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ABSTRACT 
 

Little research has been reported on the use of visible and near infrared 

spectroscopy for the prediction of meat quality classes. Therefore, in this study 

hyperspectral reflectance measurements ranging from 350 to 2500 nm were made with 

the help of a spectroradiometer on fresh pork loin samples belonging to four different 

quality classes (Red, firm, non-exudative: RFN; Pale, firm, non-exudative: PFN; Red, 

soft, exudative: RSE and; Pale, soft and exudative: PSE). The samples were collected 

from a local cutting house in Quebec, and they were classified by a meat specialist. Data 

collected from the samples was analyzed using a stepwise approach to identify 

wavebands useful in differentiating pork quality classes. Discriminant Analysis was used 

to evaluate the usefulness of the selected wavebands and to classify meat samples into 

four quality classes. An overall classification accuracy of 76% was obtained for the 

prediction of pork meat quality classes for unseen data. These results confirmed the 

possibility of the prediction of meat quality classes rather than the prediction of quality 

attributes, as is commonly reported in literature. 

Various classification methods have been used to utilize hyperspectral data for 

meat quality evaluation. Selection of the best method is crucial in extracting the valuable 

information contained in hyperspectral observations. Therefore, the performance of four 

classification methods, Artificial Neural Networks, Decision Trees, k-Nearest Neighbor, 

and Discriminant Analysis, was compared in classifying pork meat quality using 

hyperspectral data. Models were developed to sort meat into four quality classes (PFN, 

RFN, RSE, and PSE), into two classes (pale and red), and finally further into two classes 

(soft and exudative, and firm and non-exudative) within the pale and red meat samples. 

Overall, the Discriminant Analysis achieved the highest classification accuracy for 

sorting meat into four quality classes, its performance was followed by ANNs, k-NN and 

DTs. 

In order to explore the industrial applicability of the technique, hyperspectral 

observations were acquired at five different locations along the same meat samples. The 

data collected at each location was analyzed separately. Stepwise regression and 
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Discriminant Analysis were used for the selection of important wavebands and for the 

classification of samples into quality classes, respectively. Classification accuracies as 

high as 99% were obtained. The results suggest the possibility of developing on-line 

sensors for automated pork meat quality assessment.  
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RESUMÉ 

 
L’utilisation de la spectroscopie visible et infrarouge pour la qualification et la 

classification de la viande a fait l’objet de peu de recherche jusqu'à présent. Dans cette 

étude, avec l’aide d’un spectroradiomètre, des mesures de facteurs de réflexion 

hyperspectrale entre 350 et 2500 nm ont été faites sur des filets de porc frais appartenant 

à quatre différentes catégories (RFN: rouge, ferme, non-exsudatif; PFN: pâle, ferme, non-

exsudatif; RSE: rouge, tendre, exsudatif; et PSE: pâle, tendre, exsudatif.) Les échantillons 

à analyser, fournit par un abattoir du Québec ont d’abord été classés par un spécialiste en 

viande. Les données recueillies sur les échantillons furent analysées afin de déterminer 

les longueurs d’onde significatives pour différencier les quatre catégories de viande 

porcine. L’analyse discriminante a servi afin d’évaluer l’efficacité des longueurs d’onde 

sélectionnées et de classer la viande dans les quatre catégories. Au total, les prédictions 

du modèle utilisé pour la classification d’échantillons inédits se sont avérées juste dans 

76% des cas. Cette thèse se distingue par des résultats qui confirment non seulement la 

possibilité de qualifier une viande mais également de prédire la catégorie à laquelle elle 

appartient. 

En ce qui à trait à l’analyse de données hyperspectrales, plusieurs méthodes sont 

utilisées, d’où la nécessité de choisir la méthode la plus appropriée afin d’extraire 

l’information essentielle dans les données recueillies. Les méthodes suivantes: réseau de 

neurones, arbre de décision, k plus proches voisins et analyse discriminante ont été 

évaluées selon leur performance à classer la viande de porc en utilisant les données 

hyperspectrales fournies. Les modèles furent développés afin de classer la viande dans 

l’une des quatre catégories (PFN, RFN, RSE, et PSE) puis en deux sous-catégories 

(pâle/rouge) et ensuite en deux groupes (tendre et exsudatif/ferme et non-exsudatif.) 

L’analyse discriminante fût la plus performante en terme d’exactitude de classification 

des échantillons, suivie par l’ANN, k-NN et DT. 

Afin d’analyser la capacité d’appliquer cette technique de façon industrielle, les 

mesures hyperspectrales furent prises à cinq différents endroits sur le même échantillon. 

Chaque mesure fût analysée individuellement. Méthodiquement, la régression et 

l’analyse discriminante furent utilisées pour la sélection des longueurs d’onde 
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significatives pour le classement des échantillons. L’exactitude de la classification de 

certains échantillons atteint 99%. Les résultats obtenus suggèrent la possibilité de 

developper des capteurs en ligne afin d’automatiser le contrôle de la qualité de la viande 

de porc. 
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CHAPTER 1 

INTRODUCTION 
The meat industry needs to obtain reliable and accurate information about meat 

quality during the production process in order to reduce economic losses and provide 

guaranteed quality of fresh pork and pork products to the consumers. Moreover, the pork 

meat industry is going through diverse challenges, including emerging new quality 

classes and market segmentation.  As a result, there is a critical need for new methods of 

meat quality evaluation (Monin, 1998). Traditionally, pork meat quality is defined by 

various combination of three main quality parameters; color, texture and drip-loss. Good 

quality of pork is typically red, firm and non-exudative (RFN). Other quality grades are 

described as RSE (red, soft and exudative), PSE (pale, soft and exudative), DFD (dark, 

firm and dry) and PFN (pale, firm, and non-exudative). 

In practice, pork meat quality can be assessed by a specialized grader, or by using 

quality charts and standards. These methods are time consuming and subject to human 

errors. Objective evaluation of pork meat can be done by determining certain physical 

and chemical quality attributes with the help of laboratory methods. However, laboratory-

based methods tend to be time-consuming, expensive, and sample destructive. They are 

also unsuitable for on-line application and are usually unable to characterize all types of 

pork meat. Thus, development of rapid, accurate and non-destructive techniques, suitable 

for on-line application is desired.  

Near infrared spectroscopy (NIRS) has taken its place among the proven 

spectroscopic tools, especially for determining physical and chemical properties of foods 

and food products. As stated by Monin (1998), NIRS is one of the most promising 

techniques for large-scale meat quality evaluation, and its potential in a great range of 

applications has been broadly studied. Visible/near infrared spectroscopy (VIS/NIRS) 

allows obtaining a great amount of valuable information, which is most likely 

advantageous in the characterization of foods. In fact, Shackelford et al. (2004) noted that 

techniques should be developed to simultaneously evaluate visible and near infrared 

spectroscopy of meat. VIS/NIRS has been demonstrated to be an advantageous tool over 

traditional laboratory methods. It is a multi-analytical, objective, rapid, affordable 
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technique, which is not sample-destructive, and its potential to characterize meats has 

been proven (Savenije et al., 2006; Liu et al., 2003; Liu et al., 2000).  

The use of Visible (VIS) and near infrared (NIR) spectroscopy for the assessment 

of pork meat quality has been studied (Xing et al., 2007; Savenije et al., 2006; 

Shackelford et al., 2004). NIRS and VIS/NIRS techniques have been used to develop 

models for the prediction of pork quality traits such as drip loss, shear force, color, pH, 

intramuscular fat (IMF), subjective color, cook yield and XYZ tristimulus values (Lanza, 

1983; Forrest et al., 2000; Chan et al., 2002; Geesink et al., 2003; Hoving-Bolink et al., 

2005; Savenije et al., 2006; Xing et al., 2007). However, no exact correlation has been 

found between these attributes as to allow classifying pork meat into different quality 

classes. Xing et al. (2007) investigated the potential of using visible spectroscopy to 

classify different quality classes of pork meat. Their results suggested that visible spectral 

information is not sufficient to separate all quality classes. Thus, exploration of both VIS 

and NIR spectra seems more likely to yield higher classification accuracies.  

Hyperspectral observations contain a great deal of physical and chemical 

information about the sample being analyzed. If this valuable, useful and abundant 

information is properly analyzed, it can be used to characterize the sample itself. 

However, meat being such a variable product with respect to muscle fiber arrangement, 

pH and connective tissue content, it is extremely difficult to standardize a way of 

interpreting the reflectance spectra (Swatland, 1989). Chemometric multivariate analyses 

have been commonly used for the qualitative and quantitative assays based on NIR 

spectra. Other Statistical methods such as Principal Component Analysis (PCA), 

Discriminant Analysis (DA), Partial Least Squares (PLS), Multiple Linear Regression 

Analyses, etc, allow understanding of the optical properties and allow classifying without 

making use of the chemical information (Ozaki et al., 2007). Advanced signal processing 

and pattern recognition techniques with high generalization capabilities have also been 

tested for this purpose, not only for meat products but also for other kinds of foods 

(O’Farrell et al., 2005).  

Current literature reports a few studies in which the potential of spectral 

observations for the prediction of quality classes has been assessed (Xing et al., 2007). 

Moreover, since the development of a rapid VIS/NIRS technique for meat quality 
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evaluation is intended to supply the pork industry with a means for meat classification in 

an on-line process, the method needs to be tested by simulating similar measurement 

conditions. To the best of our knowledge, present literature lacks information on the 

study of the impact of the location of measurements on meat for quality classification 

purposes. In addition, there is not enough work done on the comparison of the 

performance of different classification techniques that can be used to analyze VIS/NIRS 

data in such application (Curram and Mingers, 1994; Wang and Paliwal, 2006; Karimi et 

al., 2005). 

 

1.1 Objectives 

The main goal of this study was to develop a VIS/NIRS model for the evaluation 

of pork meat quality classes. The study also aimed to test the performance of different 

classification methods for the analysis of hyperspectral observations. More specifically, 

the objectives of this study were: 

 

1. To select important wavebands for pork meat quality classification using a 

stepwise approach and then use discriminant analysis to classify pork meat quality on the 

basis of hyperspectral data, 

2. To qualitatively assess hyperspectral data by using Canonical Discriminant 

Analysis,  

3. To evaluate the classification accuracy of Discriminant analysis, k-Nearest 

Neighbor, Artificial Neural Networks, and Decision Tree methods, 

4. To evaluate the importance of the location of measurement on the classification 

accuracy of pork meat quality from hyperspectral data.  

 

To meet these objectives, hyperspectral observations from pork samples, 

belonging to different quality classes, were analyzed. Samples were collected at a local 

cutting house and the experiments were conducted at Macdonald Campus of McGill 

University. Spectral data was analyzed using different classification techniques. Once the 

best classification method was determined, hyperspectral observations were acquired at 

different sites along the samples, and the spectral data was analyzed.  
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1.2 Thesis Organization  

This thesis consists of six chapters and three appendices. The first chapter 

provides an introduction to the subject, lists the objectives, and introduces the scope of 

the present investigation. Chapter 2 describes the general and basic concepts related to 

the subject, and presents a review of relevant and related literature. Chapter 3 provides 

information on the first experiment held in this study which focused on evaluating the 

potential use of hyperspectral observations for the prediction of pork quality classes. A 

spectroradiometer was used to acquire spectral observations from pork loin samples 

belonging to different quality classes. The focus of the chapter is the selection of 

important wavelength regions for the prediction of quality class using discriminant 

analysis. A paper based on this chapter has been sent for publication in the Transactions 

of the ASAE. 

Chapter 4 focuses on the selection of the best classification method for the sorting 

of meat into quality classes. This chapter describes the performance of four classification 

methods [DA, Decision Trees (DTs), k-Nearest neighbor (k-NN), and Artificial Neural 

Networks (ANNs)]. A manuscript based on this chapter is under preparation. 

Chapter 5 presents the results from the evaluation of the industrial applicability of 

the method proposed for meat quality class predictions. Reflectance measurements were 

taken at different sites along each sample and the spectral data from each location site 

was analyzed separately using discriminant analysis. A manuscript based on this chapter 

is under preparation. 

Finally Chapter 6 presents a summary of this study and provides the general 

conclusions drawn from this work. Classification matrices from DA and ANNs models 

are provided in Appendices A and B. 

 

1.3 Scope 

Even though high classification accuracies were obtained from the calibration and 

predictive models described in this thesis, it is important to note that raw meat is a highly 

variable and heterogeneous material. For instance, the color of the meat samples can vary 

from place to place on the same sample, and even when the area measured is only 12.25 

cm2, it might not be a true representative of the class. An ideal sample under investigation 
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should be identical in all its properties and as for meat samples, obtaining identical 

properties along the sample is not possible. As an alternative, the experimental setup 

could be modified in order to increase the scanned area. 
The meat samples used in this study were classified by a meat specialist. The 

meat classification given was taken as true evaluation, and likelihood, the results obtained 

from the data analysis grasp the human error from a subjective evaluation. The use of 

well defined quality classes would allow increasing the classification accuracy due to a 

higher variation between the classes and elimination of possible outliers.  
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CHAPTER 2 

LITERATURE REVIEW 
 

In this chapter the relevant literature on pork quality classification and the 

application of VIS and VIS/NIRS for pork quality assessment is reviewed. First the 

basics of pork meat quality, its causes and its impact in pork industry are introduced. The 

discussion continues with a general introduction on the subjective and objective methods 

for the evaluation of meat quality. Next, a brief introduction to the principles of 

VIS/NIRS is given, followed by an exploration on the related research on this technique 

and its use for pork meat quality prediction. Finally, various approaches used to analyze 

spectral information from meat samples are discussed.  

 

2.1 Pork meat 

Meat, in its broadest definition, is animal tissue used as food. It is composed of 

tissue or muscle fiber cells, fat and connective tissue; it can also be composed of pieces 

of bone (Miller, 2002). Since many factors affect the quality of the meat, for instance; 

age, breed sex, nutritional status, animal stress during transport, carcass refrigeration rate, 

postmortem age, pre-slaughter handling, etc. it is a highly unpredictable product.  

Pork meat is classified as a "red" meat because it contains more myoglobin than 

chicken or fish and it is the most widely eaten meat in the world, providing about 38 

percent of daily meat protein intake worldwide, although consumption varies widely from 

place to place. 

 

      2.1.1 Meat Quality 

Many definitions of meat quality are found in literature. In fact, meat quality can 

be defined in various ways from palatability to technological aspects to safety (Mullen, 

2002). For instance, Hoffman (1990) described meat quality as the sum of all quality 

factors of meat in terms of the sensory, nutritive, hygienic and toxicological and 

technological properties (Aaslyng, 2002). Meat quality can be defined as the suitability of 

meat for use in a specified product; in other words, the attributes that define the quality of 

the meat depend on the use for which the meat is intended (Aaslyng, 2002). 
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      2.1.2. Pork Meat Quality 

As for pork meat, the National Pork Board (NPB) has specifically defined the lean 

quality in fresh pork, which refers to a wide range of factors but focuses more on muscle 

color, texture, marbling and functionality (water holding ability) (Buege, 2001). These 

factors affect products attractiveness to potential consumers, processing characteristics 

for value-added products manufacture and the ultimate palatability and satisfaction of 

pork products to consumers. 

Over the last few decades, strong industrialization of meat processing has created 

a need for technological meat quality assessment. As a response, evaluation of pork 

quality has focused on giving priority to variations in color, moisture retention and 

texture. In fact, the most commonly used subjective evaluation distinguishes three classes 

of meat, based on the combination of anomalies of the three main parameters mentioned 

above.  The RFN (Reddish-pink, Firm and Non-exudative) meat is good quality pork that 

exhibits desirable color, texture, and water-holding capacity (WHC); it is described as 

reddish-pink in color, firm in texture, and free of surface wateriness(van Laack et al., 

1994; Joo et al., 1995; Buege, 2001). On the other hand, PSE (Pale, very Soft and 

Exudative) meat has undesirable appearance, and lacks firmness due to excessive drip 

loss (Qiao et al., 2007). The third class, DFD, stands for dark, firm and dry pork, and is a 

dark-colored low quality meat that has a very firm and dry texture. Two other quality 

designations have been recognized over the past few years; during the 1990’s RSE (Red, 

Soft and Exudative) meat class was identified (Kauffman et al, 1992; Kauffman et al., 

1993; Joo et al., 1995). This meat has desirable reddish-pink color, but is Soft and 

Exudative, and finally; PFN (Pale, Firm and Non-exudative) meat, which has the texture 

of good quality meat, but has undesirable color and poor water-holding capacity (van 

Laack et al., 1994). As shown in Table 2.1, these five classes of meat can be defined by 

certain parameters such as; color, L* value, pH and drip loss. The NPB has stated that it 

is not unusual to find varying degrees of the RFN, PSE, RSE, and DFD conditions in 

pork cuts displayed in a retail market case, and in primals destined for further processing 

(Buege, 2001). 
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Table 2.1 Pork qualities characteristics (van Laack et al., 1994) 

Quality class Color 
L*  

(measurement of the lightness 
of the sample’s color) 

pH Drip loss 
(%) 

DFD Dark ≤52 High ultimate (>6.0) <5.0 
PSE Pale ≥58 Fast pH decline ≥5.0 
RFN Red 52-58 Normal (5.5-5.7) <5.0 
RSE Red 52-58  ≥5.0 
PFN Pale ≥58  <5.0 

 

2.2 Causes of Low Quality Meat 

The final quality of the meat is mainly defined by the chemical and physical 

changes that occur in the muscle before, during, and after the slaughter of the animal. The 

conversion of glycogen (muscle sugar) to lactic acid that takes place after the pig has 

been slaughtered plays an important role in meat quality attributes. Decrease and the 

ultimate pH influence meat quality in terms of color and water-holding capacity. 

