
Low-Complexity Decoding of Short Linear Block
Codes with Machine Learning

Nghia Doan

Department of Electrical and Computer Engineering
McGill University
Montreal, Canada

May 2022

A thesis submitted to McGill University in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

© 2022 Nghia Doan

iii

Abstract

The fifth Generation of Cellular Communications Standard (5G) consists of various application
scenarios where each scenario prioritizes different performance requirements, including reliabil-
ity, latency, and energy efficiency. A common design choice of the coding schemes in the con-
trol channels of 5G is to utilize short to moderate linear block codes to satisfy the stringent re-
quirements of the 5G standard. In 5G short to moderate polar codes concatenated with Cyclic
Redundancy Check (CRC) codes are used in the Enhanced Mobile Broadband (eMBB) and Ultra-
Reliable Low-Latency Communication (URLLC) scenarios, and are being evaluated for the mas-
sive Machine-Type Communication (mMTC) scenario. Recently, Reed-Muller (RM) codes have
regained significant research interests due to their similarity with polar codes and their excel-
lent error-correction performance under (near) Maximum-Likelihood (ML) decoding. There are
two main decoding algorithms for polar and RM codes, namely Successive-Cancellation (SC) and
Belief Propagation (BP). Although SC decoding can provide a low-complexity implementation,
its poor error-correction performance for short to moderate polar codes does not satisfy the re-
quirements of the 5G standard. To improve the error-correction performance of SC decoding,
Successive-Cancellation List (SCL) decoding was introduced. However, with a large list size,
the good error-correction performance of SCL decoding comes at the cost of high computational
complexity and memory requirement. Unlike the sequential nature of SC-based decoding algo-
rithms, BP decoding is an iterative message passing algorithm that allows parallel computation
enabling the decoder to reach high decoding throughput. However, with limited number of itera-
tions, BP decoding of polar codes suffers from a poor error-correction performance. In this thesis,
we address the underlying problem of SCL decoding by proposing novel bit-flipping and permu-
tation decoding techniques tailored to SC-based decoding. We empirically show that compared
to the state-of-the-art SCL-based decoders, the proposed SC-based decoders can achieve simi-
lar error-correction performance while significantly reducing the decoding latency, computational
complexity, and memory requirements of the state-of-the-art SCL-based decoders. To address the
poor error-correction performance of BP decoding, novel techniques that utilize the CRC factor-
graph of the CRC-polar concatenated codes and codeword permutations are proposed. Different
performance metrics of the proposed decoders are compared with those of state of the art. Further-
more, throughout the thesis, efficient machine leaning algorithms are used as the main optimization
technique of the proposed decoders.

iv

Résumé

La cinquième génération de la communication mobile (5G) se compose de divers scénarios d’appli-
cations où chaque scénario priorise différentes exigences de performance, y compris la fiabilité, la
latence et le rapport énergétique. Un choix de conception commun des schémas de codage util-
isés dans les canaux de contrôle de la 5G consiste à utiliser des codes de blocs linéaires courts
ou modérés, qui produisent un compromis raisonnable pour satisfaire aux exigences strictes de
la norme 5G. En particulier, les codes polaires courts ou modérés concaténés avec les codes de
contrôle de redondance cyclique (CRC) sont utilisés dans les scénarios de débit mobile amélioré
(eMBB) et de communication ultra-fiable à faible latence (URLLC) et sont en cours d’évaluation
pour la communication massive de type machine (mMTC). Récemment, les codes de Reed-Muller
(RM) ont regagné beaucoup d’intérêts dans la recherche en raison de leur similitude avec les codes
polaires et de leurs excellentes performances de correction d’erreur sous le décodage à vraisem-
blance (presque) maximale (ML). Il existe deux principaux algorithmes de décodage pour les codes
polaires et RM qui sont l’annulation successive (SC) et la propagation des croyances (BP). Bien
que le décodage SC puisse produire une implémentation de faible complexité, sa mauvaise perfor-
mance en correction d’erreurs pour les codes polaires courts ou modérés codes ne satisfait pas aux
exigences de la norme 5G. Pour améliorer les performances en correction d’erreurs du décodage
SC, le décodage par liste d’annulations successives (SCL) a été introduit. Cependant, avec une
grande taille de listes, une bonne performance en correction d’erreurs du décodage SCL est at-
teinte au coût d’une complexité élevée des calculs et suffisamment de mémoire. Contrairement à la
nature séquentielle des algorithmes de décodage basés sur le SC, le décodage BP est un algorithme
de passage de message qui permet un calcul parallèle, il permet ainsi au décodeur d’atteindre un
débit de décodage élevé. Cependant, avec un nombre limité d’itérations, le décodage BP appliqué
aux codes polaires produit une mauvaise performance en correction d’erreurs. Dans cette thèse,
nous abordons le problème sous-jacent du décodage SCL en proposant de nouvelles techniques de
décodage par basculement de bits et par permutation adaptées au décodage SC. Nous montrons de
façon empirique que par rapport aux décodeurs SCL de l’état de l’art, les décodeurs proposés basés
sur le SC peuvent atteindre des performances de correction d’erreur similaires tout en réduisant
considérablement la latence de décodage, la complexité de calcul et les exigences en mémoire des
décodeurs SCL de l’état de l’art. Pour remédier aux mauvaises performances de correction d’erreur
du décodage BP, de nouvelles techniques utilisant le graphe factoriel CRC des codes concaténés

v

polaires CRC et des permutations de codes sont proposées. Différentes métriques de performance
des décodeurs proposés basés sur le BP sont comparées à celles de l’état de l’art. En outre, tout
au long de la thèse, des algorithmes efficaces d’apprentissage automatique sont utilisés comme
principale technique d’optimisation des décodeurs proposés.

vi

Acknowledgments

First and foremost, I would like to thank my PhD supervisor, Professor Warren Gross, who has
given me the chance to pursuit my PhD studies. Without his guidance and support, I will not be able
to overcome unforeseen challenges during my PhD journey. Secondly, I would like to thank my
PhD supervisory committee members, Professor Brett Meyer and Professor Ioannis Psaromiligkos,
for their helpful and constructive advice, from which I can improve myself greatly to fulfill various
challenging milestones of the degree. I would also like to thank Professor Hyuk-Jae Lee at Seoul
National University, from whom I first learn how to conduct research.

I would like to thank the current and previous members of the Integrated Systems for Infor-
mation Processing lab: Carlo Condo, Seyyed Ali Hashemi, Arash Ardakani, Furkan Ercan, Adam
Cavatassi, Harsh Aurora, Jerry Ji, Loren Lugosch, Elie Mambou, Thibaud Tonnellier, Amir Ar-
dakani, Syed Mohsin Abbas, Jiajie Li, Marwan Jalaleddine, and Charles Le. Thank you for your
support and for the unforgettable time we shared at McGill.

I would like to give special thanks to Seyyed Ali Hashemi, who has been accompanying me in
almost all of my research papers. He is a knowledgeable senior and a great friend, who I am very
grateful to know and work with. I would also like to thank Elie Mambou again for his remarkable
help in translating the thesis abstract into French.

Finally, my deep and sincere gratitude to my family for their continuous and unconditional
love, help and support. No words are enough to express my love to them. Above all, I would like
to thank my wife, Ngoc. Thank you mom, dad, Nancy, and Henry.

vii

List of Acronyms

5G fifth Generation of Cellular Communications Standard

ARQ Automatic Request-for-Repeat

AWGN Additive White Gaussian Noise

BCH Bose-Chaudhuri-Hocquenghem

BP Belief Propagation

CPBP CRC-Polar BP

CRC Cyclic Redundancy Check

DL Deep Learning

DL-SCL Deep-Learning-Aided SCL

DSCF dynamic SC-Flip

eMBB Enhanced Mobile Broadband

Fast-SCF Fast SC-Flip

Fast-SCLF Fast SCL-Flip

FEC Forward Error Correction

FER Frame Error Rate

viii List of Acronyms

FHT Fast Hadamard Transforms

FHT-FSCL FHT-aided FSCL

FSC Fast SC

FSCL Fast Successive-Cancellation List

GANs Generative Adversarial Networks

KO Kronecker Operations

LDPC Low-Density Parity-Check

LLR Log-Likelihood Ratio

MIMO Multiple-Input Multiple Output

ML Maximum-Likelihood

mMTC massive Machine-Type Communication

NCPBP Neural CPBP

NNMS Neural Normalized Min-Sum

NNMS-RNN Neural Normalized Min-Sum Recurrent Neural Network

NSC Neural SC

OFDM Orthogonal Frequency Division Multiplexing

p-FHT-FSCL Permuted FHT-FSCL

RLD Recursive List Decoding

RM Reed-Muller

RPA Recursive Projection Aggregation

List of Acronyms ix

SC Successive-Cancellation

SCL Successive-Cancellation List

SCLF SCL-Flip

SNR Signal-to-Noise Ratio

SP Successive Permutations

SP-RLD SP-aided RLD

SRPA Sparse RPA

SSP-RLD simplified SP-RLD

URLLC Ultra-Reliable Low-Latency Communication

x

Contents

List of Acronyms vii

Contents x

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Summary of Contributions . 6

1.1.1 Machine-Learning-Aided Successive-Cancellation Flip Decoding of Polar
Codes . 6

1.1.2 Fast Successive-Cancellation List Flip Decoding of Polar Codes 6
1.1.3 Improved Belief Propagation Decoding of CRC-Polar Concatenated Codes 7
1.1.4 Decoding Reed-Muller Codes with Fast Hadamard Transforms 7
1.1.5 Decoding Reed-Muller Codes with Successive Codeword Permutations . . 7

1.2 Related Publications . 8
1.3 Thesis Organization . 12

2 Background 13
2.1 Encoding of Polar and RM codes . 13
2.2 Successive-Cancellation-Based Decoding . 15

2.2.1 Successive-Cancellation and Successive-Cancellation List Decoding 15
2.2.2 Fast Successive-Cancellation List Decoding 17

2.3 Bit-Flipping-Based Decoding . 21

Contents xi

2.3.1 Dynamic Successive Cancellation Flip Decoding 21
2.3.2 Successive-Cancellation List Flip Decoding 23

2.4 Belief-Propagation-Based Decoding . 25
2.4.1 Scaled Belief Propagation Decoding . 25
2.4.2 Neural Belief Propagation Decoding . 28

3 Machine-Learning-Aided Successive-Cancellation Flip Decoding of Polar Codes 29
3.1 Neural Successive Cancellation Flip Decoding . 29

3.1.1 Bit-flipping Metric Computation . 30
3.1.2 Parameter Optimization . 33
3.1.3 Quantization Scheme . 36
3.1.4 Parameter Optimization Results . 38
3.1.5 Error-Correction Performance . 39
3.1.6 Complexity Reduction and Decoding Latency 41

3.2 Reinforcement-Learning-Aided Fast-SCF Decoding 43
3.2.1 Bit-Flipping Scheme for FSC Decoding 44
3.2.2 Parameter Optimization . 46
3.2.3 Simulation Results . 49

3.3 Chapter Conclusion . 53

4 Fast Successive-Cancellation List Flip Decoding of Polar Codes 55
4.1 Bit-flipping Scheme for FSCL Decoding . 55

4.1.1 Path Selection Error Model for FSCL Decoding 62
4.1.2 Quantitative Complexity Analysis . 69

4.2 Evaluation . 71
4.2.1 Optimized Parameter and Error-Correction Performance 71
4.2.2 Computational Complexity, Decoding Latency, and Memory Requirement . 74

4.3 Chapter Conclusion . 78

5 Improved Belief Propagation Decoding of CRC-Polar Concatenated Codes 79
5.1 CRC-Polar BP Decoding . 79
5.2 Neural CRC-Polar BP Decoding . 83
5.3 Improved CRC-Polar BP Decoding with Codeword Permutations 87

xii Contents

5.3.1 From Factor-Graph Permutations to Codeword Permutations 87
5.3.2 Multi-Armed Bandit Problem . 89
5.3.3 Problem Formulation . 90
5.3.4 Reinforcement Learning-Aided CPBP Decoding 91
5.3.5 Simulation Results . 93

5.4 Chapter Conclusion . 97

6 Decoding Reed-Muller Codes with Fast Hadamard Transforms 99
6.1 Permuted FHT-FSCL Decoding . 99
6.2 Performance Evaluation . 106

6.2.1 Quantitative Complexity Analysis . 106
6.2.2 Comparison with FSCL and FHT-FSCL Decoding 107
6.2.3 Comparison with Permuted SC-Based Decoding and RPA-Based Decoding 109

6.3 Chapter Conclusion . 112

7 Decoding Reed-Muller Codes with Successive Codeword Permutations 115
7.1 Improved Successive Permutation Scheme . 115
7.2 Improved Recursive List Decoding with Successive Permutation 117
7.3 Performance Evaluation . 121

7.3.1 Quantitative Complexity Analysis . 121
7.3.2 Comparison with FSCL, SC-Stack and SP-SCL Decoding Algorithms . . . 123
7.3.3 Comparison with State-of-the-Art RM Decoders 126

7.4 Chapter Conclusion . 129

8 Conclusion and Future Work 131
8.1 Conclusion . 131
8.2 Future Work . 132

Bibliography 137

xiii

List of Figures

1.1 Basic digital communication system diagram. 2
1.2 5G application categories. 4

2.1 (a) Generator matrix of P(8, 4) and RM(1, 3) and (b) its equivalent factor-graph
representation with Ic = {0, 1, 2, 4}. 14

2.2 (a) Factor-graph representation of P(16, 8) with Ic = {0, 1, 2, 3, 4, 8, 9, 10}, and
(b) an SC PE. 15

2.3 (a) Full binary tree representation of P(16, 8) and (b) its corresponding pruned tree
using various special node types. 16

2.4 (a) BP decoding on the factor graph of P(8, 5) with {u0, u1, u2} ∈ I
c, (b) a BP PE,

(c) a right-to-left message update of a BP PE on an unrolled factor graph, and (d)
a left-to-right message update of a BP PE on an unrolled factor graph. 27

3.1 Effect of the simplification in (3.2) on the FER of DSCF decoding for P(512, 256)
and P(512, 384). The polar codes are concatenated with a 24-bit CRC used in 5G
standard. The ideal DSCF decoder (I-DSCF) is also plotted as a reference. 30

3.2 Effect of quantization on the FER of ideal DSCF decoding for P(512, 256) and
P(512, 384). The polar codes are concatenated with a 24-bit CRC. 37

3.3 Plot of training (validation) accuracy and loss of the full-precision and quantized
models when ω = 3 for P(512, 256). The value of θ is selected at the epoch that
has the highest validation accuracy. 38

3.4 FER performance of the proposed decoders for P(512, 256) and P(512, 384). The
polar codes are concatenated with a 24-bit CRC. The FERs of the full-precision
DSCF and ideal DSCF (I-DSCF) decoders are also plotted for comparison. 40

xiv List of Figures

3.5 FER comparison of the proposed NSCF decoders and CA-SCL decoders in [1]. . . 41
3.6 Average number of decoding attempts. 43
3.7 The training setup of the proposed bit-flipping policy when formalized as a RL

problem. 46
3.8 The cumulative average rewards of various bit-flipping models when applied to the

proposed bit-flipping algorithm. The simulation is carried out at Eb/N0 = 3 dB for
P(512, 256) with a 24-bit CRC, and Tmax = 1. 50

3.9 The error-correction performance of the proposed bit-flipping algorithm with var-
ious bit-flipping models in Fig. 3.8. 50

3.10 The FER of various fast SCF decoding algorithms as a function of Tmax at Eb/N0 =

{3, 4} dB. 51
3.11 The error-correction performance of various decoding algorithms. Tmax is set to 8

for all the bit-flipping algorithms. 52
3.12 Average number of decoding iterations of various fast SCF algorithms with Tmax = 8. 52

4.1 Ideal error-correction performance in terms of FER of various SCLF-based de-
coders. The FER values of the FSCL decoder with list size 32 are also plotted for
comparison. 59

4.2 (a) The number of translated errors at the leaf node level given a single error at
a specific bit index at the parent node level for a sized-64 polar code and (b) the
error-correction performance of I-Fast-SCLF-32 and I-SCLF-32 for the Rate-1 and
SPC codes of lengths N ∈ {64, 128} with various values of ce. 60

4.3 Training curves of the parameter θ for P(512, 256) and P(512, 384) with L = 32
and m = 80. A 24-bit CRC used in 5G is concatenated with the polar codes. 72

4.4 Error-correction performance of all the SCLF-based decoders considered in this
chapter. The FER values of the FSCL decoder with list size L = 32 is also plotted
for comparison. 73

4.5 Average computational complexity and latency in terms of time steps and runtime
of the SCLF-based decoders with list size 4. 74

4.6 Effects of online training on the error-correction performance of the Fast-SCLF-4-
50 decoder. 77

List of Figures xv

5.1 Factor graph representation of a CRC-polar concatenated code. The polar code is
P(8, 3) and a 2-bit CRC is used. 80

5.2 FER performance of CPBP decoding for P(128, 80) and a 16-bit CRC used in 5G. . 82
5.3 Average decoding latency of CPBP decoding forP(128, 80) and a 16-bit CRC used

in 5G. 83
5.4 NCPBP architecture with Imax = 2 and Ithr = 0 for P(8, 3) concatenated with a 2-bit

CRC. 84
5.5 (a) FER performance and (b) average decoding latency of various BP decoding

algorithms for P(128, 80) and a 16-bit CRC used in 5G. 86
5.6 Permuted factor graph representations for P(8, 5). 87
5.7 The proposed mapping from factor graph permutation to codeword permutation

for P(8, 5). 88
5.8 A parameter study of the ε-greedy and UCB algorithms. The average reward is

obtained for the first 10000 time steps with k = 500 at Eb/N0 = 3.0 dB. 94
5.9 The impact of k on the performance of different multi-armed bandit algorithms

used by RL-CPBP decoding for P(128, 64), obtained for the first 10000 time steps. 95
5.10 Performance comparison of various multi-armed bandit algorithms used by RL-

CPBP decoding. The simulation is obtained at Eb/N0 = 3.0 dB with k = 500,
ε = 2−4, and c = 2−3. 95

5.11 Error-correction performance of different factor-graph permutation selection schemes
for P(128, 64). 96

5.12 Error-correction performance of RL-CPBP decoding and other decoding algo-
rithms of polar codes. 96

6.1 An example of the p-FHT-FSCL decoder with list size L ≥ 1 when applied to
RM(3, 5). 104

6.2 FER performance of the FHT-FSCL and p-FHT-FSC decoders for various RM
codes. The FER values of the FSCL decoder with list size 32 (FSCL-32) are also
plotted for comparison. 108

6.3 Computational complexity (C), decoding latency in time steps (T), and memory
requirement in KBs (M) of FHT-FSCL-L and p-FHT-FSCL-L considered in Fig. 6.2.108

6.4 Error-correction performance of various RM decoders. 110

xvi List of Figures

7.1 Examples of the proposed decoder when applied to RM(3, 5) with (a) S = 2 and
(b) S = 1. 120

7.2 Error-correction performance of the proposed decoders and that of the SCS, SP-
SCL, and FSCL decoders. 123

7.3 Computational complexity and decoding latency of the proposed decoders under
the sequential and parallel implementations of the SP scheme. 124

7.4 Memory consumption in kB (Φ) of the proposed decoders whose FER curves are
provided in Fig. 7.2. 125

7.5 Error-correction performance of various permutation decoding algorithms of RM
codes. The FER of the SRPA decoder and the lower bound of ML decoding are
also plotted for comparison. 127

8.1 Encoding of (a) RM and (b) KO codes [2]. 132
8.2 Decoding of (a) RM and (b) KO codes [2]. 134

xvii

List of Tables

3.1 Optimized parameter θ at each error order of the proposed NSCF decoders. 39
3.2 Computational complexity of the bit-flipping metric in terms of the average num-

ber of operations performed for different polar codes, which are concatenated with
a 24-bit CRC used in 5G. 42

4.1 An example of FSCL decoding applied to an SPC node of size 4 with L = 4, where
the decoding is at the third path splitting. l′ ∈ {5, 6, 7, 8} are the indices of the
discarded paths. 56

4.2 An example of FSCL decoding applied to a Rate-1 node of size 4 with L = 2,
where the decoding is at the 6-th path splitting. l′ ∈ {2, 4} are the indices of the
discarded paths. 58

4.3 Summary of the average computational complexity in terms of weighted complex-
ity of all floating-point operations performed (C) and the average decoding latency
in time steps (L) of the SCLF-based decoders considered in Fig. 4.4. 75

4.4 Memory requirement in KBits of all the SCL-based decoders considered in this
chapter. 76

4.5 The average computational complexity, average decoding latency, memory con-
sumption, and error-correction performance degradation of the Fast-SCLF, SCLF,
and SSCLF decoders with L = 4 and m = 50 in comparison with those of the
FSCL-32 decoder. 76

5.1 Number of weights required by different neural BP decoders. 86
5.2 Computational complexity of different permutation selection schemes in terms of

the maximum number of operations performed 97

xviii List of Tables

6.1 Normalized computational complexities of different decoding functions required
by the p-FHT-FSCL-L decoder with L > 1. The decoding functions are applied to
a RM sub-code RM(r,m) visited by the decoding algorithm. 106

6.2 Normalized computational complexities of different decoding functions of the p-
FHT-FSCL-1 decoder. The decoding functions are applied to a RM sub-code
RM(r,m) visited by the decoding algorithm. 106

6.3 Summary of the memory requirements of the proposed decoders. 107
6.4 Comparison of normalized computational complexity (C), decoding latency in

time steps (T), and memory requirement in KBs (M) of FSCL-32 [3], FHT-FSCL-
32 [4], and p-FHT-FSCL-4, whose FER values are shown in Fig. 6.2. 109

6.5 Comparison of normalized computational complexity (C), decoding latency in
time steps (T), and memory requirement in KBs (M) of various RM decoders
considered in Fig 6.4. 111

7.1 Memory requirement in terms of the number of bits required by the SP-RLD and
SSP-RLD decoders. 122

7.2 Memory requirement in terms of the number of bits required by the Ens-SSP-RLD
decoder. 122

7.3 Comparison of computational complexity (Γ), decoding latency in time steps (Υ),
and memory requirement in kB (Φ) of SCS, SP-SCL, FSCL, and proposed SSP-
RLD decoders considered in Fig. 7.2. 125

7.4 Computational complexity (Γ), decoding latency in time steps (Υ), and memory
requirement in kB (Φ) of the SSP-RLD and Ens-SSP-RLD decoders considered in
Fig. 7.5. 128

7.5 Computational complexity (Γ), decoding latency in time steps (Υ), and memory re-
quirement in kB (Φ) of the SPRA, RLDA, and Aut-SSC-FHT decoders considered
in Fig. 7.5. 128

1

Chapter 1

Introduction

In digital communications, signals are transmitted from a transmitter to a receiver through a chan-
nel, such as optical cables, electric wires, air, etc. Fig. 1.1 illustrates a basic block diagram of a
digital communication system. In practice, the transmission channel is not ideal and often contains
noise that corrupts the signals. To enable a reliable transmission, redundancy in terms of parity
bits is added to the transmitted codeword, which allows for error-detection and/or error-correction
of the received codeword. The majority of coding techniques for error prevention may be catego-
rized into the set of Automatic Request-for-Repeat (ARQ) and the set of Forward Error Correction
(FEC) schemes [5]. In ARQ schemes, the role of the codes is to detect whether or not the re-
ceived codeword is corrupted. If the received codeword is corrupted, the receiver then requests
a retransmission of the same codeword to the transmitter. The codes considered in this approach
are referred as error-detection codes. In FEC schemes, the codes are designed to introduce redun-
dancy in the form of an encoded codeword, which enables error correction through an efficient
decoding algorithm. The codes in this approach are referred as error-correction codes. In practical
scenarios, the hybrid ARQ/FEC schemes are often used in which a retransmission is requested if
error correction is declared not successful on the received codeword.

Shannon’s theorem [6] states that there is a maximum information rate at which a reliable
communication can be established over a channel with a known error probability or Signal-to-
Noise Ratio (SNR). There exist many FEC schemes in the literature that can achieve or closely
approach the Shannon limit. Reed-Muller (RM) [7, 8] codes, discovered by Muller and Reed in
1954, were proven to achieve the capacity of erasure channels thanks to their large symmetry group
[9]. Recently, RM codes are also proved to achieve the channel capacity of binary memoryless

2 Introduction

Transmitter Channel Receiver

Figure 1.1: Basic digital communication system diagram.

channels [10]. Low-Density Parity-Check (LDPC) codes were first introduced by Gallager [11]
in 1962 and then independently reintroduced by MacKay in 1995 [12], which have been shown
to reach the channel capacity under some specific configurations [13]. In 1993, Turbo codes [14]
were introduced by Berrou as a powerful FEC scheme that closely approaches the Shannon limit.
In 2009, Arıkan proposed polar codes in his seminal paper [15], which are the first class of error-
correction codes proven to achieve the channel capacity of any binary memoryless channel under
efficient encoding and decoding algorithms. Because of this property, polar codes have drawn a
great deal of attention from industry and academia and were adapted in the fifth Generation of
Cellular Communications Standard (5G).

The 5G standard consists of various application scenarios where each scenario prioritizes dif-
ferent performance requirements, namely reliability, latency, and energy efficiency. A common
design choice of the coding schemes in the control channels of 5G is to utilize short to moderate
linear block codes, which provide a reasonable trade-off among the stringent requirements of low
latency and high reliability specified by the 5G standard. In particular, short to moderate length
polar codes are used in the Enhanced Mobile Broadband (eMBB) and Ultra-Reliable Low-Latency
Communication (URLLC) scenarios, and are being evaluated for the massive Machine-Type Com-
munication (mMTC) scenario [16, 17]. Fig. 1.2 shows the three scenarios of the 5G standard with
some of their main characteristics and applications [18].

Recently, Reed-Muller (RM) codes have regained significant research interests due to their sim-
ilarity with polar codes and their excellent error-correction performance under (near) Maximum-
Likelihood (ML) decoding. RM codes are similar to polar codes in the sense that the generator
matrices of both codes are constructed by selecting rows from a Hadamard matrix. The row selec-
tion of polar codes minimizes the error probability under SC decoding, while the row selection of
RM codes maximizes the minimum distance of the codes. As a result, polar codes outperform RM
codes under SC decoding and RM codes outperform polar codes under ML decoding, which can
be approximated by an SCL decoder with a large list size.

The Successive-Cancellation (SC) decoding algorithm of polar and RM codes can provide

3

a low complexity implementation. However, SC decoding falls short in providing a reasonable
error-correction performance for short to moderate length polar codes. SC list (SCL) decoding
was introduced in [1,19,20,21,22] to improve the error-correction performance of SC decoding by
keeping a list of candidate message words at each decoding step. In addition, it was observed that
under SCL decoding, the error-correction performance is significantly improved when the polar
code is concatenated with a cyclic redundancy check (CRC) [1, 21, 22]. Furthermore, SC-based
decoding of polar codes can be represented as a binary tree traversing problem [23] and it was
shown that the decoders in [1, 15, 21, 22] experience a high decoding latency as they require a full
binary tree traversal. Several fast decoding techniques were introduced to improve the decoding
latency of the conventional SC and SCL decoding algorithms [3, 24, 25, 26, 27]. The decoding
operations of special constituent codes under the fast SC-based decoding algorithms proposed
in [3, 24, 25, 26, 27] can be carried out at the parent node level, thus reducing the decoding latency
caused by the tree traversal.

As the memory requirement of SCL decoding grows linearly with the list size [28], it is of great
interest to improve the decoding performance of SCL decoding with a small list size. A solution for
the aforementioned problem is to improve the error-correction performance of SCL decoding with
a small list size by performing the SC and SCL decoding algorithms multiple times. Specifically,
given that the first SC or SCL decoding attempt is not successful, a search set of possible erroneous
decoding decisions is constructed for the first SC-based decoding attempt [29, 30, 31]. Then, the
decoder performs the secondary decoding attempts in series, in which the estimated erroneous
decisions are reversed at each additional decoding attempt. The decoding terminates if a codeword
found in the secondary decoding attempts satisfies the CRC verification or if a predefined number
of decoding attempts has been reached. This line of decoding algorithms is referred to as bit-
flipping algorithms for SC [29] and SCL [30, 31] decoders. Note that shifting from searching in
the list dimension to searching in the erroneous decoding decisions results in an increase in the
number of maximum decoding attempts. However, it was observed in [29,30,31] that at moderate
to high SNRs the decoders in [29,30,31] only incur a negligible increase in the number of average
decoding attempts compared to that of the conventional SC and SCL decoders. This allows for a
high-performance and low-power decoding algorithm which is highly suitable for the mMTC use
case of the 5G standard [32]. Nevertheless, the bit-flipping algorithms in [29,30,31] require costly
exponential and logarithmic computations that prevent the algorithms to be attractive for practical
applications. In addition, all the decoders in [29,30,31] fully traverse the polar code decoding tree

4 Introduction

Figure 1.2: 5G application categories.

as required by the conventional SC-based decoding, thus resulting in a high decoding latency.
Unlike the sequential nature of SC-based decoding algorithms, Belief Propagation (BP) decod-

ing [33] is a message passing algorithm that allows parallel computations enabling the decoder to
reach high decoding throughput [34]. Furthermore, in some communication systems that require
a Turbo channel equalizer [14] to improve the error correction performance, a soft-input soft-
output BP decoder is often required instead of a soft-input hard-output decoder [35]. However,
with limited number of iterations, BP decoding of polar codes suffers from a poor error-correction
performance. Several attempts have been carried out to improve the performance of BP decoding
for polar codes used in the 5G standard, where a CRC is concatenated with polar codes. In [36],
the CRC is used as an early termination criterion to prevent the BP decoder from processing un-
necessary iterations when the correct codeword is found. In [37], a post-processing algorithm is
presented that uses a CRC to detect false-converged errors. The problem associated with [36,37] is

5

that the CRC factor-graph is only considered for error-detection and not for error-correction, which
resulted in a negligible error-correction performance improvement compared to the conventional
BP decoding algorithm.

Decoding algorithms for polar codes can also be used to decode RM codes. However, they
do not provide near-ML-decoding performance. In fact, state-of-the-art near-ML decoding algo-
rithms, namely SC-based decoding [19, 20, 21, 38] and Recursive Projection Aggregation (RPA)
[39], suffer from high computational complexity, decoding latency, and memory consumption,
preventing RM codes to be suitable for practical applications that require high reliability with
reasonable computational complexity.

Previous research concerning the decoding of polar codes mainly focuses on the eMBB use
case of 5G with SCL decoding being the state-of-the-art decoder. However, when targeting dif-
ferent use cases of 5G, SCL decoding experiences a high computational complexity, decoding
latency, and memory requirements, making polar codes less attractive to the mMTC and URLLC
scenarios. Throughout the thesis, we introduce various novel decoding techniques to practically
extend the use of polar and RM codes for different 5G use cases. In Chapter 3 of the thesis, a
low-complexity and low-latency bit-flip decoding algorithm of polar codes is first introduced to
address the high complexity issue of SCL decoding. This algorithm enables a low complexity
decoder as opposed to SCL decoding, thus potentially provides a low-power decoding algorithm,
which enables the use of polar codes under the mMTC scenario. In Chapter 4 of the thesis, an
improvement of the decoders proposed in Chapter 3 is introduced. In particular, a fast list flip
decoder is proposed to significantly reduce the worst-case latency of decoding polar codes under
the conventional bit-flipping based algorithms. In Chapter 5, we further extend the use case of
polar codes under a soft-input soft-output BP decoder as required by a Turbo-like communication
system. Specifically, the CRC is concatenated with the polar codes and is utilized for both error-
detection and error-correction to significantly improve the reliability and decoding latency of the
polar-CRC concatenated codes. On the other hand, Chapter 6 and Chapter 7 of the thesis consider
RM decoding, where the RM codes are referred to as a special case of polar codes. It is worth to
note that RM codes are a potential coding scheme for the URLLC use case of 5G due to their ex-
cellent error-correction performance under near-ML decoding and their symmetry properties that
enable highly-parallel decoding algorithms. In particular, novel decoding techniques utilizing Fast
Hadamard Transforms (FHT) and codeword permutations of RM codes are introduced in Chap-
ter 6. Furthermore, in Chapter 7, an improvement scheme of the decoding algorithm presented in

6 Introduction

Chapter 6 is introduced, which proposes a novel permutation selection scheme for RM codes under
an improved recursive list decoding algorithm.

1.1 Summary of Contributions

Throughout the thesis we consider the Additive White Gaussian Noise (AWGN) channel model.
Nevertheless, the proposed algorithms can be utilized in other channel models, such as fading
channels or channels with correlated noise as such non-Gaussian channel models are often coupled
with precoding and channel equalizer techniques. The detailed contributions are summarized as
follows:

1.1.1 Machine-Learning-Aided Successive-Cancellation Flip Decoding of Polar Codes

We introduce a hardware-friendly SC-Flip decoding algorithm to address existing issues of the
state-of-the-art dynamic SC-Flip (DSCF) decoder [29], which utilizes an additive trainable param-
eter to estimate the error bit indices under SC decoding. A Fast SC-Flip (Fast-SCF) decoder is
then introduced to obviate the binary-tree traversal of the conventional SC-Flip decoders. In ad-
dition, the bit-flipping model of the Fast-SCF decoder is parameterized by a correlation matrix,
which provides a superior estimation accuracy of the error indices compared to the methods used
by state-of-the-art SC-Flip decoders. The parameters of the proposed SC-Flip based decoders are
optimized using efficient supervised and reinforcement learning techniques.

1.1.2 Fast Successive-Cancellation List Flip Decoding of Polar Codes

We develop a Fast SCL-Flip (Fast-SCLF) decoding algorithm for polar codes that addresses the
high latency issue associated with the SCL-Flip (SCLF) decoding algorithm. We first propose a bit-
flipping strategy tailored to the state-of-the-art Fast Successive-Cancellation List (FSCL) decoding
that avoids tree-traversal in the binary tree representation of SCLF, thus reducing the latency of
the decoding process. We then derive a parameterized path-selection error model to accurately
estimate the bit index at which the correct decoding path is eliminated from the initial FSCL
decoding. The trainable parameter is optimized online based on an efficient supervised learning
framework. By using online learning, the parameter can be directly trained at the operating SNR
of the decoder while completely removing the need of pilot signals.

1.1 Summary of Contributions 7

1.1.3 Improved Belief Propagation Decoding of CRC-Polar Concatenated Codes

We propose novel decoding techniques to significantly improve the error-correction performance
of CRC-polar concatenated codes under BP decoding. In particular, the CRC factor-graph is first
utilized to provide extrinsic information to the polar factor-graph. Trainable weights are then
assigned to the edges of the concatenated graphs to reduce the decoding latency. In addition,
the code permutations are utilized to further reduce the error probability of the CRC-aided BP
decoder. We formalize the factor-graph selections of polar codes under CRC-aided BP decoding
as a multi-armed bandit problem and use state-of-the-art bandit algorithms to select the set of good
permutations on the fly.

1.1.4 Decoding Reed-Muller Codes with Fast Hadamard Transforms

We propose a novel permuted fast successive-cancellation list decoding algorithm with fast Hada-
mard transform, which is referred as FHT-aided FSCL (FHT-FSCL). In particular, the proposed
decoder performs the decoding operations in both the information bit and codeword permutation
domains of RM codes to significantly improve the error-correction performance of a previously
introduced FHT-FSCL decoding algorithm. First, the proposed decoder initializes L (L ≥ 1) active
decoding paths with L random codeword permutations sampled from the full symmetry group
of the codes. The path extension in the permutation domain is then carried out until the first
constituent RM code of order 1 is visited, followed by the conventional path extension occurred
only in the information bit domain. Furthermore, as different subsets of the codeword permutations
are utilized for the permuted FHT-FSCL decoder, the error-correction performance of RM codes
can be significantly improved by running M (M > 1) permuted FHT-FSCL decoders in parallel.

1.1.5 Decoding Reed-Muller Codes with Successive Codeword Permutations

A novel Recursive List Decoding (RLD) algorithm of RM codes based on Successive Permutations
(SP) of the codeword is presented. An SP scheme that performs maximum likelihood decoding on
a subset of the symmetry group of RM codes is first proposed to carefully select a good codeword
permutation on the fly. Then, the proposed SP technique is applied to an improved RLD algorithm
that initializes different decoding paths with random codeword permutations, which are sampled
from the full symmetry group of RM codes. Finally, an efficient latency reduction scheme is
introduced that virtually preserves the error-correction performance of the proposed decoder.

8 Introduction

1.2 Related Publications

This doctoral research has resulted in the following publications.

Book Chapter

1. W. J. Gross, N. Doan, E. N. Mambou, and S. A. Hashemi, “Deep Learning Techniques
for Decoding Polar Codes”, Wiley, 2019.

This chapter provides the background and motivation for the use of deep learn-
ing in various forward error correction schemes used for wireless communication
systems. My contributions to this book chapter were to review related papers, im-
plement the state-of-the-art algorithms, obtain the simulation results, and help in
writing the book chapter.

Journal Papers

1. N. Doan, S. A. Hashemi, M. Mondelli, and W. J. Gross, “Decoding Reed-Muller Codes
with Successive Codeword Permutations”, IEEE Transactions on Communications (un-

der review).

This paper presents a novel approach to select a good codeword permutation of
RM codes to significantly improve the error-correction performance of RLD de-
coding with a small list size. My contributions to this paper were to develop and
implement the idea, produce the results, and write the manuscript. The contribu-
tions to this paper are presented in Chapter 7.

2. N. Doan, S. A. Hashemi, and W. J. Gross, "Successive-Cancellation Decoding of Reed-
Muller Codes with Fast Hadamard Transform", IEEE Transactions on Vehicular Tech-
nologies (under review).

This paper introduces an efficient near-ML decoding algorithm of RM codes by
utilizing FHT and codeword permutations under FSCL decoding. My contribu-
tions to this paper were to develop and implement the idea, produce the results,
and write the manuscript. The contributions to this paper are presented in Chap-
ter 6.

1.2 Related Publications 9

3. N. Doan, S. A. Hashemi, and W. J. Gross, “Fast Successive-Cancellation List Flip
Decoding of Polar Codes,” IEEE Access, 2022.

This paper addresses the underlying high decoding problem of the SCLF decoding
algorithm [30]. My contributions to this paper were to develop and implement the
idea, produce the results, and write the manuscript. The contributions to this paper
are presented in Chapter 4.

4. N. Doan, S. A. Hashemi, F. Ercan, T. Tonnellier, and W. J. Gross, "Neural Successive-
Cancellation Flip Decoding of Polar Codes", Journal of Signal Processing Systems,
2021.

This paper introduces a training parameter and an approximation scheme that com-
pletely removes the need to perform transcendental computations in DSCF decod-
ing [29], with almost no error-correction performance degradation. My contribu-
tions to this paper were to develop and implement the idea, produce the results, and
write the manuscript. The contributions to this paper are presented in Chapter 3.

