
Equivariant Heterogeneous Graph

Neural Networks

Daniel Levy

Computer Science
McGill University, Montreal

August 2022

A thesis submitted to McGill University in partial fulfilment of the requirements of the

degree of Master of Science. ©Daniel Levy; August 2022.

1

Abstract

Many real-world datasets include multiple distinct types of objects and relations,

and so they are naturally best represented by heterogeneous graphs. However, the most

common forms of neural networks operating on graphs either assume that their input

graphs are homogeneous, or they flatten heterogeneous graphs into homogeneous ones,

losing valuable information in the process. Any neural network that acts on graph data

should be equivariant or invariant to permutations of nodes, but this is complicated

when there are multiple distinct node and edge types. This thesis presents graph neural

networks that are composed of linear layers that are maximally expressive while being

equivariant only to permutations of nodes within each node type. Their effectiveness

on heterogeneous graph node classification and link prediction benchmarks is shown,

and synthetic experiments are conducted to demonstrate how the networks respond to

different datasets. Lastly, this technique is extended to higher-order relations.

2

Résumé

De nombreux ensembles de données du monde réel comprennent plusieurs types

distincts d’objets et de relations, et sont donc naturellement mieux représentés par

des graphes hétérogènes. Cependant, les formes les plus courantes de réseaux neu-

ronaux opérent sur des graphes supposent que les graphes d’entrée sont homogènes ou

aplatissent les graphes hétérogènes en graphes homogènes, perdant ainsi des informa-

tions précieuses. Tout réseau neuronal qui agit sur des données de graphe doivent être

équivariant ou invariant aux permutations de nœuds, mais cela se complique lorsqu’il

existe plusieurs types distincts de nœuds et d’arêtes. Cette thèse présente des réseaux

neuronaux de graphes composés de couches linéaires qui sont d’une expressivité maxi-

male tout en étant équivariants uniquement aux permutations de nœuds dans chaque

type. Leur efficacité sur des benchmarks hétérogènes de classification de nœuds de

graphes et de prédiction de liens est démontrée, et des expériences synthétiques sont

menées pour montrer comment les réseaux répondent à différents jeux de données. En-

fin, nous montrons comment étendre cette technique aux relations d’ordre supérieur.

i

Acknowledgements

I would firstly like to express my sincere gratitude to my supervisor, Dr. Siamak

Ravanbakhsh, for all the help and terrific guidance he has provided throughout my

Masters studies. I would also like thank the members of our research group – Tara,

Mehran, Hugo, Arnab, Vineet, Oumar, and Christopher – for their support, for fos-

tering a great working environment, and for the many great conversations we’ve had

about our research. Lastly, I am incredibly thankful for all my friends and family who

have supported me over the past two very unusual years.

Contents

Contents ii

List of Tables v

List of Figures vi

1 Introduction 1

2 Graph Learning 4

2.1 Graph Neural Networks . 6

2.1.1 Message Passing Framework . 7

2.1.2 Weisfeiler-Leman Test . 9

2.2 Heterogeneous Graph Learning . 11

3 Equivariant Heterogeneous Graph Layers 13

3.1 Equivariant and Invariant Learning . 13

3.2 Equivariant Linear Maps for Heterogeneous Graphs 16

3.2.1 Notation . 16

3.2.2 Equivariance for Heterogeneous Graphs 16

3.2.3 Characterizing Equivariant Linear Maps 18

3.3 The Neural Network Layer . 20

ii

CONTENTS iii

3.3.1 Multiple Channels . 21

3.3.2 Sparse Implementation . 21

3.3.3 Encoding and Decoding Layers . 22

3.3.4 Sharing Weights . 23

4 Model Evaluation 24

4.1 Tasks and Architectures . 24

4.1.1 Node Classification . 24

4.1.2 Link Prediction . 25

4.2 Heterogeneous Graph Benchmark . 26

4.2.1 Node Classification . 27

4.2.2 Link Prediction . 28

4.2.3 Hyperparameters . 29

4.3 Synthetic Datasets . 31

4.3.1 Dataset Generation . 31

4.3.2 Architectures and Dataset Parameters 32

4.3.3 Link Prediction . 33

4.3.4 Results . 35

5 Heterogeneous Hypergraphs 36

5.1 Equivariant Maps for Heterogeneous Hypergraphs 36

5.2 Higher Order Graph Networks . 40

5.2.1 Multi-Order Graph Neural Networks 40

5.2.2 Relational Databases . 41

6 Discussion 43

6.1 Applications of E-HGNN . 43

6.2 Further Research . 44

6.3 Conclusion . 45

CONTENTS iv

Bibliography 47

A Summary of Notation 54

List of Tables

4.1 Characteristics of each of the datasets tested. 27

4.2 Comparison of our method on the node classification task. 28

4.3 Comparison of the Equivariant HGN architecture on the link prediction task. . 29

4.4 Hyperparameters tested for each task. 30

4.5 Hyperparameters selected for each dataset for both tasks. 31

A.1 Summary of notation used throughout the thesis. 55

v

List of Figures

1.1 Left: An example heterogeneous graph, with 3 node types and 4 edge types.

represents authors, represents publications, and represents venues. The

graph and its adjacency matrices are shown. Right: The effect of applying sepa-

rate permutations π1 and π2 to the author and venue nodes. While the graph

itself is unaffected, with nodes simply relabelled, the adjacency matrices are mod-

ified. 2

2.1 Four graphs, shown with stable colorings resulting from running the WL algo-

rithm. Graphs (a) and (b) are isomorphic, and are assigned the same colorings.

Graph (c) is not isomorphic to (a), and the WL test correctly distinguishes them.

However, the WL test cannot distinguish graph (a) from the non-isomorphic

graph (d). 10

4.1 Diagram of a two-layer node classification architecture, being trained on the task

of classifying the publication nodes () from the example dataset in Fig. 1.1.

FC denotes a fully-connected linear layer, and L denotes the loss function. Some

details are omitted for simplicity: connections between relations without any

node types in common are not shown, and node features from the input graph

are not shown. 25

vi

LIST OF FIGURES vii

4.2 Diagram of an autoencoding link prediction architecture with a single layer per

module, being trained on the task of predicting author-publication (-) links

from the example dataset in Fig. 1.1. Connections between relations without any

node types in common are not shown, and node features from the input graph

are not shown. The grey squares indicate fake training sample edges. 26

4.3 Results of link prediction experiments. GCN is shown in blue (), GAT is shown

in red (), and E-HGNN is shown in yellow (). Standard error is shown. . . . 34

1
Introduction

Many real-world datasets and problems can be modelled as sets of objects with different

relationships between them, and so graphs are a natural choice for representing these prob-

lems. Common examples include modelling interactions between users in a social network,

predicting properties of molecules, or modelling connections between entities in a knowledge

base.

Graph neural networks (GNNs) have become a popular technique for node and graph-

level property predictions. These models have mostly focused on standard homogeneous

graphs, wherein all nodes and edges are treated the same, with any differences encoded

as feature vectors. However, in practical application settings, data is often complex and

multi-typed, necessitating the use of heterogeneous graphs, where nodes and edges can be of

different types with potentially completely different semantics. Typical ways to apply GNNs

to heterogeneous networks involve preprocessing techniques such as encoding node and edge

types into feature vectors, or collapsing heterogeneous networks into homogeneous ones by

replacing paths along multiple different edge types with single edges. These techniques

reduce the structural information available for any network to learn from and often require

domain knowledge and hand-engineered features.

In this thesis, we design neural network architectures that can operate directly on entire

heterogeneous graphs while fully respecting the independence and relationships between

different node and edge types. We model a heterogeneous graph as a collection of node-node

1

CHAPTER 1. INTRODUCTION 2

adjacency matrices, one for each edge type, and create mappings from each edge type to

every other edge type. For example, in a heterogeneous network that includes publications,

authors, and venues, and the relationships between these entities, our model can learn how

publication-published-at-venue relationships may influence author-associated-with-venue

relationships by constructing a linear mapping between their adjacency matrices; see Fig. 1.1.

1

2

1

4

3
3

2

1

2

𝛑1, 𝛑2
2

2

1

4

3
3

1

2

1

Figure 1.1: Left: An example heterogeneous graph, with 3 node types and 4 edge types.
represents authors, represents publications, and represents venues. The graph and
its adjacency matrices are shown.
Right: The effect of applying separate permutations π1 and π2 to the author and venue
nodes. While the graph itself is unaffected, with nodes simply relabelled, the adjacency
matrices are modified.

A key property of any neural network that operates on graphs is that they must be

invariant or equivariant to permutations of nodes. That is to say, if a graph with N nodes is

represented by an adjacency matrix A ∈ RN×N , for any permutation matrix π ∈ {0, 1}N×N ,

a neural network f : RN×N → RN×N must have the property that f(πAπ⊤) = πf(A)π⊤

(equivariance), or when making graph-level predictions with f : RN×N → R, we require

invariance f(πAπ⊤) = f(A). For heterogeneous graphs, this invariance or equivariance

constraint is to permutations within each node type.

In this thesis, we identify all linear operations that map one adjacency matrix to another

while maintaining permutation equivariance within each separate node type. By combining

these operations, we are able to construct maximally expressive linear equivariant layers

that can then be stacked together to produce a heterogeneous graph neural network. We

CHAPTER 1. INTRODUCTION 3

create two different architectures, and apply them to two common heterogeneous graph tasks:

node classification, and link prediction. We evaluate the results on a standard heterogeneous

graph benchmark to determine practical usefulness, as well as a set of synthetic datasets to

establish the relationship between dataset features and architecture performance. Finally,

we extend our treatment to the general case of relationships involving hyperedges between

more than two node types, providing a general prescription of how to efficiently implement

linear layers that act on heterogeneous hypergraphs.

Chapter 2 gives an overview of graph learning, with an emphasis on graph neural networks

and on heterogeneous graphs, highlighting the need for more expressive and versatile models.

Chapter 3 introduces the concepts of equivariance and invariance as motivators for neural

network design, and we derive neural network layers that are invariant and equivariant

to permutations in heterogeneous graphs. Chapter 4 demonstrates practical architectural

implementations using the layer, and applies them to real and synthetic datasets. Extensions

to hypergraphs are shown in Chapter 5, and a discussion of results is included in 6.

All work in each chapter presented in this thesis is original work by the author, with

support from the author’s advisor, Dr. Siamak Ravanbakhsh. A summary of the notation

used in this thesis is included in an appendix, Table A.1.

2
Graph Learning

A graph G can be defined as a tuple G = ⟨V , E⟩ where each v ∈ V is a node, potentially

with attributes, and where e ∈ E is an edge between two nodes, also potentially with its

own attributes. The set of neighbours (nodes connected by an edge) of a node v is denoted

by N (v), and the number of neighbours is the node’s degree, deg(v) = |N (v)|. The k-hop

neighbours of a node v are the nodes reachable by following a path along k edges or fewer.

One common representation of the graph is with an adjacency matrix A ∈ {0, 1}N×N , where

N = |V|, and where Ai,j = 1 implies that there exists an edge between vi and vj. Graphs

maybe undirected, in which case an edge from node vi to node vj is the same as one from vj to

vi and so Ai,j = Aj,i, or directed, in which an edge from vi to vj does not imply an edge from

vj to vi. Each node may vi be accompanied by a Fv-dimensional vector of features xi, and

these node features can be concatenated together to form a matrix Xv ∈ RN×Fv . Likewise,

Fe-dimensional edge features can be encoded as a tensor Xe ∈ RN×N×fe . An alternative

more compact representation is to encode all of this into a single data tensor X ∈ RN×N×F

where F = 1 + Fv + Fe. The adjacency matrix is encoded with X:,:,1 = A, the node data on

diagonals with Xi,i,1:Fv+1 = Xv
i , and the edge data on off-diagonals with X:,:,Fv+1:F = Xe.

Due to the unstructured nature of many real-world datasets, graphs are useful as means

of representing them. Many datasets have somewhat obvious network-like structures, such as

academic citation networks, social networks, and biological networks (Barabási and Bonabeau

2003; Zitnik and Leskovec 2017). Physical objects such as molecules and proteins may be rep-

4

CHAPTER 2. GRAPH LEARNING 5

resented as graphs, with their constituent elements (atoms and amino acids, respectively)

as nodes and their bonds represented by edges (Wu, Ramsundar, et al. 2018). Three-

dimensional objects such as chairs or humans may be modeled using polygonal meshes or

as point clouds, which both may be encoded as graphs (Simonovsky and Komodakis 2017).

Knowledge about the world can be represented as a graph in a knowledge graph, where

nodes represent real-world objects, and edges between them are relationships: for example,

“Elvis Presley” may be a node, “United States of America” another node, and “Born in” an

edge type connecting the two nodes (M. Nickel et al. 2015).

