in order to investigate the persistence of spatial synchrony patterns in time. 

RESULTS 

The effects of the latitudinal environmental gradient on 

patterns of recruitment and adult abundance: the corrosive 

effect of post-settlement processes 

We test the effect of the latitudinal environmental gradient (Fig 1, A2, A3) on 

recruitment patterns by assessing the strength of the spatial relationship across all 

years between the environment and recruitment. As predicted by the latitudinal 

gradient hypothesis, the spatial correlation across all sites between mean annual 

recruitment values and mean annual environmental variables is significant for both 

mussel and barnacle species (table 1). This significant spatial correlation is largely 

driven by southern sites where recruitment is environmentally-limited and the spatial 

correlation is strongest (table 1). Since recruitment in northern sites is not 
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environmentally limited, the spatial correlation between the environment and 

recruitment is generally weaker (table 1). The latitudinal environmental gradient is so 

strong and persistent (Fig 1A, A2, A3) that the (time) lagged spatial correlation 

between mean annual recruitment and mean annual environmental conditions 

remains consistently significant over time lags ranging from 0 to 20 years. This is 

because temporal variability in mean annual recruitment and mean annual 

environmental conditions is much weaker than the spatial variability imposed by the 

persistent latitudinal gradient (Fig A2, A3). Consistent with the latitudinal gradient 

hypothesis, this persistent spatial correlation between environmental conditions and 

recruitment occurs for southern (environmentally-limited) sites but not northern 

sites (Fig A1). These spatial patterns in the relationship between the environment 

and recruitment are predicted by metacommunity models experiencing latitudinal 

gradients in environmental conditions and either no or limited dispersal (table 1). 

 For the survey and the model data, the spatial correlation between the 

environment and adult abundance—whether performed across all, northern or 

southern sites—is inconsistent and weak compared to the correlation between the 

environment and recruitment (table 1 vs. table 2). This corrosion of the effect of the 

environment on adult abundance is likely the result of post-settlement processes that, 

according to the latitudinal gradient hypothesis, should be more prominent in 

northern sites than in southern sites (Fig 1). However, there is no clear and 

consistent difference between northern and southern sites in terms of the strength of 

the spatial correlation between the environment and adult abundance (table 2). This 

suggests that the strong and persistent latitudinal gradient in the environment is able 

to generate a similar latitudinal gradient in recruitment, but that its effect on adult 
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abundance is largely lost (Menge et al. 2004, Broitman et al. 2008, Menge et al. 2009, 

Gouhier et al. in press). 

 Analyzing the dynamics of the relationship between mean annual 

environmental conditions and mean annual recruitment or adult abundance reveals 

similar patterns in both the survey (Fig 2) and the model data (Fig 3). The spatial 

correlation between the environment and recruitment is relatively strong and 

consistent in time for all sites and southern sites (Fig 2A-B, E-F; Fig 3A-B, E-F), but 

not for northern sites (Fig 2C-D; Fig 3C-D). However, the spatial correlation 

between the environment and adult abundance is weak and inconsistent in time (Fig 

2, 3), regardless of the temporal lag used or the number of years over which the 

environmental conditions are averaged (Gouhier et al. in press). These types of 

fluctuations in the strength and sign of the correlation between the environment and 

adult abundance are predicted by metacommunity models with either limited or no 

dispersal (Fig 3). Indeed, although the correlation between the environment and 

recruitment is consistent and strong, post-settlement disturbance-recovery processes 

induce fluctuations in the abundance of mussel and barnacle populations that 

corrode the correlation between the environment and the adult abundance (Fig 3; 

Gouhier et al. in press). Hence, although the latitudinal environmental gradient 

hypothesis accurately predicts spatial patterns of recruitment in intertidal 

communities, post-settlement processes limit its ability to predict adult population 

dynamics. This corrosive effect of post-settlement processes is evident in 

metacommunities with either low or no dispersal. We now focus on the implications 

of the regionally constructive effect of post-settlement processes for spatiotemporal 

patterns of recruitment and adult abundance in marine metacommunities. 
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Understanding spatiotemporal patterns of adult abundance 

and recruitment: the constructive effect of post-settlement 

processes 

So far, we have demonstrated that the localized corrosive effect of post-settlement 

processes can lead to a weak and inconsistent spatial correlation between the 

environment and adult abundance in the survey data (Fig 2) and the metacommunity 

models with limited or no dispersal (Fig 3). However, post-settlement processes can 

also interact with limited dispersal to generate complex regional patterns of adult 

abundance (Gouhier et al. in press). This constructive effect of post-settlement 

processes at the regional scale leads to irregular fluctuations in the spatial correlation 

between the environment and adult abundance (Gouhier et al. in press; Fig 3B, D, F). 

Importantly, this constructive effect is more prevalent in mussels than in barnacles 

since the former experience post-settlement processes (i.e. disturbance-recovery 

dynamics) directly, whereas the latter experience these processes indirectly via 

competition (Fig 3B, D, F). The constructive effect is also more prevalent in 

northern sites (no environmentally-limited recruitment) than in southern sites 

(environmentally-limited recruitment) due to the effect of the latitudinal 

environmental gradient on recruitment (Fig 3D, F). 

 When we analyze the survey data across the entire spatial range using spatial 

synchrony, we see that all environmental variables undergo a quasi-linear decay in 

synchrony with lag distance, going from synchrony at small lag distances to no 

synchrony or asynchrony at large lag distances (see full circles indicating significant 

values in Fig 4A, B). A similar linear decay in spatial synchrony is observed in the 
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recruitment of B. glandula and M. californianus (Fig 4C). However, the spatial 

synchrony patterns in the adult abundance of B. glandula and M. californianus show a 

more complex nonlinear pattern, oscillating between synchrony and asynchrony with 

increasing lag distance (Fig 4D). This nonlinear pattern of spatial synchrony is a 

signature of the constructive effect of post-settlement processes and limited dispersal 

(Gouhier et al. in press). We now apply spatial synchrony analysis to our 

metacommunity models in order to understand the cause of these divergent patterns 

of recruitment and adult abundance. 

In metacommunities with no dispersal, spatial synchrony patterns of adult 

abundance and recruitment undergo the same qualitative linear decay as the 

environment, albeit (quantitatively) dampened by the corrosive effect of post-

settlement processes (Fig 5A, C). As previously discussed, this localized corrosive 

effect of post-settlement processes is more prominent in spatial synchrony patterns 

of mussel recruitment and adult abundance than in those of barnacles (Fig 5A vs. 

5C). It thus appears that the localized corrosive effect of post-settlement processes 

alone is not enough to generate the nonlinear patterns of spatial synchrony observed 

in natural intertidal metacommunities. In metacommunities with limited dispersal, 

spatial synchrony patterns of recruitment undergo the same linear decay as the 

environment (Fig 5B, D). However, spatial synchrony patterns of adult abundance 

are non-stationary and nonlinear, oscillating from synchrony to asynchrony and back 

to synchrony with increasing lag distance (Fig 5B, D). These non-stationary and 

nonlinear patterns of synchrony are caused by the constructive effect of post-

settlement processes and limited dispersal (Gouhier et al. in press); they are more 

prominent in mussels experiencing post-settlement processes directly than in 



 

 73 

barnacles experiencing them indirectly via competition (Fig 5B vs. 5D). Hence, these 

results predict that spatiotemporal recruitment patterns need not translate into 

corresponding spatiotemporal patterns of adult abundance because of the locally 

corrosive and regionally constructive effects of post-settlement processes. 

DISCUSSION 

We have developed a theory of marine metacommunities that suggests that dispersal 

controls the relative importance of pre- and post-settlement processes for patterns of 

recruitment and adult abundance in space and time. In the absence of dispersal, pre-

settlement processes generate persistent and matching regional patterns of 

oceanographic conditions, recruitment and abundance. Post-settlement processes 

merely corrode (without compromising) the relationship between oceanographic 

conditions, recruitment and abundance at local scales. When dispersal is limiting, the 

regionally constructive effect of post-settlement processes generates a transient 

mismatch between the complex and non-stationary patterns of adult abundance and 

the persistent and matching patterns of oceanographic conditions and recruitment. 

Our theory emphasizes the dynamical consequences of post-settlement processes 

instead of the static regional differences in pre-settlement processes to explain 

patterns of adult abundance and recruitment in space and time, and their relationship 

with oceanographic conditions. We now discuss the applicability and implications of 

this theory for understanding patterns of recruitment and adult abundance in 

intertidal systems around the world. 
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The relationship between patterns of recruitment and adult 

abundance 

Recent studies have found remarkable similarities in the shape (linear decay with lag 

distance) and the scale of spatiotemporal patterns of recruitment between Chile and 

the West coast of the United States (Lagos et al. 2007, Broitman et al. 2008, Lagos et 

al. 2008, Navarrete et al. 2008). These patterns of recruitment were shown to be 

associated with oceanographic conditions (Navarrete et al. 2005, Lagos et al. 2007, 

Lagos et al. 2008). Using variance partitioning methods, Lagos et al. (2008) showed 

that the spatial patterns of recruitment were mainly attributable to spatially-

structured environmental variation and space, but not the environment alone. This is 

consistent with our finding that the spatial correlation between the environment and 

recruitment is consistently strong and significant across different time lags (Fig A1): 

the spatial correlation between the environment and recruitment is predicted to 

reflect the strong spatial gradient in the environment and not the weak temporal 

variation in the environment itself. 

Metacommunity models with either limited or no dispersal predict patterns 

of recruitment whose spatial and temporal properties match those of recruitment 

patterns observed along the West coast of the United States (Fig 4, 5) and Chile 

(Lagos et al. 2007, Lagos et al. 2008). Furthermore, metacommunity models predict 

the same strong match between the spatiotemporal patterns of the environment and 

those of recruitment, regardless of dispersal (Fig 5). Hence, we suggest that patterns 

of recruitment alone cannot be used to determine whether intertidal systems are 

governed by regional differences in pre-settlement processes or the regionally 
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constructive effects of post-settlement processes and limited dispersal. Instead, one 

must compare patterns of recruitment and adult abundance. Indeed, a match 

between the spatiotemporal patterns of recruitment and adult abundance indicates 

that intertidal systems are governed by regional differences in pre-settlement 

processes (Fig 5); a mismatch between patterns of recruitment and adult abundance 

underscores the importance of the regionally constructive effects of post-settlement 

processes and dispersal. 

Applying our theory to intertidal systems around the world 

Our theory predicts that dispersal controls the relative importance of pre- and post-

settlement processes for patterns of recruitment and adult abundance. In the absence 

of dispersal, persistent regional differences in oceanographic conditions generate 

matching patterns of recruitment and adult abundance. When dispersal is limited, the 

regionally constructive effect of post-settlement processes generates a transient 

mismatch between patterns of recruitment and adult abundance despite the 

persistent match between patterns of oceanographic conditions and recruitment. We 

now evaluate the applicability of our theory to well-studied intertidal systems along 

the West coast of the United States, Chile and New Zealand. In all three of these 

systems, persistent regional differences in oceanographic conditions (i.e. 

discontinuities) controlling larval supply have been used to explain patterns of 

recruitment, population adult abundance and community structure (Roughgarden et 

al. 1988, Menge et al. 2003, Navarrete et al. 2005). 

Along the West coast of the United States, strong and persistent upwelling 

currents limit recruitment in California, whereas weak and intermittent upwelling 
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currents lead to large pulses of recruitment in the Pacific Northwest (Roughgarden et 

al. 1988, Connolly and Roughgarden 1998, 1999, Connolly et al. 2001, Broitman et al. 

2008). These regional differences in upwelling conditions were hypothesized to 

generate systematic differences in the strength of species interactions and the relative 

importance of regional pre-settlement and local post-settlement processes 

(Roughgarden et al. 1988, Connolly and Roughgarden 1998, 1999, Connolly et al. 

2001). However, these predictions were largely refuted (Menge et al. 2004). Here, we 

have shown that despite strong regional differences in upwelling currents, local post-

settlement processes interact with limited dispersal to generate the observed 

mismatch between patterns of recruitment and adult abundance. Hence, we suggest 

that in this system, the regionally constructive effect of post-settlement processes 

and limited dispersal rather than the persistent regional differences in pre-settlement 

processes explains patterns of recruitment and adult abundance in space and time. 

On the West coast of New Zealand, intermittent periods of upwelling bring 

cold, nutrient rich water to the surface and move planktonic larvae offshore (Menge 

et al. 2003). During relaxation events, these nutrients and larvae return to the shore 

and generate large pulses of larval and nutrient supply for intertidal communities 

(Menge et al. 2003). However, since upwelling currents are almost nonexistent along 

the East coast of New Zealand, the surface water layer is devoid of the nutrients that 

normally subsidize larvae and this leads to low larval supply (Menge et al. 2003). 

These persistent differences in oceanographic conditions between the East coast and 

the West coast of New Zealand lead to striking differences in the relative influence 

of pre- and post-settlement processes and species interactions on community 

structure (Menge et al. 2003). Indeed, larval recruitment, growth and species 
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interactions are stronger on the West coast than they are on the East coast (Menge et 

al. 2003). These findings are consistent with the notion that regional oceanographic 

processes determine the relative importance of pre- and post-settlement processes by 

controlling the supply of larvae (Roughgarden et al. 1988, Connolly and 

Roughgarden 1998, 1999, Connolly et al. 2001) and nutrients (Menge 1992, Menge et 

al. 2003). How can these findings be reconciled with our theory? In this case, the 

regional differences in oceanographic conditions affect two different coasts with 

divergent circulation patterns (Menge et al. 2003). Hence, there is probably little to 

no dispersal occurring between intertidal communities located on the East and West 

coasts of New Zealand. In the absence of dispersal, our theory predicts that pre-

settlement processes will generate persistent and matching patterns of recruitment 

and adult abundance. Hence, these observations are compatible with our predictions. 

The final case study, Chile, presents a much more formidable challenge to 

our theory. Indeed, oceanographic conditions along the coast of Chile essentially 

mirror those observed along the West coast of the United States (Navarrete et al. 

2005, Navarrete et al. 2008): persistent upwelling currents limit recruitment in the 

northern region whereas frequent relaxation events allow large supplies of recruits in 

the southern region (Navarrete et al. 2005). These environmentally-mediated 

differences in the supply of larvae lead to weak species interactions in the north and 

strong species interactions in the south (Navarrete et al. 2005), as predicted by the 

latitudinal gradient hypothesis. It is possible that the strong discontinuity in 

oceanographic circulation that separates the northern and southern regions 

(Navarrete et al. 2005) effectively limits dispersal among regions, and thus prevents 
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the regionally-constructive effect of post-settlement processes observed along the 

West coast of the United Stats. 

This hypothesis can be tested by comparing levels of connectivity across 

discontinuities along the West coast of the United States and Chile. Along the West 

coast of the United States, recent work has demonstrated the existence of genetic 

clines, but not isolation by distance, in the barnacle Balanus glandula (Sotka et al. 2004, 

Sotka and Palumbi 2006). Hence, regional differences in oceanographic circulation 

patterns limit but do not prevent connectivity between sites from different regions 

along the West coast of the United States. Similar work on connectivity across 

oceanographic discontinuities in Chile would provide the information necessary to 

validate our claims. 

Conclusion 

Our theory of marine metacommunities emphasizes the importance of determining 

levels of connectivity among communities along environmental gradients and 

discontinuities in order to determine the relative influence of pre- and post-

settlement processes on the regional distribution of recruitment and adult 

abundance. Such information could be used to validate our theory and explain the 

relationship between oceanographic conditions, recruitment and adult abundance in 

intertidal ecosystems. 
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FIGURE LEGENDS 

Figure 1: The latitudinal gradient hypothesis holds that a latitudinal gradient in the 

strength of offshore coastal upwelling currents (A) leads to a corresponding gradient 

in the relative influence of pre- and post-settlement processes (B) on the dynamics of 

adult abundance and recruitment for intertidal species that undergo pelagic larval 

dispersal (C, D). (A) The latitudinal gradient in the strength of mean annual offshore 

transport caused by coastal upwelling currents is highly significant (red linear 

regression line: p=0, R2=0.66, n=248) and persistent in time (colors code for 

different years): offshore transport north of Cape of Blanco (horizontal dashed line) 

is weak and sometimes negative (i.e. net onshore transport) whereas offshore 

transport south of Cape Blanco is strong and persistent. (B) Weak offshore transport 

north of Cape Blanco does not limit recruitment in northern intertidal populations 

(red open circles): recruitment and adult abundance dynamics are expected to reflect 

post- rather than pre-settlement processes (B, C). (B) Persistent and strong offshore 

transport south of Cape Blanco limits recruitment in southern intertidal populations: 
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recruitment and adult abundance dynamics are expected to reflect pre- rather than 

post-settlement processes (B, D). The data plotted in panels C and D are simulated 

and used to illustrate the predictions of the latitudinal gradient hypothesis. 

Figure 2: The dynamics of the spatial correlation between mean annual recruitment 

(circles) or adult abundance (triangles) and mean annual environmental conditions 

across all sites (A, B), northern sites (C, D) and southern sites (E, F) for intertidal 

metacommunities along the West coast of the United States. The correlation 

between mean annual recruitment or adult abundance and mean annual [chl-a] 

(green), SST (dark blue) and upwelling index (red) were calculated for the barnacle B. 

glandula (A, C, E) and the mussel M. californianus (B, D, F). Full circles or triangles 

indicate statistical significance based on 1000 permutations (p < 0.05). 

Figure 3: The dynamics of the spatial correlation between mean annual recruitment 

(circles) or adult abundance (triangles) and mean annual environmental conditions 

across all sites (A, B), northern sites (C, D) and southern sites (E, F) for model 

metacommunities with either no dispersal (A, C, E) or limited dispersal (B, D, F). 

Blue and red lines represent respectively barnacle and mussel species. Full circles 

indicate statistical significance based on 1000 permutations (p < 0.05). 

Figure 4: Spatial synchrony of mean annual environmental conditions (A) and mean 

annual recruitment (C) along the West coast of the United States from 1998 to 2004 

across all sites. Spatial synchrony of mean annual environmental conditions (B) and 

mean annual adult abundance (D) along the West coast of the United States from 

2000 to 2003 across all sites. The recruitment and population abundance datasets 

have different spatial and temporal extents and are thus presented in separate panels. 