5. F. Ercan, T. Tonnellier, N. Doan, W. J. Gross, "Practical Dynamic SC-Flip Polar De-
coders: Algorithm and Implementation", IEEE Transactions on Signal Processing,
2020.

This paper proposes a fast SC-Flip decoding algorithm of polar codes and its hard-
ware implementation. My contribution to the paper was to help in the preparation
of the manuscript.

Conference Papers

1. N. Doan, S. A. Hashemi, F. Ercan, and W. J. Gross, "Fast SC-Flip Decoding of Polar
Codes with Reinforcement Learning", IEEE International Conference on Communica-
tions (ICC), Montreal, Canada, 2021.

This paper introduces a novel bit-flipping algorithm tailored to FSC decoding,
which tackles the high decoding latency problem of SCF decoding [40]. My con-
tributions to this paper were to develop and implement the idea, produce the re-
sults, and write the manuscript. The contributions to this paper are presented in
Chapter 3.

10 Introduction

2. S. A. Hashemi, N. Doan, W. J. Gross, J. Cioffi, and A. Goldsmith, "A Tree Search Ap-
proach for Maximum-Likelihood Decoding of Reed-Muller Codes", IEEE Globecom:
Workshop on Channel Coding beyond 5G (GLOBECOM-Workshop), Madrid, Spain,
2021.

This paper presents an ML decoding algorithm of RM codes based on a tree search
algorithm. My contributions to the paper were to help in developing the idea,
implement the algorithm and obtain the simulation results.

3. T. Tonnellier, M. Hashemipour, N. Doan, W. J. Gross, and A. Balatsoukas-Stimming,
"Towards Practical Near-Maximum-Likelihood Decoding of Error-Correcting Codes:
An Overview", IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), Toronto, Canada, 2021.

This paper reviews recent advanced decoding algorithms that can obtain (near) ML
performance of linear block codes. My contribution to this paper was to write a
section of the manuscript, which reviews recent machine-learning aided decoding
algorithms.

4. N. Doan, S. A. Hashemi, and W. J. Gross, "Decoding of Polar Codes with Reinforce-
ment Learning", IEEE Global Communications Conference (GLOBECOM), Taipei,
Taiwan, 2020.

This paper addresses the problem of selecting factor-graph permutations of CRC-
polar concatenated codes under BP decoding to significantly improve the error-
correction performance of the codes. My contributions to this paper were to de-
velop and implement the idea, produce the results, and write the manuscript. The
contributions to this paper are presented in Chapter 5.

5. F. Ercan, T. Tonnellier, N. Doan, and W. J. Gross, "Simplified Dynamic SC-Flip Polar
Decoding", IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), Barcelona, Spain, 2020.

This paper proposes a fast SC-Flip decoding algorithm of polar codes. My contri-
bution to the paper was to help in the preparation of the manuscript.

6. N. Doan, S. A. Hashemi, E. N. Mambou, T. Tonnellier, and W. J. Gross, "Neural Belief
Propagation Decoding of CRC-Polar Concatenated Codes", IEEE International Confer-
ence on Communications (ICC), Shanghai, China, 2019.

1.2 Related Publications 11

This paper first proposes a CRC-Polar BP (CPBP) decoder by exchanging the
extrinsic information between the factor graph of the polar code and that of the
CRC. It then proposes a Neural CPBP (NCPBP) algorithm which improves the
CPBP decoder by introducing trainable normalizing weights on the concatenated
factor graph. My contributions to this paper were to develop and implement the
idea, produce the results, and write the manuscript. The contributions to this paper
are presented in Chapter 5.

7. N. Doan, S. A. Hashemi, F. Ercan, T. Tonnellier, and W. J. Gross, "Neural Dynamic
Successive Cancellation Flip Decoding of Polar Codes", IEEE International Workshop
on Signal Processing Systems (SiPS), Nanjing, China, 2019.

This paper tackles the high computational complexity of the state-of-the-art DSCF
decoding algorithm [29]. My contributions to this paper were to develop and im-
plement the idea, produce the results, and write the manuscript. The contributions
to this paper are presented in Chapter 3.

8. S. A. Hashemi, N. Doan, and W. J. Gross, "Deep-Learning-Aided Successive-Cancellation
Decoding of Polar Codes", Asilomar Conference on Signals, Systems, and Computers
(ASILOMAR), Pacific Grove, USA, 2019.

In this paper, a Deep-Learning-Aided SCL (DL-SCL) decoding algorithm for polar
codes is introduced. The DL-SCL decoder works by allowing additional rounds of
SCL decoding when the first SCL decoding attempt fails using a novel bit-flipping
metric. My contributions were to help in the implementation of the ideal and in
the preparation of the manuscript.

9. N. Doan, S. A. Hashemi, M. Mondelli, and W. J. Gross, "On the Decoding of Po-
lar Codes on Permuted Factor Graphs", IEEE Global Communications Conference
(GLOBECOM), Abu Dhabi, UAE, 2018.

This paper shows that the permutations on the factor graph of polar codes can
be mapped into suitable permutations on the codeword positions, allowing the
use of a single decoder architecture with different factor-graph permutations. My
contributions to this paper were to develop and implement the idea, produce the
results, and write the manuscript. The contributions to this paper are presented in
Chapter 5.

12 Introduction

10. N. Doan, S. Ali Hashemi and W. J. Gross, "Neural Successive Cancellation Decoding
of Polar Codes", IEEE 19th International Workshop on Signal Processing Advances in
Wireless Communications (SPAWC), Kalamata, Greece, 2018.

This paper proposes a Neural SC (NSC) decoder to overcome the high decoding
latency issue associated with the partitioned neural network decoder [41]. My
contributions to this paper were to develop and implement the idea, produce the
results, and write the manuscript.

11. S. A. Hashemi, N. Doan, M. Mondelli, and W. J. Gross, "Decoding Reed-Muller and
Polar Codes by Successive Factor Graph Permutations", IEEE International Sympo-
sium on Turbo Codes & Iterative Information Processing (ISTC), Hong Kong, China,
2018.

This paper proposes an SP scheme that finds the permutations on the fly, thus the
decoding always progresses on a single factor graph permutation. My contribu-
tions were to help in the implementation of the ideal and in the preparation of the
manuscript.

1.3 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we introduce some background knowl-
edge of polar and RM codes, as well as their state-of-the-art decoders. Chapter 3 introduces bit-
flipping algorithms of SC and FSC decoding, while Chapter 4 proposes a bit-flipping algorithm
tailored to FSCL decoding. In Chapter 5, novel decoding techniques are introduced to signif-
icantly improve the error probability of BP decoding under the CRC-polar concatenated codes.
Chapter 6 and Chapter 7 deal with the decoding of RM codes under SC-based decoding by utiliz-
ing the rich symmetry group of the codes and FHT. Finally, concluding remarks and some future
research directions are drawn in Chapter 8.

13

Chapter 2

Background

In this chapter we provide a brief background on the encoding and decoding of polar and RM
codes. We start this chapter by first introducing notations. Throughout this thesis boldface letters
indicate vectors and matrices, while unless otherwise specified non-boldface letters indicate either
binary, integer or real numbers. In addition, by aimax

imin
= {aimin, . . . , aimax} we denote a vector of size

imax − imin + 1 containing the a elements from index imin to imax (imin < imax). Sets are denoted
by blackboard bold letters, e.g., R is the set containing real numbers. Finally, IX is an indicator
function where IX = 1 if the condition X is true, and IX = 0 otherwise.

2.1 Encoding of Polar and RM codes

A polar code P(N,K) of length N with K information bits is encoded by applying a linear transfor-
mation to the binary message wordu = {u0, u1, . . . , uN−1} asx = uG⊗n, wherex = {x0, x1, . . . , xN−1}

is the codeword, G⊗n is the n-th Kronecker power of the polarizing matrix G =
[1 0

1 1
]
, and

n = log2 N. The vector u contains a set I of K information bit indices and a set Ic of N − K

frozen bit indices. On the other hand, a RM code is specified by a pair of integers 0 ≤ r ≤ m and
is denoted as RM(r,m), where r is the order of the code. RM(r,m) has a code length N = 2m

with K =
∑r

i=0

(
m
i

)
information bits, and a minimum distance d = 2m−r [7,8]. RM codes are similar

to polar codes under the factor-graph representation of the codes, which allows them to share the
same encoding algorithm.

The main difference between RM and polar codes is that the frozen-bit set Ic of RM codes is
constructed to maximize the minimum distance among all the codewords [7, 8], while the set Ic

14 Background

G⊗3 =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


(a)

u7 x7

u6 x6

u5 x5

u4 x4

u3 x3

u2 x2

u1 x1

u0 x0

=

=

=

=

=

=

=

=

=

=

=

=

(b)

Figure 2.1: (a) Generator matrix of P(8, 4) and RM(1, 3) and (b) its equivalent factor-graph rep-
resentation with Ic = {0, 1, 2, 4}.

of polar codes is constructed to minimize the error probability under SC decoding [42, 43, 44, 45]
or SCL decoding [46, 47]. Similar to polar codes, a RM code is encoded by applying a linear
transformation to the binary message word u as x = uG⊗m. The element ui of u is fixed to 0 if
the Hamming weight of the i-th row of G⊗m, denoted as wi, is smaller than d. Formally, ui = 0
∀i ∈ Ic, where Ic = {i|0 ≤ i < N,wi < d}, and I = {i|0 ≤ i < N,wi ≥ d}.

For both polar and RM codes, once constructed, the set I and Ic are known to both the encoder
and the decoder. The codeword x is sent through the channel using a binary phase-shift keying
(BPSK) modulation and an AWGN channel model is considered. Thus, the soft vector of the
transmitted codeword received by the receiver is y = (1 − 2x) + z, where 1 is an all-one vector
of size N, and z ∈ RN is the noise vector with variance σ 2 and zero mean. In the Log-Likelihood
Ratio (LLR) domain, the LLR vector of the transmitted codeword is

αm =
2y
σ 2 . (2.1)

Given the generator matrix G⊗m, the factor-graph representation of the code is constructed using
the Forney’s transformation introduced in [48]. In Fig. 2.1 we illustrate an example of the encoding
of polar and RM codes of size 8 using their factor-graph representation [8, 15, 48, 49] given G⊗3.
During the encoding, the

⊕
symbol indicates a binary XOR operation while the equality symbol

=© indicates an equality operation.
The transmitted message word u is then estimated by a decoding algorithm given the LLR val-

ues αn. In the following sections, we briefly review some of the mainstream decoding algorithms
of polar and RM codes.

2.2 Successive-Cancellation-Based Decoding 15

s0 s1 s2 s3 s4

u15 x15
u14 x14
u13 x13
u12 x12
u11 x11
u10 x10
u9 x9
u8 x8
u7 x7
u6 x6
u5 x5
u4 x4
u3 x3
u2 x2
u1 x1
u0 x0

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

Stage Indices

B
it

In
di

ce
s

(a)

αs,i, βs,i αs+1,i, βs+1,i

αs,i+2s , βs,i+2s αs+1,i+2s, βs+1,i+2s=

(b)

Figure 2.2: (a) Factor-graph representation of P(16, 8) with Ic = {0, 1, 2, 3, 4, 8, 9, 10}, and (b) an
SC PE.

2.2 Successive-Cancellation-Based Decoding

This section introduces preliminary knowledge and notations required by Chapter 3, Chapter 4,
Chapter 6, and Chapter 7.

2.2.1 Successive-Cancellation and Successive-Cancellation List Decoding

SC decoding is executed on the factor-graph representation of the code [15]. Fig. 2.2(a) illustrates
the factor-graph representation of P(16, 8) during the course of decoding. To obtain the message
word, the soft LLR values and the hard bit estimations are propagated through all the SC process-
ing elements (PEs) with respect to the parity-check and equality constraints, which are depicted
in Fig. 2.2(b). Each SC PE performs the following computations: αs,i = f (αs+1,i,αs+1,i+2s) and
αs,i+2s = g(αs+1,i,αs+1,i+2s, βs,i), where αs,i and βs,i are the soft LLR value and the hard-bit estima-
tion at the s-th stage and the i-th bit, respectively. The min-sum approximation formulations of f

and g are f (a, b) = min(|a|, |b|) sgn(a) sgn(b), and g(a, b, c) = b + (1 − 2c)a. The soft LLR values
at the m-th stage are initialized to αm and the hard-bit estimation of an information bit at the 0-th
stage is obtained as ûi = β0,i =

1−sgn(α0,i)
2 , ∀i ∈ I. The hard-bit values of the SC PE are then

16 Background

Stage Indices

B
it

In
di

ce
s

s0 s1 s2 s3 s4

u16
u15
u14
u13
u12
u11
u10
u9
u8
u7
u6
u5
u4
u3
u2
u1

Rate-1

REP

SPC

Rate-0

Treepruning

Stage Indices
s2 s3 s4

Rate-0

SPC

REP

Rate-1

(a) (b)

Figure 2.3: (a) Full binary tree representation of P(16, 8) and (b) its corresponding pruned tree
using various special node types.

computed as βs+1,i = βs,i ⊕ βs,i+2s and βs+1,i+2s = βs,i+2s .
The SCL decoding algorithm was proposed in [1, 19, 21, 22] to decode polar and RM codes

by maintaining L most probable SC decoding paths at the same time. It is noteworthy that the
SC decoding algorithm in [15] is a special case of the recursive list algorithm proposed in [19],
when the list size L is set to 1. Under SCL decoding, the estimation of a message bit ûi (i ∈ I) is
considered to be both 0 and 1, i.e., a path split. Thus, the number of candidate codewords (decoding
paths) doubles after each information bit is estimated. To prevent the exponential growth of the
number of decoding paths, a path metric is utilized to select the L most probable decoding paths
after each information bit is decoded. In the LLR domain, the low-complexity path metric can be
obtained as [1]

PMl =

 PMl +
∣∣∣α0,il

∣∣∣ if ûi ,
1−sgn(α0,il)

2 ,

PMl otherwise,
(2.2)

where α0,il denotes the soft value of the i-th bit at stage 0 of the l-th path, and initially PMl = 0 ∀l.
At the end of the decoding process, only the path that has the smallest path metric is selected as
the decoding output.

2.2 Successive-Cancellation-Based Decoding 17

2.2.2 Fast Successive-Cancellation List Decoding

SC and SCL decoding can also be illustrated on a binary tree representation of the code [23,24,50].
Fig. 2.3(a) shows a full binary tree representation of P(16, 8), whose factor graph is depicted in
Fig. 2.2(a). The authors in [3, 26, 27, 51] proposed fast decoding operations for various special
nodes under SCL decoding, which preserve the error-correction performance of SCL decoding
while preventing tree-traversal to the leaf nodes. Thus, the decoding latency of SCL decoding is
significantly reduced. Similar to [3], we consider four types of special nodes, namely Rate-0, Rate-
1, repetition (REP), and single parity check (SPC), for all the fast SCL-based decoding algorithms
in this thesis. Note that only the REP and SPC nodes are encountered when decoding RM codes.

Consider a parent node ν located at the s-th stage (0 < s ≤ n) of the polar (RM) code binary
tree. There are Nν LLR values and Nν hard decisions associated with this node, where Nν = 2s.
Let ανl and βνl be the vectors containing the soft and hard values associated with a parent node ν

of the l-th decoding path, respectively. ανl and βνl are defined as ανl = {αs,iminνl
, . . . ,αs,imaxνl

} and
βνl = {βs,iminνl

, . . . , βs,imaxνl
}, respectively, where iminνl

and imaxνl
are the bit indices corresponding

to ν such that 1 ≤ iminνl
< imaxνl

≤ N and imaxνl
− iminνl

= Nν − 1. For all the fast SCL-based
decoders considered in this thesis, the elements of ανl corresponding to the SPC and Rate-1 nodes
are considered to be sorted in the following order [3]:∣∣∣∣αs,ıminνl

∣∣∣∣ ≤ . . . ≤
∣∣∣∣αs,ımaxνl

∣∣∣∣, (2.3)

where imin ≤ ımin, ımax ≤ imax. In addition, let τ be the minimum number of path splittings occurred
at an SPC or a Rate-1 node that allows FSCL decoding to preserve the error-correction performance
of the conventional SCL decoding algorithm [3]. The definitions and decoding operations of each
special node under FSCL decoding are given as follows.

Rate-0 node

All the leaf nodes of a Rate-0 node are frozen bits. Therefore, all the hard values associated with
the parent node are set to 0 and the path metric of the l-th path is given as [3]

PMl = PMl +

imaxνl∑
i=iminνl

∣∣∣αs,i

∣∣∣ − αs,i

2
. (2.4)

18 Background

REP node

All the leaf nodes of a REP node are frozen bits, except for β0,imaxνl
. The path metric of the l-th

decoding path is calculated as [3]

PMl = PMl +

imaxνl∑
i=iminνl

∣∣∣αs,i

∣∣∣ − (1 − 2βs,imaxνl
)αs,i

2
, (2.5)

where βs,imaxνl
denotes the bit estimate of the information bit of the REP node.

Rate-1 node

All the leaf nodes of a Rate-1 node are information bits. FSCL decoding performs τ path splittings,
where τ = min(L − 1,Nν) [3]. The path metric of the l-th decoding path for a Rate-1 node is
calculated as [3]

PMl = PMl +

ımaxνl∑
i=ıminνl

∣∣∣αs,i

∣∣∣ − (1 − 2βs,i)αs,i

2
, (2.6)

where βs,i denotes the bit estimate of the i-th bit of ν .

SPC node

All the leaf nodes of an SPC node are information bits, except for β0,iminνl
. The parity check sum of

the l-th path is first obtained as [3]

pl =

ımaxνl⊕
i=ıminνl

1 − sgn(αs,i)
2

. (2.7)

The path metric is then updated as [3]

PMl = PMl + pl

∣∣∣αs,ıminl

∣∣∣. (2.8)

2.2 Successive-Cancellation-Based Decoding 19

The decoding continues with τ path splittings, where τ = min(L,Nν) [3]. In each new path splitting
at the i-th index, the path metric is updated as [3]

PMl =


PMl +

∣∣∣αs,i

∣∣∣ + (1 − 2pl)
∣∣∣αs,ıminl

∣∣∣
if 1 − 2βs,i , sgn(αs,i),

PMl otherwise,

(2.9)

then the parity check sum is updated as [26]

pl =

 1 ⊕ pl if 1 − 2βs,i , sgn(αs,i),

pl otherwise.
(2.10)

where i is selected by following the bit indices of the sorted absolute LLR values in (2.3) [3]. When
all the bits are estimated, the hard decision of the least reliable bit is updated to maintain the parity
check condition of the SPC node [3]

βs,ıminνl
=

⊕
∀iminνl

≤i≤imaxνl
i,ıminνl

βs,i. (2.11)

Note that the FSC decoding algorithm introduced in [23] is a special case of the FSCL decoder
with L = 1.

It was analytically shown in [3, 25] that the error-correction performance of the fast SCL de-
coding algorithm when considering Rate-0, Rate-1, and REP nodes is exactly the same as that of
the conventional SCL decoder. However, for SPC nodes this property was only empirically ob-
served in [26]. Here, we provide an analytical proof that shows that the SPC decoding operations
under fast SCL decoding [3,25,26] also yield exactly the same error-correction performance when
compared to SCL decoding.

Theorem 1. The path metric calculated at the parent node level by following the FSCL decoding

operations for SPC nodes as described in (2.7)-(2.11) [3,26] is exactly the same as the path metric

calculated at its leaf node level.

Proof. The path metric of the l-th path calculated at the parent node level of the SPC nodes by

20 Background

following (2.7)-(2.11) [3, 26] can be rewritten as1

PMνs =

Nν−1∑
i=0

∣∣∣αs,i

∣∣∣ − ηs,iαs,i

2
+ ps,imin

∣∣∣αs,imin

∣∣∣ − ∣∣∣αs,imin

∣∣∣ − ηs,imin αs,imin

2
+


⊕

0≤i<Nν

i,imin

1 − ηs,i sgn(αs,i)
2

 (1 − 2ps,0)
∣∣∣αs,imin

∣∣∣,
(2.12)

where ηs,i = 1 − 2βs,i.
As ν is an SPC node, we have the following constraint

0 =

Nν−1⊕
i=0

βs,i = βs,imin ⊕


⊕

0≤i<Nν

i,imin

(
1 − ηs,i sgn(αs,i)

2
⊕

1 − sgn(αs,i)
2

)
= βs,imin ⊕


⊕

0≤i<Nν

i,imin

1 − sgn(αs,i)
2

 ⊕

⊕

0≤i<Nν

i,imin

1 − ηs,i sgn(αs,i)
2


= βs,imin ⊕ ps,0 ⊕

1 − sgn(αs,imin)
2

⊕


⊕

0≤i<Nν

i,imin

1 − ηs,i sgn(αs,i)
2

 ,
(2.13)

where ps,imin is the initial parity check sum of the l-th decoding path obtained in (2.7). Therefore,

⊕
0≤i<Nν

i,imin

1 − ηs,i sgn(αs,i)
2

= βs,imin ⊕ ps,0 ⊕
1 − sgn(αs,imin)

2

=
1 − ηs,imin(1 − 2ps,0) sgn(αs,imin)

2
.

(2.14)

By substituting (2.14) into (2.12) and using [25, Theorem 2], we obtain:

PMνs =

Nν−1∑
i=0

∣∣∣αs,i

∣∣∣ − ηs,iαs,i

2
=

Nν−1∑
i=0

∣∣∣α0,i

∣∣∣ − η0,iα0,i

2
= PMν0, (2.15)

where PMν0 indicates the path metric of the SPC node obtained at the leaf-node level. Therefore,
Theorem 1 is proved. �

Note that FSCL decoding requires high computational complexity, decoding latency and mem-
1We drop the path index l in the proof for better clarity.

2.3 Bit-Flipping-Based Decoding 21

ory requirement to obtain reasonable error-correction performance of polar and RM codes when
targeting the mMTC and URLLC use cases of the 5G standard. In Chapter 4, Chapter 6, and
Chapter 7 of the thesis, various improvements are proposed to address the associated problems of
the FSCL-based decoders, making polar and RM codes more attractive to the mMTC and URLLC
scenarios.

2.3 Bit-Flipping-Based Decoding

This section introduces preliminary knowledge and notations required by Chapter 3 and Chapter 4.

2.3.1 Dynamic Successive Cancellation Flip Decoding

The error-correction performance of SC decoding for short to moderate block lengths is not sat-
isfactory. To improve its error-correction performance, a CRC of length C is concatenated to the
message word of polar codes to check whether SC decoding succeeded or not. If the estimated
message word û does not satisfy the CRC after the initial SC decoding attempt, a secondary SC
decoding attempt is made by flipping the estimation of an information bit in û that is most likely to
be erroneous. This process can be performed multiple times by applying a predetermined number
of SC decoding attempts, with each attempt flipping the estimation of a different information bit. If
the resulting message word after one of the SC decoding attempts satisfies the CRC, the decoding
is declared successful. This algorithm is referred to as SCF decoding [40]. The main problem as-
sociated with SCF decoding is that only the first erroneous bit after the initial SC decoding can be
corrected. However, it is common that even after the first erroneous bit is corrected, the resulting
message word still contains erroneous bits. Therefore, further flipping attempts for the additional
erroneous bits are required. DSCF decoding was introduced in [29] to address this problem.

Let Eω = {i1, . . . , iω}, where {i1, . . . , iω} ⊂ I, be the set of bit-flipping positions of order ω

such that i1 < · · · < iω , 0 ≤ ω ≤ K + C, and |Eω | = ω . Note that E0 = ∅. In the course of
DSCF decoding, the hard-bit estimations of all the bit indices in Eω are flipped. The set Eω is
constructed progressively based on the set Eω−1 = {i1, . . . , iω−1}. In fact, if SC decoding fails after
flipping all the bit-flipping positions in Eω−1, iω is added to Eω−1 to form Eω and an additional SC
decoding attempt is performed by flipping the bit estimation at all the bit-flipping positions in Eω .
Furthermore, a maximum number of decoding attempts mω is imposed on the decoder to limit the
computational complexity in practice. The bit-flipping process of the ω-th error order under SC

22 Background

decoding can be written as

û[Eω]i =


0 if ui ∈ I

c,

1+sgn(α[Eω]0,i)
2 if ui ∈ I, i ∈ Eω ,

1−sgn(α[Eω]0,i)
2 otherwise,

(2.16)

where α[Eω] is the vector of LLR values obtained at the ω-th error order.
Let

p∗i (Eω−1) = Pr(û[Eω−1]i = ui|y, û[Eω−1]i−1
0 = ui−1

0), (2.17)

where  û [Eω−1]i−1
0 = {û[Eω−1]0, û[Eω−1]1, . . . , û[Eω−1]i−1},

ui−1
0 = {u0, u1, . . . , ui−1}.

The probability that SC decoding is successful after flipping all the bit-flipping positions in Eω is
then defined as [29]

Piω =
∏
∀i∈I\Eω

i<iω

p∗i (Eω−1) ×
∏
∀i∈Eω

(
1 − p∗i (Eω−1)

)
. (2.18)

Therefore, the bit-flipping position ıω that maximizes the probability of û[Eω−1] being correctly
decoded is

ıω = arg max
∀iω∈I,iω−1<iω≤N−1
Eω =Eω−1∪iω

Piω . (2.19)

Note that the probability p∗i (Eω−1) cannot be obtained during the course of decoding as the values
of the elements of u are unknown to the decoder [29]. As a result, DSCF decoding uses a known
probability pi(Eω−1) to estimate p∗i (Eω−1). The known probability pi(Eω−1) is defined as

pi(Eω−1) = max
(
Pr(û[Eω−1]i = 0|y, û[Eω−1]i−1

0),

Pr(û[Eω−1]i = 1|y, û[Eω−1]i−1
0)

)
=

1
1 + exp

(
−|α[Eω−1]0,i|

) , (2.20)

where α[Eω−1]0,i is the corresponding LLR value of û[Eω−1]i. It was shown in [29] that the esti-
mation in (2.20) is not accurate. Therefore, [29] introduced a perturbation parameter λ to have a

2.3 Bit-Flipping-Based Decoding 23

better estimation of p∗i (Eω−1) as

p∗i (Eω−1) ≈
1

1 + exp
(
−λ |α[Eω−1]0,i|

) . (2.21)

It should be noted that λ ∈ R+ is a scaling factor for the magnitude of the LLR values and is de-
termined by a Monte-Carlo simulation. To enable a trade-off between decoding latency and error-
correction performance, instead of only flipping the most probable bit-flipping position, DSCF
decoding attempts to improve SC decoding with a list of most probable bit-flipping indices ıω at
each error order ω [29].

In order to have numerically stable computations in the hardware implementation of the DSCF
decoder, the bit-flipping metric in (2.18) can be written in the log-likelihood (LL) domain as [29]

Qiω = −
1
λ

ln
(
Piω

)
=

∑
∀i∈I
i≤iω

1
λ

ln
(
1 + exp

(
−λ |α[Eω−1]0,i|

))
+

∑
∀i∈Eω

|λ [Eω−1]0,i|.

(2.22)

Consequently, the most probable bit-flipping position ıω can be found in the LL domain as

ıω = arg min
∀iω∈I,iω−1<iω≤N−1
Eω =Eω−1∪iω

Qiω . (2.23)

The DSCF decoder suffers from a high decoding complexity due to the logarithmic and expo-
nential computations, which is addressed in Chapter 3 of the thesis.

2.3.2 Successive-Cancellation List Flip Decoding

Similar to DSCF, SCLF decoding also relies on a CRC verification to indicate whether the initial
SCL decoding attempt is successful or not. If the first SCL decoding attempt does not satisfy the
CRC verification, the SLCF decoding algorithm tries to identify the first information bit index ı,
at which the correct path is discarded from the list of the L most probable decoding paths [30].
Given that the ı-th bit index is correctly identified, in the next decoding attempt and after the path

24 Background

splitting occurs at the ı-th bit index, the path selection is reversed where the L decoding paths that
have the highest (worst) path metrics are selected to continue the decoding [30]. This reversed
path-selection scheme recovers the correct decoding path, which was discarded at the initial SCL
decoding at the ı-th bit index, to the list of the active decoding paths. SCLF decoding then performs
conventional SCL decoding operations for all the bit indices following ı.

As we only need to locate the error decision occurred at a path splitting of an information bit, in
this section the bit indices are referred to information bits and are indexed from 1 to K + C. Given
that at the i-th information bit under SCL decoding, there are L active decoding paths denoted as
l, l ∈ [1, 2L]. After the path splitting of the current L active paths, the path metrics of the new
2L paths are computed and sorted. Let l′ be the index of a discarded decoding path after the path
metric sorting, i.e., the path metric corresponding to l′ is among the L largest path metric values.
The probability that the path with index l′ is the correct decoding path is [29]

Pr(ûil′
1l′

= ui
1|αn) =

∏
1≤ j≤i
∀ j∈Al′

Pr(û jl′ = u j|αn, û
jl′−1
1l′

= u j−1
1)

×
∏
1≤ j≤i
∀ j∈Ac

l′

[
1 − Pr(û jl′ = u j|αn, û

jl′−1
1l′

= u j−1
1)

]
, (2.24)

where Pr(ûil′
1l′

= ui
1|αn) = Pr(û1l′ = u1, . . . , ûil′ = ui|αn). Al′ is the set of information bit indices

where their hard decisions follow the sign of the corresponding LLR values, while Ac
l′ is the set of

information bit indices whose hard decisions do not follow the sign of the LLR values [30].
Note that Pr(û jl′ = u j|αn, û

jl′−1
1l′

= u j−1
1) is not available during the course of decoding as u is

unknown, thus it is approximated as [29, 30]

Pr(û jl′ = u j|αn, û
jl′−1
1l′

= u j−1
1) ≈

1

1 + exp
(
−λ

∣∣∣α0, jl′

∣∣∣) , (2.25)

where λ ∈ R+ is a perturbation parameter that is optimized offline to improve the approximation
accuracy of (2.25).

The probability that the correct decoding path is discarded at the information bit with index i

is [30]
Pi =

∑
∀l′

Pr(ûil′
1l′

= ui
1|αn). (2.26)

2.4 Belief-Propagation-Based Decoding 25

Therefore, the bit index at which the error decision is most likely to take place is [30]

ı = arg max
log2 L<i≤K+C

Pi. (2.27)

Directly computing (2.26) is not numerically stable [29, 30]. Thus, a flipping metric based on
the max-log approximation is derived from (2.26) as [30]

Qi = −
1
λ

ln Pi ≈ −max
∀l′

[
1
λ

ln Pr
(
û

il′
1l′

= ui
1|αn

)]

≈ min
∀l′

 ∑
∀ j∈Ac

l′

∣∣∣α0, jl′

∣∣∣+∑
1≤ j≤i

1
λ

ln
[
1+exp

(
−λ

∣∣∣α0, jl′

∣∣∣)] .
(2.28)

The computation of Qi can be further simplified by using a hardware-friendly approximation in-
troduced in [32]:

fλ (x) =
1
λ

ln
[
1+exp

(
−λ |x|

)]
≈

 aλ if |x| ≤ bλ ,

0 otherwise,
(2.29)

where aλ , bλ ∈ R
+ are tunable parameters selected based on a predetermined value of λ . Con-

sequently, the most probable information bit index where the correct path is discarded can be
estimated as

ı = arg min
log2 L<i≤K+C

Qi. (2.30)

The SCLF decoder suffers from a high decoding latency due to the full binary-tree traversal
during the course of decoding. This problem is addressed in Chapter 4 of the thesis.

2.4 Belief-Propagation-Based Decoding

This section introduces preliminary knowledge and notations required by Chapter 5.

2.4.1 Scaled Belief Propagation Decoding

Fig. 2.4a illustrates BP decoding on a factor graph representation of P(8, 5). The messages are
iteratively propagated through the BP processing elements (PEs) [52] located in each stage. An
update iteration starts with a right-to-left message pass that propagates the LLR values from the

26 Background

channel (rightmost) stage, to the information bit (leftmost) stage, and ends with the left-to-right
message pass which occurs in the reverse order. Fig. 2.4b shows a BP PE with its corresponding
messages, where rt,s denotes a left-to-right message, and lt,s denotes a right-to-left message of
the t-th bit index at stage s. Equivalently, BP decoding of polar codes can be represented on
an unrolled factor graph, in which BP iterations are performed sequentially [53]. Fig. 2.4c and
Fig. 2.4d illustrate the input and output messages of a BP PE for the right-to-left and left-to-right
message updates on an unrolled factor graph, where the superscript i denotes the iteration number.
The update rule [52] for the right-to-left messages of a BP PE is li

t,s = fBP(li
t,k, ri−1

j,s + li
j,k),

li
j,s = fBP(li

t,k, ri−1
t,s) + li

j,k,
(2.31)

and for the left-to-right messages is ri
t,k = fBP(ri

t,s, li
j,k + ri

j,s),

ri
j,k = fBP(ri

t,s, li
t,k) + ri

j,s,
(2.32)

where j = t + 2s, k = s + 1, and

fBP(x, y) = 2 arctanh
(
tanh

(x
2

)
tanh

(y
2

))
, (2.33)

for any x, y ∈ R. Note that implementing (2.33) is costly in practice, instead the following approx-
imation of (2.33) is used in this thesis [36]:

fBP(x, y) ≈ f̃ (x, y) = 0.9375 sgn(x) sgn(y) min(|x|, |y|). (2.34)

BP decoding performs a predetermined Imax update iterations where the messages are prop-
agated through all BP PEs in accordance with (2.31) and (2.32). Initially, for 0 ≤ t < N and
∀i ≤ Imax, li

t,n are set to the received channel LLR values αn, ri
t,0 are set to the LLR values of the

information and frozen bits as

α0 =

 0, if t ∈ I,

+∞, if t ∈ Ic.
(2.35)

All the other left-to-right and right-to-left messages of the PEs at the first iteration are set to 0.

2.4 Belief-Propagation-Based Decoding 27

(a)

(b) (c) (d)

Figure 2.4: (a) BP decoding on the factor graph of P(8, 5) with {u0, u1, u2} ∈ I
c, (b) a BP PE, (c) a

right-to-left message update of a BP PE on an unrolled factor graph, and (d) a left-to-right message
update of a BP PE on an unrolled factor graph.

After running Imax iterations, the decoder makes a hard decision on the LLR values of the t-th bit
at the information bit stage to obtain the estimated message word as

ût =

 0, if rImax
t,0 + lImax

t,0 ≥ 0,

1, otherwise.
(2.36)

In the rest of the thesis, the vector forms of the left-to-right and right-to-left messages at the s-th
stage and the i-th iteration are denoted as lis and ri

s, respectively.
A CRC is used for BP decoding to either early terminate the BP process [36], or to help select

the correct codeword among a list of candidates as considered in [54, 55]. However, these CRC
utilizations do not take into account the factor graph realization of CRC, on which the BP decoder
can be applied.

28 Background

2.4.2 Neural Belief Propagation Decoding

Neural BP decoding was introduced in [56, 57] to improve the error-correction performance of
BP decoding on Bose-Chaudhuri-Hocquenghem (BCH) codes by assigning trainable weights to
the conventional BP decoding. Neural Normalized Min-Sum Recurrent Neural Network (NNMS-
RNN) is a powerful variant of neural BP [56] with the following weight assignment scheme for the
message update rule of a PE in (2.31) and (2.32): li

t,s = w0 f̃ (li
t,k,w1ri−1

j,s + w2li
j,k),

li
j,s = w4(w3 f̃ (li

t,k, ri−1
t,s)) + w5li

j,k,
(2.37)

 ri
t,k = w6 f̃ (ri

t,s,w7li
j,k + w8ri

j,s),

ri
j,k = w10(w9 f̃ (ri

t,s, li
t,k)) + w11ri

j,s,
(2.38)

where w’s ∈ R are the trainable weights.
The NNMS-RNN BP decoder suffers from a large number of weights which adversely affects

its implementation cost. A Neural Normalized Min-Sum (NNMS) decoder was used to decode
polar codes by only enabling the training for w0,w3,w6 and w9, while setting the other weights in
(2.37) and (2.38) to 1 [53]. However, the error-correction performance improvement of [53] with
respect to the conventional BP is not significant. Chapter 5 of the thesis introduces novel tech-
niques that utilize the CRC and factor-graph permutations to further improve the error-correction
performance of polar-CRC concatenated codes under BP and neral BP decoding.

29

Chapter 3

Machine-Learning-Aided
Successive-Cancellation Flip Decoding of
Polar Codes

In this chapter, we first provide an approximation scheme to greatly reduce the computational
complexity of the state-of-the-art DSCF decoding algorithm while maintaining its error correction
performance. In particular, the costly multiplications and transcendental computations used in the
bit-flipping model of DSCF decoding are replaced by an approximation scheme that only requires
additions. We then propose a novel bit-flipping model tailored to Fast SC (FSC) decoding to reduce
the decoding latency of the DSCF decoder. The proposed bit-flipping model is parameterized by a
correlation matrix, which is trained using an reinforcement learning optimization framework.

3.1 Neural Successive Cancellation Flip Decoding

In this section, a novel low-complexity bit-flipping metric computation scheme is presented to
allow efficient hardware implementation. Then, a machine learning framework is introduced to
optimize the parameter in the proposed bit-flipping metric computation scheme.

30 Machine-Learning-Aided Successive-Cancellation Flip Decoding of Polar Codes

Figure 3.1: Effect of the simplification in (3.2) on the FER of DSCF decoding for P(512, 256) and
P(512, 384). The polar codes are concatenated with a 24-bit CRC used in 5G standard. The ideal
DSCF decoder (I-DSCF) is also plotted as a reference.