The structures of graphs may vary wildly, and so a number of measures may be used to

help describe these variances. Graphs may vary in their density, i.e. the ratio of existing

edges to possible edges. Graphs may be connected, meaning that any two nodes may be

joined by a path, or they may be disconnected and made up of multiple separate connected

components. The distribution of degrees of each node has a big impact on the properties

of a network. For example, the network describing airport connections in the United States

will have nodes with degrees distributed in a power-law distribution with several very-well

connected hubs and many smaller airports with few connections. In contrast, the network of

highways in the United States has nodes with a Poisson distribution, as each city can only

connect to a limited number of highways (Barabási and Bonabeau 2003). Graphs may be

homophilic, where nodes tend to be connected to other nodes with similar properties: for

example, in a citation network, academic papers are likely to cite other papers in the same

field. They may also be heterophilic, where dissimilar nodes are preferentially attached: for

example, a network of matches on a dating website might be heterophilic when it comes to

user’s genders (J. Zhu, Y. Yan, et al. 2020).

The definition of a graph defined above can be extended further in a number of ways.

Spatio-temporal graphs have features that may change over time, which are very useful for

modelling traffic networks (Yu, Yin, and Z. Zhu 2017) or moving objects such as skeletons

(S. Yan, Xiong, and Lin 2018). Heterogeneous graphs, of particular interest to this thesis,

are graphs in which nodes, edges, or both may take on different types. Heterogeneous graphs

CHAPTER 2. GRAPH LEARNING 6

are particularly useful when different node types imply completely different types of objects,

and different edge types imply different relationships with very different semantic meanings.

They can be thought of as coupling a graph with mapping functions, one that maps nodes to

node types, and one that maps edges to edge types. Another way to think of a heterogeneous

graph is as the union of several graphs, one for each edge type, with nodes shared between

them. An example of a heterogeneous graph displayed with this perspective is shown in

Fig. 1.1.

Hypergraphs are another extension to graphs, in which an edge can connect more than

just two nodes. If the order of the edges is fixed (e.g. if all edges involve three nodes then

it is a order-3 hypergraph), then an order k hypergraph can be represented by a tensor

A ∈ RNk . When edges can have an arbitrary order, a hypergraph can be represented by an

edge-node incidence matrix A ∈ RN×M where M is the number of edges.

2.1 Graph Neural Networks
Over the past two decades, deep learning methods have emerged as front-runners in a variety

of machine learning tasks in numerous problem domains. Deep learning methods use multi-

layered neural networks to encode data into vector representations, known as embeddings.

These embeddings can then be used for downstream tasks, such as regression or classification.

Importantly, deep learning based methods are trained in an end-to-end manner: they are

able to automatically learn what features of its input data are important for it to make

predictions, obviating the need for hand-engineered features.

Deep learning tasks can be supervised, in which case labels for each data point in the

training set are known, and they are used to train the neural network to predict these labels.

They may be semi-supervised, where only some labels are known (common in real-world

datasets). They may instead be unsupervised, where no labels are provided at all, and the

neural network is tasked with learning an internal representation of the data that may be

used to model its distribution. Tasks may be transductive, in which case the goal is to make

CHAPTER 2. GRAPH LEARNING 7

predictions about data seen in the training set, or they may be inductive, where predictions

are made on entirely unseen data, and requiring any solution to learn generalizable rules.

Deep learning methods have been extended to apply to graph data, creating a class of

models known as graph neural networks, or GNNs. This approach was first introduced by

Gori, Monfardini, and Scarselli 2005 and Scarselli et al. 2008. In contrast to most previous

non-deep learning algorithms on graphs, GNNs are broadly generalizeable, applicable to a

wider variety of tasks, and avoid the need to hand-engineer graph features. Furthermore,

GNNs can be usually applied to inductive settings, as a trained GNN can make predictions

on entirely unseen nodes or graphs.

While the range of possible applications for graph neural networks are limitless, they often

fall into three broad categories: node-level predictions, link-level predictions, and graph-

level predictions. Examples of node-level predictions include predicting fraudulent users in

a social network, or predicting the subject of a publication in a citation network. Examples

of link-prediction include predicting potential matches between users in a social network, or

predicting possible missing facts in a knowledge graph. Examples of graph-level prediction

include predicting chemical properties of molecules, or classifying proteins (Zhou et al. 2020).

2.1.1 Message Passing Framework

Throughout the development of graph neural networks, most methods can be thought of

as belonging to a broader class of so-called message passing neural networks (Gilmer et al.

2017). In this framework, information about nodes (in the form of vector embeddings)

are combined with information from their neighbours to form “messages”, which are then

aggregated and used to update the embeddings for the nodes. By repeating this process

multiple times, node information is propagated throughout the graph along its structure.

Using the formulation from Bronstein et al. 2021, we can compute a message between nodes

vi and vj:

mi,j = ψ(xi,xj) (2.1)

CHAPTER 2. GRAPH LEARNING 8

Here ψ is a differentiable and possibly learnable function, such as a multi-layered perceptron

(MLP). The messages are then used to update each node:

zi = ϕ

xi,
⊕

j∈N (vi)
mi,j

 (2.2)

Here, ϕ is another differentiable and potentially learnable function, and ⊕ is an aggregation

function that does not depend on the order of its inputs, such as addition, or taking the

mean, or taking the max. The updated node features zi can then be used as inputs to

another round of message passing.

The resulting node embedding vectors may then be used to perform node-level prediction

tasks. To accomplish edge-level prediction tasks, the embeddings of two candidate nodes

may be compared together (for example, by taking their dot product), and the result can be

used to make predictions about a potential edge between the nodes. To perform graph-level

predictions, the node-level embeddings of a graph may be aggregated in some way.

A commonly used type of neural network architecture that fits into the message-passing

framework is the graph convolution network, or GCN (Kipf and Welling 2016). In a GCN,

at each layer a message is computed as mi,j = ci,jxi where ci,j = (deg(vi)deg(vj))−1/2 Ai,j.

This message is plugged into Equation 2.2 using a summation as the aggregation function⊕, computing zi = σ
(
W

∑
j∈N (vi) mi,j

)
, where W is a learned parameter matrix, and σ is

a nonlinear function, such as the ReLU function.

Another common neural network architecture that fits into this framework is the graph

attention network, or GAT (Veličković et al. 2017). Rather than using a simple scalar

ci,j to compute the influence of one node on its neighbour, it instead uses an attention

mechanism a(xi,xj) to calculate a weight dependent on the features of each node. The

attention mechanism is defined as a(xi,xj) = softmax (a⊺[W xi||W xj]) where a is a learned

parameter vector, and || is the concatenation operation. It is then used to compute the

message mi,j = a(xi,xj)W xi. This message is plugged into Equation 2.2, computing

zi = σ
(∑

j∈N (vi) mi,j

)
. The GAT may be multiheaded, where zi becomes the concatenation

of H vectors zh
i , each computed with their own W h and ah.

CHAPTER 2. GRAPH LEARNING 9

This general concept of graph neural networks actually subsumes several other common

types of neural networks. A typical convolutional neural network (CNN) (LeCun, Bottou,

et al. 1998) for image data can be thought of as a type of graph convolution network applied

to a two-dimensional grid-structured graph, where each node is a pixel, and edge weights

are determined by the relative orientation of the pixels. The transformer network (Vaswani

et al. 2017), which has found great success in natural language processing applications, can

be thought of as a type of GAT applied to graphs where each node is a word in some text,

and each word is connected to every other word in that text (Kreuzer et al. 2021; Dwivedi

and Bresson 2020).

2.1.2 Weisfeiler-Leman Test

The structure of message-passing neural networks closely resembles a known algorithm within

graph theory, the Weisfeiler-Leman (WL) algorithm (Weisfeiler and Leman 1968). This

algorithm is applied to two graphs and used as a test for whether they are isomorphic to

each other: that is, whether they are identical up to a relabelling of nodes. Determining

whether two graphs are isomorphic to each other is, in general, not known to be solvable in

polynomial time.

The WL algorithm initially assigns colors c0
i to each node vi in a graph G, either uniformly,

or so that nodes with unique features have unique colors. At each step t > 0, each node

vi counts the number of its neighbours that have each color, forming a multiset of colors

Ct−1(vi) = {{ct−1
j |j ∈ N (vi)}}, where {{}} denotes a multiset. The node then uses these

features as well as its own color, ct−1
i , to assign itself a new color ct

i = ϕ(Ct−1(vi), ct−1
i),

where ϕ is an injective function, like a perfect hash function. We can then count all the

colors of nodes in the graph: Ct(G) = {{ct
i|i ∈ V}}. If we apply the WL algorithm to

graphs G1 and G2 in parallel (using the same function ϕ and same node color initialization

procedure), then if at any time t, Ct(G1) ̸= Ct(G2), we can declare that G1 and G2 are not

isomorphic to each other. If not, we take another step in the algorithm. If the algorithm

converges on both graphs (i.e. no node colors change for one step), then we do not know

CHAPTER 2. GRAPH LEARNING 10

whether they are isomorphic or not. While the WL test can often distinguish non-isomorphic

graphs, it fails in some very obvious ways. An example is shown in Fig. 2.1.

(a) (b) (c) (d)

Figure 2.1: Four graphs, shown with stable colorings resulting from running the WL algo-
rithm. Graphs (a) and (b) are isomorphic, and are assigned the same colorings. Graph (c)
is not isomorphic to (a), and the WL test correctly distinguishes them. However, the WL
test cannot distinguish graph (a) from the non-isomorphic graph (d).

The GNN message passing step of Eq. (2.2) is equivalent to one round of color-updating

in the WL algorithm, if ϕ and ⊕ are both injective functions. This equivalance means that

GNNs that follow a message passing framework necessarily inherit the same shortcomings

as the WL test: they are not able to distinguish graphs that would not be distinguishable

by the WL test (Morris, Ritzert, et al. 2019; Xu et al. 2018).

By defining an upper limit on the distinguishing power of message-passing GNNs, this

equivalence has motivated new, more powerful graph architectures that can surpass the WL

test. The WL test can be extended by considering it to be the 1-dimensional case of a more

general k-dimensional WL test, which colors k-tuples of nodes. For k ≥ 2, the (k + 1)-WL

test is able to distinguish graphs that the k-WL test would be unable to distinguish (Cai,

Fürer, and Immerman 1992). The k-WL test provides a principled way of upper-bounding

the expressive power of graph neural networks (Geerts and Reutter 2022). Neural networks

specifically designed to surpass the 1-WL and attain the separating powers of the k-WL test

include Maron, Ben-Hamu, Serviansky, et al. 2019 and Morris, Ritzert, et al. 2019.

For a thorough review of the connections between the WL-test and graph learning, see

Morris, Lipman, et al. 2021.

CHAPTER 2. GRAPH LEARNING 11

2.2 Heterogeneous Graph Learning
The ubiquity of complex multi-typed data in real-world problems has caused heterogeneous

graph learning to attract a lot of attention in applied settings. Heterogeneous graph networks

have been applied to such diverse tasks as text classification (Linmei et al. 2019), disease

diagnosis (Z. Wang et al. 2021), and malicious account detection (Liu et al. 2018).

The majority of heterogeneous graph learning techniques rely on meta-paths: sequences

of different node and edge types (Sun and Han 2012; Shi et al. 2017). For example, in a

citation network with authors, papers, and venues, the “path” author – publication –

venue – publication – author represents one meta-path between two authors that have

published at the same venue. These meta-paths are usually hand-designed, requiring domain

knowledge.

Heterogeneous graph learning techniques can be broadly classified into either “shallow”

embedding models, or “deep” neural models (Dong, Hu, et al. 2020; Yang et al. 2020).

Shallow methods (such as Dong, Chawla, and Swami 2017; Tang, Qu, and Mei 2015; T.-y.

Fu, Lee, and Lei 2017) aggregate node attributes using techniques such as random walks

over different edge types, in order to obtain structure-preserving embeddings for each node,

which are then passed on to other machine learning models for downstream tasks. These

are limited to transductive settings.

Deep methods extend conventional GNNs, but learn parameters or embeddings specific

to each node or edge type; see Wu, Pan, et al. 2020 for a survey of homogeneous GNNs.

Examples include R-GCN (Schlichtkrull et al. 2018) which extends GCN by learning edge-

specific weight matrices, Heterogeneous Graph Attention Network (HAN) (X. Wang, Ji, et

al. 2019) and Metapath Aggregated Graph Neural Network (MAGNN) (X. Fu et al. 2020),

which extend graph attention to attend over different meta-paths. Some methods, such as

Heterogeneous Graph Transformer (HGT) Hu et al. 2020 and Graph Transformer Network

(GTN) (Yun et al. 2019) can automatically discover what meta-paths are worth using, but

even then they are not able to capture as much information as if they were to directly use

CHAPTER 2. GRAPH LEARNING 12

the full heterogeneous graph. For two recent surveys of heterogeneous graph representation

learning techniques, see Yang et al. 2020 and Dong, Hu, et al. 2020.

