BARROSO, Cleber José

Chelate-exchange titrimetry in mixed solvents

A CONTRACTOR OF THE OWNER

CHELATE-EXCHANGE TITPINETRY IN MIXED SCLVENTS: DETERMINATION OF BIS [4,4,4-TRIFLUORO-1-(2-THIENYL)-1,3-PUTANE-DIGNATO] COPPER(II)

Cleber Barroso

by

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the requirements for the degree of Master of Science

Cleber Barroso 1973.

(c)

Department of Chemistry, McGill University, Montreal, Canada, September 1972.

Abstract

The system 2-thenoyltrifluoroacetone (HTTA), 1-(2-Pyridylazo)-2-Naphthol (HPAN), Copper (II) was studied by spectrophotometry, in methanol-benzene mixtures at 15°C., 25°C. and 35°C. Algebraic equations were derived in order to calculate the apparent molar equilibrium constants K1' and K2' of the chalate exchange reactions Cu(TTA)_+ HPAN = Cu(TTAPAN) + HTTA and Cu(TTAPAN) + HPAN Cu(PAN)₂+ HTTA in these solvents. The temperature dependence of these constants was also determined. In benzene K,' was 900 and this value decreased to 250 in pure mothanol. In benzene K_2 ' was 0.007 and it increased to 0.600 in pure methanol. These changes in the values of K_1 ' and K_2 ' with change in methanol content of the methanol-benzene mixtures are discussed in terms of the activity coefficients, and the fact that the HTTA exists as enol, keto, enolate ion and solvates in the solutions at equilibrium.

i

<u>Acknowledgements</u>

I wish to express my sincere thanks to Dr. G.C.B. Cave for his invaluable guidance, assistance and encouragement throughout the investigation and preparation of this thesis.

I am most grateful to Mr. d'Amboise for his cooperation and advice, and for making his data and the curve fitting computer programmes available before their publication.

I thank Miss Kirchnerova for measuring the water content of the organic solvents, and for her valuable aid during the preparation of the thesis.

I also want to thank my colleagues and friends, who have been helpful in many ways.

I am deeply grataful to my parents for their patience and encouragement at all steps.

()

Finally and above all, I wish to express my indebtedness to my wife, Lena, for her understanding, moral support and encouragement throughout.

TABLE OF CONTENTS

()

	pago
ABSTRACT	i
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	viii
LIST OF FIGURES	×iii
LIST OF PLATES	×v
LIST OF APPENDICES	×vi
CHAPTER 1 INTRODUCTION	1
CHAPTER 2 PLAN OF RESEARCH	n senten en e

CHAPTER	3	EXPERIMENTAL		7
		3.1	Apparatus	7
		3.1.1	Spectrophotometers	7
		3.1.2	Thermostats	8
		3.1.3	Filtration Apparatus	11
		3.1.4	Glassware	11
		3.1.5	Miscellaneous	14
		3.2	Reagants	14
		3.2.1	Hethanol	14
		3.2.2	Benzene	15
		3.2.3	4,4,4-Trifluoro-l-(2-Thyienyl)	
			-1,3-Butanedione (HTTA)	16

-1,3-Butanedione (HTTA)

iii

- TABLE OF CONTENTS (CONTINUED)

	page
3.2.4 Standard aqueous solution of	
cupric nitrate	18
3.2.5 l-(2-pyridylazo)-2-naphthol	18
3.2.6 Copper chelates	20
3.2.6(i) Preparation and purifica-	
tion of the solid	20
3.2.6(i)a Bis [4,4,4-Trifluoro-1-	
(2-Thysnyl)-1,3-butane	
dionato Copper(II)	20
3.2.6(i)b [1-(2-pyridylazo)-2-naph-	
thol [4,4,4-Trifluoro-	
(2-Thienyl)-1,3-butane	
dionato Copper(II)	21
3.2.6(i)c Bis [1-(2-pyridylazo)-2-naph-	
tholato Copper(II)	25
3.2.6(ii) The preparation of standard	
solutions of the three cop-	
per chelates in methanol	
and in benzene	25
3.2.6(iii) Methods of Assay	26
3.2.6(iii)aDetermination of the copper	
content of the copper	
chelate	27
3.2.6(iii)bDetermination of the PAN	
content of Cu(TTAPAN) and	
Cu(PAN)	27
. 2	-
A FRELIMINARY STUDY OF THE CHELATE EX-	
CHANGE BETWEEN CU(TTA), AND HPAN IN	
NETHALOL-BENZENE MIXTURES	36

Spectrophotometric absorption date for $Cu(TTA)_2$, Cu(TTAPAN), $Cu(PAN)_2$, HTTA and HPAN in bonzone-methanol mixtures

4.1

CHAPTER 4

iv

TABLE OF CONTENTS (CONTINUED)

		page
4.2	The absorption spectra of	
	benzene-methanol solutions	
	of mixtures of $Cu(TTA)_2$ and	
	HPAN, in the range 400 nm.	
	to 570 nm.	38
4.3	Experimental results and	
	treatment of the spectrophoto-	
	metric data	42

(

CHAPTER 5 THE CHELATE-EXCHANGE BEACTION OF CU(TTAPAN) WITH HTTA AND HPAN IN METHANGL-BENZENE NIXTURES

54

5.1	Introduction	54
5.2	Procedures	56
5.2.1	Proparation of stock standard	
	solutions of Cu(TTAPAN),	
	Cu(PAN), HTTA and HPAN in	
	uenzane or methanol	56
5.2.2	Preparation of colutions for	
	determinations of molar absorp-	
	tivities of Cu(TTAPAN) and	
	Cu(PAN), in methanol-benzene	
	mixtures, and for spectrophoto-	•
	metric investigations on the	
	chelate-exchange reactions of	
	Cu(TTAPAN) with HTTA or HPAN	
	in methanol-benzene mixtures,	
	at 25 [°] C.	57
	÷	

5.2.3 Spectrophotometric measurements 59

TABLE OF CONTENTS (CONTINUED)

 C^{\ast}

				page
	5.2.4	Proc	cedure for the spectro-	
	•	pha [.]	tometric investigation of	
		the	exchange reactions be-	
		twee	en Cu(TTAPAR) and HTTA or	
		HPA	V, in benzend, methanol	
		and	methanol-bonzene mixtures,	
		at 1	13 ⁰ C, and 35 ⁰ C.	59
	5.3	កទទា	ilts and treatment of the	
		data	9	61
	5.3.1	The	exchange reaction between	
		Cu(ITAPAN) and HITA in	
		meth	nanol-benzene mixtures,	
		at 2	$25 \pm 2^{\circ}$ C.	61
	5.3.2	The	exchange reaction between	
ж. ж.	$1 \sim \mathcal{O}_{g^{*}}$	°Cu (/	ITAEAN) and HPAN in	
		meth	nanol-bonzens mixtures,	
· ·		at 2	$25 \pm 2^{D}C$.	70
	5.3.3	The	exchange reaction of	
		Cu(TTAPAN) with HPAN and HTTA	
		in r	ethanol, benzens and	
		meti	anol-benzene mixtures, at	
		15 ⁰ (C. and 35 ⁰ C.	86
	5.3.3(:	i)	Calculated value of the	
			function $K_1 \Psi/r$ of equation	
			(5.14), in pure benzene	
			and in 40.9 mol/ methanol	
•			in benzend, at 15 ⁰ 0.,	
			and at 35°C.	89
	5.3.3(:	ii)	Calculated values of the	
			function $\kappa_2 \varphi / p$ of equation	
			(5.23) in pure benzene	
			and 40.9 mol ² methanol	
	•		in benzenc, at 15 ⁰ C. and	
			35 ⁰ C.	63
	•		•	

vi

TABLE OF CONTENTS (CONTINUED)

()

 \mathbb{C}

					page
		5.	3.4	The disproportionation of	
5- 1-	· · · · ·		•	Cu(TTAPAN) into Cu(TTA) ₂	
				and Cu(PAN) ₂ , in methanol-	
				benzene mixtures	92
	CHADTED 6	DISCUSS	τ Π6!		D R
	CHATTER 0				
		6.	1	The variation of $K_y \Psi/r$ with	
				concentration of HTTA	98
		6.	2 .	The reasons for the variation	ı
				of $K_1 \Psi/r$ and $K_2 \Psi/p$ with the	
		:		mol% methanol in the	
		· ·		methanol-benzène mixtures	98
	CLAIMS TO CR	IGINAL R	ESEA	RCH	127
		•	· . ·		
	SUGGESTIONS	FOR FURT	HER I	/DRK	129
		·			_
	APPENDICES			1	xvi
	REFERENCES				161
					•
		•			

vii

1

List of Tables

			آ المحمد الم	age
	Table	1	Spectrophotometric data and absorp- tivities of HPAN in:	29
			1) Methanol at 450 nm., 460 nm., and 470 nm.	
			2) Benzene saturated with water at 460 nm.	
	Table	2	Analysis of Cu(PAN) ₂	30
	Table	3	Analysis of Cu(TTAPAN) for Cu and HPAN by solution of a weighed	31
			amount of the solid in methanol, and determination of both Eu and	lation -
	Tabla	1	Appluance of Su(TTARAN) for Su and	24
en del spine.		4 fruit - fruides -	Analyses of Lu(TIAPAN) for Lu and PAN, by dilution of a weighed amount of solid in benzene, and determination of the copper content by spectrophotometric titration, and PAN content as in proce- dure b2 on page 28.	34
	Table	.5	Spectrophotometric titration of Cu(TTA) ₂ in mothanol-benzene mixed solvents, with a stendard HPAN so- lution in benzene	37
	Table	ΰ	Spectrophotometric absorption data for HTTA, HPAN, Cu(TTA) ₂ , Cu(TTAPAN) and Cu(PAN) ₂ in benzene, mothanol, mothanol-benzene mixtures, and other solvents	41

 \mathbf{C}

Table 7

Composition of solutions of Cu(TTA)₂, Cu(TTAPAN), Cu(PAN)₂, and HPAN in benzene-methanol mixtures, for the spectrophotometric measurements

Absorbance of solutions of sets 4 and 5 listed in Table 7, at 5 nm. intervals in the range 400 nm. to 570 nm., at 20⁰C.

Table 9

Table 8

Molar equilibrium concentrations of Cu(TTAPAN), $Cu(PAN)_2$, HPAN and HTTA for the solutions having an initial molar concentration of HPAN in excess, and the value of K_2 calculated there-from

Table 10

Composition of solutions in mathanol, 56 benzene, or mothanol-benzene mixtures, prepared from the stock standard solutions of Cu(TTAPAN), Cu(PAN)₂, HTTA and HPAN in benzene or methanol, and used for the spectrophotometric study of the exchange reactions between Cu(TTAPAN) and HPAN or HTTA, at 15°C., 25°C., and 35°C.

Proof of equilibrium of solutions of 60 Cu(TTAPAN) and HTTA in methanol-benzene mixtures at 25[°]C.

Table 11

page 43

ix

53

Table 12

Molar absorptivity of Cu(TTAPAN) in methanol-benzene mixtures, in the spectral range 540 nm. to 580 nm., at $25 \pm 2^{\circ}$ C:

Table 13

Values of the function $K_1\Psi/r$ of equation (5.14), for the chelateexchange reaction $Cu(TTA)_2 + HPAN =$ Cu(TTAPAN) + HTTA, in benzenemethanol mixtures at 25 ± 2°C.

Molar absorptivity of $Cu(PAN)_2$ in methanol-bonzene mixtures, in the spectral range 540 nm. to 580 nm., at $25 \pm 2^{\circ}C$.

Values of the function $K_2\Psi/p$ of equation (5.23), for the chelateexchange reaction Eu(TTAPAN) + HPAN = $\text{Eu}(\text{PAN})_2 + \text{HTTA}$ in benzenemethenol mixtures, at $25 \pm 2^{\circ}\text{C}$.

Molar absorptivity of Cu(TTAPAN) in pure methanol, pure benzene and in 40.9 mcl^{og} mothanol in benzene, at 15⁰C. and 35⁰C.

Molar absorptivity of Cu(PAN)₂ in pure methanol and in 4C.9 mol⁴⁵ methanol in benzene, at 15^oC. and 35^oC.

Table 15

Table 14

Table 16

· Table 17

×

.

71

page

63

79

82

87

Table 18

Table 19

Spectrophotometric data and calculated values of the function $K_{\perp}\Psi/r$ of equation (5.14), for the chelateexchange reaction $Cu(TTA)_2 + HPAN =$ Cu(TTAPAN) + HTTA in pure benzene and in 40.9 mol% methanol in benzene, at 15°C. and 35°C.

Spectrophotometric data and calculated values of the function $K_2\Psi/p$ of equation (5.23), for the chelate-exchange reaction $Cu(TTAPAN) + HPAN \longrightarrow Cu(PAN)_2^+$ HTTA in pure methanol and in 4C.9 mol% methanol in benzene, at 15°C. and 35°C.

Comparison of average values of K_1 , with values for highest concentrations of [HTTA]_i, for the exchange reaction $Cu(TTA)_2$ + HPAN — Cu(TTAPAN) + HTTA in benzene-methanol mixtures at 25°C.

Final mean values of $K_1 \varphi/r$ averaged 109 over all wavelengths, for the exchange reaction $Cu(TTA)_2 + HPAN = Cu(TTAPAN) +$ HTTA in methanol-benzene mixtures at $25^{\circ}C$.

Final mean values of $K_1 \Psi/r$ averaged 112 over all wavelengths, for the exchange reaction $Cu(TTA)_2 + HPAN \longrightarrow Cu(TTAPAN) +$ HTTA in benzene, and in 40.9 mol% methanol in benzene, at 15°C. and 35°C.

Table 21

Table 20

Table 22

page 90

93

107

×i

Table 23

Final mean values of $K_2 f/p$ averaged over all wavelengths, for the exchange reaction Cu(TTAPAN) + HPAN ____ Cu(PAN)₂+ HTTA in methanol-benzene mixtures, at 25 2°C.

Table 24

Final mean values of $K_2 \mathcal{Y}/p$ averaged over all wavelengths, for the exchange reaction Cu(TTAPAN) + HPAN = $Cu(PAN)_2 + HTTA$ in methanol-benzene mixtures, at 15°C. and 35°C.

Solubilities of Cu(TTA)₂, Cu(PAN)₂, Cu(TTAPAN) and HPAN, in methanol and in benzene, at 20^oC.

Nolar absorptivities of Cu(TTAPAN), Cu(PAN)₂ and HPAN in 35.4 mol% methanol in benzenc, at 5 nm. intervals in the spectral range 400 nm. to 600 nm.

Spectrophotometric data for the equi- 151 librium solutions of set A, used in the calculations of the function $K_1 \varphi/r$ of equation (5.14) at each wavelength, at 25°C.

Spectrophotometric data for the equilibrium solutions of set A, used in the calculation of the function $K_2\Psi/p$ of equation (5.23) at each wavelength, at $25\pm2^{\circ}C$.

Table 26

Table 25

Table 27

Table 28

xii

114

page

113

149

List of Figures

(

		· · · · · ·	pages
	Figure l	The molar absorptivity curves of Cu(TTAPAN), Cu(PAN) ₂ and HPAN in 35.4 mol% methanol in benzene, in the spectral range 400 pm to 600	23-24
		nm., at 20°C.	
· · · · · · · · · · · · · · · · · · ·	Figure 2	Typical titration graphs of the spectrophotometric titration of	39-40
		Cu(TTA) ₂ at 25 ⁰ C., with HPAN in 8.4 and 54.7 mol% methanol in	
			65 66
	r igure 3	35.4, 76.7 and 59.0 mol% methanol in benzene	00-00
	Figure 4	The variation of K _l Y/r with initial concentration of HTTA in 16.0 mol% methanol in benzene, at 25 ⁰ C.	99-100
	Figure 5	The variation of $K_1 \Psi/r$ with initial concentration of HTTA in 55.2 mol% methanol in benzene, at 25°C.	101-102
•	Figure 6	The variation of K _l 4/r with initial concentration of HTTA in 76.7 mol% rethanol in benzenc, at 25 ⁰ C.	103-104
	Figure 7	The variation of $K_1 \Psi/r$ with mol% methanol in the methanol-benzene mixtures used as solvents, at 25°C.	116-11.7

.

xiii

.

٠,

List of Figures (continued)

Figure 8

The variation of $K_2\Psi/p$ with mol% wothanol in the methanol-benzene mixturesused as solvents, at 25°C.

Figure 9

- Typical titration graphs for the chelete-exchange titration at 25°C. of
- a) $Cu(ND_3)_2$ in methanol, versus EDTA in water
- b) $Cu(NO_3)_2$ in methanol, versus HPAN in benzene
- c) Cu(TTAPAH) in methanol, versus EDTA in water

xiv

pages

116-119

137-136

List of Flates

pages

Plate I

Spectrophotometric titration 9-10 apparatus

Plate II

A) Filtration apparatus

B) Column containing a mixed-bed ion-exchange resin 12-13

	100 C				
• • • •		. •	List of App	<u>endices</u>	
					page
	Appendix	I	Dithizone t	est for metal content of the	129
			solvents		
			(i) Methano	1	
			(ii) Benzen	e	
	Appendix	II	General spc	ctrophotometric-titration	131
			procedure		
•	Appendix	III	Standardiza	tion of Cu(TTAPAN), Cu(PAN),	133
	an a		Cu(TTA), an	d HPAN in methanol or benzene,	
			by spectrop	hotometric titration	
					1
	Appendix	IV	Preparation	of a stock standard aqueous	139
			solution of	Cu(ND ₂) ₂	
	Appendix	V	The prepara	tion of Cu(TTAPAN) according	140
			to the meth	od of d'Amboise	
	Appendix	VI	Spectrophot	ometric titration of Cu(TTA),	141
			in methanol	-benzone mixtures with a	
			standard HP	AN solution in benzene	
	Appendix	VII	1) REGRE 1:	Least-squares fit for	143
				y = mx + b .	
			2) PRABC 5:	Least-squares fit for	
•				$Z = A_1 \times_1 + A_2 \times_2 + A_3 \times_2 + B$	
			3) SPECR 3:	Least-squares fit of a	
				Beer's law plot	
	Appendix	VIII	Table 26		148
	Appendix	IX	Table 27		150
	Appendix	X	Table 28	,	156
	• •				

xvi

1 --- Introduction

The spectrophotometric titration of a metal chelate in an organic solvent by a standard solution of a chelating agent also in an organic solvent was first proposed and developed by Gray and Cave²⁸. They applied the method to the determination of microgram amounts of the dithizonates of Ag, Pb, Cu(II), Cd, Zn, and In in chloroform, by titration with a standard solution of sodium diethyldithiocarbamete in ethanol. They also demonstrated²⁹ its use in the determination of some metal 8-quinolinates in benzene, by titration with a standard solution of dithizone in benzene.

As part of his investigation, Gray¹ showed that the titration reaction occurred in simultaneous steps. For example, the titration in a low-dielectric solvent of the chelate of a bivalent metal, MX₂, by a chelating agent H[×] occurred as follows:

 $MX_{2} + HY \stackrel{K_{1}}{=} MXY + HX$ $MXY + HY \stackrel{K_{2}}{=} MY_{2} + HX$

In some cases, adducts were also formed. They measured the values of K_1 and K_2 by using a spectrophotometric method.

Gray and Cave^{28,29} called this new area of volumetric analysis chelate-exchange titrimetry. It has some special advantages. Thus, a very large number of chelating agents are at the disposal of the analytical chemist. Until now, their use has been limited to gravimetric and colorimetric analyses. The concept of using them as titrants increases their usefulness. Further, chelate-exchange titrimetry can be accurate and precise, for very small amounts of metal.

Chelate-exchange titrimetry has been extended by d'Amboise¹, to include a study of the titration of the 2-thenoyltrifluoroacetonates of some metals by pyridylazonaphthol as titrant. The respective chelating agents are:

(HPAN)

and

However, HTTA exists as enol, keto, and solvates. D'Amboise³ studied the chelate-exchange reactions

> (A) $Cu(TTA)_2 + HPAN = Cu(TTAPAN) + HTTA$ (B) $Cu(TTAPAN) + HPAN = Cu(PAN)_2 + HTTA$

for microgram amounts of copper. He determined the apparent equilibrium constants for reactions (A) and (B) in benzene and in methanol by a spectrophotometric method, and used a novel method of treating the data. He found that the value of K, ' was 996 in benzene, and 250 in methanol; and the value of K₂' was 0.007 in benzene and 0.600 in methancl. It was in fact an apparent equilibrium constant $(K_1' \text{ and } K_2')$ rather than a true equilibrium constant

 $(\kappa_1 \text{ and } \kappa_2)$ that was measured. This matter is clarified in the Discussion section of the present thesis.

D'Amboise also noticed that these reactions were faster in methanol than in benzene. From a kinetic point of view then, methanol would be the better solvent for the determination of Cu(II) at trace levels. However, from an equilibrium point of view, benzene is the better solvent. In methanol, K_2^{-1} is sufficiently large to cause reaction (B) to occur to a significant degree during the titration; and K_1^{-1} is smaller than it is in benzene. As a result, the end-point in methanol was less sharp than it was in benzene.

The present investigation arose from these findings of d'Amboise, on the effects of colvents benzene and methanol on the chelate-exchange reactions (A) and (D). It was decided to measure K_1 ' and K_2 ' of these two reactions in the mixed solvent benzene-methanol, for various mole fractions of methanol. The purposes were: to study precisely how the values of K_1 ' and K_2 ' changed with the mole fraction of methanol, and to explain as far as possible the trends in K_1 ' and K_2 ' with change in solvent composition. From this study, it was hoped that a practical choice of the best solvent could be made.

A study of mixed solvents in chelate-exchange titrimetry has not previously been made on any systems. The present investigation is an exploratory one, intended to clarify at least some of the factors that affect K_1 ' and K_2 ', and to specify what factors need study, in order to be able to calculate K_1 and K_2 themselves.

2 — Plan of Research

A purpose of the present investigation was the evaluation and interpretation of the apparent molar equilibrium constants K_1 ' and K_2 ' of reactions (A) and (B)

(A)
$$Cu(TTA)_2 + HPAN \xrightarrow{K_1} Cu(TTAPAN) + HTTA$$

(E) $Cu(TTAPAN) + HPAN \stackrel{K_2}{=} CU(PAN)_2^+ HTTA$

in methanol-benzene solutions, by a spectrophotometric method. Here, $K_1' = K_1 f/r$, and $K_2' = K_2 f/p$, where f is a function which takes into account the various species of HTTA in equilibrium; and p and r are activity-coefficient quotients.

The identification of the participating species, and the calculation of K_1^{\bullet} and K_2^{\bullet} of reactions (A) and (B) in pure benzene and pure methanol, had previously been done by d'Amboise³.

As a first exploratory step, a study was made of the chelate exchange between $Cu(TTA)_2$ and HPAN according to reaction (A). This was needed in order to determine whether or not reaction (B) occurred to a significant degree during this step (reaction (A)), and particularly to determine the extent to which the methanol content of the methanol-benzone mixtures affected the degree to which reaction (B) occurred.

Accordingly, spectrophotometric titrations of Cu(TTA)₂ in these solvents were carried out with a standard solution of HPAN, at room comporature, and the degree of curvature of the titration graphs was recorded.

The first spectrophotometric method tried for the evaluation of K_1' and K_2' of reactions (A) and (B) respectively, consisted in recording absorbance values of solutions, in which the concentration of $Cu(TTA)_2$ was kept constant and the concentration of HPAN added was varied.

Absorbances were recorded at 5 nm. intervals, over the spectral range 400 nm. to 570 nm. From these spectral data, 37 absorbance equations were formulated. These equations, together with the relevant mass-balance equations, were normalized by least-squares, and solved for the unknown concentrations. This method proved to be unsatisfactory for the reliable calculation of K_1 ', because its value was too high for the method.

However, a reasonably good value of K₂' was obtained, and it was used as a guide for the rest of the work.

The second method used for the calculation of K_1 ' and K_2 ' consisted in spectrophotometrically following the equilibrium concentrations of Cu(TTAPAN) and/or Cu(PAN)₂ in reactions (A) and (B), at room temperature.

Thus, sets of solutions in mathanol-benzene mixtures were prepared, in which the initial concentration of Cu(TTAPAN) was kept constant, and the initial concentration of HTTA or HPAN was changed. The absorbances of these solutions in the spectral range 540 nm. to 580 nm. were recorded. Rigorous equations to calculate K_1' and K_2' were derived, in order to treat these absorbance data. Additional information required was: (i) the initial absorbance before the addition of HTTA or HPAN to the Cu(TTAFAN) solutions; (ii) the molar absorptivities of Cu(TTAFAN) and of Cu(PAN)₂ in mathanol-brozene mixtures, in the

spectral range 540 nm. to 580 nm.; (iii) the relevant mass-balance equations. Then for each solution composition in Cu(TTAPAN) and HTTA or HPAN in one particular methanel-benzene mixture, and for each wavelength used, a value of K_1 ' or K_2 ' was obtained, at room temperature.

Reasurements similar to those described above for 25° C. were also performed at 15° C. and 35° C., in pure methanol, pure benzers and in 40.9 mol% methanol in benzers. The purpose was to observe the variation of the equilibrium constants with temperature.

3 -- Experimental

3.1 Apparatus

3.1.1 Spectrophotometers

a) Beckman Model D.U., and titration assembly

The titration assembly used in the present work was designed and described by Gray^1 . A synopsis of his description follows.

The conventional cell compartment of the Beckman Model D.U. spectrophotometer was replaced by a special non-magnetic compartment, which could accomodate a rectangular 65-ml. glass cell flanked by two rectangular copper tanks through which constant-temperature water was circulated. Into the center of the removable lid of the compartment, a 1-in.x1/8-in. disc of silicone elastomer was countersunk.

A calibrated 1-ml. Koch microburet with a 60-ml. reservoir, two-way Teflon stopcock, detechable tip and a Luer joint at this tip was used for the delivery of titrant to the analyte in the cell. However, it was modified as follows:

A platinum-rhodium hypodermic needle fitted with a Kel-F Luer joint (2 in. long and 28 standard gauge bore) replaced the glass capillary tip normally supplied with the buret. In use, the hypodermic needle was inserted through the silicone disc in the lid of the phototube

ĺ

compartment, and the tip was always immersed in the solution to be titrated in the cell.

The Beckman phototube compartment was isolated from organic solvent vapours by a thin fused-silica plate placed over the shutter opening.

A conventional magnetic stirrer was placed directly under the cell compartment, in order to allow stirring of the solution during titrations. A small Teflon-coated magnetic stirring bar was used in the cell itself, to stir the solution therein.

The cell compartment and the Koch microburet are illustrated in plate 1.

- b) Beckman Model D.B. spectrophotometer, coupled to a Sargent Model SRLG Recorder, with a 10-mv. span.
- c) Unicam SP 500 manual spectrophotometer, with thermostat for temperature control of the solutions.

Matched 1-cm. silica cells, labelled 5 (sample) and B (blank), were used in all investigations with the Beckman D.B. and Unicam S.P. 500 spectrophotometers.

3.1.2 Thermostats

- a) Sargent-Welch Thermostatic Water Bath (cat. No. S-84810), control to ± 0.01° C; thermistor controlled (cat. No. S-82052).
- b) Sargent-Welch Thermostatic Water Bath (cat. No. S34880) for external circulation, control to $\pm 0.1^{\circ}$ C.

<u>PLATE I</u>

SPECTROPHOTOFTRIC TITRATION APPARATUS

A- Cell compartment used for spectrophotometric titrations, with the Koch microburst positioned

- E-Rectangular titration cell in cell compartment
- C- Delivery needle attached to buret tip

ŝ

(

C

10

C

A.

3.1.3 Filtration Apparatus

It was required to prepare saturated solutions of the copper chelates in benzene and methanol. In order to separate the solid metal chelates from the saturated solutions a special filtration apparatus was used. It consisted of a separatory funnel specially adapted to a filter tube with a B 14/23 ground glass joint. The filter tube assembly, which was first described and used by Khin², was adapted to a filtrate-collector reservoir, with a B 19/26 ground glass joint.

This apparatus is illustrated in Plate 2.

3.1.4 Glassware

The special procedure used by Gray for cleaning glassware was also used in this work. Thus, all volumetric flasks, separatory funnels and beakers were first rinsed with acctone followed by tap water. Then they were filled with a warm 4:1 (V/V) mixture of concentrated sulfuric acid and concentrated nitric acid¹, and then allowed to stand for one hour. After that they were rinsed five times with tap water, five times with distilled water, and finally with deionized water.

The volumetric flasks were dried in an oven at 130° C. before use. The other glasswarc was rinsed with absolute alcohol and stored in a dust-free cabinet.

All glassware previously cleaned and dried as described above, was rinsed with methanol and/or benzene just before use.

! Substitution of a warm saturated solution of disodium ethylenediaminetotraacetate (henceforth abbreviated to EDTA) for this acid mixture proved to be satisfactory.

<u>PLATE II</u>

A) Filtration Apparatus A.1 Filter tube A.2 Filter assembly

B) Column containing a mixed-bed ion-exchange resin

Ţ

C

C

Al

Έ

В

The pipets were kept immersed in a 1% solution of EDTA prior to use. They were then thoroughly rinsed with tap water, deionized water and finally with absolute ethanol and dried by flushing them with dry nitrogen just before use.

3.1.5 Miscellaneous

a) Potentiometer, Leeds and Northrup Co. (cat. No. 8687).

b) Beckman Zeromatic II, pH meter.

3.2 Reagents

3.2.1 Methanol

Fisher spectranalysed grade methanel was transferred to a stoppered container which contained activated molecular-sieve granules (Linde type 3A, 1/16 in.), and allowed to stand for three weeks in order to remove water. Just before use, the resulting dried methanol was passed through a column containing a mixed-bed ionexchange resin¹⁹. The column was 9 in. long and 3/4 in. in diameter and is illustrated in Plate 2. The two resins used were: (i) Fisher certified research-grade Rexyn 101 (H), organic strong-acid cation exchange, mesh size 16-50, with a total exchange capacity of 4.7 mg./g.; (ii) Baker Analysed analytical grade ion exchange strong-base resin, grade A, mesh size 16-50, with a total exchange capacity of 3.2 mg./g. Half-inch layers of each were interleaved throughout the 9-in. column.