3.1.1 Bit-flipping Metric Computation

Efficient hardware implementation of DSCF decoding is contingent on the efficient implementa-
tion of the bit-flipping metric in (2.22). However, (2.22) involves logarithmic and exponential
functions that are not hardware friendly. A common approach to approximate the logarithmic and
exponential function in (2.22) is to use the rectifier linear unit (ReLU) as [1]

ln
(
1 + exp(x)

)
≈ ReLU(x) =

 x if x > 0,

0 otherwise.
(3.1)

However, since λ > 0, −λ |α[Eω−1]0,i| < 0. Therefore, (2.22) can be simplified as

Qiω ≈
∑
∀i∈I
i≤iω

1
λ

ReLU
(
−λ |α[Eω−1]0,i|

)
+

∑
∀i∈Eω

|α[Eω−1]0,i|

3.1 Neural Successive Cancellation Flip Decoding 31

=
∑
∀i∈Eω

|α[Eω−1]0,i|, (3.2)

which is independent of the perturbation parameter λ . Fig. 3.1 shows the effect of the simplification
in (3.2) on the error-correction performance of DSCF decoding in terms of Frame Error Rate
(FER) for P(512, 256) and P(512, 384). The polar codes are concatenated with a 24-bit CRC
used in the control channel of 5G standard. In this figure, the FER curve of the DSCF decoder
at error order ω with mω decoding attempts is denoted as DSCF-(ω,mω). The value of α is set
to 0.3 as it provides a good result across a wide range of SNR values [29]1. The FER of the
ideal DSCF decoder, denoted as I-DSCF, where the erroneous bits up to the ω-th error order
are always accurately corrected, is also plotted for comparison. As seen from Fig. 3.1, the over-
simplification of the bit-flipping metric calculation in (3.2) results in 0.15, 0.3, and 0.45 dB error-
correction performance loss for P(512, 256) compared to the DSCF decoder when ω = {1, 2, 3}
and mω = {10, 100, 400}, respectively, at a target FER of 10−4. For P(512, 384), the corresponding
FER degradation caused by the over-simplification operations is 0.05, 0.16, and 0.23 dB for ω =

{1, 2, 3} and mω = {10, 100, 400} at the same target FER of 10−4, respectively.
To address this issue, we propose to use a perturbation parameter θ ∈ R+ that unlike λ , is an

additive positive parameter, and like λ , tries to improve the estimation of p∗i (Eω−1). We write the
proposed estimation of p∗i (Eω−1) as

p∗i (Eω−1) ≈
1

1 + exp
(
θ − |α[Eω−1]0,i|

) . (3.3)

In addition, we propose to use a bit-flipping metric in the LL domain, Qiω , which is tailored to the
proposed p∗i (Eω−1) in (3.3) as

Qiω = − ln
(
Piω

)
+ ωθ

=
∑
∀i∈I
i≤iω

ln
(
1 + exp

(
θ − |α[Eω−1]0,i|

))
+

∑
∀i∈Eω

|α[Eω−1]0,i|,

(3.4)

where we used the fact that ωθ is a constant and it will not affect the selection of ıω in (3.4).
1Since the channel output y is directly used in this thesis as the decoding input, we set α = 0.6

σ 2 to obtain the same
FER performance of the DSCF decoder in [29].

32 Machine-Learning-Aided Successive-Cancellation Flip Decoding of Polar Codes

Algorithm 1: NSCF Decoding Algorithm
Input : y,m = {m1,m2, . . . ,mω}, θ

Output: û

/* Perform NSCF decoding upto the ω-th error order */

1 for τ ← 0 to ω do
/* Initialize the bit-flipping data structure */

2 if τ ← 0 then
3 S0 ← [∅,E0]

4 Sτ+1 ← ∅

/* SC decoding with bit-flipping operations */

5 forall Eτ in Sτ do
6 Perform SC decoding to obtain û[Eτ]i

7 if i > arg max∀ j∈Eτ
{Eτ} and i ∈ I then

8 Form the candidate bit-flipping set Eτ+1 ← Eτ ∪ i
9 Obtain Qiτ+1 using (3.5)

10 InsertionSort
(
Sτ+1, [Qiτ+1,Eτ+1]

)
11 if û[Eτ] satisfies CRC then
12 û = û[Eτ]
13 return û

Let us now use the ReLU function in (3.1) to simplify the proposed bit-flipping metric in (3.4)
as

Qiω ≈
∑
∀i∈I
i≤iω

ReLU
(
θ − |α[Eω−1]0,i|

)
+

∑
∀i∈Eω

|α[Eω−1]0,i|,
(3.5)

where we used the fact that if θ − |α[Eω−1]0,i| > 0, then

ReLU
(
θ − |α[Eω−1]0,i|

)
= θ − |α[Eω−1]0,i|.

It can be seen that the resulting bit-flipping metric is dependent on the value of θ , and it is hardware
friendly since only additions are required for the metric computation. Note that in this thesis, a
different value of θ is used to calculate the bit-flipping metric in (3.5) at each error order.

3.1 Neural Successive Cancellation Flip Decoding 33

We summarize the proposed NSCF decoding algorithm which corrects up to the ω-th error
order under SC decoding in Algorithm 1. We denote by Sτ (0 ≤ τ ≤ ω) a data structure whose
elements contain a pair of [Qiτ ,Eτ], where Qiτ is the bit-flipping metric associated with a bit-
flipping set Eτ at the τ-th error order. Note that

|Sτ |max =

 0 if τ = 0

mτ −
∑

τ−1
k=0 mk otherwise,

thus the maximum number of all the additional decoding attempts up to the τ-th error order is mτ .
At the τ-th error order, the proposed decoder loops over all the candidate bit-flipping sets Eτ

stored in Sτ . SC decoding with bit-flipping operations is then carried out given a bit-flipping set
Eτ . At the i-th information bit and if i > arg max∀ j∈Eτ

{Eτ}, a new candidate bit-flipping set is con-
structed for the (τ + 1)-th error order by concatenating the current information bit position to the
current bit-flipping set Eτ , i.e., Eτ+1 ← Eτ ∪ i. The bit-flipping metric Qiτ+1 , which is associated
with the newly constructed bit-flipping set Eτ+1, is then calculated using the proposed bit-flipping
metric computation in (3.5). The data structure Sτ+1 is then updated with the newly constructed
element [Qiτ+1,Eτ+1] by performing an insertion sort using the new bit-flipping metric Qiτ+1 . If Qiτ+1

is among the |Sτ+1|max smallest bit-flipping metrics of Sτ+1, the new element is inserted in Sτ+1, and
the element that has the largest bit-flipping metric is discarded. Otherwise, the newly constructed
element is discarded. This process is carried out in the InsertionSort(·) function denoted in Algo-
rithm 1. Note that if the resulting estimated message word given the bit-flipping set Eτ , i.e. û[Eτ],
satisfies the CRC verification, the decoding terminates and outputs û[Eτ] as the estimated message
word. Also note that the proposed NSCF decoder reverts to the conventional DSCF decoder by
replacing (3.5) in Algorithm 1 with (2.22).

3.1.2 Parameter Optimization

In this thesis, we formalize the optimization problem of the additive parameter θ as a separate
classification problem at each error order and use ML techniques to train θ offline. As observed
from (3.5), the bit-flipping metric computation takes the absolute values of the soft messages given
by SC decoding as the input. Therefore, the bit-flipping metric computation does not depend on the
value of ui. Thus, it allows the use of the all-zero codeword for the training of θ , which simplifies
the data collection process, as also observed in [56, 58].

34 Machine-Learning-Aided Successive-Cancellation Flip Decoding of Polar Codes

In [59], the decoding process is modeled as a deep neural network that consists of ω unfolded
DSCF decoding attempts. The training data used to train the parameter at the ω-th error order
in [59] includes both the samples that cannot be correctly decoded and those that can be correctly
decoded up to the (ω − 1)-th error order. As a result, the size of the training dataset is excessively
large. For example, the framework introduced in [59] requires 2.5×105 samples for ω = 2. Unlike
[59], in this thesis we consider the parameter optimization of each error order individually. To train
the parameter at the ω-th error order, only the frames that do not satisfy the CRC verification of the
ideal DSCF decoder at the (ω − 1)-th error order are used. In fact, the frames that are not decoded
correctly contribute to the training and optimization of parameter θ .

Let Tω−1 be the set of the bit-flipping indices, and tω−1 be the (ω −1)-th bit-flipping index of the
(ω − 1)-th ideal DSCF decoder. In addition, let α[Tω−1] be the LLR values of the (w − 1)-th ideal
DSCF decoder given that the corresponding hard decisions of α[Tω−1]0 do not satisfy the CRC
verification. For the rest of this thesis, since we only consider non-frozen bits, all the bit indices
only indicate non-frozen bit positions. Thus, they are in the range of [0,K + C − 1].

The bit-flipping metric rendered for the iω-th bit index, tω−1 < iω < K + C, of the ideal DSCF
decoder is written as

Qiω ≈
∑

0≤i≤iω

ReLU
(
θ − |α[Tω−1]0,i|

)
+

∑
∀i∈{Tω−1∪iω }

|α[Tω−1]0,i|. (3.6)

The value of Qiω is normalized using the soft-min function δ (·) as

Õiω = δ (Qiω) =
exp

(
−Qiω

)∑K+C−1
j=tω−1+1 exp

(
−Q jω

) . (3.7)

It can be seen that for all values of iω , 0 < Õiω < 1, and

ıω = arg min
∀iω

tω−1<iω<K+C

Qiω = arg max
∀iω

tω−1<iω<K+C

Õiω , (3.8)

where ıω is the most probable bit-flipping position. Note that Õiω can be viewed as the predicted

3.1 Neural Successive Cancellation Flip Decoding 35

bit-flipping probability. Let us define the training label Oiω as

Oiω =

 1 if iω = tω ,

0 otherwise.
(3.9)

In this thesis, the binary cross-entropy loss function is used to quantify the differences of the
estimated value Õiω and the exact training label Oiω . This can be written as

L = −

K+C−1∑
iω =tω−1+1

[
Oiω ln Õiω + (1 − Oiω) ln

(
1 − Õiω

)]
. (3.10)

By using the stochastic gradient-descent optimization technique or its variants, the parameter θ

can be optimized to minimize the loss L. The gradient of the objective loss function with respect
to the additive parameter θ can be obtained as

∂L

∂θ
=

K+C−1∑
iω =tω−1+1

∂L

∂ Õiω

∂ Õiω

∂Qiω

∂Qiω

∂θ
(3.11)

where
∂L

∂ Õiω

=
Õiω − Oiω

Õiω (1 − Õiω)
, (3.12)

∂ Õiω

∂Qiω
= Õiω (Õiω − 1), (3.13)

∂Qiω

∂θ
=

iω∑
j=0

Iθ>|α[Tω−1]0, j |, (3.14)

and Ia>b (a, b ∈ R) is an indicator function such that

Ia>b =

 1 if a > b,

0 otherwise.
(3.15)

36 Machine-Learning-Aided Successive-Cancellation Flip Decoding of Polar Codes

Substituting (3.12)-(3.14) into (3.11) gives

∂L

∂θ
=

K+C−1∑
iω =tω−1+1

(
Oiω − Õiω

) iω∑
j=0

Iθ>|α[Tω−1]0, j |. (3.16)

In this thesis, we use Root Mean Square Propagation (RMSProp), a variant of the SGD op-
timization technique, to update the parameter θ [60]. The additive parameter θ is then updated
as [60]

θ = θ −
λ
√

µθ

∂L

∂θ
, (3.17)

where µθ is a running average of the magnitudes of recent gradients for θ that is defined as [60]

µθ = γµθ + (1 − γ)
(
∂L

∂θ

)2

, (3.18)

and λ and γ are the learning rate and the forgetting factor, respectively. The value of µθ is initial-
ized for the first update as

µθ = (1 − γ)
(
∂L

∂θ

)2

. (3.19)

It is worth mentioning that by manually deriving ∂L

∂θ
as denoted in (3.16), the additive parameter

θ can be optimized using a SGD-based optimization technique at the decoder side without the
need of a sophisticated machine learning library, which paves the way for a dedicated hardware
implementation that optimizes θ online using the all-zero codeword pilot signals.

3.1.3 Quantization Scheme

If training with quantization is considered, the additive parameter θ is optimized by taking into
account the quantization effect caused by the SC decoding operations. At a given error order ω ,
quantization operations are first applied to the ideal DSCF decoders to obtain the quantized values
of α[Tω−1]. In addition, the forward pass computations of the bit-flipping metric in (3.6) are also
quantized. On the other hand, all other computations in (3.7)-(3.19) required for the backward
pass to obtain the partial derivative of θ are carried out in the full-precision representation. After
each parameter update in (3.17), the value of θ is quantized for the next forward pass computation
carried out in (3.6). Note that this technique is widely used for the training of quantized deep neural

3.1 Neural Successive Cancellation Flip Decoding 37

2 2.5 3 3.5 4

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 [dB]

F
E
R

(a) P(512, 256)

3 3.5 4 4.5 5

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 [dB]

F
E
R

(b) P(512, 384)

I-DSCF, ω = 1, q(2, 3) I-DSCF, ω = 2, q(2, 3) I-DSCF, ω = 3, q(2, 3)

I-DSCF, ω = 1, q(3, 2) I-DSCF, ω = 2, q(3, 2) I-DSCF, ω = 3, q(3, 2)

I-DSCF, ω = 1, q(3, 3) I-DSCF, ω = 2, q(3, 3) I-DSCF, ω = 3, q(3, 3)

I-DSCF, ω = 1 I-DSCF, ω = 2 I-DSCF, ω = 3

Figure 3.2: Effect of quantization on the FER of ideal DSCF decoding for P(512, 256) and
P(512, 384). The polar codes are concatenated with a 24-bit CRC.

networks [61]. Given the quantized value of θ , in the decoding phase, NSCF decoding performs
all of the SC decoding operations as well as the bit-flipping metric computations in (3.5) using a
single quantization scheme, which is characterized by a set of quantization parameters.

To find the quantization parameters for the proposed NSCF decoder, we evaluate the quantiza-
tion parameters on the ideal DSCF decoder and use those quantization parameters in the proposed
NSCF decoder. Let q(n,m) denote a quantization configuration where n and m indicate the number
of binary bits used to represent the integral and fractional parts of a floating-point number, respec-
tively. Fig. 3.2 compares the FER of the ideal DSCF decoder when the soft messages used by SC
decoding are quantized using q(2, 3), q(3, 2), and q(3, 3) formats. As observed from Fig. 3.2, the
q(3, 3) format introduces almost no FER performance degradation compared to the full-precision
ideal DSCF decoder for both P(512, 256) and P(512, 384). Therefore, we select q(3, 3) as the
quantization scheme for the proposed NSCF decoder.

In the following sections, we first provide the training results for both full-precision and quan-
tized scenarios. We then evaluate the error-correction performance and decoding latency of the
proposed decoders.

38 Machine-Learning-Aided Successive-Cancellation Flip Decoding of Polar Codes

0 5 10 15 20 25 30 35 40

1

1.5

2

·10−2

Epochs

L
o
ss

0.5

0.6

0.7

A
c
c
u
ra

c
y

(a) Full-precision

0 5 10 15 20 25 30 35 40

1.5

2

·10−2

Epochs

L
o
ss

0.3

0.4

0.5

0.6

0.7

A
c
c
u
ra

c
y

(b) q(3, 3) quantization

Training Loss Validation Loss

Training Accuracy Validation Accuracy

Figure 3.3: Plot of training (validation) accuracy and loss of the full-precision and quantized
models when ω = 3 for P(512, 256). The value of θ is selected at the epoch that has the highest
validation accuracy.

3.1.4 Parameter Optimization Results

In this thesis, we use Pytorch [62] to implement the parameter optimization framework2. We use
5000 samples to optimize θ at each error order ω ∈ {1, 2, 3} individually, with 4000 samples used
for training and 1000 samples used for validation. In addition, the training samples are obtained
at Eb/N0 = 3.0 dB and Eb/N0 = 4.0 dB for P(512, 256) and P(512, 384), respectively. For both
full-precision and quantized scenarios, the learning rate λ and the forgetting factor γ used in (3.17)
and (3.18) are set to 5 × 10−4 and 0.9, respectively. The mini-batch size is 200 and the number of

2We manually implement the computations in (3.6)-(3.19) instead of using the built-in automatic differentiation
mechanism and SGD-based optimizers supported by Pytorch. The main purpose of using Pytorch is to make use of its
GPU support to reduce the training time.

3.1 Neural Successive Cancellation Flip Decoding 39

training epochs is 40. Initially, the value of θ at each error order is drawn from an i.i.d distribution
in the range of (0, 5). When training with quantization, θ is in q(2, 3) format and the bit-flipping
metric Qiω is in q(3, 3) format. We do not use a sign bit for the quantized values of θ and Qiω .

Fig. 3.3 illustrates the training (validation) loss in accordance with (3.10) and accuracy, i.e.,
the probability that the estimated error positions match the training labels, when the θ parameter
is optimized for ω = 3 with P(512, 256) and P(512, 384). As the optimization of θ is formalized
as a classification process, the training (validation) accuracy depicted in Fig. 3.3 indicates the
probability that the estimated error bit ıω is the correct bit-flipping index tω . In the ML literature,
the accuracy considered in Fig. 3.3 is also referred as the top-1 accuracy in a classification task.
It can be observed that for both full-precision and quantized scenarios, the training loss and the
validation loss values are almost similar, indicating that the θ parameter is generalized well for
unseen samples. The value of θ is then selected at the training epoch that has the highest validation
accuracy. It can also be observed that the full-precision model provides a smoother learning curves
compared to those of the quantized model. This is because the quantized model often requires
more training epochs than the full-precision model to update the parameter.

Table 3.1: Optimized parameter θ at each error order of the proposed NSCF decoders.

ω 1 2 3

θ

P(512, 256) Full-precision 0.9772 0.8166 0.7046
q(0, 3) 0.875 0.75 0.625

P(512, 384) Full-precision 0.7993 0.3671 0.3243
q(0, 3) 0.5 0.375 0.375

Table 3.1 provides the optimized values of θ for both full-precision and quantized formats for
P(512, 256) and P(512, 384). As the values of θ at all error orders are within the range of (0, 1),
during the decoding phase, θ is quantized using the q(0, 3) format.

3.1.5 Error-Correction Performance

The error-correction performance of the proposed decoders in terms of FER are evaluated using
the optimized values of θ . We use the same polar codes P(512, 256) and P(512, 384) as in Fig. 3.1
and Fig. 3.2 to evaluate the error-correction performance of the proposed decoders. The FERs of
the DSCF and NSCF at error order ω , with a maximum of mω attempts, are denoted as DSCF-

40 Machine-Learning-Aided Successive-Cancellation Flip Decoding of Polar Codes

2 2.5 3 3.5 4

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 [dB]

F
E
R

(a) P(512, 256)

3 3.5 4 4.5 5

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 [dB]

F
E
R

(b) P(512, 384)

NSCF-(1,10), q(3, 3) NSCF-(2,100), q(3, 3) NSCF-(3,400), q(3, 3)

NSCF-(1,10) NSCF-(2,100) NSCF-(3,400)

DSCF-(1,10) DSCF-(2,100) DSCF-(3,400)

I-DSCF, ω = 1 I-DSCF, ω = 2 I-DSCF, ω = 3

Figure 3.4: FER performance of the proposed decoders for P(512, 256) and P(512, 384). The
polar codes are concatenated with a 24-bit CRC. The FERs of the full-precision DSCF and ideal
DSCF (I-DSCF) decoders are also plotted for comparison.

(ω,mω) and NSCF-(ω,mω), respectively, and are shown in Fig. 3.4 and Fig. 3.5. In addition, the
FERs of the ideal DSCF decoder, denoted as I-DSCF, are plotted for comparison. In this thesis,
we set ω ∈ {1, 2, 3} and the number of maximum decoding attempts for all the DSCF and NSCF
decoders are mω ∈ {10, 100, 400}, respectively. The bit-flipping metric used for DSCF decoding
for all the simulations is calculated as in (2.22).

It can be seen in Fig. 3.4 that for ω = {1, 2}, the proposed decoder in full-precision and in
q(3, 3) formats experiences almost no error-correction performance degradation compared to the
ideal DSCF decoder. At ω = 3, the error-correction performance of the NSCF decoder in full-
precision and in quantized schemes only has a degradation of less than 0.1 dB at the target FER of
10−4 when compared to that of the ideal DSCF decoder for both P(512, 256) and P(512, 384). On
the other hand, when compared with that of the DSCF decoder, the FER performance loss of the
proposed decoder is negligible at all considered Eb/N0 values.

Fig. 3.5 shows the FER performances of the proposed NSCF decoders and those of the CRC-
aided SCL (CA-SCL) decoders [1] with list size mL, denoted as CA-SCLmL, where mL ∈ {2, 4, 8, 16}.

3.1 Neural Successive Cancellation Flip Decoding 41

2 2.5 3 3.5 4

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 [dB]

F
E
R

(a) P(512, 256)

3 3.5 4 4.5 5

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 [dB]

F
E
R

(b) P(512, 384)

NSCF-(1,10), q(3, 3) NSCF-(1,10)

NSCF-(2,100), q(3, 3) NSCF-(2,100)

NSCF-(3,400), q(3, 3) NSCF-(3,400)

CA-SCL2 CA-SCL4

CA-SCL8 CA-SCL16

Figure 3.5: FER comparison of the proposed NSCF decoders and CA-SCL decoders in [1].

It can be seen that for P(512, 256), at the target FER of 10−4, compared to CA-SCL with mL ∈

{2, 4, 8}, the NSCF decoders at mω ∈ {1, 2, 3} obtain the FER performance gains of up to 0.1 dB.
Moreover, for P(512, 256), the proposed NSCF decoder at mω = 3 only experiences an error-
correction performance loss of less than 0.1 dB compared to CA-SCL16, at the same target FER.
In the case of P(512, 384), at the target FER of 10−4 the NSCF decoder at mω ∈ {1, 2, 3} obtains the
FER gains of at least 0.2 dB when compared with the CA-SCL decoder with list size mL ∈ {2, 4, 8},
respectively. In addition, for P(512, 384) the NSCF decoder at ω = 3 has a slightly better error
correction performance when compared with that of CA-SCL16 at the same target FER.

3.1.6 Complexity Reduction and Decoding Latency

Since DSCF and NSCF decoding algorithms both rely on SC decoding algorithm, the only dif-
ference in terms of computational complexity comes from the bit-flipping metric computation.
Table 3.2 shows the average number of computations performed at Eb/N0 = 3 dB for P(512, 256)
and Eb/N0 = 4 dB for P(512, 384), which are required by the bit-flipping metric calculation of the
decoders in Fig. 3.4. Note that the bit-flipping metric computations of the DSCF decoder and that

42 Machine-Learning-Aided Successive-Cancellation Flip Decoding of Polar Codes

of the proposed NSCF decoder are specified in (2.22) and (3.5), respectively.

Table 3.2: Computational complexity of the bit-flipping metric in terms of the average number of
operations performed for different polar codes, which are concatenated with a 24-bit CRC used in
5G.

ω mω Decoder ln / exp × +

P(512, 256)

1 10
DSCF 560 560 840
NSCF 0 0 560

NSCF-q(3, 3) 0 0 560

2 100
DSCF 620.77 620.77 923.36
NSCF 0 0 621.55

NSCF-q(3, 3) 0 0 626.59

3 400
DSCF 663.17 663.17 981.05
NSCF 0 0 666.55

NSCF-q(3, 3) 0 0 677.68

P(512, 384)

1 10
DSCF 816 816 1224
NSCF 0 0 816

NSCF-q(3, 3) 0 0 816

2 100
DSCF 933.67 933.67 1390.8
NSCF 0 0 949.3

NSCF-q(3, 3) 0 0 956.8

3 400
DSCF 1020.32 1020.32 1512.7
NSCF 0 0 1058.8

NSCF-q(3, 3) 0 0 1059.9

It can be seen in Table 3.2 that for both full-precision and quantized schemes, the proposed
NSCF decoder requires around 31% fewer total number of additions compared to the DSCF de-
coder at all error orders. In addition, for ω = {2, 3}, the prediction of the quantized bit-flipping
model of NSCF is less accurate compared with that of the full-precision model, thus it results in
a slightly larger number of additions compared to the full-precision model. On the other hand, at
ω = 1, the average number additions required by the bit-flipping metric computation of the NSCF
decoder is the same for both quantized and full-precision schemes. It can also be observed that
the proposed bit-flipping metric computation completely removes the need to perform multiplica-
tions and costly transcendental computations, while only experiencing negligible error-correction

3.2 Reinforcement-Learning-Aided Fast-SCF Decoding 43

2 2.5 3 3.5 4

100

101

Eb/N0 [dB]

A
v
e
ra

g
e
D
e
c
o
d
in
g
A
tt
e
m
p
ts

(a) P(512, 256)

3 3.5 4 4.5 5

100

101

Eb/N0 [dB]

A
v
e
ra

g
e
D
e
c
o
d
in
g
A
tt
e
m
p
ts

(b) P(512, 384)

NSCF-(1,10), q(3, 3) NSCF-(2,100), q(3, 3) NSCF-(3,400), q(3, 3)

NSCF-(1,10) NSCF-(2,100) NSCF-(3,400)

DSCF-(1,10) DSCF-(2,100) DSCF-(3,400)

Figure 3.6: Average number of decoding attempts.

performance loss when compared to DSCF as observed in Fig. 3.4.
Fig. 3.6 depicts the average number of decoding attempts for the DSCF decoder and the pro-

posed NSCF decoder. It can be seen that when Eb/N0 > 2.5 dB for P(512, 256) and Eb/N0 >

3.5 dB for P(512, 384), the average number of decoding attempts of the proposed NSCF decoder
is similar to that of the DSCF decoder, under the same decoding configurations. Note that the
average number of decoding attempts of all the decoders depicted in Fig. 3.6 approaches 1 at
high Eb/N0 values. This also indicates that at high SNR regime, the average complexity of all
the DSCF-based decoders approaches the complexity of a single SC decoder, while their error-
correction performance is comparable to that of CA-SCL decoder as observed from Fig. 3.4 and
Fig. 3.5.

3.2 Reinforcement-Learning-Aided Fast-SCF Decoding

Several attempts have integrated fast decoding operations to SCF decoding to improve its decoding
latency [26,32,63,64]. It was shown in [32] that using the DSCF-based bit flipping model for FSC
decoding results in a better error-correction performance than the decoders in [26, 63, 64]. In this
chapter, we propose a novel bit-flipping algorithm for FSC decoding that significantly improves

44 Machine-Learning-Aided Successive-Cancellation Flip Decoding of Polar Codes

the error-correction performance of the decoder in [32]. In particular, a new bit-flipping strategy
tailored to single parity-check (SPC) constituent codes is proposed. Furthermore, a new param-
eterized bit-flipping model based on [65] is developed to exploit the inherent correlations of the
decoded bits under FSC decoding. We formalize the parameter optimization of the proposed bit-
flipping model as an on-policy reinforcement learning (RL) problem and use RL techniques [66]
to optimize the parameters during the course of decoding. Simulation results show that for a 5G
polar code of length 512 with 256 information bits and concatenated with a 24-bit CRC, the pro-
posed decoder has a better or similar error-correction performance compared to the state-of-the-art
fast DSCF (FDSCF) decoding algorithm in [32], when the same number of maximum decoding
attempts is considered.

3.2.1 Bit-Flipping Scheme for FSC Decoding

The proposed decoding algorithm is based on the generation of a specific vector of LLR values.
Consider the first FSC decoding attempt does not satisfy the CRC verification and let ν be a node
located at the s-th stage (s ≥ 0) of the polar decoding tree that is visited by FSC decoding. We
construct a vector γ = {γ0, γ1, . . .} by the following procedure:

• If ν is a leaf node that contains an information bit:

γ = concat(γ,α0,iminν
). (3.20)

• If ν is a REP node:

γ = concat(γ,
imaxν∑

i=iminν

αs,i). (3.21)

• If ν is a Rate-1 node:
γ = concat(γ,αs,i), (3.22)

for all iminν
≤ i ≤ imaxν

.

• If ν is an SPC node:
γ = concat(γ,αs,i), (3.23)

for all iminν
≤ i ≤ imaxν

and i , iν , where iν = arg miniminν≤i≤imaxν
|αs,i|.

3.2 Reinforcement-Learning-Aided Fast-SCF Decoding 45

Note that concat(γ, a) indicates a concatenation of a ∈ R to the end of γ and γ = ∅ initially. Also
note that the size of γ at the end of the first FSC decoding attempt is K +C. In addition, γ remains
unchanged if ν does not satisfy any of the above conditions.

The generation of γ allows us to directly predict the index of the first erroneous bit in γ,
denoted as ıe. In the next FSC decoding attempt, the proposed decoder flips the hard decision as-
sociated with the ıe-th LLR value in γ and continues the FSC decoding operations. One important
consequence of using γ to predict the bit-flipping positions is for SPC nodes. In fact, there is no
need to perform a bit-flipping for the least reliable bit of an SPC node. The value of this bit is
calculated from all the other bits in the SPC node to satisfy the parity-check constraint (see (2.11)).
Therefore, the hard decision value of the least reliable bit is automatically adjusted when another
bit in an SPC node is flipped. As a result, the proposed algorithm only considers Nν−1 possibilities
to identify a bit flip that occurs in an SPC node. This is significantly smaller than the maximum
search space of size

(
Nν

2

)
required to flip a pair of indices, especially as Nν increases.

To estimate ıe, we propose a method that learns the correlations of the LLR values in γ. Let ηi

be the hard decision value of γi and let l∗i be the likelihood ratio that ηi is correctly decoded given
y and u. l∗i is calculated as

l∗i = max
{

Pr(ηi = 0|y,u)
Pr(ηi = 1|y,u)

,
Pr(ηi = 1|y,u)
Pr(ηi = 0|y,u)

}
. (3.24)

ıe is then obtained as
ıe = arg min

∀i, 0≤i<K+C
l∗i . (3.25)

Since u is unknown, it is practically impossible to calculate l∗i during the course of decoding. Thus,
we estimate l∗i as [65]

l∗i ≈
∏

∀ j, 0≤ j<K

lΘi, j

j , (3.26)

where
l j = max

{
Pr(η j = 0|y)
Pr(η j = 1|y)

,
Pr(η j = 1|y)
Pr(η j = 0|y)

}
= exp

(
|γ j|

)
(3.27)

and Θi, j ∈ R are perturbation parameters such that Θi, j = Θ j,i and Θi,i = 1, for 0 ≤ i, j < K + C.
The perturbation parameters are such that if there is a correlation between the i-th and j-th decoded
bits, Θi, j and Θ j,i are nonzero values, otherwise Θi, j = Θ j,i = 0.

To enable numerically stable computations, the likelihood ratio l∗i can be transformed to the

46 Machine-Learning-Aided Successive-Cancellation Flip Decoding of Polar Codes

FSC decoding with
bit-flipping operations

Bit-flipping policy
πΘ

y r∗

a∗
γ

Environment Agent

Figure 3.7: The training setup of the proposed bit-flipping policy when formalized as a RL prob-
lem.

LLR domain as

Mi = ln
(
l∗i
)
≈ ln

 ∏
∀ j,0≤ j<K

exp
(
Θi, j|γ j|

)
=

∑
∀ j,0≤ j<K+C

Θi, j|γ j|.

(3.28)

The most probable bit-flipping index ıe is then selected as

ıe = arg min
∀i,0≤i<K+C

Mi. (3.29)

3.2.2 Parameter Optimization

In this section, we formalize the optimization of the matrix of parameters Θ, with Θi, j as the
element in its i-th row and j-th column, as an on-policy RL problem. We use policy gradient
techniques to train Θ [67, Chapter 13]. Let πΘ be a bit-flipping policy characterized by Θ. The
input of πΘ is γ and the output of πΘ is a probability vector p = {p0, p1, . . . , pK+C−1}, where
p = πΘ(γ) and pi indicates the probability that ıe = i. The value of pi can be obtained from the
bit-flipping metric in (3.28) as

pi =
exp(−Mi)∑K+C−1

j=0 exp
(
−M j

) . (3.30)

It can be seen from (3.28) and (3.30) that the bit index that has the smallest bit-flipping metric is
also the bit index that has the highest probability to be flipped.

Fig. 3.7 illustrates the parameter optimization framework used in this chapter in an RL setup,
in which the bit-flipping policy πΘ acts as an online learning agent and the FSC decoder with the
proposed bit-flipping operations is categorized as part of the environment. Given that the first FSC

3.2 Reinforcement-Learning-Aided Fast-SCF Decoding 47

decoding attempt is not successful, a bit index a∗ (0 ≤ a∗ < K + C) is first sampled from the
categorical distribution of the bit-flipping policy πΘ, where the selection probability of the i-th bit
is pi. In the RL terminology, a∗ is referred to as the action selected by the agent (with the bit-
flipping policy πΘ). We denote by r∗ ∈ {0, 1} a reward value associated with the bit-flipping index
a∗. If the resulting message word satisfies the CRC verification after the a∗-th bit of γ is flipped
in the secondary FSC decoding attempt, a reward of 1 (r∗ = 1) is given to the a∗-th output of πΘ,
otherwise the reward is set to 0 (r∗ = 0).

In practice, a bit-flipping set A that contains Tmax (1 ≤ Tmax ≤ K + C) different bit-flipping
indices is considered at the secondary decoding attempts. The bit-flipping set A is first constructed
to contain the most probable erroneous indices as

A = {a0, a1, . . . , aTmax−1}, (3.31)

where pa0 ≥ pa1 ≥ . . . ≥ paTmax−1 and a0 = arg max∀i,0≤i<K+C pi. If the sampled bit index a∗ is not
in A, the bit index aTmax−1 is replaced by a∗. The proposed decoder then performs consecutive FSC
decoding attempts, each time flipping a different bit index given in A.

Given a sample of the LLR vector γ, the objective of the bit-flipping policy πΘ is to derive an
action a∗ that maximizes the expected reward value of r∗, which is given as [66]

J(Θ) = Ea∗∼πΘ
[r∗] ≈

1
|D|

∑
∀γ∈D

r∗, (3.32)

where D is a mini-batch of the dataset that contains B different instances of γ, and B = |D|. The
derivative of the objective function J(Θ) with respect to the parameter set Θ can be derived as [66]

∇Θ =
∂J(Θ)

∂Θ
=

1
|D|

∑
∀γ∈D

∂ ln pa∗

∂Θ
(r∗ − r̄), (3.33)

where r̄ ∈ R is a baseline reward [67, Section 13.4]. The parameters in Θ are then updated using a
variant of the stochastic-gradient ascent technique, where the parameters are updated as

Θ = Θ + λ∇Θ (3.34)

and λ > 0 is the learning rate.

48 Machine-Learning-Aided Successive-Cancellation Flip Decoding of Polar Codes

Algorithm 2: RL-Aided FSCF Decoding
Input : Tmax, B, λ

Output: û
1 t ← 1, r̄ ← 0, ∇tmp ← 0 /* Initialization */

2 while True do
3 Obtain αn from the channel output y
4 û,γ ← FSC(αn) /* Initial FSC Decoding */

5 if û fails the CRC test then
/* Action Selection */

6 ObtainM , p, A using (3.28), (3.30), and (3.31)
7 a∗ ∼ πΘ, r∗ ← 0
8 if a∗ < A then
9 aTmax−1 ← a∗

/* Proposed FSCF with Bit Flipping */

10 for j ← 0 to Tmax − 1 do
11 ûtmp ← FSCF(αn, a j) /* FSCF Decoding */

12 if ûtmp passes the CRC test then
13 a∗ ← a j, r∗ ← 1, û← ûtmp

14 break

/* Parameter Optimization */

15 ∇tmp ←∇tmp +
∂ ln pa∗

∂Θ
(r∗ − r̄)

16 r̄ ← r̄ + r∗−r̄
t /* Update baseline reward */

17 if (t mod B) == 0 then
18 ∇Θ ←∇tmp/B
19 Θ← Θ + λ∇Θ

20 ∇tmp ← 0

21 t ← t + 1 /* Increase the time step */

22 Output û

We provide the details of the proposed decoder with the optimization of Θ in Algorithm 2. In
Algorithm 2, t is the time step, ∇tmp is the matrix of size (K +C)× (K +C) that stores the gradients
of Θ, and 0 is an all-zero matrix of size (K + C) × (K + C). In addition, the cumulative average
reward is used as the reward baseline [67, Section 13.4], which is periodically updated at each time
step.

3.2 Reinforcement-Learning-Aided Fast-SCF Decoding 49

3.2.3 Simulation Results

In this section, we first provide the training results of the proposed bit-flipping model in Algo-
rithm 2. Throughout this section, we use P(512, 256) concatenated to a 24-bit CRC as stated in
the 5G standard. We use the bit-flipping models in [40] and [29] as a benchmark of estimating the
first error bit in γ. Based on [29, 40] the first error bit of γ can be obtained as follows.

• SCF-based model [40]: ıe = arg min∀i, 0≤i<K+C |γi|.

• DSCF-based model [29]: ıe = arg min∀i, 0≤i<K+C Qi, where

Qi = |γi| +
∑
∀ j≤i

1
0.3

ln
[
1 + exp

(
−0.3|γ j|

)]
.

In addition, we also consider an ideal bit-flipping model which can identify ıe correctly given γ
and u.

Fig. 3.8 compares the performance of different bit-flipping models (policies) in terms of the
cumulative average reward, denoted as r̄, when applied to the proposed bit-flipping algorithm. We
also consider the conventional supervised learning (SL) technique as an optimization scheme for
the parameter set Θ and compare it with the proposed RL-based optimization scheme. 105 training
samples are obtained with all-zero codewords to train the parameter set Θ when the SL techniques
are used. In fact, increasing the training samples of the SL approach does not improve r̄ in our
problem setting. For both the RL-based and SL-based approaches, we set B = 100, λ = 2 × 10−5

and use PyTorch with Adam optimizer [68] as the training framework.
It can be observed from Fig. 3.8 that the cumulative average reward of the proposed bit-flipping

model when trained with RL or SL techniques outperforms that of the DSCF-based [29] and SCF-
based [40] models. This is because the proposed algorithm utilizes a more powerful predictive
model characterized by Θ, where |Θ| = (K +C)2, while the models used in [29,40] only contain up
to a single trainable parameter. Moreover, the RL-based optimization approach provides a slight
improvement in the cumulative average reward when compared with the SL-based approach, as
the objective functions of the RL-based and SL-based approaches are different. The SL-based
approach trains the model to make an ML decision given the training dataset. On the other hand, the
RL-based approach trains the model to directly maximize the numerical reward r̄. Fig. 3.9 shows
the FER of the proposed bit-flipping algorithm with the bit-flipping models shown in Fig. 3.8 for

50 Machine-Learning-Aided Successive-Cancellation Flip Decoding of Polar Codes

0 200 400 600 800 1,000

0.4

0.5

0.6

0.7

0.8

Time step (×10000)

r̄

Proposed model with RL Proposed model with SL

SCF-based model [40] DSCF-based model [29]

Figure 3.8: The cumulative average rewards of various bit-flipping models when applied to the
proposed bit-flipping algorithm. The simulation is carried out at Eb/N0 = 3 dB for P(512, 256)
with a 24-bit CRC, and Tmax = 1.

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

10−5

10−4

10−3

10−2

Eb/N0 [dB]

FE
R

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

10−5

10−4

10−3

10−2

Eb/N0 [dB]

FE
R

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

10−5

10−4

10−3

10−2

Eb/N0 [dB]

FE
R

Proposed model with RL Proposed model with SL

SCF-based model [40] DSCF-based model [29]

Figure 3.9: The error-correction performance of the proposed bit-flipping algorithm with various
bit-flipping models in Fig. 3.8.

Tmax = 1. The experimental results in Fig. 3.9 show that a direct optimization of Θ to maximize r̄

also results in the best error-correction performance of the proposed decoder, when compared with
other approaches in Fig. 3.8. Note that the parameter set Θ is optimized at each SNR value for the
SL-based approach and the FERs are simulated using 107 frames at each SNR value.

It is worth mentioning that by formalizing the optimization of Θ as an RL problem, the training
can be carried out at the decoder side without the need of pilot signals, which is suitable for a
pilot-less communication system. Furthermore, unlike the SL approach, the training of Θ does not
require a large memory to store the training dataset as observed from Algorithm 2.