Lv et al. 2021 recently called into question whether most heterogeneous graphs neural

networks are able to properly exploit the information provided by node and edge types.

They show that under fair comparisons, they are often outperformed by conventional graph

neural networks that simply ignore node and edge type information, such as GCN (Kipf and

Welling 2016) and GAT (Veličković et al. 2017). This shortcoming motivates us to design

neural networks that treat edge and node types as first-class objects, with the ability to

learn the relationships between one edge type and another, and to adapt to the different

semantics conveyed by different node and edge types.

3
Equivariant Heterogeneous Graph Layers

The goal of this chapter is to derive a maximally expressive layer of a neural network that

operates on heterogeneous graphs, composed only of linear operations. We desire linear lay-

ers as they serve as the building block of deep learning architectures: for example, by simply

alternating linear layers with nonlinear activation functions, an analogue of the multilayer

perceptron can be constructed for heterogeneous graphs. As we will see, the structure of

heterogeneous graphs restricts the form that these layers may have. Furthermore, the struc-

ture of these layers imply an efficient decomposition into a set of pooling and broadcasting

operations.

3.1 Equivariant and Invariant Learning
When defining a graph using an adjacency matrix A ∈ RN×N , we are forced to pick an

ordering of the nodes in the graph. This ordering is usually entirely arbitrary, and we

therefore do not want it to have an effect on the final results of any graph learning task.

We can permute elements in A by multiplying it on both sides with a permutation matrix

π ∈ {0, 1}N×N where ∀i,∑j πi,j = 1 and ∀j,∑i πi,j = 1. Using the language of group theory,

a permutation matrix π is a representation of an element of the symmetric group S(N), a

group that contains all N ! permutations of a set of N nodes. We can say that permutation

of node orderings is a symmetry of our data. If we are making a graph-level prediction, then

13

CHAPTER 3. EQUIVARIANT HETEROGENEOUS GRAPH LAYERS 14

this means we want our prediction to be invariant to permutations of node orderings, i.e.

f(A) = f(πAπ⊺). If we are making node-level or edge-level predictions, then a reordering of

nodes on the input should result in the exact same reordering of the resulting node and edge

predictions. In this case, we would like to be equivariant to permutations of node orderings,

i.e. πf(A)π⊺ = f(πAπ⊺). Without this invariance or equivariance requirement, a neural

network would need to separately train on each possible permutation of each graph in its

training data in order to have it robustly make predictions, with computational requirements

scaling with the factorial of the size of the graph. All of the graph neural networks described

in 2.1.1 are permutation equivariant or invariant.

Invariance and equivariance can be described more generally for other types of symme-

tries. Let’s say we have a symmetry group G where elements g ∈ G are represented with a

map ρ : G → RN×N , a set of possible data X , and elements of the group can act on data

x ∈ X via matrix multiplication, p(g)x. In our previous example, G was the symmetric

group S(N) and ρ gave us N × N permutation matrices. A function f : X → X is said to

be invariant iff f(x) = f(ρ(g)x), and it is said to be equivariant iff ρ(g)f(x) = f(ρ(g)x).

The invariance and equivariance requirements has proved to be a useful tool for deriving

new neural networks in a principled way, an approach that has been called the Geometric

Deep Learning Blueprint, as explained by Bronstein et al. 2021. Convolutional neural net-

works (CNNs) (LeCun, Boser, et al. 1989) were a great breakthrough for neural networks

applied to image data, and they are successful because they have translational equivariance

built in to them, by using a convolution kernel that is applied to a neighbourhood around

each pixel. Further developments have extended this equivariance to symmetry groups such

as rotations on a sphere (T. S. Cohen et al. 2018) and surfaces of manifolds (Masci et al.

2015; Monti et al. 2017).

The Deep Sets model (Zaheer et al. 2017) was one of the first deep learning models to be

expressly designed to be invariant or equivariant to permutations of sets, the group S(N).

It does so by using just two learnable parameters per layer: one for each individual element

of the set, and one for the aggregation of all elements of the set. The form of a layer of the

CHAPTER 3. EQUIVARIANT HETEROGENEOUS GRAPH LAYERS 15

network resembles: f(xi) = σ
(
w1xi + w2

⊕
j xj

)
, where w1 and w2 are learned parameters

and σ is a nonlinear function. If ⊕ is set to summation, this can also be thought of an MLP

layer f(X) = σ (W X) where the weights are tied together, such that W = w1I + w2(11⊺)

where 1 is a vector of all ones and I is an identity matrix. Indeed, Ravanbakhsh, Schneider,

and Poczos 2017 shows the equivalence between parameter sharing and equivariance for

discrete symmetry groups.

Several works directly seek the set of equivariant and invariant operations with this

property to use them as building blocks in graph neural networks, extending beyond just

unstructured sets. Of particular relevance is the work of Kondor et al. 2018, which introduces

permutation equivariant operations that can be applied to tensor representations of graphs,

and Maron, Ben-Hamu, Shamir, et al. 2018, which characterizes a basis for all equivariant

linear operations on tensor representations of graphs and hypergraphs with potentially differ-

ent node types. So far, these works have only been implemented for the cases of homogeneous

graphs, and have not been extended to the more general case of heterogeneous graphs. Fur-

thermore, while they characterise the set of equivariant linear bases, their analysis does not

give a practical algorithm, since such large matrices that form the linear bases are too large

to store in memory for any large graph. While Maron, Ben-Hamu, Shamir, et al. 2018 give

an efficient implementation based on matrix pooling and broadcasting for standard homo-

geneous graphs, and Hartford et al. 2018 give an efficient implementation for the case of a

single relationship between different node types, neither provide a more general implemen-

tation for arbitrary node and edge types. Albooyeh, Bertolini, and Ravanbakhsh 2019 give

a pooling and broadcasting view of operations for hyper-graphs and incidence structures of

other geometric entities; however, all such structures have a single node type that is assumed

exchangeable. Some other related works that have a symmetry-based approach to GNNs

and other permutation-equivariant structures include Maron, Ben-Hamu, Serviansky, et al.

2019; Haan, T. Cohen, and Welling 2020; Azizian and Lelarge 2020; Graham, J. Wang, and

Ravanbakhsh 2019.

CHAPTER 3. EQUIVARIANT HETEROGENEOUS GRAPH LAYERS 16

3.2 Equivariant Linear Maps for

Heterogeneous Graphs

3.2.1 Notation

A heterogeneous graph G = ⟨D,R,V,X⟩ is a four tuple, where D = {1, . . . , D} is the set of

node types. For each node type d ∈ D there is a set of Nd nodes Vd = {v1, . . . , vNd
}. Each

edge type r is given by a relation between nodes r = ⟨r, r⟩ where r, r ∈ D are the pair of

node types that the edge type r links between. The set of all edge types is R = {r1, . . . , rR}.

The set of node adjacency matrices is X = {Xr ∈ RNr×Nr | r ∈ R}, one for each edge

type r ∈ R. When r = r, such matrices can represent both node and edge attributes using

diagonal and off-diagonal elements respectively. For simplicity, node and edge attributes are

initially assumed to be scalar, but later it can be shown that these may be generalized to

vectors using multiple channels. In the definition above, D,R, and V contain the blueprint

of the heterogeneous graph, while X contains the actual data.

3.2.2 Equivariance for Heterogeneous Graphs

Given the heterogeneous graph G our goal is to identify all equivariant linear operators that

map the set of matrices X = {X1, . . . ,XR} to another set of matrices Y = {Y 1, . . . ,Y R}

of the same form. For this, it is sufficient to identify all such maps from one edge type to

another Lr→r′ : RNr×Nr → R
Nr′ ×Nr′ . The overall equivariant map LR→R can be built from

the collection Lr1→r1 ,Lr1→r2 , . . . ,Lr1→rR , . . . ,LrR→rR .

The equivariance condition on the linear operator Lr→r′ ensures that any permutation of

the input nodes of the same type leads to the same permutation of the nodes in the output

for that node type. Let πd ∈ S(Nd) be a permutation matrix acting on Nd nodes of type d.

CHAPTER 3. EQUIVARIANT HETEROGENEOUS GRAPH LAYERS 17

The Equivariance constraint requires

Lr→r′(πrX
rπ⊤

r) = πr′ Lr→r′(Xr)π⊤
r′ ∀πr, πr, πr′ , πr ∈ S(Nr) × S(Nr) × S(Nr′) × S(Nr′)

(3.1)

where the permutation matrices correspond to two pairs of node types that appear in the

input (r) and output edge types (r′).

As also observed in related contexts (Kondor et al. 2018; Albooyeh, Bertolini, and Ra-

vanbakhsh 2019) such linear operators often involve pooling and broadcasting over input

and output matrices. Our plan is to enumerate all such operations and prove that these are

indeed the only linear operations with the desired equivariance property Eq. (3.1).

Example 1: To build an intuition for these operations, consider two relations between

⟨author,venue⟩ and ⟨publication,author⟩. Let r = ⟨1, 2⟩ denote the former and

r′ = ⟨3, 1⟩ be the latter, noting that these two edge types have a node type in common.

The desired linear map Lr→r′ should be equivariant to independent permutation of

author nodes, publication nodes and venue nodes in our graph. The results that

follow this example show that any equivariant Lr→r′ has the following form:

Lr→r′(X) = w1(X1Nr1Nr′)⊤ + w21Nr′ (1⊤
Nr

X1Nr)1⊤
Nr′ (3.2)

where w1, w2 ∈ R are arbitrary weights and 1N is the identity vector of length N . Here,

following Zaheer et al. 2017 we are performing pooling and broadcasting operations

using multiplication by identity vectors. The first operation (X1Nr1Nr′)⊤ pools over

the columns of X (i.e., venues), and broadcasts the resulting column vector to create

a Nr′ × Nr′ matrix which is then transposed to match the dimensions of the target

edge type. We can think of the pooling operation above as collecting edge attributes

from all the venues that are adjacent to each author. Similarly, the broadcasting

operation disperses this pooled information over all the publication nodes adjacent to

each author. This example shows that an equivariant linear map is able to propagate

relevant information across different edge types.

CHAPTER 3. EQUIVARIANT HETEROGENEOUS GRAPH LAYERS 18

3.2.3 Characterizing Equivariant Linear Maps

After describing the constraints implied by the structure of heterogeneous graphs, the task is

now to identify all equivariant linear operations for a given pair of edge types r, r′. In addition

to the pooling, broadcasting, and transpose operation used in the example above, we need one

additional operation, namely diag. We overload this operation so that for a square matrix,

diag : RN×N → RN extracts the diagonal, and for a vector input, diag : RN → RN×N

outputs a square matrix with that vector on its diagonal – this means diag(diag(x)) = x

and diag(diag(X)) = X ⊙I (where ⊙ is the Hadamard product and I is an identity matrix).

The idea is to create all possible combinations of the linear operations above that take us

from a Nr ×Nr matrix to a Nr′ ×Nr′ matrix. These operations vary based on the equality of

some of these dimension – for example if r = r then the operation diag(X) is well-defined,

and otherwise it is not feasible. To help with this enumeration, any such linear operation

can be broken into parts:

Contraction operations These include pooling over the rows, columns, both rows and

columns, extraction of diagonal and pooling over the diagonal, as well as the identity

operation. The result could be a scalar, a vector, or a matrix. Below, we use z,z, and

Z to denote these intermediate products, and identify the condition under which we

can perform each of these contraction operations:

Operation Condition

1. Identity operation Z⟨r,r⟩ = X⟨r,r⟩ -

2. Pooling over rows zr = X⟨r,r⟩1Nr -

3. Pooling over columns zr = X⟨r,r⟩⊤1Nr
-

4. Pooling over rows and columns z = 1⊤
Nr

X⟨r,r⟩1Nr -

5. Extracting the diagonal zr = diag(X⟨r,r⟩) r = r

6. Pooling the diagonal z = diag(X⟨r,r⟩)⊤1Nr
r = r

Expansion operations These operations expand the intermediate value to produce the

target matrix. The operations include broadcasting over rows, columns, both rows and

CHAPTER 3. EQUIVARIANT HETEROGENEOUS GRAPH LAYERS 19

columns, diagonal placement, diagonal broadcasting, as well as the identity operation

and matrix transpose.