D'Amboise³ had shown that spectranalysed grade

methanol contains significant amounts of trace metals, and that treatment of the methanol with molecular sieve granules increased the trace metals content. Therefore it was essential to eliminate these trace metals before using the methanol for chelate-exchange titrations. The mixed-bed ion-exchange resin described above sufficiently removed these trace metals. Each resin had been previously vacuum dried over P_2O_5 for three to four days. The column was then prepared by interleaving the resins as described above. Approximately 5 1. of methanol, previously dried by molecular sieve granules, was then poured through the mixed bed in order to remove the trace metals.

A special dithizone test was used in order to confirm that the purified methanol was in fact free from trace metals. This dithizone test is described in Appendix I.

The content of water in the methanol after drying it with the molecular sieve was found to be 0.27 mg. of water per ml. (Karl Fischer titration). This value did not change when the methanol was passed through the mixedbed ion-exchange resin.

Henceforth whenever methanol is referred to it is this purified product that was used.

3.2.2 Benzenc

Fisher spectranelysed grade benzene was used without further purification except that a sufficient amount of the activated molecular sieve granules (Linde Type 3A, 1/16 in.) was added to each bottle, in order to dry the benzene.

The water content of this dried benzene was determined by Kirchnerova⁴. She used a conventional Karl Fischer titration, and found the water content to be 0.035 mg. of water per ml. of benzene.

The dried benzene was found to be free of metallic impurities. The test used was the same as that described in Appendix I for benzene.

Herceforth whenever benzene is referred to it is this dried benzene that was used.

3.2.3

4,4,4-Trifluoro-1-(2-Thiony1)-1,3-Butanedione (2-Thenoyltrifluoracetone)

2-Thenoyltrifluoracetone, hereinafter referred to as HTTA, was Baker analysed reagent grade, further purified as described below.

HTTA is a pale straw-yellow coloured solid, molecular weight 222.19, m.p. $42.5-43.2^{\circ}$ C⁶. It is very soluble both in benzene and in methanol.

Usually β -diketones have been purified by vacuum sublimation. However, in the present work recrystallization proved to be satisfactory. Thus, reagent-grade HTTA was dissolved in a mixture of benzene and acetone (9:1 V/V). The acetone was A.C.S. reagent grade used without further purification. The resulting solution was heated to approximately 40° C., then a slight excess of a saturated solution of cupric acetate in water was stirred in, whereupon a precipitate of Cu(TTA)₂ was formed. Approximately 90% of the supernatant liquid was then evaporated
without first removing the procipitate. The benzene that had evaporated was then replaced, and the mixture again evaporated, this time to about half its volume. The mixture was then cooled and filtered on a sinteredglass filter. The solid product was washed with hot water in order to remove the cupric acetate. The product was then dissolved in benzene; the benzene was then evaporated to about half its volume. The resulting mixture was cooled, filtered, and washed as before. The resulting product was again dissolved in benzene. This benzene solution was then shaken with aqueous 0.1N.HCl, and the benzene phase then separated and evaporated to about a tenth of its original volume. Reagent-grade heptane was then added, and the mixture evaporated to about onetenth its original volume. At this point crystals of HTTA had senarated. The container was then immersed in an ice-water bath. The crop of HTTA crystals, approximately 5 grams, was filtered onto a fritted-glass disc, and then stored in a desiccator with silica gel, in the dark.

Assav of the nurified HTTA.

The volumetric method of Reid and Calvin⁷ was used. Thus, a weighed amount of HTTA was dissolved in methanol, a measured amount of aqueous O.1 N NaOH was added, and the excess NaOH was back-titrated potentiometrically with aqueous O.1 N HC1.

The reaction was:⁷

The assay of the purified solid HTTA was found to be 100.1 ± 0.5 (n=5) by this method. The figure 0.5 is the standard deviation. The melting point of this purified solid was found to be $44 \pm 1^{\circ}$ C. (lit. value: 42.5° C.- 43.2° C.⁶).

3.2.4 Standard aqueous solution of cupric nitrate

A standard aqueous solution of cupric nitrate was used in order to standardize benzene and methanol solutions of the copper chelates and of one of the chelating agents used in the present investigation.

This standard aqueous solution of cupric nitrate was prepared from a weighed amount of reagent-grade copper metal, which was considered as the primary standard. The procedure is described in Appendix IV.

3.2.5

1-(2-pyridylazo)-2-naphthol

l-(2-pyridylazo)-2-naphthol, hereinafter referred to as HPAN in its molecular form, PAN in its anionic form, and (H₂PAN) in its cationic form, was Fisher certified reagent, and was used without further purification.

HPAN was first prepared by Chichibabin and Rjasanzew⁸. It is a bright-crange coloured solid, molecular weight 249.28, m.p. 137° C¹⁰. The melting point of the Fisher certified reagent used in the present work was $136 \pm 1^{\circ}$ C. HPAN has a tridentate ligand; it forms complexes with most metals jointly through its orthohydroxyl group, its azo nitrogen nearest to the phenolic ring and its heterocyclic nitrogen atom⁹.

HPAN is soluble in alcohol, benzene, and in strong $12)^{10}$: aqueous solutions of acids (pH 2) and alklies (pH but it is practically insoluble in water and in dilute aqueous solutions of acids and alkalies. In aqueous solutions, the species in equilibrium are¹⁰:

1) cationic form $(H_{2}PAN)^{+}$

HPAN has been recommended as a complexometric indicator in direct titrations of metal ions in aqueous solutions, by standard aqueous solutions of EDTA^{11,12}.

The direct titration of copper with EDTA, by using HPAN as indicator, has been widely used 11,13,14

Shibata¹⁵ has proposed the following structure for 1:2 complexes of metal ions (Mⁿ⁺) with PAN, in aqueous solution:

(n-2)

HPAN reacts slowly with most metal ions in aqueous solutions. Below pH 8 it forms a 1:1 complex with copper (II), but above pH 10 it forms a 1:2 complex¹².

Both NPAN and its copper chelate are very stable, even in dilute ethanol solutions¹⁶.

Preparation and standardization of solutions of HPAN in benzene and methanol.

Solutions of HPAN in benzene or ethanel were frechly prepared before use. They were standardized against a standard aqueous solution of cupric nitrate as described in section 3.2.4. The standardization procedures are given in Appendix III. Briefly, one ml. of the standard $Cu(NO_3)_2$ solution was diluted with approximately 50 ml. of methanol in the 65-ml. glass titration cell of the titration assembly described on page 7. The resulting solution was then titrated with the benzene methanol solution of HPAN to be standardized. It was titrated spectrophotometrically.

3.2.6 Copper Chelates

- i) Preparation and purification of the solid
- a) Bis [4,4,4-Trifluoro-1-(2-Thienyl)-1, 3-butanedionato] Copper (II)

Copper (II) is coordinated with two TTA ligands by four ligand oxygen atoms, in what has been reported 17 to be a nearly square planar arrangement as follows:

Hereinafter, the symbol Cu(TTA)₂ refers to this square planar complex. However, proof was not provided¹⁷ that only one isomer exists.

The preparation of the $Cu(TTA)_2$ used in this work has been described on page 16. The product was kept over silica gel in a desiccator for one week, then it was stored in the dark in a well-stoppered bottle until required for use. The melting point of this product was found to be $241 \pm 2^{\circ}C$.

b) [1-(2-pyridylezo)-2-naphthol]
 [4,4,4-Trifluoro-(2-Thienyl)-1,3-butanedionato]
 Copper (II)

D'Amboise³ has shown that in benzene the first ligand exchange reaction between Cu(TTA)₂ and HPAN is:

A)
$$Cu(TTA)_{2}$$
 + HPAN $\stackrel{K_{1}}{\longleftarrow}$ $Cu(TTAPAN)$ + HTTA

where K_1 is the molar equilibrium constant:

3.1
$$K_{1} = \underline{Cu(TTA)(PAN)} + \underline{TTA}$$
$$Cu(TTA)_{2} + \underline{PAN}$$

He further showed that this mixed complex undergoes a second exchange reaction as follows:

B)
$$Cu(TTAPAN) + HPAN \xrightarrow{K_2} Cu(PAN)_2 + HTTA$$

where K2 is the molar equilibrium constant,

3.2
$$K_{2} = \frac{\left[C_{U}(PAN)\right]}{\left[C_{U}(TTAPAN)\right]} \left[HPAN\right]$$

However, D'Amboise³ has also shown that when benzene is the solvent, the ratio K_1 to K_2 is of the order of 10^6 . Therefore, when equimolar amounts of Cu(TTA)₂ and HPAN are mixed in benzene, approximately 99.8% of the copper present in the system is as Cu(TTAPAN). Since HPAN and HTTA are much more soluble in benzene than are the copper chelates, the Cu(TTAPAN) can be obtained free from HTTA and HPAN by several recrystallizations from benzene. This was the method devised by D'Amboise³ for the preparation of solid Cu(TTAPAN); the detailed procedure is given in Appendix V.

Solid Cu(TTAPAN) was a dark-brown colour. Methanolbenzene solutions of it were violet, and proved to be very stable because there was no change in absorbances of the solutions over a two-month period. The melting point of the purified dried solid was found to be $250 \pm 2^{\circ}$ C. (D'Amboise found 253° C. for his products³).

The solubility of Cu(TTAPAN) in benzene was found ³ to be approximately 8 x 10^{-4} M, and in methanol it was approximately 2 x 10^{-4} M.

The dried purified Cu(TTAPAN) was analysed for copper content and HPAN content by methods described on page 27. The results of those analyses are as follows: Copper 11.99% (expected 11.93%); PAN 46.80% (expected 46.59%).

The absorption spectrum of Cu(TTAPAN) in a benzenemethanol mixture that was 35.4 mol% in methanol was recorded in the range 400 nm. to 600 nm.; it is reproduced in Figure 1. The molar absorptivities in this wavelength range are tabulated on page 149.

FIGURE 1

 \odot

The molar absorptivity curves of Cu(TTAPAN), Cu(PAN)₂ and HPAN in 35.4 mol% methanol in benzene, in the spectral range 400 nm. to 600 nm., at 20° C.

4-01 x viivitgrozdA rolom

c) Bis[1-(2-pyridylazo)-2-maphtholato] Copper (II)

The Cu(PAN)₂ used in the present work was prepared and purified by d'Amboise³, as follows:

A solution of HPAN in methanol was prepared by dissolving 3 g. of the Fisher certified reagent in 100 ml. of methanol, previously heated to approximately $50^{\circ}C$. A second solution was prepared by dissolving 1.2 g. of reagent-grade $Cu(NO_3)_2$. $3H_2O$ in 50 ml. of a 1:1 (V/V) methanol-water mixture. The temperature of this solution was raised to $50^{\circ}C$., and slowly added to the HPAN solution in methanol at $50^{\circ}C$. After cooling the mixture to room temperature, the resulting precipitate was filtered onto a sintered-glass filter. The resulting crystals were then dissolved in about 250 ml. of a 1:1 (V/V) benzene-hexane mixture, which was then allowed to evaporate at room temperature to approximately half of its initial volume. The resulting product was filtered as above and stored in a desiccator over P_2O_5 , in the dark.

ii)

The proparation of standard solutions of the three copper chelates in methanol and benzens.

The copper chelate (Cu(TTAPAN), Cu(TTA)₂ and $Cu(PAN)_2$) and the solvent (benzene or methanol) were put into a dry volumetric flask. The contents were then shaken by attaching the stoppered volumetric flask to a Burrell wrist-action shaker, and shaking them for a period of up to forty-eight hours, depending on the solubility of the complex. In this way, solutions were obtained which were almost saturated. The lowest concentration was that of $Cu(PAN)_2$ in methanol, 5×10^{-5} M. The solutions of Cu(TTAPAN) and $Cu(TTA)_2$ were more concentrated.

The mixture in the volumetric flask was then filtered in the special filtration apparatus shown in Plate 1 which was dried just before use. The filtrate was then stored in a stoppered flask.

Prior to using each solution prepared in this way, the concentration of its metal chelate was determined by a spectrophotometric titration with a standard aqueous solution of EDTA. The details of this procedure are in Appendix III.

Briefly, a 1-ml. aliquot of the metal chelate in either benzene ormethanol was transferred to the 65-ml. titration cell described in connection with the titration assembly on page 7. To this 1 ml. were added about 50 ml. of methanol. A standard aqueous solution of EDTA was then titrated into this analyte, and the end point determined by spectrophotometric means.

iii) Methods of Assay

The purity of the three copper complexes, namely $Cu(TTA)_2$, Cu(TTAPAN) and $Cu(PAN)_2$, was determined by determination of the copper content, and in the case of Cu(TTAPAN) and $Cu(PAN)_2$ by determination also of the ligand (PAN) content. For the case of $Cu(TTA)_2$ and Cu(TTAPAN), the assay method consisted in preparing a standard solution of the complex either in benzene or in methanol, and then assaying this standard solution for copper; the standard solution of Cu(TTAPAN) was also assayed for the ligand HPAN. In the case of $Cu(PAN)_2$, the solubility in the organic solvent was too low to permit the preparation of a standard solution by weighing the $Cu(PAN)_2$. Therefore, for this copper chelate the

procedure used consisted in preparing an almost saturated solution and assaying it for copper and for the PAN ligand, and to rely on the ratio of these two constituents as proof of purity. However, in addition to this ratio it was possible to confirm purity by a determination of the melting point, as previously described.

a)

Determination of the copper content of the copper chelate.

A measured aliquot of the standard solution of the copper chelate in benzene or methanol was diluted by the addition of approximately 50 ml. of methanol in the 65-ml. spectrophotometric titration cell. The resulting solution was titrated spectrophotometrically by using a standard aqueous solution of EDTA that had been standardized against metallic copper. Details of the procedure are given in Appendix III.

b)
Determination of the PAN content of Cu(TTAPAN) and
Cu(PAN)₂.

This determination was carried out by two different procedures, as follows:

bl) One of the standard solutions in methanol, used for the determination of the copper content of the chelate, was also used for the determination of the PAN content of Cu(TTAPAN) and of Cu(PAN)₂. Eight aliquots of this standard solution were diluted with methanol, so as to provide eight solutions, which ranged in concentration from 4×10^{-5} M to 5×10^{-6} M. The absorbance of each solution was measured in a 1-cm. cell at 560 nm., against methanol as the spectrophotometric blank. The molar absorptivities of the copper complex in methanol were calculated from these data. The values are entered in table. 16.

To each of the eight solutions a few milligrams of EDTA powder were added. The resulting mixtures were shaken in order to ensure essentially complete displacement of the ligend PAN from the copper chelate. In order to ensure that displacement was in fact essentially complete, the absorbance of each solution was then measured at 560 nm. where Cu(TTAPAN) and Cu(PAN)₂ are known to absorb and where HPAN itself does not absorb. In all cases the absorbances at this wavelength were negligibly small, thereby proving that displacement of the PAN from the copper chelate was essentially complete. The HPAN remained in solution; the copper existed as the solid EDTA complex along with the excess CDTA powder.

HPAN itself absorbs with the peak at 460 nm. Therefore the HPAN content of the eight solutions was measured at 450, 460, 465 and 470 nm. The molar absorptivities of HPAN itself in methanol had previously been measured from standard solutions of HPAN in methanol. These molar absorptivities are reported in Table 1. These values were used in order to calculate the free HPAN concentration in each of the eight solutions, which in turn gave the HPAN content of the original solid. The results are entered in Table 2 for Cu(PAN)₂ and in Table 3 for Cu(TTAPAN).

b2) Aliquots of a standard solution of Cu(TTAPAN) in benzene previously analysed for the copper content were transferred to a set of 25-ml. volumetric flasks and diluted to volume with benzene. To each of these

Spectrophotometric data and absorptivities of HPAN in:

1) Liethanol at 450 nm., 460 nm., 465 nm., and 470 nm.

2) Benzene saturated with water at 460 nm.

Spectrophotometer ____ Unicam S.P. 500

Cells - silica, 1-cm. light path

Temperature = $25 \pm 2^{\circ}C$.

1) Solvent — methanol

1

Soln.	[HPAN	Absorbance		470nm	Wavelength,	Mean Molar	std. Dev.	
No.	Mx10 ⁵	450nm 460nm 465nm			nm.	Absorptivi-	(n=8)	
1 2 3 4 5 6 7 8	7.109 6.219 5.331 4.443 3.554 2.667 1.777 0.889	1.179 1.036 0.905 0.742 0.602 0.450 0.302 0.153	1.250 1.098 0.952 0.787 0.635 0.475 0.319 0.160	1.247 1.095 0.950 0.785 0.634 0.475 0.319 0.159	1.226 1.075 0.930 0.772 0.622 0.465 0.315 0.157	450 460 465 470	1.656 1.756 1.752 1.718	0.010 0.007 0.007 0.005

2) Solvent - benzene saturated with water

Soln. No.	[HPAN] Mx10 ⁵	Absorbance 460nm	Kean Molar Ab- sorptivity**	Standard Devia- tion (n=6)
1	4.548	0.786		
2	3.790	0.660		
3	3.032	0.525	1.726	0.006
4	2.274	0.397		
5	1.516	0.263		
6	0.758	0.134		

* Mean of eight determinations, on solutions 1-8 in methanol.

** Mean of six determinations, on solutions 1-6 in benzene.

Analysis of Cu(PAN)

(The sample was dissolved in methanol prior to analysis)

	Soln.	Concentra-	Absort	ance c	of solu-	Concer	ntratio	on of H	PAN,	Ratio of PAN to Cu
	No.*	tion of	tion a	after 1	emoval.	calcul	lated f	rom co	ols. III-V	in sample
		Cu(PAN) ₂ in	oi Cu	by EDI	PA.	and mo	olar at	sorpti	vity	(Col. IX / Col. II)
		methanol*				(see]	able]	.), M o	10 ⁵	
		M - 105								•
•			460nm	465nm	470nm	460nm	465nm	470nm	mean for 3 wavelengths	
•	ı	1.015	0.350	0.350	0.341	1.993	1.998	1.984	1.992	1.96
	2	2.200	0.763	0 <u>.</u> 761	0.746	4.344	4.345	4.341	4.343	1.97
	3.	1.862	0.646	0.646	C.634	3.678	3.688	3.689	3.685	1.98
	4	1.523	0.528	0.525	0.516	3.006	2.997	3.003	3.002	1.97
	5	0.846	0.292	0.290	0.285	1.663	1.656	1.659	1.659	1.96
	6	0.677	0.236	0.235	0.229	1.544	1.342	1.333	1.340	1.98
	7	0.508	0.176	0.176	0.173	i. CO2 1.005 1.007 1.005			1.005	1.98
	8	0.423	0.149	0.147	0.143	0.848 0.839 0.832 0.840				1.99
										mean ratio = 1.97

* Solutions 1-8 were prepared from aliquots of a stock standard solution of the Cu(P_nN)₂ to be analysed. The stock standard solution was prepared as described in Section 3, Subsection 3.2.6(ii). It was analysed for Cu by spectrophotometric titration with EDTA, and found to be $(4.231 \pm 0.017) \times 10^{-5}$ M.

: The absorbance was due to liberated HPAN.

З

Analysis of Cu(TTAPAN) for Cu and PAN by solution of a weighed emount of the solid in methanol and determination of both Cu and PAN content (see procedure bl on page 27)

Soln. No.*	Concentration of Cu(PAN) ₂ in methanol* M x 10 ⁵	Absorba removal	ince of L of Cu L	soluti by EDT	on after A	Concentration of E culated from Cols and moler absorpt (See Table 1) M x	HFAN, cel- .III-VI, ivity. 10 ⁵	Ratio of (PAN) to (Cu) in sample. (Col.VII/Col.II)
	•	45 Crim	45Cmm	405nm	470	mean for 4 wavele	ngths	
1 2 3 4 5 6 7 8	5.472 4.864 4.256 3.648 3.040 1.824 1.216 0.608	0.892 0.792 0.690 0.592 0.496 0.299 0.197 0.093	0.944 0.838 0.733 0.625 0.522 0.318 0.210 0.106	0.944 0.838 0.731 0.622 0.519 0.315 0.210 0.106	0.920 0.818 0.718 0.612 0.510 0.312 0.206 0.104	5.354 4.760 4.178 3.562 2.975 1.806 1.198 0.602	0.93 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99	
-	<u> </u>	Concent From the w (theoretic 1.	ration weighed cal) .513	of the solid	stock Cul From spe titratic 1.52	(TTAPAN) solution in r ectrophotometric on with EDTA (n=3) 20±0.002	methanol (M From the m in Col. V 1.49	$\frac{x \ 10^4}{100}$ mean ratio given III 4±0.008
	Comparison of	the results	5	Cu% T PAN% T	heoretica] heoretica]	L: 11.93 Found: L: 46.59 Found:	11.99 45.94	

* Solutions 1-8 were prepared by diluting aliquots of a stock stendard solution of Cu(TTAPAN) 10-fold. This standard solution was prepared from a known weight of the solid (to give 1.513 x 10⁻⁴ M), and standardized with EDTA to give Col. II.

: The absorbance was due to liberated HPAN.

μ

flasks, 6 ml. of aqueous 0.1 N HCl were added after first removing 6 ml. of the standard solution in benzene. The two-phase system was then equilibrated by shaking at room temperature, and the two phases were then allowed to separate. By this step, the copper was quantitatively transferred to the aqueous phase and the HPAN and HTTA were quantitatively left in the benzene phase. The absorbance of the benzene phase was then measured at 460 nm. (which is the peak of HPAN in benzene). The concentration of HPAN in the benzene phase was then calculated by means of the following formule, which has been derived by Galik¹⁶:

3.3
$$[HPAN] = \frac{\Lambda_{460} - \Lambda_{560}R}{460} + \frac{\Lambda_{560}}{2} + \frac{$$

where:

 \mathcal{Q}_{λ} CuTP = molar absorptity of Cu(TTAPAN) at wavelength λ

 A_{λ} = absorbance at wavelength λ

$$R = \frac{Q_{160}CUTP}{Q_{560}CUTP}$$

A 460 HPAN = the molar absorptivity of HPAN at 460 nm. in benzene saturated with aqueous 0.1 N HCL. This value is given in Table 1, and was determined independently by measuring the absorbances of standard benzene solutions of HPAN in benzene.

! The dissociation constant of H_PAN⁺ in water has been reported to be 1×10⁻³ ¹⁰. The distribution ratic of HPAN between carbon strachloride and pure water has been reported to be 1×10⁴ ¹⁰. It seems reasonable to suppose that the distribution coefficient between benzene and water is not very different from that between carbon tetrachloride and water. By using these data, it is readily shown that the HPAN remains quantitatively in the benzene phase.

The molar absorptivities of Cu(TTAPAN) in benzene at 460 nm. and at 560 nm. had already been measured by d'Amboise³, and his values were used in the present work.

The values of the necessary measured absorbances are reported in Table 4, together with the concentrations of HPAN in all the solutions, calculated from these absorbances and equation 3.3. From these concentrations and the weight of the solid used in the preparation of the standard solution, the PAN content of the Cu(TTAPAN) was calculated, and these values are entered in Table 4. This Table also contains the values found for the copper content of the Cu(TTAPAN), as determined by the previously described spectrophotometric titration with EDTA.

An alternative procedure was also used as a check to ensure that in the above-described procedure for the determination of PAN in Cu(TTAPAN), the HPAN remained in the benzene phase after equilibration with the 6 ml. of aqueous 0.1 N HC1. Thus, a 5C-ml. aliquot of the standard solution of Cu(TTAPAN) in benzene was transferred to a separatory funnel and equilibrated with 20 ml. of an aqueous solution of 0.1 N HC1. The aqueous phase was then quantitatively transferred to another separatory funnel which contained about 40 ml. of benzene. The two phases were then equilibrated. If any HPAN had remained in the aqueous phase, some would be re-extracted into the benzene. The two benzene extracts of HPAN were then combined in a 100-ml. volumetric flask and diluted to volume.

To an aliquot of a standard aqueous solution of $Cu(NO_3)_2$ in the 65-ml. cell, 50 ml. of methanol were added. The benzene extract of the HPAN was then titrated

Analysis of Cu(TTAPAN) for Cu and PAN, by dilution of a weighed amount of solid in benzene, and determination of the copper content by spectrophotometric titration, and the HPAN content as in procedure b2 on p 28

 Soln.	Concentration of	Absorban	ce of solution	Concentration of HPAN,			
No.*	Cu(TTAPAN) in	after re	moval of Cu	calculated from the data			
	benzene*	by 0.1 N	HC1	in Cols. III and IV, and			
	M x 10 ⁵			equation 3.3			
		560nm	460nm	$M \times 10^5$			
1	4.548	0.046	0.763	4.665			
2		0.037	0.770	4.653			
3	Ħ	0.069	0.742	4.670			
4	11	0.012	0.785	4.603			
5	π	0.043	0.765	4.657			
6		0.020	0.787	4.656			
7	₩ ¹ v	0.022	0.783	4.649			
8	11	0.034	0.770	4.640			
9	π	0.031	0.770	4.620			
10	Ħ	0.013	0.784	4.602			
11		0.013	0.785	4.608			
12	11	0.012	0.784	4.697			
13	n .	0.017	0.785	4.622			
14		0.054	0.760	4.689			
15	tr .	0.072	0.746	4.608			
16	1 11	0.018	0.788	4.653			
17		0.021	0.778	4.609			
18	17	0.021	0.778	4.609			
				mean value = 4.640			
 	<u> </u>			<u>st.dev. = 0.030</u>			

Analysis of Cu(TTAPAN) from Cols. II and V, and amount of Cu(TTAPAN)

taken:

ſ

Cu: 11.89% (theor. 11.95%)

PAN: 47.35% (theor. 46.59%)

* Solutions 1-18 were prepared by diluting 10-fold a stock standard solution of Cu(TTAPAN), which was prepared from a known weight of the solid (to give 4.565×10^{-4} M), and standardized with EDTA to give Col. II.

: The absorbance was due to liberated HPAN.

into this copper solution, as described in Appendix III. The values obtained for this particular procedure are as follows: Cu 12.08% (expected 11.93%), HPAN 47.12% (expected 46.59%).

(

4 — A Preliminary Study of the Chelate Exchange Between Cu(TTA)₂ and HPAN in Nethanol-Benzene Mixtures.

The purpose of the present investigation was the evaluation of the equilibrium constants K_1' and K_2' for the following reactions

(A) $Cu(TTA)_2 + HPAN \xleftarrow{K_1} Cu(TTAPAN) + HTTA$ (B) $Cu(TTAPAN) + HPAN \xleftarrow{K_2} Cu(PAN)_2 + HTTA$

in methanol-benzene mixtures, by a spectrophotometric method.

D'Amboise³ has already shown that in benzene the ratio K'_1/K'_2 is of the order 10^5 . When $Cu(TTA)_2$ in benzene is titrated with HPAN by the present spectrophotometric method, one break is observed in the titration graph, and it corresponds to the formation of Cu(TTAPAN). The formation of $Cu(PAN)_2$ is never seen in this titration graph because of the extremely small value of K_2 . However, when methanol was the solvent, d'Amboise had shown that the ratio K'_1/K'_2 was of the order 560. In that case the titration graph might be curved due to the formation of a significant amount of $Cu(PAN)_2$. Accordingly, spectrophotometric titrations of $Cu(TTA)_2$ in benzene-methanol mixtures were carried out with a standard solution of HPAN, by using the titration apparatus shown in Plate 1.

The titration procedure is described in Appendix VI. Results of titrations of $Cu(TTA)_2$ with a standard solution of HPAN in benzene, in several benzene-methanol mixtures, are given in Table 5. The $Cu(TTA)_2$ solutions

Spectrophotometric Titration of Cu(TTA)₂ in methanol-benzene mixed solvents, with a stendard HPAN solution in benzene.

Apparatus: Beckman Model DU spectrophotometer and titration assembly (see Flate 1).

<u>~</u>--

37

Cell: 65-ml. glass cell with 5-cm. light path .

Wavelength: 560 nm.

Temperature: $25 \pm 2^{\circ}C$.

Methanol-benzene Initial concentration of Cu(TTA) ₂ , K x 10 ⁵										
composition,	From weight of	From standardization against	From titration against HPAN,							
mol% methanol	Cu(TTA) ₂ taken	EDTA, using procedure in	using procedure in							
		Appendix III	Appendix VI							
8.4	3,151	3.160±0.008*	3.125±0.C25							
16.0	1.700	1.599±0.009	1.702±0.020							
25.1	17	1.694±C.005	1.703±0.022							
33.4	17	1.696±0.006	1.708±0.037							
45.3	19	1.697±0.007	1.701 ± 0.024							
54.7	. 17	1.697±0.007	1.696±0.031							
68.7	tr	1.697±0.008	1.731±0.011							
79.7	17	1.692±0.006	1.761±0.022							

* The ± values are standard deviations for three samples.

were prepared from weighed amounts of Cu(TTA)₂. Column 2 in Table 5 gives the solution concentrations calculated from these weighed amounts of Cu(TTA)₂. The solutions were then separately standardized for copper, against a standard solution of EDTA, as described in Appendix III. The results are in Column 3 of Table 5. Finally, the same solutions were standardized against the standard solution of HPAN, as specified in Appendix VI. The results are in Column 4. Typical titration graphs are shown in Figure 2.

> 4.1 — Spectrophotometric absorption data for Cu(TTA)₂, Cu(TTAPAN), Cu(PAN)₂, HTTA and HPAN in benzone-methanol mixtures.

A knowledge of the absorption spectra of the chalating agents and the copper chelates was necessary in order to select the optimum wavelength for use. The relevant data have been collected together in Table 6.

> 4.2 — The absorption spectra of benzenemethanol solutions of mixtures of Cu(TTA)₂ and HPAN, in the range 400 nm. to 570 nm.

These absorption data were required in order to estimate the values of K_1 and K_2 for the two reactions written on page 36.

Stock standard solutions of Cu(TTA)₂, HPAN, Cu(TTAPAN) and Cu(PAN)₂ in benzene were prepared, and standardized as described in Appendix III.