Full circles indicate statistical significance based on 10,000 permutations (p < 0.05). 
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Figure 5: Spatial synchrony of mean annual environmental conditions (green), 

recruitment (blue) and adult abundance (red) for mussels (C, D) and barnacles (A, B) 

in model metacommunities with either no dispersal (A, C) or limited dispersal (B, D). 

The spatial synchrony patterns plotted represent the mean spatial synchrony (±95% 

confidence interval) observed across all 10-time step windows. The blue vertical 

dashed line represents the scale of dispersal. 
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TABLES AND FIGURES 

Table 1: Correlation coefficient between mean annual recruitment and mean annual environmental conditions. 

 Survey data Metacommunity model 
  No dispersal Limited dispersal 

 

Region 
ρ(recruitment, 

[chl-a]) 
ρ(recruitment, 

SST) 
ρ(recruitment,  

upwelling) 
ρ(recruitment, 
environment) 

ρ(recruitment, 
environment) 

All sites 0.45 -0.39 -0.59 0.50 0.66 
Northern sites 0.32 0.03 0.01 0.22 0.23 

B. glandula 
(barnacle) 

Southern sites 0.43 -0.49 -0.24 0.79 0.59 
All sites 0.41 -0.30 -0.36 0.51 0.56 
Northern sites 0.33 -0.12 0.29 0.29 0.20 

M. californianus 
(mussel) 

Southern sites 0.41 -0.36 -0.25 0.46 0.48 
Note: Statistically significant correlations are represented in bold and based on 1000 permutations (p-value < 0.05) 
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Table 2: Correlation coefficient between mean annual adult abundance and mean annual 1-year lagged environmental conditions. 

 Survey data Metacommunity model 
  No dispersal Limited dispersal 

 

Region 
ρ(abundance, 

[chl-a]) 
ρ(abundance, 

SST) 
ρ(abundance,  

upwelling) 
ρ(abundance, 
environment) 

ρ(abundance, 
environment) 

All sites 0.28 0 -0.22 -0.49 -0.53 
Northern sites 0.33 0.09 0.27 -0.17 -0.11 

B. glandula 
(barnacle) 

Southern sites -0.09 0.29 -0.02 -0.14 -0.39 
All sites 0.12 -0.19 -0.18 0.32 0.17 
Northern sites -0.22 0.22 0.14 0.08 0.02 

M. californianus 
(mussel) 

Southern sites 0.27 -0.25 0.01 0.27 0.14 
Note: Statistically significant correlations are represented in bold and based on 1000 permutations (p-value < 0.05)  
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APPENDIX A 

SPATIAL AND TEMPORAL PATTERNS OF RECRUITMENT 

IN INTERTIDAL METACOMMUNITIES ALONG THE WEST 

COAST OF THE UNITED STATES 

FIGURE LEGENDS 

Figure A1: The dynamics of the spatial correlation between mean annual 

recruitment and mean annual environmental conditions at different time lags from 

1998 to 2004 across all sites (A-C), northern sites (D-F) and southern sites (G-I) for 

intertidal metacommunities along the West coast of the United States. Correlations at 

time lag time t represent the relationship between the mean annual recruitment in 

year i and the mean environmental conditions observed during year i-t. Full circles 

indicate statistical significance based on 1000 permutations (p < 0.05). 

Figure A2: The mean annual environmental conditions (A, C, E) and the local 

temporal correlation between mean annual recruitment and mean annual 

environmental conditions (B, D, F) for B. glandula populations along the West coast 

of the United Sates. (A, C, E) Open circles represent mean annual environmental 

conditions at each site from 1998 to 2004 and the red lines represent the linear 

regression between each environmental variable and the latitude. (B, D, F) Positive 

and negative correlations are represented respectively in red and blue open circles. 

Circle size is proportional to correlation strength (maximum circle size corresponds 

to a  correlation of 0.94). The horizontal dashed line represents the location of Cape 

Blanco (43°N). 
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Figure A3: Mean annual environmental conditions (A, C, E) and local temporal 

correlation between mean annual recruitment and mean annual environmental 

conditions (B, D, F) for M. californianus populations along the West coast of the 

United Sates. (A, C, E) Open circles represent mean annual environmental 

conditions at each site from 1998 to 2004 and the red lines represent the linear 

regression between each environmental variable and the latitude. (B, D, F) Positive 

and negative correlations are represented respectively in red and blue open circles. 

Circle size is proportional to correlation strength (maximum circle size corresponds 

to a  correlation of 0.94). The horizontal dashed line represents the location of Cape 

Blanco (43°N). 
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CONNECTING STATEMENT 

In the previous chapters, I developed and validated a theory of marine intertidal 

systems that showed that local processes interact with limited dispersal and generate 

patterns of population abundance and connectivity at regional scales. I now 

investigate the implications of these regional patterns of connectivity for the 

implementation of marine reserve networks. 
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ABSTRACT 

The proliferation of efficient and destructive fishing practices has promoted the 

depletion of commercial stocks around the world and caused significant collateral 

damage to marine habitats and non-commercial species. Recent work has shown that 

networks of marine reserves can serve both conservation and fishery management 

goals by protecting marine habitats and communities from collateral damage, and 

promoting the abundance of commercial species within reserves and in neighboring 

exploited areas. Theory predicts that marine reserves should be separated by the 

scale of dispersal of the target species in order to maintain connectivity among 

reserves. However, current theoretical models do not account for population 

dynamics and their ability to interact with dispersal to generate patterns of 

population abundance and connectivity at spatial scales that are much larger than the 

scale of dispersal. 

Here, we use a dynamic metapopulation model to extend existing theory and 

show that the optimal spatial configuration of reserve networks depends on the rate 

of dispersal. Low rates of dispersal prevent the occurrence of patterns of population 

abundance and connectivity at large spatial scales. Under this scenario, the optimal 

size and spacing of marine reserves is the scale of dispersal. However, high rates of 

dispersal promote patterns of population abundance and connectivity at spatial scales 

that are larger than the scale of dispersal. In this case, using the scale of dispersal as 

the size and spacing of reserves reduces mean abundance, whereas using the scale of 

natural patterns of population abundance maximizes mean abundance. Additionally, 

we show that shifting the location of reserves in time reduces the performance gap 
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between suboptimal and optimal reserve networks, and thus provides a novel way of 

dealing with uncertainty about connectivity among marine populations.  

Our approach emphasizes the importance of accounting for patterns of 

population abundance and connectivity imposed by the interaction between 

population dynamics and dispersal when designing marine reserve networks. Marine 

reserve networks that maintain these patterns maximize mean abundance and 

persistence in both protected and unprotected areas, and thus simultaneously satisfy 

conservation and fishery goals. 

INTRODUCTION 

Fisheries around the globe are collapsing under the weight of overexploitation 

(Botsford et al. 1997, Pauly et al. 1998, Pauly et al. 2002, Worm et al. 2006). 

Continuous socioeconomic pressure and technological advances have caused the 

serial depletion of commercial species and a progressive reduction in the mean 

trophic level of exploited marine stocks (Pauly et al. 1998, Pauly et al. 2002). The 

intensive and often destructive nature of large-scale commercial fishing practices has 

also inflicted significant collateral damage to non-commercial species and marine 

habitats (Botsford et al. 1997, Pauly et al. 2002, Carr et al. 2003). Marine reserves—

areas protected from all destructive and extractive activities—can play an important 

role in reversing some of the harm caused by unsustainable fisheries (Allison et al. 

1998, Halpern 2003, Lubchenco et al. 2003, Lester et al. 2009). 

Recent reviews have shown that marine reserves protect marine habitats and 

increase the biomass, abundance, species richness and size of organisms within 

reserves (Halpern 2003, Lester et al. 2009). Additionally, the spillover of adults and 
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larvae from reserves into neighboring exploited areas can significantly improve 

fishery yields (Roberts et al. 2001, Gell and Roberts 2003). Indeed, theory has shown 

that managing fisheries via marine reserves produces yields that are equivalent to 

those obtained under traditional effort-based techniques (Hastings and Botsford 

1999, Botsford et al. 2003). Hence, marine reserves can both protect endangered 

communities within and promote the growth of exploitable stocks beyond their 

borders. 

The appeal of using marine reserves to serve both conservation and fishery 

goals has spurred much research into their optimal configuration (Hastings and 

Botsford 1999, Botsford et al. 2001, Hastings and Botsford 2003). Theory predicts 

that networks of marine reserves are better than single reserves of equivalent size 

because networks can buffer against catastrophes and variability in both 

environmental and oceanographic conditions (Allison et al. 1998, Allison et al. 2003, 

Gaines et al. 2003, Lubchenco et al. 2003). However, this buffer against extrinsic 

variability comes at a cost: the effectiveness of reserve networks is critically 

dependent upon the size and spacing of individual reserves (Botsford et al. 2001, 

Gaines et al. 2003, Hastings and Botsford 2003). The current consensus is that 

marine reserves should be separated by the scale of dispersal of the target species in 

order to maintain connectivity among reserves (Botsford et al. 2001, Botsford et al. 

2003, Gerber et al. 2003, Shanks et al. 2003, Sale et al. 2005, Halpern et al. 2006). 

The optimal size of individual marine reserves then depends on the primary 

objective of reserve networks (Hastings and Botsford 2003). Reserve networks 

designed primarily to manage fisheries should be comprised of small reserves in 

order to maximize spillover into exploited areas, whereas reserve networks designed 
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to meet conservation targets should be comprised of large reserves that minimize 

spillover (Hastings and Botsford 2003, Sale et al. 2005). 

However, these guidelines for optimal reserve configurations were derived 

using equilibrium models that largely ignore population fluctuations caused by 

natural disturbance-recovery (Paine and Levin 1981, Guichard et al. 2003, Guichard 

et al. 2004, Gouhier and Guichard 2007, Guichard and Steenweg 2008, Gouhier et al. 

in press) or predator-prey dynamics (Paine 1966, Jansen and de Roos 2000, Gouhier et 

al. in press). These population fluctuations are particularly germane to marine reserve 

design because they can interact with dispersal to generate complex patterns of 

population abundance in space and time that promote connectivity among 

populations over spatial scales that are larger than the scale of dispersal (Jansen and 

de Roos 2000, Guichard 2005, Gouhier et al. in press). Hence, using the scale of 

dispersal to build reserve networks for such systems could significantly diminish 

connectivity among reserves and thus potentially reduce mean population abundance 

and persistence. 

Here, we extend existing theory by incorporating population fluctuations into 

a dynamic metapopulation model. We show that the optimal spatial configuration of 

reserve network depends on the maintenance of natural patterns of population 

abundance and connectivity between reserves. When low rates of dispersal prevent 

the occurrence of patterns of population abundance and connectivity at large spatial 

scales, the optimal size and spacing of reserves is the scale of dispersal. However, 

when high rates of dispersal promote patterns of population abundance and 

connectivity at spatial scales that are larger than the scale of dispersal, the optimal 
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size and spacing of reserves is the scale of patterns imposed by the interaction 

between population dynamics and dispersal. 

METHODS 

The model 

We use a simple metapopulation model based on the bipartite life cycle commonly 

found in marine invertebrate species to investigate the effectiveness of marine 

reserves. Like previous frameworks, our model assumes that populations consist of 

sessile adults (in this case, mussels) whose planktonic larvae disperse to neighboring 

populations (Botsford et al. 2001, Botsford et al. 2003, Guichard et al. 2004, 

Guichard 2005). Within populations, the successional dynamic observed in natural 

intertidal systems (Paine and Levin 1981, Paine 1984) is represented as a mean-field 

implementation of a spatial process affecting the proportional abundance of (i) the 

dominant mussel m( ) , (ii) the wave disturbance w( )  and (iii) the empty substrate 

s( )  (Fig. 1A; Guichard et al. 2003). A maximum fraction α0 =1 of the proportional 

abundance of the dominant mussel species m( )  can be displaced by wave 

disturbances w( ) . A proportion 1− δ0( )  of the disturbance displaces mussels 

through a density-dependent contact process with aggregation (Moore 

neighborhood, q = 8 ), while a proportion δ0 =10
−3  of the disturbance is density-

independent. This disturbance dynamic is based on the assumption that wave 

disturbances destroy the byssal thread attachments of mussels around the edges of 

disturbed areas, thus making them temporarily more susceptible to further 

disturbance (Denny 1987, Guichard et al. 2003). Hence, newly disturbed areas allow 
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the local propagation of wave disturbances to adjacent mussel beds. Once the 

disturbance has propagated away from the newly disturbed area, the area transitions 

from the ‘wave disturbed’ state to the ‘empty substrate’ state. Similarly to 

disturbance, a maximum fraction α2 = 1  of the empty substrate s( )  can be 

colonized by mussels. A proportion  δ2 = 0.1 of colonization occurs through a 

density-independent process, while the remaining colonization is density-dependent 

1− δ2( ) . Mussel colonization also depends on the production and recruitment of 

larvae (Fig 1B). Within populations , larval production is a function of local mussel 

proportional abundance mx( )  and fecundity fx  f = 3.75( ) . The recruitment rate 

Cx
t  is described by a Poisson process (Caswell and Etter 1999) Cx

t = 1− e−βx
t

, where 

βx
t  integrates (i) the total number of larvae produced and retained in populations x  

at time t  and (ii) the total number of larvae produced in other populations  and 

dispersed to populations  at time t (Fig 1B). The dynamics of the model are 

represented by the following integro-difference equation system for populations  in 

a metapopulation consisting of n = 256  populations: 

wx
t+1 = α0mx

t δ0 + 1− δ0( ) 1− 1− wx
t( )q( )( )

sx
t+1 = wx

t + sx
t −α2Cx

t sx
t δ2 + mx

t 1− δ2( )( )
mx

t+1 = 1− wx
t − sx

t  (1) 

with: 
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Cx
t = 1− eβx

t

βx
t = mx

t fx 1− d( ) + my
t fy dD x − y( )dy∫

D( x − y ) =
3 x − y 2

2
e− x− y

3

x = u
2

n
L −1⎛

⎝⎜
⎞
⎠⎟

L = 0,...,n −1[ ]
 (2)

 

where  is the mussel dispersal kernel resulting from larval transport at a 

constant speed and with a time-dependent settlement rate (double Weibull 

distribution, Fig. 1B; see Neubert et al. (1995)), d  represents the proportion of 

larvae being dispersed, u  represents the scale of dispersal and L represents a zero-

based vector of population locations. The mean scale of dispersal was kept constant 

at 8.6% of the spatial extent for all simulations by setting u = 10 . We applied 

periodic boundary conditions to the model and simulated the dynamics for 256 

coastal populations. The model has been shown to produce complex dynamical 

patterns for a broad range of parameter values that control both local and regional 

dynamics (Guichard 2005, Guichard and Steenweg 2008, Gouhier et al. in press). 

Here, we use parameter values that generate irregular abundance cycles within 

populations and complex spatiotemporal patterns of abundance at the regional scale 

to assess the effectiveness of marine reserve networks for dynamic metapopulations. 

The predictions of the model have been validated in natural intertidal systems along 

the West coast of the United States (Gouhier et al. in press). 
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Implementing marine reserve networks 

We follow existing frameworks (Botsford et al. 2001, Botsford et al. 2003) and model 

marine reserve networks by varying larval production (i.e. fecundity) spatially (Fig 

1C). Although previous studies have used a square wave to describe the spatial 

variation in larval production (Botsford et al. 2001, Botsford et al. 2003), we use a 

sinusoidal function to simulate a more gradual change in fecundity across space (Fig 

1C). However, both the traditional square wave and the sinusoidal function yield 

qualitatively similar results. The amplitude λ  of the sinusoidal function controls the 

difference in fecundity between the center of marine reserves and the center of 

unprotected areas, whereas the frequency ϕ  of the sinusoidal function controls the 

size and the spacing of marine reserves (Fig 1C). Implementing marine reserves in a 

metapopulation of N  populations thus yields fecundity f (p)  for population p  

along the coastline: 

f p( ) = λ ⋅ sin 2πϕ p

N
⎛
⎝⎜

⎞
⎠⎟
+ f   (3) 

where λ  and ϕ  are respectively the amplitude and the frequency of the 

sinusoidal function and f = 3.75  is the global mean fecundity. Since the frequency 

ϕ  of the sinusoidal function controls both the spacing and the size of reserves (i.e. 

ϕ  = size of individual reserves = distance between reserves), these parameters 

cannot be manipulated independently. Nevertheless, our results are robust to more 

traditional marine reserve implementations in which the spacing and the size of 

reserves remain unlinked (Botsford et al. 2001). We keep the total protected area in 

our simulations constant at 50% of the coastline, a value that falls within the range 
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(20-70%) advocated by both theoretical (Game et al. 2009) and applied (Airame et al. 

2003, Gell and Roberts 2003) studies. 

We chose to implement marine reserves without assuming that they would 

boost global mean fecundity. Hence, for all of our simulations, the global mean 

fecundity was kept constant f = 3.75( ) : marine reserve networks merely change the 

spatial distribution of fecundity without affecting its global mean. Our study thus 

describes the worst case scenario whereby marine reserves do not reduce 

exploitation overall but displace it beyond their boundaries (Ewers and Rodrigues 

2008): increased fecundity in protected areas is offset by a concomitant decrease of 

fecundity in unprotected areas. However, our results also apply when this 

assumption is relaxed and marine reserves boost global mean fecundity. 

We evaluated the effectiveness of four main types of marine reserve 

networks for metapopulations with either low d = 0.4( )  or high d = 1.0( )  rates of 

dispersal. We first tested a null marine reserve network by which protected sites were 

allocated randomly. The second type of reserve network consisted of protecting the 

most abundant sites based on a snapshot of the entire metapopulation at time step 

t = 1000 . For the third type of reserve network, we used the scale of dispersal as the 

size and spacing of marine reserves. The final type of reserve network consisted of 

using the scale of patchiness as the size and spacing of marine reserves. Since marine 

reserve implementations vary from partially- to fully- protected reserve areas (Lester 

et al. 2009), we evaluated each of our four types of reserve networks for a range of 

protection levels by varying the amplitude λ  of the sinusoidal function describing 

the spatial variation in fecundity f  such that 0 < λ ≤ f . This allowed us to assess 
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the performance of fully-protected (λ = f : difference in fecundity of 100% between 

protected and unprotected areas) and partially-protected reserves (0 < λ < f : 

difference in fecundity of <100% between protected and unprotected areas). 