1. Identity operation Y ⟨r′,r′⟩ = Z⟨r,r⟩ r′ = r, r′ = r

2. Transpose Y ⟨r′,r′⟩ = Z⟨r,r⟩⊤
r′ = r, r′ = r

3 Broadcasting over columns Y ⟨r′,r′⟩ = zr1⊤
Nr′ r = r′

Y ⟨r′,r′⟩ = zr1⊤
Nr′ r = r′

4. Broadcasting over rows Y ⟨r′,r′⟩ = 1Nr′ z
r⊤

r = r′

Y ⟨r′,r′⟩ = 1Nr′ z
r⊤ r = r′

5. Broadcast over rows and cols Y ⟨r′,r′⟩ = 1Nr′z1⊤
Nr′ -

6. Placing the diagonal Y ⟨r′,r′⟩ = diag(zr) r′ = r′ = r

Y ⟨r′,r′⟩ = diag(zr) r′ = r′ = r

7. Broadcasting over the diagonal Y ⟨r′,r′⟩ = diag(z1Nr′) r′ = r′

Theorem 3.2.1. Given two edge types r, r′, all the linear maps Lr→r′ : RNr×Nr → R
Nr′ ×Nr′

that satisfy the equivariance condition of Eq. (3.1) are produced using the contraction and

expansion operations above.

Proof. It is easy to see that all expansion and contraction operations are equivariant, lin-

ear, and independent from one another. The composition of a contraction and expansion

operation is also equivariant and linear. To prove that these operations represent all linear

equivariant maps, we count them, and compare the counts to the results obtained by Maron,

Ben-Hamu, Shamir, et al. 2018 on the number of linear independent bases for equivariant

maps for graphs.

We look at all valid combinations of contraction and expansion operations. There is 1

contraction of the form X → Z (op. 1) , 3 of the form X → z (ops. 2, 3, and 5), and 2 of

the form X → z (ops. 4 and 6). There are 2 expansions of the form Z → Y (ops. 1 and

2), 3 expansions of the form z → Y (ops. 3, 4, and 6) and 2 of the form z → Y (ops. 5 and

7). A contraction of the form X → Z can only be paired with an expansion of the form

CHAPTER 3. EQUIVARIANT HETEROGENEOUS GRAPH LAYERS 20

Z → Y , and so on for the other forms. This yields (1 × 2) + (3 × 3) + (2 × 2) = 15 different

operations when r = r′, matching the results of Maron, Ben-Hamu, Shamir, et al. 2018.

We can generalize this to cases where r ̸= r′. First, we define the function κ(r, d) to be the

number of times node type d appears in the tuple r. From Theorem 3 of Maron, Ben-Hamu,

Shamir, et al. 2018, the number of possible operations between a matrix Xr and Y r′ is:

C(r, r′) =
∏
d∈D

Bell (κ(r, d) + κ(r′, d)) (3.3)

Here, Bell(k) is the k-th Bell number; the k-th Bell number is defined as the number of ways

a set with k elements may be partitioned.

For each possible set of equalities between r, r, r′, and r′, if we count the number of

valid combinations of contraction and expansion operations, it matches the count obtained

by Eq. (3.3). For example, going back to Example 1, if r = ⟨1, 2⟩ and r′ = ⟨3, 1⟩, then

only condition r = r′ is met. The valid contraction operations are 1, 2, and 3, and the

valid expansion operations are 4 and 5. This leads to (1 × 0) + (1 × 1) + (1 × 1) = 2 valid

combinations, matching the result predicted by Eq. (3.3) and obtaining Eq. (3.2) .

This can be manually verified for each combination of r, r, r′, and r′, but for a more

general proof, see Section 5.1.

3.3 The Neural Network Layer
Now that we have enumerated all possibilities for permutation equivariant linear mappings

Lr→r′ , we can combine them to form a linear layer that acts on a set of adjacency matrices:

LR→R(X) =

 ∑
Xr∈X

C(r,r′)∑
c=1

wr→r′

c Lr→r′

c (Xr) | r′ ∈ R

 (3.4)

Here, c indexes all valid combinations of contraction and expansion operations, and wr→r′
c ∈

R is a weight for that combination that may be learned. In practice, both the inner and

outer sum can be replaced by any permutation invariant aggregation function, such as taking

the maximum or taking the mean.

CHAPTER 3. EQUIVARIANT HETEROGENEOUS GRAPH LAYERS 21

3.3.1 Multiple Channels

We can extend the above definitions to include edge feature vectors in a straightforward way,

if we instead replace the matrix Xr with the tensor Xr ∈ RNr×Nr×F where F is some feature

dimension. Now, instead of having scalar weights wc in Eq. (3.4), we have a collection of

weight matrices Wc ∈ RF ′×F . Each equivariant layer can then specify the number of feature

dimensions in their input and output. The weights mix between feature dimensions and not

node dimensions, so the layers are still equivariant to node permutations.

3.3.2 Sparse Implementation

In practice, graphs are often very sparse, making it impractical to deal with full adjacency

matrices. We instead represent a data tensor Xr with M nonzero entries as a tuple sp(Xr) =

⟨U ,V ⟩, where U ∈ NM×2 are the indices of nonzero values, and V ∈ RM×F are the nonzero

values. With this representation, for m = 1, . . . ,M , we have Vm = XUm .

Each of the contraction operations of Section 3.2.3 for a tensor Xr can be implemented

with a space complexity of O(M +Nr +Nr) and a time complexity of O
(
M +Nr +Nr

)
.

The sparse versions of the expansion operations of Section 3.2.3 only output to the desired

indices of the sparse output tensor, sp(Yr′) = ⟨U ′,V ′⟩, U ′ ∈ NM ′×2, V ′ ∈ RM ′×F . So, for

example, the sparse “broadcast over rows” operation Y r′ = 1Nr′ z
r⊤ would instead be imple-

mented so that for m′ = 1, . . . ,M ′, if (i, j) = U ′
m′ then V ′

m′ = zr
j . The sparse “identity” op-

eration Y ⟨r′,r′⟩ = Z⟨r,r⟩ would instead be implemented as V ′
m′ = Vm if ∃m,U ′

m′ = Um, else 0.

The sparse expansion operations have a space complexity of O(M+M ′ +Nr +Nr +Nr′ +Nr′)

and a time complexity of O
(
(M +M ′) log(M +M ′) +Nr +Nr +Nr′ +Nr′

)
. The log-

factor is because the “identity” and “transpose” expansion operations require that we match

the nonzero indices of the input and output matrices, an operation that involves sorting,

giving it a time complexity of O((M + M ′) log(M + M ′)). However, this only needs to

be computed once for a given input and output sparsity mask, rather than for every pass

through a layer.

CHAPTER 3. EQUIVARIANT HETEROGENEOUS GRAPH LAYERS 22

With a sparse implementation, the layer effectively has a linear complexity in the number

of nodes and edges of the graph, making it efficient for large datasets. However, inducing

the sparsity on the output of the layer should be seen as an non-linear operation. Because

permutation of node types also permutes the sparsity patterns, this non-linear operation is

equivariant.

3.3.3 Encoding and Decoding Layers

It is also useful to have matrix-to-vector encoding and vector-to-matrix decoding layers. For

example, an encoding layer can take in a set of adjacency matrices and output embeddings

for each node of each type, while a decoding layer can take in node embeddings and output

values for each possible edge, which may be used for link prediction.

We define here an equivariant encoding mapping Pr→d : RNr×Nr → RNd and an equiv-

ariant decoding mapping Bd→r : RNd → RNr×Nr . The equivariance conditions on these

mappings are:

Pr→d(πrX
rπ⊤

r) = πdPr→d(Xr) ∀πr, πr, πd ∈ S(Nr) × S(Nr) × S(Nd) (3.5)

Bd→r(πdzd) = πrBd→r(zd)π⊤
r ∀πd, πr, πr ∈ S(Nd) × S(Nr) × S(Nr) (3.6)

Theorem 3.3.1. Given an edge type r = ⟨r, r⟩ and a node type d, all the linear maps

Pr→d : RNr×Nr → RNd that satisfy the equivariance condition of Eq. (3.5) are produced using

the valid contractions of the forms RNr×Nr → RNd in Section 3.2.3, or contractions of the

form RNr×Nr → R followed by a multiplication by 1Nd
.

All the linear maps Bd→r : RNd → RNr×Nr that satisfy the equivariance condition of Eq. (3.6)

are produced using the valid expansions of the form RNd → RNr×Nr in Section 3.2.3, or by

first multiplying by 1⊤
Nd

and then applying expansions of the form R → RNr×Nr .

Proof. We can use a similar proof as Theorem 3.2.1, by verifying that the number of oper-

ations matches the numbers proved by Maron, Ben-Hamu, Shamir, et al. 2018. For Pr→d,

when r = r = d, then we can count 3 contraction operations of the form X → z and 2

CHAPTER 3. EQUIVARIANT HETEROGENEOUS GRAPH LAYERS 23

of the form X → z, yielding the 5 operations predicted by Eq. (5.6). Likewise, for Bd→r,

when r = r = d, we can count 3 expansion operations of the form z → Y and 2 of the form

z → Y , yielding the 5 operations predicted by Eq. (5.6).

Again, we can verify that the correspondence between the number of valid operations

and the number predicted by Eq. (5.6) holds for each of the 5 possible sets of equalities

between r, r, and d.

As with Theorem 3.2.1, these are also special cases of Theorem 5.1.1.

As with the standard equivariant layers we’ve defined, these equivariant mappings can

be combined together to form layers. Here, we define F = {zd ∈ RNd |d ∈ D} to be the set

of node feature vectors for each node type.

PR→D(X) =

 ∑
Xr∈X

∑
c

Pr→d
c (Xr) | d ∈ D

 (3.7)

BD→R(F) =

∑
zd∈F

∑
c

Bd→r
c (zd) | r ∈ R

 (3.8)

where for P, c indexes each valid contraction operation, and for B, c indexes each valid

expansion operation.

3.3.4 Sharing Weights

The model described above learns independent parameters for each pair of edge types. How-

ever, in some datasets, the relations may have something semantic meaning in common, and

it could be good to share parameters. This may be accomplished by replacing the weight

wr→r′
c in Equation 3.4 with (wr→r′

c + wc), where wc is an additional weight for operation c

shared for all combinations of edge types.

4
Model Evaluation

4.1 Tasks and Architectures
Our heterogeneous graph layers, just like regular linear layers in a multilayer perceptron,

can be stacked together and alternated with nonlinear activation functions to form a variety

of neural network architectures. We call the resulting neural networks “Equivariant Hetero-

geneous Neural Networks”, or E-HGNNs. We describe here two conventional graph learning

tasks, and what architectures we designed for them.

4.1.1 Node Classification

For the task of node classification, we are provided with a heterogeneous graph, where a

subset of nodes of one target type are labelled. We are tasked with predicting the labels of

the other nodes of the target type.

We use an architecture consisting of a stack of equivariant heterogeneous graph layers

separated by nonlinear activation functions. We apply batch normalization over the nonzero

entries for each of the matrices at each layer, and we use channel-wise dropout at each layer

to prevent overfitting. Following our stack of equivariant heterogeneous graph layers, we add

an encoding layer. This encoding layer can either be used to directly predict classes for each

node, or they can be used to get an embedding vector for each node which is then fed into a

24

CHAPTER 4. MODEL EVALUATION 25

?
?
?
?

0
1
1
0

Figure 4.1: Diagram of a two-layer node classification architecture, being trained on the task
of classifying the publication nodes () from the example dataset in Fig. 1.1. FC denotes
a fully-connected linear layer, and L denotes the loss function. Some details are omitted for
simplicity: connections between relations without any node types in common are not shown,
and node features from the input graph are not shown.

conventional linear classifier to get predictions. The network is trained using a negative log

loss over labels.

4.1.2 Link Prediction

For the task of link prediction, we are provided with a heterogeneous graph where a subset

of edges of one target type have been removed. Given a set of candidate edges, we are tasked

with assigning a confidence score to each potential edge. Half of the candidate edges are

real, and half are constructed by taking a real edge and replacing one node with a random

2-hop neighbour of the other node.

To accomplish this task, we use an autoencoder architecture. We create a stack of

equivariant heterogeneous graph layers separated by nonlinearities, followed by an encoding

layer that produces node embeddings for each node of each node type. This makes up

the encoding module of our autoencoder. These node embeddings are then passed into a

decoding layer, producing matrices for each edge type. These matrices are passed through

CHAPTER 4. MODEL EVALUATION 26

?
?
?
?
?
?
?
?

0
1
1
0
0
1
1
0

Figure 4.2: Diagram of an autoencoding link prediction architecture with a single layer per
module, being trained on the task of predicting author-publication (-) links from
the example dataset in Fig. 1.1. Connections between relations without any node types in
common are not shown, and node features from the input graph are not shown. The grey
squares indicate fake training sample edges.

another stack of equivariant heterogeneous graph layers, outputting a confidence score for

each potential edge for the target edge type. The neural network is trained using binary

cross-entropy loss over a 1:1 mix of samples of real edges of the target edge type, and

randomly sampled fake edges.