Aliquots of these stock standard solutions were

FIGURE 2

Typical titration graphs of the spectrophotometric titration of $Cu(TTA)_2$ at $25^{\circ}C.$, with HPAN in the solvents:

a) 8.4 mol% methanol

in benzene

b) 54.7 mol% methanol in benzene

Ć

Spectrophotometric absorption data for HTTA, HPAN, Cu(TTA)₂, Cu(TTAPAN) and Cu(PAN)₂ in benzene, methanol, methanol-benzene mixtures, and other solvents.

 Compound	Solvent	Absorption maxima (nm)	Ref.
 HTTA•H ₂ 0	Aqueous acid	260, 270	18
HITA (enol)	benzene	325	18
TTA" (enclate ion)	equeous alkali	340	18
HTTA	benzene, methanol	no absorption greater than 400	_3
HTTA (enclate ?)	benzene-methanol	338	18
	(1:1 V/V)		
Cu(TTA) 2	benzene, methanol	345, 360 (shoulder); no	This work
		absorption greater than 400	
HPAN	benzene, methanol		This work
Cu(TTAPAN)	benzene, methanol	> see fig. 1	This work
Cu(PAN) ₂	benzene, methanol		This work

pipetted into 25-ml. volumetric flashe, and the appropriate benzene-methanol mixture was added. The compositions of these various sets of solutions are given in Table 7.

After the solutions had been prepared they were allowed to stand for two days in stoppered volumetric flasks in the dark, in order to allow the establishment of equilibrium. D'Amboise had previously shown that equilibrium was established within an hour.³

The spectral transmission curves of all solutions were then recorded at 20° C. in a silica cell with a l-cm. path length, by using the Beckman DB spectrophotometer coupled to a Sargent recorder. The cell housing of the spectrophotometer was thermostated by circulating through its water-jacket of constant temperature water from a Sarent-Welch thermostat control to $\pm 0.01^{\circ}$ C. The spectrophotometric blank was 35 mol% methanol in benzene.

> 4.3 — Experimental results and treatment of the spectrophotometric data.

From the measured absorbances and concentrations of the solutions specified in sets 1 to 3 inclusive in Table 7, the molar absorptivities of Cu(TTAPAN), Cu(PAN)₂ and HPAN were calculated at 5 nm. intervals over the range 400 nm. to 600 nm. The calculation of these absorptivities was made as follows: the absorbance value was plotted against the concentration. In each case a straight line was obtained, which showed that Beer's law was obeyed for these three compounds, over the concentration range studied. The least-squares straight line was calculated (see Appendix VII). The slope of this

Composition of solutions of Cu(ITA)₂, Cu(TTAPAN), Cu(PAN)₂, and HPAN in benzene-methanol mixtures, for spectrophotometric measurements.

			1	
Set No.	benzene-methanol	Compound	Initial concentration range	Number of solutions
	mixture			in set
l	8.3 mol% methanol	Cu(TTAPAN)	4×10^{-5} M - 3 x 10^{-6} M	8
	35.4 " "			
. 2	17	Cu(PAN) 2	$2.5 \times 10^{-5} \text{ M} - 3 \times 10^{-6} \text{ M}$	8
Ē	17	HPAN	$6 \times 10^{-5} M - 8 \times 10^{-6} M$	8
4	17	Cu(TTA)2	$3 \times 10^{-5} M$	usually more
		HPAN [.]	$8 \times 10^{-5} \text{ M} - 2 \times 10^{-6} \text{ M}$	than 15
5*	TP.	Cu(TTA)2	$6.4 \times 10^{-5} M$ — none	usually more
		HPAN	none 5.4 x 10^{-5} M	than 15

* In this set the total initial Cu(TTA) added plus the initial HPAN added was kept constant.

least-squares fit gave the molar absorptivity. These values for the solvent 35.4 mol% methanol in benzene are given in Appendix VIII.

The absorbances of the solutions of sets 4 and 5 listed in Table 7 were also measured at 5 nm. intervals and are presented in Table S, together with the initial concentrations of Cu(TTA)₂ and HPAN.

For each solution in sets 4 and 5 of this Table, an attempt was made to calculate from the absorbance data the equilibrium concentrations of the compounds involved in the reactions A and B on page 36, namely:

A) $Cu(TTA)_2$ + HPAN $\stackrel{K_1}{\longrightarrow} Cu(TTAPAN)$ + HTTA B) Cu(TTAPAN) + HPAN $\stackrel{K_2}{\longleftarrow} Cu(PAN)_2$ + HTTA

Let Cu_0 be the initial molar concentration of $Cu(TTA)_2$, and let (HPAN) be the initial molar concentration of HPAN. Let square brackets; [], denote molar concentration.

The mass-balance equations for reactions A and B are:

4.1
$$C_{U_0} = \left[C_U(TTA)_2 \right] + \left[C_U(TTAPAN) \right] + \left[C_U(PAN)_2 \right]$$

4.2 $[HPAN]_{o} = [HPAN] + [Cu(TTAPAN]] + 2 [Cu(PAN)]_{2}$

4.3 $2Cu_0 = 2[Cu(TTA)_2] + [HTTA] + [Cu(TTAPAN]]$

The mass-law equations will be written in terms of molar concentrations, i.e.,

$$K_{1} = \frac{[Cu(TTAPAN)] \cdot [HTTA]}{[Cu(TTA)_{2}] \cdot [HFAN]}$$

$$K_{2} = \frac{[Cu(PAN)_{2}] \cdot [HTTA]}{[Cu(TTAPAN)] \cdot [HPAN]}$$

Thus, the present derivation is a simplified one, in that all activity coefficients are considered to be unity, and no tautomeric forms, solvates or hydrates of the specified participating species are considered to co-exist.

From Beer's Law: 4.4 $\Lambda i_{\lambda} = \bigcap_{\lambda \text{HPAN}} [\text{HPAN}] + \bigcup_{\lambda \text{CUTP}} [\text{Cu(TTAPAN)}] + O_{\text{CUP}_2} [\text{Cu(PAN)}_2] + B$

where:

 $A_{\lambda}i$ = absorbance of solution i at wavelength λ

 $Q_{\text{CuTP}} = \text{molar absorptivity of Cu(TTAPAN)}$ at wavelength λ

 $\frac{Q_{LUP_2}}{\Delta LUP_2} = \frac{M}{M} \frac{M}$

B = a fit parameter. Ideally, it should be zero.

The method developed by d'Amboise³ was used. Thus, for each solution specified in Table 7, a set of thirty-

four equations was obtained by applying to equation 4.4. the absorbance data given in Table 8, at 5 nm. intervals in the region 400 to 570 nm.

These equations were then normalized by leastsquares regression analyses, and solved both for the equilibrium concentrations and their standard deviations (Appendix VII). The parameter B appeared naturally as an indication of the goodness of the fit.

From these calculations , it was found that the values of K_1 could not be calculated, because the equilibrium concentrations of Cu(TTA)₂ were too low; in fact, they were of the same order of magnitude as the standard deviations of Cu(TTAPAN) and HPAN. For example, in one solution the relevant equilibrium concentrations were:

 $\begin{bmatrix} C_{U}(TTAPAN) \end{bmatrix} = (2.552 \pm 0.011) \times 10^{-5} \text{ M}$ $\begin{bmatrix} HPAN \end{bmatrix} = (1.429 \pm 0.004) \times 10^{-5} \text{ M}$ $\begin{bmatrix} C_{U}(TTA)_{2} \end{bmatrix} \sim 10^{-7} \text{ M}$

However, the values of K_2 could be calculated by using the same technique as that described above for K_1 , by using the data for those solutions in which HPAN was in large excess. In calculating the value of K_2 in this way, use was made of the following information:

i) With HPAN in large excess the equilibrium concentration of Cu(TTA)₂ was sufficiently low to be neglected in the following mass-balance equations:

Absorbance of solutions of sets 4 and 5 listed in Table 7, at 5 nm. intervals in the range 400 nm. to 570 nm. at 20° C.

	Sol. No.	Initial concen- tration of Cu(TTA),	Initial concen- tration of HPAN	A E	sorba	nce ngth,	x 10 ³
·		M x 1C ⁵ 2	<u>M × 10⁵</u>	1001400	1010	1/15	420
			· · · · · · · · · · · · · · · · · · ·	400 46:		410	420
Set 4	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	2.694 "" " " " " " " " " " " " " " " " " "	0.248 0.496 0.910 1.158 1.407 1.655 2.069 2.317 2.565 2.730 3.061 3.227 3.475 3.723 4.302 5.130	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43 59 102 118 134 161 162 161 162 201 246 246 246 290 3179 466	38 55 84 102 120 135 167 188 210 224 259 286 303 396 488	25 53 101 119 138 167 192 213 228 265 283 311 340 406 502
Set 5	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	6.062 5.389 5.052 4.715 4.370 4.042 3.705 3.368 3.031 2.694 2.358 2.021 1.684 1.347 0.674 0.337	0.673 1.345 1.686 2.018 2.358 2.691 3.031 3.704 4.052 4.376 4.717 5.049 5.390 6.062 6.395	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	78 118 139 139 203 224 250 255 250 255 342 7368 434 434 434 531 3631 3682	70 113 138 161 185 208 232 262 308 358 405 455 505 556 662 717	63 110 137 159 183 208 235 265 316 368 418 468 521 575 685 745

Table 8 (continued)

			<u> </u>		<u>А</u> Ь.			103				
	501. No.	•			wa:	velen	gth,	<u> </u>				
		425	430	435	440	445	450	455	460	465	470	475
Set 4	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	33 51 81 98 118 136 165 190 211 227 264 283 313 344 412 511	31 49 80 98 115 133 164 188 210 216 265 285 315 346 418 522	30 46 78 97 114 133 163 163 188 210 227 267 266 318 352 427 535	28 47 77 95 113 131 160 186 208 224 267 286 319 354 431 544	26 44 72 89 105 122 150 174 197 212 256 277 310 347 427 542	24 38 63 78 93 107 132 154 174 190 235 258 293 330 415 536	21 32 53 65 77 90 111 130 148 163 210 234 272 310 400 530	$ \begin{array}{r} 18 \\ 27 \\ 44 \\ 55 \\ 75 \\ 94 \\ 126 \\ 142 \\ 190 \\ 214 \\ 255 \\ 392 \\ 528 \\ \end{array} $	17 25 40 49 58 67 53 97 114 130 120 205 247 291 390 532	17 25 41 50 67 84 97 114 131 180 206 248 293 393 536	17 26 43 52 73 83 90 103 122 138 188 214 255 300 398 542
Set 5	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	56 106 130 155 181 205 232 264 317 372 425 480 537 593 710 773	55 103 129 153 178 202 263 319 379 434 493 554 615 740 808	53 101 127 151 178 202 230 265 323 386 445 508 571 637 770 843	51 96 124 149 173 199 227 260 322 386 453 520 587 655 797 873	47 91 115 137 160 184 211 245 312 382 452 523 597 671, 907	40 79 108 137 161 183 217 291 369 447 525 609 690 859 952	32 63 80 96 111 130 152 184 266 354 441 529 621 713 903 1006	29 53 66 80 92 107 126 159 245 341 439 535 636 737 946 1056	29 51 63 -76 88 101 113 146 236 339 440 541 648 756 976 1091	30 51 63 77 90 101 113 148 239 341 443 547 654 764 983 1100	32 56 70 81 96 110 122 158 247 347 448 551 656 763 978 1092

Ć

Table 8 (continued)

· · · · · · · · · · · · · · · · · · ·	Sol.				Absor	bance	× 10	3				
	10.	400	105	400	wavcl	ength	<u>, nm.</u>				625	
	· · ·	400	400	470	470			<u> </u>	212	1 320	525	530
́Set 4	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	18 29 47 58 69 80 100 114 133 150 200 225 207 310 409 549	20 32 55 75 113 125 166 215 240 2325 421 558	21 36 60 74 90 105 130 145 170 186 235 258 300 340 433 565	22 41 69 86 104 121 150 169 194 212 257 280 318 357 442 565	25 47 80 100 121 141 176 197 222 240 283 303 327 371 447 554	$\begin{array}{c} 29\\ 54\\ 94\\ 110\\ 105\\ 204\\ 228\\ 255\\ 310\\ 327\\ 350\\ 325\\ 345\\ 535\\ 445\\ 535\end{array}$	$\begin{array}{c} 33\\ 60\\ 105\\ 131\\ 159\\ 186\\ 230\\ 259\\ 287\\ 304\\ 335\\ 349\\ 372\\ 394\\ 442\\ 509\\ 509\end{array}$	$\begin{array}{c} 35\\ 65\\ 145\\ 175\\ 205\\ 255\\ 315\\ 356\\ 360\\ 360\\ 360\\ 403\\ 440\\ 489\end{array}$	33 72 126 159 192 125 279 312 344 359 380 390 403 416 442 478	41 78 138 172 210 245 302 339 374 307 405 413 425 435 435 480	24 84 149 189 228 268 330 370 407 422 437 445 454 454 463 476 496
Set 5	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	36 62 79 93 108 122 139 172 261 357 453 554 655 759 965 1072	40 71 90 123 140 148 193 278 369 462 556 652 751 949 1047	45 82 104 123 143 163 182 221 298 363 470 555 646 737 916 1009	53 98 122 144 168 191 214 251 321 395 471 547 625 705 862 940	$\begin{array}{c} 61\\ 115\\ 141\\ 169\\ 197\\ 225\\ 252\\ 287\\ 343\\ 405\\ 463\\ 525\\ 586\\ 649\\ 772\\ 627\\ \end{array}$	70 133 167 198 232 266 294 329 369 409 448 489 527 567 647 677	80 151 190 224 263 299 332 367 390 410 430 450 468 468 469 522 525	88 168 210 251 293 330 369 402 412 412 413 412 412 412 390	95 183 230 275 320 363 406 437 432 420 402 388 372 354 312 277	105 201 252 300 348 396 441 473 461 434 405 378 348 318 249 202	114 220 278 328 383 433 484 519 496 460 420 382 341 300 208 168

Table 8 (continued)

	Scl.	<u> </u>			Abso	rbanc	e x l	<u>c</u> 3	
	No.				wave	lengt	h, nm	•	
		535	540	545	550	555	560	565	570
Set 4.	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	47 90 162 203 246 290 358 400 440 455 470 483 492 503 510	50 95 172 213 310 303 430 471 488 504 516 523 523 523 545	53 102 103 231 280 329 405 500 518 534 5510 5510 5510 5510 570	55 106 191 295 345 480 544 5544 5544 5573 578 578 597	58 110 252 306 259 445 506 548 548 548 548 548 590 598 602 610 620	60 113 205 261 371 460 518 567 587 605 510 618 623 623 622 640	60 115 211 267 324 300 471 582 601 619 625 632 635 644 652	6C 115 210 267 325 380 471 535 584 602 620 627 631 634 634 640 546
Set 5	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	123 239 300 355 415 469 525 560 532 489 438 395 346 298 190 123	131 255 320 381 442 503 563 563 568 514 460 410 356 301 181 120	138 272 339 403 468 535 598 636 600 542 403 428 368 308 180 103	123 204 355 424 403 563 630 630 630 631 570 504 446 382 320 183 103	150 295 371 441 515 588 658 658 658 658 658 658 658 658 65	153 375 383 456 532 608 684 723 680 615 543 477 408 336 191 103	156 312 391 465 541 621 697 632 556 488 415 444 191 103	156 311 390 465 542 620 697 744 690 634 556 487 413 441 186 98

(

(

4.5
$$Cu_{o} = [Cu(TTAPAN)] + [Cu(PAN)_{2}]$$

4.6 $[HPAN]_{o} = [HPAN] + [Cu(TTAPAN)] + 2 [Cu(PAN)_{2}]$
4.7 $[HTTA] = [HPAN]_{o} - [HPAN]$

These equations for use in calculating K_2 are the counterpart of those of equations 4.1 to 4.3 used for the calculation of K_1 .

ii) In addition, the absorbance equation was used:

4.4
$$A_{i} = \mathcal{A}_{AHPAN} [HPAN] + \mathcal{A}_{CuTP} [Cu(TTAPAN]]$$

 $\cdot \mathcal{A}_{CuP_{2}} [Cu(PAN)_{2}] + B$

Then for each solution specified in Table 7, a set of thirty-seven equations was obtained by applying to equation 4.4 the absorbances given in Table 8 at 5 nm. intervals in the range 400 nm. to 570 nm. As before, this treatment led to values of equilibrium concentrations with their standard deviations for HPAN, Cu(TTAPAN) and $Cu(PAN)_2$. From the three standard deviations, namely those for HPAN, Cu(TTAPAN) and $Cu(PAN)_2$, the percentage standard deviation was calculated by the formula

 $\% \mathcal{E} = \frac{\sigma}{\overline{x}} \times 100.$

The lowest % \mathcal{E} of the three concentrations was then noted by inspection, and the particular compound it corresponded to was used for the further calculations. The concentration found for this particular compound

51

was then substituted into equations 4.5, 4.6 and 4.7, together with the data for Cu_0 and HPAN $_0$, and these three equations were then solved for the equilibrium concentrations of HPAN, Cu(TTAPAN), $Cu(PAN)_2$ and HTTA. Therefrom, a value of K₂ was obtained.

In this way a value for K_2 was obtained for each of the solutions specified in Table 7. These values of K_2 are tabulated in Table 9. From the seven values of K_2 in that table, a mean value of 0.101 was obtained, with a standard deviation for six degrees of freedom of 0.029. These values are for the particular benzenemethanol mixture having 35.4 mol.% of methanol at 20°C.
Molar equilibrium concentrations of Cu(TTAPAN), Cu(PAN)₂, HPAN and HTTA for the solutions having an initial molar concentration of HPAN in excess, and the values of K_2 calculated therefrom.

Solvent: 35.4 mol% of methanol in benzene.

Temperature: 20°C.

Cu _o	[HPAN] o		Equilibri		K ₂			
M x 10 ⁵	M x 10 ⁵	HTTA	Cu(PAN)2	Cu(ITAPAN)	St. Dev.	HPAN	St. Dev.	
· ·					. <u> </u>			
2.694	4.052	2.799	.105	2.589	0.017	1.253	-	0.110
2.358	4.376	2.530	.172	2,186	0.014	1.845	-	0.093
2.021	4.717	2.264	.243	1.778	-	2.453	0.012	0.079
1.684	5.049	1.948	.264	1.420	-	3.101	0.011	0.086
2.694	5,723	2.800	.106	2.588	0.016	.926	-	0.081
**	4.302	2.836	.142	2.552	0.011	1.466	-	0.093
**	6.123	2,868	.174	2.520	0.013	3.255	-	0.164

 Σ

5 — The chelate exchange reactions of Cu(TTAPAN) with HTTA and HPAN in methanol-benzene mixtures.

5.1 — Introduction

A method which would allow the evaluation of K_1 and K_2 for reactions A and B in methanol-benzene mixtures was developed by d'Amboise³, and it was applied in the present investigation.

The method consisted of spectrophotometrically following the equilibrium concentrations of Cu(TTAPAN) and/or Cu(PAN)₂ in reactions A and B, namely:

A)
$$Cu(TTAPAN) + HTTA \stackrel{K_1^{-1}}{=} Cu(TTA)_2 + HPAN$$

B)
$$Cu(TTAPAN) + HPAN \implies Cu(PAN)_2 + HTTA$$

Thus, sets of solutions in methanol-benzene mixtures were prepared, in which the initial concentration of Cu(TTAPAN) was kept constant, and the initial concentration of HTTA or of HPAN was changed.

The method requires that: i) only Cu(TTAPAN) and $Cu(PAN)_2$ absorb at the wavelengths selected for the absorbance measurements; ii) both Cu(TTAPAN) and $Cu(PAN)_2$ in methanol-benzene mixtures obey Beer's law for the range of concentration studied; iii) the order of magnitude of the molar absorptivities of Cu(TTAPAN) and $Cu(PAN)_2$ was such that at an appropriate wavelength one can be detected in the presence of a known amount

of the other; iv) in reacting Cu(TTAPAN) with HTTA in methanol-benzene mixtures according to reaction(A) the HPAN formed did not react significantly with Cu(TTAPAN) present in equilibrium in the solution, to form $Cu(PAN)_2$ according to reaction B; v) in reacting Cu(TTAPAN) with HPAN in methanol-benzene mixtures, the HTTA formed did not react significantly with Cu(TTAPAN)present in equilibrium in solution, to form $Cu(TTA)_2$ according to reaction (A).

These various requirements were met in the present investigation. Thus, in Section 4 it was shown that Cu(TTAPAN) and Cu(PAN)₂ in 35.4 mol% of methanol in benzene obey Beer's law in the range of concentrations used. It is shown later in this section that these complexes also obey Beer's law for all methanol-benzene compositions investigated.

The spectral range 540 nm. to 580 nm. was selected for the absorbance measurements because in this range only Cu(TTAPAN) and Cu(PAN)₂ absorb significantly (see Figure 1). Furthermore, in this range the molar absorptivities of the two complexes in methanol-benzene mixtures were found to be different enough to permit quantitative observation of one in the presence of the other.

D'Amboise³ had previously shown that requirements (iv) and (v) are met. He did so by using his values of K_1 and K_2 for reactions A and B respectively in pure methanol and in pure benzene, to calculate the equilibrium concentrations of the species that co-exist where Cu(TTAPAN) is allowed to react with HTTA or HPAN in these solvents. These conclusions by d'Amboise have been confirmed in the present work. Thus, the values of K_1 and K_2 found in this work are used in Section 5.3.4 requirements (iv) and (v) were met in the present systems.

5.2 - Procedures

5.2.1 — Freparation of stock standard solutions of Cu(TTAPAN), Cu(PAN)₂, HTTA and HPAN in benzene or methanol

The materials have already been described in Section 3.2.

Stock standard solutions of Cu(TTAPAN) and $Cu(PAN)_2$ in benzene or methanol, were prepared by equilibrating excess solid with solvent and filtering with the apparatus illustrated in plate 2. Then, the filtrate was diluted with solvent to approximately twice its initial volume to yield a concentration of approximately 4 x 10^{-4} M and 2×10^{-4} M for Cu(TTAPAN) in benzens and methanol respectively, and of approximately 2×10^{-4} M and 4×10^{-5} M for Cu(PAN)₂ in benzene and methanol respectively. Prior to use, the solutions were standardized by spectrophotometric titration with a standard aqueous solution of EDTA (Appendix III).

Stock standard solutions of HPAN in benzene or methanol were prepared by dissolution of 0.01 gram of the solid in 100-ml. volumetric flask, with the solvent. The resulting solution was then standardized by spectrophotometric titration against a standard aqueous solution of $Cu(NO_3)_2$ (Appendix III).

Stock standard solutions of HTTA were prepared just before use, by dissolution of a carefully weighed amount

of the purified and dried solid with benzene or methanol in a 100-ml. volumetric flask, to yield a concentration of approximately 0.1 M. A second stock solution of HTTA in benzene or methanol was prepared by transferring a 10-ml. aliquot from this 0.1 M solution into another 100-ml. volumetric flask, which was then diluted to volume with the solvent at 25°C.

> 5.2.2 — Preparation of solutions for determinations of molar absorptivities of Cu(TTAPAN) and Cu(PAN)₂ in methanolbenzene mixtures, and for spectrophotometric investigations on the chelate exchange reactions of Cu(TTAPAN) with HTTA or HPAN in methanol-benzene mixtures, at 25°C.

The general procedure for the preparation of the above solutions has been given in Section 4.2on page 38. Thus, aliquots of the stock standard solutions given in Section 5.2.1 were pipetted in 25-ml. volumetric flasks, and the appropriate benzene-methanol mixture was added. The compositions of these various sets of solutions are given in Table 10 (this table is the counterpart of Table 7). The methanol-benzene mixtures used in the spectrophotometric investigation of the exchange reaction between Cu(TTAPAN) and HTTA at $25 \pm 2^{\circ}C$. were in mol% of methanol: 8.38, 16.0, 23.0, 35.4, 40.9, 55.2, 59.4, and 76.7; for the exchange reaction between Cu(TTAPAN) and HTA at $25 \pm 2^{\circ}C$. (TTAPAN) and HPAN at $25 \pm 2^{\circ}C$. 16.0, 35.4, 41.0, 50.9, 59.4, 76.7, and 89.8 mol% methanol in benzene were used.

After the solutions had been prepared, they were allowed to stand for three days, in stoppered volumetric

Composition of solutions in methanol, benzene, or methanol-benzene mixtures¹, prepared from the stock standard solutions of Cu(TTAPAN), $Cu(PAN)_2$, HTTA and HPAN in benzene or methanol, and used for the spectrophotometric study of the exchange reactions between Cu(TTAPAN) and HPAN or HTTA, at $15^{\circ}C.$, $25^{\circ}C.$, and $35^{\circ}C.$

	Number of		
Set	solutions prepared	Compound(s)	Concentration range, M
Å	10-15	Cu(TTAPAN)	app. 3 x 10 ⁻⁵
	· · · · · · · · · · · · · · · · · · ·	HTTA	1×10^{-1} to 1×10^{-4}
В	10-15	Cu(TTAPAN)	app. 2.5 x 10 ⁻⁵
		HPAN	2×10^{-4} to 1×10^{-6}
C	6-8	Cu(TTAPAN)	4.5×10^{-5} to 5×10^{-6}
D	6 - 8	Cu(FAN)2	2.5×10^{-5} to 2.5×10^{-6}
*E	3	Cu(TTAPAN)	app. 3 x 10 ⁻⁵
*F	3	Cu(TTAPAN)	app. 2.5 x 10 ⁻⁵

- : The methanol-benzene mixtures used in the spectrophotometric investigation of Cu(TTAPAN) with HTTA and HPAN have been given in Section 5.2.2.
- * The initial concentrations of Cu(TTAPAN) in sets E and F were the same as in sets A and B respectively.

58

flasks in the dark, in order to allow the establishment of equilibrium.

The fact that three days were sufficient to ensure equilibrium was proved in a separate experiment as follows: spectrophotometric measurements of solutions prepared as described in set A of Table 10 were made after two days and also after stored in the dark for two months. The results are in Table 11.

5.2.3 - Spectrophotometric Measurements

The absorbances of all sets of solutions with composition listed in Table 10, were measured at $25\pm2^{\circ}$ C. in l-cm. silica cells, at the selected wavelengths in the spectral range 540 nm. to 580 nm., by using the Unicam S.P. 500 spectrophotometer. The spectrophotometric blank was always the particular methanol-benzene mixture used as solvent in the sample for measurements.

> 5.2.4 — Procedure for the spectrophotometric investigation of the exchange reactions between Cu(TTAPAN) and HTTA or HFAN, in benzene, methanol and methanolbenzene mixtures, at 15°C. and 35°C.

The solutions were prepared as in Section 5.2.2, except that in the case of the chelate exchange reaction between Cu(TTAPAN) and HTTA the solvents used were pure benzene and 40.9 mol% methanol in benzene, and in the case of the chelate exchange reaction between Cu(TTAPAN) and HPAN the solvents used were 40.9 mol% methanol in benzene and pure methanol. The composition of the solutions used in this investigation are also given in Table 10.

Sol. No.	Initial Con Cu(TTAPAN) Mx10 ⁵	centration HTTA Mx10 ³	Absorbance a <u>550nm x 10</u> After 2 days	t After 2 months	Ratio of Col.IV to Col.V	Absorbar 560nm x After 2 days	nce at 10 ³ After 2 months	Ratio of Col.VII/VIII
1	3,085	19.42	195	199	0.98	206	212	0.97
2	17	14.56	220	217	1.01	235	232	1.01
3	11	9.708	262	262	1.00	278	279	1.00
4	Ħ	4.854	332	332	1.00	355	353	1.01
5	¥	3.883	356	358	0.99	380	382	0.99
6	17	2.912	382	389	0.98	409	415	0.99
7.	17	1.942	421	434	C.97	448	461	0.97
8	17	0.970	474	486	0.98	508	519	0.98
9	m	0.728	491	496	0.99	526	528	1.00
10	17	0.485	515	528	0.98	551	564	0.98
11	19	0.427	548	552	0.99	586	590	0.99
				mean st.dev.	= 0.99 = 0.01		m. st.	- ean= 0.99 dev.=0.01

. •

Proof of equilibrium of solutions Cu(TTAPAN) and HTTA in methanol-benzene mixtures at 25°C.

The absorbances were measured as follows: constanttemperature water from a Sargent-Welch thermostat (control to $\pm 0.1^{\circ}$ C.) was circulated through the water jacket of the cell compartment of the Unicam S.P. 500 spectrophotometer. The temperature of the 1-cm. silica cell containing the sample of the solution whose absorbance was to be measured, was measured by using a copper-constantan thermoccuple. It was connected to the volt potentimeter described in Section 3.1 and with one end placed tightly between the sample-cell and the cell holder, and with the reference end immersed in an ice-water bath; repetitive measurements were made during the experiments.

The 25-ml. volumetric flasks containing the solutions for measurements were immersed in the water bath of another Sargent-Welch thermostat (centrol to $\pm 0.01^{\circ}$ C., thermomonitor controlled), which was set at the same temperature as the cell compartment of the spectrophotometer. After allowing them to stand for four hours, they were removed and quickly dried with absorbent paper. Immediately a sample of the solution was transferred to the 1-cm. sample-cell. The temperature was measured after two minutes and then the absorbance was measured at each selected wavelength. The spectrophotometric blank was always the methanol-benzene mixture being used for the sample solution.

5.3 - Results and Treatment of the Data

- 5.3.1 The exchange reaction between Cu(TTAPAN) and HTTA in methanol-benzene mixtures, at 25±2°C.
- i) Equation to calculate K_{1} for reaction (A)

The species that co-exist in the exchange reaction

of Cu(TTAPAN) with HTTA in methanol-benzene mixtures are: Cu(TTAPAN), Cu(TTA)₂, HTTA and HPAN. Of these compounds, only Cu(TTAPAN) abcorbs in the spectral range used, namely 540 nm. to 580 nm. (see Figure 1). Thus, if the known concentration of the added Cu(TTAPAN) is kept constant for all the solutions prepared as in set A and listed in Table 10, the exchange reaction can be followed spectrophotometrically by changing the initial known concentration of HTTA in these solutions. The molar absorptivity of Cu(TTAPAN) is the methanol-benzene mixture at the chosen wavelengths was also required.