3.2 Reinforcement-Learning-Aided Fast-SCF Decoding 51

0 1 2 3 4 5 6 7 8

10−2

Eb/N0 = 3 dB

Tmax

FE
R

0 1 2 3 4 5 6 7 8

10−5

10−4

10−3 Eb/N0 = 4 dB

Tmax

FE
R

Proposed (ideal) Proposed FSCF [63] FDSCF [32]

Figure 3.10: The FER of various fast SCF decoding algorithms as a function of Tmax at Eb/N0 =

{3, 4} dB.

Fig. 3.10 illustrates the FER curves of various fast SCF decoders with different values of Tmax

at Eb/N0 = {3, 4} dB. With Tmax = 0, all the decoders in Fig. 3.10 revert to the FSC decoder [24].
It can be seen from Fig. 3.10 that at the same value of Tmax when 1 ≤ Tmax ≤ 8, the proposed
decoder has the best error-correction performance when compared to the decoders in [32, 63].
At Tmax = 8, the proposed decoder only experiences a negligible error-correction performance
degradation compared to the ideal bit-flipping algorithm.

Fig. 3.11 shows the error probabilities of various bit-flipping algorithms of polar codes when
Tmax = 8. The FERs of the state-of-the-art SCL-L decoding algorithm [1] are also plotted for
comparison, where L ∈ {2, 4} is the list size. It can be observed that the proposed decoder has a
similar error-correction performance when compared with that of the DSCF [29] and FDSCF [32]
decoders, respectively. At the target FER of 10−4, the error probability of the proposed decoder
is 0.25 dB and 0.2 dB better than that of the FSCF [63] and SCL-2 [1] decoders. At the same
target FER, when compared with SCL-4, the proposed algorithm experiences an error-correction
performance loss of 0.3 dB. In Fig. 3.12, the decoding latency, in terms of the average number
of decoding attempts (Tavg) of various fast SCF decoders, is plotted for comparison. For all the

52 Machine-Learning-Aided Successive-Cancellation Flip Decoding of Polar Codes

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

10−6

10−5

10−4

10−3

10−2

Eb/N0 [dB]

FE
R

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

10−6

10−5

10−4

10−3

10−2

Eb/N0 [dB]

FE
R

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

10−6

10−5

10−4

10−3

10−2

Eb/N0 [dB]

FE
R

Proposed FSCF [63] DSCF [29]

FDSCF [32] SCL-2 [1] SCL-4 [1]

Figure 3.11: The error-correction performance of various decoding algorithms. Tmax is set to 8 for
all the bit-flipping algorithms.

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

1

1.05

1.1

1.15

Eb/N0 [dB]

T a
vg

Proposed FSCF [63] F-DSCF [32]

Figure 3.12: Average number of decoding iterations of various fast SCF algorithms with Tmax = 8.

decoders in Fig. 3.12, Tmax = 8. Note that the average number of decoding attempts of all the
decoders depicted in Fig. 3.12 approaches 1 at high Eb/N0 values. This indicates that at high
Eb/N0 values, the complexity of the decoders approaches the complexity of a single FSC decoder.
In addition, the decoding latency of the proposed decoder in terms of Tavg is similar to that of the
FDSCF decoder [32] at all the SNR values.

3.3 Chapter Conclusion 53

3.3 Chapter Conclusion

This chapter aims to reduce the computational complexity and latency of the dynamic SC-Flip
(DSCF) decoding algorithm by replacing the costly multiplications and transcendental computa-
tions used in its bit-flipping model by an approximation that requires only additions. The proposed
bit-flipping model is parameterized by a correlation matrix, which can provide an accurate esti-
mation of the error indices and can be trained by a supervised learning approach. Furthermore,
a novel reinforcement-learning-aided fast SC-Flip (FSCF) decoder is then proposed which pro-
vides a superior error-bit estimation accuracy when compared to the state-of-the-art FSCF decoder
while relatively preserve the decoding latency of the FSCF decoder. In the next chapter, the worst-
case latency of the decoders proposed in this chapter is further improved by extending the fast
bit-flipping strategies to the state-of-the-art FSCL decoding algorithm of polar codes.

55

Chapter 4

Fast Successive-Cancellation List Flip
Decoding of Polar Codes

In this chapter, the Fast-SCLF decoding algorithm is proposed to tackle the underlying high-
decoding latency of the SCLF decoder introduced in [30]. In particular, a bit-flipping strategy
tailored to FSCL decoding of polar codes is first introduced. Then, a path-selection error metric
is derived for the proposed bit-flipping strategy. The proposed path-selection error metric utilizes
a trainable parameter to improve the estimation accuracy of the error position, which is optimized
online using an efficient supervised learning framework. By utilizing online training, the proposed
path-selection error-model does not require the parameter to be optimized offline at various SNRs.
Instead, the parameter is automatically optimized at the operating SNR of the decoder, which ob-
viates the need for pilot signals.

4.1 Bit-flipping Scheme for FSCL Decoding

We first introduce the bit-flipping scheme tailored to FSCL decoding by illustrating the proposed
scheme under various examples. We consider the case where an all-zero codeword of P(16, 8) is
transmitted through the channel. Similar to SCL-based decoding, under FSCL-based decoding, we
denote by l the path index corresponding to the current L active decoding paths, while l̃ is used to
indicate the indices of the paths that are forked from l. Finally, l′ indicates the path indices of the
decoding paths that are discarded due to their high path metric values. Note that l, l̃, l′ ∈ [1, 2L].

56 Fast Successive-Cancellation List Flip Decoding of Polar Codes

Bit-Flipping Scheme for SPC Nodes

Table 4.1 shows an example of FSCL decoding when applied to the SPC node of P(16, 8) with
L = 4. The decoding order is first determined by sorting the magnitude of the LLR values asso-
ciated with the SPC node in the increasing order. In this example, the following decoding order
is considered: {β2,8l , β2,5l , β2,7l , β2,6l }. Thus, β2,8l is selected as the parity bit of the SPC node for
all the active decoding paths. The path splittings at β2,6l are considered in this example, and the
paths with indices l̃ ∈ {5, 6, 7, 8} are forked from the paths with indices l ∈ {1, 2, 3, 4} at β2,6l ,
respectively, followed by the path metric sorting operations. The most likely decoding paths with
indices l = {1, 2, 3, 4} are then selected to continue the decoding, while the paths with indices
l′ ∈ {5, 6, 7, 8} are discarded as shown in Table 4.1.

At this stage, the parity bit β2,8l of the SPC node is not yet decoded. As an all-zero codeword
is considered, the correct decoding path is l′ = 5, which is discarded after β2,6l is decoded, i.e.,
after the third path-splitting index. Given that this erroneous decision in the initial FSCL decoding
is detected by a CRC verification, this erroneous path selection is reversed in the next decoding
attempt by swapping the path indices of l′ and l after the path splittings at β2,6l for all the decoding
paths. The decoding continues by setting the values of the parity bit β2,8l to maintain the parity
constraint for all the corrected paths. Similar to the bit-flipping schemes introduced in [69, 70], in
the proposed scheme, the bit-flipping operation is not applicable to the parity bits of the SPC nodes.
This is due to the fact that the parity bits are determined after the all the other bits are calculated
to ensure the parity check is satisfied. Therefore, if all the other bits of the SPC node are correctly
decoded, the parity bit of this decoding path is also correctly decoded. As a result, the proposed
algorithm only considers a maximum of Nν − 1 possibilities to identify a bit flip that occurs in an
SPC node. This is significantly smaller than the maximum search space of size

(
Nν

2

)
required to flip

Table 4.1: An example of FSCL decoding applied to an SPC node of size 4 with L = 4, where the
decoding is at the third path splitting. l′ ∈ {5, 6, 7, 8} are the indices of the discarded paths.

Node
type

Path
splitting

index
l′ = 5 l′ = 6 l′ = 7 l′ = 8

SPC

- β2,85 = n/a β2,86 = n/a β2,87 = n/a β2,88 = n/a
1 β2,55 = 0 β2,56 = 0 β2,57 = 1 β2,58 = 1
2 β2,75 = 0 β2,76 = 1 β2,57 = 0 β2,58 = 1
3 β2,65 = 0 β2,66 = 1 β2,67 = 0 β2,68 = 1

4.1 Bit-flipping Scheme for FSCL Decoding 57

a pair of bits to maintain the parity check constraint, especially as Nν increases [32].
Note that in this example, the minimum number of path splittings required by the SPC node

to preserve the SCL decoding performance is τ = min{L − 1,Nν − 1} = min{3, 3} = 3, where
ν indicates the SPC node of size 4. Under the proposed bit-flipping scheme for SPC nodes, if a
decision error occurs at the path-splitting index after the minimum number of τ path splittings are
obtained, in the next decoding attempt, the hard values at the estimated error index are flipped for
all the active paths. The path metrics PMl of the surviving paths are then updated by using the
LLR value corresponding to the flipped position and the current parity checksum pl .

Bit-Flipping Scheme for REP Nodes

Since the soft and hard estimate of the information bit associated with a REP node can be directly
obtained at the parent node level under FSCL decoding, the path splitting operation under FSCL
decoding applied to the information bit of a REP node is similar to that of SCL decoding when
applied to an information bit at the leaf node level. Therefore, in this chapter, the reversed path
selection scheme used in SCLF decoding is directly applied to the information bit associated with
a REP node or to an information bit at the leaf-node level under FSCL decoding [69, 70].

Bit-Flipping Scheme for Rate-1 Nodes

Table 4.2 shows an example of FSCL decoding on the Rate-1 node of P(16, 8) at the fifth path-
splitting index with L = 2. In Table 4.2, the hard estimates of the discarded paths with indices
l′ ∈ {2, 4} are indicated, while the hard estimates of the surviving paths with indices l′ ∈ {1, 3} are
omitted. It can be observed that the decoding path with index l′ = 2 is the correct path as all the
estimated bits are 0, which is discarded after bit β2,132 is decoded. Therefore, in the next decoding
attempt, the decoding paths with indices l′ ∈ {2, 4}will be selected to continue the decoding instead
of the paths with indices l′ ∈ {1, 3} [69,70]. Similar to the case of SPC nodes, after τ path splittings,
if the hard decision of a bit of the Rate-1 node results in the elimination of the correct path, this
erroneous decision is reversed in the next FSCL decoding attempt by flipping the hard estimates
of all the active paths at that erroneous index. The path metrics of the active paths are then added
with the corresponding absolute LLR values of the flipping indices. In this example, the minimum
number of path splittings is τ = min{L − 1,Nν} = min{1, 4} = 1, which is obtained at the fifth
path-splitting index. Therefore, under FSCL decoding, the hard values of all the active decoding

58 Fast Successive-Cancellation List Flip Decoding of Polar Codes

Table 4.2: An example of FSCL decoding applied to a Rate-1 node of size 4 with L = 2, where
the decoding is at the 6-th path splitting. l′ ∈ {2, 4} are the indices of the discarded paths.

Node
type

Path
splitting

index
l′ = 2 l′ = 4

SPC

- β2,82 = 0 β2,84 = 0
1 β2,52 = 0 β2,54 = 0
2 β2,72 = 0 β2,74 = 0
3 β2,62 = 0 β2,64 = 0

REP 4 β0,122 = 0 β0,124 = 0

Rate-1

5 β2,132 = 0 β2,154 = 1
6 β2,152 = n/a β2,164 = n/a
7 β2,162 = n/a β2,144 = n/a
8 β2,142 = n/a β2,134 = n/a

paths following the fifth path-splitting index are set to follow the signs of their LLR values.
Similar to SCLF decoding, the proposed scheme only aims at correcting the first erroneous

decision in the initial FSCL decoding attempt. Fig 4.1 shows the ideal FER of the proposed bit-
flipping scheme where the first erroneous path selection is always accurately corrected. In Fig 4.1,
we use the 5G polar codesP(512, 256) andP(512, 384) concatenated with a 24-bit CRC1. Note that
the positions of the first erroneous decoding decision can be obtained by comparing the discarded
paths with the correct path after each path splitting. The FER performance of the ideal SCLF
[30] and SSCLF [69] decoders and the FSCL decoder with list size 32 [3] are also plotted for
comparison. In Fig 4.1, the ideal SCLF, SSCLF, and Fast-SCLF decoders with list size L are
denoted as I-SCLF-L, I-SSCLF-L and I-Fast-SCLF-L, respectively, with L ∈ {2, 4, 8, 16, 32}.

As seen from Fig 4.1, I-Fast-SCLF-L obtains a slight FER performance gain over I-SCLF-L.
In addition, as the reversed path-selection scheme of [69] is not applied to the decoding steps that
occur after the minimum number of τ path-splittings is obtained for the Rate-1 and SPC nodes, this
simplified bit-flipping scheme of [69] introduces FER performance degradation when compared
with the ideal SCLF and Fast-SCLF decoders, especially when the list size is small, (L ∈ {2, 4}).
For L = 4 and at the target FER of 10−4, the error-correction performance degradations of 0.2
dB and 0.3 dB are recorded for the ideal SSCLF decoder when compared to the ideal Fast-SCLF
decoder for P(512, 256) and P(512, 384), respectively. Also note that the FER performance of the

1We use the 24-bit CRC specified as 24C in the 5G standard.

4.1 Bit-flipping Scheme for FSCL Decoding 59

2 2.25 2.5 2.75 3 3.25 3.5

10−5

10−4

10−3

10−2

10−1 P(512, 256) −C24

Eb/N0 [dB]

FE
R

3 3.25 3.5 3.75 4 4.25 4.5

10−5

10−4

10−3

10−2

10−1

P(512, 384) −C24

Eb/N0 [dB]

FE
R

I-SSCLF-2 [69] I-SSCLF-4 [69] I-SSCLF-8 [69] I-SSCLF-16 [69] I-SSCLF-32 [69]

I-SCLF-2 [30] I-SCLF-4 [30] I-SCLF-8 [30] I-SCLF-16 [30] I-SCLF-32 [30]

I-Fast-SCLF-2 I-Fast-SCLF-4 I-Fast-SCLF-8 I-Fast-SCLF-16 I-Fast-SCLF-32

FSCL-32 [3]

Figure 4.1: Ideal error-correction performance in terms of FER of various SCLF-based decoders.
The FER values of the FSCL decoder with list size 32 are also plotted for comparison.

ideal SSCLF decoder with L ∈ {2, 4} degrades quickly as the SNR increases.
We now explain the slight improvement in the error-correction performance of I-Fast-SCLF-L

over that of I-SCLF-L as observed in Fig. 4.1. The error-correction performance of I-Fast-SCLF-L
and I-SCLF-L are identical for REP nodes. Therefore, we empirically show that I-Fast-SCLF-L
outperforms I-SCLF-L when applied to the same channel LLR vectors for Rate-1 and SPC nodes,
where the LLR vectors contain an exact number of ce (ce > 0) channel errors. A similar study was
conducted in [71] for the case of fast SCF decoding.

We first consider the error event where only a single error is present in the LLR vector of the
Rate-1 and SPC nodes (ce = 1), which causes an unsuccessful CRC verification in the first FSCL
and SCL decoding attempt. After the correct decoding path is recovered in the second FSCL
decoding attempt of I-Fast-SCLF-L, FSCL decoding operations, e.g., path forking and path metric
sorting, are applied to the L recovered paths. Then, all the hard decisions of the correct path are
set to follow the signs of the corresponding LLR values to maintain its path metric. Therefore, the
path metric is equal to the absolute LLR value of the flipped bit. Recall that the LLR values of
the Rate-1 and SPC nodes are sorted in accordance with (2.3). Thus, at the subsequent decoding
steps after the flipped position, any new candidate path with at least a hard decision not following
its corresponding LLR value will contain a higher path metric compared to that of the correct

60 Fast Successive-Cancellation List Flip Decoding of Polar Codes

0 10 20 30 40 50 60

0
10
20
30
40
50
60
70

Error index at the parent node

N
um

be
ro

fe
rr

or
s

at
th

e
le

af
no

de
le

ve
l

(a)

1 2 3 4 5 6

10−4

10−3

10−2

10−1

100

P(64, 48) −C16

ce

FE
R

1 2 3 4 5 6

10−4

10−3

10−2

10−1

100

P(64, 47) −C16

ce

FE
R

1 2 3 4 5 6

10−4

10−3

10−2

10−1

100

P(128, 112) −C16

ce

FE
R

1 2 3 4 5 6
10−4

10−3

10−2

10−1

100

P(128, 111) −C16

ce

FE
R

I-Fast-SCLF-32 I-SCLF-32

I-Fast-SCLF-32 (genie selection) I-SCLF-32 (genie selection)

(b)

Figure 4.2: (a) The number of translated errors at the leaf node level given a single error at a
specific bit index at the parent node level for a sized-64 polar code and (b) the error-correction
performance of I-Fast-SCLF-32 and I-SCLF-32 for the Rate-1 and SPC codes of lengths N ∈
{64, 128} with various values of ce.

4.1 Bit-flipping Scheme for FSCL Decoding 61

decoding path. Therefore, with ce = 1, the correct decoding path is always found in the list of the
best paths after the second FSCL decoding attempt of I-Fast-SCLF-L.

Note that a single error at the parent node level can translate into multiple errors at the leaf
node level. This phenomenon is illustrated in Fig. 4.2a for an all-zero polar code of length N = 64,
where the number of error bits at the leaf node level is provided with respect to the position of
the single error bit at the parent node level. Consequently, there are cases that I-SCLF-L has to
perform the reserved path selection schemes multiple times to maintain the correct codeword in
the list of the best paths, while I-Fast-SCLF-L only requires a single reserved path selection. Thus
with ce = 1, the error correction performance of I-Fast-SCLF-L is improved when compared to
I-SCLF-L. As ce increases (ce ≥ 2), due to the complicated error patterns caused by multiple error
bits, we expect that both I-Fast-SCLF-L and I-SCLF-L almost equally likely discard the correct
path in the second decoding attempt, causing a wrong estimation of the transmitted codeword.
Also note that when the channel reliability is improved at the high SNR regimes and given that
ce > 0, the performance gain of I-Fast-SCLF-L over I-SCLF-L is mainly obtained from the case of
ce = 1, as the LLR vectors are more likely to contain a single error than multiple ones (ce > 1). On
the other hand, at the low SNR regimes, it is more likely to have multiple errors at the parent node
level, thus the error-correction performance gain of I-Fast-SCLF-L is incremental when compared
to that of I-SCLF-L. This phenomenon can also be observed from Fig. 4.1.

In Fig. 4.2b, we plot the FER curves of I-Fast-SCLF-32 and I-SCLF-32 for the polar codes
of lengths 64 and 128 concatenated with a 16-bit CRC used in the 5G standard, the values of K

are selected to form the Rate-1 and SPC nodes, respectively. The simulations are carried out at
Eb/N0 = 3 dB and the FER values of the decoders in Fig. 4.2b are only obtained for the channel
LLR vectors that contain exactly ce ∈ {1, 2, 3, 4, 5, 6} errors. It can be confirmed from Fig. 4.2b that
with ce = 1, I-Fast-SCLF-32 has a significant FER performance improvement when compared to
I-SCLF-32. In addition, the error-correction performance gains of I-Fast-SCLF-32 with respect to
I-SCLF-32 quickly reduce as ce increases, with the error probabilities of both decoders approaching
1 when ce ≥ 4.

Note that the error-correction performance degradation of I-Fast-SCLF-32 is also caused by
the imperfect error detection of the CRC, where a wrong estimate of the correct codeword that
satisfies the CRC is selected as the decoding output. As shown in Fig. 4.2b, if the CRC verification
is replaced by a genie selection scheme, the FER values of I-SCLF-32 and I-Fast-SCLF-32 are
relatively unchanged, except for the case of I-Fast-SCLF-32 with ce = 1, where an FER of 0 is

62 Fast Successive-Cancellation List Flip Decoding of Polar Codes

obtained2. This confirms that after the second FSCL decoding attempt of I-Fast-SCLF-32, the
correct codeword is always present in the list of the best decoding paths for ce = 1.

In the next section, a path selection error model is derived to accurately estimate the index
of the path splitting that causes the elimination of the correct path at the initial FSCL decoding.
Therefore, the error-correction performance of the I-Fast-SCLF-L decoder provided in Fig. 4.1
serves as the empirical lower bound of the proposed decoding algorithm.

4.1.1 Path Selection Error Model for FSCL Decoding

We use the methods introduced in [29,30] to estimate the erroneous path-splitting index, which pre-
dicts the error position using the LLR values associated with each discarded decoding path. Thus,
the proposed path selection error model relies on the construction of the LLR vectors obtained at
each path splitting under FSCL decoding.

Consider that the first FSCL decoding attempt does not pass the CRC verification and ν is a
node located at the s-th stage of the binary tree, that is visited by FSCL decoding. Let k ∈ [1,K+C]
be the path-splitting index that occurs during the decoding of ν . Let γl′ = γ

kl′

1l′
be an LLR vector of

a discarded decoding path l′, which contains k LLR values corresponding to the hard estimates of
the discarded path l′. After each information bit is decoded, γl′ is constructed progressively up to
the k-th path splitting. Formally, γl′ is obtained using the following procedure:

• If ν is a leaf node that contains an information bit:

γl′ = concat(γl′ ,α0,iminνl′
). (4.1)

• If ν is a REP node:

γl′ = concat(γl′,

imaxνl′∑
j=iminνl′

αs, j). (4.2)

• If ν is a Rate-1 node: Updating γl′ using the following function after each path splitting at
the j-th bit:

γl′ = concat(γl′,αs, j), (4.3)
2We exclude the FER of I-Fast-SCLF-32 with ce = 1 from Fig. 4.2b as an FER of 0 cannot be plotted in the

logarithmic scale.

4.1 Bit-flipping Scheme for FSCL Decoding 63

where j ∈ {i∗minνl′
, . . . , i∗maxνl′

} is selected by following the indices of the sorted absolute LLR
values.

• If ν is an SPC node: Updating γl′ using the following function after each path splitting at
the j-th bit:

γl′ = concat(γl′,αs, j), (4.4)

where j ∈ {i∗minνl′
, . . . , i∗maxνl′

} \ i∗minνl′
is selected by following the order of the sorted absolute

LLR values. Note that i∗minνl′
is the bit index of the parity bit whose LLR value is ignored

when constructing γl′ .

concat(γl′, a) is a function that concatenates a ∈ R to the end of γl′ and initially γl′ = ∅. In
addition, γl′ is not altered if ν does not satisfy any of the above conditions. For example, the
LLR vector γl′ obtained after the fifth path-splitting index in Table 4.2 for l′ = 2 is γ2 = γ52

12
=

{α2,52,α2,72,α2,62,α0,122,α2,132}. We now define the hard estimates of γl′ as η̂l′ = η̂
kl′

1l′
, and the cor-

rect hard values associated with γl′ as ηl′ = η
kl′

1l′
. For instance, η̂2 = η̂52

12
= {β2,52, β2,72, β2,62, β0,122, β2,132}

is the discarded decoding path obtained after the fifth path-splitting index in Table 4.2 with l′ = 2,
and η2 = η52

12
= {0, 0, 0, 0, 0}. It is worth to note that by not considering the bit-flipping operations

for the parity bits of the SPC nodes, the search space of the first error path selection for FSCL
decoding contains K + C possible positions, which is equal to that of the SCLF decoder.

Unlike SCLF decoding, at the same path splitting index the hard estimates and LLR values of
η̂l′ and γl′ of different path indices l′ can correspond to different bit indices of the polar binary
tree. However, similar to SCLF decoding, each instance of the hard estimates and LLR values of
η̂l′ and γl′ are obtained sequentially by following the course of FSCL decoding. Therefore, in this
chapter we utilize the conditional error probability model considered in [29,30,72] to estimate the
erroneous decision occurred at the k-th path splitting index of FSCL decoding. Specifically, the
probability that the discarded path l′ at the k-th path splitting index under FSCL decoding is the
correct path is

Pr(η̂kl′

1l′
= η

kl′

1l′
|αn)

=
∏

1≤ j≤k
∀ j∈Al′

Pr(η̂ jl′ = η jl′ |αn, η̂
jl′−1
1l′

= η
jl′−1
1l′

)

×
∏

1≤ j≤k
∀ j∈Ac

l′

[
1 − Pr(η̂ jl′ = η jl′ |αn, η̂

jl′−1
1l′

= η
jl′−1
1l′

)
]
,

(4.5)

64 Fast Successive-Cancellation List Flip Decoding of Polar Codes

where Al′ is the set of bit indices j in which the hard estimates η̂ jl′ follow the sign of γ jl′ , and Ac
l′

is the set of bit indices j in which the hard estimates η̂ jl′ do not follow the sign of γ jl′ .
Similar to u, ηl′ is also not available during the decoding process, thus we use the approxima-

tion introduced in [72] to calculate Pr(η̂ jl′ = η jl′ |αn, η̂
jl′−1
1l′

= η
jl′−1
1l′

) as

Pr(η̂ jl′ = η jl′ |αn, η̂
jl′−1
1l′

= η
jl′−1
1l′

) ≈
1

1 + exp
(
θ −

∣∣∣γ jl′

∣∣∣) . (4.6)

The path selection error metric obtained at the k-th path splitting based on (4.5) and (4.6) can be
obtained as

Qk = − ln

∑
∀l′

Pr(η̂kl′

1l′
= η

kl′

1l′
|αn)


≈ − ln

[
max
∀l′

Pr(η̂kl′

1l′
= η

kl′

1l′
|αn)

]

≈ min
∀l′


∑

1≤ j≤k
∀ j∈Ac

l′

(∣∣∣γ jl′

∣∣∣ − θ

)
+

∑
1≤ j≤k

ReLU
(
θ −

∣∣∣γ jl′

∣∣∣)
 . (4.7)

Consequently, the most probable erroneous position ı is obtained as

ı = arg min
log2 L<k≤K+C

Qk. (4.8)

The error metric described in (4.7) can be progressively calculated during the course of decod-
ing, allowing for an efficient implementation of the proposed decoder. In particular, for each active
decoding path l we denote by qk−1l the path-error metric at the (k − 1)-th path splitting index of l,
which is given as

qk−1l =
∑

1≤ j≤k−1
∀ j∈Ac

l

(∣∣∣γ jl

∣∣∣ − θ

)
+

∑
1≤ j≤k−1

ReLU
(
θ −

∣∣∣γ jl

∣∣∣) (4.9)

if k > 1 and q0l = 0 ∀l. Thus, the path-error metric of the path l at the k-th path splitting index can
be calculated from qk−1l as

qkl = qk−1l + ReLU
(
θ −

∣∣∣γkl

∣∣∣) . (4.10)

The path-error metric of the forked path with index l̃ originated from l, whose hard value at the

4.1 Bit-flipping Scheme for FSCL Decoding 65

k-th path splitting index does not follow the sign of its LLR value, is calculated as

qkl̃
= qkl +

∣∣∣γkl

∣∣∣ − θ . (4.11)

(4.10) and (4.11) are used to compute the path-error metrics of all the 2L paths associated with
the current L active paths and the L forked paths progressively. Next, the path metric sorting is
carried out and a list of discarded paths with indices l′ is determined. The flipping metric in (4.7)
is obtained as

Qk = qkl′min
, (4.12)

where l′min = arg minl′ qkl′ . Therefore, under a practical implementation one only needs to maintain
the path-error metrics q corresponding to the 2L decoding paths to progressively calculate the path
selection error metric Qk.

In this chapter, we tackle the disadvantage of Monte-Carlo simulation which optimizes the sin-
gle parameter θ offline [29, 30, 32]. This is because in practice, e.g., in the 5G standard, there is
a vast number of polar code configurations with different code lengths and rates, and the parame-
ter also requires to be optimized at various SNR values. Thus, optimizing the parameter for each
specific configuration is a time-consuming task as adequate training data samples need to be col-
lected for each code configuration. Therefore, we propose an efficient online supervised learning
approach to directly optimize the parameter at the operating SNR of the decoder, while obviating
the need of pilot signals.

In particular, let D be a data batch that contains B = |D| instances of the path selection error
metrics Q = QK+C

1 , where the corresponding message word estimated by the initial FSCL decod-
ing algorithm does not satisfy the CRC test. Under supervised learning, we need to obtain the
erroneous path-splitting index ıe to train θ . Note that in a practical scenario, the proposed decoder
often requires a maximum number of m additional FSCL decoding attempts where a different esti-
mated error index is associated with each additional decoding attempt. By assuming that a correct
codeword is obtained if the CRC verification is successful, the error index ıe can be obtained when
a secondary FSCL decoding attempt passes the CRC verification. Let o be a one-hot encoded
vector of size K + C that indicates the error bit index ıe as

ok =

 1 if k = ıe,

0 otherwise.
(4.13)

66 Fast Successive-Cancellation List Flip Decoding of Polar Codes

A data sample d ∈ D contains a pair of the input Q and its corresponding encoded output o, i.e.,
d , {Q,o}.

Given a data sample d, the path selection error metric introduced in Section 4.1.1 provides an
estimate of ıe as ı by selecting the index corresponding to the smallest element of Q (see (4.8)).
To enable training, the error metrics are converted to the probability domain using the following
softmin conversion:

ôk =
exp(−Qk)∑K+C

j=1 exp
(
−Q j

) , (4.14)

where Qk is manually set to ∞ for k ∈ [1, log2 L] as the correct decoding path is always present
in the first log2 L path splittings. It can be seen from (4.7) and (4.14) that the bit index that has
the smallest error metric is also the bit index that has the highest probability to be in error. In this
chapter, we use the binary cross entropy (BCE) loss function to quantify the dissimilarity between
the target output o and the estimated output ô as

Loss = −

K+C∑
k=1

[ok ln ôk + (1 − ok) ln(1 − ôk)] . (4.15)

The parameter θ can then be trained to minimize the loss function by using the stochastic gradient
descent (SGD) technique or one of its variants. An update step is given as

θ = θ −
λ

B

∑
∀d∈D

∂Loss
∂θ

, (4.16)

where λ ∈ R+ is the learning rate and 1
B

∑
∀d∈D

∂Loss
∂θ

is the estimation of the true gradient obtained
from a data set that contains an infinite number of data samples. By using the chain rule and simple
algebraic manipulations, given an instanceQ of a data sample d, ∂Loss

∂θ
can be calculated as

∂Loss
∂θ

=

K+C∑
k=1

ôk − ok

(1 − ôk) exp(−Qk)

∂φk

∂θ
− ôk

K+C∑
j=1

∂φ j

∂θ

 , (4.17)

where φk = exp(−Qk) and ∂φk
∂θ

= − exp(−Qk)
∂Qk
∂θ

.
It can be observed that the computation of ∂Loss

∂θ
requires the computation of ∂Qk

∂θ
. Similar to Qk,

∂Qk
∂θ

can also be progressively calculated during the course of decoding. In particular, from (4.10)

4.1 Bit-flipping Scheme for FSCL Decoding 67

and (4.11) we obtain

∂qkl

∂θ
=

∂qk−1l

∂θ
+

∂ ReLU
(
θ − γkl

)
∂θ

=
∂qk−1l

∂θ
+ Indθ>γkl

, (4.18)

and
∂qkl̃

∂θ
=

∂qkl

∂θ
− 1, (4.19)

respectively, and
∂q0l
∂θ

= 0 ∀l. Since the values of
∂qkl
∂θ

and
∂qkl̃
∂θ

are available for all the current active
decoding paths with indices l and the forked paths with indices l̃, after the path-metric sorting, ∂Qk

∂θ

can be obtained as
∂Qk

∂θ
=

∂qkl′min

∂θ
. (4.20)

Note that ∂Qk
∂θ

contains integer values and ∂Qk
∂θ
∈ [−(K + C),K + C]. To reduce the computational

complexity of the training process, we use the method in [73] to implement the exp(·) function as
required in (4.14) and (4.17). Specifically, the Taylor series are utilized to approximate the exp(·)

function, which is given as [73]

exp(x) ≈ max{0,
T∑

t=0

xt

t!
}, (4.21)

where x ∈ R, T ≥ 0 is an integer number, and the approximation is exact if T = ∞ [74].
In Algorithm 3, we outline the proposed Fast-SCLF decoding algorithm integrated with the

online training framework. The inputs of Algorithm 3 contain the channel vector y, the list size
L, the maximum number of additional FSCL decoding attempts m, and the size of the data batch
D, denoted as B. The parameter θ is first randomly initialized from (0, 1). Given a channel output
vector y, the initial FSCL decoding is carried out in the InitialFSCL(·) function described in
Algorithm 4, which performs the conventional FSCL decoding operations to obtain the estimated
message word ûinit. In addition, at each path splitting with index k of the initial FSCL decoding
attempt, the path-error metrics {qkl , qkl̃

} and the derivatives {
∂qkl
∂θ

,
∂qkl̃
∂θ
} of all the paths with indices l

and l̃ are progressively calculated (line 3-4, Algorithm 2), followed by the computations of Qk and
∂Qk
∂θ

(line 5-6, Algorithm 2). Note that ∂Qk
∂θ

is set to 0 and Qk is set to ∞ for all the path splittings
with index k ∈ [1, log2 L]. At the end of the InitialFSCL(·) function, the first estimate of the
message word ûinit, the path selection error metricsQ, and their derivatives ∂Q

∂θ
are returned to the

main decoding algorithm.

68 Fast Successive-Cancellation List Flip Decoding of Polar Codes

Algorithm 3: Fast-SCLF Decoding Algorithm
Input : y,L,m,B
Output: û

1 θ ∼ (0, 1) // Initialize θ

2 ûinit,Q, ∂Q
∂θ
← InitialFSCL(y, θ ,L)

/* Perform FSCL decoding with the reserved path selection scheme */

3 if ûinit passes CRC then
4 return ûinit

5 else
6 {ı∗1, . . . , ı∗m} ← Sort(Q)
7 for i← 1 to m do
8 ûflip ← FSCL(y, ı∗i ,L)
9 if û passes CRC then

10 Construct o using (4.13) given ıe = ı∗i
11 θ ← OptimizeTheta(θ ,o,Q, ∂Q

∂θ
)

12 return ûflip

13 return ûinit

In the next step, if ûinit satisfies the CRC test, the Fast-SCLF decoder then outputs ûinit and
terminates. Otherwise, the path selection error metrics Q are sorted in the increasing order such
that Qi∗1

≤ . . . ≤ Qi∗K+C
, and the path-splitting indices corresponding to the m smallest elements ofQ

are selected for the secondary FSCL decoding attempts, i.e., {ı∗1, . . . , ı∗m}. The Fast-SCLF decoder
then performs a maximum number of m additional FSCL decoding attempts (line 8, Algorithm 3)
with each attempt performs the reversed path selection scheme at a different path-flipping index
ı∗i . If one of the secondary FSCL decoding attempts results in a successful CRC verification, the
optimization process of θ implemented in the OptimizeTheta(·) function is queried, which per-
forms the proposed optimization process based on supervised learning. The details of the function
OptimizeTheta(·) are provided in Algorithm 5. To reduce the memory consumption required to
store the data batch D for each parameter update, we use a variable ∆ in Algorithm 5 to store the
accumulated gradients

∑
∀d∈D

∂Loss
∂θ

as shown in (4.16). In addition, each data sample d is com-
pletely different from the others due to the presence of channel noise. Therefore, the proposed
training framework can prevent overfitting without the need of a separate validation set, which also
reduces the memory consumption of the parameter optimization.

4.1 Bit-flipping Scheme for FSCL Decoding 69

Algorithm 4: Initial FSCL Decoding Algorithm
Input : y,θ ,L
Output: ûinit,Q, ∂Q

∂θ

1 Function InitialFSCL(y,θ ,L):
2 for each path-splitting with index k ∈ [1,K + C] do
3 Compute qkl and qkl̃

based on (4.10) and (4.11) for all the paths l and l̃

4 Compute
∂qkl
∂θ

and
∂qkl̃
∂θ

based on (4.18) and (4.19) for all the paths l and l̃
5 Compute Qk based on (4.12)
6 Compute ∂Qk

∂θ
based on (4.20)

7 for k ← 1 to log2 L do
8 Qk ← ∞

9
∂Qk
∂θ
← 0

10 Obtain ûinit from the first FSCL decoding attempt
11 return ûinit,Q, ∂Q

∂θ

Finally, if the resulting estimated message word ûflip obtained from one of the addtional FSCL
decoding attempts satisfies the CRC test, ûflip is returned as the final decoding output. On the other
hand, if none of the addtional FSCL decoding attempt can provide a message word that passes the
CRC verification, the estimated message word ûinit of the initial FSCL decoding is returned as the
final output of the decoding process.

4.1.2 Quantitative Complexity Analysis

To quantify the computational complexity of the decoders considered in this chapter, we compute
a weighted complexity of the performed floating-point additions/subtractions, comparisons, multi-
plications, and divisions. The complexity of a floating-point addition/subtraction or a floating point
comparison is considered to be one unit of complexity, a multiplication requires 3 units of com-
plexity and a division requires 24 units of complexity [75]. In this chapter, we use the merge sort
algorithm to sort a vector with N elements, which requires a worst case of Ndlog2 Ne − 2dlog2 Ne + 1
floating-point comparisons if N is not a power of 2, otherwise the number of comparisons needed
is N log2 N [76, Chapter 2]. We compute the decoding latency of the SCL-based decoders by using
the method considered in [3, 26]. In particular, we count the number of time steps for various
decoding operations with the following assumptions. First, the hard decisions obtained from the

70 Fast Successive-Cancellation List Flip Decoding of Polar Codes

Algorithm 5: Parameter optimization

Input : θ ,o,Q, ∂Q
∂θ

Output: θ

1 c← 0 // The number of data samples

2 ∆← 0 // The accumulated garadient

3 Function OptimizeTheta (θ ,o,Q, ∂Q
∂θ

):
4 c← c + 1
5 Compute ∂Loss

∂θ
using (4.17)

6 ∆← ∆ + ∂Loss
∂θ

/* Update θ and reset the accumulated gradient */

7 if c mod B == 0 then
8 θ ← θ − λ

B ∆

9 ∆← 0

10 return θ

LLR values and binary operations are computed instantaneously [1, 3, 26]. Second, we consider
the time steps required by a merge sort algorithm to sort a vector of size N is dlog2 Ne [76, Chapter
2]. In addition, we also measure the average runtime in seconds required to decode a frame of
all the decoders considered in this chapter. The runtime is measured based on a single-core C++

implementation of the considered decoders on a similar Linux system, with an AMD Ryzen 5 CPU
and a DRAM memory of 16 GBytes.