Additionally, we tested the effect of alternating the location of protected and 

unprotected areas in time by systematically shifting the phase of the sinusoidal 

function describing the spatial distribution of fecundity at each τ th  time step for 

fully-protected reserves (λ = f ). These dynamic shifts were performed for a series 

of different periods τ  such that: 

f p,t,τ( ) = f ⋅ sin 2πϕ p

N
+θτ

⎛
⎝⎜

⎞
⎠⎟
+ f   (4) 

where f p,t,τ( )  is the fecundity of population p  at time t , f = 3.75  is the 

mean fecundity, ϕ  is the frequency of the sinusoidal function, N = 256  is the total 

number of populations and θτ =
t

τ
⎢
⎣⎢

⎥
⎦⎥
π  defines the phase shift undergone by the 

spatial distribution of fecundity f p,t,τ( )  for each period τ . These dynamic shifts 

in the location of protected areas were applied to marine reserves whose size and 

spacing were based on (i) the scale of dispersal and (ii) the scale of patchiness. All 

simulations were run for a total of 3000 time steps: from time step 0 to 1000 without 

reserves and from time step 1001 to 3000 with reserves. The analyses were 

conducted over the last 1000 time steps in order to avoid transient dynamics. 
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Model analysis 

Measuring the temporal and spatial scales of patterns 

We applied the autocorrelation function (ACF) to the mussel abundance in order to 

(i) quantify naturally-occurring patterns in the absence of marine reserves and (ii) 

assess the impact of marine reserves on pattern formation in metapopulations 

consisting of N = 256  populations. The ACF measures the correlation ck  of a given 

variable (here, mussel abundance m ) between pairs of populations as a function of 

the lag distance k  that separates them (Fortin and Dale 2005): 

ck =

1
N

mi − m( ) mi+ k − m( )
i=1

N − k

∑
1
N

(mi − m)
2

i=1

N

∑
 for k = 0,1,2,...,K  (5) 

Here, we apply the ACF in space and time to quantify the spatial and temporal 

patterns in the metapopulation model. For each marine reserve design we used the 

spatial range k
ck =0

, defined as the spatial lag at which the ACF first reaches zero 

(Fig 1F), to quantify the scale of patchiness in the metapopulation (Fortin and Dale 

2005). Specifically, for each of the 1000 post-transient time steps t , the ACF was 

applied across the entire metapopulation to calculate the spatial range k
t

ck =0
. The 

average across those 1000 time steps was then defined as the scale of patchiness. 

We also used the ACF to measure the temporal patterns in the 

metapopulation. To quantify the residence time of abundance cycles within 

populations (i.e. local cycles), we applied the ACF to each population across 1000 

time steps and calculated the temporal range, which is analogous to the spatial range 
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and defined as the temporal lag at which the ACF first reaches zero. We then 

averaged the temporal range across all populations to quantify the residence time of 

local cycles. This provided us with a measure of the average duration or residence 

time of local abundance cycles. 

  We also used the temporal ACF to measure the return time of local cycles by 

determining the non-zero temporal lag k
k≠0
ck =max ck( )  at which the ACF reaches a 

maximum. Finally, we used the spatial ACF to quantify the return time of regional 

patterns. This was accomplished by applying the ACF and measuring the spatial 

range k
t

ck =0
 for each post-transient time step t . The non-zero time lag T  that 

minimized the mean absolute difference in spatial range ΔT  was used as the return 

time of regional patterns: 

ΔT =
1

N
k

ck =0
t − k

ck =0
t+T

t=1

N

∑  for T = 1,2,3,...,K   (6) 

The effect of marine reserves on synchrony and extinction risk 

Kendall’s coefficient of concordance was used as a measure of synchrony among 

populations. Kendall’s coefficient of concordance is a nonparametric statistic that 

quantifies the association between multiple ranked variables with values that range 

from 0 to 1 (Zar 1999). It is commonly used to measure the level of agreement 

among several rankings and, as such, has been suggested as the most effective 

method for determining synchrony among multiple data series (Buonaccorsi et al. 

2001). The calculation was performed by first ranking   (Ri )  the abundance time 
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series of each population. Kendall’s coefficient of concordance Φ( )  was then 

calculated as (Zar 1999): 

Φ =
Ri
2 −

Ri∑( )2
n

∑
S2 n3 − n( ) − S τ∑

12

  (7) 

where S = 256  represents the total number of populations, n = 1000  

represents the total number of post-transient time steps, and τ∑  is an adjustment 

for tied ranks within each population such that for  ti  ties in the  ith  group of ties and 

 j  groups of tied ranks: 

  
τ∑ = (ti

3 − ti
i=1

j

∑ )    (8) 

We also quantified the effect of marine reserve networks on metapopulation 

persistence by measuring the probability of extinction of the entire metapopulation 

in response to a global disturbance, which we defined as normally-distributed white 

noise with zero mean and variance 0.7 (Earn et al. 2000). The global disturbance was 

applied to the abundance of each population at each time step and the probability of 

extinction was calculated by determining the proportion of time steps for which all 

populations saw their abundance reach zero. 
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RESULTS 

The relevance of naturally-occurring patterns for designing 

marine reserve networks 

The cost of ignoring patterns 

Marine reserve networks based on the protection of random sites or the protection 

of the most abundant sites (at a given time t) ignore naturally-occurring patterns of 

population abundance in space and time. In doing so, they impose spatial patterns of 

variation in fecundity that have deleterious effects on metapopulations with either 

low or high rates of dispersal (Fig 2). The deleterious effects of these marine reserve 

networks depend on the rate of dispersal. Indeed, dispersal acts as a low-pass filter 

on fecundity for all dispersed larvae (Roughgarden 1974). Hence, only marine reserve 

networks that alter fecundity at spatial scales that are larger than or equal to the scale 

of dispersal will have an effect on the dispersed larvae. 

When the rate of dispersal is low (d=0.4), locally retained larvae are not 

filtered by the low-pass dispersal filter and thus respond to the spatial variation in 

fecundity induced by marine reserve networks (Fig 2A,C,E,G). In this case, marine 

reserve networks based on the protection of random or the most abundant sites 

reduce the scale of patchiness, promote extinction risk and reduce global mean 

abundance (Fig 2A,E,G). The strength of these effects increases with the level of 

protection within reserves (Fig 2 A,C,E,G). Since the rate of dispersal is low, 

synchrony remains low and largely impervious to the implementation of marine 

reserve networks (Fig 2C). 
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When the rate of dispersal is high (d=1.0), all larval production is filtered by 

dispersal (Roughgarden 1974). Hence, only variation in fecundity at spatial scales that 

are larger than that of dispersal will affect metapopulations. Since marine reserve 

networks based on the random allocation of protected sites lead to spatial variation 

in fecundity at spatial scales that are much smaller than that of dispersal, they have 

no discernable effect on the metapopulation (Fig 2B,D,F,H). For marine reserve 

networks based on the protection of the most abundant sites, increasing the level of 

protection within reserves reduces global mean abundance and increases extinction 

risk without affecting the scale of patchiness or synchrony (Fig 2B,D,F,H). 

Using patterns to optimize the spatial configuration of marine reserve networks 

We have shown that ignoring natural patterns of population abundance when 

implementing marine reserve networks can lead to counterproductive results. We 

now show that the optimal spatial scale of marine reserve networks depends on the 

rate of dispersal and its effect on patterns of population abundance. Low dispersal 

rates limit patterns of population abundance and connectivity at large spatial scales 

(Fig 1D-F, compare the scale of patchiness in Fig 2A vs. 2B, Fig B1), and thus 

promote the scale of dispersal as the optimal spatial scale for marine reserve 

networks (Fig 2,3). However, high dispersal rates generate regional patterns of 

population abundance (Fig 1E-F, Fig 2A vs. 2B, Fig B2) and thus promote the scale 

of patchiness as the optimal spatial scale for marine reserve networks (Fig 2,3). 

Indeed, when the rate of dispersal is low (d=0.4), increasing the level of 

protection within reserves leads to an increase in global mean abundance and a 

reduction in extinction risk for marine reserve networks based on the scale of 
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dispersal (Fig 2E,G). Synchrony and the scale of patchiness remain unchanged (Fig 

2A,C). When the level of protection within reserves is maximal, the scale of dispersal 

is the optimal spatial scale for the size and spacing of marine reserves (Fig 

3A,C,E,G). Indeed, using the scale of dispersal to implement marine reserve 

networks maximizes global mean abundance, mean abundance in both protected 

sites and unprotected sites and minimizes extinction risk (Fig 3C,E,G). However, for 

marine reserve networks based on the scale of patchiness, increasing the level of 

protection of marine reserves reduces global mean abundance and promotes 

extinction risk (Fig 2E,G). 

Conversely, when the dispersal rate is high (d=1.0), increasing the level of 

protection within reserves reduces global mean abundance and increases extinction 

risk for marine reserve networks based on the scale of dispersal (Fig 2F,H). 

Additionally, marine reserve networks based on the scale of dispersal destroy 

naturally-occurring patterns by inducing synchrony (Fig 2B,D). When marine reserve 

networks are based on the scale of patchiness, increasing the level of protection 

within reserves increases global mean abundance and reduces extinction risk without 

affecting the scale of patchiness or synchrony (Fig 2B,D,F,H). When the level of 

protection within reserves is maximal, the scale of patchiness is the optimal spatial 

scale for the size and spacing of marine reserves (Fig 3D,F,H). Indeed, using the 

scale of patchiness to implement marine reserve networks maximizes global mean 

abundance, mean abundance in both protected sites and unprotected sites, and 

minimizes extinction risk (Fig 3D,F,H).  
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Righting the wrongs: the restorative properties of dynamic 

marine reserve networks 

We now investigate the effect of alternating the location of protected and 

unprotected sites in time on the effectiveness of marine reserve networks based on 

the scale of dispersal or the scale of patchiness. When the rate of dispersal is low 

(d=0.4), dynamically alternating the location of protected and unprotected sites at 

temporal scales that are larger than the return time of local abundance cycles (i.e. 11-

40 time steps) promotes global mean abundance and reduces extinction risk without 

affecting the scale of patchiness or synchrony for marine reserve networks based on 

the scale of dispersal or the scale of patchiness (Fig 4A,C,E,G). Global mean 

abundance for reserve networks based on the scale of patchiness and those based on 

the scale of dispersal are equivalent for dynamic reserves at temporal scales ~11-40 

time steps (table A1). 

When the rate of dispersal is high (d=1.0), dynamic reserve networks based 

on the scale of dispersal perform much better than their static counterparts (Fig 

4B,D,F,H; Fig B1A,C). Dynamically alternating the location of protected and 

unprotected sites at temporal scales that fall between the residence time and the 

return time of local abundance cycles (i.e. 5-11 time steps) leads to a large increase in 

global mean abundance and a consequent decrease in extinction risk (Fig 4F,H, table 

A2). This phenomenon is analogous to the effect of dispersal as a low-pass filter on 

spatial variation in fecundity. Here, dispersal ‘smoothes’ the variation in fecundity in 

space and time as long as the spatial distribution of fecundity is dynamically shifted 

at temporal scales that are smaller than the return time of local abundance cycles (Fig 
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B1C). Hence, by frequently shifting the spatial distribution of reserves, dynamic 

designs counteract the deleterious effects of static reserve networks by preventing 

the onset of synchrony and resurrecting natural patterns (Fig 4B,D; Fig B1A,C). 

When reserve networks are based on the scale of patchiness, dynamic shifts 

occurring at temporal scales that are smaller than the return time of regional patterns 

decrease global mean abundance (Fig 4H). Only when dynamic shifts occur at 

temporal scales that are larger than the return time of regional patterns does global 

mean abundance increase (Fig 4H; Fig B1B,D; table A2). These results show that 

dynamic marine reserve networks can benefit metapopulations regardless of the rate 

of dispersal by (i) counteracting the deleterious effects associated with the 

implementation of static reserve networks based on the wrong spatial scales and (ii) 

improving the performance of static reserve networks based on the optimal spatial 

scales (table A1-2). 

Additionally, we show that the effectiveness of static and dynamic reserve 

networks can be explained by understanding the interaction between population 

dynamics and dispersal, and its effect on spatial patterns of population abundance, 

recruitment and connectivity (Appendix C). 

DISCUSSION 

Our work extends existing theory by showing that reserve networks must account 

for natural patterns of population abundance and connectivity generated by the 

interaction between dispersal and population dynamics. Marine reserve networks that 

embrace these natural patterns maximize abundance and persistence in both 

protected and unprotected areas, and thus simultaneously fulfill conservation and 
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fishery management goals. Additionally, we show that dynamic marine reserve 

networks can mitigate the risks associated with selecting the wrong spatial 

configuration, thus extending the applicability of reserve networks to marine systems 

for which connectivity remains either poorly documented or completely unknown. 

Designing optimal marine reserve networks 

Current theory suggests that marine reserve networks should maintain connectivity 

among reserves by using the scale of dispersal of the target species as the distance 

between reserves (Botsford et al. 2001, Botsford et al. 2003, Gerber et al. 2003, 

Halpern et al. 2006). However, this assumes that the scale of dispersal and the scale 

of connectivity are one and the same. This assumption is correct for equilibrium 

metapopulations, but not necessarily correct for nonequilibrium metapopulations. 

Indeed, successional (Guichard et al. 2004, Guichard 2005, Gouhier and Guichard 

2007, Gouhier et al. in press) and predator-prey (Jansen and de Roos 2000, Gouhier et 

al. in press) dynamics can induce strong population fluctuations in nonequilibrium 

metapopulations. These fluctuations can interact with dispersal to generate patterns 

of population abundance and connectivity at spatial scales that are much larger than 

the scale of dispersal (Jansen and de Roos 2000, Guichard et al. 2004, Guichard 

2005, Gouhier et al. in press). 

We show that in such nonequilibrium metapopulations, the rate of dispersal 

controls the scale of patchiness and connectivity. When low rates of dispersal limit 

patterns of population abundance and connectivity, the optimal size and spacing of 

marine reserves is the scale of dispersal. When high rates of dispersal promote 

patterns of population abundance and connectivity over scales that are much larger 
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than the scale of dispersal, using the scale of dispersal as the size and spacing of 

marine reserves reduces mean population abundance and persistence. However, 

using the scale of patchiness imposed by natural patterns as the size and spacing of 

marine reserves maximizes mean population abundance and persistence. These 

results highlight the importance of using the scale of connectivity, which may or may 

not be the same as the scale of dispersal, in order to design effective marine reserve 

networks. Reserve networks that account for natural patterns of population 

abundance and connectivity facilitate the recruitment of larvae into populations 

undergoing favorable conditions and thus maximize overall productivity, persistence 

and abundance. Recruitment subsidies from (optimally) protected sites maximize 

abundance in unprotected sites and thus allow these reserve networks to (optimally) 

satisfy both conservation and fishery goals. 

Managing uncertainty in marine systems by using dynamic 

reserve networks 

Uncertainty exerts a strong influence on the design and effectiveness of marine 

reserves (Allison et al. 1998, Allison et al. 2003, Botsford et al. 2003, Halpern et al. 

2006). Periodic catastrophes (Allison et al. 2003), variable oceanographic currents 

(Gaines et al. 2003) and environmental change (Allison et al. 1998) favor the 

development of reserve networks instead of single reserves of the same size. The 

spatial redundancy afforded by reserve networks provides a natural protection 

against localized catastrophes (Allison et al. 2003) and reduces, to a certain extent, 

the impact of regional oceanographic and environmental variability (Gaines et al. 

2003). However, the effectiveness of reserve networks is highly dependent upon 



 

 119

their spatial configuration (Botsford et al. 2001, Gaines et al. 2003). Indeed, as we 

have shown (Fig 2-4, Appendix C), the effectiveness of marine reserve networks 

depends on their ability to maintain connectivity among individual marine reserves. 

However, connectivity and dispersal are poorly understood in marine systems and 

subject to considerable oceanographic and environmental variability (Botsford et al. 

2001, Botsford et al. 2003, Grantham et al. 2003, Halpern et al. 2006). Hence, the 

performance of marine reserve networks is highly susceptible to uncertainty about 

the rates and scales of dispersal and connectivity (Botsford et al. 2001, Botsford et al. 

2003). 

The simplest way of dealing with this source of uncertainty is to increase the 

size of individual marine reserves by a predetermined insurance factor (Allison et al. 

2003). Larger reserves are more likely to be self-sufficient and thus less dependent 

upon the uncertain arrival of subsidies from neighboring reserves. However, making 

reserves larger reduces spillover into neighboring exploited areas and thus limits the 

potential of reserve networks to fulfill fishery management goals (Hastings and 

Botsford 2003, Sale et al. 2005). Uncertainty about connectivity and dispersal can 

also be built into models of marine reserve networks in order to determine the 

optimal spatial configuration under different scenarios (Halpern et al. 2006). Here, 

we show that dynamic reserve networks can provide an alternative method for 

dealing with uncertain patterns of connectivity among reserves. 

Dynamic reserves are being increasingly championed because they can (1) 

track dynamic resources, (2) prevent diminishing returns by shifting protection from 

recovered sites to vulnerable sites, and (3) allow access to resources accrued within 

recovered sites (Game et al. 2009). Here, we show that shifting the location of 
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protected and unprotected sites can significantly reduce the performance gap 

between reserve networks that are based on the true scale of connectivity and those 

that are not. Indeed, dynamic reserve networks are able to track the spatiotemporal 

patterns of abundance generated by the interaction between population fluctuations 

and dispersal, even if reserve networks are based on the wrong spatial scale of 

connectivity. Hence, dynamic reserves can limit the risks associated with 

implementing marine reserve networks when patterns of connectivity are uncertain 

or unknown.  