The molar absorptivities of Cu(TTAPAN) in methanolbenzene mixtures at the wavelengths selected, were determined by a least-squares fit of the data , from the measured absorbances and the known concentrations of the solutions of set C in Table 10. The values obtained for all methanol-benzene solvent mixtures studied in the spectral range given above, are entered in Table 12. Beer's law was obeyed for all of these solutions in the range of concentrations studied; a plot of absorbance versus concentration is given in Figure 3 for 35.4, 59.0, and 76.7 mol% methanol in benzene.

A rigorous equation is now derived, in order to treat the absorbance data in Table 13. Let round brackets, (), denote activities, and square brackets, [], molar concentration. Let γ_A denote the molar activity coefficient for species A. Then for reaction(A)

(A) $Cu(TTA)_2$ + HPAN \rightleftharpoons Cu(TTAPAN) + HTTA

(5.1)
$$K_1 = \underline{[c_u(TTAPAN]] \cdot (HTTA)]} \times r$$

 $\underline{[c_u(TTA)_2] \cdot [HPAN]}$

Molar absorptivity of Cu(TTAPAN) in methanol-benzene mixtures, in the spectral range 540 nm. to 580 nm., at $25 \pm 2^{\circ}$ C.

The solutions used are set C of Table 10.

 \sim

ي.

.

Solvent; mol%	Least-	squares	value	of mole	ar absor	ptivity	y and st	. dev.,	x 10 ⁻⁴	1		
methanol in				wave]	ength i	in nm.	· ·		· .			
benzene	540		550		554		560		564		565	
												· · · · · · · · · · · · · · · · · · ·
8.38	1.888	0.009	2.081	0.006	-	-	2.215	0.008	-	-	2.252	0.010
16.0	-	-	2.024	0.011	-	-	2.150	0.013	-	-	-	-
23.0	1.879	0.006	2.069	0.002	-	-	2.204	0.006	-	-	2.229	0.010
35.4	1.847	0.018	2.040	0.020	-	-	2.176	0.021	-	-	-	-
40.9	1.835	0.010	2.037	0.008	-	- '	2.182	0.007	2.209	0.006	-	-
50.9	1.877	0.008	2.052	0.007	-	-	2.174	0.007	-	-	_	· •
55.2	1.877	0.007	2.055	0.009	-	-	2.178	0.005	-	-	-	-
59.4	-	-	2.088	0.011	-	-	2.231	0.008	-	-	-	-
76.7	1.895	0.005	2.079	0.006	2.123	0.007	2.167	0.006	-	-	-	-
89.8	1.913	0.004	2.091	0.005	2.147	0.006	2.174	0.008	-	-		

Table 12 (continued)

Solvent, mol%	Least-	squares	value	of mola	r absor	ptivity	and st. dev., $x 10^{-4}$	
methanol in			wav	elength	s in nm	l•		
benzene	566		570		580		•	N*
		<u></u>	· · · · ·	<u>. </u>				<u> </u>
8.38	-	-	2.242	0.008	1.896	0.013		8
16.0	2,182	0.013	2.152	0.013	-	-		8
23.0	-	-	2.198	0.007	1.811	0,007		9
35.4	-	-	-	-	-	-		-
40.9	-	-	2.183	0.017	1.788	0.023		10
50 , 9	-	-	2.068	0.011	-	-		7
55.2	-	-	2.114	0.012	1.686	0.017		6
59.4		-	-	-	-	-		-
76.7	-	-	2.013	0.010	- .	. .	•	8
89.8	-	-	1.920	0.011	-	-		7

* No. of solutions used for least-squares fit.

FIGURE 3

Beer's law plot for Cu(TTAPAN) in (a) 35.4 mol% methanol, (b) 76.7 mol% methanol and (c) 59.0 mol% methanol in benzene

- Note: (i) The concentration range for Cu(TTAFAN) in these solvents was approximately 5 x 10^{-6} M to 2 x 10^{-5} M
 - (ii) Each of the three graphs on extrapolation passed through the origin.

65

i

It was shown on page 62 that Cu(TTAPAN) obeys Beer's law in the benzene-methanol solvents. Further, the absorbances in Table 13 are for Cu(TTAPAN). Therefore:

(5.3)
$$A = a \cdot [Cu(TTAPAN)]$$

$$(5.4) A_{o} = a \cdot \left[Cu(TTAPAN) \right]_{o}$$

where a is the molar absorptivity of Cu(TTAPAN); and subscript zero denotes the initial value before addition of HTTA to the solution of Cu(TTAPAN).

Now the data in Table 13 refer to equilibrium solutions that resulted from mixing Cu(TTAPAN) and HTTA. Therefore at equilibrium,

$$(5.5) [HPAN] = [Cu(TTA)_2]$$

Then from equations (5.1), (5.3), (5.4) and (5.5),

$$\frac{(5.6)_{a}}{r} = \frac{K_{l}}{\left\{ \left[Cu(TTAPAN) \right]_{o} - \frac{A}{a} \right\}^{2}}$$

$$(5.6)_{b} \quad \frac{K_{1}}{r} = \frac{A/a \quad (HITA)}{\left(\frac{A_{o} - A}{a}\right)^{2}}$$

It is necessary to express (HTTA) in terms of $[HTTA]_{T}$, the stoichiometric concentration of HTTA added,

since only the later value is given in Table 13. Now HTTA in solution is considered to exist in several forms (7,20,21,22),

OH HTTA'.w

The enol isomer $\int_{S} -C-CH=C-CF_3$ is known to be present in only very small emounts, (22,25).

In addition, the enol is a weak acid, dissociating to H⁺ and TTA⁻, with a dissociation constant Ka, depending on the solvent and the pH^{22} . In dry benzene, 95% of the HTTA is reported to exist in the enol form^{7,20}, whereas in benzene saturated with water 11% of the HTTA is present as ketohydrate²⁰.

The methanol-benzene mixtures used in the present work also contained water in the concentration range 1×10^{-3} M (for benzene) to 2×10^{-2} M (for methanol). Moreover, Adam. and Larsen²⁴, who have studied the kinetics of ligand exchange between metal chelates and β -diketones, have shown that only the exchange of the enol form is important.

68

Let the equilibrium constants

$$(5.7) \quad K_{k} = \frac{(HTTA)}{(HTTA)}$$

(5.8)
$$K_{s} = \frac{(HTTA'.S)}{(HTTA')}$$
 (S)

where (S) is the activity of methanol in the benzenemethanol solvent.

be

(5.9)
$$K_{W} = \frac{(HTTA'.W)}{(HTTA')}$$
 (W)

where (w) is the activity of the very low concentrations (approximately 0.02 M) of water in the mixed solvent.

(5.10)
$$K_a = \frac{(TTA^-)(H^+)}{(HTTA)} = \frac{(TTA^-)^2}{(HTTA)}$$

then since

(5.11)
$$\left[HTT\Lambda\right]_{i} = \left[HTT\Lambda\right] + \left[HTT\Lambda'\right] + \left[HTT\Lambda'\cdot S\right] + \left[HTT\Lambda'\cdot W\right] + \left[TT\Lambda\right] + \left[Cu(TTA)_{2}\right]$$

where $[HTTA]_i$ is the initial stoichiometric concentration of HTTA. On substituting equations (5.7)-(5.10), into equation (5.11),

(5.12) (HTTA) =
$$\frac{[HTTA]_{T} - [Cu(TTA)_{2}]}{\varphi}$$

$$(5.13) \varphi = \left[\frac{1}{\widetilde{U}HTTA} + \frac{K_{k}}{\widetilde{V}HTTA} + \frac{K_{k}K_{s}(S)}{\widetilde{U}HTTA'.S} + \frac{K_{k}K_{w}(W)}{\widetilde{U}HTTA'.W} + \frac{K_{a}^{1/2}}{(HTTA)^{\frac{1}{2}}}\right]$$

where

then equation (5.6) becomes:

$$(5.14)_{a} \frac{K_{1} \varphi}{r} = \frac{(A/a) \cdot [HTTA]_{i} - [Cu(TTAPAN)]_{0} + A/a]}{\left\{ Cu(TTAPAN)_{0} - A/a \right\}^{2}}$$

$$(5.14)_{b} \frac{(A/a) \cdot [[HTTA]_{i} - A_{0} - A]}{r} = \frac{(A/a) \cdot [[HTTA]_{i} - A_{0} - A]}{\left(\frac{A_{0} - A}{a}\right)^{2}}$$

From the data on Table 13, and the absorbance values in Appendix IX, the R.H.S. of equation (5.14), i.e. $K_1\Psi/r$, was evaluated for each equilibrium solution at each wavelength. The results are reported in Table 13, and representative sets of these data are plotted in Figures 4 to 6. Inspection shows that these plots (and the data) exhibit a plateau, with abnormally high values of $K_1\Psi/r$ at the extremities, particularly at the lowest values of $[HTTA]_i$. The matter is dealt with in the Discussion Section.

> 5.3.2 — The exchange reaction between Cu(TTAPAN) and HPAN in methanol-benzene mixtures, at 25±2°C.

The chelate exchange reaction (B) $Cu(TTAPAN) + HPAN = Cu(PAN)_2 + HTTA in benzene-methanol mixtures at <math>25 \pm 2^{\circ}C$. was followed spectrophotometrically over the range 540-580 nm., in order to calculate the molar equilibrium constant K₂:

(5.15)
$$\kappa_{2} = \frac{\left[C_{U}(PAN)_{2}\right] \cdot (HTTA)}{\left[C_{U}(TTAPAN)\right] \cdot \left[HTTA\right]} \times P$$

Values of the function $\frac{K_{1} \varphi}{r}$ of equation (5.14)a, for the chelate exchange reaction $Cu(TTA)_{2} + HPAN \Longrightarrow Cu(TTAPAN) + HTTA$ in benzene-methanol mixtures, at $25 \pm 2^{\circ}C$.

Absorbance values used are in Appendix IX.

	Solvent:	Initial conc.	Initial stoichiome-							
Sol.	mol%	of Cu(TTAPAN)	tric conc. of HTTA		κ ₁ Ψ/r					
No.	methanol	M x 10 ⁵	$M \times 10^4$	wavelength, nm.						
				540	EEO	620	L ECE	670	1500	
				040	550	000	000	570	560	
1	8.38	3.085	388.3	79 8	788	785	788	781	783	
2	17	19	291.2	767	762	767	761	761	776	
3	. 11	17	194.2	765	746	746	748	744	743	
4	17	17	145.6	680	677	681	680	688	666	
5	17	11	97.08	718	717	714	714	705	701	
6	17	11	48.54	635	646	650	656	656	654	
7	11	11	38.83	637	649	652	648	642	641	
8	11	n	29.12	625	636	650	658	659	699	
9 .	11	11	19.42	627	640	655	651	645	689	
10	19	11	9.708	615	641	663	670	677	693	
11	11	17	7.281	599	611	636	653	636	625	
12	17	17	4.854	574	621	646	662	658	787	
13	#	17	2.427	584	639	660	693	650	773	

Table 13 (continued)

	Solvent:	Initial conc.	Initial stoichiome-						
Sol.	mol%	of Cu(TTAPAN)	tric conc. of HTTA			ĸ	Ψ/r		•
No.	methanol	M x 10 ⁵	M x 10 ⁴		W	avel	engt	h, nm.	
••	[540	550	560	565	570	580
1	23.0	3.085	291.2	542	531	532	536	535	548
2	17	· 11	194.2	522	505	503	505	506	507
3	17	. 11	145.6	504	490	489	493	501	505
4	17	17	97.08	488	475	476	478	475	485
5	17	19	48.54	466	456	463	466	477	492
6		11	38.83	461	465	461	468	472	480
7	11	π	29.12	471	472	473	489	485	511
8	` 11	17	19.42	463	458	465	469	473	486
9	11	17	9.708	445	451	464	479	483	515
10		11	7.281	436	454	461	475	489	519
11		π	4.854	437	448	480	505	516	589
12	17	17	2.427	473	490	522	526	549	67 6
				550	560	56	6	570	······
1	16.0	3.166	277.3	588	585	59	5	605	
2	*	π	246.5	591	594	. 60	2	609	
3		77	184.9	574	583	59	9	613	
4		"	154.1	558	567	57	6	586	
5	n	17	123.2	521	529	54	5	555	

59

ŧ

Ę

	Gel		7	1		-	<u></u>
_	Solvent:	initial conc.	Initial stoichiome-				
Sol.	mol%	of Cu(TTAPAN)	tric conc. of HTTA			<u>κ</u> ψ.	/r
No.	methanol	<u>Mx10⁵</u>	<u>M x 10⁴</u>	<u> </u>	Wa	veleng	th, nm.
•				550	560	566	570
6	16.0	3.166	92.44	539	551	556	564
7	17	"	61.62	530	545	562	574
8	9 7 -	11	30.81	548	546	548	567
9	łt	Ħ	24.65	529	546	565	582
10	π	17	18.49	538	553	572	586
11		- 97	12.32	534	570	588	619
12		11	6.162	555	587	604	641
				• •		•	_
				550	560	565	570
l	35.4	3.165	277.3	387	393	390	398
2	Ħ	**	246.5	381	388	396	397
3	Ħ	ŧ	184.9	375	384	383	390
4		11	154.1	383	378	383	392
5	Ħ	n	123.2	367	378	379	383
6		17	92.44	357	367	370	375
7	77	17	61.62	354	369	377	383
8		11	30.81	356	374	380	386
9		7	24.65	351	373	378	387
10		ŦŤ	18.49	355	373	378	382
11		17	12.32	350	382	390	399
12	••	**	6.162	336	300	400	399
<i>بي</i> ٦]		0.102	000	055	-100	033

.

Table 13 (continued)

ť.

(

Table 13 (continued)

1

	Sol.	Solvent:	Initial conc.	Initial stoichiome-						
	No.	mo2%	of Cu(TTAPAN)	tric conc. of HTTA			K,	Y/r		
		methanol	M x 10 ⁵	M x 10 ⁴			wavel	ength	ı, nm.)
•					55	0	560	570)	
									. <u></u>	
	1	35.4	3.754	420.1	43	5	433	445	5	
	2	17	n	280.0	41	9	422	435	5	
	3	**	11	196.0	40	7	411	428	}	
	4	17	97	140.0	38	9	398	416	.	
	5	**		84.01	39	1	395	420)	
	6	**	tt	56.01	39	3	405	440)	
	7	#	n	28.00	41	3	427	482	;	
	8	11	*	11.20	42	4	461	573	j. .	
	9	11	"	8.401	40	5	450	550)	
	10	11	₩	5.601	44	3	472	575	i	
	11	11	17	2.520	50	5	589	854	:	
	12 .	11	19	1.400	59	4	725	1.237	I	
•		· ·	↓	<u></u>		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>				
•	,				540	550	560	564	570	580
	l	40.9	3.085	194.2	430	410	400	405	399	396
	2	17		145.6	411	391	388	389	388	390
	3		π	97.08	401	385	376	378	373	381
	4	π	Ħ	48.54	389	373	370	369	370	371
	5	Π.	17	38.83	39 7	378	373	374	366	363
	6	n	11	29.12	389	372	371	374	370	379
	7		. #	19.42	399	386	373	378	371	387
		ł	1]				<u> </u>	Ŀ	

_									-		
	Sol.	Solvent:	Initial conc.	Initial stoichiome-							
	No.	mol%	of Cu(TTAPAN)	tric conc. of HTTA				ĸ ₁ Ψ/1	•		
		methanol	M x 10 ⁵	M x 10 ⁴	wavelength, nm.						
					540	550	560	564	570	580	
	8	40.9	3.085	9.708	403	391	392	395	390	403	
	9		n	7.281	402	383	383	385	375	382	
	10	π .	11	4.854	409	392	387	402	399	418	
	11	17	11	2.427	429	414	402	409	419	423	
		•									
• • •••			·		540	550	560	570	580		
	1	55.2	3.085	194.2	332	321	323	322	305		
	2	17	tr	145.6	325	314	317	312	295		
	3	17	tr	97.08	310	302	307	303	285		
	4	17	17	72.80	309	301	301	297	280		
	5	17	17	48.54	306	299	303	302	280	1	
	6	17		38.83	308	301	303	296	275	:	
	7	11	17	27.91	303	300	303	301	273		
	8	"	17	24.27	306	299	305	302	268		
	9	"	n	19.42	307	303	309	301	260		
	10		**	9.708	309	309	318	321	275		
	11	"	11	7.281	319	309	319	320	291		
	12		11	4.854	342	339	359	374	311		
	13	"	17	3.641	323	340	349	361	291		
	14			2.427	340	346	392	406	318		

.

Table 13 (continued)

į,

(.

75

Table 13 (continued)

Sol.	Solvent:	Initial conc.	Initial stoichiome-					
No .	mol%	of Cu(TTAPAN)	tric conc. of HTTA			ĸ	ſ ' /r	
	methanol	M x 10 ⁵	M x 10 ⁴			wa v e	Length	, nm.
		[54	0 8	550	560	
1	59.4	3.646	147.5	23	3 2	229	233	·
2	17	TP	132.8	23	7 2	29	228	
3	Ħ	11	118.0	23	3 2	217	220	
4	17	π	103.3	23	3 2	232	230	
5	77	17	88.51	23	3 2	28	227	
6	17	19	73,76	23	4 2	32	233	
7		π	59.01	24	0 2	230	233	
8	, 11	Ŧ	51.63	23	2 2	236	230	
9		Ħ	44.26	23	9 2	226	227	
10	11	Ħ	29.50	24	1 2	30	227	
11	**	11	14.75	24	1 2	235	234	
12	17	tr	7.376	21	0 2	43	237	·
	•							
<u> </u>				540	550	560	570	580
1	76.7	3.085	194.2	266	256	255	255	248
2	17	11	145.6	250	238	245	247	252
3	n	17	97.08	243	236	240	240	235
4	11	11	48.54	229	222	228	234	230
5	17	17	38.83	233	225	231	242	226
6	17	"	29.12	226	221	234	239	238

(

Table 13 (continued)

ł

1

(

Sol.	Solvent:	Initial conc.	Initial stoichiome-							
No.	mo1%	of Cu(TTAPAN)	tric conc. of HTTA		KΨ/r					
	methanol	M x 10 ⁵	<u>M x 10⁴</u>		W	avele	ngth,	nm.		
				540	550	560	570	580		
						· ·				
7	76.7	3.085	19.42	246	237	247	254	264		
8	11	tt .	9.708	245	239	269	286	291		
9	••	11	7.281	242	233	261	273	269		
10	11	77	4.854	233	233	266	290	269		
<u></u>	**	11	2.427	247	243	292	307	292		

where

(5.16)

$$p = \frac{\gamma_{Cu(PAN)_2}}{\gamma_{Cu(TTAPAN)} \gamma_{HPAN}}$$

and where round brackets denote activity, and square brackets concentration. The initial concentration of Cu(TTAPAN) was kept constant, and that of added HPAN was varied (set B, Table 10). However, unlike reaction (A), the absorbances of Cu(TTAPAN) and of $Cu(PAN)_2$ had to be taken into account in reaction (B). Consequently their molar absorptivities had to be obtained. However, all the other information used in the derivation of the equation which allowed the calculation of K_1 %/r is applied in the present case.

The molar absorptivities of $Cu(PAN)_2$ in the methanolbenzene mixtures used were obtained as usual, from the concentrations and measured absorbances of the solutions prepared as in set D given in Table 10, in the spectral range selected, at $25\pm2^{\circ}C$. These values are entered in Table 14. In all cases it was found that Beer's law was obeyed.

A rigorous equation similar to equation5.14for reaction (A) is now derived for reaction (B).

(5.17) $\left[C_{U}(TTAPAN)\right]_{i} = \left[C_{U}(TTAPAN)\right] + \left[C_{U}(PAN)_{2}\right]$ (5.18) $\left[HPAN\right]_{i} = \left[HPAN\right] + \left[C_{U}(PAN)_{2}\right]$

and

(5.19) $\left[HTTA\right]_{T} = (HTTA) \Psi = \left[Cu(PAN)_{2}\right]$

Molar absorptivity of Cu(PAN)₂ in methanol-benzene mixtures, in the spectral range 540 nm. to 580 nm., at $25 \pm 2^{\circ}$ C.

The solutions used are set C of Table 10.

	Solvent; mol% me- thanol in	Least-squares value of molar absorptivity and standard deviation, $x \ 10^{-4}$ wavelength in nm.										
·	benzene	 540		550		554		560		570		N ₂₄
	16.0	3.892	0.008	3.945	0.007		-	4.058	0.011	3.425	0.015	6
	35.4	3.858	0.035	3.964	0.032	-	-	4.044	0.028	-	- .	6
•	41.0	3.880	0.011	4.008	0.011	-	-	4.044	0.014	3,224	0.020	6
	50.9	3.865	0.007	3.995	0.010	-	-	4.010	0.013	3.188	0.029	6
	59.4	-	-	4.037	0.011	-	-	-	-	-	-	6
	76.7	3.717	0.018	3.871	0.008	3.927	0.010	3.810	0.015	2.858	0.005	6
	89.8	3.751	0.006	3.833	0,028	3.849	0.035	3.638	0.032	2.574	0.008	6

* No. of solutions for least-squares fit.

where subscript i denotes initial concentration, subscript T denotes total (stoichiometric) concentration, and φ is defined by equation (5.13).

(5.20)
$$A = a_{Cu(TTAPAN)} [Cu(TTAPAN] + a_{Cu(PAN)_2} [Cu(PAN)_2]$$

 $A_{o} = a_{Cu(TTAPAN)} \left[Cu(TTAPAN]_{i} \right]$

where A is the measured absorbance of the solution specified in set B of Table 10, a_{L} denotes the molar absorptivity of species L, and A_{o} is the absorbance which a given solution would have if HPAN had not been added (set F of Table 10).

Then it is readily shown that:

(5.21)
$$Cu(PAN)_2 = \frac{A - A_0}{Cu(PAN)_2} = \Theta$$

which for convenience is represented by Θ

Substitution of equations (5.17), (5.18), (5.19), (5.20) and (5.21) into equation (5.15) gives

(5.22)
$$\frac{\kappa_2 \varphi}{P} = \frac{\Theta^2}{\left(\left[C_{U}(TTAPAN)\right]_{i} - \Theta\right) \left(\left[HPAN\right]_{i} - \Theta\right)}$$

which may be rearranged to give:

$$(5.23) \frac{\kappa_{2} \varphi}{P} = \frac{\frac{A}{\left[Cu(TTAPAN)\right]_{i} - \varphi} - a_{Cu(TTAPAN)}}{a_{Cu(PAN)2} \left(\frac{\left[HPAN\right]_{i}}{\varphi} - 1\right)}$$

For each methanol-benzene mixture used as solvent for the exchange reaction of Cu(TTAPAN) with HPAN, listed on page 67, and for each wavelength selected in the spectral range 540 nm. to 565 nm.¹, the right-hand side of equation 5.23 was calculated for each concentration of total HPAN added to the solutions in cet B of Table 10. The value of $\left[\text{Cu(TTAPAN})\right]_{i}$ was also known, the values of A and A were measured, and the values of the molar absorptivities of Cu(TTAPAN) and Cu(PAN)₂ were obtained from measured absorbances and concentrations of solutions in sets C and B respectively (Table 10).

The measured absorbances A and A_o are given in Appendix X. The molar absorptivities of Cu(TTAPAN) and Cu(PAN)₂ in the methanol-benzene mixtures used are given in Tables 12 and 14 respectively. From these data, a set of values of $\frac{K_2 - \varphi}{p}$ was calculated for each wavelength.

These values are entered in Table 15.

! Absorbances values beyond 565 nm. were not recorded. The error in setting the wavelength was relatively large beyond 565 nm., because around this wavelength the absorption curves were rising steeply.

81

Values of the function $K_2 \psi p$ of equation (5.23), for the chelate exchange reaction

 $Cu(TTAPAN) + HPAN = Cu(PAN)_2 + HTTA$ in benzene-methanol mixtures, at $25 \pm 2^{\circ}C$.

Absorbance values used are in Appendix X.

Sol. No.	Solvent; Initial cond mol% of Cu(TTAPAN methanol M x 10 ⁵		Initial stoi- chiumetric conc. of HPAN M x 10 ⁵	K ₂ Ψ/p x lO ³ wavelength, nm.			
	· · · · · · · · · · · · · · · · · · ·			566			
1	16.0	2.652	12.16	56	62	38	
2	11	11	11.30	48	52	31	
3	11	. 11	10.43	47	50	32	
4	n	11	8.688	47	49	30	
5	11	11	7.819	34	41	28	
6	11	11	6.950	46	53	35	
7	n	11	5.213	45	51	34	
8	11	n	4.344	47	52	36	
9	11	"	3.475	51	56	39	
10	11	11	2.607	35	38	25	
11	17	- 11	1.738	58	68	44	
_12	11	11	0.869	37	42	29	
-				540	550	560	
1	35.4	2.652	12.16	94	78	79	
2	e u	11	10.43	89	73	73	
З	11	11	8.688	90	75	7 9	
4	17	11	6.950	83	75	81	
5	11	11	6.082	79	72	70	
6	f1	11	5.213	85	76	76	
7		Π	4.344 .	79	73	75	
8	11	11	3.475	7 9	74	78	
9		"	2.607	79	81 [.]	82	
10	11		1.738	87	83	86	
11	11	11	0.869	85	85	94	

Sol.	Solvent; Initial conc.		Initial stoi-	$\kappa_2 \Psi/p \times 10^3$					
NO.	methanol	$M \times 10^5$	chiometric conc. of HPAN	wavelength, nm.					
l		•	540 550 560						
1	41.0	3.032	11.60	110	90	82			
2	11	11	10.63	104	94	86			
3	11	Ħ	9.668	107	93	90			
4	11	II .	8.701	102	93	86			
5	11	11	7.734	100	99	92			
6	11	11	6.768	94	90	92			
7	· 11	11	5.801	98	89	95			
8	11	11	4.834	103	100	97			
9	11	11	3.867	100	96	97			
10	Ŧ	11	1.934	97	93	100			
11	"	n n	0.967	104	105	116			
12	11	11	0.677	97	100	110			
	、								
			,	540	550	560			
1	50.9	3.032	11.60	141	115	120			
2	1	11	10.63	141	124	129			
3	11	11	9,668	128	113	114			
4	1	11	8.701	128	118	123			
5	11	11	7.734	131	122	109			
6 ·	11	. 11	6.768	117	124	112			
7	11	1ř	5.801	130	122	121			
8	11	11	4.834	116	117	114			
9	11	n	3.867	113	119	119			
10	n	1 11	0.967	118	131	119			
11	11	H .	0.677	130	127	152			

Table 15 (continued)

Sol.	Solvent;	Initial conc.	Initial stoi-	$\kappa_2 \Psi / p \times 10^3$			
No.	mol% methanol	1000000000000000000000000000000000000	chiometric conc. of HPAN M v 105	wavelength, nm.			
		•		550			
1	59.4	1.622	10.99	193			
2	17	11	10.08	159			
3	11	H	9.162	149			
. 4	11	. 11	6.246	149			
5	11	. 11	7.330	145			
6	11	"	6.413	150			
7		11	5.497	133			
8	11	"	4.581	102			
. 9	11	17	3.665	103			
10		17	2.749	134			
11	11	- 11	1.832	132			
12		11	0.961	135			
	*			<u> </u>			
*			,	550			
l	59.4	1.822	12.44	118			
2	n –	11	11.20	130			
3	t1	11	8.708	126			
4	11	11	7.464	126			
5	11	11	6.220	123			
6	"	17	5.598	125			
7	"	11	4.976	123			
8	n	17	2.488	122			
9	17	17	1.856	133			
10	11		1.244	150			
11	11	17	0.622	169			

Table 15 (continued)