During the post mortem, in adequate conditions, the conversion of glycogen to 

lactic acid occurs at a moderate rate in a long time process. As the temperature of the 

muscle decreases with chilling, the pH of meat declines (Buege, 2001). This optimal 

conditions, result in good quality meat (RFN meat). On the other hand, if the lactic acid is 

produced at an accelerated rate after slaughter when the temperature of the carcass is still 

high, there will be a rapid falling of the pH. Buege (2001) indicated that the combination 

of an acidic environment with high carcass temperatures results in the denaturation of 

proteins present in the meat (such as myoglobin which is mainly responsible for the color 

of the meat). The denaturation of the pigmented protein myoglobin, as well as the 

accumulation of free water on the cut muscle surface produces a pale appearance in the 

meat (NPB, 1999).  

When proteins are denatured, they can no longer retain water, and therefore the 

meat will have lower water holding capacity and a pale color (PSE meat). Offer and 

Knight (1988) suggested there is strong evidence that denaturation of myofibrillar 

proteins, especially myosin, is the cause of the low water-holding capacity (WHC) of 

PSE pork. Moreover, PSE meat appears pale because of a high degree of light scattering 

caused by a low pH; it is soft because of free fluid between the muscle fibers and other 
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factors, and it is exudative due to the loss of weight by drip and evaporation (Swatland, 

2002). 

Low level of glycogen in the muscle before slaughter of the pig results in DFD 

meat. In this case, little or no acid production in the muscle is observed. Since the 

decrease in the pH is null or limited, no proteins are denatured. As a result, meat presents 

a dark red color and increased WHC (Buege, 2001). The muscle proteins tightly bind the 

water and contribute to the characteristic firm texture of DFD meat. DFD meat appears 

dark because it has a high pH and scatters less light than normal; it is firm because its 

fluid-filled muscle fiber is still turgid, and it seems dry when eaten. The dryness is 

misleading because DFD meat has lost less fluid than normal. However, water is held 

tightly between meat proteins at the micro-structural level. Therefore, when DFD meat is 

eaten a lack of juiciness is experienced (Swatland, 2002). 

Various factors are determinant for the quality of the meat such as handling of 

pigs before slaughter and hereditary factors. For instance, PSE is related to the Porcine 

Stress Syndrome (PSS), a heritable condition in which the gene transmitted causes pigs to 

show intolerance to stress and to exhibit accelerated muscle metabolism. PSS contributes 

to the chemical conditions which strongly favor the development of PSE meat (Buege, 

2001). PSS condition could also lead to DFD pork, in case the pig is exposed for a long 

time to stress depleting its muscle glycogen. As for the handling before slaughter, if the 

stress is not minimized and certain conditions are not suitable for the pig to be in a cool 

environment, the conversion of the energy stored in the muscle is augmented (Buege, 

2001). Thus, declining the pH and favoring the condition of PSE meat.  

The stressors contributing to the depletion of meat quality are various, and 

therefore, need to be properly managed and controlled. There are specific guidelines for 

proper handling of the pigs before slaughter which mainly focus on factors such as: 

facility design, environment (lighting, sounds and smells, temperature and humidity, and 

vibrations), physical abuse, stocking density, mixing with unfamiliar pigs, total time of 

feed/water withdrawal during transport and lairage, and rest in lairage after transport 

(Murray, 2000). 
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2.3 Pork Industry in Canada 

Canada is a major producer and exporter of pork meat. Canadian pork is related to 

meat with high quality standards; factor that has contributed to the leadership in the 

market of pork industry. In 2006, the meat industry was the largest sector of the Canadian 

food manufacturing industry with annual sales worth $15 billion. In the same year, 

Canada exported $2.5 billion of pork to over 130 countries (Canadian Meat Council, 

2007). Exports are an important source of growth for the industry and bring in more than 

$1 billion annually in foreign revenues.  

 

      2.3.1 Pork Industry Challenges 

Quality control in the meat industry plays a predominant role. Both consumers 

and industry are interested in having a reliable technique that can predict the quality of 

fresh meat. While the consumer is expecting to be offered good quality meat, the industry 

is hoping to be able to discriminate between the different classes of meat. The later aims 

to minimize economic losses, optimize plant process, and maintain quality standards. 

Pork processors have encountered an increasing demand of good quality pork due to 

market segmentation. In response to the many specialized markets, the meat industry 

needs to provide meat based upon the quality standards and preferences of every different 

market. 

A major problem facing the modern meat industry is the difficulty of predicting 

the quality of the meat from an outward inspection (Swatland, 2002). Thereby, the effects 

of using low quality meat for processing have been studied, more specifically for the PSE 

condition. It has been found difficult to use PSE meat in the formulation of hams 

(boneless and bone-in) sectioned and formed, chunked and formed or country-cured 

hams. This is mainly because there are no functional proteins (able to retain water) 

present in the meat, and the color formations are hard to achieve (Marriott and Schilling, 

2002). In addition, PSE meat yields very low quality products when used for the 

processing of certain types of sausages. Meats with low WHC will tend to produce 

processed meats with cracked texture. Moreover, the overall production yield of these 

meats is lower than for good quality meat.   
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It is worth to mention that consumers make their purchase decisions mainly based 

on the color and appearance of the meat. Variations in the color of the meat, whether the 

meat is too pale or too red, and/or excessive fluid accumulation, will most probably 

influence and/or affect the selection of the meat purchased by the consumer.  

Inadequate muscle color and water holding capacity rank second, after excessive 

fat, as the primary industry concern about pork quality (Warriss et al., 2006). Precise and 

reliable estimates for most countries are difficult to obtain; however, Murray (2000) and 

Johnson (1998) reported that in Alberta, approximately 13% of pigs produce loin muscles 

that are PSE, and a somewhat higher number of loins exhibit one of these traits: pale, soft 

or exudative. It was also indicated that approximately 10% of loins were darker, and 5% 

were firmer and dryer than normal (Murray, 2000). The study on the economic losses in 

the pork production by Murray (2000) estimated that the PSE condition decreases the 

value of a pig carcass by about $5. Swatland (2002) reported that the costs of increased 

exudation from PSE meat may be measured in millions of dollars for a major pork 

packer, and that this low quality meat attribute has been a long-standing problem.   

 

2.4 Meat Quality Evaluation 

Pork industries that process fresh pork cuts for national or export markets need to 

sort meat in different classes.  For this purpose, most pork processors utilize visual 

examination performed by a meat specialist. Quality indicators such as color, firmness, 

and wateriness of the cut lean surfaces are typically evaluated, making the classification 

time consuming and subject to human error. 

 

      2.4.1 Subjective Evaluation of Meat Quality 

Fresh quality meat indicators such as; physiological maturity, marbling, color, 

texture and firmness of lean, wateriness of cut lean surfaces and firmness of fat are 

typically evaluated by a visual inspection. Graders and evaluators use color, texture, 

wetness and marbling standards which are available in photographic and/or color chip 

form. Most commonly, meat color is visually determined using various scales such as; 

the Japanese color standards (Nakai et al., 1975), and the color evaluation scale 

developed by the National Pork Board Council (NPB, 1999).  
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Even though subjective evaluation is helpful in eliminating major quality defects, 

it cannot assure that all the meat in the plant has been sorted. In the worst case scenario, 

subjective evaluation cannot assure that meat has been accurately classified, since it is 

subject to human error. Moreover, it is difficult to overcome the inconsistencies 

associated with any visual assessment considering; 1) the need of an intensive training 

program for the assessors, 2) the cost of training and employing graders, 3) the variation 

between the judgments made by different specialists, and 4) the lack of standardization in 

assessment procedures and quality grades among countries (Ferguson, 2004). On the 

basis of the wide margin of error found in any subjective judgment of individual 

carcasses (Swatland, 2002), subjective evaluation of meat cannot assure sufficient 

accuracy and repeatability. 

 

      2.4.2 Objective Evaluation of Meat Quality 

Many objective methods for characterizing meat quality have been developed to 

overcome the inconsistencies associated with any visual evaluation, and to aid the 

comprehensive assessment of quality attributes. For decades, laboratory analyses have 

been extensively used for meat quality classification (Mullen, 2002). Probably, pH has 

been the quality attribute most commonly measured in fresh meat; however, Channon et 

al. (2001) stated that the measurement of pH was poorly related to pork eating quality. 

This study suggested that in addition to ultimate pH, other meat quality attributes may be 

needed to provide industry with a useful model for sorting pork into different eating 

quality classes.  As a result, other meat quality traits such as tenderness, WHC, color, 

cook yield, and enzymatic activity were evaluated in an attempt to improve pork meat 

classification.  

 

       2.4.2.1 Laboratory-based Methods for Meat Quality Evaluation 

Chemical methods for the analysis of water, protein and fat have been developed 

and have become more sophisticated. Due to the expansion of meat industries, traditional 

methods have been switched to methods which are faster, easier and usually provide good 

accuracy and precision (Mullen, 2002). However, these methods need to be reviewed for 

the specific product type, sample size and other factors involved in the experimental 
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setup. The analysis of meat for quality evaluation encompasses the determination of 

certain quality parameters, among them the most common ones are: pH, water holding 

capacity, color, and intramuscular fat. 

pH measurement has commonly been considered as an essential element in meat 

quality assessment mainly because of its profound effect on the color, firmness and water 

holding capacity of the meat. Early post mortem pH measurement has been considered as 

the most effective predictor of the occurrence of PSE condition (Somers et al., 1985). pH 

can be determined by direct measurements with a glass or solid electrode in the meat to 

measure pH electrochemically, or, a sample can be homogenized before determination. 

The two classical measuring times are 45 min and 24 h post-mortem (Swatland, 2002). 

The determination of water-holding capacity of meat can be performed in many 

different ways (see Honikel and Hamm, 1994 for a review on the techniques). Whatever 

method is used for this purpose, the overall objective is to measure the inherent ability of 

the cellular and sub-cellular structures of meat to hold on to parts of its own and/or added 

water (Mullen, 2002). The WHC can be determined by three techniques:  (i) using 

external forces to drive out the water, such as centrifugation or filter press method, (ii) by 

letting the water drip out of the meat over a certain period of time, such as the “Honikel 

bag method”, or (iii) by heating the meat and measuring the cooking loss (Honikel, 1989; 

Honikel and Hamm, 1994; Rasmussen and Anderson, 1996; Christensen, 2003).  

The color of the meat is a combination of the reflection due to protein 

denaturation as a result of the pH change and the concentration and oxidative status of 

myoglobin. Color is the primary criterion by which consumers evaluate fresh meat 

quality (Cornforth, 1994; Faustman and Cassens, 1990). Color is commonly considered 

the most important sensory characteristic in the appearance of meat, and can be 

determined instrumentally or visually (Hunt and Mancini, 2002). Various systems exist 

for the objective measurement of color with CIE L*a*b* (color space coordinates). 

However, it has been stated that instrumental metamerism is a common and serious 

defect in colorimeters (AMSA, 1990). The color can also be subjectively assessed by 

color standards. 

The content of intramuscular fat or, fat marbling plays an important role on the 

eating quality and the consumer’s preferences. IMF can be measured subjectively in a 
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visual way as fat marbling using different scales; however, IMF can also be measured 

objectively by chemical analyses (acid hydrolysis followed by an extraction) (Mullen, 

2002).  

 

      2.4.3 Emerging Technologies for Meat Quality Evaluation 

The laboratory tests have become more sophisticated and accurate. However, 

laboratory-based methods are time- and labor-intensive and expensive. They are no 

longer sufficient for the large volume of meat and the high-speed production facilities 

that are found nowadays in meat processing plants. Meat industry needs accurate, fast, 

non-invasive, objective techniques for meat quality evaluation. As a result, emerging 

technologies, which include both physical and biochemical techniques, have been 

developed, such as: ultrasound, nuclear magnetic resonance, image analysis, auto-

fluorescence spectroscopy (see Mullen, 2002 for a review on these techniques) and Near 

Infrared spectroscopy (NIRS). 

 

2.5 Visible/Near Infrared Spectroscopy 

Spectroscopy is the study of the interaction between electromagnetic radiation and 

atoms, molecules, or other chemical species (Mohan, 2004). Near Infrared (NIR) 

technology derives its name from the use of portion of the electromagnetic spectrum, and 

it was first introduced in 1960’s to determine the composition of meat products (Ben-

Gera and Norris, 1968). The NIR region goes from 780 to 2500 nm, and it is based on 

molecular overtone and combination of vibrations. It provides complete information 

about the molecular bonds and chemical constituents in a sample scanned. However, the 

electromagnetic spectrum includes a much wider region that NIR. The visible region is 

the portion of the electromagnetic spectrum that is visible to the human eye and ranges 

from 400 to 700 nm. Advances in instrumentation now allow the use of a single 

instrument to scan not only the NIR region, but also the entire visible spectrum (McCaig, 

2002). 

The use of spectroscopy has increased tremendously in the last few decades as it 

has appeared that detection and estimation of a number of food constituents and 

properties may be achieved by measuring the amounts of the radiation that is absorbed or 
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emitted at different wavelengths. NIRS is a convenient tool not only for characterizing 

foods, but also for quality measurements and process control (Andres et al., 2007).  

 

      2.5.1 Visible/Near Infrared Spectral Analysis of Meat 

As stated by Monin (1998), NIRS is one of the most promising techniques for 

large-scale meat quality evaluation, and its potential in a great range of applications has 

been broadly studied.  Application of NIRS as a proximate analysis tool has been 

assessed. Common applications with meat include estimating moisture, fat, or protein 

content, pH, energy contents, hydroxyproline and sodium chloride in meat products 

(Chen and Marks, 1998).  

The use of NIRS has also been evaluated for the prediction of diverse pork meat 

quality traits such as drip loss, shear force, protein, caloric content, color, pH, 

intramuscular fat, subjective color, cook yield and XYZ tristimulus values among others 

(Lanza, 1983; Brøndum et al., 2000; Forrest et al., 2000; Chan et al., 2002; Geesink et al., 

2003; Hoving-Bolink et al., 2005; Savenije et al., 2006, Xing, et al., 2007). 

Diverse and contrasting results have been obtained from the studies related to 

prediction of pork quality attributes from NIRS. For instance, Geesink et al. (2003) 

reported a correlation value of 0.71-0.74 for the prediction of drip loss, and 0.74 

correlation value of NIRS with a combination of ultimate pH, filter paper tests and L* 

value. Hoving-Bolink et al. (2005) did not get the expected results for the prediction of 

intramuscular fat content by VIS/NIRS, neither for the prediction of color, observing an 

R2 of 0.35. On the other hand, the study by Forrest et al. (2000) on the use of NIRS for 

the prediction of drip loss in fresh pork in the early post mortem stage resulted in a 

correlation higher than 0.8. However, in the later study, spectral measurements were 

acquired during a 6 min period, that is too long considering the possibility of an industrial 

application. As for the results obtained by Chan et al. (2002); quality traits such as XYZ 

tristimulus, moisture, and fat and protein composition were well predicted with VIS/NIR, 

with the highest R2 > 0.88 obtained for XYZ tristimulus prediction. This study also 

reported marginally poor R2 values for other characteristics (shear force, cook yield, pH, 

water-holding capacity, color, marbling and firmness) with R2 values ranging from 0.584 

to 0.002.  Certainly there are important factors contributing to these variations, such as; 
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sampling conditions, nature, and methodology, experimental design, instrument type, and 

the data analysis performed for each study. 

NIRS has also been used for the estimation of physical characteristics and 

evaluation of other meats. Common applications include quantitative prediction, 

chemical composition (fat and protein), and physical characteristics, such as drip loss, 

color, juiciness, hardness, and tenderness (Lanza, 1983; Mitsumoto et al., 1991; Park et 

al., 2001; Andres, et al., 2007). Mitsumoto et al. (1991) obtained correlation coefficients 

of 0.8 and 0.83 when testing the potential of NIRS for the prediction of Warner-Bratzler 

shear value in beef cuts. In the research done by Park et al. (2001) on the prediction of 

beef tenderness using NIRS, an R2 of 0.633 was attained. Savenije et al. (2006) assessed 

the prediction of pork quality traits using VIS/NIRS and reported prediction accuracy as 

high as 84% for pH. In contrast, the lowest prediction accuracy documented in the former 

study was of 56% for drip loss.   

The use of NIRS in meat products has also been evaluated, for instance; Ellekjaer 

et al. (1994) evaluated NIRS as a potential means for determining the sensory quality of 

sausages. In fact, it was found that NIRS mainly described the color and texture 

variations in this product (Chen and Marks, 1998). Liu et al. (2003) framed the feasibility 

of VIS/NIR spectroscopy to predict shear values, color and sensory characteristics of beef 

steaks during the aging process.  