Note that the OptimizeTheta(·) function can be executed in parallel with the decoding process
presented in Algorithm 3 and the decoding latency in time steps of the OptimizeTheta(·) function
is significantly smaller than the time steps required by an FSCL decoding attempt. Therefore, we
do not include the number of time steps needed by the OptimizeTheta(·) function in the time
steps of the proposed algorithm. However, to enable a fair comparison with other decoders that do
not require parameter optimization during the course of decoding, we include the runtime of the
OptimizeTheta(·) function when computing the runtime of the proposed decoder. Furthermore,
the computational complexity and memory requirement of the OptimizeTheta(·) function are
also considered when computing those of the proposed decoder. The memory consumption of the
proposed decoder with list size L can be calculated as

4.2 Evaluation 71

MFast-SCLF =MFSCL + b f︸︷︷︸
θ -memory

+ Lb f︸︷︷︸
q-memory

+ Lbi︸︷︷︸
∂q
∂θ

-memory

+ (K + C)b f︸ ︷︷ ︸
Q-memory

+ (K + C)bi︸ ︷︷ ︸
∂Q
∂θ

-memory

+ (K + C)︸ ︷︷ ︸
o-memory

+ 5b f︸︷︷︸
∂Loss

∂θ
-related memory

+ b f︸︷︷︸
∆-memory

=MFSCL + [K + C + L + 7] b f + (K + C + L)bi

+ K + C,

(4.22)

where bi is the number of memory bits used to quantize the integer values of ∂Q
∂θ

and ∂q
∂θ

. We
consider that ∂Loss

∂θ
is progressively calculated, thus 4b f memory bits are used to store the temporal

values of
∑K+C

j=1 exp
(
−Q j

)
, exp(−Qk), ôk, and

∑K+C
j=1

∂φ j

∂θ
, and b f memory bits are used to store ∂Loss

∂θ
,

whose value is progressively summed over K + C indices.

4.2 Evaluation

4.2.1 Optimized Parameter and Error-Correction Performance

We measure the accuracy of the proposed training framework by calculating the probability that
the most probable error index ı derived from (4.8) is the actual error index, denoted as ı∗e, given
that the initial FSCL decoding attempt does not satisfy the CRC test. Note that the error index ıe

used as the training label can be different from ı∗e. This is because satisfying the CRC test after
performing the reserved path selection scheme at the ıe-th path-splitting index does not warranty
that the estimated codeword is the sent codeword. Therefore, the training accuracy is quantified as

E
[
Pr(ı = ı∗e|y)

]
=

∑
training samples Indı=ı∗e

Number of training samples
. (4.23)

In this chapter, we use the conventional SGD algorithm to optimize θ with λ = 2−4 and B = 32,
thus λ

B is fixed to 2−9 and a multiplication with λ

B can be implemented as a shift operation. We set
b f = 32 for both the training and decoding processes as single-precision floating-point format is

72 Fast Successive-Cancellation List Flip Decoding of Polar Codes

0 200 400

0

2

4

6

8

·10−2

parameter updates

Tr
ai

ni
ng

A
cc

ur
ac

y
E

[P
r(

ı=
ı∗ e|
y

)]

0 200 400

0

1

2

3

parameter updates

θ

(a) P(512, 256) −C24 @2 dB

0 200 400

0

2

4

6

8

10

·10−2

parameter updates

Tr
ai

ni
ng

A
cc

ur
ac

y
E

[P
r(

ı=
ı∗ e|
y

)]

0 200 400

0

1

2

3

parameter updates

θ

(b) P(512, 384) −C24 @3 dB
Training accuracy with bi = dlog2(K + C)e + 1 and T = ∞ Training accuracy with bi = 2 and T = ∞ Training accuracy with bi = 2 and T = 3

θ with bi = dlog2(K + C)e + 1 and T = ∞ θ with bi = 2 and T = ∞ θ with bi = 2 and T = 3

Figure 4.3: Training curves of the parameter θ for P(512, 256) and P(512, 384) with L = 32 and
m = 80. A 24-bit CRC used in 5G is concatenated with the polar codes.

used to quantize a floating-point number. In addition, an integer number a is quantized using the
sign-magnitude representation, which requires dlog2(|a|)e + 1 memory bits.

Fig. 4.3 illustrates the learning curves of θ for P(512, 256) and P(512, 384) with m = 80,
L = 32, bi ∈ {dlog2(K + C)e+ 1, 2}, and T ∈ {∞, 3}. With bi = dlog2(K + C)e+ 1 the maximum and
minimum values of the derivatives ∂Q

∂θ
and ∂q

∂θ
are exactly represented under the sign-magnitude

quantization scheme. On the other hand with bi = 2, ∂Q
∂θ

and ∂q
∂θ

are constrained to {−1, 0, 1}. As
observed from Fig. 4.3, for T = 3, constraining ∂Q

∂θ
and ∂q

∂θ
with the ternary values of {−1, 0, 1}

does not significantly degrade the estimation accuracy of the proposed error model compared to
the configuration using T = ∞ and bi = dlog2(K + C)e + 1. Therefore, in the rest of this chapter,
we set bi = 2 and T = 3 for the proposed decoder as the computational complexity and memory
consumption are significantly reduced by using a small value of T and bi, which can be observed
from (4.21) and (4.22), respectively. Note that the spikes in the early part of the training accuracy
are caused by the small number of the training samples, which makes the calculation of the training
accuracy unreliable at the initial phases of the parameter optimization. As also observed from
Fig. 4.3, the value of θ becomes relatively stable as the number of parameter updates increases.
Thus, in practice the function OptimizeTheta(·) can be skipped after a predefined number of
parameter updates to further reduce the computational complexity and memory accesses of the
proposed framework. In this chapter, we stop querying the OptimizeTheta(·) function after 50
parameter updates to further reduce the computational complexity of the proposed decoder.

4.2 Evaluation 73

2 2.25 2.5 2.75 3 3.25 3.5

10−5

10−4

10−3

10−2

10−1 P(512, 256) −C24

Eb/N0 [dB]

FE
R

3 3.25 3.5 3.75 4 4.25 4.5

10−5

10−4

10−3

10−2

10−1

P(512, 384) −C24

Eb/N0 [dB]

FE
R

SSCLF-2-50 [69] SSCLF-4-50 [69] SSCLF-8-80 [69] SSCLF-16-80 [69] SSCLF-32-80 [69]

SCLF-2-50 [30] SCLF-4-50 [30] SCLF-8-80 [30] SCLF-16-80 [30] SCLF-32-80 [30]

Fast-SCLF-2-50 Fast-SCLF-4-50 Fast-SCLF-8-80 Fast-SCLF-16-80 Fast-SCLF-32-80

FSCL-32 [3]

Figure 4.4: Error-correction performance of all the SCLF-based decoders considered in this chap-
ter. The FER values of the FSCL decoder with list size L = 32 is also plotted for comparison.

Fig. 4.4 shows the error correction performance in terms of FER of various SCLF-based de-
coders where m = 50 for L ∈ {2, 4} and m = 80 for L ∈ {8, 16, 32}. The proposed decoder is
denoted as Fast-SCLF-L-m while the SCLF and SSCLF decoders are denoted as SCLF-L-m and
SSCLF-L-m, respectively. In addition, the FER values of the FSCL decoder with list size 32 are
also plotted for comparison. The parameter θ of the SCLF decoder is optimized offline for each
value of L with the Monte-Carlo approach [30]. The Eb/N0 values of the Monte-Carlo simula-
tions are chosen to have an FER of approximately 10−4 with the selected values of L and m. From
Fig. 4.4, it can be observed that under all considered polar codes and list sizes, the SCLF decoder
has a relatively similar error-correction performance compared to that of the proposed Fast-SCLF
decoder. In some configurations of the polar codes, the Fast-SCLF decoder obtains a slight FER
gain over the SCLF decoder with the same list size. This behavior is similar to that of the ideal
Fast-SCLF decoder presented in Section 4.1 when compared with the ideal SCLF decoder. It can
also be seen from Fig. 4.4 that with L ∈ {2, 4} the simplified path-selection scheme proposed in [69]
results in a significant error-correction performance degradation in comparison with those of the
Fast-SCLF and SCLF decoders at the target FER of 10−4, which also degrades quickly as the SNR
increases.

74 Fast Successive-Cancellation List Flip Decoding of Polar Codes

2 2.25 2.5 2.75 3

4

6

·104

Eb/N0 [dB]

C

2 2.25 2.5 2.75 3

1

2

3

4

5

·103

Eb/N0 [dB]

L

2 2.25 2.5 2.75 3
2
3
4
5
6
7
8
·10−4

Eb/N0 [dB]

A
ve

ra
ge

R
un

tim
e

(s
ec

on
ds

/f
ra

m
e)

(a) P(512, 256) −C24

3 3.25 3.5 3.75 4

0.5

1

1.5
·105

Eb/N0 [dB]

C

3 3.25 3.5 3.75 4
0

0.5

1

·104

Eb/N0 [dB]

L

3 3.25 3.5 3.75 4

0.25
0.5

0.75
1

1.25
1.5

·10−3

Eb/N0 [dB]

A
ve

ra
ge

R
un

tim
e

(s
ec

on
ds

/f
ra

m
e)

(b) P(512, 384) −C24

Fast-SCLF-4-50 SCLF-4-50 [30] SSCLF-4-50 [69]

Figure 4.5: Average computational complexity and latency in terms of time steps and runtime of
the SCLF-based decoders with list size 4.

4.2.2 Computational Complexity, Decoding Latency, and Memory Requirement

In Table 4.3, we summarize the average computational complexities (C) and the average decoding
latency in time steps (L) of all the SCLF-based decoders considered in Fig. 4.4. The Eb/N0 values
in Table 4.3 are selected from Fig. 4.4 where the simulated FER values of the proposed decoder
are closest to the target FER of 10−4.

The effectiveness of the proposed decoder is confirmed in Table 4.3 as the decoding latency
of the SCLF decoding algorithm is significantly higher than that of the Fast-SCLF decoder with
the same list size. However, with the list size increases the Fast-SCLF decoder imposes a more
significant computational complexity overhead when compared to that of the SCLF decoder. This
is due to the complexity devoted for sorting the LLR values associated with the special SPC and
Rate-1 nodes, which significantly increases with the increase of the list size under FSCL decoding.
From Table 4.3, it is observed that the proposed Fast-SCLF decoder reduces up to 73.4% of the
average decoding latency of the SCLF decoder with the same list size at the FER of 10−4, while
incurring a maximum computational overhead of 27.3%. As also seen from Table 4.3 and Fig. 4.4,

4.2 Evaluation 75

Table 4.3: Summary of the average computational complexity in terms of weighted complexity of
all floating-point operations performed (C) and the average decoding latency in time steps (L) of
the SCLF-based decoders considered in Fig. 4.4.

P(512, 256)
L = 2,m = 50
@3.125 dB

L = 4,m = 50
@2.75 dB

L = 8,m = 80
@2.625 dB

L = 16,m = 80
@2.5 dB

L = 32,m = 80
@2.375 dB

C L C L C L C L C L

SCLF [30] 1.46E+4 1.84E+3 2.69E+4 2.17E+3 5.21E+4 2.44E+3 1.13E+5 2.72E+3 2.21E+5 3.02E+3
SSCLF [69] 1.32E+4 5.21E+2 2.48E+4 7.87E+2 4.97E+4 1.06E+3 1.06E+5 1.35E+3 2.64E+5 1.62E+3
Fast-SCLF 1.37E+4 5.01E+2 2.60E+4 7.88E+2 5.27E+4 1.06E+3 1.18E+5 1.34E+3 2.82E+5 1.63E+3

P(512, 384)
L = 2,m = 50

@4.25 dB
L = 4,m = 50

@4.0 dB
L = 8,m = 80

@3.75 dB
L = 16,m = 80

@3.75 dB
L = 32,m = 80

@3.625 dB
C L C L C L C L C L

SCLF [30] 1.71E+4 1.97E+3 3.18E+4 2.40E+3 6.36E+4 2.87E+3 1.28E+5 3.23E+3 2.68E+5 3.65E+3
SSCLF [69] 1.60E+4 5.89E+2 2.94E+4 1.11E+3 5.96E+4 1.43E+3 1.15E+5 1.80E+3 2.60E+5 2.22E+3
Fast-SCLF 1.68E+4 5.73E+2 3.26E+4 9.90E+2 6.48E+4 1.43E+3 1.33E+5 1.80E+3 2.95E+5 2.25E+3

when compared with the SSCLF decoder with L ∈ {2, 4}, the proposed decoder with the same list
size only incurs negligible overheads in the computational complexity while achieving significantly
error-correction performance improvements and maintaining relatively similar decoding latency in
time steps. On the other hand, with L ∈ {8, 16, 32}, a maximum complexity overhead of 13.5% is
recorded for the proposed decoder when compared with SSCLF decoding with the same list size,
while obtaining relatively similar error-correction performance and decoding latency.

Note that the path selection error metric of SCLF decoding can be progressively calculated
using a similar approach as described in (4.10) and (4.11). Therefore, the memory consumption of
the SCLF decoder with list size L is calculated as

MSCLF =MSCL + b f︸︷︷︸
θ -memory

+ Lb f︸︷︷︸
q-memory

+ (K + C)b f︸ ︷︷ ︸
Q-memory

=MSCL + (K + C + L + 1)b f .

(4.24)

In addition, the memory consumption of the SSCLF decoder only requires an addition of (K +C)b f

memory bits to store the path-selection error metric when compared with that of the FSCL decoder
with the same list size [69]. The memory consumption of the SSCLF decoder with list size L is

76 Fast Successive-Cancellation List Flip Decoding of Polar Codes

given as [69]
MSSCLF =MFSCL + (K + C)b f︸ ︷︷ ︸

Q-memory

. (4.25)

In Table 4.4, we summary the memory consumption in KBits of all the SCL-based decoders con-
sidered in this chapter.

Table 4.4: Memory requirement in KBits of all the SCL-based decoders considered in this chapter.

P(512, 256) L

2 4 8 16 32

FSCL [3] 50.0 84.0 152.0 288.0 560.0
SCLF [30] 58.8 92.9 161.0 297.3 569.8

SSCLF [69] 58.7 92.7 160.7 295.7 568.7
Fast-SCLF 60.1 94.2 162.3 298.6 571.1

P(512, 384) L

2 4 8 16 32

FSCL [3] 50.0 84.0 152.0 288.0 560.0
SCLF [30] 62.8 97.0 165.0 301.3 573.8

SSCLF [69] 62.7 96.7 164.7 300.7 572.7
Fast-SCLF 64.6 98.7 166.8 303.1 575.6

Table 4.5: The average computational complexity, average decoding latency, memory consump-
tion, and error-correction performance degradation of the Fast-SCLF, SCLF, and SSCLF decoders
with L = 4 and m = 50 in comparison with those of the FSCL-32 decoder.

P(512, 256) −C24 P(512, 384) −C24

Fast-SCLF-4
@2.75 dB

SCLF-4
@2.75 dB

SSCLF-4
@3.0 dB FSCL-32

Fast-SCLF-4
@4.0 dB

SCLF-4
@4.0 dB

SSCLF-4
@4.25 dB FSCL-32

C (weighted complexity) 2.60E+4 2.69E+4 2.40E+04 2.42E+5 3.26E+4 3.18E+4 2.91E+04 2.12E+5
L (time steps) 7.88E+2 2.17E+3 7.66E+02 1.40E+3 9.90E+2 2.40E+3 9.78E+02 1.36E+3
M (KBits) 94.2 92.9 92.7 560.0 98.7 97.0 96.7 560.0

Avg. Runtime (seconds/frame) 2.34E-4 3.76E-4 2.22E-4 1.92E-3 2.95E-4 4.69E-4 2.85E-4 2.05E-3
FER Degradation (dB) 0.07 0.07 0.27 - 0.02 0.05 0.31 -

We illustrate the average complexity, average decoding latency in time steps, and average run-
time of the Fast-SCLF-4-50, SCLF-4-50, and SSCLF-4-50 decoders in Fig. 4.5. As seen from
Fig. 4.5, the proposed decoder requires a relatively similar decoding complexity when compared
with the SCLF, while the SSCLF decoder has the lowest average computational complexity among
all the SCLF-based decoders. In addition, the SSCLF and Fast-SCLF decoding algorithms re-

4.2 Evaluation 77

1 25 50 75 100 125 150 175 200

10−3

@2.75 dB

Number of simulated frames (×1000)

FE
R

(a) P(512, 256) −C24

1 25 50 75 100 125 150 175 200

10−4

@3.875 dB

Number of simulated frames (×1000)

FE
R

(b) P(512, 384) −C24
Fast-SCLF-4-50 with θ randomly initialized Fast-SCLF-4-50 with θ optimized online I-Fast-SCLF-4

Figure 4.6: Effects of online training on the error-correction performance of the Fast-SCLF-4-50
decoder.

quire significantly smaller average decoding latency both in terms of time steps and runtime when
compared with those of the SCLF decoder.

In Table 4.5, we summarize the average computational complexity, memory requirement, and
average decoding latency in terms of time steps and runtime of the SCLF-based decoders with
L = 4,m = 50, and those of the FSCL-32 decoder. The error-correction performance degradation
of the SCLF-based decoders when compared to FSCL-32 is also provided in Table 4.5. The Eb/N0

values are selected to allow an FER performance close to the target FER of 10−4 for all the consid-
ered decoders. In particular, for P(512, 256), the average complexity and average latency in time
steps of Fast-SCLF-4-50 account for approximately 10.7% and 56.3% of the complexity and time
steps of FSCL-32, respectively. For P(512, 384), Fast-SCLF-4-50 reduces 84.6% of the average
complexity and 27.2% of the average time steps in comparison with FSCL-32. In addition, the pro-
posed decoder with list size 4 requires around 17% of the memory requirement of FSCL-32, while
having an FER degradation of less than 0.07 dB. When compared with the SSCLF decoder, the
proposed decoder obtains the FER performance gains of 0.2 dB and 0.3 dB at the cost of 8.3% and
12.0% computational complexity overhead for P(512, 256) and P(512, 384), respectively, while
the average decoding latency and memory consumption are relatively preserved at the target FER
of 10−4. Note that due to its high complexity, the average runtime of FSCL-32 is significantly
higher than those of all the SCLF-based decoders with list size 4.

In Fig. 4.6 we study the effects of the θ parameter on the error-correction performance of the
proposed decoder when online training is considered. Specifically, we illustrate the FER values
obtained at the first 200000 frames of Fast-SCLF-4-50 with and without online learning. In ad-

78 Fast Successive-Cancellation List Flip Decoding of Polar Codes

dition, the FER values of the ideal Fast-SCLF-4 decoder are also plotted for reference. It can be
observed that the proposed online learning scheme effectively optimizes the θ parameter, allowing
the FER of the proposed decoder to quickly approach its ideal FER performance. On the other
hand, when online training is not considered, using the proposed decoder with the initialized value
of θ results in a poor error-correction performance.

4.3 Chapter Conclusion

In this chapter, we proposed a bit-flipping scheme tailored to the state-of-the-art fast successive-
cancellation list (FSCL) decoding, forming the fast successive-cancellation list flip decoder (Fast-
SCLF). We then derived a parameterized path selection error metric that estimates the erroneous
path-splitting index at which the correct decoding path is eliminated from the initial FSCL decod-
ing. The trainable parameter of the proposed error model is optimized using online supervised
learning, which directly trains the parameter at the operating signal-to-noise ratio of the decoder
without the need of pilot signals. We numerically evaluated the proposed decoding algorithm and
compared its error-correction performance, average computational complexity, average decoding
latency, and memory requirement with those of the state-of-the-art FSCL decoder, the successive-
cancellation list flip (SCLF) decoder, and the simplified SCLF (SSCLF) decoder. The simulation
results confirm the effectiveness of the proposed decoder when compared with the FSCL and the
SCLF decoders for different polar codes and various list sizes. As also observed from the simula-
tion results, the error-correction performance of the Fast-SCLF decoder significantly outperforms
that of the SSCLF decoder with small list sizes (2 and 4), at the cost of negligible computational
complexity overhead, while maintaining relatively similar memory consumption and decoding la-
tency also compared to SSCLF decoding.

In the next chapter, we extend the use of polar-CRC concatenated codes to a new communica-
tion system that requires soft-input soft-output BP decoding algorithm as opposed to the soft-input
hard-output SC-based decoders as considered in this chapter.

79

Chapter 5

Improved Belief Propagation Decoding of
CRC-Polar Concatenated Codes

In this chapter, we provide efficient decoding techniques to greatly improve the error-correction
performance of BP decoding for the CRC-polar concatenated codes. In particular, we first intro-
duce a CRC-aided decoding algorithm that utilizes the CRC factor graph to aid BP decoding of
the polar factor graph. Trainable weights are then assigned to the edges of the unrolled CRC-polar
factor graphs to reduce the decoding latency. Finally, we introduce novel decoding techniques to
further improve the error-correction performance of the CRC-aided BP decoder by utilizing the
code permutations. In particular, we show that there is a one-to-one mapping between the factor-
graph permutations and the Codeword permutations, which allows the use of a single decoder
architecture when multiple code permutations are considered. Furthermore, we propose a method
to select a set of good permutations on the fly based on reinforcement learning.

5.1 CRC-Polar BP Decoding

In this section, we present the CPBP decoding algorithm which exploits the concatenated factor
graph of a polar code and a CRC. Fig. 5.1 shows the concatenated factor graph of P(8, 3) and
a CRC of length 2. We run BP decoding algorithm on the concatenated factor graph to exploit
the extrinsic information of the two constituent factor graphs. A similar approach was performed
in [77] for a LDPC-polar concatenated code by passing the BP messages between the factor graphs
of LDPC and polar code at each iteration. A direct application of the BP decoder in [77] to the

80 Improved Belief Propagation Decoding of CRC-Polar Concatenated Codes

Figure 5.1: Factor graph representation of a CRC-polar concatenated code. The polar code is
P(8, 3) and a 2-bit CRC is used.

CRC-polar concatenated code is not beneficial. This is due to the fact that the LDPC code is
only connected to a few pre-selected information bits of polar codes which ensures the extrinsic
information received by polar codes is reliable enough, even in the initial iterations of BP decoding
where the LLR values are not evolved yet. This is not the case for CRC-polar concatenated codes
since the CRC is connected to all the information bits of polar code, some of which are highly
unreliable during the early iterations of BP decoding.

In order to address the above issue, we first run BP decoding on the polar code factor graph
for a maximum of Ithr iterations and if the BP decoding is not successful after Ithr iterations, we
then continue the BP decoder on the CRC-polar concatenated factor graph. In order to determine
if the decoder has succeeded, we use the CRC at each iteration as an early stopping criterion.
The proposed decoding algorithm is summarized in Algorithm 6. The LLR vectors αi

s and ri
s

at all stages and iterations are initialized as explained in Section 2.4. The BP_PolarLeft and
BP_PolarRight functions compute (2.31) and (2.32) at all the bit indices to perform the polar
right-to-left and left-to-right LLR updates, respectively. The estimated message word û is obtained
at every iteration by making a hard decision based on αi

0 and ri
0, which is done by executing

(2.36) in the HardDecision function. A CRC is then applied on û and the decoding can be
early terminated if the CRC is satisfied. After Ithr iterations, if the decoding is not terminated,
BP decoding on the CRC-polar factor graph is carried out in the BP_CRC function. It is worth
mentioning that BP decoding after Ithr iterations runs on the concatenated CRC-polar factor graph
at every iteration.

5.1 CRC-Polar BP Decoding 81

Algorithm 6: CPBP Decoding Algorithm
Input : Imax, Ithr, n
Output: û

1 Initialize αi
s, r

i
s (1 ≤ i ≤ Imax, 0 ≤ s ≤ n)

2 for i← 1 to Imax do
3 for s← n − 1 to 0 do
4 αi

s ← BP_PolarLeft(α
i
s+1, r

i−1
s)

5 if i > Ithr then
6 ri

0 ← BP_CRC(α
i
0)

7 û← HardDecision(ri
0 +αi

0)
8 if û satisfies CRC then
9 Terminate

10 if i ≤ Imax − 1 then
11 for s← 1 to n − 1 do
12 ri

s ← BP_PolarRight(α
i
s, r

i
s−1)

13 return û

Fig. 5.2 shows the FER performance of the proposed CPBP algorithm in comparison with the
CRC-aided BP decoder of [36], for the P(128, 80) concatenated with the 16-bit CRC, which is
selected for 5G. In this figure, we set Imax ∈ {30, 200} and we set Ithr ∈ {15, 30} when Imax = 30
and Ithr ∈ {0, 50, 100, 150, 200} when Imax = 200. We denote CPBP decoding with parameters
Imax and Ithr as CPBP-(Imax,Ithr). Note that CPBP-(Imax,Imax) is equivalent to the decoder in [36] and
CPBP-(Imax,0) is the direct application of the approach in [77]. It can be seen that, CPBP-(30,15)
provides a gain of almost 0.25 dB in comparison with the CRC-aided BP decoder of [36] at the
target FER of 10−5. In addition, among the selected Ithr for Imax = 200, CPBP-(200,50) provides
the best error-correction performance at the target FER of 10−5. Furthermore, CPBP-(200, 50)
has an error-correction performance gain of about 0.75 dB at FER = 10−5 in comparison with the
CRC-aided BP decoder of [36]. It is worth mentioning that increasing Imax does not improve the
error probabilities of the conventional BP decoder in [36] at high Eb/N0 regime. On the contrary,
the FER of the proposed CPBP decoder is greatly benefited from a high value of Imax as observed
from Fig. 5.2.

We now evaluate the latency of the proposed CPBP decoding scheme and compare it with
state-of-the-art. The latency of a BP-based decoder can be measured using the number of time

82 Improved Belief Propagation Decoding of CRC-Polar Concatenated Codes

5.5 6 6.5 7 7.5

10−6

10−5

10−4

10−3

Eb/N0 [dB]

FE
R

CPBP-(30,15) [36] (Imax = 30) CPBP-(200,0)

CPBP-(200,50) CPBP-(200,100) CPBP-(200,150)

[36] (Imax = 200)

Figure 5.2: FER performance of CPBP decoding for P(128, 80) and a 16-bit CRC used in 5G.

steps required to finish the decoding process [52]. Let us consider the decoding process terminates
at iteration IET (1 ≤ IET ≤ Imax). Then the decoding latency of a conventional BP decoder with
early stopping criterion can be represented as

TBP = (2n − 1)(IET − 1) + n. (5.1)

The latency of the proposed CPBP decoder depends on when the decoding process terminates and
can be represented as

TCPBP =

 (2n−1)(IET−1)+n, if IET≤ Ithr,

(2n−1)(IET−1)+n+2(IET−Ithr), otherwise.
(5.2)

In fact, if IET ≤ Ithr, (5.2) reverts to (5.1) since the CPBP decoder terminates without traversing
the CRC factor graph. It should be noted that the worst case latency of the BP decoder and the
proposed CPBP decoder can be calculated using (5.1) and (5.2) respectively, by setting IET = Imax.

Fig. 5.3 illustrates the average latency of the proposed CPBP decoding algorithm in comparison
with a conventional CRC-aided BP decoder of [36] for the same code as in Fig. 5.2. For the
proposed decoders, we set Ithr ∈ {15, 30} for Imax = 30, and Ithr ∈ {50, 100, 150, 200} for Imax = 200.
It can be seen that the proposed CPBP algorithm incurs negligible latency overhead in comparison
with [36], while providing significant performance gain. Moreover, the average latency of the

5.2 Neural CRC-Polar BP Decoding 83

5.5 6 6.5 7 7.5
10

15

20

25

Eb/N0 [dB]

L
at

en
cy

[T
im

e
St

ep
s]

5.5 6 6.5 7 7.5
10

15

20

25

Eb/N0 [dB]

L
at

en
cy

[T
im

e
St

ep
s]

5.5 6 6.5 7 7.5
10

15

20

25

Eb/N0 [dB]

L
at

en
cy

[T
im

e
St

ep
s]

TCPBP-(30,15) T [36] (Imax = 30) TCPBP-(200,50)

TCPBP-(200,100) TCPBP-(200,150) T [36] (Imax = 200)

Figure 5.3: Average decoding latency of CPBP decoding for P(128, 80) and a 16-bit CRC used in
5G.

CPBP decoder when Imax = 30 is always smaller than that of the CPBP decoder when Imax = 200.
This average latency saving is more significant for lower Eb/N0 values. Furthermore, the worst
case latency of CPBP(200,50) is 2887 time steps, and that of CPBP(30,15) is 407 time steps which
is only 14% of the worst case latency of CPBP(200,50). For applications with stringent latency
requirements, a small Imax is needed. However, the latency saving as a result of a small Imax comes
at the cost of error-correction performance loss as shown in Fig. 5.2. In the next section, we
propose a method to improve the error-correction performance of CPBP decoding for small values
of Imax, by using trainable weights.

5.2 Neural CRC-Polar BP Decoding

In this section, we propose the NCPBP decoder to improve the error-correction performance of
CPBP decoding. The NCPBP decoder assigns trainable weights to the edges of the CRC-polar
concatenated factor graph. Therefore, the NCPBP decoder resembles a neural network architecture
by mapping the message updates of CPBP decoding to different computational layers in the neural
network. In other words, each computational layer of the neural network is represented either as
a set of PEs for BP decoding on the factor graph of polar codes, or as a set of operations required
to perform BP decoding on the CRC factor graph. This network architecture greatly simplifies the
training process since it can be adapted to recent deep learning frameworks, e.g. Tensorflow [78].

84 Improved Belief Propagation Decoding of CRC-Polar Concatenated Codes

Figure 5.4: NCPBP architecture with Imax = 2 and Ithr = 0 for P(8, 3) concatenated with a 2-bit
CRC.

Fig. 5.4 depicts the architecture of the proposed NCPBP decoder for P(8, 3), with Imax = 2 and
Ithr = 0. The architecture contains the unrolled CRC-polar concatenated factor graph. Therefore,
the message updates of BP decoding on polar codes at a computational layer is represented as the
ones in Fig. 2.4c and Fig. 2.4d. In order to assign the weights to the N

2 parallel PEs at polar code
computational layers, we represent the product of the weights w3 and w4 in (2.37), and the product
of the weights w9 and w10 in (2.38), as single trainable weights w3,4 and w9,10, respectively. This is
due to the fact that the product of two trainable weights can be merged into one as the new weight
can also be optimized during training. In addition, we merge the weights w1 and w2 in (2.37)
into w1,2, and the weights w7 and w8 in (2.38) into w7,8, to further reduce the number of trainable
weights. As a result, we define the weight assignment scheme of a PE in NCPBP decoding as li

t,s = w0 f̃ (li
t,k,w1,2(ri

j,s + li
j,k)),

li
j,s = w3,4 f̃ (li

t,k, ri
t,s) + w5li

j,k,
(5.3)

 ri
t,k = w6 f̃ (ri

t,s,w7,8(li−1
j,k + ri

j,s)),

ri
j,k = w9,10 f̃ (ri

t,s, li−1
t,k) + w11ri

j,s.
(5.4)

5.2 Neural CRC-Polar BP Decoding 85

For the BP decoding on the CRC factor graph of the proposed NCPBP decoder, we adopt the
weight assignment scheme of the NNMS-RNN decoder in [56]. It should be noted that the polar
code computational layers share the same set of weights in each iteration of the proposed NCPBP
decoding, while this set of weights is different for different iterations. This is illustrated in Fig. 5.4,
in which the layers depicted in the same color indicate that they use the same set of weights. On
the contrary, the weights used in all the CRC layers are shared among all the decoding iterations
of NCPBP. This is particularly useful in order to limit the number of required weights for NCPBP.

The NCPBP decoding algorithm starts by a right-to-left message update at iteration 1. At
the i-th iteration and the s-th stage of the NCPBP decoder, αi

s and ri
s denote the LLR vectors of

the right-to-left and left-to-right message updates computed by a polar code PE layer, respectively.
Furthermore, the output LLR vector of the CRC layer is denoted as ri+1

0 . The hard estimated values
of all the stages in the polar code factor graph are obtained at the right-to-left message updates,
denoted as ĥi

s, while the hard estimated values derived from the CRC layer is denoted as ûi
CRC.

The weights of all the polar code and CRC computational layers are trained using a multiloss
function defined as

Loss =

Imax∑
i=1

n−1∑
s=0

HCE(ĥi
s,hs) +

Imax∑
i′=Ithr+1

HCE(ûi′
CRC,u), (5.5)

where HCE is the cross-entropy function, and hs is the correct hard value vector at stage s of the
polar code factor graph which is obtained from the training samples. Note that in the testing phase,
only the hard estimated values at stage 0 of the polar code factor graph, i.e. ĥi

0 (1 ≤ i ≤ Imax), and
the hard estimated values at the CRC layer, i.e. ûi

CRC, (Ithr < i ≤ Imax), are required to obtain the
decoded message bits.

We evaluate the proposed NCPBP decoder for P(128, 80) concatenated with a 16-bit CRC
which is also used in Section 5.1, and we compare the error-correction performance and latency
of NCPBP with those of [36, 53, 56]. All the neural BP-based decoders in this section are trained
using stochastic gradient descent with RMSPROP optimizer [60] and the learning rate is set to
0.001. We use Tensorflow [78] as our deep learning framework. Since all the considered neural
BP-based decoders satisfy the symmetry conditions [79], we collect 100, 000 zero codewords at
each Eb/N0 value for training, where Eb/N0 ∈ {4, 4.5, 5, 5.5} dB. All the weights of all the neural
BP-based decoders are initialized to one and all the LLR values are clipped to be in the interval
of [−20, 20]. The mini-batch size is set to 64 and each neural decoder is trained for 40 epochs.

86 Improved Belief Propagation Decoding of CRC-Polar Concatenated Codes

6 6.5 7 7.5

10−5

10−4

10−3

Eb/N0 [dB]

FE
R

(a)

5.5 6 6.5 7 7.5

10

20

30

Eb/N0 [dB]

L
at

en
cy

[T
im

e
St

ep
s]

(b)
[36] (Imax = 30) NNMS-30 [53] NNMS-RNN-30 [56]

CPBP-(30,15) NCPBP-(30,15)

Figure 5.5: (a) FER performance and (b) average decoding latency of various BP decoding algo-
rithms for P(128, 80) and a 16-bit CRC used in 5G.

To evaluate the error-correction performance, randomly generated codewords are used during the
testing phase and each decoder simulates at least 10, 000 codewords until it obtains at least 50
frames in error.

Fig. 5.5a compares the error-correction performance of the proposed NCPBP decoder with
state-of-the-art BP-based decoders in [36, 53, 56]. We use the NNMS-Imax decoder of [53] and the
NNMS-RNN-Imax decoder of [56] for our comparisons. In all the decoders, we set Imax = 30. At a
target FER of 10−5, the proposed NCPBP decoder provides about 0.5 dB gain with respect to [36],
0.4 dB gain with respect to [53], and 0.2 dB gain with respect to [56]. Compared to the CPBP
decoder of Section 5.1, the proposed NCPBP provides 0.25 dB FER performance improvement.

Table 5.1: Number of weights required by different neural BP decoders.

Decoder Number of weights

NNMS-30 [53] 3840
NNMS-RNN-30 [56] 11520
NCPBP-(30,15) 8288

Fig. 5.5b illustrates the average latency requirements of the NCPBP decoder compared to the
state-of-the-art decoders in [36,53,56]. It can be seen that while the average latency of the NCPBP
decoder is similar to that of the decoders in [36, 53], it is always better than that of [56]. In
addition, NCPBP incurs almost no latency overhead with respect to the proposed CPBP decoder

5.3 Improved CRC-Polar BP Decoding with Codeword Permutations 87

Figure 5.6: Permuted factor graph representations for P(8, 5).

while having a notably smaller error probability.
Table 5.1 shows the number of weights required for the proposed NCPBP decoder in compar-

ison with the neural BP decoders of [53, 56]. The proposed NCPBP decoder requires 28% fewer
weights with respect to the decoder in [56]. The decoder in [53] requires 46% of the weights that is
required by the proposed NCPBP decoder. However, the smaller number of weights in [53] results
in significant error-correction performance loss as shown in Fig. 5.5a.

5.3 Improved CRC-Polar BP Decoding with Codeword Permutations

In this section, we first introduce a technique to transform a factor-graph permutation to a code-
word permutation of polar codes. We then briefly summarize the multi-armed bandit problem
and formalize the selection of factor-graph permutations for polar decoding as a k-armed bandit
problem. Next, we introduce the proposed decoding method that utilizes the multi-armed bandit
algorithms to select the factor-graph permutations under CPBP decoding.

5.3.1 From Factor-Graph Permutations to Codeword Permutations

Factor graph permutations are a way to provide multiple representations of a single code. It was
observed in [80, 81] that there exists n! different ways to represent a polar code by permuting
the layers in its factor graph. Fig. 5.6 illustrates such permutations for P(8, 5), where 3 out of
3! = 6 permutations are shown. Note that the two leftmost factor graphs in Fig. 5.6 are formed by
applying cyclic shifts to the original factor graph depicted in Fig. 2.4a. In [55], parallel BP decoders
are applied on a set of randomly selected factor graphs of a polar code concatenated with a CRC.
Although this decoding scheme shows improvement in error probability when compared to a non
CRC-aided SCL decoder, permuting layers results in different BP scheduling which consequently

88 Improved Belief Propagation Decoding of CRC-Polar Concatenated Codes

Figure 5.7: The proposed mapping from factor graph permutation to codeword permutation for
P(8, 5).

requires the design of a different BP decoder for each permutation. Moreover, a large number
of random permutations are required to achieve a reasonable error-correction performance, which
makes this decoding scheme too complex for practical applications.

We denote by {ln−1, . . . , l0} the layers of the original factor graph of polar codes (the one rep-
resented in the right part of Fig. 5.7) and by {b(i)

n−1, . . . , b(i)
0 } the binary expansion of the integer

i.

Theorem 2. Let π : {0, . . . , n − 1} → {0, . . . , n − 1} be a permutation. Then, the synthetic channel

associated to the position with binary expansion {b(i)
n−1, . . . , b(i)

0 } on the factor graph with layers

{ln−1, . . . , l0} is the same as the synthetic channel associated to the position with binary expansion

{b(i)
π(n−1), . . . , b(i)

π(0)} on the factor graph with layers {lπ(n−1), . . . , lπ(0)}.

Proof. Consider the original factor graph of polar codes. Then, the synthetic channel associated to
the position with binary expansion {b(i)

n−1, . . . , b(i)
0 } is given by

(((W (b(i)
n−1))(b(i)

n−2))···)(b(i)
0),

where W is the transmission channel and the transformations W → W (0) and W → W (1) are the
“minus” and “plus” polar transforms formally defined in (2.3) and (2.4) of [80]. Note that the
i-th component of the message word ui is connected to the i-th component of the codeword xi by
associating a “XOR” to a 0 and a “dot” to a 1 in the binary expansion of the integer i. Note also
that, by permuting the layers of the factor graph, we simply permute the order of those “XOR”s
and “dot”s operations. Hence, the effect of applying a permutation π to the binary expansion of i

is the same as the effect of applying the same permutation on the layers of the factor graph. �

5.3 Improved CRC-Polar BP Decoding with Codeword Permutations 89

Fig. 5.7 shows an example of the proposed mapping applied to a permuted factor graph of
P(8, 5). It can be seen that, by using the permuted bit indices, the structure of the factor graph is
unchanged. Therefore, the original decoder can be used to perform decoding on all the required
permutations. In addition, the proposed mapping allows to use other decoding algorithms, such
as SC and SCL, on the permuted factor graphs without changing the decoder structure. This is
particularly useful for hardware implementation.