4.2 Heterogeneous Graph Benchmark
We evaluate our architectures using the recently created Heterogeneous Graph Benchmark

(HGB) (Lv et al. 2021), which gives a set of standardized datasets and training/test splits in

node classification and link prediction. To prevent any possible test set leakage, test set labels

are withheld, and evaluation metrics are obtained by submitting predictions to the HGB

website1. We make comparisons against the heterogeneous graph neural networks Simple-

HGN (Lv et al. 2021), RGCN (Schlichtkrull et al. 2018), HAN (X. Wang, Ji, et al. 2019),
1https://www.biendata.xyz/hgb/

CHAPTER 4. MODEL EVALUATION 27

GTN (Yun et al. 2019), RSHN (S. Zhu et al. 2019), HetGNN (Zhang et al. 2019), MAGNN

(X. Fu et al. 2020), HetSANN (Hong et al. 2020), HGT (Hu et al. 2020), and the homogeneous

graph neural networks GCN (Kipf and Welling 2016), and GAT (Veličković et al. 2017).

All evaluation scores listed here are taken from Lv et al. 2021. Details on the specific

hyperparameters searched over and used for each dataset are included in Section 4.2.3.

Table 4.1: Characteristics of each of the datasets tested.

Node
Classification

Nodes Node
Types

Edges Edge
Types

Node
Attributes

Target Classes

DBLP 26,128 4 239,566 6 Yes Author 4
IMDB 21,420 4 86,642 6 Yes Movie 5
ACM 10,942 4 547,872 8 Yes Paper 3
Freebase 180,098 8 1,057,688 36 No Book 7
Link Prediction Target
Amazon 10,099 1 148,659 2 Yes Product-product
LastFM 20,612 3 141,521 3 No user-artist

4.2.1 Node Classification

We look at four node classification datasets: DBLP, IMDB, ACM, and Freebase. DBLP,

ACM, and Freebase are multi-class classification tasks, and IMDB is a multi-label task. All

datasets except for Freebase additionally include node attributes, and 24% of target nodes

labels are used for training, 6% for validation, and 70% for testing. Further information is

included in Table 4.1, which is adapted directly from Lv et al. 2021. The task is evaluated

using the metrics of Micro-F1 and Macro-F1 scores (F1 scores that have been averaged over

all nodes and all labels respectively).

A comparison between our results and competing methods is shown in Table 4.2. It can

be seen that our method generally performs comparably with other top methods, and yields

higher performance than the state of the art for two particular metrics.

CHAPTER 4. MODEL EVALUATION 28

Table 4.2: Comparison of our method on the node classification task.

DBLP IMDB
Method Macro-F1 Micro-F1 Macro-F1 Micro-F1
Simple-HGN 94.01±0.24 94.46±0.22 62.05±1.36 67.36±1.36
RGCN 91.52±0.50 92.07±0.50 58.85 ± 0.26 62.05±0.15
HAN 91.67±0.49 92.05±0.62 57.74±0.96 64.63±0.58
GTN 93.52±0.55 93.97±0.54 60.47±0.98 65.14±0.45
RSHN 93.34±0.58 93.81±0.55 59.85±3.21 64.22±1.03
HetGNN 91.76±0.43 92.33±0.41 48.25±0.67 51.16±0.65
MAGNN 93.28±0.51 93.76±0.45 56.49±3.20 64.67±1.67
HetSANN 78.55±2.42 80.56±1.50 49.47±1.21 57.68±0.44
HGT 93.01±0.23 93.49±0.25 63.00±1.19 67.20±0.57
GCN 90.84±0.32 91.47±0.34 57.88±1.18 64.82±0.64
GAT 93.83±0.27 93.39±0.30 58.94±1.35 64.86±0.43
E-HGNN (ours) 92.79±0.33 93.29±0.3 63.15±1.06 66.67 ±0.92

ACM Freebase
Method Macro-F1 Micro-F1 Macro-F1 Micro-F1
Simple-HGN 93.42±0.44 93.35±0.45 47.72±1.48 66.29±0.45
RGCN 91.55±0.74 91.41±0.75 46.78±0.77 58.33±1.57
HAN 90.89±0.43 90.79±0.43 21.31±1.68 54.77±1.40
GTN 91.31±0.70 91.20±0.71 - -
RSHN 90.50±1.51 90.32±1.54 - -
HetGNN 85.91±0.25 86.05±0.25 - -
MAGNN 90.88±0.64 90.77±0.65 - -
HetSANN 90.02±0.35 89.91±0.37 - -
HGT 91.12±0.76 91.00±0.76 29.28±2.52 60.51±1.16
GCN 92.17±0.24 92.12±0.23 27.84±3.13 60.23±0.92
GAT 92.26±0.94 92.19±0.93 40.74±2.58 65.26±0.80
E-HGNN (ours) 92.26±0.44 92.17 ±0.45 48.35±1.57 63.42±0.29

4.2.2 Link Prediction

We look at two link prediction datasets: Amazon and LastFM. The Amazon dataset addi-

tionally include node attributes. For each dataset, 81% of edges of the target edge type are

used for training, 9% are used for validation, and 10% are withheld for the test set. The

fake edges used for training were sampled randomly, but for validation and testing, the fake

edges were sampled from the set of 2-hop neighbours of each node. Further information on

these datasets is included in Table 4.1.

Edge predictions are evaluated using two metrics: The area under the Receiver Operating

Characteristic curve (ROC-AUC), and the Mean Reciprocal Rank (MRR). The ROC-AUC

score evaluates the model’s ability to discriminate between real and fake edges over different

CHAPTER 4. MODEL EVALUATION 29

sensitivity thresholds. The MRR score evaluates the model’s ability to rank real candidate

edges higher than false edges.

A comparison between our results and competing methods is shown in Table 4.3. Our

method performs comparably to other leading methods on the LastFM benchmark nad

outcompetes all other methods on the Amazon benchmark

Table 4.3: Comparison of the Equivariant HGN architecture on the link prediction task.

Amazon LastFM
Method ROC AUC MRR ROC AUC MRR
Simple-HGN 93.40±0.62 96.94±0.29 67.59±0.23 90.81±0.32
RGCN 86.34±0.28 93.92±0.16 57.21±0.09 77.68±0.17
GATNE 77.39±0.50 92.04±0.36 66.87±0.16 85.93±0.63
HetGNN 77.74±0.24 91.79±0.03 62.09±0.01 83.56±0.14
MAGNN - - 56.81±0.05 72.93±0.59
HGT 88.26±2.06 93.87±0.65 54.99±0.28 74.96±1.46
GCN 92.84±0.34 97.05±0.12 59.17±0.31 79.38±0.65
GAT 91.65±0.80 96.58±0.26 58.56±0.66 77.04±2.11
E-HGNN (ours) 96.75±0.16 97.78±0.15 60.94±0.36 82.36±0.71

The HGB also includes a third dataset, PubMed. Our model is able to perform near-

perfectly on this dataset, but this is because of an improper train/test split in the benchmark:

the dataset has a fully symmetric adjacency matrix for the test edge type, and both edges

in both directions were included in the dataset. The equivariant HGN at test time could

therefore determine if a set of test edges are real or not by checking whether their corre-

sponding inverse edges exist in the training set. Due to this data leakage, its performance

is not included here.

4.2.3 Hyperparameters

For both the link prediction and the node classification task, we used the Adam Optimizer

with weight decay (Kingma and Ba 2014). We also optionally apply a fully connected layer

to the graph node attributes before passing it on to the rest of our network. For each dataset,

we ran sweeps on a range of hyperparameters, evaluating their performance against a held-

out validation set. The hyperparameters used and the range we tested over are included

CHAPTER 4. MODEL EVALUATION 30

in Table 4.4. The sets of hyperparameter values that yielded the best performance on the

validation set for each dataset are included in Table 4.5.

Table 4.4: Hyperparameters tested for each task.

Task Hyperparameter Description Sweep Range

Bo
th

act_fn Nonlinear activation function ReLU, LeakyReLU, Tanh
dropout Channel-wise dropout 0, 0.1, 0.3, 0.5
lr Optimizer learning rate 1e-3, 5e-4, 1e-4
pool_op Pooling operation used instead

of the inner summation in
Eq. (3.4)

mean, max

weight_decay Optimizer weight decay 1e-3, 1e-4, 1e-5, 1e-6
width Number of feature dimensions

for each equivariant layer
16, 32, 64

N
od

e
C

la
ss

ifi
ca

tio
n

depth Number of equivariant layers
+ optional input fully con-
nected layer

1, 2, 3, 4, 5, 6

fc_layer Input dimension of optional
additional fully connected
layer after obtaining node
embeddings

0, 16, 32, 64, 128

feats_type If True, ignore node features of
non-target nodes

True, False

in_fc_layer If True, the first layer of the
network is set to be a fully
connected layer instead of an
equivariant layer

True, False

Li
nk

Pr
ed

ic
tio

n

depth Number of equivariant and
fully connected layers in both
the encoding and decoding
modules

2, 3, 4, 5, 6

embedding_dim Dimensions of node embed-
dings

32, 64, 128

in_fc_layer If True, the first layer of the
encoding module and the last
layer of the decoding module
are set to be fully connected
layers instead of equivariant
layers

True, False

CHAPTER 4. MODEL EVALUATION 31

Table 4.5: Hyperparameters selected for each dataset for both tasks.

Node Classification Link Prediction
DBLP IMDB ACM Freebase Amazon LastFM

act_fn LeakyReLU LeakyReLU ReLU Tanh ReLU ReLU
depth 6 6 3 6 5 4
dropout 0 0.3 0.3 0 0.1 0
embedding_dim - - - - 64 64
fc_layer 32 128 64 16 - -
feats_type True True False True - -
in_fc_layer False False False True True True
lr 0.001 0.0001 0.001 0.0005 0.001 0.001
pool_op max mean mean mean mean mean
weight_decay 0.001 0.0001 1.00E-05 1.00E-06 0.001 0.0001
width 64 64 64 16 128 128

4.3 Synthetic Datasets
Heterogeneous graph datasets can vary in many different ways, so it can be difficult to assess

which graph neural network models are useful under what circumstances. The performance

of the E-HGNN model relative to other benchmark methods varied on HGB, and since

the datasets in HGB are so different (see 4.1), it is not clear what caused differences in

performance. One way to account for these aspects is by applying the model to heterogeneous

graph datasets, where each of these features may be varied.

4.3.1 Dataset Generation

The synthetic datasets described in this section are based on the Multiple Random Dot

Product formulation for a graph (S. Wang et al. 2021; C. L. M. Nickel 2008; Nielsen and

Witten 2018). In this model, a node vi of a graph is assumed to possess some underlying

vector zi ∈ Rh. Each edge type r in a heterogeneous graph is represented by a diagonal

relation matrix J . To generate an adjacency matrix A for edge type r, we can use a function

of the product of the node vectors and the relation matrix, i.e.: P (Ai,j = 1) = f(z⊺
i Jzj)

for some function f : R → [0, 1]. In order to control whether a relation is homophilic

or heterophilic, J may be broken down into J = J+K where J+ is a diagonal matrix

with only positive entries, and where K is a diagonal matrix whose entries are either −1

CHAPTER 4. MODEL EVALUATION 32

with probability phet or 1 with probability 1 − phet. When phet = 0, then z⊺
i Jzj can be

interpreted as the similarity between i and j, with each dimension of their underlying vectors

weighted by an entry in J . When phet = 1, then this product can instead be interpreted

as the dissimilarity between i and j, yielding heterophilic graphs. By allowing phet to vary

continuously, the resulting synthetic graphs can be somewhat smoothly varied in how hetero-

or homophilic they are. After obtaining the scores Mi,j = z⊺
i Jzj, three different functions

f(M) were tested for transforming them into adjacency matrices for a given density (ratio

of edges M to possible edges N ×N):

• Proportional: the sigmoid function is used to derive an edge probability for each index,

which is then normalized by the graph sparsity: f(M) = σ(M) × density.

• Uniform: All indices where Mi,j > 0 are sampled with a probability of M/|{Mi,j > 0}|.

• Threshold: Given a desired graph sparsity, a percentile of (1 − sparsity) is used as a

hard threshold, with all scores above the threshold yielding an edge.

4.3.2 Architectures and Dataset Parameters

Using the datasets above, a set of experiments were created to test out the E-HGNN model

under different dataset conditions. The E-HGNN model was compared to the baseline models

of GCN (Kipf and Welling 2016), and GAT (Veličković et al. 2017). For GCN and GAT,

node and edge type information is entirely ignored, essentially treating the input graph as

homogeneous. These relatively simple baselines are used instead of any neural networks

specifically designed for heterogeneneous graphs because they have been shown to perform

competitively in this situation by Lv et al. 2021, whose results are shown in Table 4.3.