As for chicken, Chen and Marks (1998) evaluated the use of NIRS for the 

prediction of specific physical attributes in wholesome and unwholesome chicken 

carcasses obtaining promising results. Oxen meat samples were also used by Prieto et al. 

(2006) to assess the potential of NIRS for the estimation of chemical composition.  Good 

to moderate correlation values for some parameters and poor predictive accuracy for 

some others were reported. More recently, Andres et al. (2007) assessed the potential of 

NIRS for the prediction of sensory characteristics related to the eating quality of lamb 

meat. The authors suggested a possibility for the use of NIRS for the discrimination 

between samples but only when extreme scores for sensory quality attributes existed.  

To our knowledge, few studies have focused on the use of spectral measurements, 

from the VIS/NIR region for the prediction pork meat quality class itself, rather than the 
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prediction of quality attributes (Xing et al., 2007) and the urge of a quality classification 

system is still in demand. 

 

       2.5.1.1 Limitations of VIS/NIRS Technique 

VIS/NIRS has shown its potential as an accurate, rapid and non-destructive 

technique for meat evaluation. However, a few studies have focused on the industrial 

applicability and the limitations of the technique. Olsen et al. (2007) evaluated the 

repeatability and variation caused by the scanning conditions in on-line assessment of pig 

carcass. The results from this study described sources of variation responsible for the 

different results obtained in the determination of fat. On the other hand, Shackelford et al. 

(2004) developed an optimal protocol for the use of VIS/NIRS in meat quality evaluation. 

Different experimental conditions were tested and results were compared. The optimum 

number of spectral observations per samples and the effect of blooming were defined.  

The study also evaluated the effect of using various equipments for spectral 

measurements in the accuracy of predictive models.  Both Olsen et al. (2007) and 

Shackelford et al. (2004) agreed on the importance of examining the applicability of 

NIRS in the industry. As stated by O’Farrell et al. (2005), the great potential of Visible 

and NIRS would be of no use if the technique cannot be applied in an on-line application. 

 

       2.5.1.2. Importance of the location of measurement 

To the best of our knowledge all studies done so far have considered meat to be 

homogeneous. As aforementioned, meat is a highly unpredictable product. Limited 

information on the effect of the place of the spectral measurement along the sample is 

available. For instance, Forrest et al. (2000) repositioned the measuring probe in three 

different locations (between the 4th and 5th lumbar vertebrate) of the pig carcass. The later 

was made in order to obtain a large volume of spectral information to average out 

possible heterogeneities. Great variation was found in the spectral values obtained from 

different locations. As a result, prediction of WHC and drip loss in fresh pork was 

developed without relocation of the measurement site. 
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2.6 VIS/NIRS Analyses Methods  

Hyperspectral data contains spectral response information that provides detailed 

chemical, moisture, and other descriptions of constituent parts of an item (Casasent and 

Chen, 2003). It is well known that spectral and hyperspectral data are very powerful and 

contain invaluable and detailed information about the sample analyzed; however, it 

usually happens that the chemometrical or statistical method used for the data analysis is 

not the best one. In fact, if the approach used to analyze the data is not the adequate or the 

best, important information about the sample might be lost. 

 

      2.6.1 Commonly used NIRS Analyses Methods  

Multivariate data analysis has proven to be very useful for spectral analysis in the 

NIR region. In previous studies mentioned above, which involve datasets with spectral 

and in some cases hyperspectral data, different approaches have been used. Basically, 

these methods try to reduce the dataset in order to simplify the model and by this, acquire 

higher prediction accuracy. Mitsumoto et al. (1991) obtained considerable results in the 

prediction of physical and chemical attributes in beef cuts by using Multiple Linear 

Regression (MLR) analyses. Savenije et al. (2006) applied Modified Partial Least-

Squares (MPLS) for the prediction of pork quality traits. In contrast, Chen and Marks 

(1998) combined MLR with PCA. They reported a correlation coefficient as high as 84% 

for pH in pork meat. On the other hand, Barlocco et al. (2006) and Andres et al. (2007) 

applied PCA to the dataset, followed by PLS.  In the former studies, models were 

developed for the prediction of proximate and physical parameters of pork meat samples 

with different presentations and for the prediction of sensory parameters of lamb meat 

respectively. Besides already mentioned methods, some other different approaches have 

been used for this kind of data, for instance; Principal Component Regression (PCR), 

Stepwise Regression, Stepwise Multiple Linear Regression, and PLS (Lanza, 1983; Park 

et al., 2001; Chan et al., 2002; Geesink et al., 2003; Hoving-Bolink et al., 2005; Xing et 

al., 2007).  

As for other techniques, Artificial Neural Networks have been widely used for 

pattern recognition and classification. More recently, ANNs are beginning to play an 

increasingly significant part in the food industry. For instance; O’Farrell et al. (2005) 
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combined the use of PCA with ANNs in their study on the online quality assessment of 

food from spectral readings. The former study emphasized the need of applying advanced 

signal processing pattern recognition techniques with high generalization capabilities to 

categorize the spectral reading taken from the food products and eliminate any interfering 

parameters. Similar approach was used by Qiao et al. (2007) in which ANNs was used 

for pork quality classification. However, in the former study, not only spectral 

observations, but hyperspectral images were analyzed.  

 
      2.6.2 Classification Techniques for VIS/NIRS Data 

There are two broad classification procedures: supervised and unsupervised 

classification methods. In the unsupervised methods no target variable is identified as 

such, instead, the data mining algorithm searches for patterns and structure among all the 

variables. Most commonly, in supervised methods there is a particular pre-specified 

target variable and the algorithm is given many examples where the value of the target 

variable is provided, so that the algorithm may learn which values of the target variable 

are associated with which values of the predictor variables (Johnson, 1998). In this 

section, the classification methods that were used in the presents study will be described. 

 

       2.6.2.1 k-Nearest Neighbors 

k-Nearest Neighbors (k-NN) is a supervised method which was first introduced 

by the researchers E. Fix and J. Hodges in their paper: “Discriminatory Analysis: 

Nonparametric Discrimination: Consistency Properties”, in 1951 (Silverman and Jones, 

1989). The k-NN rule is one of the oldest and simplest methods for pattern classification. 

Nevertheless, it often yields competitive results, and in certain domains, when cleverly 

combined with prior knowledge, it has significantly advanced the state-of the-art 

(Weinberger et al., 2006). 

k-NN is a distance-based system in which the training dataset is stored, so that a 

classification for a new unclassified record may be found simply by comparing it to the 

most similar records in the training set (Larose, 2005). The k-NN method tends to 

classify new samples by calculating their proximity to individual samples in the training 

set (Wolf and Parsons, 1983); it remembers all training data and selects most similar 

vectors at the moment it is asked to make a prediction. However; defining the number of 
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nearest neighbors to be considered, as well as the distance function for the classification 

of a new record is of great importance to achieve a good performance of the method.  

When using the k-NN algorithm, it is necessary to compute the distance between 

two records (the new sample to be classified and the reference sample). The most 

common distance metric used is the Euclidean distance (the ordinary distance between 

two points). The best choice of k depends upon the data; generally, larger values of k 

reduce the effect of noise on the classification, but make boundaries between classes less 

distinct. A good k can be selected by using parameter optimization, for example, cross-

validation (Ghostminer, 2004).  

The k-NN decision rule makes no assumption on the underlying probabilistic 

distribution of the samples points and of their classification. The difference to most other 

techniques for classification is that when using k-NN, training points are used during the 

classification, whereas in other methods, usually they are needed only during the training. 

The accuracy of the k-NN algorithm can be severely degraded by the presence of noisy or 

irrelevant features, or if the features scales are not consistent with their relevance (Larose, 

2005). 

       2.6.2.2 Canonical Discriminant Analysis 

Canonical Discriminant Analysis (CDA) is a procedure that creates new variables 

containing all of the useful information for the discrimination that is available in the 

original variables (Johnson, 1998). These new variables often lead to simpler rules for 

actually classifying experimental units into different classification groups. CDA is similar 

to principal component and factors, however, they do not compute in the same way. CDA 

often allows the visualization of the distribution or distances between the populations 

being studied in a reduced dimensional space.  

The key assumption of CDA is that all individuals can be assigned to one and 

only one group in advance, through some means external to the data being analyzed 

While PCA maximizes the total variation explained by each principal component, CDA 

maximizes the among-group variance explained by each canonical variant; as such, it 

focuses not on the overall variation in the data, but on the extent to which that variation is 

partitioned among groups (Johnson, 1998)  
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       2.6.2.3 Stepwise Regression and Discriminant Analysis 

As stated by Johnson (1998), the STEPDISC procedure uses the stepwise 

approach for variable selection, which uses a combination of the forward selection and 

the backward elimination procedure. The stepwise approach starts by selecting the single 

best discriminating variable. At each step of the process, an F-test is performed and the 

variable that results to be the most discriminant is included, the discriminant power of all 

the variables will be evaluated and before including a new variable, it will make sure that 

all the variables previously chosen remain significant, if this is the case, the variable or 

variables that are no longer significant will be eliminated. The selection continues until 

no more variables meet the criteria to be included. The Stepwise method is commonly 

used as a tool for the reduction of the set of variables to be included in the classification 

function developed by the DISCRIM procedure.  

Johnson (1998) noted that a small subset of well-chosen variables often allows a 

better discrimination between treatments than the entire set of variables, and that it is 

possible that all statistically significant variables chosen in a selection procedure might 

not be required, or that they may even result to be not useful for discrimination, so 

basically there is no such guarantee that the selected variables would represent the best 

set of variables, particularly when there is high collinearity in the data (Karimi et al., 

2005; Johnson, 1998).  

The Discriminant Analysis performed by the DISCRIM procedure is a 

multivariate technique primarily used to build rules that can classify individuals within a 

population; produce a rule that will allow predicting the class membership of an 

individual from a specific population. The basic prerequisites to perform a discriminant 

analysis are that two or more groups exist which are presumed to differ on several 

variables and these variables can be measured at the interval or ratio level (Klecka, 1980). 

Discriminant analysis is able to distinguish between groups and/or provide the means to 

classify any case into the group it most closely resembles. 

  

        2.6.2.3.1 Estimation of the probability of misclassification 

When performing a discriminant analysis it is necessary to estimate the 

probabilities of misclassification of new observations. Three basic methods exist for this 
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purpose: Resubstitution estimates, Estimates from holdout data, and the Cross-validation 

estimates. The resubstitution estimates method applies a discriminant rule to the data 

used to develop the rule and observes how often the rule correctly classifies these 

observations. The disadvantage of this method is that since all the data is used to develop 

the rule, the probabilities of correct classification are usually overestimated.  The holdout 

method uses a test or holdout dataset for testing the rule developed from other data. This 

method has been proven to produce unbiased estimates of the probabilities of correct 

classification; however, it has the limitation that the rule developed might not be the best 

discrimination rule since a reduced number of samples are used for its development. The 

leave-one-out Cross-validation method, which is more frequently used than the first two 

methods described, consists of developing a model using all data except one, the model is 

tested on the one data record not seen by the model. Next, the first observation is replaced 

and a second one is removed, a new rule is then developed and it is now tested on that 

second observation that was removed. This process is repeated for all data records. 

According to Johnson (1998), Cross-validation estimates have been shown to be nearly 

unbiased estimates of the true probabilities of correct and incorrect classifications.  

A variation of the leave-one out or Cross-validation methods is the x-fold Cross-

validation method. The latter requires that the complete dataset be divided in x equal sub-

sets, aftwerwards a first discriminant rule is created using x-1 subsets and the model is 

tested on the one remaining subset that was not included for building the rule. This 

process is repeated x-1 times and in each case, the subset that is left out of the model 

construction is changed, so that each one of x subsets is used for the testing of the model 

at least once.  

 
       2.6.2.4 Decision Trees 

Decision Trees are logical predictive models represented by a flow-chart-like tree 

structure that shows how the value of a target variable can be predicted by using the 

values of a set of predictor variables (Larose, 2005). Within the tree structure, the internal 

nodes denote tests on an attribute, branches represent an outcome of the test, and leaf 

nodes symbolize class lables or class distribution. DTs are a collection of decision nodes, 

connected by branches, extending downward from the root node until terminating in leaf 
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nodes. DTs are built in a cyclical process by dividing the feature space into two or more 

parts. The divisions or splits are made in such a way that the best separation of objects 

belonging to different classes is achieved. At each stage of the DTs construction process 

a certain criterion is used to estimate the usefulness of a particular split from the point of 

view of the final classification tree (Ghostminer, 2004). 

The estimation criterion in the Decision Tree algorithm is the selection of an 

attribute to test at each decision node in the tree. The goal is to select the attribute that is 

most useful for classifying objects.  DTs models use a statistical measure called 

“Information gain”, which allows measuring how well a given attribute separates the 

training samples according to their target classification (Ghostminer, 2004), this measure 

is used to select among the candidate attributes at each step of the tree development. 

DTs are powerful and popular tools for classification and prediction. The 

attractiveness of DTs is due to the fact that, in contrast to Artificial Neural Networks, 

decision trees represent rules, which are easier to human understanding. In some 

applications the researcher is only interested in the accuracy of the predictive model, in 

this cases, it seems unnecessary to understand the reasoning or the way the models works, 

for some other applications, however, the ability to explain the reason for a decision, is 

crucial. 

DTs present some advantages over other classification models, such as their 

ability to generate understandable rules without requiring much computation. Decision 

Trees are able to handle both continuous and categorical variables and they are able to 

provide a clear indication of which fields are most important for prediction or 

classification. As for their main disadvantages, (1) DT models are less appropriate for 

estimation tasks where the goal is to predict the value of a continuous attribute, (2) they 

are prone to errors in classification problems with many class and relatively small 

number of training examples, and (3) DT models can be computationally expensive to 

train (Larose, 2005). 

 
       2.6.2.5 Artificial Neural Networks 

Artificial Neural Networks are an information processing paradigm that is 

inspired by the way biological nervous systems, such as the brain, process information. 
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The key element of this paradigm is the novel structure of the information processing 

system. Artificial Neural Networks are an interconnected group of processing elements 

called neurons that work together to create an output function; these mathematical 

functions are able to convert inputs into desired outputs, they are basically a simplified 

model of the way the human brain processes information (Larose, 2005). In a Neural 

Network the basic units, neurons, are typically organized into layers.  

ANNs can be used to extract patterns and detect trends that are too complex to be 

noticed by either humans or other computer techniques. They are systems trained to learn 

how to solve complex problems from a training set and create generalizations that will be 

able to make estimations and/or predictions from unseen data (Larose, 2005). All the 

individual neurons involved in the network need to work as a team for the output to be 

consistent and robust. The complexity of the network will be determined by the 

connections between the processing elements and element parameters. ANNs learn by 

example, so they cannot be programmed to perform a specific task. On this basis, the 

examples must be selected carefully otherwise the network might function incorrectly.  

 

        2.6.2.5.1 Types of ANNs 

As stated by Larose (2005), the commonest type of artificial neural network consists of 

three layers of units; a layer of input parameters is connected to a layer of hidden units, 

which is in turn connected to a layer of output units. The activity of the input units 

represents the raw information that is fed into the network. The activity of each hidden 

unit is determined by the activities of the input units and the weights on the connections 

between the input and the hidden units. The behavior of the output units depends on the 

activity of the hidden units and the weights between the hidden and output units (Larose, 

2005). ANNs can be generated with different architectures. The Feed-forward Neural 

Network works in such way that it allows the signal to travel only in one direction, as 

stated by its name, there is no feedback, so the inputs are only associated with the outputs 

(Larose, 2005). The Feedback Networks, on the contrary, tend to be more powerful 

networks due to the fact that they can have signals traveling in both directions; however, 

they can get to be extremely complicated. Feedback networks are in constant change until 
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they reach the equlibrium, where-in they remain until the input changes and a new 

equilibrium needs to be found. 

 

2.7 Concluding Remarks 

It may be concluded from the above review that NIRS and VIS/NIRS can be used 

to evaluate pork meat quality attributes such as WHC, tenderness, pH, protein, color, 

IMF, cook yield and XYZ tristimulus values among others (Lanza, 1983; Brøndum et al., 

2000; Forrest et al., 2000; Chan et al., 2002; Geesink et al., 2003; Hoving-Bolink et al., 

2005; Savenije et al., 2006, Xing, et al., 2007). However, very little information was 

found on the use of spectral measurements for the prediction of pork meat quality class 

(Xing et al., 2007). In fact, to the best of our knowledge, there is a lack of information on 

the use of both visible and near infrared regions for the prediction of meat quality classes.  

Limited information was found on the industrial application of the technique. An 

optimal protocol for the use of VIS/NIRS in meat quality evaluation has been developed 

(Shackelford et al., 2004). Optimum number of spectral readings, variation between 

various equipments, and blooming effects were assessed. However, to the best of our 

knowledge, no study has evaluated the effect of the place of measurement in pork meat 

quality evaluation from spectral observations.  