ί

(

Sol. No.	Solvent; mol% methanol	Initial conc, of Cu(TTAPAW) M x 10 ⁵	Initial stoi- chiometric conc. of HPAN	$K_2 \Psi/p \times 10^3$ wavelength, nm.			
	· · · · · · · · · · · · · · · · · · ·	540 550 554 560					
1	76.7	2.110	11.71	374	311	295	320
2	tt	11	9.760	348	310	289	324
3	11	11	8.784	314	283	257	301
4	11 TH	11	7.808	303	281	272	295
5	11	n	6.832	303	300	267	285
6	11	ан Н а	5.856	292	287	283	288
7	11	5 n - 2	4.830	291	275	263	269
8	11	n	3.904	251	252	245	243
9	11	H	2.928	340	348	331	361
10	17	u	1.952	305	309	330	325
11	11	11	0.976	343	383	342	353
	```````````````````````````````````````			540	550	554	560
1	89.8	3.032	11.60	406	443	406	405
2	11	н	10.63	369	427	463	438 [°]
З,	11	н	9.668	350	397	413	399
4	11	11	8.701	400	4.53	455	455
5	11	11	7.734	330	368	395	398
6	11	11	6.768	371	42 E	416	429
7	. 11	. π	5.801	339	386	397	431
8	11	n	4.834	353	400	363	398
9	11	n	3.867	336	424	396	456
10	11	11	1.934	317	377	416	419
11	, tr	n	0.967	292	535	417	407
12		11	0.677	318	398	417	482

Ć

Table 15 (continued)

85

# 5.3.3. The exchange reaction of Cu(TTAFAN) with HPAN and HTTA in methanol, benzene and methanol-benzene mixtures, at 15°C. and 35°C.

The equations 5.14 and 5.23, which allowed calculation of  $\frac{K_1 \varphi}{r}$  and  $\frac{K_2 \varphi}{p}$  at  $25^{\circ} \pm 2^{\circ} C$ . for reactions (A) and (B), were also used to calculate these quantities at

15°C. and 35°C.

In Section 5.2.4, the procedures have been described for measuring the absorbances of these solutions at  $15^{\circ}$ C. and  $35^{\circ}$ C., having the compositions specified in Tables 10, 18 and 19. The known initial concentrations of the reactants Cu(TTAPAN), HTTA and HPAN in these solutions were for  $25^{\circ}$ C. However, it was unnecessary to correct these concentrations for the change in volume of the solution in going from  $25^{\circ}$ C. to  $35^{\circ}$ C. or from  $25^{\circ}$ C. to  $15^{\circ}$ C., because these volume changes would equally affect the value both of the numerator and of the denominator of the R.H.S. of equations 5.1 and 5.15.

The molar absorptivities of Cu(TTAPAN) and  $Cu(PAN)_2$ were obtained by measuring absorbances at  $15^{\circ}C$ . and  $35^{\circ}C$ ., but the concentration of solute was for  $25^{\circ}C$ . It was necessary to calculate the molar absorptivities in this way because corrections for change in concentration due to volume change with temperature had not been made for the other variables in equations 5.14 and 5.23, as explained in the preceding paragraph. These values of molar absorptivities, in the spectral range used, are entered in Tables 16 and 17, for Cu(TTAPAN) and  $Cu(PAN)_2$  respectively.

Molar absorptivity of Cu(TTAPAN) in pure methanol, pure benzene and in 40.9 mol% methanol in benzene, at 15°C. and 35°C.

<b>4</b> 4	Solvent;	Least-squares value of molar absorptivity and standard deviation												
Tempe- mol% me- x 10 ⁻⁴														
rature	thanol ir.		wavelength in nm.											
°c.	benzene	540		550		560		564		570		580		N*
•											<u> </u>			
	0.0	1.907	0.024	2.127	0.020	2.243	0.006	-	-	2.301	0.006	2.046	0.013	7
15	40.9	1.938	0.012	2.152	0.010	2.266	0.010	2.272	0.008	2.198	0.015	1.776	0.018	6
	100.0	1.985	0.007	2.146	0.006	2.186	0.007	-	-	1.832	0.020	-	-	9
	40.9	1.883	0.013	2.084	0.009	2.188	0.011	2.182	0.005	2.097	0.012	1.676	0.015	6
35	100.0	1.921	0.007	2.077	0.003	2.089	0.004	-	-	1.735	0.010	-	-	ā
	0.0	1.903	0.025	2.083	0.018	2.193	0.010	-	· _	2.222	0.008	1.924	0.015	7

The solutions used are set C of Table 10.**

** The concentration of Cu(TTAPAN) in these solutions was for 25°C.

* No. of solutions for least-squares fit.

Molar absorptivity of Cu(PAN)₂ in pure methanol and in 40.9 mol% methanol in benzene, at 15°C. and 35°C. The solutions used are set D of Table 10.**

		Least-squares value of molar absorptivity and standard deviation							
Temp.	Solvent; mol%	$x 10^{-4}$ ; wavelength in nm.							
°c.	methanol in benzene	540		550		560		· ·	N*
	40.9	-	-	4.056	C.013	4.092	0.015		
15 ⁰ C.	100.0	3,523	0.023	3.715	0.023	3.400	0.021		7
ar 90	40.9	-	-	3.986	0.012	3.186	0.012		
35°0,	100.0	3.458	0.025	3,570	0.023	3.183	0.011		7

* No. of solutions for least-squares fit.

** The concentration of  $Cu(PAN)_2$  in these solutions was for  $25^{\circ}C$ .
Reactions (A) and (B) at 35°C. and 15°C. were studied in the following solvents: for the exchange reaction for Cu(TTAPAN) with HPAN pure methanol, and 40.9 mol% methanol in benzene were the solvents. For the exchange reaction of Cu(TTAPAN) with HTTA pure benzene, and 40.9 mol% methanol in benzene were the solvents. The molar absorptivities of Cu(TTAPAN) and  $Cu(PAN)_2$  were of course also measured in these solvents.

5.3.3(i) Calculated values of the function  $\frac{K_{1} \varphi}{2}$ 

of equation 5.14, in pure benzene and in 40.9 mol# methanol-benzene, at 15°C. and 35°C.

In Table 18 are entered the absorbances A and A (defined in Section ), found at  $15^{\circ}C$ . and  $35^{\circ}C$ . for reaction (A). The composition of the solutions are specified in Tables 10 and 18. These absorbance values, together with the molar absorptivities of Cu(TTAPAN) listed in Table 16, were used directly in equation 5.14 in order to calculate  $K_1 \varphi$  . The values so obtained are given for

each wavelength in Table 18.

5.3.3(ii)Calculated values of the function  $\frac{K_2 \varphi}{2}$ of equation 5.23 in pure benzene and 40.9 mol% methanol in benzene, at 15°C.

The measured absorbances of solutions of known [Cu(TTAPAN)] and [HPAN] in sets B and F of Table 10,

together with the molar absorptivities of Cu(TTAPAN) and

and 35°C.

#### Table 18

Spectrophotometric data and calculated values of the function  $K_1 \varphi/r$  of equation (5.14) for the chelate exchange reaction

 $Cu(TTA) + HPAN \longrightarrow Cu(TTAPAN) + HTTA$ in pure benzene and in 40.9 mol% methanol in benzene, at 15°C. and 35°C.

Temperature =  $15^{\circ}$ C

 $\sim$ 

Solvent	Sol.	[Cu(TTAPAN)]	[HTTA] 1	Abso	rbanc	e x l	03		1	K	$\psi/r$				
	No.	$M \times 10^5$	Mx10 ³	wave	lengt	h, nm	•		W	avelė	ngth,	nm.			
	•			540	550	560	570	580	54	0 55	0 56	0 57	0 5	80	
pure benzene	า 2 3 4 5 6	4.548 "" " " "	864.3 648.2 518.6 432.1 345.7 172.9	266 305 338 364 398 492	297 338 375 405 441 551	318 361 400 432 469 586	326 370 410 442 478 600	287 325 360 390 422 526	12 11 11 11 11 11	12 12 92 11 92 11 83 11 90 11 50 11	14 12 76 12 78 12 78 12 76 12 69 11 57 12	51 12 08 12 10 12 10 12 97 11 06 11	48 1 205 1 207 1 202 1 .76 1 .96 1	225 175 173 180 154 135	
	7	11	129.6	530	592	629	348	568	11	50 11	56/11	95 12	15 1	145	
	8	17	82,11	582	652	692	712	627	11	18/11	42 11	83 12	2001	142	
	9	11	64.82	603	678	725	748	658	11	15/11	13/12	09/12	49 1	173	
	10	11	56.18	620	694	742	763	670	10	84 11	06 12	08 12	24 1	132	
	11	11	43.21	650	724	772	792	698	11	31   11	19/12	14 12	12 1	139	
	12	17	34.57	668	748	796	815	716	111	05 11	38 12	28   12	06 1	.098	
	13	11	21.61	700	782	840	865	755	10	26/10	40 12	53 13	100	080	
	14	17	12.96	730	825	878	898	790	ļļ ģ	52 11	15 12	62 12	09 1	057	
	15	57	4.321	786	878	945	964	850	9	70 99	7   16	20 13	595 1	150	
10				540	550	560	554	570	580	540	550	560	564	570	580
ten	1	3.085	194.2	187	199	212	214	207	167	625	598	603	619	623	620
th	2		145.6	201	217	232	233	226	180	518	494	508	514	527	501
a a	3	π	97.08	240	262	279	282	276	222	531	516	532	546	560	528
re a	4	17	48.45	304	332	353	355	346	278	468	454	476	589	499	465
lo] 1Z6	5	11	38.83	328	358	382	385	375	298	505	473	501	515	548	508
er er	6	17	29.12	355	389	415	419	408	328	507	480	518	545	558	540
	7	17	19.42	395	434	461	466	455	366	571	533	588	607	636	608
41	8	11	9.708	441	486	519	524	512	412	621	564	643	705	637	675
	9	11	7.281	449	496	528	534	522	424	439	402	437	478	497	429
	10	17	4.854	480	528	564	569	555	445	599	547	681	770	846	626
	11	ŢŢ	2.427	503	552	590	597	584	470	456	402	510	543	652	521

Table 18 (continued)

Temperat	<u>ura = :</u>	35°C		_			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			·					
Solvent	Sol.	Cu(TTAPAN)]	HTTA	Absorbance x 10 [°]				$K_{T}\varphi/r$							
	No.	M x 10 ⁵	M x 10 ³	wave	lengt	h, nm	•			wav	elen	th_n	m		
			·	540	550	560	570	580		540	550	560	570	580	
					<b> </b>		<u> </u>								
	1	4.548	864.3	206	224	239	246	214	ĺ	779	770	787	808	814	
<b>A</b>	2	"	648.2	240	264	279	28.6	251		757	763	768	784	803	
ŝne	3		518.6	270	297	315	321	278		751	758	769	778	778	
126	4	11	432.1	295	325	346	352	308	1	745	755	772	779	796	
ei	5	"	345.7	328	362	385	390	339		747	760	778	777	784	•
<u>م</u>	6	17	172.9	425	47.0	500	510	440		720	742	765	781	772	
1L.	7	11	129.6	462	513	546	555	478		699	733	760	769	755	
ц	8	17	82.11	520	578	615	625	540	[	680	723	756	766	758	
	9	n	64.82	548	609	650	660	568		670	717	764	772	750	
	10	11	56.18	565	526	672	680	587		668	708	780	775	763	
	111	11	43.21	594	659	702	716	608		661	711	760	790	707	
	12	n	34.57	615	684	728	742	636		643	708	758	788	738	
	13		21.61	657	731	779	789	673		619	700	771	769	682	
	14	11	12.96	692	772	828	838	715		565	674	816	807	692	
<b>.</b>	15	11	4.321	754	845	894	908	772		494	718	784	821	597	
													-		
	1			540	550	560	564	570	580	540	550	560	564	570	560
	1	3.085	194.2	167	179	190	192	184	146	356	336	343	351	349	345
01	2	11	145.6	180	194	205	206	198	157	307	292	295	300	300	295
an	3	1	97.08	222	242	255	257	248	195	· 314	304	307	313	317	305
th	4	1 11	48.45	280	305	325	326	315	246	281	269	280	285	290	271
em	5		38.83	305	334	355	357	345	272	292	282	263	302	307	294
0 2 2	6	11	29.12	335	366	388	390	376	296	302	288	299	308	311	294
ZeJ	7		19.42	376	412	448	442	427	338	326	311	368	349	358	341
E u	8		9.708	428	470	500	503	488	384	332	315	344	365	390	350
6.0	9	17	7.281	436	478	508	510	490	385	282	264	287	301	301	267
- <b>4</b>	10	11	4.854	469	515	548	552	536	422	358	314	357	394	439	376
	11	1	2.427	495	543	578	580	560	442	301	270	320	348	371	313

 $\operatorname{Cu(PAN)}_{2}$  at 15°C. and 35°C. given in Tables 16 and 17, were used in equation 5.23. For each solution composition in Cu(TTAPAN) and HPAN, and for each wavelength, a value of K₂ $\Psi$ /p was calculated. These values are entered in Table 19.

5.3.4. The disproportionation of Cu(TTAPAN) into Cu(TTA)₂ and Cu(PAN)₂, in methanolbenzene mixtures.

The proof referred to in Section 5.1, that requirements (iv) and (v) were met in the present systems, is as follows:

The complexes  $Cu(PAN)_2$  and  $Cu(TTA)_2$  are formed simultaneously on reacting Cu(TTAPAN) with HTTA or HPAN according to reactions (A) and (B).

(A) CU(TTAPAN) HTTA  $\frac{\kappa_{1}^{-1}}{\kappa_{1}}$   $CU(TTA)_{2}$  HPAN

(B)  $C_{U}(TTAPAN)$  HPAN  $\frac{K_{2}}{2}$   $C_{U}(PAN)_{2}$  HTTA

An overall reaction is the disproportionation of Cu(TTAPAN) according to reaction (C).

(C)  $2Cu(TTAPAN) \xrightarrow{K_2/K_1} Cu(TTA)_2 + Cu(PAN)_2$ 

where

$$(5.24) \frac{K_2}{K_1} = \frac{\left[C_U(TTA)_2\right] \left[C_U(PAN)_2\right]}{\left[C_U(TTAPAN)\right]^2}$$

In solutions of Cu(TTAPAN) to which HTTA or HPAN

#### Table 19

Spectrophotometric data and calculated values of the function  $K_2 \eta/p$  of equation (5.23) for the chelate exchange reaction

Cu(TTAPAN) + HPAN = Cu(PAN)₂ + HTTA in pure methanol and in 40.9 mol% methanol in bunzene, at 15°C. and 35°C.

Solvent	Sol. No.	Cu(TTAPAN) i M × 105 i	[HPAN] M x 10 ⁵	Absor	bance!! D3	K2	$\frac{l/p}{x \cdot 10^3}$
				wavei ni	engtn, ).	waver:	eng <i>un,</i>
Temp.=1	5 [°] C.	······································	(maxif) • • • • · · · ·	540	550	540	550
	1	2.432	10.70	202	282	710	575
	2	11	9.810	278	272	654	536
•	3	11	8.918	278	272	736	602
	4	11	8.026	265	262	664	579
	5	11	7.134	258	258	684	629
pure	6	11	6.243	248	248	685	633
nol	7	11	5.351	245	245	805	744
	8	17	4.459	226	226	750	698
	9	11	3.567	209	210	779	740
	10	11	2.675	187	190	633	826
	11	11	1.784	148	150	766	755
	12	H	-	482	525	-	-

Solvent	Sol. No.	[Çu(TTAPAN)] i M × 10 ⁵	[HPAI] M × 105	Absc ×	rbance ^{!!} 10 ³	۲ ₂ 4/	/p < 10 ³
				wave	length,	Waveler	ngth,
Temp.=15	°C.		· · · · · · · · · · · · · · · · · · ·	550	560	550	560
	l	3.032	13.18	279	270	105	110
	2	11	12.17	272	262	106	110
	3 -	11	11.16	262	255	105	112
	4	<b>11</b>	10.14	248	241	160	106
40.9	5	. "	9.128	243	236	106	112
mol% methanol	6	11	8.114	228	224	102	111
in	7.	11	7.099	218	212	105	111
benzene	8	".	6.085	202	197	103	109
	9	11	5.071	188	183	106	112
	10	19	4.057	171	167	108	116
	11	11.	3.043	·153	150	117	126
	12	n	2.028	127	125	125	137
	13	tt	-	631	670	-	-
Temp.=35	ος.	•		540	550	540	550
	1	2.432	16.70	272	262	523	502
· ·	2	11	9.810	260	252	470	465
	З	11	8.918	258	248	510	487
	4	. 11	8.026	245	238	464	465
	5	11	7.134	242	234	512	503
pure	6	11	6.243	225	219	456	460
methanol	7	Ħ	5.351	222	216	532	536
	8	11	4.459	202	198	482	500
	9	11	3.567	185	182	489	513
	10	Ħ	2.675	168	167	551	601
	11	53	1.784	131	132	479	548
	12	11	-	458	498	-	-

Table 19 (continued)

í

Solvent	Sol. No.	[Cu(TTAPAN] M × 10 ⁵ i	[HPAN] : M × 105	Abso x	rbance ^{!!} 10 ³	к ₂ 4/	p × 10 ³
				wave.	length,	wava	length, m.
Temp.=35	ΰ.	<u> </u>		550	560	550	560
	1	3.032	13.18	260	244	93	87
	2	f1	12.17	252	235	92	85
	З	11.	11.16	241	227	90	85
	4	n	10.14	228	212	86	79
	5	11	9.128	215	198	82	74
40.9	6	11	8.114	204	191	81	77
mol% wotherol	7	. 11	7.099	192	178	81	74
in	8.	11	6.085	177	167	78	75
benzene	9	11	5.071	162	153	77	74
	10	19 	4.057	149	140	82	77
	11	Ħ,	3.043	132	125	86	83
	12	11	2.028	112	107	96	96
	13'	11	-	619	654	-	-

Table 19 (continued)

! The absorbance values for this solution are A values.

:! The absorbance values given are  $\triangle A = (A - A_{d})$ .

95

٦

has not been added

$$(5.25) \frac{K_2}{K_1} = \frac{\left[C_{U}(PAN)_2\right]^2}{\left[C_{U}(TTAPAN)\right]^2}$$

The highest value of the ratio  $K_2/K_1$  studied in the present work was for 76.7 mol% methanol in benzene, in which case a value of 1.3 × 10⁻³ was obtained. In that case, for a solution of Cu(TTAPAN) in 76.7 mol% methanol in benzene,

 $\frac{\left[Cu(PAN)_{2}\right]}{\left[Cu(TTAPAN)\right]} = 0.036$ 

The mass-balance equation for solutions of Cu(TTAPAN) to which HTTA or HPAN has not been added, is

(5.26)  $\left[C_{U}(TTAPAN)\right]_{i} = 2\left[C_{U}(PAN)\right]_{2} + \left[C_{U}(TTAPAN)\right]$ 

and Beer's law for this solution is

(5.20) 
$$A = O_{CU(TTAPAN)} [CU(TTAPAN)] + O_{CU(PAN)_2} [CU(PAN)_2]$$

in the range where  $Cu(TTA)_2$  does not absorb, but Cu(TTAPAN) and  $Cu(PAN)_2$  do absorb.

In the spectral range studied,  $Q_{Cu(PAN)_2} \simeq 2Q_{Cu(TTAPAN)}$ . Therefore, for a solution of Cu(TTAPAN), equation (5.20) becomes:

 $A \simeq O_{CU(TTAPAN)} \left\{ \left[ CU(TTAPAN) \right] + 2 \left[ CU(PAN)_{2} \right] \right\}$ 

which, on using equation (5.26), becomes:

(5.27)  $A \simeq O_{CU(TTAPAN)} [CU(TTAPAN)]_{i}$ 

The ratio of the molar absorptivities  $Q_{Cu(PAN)2}$  $O_{Cu(TTAPAN)}$  in the spectral range 540 nm. to 580 nm. is not exactly 2. From the absorptivities in Appendix VIII it is seen that this ratio varies with the wavelength; but in all cases it was in the range 1.8-2.2. The validity of equation (5.27) is shown by the fact that the Beer's law plots in Figure 3 are straight lines.

Now in 76.7 mol% methanol in benzene, the ratio  $K_2/K_1$ is 0.036. Thus, Cu(TTAPA.) alone in this solvent will disproportionate to the extent of 4%, into Cu(TTA)₂ and Cu(PAN)₂. However, equation (5.27), together with the fact that the ratio of absorptivity of Cu(TTAPAN) to absorptivity of Cu(PAN)₂ is within 20% of 2, shows that none of the spectrophotometric data used in the present investigation would be significantly affected by this disproportionation , with the exception of the molar absorptivity of Cu(TTAPAN) at wavelengths where  $O_{Cu(TTAPAN)}/O_{Cu(PAN)_2} \neq 2$ . The small error introduced into this molar absorptivity would be important only when the absorptivity is used in an absolute sense. It automatically is cancelled out when this molar absorptivity is used in order to calculate K₁ and K₂.

- 6 Discussion
- 6.1 The variation of  $K_1 \Psi/r$  with concentration of HTTA

Values of  $K_1 \varphi/r$  for the system Cu(TTAPAN)-HTTA at  $25^{\circ}$ C. are given in Table 13; the basic concentration and absorbance data for that table are in Appendix IX.

In these experiments, a somewhat wide range of initial concentrations of HTTA was used, in order to study the effect, if any, of high and low concentrations of HTTA on the value of  $K_1\Psi/r$ .

Inspection of the values in Table 13, and of figures 4-6, does indicate a decided tendency for abnormally high values of  $K_1 \varphi/r$  to be obtained at the lowest and also at the highest concentrations of  $\left[\text{HTTA}\right]_i$ . This tendency did not depend on the wavelength, in the range 540 nm. to 580 nm.

D'Amboise has shown very recently that the presence of dissolved water in benzene produced values of  $K_1 \Psi/r$ that were measurably too large when low (2-5 x  $10^{-3}$  M) values of [HTTA]; were used, and that the effect varied with the water concentration. A reason for this effect may be as follows: the addition of water to a benzenemethanol solution of HTTA results in the formation of some keto-hydrate, with a resulting drop in the concentration of free HTTA. Since

$$(5.13) \Psi = \left[ \frac{1}{\gamma_{HTTA}} + \frac{\kappa_{k}}{\gamma_{HTTA}} + \frac{\kappa_{k}\kappa_{s}(5)}{\gamma_{HTTA}} + \frac{\kappa_{k}\kappa_{s}(5)}{\gamma_{$$

## FIGURE 4

The variation of  $K_{l}\varphi/r$  with initial concentration of HTTA in 16.0 mol% methanol in benzene, at 25°C.



(

# FIGURE 5

The variation of  $K_1 \varphi/r$  with initial concentration of HTTA in 55.2 mol% methanol in benzene, at 25°C.



102

Ţ,

# FIGURE 6

(

(

The variation of  $K_{l}\Psi/r$  with initial concentration of HTTA in 76.7 mol% methanol in benzene, at 25°C.



ł

(

104

a drop in (w), the water activity in the solvent, will produce a drop in  $\varphi$ , and so in  $K_1 \varphi/r$ . This drop becomes smaller, the larger the value of  $\begin{bmatrix} HTTA \end{bmatrix}_i$ . Since  $K_k K_w$  is unknown for the present solvents, quantitative treatments are not possible at present.

In the present systems the initial water content varied from 1 x  $10^{-3}$  M for benzene, to 2 x  $10^{-2}$  M for methanol. Handling of these solutions in undried air may have increased these values somewhat. Therefore the values of  $K_1 \varphi/r$  at the lowest concentrations of [HTTA]; are likely to be in error due to the hydrate formation.

Furthermore, the term  $\left[ \text{Ka/(HTTA)} \right]^{\frac{1}{2}}$  in equation (5.13) may affect  $\mathcal{Q}$  significantly at low values of  $\left[ \text{HTTA} \right]_{i}$ . This is especially the case in high-methanol solvents because the enolization constant  $\left[ (\text{HTTA})/(\text{HTTA}) \right]$  is expected to be low in methanol. The value of Ka in methanol-benzene mixtures is unknown, so quantitative treatment is not possible. However, the value of Ka in water has been reported⁷ to be 5 x 10⁻⁵; and K_k in water has been reported⁷ to be 62.5. Then for water, the value of  $\left[ \text{Ka/(HTTA)} \right]^{\frac{1}{2}}$ , for (HTTA) = 1 x 10⁻⁵ M, would be 1.7; and for (HTTA) = 1 x 10⁻² M, it would be 0.007.

For these two known reasons for  $K_1 \varphi/r$  being abnormally high, namely hydrate formation and ionization of HTTA, it was considered correct to reject those values of  $K_1 \varphi/r$  in Table 13, for solutions less than 0.485 x 10⁻³ M in [HTTA].

Inspection of Table 13 also shows that the values of  $K_{j}\varphi/r$  appear to be consistently high at the highest concentrations of [HTTA] . To test this apparent trend, the

values of  $K_{1}\Psi/r$  in that table were averaged for a given solvent mixture, over the several wavelengths and over all values of  $[HTTA]_{i}$  except that those below 0.485 x  $10^{-3}$ M were rejected. The resulting mean values of  $K_{1}\Psi/r$  are in Col. 2 of Table 20. Col. 3 contains the value of  $K_{1}\Psi/r$ at the highest value of  $[HTTA]_{i}$ , which is listed in Col. 4. Adjacent columns contain the corresponding values, for slightly lower concentrations of  $[HTTA]_{i}$ .

The question now is whether or not there is a reasonable basis for rejecting these apparently high values of  $K_1 \Psi/r$  at the higher values of  $[HTTA]_i$ . First, for a given solvent mixture,  $K_1$  itself will remain constant with changes in  $[HTTA]_i$ . Second, the systems were shown by the data of Table 11 to be in equilibrium, by comparison of the absorbances at 25°C., measured after two days and after two months. Third, it has already been shown that all the requirements listed in Section 5.1 for the use of equation (5.14) to the present systems, have been met. The terms which must be significantly affected by high values of  $[HTTA]_i$  are  $\Psi$  and r.

Now

5.2

$$r = \frac{\gamma_{CU}(TTAPAN)}{\gamma_{CU}(TTA)_{2}}$$

In the present solutions, the initial concentration of Cu(TTAPAN) was of the order 1  $\times$  10⁻⁵ M. Therefore the

[!] It is realized that terms affected by high values of [HTTA] i are going to be affected also at lower values. However, what is sought here is a term which is measurably affected at the highest values of [HTTA] i but negligibly so at lower values.

#### Table 20

Comparison of average values of  $K_1$ , with values for highest concentrations of [HTTA]₁, for the exchange reaction Cu(TTA)₂+HPAN — Cu(TTAPAN)+HTTA in benzene-methanol mixtures at 25°C.

Sol. Nos.	<u>Κ</u> γ/ mean	r for highest [HTTA]i	Higher [HTTA] M x 101	K _l Ψ/r for second highest [HTTA] _i	second highest [HTTA] _i N x 101	K ₁ 4/r for 3rd highest [HTTA] _i	3rd high- est [HTTA] _i M x 10 ¹	mol% MeCH in benzene
1-13	686	788	0.388	767	0.291	751	0.194	8.38
1-12	570	593	0.277	599	0.246	592	0.184	16.0
1-12	487	537	0.291	508	0.194	497	0.146	23.0
1-12 ,	379	392	0.277	390	C.247	363	0.185	35.4
1-12	438	438	0.420	425	0.280	415	0.196	35.4
1-11	387	407	0.194	393	0.146	382	0.097	40.9
1-14	307	321	0.194	313	0.146	301	0.097	55.2
1-12	232	232	0.147	231 .	0.133	223	0.118	59.4
1-11	246	256	0.194	246	0.146	240	0.097	76.7

Source of data: Table 13

equilibrium concentrations of Cu(TTAPAN), Cu(TTA)₂, and HPAN were too small for the value of r to be significantly different from unity for all the solutions.