Unless specified otherwise, each synthetic graph used for experiments has 1000 nodes per

node type, a density of 0.01, two node types, four edge types (corresponding to relations

linking each node type to each other), and is entirely homophilic (i.e. phet = 0). The

following four experiments were conducted, each with the goal of observing the effects of

varying a single graph parameter:

CHAPTER 4. MODEL EVALUATION 33

• The number of node types D = |D| is varied between 1, 2, and 3. A relation is created

from every node type with every other node type, i.e. R = {⟨i, j⟩, ∀i, j ∈ D}.

• The number of edge types R = |R| is varied between 1, 4, and 9. Only one node type

is used, so each relation is from that node type back to itself.

• The graph density is varied. In order to keep the total number of edges constant, the

density changes with the square of the number of nodes per node type. Densities of

0.000625, 0.0025, 0.01, 0.04, and 0.16 were used, with 4000, 2000, 1000, 500, and 250

nodes per node type respectively.

• Level of heterophily, controlled by phet, is varied. Values of 0, 0.5, and 1 were tested.

Each experiment was ran with 5 different random seeds for each model type. The hyper-

parameters used for each model were not tuned for the tasks and were instead just set to

their defaults, as these experiments are not to compare the real performance of the models

against each other, but rather to compare how their performances change under changing

datasets.

4.3.3 Link Prediction

We tested the models on these synthetic datasets on the task of link prediction, where we are

predicting whether edges exist within a single edge type (the target edge type). The target

edge type is always for a relation from one node type to itself. Nodes were constructed using

40-dimensional hidden vectors, and edges were created using the threshold method described

in Section 4.3.1. Additional 2-dimensional node attributes were created by multiplying each

node’s hidden vector by a randomly generated 40 by 2 matrix, and these node attributes

were used as inputs to the neural networks.

All models used a weight decay of 1e-4, used mean pooling, used LeakyReLU as an activa-

tion function, and had a depth of 3 layers and a width of 64 channels. The E-HGNN network

was created using an autoencoding architecture with a 64-dimensional node embeddings to

directly predict edges. The GCN and GAT models were used to produce 64-dimensional

CHAPTER 4. MODEL EVALUATION 34

node embeddings, and the dot products of the embeddings were used as logits for predicting

whether those two nodes have an edge between them.

All models were trained for 300 epochs with a learning rate of 0.001, and they were

evaluated on a mix of a set of withheld edges equal to 20% of the original graph edges, and

a set of edges between nodes and randomly selected 2-hop neighbours. The results of the

four experiments are shown in Fig. 4.3, using the ROC-AUC metric.

1 2 3

Number of node types

0.5

0.6

0.7

0.8

0.9

1.0

R
O

C
A

U
C

(a) Varying number of node types. The num-
ber of edge types is the square of the number
of entities.

1 4 9

Number of edge types

0.5

0.6

0.7

0.8

0.9

1.0

R
O

C
A

U
C

(b) Varying the number of edge types, while
keeping the number of node types fixed at 1.

0.000625 0.0025 0.01 0.04 0.16
Density

0.5

0.6

0.7

0.8

0.9

1.0

R
O

C
AU

C

(c) Varying the density of edges for each edge
type. There are 2 node types and 4 edge types.

0.0 0.25 0.5 0.75 1.0

phet

0.5

0.6

0.7

0.8

0.9

1.0

R
O

C
A

U
C

(d) Varying the level of heterophily of each
edge type’s relation. There are 2 node types
and 4 edge types

Figure 4.3: Results of link prediction experiments. GCN is shown in blue (), GAT is shown
in red (), and E-HGNN is shown in yellow (). Standard error is shown.

CHAPTER 4. MODEL EVALUATION 35

4.3.4 Results

From Fig. 4.3a and Fig. 4.3b, it is clear that E-HGNN benefits from the additional infor-

mation provided by having more node types and more edge types. It is able to acquire

additional information about the the nodes involved in the target edge type’s relation by

using multiple edge types (in Fig. 4.3b), and to a lesser extent it can learn node information

from edges with other node types (in Fig. 4.3a). With the baseline models, it appears that

adding more entities or edge types has little effect on the test scores.

From Fig. 4.3d, it appears that E-HGNN performs about equally well regardless of

whether an edge type’s relation is homophilic, heterophilic, or in between. In contrast,

the performance of both GCN and GAT deteriorate when relations are less homophilic. The

failure of conventional GNNs to generalize to heterophilic graphs has been noted by (J. Zhu,

Y. Yan, et al. 2020; J. Zhu, Rossi, et al. 2021; Zheng et al. 2022).

Lastly, from Fig. 4.3c, it appears that all models actually perform better on larger, sparser

graphs than they do on smaller dense ones. This result is counterintuitive, as we would

expect networks to more easily pick up each node’s information when each node has more

edges. However, this difference might be specific to the specific dataset generation procedure

used: using the threshold graph generation technique, sparser graphs will only contain links

between very similar nodes, while denser graphs will contain many non-informative links.

Thus, the link prediction task is easier for sparser graphs.

5
Heterogeneous Hypergraphs

In this chapter, the theory of Chapter 3 is extended to hypergraphs, where a hyperedge type

r = ⟨r(1), . . . , r(k)⟩ relates k node types. What was previously a set of matrices is now a

set of tensors X = {Xr ∈ RNr(1)×...×Nr(k) | r ∈ R}. Note that k should really be written as

kr since it can be different for each relation, but we omit the subscript since it is clear from

context.

5.1 Equivariant Maps for Heterogeneous

Hypergraphs
Similar to Eq. (3.4) in heterogeneous graphs, the linear map for the heterogeneous hyper-

graph setup also decomposes into blocks, and it is sufficient to identify the form of equivariant

linear maps Lr→r′ : Xr 7→ Yr′ . In this more general case, we wish for Lr→r′ to be equivariant

to permutations across each of its node type dimensions:

Lr→r′(πr · Xr) = πr′ · Lr→r′(Xr),

∀πr ∈ S(Nr(1)) × · · · × S(Nr(k)),

∀πr′ ∈ S(Nr′(1)) × · · · × S(Nr′(k′))

(5.1)

Here, πr is no longer a permutation matrix, but instead an operator that permutes the

dimensions of each of the node types specified in r.

36

CHAPTER 5. HETEROGENEOUS HYPERGRAPHS 37

One way to characterize all such equivariant linear maps is to consider all combinations

of pool and broadcast operations with extraction and placement of hyper-diagonals. To

facilitate this, these four operations can be described using the following notation:

Pooling poolP(X) pools over all the node indices P of its input – e.g., pool{1}X
⟨2,1⟩ =

1⊤
N2X⟨2,1⟩ and pool{1,2}X

⟨2,1⟩ = 1⊤
N2X⟨2,1⟩1N1 .

Broadcasting broadcastr′(Zr) broadcasts the input tensor Zr into a tensor corresponding to

hyperedge type r′. For example broadcast⟨2,1⟩x
⟨2⟩ = x1⊤

N1 . This requires the elements

of r to appear in r′ – more accurately {{r}} ⊆ {{r′}}, where {{x}} denotes a multiset of

the elements of tuple x.

Extracting a hyper-diagonal A hyper-diagonal generalizes the notion of diagonal of a

matrix. Given a tensor X⟨r(1),...,r(k)⟩, a hyper-diagonal is identified by a partitioning H

of the set {1, . . . , k} where r(i) = r(j) whenever i, j are in the same partition. With

this definition of hyperdiagonal, the extraction operation extract-diagH(Xr) reproduces

the effect of diag operation for a matrix by simply using H = {{1, 2}}. In the extreme

case where H = {{1}, . . . , {k}} identifies the entire input tensor as the hyper-diagonal,

this operation becomes the identity operation.

Placing a hyper-diagonal place-diagr′,K(Zr) places the tensor Zr over the hyper-diagonal

of a tensor Yr′ identified by the partition K.

Any equivariant linear operation: Lr→r′ : RNr(1)×...×Nr(m) → RNr′(1)×...×Nr′(m′) can be writ-

ten as a linear combination of different “compatible” choices for these four operations:

Yr′ = Lr→r′(Xr)

=
∑

wH,P,r′′,K place-diagr′,K (broadcastr′′ (poolP (extract-diagH (Xr))))
(5.2)

This composition of operations is first extracting a hyper-diagonal using H, pooling over

a subset of indices identified by P, broadcasting some of these dimensions and permuting

them according to r′′, and finally placing the resulting tensor over a hyper-diagonal of the

output tensor, identified by K.

CHAPTER 5. HETEROGENEOUS HYPERGRAPHS 38

Example 2: We give an example of a possible combination of operations when mapping

between a relation r = ⟨1, 1, 1, 2⟩ and r′ = ⟨1, 3, 3⟩.

• If we set H = {{1, 3}, {2}, {4}} then extract-diagH(X⟨1,1,1,2⟩) would return a tensor

Z⟨1,1,2⟩ ∈ RN1×N1×N2 where Z⟨1,1,2⟩
i,j,k = X⟨1,1,1,2⟩

i,j,i,k .

• If we next set P = {1, 3}, then poolP(Z{1,1,2}) would return a tensor Z{1} ∈ RN1 ,

where Z{1}
i = ∑

j

∑
k Z{1,1,2}

j,i,k .

• If we next set r′′ = ⟨1, 3⟩, then broadcastr′′(Z{1}) would return a tensor Z{1,3} ∈

RN1×N3 , where Z{1,3}
i,j = Z{1}

i .

• Finally, if we then set K = {{1}, {2, 3}}, place-diagr′,K(Z{1,3}) returns our output

Y{1,3,3} ∈ RN1×N3×N3 , where Y{1,3,3}
i,j,j = Z{1,3}

i,j .

We could have chosen many other options for H,P, r′′, and K: this was just one of the

Bell(3 + 1) × Bell(1) × Bell(2) = 30 valid operations for this pair of relations.

The following theorem states that these are the only operations needed to create an

equivariant linear layer for homogeneous hyper-graphs.

Theorem 5.1.1. All equivariant linear maps Lr→r′ : RNr(1)×...×Nr(k) → RNr′(1)×...×Nr′(k′) be-

tween two hyperedge types in a hypergraph are of the form Eq. (5.2).

Proof. It is easy to see that all the four operations used in Eq. (5.2) are equivariant. In order

to show that these operations exhaust all possibilities, we count the number of compatible

choices for H,P, r′′,K for a given input/output pair of edge types r and r′. Through this

counting, we arrive at the same number of operations as what is given by Maron, Ben-

Hamu, Shamir, et al. 2018’s Theorem 3, where the maximality is also established. A related

problem for equivariant linear maps for incidence networks appears in Albooyeh, Bertolini,

and Ravanbakhsh 2019, and the following proof is inspired by the combinatorial counting

arguments in that paper.

Let
{

p
q

}
be the number of ways we can partition a set of size p into q non-empty partitions.

This is also known as the Stirling partition number. Moreover, we use κ(r, d) for d ∈ D to

CHAPTER 5. HETEROGENEOUS HYPERGRAPHS 39

denote the number of occurrences of node type d in edge type r. Now we claim that the

total number of compatible choices for H,P, r′′,K is given by

D∏
d=1

min{κ(r,d),κ(r′,d)}∑
k,k′=1

{
κ(r, d)
k

}{
κ(r′, d)
k′

}min{k,k′}∑
l=0

(
k

l

)(
k′

l

)
l! (5.3)

Because our operations for each node type are independent, the first product is over all

possible node types. In the next summation, we only consider the occurrences of node type

d, and partition these in both r and r′ into k and k′ non-empty partitions respectively.

The subsequent Stirling numbers count the number of ways in which we can produce these

partitions. In the inner summation, we select l of these k and k′ partitions to match them

against each other. The number of such possible choices is given by the number of ways

we can select l out of k and k′ partitions (given by the Binomial coefficients), times all the

possible pairings over these l partitions for the matching purpose (l!).

Now that we know what the expression above is counting, let us explain the connection

to Eq. (5.2). The intuitive motivation is that we want to enumerate all possible pairings of

outputs of extract-diag with inputs of place-diag. In Eq. (5.4), the number k represents the

order of the output tensor of extract-diag with node type d, and k′ represents the order of

the input tensor to place-diag. The Stirling numbers are counting the number of different

hyper-diagonals of the input and output tensors Xr and Yr′ respectively. Once we identify

l of these partitions on hyper-diagonals to match, the remaining dimensions from the input

hyper-diagonal are pooled, while we broadcast over those of the output hyper-diagonal.