It can also be concluded that spectral and hyperspectral data may contain valuable 

information about the sample being analyzed. Thereby, the selection of an appropriate 

classification method is crucial for the extraction of the valuable information which will 

allow eventual development of predictive models.  
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PREFACE TO CHAPTER 3 

 
According to the literature on the application of VIS and NIRS in pork meat 

quality evaluation, many studies have worked on the prediction of pork meat quality 

attributes. However, research is urgently needed to evaluate the potential of using VIS 

and NIRS to develop a model able to predict pork meat quality classes. 

Fresh pork loin samples from different quality classes were collected over a 

period of 6 months. Hyperspectral observations were acquired from a spectroradiometer 

in 2150 wavebands (350 nm to 2500 nm). A stepwise approach was used to select 

important variables. Discriminant analysis was used to evaluate the usefulness of the 

selected wavebands for discrimination purposes. The aim of the study was to evaluate the 

potential of hyperspectral observations in the prediction of meat quality class.  

 
Research paper based on the chapter:  

 

Monroy, P. M., Prasher, S. O., Ngadi, M. O. and Karimi, Y. 2007. Pork Meat 

Quality Classification from Hyperspectral Observations. Trans. ASAE. 

(Submitted for publication) 
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CHAPTER 3 

PORK MEAT QUALITY CLASSIFICATION  

USING HYPERSPECTRAL DATA 

 
3.1 Abstract  

Canada is a major exporter of pork meat. Currently, pork meat is classified into 

five quality groups, based on the combination of three main quality parameters, namely 

color, texture and exudation. For this study, 60 samples of pork loin from four quality 

classes of meat were assessed. To evaluate the capacity of near infrared spectroscopy as 

an accurate technique for pork quality prediction, a spectroradiometer measured 

hyperspectral reflectance at wavelengths ranging from 350 to 2500 nm with a resolution 

of 1 nm. Stepwise regression analysis was used to select the most significant wavebands 

and this was followed by a discriminant analysis to investigate the ability of the selected 

wavebands to classify pork meat samples into different categories. Leave-one-out and 

five-fold cross-validation methods were used to validate the procedure. Meat pork quality 

classes were correctly classified with 79% accuracy, when a smaller subset of selected 

wavebands was used. The results highlighted the potential application of hyperspectral 

analysis in pork meat classification.  

 

3.2 Introduction 

Canada is a major processor and exporter of pork meat, which is a highly variable 

raw material. As a result, accurate evaluation of pork meat quality is needed to move the 

pork industry forward, minimize economic losses, and assure Canada’s global leadership 

in its pork meat production. Pork quality affects product attractiveness to potential 

customers, processing characteristic for value-added product manufacture, and the 

ultimate palatability and satisfaction of pork products to consumers (Buege, 2001). 

Pork quality can be defined in various ways since the attributes that determine 

quality depend on the use for which the meat is intended (Aaslyng, 2002). Technological 

assessment of pork quality has been typically related to differences in moisture retention 

and color, which are critical characteristics that determine the consumer’s choice. 
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 Currently, pork meat quality classification consists of five quality groups, based 

on the combination of three main quality parameters namely color, texture and exudation. 

Good quality pork is described as reddish-pink, firm and non-exudative; the common 

designation of this pork is RFN. The second group includes the pork that is extremely 

soft, poor in both color and water holding properties; it is classified as pale, soft, and 

exudative (PSE). The third class, DFD, is dark, firm and dry as the acronym suggests. 

The fourth class (RSE) refers to red, soft and exudative meat, which has a normal 

reddish-pink color, but a soft texture and low water holding capacity (Kauffman et al, 

1992; Kauffman et al., 1993; Joo et al., 1995). The fifth class of meat reported in the 

literature (van Laack et al., 1994), is known as PFN; pale, firm and non-exudative meat. 

The pork meat industry is facing diverse challenges i.e., emerging classes of meat, 

the growth of the meat processing industry, market segmentation, and the lack of quality 

systems appropriate for meat plants, among others. The meat industry producers and 

consumers face a permanent need for new methods of quality evaluation. Consequently, 

effective systems for meat classification should be objective, reproducible, accurate, 

automated, rapid, affordable, and simple to use (Seman, 2002). Laboratory analyses are 

routinely used to determine pork meat quality, but tests tend to be time consuming, 

sample destructive, and expensive. Therefore, new, rapid and automatable methods need 

to be developed in order to assess pork meat quality.  

Despite several attempts to develop an effective method for the evaluation of pork 

meat, such as optical probes, ultrasonic or video image analysis (VIA), limitations are not 

yet overcome. Near Infrared Spectroscopy (NIRS) is one of the most promising 

techniques for large-scale meat quality evaluation (Monin, 1998). Visible near infrared 

(VIS/NIR) spectroscopy has shown enormous potential in the assessment of food quality, 

and it has proved to be an objective, non-destructive and accurate method that is able to 

identify the presence and quantity of chemical constituents in specific wavelengths 

(Mullen, 2002; Monin, 1998; Osborne et al., 1993). Since these factors are mainly 

responsible for meat attributes, spectral measurements can be related to meat quality. 

Although many studies have been performed on proximate analysis of meat 

products and by-products, lesser work has been done for unprocessed meat products. 

NIRS is being investigated for the prediction of meat quality using chemical parameters, 
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characteristics, and attributes. For instance,  Forrest et al. (2000) evaluated the ability of 

NIR measurements with fiber optic sampling for drip loss prediction in fresh pork, and 

obtained good results (R=0.71-0.74) but the process was quite time consuming. Geesink 

et al. (2003) worked on the prediction of pork quality attributes from NIRS data; 

reasonable results were obtained for the prediction of drip loss and no useful models 

could be constructed for shear force. A similar study was presented by Hoving-Bolink et 

al. (2005) and by Chan et al. (2002) where, in both cases, the potential of NIRS was 

investigated for predicting quality attributes. Park et al. (2001) were able to identify 

specific wavebands for fat (1212, 1722 and 2306 nm), water (1153 and 1910 nm), and 

protein (1240, 1385 and 1690 nm), while trying to predict beef tenderness. More recently, 

both spectral and spatial data were used by Qiao et al. (2006, 2007) for the development 

of predictive models for pork quality attributes, such as drip loss, pH, and color, and for 

classifying pork quality groups. In this study, feature wavebands were selected and 

quality attributes could be predicted with correlation coefficients ranging from 0.55 to 

0.86. Qiao et al. (2007) reported 87.5% accuracy for classifying pork quality groups 

using hyperspectral imaging.  Visible spectroscopy has been used to classify intact pork 

meat into two classes (based on color) with an accuracy of 85% (Xing et al., 2007). 

Although visible and near infrared spectroscopy have shown their potential for 

the prediction of pork quality attributes, and in few cases, for the prediction of a quality 

class itself, there is the need to develop a more robust classification model using larger 

and more heterogeneous dataset.  The overall objective of this study was to 

investigate the use of hyperspectral observations in pork meat classification. The specific 

objectives were to select important wavebands for pork meat quality classification using a 

stepwise approach, and to use discriminant analysis to determine pork meat quality on the 

basis of hyperspectral data, from samples collected over widely different sampling dates.  

 

3.3 Materials and Methods 

      3.3.1 Sample Preparation 

Fresh pork loins (24-h post-mortem) from the 11th rib were obtained from a 

cutting house (Olymel S.E.C./L.P., St Hyacinthe, Quebec, Canada). The samples were 

collected at different times from November 2005 to April 2006. A total of 240 samples 
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were collected, 60 samples from each one of the four different categories (PSE, RSE, 

PFN and RFN). The DFD class was not evaluated since there were insufficient samples 

in this category. The samples were classified by a meat specialist at the cutting house and 

then they were transported from the cutting house to the University Campus in an ice bag. 

The loin samples were sliced into 1 cm thick chops for further analysis.  

 

      3.3.2 Spectral data acquisition 

Hyperspectral reflectance was measured using a spectroradiometer (FieldSpec® 

Pro, Analytical Spectral Devices, Boulder, CO, USA) in 2151 wavebands. The 

spectroradiometer measured reflectance at wavelengths from 350 to 2500 nm with 1 nm 

increment. The spectroradiometer had a field of view of 15° and the sensor was located 

within a distance of 14.3 cm from the 1-cm thick samples. As a result, the hyperspectral 

measurements were an averaged response for an area of 12.25cm2. Reflectance energy 

was referenced to a pure white standard. 

The complete spectral system as shown in Figure 3.1, consisted of a 

spectroradiometer, a DC fiber-optic illuminator (Fiber-Lite PL900-A, Dollan-Jenner 

Industries Inc, MA, USA) which was used as a light source, a platform, a white frame 

(surrounding structure used to distribute uniformly the light directed to the sample), and a 

PC.  

Figure 3.1 Spectroradiometer and experiment setup 

                                            
 

Light source 

Sensor

PC 

Spectroradiometer 
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Six reflectance measurements were taken at the center of each slice and a mean 

value was calculated for each sample. Typical spectral responses of the four pork meat 

classes are shown in Figure 3.2.  

 

Figure 3.2 Measured spectral response for four classes of pork meat quality, 
assessed from samples collected in March 2006 
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3.4 Data Analysis 

Spectral data were analyzed using SAS® 9.1 (SAS Institute Inc., Cary, NC, USA) 

statistical software package. Firstly, to identify the most important wavebands, stepwise 

approach (STEPDISC procedure) was employed. Next, discriminant analysis (DISCRIM 

procedure) was used to evaluate the usefulness of the selected wavebands in classifying 

samples into different categories.  

The STEPDISC procedure performs a multivariate discriminant analysis, 

combining forward selection and backward elimination methods.  The forward selection 

is used for the inclusion of a variable, and backward elimination is employed for the 

exclusion of variables which are no longer significant in the model, based on the 

significance level for inclusion of variables in the F test. From this procedure, the most 
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significant variables, suitable for discrimination of treatments, classes or different 

attributes, are selected.  

From the wavebands selected in the stepwise regression, a smaller set of variables 

was chosen. The subset was chosen based on the order in which the variables initially 

entered into the STEPDISC procedure. The variables that were selected first are 

presumed to be more important than those that are selected later. The suitability of the 

selected wavelengths and of the subset of selected wavebands was examined with 

discriminant models using the DISCRIM procedures of SAS. The DISCRIM procedure 

can determine if a subset of wavelengths is suitable for building a rule for the 

classification of pork meat into the appropriate quality category.  

The final model was evaluated by using the leave-one-out and five-fold cross-

validation methods. The final model, developed by DISCRIM procedure, in each case, 

for the leave-one-out and every fold of the five-fold cross-validation methods, was based 

on the best subset of selected variables. In the leave-one-out method, all data except one 

are used to develop the model, and the model is tested on the one data record not seen by 

the model during model development. This process is repeated for all data records. In the 

five-fold method, dataset is divided into five equal subsets. In the model development 

process, one distinct set was used each time for testing and the remaining four sets for 

training [80% of the data is used to develop the model and an unseen dataset (20%) is 

used to validate the model], and the process was repeated five times. The five error 

estimates are averaged to get an overall error estimate 

 

3.5 Results and Discussion 

The reflectance measurements from 350 to 399 nm as well as from 1851 to 2500 

nm were not included in the analysis because of consistent noise. Due to high collinearity 

of the data and in order to reduce the dataset size, spectral data was averaged every 10 

nm, and so the bandwidth was expressed as 10 nm, instead of the initial 1 nm used in the 

measurement. For instance, the waveband 505 nm stands for the result average between 

500 and 509 nm. As stated by Johnson (1998), the entry significance level for inclusion 

of variables is normally set somewhere between 0.25 and 0.5, and, 0.15 for variable 

elimination in the stepwise approach; however, in this study, for the selection of 
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wavebands, the significance levels for the STEPDISC procedure were both set at 0.15, 

for the inclusion and removal of variables. 

Taking into account the classes of pork meat, four populations were used for 

discrimination purposes. A summary of the results from the STEPDISC procedure, 

including the waveband selection for the complete dataset, is presented in Table 3.1. As 

can be seen, the training set #2 from the five-fold cross-validation method resulted in the 

highest number of wavebands, selected to be Discriminant. The STEPDISC procedure 

was able to select the most important wavebands among the 145 wavebands for 

discriminating between different treatments. These wavebands might be reflecting the 

underlying differences among various quality classes not visible to human eyes. Most of 

the wavebands selected in both validation methods are found in the visible region, 

however; some of the most discriminant wavebands, such as 1795 and 1785 nm, are 

found in the near infrared region. 

A leave-one-out cross-validation method was performed to evaluate the predictive 

ability of the model. As can be seen in Table 3.2, better classification accuracy is 

obtained when a variable selection is performed by the STEPDISC procedure. According 

to the results, an increase in the overall classification accuracy rate of 15% is achieved 

when the model is evaluated using only the variables selected with the stepwise approach. 

In both matrices, it is clearly shown that the RFN meat quality class is more likely to be 

correctly classified, as compared to the three other remaining classes. In contrast, when 

the selected set of variables from the stepwise regression is used, a clear tendency of the 

PSE, PFN, and RSE classes to be misclassified into the RFN category is seen. In every 

fold, it can be seen that if there is no variable selection, more disparity appears in the 

misclassification. The observation above reveals that it is likely that the variable selection 

performed by the STEPDISC procedure could play an important role in achieving higher 

classification accuracy since it facilitates the elimination of those wavebands that cannot 

differentiate the quality classes and it allows the selection of the wavebands that are 

really necessary for an effective discrimination. 
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Table 3.1 STEPDISC results for waveband selection. 

 
Complete dataset 

 
Training set #2 

 
Number Waveband Number Waveband Number Waveband 

U 
Step In Entered Removed Step In Entered Removed Step In Entered Removed 

1 1 595  1 1 595  43 27 1305  
2 2 575  2 2 1205  44 28 795  
3 3 415  3 3 1605  45 27  465 
4 4 405  4 4 1225  46 28 635  
5 5 1215  5 5 1795  47 29 1065  
6 6 1205  6 6 1695  48 28  1205 
7 7 605  7 7 585  49 27  585 
8 8 455  8 6  595 50 26  1695 
9 9 565  9 7 455  51 27 1075  
10 10 1225  10 8 1385  52 28 1045  
11 11 1305  11 7  1605 53 29 1785  
12 12 735  12 8 1265  54 30 1415  
13 13 845  13 9 1685  55 29  1305 
14 12  1205 14 10 1735  56 28  1265 
15 13 675  15 11 1505  57 29 585  
16 14 865  16 12 545  58 30 1575  
17 15 925  17 13 1715  59 31 1565  
18 16 905  18 14 1345  60 32 1115  
19 17 645  19 15 1255  61 33 1055  
20 18 1255  20 14  455 62 32  1565 
21 17  1215 21 15 685  63 31  585 
22 16  1225 22 16 1305  64 32 765  
23 17 1285  23 17 505      
24 18 1815  24 18 705      
25 19 1675  25 19 885      
26 18  455 26 20 465      
27 19 835  27 21 745      
28 20 975  28 22 725      
29 19  565 29 21  1305     
30 20 1365  30 22 925      
31 21 1055  31 21  695     
32 22 1045  32 22 825      
33 23 755  33 23 1485      
34 22  975 34 24 1455      
35 23 705  35 23  1345     
36 24 1655  36 24 1815      
37 23  1305 37 23  1795     
38 24 615  38 24 415      
39 23  605 39 25 405      
40 24 485  40 26 1595      
41 23  575 41 27 1535      
42 24 495  42 26  1505     
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Table 3.2 Classification matrices for leave-one-out cross-validation method: 
 

a) No variable selection was performed,  
Predicted 

 RFN RSE PFN PSE Total 

RFN 42 
(70%) 9 8 1 60 

RSE 16 34 
(57%) 6 4 60 

PFN 3 9 41 
(68%) 7 60 

PSE 6 12 13 39 
(65%) 60 

A
ct

ua
l 

Total 67 54 68 51 240 

                            

      b) Variable selection from the STEPDISC procedure 

Predicted 

  RFN RSE PFN PSE Total 

RFN 53 
(88%) 3 3 1 60  

RSE 9 46 
(77%) 1 4 60 

PFN 9 2 44 
(73%) 5 60 

PSE 3 2 6 49 
(82%) 60 

A
ct

ua
l 

Total 74 53 54 59 240 

 

Further selection of wavebands was performed mainly because there is no 

guarantee that the selected variables from the STEPDISC procedure would represent the 

best set of variables, particularly when there is high collinearity in the data (Karimi et al., 

2005; Johnson, 1998; Murray, 1977). For reasons that are not fully understood yet, a 

small subset of well-chosen variables often allows a better discrimination between 

treatments than using all possible variables (Karimi et al., 2005; Johnson, 1998).  

No variable reduction was possible for the cross-validation method. In other 

words, it was not possible to decrease the number of variables from the ones chosen by 

the STEPDISC procedure. Trying to obtain a smaller subset only resulted in a decrease in 
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the 80% classification accuracy already achieved; as a result, no changes in the set of 

variables were made. 