Inspection of equation (5.13) shows that the activity coefficients, (w), and (HTTA) all affect  $\varphi$ . For a given solvent, K_k, K_s and K_w will be constant. For the high concentrations of methanol used in the solvent mixtures, (5) is also essentially constant. The consequence of variations in (w) and in (HTTA) have already been dealt with. There remain the activity coefficients. The value of  $\mathcal{J}_{\rm HTTA}$  has been reported²³ in benzene, where 95% of the [HTTA]_i exists as the enol^{7,20}, to follow the relationship

(6.1)  $\mathcal{J}_{HTTA} = 1 - 0.24 [HTTA]^{0.48}$ 

Their reference state evidently was an infinitely dilute solution.

Unfortunately, the activity coefficients of all the equilibrium forms of HTTA are not known in the mixed solvents of the present work. However, it is considered advisable on the basis of equation (6.1) to reject the values of  $K_1 \Psi/r$ , for values of [HTTA], above 0.0154 M.

After rejecting from Table 13 values of  $K_1 \varphi/r$  for values of  $[HTTA]_i$  below 0.485 x 10⁻³ M, and above 0.0154 M, the remaining values of  $K_1 \varphi/r$  for a given solvent mixture were averaged over the several wavelengths, and over the remaining range of  $[HTTA]_i$  values. These mean values and their standard deviations are in Table 21. They are the final values for the present investigation.

#### Table 21

Final mean values of  $\frac{K_1 Y}{r}$  averaged over all wavelengths, for the exchange reaction

$$Cu(TTA)_2$$
 + HPAN  $\rightarrow$  Cu(TTAPAN) + HTTA

in methanol-benzene mixtures at 25°C.

Source of data:	Table 13, wit	th values of K	rejected when	$0.485 \times 10^{-5}$	' M> [HTTA] ₁ ]	$>0.154 \times 10^{-1}$	- M.

Sol.	K	γ/r		methanol, mol%	<b>K</b> ₁ Ψ/r			[HTTA] i
Nos.	mean	s.d.	N	in benzene	mean for [HTTA] i in Col. IX	s.d.	N	M x 10 ⁵
4-12	660	19	6	6.38	667	63	. 6	0.243
4-12	562	20	4	16.0	597 <b>*</b>	35	4	0.616
3 <b>-11</b>	479	18	6	23.0	539	72	6	0.243
4-12	376	13	4	35.4	384*	3]	4	0.616
<b>4-10</b>	444	45	3	25.4	852	108	3	0.140
<b>2-10</b> /	385	.8	6	40 <b>.</b> 9	416	10	6	0.243
2-12	305	13	5	55.2	360	37	5	0.243
1-12	232	.2	3	59.4	230*	18	3	0.737
2-10	245	10	5	76.7	276	29	5	0.243

* These values were not discarded when calculating  $K_1$  of Col. II.

60T

As described previously, values of  $K_{l}\varphi/r$  for values of  $[HTTA]_{i}$  less than 0.485 x  $10^{-3}$  M were discarded on the grounds of hydrate formation and ionization. For interest, Col. 6 of Table 21 contains some of these discarded values averaged for a given solvent over the several wavelenghts, and Col. 9 contains the corresponding values of  $[HTTA]_{i}$ . Comparison of Cols. 2 and 6 shows that indeed all the discarded values are higher than the final means.

Inspection of the data given in Table 15 shows that, unlike the case of  $K_1 \Psi/r$ , abnormally high values of  $K_2 \Psi/p$ do not occur. The conditions that led to the high values for  $K_1 \Psi/r$  were absent in the case of  $K_2 \Psi/p$ . Thus, in the exchange reaction of Cu(TTAPAN) with HPAN (reaction B), the concentration of HTTA formed was very small, much smaller than the concentration of water in the methanol-benzene mixtures. The value of (w) in the expression for arphi (equation 5.13) would then be essentially unaffected by the HTTA formed. Moreover, the activity coefficients of the several species of HTTA can be considered to be equal to unity, because of their small concentrations. There remains  $[Ka/(HTTA)]^{\frac{1}{2}}$  as the only term that could influence the value of  $\boldsymbol{\Psi},$  and therefore of  ${\tt K}_{2}\boldsymbol{\Psi}\!/p.$  All that can be said at present is that  $\varphi$  must change in value as [HPAN]; is changed. The reason is that for constant  $[Cu(TTAPAN)]_{i}$ an increase in [HPAN] i leads to an increase in the value of HTTA formed, which in turn leads to a change in Ka/(HTTA)². However, this change is too small to observe in the present work, due to the scatter in the data.

From the data given in Table 15, and for each methanolbenzene mixture used, a mean value of  $K_2\Psi/p$  at 25°C. was calculated, the average being over all wavelengths used and over all concentrations of  $[HPAN]_{i}$  for a given methanolbenzene mixture. These grand means and their standard deviations are entered in Table 23. The standard deviation in each case was calculated from the deviation of the grand mean from the individual means for each  $[HPAN]_{i}$  at each wavelength.

· . . T

From the data given in Table 18, and for the solvents pure benzene and 40.9 mol% methanol in benzene, a mean value of  $K_1 \Psi/r$  at 15°C. and at 35°C. was calculated; these grand means and their s.d. are entered in Table 22. Values of  $K_1 \Psi/r$  for [HTTA] below 0.485 M, and above 0.0154 were rejected.

From the data given in Table 19, and for the solvents pure methanol and 40.9 mol⁶/₅ methanol in benzene, a mean value of  $K_2 \Psi/p$  at 15°C. and at 35°C. was calculated. These grand means and their s.d. are entered in Table 24.

## Table 22

Final mean values of  $K_1 \varphi/r$  averaged over all wavelengths, for the exchange reaction

 $Cu(TTA)_2$  + HPAN = Cu(TTAPAN) + HTTA

in benzene, and in 40.9 mol% methanol in benzene, at  $15^{\circ}C$ . and 35°C.

> Source of data: Table 18, with values of  $K_1 \Psi/r$  rejected when 0.485  $\times$  10⁻³ M >[HTTA]  $_{i}$ > 0.150  $\times$  10⁻¹ M

Soln. No.	Solvent	K <b>Y</b> /r a mean	t 15 ⁰ C. s.u.	K _l Y/r e mean	t 35 ⁰ C. s.d.	N
	Pure benzene	1154	41	720	34	5
2-10	40.9 mol% methanol in benzene	546	35	314	10	6

## <u>Table_23</u>

Final mean values of K  $_2 \Psi / p$  averaged over all wavelengths, for the exchange reaction

 $Cu(TTAPAN) + HPAN = Cu(PAN)_2 + HTTA$ in methanol-benzene mixtures, at  $25 \pm 2^{\circ}C$ .

Sol. No.	Solvent; mol%	к ₂ <b>4</b> /р	× 10 ³
	benzene	mean	
1-12	16.0	43	9
1-12	35.4	80	4
1-12	41.0	97	3
1-11	50.9	123	3
1-11	59.4	136	4
1-11	76.7	303	11
1-12	89.8	402	36
•		,	

Source of data: Appendix X.

<u>Táble 24</u>

Final mean values of  $K_2\Psi/p$  averaged over all wavelengths, for the exchange reaction

 $Cu(TTAPAN) + HPAN \longrightarrow Cu(PAN)_2 + HTTA$ in methanol-benzene mixtures, at 15°C. and 35°C.

Sol. No.	Solvent	$K_2 \Psi/p$ at $15^{\circ}C$ .	K ₂ 4/p at 35°C.	N
1-11	pure methanol	0.700±0.034	0.500 ± 0.003	2
1-12	40.9 mol% methanol in benzene	0.111± 0.003	0.061±0.004	2

### Source of data: Table 19

6.2 — The reasons for the variation of  $K_1 \Psi/r$ and  $K_2 \Psi/p$  with the mol% methanol in the methanol-benzene mixtures.

Inspection of Table 21 shows that the value of  $K_1 \Psi/r$ decreases with an increase in the methanol content of the benzene-methanol mixtures. This decrease is shown graphically in Figure 7. Inspection of Table 23 shows that  $K_2 \Psi/p$ increases with an increase in the methanol content of the benzene-methanol mixtures, and this increase is shown graphically in Figure 8. Explanations were sought for the decrease in  $K_1 \Psi/r$  and the increase in  $K_2 \Psi/p$ , with an increase in the methanol content of the solvent. The values of  $K_1 \Psi/r$  are considered first.

The values of  $K_1$  for reaction A at  $25^{\circ}$ C. in the methanol-benzene mixtures could not be calculated, because  $\Psi$  and r were unknown. However, approximate values of  $\Psi$  in pure benzene and in pure methanol could be calculated, because literature data were available for these two solvents. In addition, the ratio  $r_{benzene}/r_{methanol}$  (abbreviated  $r_b/r_m$ ) was estimated from solubility values measured by d'Amboise, of Cu(TTAPAN), Cu(TTA)₂ and HPAN both in methanol and in benzene. These estimates of  $\Psi$  and of  $r_b/r_m$  are now described.

The function  $\psi$  is defined in equations (5.13) and (5.12) as

$$\varphi = \frac{1}{\int HTTA} + \frac{K_{k}}{\int HTTA'} + \frac{K_{k}K_{w}(w)}{\int HTTA'.w} + \frac{K_{k}K_{5}(5)}{\int HTTA'.S} + \frac{(\frac{Ka}{(HTTA)})^{\frac{1}{2}}}{(HTTA)} = \frac{[HTTA]_{\frac{1}{2}} - [Cu(TTA)_{2}]}{(HTTA)}$$

#### FIGURE 7

The variation of  $K_1 \Psi/r$  with mol% methanol in the methanol-benzene mixtures used as solvents, at  $25^{\circ}C$ .

Note: (i) The values of  $K_{1} \phi/r$  are the final means, given in Table 21

(ii) The values of  $k_1 \varphi/r$  in pure benzene and in pure methanol were obtained by d'Amboise³



## FIGURE 8

The variation of  $K_2 \mathcal{P}/p$  with mol% methanol in the methanol-benzene mixtures used as solvents, at  $25^{\circ}C$ .

- Note: (i) The values of  $K_2 \varphi/p$  are final means, given in Table 23
  - (ii) The values of  $K_2^{\Psi/p}$  in pure methanol and in pure benzene were obtained by d'Amboise³



It has been reported ^{7,2C} that in benzene 95% of the HTTA exists as the enol. Therefore, in that solvent, the value of  $\mathcal{G}$  will be approximately  $1/\mathcal{G}_{HTTA}$ . However, inspection of equation (5.12) shows that as the methanol content of the mixed solvent increases, the value of arphi would be expected to increase due to the formation of the several species described in Section 5.3.1. For example, the formation of these species would automatically reduce the value of (HTTA) in equation (5.12) and therefore arphi would increase. In addition, as the methanol content of the mixed solvent was increased, (5) and therefore arphi would be increased. Furthermore, it has been pointed out ²⁷ that while there is internal hydrogen-bc_nd formation in the enol form, the equilibrium from enol to keto, hetohydrate and ketomethamolate is shifted towards these keto forms in solvents which have a considerable hydrogen-bond capacity, such as methanol; this is an additional reason for the increase in arphi with an increase in methanol content of the solvent. The ratio [HTTA] / [HTTA] TOTAL, which equals 1 (THTTA for a solution of HTTA in solvent, has been measured in several alcohols by Wakahayashi et al²⁶. They used NMR measurements on 0.5 M solutions of HTTA in several normal alcohols, but not in methanol. In order to obtain an estimate of the value of [HTTA] / [HTTA] TOTAL in methanol, their values were plotted as a function of the size of the alkyl group in the normal alcohols used, and this graph was then extrapolated back to the alkyl group CH3. The extrapolated value found was 0.2 for [HTTA] / [HTTA] TATAI. Therefore, the corresponding value of  $\mathcal{Y}_{HTTA}$  would be 5.

In summary, it seems reasonable to consider that in the present systems  $\Psi_{HTTA}$  went from a value of approximately 1 in pure benzene to 5 in pure methanol.

The next factor to be considered in the term  $K_1 \varphi/r$ 

was the value of r in going from benzene through the mixed solvents to methanol. It was possible to obtain a crude estimate of the value of the ratio r in benzene to r in methanol, as follows:

It is readily shown for a saturated solution of solute L in benzene (subscript b) and in methanol (subscript m), that

(6.1) 
$$\mathcal{M}_{L,b} - \mathcal{M}_{L,m} = -RT \frac{RT}{D} \frac{D}{L,b} \frac{M_{L,b}}{M_{L,m}}$$

where  $\mathcal{M}^{0}L, b' \mathcal{M}^{0}L, m$ 

denote the chemical potential of L in its standard state in benzene, and in methanol respectively.

*М.*_{L, b}, *M*_{L, m}

denote the molal concentration of L in a saturated solution in benzene, and in methanol respectively.

VL.b. VL.m

(

denote the activity coefficient of L in its saturated solution in benzene, and in methanol respectively.

By choosing for all solvents the standard state of L to be the conventional hypothetical 1-molar solution of L in benzene, equation 6.1 becomes

$$(6.2) \frac{V_{L,i_{1}}}{V_{L,m}} = \mathcal{M}_{L,m}$$

By the definition of r in equation 5.2, and by also using equation 6.2,



The solubilities of Cu(TTAPAN), Cu(TTA), Cu(PAN) and HPAN in pure methanol and pure benzene have been. measured by d'Amboise³, and they are given in Table 25. On using these data in equation (6.3), a value of 0.43 was obtained for the ratio  $r_{\rm b}/r_{\rm m}$ . Accordingly, the term r would cause the function  $\bar{\kappa}_1 \bar{\psi}/r$  to decrease in value, on going from benzene to methanol. It is important to notice here that unlike the complexes Cu(TTAPAN) and Cu(PAN), the complex Cu(TTA), is much more soluble in methanol than in benzene. This is in agreement with the fact that methanol can readily hydrogen-bond to the oxygen atom of the square planar chelate Cu(TTA)221. Therefore, while the complexes Cu(TTAPAN) and Cu(PAN), probably, due to steric effects, are not much more solvated in methanol than they are in benzene, the complex Cu(TTA), is expected to be more soluble in methanol than in benzene. Thus, a large part of the increase in the value of r on going from benzene to methanol occurs because the complex Cu(TTA)₂ is more solvated in methanol than it is in benzene. It is recognized that the use of solubility values, which in some cases are high, can lead only to a crude estimate of  $r_{\rm b}^{\prime}/r_{\rm m}^{\prime}$ , since the solutions are very unlikely to be ideal ones.

The estimated values of the ratio  $(\gamma_{HTTA})_{b}/(\gamma_{HTTA})_{m}$ and of the ratio  $r_{b}/r_{m}$  for the two solvents benzene and methanol were then compared with the results obtained for the function  $K_{1}/r$  of equation 5.14 in the present systems. The values of this function were determined by d'Amboise³,

## <u>Table 25</u>

Solubilities of  $Cu(TTA)_2$ ,  $Cu(PAN)_2$ , Cu(TTAPAN) and HPAN, in methanol and benzene, at  $20^{\circ}C$ .

·Compound	Solubility in mols/litre at 20 ⁰ C. (3)					
	Solvent					
· · · · · · · · · · · · · · · · · · ·	Benzene	Nethanol				
Cu(TTAPAN)	8.6 × 10 ⁻⁴	1.9 × 10 ⁻⁴				
Cu(PAN) ₂	3.9 × 10 ⁻⁴	6.6 × 10 ⁻⁵				
Cu(TTA) ₂	1.8 × 10 ⁻²	8.0 × 10 ⁻²				
HPAN	$2.0 \times 10^{-1}$	2.4 × 10 ⁻²				

(

in pure benzene and in pure methanol; he found the values 900 and 250 respectively (see Figure 7).

Therefore

$$\frac{(\kappa_{1}\Psi/r)_{b}}{(\kappa_{1}\Psi/r)_{m}} = \frac{900}{250}$$

Whereas a concentration quotient

°K1 =		]	[	]	
	[	]	Ĺ	]	

will change from solvent to solvent , it is supposed that all the factors that produce this change have been account- ed for in  $\Psi$  and r.

Then,

$$\frac{(6.4)}{(r_{b}/r_{m})} = 3.6$$

By using the above calculated estimates of  $(\Psi_{HTTA})_{b}/(\Psi_{HTTA})_{m}$  and of  $r_{b}/r_{m}$ ,

(6.5) 
$$\frac{(\hat{Y}_{b}/\hat{Y}_{m})}{(r_{b}/r_{m})} \times \frac{\tilde{Y}_{HTTA,b}}{\tilde{Y}_{HTTA,m}} = \frac{1}{5} \times \frac{1}{0.43}$$

On substituting equation (6.4) into equation (6.5),

$$\frac{(6.6)}{\mathcal{T}_{HTTA,m}} = 7.7$$

The change in value of  $K_2 \Psi/p$  (equation 5.23) on going from benzene to methanol was interpreted in the same way as the change in  $K_1 \Psi/r$ . Thus, the value of the ratio  $P_b/P_m$
(with subscript b denoting benzene, and m methanol) was estimated from the solubility data given in Table 25 to be approximate 120. The value of the ratio  $\Psi_b \times \tilde{\chi}_{HTTA,b}'$  $\Psi_m \times \tilde{\chi}_{HTTA,m}$  has already been estimated for use in K₁ $\Psi/r$ , to be 0.2. Therefore, as a rough estimate,

$$(6.7) \quad \frac{\mathcal{Y}_{\rm b}/\mathcal{Y}_{\rm m}}{\mathcal{P}_{\rm b}/\mathcal{P}_{\rm m}} \quad \frac{\mathcal{Y}_{\rm HTTA,b}}{\mathcal{T}_{\rm HTTA,m}} \simeq \frac{1}{600}$$

Now d'Amboise³ has found that

(6.8) 
$$\frac{(\kappa_2 \varphi/p)_{\rm b}}{(\kappa_2 \varphi/p)_{\rm m}} = \frac{0.007}{0.600}$$

Then, on assuming that all the factors that affect the value of the concentration quotient



on going from one solvent to another have been taken into account in  $\boldsymbol{\varphi}$  and r,

$$(6.9) \frac{\frac{4}{b}}{\frac{4}{b}} \frac{4}{m} = \frac{0.007}{0.600}$$

From equations (6.7) and (6.9), (HTTA, m/ HTTA, b) = 7.

The solubilities of HTTA in benzene and in methanol have not been measured, and so a direct comparison of the sclubility ratio with the value 7 (for reaction B) and 7.1 (for reaction A) is not possible. The derived ratios (7.7, 7) suggest that HTTA (enol form) would be more soluble, and hence more solvated in benzene than in methanol. It is known²⁵ that in non-polar solvents the HTTA (enol) has an intra-hydrogen bond.



However, the estimates of  $r_b/r_m$  and of  $P_b/P_m$ , and therefore of  $\mathcal{J}_{HTTA,m}/\mathcal{J}_{HTTA,b}$  assume that the solubility data in Table 25 can be used to estimate r and p. For saturated solutions that are very dilute, solubility ratios should give good estimates of activity-coefficient ratios. But when the saturated solutions are more concentrated they are more unlikely to be ideal. In that case solubility ratios will not give a good estimate of activity-coefficient ratios of very dilute solutions.

In addition, it is to be remembered that  $\gamma_{\rm HTTA,m}$ , which occurs in the expression  $\Psi_{\rm m}\gamma_{\rm HTTA,m}$  is the activity coefficient of HTTA (enol) in a C.5 molar solution in methanol. The reason is that Wakayayashi et al²⁶ used O.5 molar solutions in their NMR studies which led to the value of  $[\rm HTTA] / [\rm HTTA]_T$ , and therefore to  $\Psi_{\rm m}\gamma_{\rm HTTA,m} = 5$ . However, the HTTA solutions used in the present work were D.04 molar or less.

Therefore the present discussions of  $K_1 \psi/r$  and  $K_2 \psi/p$  must be regarded as merely exploratory, insofar as actual values of  $\psi/r$  and  $\psi/p$  are concerned.

Claims to Original Research

1) The apparent molar equilibrium constants  ${\rm K_1}'$  and  ${\rm K_2}'$  for reactions (A) and (B)

(A)  $Cu(TTA)_2 + HPAN \longrightarrow Cu(TTAPAN) + HTTA$ 

(B)  $Cu(TTAPAN) + HPAN \implies Cu(PAN)_2 + HTTA$ 

in methanol-benzene mixtures were successfully evaluated by using spectrophotometric data in conjunction with algebraic equations which were derived for the purpose. These apparent equilibrium constants  $K_1$ ' and  $K_2$ ' were obtained at  $15^{\circ}C., 25^{\circ}C.$  and  $35^{\circ}C.$ 

2) The factors which caused  $K_1$ ' and  $K_2$ ' not to be thermodynamic constants ( $K_1$  and  $K_2$  being the thermodynamic constants) were identified as the relevant activity coefficients, and also the fact that the HTTA existed as enol, keto, ion, and solvates in the solutions.

3) The practical titration of  $Cu(TTA)_2$  by HPAN used as a volumetric reagent in organic solvent, was studied in benzene, in methanol and in mixtures of the two. The endpoint was sharp only in benzene. It became less distinct as the methanol content was increased, due to the increase in the value of  $K_2$ ' with the methanol content.

### Suggestions for Further Work

1) In this work it was found that in order to evaluate the thermodynamic equilibrium constants  $K_1$  and  $K_2$  for reactions (A) and (B) in methanol, benzene or their mixtures, it would be necessary to calculate the terms  $\mathcal{Q}$ , r and p for the solutes in these solvents. Investigation of all the chemical species as well as the determination of the relevant equilibrium constants involved are necessary, as well as evaluation of the various activity coefficients.

2) It would be useful to study the present systems in a different solvent or mixture of solvents, in which the reaction of  $Cu(TTA)_2$  with HPAN would be faster than in benzene and yet, the values of  $K_2\Psi/p$  would be too small to cause reaction (B) to occur to a significant extent, during titrations of  $Cu(TTA)_2$  with HPAN.

3) In Tables 22 and 24, it can be seen that both  $K_1 \varphi'/r$  and  $K_2 \varphi'/p$  increase with a decrease of temperature. Explanation for this fact was not sought in the present work, due to the fact that values of  $K_1$  and  $K_2$  themselves could not be obtained without much additional data. It could be of interest to investigate the dependence of  $K_1$  and of  $K_2$  on temperature.

## Appendix I

Dithizone Test for the Metal Content of the Solvents.

i) Methanol

ſ

The dithizone used was reagent grade, and was not further purified.

A 2.5 x  $10^{-4}$  M solution of dithizone in purified methanol was used.

It had been observed that when dithizone solution was added to methanol that contained trace metals. two peaks were observed, one at 590 nm. and the other at 450 nm. Dithizone alone has two peaks at these wavelengths. However, the ratio of the absorbance at 590 nm. to that at 450 nm. decreased with increasing concentration of copper (II) for a fixed concentration of dithizone. These facts were used in order to test the purified methanol for the presence of trace metals. Thus, the purified methanol to be tested was treated with the dithizone solution sufficient to give one absorbance of about 0.5 to 1. The ratio of the absorbance at 590 nm. to that at 450 nm. was then determined. The same solution was then diluted with a known volume of the purified methanol under test and the ratio of absorbances was again measured. This procedure was repeated for several dilutions of the original solution with the methanol under test and the ratios of the absorbances at 590 nm. to that at 450 nm. were tabulated. If the ratios remained constant for all dilutions of the original solution, the methanol was considered sufficiently

free of trace metals to be used for chelate-exchange titrations. Otherwise, it was recycled through the purification process.

ii) Benzene

The spectra of dithizone and its metal chelates in benzene have been studied by many authors¹⁵. Dithizone has two peaks, one at 618 nm. and the other at 450 nm. The metal dithizonates, however, have just one peak, between 450 nm. and 550 nm., depending on the metal. Accordingly, a test for the presence of trace metals in benzene was carried out by performing dilutions of a solution of dithizone in benzene with the benzene under test, and measuring the absorption spectra of all these solutions. The benzene was considered free from trace metals when the following two criteria were met: (i) No band between 450 nm. and 550 nm. was observed; (ii) the ratio of the absorbance at 618 nm. to that at 450 nm. did not change with dilutions of the benzene solution of dithizone with more benzene.