However, the success of dynamic reserves is dependent upon the temporal 

scale at which the protection of sites is shifted. Recent theory has shown that 

dynamic reserve networks can increase herbivore density in coral reef systems as 

long as the temporal shifts in the location of reserves occur at the proper temporal 

scale (Game et al. 2009). Indeed, reserves must be maintained long enough to allow 

sites to fully recover (Gerber et al. 2003, Claudet et al. 2008), but not so long as to 

result in diminished returns (Game et al. 2009). Here, we show that in dynamic 

metapopulations, the optimal temporal scale for switching the location of reserves 

depends on the temporal scale of population fluctuations. When the location of 

reserves is shifted at the proper temporal scale (between the residence time and the 

return time of population cycles when dispersal is low and after the return time of 

regional patterns when dispersal is high), dynamic reserve networks can perform 

better than optimal static reserve networks (table A1-2). Hence, our work 

demonstrates that by implementing dynamic marines, one can trade-off the need for 

spatial information about connectivity at the regional scale for temporal information 

about population abundance at the local scale. 
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FIGURE LEGENDS 

Figure 1: Diagram of the metapopulation model and description of its dynamics. (A) 

Local successional dynamic within each population is based on the interplay between 

the propagation of wave disturbances w( )  within mussel beds m( )  and the 

subsequent recolonization of empty substrate s( )  by mussels. (B) A fraction d of 

mussel larvae disperse to neighboring populations via a symmetrical dispersal kernel 

whose mean distance represents 8.6% of the spatial extent of the metapopulation. 

(C) Marine reserves (protected sites) are allocated by varying fecundity spatially using 

a sinusoidal function. The blue (red) sections of the curve represent sites that are 

designated as protected (unprotected) sites and the blue (red) filled circles indicate 

the center of marine reserves (unprotected areas) where fecundity is maximal 

(minimal). The vertical dashed line represents the mean fecundity across the 

metapopulation, which is kept constant at 3.75 for all simulations. (D, E) The effect 

of dispersal on metapopulation time series as illustrated by two extreme cases. In the 

absence of dispersal (D), populations fluctuate independently thereby preventing 

pattern formation (F). When the rate of dispersal is high (E), population fluctuations 

interact with dispersal to generate patchiness and abundance and connectivity at 

spatial scales that are larger than the scale of dispersal (F). 

Figure 2: The effect of varying the level of protection within reserves on the scale of 

patchiness (A, B), synchrony (C, D), the probability of extinction (E, F) and global 

mean abundance (G, H) for metapopulations with low (d=0.4, first column) and high 

(d=1.0, second column) rates of dispersal. The level of protection within reserves 

represents the percentage difference in fecundity between protected and unprotected 

sites. Each curve corresponds to a different marine reserve design: random allocation 
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of protected sites (black), protection of the most abundant sites at the onset of the 

simulations (green), protection of sites separated by the scale dispersal (blue) and 

protection of sites separated by the scale of patchiness (red). The results represent 

the means and standard errors from 10 replicate simulations. 

Figure 3: The effect of varying the distance between marine reserves on synchrony 

(A, B), the probability of extinction (C, D), global mean abundance (E, F) and the 

mean abundance in protected (blue) and unprotected sites (red) (G, H) for 

metapopulations with low (d=0.4, first column) and high (d=1.0, second column) 

rates of dispersal. Here, the level of protection within reserves is set to the 

maximum. Blue and red vertical dashed lines represent respectively the scale of 

dispersal and the scale of patchiness. The results represent the means and standard 

errors from 10 replicate simulations. 

Figure 4: The effect of dynamically alternating the location of protected and 

unprotected areas in time on the scale of patchiness (A, B), synchrony (C, D), the 

probability of extinction (E, F) and global mean abundance (G, H) for 

metapopulations with low (d=0.4, first column) and high (d=1.0, second column) 

rates of dispersal. Here, the level of protection within reserves is set to the 

maximum. Each curve represents a different type of marine reserve design: 

protection of sites separated by the scale of dispersal (blue) and protection of sites 

separated by the scale of patchiness (red). Black, blue and red vertical dashed lines 

represent respectively the residence time of local cycles, the return time of local 

cycles and the return time of regional patterns. The horizontal green dashed lines 

indicate the global mean abundance from baseline simulations in which marine 
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reserves are allocated statically. The results represent the means and standard errors 

from 10 replicate simulations. 
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APPENDIX A  

A COMPARISON OF THE PERFORMANCE OF DIFFERENT MARINE RESERVE 

NETWORKS 

Table A1: The performance of different marine reserve designs based on their effect on global mean abundance for 

metapopulations with low rates of dispersal (d=0.4). The values represent percent differences in the mean global abundance 

between marine reserve designs described in rows and baseline marine reserve designs described in columns. 

  

Percentage change in mean global abundance for metapopulations with low rates 
of dispersal (d=0.4) 

  Static reserves Dynamic reserves 

  

No reserves 
Scale of 
dispersal 

Scale of 
patchiness 

Scale of 
dispersal 

Scale of 
patchiness 

No reserves 0 - - - - 
Scale of 
dispersal 2 0 - - - Static 

reserves Scale of 
patchiness -6 -8 0 - - 
Scale of 
dispersal 6 4 13 0 - Dynamic 

reserves Scale of 
patchiness 6 4 13 0 0 
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Table A2: The performance of different marine reserve designs based on their effect on global mean abundance for 

metapopulations with high rates of dispersal (d=1.0). The values represent percent differences in the mean global 

abundance between marine reserve designs described in rows and baseline marine reserve designs described in columns. 

  

Percentage change in mean global abundance for metapopulations with high rates 
of dispersal (d=1.0) 

  Static reserves Dynamic reserves 

  

No reserves 
Scale of 
dispersal 

Scale of 
patchiness 

Scale of 
dispersal 

Scale of 
patchiness 

No reserves 0 - - - - 
Scale of 
dispersal -17 0 - - - Static 

reserves Scale of 
patchiness 9 31 0 - - 
Scale of 
dispersal 3 24 -5 0 - Dynamic 

reserves Scale of 
patchiness 12 35 3 9 0 
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APPENDIX B 

THE EFFECTS OF STATIC AND DYNAMIC MARINE 

RESERVE NETWORKS ON METAPOPULATION DYNAMICS 

FIGURE LEGENDS 

Figure B1: The effect of static and dynamic marine reserve networks on naturally 

occurring patterns in metapopulations with high rates of dispersal (d=1.0). 

Abundance time series of metapopulations subjected to static marine reserve designs 

that use (A) the scale of dispersal or (B) the scale of patchiness as the distance 

between protected sites. Abundance time series of metapopulations subjected to 

dynamic marine reserve designs based on (C) the scale of dispersal and the residence 

time of cycles (3 time steps) or (D) the scale of patchiness and the return time of 

regional patterns (90 time steps). All reserves were implemented at time step 200 

(highlighted in red) and side plots of fecundity indicate their spatial configuration. 

For dynamic designs, alternating schemes are represented in red and blue. 

Figure B2: The effect of static and dynamic marine reserve networks on naturally 

occurring patterns in metapopulations with low rates of dispersal (d=0.4). 

Abundance time series of metapopulations subjected to static marine reserve designs 

that use (A) the scale of dispersal or (B) the scale of patchiness as the distance 

between protected sites. Abundance time series of metapopulations subjected to 

dynamic marine reserve designs based on (C) the scale of dispersal and the residence 

time of cycles (3 time steps) or (D) the scale of patchiness and the return time of 

regional patterns (90 time steps). All reserves were implemented at time step 200 
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(highlighted in red) and side plots of fecundity indicate their spatial configuration. 

For dynamic designs, alternating schemes are represented in red and blue. 

FIGURES 

 

Figure B1 
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Figure B2 
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APPENDIX C 

PREDICTING THE EFFECTIVENESS OF MARINE RESERVE 

NETWORKS 

We use a general statistical framework to understand the effects of static and 

dynamic marine reserve networks on dynamic metapopulations. Since all marine 

reserve networks considered here alter the spatial distribution (i.e. the spatial 

variance) of fecundity without affecting global mean fecundity, we can use Jensen’s 

inequality as a statistical framework to interpret the effect of marine reserves on 

global mean abundance.  

Jensen’s inequality states that for decelerating nonlinear functions, the 

variance of the independent variable tends to depress the response variable (Ruel and 

Ayres 1999). Since abundance (the response variable) is a saturating function of 

fecundity (the independent variable), Jensen’s inequality predicts that increased 

spatial variance in fecundity will tend to decrease mean abundance. This occurs 

because populations experiencing low fecundities contribute more to mean 

abundance than those experiencing high fecundities. It is this asymmetry between the 

contribution of low and high fecundity populations that leads to a net decrease in 

global mean abundance (Ruel and Ayres 1999). 

Our simulation results have demonstrated (Figs 2-4) that the effects of 

Jensen’s inequality are avoidable: maintaining natural patterns of population 

abundance and connectivity can allow the ‘selective aggregation’ of recruits into 

favorable sites. Such ‘selective aggregation’ can reverse the asymmetry between the 

contribution of low and high fecundity sites and thus increase global mean 
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abundance. The goal is then to determine whether the contradictions between 

Jensen’s inequality and our simulations can be explained by a simple metric that 

measures ‘selective aggregation’.  

Here, we use three spatial metrics that measure aggregation at different life 

stages (Bolker 2003): (i) the spatial correlation ρ m,β( )  between abundance m  and 

recruitment β  measures the ability of recruits to arrive in populations undergoing 

favorable conditions; (ii) the spatial correlation ρ m, f( )  between abundance m  and 

fecundity f  measures the association between abundance and the location of 

reserves; (iii) the spatial correlation ρ β, f( )  between recruitment β  and fecundity 

f  measures the degree to which recruits are retained within reserves. All three 

metrics were computed for- and averaged over- 1000 post-transient time steps. 

In our simulations, ρ m, f( )  is consistently weak and unrelated to global 

mean abundance because (i) dispersal naturally erodes the spatial correlation between 

fecundity and abundance and (ii) abundance undergoes dynamic cycles (Fig C1). 

ρ β, f( )  is a much stronger metric, but its strength and sign vary with both the scale 

of marine reserve networks and the rate of dispersal, and it is a poor predictor of 

global mean abundance (Fig C1). However, ρ m,β( )  shows a very strong and 

consistent positive relationship with global mean abundance, regardless of the rate of 

dispersal (Fig C1).  

The correlation between abundance and recruitment (i.e. ρ m,β( ) ) 

demonstrates that the contradictions between the simulation results and Jensen’s 

inequality occur when marine reserve networks are designed using the proper spatial 
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scales. Indeed, reserve networks designed using the appropriate spatial scales account 

for natural patterns of population abundance and connectivity, and thus promote the 

‘selective aggregation’ of recruits into populations undergoing favorable conditions 

(Fig C1). This ‘selective aggregation’ reverses the asymmetry predicted by Jensen’s 

inequality and allows populations undergoing favorable conditions to contribute 

more to the global mean abundance than those undergoing unfavorable conditions, 

thereby boosting global mean abundance. 
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FIGURE LEGENDS 

Figure C1: Relating the correlation between (i) abundance and recruitment ρ m,β( ) , 

(ii) abundance and fecundity ρ m, f( )  and (iii) recruitment and fecundity ρ β, f( )  

(A, B) to the to the global mean abundance (C, D) for different marine reserve 

designs applied to metapopulations with low (A, C) and high (B, D) rates of 

dispersal. Each colored bar represents a different type of marine reserve design: 

protection of sites separated by the scale dispersal (dark blue), protection of sites 

separated by the scale of patchiness (light blue), protection of sites separated by the 

scale of dispersal with dynamic shifts based on the return time of local cycles (11 

time steps; dark yellow) and protection of sites separated by the scale of patchiness 

with dynamic shifts based on the return time of regional patterns (88 time steps; dark 



 

 138 

red). The results represent the means and standard errors from 10 replicate 

simulations. 

FIGURES 

 

Figure C1 
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CONNECTING STATEMENT 

In the previous chapters (chapter 1, 2), I assessed the relative importance of biotic 

and abiotic processes in relatively simple spatial ecological systems and determined 

the implications for the preservation of natural systems (chapter 3). In the next 

chapter, I investigate the role of biotic and abiotic processes for the maintenance of 

stability in more complex spatial food webs. 
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ABSTRACT 

Synchrony has fundamental but conflicting implications for the persistence and 

stability of food webs at local and regional scales. In a constant environment, 

compensatory dynamics between species can maintain food web stability, but factors 

that synchronize population fluctuations within and between communities are 

expected to be destabilizing. We studied the dynamics of a food web in a 

metacommunity to determine how environmental variability and dispersal affect 

stability by altering compensatory dynamics and average species abundance. When 

dispersal rate is high, weak correlated environmental fluctuations promote food web 

stability by reducing the amplitude of compensatory dynamics. However, when 

dispersal rate is low, weak environmental fluctuations reduce food web stability by 

inducing intraspecific synchrony across communities. Irrespective of dispersal rate, 

strong environmental fluctuations disrupt compensatory dynamics and decrease 

stability by inducing intermittent correlated fluctuations between consumers in local 

food webs, which reduce both total consumer abundance and predator abundance. 

Strong correlated environmental fluctuations lead to (i) spatially asynchronous and 

highly correlated local consumer dynamics when dispersal is low and (ii) spatially 

synchronous but intermediate local consumer correlation when dispersal is high. By 

controlling intraspecific synchrony, dispersal mediates the capacity of strong 

environmental fluctuations to disrupt compensatory dynamics at both local and 

metacommunity scales. 
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INTRODUCTION 

The persistence and stability of natural populations appears improbable given the 

enormous diversity of species interactions and the highly variable nature of the 

environment. Theory both confirms (May 1973) and refutes this intuition (Allesina 

and Pascual 2008; Ives and Carpenter 2007), but recent surveys of the literature 

(Loreau et al. 2002; McCann 2000; Murdoch et al. 2003) identify a number of scale-

dependent processes that can stabilize populations embedded within food webs. 

Natural food webs persist because these stabilizing mechanisms play out within a 

hierarchy of biotic and abiotic processes that operate at local to regional scales 

(Amarasekare 2008; DeAngelis and Waterhouse 1987; McCann et al. 2005; Polis et 

al. 2004; Rooney et al. 2006) 

Our perception of stability depends in part on the level of organization at 

which it is measured. For example, increasing species richness may increase the 

variability of individual populations whilst reducing the aggregate variability of total 

abundance in the community (Ives et al. 1999; May 1973; Tilman 1999; Yachi and 

Loreau 1999). This hierarchical perspective is particularly valuable when the 

nonlinear dynamics of food webs are studied (McCann et al. 1998; Vandermeer 

2006). For instance, in mean-field food web models experiencing constant 

environmental conditions, competition for a common resource can generate large 

oscillations in the consumer dynamics that can be dampened and stabilized by the 

presence of a generalist predator that preferentially feeds upon the dominant 

competitor (McCann et al. 1998). In this case, the compensatory consumer 
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oscillations (i.e. interspecific asynchrony) sustain and buffer the fluctuations of the 

generalist predator and stabilize the entire food web.  

Recent research suggests that compensatory dynamics may be disrupted by 

environmental perturbations (both press and pulse) that can cause periods of 

correlated (coherent) interspecific fluctuations at one or more temporal scales (Keitt 

2008; Vasseur and Fox 2007; Vasseur et al. 2005). Any process that can cause 

correlated species fluctuations will affect food web stability at local scales, but factors 

that can induce synchronous species populations across space will influence food 

web stability at a regional scale (Blasius et al. 1999). How then do dispersal and 

stochastic environmental variability correlate population (intraspecific synchrony) 

and community (interspecific synchrony) dynamics so that local destabilizing effects 

propagate up to the metacommunity scale?  

Intraspecific synchrony across subpopulations is generated by three well-

known processes: spatially correlated environmental variation (Moran 1953), high 

rates of dispersal between subpopulations, and strong interactions with mobile 

predators or parasites (Liebhold et al. 2004). The Moran effect and dispersal have 

been shown to interact to increase population synchrony (Fontaine and Gonzalez 

2005). This type of synchrony is predicted to destabilize populations and increase 

regional extinction risk. In contrast, intraspecific asynchrony can maintain food web 

stability at both local and regional scales. Limited dispersal and movement of 

individuals over space can decouple local densities from growth and dampen local 

population dynamics (Briggs and Hoopes 2004). When accompanied by intraspecific 

asynchrony, this decoupling promotes stability at regional scales through spatial 

averaging (Briggs and Hoopes 2004), or by allowing high-density populations to 
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subsidize or rescue other populations (Blasius et al. 1999; Earn et al. 2000). 

Depending on the extent of dispersal, these local and regional processes can interact 

and have either similar or contrasting effects on food web stability (Maser et al. 

2007). 

Synchrony can also be observed between species within food webs. At small 

scales, such interspecific synchrony can be driven by environmental fluctuations 

(Greenman and Benton 2005; Keitt 2008; Ranta et al. 2006; Ripa and Ives 2003; 

Vasseur and Fox 2007) or by changes in the interaction strength of consumer species 

(McCann et al. 1998). These same studies predict that interspecific synchrony will 

destabilize local food webs (Vandermeer 2006). In contrast, Vasseur and Fox (2007) 

reported that synchronous responses by consumers to stochastic environmental 

fluctuations can promote food web stability by dampening predator and consumer 

oscillations. Although this effect greatly reduced interspecific asynchrony between 

consumers within the keystone consumer configuration (McCann et al. 1998), it did 

not result in correlated consumer fluctuations. Thus, how robust compensatory 

dynamics are to the synchronizing effects of the environment and dispersal remains 

an important and unresolved question (Gonzalez and Loreau, in press). 

Here, we study the dynamics of a simple food web model (Maser et al. 2007; 

McCann et al. 1998; Vasseur and Fox 2007) embedded within a metacommunity and 

assess the relative importance of intra- and interspecific synchrony for stability. We 

show that environmental fluctuations interact with dispersal to affect food web 

stability through their combined influence on intra- and interspecific synchrony. In 

metacommunities experiencing high dispersal, weak environmental fluctuations 

stabilize food webs by reducing the amplitude of endogenous dynamics, whilst 
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strong environmental fluctuations can induce intermittent spatial and temporal 

patterns of correlated consumer dynamics. However, low dispersal prevents the 

onset of intraspecific synchrony, which allows the destabilization of population 

fluctuations by the environment and the emergence of spatially persistent 

interspecific synchrony. These results are robust to changes in the intrinsic dynamics 

of the food web and to the nature and temporal structure of environmental 

fluctuations. By controlling intraspecific synchrony, dispersal mediates the effect of 

strong environmental fluctuations on compensatory dynamics at both local and 

metacommunity scales. 