In the five-fold cross-validation method, the model was developed for each fold 

with a dataset containing 192 data records (80%), and then was tested using the 

remaining 48 (20%) unseen data records. For every fold, different combinations of 

wavebands were selected from the STEPDISC procedure, and in every case, a subset of 

wavebands was chosen to increase the prediction accuracy. The criterion used for the 

elimination of wavebands was the same as for the leave-one-out method; it was based on 

the order in which the variables initially entered into the STEPDISC procedure.    

The classification matrices for two folds of the five-fold cross-validation method 

which resulted in the highest and lower classification accuracy are shown in Table 3.3. 

Little variation is found among the folds, resulting in no more than 10% difference 

between the best and the worst cases obtained in the five-fold cross-validation. As can be 

seen in both cases, the PSE class is the one which is more accurately predicted, achieving 

up to 100% classification accuracy even in the worst fold from the five-fold cross-

validation. No trend is seen with respect to misclassification of any other class.  

 

Table 3.3 Classification matrices for five-fold-cross-validation method 

 

a) Fold with higher classification accuracy 
Predicted 

 
RFN RSE PFN PSE Total 

RFN 10 
(83%) 0 2 0 12 

RSE 3 10 
(83%) 0 1 14 

PFN 1 0 8 
(80%) 1 10 

PSE 0 0 1 11 
(92%) 12 

   
   

   
   

   
   

 A
ct

ua
l  

Total 14 10 11 13 48 

 
 
 
 



 45 
 

 

b) Fold with lower classification accuracy 
Predicted 

 
RFN RSE PFN PSE Total 

RFN 7 
(70%) 1 1 1 10 

RSE 4 8 
(62%) 1 0 13 

PFN 3 0 6 
(67%) 0 9 

PSE 0 0 0 16 
(100%) 16 

   
   

   
   

   
   

   
A

ct
ua

l  

Total 14 9 8 17 48 

 

Table 3.4 shows the accuracy rate for the five-fold cross-validation method in two 

cases: first, when using all the variables selected by the STEPDISC procedure and second 

when using a smaller subset of wavebands.  In the first case, results were rather poor for 

the testing set in every fold (overall accuracy of 71.6%), ranging from 52.8% to 79.3%.  

However, the overall classification accuracy improved substantially to 79.0% when 

subsets of wavebands were used for model development and testing.  

Table 3.4 suggests that there is no direct proportion between the number of 

variables reduced from the original set and the increase in the accuracy rate. Furthermore, 

as seen in the first fold and in the cross-validation results, there are cases in which no 

variable reduction is possible; thus, it will only result in a decrease in the classification 

accuracy. 

Table 3.4 Accuracy rate for the five-fold-cross-validation method. 

Fold  

# of 
Wavebands 
selected by 
STEPDISC 

Accuracy rate using all the 
wavebands selected by 

STEPDISC (%) 
# of Wavebands in 

subset 

Accuracy rate using 
the subset for the 

prediction (%) 
1 21 79.3 21 79.3 
2 33 77.7 23 81.6 
3 17 52.8 6 74.6 
4 18 74.6 16 83.3 
5 24 73.7 15 76.1 

Average   71.6   79.0 
         
 



 46 
 

 

Table 3.5 lists the wavebands selected by the STEPDISC procedure for leave-one-

out cross-validation and the subsets selected from the five-fold cross-validation method.  

Based on the results, the wavebands 575, 595, 405, 935 and 735 nm seem to be consistent 

in most of the selected subsets, for both cross-validation methods used. Furthermore, 

wavelengths 585, 1795, 1205, 1785 and 1215 nm appear in at least two or more than two 

subsets selected for the five-fold cross-validation, but they do not appear in the leave-

one-out method. The results show a clear tendency in the selection of adjacent 

wavebands, such as 575, 585, 595 as well as 405 and 415 or 1205 and 1215 nm, in 

response to the high collinearity. 

 

Table 3.5 Subset of selected wavebands by the Stepwise operation 

Table 3.5 Subset of 

selected wavebands 

by the Stepwise 

operation 

Method 

Subset Wavebands selected for the subset Number of 
wavebands 

leave-one-out Cross-
Validation - 

595, 575, 415, 405, 735, 845, 675, 865, 
925, 905, 645, 1255, 285, 1815, 1675, 
835, 1365, 1055, 1045, 755, 705, 1655, 
615. 

23 

First fold / five-fold 
Cross-Validation 

 
1 

595, 575, 405, 555, 585,855, 925, 785, 
415, 1195, 865, 1615, 1065, 1075, 1045, 
1145, 915, 1375, 1015, 1005, 995, 985. 

22 

Second fold / five-fold 
Cross-Validation 2 

1205, 1795, 1225, 1695, 585, 1265, 1385,  
1685, 1735, 1505, 545, 1715, 1345, 685, 
505, 705, 885, 465, 745, 725, 925, 825, 
1455. 

23 

Third fold / Fivefold 
Cross-Validation 3 

595, 575, 1795, 1215, 1205, 1785. 
6 

Fourth fold / five-fold 
Cross-Validation 

 
4 

575, 405, 1205, 1215, 445, 1305, 1795, 
1785, 1285, 1175, 1155, 1185, 475, 965, 
605, 425. 16 

Fifth fold / five-fold 
Cross-Validation 

 
5 

585, 405, 495, 465, 1305, 435, 425, 735, 
885, 675, 925, 895, 1255, 895, 1265. 15 
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As shown in Table 3.5, each one of the wavebands from subset #3, appear at least 

once in each one of the other subsets, including the set from the leave-one-out method. 

Subset #3, with only six wavebands has the ability to classify pork meat into four quality 

classes with an accuracy of almost 75%. The use of few wavebands is preferable as it can 

lead to the development of a fast sensor system for monitoring the quality of pork meat. 

When few wavebands are used to develop a model, the total time needed per sample is 

reduced. Therefore, if this study was to be a useful tool for the development of a 

scientific apparatus for monitoring the on-line quality of pork meat, subset #3 would be 

the most suitable set. 

 It can be seen from (Table 3.5) that some spectral bands, selected in this study to 

be discriminant for pork meat evaluation, were related to certain chemical components in 

previous studies done on quantitative analysis of meat with spectral measurements. For 

instance, the wavelengths 1205 and 1215 nm, which appear in three of the five subsets 

from the five-fold cross-validation, correspond to an overtone for fat components, as 

reported by Osborne et al. (1993) and Park et al. (2001). The spectral bands 1155 nm and 

1385 nm, selected for their discriminatory power in this study, are practically the same 

bands reported by Park et al. (2001), as water and protein absorption bands, respectively, 

for beef tenderness prediction.  Forrest et al. (2000) and Hoving-Bolink et al. (2005) had 

a similar selection of variables for the prediction of chemical parameters of pork meat. 

Above all, the wavebands 405, 415, and 425 nm were the most predominant ones in all 

the subsets selected, and these spectral bands are considered to be myoglobin absorption 

bands (Millar et al., 1996), a chemical compound which highly influences the color of 

meat. 

Qiao et al. (2006) reported various selected feature wavebands which were also 

selected in the present study; at least 9 wavelengths were found to be the same, or at least 

to be within the same wavelength regions, considering the average made of groups of ten 

consecutive wavelengths to reduce the number of variables to enter in the model. Good 

similarity was also found when comparing the wavebands reported by Xing et al. (2007) 

to the wavebands selected in this study. The wavebands 420 nm and 580 nm were 

reported, among others, as discriminant for the classification of pork meat into pale and 

red meat classes; on the other hand, one of the wavelengths chosen for the discrimination 



 48 
 

 

of samples within the pale class was 600 nm. These three wavelengths (420, 580 and 600 

nm) are among the most important wavelengths in the present study, due to their 

discriminatory power.  

 

3.6 Conclusions 

In this study, the applicability of hyperspectral observations to classify pork meat 

into four quality classes was investigated. Classification models were developed using the 

stepwise and discriminant analysis methods. Two different cross-validation procedures 

were used to evaluate the predictive ability of the model. For the leave-one-out method, 

the classification accuracy was 80%, while with the five-fold cross-validation method; an 

accuracy of 79% was obtained for the unseen data. The subsets containing few variables 

suggest the possibility of using this study for the development of an on-line adaptation 

system. Our results clearly show the potential of using hyper-spectral observations in 

pork meat quality classification.  
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PREFACE TO CHAPTER 4 
 

The results of Chapter 3 indicated that hyperspectral observations could be used 

for the prediction of pork meat quality class. Classification models were developed using 

the stepwise and discriminant analysis methods. The study was focused on using the 

selected wavebands for discriminating between four pork meat quality classes. 

Once the potential use of hyperspectral data for pork meat classification was 

ascertained, the next step was to evaluate the performance of different classification 

methods. The hyperspectral observations acquired in the first experiment were re-

randomized, and analyzed using different approaches, i.e., k-Nearest Neighbors, 

Artificial Neural Networks, Discriminant Analysis, and Decision Trees. The overall goal 

of the study was to identify the most suitable method for the sorting pork meat into four 

quality classes.  

 

Research paper based on the chapter:  

 

Monroy, P. M., Prasher, S. O., Ngadi, M. O. and Patel, R. 2007. A Comparison of 

Different Methods of Classifying Pork Meat Quality Evaluation, Using 

Hyperspectral Observations. Canadian Biosystems Engineering. (Manuscript 

based on this chapter is under preparation). 
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CHAPTER 4 

 A COMPARISON OF DIFFERENT METHODS OF CLASSIFYING 

PORK MEAT QUALITY USING HYPERSPECTRAL 

OBSERVATIONS 
 

 

4.1 Abstract  

Hyperspectral data was qualitatively assessed by Canonical Discriminant Analysis 

(CDA). Four methods were used to assess pork meat quality classes (RFN, RSE, PFN 

and PSE). Artificial Neural Networks (ANNs), Decision Trees (DTs), k-Nearest 

Neighbors (k-NN) and multivariate Discriminant Analysis (DA) models were developed 

and tested using a hyperspectral dataset of 240 independent spectral observations within 

the VIS/NIR region. The best results were obtained from DA models which were 

developed using selected sets of wavebands from a Stepwise Regression. DA resulted in 

an overall classification accuracy of 76% for unseen data. In an effort to improve the 

classification accuracy, the 240 samples were regrouped into just two classes: pale and 

red meat. The data analysis showed that it was possible to separate pale meat from red 

meat, with classification accuracies attained by k-NN, DTs, ANNs and DA as high as 

81%, 80%, 85% and 89% respectively. Since DA approach yielded the highest 

classification accuracy, it was then used to classify meat as Soft and Exudative (SE) or 

Firm and Non-exudative (FN), given that it was previously classified as Pale or Red.  

Classification accuracies of 91% and 84% were obtained for the discrimination of SE and 

FN classes within the pale and red classes, respectively. The classification accuracy of 

DA method could not be increased from regrouping the samples. An overall classification 

accuracy of 76% was obtained for the classification of pork meat into four quality 

classes.   

 

4.2 Introduction 

Canada is a major producer and exporter of pork meat and its leadership is related 

to the high quality of the meat produced. Due to the market segmentation, the concept of 
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meat quality has become very specialized and specific for every market that needs to be 

supplied. In response to the many specialized markets, the meat industry needs to provide 

meat based upon the quality standards and preferences of every different market. Pork 

processors also need to be able to classify the meat before its processing. The quality and 

characteristics of a processed meat product could be affected if poor quality meat is used 

for processing (Marriott and Schilling, 2002).  

In an attempt to classify pork meat, subjective and objective methods have been 

used.  Fresh quality meat indicators such as physiological maturity, marbling, color, 

texture and firmness of lean, wateriness of cut lean surfaces and firmness of fat are 

typically evaluated by visual inspection. Unfortunately, visual evaluation is subject to 

human error. Laboratory-based methods, on the other hand, have focused on the 

determination of quality traits such as water-holding capacity, pH, shear force value, and 

color (See Mullen, 2002 for a review on the techniques). However, these methods tend to 

be time-consuming, sample destructive, time- and labor-intensive and expensive.  

Visible and Near Infrared Spectroscopy (VIS/NIRS) has shown great advantages 

over both visual evaluation and traditional laboratory methods. This technique has 

demonstrated an enormous potential as an objective, accurate, and rapid tool for meat 

quality evaluation (Savenije et al., 2006; Liu et al., 2003; Liu et al., 2000). 

Near Infrared Spectroscopy (NIRS) is one of the most promising techniques for 

large-scale meat quality evaluation and its potential in a great range of applications has 

been broadly studied (Monin, 1998). The technique has been used for the prediction of 

quality traits of different meats such as beef, lamb, chicken and oxen (Lanza, 1983; 

Mitsumoto et al., 1991; Park et al., 2001; Chen and Marks, 1998, Prieto et al., 2006; 

Andres, et al., 2007). Prediction of diverse pork meat quality attributes has also been 

evaluated using NIRS (Lanza., 1983; Forrest et al., 2000; Chan et al., 2002; Geesink et 

al., 2003; Hoving-Bolink et al., 2005; Savenije et al., 2006; Barlocco et al., 2006; Xing, et 

al., 2007). To the best our knowledge, very few studies have focused on the use of 

spectral measurements for the prediction of a pork meat quality class itself, rather than 

the prediction of quality attributes. Xing et al. (2007) investigated the potential of using 

visible spectroscopy to classify different quality classes of pork meat. Results suggested 

that visible spectral information is not sufficient to separate all quality classes. Thus, 
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exploration of both VIS and NIR spectra seems more likely to yield higher classification 

accuracies.  

In the aforementioned studies, which involve datasets with spectral and, in some 

cases, hyperspectral data, different approaches have been used for data analysis. For 

instance, Mitsumoto et al. (1991) obtained satisfactory results in the prediction of 

physical and chemical attributes in beef cuts by using Multiple Linear Regression (MLR) 

analyses. Savenije et al. (2006) applied Modified Partial Least-Squares (MPLS) to their 

data for the prediction of pork quality traits. Chen and Marks (1998), on the contrary, 

combined Principal Component Analysis (PCA) with MPLS, and obtained a correlation 

coefficient as high as 84% for pH in pork meat. Barlocco et al. (2006) and Andres et al. 

(2007) applied PCA to the dataset, followed by PLS.  Barlocco et al. (2006) developed 

models for the prediction of proximate and physical parameters of pork meat samples 

with different presentations. Andres et al. (2007) used the same methodology for the 

prediction of sensory parameters of lamb meat. Chen and Marks (1998) also used PCA as 

a dimensionality reduction technique prior to development of MPLS to develop models 

for the prediction of cooking loss and yield deformation of chicken patties. Other 

approaches such as Principal Component Regression (PCR), Stepwise Regression, 

Discriminant Analysis, Stepwise Multiple Linear Regression, and Partial Least-Square 

Regression  have been used for analyzing this kind of data, where-in a dataset reduction 

is usually intended in order to acquire a higher prediction accuracy, i.e., (Lanza, 1983; 

Park et al., 2001, Forrest et al., 2000; Chan et al., 2002; Geesink et al., 2003; Hoving-

Bolink et al., 2005; Xing et al., 2007). 

ANNs have been widely used as a means of pattern recognition and classification 

and, more recently; it is increasingly being used in the food industry. For instance, 

O’Farrell et al. (2005) emphasized that spectral observations should be preprocessed 

before applying for pattern recognition or classification purposes. In their study, they 

used PCA before the development of ANNs’ models for food quality assessment. A 

similar approach was used by Qiao et al. (2007) in which ANNs was used for pork 

quality classification from hyperspectral images.  

Curram and Mingers (1994) compared the performance of ANNs, Linear 

Discriminant Analysis (LDA) and DTs methods applied to real and artificially generated 
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datasets, and obtained similar results for LDA and ANNs’ techniques. Both methods 

yielded similar results except in the case when the dataset did not satisfy the assumptions 

required for LDA application. Wang and Paliwal (2006) evaluated discriminating 

techniques for the classification of wheat varieties from spectral observations and found 

that Linear and Quadratic discriminant analysis combined with PCA gave better results 

than k-Nearest Neighbor (k-NN), Probabilistic ANNs, and Support Vector Machines 

(SVM). In another study by Karimi et al. (2005b), multivariate discriminant analysis was 

found to offer the best classification accuracy of almost 75% for weed and nitrogen stress 

detection in corn, when compared to ANNs and DTs. Since the datasets vary from one 

another, it is not possible to rely on the comparison of techniques from other studies to 

select a classification method; different methods need to be evaluated to determine which 

method is able to classify pork meat quality classes more accurately.  

 
4.3 Objectives  

The overall objective of this study was to develop an automated and reliable 

technique for the classification of pork meat into four quality classes from hyperspectral 

observations. The specific objectives were 1) to qualitatively assess hyperspectral data by 

using Canonical Discriminant Analysis, 2) to compare the performance of Stepwise 

Regression and Discriminant Analysis, k-Nearest Neighbor, Artificial Neural Networks, 

and Decision Tree methods in the development of a classification model for pork meat 

quality assessment, and 2) to distinguish important wavebands for meat quality 

classification. 