### Appendix II

General spectrophotometric-titration procedures.

The spectrophotometric-titration procedures used the apparatus described in Section 3.1.1. They have been described by Gray¹.

Briefly, in using the Unicam S.P. 500 spectrophotometer, a warm-up period of one hour for the spectrophotometer and ten minutes for the tungsten lamp was necessary in order to ensure stable absorbance readings. The 65-ml. titration cell, cleaned and dried by the process described on page 11, was positioned in the cell compartment. Approximately 50 ml. of methanol was then transferred to the cell. The wavelength was set either at 460 nm. or 560 nm., depending on the system being studied. The sensitivity potentiometer of the apparatus was set at the midway position, stirring was started, and the spectrophotometer was adjusted to zero absorbance. An aliquot of the solution to be titrated was then pipetted into the titration cell. The platinum-needle delivery tip was attached to the Koch micro-buret filled with the titrant, and was pushed through the silicone-rubber system. The tip of the needle was always under the surface of the solution. Then increments of the titrant were added and the absorbance measured after each addition. The increments added, and the equilibration period, depended on the particular titration.

As was found by Gray, close temperature control was unnecessary, and all experiments were conducted at room temperature.

The titration graph was a plot of the measured absorbances against ml. of titrant added, and the end point was determined by inspection, by extrapolation of the straight-line portions of the graph, to their intersection point.

17.

į

## Appendix III

Standardization of stock solutions of Cu(TTAPAN), Cu(PAN)₂, Cu(TTA)₂ and HPAN in methanol or benzene by spectrophotometric titration.

The general procedure given in Appendix II was used.

 i) Standardization of stock solution of HPAN in methanol or benzene, against standard aqueous Cu(NO₃)₂ solution.

• The stock solution of HPAN in methanol or benzene was used as titrant in the buret, even though it was the solution to be standardized. The concentration of this solution was known to be approximately  $5 \times 10^{-4}$  M. The aliquot of the aqueous Cu(NO₃)₂ solution transferred to the titration cell to be titrated with the HPAN contained approximately 16 mg. of copper. Methanol was then added.

In the titration, Cu(PAN NC₃) was formed; it had an absorbance maximum at 560 nm. Accordingly, the absorbance at this wavelength was recorded as a function of titrant added. Naturally the absorbance increased with addition of titrant. The end point was well defined, unless the methanol used contained dissolved trace metals. In that case the titration graph was curved, and the end point could not be detected. Incidentally, this fact was also used as a test for trace metals in methanol.

An equilibration period of approximately one minute was allowed after each addition, prior to taking the

absorbance measurement.

21.00

A typical titration graph is given in Figure 9.

ii) Standardization of stock aqueous EDTA solution, against standard aqueous  $Cu(NO_3)_2$  solution.

The stock aqueous solution of EDTA to be standardized was used as titrant in the buret. It was prepared by dissolution of a weighed amount of the solid in deionized water, to give a solution approximately 4  $\times$  10⁻⁴ M. It was stored in a polyethylene bottle.

The methanol was added as a solvent into the titration cell. This methanol was buffered to pH 10 by an ammonia-ammonium chloride buffer mixture, before adding the standard aqueous solution of  $Cu(NO_3)_2$ .

The volumes of methanol and standard copper solution were such that the copper in the titration cell was approximately 5 x  $10^{-5}$  M. The wavelength was set at 560 nm. The spectrophotometer was then adjusted to zero absorbance referred to the analyte prior to its titration.

Standard solution of HPAN in methanol was added, sufficient to allow complexation of all Cu(II) present in the titration cell. This complexation consisted in the formation of Cu(PAN NO₂).

Addition of increments of the aqueous EDTA standard solution (the titrant) resulted in the replacement of the PAN and  $NO_3$  ligands from the mixed copper complex. This displacement was followed spectrophotometrically by the decrease in absorbance at 560 nm., which was where

## the Cu(PAN NO₂) had a peak.

11.

The first titration was not counted. Thus, after its end point another aliquot of the standard aqueous solution of  $Cu(NO_3)_2$  was added to the titration cell and titrated as before. In this way, the results were not affected by trace metals dissolved in the methanol and buffer solution used. The number of titrations performed in the same methanol solution were then only limited to the volume of the cell itself.

An equilibration period of approximately one minute was allowed after each addition, prior to taking the absorbance measurements.

A typical titration graph is given in Figure 9.

iii) Standardization of Cu(TTAPAN), Cu(PAN)₂ and Cu(TTA)₂ solutions in methanol or benzene by spectrophotometric titration with a standard aqueous solution of EDTA.

The steps followed in the standardizations of Cu(TTAPAN),  $Cu(PAN)_2$  and  $Cu(TTA)_2$  solutions in methanol or benzene by spectrophotometric titration with the above standard aqueous solution of EDTA, were the same as in the standardization of this aqueous solution of EDTA itself with the standard aqueous solution of  $Cu(NO_3)_2$ , given in part (ii) in the present section, except that in the case of Cu(TTAPAN) and  $Cu(PAN)_2$  no HPAN was added; these complexes also have a well defined peak at 560 nm. (see Figure 1).

An equilibration period of approximately one minute

was allowed after each addition, prior to taking the absorbance measurement.

ĺ

A typical titration graph is given in Figure 9.

## FIGURE 9

Ĺ

Typical titration graphs for the chelate-exchange titration at  $25^{\circ}C$ . of

- a) Cu(NO₃)₂ in methanol, versus EDTA
  in water
- b) Cu(NO₃)₂ in methanol, versus HPAN in benzene
- c) Cu(TTAPAN) in methanol, versus EDTA
   in water



138

____

å

Preparation of a stock standard aqueous solution of  $Cu(NO_3)_2$ 

The procedures for the preparation of stock standard solution of cupric nitrate used have been described by  $\operatorname{Gray}^{1}$ .

Fisher certified A.C.S. analytical-grade copper metal was used. The stock standard solution was prepared by accurately weighing 0.166 g. of this analytical-grade copper metal into 100-ml. beaker. The copper was then dissolved in 1:1 nitric acid and the solution evaporated to moist dryness. The residue was taken up with 5 ml. of water and the solution was evaporated as near to dryness as possible without forming basic insoluble copper salts. The residue was then taken up in deionized water, quantitatively transferred to a calibrated 100-ml. volumetric flask and made up to the mark.

## Appendix V

The Preparation of Cu(TTAPAN) According to the Method of d'Amboise³.

A weighed amount of crystalline  $Cu(TTA)_2$ , purified as described on page 20, was dissolved in benzene. An equimolar amount of HPAN was added and the temperature of the solution was raised to  $45^{\circ}C$ . The solution was then thoroughly mixed. Half of the benzene was then allowed to evaporate at a temperature slightly above room temperature, and the solution was then placed in an ice-water bath. The resulting crystals were filtered onto a sintered-glass filter and then dissolved in benzene, and recrystallized as before, by evaporation of benzene, cooling of the solution, and filtration. The purified Cu(TTAPAN) product was dried in a vacuum desiccator over  $P_2O_5$  for a week, then transferred to another desiccator containing silica gel and it was stored there until used.

## Appendix VI

Spectrophotometric Titration of Cu(TTA)₂ in Methanol-Benzene Mixtures with a Standard HPAN Solution in Benzene.

The Beckman Model D.U. spectrophotometer, and titration assembly described on page 7 and illustrated in Plate 1, were used. The general procedures for spectrophotometric titrations are given in Appendix II.

Stock solutions of Cu(TTA)₂ in benzene were prepared and standardized by the method described on page 20. HPAN solutions in benzene were standardized as in Appendix III.

The Koch micro-buret was rinsed and filled with the standard HPAN solution in benzene. An appropriate aliquot of standard  $Cu(TTA)_2$  solution was pipetted into the 65-ml. titration cell, such that after dilution to about 50 ml. and the addition of HPAN necessary for the conversion of  $Cu(TTA)_2$  to Cu(TTAPAN), the absorbance at 560 nm. was between 0.6 and 0.8.

Methanol and benzene were pipetted into the titration cell which contained the aliquot of Cu(TTA)₂ to be titrated. The proportion of methanol and benzene depended on the particular experiment.

The micro-buret was positioned, the wavelength adjusted to 560 nm., the spectrophotometer adjusted to zero absorbance for the solution to be titrated, and the titration started. The absorbance of the Cu(TTAPAN) formed was followed. An interval of 5-10 minutes was needed in order to achieve equilibrium after each addition of titrant. In solvents with a large concentration of methanol, the reaction was faster. The titration graph was a plot of absorbance versus ml. of titrant added, and the end point was determined by inspection, from the intersection of the extrapolation of the two straight-line portions of the graph.

The results of the titrations of Cu(TTA)₂ in several methanol-benzene mixtures with HPAN are given in Table 5.

! Equilibrium in the sense that no variation in absorbance was detected after that period.

## Appendix VII

- 1) REGRE 1: Least-squares fit for
   y = mx+b
- 2) PRABC5: Least-squares fit for  $Z = A_1 \times_1 + A_2 \times_2 + A_3 \times_3 + B$
- 3) SPECR3: Least-squares fit of a Beer's Law plot

## 1) (JUP1

C PROGRAM REGRI- T HIS PROGRAM CALCULATES THE REGRESSION COEFFICIENTS FOR A STAIGHT LINE C Y = MX + B IT GIVES M AND B AND THEIR STANDARD DEVIATIONS C Y IS THE NUMBER OF EXPERIMENTAL POINTS, IT IS GIVEN FIRST IN A FIELD C DF (13), THEN THE POINTS X(1), Y(1) ARE GIVEN IN FIELDS (\$(2E8.3)). DI MENSION X(100), Y(100) READ(5,1) N 1 FORMAT(13) READ(5,2) (X(1), Y(1), I = 1,N) 2 FORMAT(5(2E8.3)) SUMX = 0. SUMX2 = 0. SUMX2 = 0. SUMX2 = 0. SUMX2 = 0. SUMX2 = 0. SUMX2 = SUMX + X(I) SUMX2 = SUMX + Y(1) SUMX2 = SUMX + Y(1) SUMX2 = SUMX + Y(1) SUMX2 = SUMX + Y(1) SUMX2 = SUMX2 + (X(1)**2) X M = SUMY/N YM = SUMY/N YM = SUMY/N SYZ = SUMY2 - (YM\$SUMX) SYZ = SUMY2 - (XM\$SUMX) SYZ = SUMY2 - (XM\$SUMX) SYZ = SUMY2 - (XM\$SUMX) SYZ = SUMY2 - (XM\$SUMX) SYZ = SUMY2 - (AM\$SUMX) SYZ = SUMY2 = (AM\$SUMX) SYZ = SUMY2 - (AM\$SUX - (A	_	
<pre>C THIS PROGRAM CALCULATES THE REGRESSION COEFFICIENTS FOR A STAIGHT LINE C Y = WX + B IT GIVES WAND &amp; AND THEIR STANDARD DEVIATIONS C N IS THE NUMBER OF EXPERIMENTAL POINTS. IT IS GIVEN FIRST IN A FIELD C JF (13). THEN THE POINTS X(1), Y(1) ARE GIVEN IN FIELDS (\$(2E8.3)). DIMENSION X(100), Y(100) READ(512) (X(1), Y(1), I = 1,N) 2 FORMAT(512) SUMX = 0. SUMY = SUMY + X(1) SUMX = SUMX + X(1) SUMX = SUMX + X(1) SUMX = SUMX + X(1) SUMX = SUMX + (Y(1)**2) XM = SUMY + (Y(1)**2) XM = SUMX - (XM*SUMX) SX2 = SUMX2 - (YM*SUMY) SX2 = SUMX2 - (XM*SUMY) SX4 = SUMX - (XM*SUMY) SX5 = SUMX - (XM*SUMY) SX7 = SUMX - (XM*SUMY) SX8 = SUMX - (XM*SUMY) SX8 = SUMX - (XM*SUMY) SX8 = SUMX - (XM*SUMY) SX8 = SUMX - (XM*SUMY) SX9 = SUMX - (XM*SUMY) SX9 = SUMX - (XM*SUMY) SX9 = SUMX - (XM*SUMY) SX9 = SUMX - (XM*SUMY) SSD = SY2 - (BM*SXY) VARY = SGD(N-2) VARM = SGRT(VARM) STDVM = SGRT(VARM)/N) WRITE(6,1) (Y(1), X(1), I = 1,N) S FORMAT(1H0,//25X,*ISMPLE REGRESSIDN ANALYSIS*,//20X,*EOUATION: Y I = MX + D ',//10X,*EXPERIMENTAL RESULTS*,//15X,*Y*,ISX,*X*,/) WRITE(6,17) GM, AB 17 FORMAT(1H0,/22,*THE REGRESSIDN ANALYSIS*,//15X,*Y*,ISX,*X*,/) WRITE(6,71) STDVM STDVB 7 FORMAT(1H0,12X,*STDVE VON THE SLOPE M IS: ',E12,4,//ISX,*STD DEV 0 IN THE INTERCEPT B IS: ',E12,4,//ISX,*STD DEV 0 IN THE INTERCEPT B IS: ',E12,4,//ISX,*STD DEV 0 IN THE INTERCEPT B IS: ',E12,4,//ISX,*STD = ',E12,4,//ISX,*STD DEV 0 IN THE INTERCEPT B IS: ',E12,4,//ISX,*STD = ',E12,4,//ISX,*ST = ',E12,4,//ISX,*S</pre>	C	PROGRAM REGRI-
<pre>C Y = MX + B IT GIVES M AND B AND THEIR STANDARD DEVIATIONS N IS THE NUMBER OF EXPERIMENTAL POINTS. IT IS GIVEN FIRST IN A FIELD OF (13). THEN THE POINTS X(1), Y(1) ARE GIVEN IN FIELDS (\$(2E8.33)). DIMENSION X(100), Y(100) REA0(5,2) (X(1), Y(1), I = 1,N) 2 FORMAT(13) REA0(5,2) (X(1), Y(1), I = 1,N) 2 FORMAT(5(2E8.3)) SUMX = 0. SUMX = 0. SUMX = 0. SUMX = 0. SUMX2 = 0. DO 3 I= 1,N SUMX = SUMX + X(1) SUMX = SUMX + X(1) SUMX = SUMX + X(1) SUMX = SUMX + Y(1) SUMX = SUMX + (X(1)**2) 3 SUMY = SUMX + (Y(1)**2) X = SUMX2 + (Y(1)**2) 3 SUMY = SUMY + (Y(1)**2) X = SUMY/N YM = SUMY/N SXZ = SUMX2 - (XM*SUMX) SYZ = SUMYZ - (XM*SUMX) SYZ = SUMYZ - (XM*SUMX) SYZ = SUMYZ - (XM*SUMY) SYZ = SUMYZ - (XM*SUMY) SYZ = SUMYZ - (XM*SUMY) SYZ = SUMYZ - (SM*SXY) VARY = SSD/(N-2) VARY = SSD/(N-2) VARY = SSD/(N-2) VARY = SORT(VARM) STDVM = SORT(VARM) STDVM = SORT(VARM) STDVM = SORT(VARM) STDVM = SORT(VARM) STDVM = SORT(VARM) WRITE(6,14) 14 FORMAT(1H0,10X,E12.4,5XX,E12.4) WRITE(6,17) GM, AB 17 FORMAT(1H0,10X,E12.4,5XX,E12.4) WRITE(6,17) GM, AB 17 FORMAT(1H0,115X,*STDVEV ON THE SLOPE M IS: ',FI2.4,7//15X,*STD DEV 0 IN THE INFERCE I B IS: ',FI2.4,7//15X,*STD DEV 0 IN THE INFERCE I B IS: ',FI2.4,7//15X,*STD DEV 0 IN THE INFERCE I B IS: ',FI2.4,10X,*SSD = ',E12.4,7/15X,*STD DEV 0 IN THE INFERCE I B IS: ',FI2.4,10X,*SSD = ',E12.4,7/1 333 CONTINUE WRITE(6,11) 11 FORMAT(1H0,45X,*END OF COMPILATION') END</pre>	С	THIS PROGRAM CALCULATES THE REGRESSION COEFFICIENTS FOR A STAIGHT LINE
<pre>C N IS THE NUMBER OF EXPERIMENTAL POINTS. IT IS GIVEN FIRST IN A FIELD O F (13). THEN THE POINTS X(1) Y(1) ARE GIVEN IN FIELDS (5(2E8.3)). DIMENSION X(100), Y(100) READ(5,1) N I FORMAT(13) READ(5,2) (X(1), Y(1), I = 1,N) 2 FORMAT(5(2E8.3)) SUMX = 0. SUMXY = 0. SUMXY = 0. SUMXY = 0. SUMY2 = 0. DO 3 I= 1,N SUMXY = SUMX + X(I) SUMY = SUMXY + (X(1)*Y(I)) SUMXY = SUMXY + (X(1)*Y(I)) SUMXY = SUMXY + (X(1)**2) XM = SUMXYN YM = SUMXYN SX2 = SUMX2 + (X(1)**2) XM = SUMXYN SX2 = SUMX2 - (XM*SUMY) SX7 = SUMXY - (XM*SUMY) SX7 = SUMXY - (XM*SUMY) BM = 5XY/SX2 AB = YM - (BM*XM) SSD = SY2 - (BM*SXY) VARM = SORTI((VARY/SX2)**2) STDVM = SORTI(VARM)/N) WRITE(6,14) 14 FORMAT(1H0,//2SX,*SIMPLE REGRESSIDN ANALYSIS*,//20X,*EOUATION: Y I = MX + B *,//10X,*EXPERIMENTAL RESULTS*,//15X,*Y*,15X,*X*,/) WRITE(6,14) 3 FORMAT(1H0,20X,*THE REGRESSIDN ANALYSIS*,//20X,*EOUATION: Y I = MX + B *,//10X,*EXPERIMENTAL RESULTS*,//15X,*Y*,15X,*X*,/) WRITE(6,17) BM, AB 17 FORMAT(1H0,20X,*THE REGRESSIDN LINE IS :*,//35X,*Y = (*,EI5.6,*)*X I (*,EI5.5,*)*,)*,/) WRITE(6,12) XM,SX2, SXY,M,SY2, SSD I FORMAT(1H0,12X,*ISTOVEN ON THE SLOPE M IS: *,EI2.4,//I5X,*STD DEV 0 IN THE INTERCEPT B IS: *,EI2.4,//) WRITE(6,11) 11 FORMAT(1H0,45X,*END OF COMPILATION*) END</pre>	C	Y = MX + B IT GIVES M AND B AND THEIR STANDARD DEVIATIONS
<pre>C DF (13). THEN THE POINTS X(1), Y(1) ARE GIVEN IN FIELDS (5(2E8.3)). DI MENSION X(100), Y(100) READ(5,1) N I FORMAT(13) READ(5,2) (X(1), Y(1), I = 1,N) 2 FORMAT(5(2E6.3)) SUMX = 0. SUMX = 0. SUMXY = 0. SUMXY = 0. SUMXY = 0. DO 3 I= 1,N SUMX = SUMXY + X(I) SUMXY = SUMXY + X(I) SUMXY = SUMXY + (X(1)*Y(I)) SUMXY = SUMXY + (X(1)*Y(I)) SUMXY = SUMXY + (X(1)*Y(I)) SUMXY = SUMXY + (Y(1)**2) XM = SUMXYN YM = SUMXYN SX2 = SUMY2 + (Y(1)**2) XM = SUMXYN SX2 = SUMY2 - (XM*SUMY) SX7 = SUMXY - (XM*SUMY) SX7 = SUMXY - (XM*SUMY) SX7 = SUMXY - (XM*SUMY) SX8 = SUMXY - (XM*SUMY) SX9 = SUXY - (XM*SUMY) SX9 = SUXY - (XM*SUMY) SX0 = SY72 AB = YM - (BM*XM) SSD = SY2 - (BM*SXY) VARY = SSD7(VARM) STDVB = SGRT((VARY/SX2)**2) YARM = SGRT((VARY/SX2)**2) YARM = SGRT((VARY/SX2)**2) YARM = SGRT((VARY/SX2)**2) YARM = SGRT((VARY/SX2)**2) STDVB = SGRT((VARY/SX2)**2) YARM =</pre>	С	N IS THE NUMBER OF EXPERIMENTAL POINTS. IT IS GIVEN FIRST IN A FIELD
DIMENSION X(100), Y(100) READ(5,1) N I FORMAT(13) READ(5,2) (X(1), Y(1), I = 1,N) 2 FORMAT(5(2E6.3)) SUMX = 0. SUMY = 0. SUMY2 = 0. SUMY2 = 0. SUMY2 = SUMY + Y(1) SUMX = SUMX + X(1) SUMY = SUMY + Y(1) SUMXY = SUMXY + (X(1)*Y(1)) SUMXY = SUMXY + (X(1)*Y(1)) SUMXY = SUMXY + (X(1)**2) XM = SUMXYN YM = SUMXYN SX2 = SUMX2 + (Y(1)**2) XM = SUMXYN SX2 = SUMX2 - (XM*SUMY) SY2 = SUMY2 - (XM*SUMY) SY2 = SUMXY - (XM*SUMY) BM = SXY/SX2 AB = YM - (BM*XM) SSD = SY2 - (BM*SXM) STDYB = SGRT((VARY/SX2)**2) YARM = SGRT((VARY/SX2)**2) STDYM = SGRT((VARY/SX2)**2) STDYB = SGRT((SUMX2*VARM)/N) WRITE(6,14) 14 FORMAT(1H0,//2SX,*SIMPLE REGRESSIDN ANALYSIS*,//20X,*EOUATION: Y 1 = MX + D ',//10X,*EXPERIMENTAL RESULTS*,//15X,*Y*,15X,*X*,/) WRITE(6,14) 17 FORMAT(1H0,10X,E12.4,5X,E12.4) WRITE(6,17) BM, AB 17 FORMAT(1H0,20X,*THE REGRESSIDN LINE IS :*,//35X,*Y = (*,E15.6,*)*X 1 (*,E15.5,')*,//) WRITE(6,12) STDVM, STDVB 7 FORMAT(1H0,15X,*STDVEV ON THE SLDPE M IS: *,E12.4,//15X,*STD DEV 0 IN THE INTERCPT B IS: *,E12.4,10X,*SZ = *,E12.4,10X,*SXY = *,E12.4 I,//20X,*YM = ',E12.4,10X,*SY2 = ',E12.4,10X,*SXY = ',E12.4,// WRITE(6,11) 111 FORMAT(1H0,45X,*END OF COMPILATION*) END	С	OF (I3). THEN THE POINTS X(I), Y(I) ARE GIVEN IN FIELDS (5(2E8.3)).
<pre>READ(5,1) N I FORMAT(13) READ(5,2) (X(1), Y(1), I = 1,N) 2 FORMAT(5(2E8.3)) SUMX = 0. SUMX = 0. SUMXY = 0. SUMXY = 0. SUMXY = 0. D) 3 I = 1,N SUMXY = 0. D) 3 I = 1,N SUMXY = SUMX + Y(1) SUMXY = SUMXY + (X(1)*Y(1)) SUMXY = SUMXY + (X(1)*X2) XM = SUMXYN YM = SUMYNN SX2 = SUMY2 + (Y(1)*2) XM = SUMXYN YM = SUMYNN SX2 = SUMY2 - (XM*SUMY) SXY = SUMXY - (XM*SUMY) SXD = SQT((VARY) SXD = SQT((VARY)SX2)**2) STDVB = SQT((VARY)AXM)/N) WR ITE(6,10) I4 FORMAT(1H0,//25X,'SIMPLE REGRESSION ANALYSIS',//20X,'EOUATION: Y I = MX + B ',//10X,'EXPERIMENTAL RESULTS',//15X,'Y',15X,'X',/) WR ITE(6,10) STDVB = SQT((VARY)AAB T FORMAT(1H0,20X,'THE REGRESSION LINE IS :',//35X,'Y = (',E15.6,')*X I (',E15.6,')','//) WR ITE(6,12) XM,STDVB 7 FORMAT(1H0,15X,'STDVB T FORMAT(1H0,15X,'STD DEV 0 IN THE INTERCEPT B IS: ',E12.4,10X,'SXY = ',E12.4,1/X,'SXY = ',E12.4,1/X,'S</pre>		DIMENSION $X(100)$ , $Y(100)$
<pre>1 FORMAT(13) READ(5,2) (X(1), Y(1), I = 1,N) 2 FORMAT(5(2E8.3)) SUMX = 0. SUMY = 0. SUMY = 0. SUMY = 0. DO 3 I= 1,N SUMY = SUMY + X(I) SUMX = SUMX + X(I) SUMY = SUMY + Y(I) SUMX = SUMX + (X(I)**(I)) SUMX2 = SUMX + (X(I)**2) XM = SUMY/N YM = SUMY/N YM = SUMY/N YM = SUMY/N SXY = SUMY - (XM*SUMX) SY2 = SUMY2 - (YM*SUMY) BM = SXY/SX2 AB = YM - (BM*XM) SSD = SY2 - (BM*SXM) VARY = SOF((VARY) SXY = SUMY - (XM*SUMY) STDVB = SOF((VARY) YARY = SOF((VARY) YARY = SOF((VARY) STDVB = SORT(VARM) STDVB = SORT(VARM) STDVB = SORT(VARM) STDVB = SORT((VARM)/N) WRITE(6,1) MR ITE(6,1) SFORMAT(1H0,1/25X,*SIMPLE REGRESSION ANALYSIS*,//20X,*EOUATION: Y WRITE(6,5) (Y(I), X(I), I = 1,N) SFORMAT(1H0,20X,*THE REGRESSION LINE IS :*,//35X,*Y = (*,E15.6,*)*X I (*,E15.6,*)*,*//) WRITE(6,7) STDVM, STDVB 7 FORMAT(1H0,10X,*STDVEV ON THE SLOPE M IS: ',E12.4,//15X,*STD DEV O IN THE INTERCEPT B IS: ',E12.4,10X,*SX2 = ',E12.4,10X,*SX7 = ',E12.4,// WRITE(6,11) MR ITE(6,11) 11 FORMAT(1H0,45X,*END OF COMPILATION*) END.</pre>		READ(5,1) N
<pre>READ(5,2) (X(1), Y(1), I = 1,N) 2 FORMAT(5(280.3)) SUMX = 0. SUMY = 0. SUMY = 0. SUMY2 = 0. SUMY2 = 0. DO 3 I= 1,N SUMX = SUMX + X(I) SUMY = SUMY + Y(I) SUMXY = SUMYY + (X(I)*Y(I)) SUMXY = SUMYY + (X(I)**2) XM = SUMYY + Y(I)**2) XM = SUMYYN SX2 = SUMY2 + (Y(I)**2) XM = SUMYN SX2 = SUMXY + (XM*SUMY) SX2 = SUMXY - (XM*SUMY) BM = SXY/SX2 AB = YM - (BM*XM) SSD = SY2 - (BM*SXM) SSD = SY2 - (BM*SXM) VARY = SORT((VARY/SX2)**2) STOVM = SORT(VARM) STOVE ON THE IS : ',//35X,'Y = (',E15.6,')*X 1 ( ',E15.6,')*//) WRITE(6,12) XM,SX2, SXT,YM,SY2 = ',E12.4,10X,'SX2 = ',E12.4,10X,'SX7 = ',E12.4,10X,'SX2 = ',E12.</pre>		1 FORMAT(I3)
<pre>2 FORMAT(5(2E8.3)) SUMY = 0. DO 3 I= 1.N SUMY = SUMX + X(I) SUMY = SUMY + (X(I)*Y(I)) SUMX = SUMXY + (X(I)*Y(I)) SUMX = SUMYY + (X(I)*Y(I)) SUMX = SUMYY + (X(I)*Y(I)) SUMX = SUMYY + (Y(I)*2) XM = SUMY/N YM = SUMY/N YM = SUMY/N SX2 = SUMY2 - (XM*SUMY) SX2 = SUMY2 - (YM*SUMY) BM = SXY/SX2 AB = YM - (BM*XM) SSD = SY2 - (BM*SXY) VARY = SSD/(N-2) VARM = SORT(VARM) STDVB = SORT(VARM) STDVB = SORT(VARM)/N) wRITE(6,14) 14 FORMAT(IH0,//25X,*SIMPLE REGRESSIDN ANALYSIS*,//20X,*EQUATION: Y I = MX + S ',/10X,*SY2 + *2) STDVM = SORT((SUMX2*VARM)/N) wRITE(6,15) (Y(I), X(I), I = 1,N) S FORMAT(IH0,10X,E12.4,5X,E12.4) wRITE(6,7) STDVM, STDVB 7 FORMAT(IH0,15X,*STDVEV ON THE SLOPE M IS: ',E12.4,//15X,*STD DEV 0 IN THE INTERCEPT B IS: ',E12.4,10X,*SX2 = ',E12.4,10X,*SX7 = ',E12.4,10X,*SX7 = ',E12.4,10X,*SX0 = ',E1</pre>		READ(5,2) (X(I), Y(I), I = 1,N)
<pre>SUMX = 0. SUMXY = 0. SUMXY = 0. SUMXY = 0. SUMXY = 0. DO 3 I= 1,N SUMX = SUMX + X(I) SUMY = SUMY + Y(I) SUMXY = SUMXY + (X(I)*Y(I)) SUMXY = SUMXY + (X(I)*Y2) 3 SUMY2 = SUMY2 + (Y(I)*2) XM = SUMXY + (X(I)*Y2) SX2 = SUMY2 - (YM*SUMY) SX2 = SUMY2 - (YM*SUMY) SX2 = SUMY2 - (YM*SUMY) SX4 = SUMXY - (XM*SUMY) BM = 5XY/5X2 AB = YM - (BM*XM) SSD = SY2 - (BM*XM) SSD = SY2 - (BM*XM) SSD = SY2 - (BM*XX) VARM = SORT((VARY/SX2)**2) STDVM = SORT((VARY/SX2)**2) STDVM = SORT((VARY/SX2)**2) STDVM = SORT((VARY/SX2)**2) WART = SORT((VARY/SX2)**2) STDVM = SORT((VARY/SX2)**2) STDVM = SORT((VARY/SX2)**2) STDVM = SORT((VARY/SX2)**2) STDVM = SORT((VARY/SX2)**2) WARTE(6,14) 14 FORMAT(IH0,/25X,*SIMPLE REGRESSION ANALYSIS*,//20X,*EQUATION: Y 1 = MX + D *,//10X,*EXPERIMENTAL RESULTS*,//15X,*Y*,5X,*X*,/) WRITE(6,17) DM, AB 17 FORMAT(IH0,10X,512:4,5XX,E12:4) WRITE(6,17) DM, AB 17 FORMAT(IH0,15X,*STOVEV ON THE SLOPE M IS: ',#12:4,//15X,*STD DEV O 1N THE INTERCEPT B IS: ',#12:4,10X,*SX2 = ',E12:4,10X,*SXY = ',E12:4 1,//20X,*YM = ',E12:4,10X,*SY2 = ',E12:4,10X,*SSD = ',E12:4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(IH0,45X,*END OF COMPILATION*) END</pre>		2 FORMAT(5(2E8.3))