5.3.2 Multi-Armed Bandit Problem

A multi-armed bandit problem, or a k-armed bandit problem (k > 1), is an RL problem where an
agent has to repeatedly make a choice among k different actions (options). After each action is
performed, the agent receives a numerical reward that is drawn from a distribution that depends
on the selected action. The agent’s objective is to maximize the expected cumulative rewards over
a time period [67]. Let A = {a1, a2, . . . , ak} be the set of actions and q∗(a j) (1 ≤ j ≤ k) be the
corresponding expected reward of an action a j. q∗(a j) is called the value function and its value is
unknown to the agent. In this chapter, we consider three state-of-the-art algorithms designed for
the multi-armed bandit problem, namely, ε-greedy, upper confidence bound (UCB), and Thompson
sampling (TS).

ε-Greedy and UCB Algorithms

Let na j be the number of times that an action a j is selected up to the t-th time step. If a j is selected
at the t-th time step, na j is updated as na j = na j + 1 [67]. Then, the value function q∗(a j) is estimated
as Qa j in accordance with Qa j = Qa j + 1

na j

[
Rt − Qa j

]
, where Rt is the reward received by selecting

action a j at the t-th time step [67]. Initially, Qa j and a j are set to 0 (∀ j, 1 ≤ j ≤ k). Given the
estimated expected rewards Qa j , an exploitation occurs when the agent selects an action that has
the largest expected reward value [67]. On the other hand, an exploration occurs when the agent
selects any action that does not have the largest expected reward value [67].

Let a j∗ be the action selected by the agent at the t-th time step. Under the ε-greedy algorithm
a j∗ is selected as [67]

a j∗ =


arg max
∀a j

Qa j with probability 1 − ε ,

arandom with probability ε ,
(5.6)

90 Improved Belief Propagation Decoding of CRC-Polar Concatenated Codes

where arandom is a random action drawn i.i.d. from A. On the other hand, under the UCB algorithm
a j∗ is selected as

a j∗ = arg max
∀a j

Qa j + c

√
ln t
na j

 , (5.7)

where na j , 0 and c ∈ R+. If na j = 0, a j is considered as an exploitation action. Note that ε and c

control the degree of exploration of the ε-greedy and UCB algorithms, respectively.

Thompson Sampling

Instead of estimating the expected reward value q∗(a j) as in the ε-greedy and UCB algorithms, the
TS algorithm directly estimates the distribution of the reward value associated with each action.
In this chapter, as Rt ∈ {0, 1} a Beta distribution is used to estimate the reward’s distribution [82].
A Beta distribution has two shape parameters: α, β ∈ R+, and a different set of shape parameters
is used for each action. We denote a random sampling from the estimated reward distribution
of the j-th action as υa j = Beta(αa j , βa j). At the t-th time step, the TS algorithm first draws a
random sample from each of the estimated reward distributions. The agent then selects the action
a j∗ as a j∗ = arg max∀a j

υa j . The shape parameters corresponding to the selected action a j∗ are then
updated as αa j∗ = αa j∗ + Rt and βa j∗ = βa j∗ + Rt [82]. Initially, αa j = βa j = 1 (∀ j, 1 ≤ j ≤ k) [82].

5.3.3 Problem Formulation

Under BP decoding of polar codes, the original factor-graph permutation π0 is empirically observed
to have the best error-correction performance compared to other factor-graph permutations [81].
However, there are cases that a specific channel output realization, which cannot be decoded using
the original factor-graph permutation, can be decoded using another factor-graph permutation [81].
As the number of permutations, n!, is large, running BP decoding on all of the permutations is not
possible in real applications. Instead, the decoding is performed on a small set of M factor-graph
permutations, including the original factor-graph permutation [54, 55, 81, 83].

Let an action a j ∈ A (1 ≤ j ≤ k) be a random selection of M − 1 (M > 1) factor-graph permu-
tations that do not include the original factor-graph permutation. Consider the CRC verification is
not successful when CPBP decoding is performed on the original factor-graph permutation π0. The
proposed decoder then selects an action a j from the set A. If one of the factor-graph permutations
in a j results in a successful CRC verification, a reward of 1 is given to the decoder. Otherwise, if

5.3 Improved CRC-Polar BP Decoding with Codeword Permutations 91

Algorithm 7: Forming the action set
Input : n, k,M
Output: A
/* Define the original permutation */

1 π0 ← {s0, s1, · · · , sn−1}

/* Select M − 1 random permutations for each action */

2 A← ∅
3 for j ← 1 to k do
4 a j ← ∅

5 for t ← 1 to M − 1 do
6 π j,t ← RandShuffle(π0)
7 a j ← a j ∪ π j,t

8 A← A ∪ a j

9 return A

none of the permutations in a j results in a successful CRC verification under CPBP decoding, a
reward of 0 is given to the decoder. Therefore, among k sets of predefined factor-graph permuta-
tions, i.e., k different actions, the proposed decoding algorithm decides which set of factor-graph
permutations maximizes the reward during the course of decoding. The selection of factor-graph
permutations for CPBP decoding can thus be formalized as a k-armed bandit problem as defined
in Section 5.3.2.

5.3.4 Reinforcement Learning-Aided CPBP Decoding

The proposed decoding algorithm starts with the construction of A, the set of k different actions,
which is outlined in Algorithm 7. Each action a j ∈ A contains M − 1 random factor-graph permu-
tations. Formally, a j = {π j,1, π j,2, · · · , π j,M−1}, π j,t , π0 ∀ j, t, where 1 ≤ j ≤ k, and 1 ≤ t ≤ M − 1.
A random factor-graph permutation is formed by randomly permuting the PE stages of the original
factor graph π0, which is obtained by the RandShuffle function in Algorithm 7. The number of all
possible actions is

kmax =

(
n! − 1
M − 1

)
=

(n! − 1)!
(M − 1)!(n! −M)!

, (5.8)

which is generally intractable for practical values of n and M. Therefore, only the subset A of
all the possible actions is considered. In fact, A is constructed by randomly sampling from the

92 Improved Belief Propagation Decoding of CRC-Polar Concatenated Codes

complete set of actions as shown in Algorithm 7. Note that after A is formed, the set of actions in
A remains unchanged during the course of decoding.

Algorithm 8 outlines the proposed RL-CPBP decoding algorithm, given the predefined set
of actions A constructed in Algorithm 7. The proposed RL-CPBP decoder first initializes the
parameters of the multi-armed bandit algorithm depending on its type, which is defined by the
parameter Algo in Algorithm 8. If Algo indicates the ε-greedy or UCB algorithms, the parameters
of the multi-armed bandit algorithm are initialized as Qa j = na j = 0 ∀ j, 1 ≤ j ≤ k. If the TS
algorithm is used, the set of parameters is initialized as αa j = βa j = 1 ∀ j, 1 ≤ j ≤ k. Note that the
initialization process is only carried out once in the course of decoding.

Then, the proposed RL-CPBP decoding applies CPBP decoding over the original factor-graph
permutation π0. If the CRC verification, which is obtained by the VerifyCRC function in Algo-
rithm 8 is successful, the proposed decoder outputs the estimated message word û and the decoding
process is terminated. Otherwise, the RL-CPBP decoder selects an action a j∗ from A, which con-
tains a set of M − 1 random factor-graph permutations as described in Algorithm 7. Depending on
the type of the algorithm, the function SelectAction implements the selection criteria of the con-
sidered multi-armed bandit algorithms as introduced in Section 5.3.2. Note that the SelectAction
function can be performed in parallel with the first CPBP decoding attempt as there is no depen-
dency between them. Therefore, the selected action a j∗ can be obtained in advance without adding
a latency overhead to the proposed decoding algorithm. Moreover, if the first CPBP decoding
attempt over π0 is successful, the selected action a j∗ is discarded.

If the first CPBP decoding attempt fails in the proposed RL-CPBP decoding algorithm, addi-
tional CPBP decoding attempts are sequentially carried over the factor-graph permutations spec-
ified by a j∗ . As soon as the CRC verification is successful after CPBP decoding on one of the
factor-graph permutations in a j∗ , a reward of 1 is given to a j∗ , and the decoding outputs the esti-
mated message word that satisfies the CRC verification. On the other hand, if running CPBP on
all of the permutations in a j∗ does not result in a successful CRC test, a reward of 0 is given to
a j∗ and the decoding is declared unsuccessful. Finally, after each action selection, the parameters
associated with the selected action a j∗ are updated using the UpdateBandit function. Note that the
parameter update process is based on the received reward and the type of the mutli-armed bandit
algorithm as provided in Section 5.3.2.

5.3 Improved CRC-Polar BP Decoding with Codeword Permutations 93

Algorithm 8: RL-CPBP Decoding
Input : α,A, k,M,Algo
Output: û
/* Initialize the bandit parameters */

1 InitBandit(k,Algo)
/* Apply CPBP decoding on π0 */

2 û← CPBP(α, π0)
3 isCorrectπ0 ← VerifyCRC(û)
/* Select an action in advance */

4 a j∗ ← SelectAction(A,Algo)
/* If applicable, apply CPBP decoding on the permutations specified by a j∗ */

5 if (isCorrectπ0 = 0) then
6 isCorrecta j∗ ← 0
7 for t ← 1 to M − 1 do
8 û← CPBP(α, π j∗,t)
9 isCorrecta j∗ ← VerifyCRC(û)

10 if (isCorrecta j∗ = 1) then
11 break

/* Update the bandit parameters associated with a j∗ */

12 Rt ← isCorrecta j∗

13 UpdateBandit(Rt , a j∗ ,Algo)

14 return û

5.3.5 Simulation Results

In this section, the performance of various multi-armed bandit algorithms used by the proposed
RL-CPBP decoding is numerically evaluated. In addition, the error-correction performance of
the proposed RL-CPBP decoding in terms of FER is compared with that of other polar decoding
techniques. A complexity comparison of different multi-armed bandit algorithms in the proposed
RL-CPBP decoding is also given. We use P(128, 64) selected for the eMBB control channel of the
5G standard [16]. Furthermore, the polar code is concatenated with a CRC of length 16, which is
also used in 5G [16]. The total number of factor-graph permutations used by all BP-based decoders
is set to 7. We set Imax = 100 and Imin = 50 for all BP-based decoding algorithms.

Fig. 5.8 illustrates the dependence of the average reward on the parameters in ε-greedy and
UCB algorithms for P(128, 64). The simulation is carried out at Eb/N0 = 3.0 dB and we set

94 Improved Belief Propagation Decoding of CRC-Polar Concatenated Codes

2−8 2−7 2−6 2−5 2−4 2−3 2−2 2−1 20 21

0.33

0.34

0.35

0.36

0.37

0.38

ε c

A
ve

ra
ge

re
w

ar
d

ε-greedy UCB

Figure 5.8: A parameter study of the ε-greedy and UCB algorithms. The average reward is ob-
tained for the first 10000 time steps with k = 500 at Eb/N0 = 3.0 dB.

k = 500 for all multi-armed bandit algorithms. In this figure, the average reward of the first 10000
time steps received by the RL-CPBP decoder is plotted against the parameter value. Note that
a time step is increased by 1 when the multi-armed bandit algorithm is required for the action
selection, i.e., when CPBP decoding has failed on the original factor-graph permutation π0. As
seen from Fig. 5.8, at ε = 2−4 and c = 2−3, RL-CPBP decoding has the highest average reward
value for ε-greedy and UCB algorithms, respectively. The TS algorithm does not require parameter
tuning since α and β parameters associated with each action are optimized during the decoding
process.

Fig. 5.9 illustrates the performance of multi-armed bandit algorithms used by RL-CPBP decod-
ing with different values of k. This simulation is also carried out at Eb/N0 = 3.0 dB. We set ε = 2−4

for the ε-greedy algorithm and c = 2−3 for the UCB algorithm as those configurations provide the
best performance in Fig. 5.8. It can be observed that for all the bandit algorithms, k = 500 provides
the largest cumulative reward after the first 10000 time steps. Thus, we set k = 500 for the rest of
the chapter.

Fig. 5.10 illustrates the average cumulative reward over the first 10000 time steps for all the
multi-armed bandit algorithms. The simulation is performed at Eb/N0 = 3.0 dB with k = 500,
ε = 2−4, and c = 2−3. It can be seen that the ε-greedy algorithm has the best performance in terms
of the average cumulative reward. In addition, the UCB algorithm performs slightly better than
the TS algorithm. Note that the spikes in the early part of the curves are caused by the small value
of the time step, which makes the calculation of the average cumulative reward unreliable at the
initial phases of the algorithm.

5.3 Improved CRC-Polar BP Decoding with Codeword Permutations 95

100 200 300 400 500

0.34

0.36

0.38

k

C
um

ul
at

iv
e

re
w

ar
d

ε-greedy UCB TS

Figure 5.9: The impact of k on the performance of different multi-armed bandit algorithms used
by RL-CPBP decoding for P(128, 64), obtained for the first 10000 time steps.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

0

0.2

0.4

Time step

C
u
m
u
la
t
iv
e
r
e
w
a
r
d

ε-greedy UCB TS

Figure 5.10: Performance comparison of various multi-armed bandit algorithms used by RL-
CPBP decoding. The simulation is obtained at Eb/N0 = 3.0 dB with k = 500, ε = 2−4, and
c = 2−3.

Fig. 5.11 compares the FER of different factor-graph permutation selection schemes under the
CPBP decoding algorithm. In this figure, CPBP denotes the CPBP decoding algorithm performed
only on the original factor-graph permutation. CP-CPBP and RP-CPBP denote the cyclically-
shifted and random factor-graph permutations selection schemes proposed in [81] and [55], re-
spectively. Note that as there are n = 7 cyclically-shifted permutations for P(128, 64), we set the
number of additional random permutations used by RP-CPBP to 6, and M = 7 for the proposed
RL-CPBP decoder for a fair comparison. It can be seen that the proposed RL-CPBP decoder un-
der various multi-armed bandit algorithms has a similar FER performance. When compared with
CP-CPBP and RP-CPBP, an error-correction performance gain of at least 0.125 dB is obtained at

96 Improved Belief Propagation Decoding of CRC-Polar Concatenated Codes

4.5 4.75 5 5.25 5.5 5.75 6

10−4

10−3

10−2

Eb/N0 [dB]

FE
R

CPBP [58] CP-CPBP [81] RP-CPBP [55]

RL-CPBP (TS) RL-CPBP (UCB) RL-CPBP (ε-greedy)

Figure 5.11: Error-correction performance of different factor-graph permutation selection schemes
for P(128, 64).

4.5 4.75 5 5.25 5.5 5.75 6 6.25 6.5

10−4

10−3

10−2

Eb/N0 [dB]

FE
R

BP [33] CA-SCL2 [1] CA-SCL4 [1]

RL-CPBP (TS) RL-CPBP (UCB) RL-CPBP (ε-greedy)

Figure 5.12: Error-correction performance of RL-CPBP decoding and other decoding algorithms
of polar codes.

the target FER of 10−4. In addition, an FER gain of around 0.62 dB is obtained when the proposed
RL-CPBP decoding algorithm is compared with the baseline CPBP decoder at the FER of 10−4.

Fig. 5.12 compares the error-correction performance of the proposed RL-CPBP decoding with
BP decoding and CA-SCL decoding of polar codes. In Fig. 5.12, CA-SCLL indicates the CA-
SCL decoder with a list size of L. It can be observed that at the target FER of 10−4, the FER
performance of the proposed RL-CPBP decoder is around 0.92 dB better than that of the BP
decoding algorithm in [33]. At the same target FER, CA-SCL4 provides a better error-correction
performance in comparison with the proposed RL-CPBP decoder. However, compared with CA-
SCL2 at the same target FER, the proposed decoder has a performance gain of around 0.12 dB,
under different multi-armed bandit algorithms.

5.4 Chapter Conclusion 97

Table 5.2: Computational complexity of different permutation selection schemes in terms of the
maximum number of operations performed

Operations [81] [55] ε-greedy UCB TS

+ 0 0 2 2 + k 2
− 0 0 1 1 0
× 0 0 1 1+k 0
÷ 0 0 0 k 0
√
. 0 0 0 k 0

ln 0 0 0 k 0
Random sampling 0 M − 1 1 0 k
Sorting 0 0 k k k

Table 5.2 shows the maximum number of computations required by various permutation se-
lection schemes used in Fig. 5.11. Among all the multi-armed bandit algorithms, the ε-greedy
algorithm in general has the lowest computational complexity. This is because the TS algorithm
requires a sampling process for k different Beta distributions, which in general requires higher
computational complexity than applying an i.i.d. sampling from the interval of (0, 1) and doing a
multiplication as required by the ε-greedy algorithm. In addition, although using the cyclically-
shifted factor-graph permutations does not consume any additional complexity for the factor-graph
permutation selection, this technique is not applicable when more than n different permutations are
required. It can also be observed that the main drawback of the multi-armed bandit algorithms is
the sorting operations required to identify the exploitation action. However, as described in Sec-
tion 5.3.4, the action selection process can be performed in parallel with the first CPBP decoding
attempt. Therefore, there is no additional latency overhead. Furthermore, the approaches in [81]
and [55] come with the cost of error-correction performance degradation when compared with the
proposed RL-CPBP decoder as illustrated in Fig. 5.11.

5.4 Chapter Conclusion

This chapter aims to improve the error-correction performance of CRC-Polar concatenated codes
under BP decoding in two steps. First, we explore the CRC factor-graph to provide extrinsic infor-
mation to the polar factor-graph so that trainable weights are assigned to the edges of the unrolled
CRC-polar factor graphs to reduce the decoding latency. Second, we use the code permutations to
further improve the error-correction performance. In particular, the factor-graph selections of polar

98 Improved Belief Propagation Decoding of CRC-Polar Concatenated Codes

codes under CRC-aided BP decoding are formalized as a multi-armed bandit problem to select the
set of good permutations on the fly.

In the next chapters, we consider a closely related coding scheme when compared to polar
codes by considering communications systems using RM codes. Note that RM codes are highly
applicable for the URLLC use case of 5G thanks to their excellent error-correction performance
under highly-parallel near ML decoders.

99

Chapter 6

Decoding Reed-Muller Codes with Fast
Hadamard Transforms

In this chapter, we introduce a novel permutation decoding algorithm of RM codes tailored to
the existing FHT-FSCL decoder. In particular, the proposed Permuted FHT-FSCL (p-FHT-FSCL)
decoder performs the path extension in the codeword permutation domain to select the L best
decoding paths until the first constituent RM code of order 1 is decoded. Furthermore, as p-FHT-
FSCL utilizes different subsets of the codeword permutations sampled from the full symmetry
group of the codes, the error-correction performance of RM codes can be significantly improved by
running M p-FHT-FSCL decoders with list size L in parallel. We then perform a detailed numerical
performance analysis of the computational complexity, decoding latency, and memory requirement
of the proposed decoders and compare with those of sparse recursive-projection aggregation, FHT-
FSCL, and the state-of-the-art permuted successive-cancellation (Aut-SSC) decoders.

6.1 Permuted FHT-FSCL Decoding

The FHT-FSCL decoder introduced in [4] provides a better error-correction performance in com-
parison with the FSCL decoder for RM codes of low orders when small list sizes (L ≤ 8) are
used. However, for RM codes of orders greater than 2 and with a relatively large list size (L > 8),
FHT-FSCL decoding provides a negligible error-correction performance gain compared to FSCL
decoding. Inspired by the previous RM decoders introduced in [19, 84] and [38], in this sec-
tion, we propose a permuted FHT-FSCL decoding algorithm that significantly improves the FER

100 Decoding Reed-Muller Codes with Fast Hadamard Transforms

performance of FHT-FSCL decoding, while relatively maintaining the computational complexity,
decoding latency, and memory requirement of FHT-FSCL decoding when the same list size is used.
The details of the proposed p-FHT-FSCL decoder with list size L ≥ 1 are provided in Algorithm 9.

The proposed decoder is initialized with L active decoding paths whose LLR vectors are set to
the received channel LLRs y, and the path metric is set to 0. The proposed decoder then permutes
the LLR vectors of the L decoding paths using L random codeword permutations sampled from
the full symmetry group of the RM codes (lines 2-4 in Algorithm 9), where π init

l indicates the
initial codeword permutation applied to the l-th path. This initialization process is only performed
once for each received channel LLR vector y. The decoding continues with the path extension
performed in the permutation domain until the first constituent RM code of order 1 is visited.
Lines 6-12 of Algorithm 9 specify the proposed permutation decoding. In particular, we sample
two random codeword permutations, πl , for each active decoding path to obtain the permutations
of ανl , denoted as αtmp

ν . The permuted LLR vector αtmp
ν is used to compute the LLR values of

the left-child node αtmp
λ

using the f (·) function. Then, the reliability metric proposed in [84] is
computed to select the L permutations that have the maximum channel reliabilities LMl of the
left-child node λ (lines 8-11 of Algorithm 9). In line 12 of Algorithm 9, the selected permutations
are applied to the input LLR vectors to form the L best decoding paths. Here, by l∗org we denote the
index of the input LLR vector whose permutation π∗l provides the channel reliability that is among
the L largest channel reliabilities.

Note that the proposed permutation decoding selects the best permutations originated from
all the current active decoding paths, which is different from the decoders proposed in [19, 38, 84]
where permutation decoding is utilized separately for each decoding path. Furthermore, the left and
right child node of ν are recursively decoded using the proposed decoder as specified in lines 13-16
of Algorithm 9. Also note that a permutation sampled from the full symmetry group transforms a
RM code to another RM code of similar length and order, whose frozen bit indicies are in general
different from the frozen-bit indices of the original RM code. Therefore, one needs to re-permute
the estimated codeword of the permuted LLR vector ανl to reconstruct the original codeword [38].
These operations are described in lines 18-21 of Algorithm 9. Finally, the FHTL(·) and SPCL(·)
functions are queried to decode the first-order RM subcodes and the SPC subcodes, respectively.
The SPCL(·) function carries out the FSCL decoding operations, while the details of the FHTL(·)
function are provided in Algorithm 10.

In Algorithm 10, for each input path with index l, we apply a modified FHT decoding algo-

6.1 Permuted FHT-FSCL Decoding 101

Algorithm 9: p-FHT-FSCL(·) Decoding
Input : {ανl ,PMl}0≤l<L

Output: {x̂νl ,PMl}0≤l<L

1 Function p-FHT-FSCL
(
{αγl ,PMl}0≤l<L

)
:

/* Initialize L decoding paths with L random codeword permutaitons once */

2 if RM(rν ,mν) is the root node then
3 isPermutation← True

4 {π init
l : ανl

π init
l
−−→ ανl }0≤l<L

5 if 1 < rν < mν − 1 then
/* Permutation decoding if applicable */

6 if isPermutation = True then
7 isPerν = True
8 for l ← 0 to 2L do
9 lorg ← l mod L; πl : ανlorg

πl
−→ αtmp

ν

10 αtmp
λ
← f

(
αtmp

ν

)
; LMl ←

∑
∀i

∣∣∣α tmp
λ

[i]
∣∣∣

11 {π∗l , l∗org}0≤l<L ← Sort (LM0, . . . ,LM2L−1)

12 {π∗l : ανl∗org

π∗l
−→ ανl }0≤l<L

/* Recursively decode the left-child node RM(rν − 1,mν − 1) */

13 {αλl ← f
(
ανl

)
}0≤l<L

14 {x̂λl ,PMl}0≤l<L ← p-FHT-FSCL
(
{αλl ,PMl}0≤l<L

)
/* Recursively decode the right-child node RM(rν ,mν − 1) */

15 {αγl ← g(ανlorg
, x̂λl)}0≤l<L

16 {x̂γl ,PMl}0≤l<L ← p-FHT-FSCL
(
{αγl ,PMl}0≤l<L

)
/* Form the estimation of RM(rν ,mν) and repermute if applicable */

17 {x̂νl ← Concate(x̂γl ⊕ x̂λlorg
, x̂γl)}0≤l<L

18 if isPerν = True then

19 {(π∗lorg
)−1 : x̂νl

(π∗lorg
)−1

−−−−−→ x̂νl }0≤l<L

20 if RM(rν ,mν) is the root node then

21 {(π init
lorg

)−1 : x̂νl

(π init
lorg

)−1

−−−−−→ x̂νl }0≤l<L

22 else if rν = 1 then
23 if isPermutation = True then
24 isPermutation← False

25 {x̂νl ,PMl}0≤l<L ← FHTL
(
{ανl ,PMl}0≤l<L

)
26 else if rν = m − 1 then
27 {ανl ,PMl}0≤l<L ← SPCL

(
{x̂νl ,PMl}0≤l<L

)
28 return {x̂νl ,PMl}0≤l<L

102 Decoding Reed-Muller Codes with Fast Hadamard Transforms

Algorithm 10: FHTL(·) Decoding
Input : {ανl ,PMl}0≤l<L

Output: {x̂νl ,PMl}0≤l<L

1 Function FHTL({ανl ,PMl}0≤l<L):
/* Perform FHT decoding for each active decoding path */

2 E← ∅

3 for l ← 0 to L − 1 do
4 {Q0, . . . ,Qmin(L,2s)−1} ← FHT(ανl ,PMl)
5 E← E ∪ {Q0, . . . ,Qmin(L,2s)−1}

6 {Q∗0, . . . ,Q
∗
L−1} ← Sort(E)

/* Return the L best decoding paths */

7 for l ← 0 to L − 1 do
8 x̂νl ← Q∗{x̂ν}; PMl ← Q∗{PMν}

9 return {x̂νl ,PMl}0≤l<L

rithm on ανl and generate the min(L, 2s) most probable decoding paths and their associated path
metrics originated from ανl . The modified FHT decoding algorithm, FHT(·), that utilizes a low-
complexity path metric computation scheme is provided in Algorithm 11. Specifically, after the
FHT operations are applied to ανl in Algorithm 11, the indices of the largest absolute values of the
transformed LLR vectorαFHT

νl
are obtained using a sorting algorithm (line 10 of Algorithm 11). We

only need to construct a maximum of L best decoding paths generated from the current active path
l under FHT decoding. Therefore, it is not necessary to sort all the elements of the transformed
LLR values

∣∣∣αFHT
νl

[i]
∣∣∣ (0 ≤ i < Nν) given a small list size L. Consequently, the complexity of

the sorting algorithm used in line 10 of Algorithm 11 is min(L2s, s2s). Note that L2s is the num-
ber of comparisons required by a straight-forward sorting algorithm that loops through the vector∣∣∣αFHT

νl

∣∣∣ L times to identify the indices of L maximum elements, while a maximum of s2s compar-
isons are required by the merge sort algorithm, which is efficient for a large value of L [76]. The
sorting algorithm in line 10 of Algorithm 11 outputs the sorted indices {i∗0, . . . , i∗min(L,2s)−1}, where∣∣∣αFHT

νl
[i∗0]

∣∣∣ ≥ . . . ≥
∣∣∣∣αFHT

νl
[i∗min(L,2s)−1]

∣∣∣∣, and αFHT
νl

[i] indicates the i-th element of αFHT
νl

. The indices
{i∗0, . . . , i∗min(L,2s)−1} are then used to estimate the message word ûν associated with ανl (lines 12-17
of Algorithm 11). dec2bin(i) is a function that converts the decimal value of a bit index i to its
binary expansion represented by s binary numbers.

In line 18 of Algorithm 11, x̂ν is the estimated codeword corresponding to the i∗j-th element of

6.1 Permuted FHT-FSCL Decoding 103

Algorithm 11: FHT(·) Decoding
Input : αν ,PMl

Output: {Q0, . . . ,Qmin(L,2s)−1}

1 Function FHT(αν ,PMl, l):
/* Initialization */

2 αFHT
νl
← ανl ; LLRabs ←

∑Nν−1
k=0

∣∣∣ανl [i]
∣∣∣

/* Fast Hadamard Transform of ανl */

3 for t ← 0 to s − 1 do
4 for j ← 0 to 2t+1 − 1 do
5 for i← j2s−t to j2s−t + 2s−t−1 − 1 do
6 a← αFHT

νl
[i + 2s−t−1] −αFHT

νl
[i]

7 b← αFHT
νl

[i + 2s−t−1] +αFHT
νl

[i]
8 αFHT

νl
[i]← a

9 αFHT
νl

[i + 2s−t−1]← b

/* Obtain up to L best decoding paths */

10 {i∗0, . . . , i∗min(L,2s)−1} ← Sort
(∣∣∣αFHT

νl

∣∣∣)
11 for j ← 0 to min(L, 2s) − 1 do

/* Form the estimated messageword ûν */

12 ms =
1−sgnαFHT

νl
[i∗j]

2
13 {ms−1, . . . ,m0} = dec2bin(2s − 1 − i∗j)
14 t ← 0; ûν ← 0
15 for k ← 0 to 2s − 1 do
16 if k is an information bit index then
17 ûν[k]← mt ; t ← t + 1

18 x̂ν ← ûνG
⊗s

19 PMν ← PMl + 1
2

(
LLRabs −

∣∣∣αFHT
νl

[i∗j]
∣∣∣)

/* Form the output data structure */

20 Q j ← {x̂ν ,PMν}

21 return {Q0, . . . ,Qmin(L,2s)−1}

104 Decoding Reed-Muller Codes with Fast Hadamard Transforms

RM(1, 3)

RM(2, 3)

RM(2, 4)

RM(3, 4)

RM(3, 5)

Path extension in
the permutation domain

Initialize L random
permutations

RM(r,m) Apply SPCL(·) decoding to RM(m − 1,m)

RM(1,m) Apply FHTL(·) decoding to RM(1,m)

f functions
g functions

Figure 6.1: An example of the p-FHT-FSCL decoder with list size L ≥ 1 when applied to
RM(3, 5).

∣∣∣αFHT
νl

∣∣∣. The path metric associated with x̂ν is calculated as [3]

PMν = PMl +
1
2

Nν−1∑
k=0

(∣∣∣ανl [k]
∣∣∣ − (1 − 2x̂ν[k])ανl [k]

)
, (6.1)

which can be rewritten as

PMν = PMl +
1
2

LLRabs −

Nν−1∑
k=0

(1 − 2x̂ν[k])ανl [k]


= PMl +

1
2

(
LLRabs −

∣∣∣αFHT
νl

[i∗j]
∣∣∣) . (6.2)

Line 19 of Algorithm 11 computes the path metric associated with x̂ν using (6.2), which reuses the
transformed LLR vector αFHT

νl
to reduce the number of additions compared to (6.1). Algorithm 11

outputs the most probable decoding paths under FHT decoding as a set of the data structure Q j,
i.e., {Q0, . . . ,Qmin(L,2s)−1}, where Q j consists of an estimated codeword x̂ν and its corresponding
path metric PMν . Note that as a maximum of L best decoding paths are selected to continue the
decoding after ν is visited, it is sufficient for Algorithm 11 to generate a maximum of L candidate
paths associated with each LLR vector ανl (0 ≤ l < L).

In Algorithm 10, the outputs of the FHT(·) function that is applied to all the current active

6.1 Permuted FHT-FSCL Decoding 105

Algorithm 12: p-FHT-FSCL-L-M(·) Decoding
Input : y,M,L
Output: x̂

1 PM∗
← ∞

2 for i← 0 to M − 1 do
/* Initialization and decoding of the target RM code for each decoding attempt

*/

3 {ανl ← y,PMl ← 0}0≤l<L

4 {x̂νl ,PMl}0≤l<L ← p-FHT-FSCL
(
{ανl ,PMl}0≤l<L

)
5 l∗ ← arg min{PM0, . . . ,PML−1}

/* Select the best estimated codeword from M decoding attempts */

6 if PMl∗ < PM∗ then
7 PM∗

← PMl∗

8 x̂← x̂νl∗

9 return x̂

paths are stored in a set E. The sorting function applied to E (line 6 of Algorithm 10) generates
a set of sorted data structures {Q∗0, . . . ,Q

∗
L−1} such that Q∗0{PMν} ≤ . . . ≤ Q∗L−1{PMν}, where

Q∗i {PMν} indicates the path metric associated with the i-th data structureQ∗i . We use the merge sort
algorithm to output the sorted data structureQ∗i . Since the maximum size of E is L2, the maximum
number of floating-point comparisons required by the sorting operation in line 6 of Algorithm 10
is 2L2 log2 L [76]. The remainder of Algorithm 10 outputs the estimated codewords x̂νl and the
associated path metrics PMl of all the best L decoding paths. Fig. 6.1 depicts an example of the
proposed p-FHT-FSCL decoder on RM(3, 5), where the proposed permutation decoding is only
applied to RM(3, 5) and its descendant RM(2, 4). On the other hand, RM(3, 4) and RM(2, 3)
are decoded using the FSCL decoding operations specified for the SPC nodes, while RM(1, 3) is
decoded using the FHTL decoding algorithm specified in Algorithm 10.

It can be observed in Algorithm 9 that the proposed p-FHT-FSCL decoder utilizes different
subsets of the codeword permutations during the course of decoding. Therefore, to further utilize
the rich symmetry group of RM codes, we run M (M > 1) p-FHT-FSCL decoders with list size
L (L ≥ 1) in parallel. Then, we select the output codeword that has the smallest path metric
as the final estimated codeword. This improved decoder is denoted at p-FHT-FSCL-L-M. In
Algorithm 12, we summarize the p-FHT-FSCL-L-M decoder that utilizes path splitting in both
codeword permutation and information bit domains.

106 Decoding Reed-Muller Codes with Fast Hadamard Transforms

6.2 Performance Evaluation

6.2.1 Quantitative Complexity Analysis

We calculate the computational complexity of all the decoders presented in this chapter by counting
the number of floating-point additions and comparisons performed during the course of decoding
for a received channel LLR vector y. We summarize the computational complexities of all the
decoding functions applied to a RM subcode of the proposed decoders in Table 6.1 and Table 6.2.
Furthermore, we compute the decoding latency of all the decoders presented in this chapter by
using the assumptions considered in [3,26]. Specifically, the hard decisions obtained from the LLR
values and binary operations are computed instantaneously, and all the independent computations
are calculated in parallel. Finally, we consider the number of time steps required by a merge sort
algorithm to sort a vector of size N to be log2 N [76].

Table 6.1: Normalized computational complexities of different decoding functions required by
the p-FHT-FSCL-L decoder with L > 1. The decoding functions are applied to a RM sub-code
RM(r,m) visited by the decoding algorithm.

Function
Computation Sorting

Total
LLR Path Metric LLR Path Metric

f (·) L2m−1 - - - L2m−1

g(·) L2m−1 - - - L2m−1

RM(1,m) Lm2m L22m min(Lm2m,L22m) 2L2 log2 L Lm2m + min(Lm2m,L22m) + 2L2(2m−1 + log2 L)
RM(m − 1,m) - L(1 + 2τ) min(Lm2m,L22m) 2τL(1 + log2 L) min(Lm2m,L22m) + L

[
2τ(2 + log2 L) + 1

]

Table 6.2: Normalized computational complexities of different decoding functions of the p-FHT-
FSCL-1 decoder. The decoding functions are applied to a RM sub-code RM(r,m) visited by the
decoding algorithm.

Function LLR Computation LLR Sorting Total

f (·) 2m−1 - 2m−1

g(·) 2m−1 - 2m−1

RM(1,m) m2m 2m 2m(m + 1)
RM(m − 1,m) - 2m 2m

The FHT used in Algorithm 11 only uses in-place computations that do not require extra mem-
ory for the LLR values [85]. In addition, the path extension in the permutation domain of the

6.2 Performance Evaluation 107

Table 6.3: Summary of the memory requirements of the proposed decoders.

Algorithm Memory Requirement in Bits

p-FHT-FSC-1 (2N + 1)Q + N

p-FHT-FSC-1-M
(M > 0) (N + M(N + 1))Q + MN

p-FHT-FSC-L
(L > 1) N(L + 1)Q + 2LQ + 2NL

p-FHT-FSC-L-M
(L > 1,M > 1) N(LM + 1)Q + 2MLQ + 2MNL

proposed decoders is carried out sequentially for each decoding path. This allows the proposed de-
coders to maintain a similar memory requirement to store the LLR values compared to FHT-FSCL
decoding with the same list size. The memory requirements in terms of the number of bits for the
proposed decoders are summarized in Table 6.3, where Q = 32 is the number of bits used to store
a floating-point value.

6.2.2 Comparison with FSCL and FHT-FSCL Decoding

Fig. 6.2 illustrates the FER performance of FHT-FSCL and p-FHT-FSCL decoders with various list
sizes L ≥ 1. The FER performance of FSCL decoding with list size 32 (FSCL-32) is also plotted for
comparison. Furthermore, Fig. 6.3 plots the computational complexity C, decoding latency in time
stepsT , and memory requirementM in Kilobytes (KBs) of FHT-FSCL and p-FHT-FSCL decoders
considered in Fig. 6.2. Note that FHT-FSCL-1 indicates the FHT-FSC decoder and p-FHT-FSCL-1
indicates the proposed decoder that performs the path extension in the permutation domain until
the first constituent RM code of order 1 is visited, at which point the decoding operations are
performed exactly similar to those of FHT-FSC decoding.

It can be observed from Fig. 6.2 and Fig. 6.3 that by utilizing the proposed permutation decod-
ing scheme, p-FHT-FSCL decoding significantly outperforms FHT-FSCL decoding with a similar
list size L > 1 for all the considered RM codes, while relatively maintaining all the complexity
metrics. In particular, for RM(4, 9), p-FHT-FSCL-32 provides an error-correction performance
gain of 1 dB at the target FER of 10−4 in comparison with FHT-FSCL-32, while having overheads
of 9% in the computation complexity and 2.4% in the decoding latency. Note that p-FHT-FSCL-32
preserves the memory requirement of FHT-FSCL-32.

108 Decoding Reed-Muller Codes with Fast Hadamard Transforms

2 2.5 3 3.5 4

10−5

10−4

10−3

10−2

10−1

RM(2, 9)

Eb/N0 [dB]

FE
R

2 2.5 3 3.5 4

10−5

10−4

10−3

10−2

10−1

100 RM(3, 9)

Eb/N0 [dB]
3 3.5 4 4.5 5

10−5

10−4

10−3

10−2

10−1

100

RM(4, 9)

Eb/N0 [dB]

FHT-FSCL-1 [4] FHT-FSCL-2 [4] FHT-FSCL-4 [4] FHT-FSCL-8 [4] FHT-FSCL-16 [4] FHT-FSCL-32 [4]

p-FHT-FSC-1 p-FHT-FSC-2 p-FHT-FSCL-4 p-FHT-FSCL-8 p-FHT-FSCL-16 p-FHT-FSCL-32

FSCL-32 [3]

Figure 6.2: FER performance of the FHT-FSCL and p-FHT-FSC decoders for various RM codes.
The FER values of the FSCL decoder with list size 32 (FSCL-32) are also plotted for comparison.