 

4.4. Materials and Methods 

      4.4.1 Meat Samples 

The meat samples used in this study were obtained from a local cutting house 

(Olymel S.E.C./L.P., Ste Hyacinthe Quebec, Canada) from November 2005 to April 

2006. A total of 240 fresh pork loins (24 hours after slaughter) from the 11th rib were 

collected. 

Pork quality classification is based on color, texture, and exudation. Generally, 

the classification is done by specialists through visual observations. In this study, four 
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different classes of pork meat; PSE, RFN, PFN and RSE, classified by a meat specialist, 

were assessed. RFN (Reddish pink, Firm and Non-exudative) pork has desirable color, 

normal texture and water-holding capacity (WHC). PSE (Pale pinkish, Soft and 

Exudative) pork has undesirable appearance and, because of the excessive drip loss, it has 

very soft texture (NPB, 1999). RSE (Reddish, Soft and Exudative) pork has normal color, 

but a softer texture and poor WHC (Kaufman et al., 1992). Finally, the PFN class stands 

for pale, firm and non-exudative meat (Nam et al., 2002).  

Sixty samples were collected for each class. The loin samples were sliced into 1-

cm thick chops for making spectral measurements.  
 

      4.4.2 Spectral Data Collection 

Hyperspectral data were obtained from the pork samples using a 

spectroradiometer (FieldSpec® Pro, Analytical Spectral Devices, Boulder, CO, USA) 

with 2151 wavebands from 350 to 2500 nm (1.0 nm bandwidth) and a field of view of 

15°. The hyperspectral measurements were an averaged response for an area equal to 

12.25 cm2.   

The complete spectral system consisted of a spectroradiometer, a DC fiber-optic 

illuminator (Fiber-Lite PL900-A, Dollan-Jenner Industries Inc. MA, USA), a platform, a 

white frame, and a PC. Reflectance energy was referenced to a pure white standard. The 

spectroradiometer was recalibrated every 10 minutes. The measurements were taken 

approximately ten minutes after the slice was cut. Six successive scans were made at the 

center of each slice at the same location.   

 

      4.4.3 Data Pre-processing 

Reflectance values were calculated and for each sample, an average value was 

calculated from the scans taken from 6 successive scans at the center of sample. Visual 

examination of reflectance spectra showed consistent noise in the region between 350 to 

399 nm as well as from 1851 to 2500 nm. As a consequence, these regions were excluded 

from analysis. Thus, there were 1450 reflectance values between 400 to 1850 nm 

inclusive.  To facilitate computations, reduce spectral noise, and reduce collinearity, the 
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dataset was reduced by averaging groups of ten consecutive wavelengths; the dataset was 

then reduced to 145 wavebands per sample. 
 

      4.4.4 Data Analysis 

Canonical Discriminant Analysis was used to determine the possibility of using 

the hyperspectral data collected  for pork meat quality classification. Once the results 

showed the potential of the data for classification purposes, predictive models were 

generated using four different techniques: Stepwise Regression and Discriminant 

Analysis (DA), k-Nearest Neighbors, Decision Tree, and Artificial Neural Networks. 

Stepwise approach (STEPDISC procedure) was employed to identify the most 

important wavebands for discrimination among various classes of pork meat. Next, 

Discriminant Analysis (DISCRIM procedure) was used to evaluate the usefulness of the 

selected wavebands in classifying samples into four quality classes. DA, CDA, and 

Stepwise Regression were performed via SAS® 9.1 (SAS Institute Inc., Cary, NC, USA) 

statistical software package. The spectral dataset was used to generate and validate DTs 

and k-NNs models using Ghostminer® 3.0 (FQS, Fujitsu Kyushu System Engineering, 

Poland) software, an advanced data-mining tool. ANNs were developed with 

Clementine® 8.5 (SPSS Inc., Chicago, IL, USA) data mining workbench. 

Models were developed to identify four classes (RFN, RSE, PFN, and PSE), and then 

cross-validated. Once the best method for pork meat quality classification was 

determined, it was investigated in more detail to see if classification accuracy could be 

increased further. 
 

      4.4.5 Classification Methods 

The classification methods used in this study are described below. Since CDA 

was used first to visualize the class-wise distribution and to determine if hyperspectral 

data collected in this study could be used for classification purposes, this method is also 

described briefly.  

 
       4.4.5.1 Canonical Discriminant Analysis 

Canonical discriminant analysis is a dimension-reduction technique used to 

provide a representation of various populations in a subspace of smaller dimensions 



 

 58 
 

 

(Khattree and Naik, 2000). Thus, CDA creates new variables by taking linear 

combinations of the original variables (Johnson, 1998). The canonical variables contain 

all the useful information that can be extracted from the set of original variables. From a 

large number of possibly correlated characteristics on which measurements are taken, 

CDA tries to obtain only a few new variables that can help describe the differences 

between various populations (Khattree and Naik, 2000). The new variables obtained are 

named canonical variables (See Johnson, 1998, and Khattree and Naik, 2000 for a more 

detailed review on the technique). 

 

       4.4.5.2 Stepwise Regression and Discriminant Analysis 

The STEPDISC procedure uses a stepwise approach for variable selection: a 

combination of the forward selection and the backward elimination procedure. The 

stepwise approach starts by selecting the single best discriminating variable and adds new 

variables in stepwise manner. At each step of the process, a statistical F-test is performed 

and the variable that is found to be the most discriminative one is included. The 

discriminant power of all the variables is evaluated and before including a new variable, 

it is made sure that all the variables, previously chosen, remain significant. If at this 

stage, any of the variables previously selected are no longer significant, they are 

eliminated. The selection process continues until no more remaining variables meet the 

criteria for inclusion.  

Johnson (1998) noted that a small subset of well-chosen variables often allows a 

better discrimination between treatments than the entire set of variables, and that it is 

possible that all statistically significant variables chosen in a selection procedure might 

not be required, or that they may not to be useful for discrimination. So there is no 

guarantee that the selected variables would represent the best set of variables, particularly 

when there is high collinearity in the data (Karimi et al., 2005a; Johnson, 1998).  

DA is a multivariate technique primarily used to build rules that can classify 

individuals within a population (Klecka, 1980). When performing a DA, it is necessary to 

estimate the probabilities of misclassification of new observations. The leave-one-out 

method consists of developing a model using all data except one, and the model is tested 

on the one data record, not seen by the model. This process is repeated for all the data 
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records. In a five-fold Cross-validation method, the dataset is divided into five equal sub-

sets. Then, a discriminant model is created using four subsets and the model is tested on 

the one remaining unseen subset that was not included in model building. This process is 

repeated four more times, and in each case, the subset that is left out of the model 

construction is changed, so that each one of the five subsets is used for the testing of the 

model at least once. The accuracy ratios are averaged, and overall classification accuracy 

is determined. (See Klecka, 1980, Johnson, 1998, and Khattree and Naik, 2000 for more 

details on DA) 

 

       4.4.5.3 k-Nearest Neighbors 

k-NN is a distance-based method in which the training dataset is stored so that a 

new record may be classified simply by comparing it with the most similar records in the 

training set (Larose, 2005). The k-NN algorithm looks at the similarity of the new data 

with reference samples. Thus, it remembers all training data and selects most similar 

vectors at the moment it is asked to make a prediction. Defining the number of nearest 

neighbors to be considered (k) as well as the distance function for the classification of a 

new record is of great importance to achieve good performance with the method. For 

instance, when a k value of 1 is defined, the new variable will be classified according to 

the 1 sample from the training dataset which is nearest to it.  As stated by Wang and 

Paliwal (2006), if more neighbors are involved in deciding a class, more reliable results 

could be obtained. (See Larose, 2005 for a more detailed description of the method) 

 

       4.4.5.4 Decision Trees 

Decision Trees are predictive models represented by a flow-chart-like tree 

structure, where-in the internal nodes denote tests on an attribute, branches represent an 

outcome of the test, and leaf nodes symbolize class lables or class distribution (Larose, 

2005). DTs are built in a cyclical process by dividing the feature space into two or more 

parts. The divisions are made in such a way that the best separation of objects belonging 

to different classes is attained. In every stage of the DTs, construction process, a certain 

criterion is used to estimate the usefulness of a particular split from the point of view of 

the final classification tree (Ghostminer, 2004).  
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The estimation criterion is the selection of an attribute to test at each decision 

node in the tree. The goal is to select the attribute that is most useful for classifying 

objects. For instance, the Separatability of Split Value (SSV) for discrete attributes works 

on the basis that the best split value is the one that separates the largest number of pairs of 

objects from different classes. As for other criterion used by DTs, the best-first mode 

(Ghostminer, 2004) works in a way that once the best split is found, and once the 

resulting subsets contain data belonging to more than one class, just then, the next node 

that is split is chosen based on the highest value for the split among all that may be 

generated at a given stage. (See Larose, 2005, and Ghostminer, 2004 for more details on 

the method). 

 

       4.4.5.5 Artificial Neural Networks 

ANNs are an interconnected group of processing elements called neurons that 

work together to create an output function (Larose, 2005). These mathematical functions 

are able to convert inputs into desired outputs. They are, basically, a simplified model of 

the way the human brain processes information. In an ANN, the basic units are neurons, 

and they are typically organized into layers. Artificial Neural Networks are systems 

trained to learn how to solve complex problems from a training set and they create 

generalizations that will be able to make estimations and/or predictions from unseen data 

(Larose, 2005). For the output to be consistent and robust, all the individual neurons 

involved in the network, need to work as a team. The complexity of the network is 

determined by the connections between the processing elements and element parameters 

(Larose, 2005). There are two main options for ANN development: feed forward neural 

network and recurrent neural network. The feed forward network restricts the network to 

a single direction of flow and does not allow looping or cycling (Larose, 2005). The 

models are generally pruned when the modeling process starts with large network and 

then it removes the weakest units in the hidden and input layers as training proceeds. 

 

In this study, the significance levels for the STEPDISC procedure were set at 0.15 

for both variable inclusion and removal. A subset of wavebands from the ones selected in 

the STEPDISC procedure was chosen based on the order in which the variables are 
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initially entered into the STEPDISC procedure, given the variables selected are in the 

order of importance (Karimi et al., 2005a). The suitability of the selected wavebands 

and/or a subset of selected wavebands were examined with discriminant models using the 

DISCRIM procedures of SAS. For this study, to test the validity of the discriminant 

model, both the leave-one-out and five-fold cross-validation methods were used.  

Cross-validation tests were used to estimate the accuracy of the k-NN training 

sets. The number of nearest neighbors tested ranged from 1 to 5. However, the k value 

used for subsequent analysis was set to a maximum of five, which was the number that 

appeared more frequently in the cross-validation tests. The similarity measure was 

Euclidean distance. To guarantee that all predictors are measured on the same scale, as in 

all the other models, the dataset was standardized. To test the validity of the k-NN model 

a five-fold cross-validation was performed. To eliminate any bias in the way 

randomization is done, a ten-fold cross-validation procedure was used 10 times to ensure 

development of a well generalized model.  

The criterion used in the decision tree algorithm for this study was the SSV. The 

best-first mode was selected for the configuration of the model. The given leaves count 

was set to five because it resulted in relatively smaller trees which were able to generalize 

the model. To test the validity of the DTs model a five-fold cross-validation was 

performed. A ten-fold cross-validation procedure was used 10 times to ensure 

development of a well generalized model.  

The training method chosen for building the neural network was the feed forward 

neural network, combined with a prune method. The prune method was selected because 

it generally yields better results than the other methods available (Ghostminer, 2004). The 

ANN model was tested using a five-fold cross-validation procedure. 

 

4.5 Results and Discussion 

The average spectral response of the four classes of meat is illustrated in Figure 

4.1. The figure clearly demonstrates the difference in the reflectance values among the 

four quality classes. It can be seen that there are regions in the spectra that show more 

differentiation between the classes of meat. The reflectance of the PFN and PSE classes 

appears to be higher than those of RFN and RSE classes; this behavior is due to the 
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lighter color of the PSE and PFN classes. In the pale meat samples (PSE and PFN), 

myoglobin, which is the pigment mainly responsible for the color of the meat, is 

denatured, thus causing the paleness of the meat, and consequently a lower absorption of 

light.  

 

Figure 4.1 VIS/NIR reflectance spectra of 24-h post mortem pork meat of four 
quality classes. 
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CDA allowed us to visualize the actual distances between the four classes of meat 

in a reduced dimensional space. The assessment of four classes of meat (RFN, PFN, 

RSE, and PSE) resulted in a canonical correlation of 0.92. Using two of the three 

canonical variables, the meat quality was distinguished among four different classes, as 

shown in Figures 4.2. Results from CDA suggested that the hyperspectral data could be 

used for classification purposes.  
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Figure 4.2 Plot of Canonical discriminant analysis of four classes of meat (Can 
1*Can2), where-in 1=RFN, 2=RSE, 3=PFN and 4=PSE. 

 

 

 
 

 

 

A summary of the results from the STEPDISC and the DISCRIM procedure are 

presented in Table 4.1. From the set of wavebands selected in the Stepwise regression, a 

smaller set of wavebands was selected based on the order in which the variables initially 

entered into the STEPDISC procedure. This was done because, as Johnson (1998) noted, 

a small subset of well-chosen variables often allows a better discrimination between 

treatments than the entire set of variables, particularly when there is high collinearity in 

the data (Karimi et al., 2005a; Johnson, 1998). However, variable reduction could not be 

achieved at all times. In these cases, the error estimate increased when the variables were 

removed. As a result, the number of discriminant variables in subset was the same as 

those selected by the STEPDISC procedure. 
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Table 4.1 Accuracy rates of testing data for the Cross-validation methods applied to 
the Discriminant Analysis performed with different subsets of wavebands for the 

classification of meat into four quality classes. 
 

Cross-
validation 

method 
Fold 

# of 
Wavebands 
selected by 
STEPDISC 

Accuracy rate using all the 
wavebands selected by 

STEPDISC in unseen data 
(%) 

# of 
Wavebands 

in subset 

Accuracy rate 
using the 

subset for the 
prediction in 
unseen data 

(%) 
Leave-
one-out - 23 80.0 23 80.0 

1st  17 73.0 15 75.0 

2nd  22 69.2 7 84.0 
3rd  31 74.4 25 76.5 
4th  21 62.0 19 70.0 

Five-fold 
Cross-

validation 

5th  18 75.0 18 75.0 
Average  70.7   76.1 

  
DISCRIM procedure was used to discriminate four meat classes; RFN, PFN, PSE 

and RSE. Calibration accuracies of both leave-one-out and five-fold cross-validation 

methods for DA showed in Table 4.1. The leave-one-out cross-validation method resulted 

in 80% classification accuracy, and in this case, no variable reduction was possible. The 

five-fold cross-validation accuracies are also given in Table 4.1.  An overall classification 

accuracy of 70% was obtained when using all the variables selected by the STEPDISC 

procedure. Results improved to 76% when using a subset of wavebands. The waveband 

reduction resulted in increased classification accuracy almost 8%. Table 4.1 suggests that 

there is no direct relationship between the number of variables reduced from the original 

set and the increase in the accuracy rate.  

Table 4.2 displays the overall classification accuracies achieved by the four 

classification methods used in this study. The best classification accuracy was achieved 

by the DA classifier, combined with the STEPDISC procedure. DA method achieved 

76% classification accuracy from unseen data. The second better performance was 

achieved by the Artificial Neural Networks algorithm with an overall classification 

accuracy of 66%, followed by k-NN with 62%. The lowest classification accuracy 

reported was obtained with the DT model.  
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Table 4.2 Classification accuracies obtained by the classification methods assessed 
for the evaluation of four classes of meat. 

 

 

Table 4.3 displays a summary of the variables used for the development of the 

classification rules by DA, ANN, k-NN, and DT techniques for the sorting of meat into 

four quality classes. Both k-NN and ANN do not perform variable selection and therefore 

use all 145 variables to create a classification rule. The variables displayed as wavebands 

selected by the stepwise regression are those which consistently appeared in the five-fold 

cross-validation method of the DA (Table 4.3). 

  

Table 4.3 Wavelengths selected by different methods in developing classification 
model. 

Classification 
Method Selected wavebands 

Stepwise 
procedure * 

585, 405, 445, 465, 1205, 565, 575, 1805, 1225, 1685, 685, 1065, 
1795, 735, 1155, 845,1215, 1675 

k-NN All 145 

DT 555, 1065, 635 

ANN All 145 

* The variables displayed are those found at least in two subsets from the five-fold Cross-
validation.  
 

The better performance of DA over k-NN could be due to the fact that k-NN does 

not simplify the dataset at all; it provides no concise model of the relationship between 

the predictors and the response. Consequently, it is not as useful for visualization and 

knowledge discovery as DA.  