METHODS 

We used a spatially-explicit metacommunity implementation (Maser et al. 2007) of 

the mean-field food web model analyzed by McCann et al. (1998). We focused on 

the keystone food web configuration in which a superior (C1) and an inferior 

consumer (C2) compete for a common resource R and undergo asynchronous 

oscillations (i.e. compensatory dynamics) (Fig. 1A, Table 1). Coexistence in this 

model is maintained by the generalist predator’s (P) predilection for the superior 

competitor (Table 1). The consumers and the predator exhibit a type-2 functional 

response and the resource R undergoes logistic growth. Although the basic model 

can display many dynamical behaviors, we used the same parameter values as 

Vasseur and Fox (2007) in order to generate stable limit cycles in the mean-field 

model (Table 1). We also tested the robustness of our results to alternative food web 

dynamics and implementations of environmental noise (see Appendix B).  
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Metacommunity structure 

The metacommunity consists of a 256 x 256 grid of cells with periodic boundary 

conditions. Each cell contains a complete community described by the following 

difference equation system:  

ΔP(x,y) = −MP +
JPP ΩPC1

C1 + 1−ΩPC1( )C2[ ]
ΩPC1

C1 + 1−ΩPC1( )C2 + C0

ΔC1(x,y) = −MC1
C1 +

ΩC1R
JC1C1R

R + R01
−

ΩPC1
JPPC1

ΩPC1
C1 + 1−ΩPC1( )C2 + C0

ΔC2(x,y) = −MC2
C2 +

ΩC2R
JC2C2R

R + R02
−

1−ΩPC1( )JPPC2

ΩPC1
C1 + 1−ΩPC1( )C2 + C0

ΔR(x,y) = rR 1− R
K

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ −

ΩC1R
JC1C1R

R + R01
−
ΩC2R

JC2C2R

R + R02

 (1) 

where ΔP(x,y) , ΔC1(x,y) , ΔC2(x,y) and ΔR(x,y) respectively represent 

the change in the abundance of predator P, consumer C1, consumer C2 and resource 

R at location (x,y). The model parameter descriptions and values are given in table 1. 

At each time step, 2562 focal cells are randomly selected and updated in order 

to approximate a continuous time process (Durrett and Levin 1994). Each focal cell 

F is updated by first iterating its own set of difference equations and then allowing all 

species to disperse between the focal cell and one of its eight closest neighbors. 

Dispersal is implemented for all species as a simple passive diffusion process defined 

as the product of the maximum dispersal rate d (hereafter termed dispersal) and the 

differential in abundance between the focal cell F and its randomly selected neighbor 

N (Maser et al. 2007; McCann et al. 2000). Specifically, the abundance of each 

population at time step t+1 is: 
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AF
t+1 = AF

t − d AF
t − AN

t( )
AN
t+1 = AN

t + d AF
t − AN

t( )
  (2) 

where AF
t  and AF

t+1 respectively represent the population abundances of each species 

at time step t and t+1 in focal cell F. AN
t , AN

t+1 are their respective homologues for 

the randomly selected neighbor N.  

In order to reduce the length of transients, we initialized the metacommunity 

by assigning identical population abundances to all cells (R=0.9, C1=0.5, C2=0.5, 

P=0.1). However, our results are robust to both random and spatially heterogeneous 

initial abundances. All analyses were performed after discarding the first 1000 time 

steps as transients. 

Environmental variability 

Environmental variability was implemented as a stochastic process with strength σξ  

and cross-correlation ρξ  affecting the mortality rates of consumers C1 and C2 

(Vasseur and Fox 2007). The mortality rates of the consumers were allowed to vary 

in time by using two cross-correlated time series generated by the product of the 

Cholesky factorization of the 2x2 variance-covariance matrix B and a 2xn matrix A 

of random draws from a normal distribution (0, 1) (Vasseur and Fox 2007) (3): 

ξ = BA =
σξ ρξσξ

ρξσξ σξ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

a11 ... a1n
a21 ... a2n

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= σξ

a11 + ρξa21 ... a1n + ρξa2n

ρξa11 + a21 ... ρξa1n + a2n

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

Specifically, the consumer mortality rate of all consumer populations in the 

metacommunity was updated at the beginning of each time step j so that: 

MCi
( j) = MCi

eξi ( j )   (4) 
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where MCi  represents the median consumer mortality rate for consumer Ci 

and ξ ~ N2 0,Σ( ). Hence, the environmentally-mediated mortality rates for all 

consumer populations varied over time but remained spatially homogeneous. 

Although the results presented below were all generated using environmental 

fluctuations with no temporal structure (i.e. white noise), our findings are robust to 

temporally autocorrelated environmental fluctuations (i.e. red noise, see Appendix 

B). 

Model analysis 

Food web stability 

We computed food web stability at local and global scales. At the global scale, each 

species’ metacommunity time series was determined by spatially-averaging the 

abundance time series across the entire metacommunity. Using these 

metacommunity time series, we measured each species’ mean abundance μ, temporal 

variance σ  and global stability (μ /σ ). For each species, local food web stability was 

determined by randomly selecting 100 cells and computing the mean abundance μCell

, temporal variance σCell  and stability (μCell /σCell) within each cell. Local food web 

stability (μL /σ L ) was then computed by averaging the within-cell stability (μCell /σCell

) across all 100 randomly selected cells. We used this method for calculating local 

food web stability because of its efficiency and its equivalence to the more intuitive 

(but costly) method of averaging the within-cell stability of all 2562 cells in the 

metacommunity. 
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Intraspecific synchrony 

Kendall’s coefficient of concordance was used as an index of intraspecific synchrony 

among local populations. Kendall’s coefficient of concordance is a nonparametric 

statistic that measures the association between multiple ranked variables (Zar 1999). 

It is commonly used to measure the level of agreement among several rankings and, 

as such, has been suggested as the most effective method for determining synchrony 

between multiple data series (Buonaccorsi et al. 2001). In order to limit simulation 

time, we computed intraspecific synchrony on a random subset of 100 cells instead 

of the entire metacommunity. Test simulations confirmed that computing 

intraspecific synchrony over a subset of 100 cells or the entire metacommunity 

yielded equivalent results. The calculation was performed by first ranking   (Ri )  each 

species’ abundance time series in 100 randomly selected cells. Kendall’s coefficient of 

concordance W( )  was then calculated for each species as (Zar 1999): 

W =
Ri
2 −

Ri∑( )2
n

∑
S2 n3 − n( ) − S τ∑

12

  (5) 

where S=100 represents the total number of randomly selected cells, n=1000 

represents the total number of post-transient time steps, and τ∑  is an adjustment 

for tied ranks within each cell such that for  ti  ties in the  ith  group of ties and  j  

groups of tied ranks: 

  
τ∑ = (ti

3 − ti
i=1

j

∑ )    (6) 
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Global consumer correlation 

The global consumer correlation was calculated by taking the cross-correlation of the 

metacommunity consumer time series: 

ρG =
1

nσC1
σC2

C1(t) − μC1( ) C2 (t) − μC2( )
t=1

n

∑   (7) 

where n=1000 represents the number of time steps, and μCi
, σCi

 represent 

respectively the mean and standard deviation of the global abundance time series of 

consumer Ci . Ci(t)  represents the global abundance of consumer Ci  at time step t. 

Determining the effect of environmental noise upon compensatory dynamics 

At the local scale - To determine how correlated environmental noise affects the 

consumer dynamics at the local scale, we analyzed the consumer time series of 100 

randomly selected cells. For each cell j, we split the local consumer time series into w 

100-time step windows and computed the local consumer correlation ρL , j ,w : 

ρL , j ,w =
1

nσC1, j ,w
σC2, j ,w

C1, j ,w (t) − μC1, j ,w( ) C2, j ,w (t) − μC2, j ,w( )
t=n w−1( )+1

nw+1

∑  (8) 

where n=100 time steps and μCi , j ,w
, σCi , j ,w

 represent respectively the mean 

and standard deviation of the local abundance time series of consumer Ci  in cell j 

during time window w.  

Within each time window w, the minimum ρL ,w min( )  and the maximum 

ρL ,w max( )  local consumer correlations were computed across all 100 cells: 



 

 151

 

ρL ,w min
= min ρL ,1,w ,ρL ,2,w ,…,ρL ,100,w{ }

ρL ,w max
= max ρL ,1,w ,ρL ,2,w ,…,ρL ,100,w{ }

  (9) 

 These spatial minimum and maximum consumer correlations were then averaged 

over all k time windows: 

ρL min
=
1

k
ρL ,i min

i=1

k

∑

ρL max
=
1

k
ρL ,i max

i=1

k

∑
  (10) 

The mean spatial minima/maxima of local consumer correlations ρL min
,ρL

max
( )  

were computed in order to assess the joint effects of environmental fluctuations and 

dispersal on local compensatory dynamics. 

At the metacommunity scale - To determine the effect of correlated noise upon 

consumer dynamics at the metacommunity scale, we decomposed the global 

consumer time series into (1) their regular endogenous fluctuations and (2) the 

residuals representing the effect of correlated environmental noise. We performed 

this decomposition using two fitting routines: an aggressive fit based on cubic 

smoothing splines and a more conservative sinusoidal fit based on the dominant 

frequency of the consumer dynamics. We used both methods in order to ensure that 

our analysis was robust to the specifics of the fitting techniques. 

The cubic smoothing spline routine attempts to approximate data by finding 

an adjustable compromise between the smoothness of the fit and its fidelity to the 

data. Specifically, the cubic spine s was generated for the time series of each 

consumer by minimizing: 
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p yi − s xi( )( )2
i=1

n

∑ + 1− p( ) d2s

dx2
⎛
⎝⎜

⎞
⎠⎟xi

xn∫
2

dx   (11) 

where p is a smoothness parameter set to 10-4 and x and y respectively represent the 

time steps and the consumer abundances. The fitted cubic splines were used to 

approximate the consumers’ endogenous dynamics. The residuals ri were then 

computed for each consumer i as the difference between the spline fit si time series 

and the abundance time series yi : 

ri = yi − si  (12) 

Additionally, a sinusoidal trend was fitted to the consumer abundance time 

series by using spectral analysis to determine the existence and the dominant 

frequency of periodic fluctuations in each consumer’s time series. Nonlinear least 

squares analysis was then used to fit a sinusoidal model to the time series such that: 

y = acos ωx( ) + b   (13) 

where y represents the predicted consumer time series, a is the fitted 

coefficient, ω  is the consumer time series’ dominant frequency, x is the time step 

and b is the mean of the consumer time series. The sinusoidal fit served as a 

conservative approximation of the consumers’ endogenous dynamics because it is 

based solely on the dominant frequency of the consumer time series, whereas the 

more aggressive cubic spline fit is not constrained by a single frequency. As with the 

cubic splines, the residuals from the sinusoidal fit represented the effect of the 

correlated environmental fluctuations. 

Correlation analysis was then performed using the trends and residuals from 

both the spline and the sinusoidal decompositions in order to determine (1) the 

correlation between the consumers’ fitted trends (i.e. the correlation of the 
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endogenous consumer dynamics) and (2) the correlation of the consumer residuals. 

This analysis allowed us to demonstrate the effect of environmental fluctuations 

upon each component of the metacommunity consumer time series. 

RESULTS 

Food web stability in the absence of environmental 

fluctuations 

We first investigate the effect of dispersal on food web stability in metacommunities 

experiencing constant environmental conditions. When dispersal is extremely low (d 

< 0.001), our stochastic approximation of the continuous-time model breaks down 

and leads to large changes in the mean abundance of all species (Fig. 2B). The quasi-

extinctions of consumer C2 and predator P (Fig. 2B) allow the trivial disruption of 

compensatory dynamics (i.e. ρG > 0 ; Fig. 2F). We now focus on the broad section 

of the dispersal gradient that remains unaffected by this artifact (i.e. d > 0.001). 

Low dispersal (d < 0.03) decouples local food webs and allows them to 

fluctuate autonomously without disrupting local compensatory dynamics (Fig. 1B, 

Fig. 2, movie A1, A3A). The asynchronous fluctuations of local food webs lead to 

low intraspecific synchrony (Fig. 2E), low temporal variance (Fig. 2C) and high 

stability (Fig. 2A) for all species at the scale of the metacommunity. Here, low 

dispersal promotes statistical stabilization at the regional scale through the spatial 

averaging of uncorrelated local fluctuations (Briggs and Hoopes 2004). Additionally, 

low intraspecific synchrony decouples immigration and local abundance (Briggs and 

Hoopes 2004), which promotes stability at both local and regional scales (Fig. 2A,D). 
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The effect of increasing dispersal on stability is highly nonlinear as dispersal 

rates of d > 0.03 homogenize the metacommunity and lead to regional intraspecific 

synchrony (Fig. 2E, movie S2). The onset of regional intraspecific synchrony is 

associated with a large decrease in stability (Fig. 2A) that is driven primarily by an 

increase in the temporal variance (Fig. 2C). In contrast, global consumer correlation 

remains negative and unaffected by dispersal (Fig. 2F, movie S3A, S4A). Hence, in 

the absence of environmental fluctuations, dispersal modulates stability by 

controlling intraspecific synchrony without affecting compensatory dynamics. We 

now explore the effect of environmental fluctuations on compensatory dynamics 

under these two distinct dispersal regimes (d > 0.03 vs. d < 0.03). We use the two 

components of stability (i.e. temporal variance and mean abundance) to distinguish 

between the modulating effect of weak environmental fluctuations and the disruptive 

effect of strong environmental fluctuations on compensatory dynamics. 

The modulating effect of weak environmental fluctuations 

High dispersal – When dispersal is set to its maximum value (d=0.5), intraspecific 

synchrony is very high (Fig. 4A) and the metacommunity becomes approximately 

equivalent to the mean-field food web model (Vasseur and Fox 2007; Fig. 3A, C, E, 

G). Weak correlated environmental fluctuations (0 < σξ ≤ 0.1) are associated with 

increased food web stability (Fig. 3A,C,E, 4G). This increased food web stability is 

achieved through the mechanism documented by Vasseur and Fox (2007): weak 

correlated noise repeatedly jolts the entire food web into transient synchronous 

fluctuations that dampen the amplitude of compensatory dynamics (Fig. 4E) and 

thus increase stability (Fig. 4G). However, weak noise is unable to disrupt 
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compensatory dynamics (i.e. ρG < 0 , Fig. 3G, 4A) and thus has little effect on the 

mean abundance of all species in the food web (Fig. 4C). Weak correlated 

environmental fluctuations merely add positively correlated noise to the otherwise 

negative correlation caused by endogenous compensatory dynamics (Fig. 3G, 4A). 

Low dispersal – As shown above when the environment is constant and dispersal is 

low (d=0.004), intraspecific synchrony is low (Fig. 2E) and stability at the 

metacommunity level is high (Fig. 2A). The addition of weak environmental 

fluctuations (0 <σξ ≤ 0.1) decreases stability (Fig. 3B,D,F, 4H). This destabilization 

is caused by the Moran effect, which predicts that in linear systems, intraspecific 

synchrony among local populations should match the synchrony of the shared 

environment. Since the environmental fluctuations are spatially uniform (i.e. perfectly 

synchronized), the pure Moran effect should lead to perfect intraspecific synchrony 

among local populations, but this effect can be restricted by nonlinear and spatially-

heterogeneous density-dependence (Engen and Saether 2005). Here, the Moran 

effect only leads to partial intraspecific synchrony because perfectly synchronized 

environmental fluctuations are unable to completely counteract the desynchronizing 

effect of low dispersal (Fig. 4B). Additionally, the correlation of the environment 

modulates the extent to which weak environmental fluctuations (0 <σξ ≤ 0.1) 

reduce stability through the Moran effect. Correlated environmental fluctuations are 

less destabilizing than negatively correlated environmental fluctuations because the 

addition of correlated environmental noise dampens compensatory dynamics 

whereas negatively correlated noise amplifies compensatory dynamics (Fig. 4B,F). 

This is the same dampening effect of correlated noise described above and by 

Vasseur and Fox (2007).  
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Here too weak noise is unable to disrupt compensatory dynamics (i.e. 

ρG < 0 , Fig. 3H, 4B) and has little effect on the mean abundance of all species in the 

food web (Fig. 4D). Weak correlated environmental fluctuations merely add 

positively correlated noise to the endogenous compensatory dynamics (Fig. 3H, A1). 

The disruptive effects of strong environmental fluctuations 

Local effects – In both low and high dispersal metacommunities, strong 

environmental fluctuations (σξ ≥ 0.15 ) destabilize food webs (Fig. 3A-F, 4G,H) by 

increasing the temporal variance (Fig. 4E,F) and altering the mean abundance of all 

species in the metacommunity (Fig. 4C,D). Strong correlated environmental 

fluctuations disrupt compensatory dynamics in local food webs by inducing 

intermittent periods of strong positive local consumer correlation (Fig. 5A,B, movie 

A3,A4). During these periods of positive local consumer correlation, environmental 

noise inflates the abundance of the superior competitor (C1) and the abundance of 

the inferior competitor (C2) decreases due to direct competition (Fig. 5). Since the 

abundance of the inferior competitor decreases faster than the abundance of the 

superior competitor increases, both total consumer abundance and predator 

abundance decrease (Fig. 4C,D).  

Scaling-up to the metacommunity – Dispersal controls the strength and the 

regional properties of environmentally-mediated disruptions of local compensatory 

dynamics. In metacommunities experiencing maximum dispersal (d=0.5) and 

environmental variability, all food webs undergo strong synchronized fluctuations 

(Fig. 4A). Since spatial heterogeneity in abundance is low, the disruptive effect of 

strong correlated environmental fluctuations is characterized by local consumer 
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correlation of intermediate strength that is temporally intermittent and spatially 

synchronized at the scale of the metacommunity: many local food webs become 

disrupted at the same time, yielding low spatial heterogeneity in local consumer 

correlation across the metacommunity (Fig. 5C, movie A4). The synchronous 

disruption of local compensatory dynamics (Fig. 5C) leads to gradual changes in the 

mean abundance of all species at the metacommunity level (Fig. 4C). Increasing the 

strength of environmental fluctuations (σξ > 0.15) increases the frequency and the 

strength of these synchronous disruptions of local compensatory dynamics (Fig. 5C). 