1 2 4 8 16 32

0

0.5

1

1.5

2

·105

RM(2, 9)

L

C

1 2 4 8 16 32

0

1

2

3

·105

RM(3, 9)

L

C

1 2 4 8 16 32

0

1

2

3

·105

RM(4, 9)

L

C

1 2 4 8 16 32

6

8

10

12

·101

RM(2, 9)

L

T

1 2 4 8 16 32

2

3

4

·102

RM(3, 9)

L

T

1 2 4 8 16 32

2

4

6

8

·102

RM(4, 9)

L

T

1 2 4 8 16 32
0

20

40

60
RM(r, 9)

r ∈ {2, 3, 4}

L

M

FHT-FSCL-L [4] p-FHT-FSC-L

Figure 6.3: Computational complexity (C), decoding latency in time steps (T), and memory re-
quirement in KBs (M) of FHT-FSCL-L and p-FHT-FSCL-L considered in Fig. 6.2.

6.2 Performance Evaluation 109

Table 6.4 summarizes the computational complexity, decoding latency, and memory require-
ment of FSCL-32, FHT-FSCL-32, and p-FHT-FSCL-4, whose FER values are relatively similar at
the target FER of 10−3 as shown in Fig. 6.2. It can be observed from Table 6.4 that the negligible
error-correction performance improvement of FHT-FSCL-32 with respect to FSCL-32 comes at
the cost of significant computational complexity overhead, which is mainly caused by the sorting
operations required by the FHT-based decoding algorithm. Note that the computational complexity
required by the sorting operations under FHT-FSCL-based decoding increases significantly as the
list size increases. On the other hand, by utilizing the proposed permutation decoding algorithm,
the permuted FHT-FSCL decoder only requires a list size of 4 to obtain a similar or better error-
correction performance compared to FSCL-32 and FHT-FSCL-32 at the target FER of 10−3. The
use of a much smaller list size (4 instead of 32) also enables p-FHT-FSCL-4 to obtain significantly
lower complexity metrics compared to FSCL-32 and FHT-FSCL-32 as observed from Table 6.4.
For example, in comparison with FHT-FSCL-32 for RM(4, 9), p-FHT-FSCL-4 reduces 93% of the
computational complexity, 53% of the decoding latency, and 85% of the memory requirement.

Table 6.4: Comparison of normalized computational complexity (C), decoding latency in time
steps (T), and memory requirement in KBs (M) of FSCL-32 [3], FHT-FSCL-32 [4], and p-FHT-
FSCL-4, whose FER values are shown in Fig. 6.2.

FSCL-32 [3] FHT-FSCL-32 [4] p-FHT-FSCL-4
C T M C T M C T M

RM(2, 9) 9.59E+04 373 70.25 1.92E+05 114 70.25 2.09E+04 78 10.53
RM(3, 9) 1.55E+05 1039 70.25 2.66E+05 401 70.25 2.28E+04 233 10.53
RM(4, 9) 2.24E+05 1991 70.25 3.29E+05 875 70.25 2.44E+04 411 10.53

6.2.3 Comparison with Permuted SC-Based Decoding and RPA-Based Decoding

Fig. 6.4 illustrates the error-correction performance of the simplified SC (SSC) [24] decoder when
utilizing P random codeword permutations sampled from the full symmetry group of the codes
(Aut-SSC-P) and that of the RPA [39] and Sparse RPA (SRPA) [86] decoders. In addition, we
consider the following configurations of the proposed decoders in Fig. 6.4: p-FHT-FSCL-L, p-
FHT-FSCL-1-M1, and p-FHT-FSCL-4-M4. Note that p-FHT-FSCL-1-M1 runs M1 p-FHT-FSCL-1
decoders in parallel while p-FHT-FSCL-4-M4 runs M4 p-FHT-FSCL-4 decoders in parallel. Also
note that under p-FHT-FSCL-1, only the path extension in the permutation domain is carried out.

110 Decoding Reed-Muller Codes with Fast Hadamard Transforms

1 1.5 2 2.5

10−3

10−2

RM(2, 8)
P = 64,L = 16

M1 = 25,M4 = 5

Eb/N0 [dB]

FE
R

1 1.5 2 2.5

10−3

10−2

RM(2, 8)
P = 64,L = 16

M1 = 25,M4 = 5

Eb/N0 [dB]

FE
R

1 1.5 2 2.5

10−4

10−3

10−2

10−1 RM(3, 8)
P = 256,L = 64

M1 = 100,M4 = 16

Eb/N0 [dB]

FE
R

1 1.5 2 2.5

10−4

10−3

10−2

10−1 RM(3, 8)
P = 256,L = 64

M1 = 100,M4 = 16

Eb/N0 [dB]

FE
R

2 2.5 3 3.5

10−5

10−4

10−3

10−2

10−1
RM(4, 8)

P = 128,L = 64
M1 = 80,M4 = 16

Eb/N0 [dB]

FE
R

2 2.5 3 3.5

10−5

10−4

10−3

10−2

10−1
RM(4, 8)

P = 128,L = 64
M1 = 80,M4 = 16

Eb/N0 [dB]

FE
R

1 1.5 2 2.5

10−4

10−3

10−2

RM(2, 9)
P = 512,L = 64

M1 = 100,M4 = 20

Eb/N0 [dB]

FE
R

1 1.5 2 2.5

10−4

10−3

10−2

RM(2, 9)
P = 512,L = 64

M1 = 100,M4 = 20

Eb/N0 [dB]

FE
R

ML lower-bound [19] RPA [39] SRPA [86] Aut-SSC-P [24, 38]
p-FHT-FSCL-L p-FHT-FSCL-1-M1 p-FHT-FSCL-4-M4

Figure 6.4: Error-correction performance of various RM decoders.

6.2 Performance Evaluation 111

Ta
bl

e
6.

5:
C

om
pa

ri
so

n
of

no
rm

al
iz

ed
co

m
pu

ta
tio

na
lc

om
pl

ex
ity

(C
),

de
co

di
ng

la
te

nc
y

in
tim

e
st

ep
s

(T
),

an
d

m
em

or
y

re
qu

ir
em

en
ti

n
K

B
s

(M
)o

fv
ar

io
us

R
M

de
co

de
rs

co
ns

id
er

ed
in

Fi
g

6.
4.

R
PA

[3
9]

SR
PA

[8
6]

A
ut

-S
SC

-P
[2

4,
38

]
p-

FH
T-

FS
C

L
-L

p-
FH

T-
FS

C
L

-1
-M

1
p-

FH
T-

FS
C

L
-4

-M
4

C
T

M
C

T
M

P
C

T
M

L
C

T
M

M
1

C
T

M
M

4
C

T
M

R
M

(2
,8

)
1.

8E
+

6
35

92
13

5.
5

6.
5E

+
5

35
92

69
.2

64
9.

4E
+

4
80

67
.0

16
4.

5E
+

4
92

18
.1

25
5.

7E
+

4
46

26
.9

5
4.

8E
+

4
68

22
.4

R
M

(3
,8

)
4.

3E
+

8
61

84
55

6.
8

7.
9E

+
7

61
84

28
1.

5
25

6
4.

5E
+

5
14

7
26

5.
0

64
5.

2E
+

5
35

6
69

.5
10

0
2.

3E
+

5
10

0
10

4.
5

16
1.

7E
+

5
17

3
69

.5
R
M

(4
,8

)
3.

8E
+

10
78

16
92

2.
2

3.
6E

+
9

78
16

46
5.

2
12

8
2.

2E
+

5
16

5
13

3.
0

64
5.

7E
+

5
67

3
69

.5
80

1.
7E

+
5

13
1

83
.8

16
1.

8E
+

5
25

1
69

.5
R
M

(2
,9

)
9.

8E
+

6
10

25
0

53
5.

1
3.

4E
+

6
10

25
0

27
1.

6
51

2
1.

5E
+

6
10

6
10

58
.0

64
5.

4E
+

5
13

4
13

8.
5

10
0

5.
1E

+
5

58
20

8.
6

20
4.

2E
+

5
83

17
2.

6

112 Decoding Reed-Muller Codes with Fast Hadamard Transforms

The values of L, M1, and M4 are selected to provide a similar error-correction performance of the
proposed decoders in comparison with RPA and Aut-SSC decoding at the target FER of 10−3. We
also plot the empirical ML lower bounds of the FER values for all the RM codes considered in
Fig. 6.4 [19]. In Table 6.5, we summarize the computational complexity, decoding latency in time
steps, and memory requirement in KBs of all the decoders considered in Fig. 6.4.

It can be observed from Fig. 6.4 and Table 6.5 that all the permutation decoding algorithms
outperform the RPA and SRPA decoders in various complexity metrics while having a similar
or better error-correction performance compared to the RPA decoder. Note that p-FHT-FSCL-L
is the most memory-efficient decoding algorithm, while p-FHT-FSCL-1-M1 provides the lowest
decoding latency in time steps among all the decoders. On the other hand, the p-FHT-FSCL-4-M4

configuration enables a better decoding latency and memory requirement trade-off compared to p-
FHT-FSCL-L and p-FHT-FSCL-1-M1 settings and obtains the smallest computational complexity
for RM(3, 8) and RM(2, 9). In addition, for RM(2, 8) and RM(3, 8), p-FHT-FSCL-4-M4 has a
similar memory requirement to p-FHT-FSCL-L, while having significantly smaller computational
complexity and decoding latency. Compared to Aut-SSC-512 for RM(2, 9) and at a target FER
of 10−4, p-FHT-FSCL-4-M4 reduces 72% of the computational complexity, 22% of the decoding
latency, and 84% of the memory requirement. Compared to SRPA decoding for RM(2, 9) and at
the target FER of 10−4, p-FHT-FSCL-4-M4 provides 36% reduction in the memory consumption
and 88% reduction in the computational complexity, while achieving several order-of-magnitude
lower decoding latency and 0.14 dB gain in error-correction performance.

6.3 Chapter Conclusion

In this chapter, we introduced a novel permutation decoding algorithm for Reed-Muller (RM)
codes tailored to the existing fast successive-cancellation list decoder with fast Hadamard trans-
form (FHT-FSCL). The proposed permuted FHT-FSCL (p-FHT-FSCL) decoder performs the path
extension in the codeword permutation domain to select the L best decoding paths until the first
constituent RM code of order 1 is decoded. As the p-FHT-FSCL decoder utilizes different sub-
sets of the codeword permutations sampled from the full symmetry group of the codes, the error-
correction performance of RM codes can be significantly improved by running M p-FHT-FSCL de-
coders with list size L in parallel. We performed a detailed numerical performance analysis of the
computational complexity, decoding latency, and memory requirement of the proposed decoders

6.3 Chapter Conclusion 113

and compared with those of sparse recursive-projection aggregation, FHT-FSCL, and the state-of-
the-art permuted successive-cancellation (Aut-SSC) decoders. The simulation results show that
for the RM code of length 512 with order 2, the proposed decoder with L = 4 and M = 20 re-
duces 72% of the computational complexity, 22% of the decoding latency, and 84% of the memory
requirement with respect to the state-of-the-art Aut-SSC decoder with 512 random codeword per-
mutations, while obtaining a similar error-correction performance at the target frame error rate of
10−4.

115

Chapter 7

Decoding Reed-Muller Codes with
Successive Codeword Permutations

In this chapter, a generalized Successive Permutations (SP) scheme for the RLD-based algorithms
of RM codes is first proposed. We then provide details on the integration of the proposed SP
scheme into an improved RLD-based algorithm, forming the SP-aided RLD (SP-RLD) and the
simplified SP-RLD (SSP-RLD) decoding algorithms. Finally, we numerically analyze the error-
correction performance, computational complexity, decoding latency, and memory requirement of
the proposed decoder and compare them with those of the state-of-the-art RM decoders.

7.1 Improved Successive Permutation Scheme

The SP selection criteria used in [84] is an oversimplification that does not take into account the
existing parity constraints in the code. In fact, it treats all the constituent RM codes λ as Rate-
1 codes. This oversimplification becomes inaccurate, especially for low-order RM codes, as the
number of information bits is significantly smaller than Nλ = 2s−1. Consequently, the error prob-
ability of the SP scheme in [84] for SCL decoding on low-order RM codes is not satisfactory,
especially when a small to moderate list size is used.

To tackle this issue, we propose an accurate SP scheme that selects the best codeword permuta-
tion π∗ by performing ML decoding on the symmetry group of RM codes. The proposed selection

116 Decoding Reed-Muller Codes with Successive Codeword Permutations

criteria is given as
π
∗ = arg max

π∈Ps

Mπ

(
α(λ)

)
, (7.1)

where Mπ

(
α(λ)

)
is the permutation metric of π when π is applied to the parent node ν that is

calculated as

Mπ

(
α(λ)

)
= max
∀η(λ)

imax
λ∑

i=imin
λ

η
(λ)
s−1,iα

(λ)
s−1,i, (7.2)

with η(λ) being the hard decisions of a valid codeword corresponding to λ . It can be observed
that if λ is a Rate-1 code, (7.1) reverts to the scheme used in [84] as η

(λ)
s−1,i is set to sgn(α (λ)

s−1,i) to
maximize the likelihood of η(λ) and α(λ). The elements of η(λ) can be calculated by performing
ML decoding on λ . However, ML decoding is generally of high complexity. Therefore, in this
chapter we derive Mπ

(
α(λ)

)
for special cases of λ for which the ML decoding operations can be

realized with low complexity. Unlike [84], the setPs considered in this chapter contains the general
codeword permutations sampled from the full symmetry group of the codes [38]. Nevertheless, we
limit the maximum number of permutations stored in Ps to s, which is equal to the number of
cyclic factor-graph permutations as considered in [84].

Since first-order constituent RM codes can be decoded efficiently using ML decoding [87,
Chapter 14], the permutation metric Mπ

(
α(λ)

)
can be efficiently calculated if λ is a first-order RM

code. When λ is of order 2 or higher, we propose to simplify the computation of Mπ

(
α(λ)

)
by

using the metric proposed in [84]. The calculation of Mπ

(
α(λ)

)
for the considered special nodes in

this chapter is summarized as follows.

• RM(1, s − 1): The metric Mπ

(
α(λ)

)
is the likelihood of the best decoding path of λ given

α(λ), which can be calculated efficiently using FHT decoding [87, Chapter 14].

• RM(rλ , s − 1) (rλ ≥ 2): We calculate Mπ

(
α(λ)

)
for constituent RM codes of order rλ ≥ 2 as

Mπ

(
α(λ)

)
=

imax
λ∑

i=imin
λ

∣∣∣∣α (λ)
s−1,i

∣∣∣∣. (7.3)

7.2 Improved Recursive List Decoding with Successive Permutation 117

Algorithm 13: Improved RLD with SP of RM Codes
Input : y
Output: x̂
/* Initialize L random codeword permutations associated with L decoding paths */

1 for l ← 0 to L − 1 do
2 πtmp : y

πtmp
−−−→ yπl

3 Q(r,m)[l].πinit ← πtmp; Q(r,m)[l].α← yπl

4 Q(r,m)[l].PM← 0; Q(r,m)[l].x̂← 0

/* Improved RLD with SP */

5 Q(r,m)[0], . . . ,Q(r,m)[L − 1]← SP-RLD
(
Q(r,m)[0], . . . ,Q(r,m)[L − 1]

)
/* Selection of the best decoding path */

6 l∗ ← arg min0≤l≤L−1{Q(r,m)[l].PM}
7 π∗init ← Q(r,m)[l∗].πinit

8
(
π∗init

)−1
: Q(r,m)[l∗].x̂

(π∗init)
−1

−−−−−→ x̂

9 return x̂

7.2 Improved Recursive List Decoding with Successive Permutation

We now propose an improved RLD algorithm that utilizes the SP scheme introduced in Section 7.1.
The details of the proposed algorithm are provided in Algorithm 13. In the beginning of Algo-
rithm 13, the proposed algorithm with list size L initializes all the L decoding paths with L random
codeword permutations sampled from the symmetry group of RM codes. Each decoding path
with index l (0 ≤ l < L) associated with RM(r,m) is characterized by a data structure Q(r,m) that
stores the channel LLR vector α, the path metric PM, the estimated codeword x̂, and the initial
codeword permutation πinit. The permutation πtmp, assigned to πinit for each decoding path, is a
random codeword permutation sampled from the full symmetry group of RM codes. The recursive
decoding algorithm utilizing the SP scheme, denoted as the SP-RLD(·) function, is then applied to
the initialized data structures {Q(r,m)[0], . . . ,Q(r,m)[L − 1]}, and returns the updated data structures
of the L best decoding paths. Next, the updated path metrics of all the estimated decoding paths
given by the SP-RLD(·) function are used to identify the best decoding path with index l∗ that has
the smallest path metric. The initial codeword permutation π∗init associated with the best decoding
path l∗ is then obtained. Finally, an inverted permutation

(
π∗init

)−1
is applied to the best candidate

codeword Q(r,m)[l∗].x̂ to obtain the final estimated codeword x̂.

118 Decoding Reed-Muller Codes with Successive Codeword Permutations

Algorithm 14: SP-RLD(·)
Input : Q(r,m)[0], . . . ,Q(r,m)[L − 1]
Output: Q(r,m)[0], . . . ,Q(r,m)[L − 1]

1 if r = 1 then
2 Q(r,m)[0], . . . ,Q(r,m)[L − 1]← FHT-List

(
Q(r,m)[0], . . . ,Q(r,m)[L − 1]

)
3 else if r = m − 1 then
4 Q(r,m)[0], . . . ,Q(r,m)[L − 1]← SPC-List

(
Q(r,m)[0], . . . ,Q(r,m)[L − 1]

)
5 else

/* Decode the left-child node with SP */
6 for l ← 0 to L − 1 do
7 Q(r−1,m−1)[l].πinit ← Q(r,m)[l].πinit
8 Q(r−1,m−1)[l].PM← Q(r,m)[l].PM
9 M∗ ← −∞

10 for p← 0 to m − 1 do
11 πtmp : Q(r,m)[l].α

πtmp
−−−→ αtmp

12 α(λ) ← f (αtmp)
13 if r = 2 then
14 Compute Mπtmp

(
α(λ)

)
using FHT

15 else if r > 2 then
16 Compute Mπtmp

(
α(λ)

)
using (7.3)

17 if Mπtmp

(
α(λ)

)
> M∗ then

18 Q(r−1,m−1)[l].α← α(λ)

19 Q(r,m)[l].πSP ← πtmp

20 M∗ ← Mπtmp

(
α(λ)

)
21 Q(r−1,m−1)[0], . . . ,Q(r−1,m−1)[L − 1]← SP-RLD

(
Q(r−1,m−1)[0], . . . ,Q(r−1,m−1)[L − 1]

)
/* Decode the right-child node */

22 for l ← 0 to L − 1 do
23 Q(r,m−1)[l].πinit ← Q(r−1,m−1)[l].πinit
24 Q(r,m−1)[l].PM← Q(r−1,m−1)[l].PM
25 Q(r,m−1)[l].α← g

(
Q(r−1,m−1)[l].x̂,Q(r,m)[l

(r,m)
org].α

)
26 Q(r,m−1)[0], . . . ,Q(r,m−1)[L − 1]← SP-RLD

(
Q(r,m−1)[0], . . . ,Q(r,m−1)[L − 1]

)
/* Repermute the decoded codewords */

27 for l ← 0 to L − 1 do
28 Q

tmp
(r,m)[l].πinit ← Q(r,m−1)[l].πinit

29 Q
tmp
(r,m)[l].PM← Q(r,m−1)[l].PM

30 Q
tmp
(r,m)[l].x̂← Concat(Q(r−1,m−1)[l

(r−1,m−1)
org].x̂,

31 Q(r−1,m−1)[l
(r−1,m−1)
org].x̂ ⊕ Q(r,m−1)[l].x̂)

32 πSP ← Q(r,m)[l
(r,m)
org].πSP

33 (πSP)−1 : Qtmp
(r,m)[l].x̂

(πSP)−1

−−−−−→ Q
tmp
(r,m)[l].x̂

34 for l ← 0 to L − 1 do
35 Q(r,m)[l]← Q

tmp
(r,m)[l]

36 return Q(r,m)[0], . . . ,Q(r,m)[L − 1]

7.2 Improved Recursive List Decoding with Successive Permutation 119

In Algorithm 14, we provide the details of the SP-RLD(·) function. If the constituent RM
codes are of order 1 or m − 1, the ML decoders of the first-order RM codes (FHT-List(·) [20])
or that of the SPC codes (SPC-List(·) [3]) is queried to obtain the estimated codewords of the
best L decoding paths and their path metrics, respectively. Note that as the FHT-List(·) [20] and
SPC-List(·) functions perform ML decoding at the parent node level, no codeword permutation is
required to obtain the optimal decoding outputs of the L best decoding paths. On the other hand, if
the constituent codeRM(r,m) satisfies 1 < r < m−1, the SP-RLD(·) function is recursively queried
to decode the left and right child nodesRM(r−1,m−1) andRM(r,m−1) ofRM(r,m), respectively,
whose decoding results are used to construct the decoding output of RM(r,m). Specifically, from
line 6 to line 20 of Algorithm 14, the best permutations of RM(r,m) are obtained independently
for each decoding path with index l, using the proposed SP scheme. By πtmp, we indicate a random
permutation sampled from the full symmetry group of RM(r,m), which is used to obtain the LLR
values associated with the right childRM(r−1,m−1), i.e.,α(λ), followed by the permutation metric
computation specified in Section 7.1. If a better permutation πtmp is found for the l-th decoding
path, the selected permutation πSP is updated in the data structure Q(r,m)[l], which is required to
perform the inverted permutation after the right-child node RM(r,m − 1) is decoded. In addition,
the data structures of the left-child nodes Q(r−1,m−1) are also initialized during the permutation
selection of RM(r,m). Given the initialized data structures of the left-child node Q(r−1,m−1), the
SP-RLD(·) function is then queried to obtain the updated data structures Q(r−1,m−1) corresponding to
the L best decoding paths of the left-child node.

The decoding of the right-child nodes RM(r,m − 1) is specified in line 22 to line 26 of Algo-
rithm 14. The g(·) functions are used to obtain the LLR values of the right-child nodes, given the
hard estimations of the left-child node, i.e.,Q(r−1,m−1)[l].x̂, and the corresponding LLR values of the
parent node where the left-child node is originated from, i.e., Q(r,m)[l

(r,m)
org].α. Here, by l(r,m)

org we indi-
cate the path index of the parent node from which the surviving left-child node is derived. After the
decoding of the right-child nodes is finished, the estimated codewords of the L best paths associated
with the parent node RM(r,m) are obtained based on the estimated hard values of the left-child and
the right-child nodes (see lines 30 and 31), where Concat(a, b) indicates the concatenation of the
binary vectors a and b. In addition, Q(r−1,m−1)[l

(r−1,m−1)
org].x̂ indicates the hard values of the left-child

node that corresponds to the l-th active decoding path Q(r,m−1)[l].x̂ of the right-child node. Next,
Q(r,m)[l

(r,m)
org].πSP, the codeword permutation previously selected for the parent node from which the

l-th active decoding path of the right-child node is originated from, is used to re-permute the es-

120 Decoding Reed-Muller Codes with Successive Codeword Permutations

RM(1, 3)

RM(2, 3)

RM(2, 4)

RM(3, 4)

RM(3, 5)

Permutation selection with FHT
for each decoding path

Permutation selection according to (7.3)
for each decoding path

Select L random
permutations

(a)

RM(1, 3)

RM(2, 3)

RM(2, 4)

RM(3, 4)

RM(3, 5)

Permutation selection according to (7.3)
for each decoding path

Select L random
permutations

(b)
RM(r,m) Apply SPC-List decoding to RM(m − 1,m)

RM(1,m) Apply FHT-List decoding to RM(1,m)

f functions
g functions

Figure 7.1: Examples of the proposed decoder when applied to RM(3, 5) with (a) S = 2 and (b)
S = 1.

timated codeword of the parent node. Finally, the data structures {Q(r,m)[0], . . . ,Q(r,m)[L − 1]} of
the L best decoding paths for the parent node RM(r,m) are returned as the outputs of the recursive
SP-RLD(·) function. Note that we keep track of the initial permutation πinit applied to the parent
code for each active decoding path during the course of decoding.

As the constituent RM codes are decoded successively under the proposed decoder, we pro-
pose a complexity and decoding latency reduction scheme that only applies the SP operations for
the first S (S > 0) left-child nodes. We refer to this simplified decoding algorithm as SSP-RLD.
Fig. 7.1 illustrates an example of SSP-RLD decoding when applied to RM(3, 5) using S ∈ {2, 1}.
In Fig. 7.1(a), since the left-child node of RM(3, 5) is a RM code of order 2, the codeword per-
mutation of RM(3, 5) is selected in accordance with (7.3). Then, the LLR values associated with

7.3 Performance Evaluation 121

RM(2, 4) are obtained with the f functions. Since the left-child node of RM(2, 4) is a first-order
RM code, FHT decoding is used to select the best permutation for RM(2, 4), followed by the FHT-
List decoder applied on the list of L decoding paths with the selected codeword permutations for
RM(2, 4). Finally, as all the right-child RM codes are SPC codes, SPC-List decoding is used to
decode them. The similar decoding operations are carried out for RM(2, 5) in Fig. 7.1(b) except
that the SP operations are only applied to the parent node of the first left-child node, while the
original permutations are used for the parent node RM(2, 4) of the second left-child node.

The computational complexity and the decoding latency of SP-RLD and SSP-RLD decoders
significantly increase as the list size L increases. This is mainly caused by path metric and LLR
sorting operations in the constituent SPC-List(·) and FHT-List(·) functions. Since random sub-
sets of the full symmetry group of RM codes are utilized for the SSP-RLD decoder, we propose to
further reduce the computational complexity and the decoding latency of the SSP-RLD decoder by
using a variation of the ensemble decoding technique in [38]. In particular, we run T (T ≥ 1) inde-
pendent SSP-RLD decoders with a small list size L in parallel and select the output codeword that
has the smallest path metric among the T resulting codewords from the T constituent SSP-RLD
decoders. This variation of the proposed decoder is referred to as the ensemble SSP-RLD (Ens-
SSP-RLD) decoding. Note that Ens-SSP-RLD decoding enables flexible design choices where the
error-correction performance and complexity trade-offs can be explored with different choices of
S, L, and T .

7.3 Performance Evaluation

7.3.1 Quantitative Complexity Analysis

In this chapter, we consider sequential and parallel implementations of the permutation selection
scheme in Section 7.1. Under the sequential implementation of the proposed SP scheme, a similar
memory consumption as SC-based decoders is required to store the internal LLR values [84]. On
the other hand, under the parallel implementation, a memory of mLNQ bits is required to store
the internal LLR values, where m is the maximum number of the candidate permutations for the
SP scheme, and Q is the number of quantization bits. In addition, the SP scheme in both the
sequential and parallel implementations requires mQ memory bits to store the permutation metric
Mπ

(
α(λ)

)
. Throughout this chapter, we use Q = 32 for all the considered decoders. Note that the

FHT operations compute and store the new LLR values directly to α(λ), thus no extra memory is

122 Decoding Reed-Muller Codes with Successive Codeword Permutations

Table 7.1: Memory requirement in terms of the number of bits required by the SP-RLD and SSP-
RLD decoders.

Decoding Algorithm Memory Requirement

SP-RLD-1
SSP-RLD-S-1 (L = 1, sequential SP) 2NQ + mQ + N

SP-RLD-1
SSP-RLD-S-1 (L = 1, parallel SP) (m + 1)NQ + mQ + N

SP-RLD-L
SSP-RLD-S-L (L > 1, sequential SP) N(L + 1)Q + mQ + 2NL

SP-RLD-L
SSP-RLD-S-L (L > 1, parallel SP) N(mL + 1)Q + mQ + 2NL

Table 7.2: Memory requirement in terms of the number of bits required by the Ens-SSP-RLD
decoder.

Decoding Algorithm Memory Requirement

Ens-SSP-RLD-S-1-T (L = 1, sequential SP) (NQ + mQ + N)T + NQ

Ens-SSP-RLD-S-1-T (L = 1, parallel SP) (mNQ + mQ + N)T + NQ

Ens-SSP-RLD-S-L-T (L > 1, sequential SP) (NLQ + mQ + 2NL)T + NQ

Ens-SSP-RLD-S-L-T (L > 1, parallel SP) (mNLQ + mQ + 2NL)T + NQ

needed under FHT decoding. Table 7.1 summarizes the memory requirements of the SP-RLD-L
(L ≥ 1) and SSP-RLD-S-L (S > 0) decoders, while Table 7.2 provides the memory consumption
of the Ens-SSP-RLD-S-L-T (T ≥ 1) decoder. Note that with T = 1, Ens-SSP-RLD-S-L-T reverts
to SSP-RLD-S-L. In addition, with S being the number of left-child nodes visited following the
course of decoding and with T = 1, Ens-SSP-RLD-S-L-T reverts to SP-RLD-L.

The decoding latency of the proposed decoders is computed by counting the number of time
steps required by all the floating point operations. We assume that there is no resource constraint.
Thus, all concurrent operations in f (·) and g(·) functions, the path metric computations, and the
computations of Mπ

(
α(λ)

)
in Section 7.1 require one time step [3, 26]. The permutation metric

Mπ

(
α(λ)

)
obtained from FHT requires s time steps for a first-order RM code located at the s-th

stage [87, Chapter 14]. Furthermore, for the sequential implementation, the proposed SP scheme
requires s time steps if rλ ≥ 2 and s2 time steps if rλ = 1, since each permutation is evaluated

7.3 Performance Evaluation 123

2 2.5 3 3.5 4
10−5

10−4

10−3

10−2

10−1
RM(2, 9)
D = 4096
M = 32

Eb/N0 [dB]

FE
R

2 2.5 3 3.5 44 4.5

10−5

10−4

10−3

10−2

10−1

100

RM(3, 9)
D = 16384

M = 16

Eb/N0 [dB]
2.5 3 3.5 4 4.5

10−5

10−4

10−3

10−2

10−1

100

RM(4, 9)
D = 4096
M = 16

Eb/N0 [dB]

2.5 3 3.5 4 4.5

10−5

10−4

10−3

10−2

10−1

100

RM(4, 9)
D = 4096
M = 16

Eb/N0 [dB]

SP-RLD-1 SP-RLD-2 SP-RLD-4 SP-RLD-8 SP-RLD-16 SP-RLD-32

SSP-RLD-4-1 SSP-RLD-4-2 SSP-RLD-4-4 SSP-RLD-4-8 SSP-RLD-4-16 SSP-RLD-4-32

SP-RLD-32 (cyclic) SCS-D [88, 89] SP-SCL-M [84] FSCL-32 [3]

Figure 7.2: Error-correction performance of the proposed decoders and that of the SCS, SP-SCL,
and FSCL decoders.

sequentially. In the parallel implementation the proposed SP scheme, a single time step is required
if rλ ≥ 2 and s time steps are required if rλ = 1. In addition, the hard decisions obtained from
the LLR values and binary operations are computed instantaneously [1, 3, 26]. Finally, we assume
that the number of time steps required by a merge sort algorithm to sort an array of N elements is
log2(N) [76, Chapter 2]. We also use similar assumptions to compute the decoding latency of all
the other decoders considered in this chapter.

To calculate the computational complexity of the decoders considered in this chapter, we count
the number of floating point operations, namely, the number of additions, subtractions, and com-
parisons, required during the course of decoding. Note that the merge sort algorithm requires
N log2 N comparisons to sort an array of length N [76, Chapter 2].

7.3.2 Comparison with FSCL, SC-Stack and SP-SCL Decoding Algorithms

Fig. 7.2 provides the error-correction performance in terms of FER of the proposed SP-RLD-L
and SSP-RLD-S-L decoders, and that of the FSCL, SC-Stack (SCS), and SP-SCL decoders for
RM(r, 9), r ∈ {2, 3, 4}. The SCS decoder considered in this chapter utilizes the enhanced score
function introduced in [89] to reduce the stack size when compared with the conventional SCS

124 Decoding Reed-Muller Codes with Successive Codeword Permutations

1 2 4 8 16 32

105

106

RM(2, 9)

Γ

1 2 4 8 16 32

105

106

RM(3, 9)

Γ

1 2 4 8 16 32

105

106

RM(4, 9)

Γ

1 2 4 8 16 32

102 RM(2, 9)

L

Υ

1 2 4 8 16 32

103

RM(3, 9)

L

Υ

1 2 4 8 16 32

103

RM(4, 9)

L

Υ

SP-RLD-L (sequential SP) SSP-RLD-4-L (sequential SP)
SP-RLD-L (parallel SP) SSP-RLD-4-L (parallel SP)

Figure 7.3: Computational complexity and decoding latency of the proposed decoders under the
sequential and parallel implementations of the SP scheme.

decoder introduced in [88]. In Fig. 7.2, the SCS decoder with stack size D is denoted as SCS-D,
while the SP-SCL decoder with list size M is denoted as SP-SCL-M. The values of D and M

are selected to allow an FER performance comparable to that of the FSCL decoder with list size
32 (FSCL-32). With S = 4, the SSP-RLD decoder has a negligible error-correction performance
degradation when compared to the SP-RLD decoder with the same list size. Furthermore, we also
provide the FER performance of the proposed SP-RLD-32 decoder where only cyclic factor-graph
permutations are considered.

It can be observed from Fig. 7.2 that the FER of the SP-RLD-32 decoder with cyclic factor-
graph permutations is relatively similar to that of the SP-RLD-8 decoder with the codeword permu-
tations sampled from the full symmetry group. In addition, at no additional cost, the SP-RLD-32
decoder that utilizes the general codeword permutations obtains a maximum gain of 0.7 dB at the
target FER of 10−4, when compared to the SP-RLD-32 decoder that only uses cyclic factor-graph
permutations.

Fig. 7.3 illustrates the computational complexity (Γ) and the decoding latency (Υ) of SP-RLD-L
and SSP-RLD-4-L under the sequential and parallel implementations of the proposed SP scheme.
In addition, the memory requirement (Φ) in kilobytes (kB) of SP-RLD-L and SSP-RLD-4-L is
provided in Fig. 7.4. It can be observed from Fig. 7.3 that the SSP-RLD-4-L decoder relatively
maintains the computational complexity when compared with SP-RLD-L. However, SSP-RLD-4-

7.3 Performance Evaluation 125

1 2 4 8 16 32

101

102

RM(r, 9) - r ∈ {2, 3, 4}

L
Φ

SP-RLD-L (sequential SP) SSP-RLD-4-L (sequential SP)
SP-RLD-L (parallel SP) SSP-RLD-4-L (parallel SP)

Figure 7.4: Memory consumption in kB (Φ) of the proposed decoders whose FER curves are
provided in Fig. 7.2.

L significantly reduces the decoding latency of SP-RLD-L while only incurring negligible error-
correction performance degradation as seen from Fig. 7.2. Furthermore, Fig. 7.3 and Fig. 7.4 reveal
the trade-offs between the decoding latency and memory requirement of the proposed decoders un-
der the sequential and parallel implementations of the SP scheme. In particular, the improvements
in the decoding latency of the parallel implementation over the sequential implementation come at
the cost of memory consumption overheads.

Table 7.3: Comparison of computational complexity (Γ), decoding latency in time steps (Υ), and
memory requirement in kB (Φ) of SCS, SP-SCL, FSCL, and proposed SSP-RLD decoders consid-
ered in Fig. 7.2.

SCS-D [88, 89] SP-SCL-M [84] FSCL-32 [3] SSP-RLD-4-2
D Γ Υ Φ M Γ Υ Φ Γ Υ Φ Γ Υs Φs Υp Φp

RM(2, 9) 4096 4.21×107 3.0×105 8208 32 8.52×105 1.8×103 70 9.62×104 373 70 8.33×104 337 6.3 111 38.3
RM(3, 9) 16384 4.83×106 1.0×104 32832 16 4.37×105 2.3×103 36 1.64×105 1039 70 4.86×104 414 6.3 252 38.3
RM(4, 9) 8192 1.13×107 4.2×104 16416 16 4.58×105 3.1×103 36 2.25×105 1991 70 3.41×104 482 6.3 369 38.3

Table 7.3 summarizes the computational complexity (Γ), the decoding latency in time steps
(Υ), and the memory requirement in kB (Φ) of the FSCL, SCS, and SP-SCL decoders, and those
of the SSP-RLD decoder with L = 2 and S = 4, whose FER values are plotted in Fig. 7.2. For the
SSP-RLD-4-2 decoder, Υs and Φs indicate the decoding latency and the memory requirement of
the sequential SP implementation, while Υp and Φp indicate the decoding latency and the memory
requirement of the parallel implementation of the SP scheme, respectively. It can be seen in Fig. 7.2
that the FER performance of SSP-RLD-4-2 is similar to or better than that of FSCL, SCS, and SP-

126 Decoding Reed-Muller Codes with Successive Codeword Permutations

SCL decoders at the target FER of 10−4 for all the considered RM codes. In addition, under both
sequential and parallel implementations of the SP scheme, SSP-RLD-4-2 significantly outperforms
the FSCL, SCS, and SP-SCL decoders in various complexity metrics as shown in Table 7.3.

7.3.3 Comparison with State-of-the-Art RM Decoders

Fig. 7.5 compares the FER performance of SSP-RLD-S-L, Ens-SSP-RLD-S-L′-T , and that of the
state-of-the-art decoders for various RM codes. Note that the list size L′ and the number of de-
coding attempts T used by the Ens-SSP-RLD decoder satisfy the constraint L = L′T , where L is
the list size used by the SSP-RLD decoder. L′ is selected as the smallest list size that allows the
Ens-SSP-RLD decoder to have an error-correction performance that is within 0.1 dB of that of the
SSP-RLD decoder at the target FER of 10−3. We consider the RLDP [19] and the RLDA [19, 38]
algorithms with list size M, the SSC-FHT decoder [20, 24] when applied to P factor-graph per-
mutations (Per-SSC-FHT-P), and P general permutations (Aut-SSC-FHT-P) sampled from the full
symmetry group of RM codes. The empirical lower bounds of the error-correction performance of
ML decoding [19] are also provided for all the RM configurations in Fig. 7.5. In addition, the FER
performance curves of the sparse-RPA (SRPA) decoder introduced in [86] are shown for RM(2, 8),
RM(3, 8), RM(4, 8), and RM(2, 9).

Table 7.4 summarizes the computational complexity, the decoding latency, and the memory
requirement of SSP-RLD and Ens-SSP-RLD decoding, while Table 7.5 provides the complexity
metrics of SRPA, Aut-SSC-FHT, and RLDA decoding. Note that the decoders provided in Ta-
ble 7.4 and Table 7.5 have similar error-correction performance at the target FER of 10−3 as shown
in Fig. 7.5. In this chapter, a fully-parallel implementation of the SRPA decoder, in which all the
operations that can be carried out concurrently are executed at the same time, is considered. The
SRPA decoding algorithm runs two fully-parallel RPA decoders with each decoder using a quarter
of the code projections at each recursion step [86]. Thus, the SRPA decoder effectively reduces
50% of the total number of projections used by the conventional RPA algorithm [39]. This config-
uration incurs negligible error-correction performance loss with respect to the conventional RPA
decoder in [39] for the second and third order RM codes of size 256.