Now we write the combinatorial expression of Eq. (5.2) in an alternate form:

D∏
d=1

min{κ(r,d),κ(r′,d)}∑
k,k′=1

{
κ(r, d)
k

}{
κ(r′, d)
k′

}min{k,k′}∑
l=0

(
k

l

)(
k′

l

)
l! (5.4)

=
D∏

d=1

min{κ(r,d),κ(r′,d)}∑
l=0

κ(r,d)∑
k=l

κ(r,d)∑
k′=l

((
k

l

){
κ(r, d)
k

})((
k′

l

){
κ(r′, d)
k′

})
l! (5.5)

=
D∏

d=1
Bell(κ(r, d) + κ(r′, d)) (5.6)

where in Eq. (5.5), we simply re-arrange the summations in Eq. (5.4). In arriving at Eq. (5.6)

from Eq. (5.5) we use a combinatorial argument: recall that the Bell number Bell(k) is the

CHAPTER 5. HETEROGENEOUS HYPERGRAPHS 40

number of different ways we can partition k objects into non-empty partitions. To see why

Eq. (5.5) is counting the same number of partitions of κ(r, d)+κ(r′, d) objects, first partition

each of these two sets into any number k, k′ ≥ l partitions. Next, merge l of those partitions

from the first and second set in all possible ways to create a partitioning of κ(r, d) + κ(r′, d)

into k + k′ − l partitions. It is easy to see that this procedure does not produce the same

partitioning twice and all different partitions of κ(r, d) + κ(r′, d) are produced in this way.

This last expression Eq. (5.6) is what appears in Maron, Ben-Hamu, Shamir, et al. 2018 in

Theorem 3. The argument above shows that the number of different ways we can perform

Eq. (5.2) is equal to this Bell number and therefore all equivariant linear maps of interest

have this form.

5.2 Higher Order Graph Networks
Working directly with data tensors of higher-order relations would be prohibitively expensive

for large graphs with higher order relations. Just as in Section 3.3.2, we can implement

tensors Xr ∈ RNr(1)×···×Nr(k) as the sparse sp(Xr) = ⟨U ,V ⟩, with U ∈ NM×k and V ∈ RM×F .

By combining all valid combinations of the four tensor operations defined in the previous

section and operating on sparse tensors, equivariant neural network layers may be created

linking relations of any order and involving any node types to one another. Although these

networks have not been tested, we believe this to be the first practical formulation of maximal

permutation-equivariant linear layers that work with any order and any combination of node

types. In this section, we present an informal discussion of possible applications of these

networks.

5.2.1 Multi-Order Graph Neural Networks

While this chapter provides a method of creating neural networks for heterogeneous hy-

pergraphs, a number of interesting use cases fall out when we apply these layers to regu-

lar homogeneous graphs, or even sets. We can replace the idea of a relation r involving

CHAPTER 5. HETEROGENEOUS HYPERGRAPHS 41

different node types and just consider the order k of a relation, and consider linear lay-

ers Lk→k′ : RNk×F → RNk′ ×F ′ . Using Eq. (5.6), derived by Maron, Ben-Hamu, Shamir,

et al. 2018, the number of parameters and separate operations in a Lk→k′ layer would be

F × F ′ × Bell(k + k′). To put that into perspective, the first 8 Bell numbers are: 1, 1, 2,

5, 15, 52, 203, 877, and 4140, so a single L4→4 layer using 64 feature channels would require

64 × 64 × 4140 = 16, 957, 440 parameters.

It was proven by Maron, Fetaya, et al. 2019 that in the most general case, a GNN of the

sort described here would need to be O(N)-order in order to act as a universal approximator

for a graph of N nodes. While this is obviously infeasible, it is still true that higher values

of k yield more expressive models: Maron, Ben-Hamu, Serviansky, et al. 2019 showed that

k-order GNNs have performance upper bounded by the k-WL test.

Using this as motivation, we can “lift” a k = 2 graph to a higher order k′ > 2 by using a

Lk→k′ layer, operate on it with Lk′→k′ layers of a network, and then pool down with a Lk′→k

layer. This would be similar to the k-WL networks introduced by Morris, Ritzert, et al. 2019,

but using maximal linear layers. The downside of this is that the “lifting” operation would

result in tensors that are no longer sparse, making it very hard to scale to larger graphs.

In order to continue along this research direction, it would be helpful to look at whether

higher-order tensors can be made to be sparse, by only looking at local neighbourhoods, and

whether doing so would preserve the higher expressivity of higher-order graph networks.

5.2.2 Relational Databases

By being able to consider arbitrary node types in each interaction, heterogeneous hypergraph

networks may be applied to a general class of data used in many real-world datasets: the

relational database.

Relational databases can be modeled using the entity-relationship model (Chen 1976),

where each object belongs to a certain entity types, and the relationships it can take part in

are determined by that entity type. Because relationships can involve more than two entity

types, this can be considered equivalent to the heterogeneous hypergraph model.

CHAPTER 5. HETEROGENEOUS HYPERGRAPHS 42

Permutation equivariant neural networks for this data model were first described by

Graham, J. Wang, and Ravanbakhsh 2019, where they generate a maximally expressive

parameter sharing scheme for linear neural network layers. By implementing this approach

using a sparse pooling and broadcasting implementation, our heterogeneous hypergraph

networks could be applied to a broad array of real-world datasets, capturing information

that was previously unavailable to end-to-end deep learning methods.

6
Discussion

6.1 Applications of E-HGNN
In this thesis, we have presented an efficient implementation of a maximally expressive linear

mapping for heterogeneous graphs, and constructed neural networks using these mappings

as intermediate layers. When compared to a number of other heterogeneous graph learning

algorithms on a standardized baseline, we have seen that the E-HGNN is able to outcompete

all other methods on one dataset, and remains competitive on another in its link prediction

performance. We further see that it is able to achieve results comparable to state of the art

across node classification datasets. No experiments were conducted to test the ability of E-

HGNN to perform graph classification on heterogeneous graphs. To our knowledge, there are

currently no widely used benchmarks for graph classification on specifically heterogeneous

graphs. We are optimistic about the possible performance of our model on this tasks: unlike

node classification or link prediction, graph classification is particularly sensitive to both

local and global structures of graphs, and because E-HGNN is maximally connected, it has

some advantages over message-passing based GNNs. Further work is needed to judge.

From synthetic experiments, it appears that the E-HGNN benefits from side information

gleaned from additional node and relation types, and is largely unaffected by the homophily

or heterophily of the relations it makes predictions on, or whether different relations in the

same heterogeneous graph differ in their degree of homophily. While many standardized

43

CHAPTER 6. DISCUSSION 44

graph network datasets, such as citation networks, have high homophily, many important

tasks involve graphs with high degrees of heterophily. Particularly important examples of

this are the cases of molecular graphs and protein structures, where homophily cannot be

assumed (J. Zhu, Y. Yan, et al. 2020).

A prominent example of a type of heterogeneous graph that was not investigated in this

thesis is the knowledge base. Knowledge bases generally contain many unique entities and

a very large number of relation types: for example, the Wikidata5m dataset (X. Wang,

Gao, et al. 2021) contains 4,594,485 entities with 822 relation types between them. As our

E-HGNN model learns a mapping between every relation to every other relation, this would

clearly be infeasible for an E-HGNN model without modifications. Knowledge bases may

have additional structure to them: the YAGO knowledge base is structured as an ontology,

where entities can belong to a hierarchy of classes, and relations are defined between classes

(Pellissier Tanon, Weikum, and Suchanek 2020). Further investigation is required to adapt

E-HGNN to these situations.

6.2 Further Research
While this thesis has established interesting potential for equivariant heterogeneous layers,

there remains many open questions about their applicability, and how they may fit into the

broader ecosystem of graph neural networks.

Preliminary investigations have shown that not all of the equivariant linear operations of

an E-HGNN layer actually contribute to the model’s performance: for example, the expan-

sion operation “Broadcast over rows and columns” can be omitted without any noticeable

change in performance. Paring down the number of parameters could improve the model’s

efficiency and potentially provide a better inductive bias at the expense of expressive power,

but further ablation studies are required to determine the influence of each operation.

So far, just two basic neural networks were constructed using the equivariant layer as a

basis, but more elaborate networks could be constructed. Modifications that have already

CHAPTER 6. DISCUSSION 45

been explored for conventional multilayer perceptrons, such as skip-connections, recurrence,

or attention mechanisms, can be applied to equivariant heterogeneous graph layers.

While this thesis considers permutation equivariance in heterogeneous graphs, in practice

many graphs represent systems that involve features that may transform with their own

symmetries. For example, a molecular graph may have cartesian coordinates associated

with each atom, and it would be desirable for a neural network operating on such a graph to

be equivariant to rotations and translations of these coordinates (Han et al. 2022). Future

work could combine the heterogeneous network architecture presented in this thesis with

components that are equivariant to these features.

6.3 Conclusion
By enumerating all equivariant linear operations that can be applied to the data structure of

heterogeneous graphs, we have demonstrated how they may be combined to create effective

heterogeneous graph neural networks. We demonstrated their effectiveness in the task of link

prediction, their competitiveness for node classification, and give an efficient implementation

that can be used for any collection of arbitrary interactions between nodes of different types.

Furthermore, we describe how to extend this implementation to higher-order heterogeneous

graphs, opening up an even larger class of possible tasks.

Due to their ease of implementation and broad applicability, the layers described in this

thesis can serve as an exciting jumping-off point as the bases of sophisticated networks that

can be applied to a great range of tasks. Broadly speaking, any task on exchangeable sets of

objects where we wish to learn different semantics for different types of objects or relations

is a potential target for future research with these neural network layers. Battaglia et al.

2018 posit that the relational inductive bias inherent to graph networks make them a critical

component of the route towards increasingly complex artificial intelligence that can reason

like humans. We hope that by elaborating upon the theory of heterogeneous graph networks

CHAPTER 6. DISCUSSION 46

and by presenting a practical implementation in this thesis, we may open up new avenues

in this crucial field.

Bibliography

Albooyeh, Marjan, Daniele Bertolini, and Siamak Ravanbakhsh (2019). “Incidence networks

for geometric deep learning”. In: arXiv preprint arXiv:1905.11460.

Azizian, Waïss and Marc Lelarge (2020). “Expressive power of invariant and equivariant

graph neural networks”. In: arXiv preprint arXiv:2006.15646.

Barabási, Albert-László and Eric Bonabeau (2003). “Scale-free networks”. In: Scientific

american 288.5, pp. 60–69.

Battaglia, Peter W. et al. (Oct. 2018). “Relational inductive biases, deep learning, and graph

networks”. In: arXiv:1806.01261 [cs, stat]. arXiv: 1806.01261.

Bronstein, Michael M et al. (2021). “Geometric deep learning: Grids, groups, graphs, geodesics,

and gauges”. In: arXiv preprint arXiv:2104.13478.

Cai, Jin-Yi, Martin Fürer, and Neil Immerman (1992). “An optimal lower bound on the

number of variables for graph identification”. In: Combinatorica 12.4, pp. 389–410.

Chen, Peter Pin-Shan (1976). “The entity-relationship model—toward a unified view of

data”. In: ACM transactions on database systems (TODS) 1.1, pp. 9–36.

Cohen, Taco S et al. (2018). “Spherical cnns”. In: arXiv preprint arXiv:1801.10130.

Dong, Yuxiao, Nitesh V Chawla, and Ananthram Swami (2017). “metapath2vec: Scalable

representation learning for heterogeneous networks”. In: Proceedings of the 23rd ACM

SIGKDD international conference on knowledge discovery and data mining, pp. 135–

144.

47

BIBLIOGRAPHY 48

Dong, Yuxiao, Ziniu Hu, et al. (2020). “Heterogeneous Network Representation Learning.”

In: IJCAI. Vol. 20, pp. 4861–4867.

Dwivedi, Vijay Prakash and Xavier Bresson (2020). “A generalization of transformer net-

works to graphs”. In: arXiv preprint arXiv:2012.09699.

Fu, Tao-yang, Wang-Chien Lee, and Zhen Lei (2017). “Hin2vec: Explore meta-paths in het-

erogeneous information networks for representation learning”. In: Proceedings of the 2017

ACM on Conference on Information and Knowledge Management, pp. 1797–1806.

Fu, Xinyu et al. (2020). “Magnn: Metapath aggregated graph neural network for heteroge-

neous graph embedding”. In: Proceedings of The Web Conference 2020, pp. 2331–2341.

Geerts, Floris and Juan L Reutter (2022). “Expressiveness and approximation properties of

graph neural networks”. In: arXiv preprint arXiv:2204.04661.

Gilmer, Justin et al. (2017). “Neural message passing for quantum chemistry”. In: Interna-

tional conference on machine learning. PMLR, pp. 1263–1272.

Gori, Marco, Gabriele Monfardini, and Franco Scarselli (2005). “A new model for learning in

graph domains”. In: Proceedings. 2005 IEEE International Joint Conference on Neural

Networks, 2005. Vol. 2. IEEE, pp. 729–734.

Graham, Devon, Junhao Wang, and Siamak Ravanbakhsh (2019). “Equivariant entity-relationship

networks”. In: arXiv preprint arXiv:1903.09033.