The intermittent phases of strong positive and negative local consumer correlation 

cancel each other and lead to the emergence of low average global consumer 

correlation (i.e. ρG ≈ 0 , Fig. 3G,4A). 

Low dispersal sustains low intraspecific synchrony (Fig. 2E, 4B) and 

dampens the fluctuations of local food webs by decoupling immigration and local 

abundance (Fig. 2D). By doing so, low dispersal allows strong correlated 

environmental fluctuations to induce periods of highly correlated local consumer 

fluctuations that are temporally intermittent and spatially asynchronous at the scale 

of the metacommunity: different local food webs become disrupted at different 

times, yielding high spatial heterogeneity in local consumer correlation across the 

metacommunity (Fig. 5C, movie A3). These asynchronous and intermittent 

disruptions of local compensatory dynamics lead to a further decrease of 

intraspecific synchrony and increased global consumer correlation (Fig. 4B). As the 

strength of environmental fluctuations is increased (0.15 ≤σξ ≤ 0.25), intermittent 

disruptions of local compensatory dynamics become more frequent and affect more 

local food webs (Fig. 5C, movie A3). The increased prevalence of strong local 
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disruptions leads to large changes in the mean abundance of all species due to the 

inflationary effect of the environment on the superior consumer (C1) and the 

increased competition experienced by the inferior consumer (C2) (Fig. 4D). As 

environmental fluctuations reach their maximum strength (σξ > 0.25), local 

disruptions become widespread in the metacommunity (Fig 5C, movie A3) and lead 

to increased intraspecific synchrony (Fig. 4B). Additionally, these strong and 

asynchronous local disruptions lead to partial global interspecific synchrony (Fig. 

4B). However, this partial global interspecific synchrony does not represent the loss 

of compensatory dynamics at the scale of the metacommunity. Instead, strong and 

asynchronous local disruptions register as correlated noise overlying the endogenous 

compensatory dynamics of the consumers at this scale (Fig. A1). As the strength of 

the noise is increased, these local disruptions become more frequent and lead to 

uncorrelated endogenous consumer dynamics (Fig. A1). Hence, correlated 

environmental fluctuations are unable to synchronize the endogenous consumer 

dynamics at the scale of the metacommunity.  

DISCUSSION 

We have shown how dispersal mediates the effect of the environment on food web 

stability at local and metacommunity scales through its own dual effect on food web 

dynamics. When high dispersal causes strong and synchronous food web 

fluctuations, weak environmental noise can stabilize food webs by dampening the 

amplitude of compensatory consumer fluctuations (Vasseur and Fox 2007). 

However, when low dispersal sustains intraspecific asynchrony and dampens the 

amplitude of local food web fluctuations, weak environmental noise destabilizes food 
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webs through the Moran effect. Although the effect of weak environmental noise on 

food web stability is contingent upon dispersal, strong environmental noise is 

consistently associated with destabilization at local and global scales. Indeed, strong 

environmental noise is able to disrupt compensatory dynamics and induce positive 

consumer correlation (i.e. interspecific synchrony) within local food webs. Dispersal, 

through its effect on intraspecific synchrony, controls the strength and the spatial 

extent of environmentally-mediated interspecific synchrony. These results are robust 

to alternative implementations of food web dynamics and environmental 

fluctuations. The interactions between dispersal and the environment have important 

implications for (i) the stability of food webs, (ii) the relative importance of 

environmental forcing and density-dependent regulation, and for (iii) the general 

understanding of intraspecific and interspecific synchrony in environmentally-forced 

metacommunities. 

Food web stability: the role of space and noise 

The destabilizing effect of noise on local food webs 

Our measure of food web stability depends on both the variance and the mean of 

abundance. The effect of increasing environmental variance is to (1) increase 

population variance and (2) decrease mean population abundance through the 

nonlinear functional response of mortality to the environment. The changes in the 

mean abundance of all species are mediated by two distinct mechanisms that involve 

Jensen’s inequality. Jensen’s inequality states that for accelerating nonlinear functions, 

the variance of the independent variable tends to elevate the response variable (Ruel 

and Ayres 1999). Since environmental fluctuations are implemented using the 
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exponential function, increases in the variance of the noise (independent variable) 

will elevate mean consumer mortality (response variable). This increased consumer 

mortality causes declines in total consumer abundance and mean predator abundance 

at the metacommunity level (i.e. Fig 4C,D). The second mechanism involves the 

inflationary effect of the environmental fluctuations (Gonzalez and Holt 2002; Holt 

et al. 2003). Strong correlated environmental fluctuations disrupt compensatory 

dynamics in local food webs by inducing intermittent periods of strong positive 

consumer correlation. During these periods of positive local consumer correlation, 

environmental noise drives outbreak dynamics that inflate the abundance of the 

superior competitor (C1) and the abundance of the inferior competitor (C2) decreases 

due to direct competition. Since the abundance of the inferior competitor decreases 

faster than the abundance of the superior competitor increases, both total consumer 

abundance and predator abundance decrease. The distinction between these two 

mechanisms is particularly evident when dispersal is low. Indeed, mean abundances 

respond more strongly and rapidly to strong correlated environmental fluctuations 

than they do to strong negatively correlated environmental fluctuations. How the 

disruption of local compensatory dynamics by the environment affects the stability 

of the metacommunity depends on the rate of dispersal and its effect on intraspecific 

synchrony. 

The stabilizing effect of space 

Three mechanisms can stabilize spatially heterogeneous predator-prey and 

parasitoid-host systems (Briggs and Hoopes 2004): (1) The averaging of spatially 

heterogeneous local dynamics increases global stability (i.e. ‘statistical stabilization’); 
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(2) nonlinear spatial averaging can stabilize (or destabilize) local systems when 

spatially heterogeneous densities are combined with nonlinear responses to density. 

The final mechanism (3) involves the decoupling of local abundance and 

immigration (Cuddington and Yodzis 2000). This decoupling leads to a negative 

correlation between immigration and local abundance that dampens local 

fluctuations by (i) promoting growth when local abundance is low and (ii) limiting 

growth when local abundance is high (Briggs and Hoopes 2004). The negative 

correlation between abundance and immigration promotes stability at both local and 

global scales. These mechanisms have been used to explain the stabilizing effect of 

dispersal on enriched trophic metacommunities (Maser et al. 2007). These same 

mechanisms also operate in our metacommunities when environmental conditions 

are constant. 

In our metacommunity model, intraspecific synchrony and stability exhibit a 

sharp nonlinear response to changes in dispersal. This nonlinear response leads to 

two distinct regimes characterized by either (i) low dispersal, intraspecific asynchrony 

and high stability or (ii) high dispersal, intraspecific synchrony and low stability. This 

threshold response of synchrony is a general property of locally coupled and self-

sustained oscillators and is due to the fact that the dispersal rate controls a phase 

transition from asynchronous to synchronous fluctuations (Marodi et al. 2002). More 

specifically, regional asynchrony is maintained by the dynamic instability of 

synchrony between locally interacting food webs. Once dispersal is high enough to 

stabilize local synchrony, it necessarily translates into regional intraspecific 

synchrony, which prevents intermediate levels of local and regional synchrony. 

However, intraspecific synchrony can respond more gradually to changes in global 
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(Pikovsky et al. 2002) or irregular (Holland and Hastings 2008) dispersal. For 

instance, Holland and Hastings (2008) showed that in spatial predator-prey networks, 

progressively randomizing the local neighborhood of each patch leads to a gradual 

decrease in regional intraspecific synchrony. Hence, altering either the strength or the 

spatial structure of dispersal can stabilize spatially-extended systems by decreasing 

regional intraspecific synchrony. 

Space and noise interact to govern food web stability at local and metacommunity 

scales 

Environmental noise can have a strong effect on the stability of food webs. In mean-

field systems and in metacommunities experiencing high dispersal, weak correlated 

environmental noise can promote food web stability by dampening the amplitude of 

compensatory dynamics (Vasseur and Fox 2007). However, weak correlated 

environmental noise does not disrupt compensatory dynamics, as global consumer 

correlation remains negative. In metacommunities experiencing low dispersal, the net 

effect of weak environmental fluctuations is to destabilize food webs by inducing 

partial intraspecific synchrony via the Moran effect (Moran 1953). By increasing 

intraspecific synchrony, the Moran effect reduces spatial heterogeneity and thus 

limits the effectiveness of spatial stabilization via (i) ‘statistical stabilization’ or (ii) the 

decoupling of local abundance and immigration. Hence, weak correlated noise can 

either stabilize food webs by dampening the amplitude of compensatory dynamics 

when high dispersal induces intraspecific synchrony, or promote destabilization via 

the Moran effect when dispersal is low. 
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Strong environmental noise consistently destabilizes metacommunities by 

disrupting compensatory dynamics and inducing positive consumer correlation 

within local food webs. We show how this disruption strongly depends on the 

amplitude of local consumer fluctuations, which links disruption (i.e. interspecific 

synchrony) to the effect of dispersal on intraspecific synchrony. Low dispersal 

dampens local food web fluctuations and sustains intraspecific asynchrony. Within 

this context, strong correlated environmental noise causes strong consumer 

correlation in local food webs across the metacommunity. As the strength of the 

noise is further increased, the spatial average registers as partial interspecific 

synchrony at the metacommunity scale (Fig. 4B). In contrast, high dispersal induces 

spatially synchronous food web fluctuations that limit the ability of weak 

environmental fluctuations to disrupt compensatory dynamics. At the 

metacommunity scale, as the variance of the environment increases, global consumer 

correlation increases from negative to zero (Fig. 4A): the intermittent phases of 

strong positive and negative consumer correlation at the local scale cancel each other 

and average global consumer correlation approaches zero. This result suggests the 

counterintuitive appearance of independent consumer fluctuations at the 

metacommunity scale despite the strong intermittent phases of positive and negative 

consumer correlation at the local scale (Fig. 5). 

Metacommunity stability under strong environmental noise: compensation versus 

interspecific synchrony 

The relative importance of density-dependent regulation and density-independent 

limitation is a long standing debate in ecology (see review by Coulson et al. 2004). 
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Here, we show that in environmentally forced metacommunities, the relative 

importance of regulation and limitation varies in space and time and affects food 

web stability. As described above, strong correlated environmental noise leads to 

intermittent disruptions of compensatory dynamics within local food webs. These 

environmentally-mediated disruptions occur when the local abundance of the 

consumers—and thus the strength of density-dependent competition—is low. It is 

during these periods of weak density-dependent regulation that correlated 

environmental noise induces interspecific synchrony between consumers within local 

food webs. Communities experiencing the joints effects of strong regulation and 

strong environmental noise may thus alternate between periods of compensatory 

dynamics driven by regulation and periods of interspecific synchrony driven by 

correlated environmental noise. The alternation of compensatory dynamics and 

interspecific synchrony in metacommunities experiencing both environmental 

forcing and strong competition suggests that interspecific synchrony cannot be used 

to exclude the presence of competition or compensatory dynamics in natural systems 

(Houlahan et al. 2007; Ranta et al. 2008). 

Explaining patterns of synchrony in environmentally-forced 

metacommunities 

Recent work has shown how to disentangle the synchronizing effects of dispersal 

and the environment in simple metapopulation and predator-prey models (Grenfell 

et al. 1998; Lande et al. 1999; Liebhold et al. 2004). Here, we show that patterns of 

intra and interspecific synchrony in more complex food webs are generated by the 

strong interaction between dispersal and the environment.  
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When dispersal is low, weak correlated environmental fluctuations induce 

partial intraspecific synchrony through the Moran effect. However, we found that 

fully correlated environmental variability of intermediate strength can reduce 

intraspecific synchrony under low dispersal (Fig. 4B). Environmental fluctuations 

generate intermittent disruptions of local compensatory dynamics (Fig. 5A) that are 

characterized by periods of high consumer correlation with outbreak dynamics. 

Intraspecific synchrony declines because these distinct dynamic regimes are 

asynchronous across space (Fig. 4B, 5C). This phenomenon cannot be explained by 

recent ecological theories predicting the non-additive but positive effects of dispersal 

and environmental stochasticity on intraspecific synchrony (Colombo et al. 2008; 

Lande et al. 1999). Indeed, the reduction of intraspecific synchrony in response to 

increased environmental variance is due to the complex interplay between dispersal, 

the environment and local compensatory dynamics. 

At the community level, we see an increase in interspecific synchrony whilst 

intraspecific synchrony declines. Recent work has argued that since dispersal cannot 

synchronize different species, interspecific synchrony could be used as a signature of 

the synchronizing effect of the environment (Cattadori et al. 2000; Cheal et al. 2007). 

We have shown this to be the case in metacommunities experiencing strong 

correlated environmental noise and low dispersal but not high dispersal (Fig. 4A vs. 

4B). Hence, although dispersal cannot directly induce interspecific synchrony, it can 

have a strong indirect effect on the strength and the spatiotemporal properties of 

interspecific synchrony. 

Several of our predictions can be tested via experiments in the laboratory 

(Benton et al. 2001; Fontaine and Gonzalez 2005) and field (e.g. Downing et al. 
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2008). For instance, Fontaine and Gonzalez (2005) showed how dispersal and 

environmental variability could induce synchrony in an aquatic predator-prey 

microcosm. By adding an alternative prey and controlling the strength of fully 

correlated environmental fluctuations (e.g. temperature), one could determine 

whether the level of dispersal mediates the degree to which the environment disrupts 

local compensatory dynamics, and whether these effects are synchronized in space: 

(i) does low dispersal lead to strong but asynchronous disruptions, and (ii) does high 

dispersal lead to weak but synchronous disruptions?  

Caveats and limitations  

Our results are robust to chaotic food web dynamics and to the temporal structure 

of the environment (see Appendix B). However, we also assumed spatially uniform 

environmental conditions and nearest-neighbor (vs. random) dispersal. Theory and 

experiments show that even locally correlated environmental noise or random 

dispersal can induce regional synchrony in populations undergoing stable limit cycles 

(Bjornstad 2000; Bjornstad et al. 1999). Hence, intraspecific synchrony—a key 

phenomenon in our findings—is not expected to depend on our simplifying 

assumption of spatially uniform (i.e. perfectly synchronized) environment noise or 

our implementation of local dispersal. We used a simple keystone food web module 

to identify and describe the joint effects of dispersal and environmental variability on 

food web stability. However, real food webs are much more speciose, and the 

extension of our findings to more complex food web networks warrants additional 

attention. Still, the simple keystone module is a useful starting point because it is a 



 

 167

very common motif in natural systems (Milo et al. 2002; Williams and Martinez 

2000). 

Conclusion 

We have shown that the metacommunity concept is critical for understanding how 

dispersal, environmental variability and compensatory dynamics interact to control 

the stability of food webs. Interspecific asynchrony emerging from compensatory 

food web interactions has been proposed as a solution to the complexity-stability 

paradox and has been demonstrated in simplified, well-mixed food web models 

experiencing constant environments (McCann et al. 1998). We suggest that food web 

stability at both local and regional scales is more generally governed by the 

interaction between compensatory dynamics, dispersal and the environment. These 

results further suggest a synergy between two components of environmental change: 

habitat fragmentation and climate change. Low dispersal, due to declining habitat 

connectivity, and changing patterns of environmental variability (variance and 

autocorrelation) may act in concert to destabilize food web dynamics. 

ACKNOWLEGEMENTS 

We thank Jeremy Fox and one anonymous reviewer for their thoughtful comments 

and suggestions that improved both the analysis and the text. We also acknowledge 

the granting agencies that made this research possible. T.G. was supported by a 

McGill Majors fellowship. F.G. was supported by grants from the James S. 

McDonnell foundation. A.G. was supported by grants from the Natural Sciences and 

Engineering Research Council of Canada, and the Canada Research Chair Program. 



 

 168

FG and AG are supported by a team grant from Fonds Quebecois de la Recherche 

sur la Nature et les Technologies (FQRNT). 

LITERATURE CITED 

Allesina, S., and M. Pascual. 2008. Network structure, predator–prey modules, and 
stability in large food webs. Theoretical Ecology 1:55-64. 

Amarasekare, P. 2008. Spatial Dynamics of Foodwebs. Annual Review of Ecology, 
Evolution, and Systematics 39:479-500. 

Benton, T. G., C. T. Lapsley, and A. P. Beckerman. 2001. Population synchrony and 
environmental variation: an experimental demonstration. Ecology Letters 
4:236-243. 

Bjornstad, O. N. 2000. Cycles and synchrony: two historical 'experiments' and one 
experience. Journal of Animal Ecology 69:869-873. 

Bjornstad, O. N., R. A. Ims, and X. Lambin. 1999. Spatial population dynamics: 
analyzing patterns and processes of population synchrony. Trends in Ecology 
& Evolution 14:427-432. 

Blasius, B., A. Huppert, and L. Stone. 1999. Complex dynamics and phase 
synchronization in spatially extended ecological systems. Nature 399:354-359. 

Briggs, C. J., and M. F. Hoopes. 2004. Stabilizing effects in spatial parasitoid-host 
and predator-prey models: a review. Theoretical Population Biology 65:299-
315. 

Buonaccorsi, J. P., J. S. Elkinton, S. R. Evans, and A. M. Liebhold. 2001. Measuring 
and testing for spatial synchrony. Ecology 82:1668-1679. 

Cattadori, I. M., S. Merler, and P. J. Hudson. 2000. Searching for mechanisms of 
synchrony in spatially structured gamebird populations. Journal of Animal 
Ecology 69:620-638. 

Cheal, A. J., S. Delean, H. Sweatman, and A. A. Thompson. 2007. Spatial synchrony 
in coral reef fish populations and the influence of climate. Ecology 88:158-
169. 