In Table 7.5, we consider fully-parallel and semi-parallel implementations of the Aut-SSC-FHT
decoder. Under the semi-parallel implementation, the number of parallel SSC-FHT decoders is set
to the list size L used by SSP-RLD decoding for the same RM code. This configuration enables
the Aut-SSC-FHT-P decoder to have a relatively similar memory consumption in comparison with

7.3 Performance Evaluation 127

1 1.5 2 2.5

10−3

10−2

M = 32, P = 32
(S,L) = (3, 8)
(L′,T) = (1, 8)

RM(2, 8)

Eb/N0 [dB]

FE
R

1 1.5 2 2.5

10−3

10−2

M = 32, P = 32
(S,L) = (3, 8)
(L′,T) = (1, 8)

RM(2, 8)

Eb/N0 [dB]

FE
R

1 1.5 2 2.5

10−4

10−3

10−2

10−1
M = 64, P = 128
(S,L) = (2, 32)
(L′,T) = (4, 8)

RM(3, 8)

Eb/N0 [dB]

1 1.5 2 2.5

10−4

10−3

10−2

10−1
M = 64, P = 128
(S,L) = (2, 32)
(L′,T) = (4, 8)

RM(3, 8)

Eb/N0 [dB]

2 2.5 3 3.5
10−5

10−4

10−3

10−2

10−1
M = 64, P = 128
(S,L) = (2, 32)
(L′,T) = (2, 16)

RM(4, 8)

Eb/N0 [dB]2 2.5 3 3.5
10−5

10−4

10−3

10−2

10−1
M = 64, P = 128
(S,L) = (2, 32)
(L′,T) = (2, 16)

RM(4, 8)

Eb/N0 [dB]

0.5 1 1.5 2
10−4

10−3

10−2

10−1 M = 128, P = 128
(S,L) = (3, 16)
(L′,T) = (2, 8)

RM(2, 9)

Eb/N0 [dB]

FE
R

0.5 1 1.5 2
10−4

10−3

10−2

10−1 M = 128, P = 128
(S,L) = (3, 16)
(L′,T) = (2, 8)

RM(2, 9)

Eb/N0 [dB]

FE
R

0.5 1 1.5 2 2.5

10−4

10−3

10−2

10−1

100
M = 128, P = 128

(S,L) = (2, 32)
(L′,T) = (4, 8)

RM(3, 9)

Eb/N0 [dB]0.5 1 1.5 2 2.5

10−4

10−3

10−2

10−1

100
M = 128, P = 128

(S,L) = (2, 32)
(L′,T) = (4, 8)

RM(3, 9)

Eb/N0 [dB]
1 1.5 2 2.5 3

10−4

10−3

10−2

10−1

100 M = 64, P = 128
(S,L) = (2, 32)
(L′,T) = (4, 8)

RM(4, 9)

Eb/N0 [dB]

1 1.5 2 2.5 3

10−4

10−3

10−2

10−1

100 M = 64, P = 128
(S,L) = (2, 32)
(L′,T) = (4, 8)

RM(4, 9)

Eb/N0 [dB]

RLDP-M [19] RLDA-M [19, 38] Per-SSC-FHT-P [20, 90] Aut-SSC-FHT-P [20, 38]

ML (lower bound) [19] SRPA [86] SSP-RLD-S-L Ens-SSP-RLD-S-L′-T

Figure 7.5: Error-correction performance of various permutation decoding algorithms of RM
codes. The FER of the SRPA decoder and the lower bound of ML decoding are also plotted
for comparison.

128 Decoding Reed-Muller Codes with Successive Codeword Permutations

SSP-RLD-S-L and Ens-SSP-RLD-S-L′-T decoding when the sequential SP scheme is used. On
the other hand, in the fully-parallel implementation of Aut-SSC-FHT decoding, P concurrent SSC-
FHT decoders are used. For Aut-SSC-FHT decoding, Υsp and Φsp indicate the latency and memory
requirement of the semi-parallel implementation, while Υp and Φp indicate the decoding latency
and memory requirement of the fully-parallel implementation, respectively.

Table 7.4: Computational complexity (Γ), decoding latency in time steps (Υ), and memory re-
quirement in kB (Φ) of the SSP-RLD and Ens-SSP-RLD decoders considered in Fig. 7.5.

SSP-RLD-S-L Ens-SSP-RLD-S-L′-T
S L Γ Υs Φs Υp Φp S L′ T Γ Υs Φs Υp Φp

RM(2, 8) 3 8 1.32×105 287 9.5 141 65.5 3 1 8 1.21×105 222 9.5 76 65.5
RM(3, 8) 2 32 3.39×105 588 35.0 526 259.0 2 4 8 2.72×105 298 35.3 236 259.3
RM(4, 8) 2 32 2.63×105 1092 35.0 1066 259.0 2 2 16 1.77×105 231 35.5 205 259.5

RM(2, 9) 3 16 6.60×105 376 36.0 185 292.0 3 2 8 6.48×105 302 36.3 111 292.3
RM(3, 9) 2 32 7.55×105 767 70.0 688 582.0 2 4 8 6.48×105 413 70.3 334 582.3
RM(4, 9) 2 32 5.66×105 1613 70.0 1583 582.0 2 4 8 4.23×105 572 70.3 542 582.3

Table 7.5: Computational complexity (Γ), decoding latency in time steps (Υ), and memory re-
quirement in kB (Φ) of the SPRA, RLDA, and Aut-SSC-FHT decoders considered in Fig. 7.5.

SRPA [86] RLDA-M [19, 38] Aut-SSC-FHT-P [20, 38]
Γ Υ Φ M Γ Υ Φ P Γ Υsp Φsp Υp Φp

RM(2, 8) 6.55×105 3592 69.2 32 6.20×104 317 35.0 32 8.12×104 261 9.4 69 34.1
RM(3, 8) 7.92×107 6184 281.5 64 2.04×105 854 69.0 128 3.07×105 507 34.5 132 133.5
RM(4, 8) 3.63×109 7816 465.2 64 2.83×105 1433 69.0 128 2.64×105 583 34.5 151 133.5

RM(2, 9) 3.44×106 10250 271.6 128 4.82×105 490 274.0 128 7.18×105 663 35.5 89 266.5
RM(3, 9) - - - 128 7.64×105 1336 274.0 128 6.97×105 767 68.5 197 266.5
RM(4, 9) - - - 64 5.20×105 2283 138.0 128 6.37×105 1087 68.5 277 266.5

It can be observed in Table 7.4 that Ens-SSP-RLD significantly reduces the computational
complexity and decoding latency of SSP-RLD, especially for r ∈ {3, 4}, while relatively preserving
the error-correction performance and memory requirement of SSP-RLD decoding. In comparison
with the semi-parallel implementation of Aut-SSC-FHT decoding, except for the case ofRM(2, 8),
significant improvements in the computational complexity and latency of Ens-SSP-RLD under the

7.4 Chapter Conclusion 129

sequential SP scheme are recorded, at the cost of negligible error-correction performance loss
and memory consumption overheads. For instance, with relatively similar FER performance and
memory consumption, Ens-SSP-RLD-2-4-8 reduces 34% of the computational complexity and
47% of the decoding latency of Aut-SSC-FHT-128 for RM(4, 9).

Under the fully-parallel implementation, Aut-SSC-FHT provides the best decoding latency in
comparison with the RLDA, SP-RLD, and Ens-SSP-RLD decoders. Specifically, under the parallel
implementation of the proposed SP scheme and in comparison with the fully-parallel implementa-
tion of Aut-SSC-FHT decoding for RM(2, 9), Ens-SSP-RLD-3-2-8 reduces 10% of the decoding
complexity of Aut-SSC-FHT-128 at the cost of 10% memory requirement overhead and 1.25× in-
crease in the number of decoding time steps. In addition, RLDA suffers from high computational
complexity and high decoding latency that are mainly caused by sorting operations, especially with
large values of M and r. In particular, for RM(4, 9) and with relatively similar FER performance,
the Ens-SSP-RLD-2-4-8 decoder with sequential SP scheme reduces 19% of the computational
complexity, 75% of the number of time steps, and 49% of the memory consumption compared to
RLDA-64.

It can be seen in Fig. 7.5 that with the same list size M or the same number of permutations
P, using the permutations randomly sampled from the full symmetry group of the codes provides
significant error-correction performance improvement for RLDA-M and Aut-SSC-FHT-P decoders
at no additional cost, compared to the RLDP-M and Per-SSC-FHT-P decoders, respectively. In
addition, as observed from Fig. 7.5, Table 7.4, and Table 7.5, all permutation decoding algorithms,
RLDA, Aut-SSC-FHT, SSP-RLD, and Ens-SSP-RLD, provide significantly better error-correction
performance with significantly lower computational complexity and decoding latency compared to
the SRPA decoder for various RM code configurations.

7.4 Chapter Conclusion

In this chapter, a novel successive permutation (SP) scheme is proposed to significantly improve
the error-correction performance of Reed-Muller (RM) codes under an improved recursive list
decoding (RLD) algorithm. We performed low-complexity decoding operations on the rich sym-
metry group of RM codes to select a good codeword permutation of the code on the fly. Efficient
decoding latency and complexity reduction schemes were introduced that relatively maintain the
error-correction performance. We performed a numerical analysis of the proposed decoders in

130 Decoding Reed-Muller Codes with Successive Codeword Permutations

terms of error-correction performance, computational complexity, decoding latency, and memory
requirement and compared them with those of the state-of-the-art RM decoders. The simulation
results confirmed the effectiveness of the proposed decoder under various configurations of RM
codes. Specifically, for the RM codes of lengths 256 and 512 and with code orders 3 and 4, the
proposed decoder significantly reduces the computational complexity and the decoding latency of
the state-of-the-art permuted successive-cancellation decoder with fast Hadamard transform (Aut-
SSC-FHT), while relatively preserving the error-correction performance and memory requirement
of Aut-SSC-FHT decoding.

131

Chapter 8

Conclusion and Future Work

8.1 Conclusion

The deployment of 5G technologies has significantly stimulated the research topics that deal with
high-performance and low-complexity decoding algorithms of short linear block codes. Recently,
polar codes were selected the coding scheme in the eMBB and URLLC scenarios of the 5G stan-
dard, and they are being considered for the mMTC use case. In this thesis, we first introduced
high-performance and low-complexity bit-flipping decoding algorithms that can achieve a simi-
lar error-correction performance of the state-of-the-art SCL decoding algorithm with list size 32,
while negligibly increasing the average decoding latency, average computational complexity, and
memory requirement of the SCL decoder with a small list size of 4. The advantages of the pro-
posed bit-flipping decoders allow for an energy-efficient and high-reliability decoding algorithm of
polar codes, making them suitable for the mMTC use case of the 5G standard. We then addressed
the poor error-correction performance of BP decoding when applied to CRC-polar concatenated
codes by introducing novel decoding techniques that utilize the CRC factor graph and the po-
lar code permutations. The proposed decoding techniques tailored to BP decoding of CRC-polar
concatenated codes are beneficial for communication systems that require soft-input soft-output
decoder as part of a Turbo channel equalizer. Finally, when considering RM codes of short lengths
and low rates, we proposed novel permutation decoding algorithms which yield near ML decod-
ing performance, while providing more efficient error-correction performance and computational
complexities trade-offs compared to state-of-the-art RM decoders.

132 Conclusion and Future Work

(a) (b)

Figure 8.1: Encoding of (a) RM and (b) KO codes [2].

8.2 Future Work

Future research directions considering the decoding algorithms of polar and RM codes introduced
in this thesis include designing hardware architectures and evaluating their performances, which
are an important step to clearly examine the practicability of the proposed algorithms. In addi-
tion, analytical approaches that define theoretical bounds on the error-correction performance and
decoding latency of the proposed decoders are also a potential research direction, which further
complete the research initialized by the thesis.

It is worth to note that next-generation wireless systems such as 6G and beyond require more
stringent requirements than 5G in terms of reliability and decoding latency. The remainder of this
chapter discusses potential research directions for a new line of future work, focusing on a recently
proposed coding scheme based on Deep Learning (DL), named Kronecker Operations (KO) codes,
which was recently shown to outperform the conventional RM coding scheme.

KO codes are recently introduced in [2] which contain a pair of neural encoder and neural de-
coder optimized simultaneously under the autoencoder system modeling. Similar to RM codes, a

8.2 Future Work 133

KO code is characterized by the code parameters (m, r), where N = 2m and K =
∑r

i=0

(
r
i

)
. Given the

code parameters (m, r), the RM and KO codes are denoted as RM(m, r) and KO(m, r), respectively,
and mm,r indicates a valid messageword of RM(m, r). To overcome the curse of dimensionality,
i.e., with large value of K, KO codes are constructed using the recursive Plotkin representation
similar to RM and polar codes [2]. Fig. 8.1 compares the encoding function of RM and KO codes
for m = 8 and r = 2, respectively. It can be seen from Fig. 8.1 that KO codes use the same mes-
sagesmm,r similar to RM codes and directly learn a waveform representation x through the neural
encoding functions g(·)’s. Each different g(·) function is specified by a different set of trainable
parameters. In terms of decoding, both RM and KO codes employ a successive cancellation de-
coding strategy, which is depicted in Fig. 8.2. Note that the log-sum-exponential (LSE) transform
functions used in RM decoders are often approximated by the low complexity min-sum operations
with negligible error-correction performance loss, whereas under KO codes, the LSE functions are
replaced by the neural decoder functions f (·)’s. It is worth to note that both RM and KO codes
utilize the first-order RM codes RM(m, 1), thus maximum-a-posteriori (MAP) or equivalently ML
decoding algorithms are used to decode the first-order RM codes for both RM and KO codes.
It was shown in [2] that KO codes outperform RM codes under the conventional fast Hadamard
transform (FHT) and successive cancellation (SC) decoding thanks to the direct mapping from the
message word m to the waveform representation x of the codes and the nonlinearities introduced
by the neural encoder and decoder functions. However, KO codes suffer from various issues that
prevent them to be practical. In this section, we state some research problems associated with KO
codes and their potential solutions.

High computational complexity and memory consumption

The current soft-MAP decoding function used by KO codes requires the likelihood evaluation of
all the possible codewords for RM(m, 1), which contain 2m+1 codewords. Therefore, with a large
value of m, the soft-MAP functions require a significant amount of computational complexity, i.e.,
O

(
2(2m+1)

)
. On the other hand, FHT decoding is a low-complexity MAP (ML) decoding of the

RM(m, 1) codes with a complexity of O (m2m), however, it only outputs the hard estimate m̂ ofm.
Therefore, we propose to use FHT decoding and belief propagation (BP) decoding to provide the
soft estimate ofm. In particular, FHT decoding is first utilized to obtain the most likely codeword
m̂(m,1) given y(m,1), which is then used to initialized the posterior belief messages of BP decoding
at the leaf-node level of the RM(m, 1) code. The message passing operations of BP decoding are

134 Conclusion and Future Work

(a) (b)

Figure 8.2: Decoding of (a) RM and (b) KO codes [2].

then applied to the factor-graph representation of RM(m, 1) for a fixed number of iterations, and a
soft estimate of m̂(m,1) is obtained at the end of the BP decoding.

In addition, it can also be observed from Fig. 8.1 and Fig. 8.2 that KO codes require a signif-
icant amount of memory to store the weights of all the neural mapping functions, i.e., g(·)’s and
f (·)’s functions, which can be addressed by using techniques such as weight sharing and weight
quantization during the course of parameter optimization.

Inflexible code rates and low-order modulation

In [2], a KO code is optimized independently for a specific code length and rate. When a new KO
code with a different length and rate is considered, both the encoder and the decoder are required
to update all the trained parameters from memory to perform encoding and decoding. This incurs

8.2 Future Work 135

significant decoding latency and memory overheads. To address this problem, the neural mapping
functions used in KO codes can be optimized for a set of code rates to provide a reasonable trade-
off between the error-correction performance degradation and the memory consumption overheads.
In addition, the network architectures of KO codes can be modified to support higher order mod-
ulation schemes. In particular, instead of learning the mapping function from m to x ∈ CN , the
f (·) and g(·) functions can be directly trained to perform the mapping of m to xt ∈ C

N
2t (t ∈ Z+)

with some power constraint. This is particularly useful as the system bandwidth can be improved
by using a higher modulation scheme at a high operating SNR.

Extension to list decoding

The optimization of the network parameters strictly requires differentiable encoding/decoding op-
erations, which is only available for the most probable estimated codeword m̂ obtained through
the bit-wise MAP decoding of the KO decoder. However, in practical scenarios, a list of the most
probable decoding paths is often considered to significantly improve the error-correction perfor-
mance of the codes. This extension is relatively similar for the conventional decoding algorithms
such as SC decoding for polar and RM codes. On the other hand, the path extension operations
are non-differentiable for KO codes as a new decoding path is forked from a current active de-
coding path by flipping the hard decision of a certain information bit, followed by the path metric
sorting and pruning, which are also non-differentiable operations. As a consequent, the conven-
tional supervised learning based approach used in [2] may not be directly suitable when KO codes
are optimized targeting a list decoding algorithm. Therefore, indirect learning techniques that can
circumvent this problem such as reinforcement learning should be investigated.

End-to-end training

KO codes are optimized with the assumption that there is a reliable feedback channel that al-
lows the gradient flows from the receiver to the encoder to optimize all the trainable parameters.
Therefore, we address the end-to-end training problem of KO codes where reliable communication
channels between the receiver and the transmitter are not available, e.g., with unknown or partially
available channel statistics. This problem can be addressed by using existing gradient approxima-
tion methods. However, novel low-complexity techniques to approximate the gradient should be
investigated as the existing works mostly rely on the complicated Generative Adversarial Networks

136 Conclusion and Future Work

(GANs) to generate the gradients, which impose another learning problem of the system.

Towards end-to-end multi-user communications with KO codes

In [2], KO codes are only designed for the simplified point-to-point communication scenarios.
However, in practice, a transmission scheme considering Multiple-Input Multiple Output (MIMO)
and Orthogonal Frequency Division Multiplexing (OFDM) is often considered. Therefore, MIMO-
OFDM modeling should be included as additional inference layers of the end-to-end communi-
cation system using KO codes. The KO codes’ parameters are then optimized to minimize the
performance metric given the practical MIMO-OFDM scheme.

137

Bibliography

[1] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “LLR-based successive cancellation
list decoding of polar codes,” IEEE Trans. Signal Process., vol. 63, no. 19, pp. 5165–5179,
Oct. 2015.

[2] A. V. Makkuva, X. Liu, M. V. Jamali, H. Mahdavifar, S. Oh, and P. Viswanath, “KO codes:
inventing nonlinear encoding and decoding for reliable wireless communication via deep-
learning,” in International Conference on Machine Learning. PMLR, 2021, pp. 7368–7378.

[3] S. A. Hashemi, C. Condo, and W. J. Gross, “Fast and flexible successive-cancellation list
decoders for polar codes,” IEEE Trans. on Sig. Proc., vol. 65, no. 21, pp. 5756–5769, Nov
2017.

[4] N. Ghaddar, H. Saber, H.-P. Lin, J. H. Bae, and J. Lee, “Simplified decoding of polar codes
by identifying Reed-Muller constituent codes,” in GLOBECOM 2020 - 2020 IEEE Global
Communications Conference, 2020, pp. 1–6.

[5] W. Ryan and S. Lin, Channel codes: classical and modern. Cambridge University Press,
2009.

[6] C. E. Shannon, “A mathematical theory of communication,” The Bell system technical jour-
nal, vol. 27, no. 3, pp. 379–423, 1948.

[7] I. Reed, “A class of multiple-error-correcting codes and the decoding scheme,” Transactions
of the IRE Professional Group on Information Theory, vol. 4, no. 4, pp. 38–49, 1954.

[8] D. E. Muller, “Application of boolean algebra to switching circuit design and to error de-
tection,” Transactions of the I.R.E. Professional Group on Electronic Computers, vol. EC-3,
no. 3, pp. 6–12, 1954.

[9] S. Kudekar, S. Kumar, M. Mondelli, H. D. Pfister, E. Şaşoǧlu, and R. L. Urbanke,
“Reed–muller codes achieve capacity on erasure channels,” IEEE Trans. Inf. Theory, vol. 63,
no. 7, pp. 4298–4316, 2017.

[10] G. Reeves and H. D. Pfister, “Reed-Muller codes achieve capacity on BMS channels,” 2021.

138 Bibliography

[11] R. Gallager, “Low-density parity-check codes,” IRE Transactions on information theory,
vol. 8, no. 1, pp. 21–28, 1962.

[12] D. J. MacKay and R. M. Neal, “Good codes based on very sparse matrices,” in IMA Interna-
tional Conference on Cryptography and Coding. Springer, 1995, pp. 100–111.

[13] D. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Transactions
on Information Theory, vol. 45, no. 2, pp. 399–431, 1999.

[14] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-correcting coding
and decoding: Turbo-codes. 1,” in Proceedings of ICC ’93 - IEEE International Conference
on Communications, vol. 2, 1993, pp. 1064–1070 vol.2.

[15] E. Arıkan, “Channel polarization: A method for constructing capacity-achieving codes for
symmetric binary-input memoryless channels,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp.
3051–3073, July 2009.

[16] 3GPP, “Multiplexing and channel coding 3GPP TS 21.101 v10.4.0. Release 10,” Oct. 2018.
[Online]. Available: http://www.3gpp.org/ftp/Specs/2018-09/Rel-10/21_series/21101-a40.
zip

[17] ——, “System architecture for the 5G system (5GS) 3GPP TS 23.501 v16.6.0. Release 16,”
Oct. 2020. [Online]. Available: https://www.3gpp.org/ftp/Specs/archive/23_series/23.501/

[18] Ericsson, “5G wireless access: an overview,” White Papers. [Online]. Available: https:
//www.ericsson.com/en/reports-and-papers/white-papers/5g-wireless-access-an-overview

[19] I. Dumer and K. Shabunov, “Soft-decision decoding of Reed-Muller codes: recursive lists,”
IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 1260–1266, 2006.

[20] I. Dumer, “Recursive decoding and its performance for low-rate Reed-Muller codes,” IEEE
Trans. Inf. Theory, vol. 50, no. 5, pp. 811–823, 2004.

[21] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf. Theory, vol. 61, no. 5,
pp. 2213–2226, March 2015.

[22] K. Niu and K. Chen, “CRC-aided decoding of polar codes,” IEEE Commun. Lett., vol. 16,
no. 10, pp. 1668–1671, 2012.

[23] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-cancellation decoder for
polar codes,” IEEE Commun. Lett., vol. 15, no. 12, pp. 1378–1380, October 2011.

[24] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast polar decoders: Algorithm
and implementation,” IEEE J. Sel. Areas Commun., vol. 32, no. 5, pp. 946–957, April 2014.

http://www.3gpp.org/ftp/Specs/2018-09/Rel-10/21_series/21101-a40.zip
http://www.3gpp.org/ftp/Specs/2018-09/Rel-10/21_series/21101-a40.zip
https://www.3gpp.org/ftp/Specs/archive/23_series/23.501/
https://www.ericsson.com/en/reports-and-papers/white-papers/5g-wireless-access-an-overview
https://www.ericsson.com/en/reports-and-papers/white-papers/5g-wireless-access-an-overview

Bibliography 139

[25] S. A. Hashemi, C. Condo, and W. J. Gross, “A fast polar code list decoder architecture based
on sphere decoding,” IEEE Trans. on Circuits and Sys. I, vol. 63, no. 12, pp. 2368–2380, Dec
2016.

[26] M. H. Ardakani, M. Hanif, M. Ardakani, and C. Tellambura, “Fast successive-cancellation-
based decoders of polar codes,” IEEE Trans. Commun., vol. 67, no. 7, pp. 4562–4574, 2019.

[27] M. Hanif, M. H. Ardakani, and M. Ardakani, “Fast list decoding of polar codes: Decoders
for additional nodes,” in IEEE Wire. Comm. and Net. Conf. Work., April 2018, pp. 37–42.

[28] S. A. Hashemi, C. Condo, F. Ercan, and W. J. Gross, “Memory-efficient polar decoders,”
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 7, no. 4, pp. 604–615, Dec. 2017.

[29] L. Chandesris, V. Savin, and D. Declercq, “Dynamic-SCFlip decoding of polar codes,” IEEE
Trans. Commun., vol. 66, no. 6, pp. 2333–2345, June 2018.

[30] F. Cheng, A. Liu, Y. Zhang, and J. Ren, “Bit-flip algorithm for successive cancellation list
decoder of polar codes,” IEEE Access, vol. 7, pp. 58 346–58 352, 2019.

[31] Y.-H. Pan, C.-H. Wang, and Y.-L. Ueng, “Generalized SCL-Flip decoding of polar codes,” in
GLOBECOM 2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1–6.

[32] F. Ercan, T. Tonnellier, N. Doan, and W. J. Gross, “Practical dynamic SC-flip polar decoders:
Algorithm and implementation,” IEEE Trans. Signal Process., vol. 68, pp. 5441–5456, 2020.

[33] B. Yuan and K. K. Parhi, “Early stopping criteria for energy-efficient low-latency belief-
propagation polar code decoders,” IEEE Transactions on Signal Processing, vol. 62, no. 24,
pp. 6496–6506, Dec. 2014.

[34] S. M. Abbas, Y. Fan, J. Chen, and C. Tsui, “Concatenated LDPC-polar codes decoding
through belief propagation,” in IEEE Int. Symp. on Circuits and Systems, May 2017, pp.
1–4.

[35] C. Douillard, M. Jézéquel, C. Berrou, D. Electronique, A. Picart, P. Didier, and A. Glavieux,
“Iterative correction of intersymbol interference: turbo-equalization,” European transactions
on telecommunications, vol. 6, no. 5, pp. 507–511, 1995.

[36] Y. Ren, C. Zhang, X. Liu, and X. You, “Efficient early termination schemes for belief-
propagation decoding of polar codes,” in IEEE 11th Int. Conf. on ASIC, Nov 2015, pp. 1–4.

[37] S. Sun, S. Cho, and Z. Zhang, “Post-processing methods for improving coding gain in belief
propagation decoding of polar codes,” in 2017 IEEE Glob. Commun. Conf., Dec 2017, pp.
1–6.

140 Bibliography

[38] M. Geiselhart, A. Elkelesh, M. Ebada, S. Cammerer, and S. Ten Brink, “Automorphism en-
semble decoding of reed—muller codes,” IEEE Trans. Commun., pp. 1–1, 2021.

[39] M. Ye and E. Abbe, “Recursive projection-aggregation decoding of Reed-Muller codes,”
IEEE Trans. Inf. Theory, vol. 66, no. 8, pp. 4948–4965, 2020.

[40] O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, “A low-complexity improved succes-
sive cancellation decoder for polar codes,” in 48th Asilomar Conf. on Sig., Sys. and Comp.,
Nov 2014, pp. 2116–2120.

[41] S. Cammerer, T. Gruber, J. Hoydis, and S. ten Brink, “Scaling deep learning-based decoding
of polar codes via partitioning,” pp. 1–6, December 2017.

[42] R. Pedarsani, S. H. Hassani, I. Tal, and E. Telatar, “On the construction of polar codes,” in
IEEE Int. Symp. on Inf. Theory, 2011, pp. 11–15.

[43] P. Trifonov, “Efficient design and decoding of polar codes,” IEEE Trans. Commun., vol. 60,
no. 11, pp. 3221–3227, 2012.

[44] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Trans. Inf. Theory, vol. 59, no. 10,
pp. 6562–6582, 2013.

[45] M. Mondelli, S. H. Hassani, and R. Urbanke, “Construction of polar codes with sublinear
complexity,” in IEEE Int. Symp. on Inf. Theory, 2017, pp. 1853–1857.

[46] L. Huang, H. Zhang, R. Li, Y. Ge, and J. Wang, “Reinforcement learning for nested polar
code construction,” IEEE Global Commun. Conf., pp. 1–6, 2019.

[47] Y. Liao, S. A. Hashemi, J. Cioffi, and A. Goldsmith, “Construction of polar codes with rein-
forcement learning,” IEEE Global Commun. Conf., pp. 1–6, 2020.

[48] G. D. Forney, “Codes on graphs: normal realizations,” IEEE Trans. Inf. Theory, vol. 47, no. 2,
pp. 520–548, 2001.

[49] I. S. Reed, “A class of multiple-error-correcting codes and the decoding scheme,” Mas-
sachusetts Inst of Tech Lexington Lincoln Lab, Tech. Rep., 1953.

[50] G. Schnabl and M. Bossert, “Soft-decision decoding of Reed-Muller codes as generalized
multiple concatenated codes,” IEEE Transactions on Information Theory, vol. 41, no. 1, pp.
304–308, 1995.

[51] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast list decoders for polar
codes,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 2, pp. 318–328,
2016.

Bibliography 141

[52] E. Arıkan, “Polar codes: A pipelined implementation,” in Proc. 4th Int. Symp. on Broad.
Commun., 2010, pp. 11–14.

[53] W. Xu, Z. Wu, Y.-L. Ueng, X. You, and C. Zhang, “Improved polar decoder based on deep
learning,” in IEEE Int. Workshop on Signal Process. Syst., November 2017, pp. 1–6.

[54] N. Doan, S. A. Hashemi, M. Mondelli, and W. J. Gross, “On the decoding of polar codes on
permuted factor graphs,” IEEE Global Commun. Conf., pp. 1–6, Dec 2018.

[55] A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “Belief propagation decoding of polar
codes on permuted factor graphs,” in IEEE Wireless Commun. and Net. Conf., April 2018,
pp. 1–6.

[56] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and Y. Be’ery, “Deep
learning methods for improved decoding of linear codes,” IEEE J. of Sel. Topics in Signal
Process., vol. 12, no. 1, pp. 119–131, February 2018.

[57] L. Lugosch and W. J. Gross, “Neural offset min-sum decoding,” in IEEE Int Symp. on Inf.
Theory, August 2017, pp. 1361–1365.

[58] N. Doan, S. A. Hashemi, E. N. Mambou, T. Tonnellier, and W. J. Gross, “Neural belief
propagation decoding of CRC-polar concatenated codes,” IEEE Int. Conf. on Commun., pp.
1–6, May 2019.

[59] N. Doan, S. A. Hashemi, F. Ercan, T. Tonnellier, and W. Gross, “Neural dynamic successive
cancellation flip decoding of polar codes,” IEEE Int. Work. on Sig. Proc. Sys., 2019.
[Online]. Available: https://arxiv.org/abs/1907.11563

[60] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent.” [Online]. Available: https:
//cs.toronto.edu/csc321/slides/lecture_slides_lec6.pdf

[61] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding,” Int. Conf. on Learn. Rep., 2016.
[Online]. Available: https://arxiv.org/abs/1510.00149

[62] A. Paszke, S. Gross, S. Chintala et al., “Automatic differentiation in PyTorch,” 2017.

[63] P. Giard and A. Burg, “Fast-SSC-flip decoding of polar codes,” in 2018 IEEE Wireless Comm.
and Net. Conf. Work., 2018, pp. 73–77.

[64] F. Ercan, T. Tonnellier, and W. J. Gross, “Energy-efficient hardware architectures for fast
polar decoders,” IEEE Trans. Circuits Syst. I, vol. 67, no. 1, pp. 322–335, 2020.

https://arxiv.org/abs/1907.11563
https://cs.toronto.edu/csc321/slides/lecture_slides_lec6.pdf
https://cs.toronto.edu/csc321/slides/lecture_slides_lec6.pdf
https://arxiv.org/abs/1510.00149

142 Bibliography

[65] S. A. Hashemi, N. Doan, T. Tonnellier, and W. J. Gross, “Deep-learning-aided successive-
cancellation decoding of polar codes,” in 53rd Asilomar Conf. on Sig., Sys., and Comp., 2019,
pp. 532–536.

[66] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning,” Machine learning, vol. 8, no. 3-4, pp. 229–256, 1992.

[67] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge, MA,
USA: A Bradford Book, 2018.

[68] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[69] H.-Y. Lee, Y.-H. Pan, and Y.-L. Ueng, “A node-reliability based CRC-aided successive can-
cellation list polar decoder architecture combined with post-processing,” IEEE Transactions
on Signal Processing, vol. 68, pp. 5954–5967, 2020.

[70] N. Doan, S. A. Hashemi, F. Ercan, and W. J. Gross, “Fast SC-Flip decoding of polar codes
with reinforcement learning,” in ICC 2021 - IEEE International Conference on Communica-
tions, 2021, pp. 1–6.

[71] F. Ercan, T. Tonnellier, and W. J. Gross, “Energy-efficient hardware architectures for fast
polar decoders,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 1,
pp. 322–335, 2020.

[72] N. Doan, S. A. Hashemi, F. Ercan, T. Tonnellier, and W. J. Gross, “Neural successive cancel-
lation flip decoding of polar codes,” J. Sig. Proc. Sys., pp. 1–12, 2020.

[73] P. Nilsson, A. U. R. Shaik, R. Gangarajaiah, and E. Hertz, “Hardware implementation of the
exponential function using taylor series,” in 2014 NORCHIP, 2014, pp. 1–4.

[74] B. Taylor, Methodus incrementorum directa et inversa. Innys, 1717.

[75] P. Guide, “Intel 64 and ia-32 architectures software developer’s manual,” Volume 3B: System
programming Guide, Part, vol. 2, no. 11, 2011.

[76] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms. MIT
press, 2009.

[77] J. Guo, M. Qin, A. G. i Fàbregas, and P. H. Siegel, “Enhanced belief propagation decoding
of polar codes through concatenation,” in IEEE Int. Symp. on Inf. Theory, June 2014, pp.
2987–2991.

Bibliography 143

[78] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis et al., “Tensorflow: A system for large-
scale machine learning,” in 12th USENIX Conf. on Operating Systems Design and Impl., ser.
OSDI’16. USENIX Association, 2016, pp. 265–283.

[79] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes under
message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 599–618, Feb 2001.

[80] S. B. Korada, “Polar codes for channel and source coding,” Ph.D. dissertation, EPFL, Lau-
sanne, Switzerland, 2009.

[81] N. Hussami, S. B. Korada, and R. Urbanke, “Performance of polar codes for channel and
source coding,” in IEEE Int. Symp. on Inf. Theory, 2009, pp. 1488–1492.

[82] S. Agrawal and N. Goyal, “Analysis of thompson sampling for the multi-armed bandit prob-
lem,” in Conf. on Learning Theory, 2012, pp. 39–1.

[83] M. Geiselhart, A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “CRC-aided belief
propagation list decoding of polar codes,” in 2020 IEEE International Symposium on Infor-
mation Theory (ISIT), 2020, pp. 395–400.

[84] S. A. Hashemi, N. Doan, M. Mondelli, and W. J. Gross, “Decoding Reed-Muller and polar
codes by successive factor graph permutations,” in 2018 IEEE 10th International Symposium
on Turbo Codes Iterative Information Processing (ISTC), 2018, pp. 1–5.

[85] Y. Be’ery and J. Snyders, “Optimal soft decision block decoders based on fast hadamard
transform,” IEEE Trans. Inf. Theory, vol. 32, no. 3, pp. 355–364, 1986.

[86] D. Fathollahi, N. Farsad, S. A. Hashemi, and M. Mondelli, “Sparse multi-decoder recursive
projection aggregation for Reed-Muller codes,” in IEEE Int. Symp. on Inf. Theory, 2021.
[Online]. Available: https://arxiv.org/abs/2011.12882

[87] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes. Elsevier, 1977.

[88] K. Niu and K. Chen, “Stack decoding of polar codes,” Electronics letters, vol. 48, no. 12, pp.
695–697, 2012.

[89] P. Trifonov, “A score function for sequential decoding of polar codes,” in 2018 IEEE Inter-
national Symposium on Information Theory (ISIT), 2018, pp. 1470–1474.

[90] M. Kamenev, Y. Kameneva, O. Kurmaev, and A. Maevskiy, “A new permutation decoding
method for Reed-Muller codes,” IEEE Int. Symp. on Inf. Theory, pp. 26–30, 2019.

https://arxiv.org/abs/2011.12882

	List of Acronyms
	Contents
	List of Figures
	List of Tables
	Introduction
	Summary of Contributions
	Machine-Learning-Aided Successive-Cancellation Flip Decoding of Polar Codes
	Fast Successive-Cancellation List Flip Decoding of Polar Codes
	Improved Belief Propagation Decoding of CRC-Polar Concatenated Codes
	Decoding Reed-Muller Codes with Fast Hadamard Transforms
	Decoding Reed-Muller Codes with Successive Codeword Permutations

	Related Publications
	Thesis Organization

	Background
	Encoding of Polar and RM codes
	Successive-Cancellation-Based Decoding
	Successive-Cancellation and Successive-Cancellation List Decoding
	Fast Successive-Cancellation List Decoding

	Bit-Flipping-Based Decoding
	Dynamic Successive Cancellation Flip Decoding
	Successive-Cancellation List Flip Decoding

	Belief-Propagation-Based Decoding
	Scaled Belief Propagation Decoding
	Neural Belief Propagation Decoding

	Machine-Learning-Aided Successive-Cancellation Flip Decoding of Polar Codes
	Neural Successive Cancellation Flip Decoding
	Bit-flipping Metric Computation
	Parameter Optimization
	Quantization Scheme
	Parameter Optimization Results
	Error-Correction Performance
	Complexity Reduction and Decoding Latency

	Reinforcement-Learning-Aided Fast-SCF Decoding
	Bit-Flipping Scheme for FSC Decoding
	Parameter Optimization
	Simulation Results

	Chapter Conclusion

	Fast Successive-Cancellation List Flip Decoding of Polar Codes
	Bit-flipping Scheme for FSCL Decoding
	Path Selection Error Model for FSCL Decoding
	Quantitative Complexity Analysis

	Evaluation
	Optimized Parameter and Error-Correction Performance
	Computational Complexity, Decoding Latency, and Memory Requirement

	Chapter Conclusion

	Improved Belief Propagation Decoding of CRC-Polar Concatenated Codes
	CRC-Polar BP Decoding
	Neural CRC-Polar BP Decoding
	Improved CRC-Polar BP Decoding with Codeword Permutations
	From Factor-Graph Permutations to Codeword Permutations
	Multi-Armed Bandit Problem
	Problem Formulation
	Reinforcement Learning-Aided CPBP Decoding
	Simulation Results

	Chapter Conclusion

	Decoding Reed-Muller Codes with Fast Hadamard Transforms
	Permuted FHT-FSCL Decoding
	Performance Evaluation
	Quantitative Complexity Analysis
	Comparison with FSCL and FHT-FSCL Decoding
	Comparison with Permuted SC-Based Decoding and RPA-Based Decoding

	Chapter Conclusion

	Decoding Reed-Muller Codes with Successive Codeword Permutations
	Improved Successive Permutation Scheme
	Improved Recursive List Decoding with Successive Permutation
	Performance Evaluation
	Quantitative Complexity Analysis
	Comparison with FSCL, SC-Stack and SP-SCL Decoding Algorithms
	Comparison with State-of-the-Art RM Decoders

	Chapter Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