Haan, Pim de, Taco Cohen, and Max Welling (2020). “Natural graph networks”. In: arXiv

preprint arXiv:2007.08349.

Han, Jiaqi et al. (2022). “Geometrically equivariant graph neural networks: A survey”. In:

arXiv preprint arXiv:2202.07230.

Hartford, Jason et al. (2018). “Deep models of interactions across sets”. In: International

Conference on Machine Learning. PMLR, pp. 1909–1918.

Hong, Huiting et al. (2020). “An attention-based graph neural network for heterogeneous

structural learning”. In: Proceedings of the AAAI Conference on Artificial Intelligence.

Vol. 34. 04, pp. 4132–4139.

BIBLIOGRAPHY 49

Hu, Ziniu et al. (2020). “Heterogeneous graph transformer”. In: Proceedings of The Web

Conference 2020, pp. 2704–2710.

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimization”.

In: arXiv preprint arXiv:1412.6980.

Kipf, Thomas N and Max Welling (2016). “Semi-supervised classification with graph convo-

lutional networks”. In: arXiv preprint arXiv:1609.02907.

Kondor, Risi et al. (2018). “Covariant compositional networks for learning graphs”. In: arXiv

preprint arXiv:1801.02144.

Kreuzer, Devin et al. (2021). “Rethinking graph transformers with spectral attention”. In:

Advances in Neural Information Processing Systems 34.

LeCun, Yann, Bernhard Boser, et al. (1989). “Backpropagation applied to handwritten zip

code recognition”. In: Neural computation 1.4, pp. 541–551.

LeCun, Yann, Léon Bottou, et al. (1998). “Gradient-based learning applied to document

recognition”. In: Proceedings of the IEEE 86.11, pp. 2278–2324.

Linmei, Hu et al. (2019). “Heterogeneous graph attention networks for semi-supervised short

text classification”. In: Proceedings of the 2019 Conference on Empirical Methods in Natu-

ral Language Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP), pp. 4821–4830.

Liu, Ziqi et al. (2018). “Heterogeneous graph neural networks for malicious account detec-

tion”. In: Proceedings of the 27th ACM International Conference on Information and

Knowledge Management, pp. 2077–2085.

Lv, Qingsong et al. (2021). “Are we really making much progress? Revisiting, benchmarking

and refining heterogeneous graph neural networks”. In: Proceedings of the 27th ACM

SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1150–1160.

Maron, Haggai, Heli Ben-Hamu, Hadar Serviansky, et al. (2019). “Provably powerful graph

networks”. In: arXiv preprint arXiv:1905.11136.

Maron, Haggai, Heli Ben-Hamu, Nadav Shamir, et al. (2018). “Invariant and equivariant

graph networks”. In: arXiv preprint arXiv:1812.09902.

BIBLIOGRAPHY 50

Maron, Haggai, Ethan Fetaya, et al. (2019). “On the universality of invariant networks”. In:

International conference on machine learning. PMLR, pp. 4363–4371.

Masci, Jonathan et al. (2015). “Geodesic convolutional neural networks on riemannian man-

ifolds”. In: Proceedings of the IEEE international conference on computer vision work-

shops, pp. 37–45.

Monti, Federico et al. (2017). “Geometric deep learning on graphs and manifolds using

mixture model cnns”. In: Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 5115–5124.

Morris, Christopher, Yaron Lipman, et al. (Dec. 2021). “Weisfeiler and Leman go Machine

Learning: The Story so far”. In: arXiv:2112.09992 [cs, stat]. arXiv: 2112.09992.

Morris, Christopher, Martin Ritzert, et al. (2019). “Weisfeiler and leman go neural: Higher-

order graph neural networks”. In: Proceedings of the AAAI conference on artificial intel-

ligence. Vol. 33. 01, pp. 4602–4609.

Nickel, Christine Leigh Myers (2008). “Random dot product graphs a model for social net-

works”. PhD thesis. Johns Hopkins University.

Nickel, Maximilian et al. (2015). “A review of relational machine learning for knowledge

graphs”. In: Proceedings of the IEEE 104.1, pp. 11–33.

Nielsen, Agnes Martine and Daniela Witten (Nov. 2018). “The Multiple Random Dot Prod-

uct Graph Model”. In: arXiv:1811.12172 [stat]. arXiv: 1811.12172.

Pellissier Tanon, Thomas, Gerhard Weikum, and Fabian Suchanek (2020). “Yago 4: A reason-

able knowledge base”. In: European Semantic Web Conference. Springer, pp. 583–596.

Ravanbakhsh, Siamak, Jeff Schneider, and Barnabas Poczos (2017). “Equivariance through

parameter-sharing”. In: International Conference on Machine Learning. PMLR, pp. 2892–

2901.

Scarselli, Franco et al. (2008). “The graph neural network model”. In: IEEE transactions on

neural networks 20.1, pp. 61–80.

Schlichtkrull, Michael et al. (2018). “Modeling relational data with graph convolutional net-

works”. In: European semantic web conference. Springer, pp. 593–607.

BIBLIOGRAPHY 51

Shi, Chuan et al. (2017). “A survey of heterogeneous information network analysis”. In:

IEEE Transactions on Knowledge and Data Engineering 29.1, pp. 17–37.

Simonovsky, Martin and Nikos Komodakis (2017). “Dynamic edge-conditioned filters in con-

volutional neural networks on graphs”. In: Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pp. 3693–3702.

Sun, Yizhou and Jiawei Han (2012). “Mining heterogeneous information networks: principles

and methodologies”. In: Synthesis Lectures on Data Mining and Knowledge Discovery 3.2,

pp. 1–159.

Tang, Jian, Meng Qu, and Qiaozhu Mei (2015). “Pte: Predictive text embedding through

large-scale heterogeneous text networks”. In: Proceedings of the 21th ACM SIGKDD

international conference on knowledge discovery and data mining, pp. 1165–1174.

Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Advances in neural information

processing systems 30.

Veličković, Petar et al. (2017). “Graph attention networks”. In: arXiv preprint arXiv:1710.10903.

Wang, Shangsi et al. (Apr. 2021). “Joint Embedding of Graphs”. In: IEEE Transactions on

Pattern Analysis and Machine Intelligence 43.4. Conference Name: IEEE Transactions

on Pattern Analysis and Machine Intelligence, pp. 1324–1336.

Wang, Xiao, Houye Ji, et al. (2019). “Heterogeneous graph attention network”. In: The

World Wide Web Conference, pp. 2022–2032.

Wang, Xiaozhi, Tianyu Gao, et al. (2021). “KEPLER: A unified model for knowledge em-

bedding and pre-trained language representation”. In: Transactions of the Association

for Computational Linguistics 9, pp. 176–194.

Wang, Zifeng et al. (2021). “Online Disease Diagnosis with Inductive Heterogeneous Graph

Convolutional Networks”. In: Proceedings of the Web Conference 2021, pp. 3349–3358.

Weisfeiler, Boris and Andrei Leman (1968). “The reduction of a graph to canonical form and

the algebra which appears therein”. In: NTI, Series 2.9, pp. 12–16.

Wu, Zhenqin, Bharath Ramsundar, et al. (2018). “MoleculeNet: a benchmark for molecular

machine learning”. In: Chemical science 9.2, pp. 513–530.

BIBLIOGRAPHY 52

Wu, Zonghan, Shirui Pan, et al. (2020). “A comprehensive survey on graph neural networks”.

In: IEEE transactions on neural networks and learning systems 32.1, pp. 4–24.

Xu, Keyulu et al. (2018). “How powerful are graph neural networks?” In: arXiv preprint

arXiv:1810.00826.

Yan, Sijie, Yuanjun Xiong, and Dahua Lin (2018). “Spatial temporal graph convolutional

networks for skeleton-based action recognition”. In: Thirty-second AAAI conference on

artificial intelligence.

Yang, Carl et al. (2020). “Heterogeneous network representation learning: A unified frame-

work with survey and benchmark”. In: IEEE Transactions on Knowledge and Data En-

gineering.

Yu, Bing, Haoteng Yin, and Zhanxing Zhu (2017). “Spatio-temporal graph convolutional net-

works: A deep learning framework for traffic forecasting”. In: arXiv preprint arXiv:1709.04875.

Yun, Seongjun et al. (2019). “Graph transformer networks”. In: Advances in Neural Infor-

mation Processing Systems 32, pp. 11983–11993.

Zaheer, Manzil et al. (2017). “Deep Sets”. In: Advances in Neural Information Processing

Systems 30. Curran Associates, Inc., pp. 3391–3401.

Zhang, Chuxu et al. (2019). “Heterogeneous graph neural network”. In: Proceedings of the

25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,

pp. 793–803.

Zheng, Xin et al. (2022). “Graph neural networks for graphs with heterophily: A survey”.

In: arXiv preprint arXiv:2202.07082.

Zhou, Jie et al. (2020). “Graph neural networks: A review of methods and applications”. In:

AI Open 1, pp. 57–81.

Zhu, Jiong, Ryan A Rossi, et al. (2021). “Graph neural networks with heterophily”. In:

Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. 12, pp. 11168–

11176.

BIBLIOGRAPHY 53

Zhu, Jiong, Yujun Yan, et al. (2020). “Beyond homophily in graph neural networks: Current

limitations and effective designs”. In: Advances in Neural Information Processing Systems

33, pp. 7793–7804.

Zhu, Shichao et al. (2019). “Relation structure-aware heterogeneous graph neural network”.

In: 2019 IEEE International Conference on Data Mining (ICDM). IEEE, pp. 1534–1539.

Zitnik, Marinka and Jure Leskovec (2017). “Predicting multicellular function through multi-

layer tissue networks”. In: Bioinformatics 33.14, pp. i190–i198.

A
Summary of Notation

54

APPENDIX A. SUMMARY OF NOTATION 55

Table A.1: Summary of notation used throughout the thesis.

Example Description
General Notation N,M,F Upper case: Scalar constants

x, y, z, etc. Lower case: Scalar valued variables
x,y, z, etc. Lower case, bold: Vector valued variables
X,Y ,Z, etc. Upper case, bold: Matrix valued variables
X,Y,Z, etc. Upper case bold sans-serif: Tensor valued vari-

ables
D,X, etc. Double stroke: Sets⊕ Aggregation function, such as summation
i, j, k, t Indices
σ A nonlinear activation function
f, ϕ, ψ Generic functions
x,x,X,X Data inputs
z,z,Z,Z Intermediate calculations
y,y,Y ,Y Data outputs
w,w,W ,W Parameter weights

Mathematical Objects ⟨·⟩ Tuples
{{·}} Multisets
1 A vector of all ones
I An identity matrix
S(N) The symmetric group of N elements

Graphs G = ⟨V , E⟩ Graphs, their nodes and edges
A An adjacency matrix
π A permutation matrix or operator
N,M,F The number of nodes, edges, and

feature dimensions, respectively
v ∈ V Nodes
N (v) Neighbours of a node

Heterogeneous
Graphs

d ∈ D Node types

r ∈ R Edge types
r = ⟨r, r⟩ A relation between node types r and r
k The order of a relation

Additional L,P,B Linear maps
sp(X) = ⟨U ,V ⟩ Sparse representation of X
κ(r, d) The number of times d appears in tuple r
Bell(k) The k-th Bell number

	Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Graph Learning
	2.1 Graph Neural Networks
	2.1.1 Message Passing Framework
	2.1.2 Weisfeiler-Leman Test

	2.2 Heterogeneous Graph Learning

	3 Equivariant Heterogeneous Graph Layers
	3.1 Equivariant and Invariant Learning
	3.2 Equivariant Linear Maps for Heterogeneous Graphs
	3.2.1 Notation
	3.2.2 Equivariance for Heterogeneous Graphs
	3.2.3 Characterizing Equivariant Linear Maps

	3.3 The Neural Network Layer
	3.3.1 Multiple Channels
	3.3.2 Sparse Implementation
	3.3.3 Encoding and Decoding Layers
	3.3.4 Sharing Weights

	4 Model Evaluation
	4.1 Tasks and Architectures
	4.1.1 Node Classification
	4.1.2 Link Prediction

	4.2 Heterogeneous Graph Benchmark
	4.2.1 Node Classification
	4.2.2 Link Prediction
	4.2.3 Hyperparameters

	4.3 Synthetic Datasets
	4.3.1 Dataset Generation
	4.3.2 Architectures and Dataset Parameters
	4.3.3 Link Prediction
	4.3.4 Results

	5 Heterogeneous Hypergraphs
	5.1 Equivariant Maps for Heterogeneous Hypergraphs
	5.2 Higher Order Graph Networks
	5.2.1 Multi-Order Graph Neural Networks
	5.2.2 Relational Databases

	6 Discussion
	6.1 Applications of E-HGNN
	6.2 Further Research
	6.3 Conclusion

	Bibliography
	A Summary of Notation