Colombo, A., F. Dercole, and S. Rinaldi. 2008. Remarks on Metacommunity 
Synchronization with Application to Prey-Predator Systems. The American 
Naturalist 171:430-442. 

Coulson, T., P. Rohani, and M. Pascual. 2004. Skeletons, noise and population 
growth: the end of an old debate? Trends in Ecology & Evolution 19:359-
364. 

Cuddington, K. M., and P. Yodzis. 2000. Diffusion-limited predator-prey dynamics 
in euclidean environments: An allometric individual-based model. Theoretical 
Population Biology 58:259-278. 

DeAngelis, D. L., and J. C. Waterhouse. 1987. Equilibrium and Nonequilibrium 
Concepts in Ecological Models. Ecological Monographs 57:1-21. 

Downing, A. L., B. L. Brown, E. M. Perrin, T. H. Keitt, and M. A. Leibold. 2008. 
Environmental Fluctuations Induce Scale-Dependent Compensation and 
Increase Stability in Plankton Ecosystems. Ecology 89:3204-3214. 



 

 169

Durrett, R., and S. Levin. 1994. The Importance of Being Discrete (and Spatial). 
Theoretical Population Biology 46:363-394. 

Earn, D. J. D., S. A. Levin, and P. Rohani. 2000. Coherence and Conservation. 
Science 290:1360-1364. 

Engen, S., and B. E. Saether. 2005. Generalizations of the Moran effect explaining 
spatial synchrony in population fluctuations. American Naturalist 166:603-
612. 

Fontaine, C., and A. Gonzalez. 2005. Population synchrony induced by resource 
fluctuations and dispersal in an aquatic microcosm. Ecology 86:1463-1471. 

Gonzalez, A., and R. D. Holt. 2002. The inflationary effects of environmental 
fluctuations in source-sink systems. Proceedings of the National Academy of 
Sciences of the United States of America 99:14872-14877. 

Gonzalez, A., and M. Loreau. (in press). The causes and consequences of 
compensatory dynamics in ecological communities. Annual Review of 
Ecology, Evolution, and Systematics. 

Greenman, J. V., and T. G. Benton. 2005. The impact of environmental fluctuations 
on structured discrete time population models: Resonance, synchrony and 
threshold behaviour. Theoretical Population Biology 68:217-235. 

Grenfell, B. T., K. Wilson, B. F. Finkenstadt, T. N. Coulson, S. Murray, S. D. Albon, 
J. M. Pemberton et al. 1998. Noise and determinism in synchronized sheep 
dynamics. Nature 394:674-677. 

Holland, M. D., and A. Hastings. 2008. Strong effect of dispersal network structure 
on ecological dynamics. Nature 456:792-794. 

Holt, R. D., M. Barfield, and A. Gonzalez. 2003. Impacts of environmental 
variability in open populations and communities: "inflation" in sink 
environments. Theoretical Population Biology 64:315-330. 

Houlahan, J. E., D. J. Currie, K. Cottenie, G. S. Cumming, S. K. M. Ernest, C. S. 
Findlay, S. D. Fuhlendorf et al. 2007. Compensatory dynamics are rare in 
natural ecological communities. Proceedings of the National Academy of 
Sciences 104:3273-3277. 

Ives, A. R., and S. R. Carpenter. 2007. Stability and Diversity of Ecosystems. Science 
317:58-62. 

Ives, A. R., K. Gross, and J. L. Klug. 1999. Stability and variability in competitive 
communities. Science 286:542-544. 

Keitt, T. H. 2008. Coherent ecological dynamics induced by large-scale disturbance. 
Nature 454:331-334. 

Lande, R., S. Engen, and B. E. Saether. 1999. Spatial scale of population synchrony: 
Environmental correlation versus dispersal and density regulation. American 
Naturalist 154:271-281. 

Liebhold, A., W. D. Koenig, and O. N. Bjornstad. 2004. Spatial synchrony in 
population dynamics. Annual Review of Ecology Evolution and Systematics 
35:467-490. 

Loreau, M., A. L. Downing, M. C. Emmerson, A. Gonzalez, J. Hughes, P. Inchausti, 
J. Joshi et al. 2002. A new look at the relationship between diversity and 
stability, Pages 79–91 in M. Loreau, S. Naeem, and P. Inchausti, eds. 
Biodiversity and Ecosystem Functioning: Synthesis and Perspectives. 
Oxford, United Kingdom, Oxford University Press. 



 

 170

Marodi, M., F. d'Ovidio, and T. Vicsek. 2002. Synchronization of oscillators with 
long range interaction: Phase transition and anomalous finite size effects. 
Physical Review E 66:1-8. 

Maser, G. L., F. Guichard, and K. S. McCann. 2007. Weak trophic interactions and 
the balance of enriched metacommunities. Journal of Theoretical Biology 
247:337-345. 

May, R. M. 1973, Stability and Complexity in Model Ecosystems. Princeton, 
Princeton University Press. 

McCann, K., A. Hastings, S. Harrison, and W. Wilson. 2000. Population outbreaks in 
a discrete world. Theoretical Population Biology 57:97-108. 

McCann, K., A. Hastings, and G. R. Huxel. 1998. Weak trophic interactions and the 
balance of nature. Nature 395:794-798. 

McCann, K. S. 2000. The diversity-stability debate. Nature 405:228-233. 
McCann, K. S., J. B. Rasmussen, and J. Umbanhowar. 2005. The dynamics of 

spatially coupled food webs. Ecology Letters 8:513-523. 
Milo, R., S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. 2002. 

Network motifs: Simple building blocks of complex networks. Science 
298:824-827. 

Moran, P. A. P. 1953. The Statistical Analysis of the Canadian Lynx Cycle .2. 
Synchronization and Meteorology. Australian Journal of Zoology 1:291-298. 

Murdoch, W. W., C. J. Briggs, and R. M. Nisbet. 2003, Consumer-resource 
Dynamics. Princeton, New Jersey, Princeton University Press. 

Pikovsky, A., M. Rosenblum, and J. Kurths. 2002, Synchronization: a Universal 
Concept in Nonlinear Science. Cambridge, United Kingdom, Cambridge 
University Press. 

Polis, G. A., M. E. Power, and G. R. Huxel. 2004, Food Webs at the Landscape 
Level. Chicago, Illinois, University Of Chicago Press. 

Ranta, E., V. Kaitala, M. S. Fowler, J. Laakso, L. Ruokolainen, and R. B. O'Hara. 
2008. Detecting compensatory dynamics in competitive communities under 
environmental forcing. Oikos 117:1907-1911. 

Ranta, E., V. Kaitala, and P. Lundberg. 2006, Ecology of Populations. Cambridge, 
United Kingdom, Cambridge University Press. 

Ripa, J., and A. R. Ives. 2003. Food web dynamics in correlated and autocorrelated 
environments. Theoretical Population Biology 64:369-384. 

Rooney, N., K. McCann, G. Gellner, and J. C. Moore. 2006. Structural asymmetry 
and the stability of diverse food webs. Nature 442:265-269. 

Ruel, J. J., and M. P. Ayres. 1999. Jensen's inequality predicts effects of 
environmental variation. Trends in Ecology & Evolution 14:361-366. 

Tilman, D. 1999. The Ecological Consequences of Changes in Biodiversity: A Search 
for General Principles. Ecology 80:1455-1474. 

Vandermeer, J. 2006. Oscillating populations and biodiversity maintenance. 
Bioscience 56:967-975. 

Vasseur, D. A., and J. W. Fox. 2007. Environmental fluctuations can stabilize food 
web dynamics by increasing synchrony. Ecology Letters 10:1066-1074. 

Vasseur, D. A., U. Gaedke, and K. S. McCann. 2005. A seasonal alternation of 
coherent and compensatory dynamics occurs in phytoplankton. Oikos 
110:507-514. 



 

 171

Williams, R. J., and N. D. Martinez. 2000. Simple rules yield complex food webs. 
Nature 404:180-183. 

Yachi, S., and M. Loreau. 1999. Biodiversity and ecosystem productivity in a 
fluctuating environment: The insurance hypothesis. Proceedings of the 
National Academy of Sciences of the United States of America 96:1463-
1468. 

Zar, J. H. 1999, Biostatistical Analysis. Upper Saddle River, NJ., Prentice-Hall, Inc. 
 
 

TABLE AND FIGURE LEGENDS 

Table 1: Model parameters and their values (Vasseur and Fox 2007) 

Figure 1: Metacommunity model diagram. (A) The metacommunity is comprised of 

2562 cells, each of which contains a diamond shaped food web whose dynamics are 

governed by a discrete version of the differential equation system introduced by 

McCann et al. (1998). The preference coefficients Ωij  are used to adjust the 

interaction strength between successive trophic levels. Here, a competitively-superior 

consumer C1 ΩC1R
=1( )  and a competitively-inferior consumer C2 ΩC2R

= 0.98( ) 
compete for a common resource R. The predator P preferentially consumes the 

superior competitor C1 ΩPC1
= 0.92( )  thus allowing stable coexistence. Dispersal 

occurs between a focal cell F and a single randomly selected cell N located within the 

Moore neighborhood (i.e. 8 nearest neighbors). Dispersal between the focal cell F 

and its randomly selected neighbor N is implemented as the product of the 

maximum dispersal rate d and the population abundance differential between F and 

N. At each update, all species in the focal cell F disperse to the same randomly 

selected neighboring cell N. (B) Representative time series of two neighboring cells F 

and N and a distant cell K when the environment is constant and dispersal is limited 
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(d=0.004). These sample cell time series highlight how low dispersal induces spatial 

heterogeneity and dampened dynamics within the metacommunity. 

Figure 2: The effect of dispersal on (A) global stability (μ /σ ), (B) global mean 

abundance (μ), (C) global temporal variance (σ ), (D) local stability (μL /σ L ), (E) 

intraspecific synchrony and (F) global consumer correlation ( ρG ) in 

metacommunities experiencing constant environmental conditions. Results represent 

means from 10 replicate simulations. 

Figure 3: The effect of environmental fluctuations on (A, B) global stability (μ /σ ) 

for predator P, (C, D) consumer C1, (E, F) consumer C2 and (G, H) global consumer 

correlation ( ρG ) for metacommunities with high (d=0.5, first column) and low 

(d=0.004, second column) dispersal. All results represent means from 10 replicate 

simulations. 

Figure 4: The effect of positively correlated (ρξ =1) and negatively correlated (

ρξ = −1) environmental fluctuations on (A, B) intraspecific synchrony and global 

consumer correlation ( ρG ), (C, D) global temporal variance (σ ), (E, F) global mean 

abundance (μ) and (G, H) global stability (μ /σ ) for metacommunities with high 

(d=0.5, first column) and low (d=0.004, second column) dispersal. The grey 

horizontal dashed lines indicate zero consumer correlation. Results represent means 

from 10 replicate simulations. 

Figure 5: The effect of positively correlated (ρξ =1) environmental fluctuations on 

the local consumer dynamics of metacommunities experiencing low and high 

dispersal. (A) The effect of disruptive environmental fluctuations (σξ = 0.25) on the 

local consumer dynamics obtained from a single random cell within a 
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metacommunity experiencing low dispersal. (B) The effect of disruptive 

environmental fluctuations (σξ = 0.45) on the local consumer dynamics obtained 

from a single random cell within a metacommunity experiencing high dispersal. The 

vertical dashed lines delineate sample 100 time step windows over which local 

consumer correlation is either negative ( ρL < 0 ; blue dashed lines) or positive (

ρL > 0 ; red dashed lines). (C) The mean spatial minimum and maximum local 

consumer correlations in metacommunities experiencing low (blue) and high (red) 

dispersal as a function of the strength of correlated environmental fluctuations (

ρξ =1). The spatial minimum and maximum local consumer correlations were 

obtained by splitting the local consumer abundance time series of 100 randomly 

selected cells into 100-time step windows. Within each time window, the local 

consumer correlation was calculated for each cell and the minimum and maximum 

consumer correlations across all cells were determined. These spatial minimum and 

maximum local consumer correlations were then averaged across all time windows 

and over 10 replicate simulations (error bars represent standard error; see text for 

details). The grey horizontal dashed line indicates zero consumer correlation.  
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TABLES AND FIGURES 

Table 1: Model parameters and their values (Vasseur and Fox 2007) 

Parameter Description Value 

r  Resource intrinsic growth rate 1.0 

K  Resource carrying capacity 1.0 

JC1  Consumer C1 ingestion rate 0.8036 

JC2  Consumer C2 ingestion rate 0.7 

JP  Predator ingestion rate 0.4 

MC1
 Medial consumer C1 mortality rate 0.4 

MC2
 Medial consumer C2 mortality rate 0.2 

MP  Predator mortality rate 0.08 

R01  Half saturation constant 0.16129 

R02  Half saturation constant 0.9 

C0 Half saturation constant 0.5 

ΩPC1
 Preference coefficient 0.92 

ΩC1R
 Preference coefficient 1.0 

ΩC2R
 Preference coefficient 0.98 

 



 

 175

 

Figure 1 

 



 

 176

 

Figure 2 



 

 177

 

Figure 3 
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Figure 4 
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Figure 5  
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APPENDIX A 

THE EFFECTS OF ENVIRONMENTAL NOISE AND 

DISPERSAL ON LOCAL AND REGIONAL METACOMMUNITY 

DYNAMICS 

FIGURE LEGENDS 

Figure A1: The effect of fully correlated environmental fluctuations on the different 

components of the global consumer dynamics in metacommunities experiencing low 

dispersal (d=0.004). (A) The global consumer time series were decomposed into their 

endogenous dynamics and their residuals using two different methods: the aggressive 

(B) cubic splines and a more conservative (C) fitted cosine function (see methods for 

details regarding this decomposition). Here, an example of this decomposition is 

provided using both methods (σξ = 0.15). (B) The effect of environmental 

fluctuation strength on the correlation between (i) the endogenous components of 

the global consumer dynamics (blue) and (ii) their residuals (red) using fitted cubic 

splines. (C) The effect of environmental fluctuation strength on the correlation 

between (i) the endogenous components of the global consumer dynamics (blue) and 

(ii) their residuals (red) using fitted cosine functions. 

Movie A1-A, -B, -C: The abundance time series of (A) predator P, (B) consumer C1 

and (C) consumer C2 in a metacommunity with low dispersal (d=0.004) and constant 

environmental conditions. Low dispersal leads to spatial heterogeneity in the 

abundance of all species in the food web. The movie files were encoded using the 

H.264/MPEG-4 AVC codec. 
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Movie A2-A, -B, -C: The abundance time series of (A) predator P, (B) consumer C1 

and (C) consumer C2 in a metacommunity with high dispersal (d=0.5) and constant 

environmental conditions. Very low levels of dispersal (d > 0.03) are enough to bring 

about the onset of regionally synchronized oscillations for each species in the food 

web. The movie files were encoded using the H.264/MPEG-4 AVC codec. 

Movie A3-A, -B, -C: Local consumer correlation for metacommunities with low 

dispersal (d=0.004) experiencing (A) constant environmental conditions, (B) mildly 

disruptive σξ = 0.2( )  or (C) strongly disruptive σξ = 0.3( ) correlated environmental 

fluctuations. The local consumer correlation was computed over 100-time step 

windows for each cell in the lattice. (A) Low dispersal allows the abundance of local 

food webs to fluctuate autonomously without affecting the strength of compensatory 

dynamics (consistent negative local consumer correlation). (B) Weak disruptive 

environmental fluctuations σξ = 0.2( )  lead to the intermittent and asynchronous 

disruption of compensatory dynamics within a few local food webs (periods of 

positive local consumer correlation). The rare and fleeting nature of these 

asynchronous disruptive events leads to very weak interspecific synchrony at the 

regional scale and only marginal changes in the mean abundance of all species across 

the metacommunity. (C) When environmental fluctuations are strong σξ > 0.2( ) , the 

disruption of compensatory dynamics becomes more pervasive (i.e. more local food 

webs exhibit periods of positive consumer correlation). This disruption allows the 

emergence of partial regional interspecific synchrony and leads to large changes in 

the mean abundance of all species across the metacommunity. The movie files were 

encoded using the H.264/MPEG-4 AVC codec. 
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Movie A4-A, -B, -C: Local consumer correlation for metacommunities with high 

dispersal (d=0.5) experiencing (A) constant environmental conditions, (B) mildly 

disruptive σξ = 0.2( )  or (C) strongly disruptive σξ = 0.3( ) correlated environmental 

fluctuations. The local consumer correlation was computed over 100-time step 

windows for each cell in the lattice. (A) In the absence of environmental variability, 

local compensatory dynamics remain consistent in space and time (consistent 

negative local consumer correlation). (B) Weakly disruptive environmental 

fluctuations σξ = 0.2( )  lead to the intermittent and synchronous disruption of 

compensatory dynamics within all local food webs (periods of positive local 

consumer correlation across the entire metacommunity). The rare and fleeting nature 

of these synchronous disruptive events leads to a very weak increase in the consumer 

correlation at the regional scale and only marginal changes in the mean abundance of 

all species across the metacommunity. (C) When environmental fluctuations are 

strong σξ > 0.2( ) , the synchronous disruption of compensatory dynamics across all 

local food webs becomes more persistent (more frequent periods of positive local 

consumer correlation across the entire metacommunity). This disruption allows the 

emergence of consumer independence at the regional scale and leads to large 

changes in the mean abundance of all species across the metacommunity. The movie 

files were encoded using the H.264/MPEG-4 AVC codec. 
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APPENDIX B 

ASSESSING THE ROBUSTNESS OF OUR RESULTS TO 

DIFFERENT IMPLEMENTATIONS OF THE 

METACOMMUNITY MODEL 

We have shown that the effect of environmental fluctuations on food webs stability 

can be understood by decomposing stability into its temporal variance and mean 

abundance components. Weak environmental fluctuations can promote stability by 

dampening but not disrupting compensatory dynamics. Strong environmental 

fluctuations reduce food web stability by (1) adding more stochastic noise to local 

food webs and, in the case of correlated noise, (2) disrupting local compensatory 

dynamics. The local properties and regional consequences of these environmentally-

mediated disruptions depend on dispersal and its effect on intraspecific synchrony. 