Classification Method Overall Prediction Accuracy for Unseen Data (%)

Discriminant Analysis 76.09 
 

k-NN 62.42 

Decision Tree 58.58 

Artificial Neural Networks 66.25 
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The better performance of DA over ANNs could be due to the fact that ANNs 

could not identify the important wavebands in the dataset. It is also possible that the 

problem was too complex to solve for the size of the dataset. As compared to the DT 

method, it is possible that better performance of DA was due to the differences in the 

variable selection executed by each method. The variable selection performed by the 

STEPDISC procedure works in such a way that while a variable is selected to be 

discriminant, the discriminant power of the previously selected variables is evaluated to 

make sure that the final set of variables selected remains discriminant as a whole. On the 

contrary, DTs models are not able to eliminate any variable selected during the rule’s 

development, thus, once a variable is selected there is no way back. Decision Tree’s 

variable selection process might be the cause of its poor performance. In fact, forward 

selection has been found to be one of the best methods to order a set of features by which 

one best (Jain and Zongker, 1997). Consequently, if forward selection itself can perform 

so well, combining its potential with backward elimination suggests that the stepwise 

regression is a very powerful and useful tool for feature selection and that its use in the 

development of discriminant analysis models is very useful for achieving higher 

classification accuracies as compared to other classification methods.  

The classification matrices for two out of five-fold cross-validation method for 

ANNs and DA are shown in Table 4.4 and 4.5, respectively. The folds displayed are 

those which resulted in the highest and lower classification accuracy. The classification 

matrices for the remaining folds are given in Appendix A. As can be seen, no clear 

tendency was found as for which class is the one which is more accurately predicted. No 

trend is seen towards any class for misclassification; however, it appears that RSE class is 

rarely misclassified into the PSE class as it happens with PFN and RFN classes. The 

same behavior is seen for the RSE class which was only once misclassified into the PSE 

class. The fact that the Soft and Exudative (SE) classes are not as frequently misclassified 

as the Firm and Non-exudative (FN) classes could be explained by the effect of light 

scattering. For instance, the denaturation of the pigmented protein myoglobin as well as 

the accumulation of free water on the cut muscle surface tend to increase light reflectance 

as compared to the FN samples, in which the muscle cells are swollen with retained water 

and tightly packed together thus absorbing more light rather than reflecting it as it 
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happens with SE samples (Buege, 2001). Results suggest that, since more spectral 

information is obtained from SE samples, less misclassification appears within these 

classes.  

 
 

Table 4.4 Artificial Neural Networks classification matrices from the five-fold cross-
validation method between four quality classes of meat 

 

a) Fold with highest classification accuracy 
 

Predicted 

 
RFN RSE PFN PSE Total 

RFN 7 
(64%) 3 0 0 10 

RSE 2 7 
(70%) 1 1 11 

PFN 2 0 9 
(75%) 4 15 

PSE 0 0 2 10 
(67%) 12 

A
ct

ua
l 

Total 11 10 12 15 48 

 
 

b) Fold with lowest classification accuracy 
 

Predicted 

 
RFN RSE PFN PSE Total 

RFN 9 
(82%) 3 8 0 20 

RSE 1 7 
(58%) 0 0 8 

PFN 1 2 6 
(33%) 0 9 

PSE 0 0 4 7 
(100%) 11 

A
ct

ua
l 

Total 11 12 18 7 48 
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Table 4.5 Discriminant Analysis classification matrices from the five-fold Cross-
validation method between four quality classes of meat. 

 

a) Fold with highest classification accuracy 
 

Predicted 

 
RFN RSE PFN PSE Total 

RFN 10 
(100%) 0 0 0 10 

RSE 4 7 
(58%) 1 0 12 

PFN 1 0 13 
(87%) 1 15 

PSE 0 0 1 10 
(91%) 11 

A
ct

ua
l 

Total 15 7 15 11 48 

 
 
 

b) Fold with lowest classification accuracy 
Predicted 

 
RFN RSE PFN PSE Total 

RFN 11 
(92%) 0 1 0 10 

RSE 1 12 
(86%) 0 1 12 

PFN 3 0 3 
(33%) 3 15 

PSE 1 1 2 9 
(69%) 11 

A
ct

ua
l 

Total 15 7 15 11 48 

 

 

Since DA gave the best results in classifying pork meat quality classes, the 

method was investigated further. In order to improve the accuracy of the DA method, the 

meat samples were regrouped into pale (PFN and PSE) and red (RSE and RFN) meat 

classes.  
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4.5.1 Discriminating between the Pale and Red meat classes 

Similar to the procedure previously followed, a variable reduction was performed 

by the STEPDISC procedure followed by DA. DA was used to select a smaller subset of 

variables from the already chosen wavebands by the STEPDISC procedure. A five-fold 

cross-validation was used for testing the DA model. A summary of the results from the 

STEPDISC and DISCRIM procedures are shown in Table 4.6. A classification accuracy 

of about 89% was achieved for both red and pale classes, for unseen data. The 

classification accuracies range from as low as 86% to about 94%, using only five and ten 

wavebands respectively as discriminators.  

 

Table 4.6 Accuracy rates of testing data for the cross-validation methods applied to 
the DA performed with different subsets of wavebands for the classification of meat 

into pale and red meat classes. 
 

Number of 
classes Fold 

# of 
Wavebands 
selected by 
STEPDISC 

Accuracy rate using all the 
wavebands selected by 

STEPDISC in unseen data 
(%) 

# of 
Wavebands 

in subset 

Accuracy rate 
using the 

subset for the 
prediction in 
unseen data 

(%) 
1st  11 90.0 10 93.9 
2nd  14 91.5 14 91.5 
3rd  7 88.8 5 86.0 
4th  9 85.8 5 89.7 

2 classes 
(Pale and 
Red meat) 

5th  8 84.3 4 85.2 
Average 89.0  89.3 

 

 

The overall increase in the classification accuracy obtained shows that 

hyperspectral measurements are greatly influenced by the color of the sample. The 

classification matrices for two out of five-fold-cross-validation method from DA methods 

are shown in Table 4.7. The results of remaining folds are given in Appendix B. The 

folds displayed are those which resulted in the highest and lowest classification accuracy.  

No tendency was found as to which class, pale or red, is more accurately predicted. 
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Table 4.7 DA classification matrices from the five-fold cross-validation method 
between pale and red samples. 

a) Fold with highest classification accuracy  b) Fold with lowest classification accuracy 
 
 

 

The classification accuracy improved when the meat was classified into pale and 

red meat samples. However, color alone does not fully describe the quality defects 

inherent in the pork. And above all, the main purpose of the present study was to classify 

the meat into four quality classes. Thereby, to improve the accuracy of the DA method 

further, and to be able to discriminate between four pork meat quality classes, meat was 

split in two sub-classes, Soft and Exudative (SE) and Firm and Non-exudative (FN) given 

that it was pale or red.   
 

      4.5.2 Discriminant Analysis of the samples within the Pale and Red meat classes 

 Once more, the STEPDISC procedure was used for a variable reduction, followed 

by the DISCRIM procedure, which was used to evaluate the usefulness of the selected 

wavebands for discrimination of meat samples. Since the dataset consisted of a smaller 

number of samples, a three-fold cross-validation was performed for testing the models.  

Table 4.8 displays the classification accuracies obtained by DA; when using all 

the variables selected by the STEPDISC procedure, and when using a smaller subset of 

variables. There was no substantial increase in the classification accuracies after selecting 

a smaller subset of variables, however smaller subset can be useful for development of 

sensors. In the case of pale class, noticeable increase of 8% accuracy was observed with 

reduced number of wavebands. The classification matrices for the three-fold cross-

validation are given in Appendix C. 

 

Predicted 

 Pale Red Total 

 
Pale  

21 
(91%) 1 22 

 
Red  2 24 

(96%) 26 

A
ct

ua
l 

 
Total 23 25 48 

Predicted 

 Pale Red Total 

 
Pale  

16 
(80%) 3 19 

 
Red  4 25 

(89%) 29 

A
ct

ua
l 

 
Total 20 28 48 
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Table 4.8 Accuracy rate for the cross-validation method applied to DA performed 
with different subsets of wavebands for the classification of meat into two classes 

based on Texture and Exudation parameters. 

Classes Fold 
# of Wavebands 

selected by 
STEPDISC 

Accuracy rate using all the 
wavebands selected by 

STEPDISC in unseen data (%) 

# of 
Wavebands 
in  subset 

Accuracy rate 
using the 

subset for the 
prediction in 
unseen data 

(%) 
1st  10 81.8 6 87.0 
2nd  11 88.1 9 95.0 Pale 

3rd  14 81.8 13 92.1 
Average  83.9  91.3 

1st  7 77.5 7 80.3 
2nd  4 81.0 3 81.0 Red 

3rd  6 89.1 5 90.5 
Average 82.5  83.9 

 

DA was able to discriminate SE from FN samples, within the pale meat, with an 

overall classification accuracy of about 91% on unseen data. As for the discrimination 

within the red meat samples, an accuracy of about 84% was achieved. Results seem to 

suggest that the overall classification accuracy was increased by regrouping the samples 

into pale and red classes, and further more into SE and FN. However, adding up the 

classification accuracies obtained through out the analyses did not result in an increase in 

the initial classification accuracy achieved for the discrimination of samples into four 

quality classes. The higher classification accuracies achieved when samples were 

regrouped into pale and red classes was expected, the same as it would be expected that a 

quality grader classifies more accurately meat samples according to their paleness or 

redness, rather than classifying into four quality classes. Overall, DA was able to classify 

fresh pork meat samples into four quality classes using hyperspectral observations with 

76% classification accuracy on unseen data.  

 

4.6 Conclusions 

In this study, classification models were developed using hyperspectral 

observations from both visible and near infrared region for the classification of fresh pork 

meat samples into four quality classes. Classification accuracies from k-NN, DTs, DA, 

and ANNs models were compared. Overall, DA showed the best performance for the 



 

 72 
 

 

sorting of meat into four quality classes. The combination of Stepwise Regression and 

Discriminant Analysis resulted in an overall classification accuracy of 76% on unseen 

data. Results suggested the possibility to separate red meat samples from the pale class 

with an accuracy as high as 89% by DA.  

The results show the potential of using DA to develop predictive models for pork 

meat quality classification from hyperspectral data. The results obtained suggest the 

possibility of developing a on-line adaptation system for meat quality grading.  
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PREFACE TO CHAPTER 5 
 

The better performance of the Discriminant Analysis method over ANNs, k-NN, 

and DTs methods for the classification of fresh pork meat samples into four quality 

classes using hyperspectral observations from both visible and near infrared region was 

described in Chapter 4.  

In this chapter, hyperspectral observations from both visible and near infrared 

region were measured at five different locations along the meat loin. Fresh pork loin 

samples belonging to different quality classes (RFN, RSE, PSE, and PFN), collected in 

April 2006, were assessed. Stepwise regression and Discriminant Analysis were 

performed to evaluate the utility of hyperspectral data in pork industry.  

 
Research papers based on the chapter: 

 

Monroy, P. M., Prasher, S. O., Ngadi, M. O., and Patel, R. 2007. Importance of 

the place of measurement in pork meat quality classification from hyperspectral 

data. Trans. ASAE. (Manuscript based on this chapter is under preparation)  
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CHAPTER 5 

IMPORTANCE OF THE LOCATION OF MEASUREMENT IN 

PORK MEAT QUALITY CLASSIFICATION FROM 

HYPERSPECTRAL DATA 
 

 

5.1 Abstract 

VIS/NIRS has shown a great potential for the evaluation of meat quality. Various 

models have been developed for the prediction of pork quality attributes obtaining good 

results; however, there is no clear relationship between quality attributes as to classify 

pork meat into quality classes (RFN, DFD, PSE, PFN, and RSE), based on color, and 

based on texture/exudation. Therefore a study was undertaken to investigate the utility of 

hyperspectral data in pork industry. Samples of pork loin from four quality classes of 

meat were assessed. To evaluate the industrial applicability of visible/near infrared 

spectroscopy as an accurate technique for pork quality prediction, hyperspectral 

reflectance at wavelengths ranging from 350 to 2500 nm with a resolution of 1 nm was 

measured in five different locations along the meat loin. Stepwise regression analysis was 

used to select the most significant wavebands for meat classification in each location 

assessed. A discriminant analysis was performed to investigate the ability of the selected 

wavebands to classify pork meat samples into different categories. High classification 

accuracies were achieved for the classification of meat in different locations. The results 

highlighted the potential use of hyperspectral analysis in pork meat classification in an 

on-line process. 

 
5.2 Introduction 

Pork meat quality is mainly described by the combination of anomalies of three 

quality attributes, color, texture, and exudation.  On this basis, five pork meat quality 

classes have been identified (NPB, 1999; van Laack et al., 1994; Joo et al., 1995). Good 

quality pork is described as reddish-pink, firm and non-exudative; the common 

designation of this pork is RFN. The second group includes the pork that is extremely 

soft, poor in both color and water holding properties; it is classified as pale, soft, and 



 

 78 
 

 

exudative (PSE). The third class, DFD, is dark, firm and dry as the acronym suggests. 

The fourth class (RSE) refers to red, soft and exudative meat, which has a normal 

reddish-pink color, but a soft texture and low water holding capacity. The fifth class of 

meat reported in the literature, is known as PFN (van Laack et al., 1994); pale, firm and 

non-exudative meat, having textural and exudation desired characteristics but poor color 

properties. 
The potential use of Visible and Near Infrared Spectroscopy (VIS/NIRS) in the 

assessment of meat quality has been studied. The advantages of this technique over 

subjective evaluation, laboratory tests, and traditional methods have increased the interest 

in spectral measurements as means of quality assessment. Diverse meat quality traits 

have been predicted from spectral observations (Chen and Marks, 1998; Forrest et al., 

2000; Geesink et al., 2003; Park et al., 2001; Prieto et al., 2006; Savenije et al, 2006; Liu 

et al., 2000; Liu et al., 2003; Andres, et al., 2006; Barlocco et al., 2006; Xing et al., 

2007). Results from various studies focused on the prediction of quality parameters of 

pork meat as a tool for the classification of meat class are inconstant, in fact, the 

prediction of certain quality parameters such as, water-holding capacity, color, shear 

force, pH, and intramuscular fat, have generally reported poor to moderate accuracies. As 

stated by Warriss et al. (2006), the relationships between ph, color, and water-holding 

capacity are complex and non-linear, and thus considering these isolated parameters to 

classify meat might not be accurate. To our knowledge, few studies have aimed to predict 

meat class as a whole (Qiao et al., 2006; Xing et al., 2007).  

The meat industry faces a constant need of an objective technique to predict meat 

quality. Even though VIS/NIRS has shown its potential as accurate, rapid and non-

destructive technique for meat evaluation, the ideal conditions for its use in practical 

applications is still limited. Shackelford et al. (2004) developed an optimal protocol for 

the use of VIS/NIRS in meat quality assessment. Results were compared for different 

experimental conditions; the optimal number of spectral observations per samples was 

defined, as well as the effect of blooming and differences due to the use of different 

equipments were evaluated.  Olsen et al. (2007) focused on the study of the repeatability 

and variation caused by the scanning conditions in on-line evaluation of pig carcass. The 

results from this study described the sources of variation responsible for the different 
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results obtained in the determination of fat. Both studies aforementioned converged in the 

importance of examining the applicability of NIRS in the industry. As stated by O’Farrell 

et al. (2005) the principal aim of the sensor systems developed for quality control in the 

food industry is that they are on-line, and unobtrusive to the product; however, the goal is 

not always achieved. The great potential of VIS/NIRS would be of no use if the technique 

cannot be applied in an on-line production. 

NIRS methods have very good performance potential and among their 

advantages; rapidity of measurement, versatility, and they give a multi-component 

measurement which accounts information about fat, moisture, protein, and other quality 

traits. However, for NIRS methods, calibration is absolutely critical and if there is any 

change in the sample material that is out from the range of properties of the samples used 

for calibration, recalibration is needed. Once the calibration of the modes is made, it is 

important to consider that detectors must be precise, robust and fast enough to stand up to 

industrial conditions, in other words, practical for fast-paced production or processing 

environment. 

All studies done so far, have considered meat to be homogeneous. This might not 

be the case, since meat is a highly variable and unpredictable material. For instance, 

marbling of the meat causes samples to be more heterogeneous. To the best of our 

knowledge, limited information on the effect of the place of the spectral measurement 

along the sample is available. Forrest et al. (2000) repositioned the measuring probe on 

three different locations between the 4th and 5th lumbar vertebrate of the pig carcass, in 

order to obtain a large volume of spectral information, to average out possible 

heterogeneities. They found great variation in spectral values at different locations. 

Therefore, prediction of water-holding capacity and drip loss in fresh pork were 

developed without relocation of the measuring probe. Thus it is important to know the 

effect of measuring point location on the hyperspectral response of meat. In our study, the 

main objective was to evaluate the impact of the place of measurement on the 

classification accuracy of pork meat quality from hyperspectral observations. 
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5.3 Materials and Methods 

      5.3.1 Sample Preparation 

A total of forty fresh pork loins (24-h post-mortem) around the 11th rib were 

obtained from a local cutting house (Olymel S.E.C./L.P., Quebec, Canada). The samples 

were selected from four different quality classes by the meat inspector, before being 

transported to McGill University at a controlled temperature. The samples were collected 

in April 2006.  

 

      5.3.2 Spectral Data Collection 

The pork loins were placed under the sensor for the spectral measurements one at 

a time, as shown in Figure 5.1. On each loin, five different location sites were scanned, 

and six measurements were made for each location. The location sites were 

approximately the same for every loin assessed starting from the left portion of the chunk 

(wider loin area) as shown in figure 5.1. 