By decoupling immigration and local abundance and thereby dampening local food 

web fluctuations, low dispersal leads to strong and spatially asynchronous local 

disruptions that generate large changes in the mean abundance of all species. 

However, by inducing strong synchronized food web fluctuations, high dispersal 

limits the disruptive effect of strong environmental fluctuations. Indeed, when 

dispersal is high, strong environmental fluctuations cause spatially synchronized local 

disruptions that generate small changes in the mean abundance of all species. Hence, 

by controlling intraspecific synchrony, dispersal mediates the disruptive effect of 

strong correlated environmental fluctuations on food web stability. In order to assess 

the generality of these findings, we now explore their robustness to (1) chaotic food 
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web dynamics and (2) alternative implementations of environmental variability. All 

model parameter values remain unchanged unless specified otherwise (see table 1). 

Chaotic food web dynamics 

We increased the predator’s preference for consumer C1 ΩPC1
= 0.99( )  in order to 

generate chaotic dynamics in the well-mixed metacommunity (Vasseur and Fox 

2007). In the absence of environmental variability, food webs undergoing chaotic 

dynamics (Fig. B1) or stable limit cycles (Fig. 2) respond similarly to changes in 

dispersal. When dispersal is extremely low (d < 0.005), our stochastic approximation 

of the continuous-time model fails. This failure leads to the quasi-extinctions of 

consumer C2 and predator P, along with the trivial loss of compensatory dynamics 

(i.e. ρG > 0 ; Fig. B1E). Low dispersal (0.005 < d < 0.04) promotes stability (Fig. 

B1A) by reducing intraspecific synchrony (Fig. B1D) without affecting compensatory 

dynamics (i.e. ρG < 0 , Fig. B1E). Increasing dispersal beyond its threshold value (d 

> 0.04) homogenizes the metacommunity (Fig. B1D). This homogenization reduces 

food web stability (Fig. B1A) without affecting compensatory dynamics (Fig. B1E).  

When dispersal is high (d=0.5), weak environmental fluctuations (0 < σξ ≤ 0.1) 

stabilize the entire food web (Fig. Appendix B2A,C,E, B3G) by reducing 

intraspecific synchrony (Fig. B3A). Correlated environmental fluctuations are more 

stabilizing than their negatively correlated counterparts (Fig. B3G) because in 

addition to reducing intraspecific synchrony, they also dampen (but do not disrupt) 

compensatory dynamics (Fig. B3A,E). Strong environmental fluctuations (σξ > 0.1) 

reduce food web stability (Fig. B3G,H) by (1) adding more stochastic noise to local 



 

 187

food webs (Fig. B3E,F) and, in the case of correlated environmental fluctuations, (2) 

disrupting local compensatory dynamics (Fig. B3A,B). The properties of these 

environmentally-mediated disruptions of local compensatory dynamics depend on 

dispersal and its effect on intraspecific synchrony. Low dispersal limits intraspecific 

synchrony (Fig. B3B) and leads to strong and spatially asynchronous local 

disruptions that generate large changes in the mean abundance of all species (Fig. 

B3D). High dispersal increases intraspecific synchrony (Fig. B3A) and leads to 

spatially synchronous local disruptions of intermediate strength that generate small 

changes in the mean abundance of all species (Fig. B3C). Hence, the results we 

outlined for food webs undergoing stable limit cycles also apply to food webs 

undergoing chaotic dynamics. 

Alternative implementations of environmental variability 

Environmental variability as temporally autocorrelated noise affecting consumer 

mortality 

We first explore how the temporal structure of environmental fluctuations affects 

our main results by using autocorrelated environmental fluctuations for each 

consumer. Specifically, we generated environmental time series with the desired 

fluctuation strength, cross-correlation and autocorrelation by using the ‘phase 

partnering’ method described by Vasseur (2007):  

ξ i(t) = 1

f γ / 2
sin

2πft
n

+ θi( f )
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

f =1

n / 2

∑    (1) 
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where ξ i(t)  is the environmental time series of consumer i, n is the length of the 

time series, γ  determines the relationship between power and frequency f , t  is time 

and θi( f )  is a uniform deviate in the interval [0, 2π). The desired cross-correlation 

between the two environmental time series was achieved by partnering the uniform 

phase deviates of the consumers (Vasseur 2007): 

θ2( f ) = θ1 + cos
−1 ρξ( )   (2) 

The cross-correlated environmental time series were then scaled to the requisite 

fluctuation strength σξ :  

ξ i(t) =σξ
ξ i(t)
σ i

  (3) 

where σ i represents the standard deviation of the environmental time series 

ξ i(t)  of consumer i prior to any scaling. The scaled environmental time series ξ i(t)  

were then incorporated into the consumer mortality rates. The mortality rate of 

consumer i at time t was: 

MCi(t) = MCi ⋅ e
ξ i ( t )   (4) 

where MCi  represents the medial consumer mortality rate of consumer i (table 

1). Since most environmental variables show some degree of autocorrelation 

(Vasseur 2007), we tested the robustness of our findings to autocorrelated 

environmental noise (i.e. red noise, γ = 0.8 ).  

In metacommunities experiencing high dispersal, weak environmental 

fluctuations (σξ ≤ 0.15) promote stability (Fig. B4A,C,E, B5G) by dampening the 

amplitude of compensatory dynamics (Fig. B4G, B5A,E). As before, strong 

environmental fluctuations (σξ > 0.15) reduce food web stability (Fig. B4) by (1) 
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adding more stochastic noise to local food webs (Fig. B5E,F) and, in the case of 

correlated noise, (2) disrupting local compensatory dynamics (Fig. B4G,H, B5A,B). 

In addition to these two mechanisms, strong negatively correlated environmental 

fluctuations can also destabilize food webs by amplifying compensatory dynamics 

(Fig. B5C-H). However, this novel effect does not change our main findings: it 

merely highlights the fact that strong environmental fluctuations can destabilize food 

webs by either amplifying or disrupting local compensatory dynamics (Fig. B4G,H, 

B5A,B). As before, by controlling intraspecific synchrony, dispersal mediates the 

strength of this disruptive effect and its consequences for the stability of food webs 

(Fig. B5A,B). 

Environmental variability as additive demographic noise 

We now determine the robustness of our main findings to the nature of 

environmental fluctuations by implementing environmental variability as 

demographic noise affecting the consumer population growth rates (Vasseur and 

Fox 2007). Under this scenario, the growth rate of consumer Ci in cell (x,y) at time t 

becomes: 

 ΔCi(x,y, t) = ΔCi(x,y, t) + ξ i(t)  (5) 

where ξ i(t) is spatially-uniform, normally-distributed white noise with zero 

mean. We varied the strength σξ( ) and cross-correlation ρξ( )  of demographic noise 

in order to assess the robustness of our results. 

This implementation of environmental variability has two fundamental 

implications. First, since demographic noise is not filtered by the exponential 

function, it can add both positive and negative values to the abundance of 



 

 190

consumers and thus lead to rapid destabilization (Fig. B6,B7). Second, demographic 

noise is additive and thus largely independent of local abundances. It can thus be 

interpreted as an allochthonous source or sink of consumers, depending on the sign 

of the noise. Since the demographic noise has zero-mean, positive noise will balance 

negative noise in time. However, since abundances are bounded by zero at the low 

end but remain unbounded at the high end, balanced zero-mean noise will lead to an 

unbalanced (net positive) allochthonous effect and an increase in total consumer 

abundance. This imbalance increases with the strength of demographic noise and 

leads to increased predator P abundance (Fig. B7C,D). 

Negatively correlated noise will tend to amplify the overall allochthonous 

imbalance because at each time step, adding positive noise to the abundance of one 

consumer will add negative noise to the abundance of the other consumer. Since 

abundances are zero-bounded, negatively correlated noise will lead to a net increase 

in total consumer abundance at each time step. Hence, in addition to the imbalance 

between allochthonous inputs and outputs over time, negative noise also generates 

an instantaneous imbalance between allochthonous inputs and outputs. These 

accrued imbalances increase with demographic noise and lead to the monotonic 

increase of predator P abundance (Fig. B7C,D). By providing large allochthonous 

inputs of consumers, strong negatively correlated noise increases predator mean 

abundance and stability (Fig. B7G). 

However, this allochthonous effect does not change our main results. Indeed, 

when dispersal is high, weak correlated noise (σξ ≤ 0.01) stabilizes food webs by 

dampening (but not disrupting) compensatory dynamics (Fig. B6A,C,E,G, B7E,G). 

Strong noise (σξ > 0.01) reduces food web stability (Fig. B6, B7G,H) by (1) adding 
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more stochastic noise to local food webs and (Fig. B7E,F), in the case of correlated 

noise, (2) disrupting local compensatory dynamics (Fig. B7A,B). The properties of 

these noise-induced disruptions of local compensatory dynamics depend on dispersal 

and its effect on intraspecific synchrony. Low dispersal limits intraspecific synchrony 

(Fig. B7B) and leads to strong and spatially asynchronous local disruptions, whereas 

high dispersal increases intraspecific synchrony (Fig. B7A) and leads to spatially 

synchronous local disruptions of intermediate strength (Fig. B7C). As noise is 

increased (σξ > 0.02 ), the allochthonous effect overwhelms local food web 

dynamics and the sign of the global consumer correlation largely reflects the sign of 

the demographic noise (Fig. B6G,H, B7A,B). 

 Hence, our results are robust to both the nature (i.e. filtered noise affecting 

mortality or additive noise affecting demography) and the temporal structure (white 

noise vs. red noise) of environmental fluctuations. 
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FIGURE LEGENDS 

Figure B1: The effect of dispersal on (A) global stability (μ /σ ), (B) global mean 

abundance (μ), (C) global temporal variance (σ ), (D) intraspecific synchrony and 

(E) global consumer correlation (ρG ) in metacommunities experiencing constant 
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environmental conditions and chaotic dynamics. All results represent means from 10 

replicate simulations. 

Figure B2: The effect of environmental fluctuations on (A, B) global stability (μ /σ ) 

for predator P, (C, D) consumer C1, (E, F) consumer C2 and (G, H) global consumer 

correlation ( ρG ) for metacommunities experiencing chaotic dynamics and either 

high (d=0.5, first column) or low (d=0.005, second column) dispersal. All results 

represent means from 10 replicate simulations. 

Figure B3: The effect of positively correlated (ρξ =1) and negatively correlated (

ρξ = −1) environmental fluctuations on (A, B) intraspecific synchrony and global 

consumer correlation ( ρG ), (C, D) global temporal variance (σ ), (E, F) global mean 

abundance (μ) and (G, H) global stability (μ /σ ) for metacommunities experiencing 

chaotic dynamics and either high (d=0.5 first column) or low (d=0.005, second 

column) dispersal. The grey horizontal dashed line indicates zero consumer 

correlation. All results represent means from 10 replicate simulations. 

Figure B4: The effect of autocorrelated γ = 0.8( )  environmental fluctuations on (A, 

B) global stability (μ /σ ) for predator P, (C, D) consumer C1, (E, F) consumer C2 and 

(G, H) global consumer correlation ( ρG ) for metacommunities with high (d=0.5, 

first column) and low (d=0.004, second column) dispersal. All results represent 

means from 10 replicate simulations. 

Figure B5: The effect of positively cross-correlated ( ρξ =1) and negatively cross-

correlated (ρξ = −1) autocorrelated γ = 0.8( )  environmental fluctuations on (A, B) 

intraspecific synchrony and global consumer correlation (ρG ), (C, D) global 

temporal variance (σ ), (E, F) global mean abundance (μ) and (G, H) global stability 
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(μ /σ ) for metacommunities with high (d=0.5, first column) and low (d=0.004, 

second column) dispersal. The grey horizontal dashed line indicates zero consumer 

correlation. Results represent means from 10 replicate simulations. 

Figure B6: The effect of additive demographic noise on (A, B) global stability (μ /σ

) for predator P, (C, D) consumer C1, (E, F) consumer C2 and (G, H) global 

consumer correlation ( ρG ) for metacommunities with high (d=0.5, first column) and 

low (d=0.004, second column) dispersal. All results represent means from 10 

replicate simulations. 

Figure B7: The effect of positively correlated (ρξ =1) and negatively correlated (

ρξ = −1) environmental fluctuations on (A, B) intraspecific synchrony and global 

consumer correlation ( ρG ), (C, D) global temporal variance (σ ), (E, F) global mean 

abundance (μ) and (G, H) global stability (μ /σ ) for metacommunities with high 

(d=0.5, first column) and low (d=0.004, second column) dispersal. The grey 

horizontal dashed line indicates zero consumer correlation. All results represent 

means from 10 replicate simulations. 
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SUMMARY AND CONCLUSION 

I have combined a series of dynamical models with large datasets to develop and 

validate a theory of marine metacommunities that emphasizes the importance of 

dispersal for determining the relative influence of local biotic and regional abiotic 

processes on the regional distribution of population abundance and community 

structure (chapter 1, 2). I have shown that the current theory (Connolly and 

Roughgarden 1998, 1999) advocating the importance of regional abiotic processes 

operates only in the absence of dispersal among populations. However, along the 

West coast of the United States, limited dispersal interacts with local biotic processes 

to control regional patterns of abundance and recruitment in mussel and barnacle 

communities (chapter 1, 2).  

These cross-scale interactions between local processes and dispersal 

emphasize the limits of the scale-dependent approach, which advocates a match 

between the scale of patterns and their causal processes (Turner et al. 2001, Willis 

and Whittaker 2002, Pearson and Dawson 2003). Indeed, this scale-dependent 

approach is currently being used by climate envelope models that attempt to predict 

the effects of global climate change on the distribution of population abundance 

(Pearson and Dawson 2003, Elith et al. 2006). This approach consists of mapping 

current distributions of population abundance to current climate conditions and then 

shifting the distributions according to various global climate change scenarios 

(Pearson and Dawson 2003, Elith et al. 2006). However, this approach has been 

heavily criticized for its lack of integration of species interactions and dispersal when 

predicting the distribution of population abundance (Davis et al. 1998a, Davis et al. 

1998b, Suttle et al. 2007). The results from chapters 1 and 2 emphasize the 
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limitations of this approach. Indeed, I have shown that the distribution of population 

abundance is dynamic, governed by the interaction between dispersal and local biotic 

processes and largely unrelated to the environment. Hence, in such systems, climate 

envelope model predictions are likely to fail to predict the effects of global climate 

change. Hence, chapters 1 and 2 emphasize the ability of processes to scale-up and 

generate patterns at much larger spatial scales (Levin 1992).  

Based on the validated theory developed in chapters 1 and 2, I investigated 

the consequences of the interaction between local processes and limited dispersal for 

the design of marine reserve networks (chapter 3). I showed that current reserve 

design theory, predicated on the use of the scale of dispersal as the distance between 

reserves (Botsford et al. 2001, Botsford et al. 2003, Gerber et al. 2003, Shanks et al. 

2003, Sale et al. 2005, Halpern et al. 2006), is optimal only when the rate of dispersal 

is low and thereby limits the scale of connectivity to the scale of dispersal (chapter 3). 

However, when the rate of dispersal is high, the interaction between dispersal and 

local biotic processes leads to patterns of connectivity at spatial scales that are much 

larger than that of dispersal. In such cases, reserve networks based on the scale of 

dispersal reduce mean abundance and persistence, whereas reserve networks based 

on the scale of connectivity maximize mean abundance and persistence (chapter 3). 

This works reiterates the importance of quantifying and maintaining connectivity in 

marine systems and highlights the distinction between the scale of dispersal and the 

scale of connectivity. Future work should assess the robustness of these predictions 

to more realistic patterns of dispersal by coupling these dynamic metapopulation 

models to ocean circulation models (Gaines et al. 2003, Pfeiffer-Herbert et al. 2007). 

Future efforts should also assess the effects of species interactions such as 
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competition and predation on the robustness of these predictions (Baskett et al. 

2007). 

Finally, in chapter 4, I showed that in more complex spatial food webs, the 

relative importance of biotic regulation and abiotic limitation depends on the rate of 

dispersal and varies in time (Gouhier et al. 2010). Low rates of dispersal dampen 

biotically-induced fluctuations among food webs and promote environmental 

destabilization, whereas high rates of dispersal promote biotically-induced 

fluctuations among food webs and mitigate environmental destabilization (Gouhier 

et al. 2010). Importantly, the relative influence of biotic regulation and abiotic 

limitation changes in time: food webs shift from periods of biotic regulation to 

periods of abiotic limitation. These emergent dynamic shifts between abiotic 

limitation and biotic regulation highlight the importance of including stochastic noise 

(a common feature in natural systems) into deterministic models in order to detect 

potential synergistic interactions (Grenfell et al. 1998, Coulson et al. 2004). 

So, what can we conclude about the relative importance of abiotic limitation 

and biotic regulation in ecological systems? Predictably, the answer is that it depends. 

Chapters 1 and 2 have shown that in marine systems, although regional abiotic 

processes largely control recruitment patterns, biotic processes can control the 

distribution of population abundance, and chapter 3 has investigated the 

consequences of this for marine reserve design. Chapter 4 has demonstrated that 

more complex ecological may be governed by the joint effects of abiotic limitation 

and biotic regulation. 

Importantly, the results outlined in chapters 1-3 should be applicable to any 

marine or terrestrial system that features sustained local population fluctuations and 
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limited dispersal (chapters 1-2). Hence, the properties of spatial synchrony should be 

able to elucidate the relative importance of biotic and abiotic processes for a range of 

spatial ecological systems. The generality of these results and their applicability to a 

broad range of ecological systems have critical implications for understanding the 

factors that control the spatiotemporal distribution of population abundance in 

natural systems and for predicting their response to global climate change. Indeed, 

the ability of cross-scale interactions between local biotic processes and limited 

dispersal to control the dynamic distribution of population abundance at the 

continental scale emphasizes the importance of adopting a broader perspective that 

encompasses biotic and abiotic factors occurring across different spatial scales to 

understand and protect natural systems. 

Overall, by adopting a rigorous comparative approach and systematically 

using dispersal as a treatment in my dynamical models, I have been able to compare 

competing theories and predict the conditions under which one is likely to prevail 

over the other. In doing so, I have attempted to strike a conciliatory tone and build 

bridges between competing theoretical towers. 
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