   
Figure 5.1 Measurement location sites along the chunk 

 

The complete spectral system, as shown in Figure 5.2, consisted of a 

spectroradiometer, a DC fiber-optic illuminator (Fiber-Lite PL900-A, Dollan-Jenner 

Industries Inc, MA, USA) which was used as a light source, a platform, a white frame 

(surrounding structure used to distribute uniformly the light directed to the sample), and a 

PC. The spectroradiometer makes one full scan of the wavelength region in 1s 

approximately. The samples were not modified in any way before measurements. 

A B C D E
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Figure 5.2 Spectroradiometer and experimental setup. 

 

Hyperspectral reflectance was measured using a spectroradiometer (Field Spec® 

Pro, Analytical Spectral Devices, Boulder, Inc, Colorado) in 2151 wavebands, at 1.0 nm 

increments of wavelength between 350 to 2500 nm. The spectroradiometer had a field of 

view of 15°, and it was held 15 cm above the sample to obtain an average reflectance 

signature for an area of 12.25cm2.   

 

5.4 Data Analysis 

Spectral data were analyzed using SAS® 9.1 (SAS Institute Inc., Cary, NC, USA) 

statistical software package. The data collected from every location was analyzed 

separately, thus five datasets were analyzed. The STEPDISC procedure in SAS was used 

to identify the most important wavebands and the DISCRIM procedure was used to 

evaluate the usefulness of the selected wavebands in classifying samples into different 

meat categories.  

The STEPDISC procedure performs a multivariate discriminant analysis, 

combining forward selection and backward elimination methods.  The forward selection 

is used for the inclusion of variables, and the backward elimination is employed for the 

exclusion of variables which are no longer significant in the model, based on the 

significance level for inclusion of variables in an F test. From this procedure, the most 
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significant variables of every dataset, suitable for discrimination the discrimination of 

quality classes, were selected.  

For every set of selected wavebands, a smaller subset of variables was chosen. 

The reduction of variables was made based on the order in which the variables initially 

entered into the STEPDISC procedure. The variables that were selected first are 

presumed to be more important than those that are selected later. The suitability of the 

selected wavelengths and of the subset of selected wavebands was examined with 

discriminant models using the DISCRIM procedure.  

The final models were evaluated by using the leave-one-out cross-validation 

method. In the leave-one-out method, all data, except one, are used to develop the model, 

and the model is tested on that one data record, not seen by the model during model 

development.  

 

5.5 Results and Discussion 

Due to extreme spectral noise, reflectance measurements from 350 to 399 nm as 

well as from 1851 to 2500 nm were not included in the analysis of any dataset. In order to 

evaluate if every scan could be used as an individual measurement for meat class 

prediction, every scan was considered (as opposed to average of six measurements used 

in previous work). Due to the high collinearity of the data and in order to reduce the 

dataset, spectral data was averaged every 10 nm, and so the bandwidth was expressed as 

10 nm, instead of the initial 1 nm used in the measurement.  Thus our dataset consisted of 

240 observations and 145 variables. The significance levels for the STEPDISC procedure 

were both set at 0.15, for the inclusion and removal of variables.  

A summary of the results from the STEPDISC procedure combined with a 

variable reduction, as well as the classification accuracies obtained in the discriminant 

analysis for every location site, are shown in Table 1. From the set of wavebands selected 

in the Stepwise regression, a substantially smaller set of wavebands was selected, based 

on the order in which the variables initially entered into the STEPDISC procedure. This 

was done for two reasons, 1) as Johnson (1998) noted, a small subset of well-chosen 

variables often allows a better discrimination between treatments than the entire set of 

variables and 2) the variables selected by the STEPDISC procedure were excessive if we 
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consider that a smaller subset can be useful for development of on-line sensors. The 

classification accuracies slightly decreased when reducing the number of wavebands used 

for the development of the model. The slight decrease was preferable to an increased 

number of wavebands for two reasons; 1) the final classification accuracy was 

sufficiently high, and 2) for practical VIS/NIR applications the use of fewer wavebands is 

preferable as it can lead to faster sensor systems.  

 

Table 5.1 Subset of selected wavebands by the Stepwise operation for every location 

 

It can be seen from Table 5.1, that some of the wavebands selected were found in 

the spectral region between 540 and 580 nm which is related to respiratory pigments 

bands. Various studies have identified spectral bands similar to the ones displayed in 

table 5.1, for their use in the prediction of quality parameters, quality class, or as different 

component overtones (Park et al., 2001; Barlocco et al., 2006; Xing et al., 2007; Moss et 

al., 1999; Qiao et al., 2006; Forrest et al., 2000).  

The classification matrices for the leave-one-out cross-validation methods are 

shown in Table 5.2.  From this table, it can be seen that PSE class seems more likely to 

Location 
site  

Number of 
wavebands 

in initial 
Subset 

Accuracy rate 
using all 

wavebands 
selected by 
STEPDISC  

(%) 

Wavebands selected for 
the subset 

Number of 
wavebands in 
final subset 

Accuracy rate 
using the subset 

for the 
prediction in 

unseen data (%) 

A 61 100 

 
605, 1485, 1445, 525, 1715, 

985, 1005, 965, 975, 535 
 

10 99.98 

B 71 100 
955, 1745, 925, 865, 965, 
875, 1115, 805, 785, 945, 

835 
11 99.98 

C 58 100 635, 865, 815, 965, 755, 735, 
855, 1035, 1045, 885, 805 11 99.98 

D  71 100 

 
615, 535, 1495, 1445, 475, 
565, 605, 445, 965, 1035, 

1025, 1705, 1155 
 

13 99.6 

E 73 100 
 

615, 1485, 535, 475, 565, 
1455, 605, 455, 1775, 525, 

1625 
12 99.95 
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be misclassified either into PFN or RFN classes, for every location. RSE class was only 

once misclassified into RFN samples. Thus overall, RSE seems to be the class most 

accurately predicted.  

 

Table 5.2 Classification matrix of the hold-out cross-validation method 

a) From data collected in the location site A. 
 

Predicted 
 

RFN RSE PFN PSE Total 

RFN 60 
(100%) 0 0 0 60 

RSE 0 60 
(100%) 0 0 60 

PFN 0 0 60 
(100%) 0 60 

PSE 0 0 3 57 
(96%) 60 

   
   

   
   

   
   

 A
ct

ua
l  

Total 60 60 63 57 240 

   
b) From data collected in the location site B. 

 
Predicted 

 
RFN RSE PFN PSE Total 

RFN 60 
(100%) 0 0 0 60 

RSE 0 60 
(100%) 0 0 60 

PFN 0 0 58 
(97%) 2 60 

PSE 0 1 0 59 
(98%) 60 

   
   

   
   

   
   

 A
ct

ua
l  

Total 60 61 58 61 240 

   
 
 
 

 
 
 
 
 



 

 85 
 

 

c) From data collected in the location site C. 
Predicted 

 
RFN RSE PFN PSE Total 

RFN 60 
(100%) 0 0 0 60 

RSE 0 60 
(100%) 0 0 60 

PFN 0 0 59 
(98%) 1 60 

PSE 0 0 3 57 
(96%) 60 

   
   

   
   

   
   

 A
ct

ua
l  

Total 60 60 62 58 240 

   
 

d) From data collected in the location site D. 
Predicted 

 
RFN RSE PFN PSE Total 

RFN 60 
(100%) 0 0 0 60 

RSE 0 60 
(100%) 0 0 60 

PFN 0 0 59 
(98%) 1 60 

PSE 0 0 0 60 
(100%) 60 

   
   

   
   

   
   

 A
ct

ua
l  

Total 60 60 59 61 240 

  
  

e) From data collected in the location site E. 
Predicted 

 
RFN RSE PFN PSE Total 

RFN 58 
(97%) 0 0 2 60 

RSE 1 59 
(98%) 0 0 60 

PFN 0 0 60 
(100%) 0 60 

PSE 4 0 3 53 
(88%) 60 

   
   

   
   

   
   

 A
ct

ua
l  

Total 63 59 63 55 240 
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Results suggest that it is possible to vary the location of the spectral measurement 

along the pork loin, and still, achieve good prediction accuracy. This study indicates that 

VIS/NIRS can be used in an on-line sensor system, and that it would not be necessary to 

average successive scans while trying to predict meat quality. Meat quality could be 

predicted with an accuracy of almost 100% with single scans at a few locations of the 

loin.  

 
5.6 Conclusions 

In this study, the applicability of hyperspectral observations to classify pork meat 

into four quality classes was investigated. The impact of the place of spectral 

measurement along the loin was evaluated. Classification models were developed using 

the stepwise and discriminant analysis method for five different location sites along the 

chunk of meat. The classification accuracies obtained by the leave-one-out cross-

validation method were as high as 99%. Results suggest the possibility of using this study 

for the development of an on-line sensor system.  
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 
 
6.1 Summary 

This study investigated the applicability of hyperspectral observations from both 

visible and near infrared region for classifying pork meat into four quality classes: RFN, 

RSE, PFN, and PSE. In addition, four classification methods, (DA, k-NN, DTs, and 

ANNs), were tested. Finally, the potential for the industrial applicability of the technique 

was evaluated by measuring hyperspectral reflectance at five different location sites 

along the meat sample.  

The objectives were met by collecting a total of 280 samples of fresh pork loin 

samples in a span of 6 months. Samples were regrouped into pale and red classes. A 

further split of samples into SE and FN within the pale and red classes was also 

evaluated.  

 

6.2 Conclusions 

The conclusions reached in this study are presented in the order in which they 

were presented in the thesis. 

(1) Hyperspectral observations from both visible and near infrared region were 

analyzed for their applicability in classifying pork meat into four quality classes. Sixty 

samples per class (PFN, RFN, PSE and RSE) were collected. The ability of a stepwise 

approach in the selection of important wavebands was examined. Classification models 

were developed using the stepwise and discriminant analysis methods. Two different 

cross-validation procedures were used to evaluate the predictive ability of the model. For 

the leave-one-out method, a classification accuracy of 80% was obtained, while with the 

five-fold cross-validation method; an accuracy of 79% was obtained for the unseen data. 

The study revealed that discriminant functions based on a restricted set of wavebands can 

show a better performance and suggests the possibility of its use in the development of a 

faster on-line sensor system. Our results clearly show the potential of using hyper-

spectral observations in pork meat quality classification.  
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(2) The performance of four classification methods in the analysis of 

hyperspectral data for pork meat quality class evaluation was compared. Artificial Neural 

Networks, Decision Trees, k-Nearest Neighbors, and multivariate Discriminant Analysis 

models were trained and tested using a hyperspectral dataset of 240 spectral observations 

within the VIS/NIR region. For the sorting of meat into four quality classes, DA resulted 

in an overall classification accuracy of 76% on unseen data. Since DA gave the best 

results, this method was investigated further. Aiming to improve the classification 

accuracy of the DA method, the samples were regrouped into pale and red meat classes. 

The data analysis suggested the possibility of separating pale meat from red meat 

samples. The classification accuracy attained for the discrimination of red and pale meat 

samples by DA increased positively to 89%. Samples were then regrouped into Soft and 

Exudative (SE) or Firm and Non-exudative (FN), given that they were Pale or Red.  

Regrouping of samples resulted in higher classification accuracies; however, the 

classification accuracy of DA method could not be increased from regrouping the 

samples, and an overall classification accuracy of 76% was attained for the classification 

of pork meat into four quality classes.  

(3) Aiming to develop an automated and reliable technique for pork meat quality 

class evaluation, the industrial applicability of the proposed technique was assessed. 

Reflectance measurements were obtained from fresh pork samples from different quality 

classes, at five different location sites along the loin. The importance of the place of 

spectral measurement along the loin was investigated. A Stepwise approach was used for 

the selection of important wavebands. Further selection of wavebands resulted in smaller 

subset of discriminant wavebands which reinforced its potential use in the development 

of sensors for industrial applications. Discriminant Analysis was used to assess the 

usefulness of the selected wavebands and to develop predictive models for the 

classification of meat samples. The classification accuracies obtained by the leave-one-

out cross-validation method were as high as 99%. Results suggest the possibility of using 

this study for the development of an on-line adaptation system. Based on the results 

presented, further research work is recommended to move forward to standardization of 

the technique and in future, for the development of a sensor that can be used in industrial 

applications for meat quality evaluation. 
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APPENDIX A 

Remaining classification matrices from the five-fold cross-validation by 

Discriminant Analysis for the sorting of meat into four quality classes. 

 
 

 
Predicted 

 
RFN RSE PFN PSE Total 

RFN 7 
(70%) 2 1 0 10 

RSE 2 8 
(73%) 1 0 11 

PFN 2 0 12 
(80%) 1 15 

PSE 0 0 2 10 
(83%) 12 

A
ct

ua
l 

Total 11 10 16 11 48 

 
Predicted 

 
RFN RSE PFN PSE Total 

RFN 6 
(75%) 0 2 0 8 

RSE 2 12 
(80%) 1 0 15 

PFN 2 0 10 
(83%) 0 12 

PSE 2 0 3 8 
(62%) 13 

A
ct

ua
l 

Total 12 12 16 8 48 

Predicted 

 
RFN RSE PFN PSE Total 

RFN 15 
(75%) 1 3 1 20 

RSE 0 7 
(88%) 0 1 8 

PFN 3 1 5 
(56%) 0 9 

PSE 0 0 2 9 
(81%) 11 

A
ct

ua
l 

Total 18 9 10 11 48 
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Remaining classification matrices from the five-fold Cross-validation by Artificial 

Neural Network for the sorting of meat into four quality classes. 

 

Predicted 

 
RFN RSE PFN PSE Total 

RFN 5 
(50%) 4 1 0 10 

RSE 5 7 
(58%) 0 0 12 

PFN 1 1 8 
(53%) 5 15 

PSE 0 0 4 7 
(64%) 11 

A
ct

ua
l  

Total 11 12 9 16 48 

 
 

Predicted 

 
RFN RSE PFN PSE Total 

RFN 11 
(92%) 1 0 0 12 

RSE 2 11 
(79%) 1 0 14 

PFN 4 0 4 
(44%) 1 9 

PSE 2 1 3 7 
(54%) 13 

A
ct

ua
l 

Total 19 13 8 8 48 

 
 

Predicted 

 
RFN RSE PFN PSE Total 

RFN 4 
(50%) 1 3 0 8 

RSE 1 13 
(87%) 1 0 15 

PFN 2 1 9 
(75%) 0 12 

PSE 1 0 5 7 
(54%) 13 

A
ct

ua
l 

Total 8 15 18 7 48 
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APPENDIX B 
 

Remaining classification matrices from the five-fold cross-validation by 

Discriminant Analysis for the discrimination between pale and red classes. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

Predicted 

 Pale Red Total 

 
Pale  

24 
(96%) 1 25 

 
Red  3 20 

(87%) 23 

A
ct

ua
l 

 
Total 27 21 48 

Predicted 

 Pale Red Total 

 
Pale  

18 
(72%) 7 25 

 
Red  0 23 

(100%) 23 

A
ct

ua
l 

 
Total 18 30 48 

Predicted 

 Pale Red Total 

 
Pale  

23 
(79%) 6 29 

 
Red  0 19 

(100%) 19 

A
ct

ua
l 

 
Total 23 25 48 
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APPENDIX C 
 
  Classification matrices from the three-fold Cross-validation method of DA for the 

classification of Pale meat into SE and FN classes: 

 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Classification matrices from the three-fold Cross-validation method of DA for the 

classification of Red meat into: SE and FN classes: 

 
 

 

 

 

 
 
 
 

 

 

 

Predicted 
PALE MEAT 

     SE FN Total 

 
SE 

17 
(94%) 1 18 

 
FN 1 21 

(96%) 22 

A
ct

ua
l 

PA
L

E
 M

E
A

T
 

 
Total 18 22 40 

Predicted 
PALE MEAT 

     SE FN Total 

 
SE 

17 
(74%) 6 23 

 
FN 0 17 

(100%) 17 

A
ct

ua
l 

PA
L

E
 M

E
A

T
 

 
Total 17 23 40 

Predicted 
PALE MEAT 

     SE FN Total 

 
SE 

17 
(74%) 6 23 

 
FN 0 17 

(100%) 17 

A
ct

ua
l 

PA
L

E
 M

E
A

T
 

 
Total 17 23 40 

Predicted 
RED  MEAT 

     SE FN Total 

 
SE 

17 
(77%) 5 22 

 
FN 3 15 

(83%) 18 

A
ct

ua
l 

R
E

D
  M

E
A

T
 

 
Total 20 20 40 

Predicted 
RED MEAT 

     SE FN Total 

 
SE 

16 
(94%) 1 17 

 
FN 3 20 

(87%) 23 

A
ct

ua
l 

R
E

D
  M

E
A

T
 

 
Total 19 21 40 
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Predicted 
RED  MEAT 

     SE FN Total 

 
SE 

13 
(62%) 8 21 

 
FN 0 19 

(100%) 19 

A
ct

ua
l 

R
E

D
  M

E
A

T
 

 
Total 13 27 40 