SUMY = 0. SUMY2 = 0. SUMY2 = 0. DO 3 I= 1,N SUMY = SUMX + X(I) SUMY = SUMX + X(I) SUMY = SUMY + (X(I)*Y(I)) SUMX2 = SUMX2 + (X(I)*2) XM = SUMY2 + (Y(I)*2) XM = SUMY2 + (YM*SUMY) SY2 = SUMY2 - (XM*SUMY) SY2 = SUMY2 - (XM*SUMY) WRITE(6,11) MR ITE(6,111) 111 FORMAT(IH0,45X,*END OF COMPILATION*) END		SUMX = 0.
<pre>SUMXY = 0. SUMX2 = 0. DO 3 I= 1,N SUMX = SUMX + X(I) SUMX = SUMX + X(I) SUMXY = SUMX + (X(I)*Y(I)) SUMXY = SUMXY + (X(I)**2) 3 SUMY2 = SUMY2 + (Y(I)**2) XM = SUMX/N YM = SUMY/N SX2 = SUMY2 - (XM*SUMY) SXY = SUMY2 - (XM*SUMY) BM = SXY/SX2 AB = YM - (BM*XM) SSD = SY2 - (BM*SXM) SSD = SY2 - (BM*SXM) SSD = SY2 - (BM*SXM) STDVM = SQRT((VARY/SX2)**2) STDVM = SQRT((VARY/SX2)**2) STDVM = SQRT((VARY/SX2)**2) STDVM = SQRT((VARY/SX2)**2) STDVM = SQRT((SUMX2*VARM)/N) WRITE(6,14) 14 FORMAT(IH0,7/25X,*SIMPLE REGRESSION ANALYSIS*,//20X,*EQUATION: Y I = MX + B ',//10X,*EXPERIMENTAL RESULTS*,//15X,*Y*,15X,*X*,/) WRITE(6,17) BM, AB 17 FORMAT(IH0,20X,*THE REGRESSION LINE IS '*,//35X,*Y = (*,E15+6,*)*X I (*,E15+5,*)*,//) WRITE(6,17) STDVM, STDVB 7 FORMAT(IH0,15X,*STDVEV ON THE SLOPE M IS: ',E12+4,//15X,*STD DEV O IN THE INTERCEPT B IS: ',E12+4,10X,*SX2 = ',E12+4,10X,*SXY = ',E12+4 I,//20X,*YM = ',E12+4,10X,*SY2 = ',E12+4,10X,*SXY = ',E12+4,10X,*SY =</pre>		SUMY = 0.
SUMX2 = 0. SUMY2 = 0. DO 3 I= 1,N SUMX = SUMX + X(I) SUMY = SUMY + Y(I) SUMXY = SUMY2 + (X(I)*Y(I)) SUMX2 = SUMY2 + (X(I)**2) XM = SUMYA YM = SUMYA YM = SUMYA YM = SUMYA YM = SUMYA SX2 = SUM2 - (XM*SUMX) SY2 = SUMY2 - (XM*SUMY) SY2 = SUMY2 - (XM*SUMY) SY2 = SUMY2 - (XM*SUMY) MM = SXY/SX2 AB = YM - (BM*XM) SSD = SY2 - (BM*SXY) VARY = SORT((VARY/SX2)**2) STDVM = SORT((VARY/SX2)**2) STDVM = SORT((SUMX2*VARM)/N) WRITE(6,1a) 14 FORMAT(1H0,//25X,*SIMPLE REGRESSION ANALYSIS*,//20X,*EOUATION: Y 1 = MX + D ',//10X,*EAPERIMENTAL RESULTS*,//15X,*Y*,15X,*X*,/) WRITE(6,1a) 14 FORMAT(1H0,20X,*THE REGRESSION LINE IS :',//35X,*Y = (*,E15.6,*)*X 1 (*,E15.6,*)*,*//) WRITE(6,7) STDVM, STDVB 7 FORMAT(1H0,12X,*STDVEV ON THE SLDPE M IS: ',E12.4,//15X,*STD DEV O 1N THE INTERCEPT B IS: ',E12.4,//1 WRITE(6,712 MM, AB 12 FORMAT(1H0,20X,*XM = ',E12.4,10X,*SX2 = ',E12.4,10X,*SXY = ',E12.4 1,//20X,*YM = ',E12.4,10X,*SY2 = ',E12.4,10X,*SSD = ',E12.4,//1 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,*END OF COMPILATION*) END		SUMXY = 0.
SUMY2 =0. DO 3 I= 1,N SUMX = SUMX + X(I) SUMX = SUMX + X(I) SUMX = SUMXY + (X(I)*Y(I)) SUMX2 = SUMX2 + (X(I)**2) XM = SUMX/N YM = SUMY/N SX2 = SUMY2 - (XM*SUMX) SY2 = SUMY2 - (XM*SUMX) SXY = SUMYY - (XM*SUMY) BM = 5XY/SX2 AB = YM - (BM*XM) SSD = SY2 - (BM*XM) SSD = SY2 - (BM*XM) STDVB = SORT((VARY/SX2)**2) STDVM = SORT((ID) = SORT(SUMX2*VARM)/N) WRITE(6,12) WRITE(6,12) T = MX + D ://IOX,'EXPERIMENTAL RESULTS',//ISX,'Y',15X,'X',/) WRITE(6,5) (Y(I), X(I), I = 1,N) S FORMAT(1H0,10X,E12.4,5X,E12.4) WRITE(6,5) (Y(I), X(I), I = 1,N) S FORMAT(1H0,20X,'THE REGRESSION LINE IS :',//35X,'Y = (',E15.6,')*X I (',E15.5,')',//) WRITE(6,5) STDVM, STDVB 7 FORMAT(1H0,15X,'STDVEV ON THE SLDPE M IS: ',E12.4,//15X,'STD DEV O IN THE INTERCEPT B IS: ',E12.4,//) WRITE(6,112) XM,SX2, SXY,MY,SY2, SSD 12 FORMAT(1H0,25X,'KM = ',E12.4,10X,'SX2 = ',E12.4,10X,'SXY = ',E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,'END OF COMPILATION*) END		SUMX2 = 0.
DO 3 I= 1,N SUMX = SUMX + X(I) SUMY = SUMY + Y(I) SUMXY = SUMXY + (X(I)*Y(I)) SUMXY = SUMXY + (X(I)**2) XM = SUMXYN YM = SUMXYN SX2 = SUMY2 - (XM*SUMX) SY2 = SUMY2 - (XM*SUMY) BM = SXY/SX2 AB = YM - (BM*XM) SSD = SY2 - (BM*SXY) VARY = SSD/(N-2) VARY = SORT((VARY/SX2)**2) STDVM = SORT((VARY/SX2)**2) MW ITE(6,14) 14 FORMAT(1H0,725X,*SIMPLE REGRESSION ANALYSIS*,//20X,*EQUATION: Y 1 = MX + D *,//10X,*EXPERIMENTAL RESULTS*,//15X,*FU,**,/) WR ITE(6,17) BM, AB 17 FORMAT(1H0,10X,E12.4,5X,E12.4) WR ITE(6,17) BM, AB 7 FORMAT(1H0,20X,*THE REGRESSION LINE IS :*,//35X,*Y = (*,E15.6,*)*X 1 (*,E15.5,*)*,//) WR ITE(6,7) STDVM, STDVB 7 FORMAT(1H0,15X,*STDVEV ON THE SLOPE M IS: *,E12.4,//15X,*STD DEV O 1N THE INTERCEPT B IS: *,E12.4,10X,*SX2 = *,E12.4,10X,*SXY = *,E12.4 1,//20X,*YM = *,E12.4,10X,*SY2 = *,E12.4,10X,*SSD = *,E12.4,/) 333 CONTINUE WR ITE(6,111) 111 FORMAT(1H0,45X,*END OF COMPILATION*) END		SUMY2 =0.
<pre>SUMx = SUMX + X(I) SUMx = SUMX + X(I) SUMxY = SUMxY + (X(I)*Y(I)) SUMx2 = SUMx2 + (X(I)**2) XM = SUMX/N YM = SUMX/N YM = SUMY/N SX2 = SUMx2 - (XM*SUMX) SY2 = SUMY2 - (YM*SUMY) SXY = SUMY2 - (XM*SUMY) BM = SXY/SX2 AB = YM - (BM*XM) SSD = SY2 - (BM*SXY) VARM = SORT((VARY/SX2)**2) STDVM = SORT((VARY/SX2)************************************</pre>		DO 3 $I = 1, N$
<pre>SUMY = SUMY + Y(1) SUMXY = SUMXY + (X(1)*Y(1)) SUMX2 = SUMX2 + (X(1)**2) 3 SUMY2 = SUMY2 + (Y(1)**2) XM = SUMY/N SX2 = SUMXY - (XM*SUMY) SX7 = SUMXY - (XM*SUMY) BM = SXY/SX2 AB = YM - (BM*XM) SSD = SY2 - (BM*SXY) VARY = SOD/(N-2) VARM = SORT((VARY/SX2)**2) STDVM = SORT((VARY/SX2)**2) STDVM = SORT((UMX2*VARM)/N) WRITE(6,14) 14 FORMAT(1H0,//25X,*SIMPLE REGRESSION ANALYSIS*,//20X,*EQUATION: Y 1 = MX + B *,//10X,*EXPERIMENTAL RESULTS*,//15X,*Y*,/) WRITE(6,17) BM, AB 17 FORMAT(1H0,10X,E12.4,5X,E12.4) WRITE(6,7) STDVM, STDVB 7 FORMAT(1H0,15X,*STDVEV ON THE SLDPE M IS: *,E12.4,//15X,*STD DEV 0 IN THE INTERCEPT B IS: *,E12.4,//) WRITE(6,12) XM,SX2, SXY,YM,SY2, SSD 12 FORMAT(1H0,20X,*XM = ',E12.4,10X,*SX2 = ',E12.4,10X,*SXY = ',E12.4, 1, //20X,*YM = ',E12.4,10X,*SY2 = ',E12.4,10X,*SXY = ',E12.4,//) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,*END OF COMPILATION*) END</pre>		SUMX = SUMX + X(I)
<pre>SUMXY = SUMXY + (X(1)*Y(1)) SUMX2 = SUMX2 + (X(1)*Y(1)) SUMY2 = SUMY2 + (X(1)*Y2) XM = SUMY2 + (Y(1)*Y2) XM = SUMYA + (Y(1)*Y2) XM = SUMYA + (Y(1)*Y2) SY2 = SUMY2 - (YM*SUMY) SSD = SY2 - (BM*SXY) VARY = SSD/(N-2) VARM = SORT((VARY/SY2)**2) STDVM = SORT((VARY/SY2)**2) STDVM = SORT((SUMY2*VARM)/N) WRITE(6,14) 14 FORMAT(1H0,//25X, 'SIMPLE REGRESSIDN ANALYSIS',//20X,'EQUATION: Y 1 = MX + D ',//10X,'EXPERIMENTAL RESULTS',//15X,'Y',15X,'X',/) WRITE(6,16) (Y(1), X(1), 1 = 1,N) 5 FORMAT(1H0,10X,E12.4,5X,E12.4) WRITE(6,17) DM, AB 17 FORMAT(1H0,15X,'STDVB 7 FORMAT(1H0,15X,'STDVB 7 FORMAT(1H0,15X,'STDVB 7 FORMAT(1H0,15X,'STDVEV ON THE SLDPE M IS: ',E12.4,//15X,'STD DEV O 1N THE INTERCEPT B IS: ',E12.4,10X,'SX2 = ',E12.4,10X,'SXY = ',E12.4 1,//20X,'YM = ',E12.4,10X,'SX2 = ',E12.4,10X,'SXY = ',E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,'END OF COMPILATION') END</pre>		SUMY = SUMY + Y(I)
<pre>SUMX2 = SUMX2 + (X(1)**2) 3 SUMY2 = SUMX2 + (Y(1)**2) XM = SUMX/N YM = SUMX/N SX2 = SUMX2 - (XM*SUMX) SX2 = SUMX2 - (XM*SUMY) BM = SXY/SX2 AB = YM - (BM*XM) SSD = SY2 - (BM*SXM) VARY = SSD/(N-2) VARM = SORT((VARY/SX2)**2) STDVM = SORT((VARM) STDVB = SORT((VARM)/N) WRITE(6,14) 14 FORMAT(1H0,//25X,*SIMPLE REGRESSION ANALYSIS',//20X,*EOUATION: Y 1 = MX + D ',//10X,*EXPERIMENTAL RESULTS',//15X,*Y',15X,*X',/) WRITE(6,5) (Y(1), X(1), 1 = 1,N) 5 FORMAT(1H0,10X,E12.4,5X,E12.4) WRITE(6,7) SM, AB 17 FORMAT(1H0,20X,*THE REGRESSION LINE IS :',//35X,*Y = (',E15.6,')*X 1 ( ',E15.6,')',//) WRITE(6,7) STDVM, STDVB 7 FORMAT(1H0,15X,*STDVEV ON THE SLOPE M IS: ',E12.4,//15X,*STD DEV 0 IN THE INTERCEPT B IS: ',E12.4,10X,*SX2 = ',E12.4,10X,*SXY = ',E12.4 1,//20X,*YM = ',E12.4,10X,*SX2 = ',E12.4,10X,*SXY = ',E12.4,1) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,*END OF COMPILATION*) END</pre>		SUMXY = SUMXY + (X(I)*Y(I))
<pre>3 SUMY2 = SUMY2 + (Y(I)**2) XM = SUMX/N YM = SUMX/N SX2 = SUMX2 - (XM*SUMX) SX2 = SUMX2 - (YM*SUMY) SXY = SUMXY - (XM*SUMY) BM = SXY/SX2 AB = YM - (BM*XM) SSD = SY2 - (BM*SXY) VARY = SOPT((VARY/SX2)**2) STDVM = SORT((VARY/SX2)**2) STDVM = SORT((VARY/SX2)**2) STDVM = SORT((VARY/SX2)**2) STDVM = SORT((VARY/SX2)**2) STDVM = SORT((VARY/SX2)**2) WRITE(6,14) 14 FORMAT(1H0,1/25x,*SIMPLE REGRESSION ANALYSIS*,//20x,*EOUATION: Y 1 = MX + B *,//10X,*EXPERIMENTAL RESULTS*,//15X,*Y*,15X,*X*,/) WRITE(6,5) (Y(I), X(I), I = 1,N) 5 FORMAT(1H0,10X,E12.4,5X,E12.4) WRITE(6,7) STDVM, STDVE 7 FORMAT(1H0,10X,*THE REGRESSION LINE IS :*,//35X,*Y = (*,E15.6,*)*X 1 (*,E15.5,*)*,//) WRITE(6,12) XM,STDVE ON THE SLOPE M IS: *,E12.4,//15X,*STD DEV O 1N THE INTERCEPT B IS: *,E12.4,//) WRITE(6,12) XM,SX2, SXY,YM,SY2, SSD 12 FORMAT(1H0,20X,*XM = *,E12.4,10X,*SX2 = *,E12.4,10X,*SXY = *,E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,*END OF COMPILATION*) END</pre>		SUMX2 = SUMX2 + (X(I) * * 2)
<pre>XM = SUMX/N YM = SUMX2 - (XM*SUMX) SX2 = SUMX2 - (YM*SUMY) SXY = SUMXY - (XM*SUMY) BM = SXY/SX2 AB = YM - (BM*XM) SSD = SY2 - (BM*SXY) VARY = SD/(N-2) VARM = SORT((VARY/SX2)**2) STDVM = SORT((VARM) STDVB = SORT((VARM)/N) WRITE(6,14) 14 FORMAT(1H0,//25X,'SIMPLE REGRESSION ANALYSIS',//20X,'EOUATION: Y 1 = MX + B ',//10X,'EXPERIMENTAL RESULTS',//15X,'Y',15X,'X',/) WRITE(6,5) (Y(1), X(1), I = 1,N) 5 FORMAT(1H0,10X,E12.4,5X,E12.4) WRITE(6,7) BM, AB 17 FORMAT(1H0,20X,'THE REGRESSION LINE IS :',//35X,'Y = (',E15.6,')*X 1 (',E15.5,')',//) WRITE(6,7) STDVM, STDVB 7 FORMAT(1H0,15X,'STDVEV ON THE SLOPE M IS: ',E12.4,//15X,'STD DEV 0 IN THE INTERCEPT B IS: ',E12.4,//) WRITE(6,12) XM,SX2, SXY,YM,SY2, SSD 12 FORMAT(1H0,20X,'XM = ',E12.4,10X,'SX2 = ',E12.4,10X,'SXY = ',E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,'END OF COMPILATION') END</pre>		3  SUMY2 = SUMY2 + (Y(I) * * 2)
<pre>YM = SUMY/N SX2 = SUMX2 - (XM*SUMX) SY2 = SUMX2 - (YM*SUMY) SXY = SUMXY - (XM*SUMY) BM = SXY/SX2 AB = YM - (BM*XM) SSD = SY2 - (BM*SXY) VARY = SSD/(N-2) VARM = SQRT((VARY/SX2)**2) STDVM = SQRT((VARY/SX2)**2) STDVM = SQRT((SUMX2*VARM)/N) WRITE(6,14) 14 FORMAT(1H0,//25X,*SIMPLE REGRESSION ANALYSIS*,//20X,*EQUATION: Y 1 = MX + B ',//10X,*EXPERIMENTAL RESULTS*,//15X,*Y*,15X,*X*,/) WRITE(6,5) (Y(I), X(I), I = 1,N) 5 FORMAT(1H0,10X,E12.4,5X,E12.4) WRITE(6,5) (Y(I), X(I), I = 1,N) 5 FORMAT(1H0,20X,*THE REGRESSION LINE IS :*,//35X,*Y = (*,E15.6,*)*X 1 (*,E15.5,*)*,//) WRITE(6,7) STDVM, STDVB 7 FORMAT(1H0,20X,*STDVEV ON THE SLOPE M IS: *,E12.4,//15X,*STD DEV 0 1N THE INTERCEPT B IS: *,E12.4,10X,*SX2 = *,E12.4,10X,*SXY = *,E12.4 1,//20X,*YM = *,E12.4,10X,*SY2 = *,E12.4,10X,*SXY = *,E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,*END OF COMPILATION*) END</pre>		XM = SUMX/N
<pre>SX2 = SUMX2 - (XM*SUMX) SY2 = SUMY2 - (YM*SUMY) SXY = SUMXY - (XM*SUMY) BM = SXY/SX2 AB = YM - (BM*XM) SSD = SY2 - (BM*SXY) VARY = SSD/(N-2) VARM = SQRT((VARY/SX2)**2) STDVM = SQRT((VARM) STDVB = SQRT((SUMX2*VARM)/N) WRITE(6,14) 14 FORMAT(1H0,//25X,*SIMPLE REGRESSION ANALYSIS*,//20X,*EQUATION: Y 1 = MX + B ',//10X,*EXPERIMENTAL RESULTS*,//15X,*Y*,15X,*X*,/) WRITE(6,5) (Y(I), X(I), I = 1,N) 5 FORMAT(1H0,10X,E12.4,5X,E12.4) WRITE(6,5) (Y(I), X(I), I = 1,N) 5 FORMAT(1H0,20X,*THE REGRESSION LINE IS :*,//35X,*Y = (*,E15.6,*)*X 1 (*,E15.5,*)*,//) WRITE(6,17) BM, AB 17 FORMAT(1H0,20X,*THE REGRESSION LINE IS :*,F12.4,//15X,*STD DEV 0 IN THE INTERCEPT B IS: ',E12.4,//) WRITE(6,12) XM,SX2, SXY,YM,SY2, SSD 12 FORMAT(1H0,20X,*XM = ',E12.4,10X,*SX2 = ',E12.4,10X,*SXY = ',E12.4, 1,//20X,*YM = ',E12.4,10X,*SY2 = ',E12.4,10X,*SSD = ',E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,*END OF COMPILATION*) END_</pre>		YM = SUMY/N
<pre>SY2 = SUMY2 - (YM*SUMY) SXY = SUMXY - (XM*SUMY) BM = SXY/SX2 AB = YM - (BM*XM) SSD = SY2 - (BM*SXY) VARY = SOPT((VARY/SX2)**2) VARM = SORT((VARY/SX2)**2) STDVM = SORT((VARY/SX2)**2) STDVM = SORT((VARY/SX2)**2) WARTE(6,14) 14 FORMAT(1H0,/25X,*SIMPLE REGRESSION ANALYSIS*,//20X,*EOUATION: Y 1 = MX + B ',//10X,*EXPERIMENTAL RESULTS*,//15X,*Y*,15X,*X*,/) WRITE(6,5) (Y(I), X(I), I = 1,N) 5 FORMAT(1H0,10X,E12.4,5X,E12.4) WRITE(6,7) BM, AB 17 FORMAT(1H0,20X,*THE REGRESSION LINE IS :*,//35X,*Y = (*,E15.6,*)*X 1 (*,E15.5,*)*,//) WRITE(6,7) STDVM, STDVB 7 FORMAT(1H0,15X,*STDVEV ON THE SLOPE M IS: *,E12.4,//15X,*STD DEV O 1N THE INTERCEPT B IS: *,E12.4,10X,*SX2 = *,E12.4,10X,*SXY = *,E12.4 1,//20X,*YM = *,E12.4,10X,*SY2 = *,E12.4,10X,*SSD = *,E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,*END OF COMPILATION*) END</pre>		SX2 = SUMX2 - (XM*SUMX)
<pre>SXY = SUMXY - (XM*SUMY) BM = \$XY/SX2 AB = YM - (BM*XM) SSD = SY2 -(BM*SXY) VARY = SSD/(N-2) VARM = SQRT((VARM) STDVB = SQRT((VARM) STDVB = SQRT((SUMX2*VARM)/N) WRITE(6,14) 14 FORMAT(1H0,//25X,'SIMPLE REGRESSION ANALYSIS',//20X,'EQUATION: Y 1 = MX + B ',//10X,'EXPERIMENTAL RESULTS',//15X,'Y',15X,'X',/) WRITE(6,5) (Y(I), X(I), I = 1,N) 5 FORMAT(1H0,10X,E12.4,5X,E12.4) WRITE(6,17) BM, AB 17 FORMAT(1H0,20X,'THE REGRESSION LINE IS :',//35X,'Y = (',E15.6,')*X 1 (',E15.5,')',//) WRITE(6,7) STDVM, STDVB 7 FORMAT(1H0,15X,'STDVEV ON THE SLOPE M IS: ',E12.4,//15X,'STD DEV 0 IN THE INTERCEPT B IS: ',E12.4,//) WRITE(6,12) XM,SX2, SXY,YM,SY2, SSD 12 FORMAT(1H0,20X,'XM = ',E12.4,10X,'SX2 = ',E12.4,10X,'SXY = ',E12.4 1,//20X,'YM = ',E12.4,10X,'SY2 = ',E12.4,10X,'SSD = ',E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,'END OF COMPILATION') END</pre>		SY2 = SUMY2 - (YM*SUMY)
<pre>BM = \$XY/SX2 AB = YM - (BM*XM) SSD = SY2 - (BM*SXY) VARY = SSD/(N-2) VARM = SQRT((VARY/SX2)**2) STDVM = SQRT((VARM) STDVB = SQRT((SUMX2*VARM)/N) WRITE(6,14) 14 FORMAT(1H0,7/25X,*SIMPLE REGRESSION ANALYSIS*,//20X,*EQUATION: Y 1 = MX + B ',//10X,*EXPERIMENTAL RESULTS*,//15X,*Y*,15X,*X*,/) WRITE(6,5) (Y(I), X(I), 1 = 1,N) 5 FORMAT(1H0,10X,E12.4,5X,E12.4) WRITE(6,7) BM, AB 17 FORMAT(1H0,20X,*THE REGRESSION LINE IS :*,//35X,*Y = (*,E15.6,*)*X 1 (*,E15.6,*)*,//) WRITE(6,7) STDVM, STDVB 7 FORMAT(1H0,15X,*STDVEV ON THE SLOPE M IS: *,E12.4,//15X,*STD DEV O 1N THE INTERCEPT B IS: *,E12.4,10X,*SX2 = *,E12.4,10X,*SXY = *,E12.4 1,//20X,*YM = *,E12.4,10X,*SY2 = *,E12.4,10X,*SXY = *,E12.4 1,//20X,*YM = *,E12.4,10X,*SY2 = *,E12.4,10X,*SSD = *,E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,*END OF COMPILATION*) END</pre>		SXY = SUMXY - (XM*SUMY)
AB = YM - (BM*XM) SSD = SY2 - (BM*SXY) VARY = SSD/(N-2) VARM = SQRT((VARY/SX2)**2) STDVM = SQRT((VARM) STDVB = SQRT((SUMX2*VARM)/N) WRITE(6,14) 14 FORMAT(1H0,//25X,*SIMPLE REGRESSION ANALYSIS*,//20X,*EQUATION: Y 1 = MX + B ',/10X,*EXPERIMENTAL RESULTS*,//15X,*Y*,15X,*X*,/) WRITE(6,5) (Y(I), X(I), I = 1,N) 5 FORMAT(1H0,10X,E12.4,5X,E12.4) WRITE(6,7) BM, AB 17 FORMAT(1H0,20X,*THE REGRESSION LINE IS :*,//35X,*Y = (*,E15.6,*)*X 1 (*,E15.5,*)*,//) WRITE(6,7) STDVM, STDVB 7 FORMAT(1H0,15X,*STDVEV ON THE SLDPE M IS: *,E12.4,//15X,*STD DEV O 1N THE INTERCEPT B IS: *,E12.4,//) WRITE(6,12) XM,SX2, SXY,YM,SY2, SSD 12 FORMAT(1H0,20X,*XM = *,E12.4,10X,*SX2 = *,E12.4,10X,*SXY = *,E12.4 1,//20X,*YM = *,E12.4,10X,*SY2 = *,E12.4,10X,*SSD = *,E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,*END OF COMPILATION*) END		BM = SXY/SX2
<pre>SSD = SY2 -(BM*SXY) VARY = SSD/(N-2) VARM = SORT((VARY/SX2)**2) STDVM = SORT((VARM) STDVB = SORT((SUMX2*VARM)/N) WRITE(6,14) 14 FORMAT(1H0,//25X,*SIMPLE REGRESSION ANALYSIS*,//20X,*EQUATION: Y 1 = MX + B ',//10X,*EXPERIMENTAL RESULTS*,//15X,*Y*,15X,*X*,/) WRITE(6,5) (Y(1), X(1), 1 = 1,N) 5 FORMAT(1H0,10X,E12.4,5X,E12.4) WRITE(6,17) DM, AB 17 FORMAT(1H0,20X,*THE REGRESSION LINE IS :*,//35X,*Y = (*,E15.6,*)*X 1 (*,E15.5,*)*,//) WRITE(6,7) STDVM, STDVB 7 FORMAT(1H0,15X,*STDVEV ON THE SLOPE M IS: ',E12.4,//15X,*STD DEV O 1N THE INTERCEPT B IS: ',E12.4,//) WRITE(6,12) XM,SX2, SXY,YM,SY2, SSD 12 FORMAT(1H0,20X,*XM = ',E12.4,10X,*SX2 = ',E12.4,10X,*SXY = ',E12.4 1,//20X,*YM = ',E12.4,10X,*SY2 = ',E12.4,10X,*SSD = ',E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,*END OF COMPILATION*) END</pre>		AB = YM - (BM * XM)
<pre>VARY = SSD/(N-2) VARM = SQRT((VARY/SX2)**2) STDVM = SQRT((VARM) STDVB = SQRT((SUMX2*VARM)/N) WRITE(6,14) 14 FORMAT(1H0,//25X, 'SIMPLE REGRESSION ANALYSIS',//20X, 'EQUATION: Y 1 = MX + B ',//10X, 'EXPERIMENTAL RESULTS',//15X, 'Y',15X, 'X',/) WRITE(6,5) (Y(I), X(I), I = 1,N) 5 FORMAT(1H0,10X,E12.4,5X,E12.4) WRITE(6,17) BM, AB 17 FORMAT(1H0,20X, 'THE REGRESSION LINE IS :',//35X,'Y = (',E15.6,')*X 1 (',E15.5,')',//) WRITE(6,7) STDVM, STDVB 7 FORMAT(1H0,15X, 'STDVEV ON THE SLOPE M IS: ',E12.4,//15X,'STD DEV O 1N THE INTERCEPT B IS: ',E12.4,//) WRITE(6,12) XM,SX2, SXY,YM,SY2, SSD 12 FORMAT(1H0,20X,'XM = ',E12.4,10X,'SX2 = ',E12.4,10X,'SXY = ',E12.4 1,//20X,'YM = ',E12.4,10X,'SY2 = ',E12.4,10X,'SSD = ',E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,'END OF COMPILATION') END</pre>		SSD = SY2 - (BM + SXY)
<pre>VARM = SORT((VARY/SX2)**2) STDVM = SORT(VARM) STDVB = SORT((SUMX2*VARM)/N) WRITE(6,14) 14 FORMAT(1H0,//25X,'SIMPLE REGRESSION ANALYSIS',//20X,'EQUATION: Y 1 = MX + B ',//10X,'EXPERIMENTAL RESULTS',//15X,'Y',15X,'X',/) WRITE(6,5) (Y(I), X(I), I = 1,N) 5 FORMAT(1H0,10X,E12.4,5X,E12.4) WRITE(6,17) BM, AB 17 FORMAT(1H0,20X,'THE REGRESSION LINE IS :',//35X,'Y = (',E15.6,')*X 1 (',E15.5,')',//) WRITE(6,7) STDVM, STDVB 7 FORMAT(1H0,15X,'STDVEV ON THE SLOPE M IS: ',E12.4,//15X,'STD DEV O 1N THE INTERCEPT B IS: ',E12.4,//) WRITE(6,12) XM,SX2, SXY,YM,SY2, SSD 12 FORMAT(1H0,20X,'XM = ',E12.4,10X,'SX2 = ',E12.4,10X,'SXY = ',E12.4 1,//20X,'YM = ',E12.4,10X,'SY2 = ',E12.4,10X,'SSD = ',E12.4,//) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,'END OF COMPILATION') END</pre>		VARY = SSD/(N-2)
<pre>STDVM = SQRT(VARM) STDVB = SQRT((SUMX2*VARM)/N) WRITE(6,14) 14 FORMAT(1H0,//25X,*SIMPLE REGRESSIDN ANALYSIS*,//20X,*EQUATION: Y 1 = MX + B ',//10X,*EXPERIMENTAL RESULTS*,//15X,*Y*,15X,*X*,/) WRITE(6,5) (Y(I), X(I), I = 1,N) 5 FORMAT(1H0,10X,E12.4,5X,E12.4) WRITE(6,17) BM, AB 17 FORMAT(1H0,20X,*THE REGRESSION LINE IS :',//35X,*Y = (*,E15.6,*)*X 1 (*,E15.5,*)',//) WRITE(6,7) STDVM, STDVB 7 FORMAT(1H0,15X,*STDVEV ON THE SLOPE M IS: ',E12.4,//15X,*STD DEV O 1N THE INTERCEPT B IS: ',E12.4,//) WRITE(6,12) XM,SX2, SXY,YM,SY2, SSD 12 FORMAT(1H0,20X,*XM = ',E12.4,10X,*SX2 = ',E12.4,10X,*SXY = ',E12.4 1,//20X,*YM = ',E12.4,10X,*SY2 = ',E12.4,10X,*SSD = ',E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,*END OF COMPILATION*) END</pre>		VARM = SQRT((VARY/SX2)**2)
<pre>STDVB = SQRT((SUMX2*VARM)/N) WRITE(6,14) 14 FORMAT(1H0,//25X, 'SIMPLE REGRESSION ANALYSIS',//20X,'EQUATION: Y 1 = MX + B ',//10X,'EXPERIMENTAL RESULTS',//15X,'Y',15X,'X',/) WRITE(6,5) (Y(I), X(I), I = 1,N) 5 FORMAT(1H0,10X,E12.4,5X,E12.4) WRITE(6,17) BM, AB 17 FORMAT(1H0,20X,'THE REGRESSION LINE IS :',//35X,'Y = (',E15.6,')*X 1 (',E15.6,')',//) WRITE(6,7) STDVM, STDVB 7 FORMAT(1H0,15X,'STDVEV ON THE SLOPE M IS: ',E12.4,//15X,'STD DEV 0 1N THE INTERCEPT B IS: ',E12.4,//) WRITE(6,12) XM,SX2, SXY,YM,SY2, SSD 12 FORMAT(1H0,20X,'XM = ',E12.4,10X,'SX2 = ',E12.4,10X,'SXY = ',E12.4 1,//20X,'YM = ',E12.4,10X,'SY2 = ',E12.4,10X,'SSD = ',E12.4,/) 333 CONTINUE WRITE(6,11) 111 FORMAT(1H0,45X,'END OF COMPILATION') END</pre>		STDVM = SQRT(VARM)
<pre>WRITE(6,14) 14 FORMAT(1H0,//25X,*SIMPLE REGRESSION ANALYSIS*,//20X,*EQUATION: Y 1 = MX + B ',//10X,*EXPERIMENTAL RESULTS*,//15X,*Y*,15X,*X*,/) WRITE(6,5) (Y(I), X(I), I = 1,N) 5 FORMAT(1H0,10X,E12.4,5X,E12.4) WRITE(6,17) BM, AB 17 FORMAT(1H0,20X,*THE REGRESSION LINE IS :',//35X,*Y = (*,E15.6,*)*X 1 (*,E15.5,*)*,//) WRITE(6,7) STDVM, STDVB 7 FORMAT(1H0,15X,*STDVEV ON THE SLOPE M IS: ',E12.4,//15X,*STD DEV 0 1N THE INTERCEPT B IS: ',E12.4,//) WRITE(6,12) XM,SX2, SXY,YM,SY2, SSD 12 FORMAT(1H0,20X,*XM = ',E12.4,10X,*SX2 = ',E12.4,10X,*SXY = ',E12.4 1,//20X,*YM = ',E12.4,10X,*SY2 = ',E12.4,10X,*SSD = ',E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,*END OF COMPILATION*) END</pre>		STDVB = SQRT({SUMX2*VARM}/N)
<pre>14 FORMAT(1H0,//25X,'SIMPLE REGRESSION ANALYSIS',//20X,'EQUATION: Y 1 = MX + B ',//10X,'EXPERIMENTAL RESULTS',//15X,'Y',15X,'X',/) WRITE(6,5) (Y(I), X(I), I = 1,N) 5 FORMAT(1H0,10X,E12.4,5X,E12.4) WRITE(6,17) BM, AB 17 FORMAT(1H0,20X,'THE REGRESSION LINE IS :',//35X,'Y = (',E15.6,')*X 1 (',E15.5,')',//) WRITE(6,7) STDVM, STDVB 7 FORMAT(1H0,15X,'STDVEV ON THE SLOPE M IS: ',E12.4,//15X,'STD DEV 0 1N THE INTERCEPT B IS: ',E12.4,//) WRITE(6,12) XM,SX2, SXY,YM,SY2, SSD 12 FORMAT(1H0,20X,'XM = ',E12.4,10X,'SX2 = ',E12.4,10X,'SXY = ',E12.4 1,//20X,'YM = ',E12.4,10X,'SX2 = ',E12.4,10X,'SSD = ',E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,'END OF COMPILATION') END</pre>		WRITE(6,14)
<pre>1 = MX + B ',//10X, 'EXPERIMENTAL RESULTS',//15X, 'Y', 15X, 'X', /) WRITE(6,5) (Y(I), X(I), I = 1,N) 5 FORMAT(1H0,10X,E12.4,5X,E12.4) WRITE(6,17) BM, AB 17 FORMAT(1H0,20X, 'THE REGRESSION LINE IS :',//35X, 'Y = (',E15.6,')*X 1 (',E15.5,')',//) WRITE(6,7) STDVM, STDVB 7 FORMAT(1H0,15X, 'STDVEV ON THE SLOPE M IS: ',E12.4,//15X, 'STD DEV O 1N THE INTERCEPT B IS: ',E12.4,//) WRITE(6,12) XM,SX2, SXY,YM,SY2, SSD 12 FORMAT(1H0,20X, 'XM = ',E12.4,10X, 'SX2 = ',E12.4,10X, 'SXY = ',E12.4 1,//20X, 'YM = ',E12.4,10X, 'SY2 = ',E12.4,10X, 'SSD = ',E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X, 'END OF COMPILATION') END</pre>		14 FORMAT(1H0,//25X, SIMPLE REGRESSION ANALYSIS',//20X, EQUATION: Y
<pre>WRITE(6,5) (Y(I), X(I), I = 1,N) 5 FORMAT(1H0,10X,E12.4,5X,E12.4) WRITE(6,17) BM, AB 17 FORMAT(1H0,20X,*THE REGRESSION LINE IS :*,//35X,*Y = (*,E15.6,*)*X 1 (*,E15.5,*)*,//) WRITE(6,7) STDVM, STDVB 7 FORMAT(1H0,15X,*STDVEV ON THE SLOPE M IS: *,E12.4,//15X,*STD DEV 0 1N THE INTERCEPT B IS: *,E12.4,//) WRITE(6,12) XM,SX2, SXY,YM,SY2, SSD 12 FORMAT(1H0,20X,*XM = *,E12.4,10X,*SX2 = *,E12.4,10X,*SXY = *,E12.4 1,//20X,*YM = *,E12.4,10X,*SY2 = *,E12.4,10X,*SSD = *,E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,*END OF COMPILATION*) END</pre>		1 = MX + B ",//10X,"EXPERIMENTAL RESULTS",//15X,"Y",15X,"X",/)
<pre>5 FORMAT(1H0,10X,E12.4,5X,E12.4) WRITE(6,17) BM, AB 17 FORMAT(1H0,20X, "THE REGRESSION LINE IS : ',//35X, "Y = (',E15.6,')*X 1 (',E15.5,')',//) WRITE(6,7) STDVM, STDVB 7 FORMAT(1H0,15X, 'STDVEV ON THE SLOPE M IS: ',E12.4,//15X, "STD DEV O 1N THE INTERCEPT B IS: ',E12.4,//) WRITE(6,12) XM,SX2, SXY,YM,SY2, SSD 12 FORMAT(1H0,20X, 'XM = ',E12.4,10X, "SX2 = ',E12.4,10X, "SXY = ',E12.4 1,//20X, "YM = ',E12.4,10X, "SY2 = ',E12.4,10X, "SSD = ',E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X, "END OF COMPILATION") END</pre>		WRITE(6,5) (Y(I), X(I), I = 1,N)
<pre>WRITE(6,17) BM, AB 17 FORMAT(1H0,20X,*THE REGRESSION LINE IS :*,//35X,*Y = (*,E15.6,*)*X 1 (*,E15.5,*)*,//) WRITE(6,7) STDVM, STDVB 7 FORMAT(1H0,15X,*STDVEV ON THE SLOPE M IS: *,E12.4,//15X,*STD DEV O 1N THE INTERCEPT B IS: *,E12.4,//) WRITE(6,12) XM,SX2, SXY,YM,SY2, SSD 12 FORMAT(1H0,20X,*XM = *,E12.4,10X,*SX2 = *,E12.4,10X,*SXY = *,E12.4 1,//20X,*YM = *,E12.4,10X,*SY2 = *,E12.4,10X,*SSD = *,E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,*END OF COMPILATION*) END</pre>		5 FORMAT(1H0,10X,E12.4,5X,E12.4)
<pre>17 FDRMAT(1H0,20X,*THE REGRESSION LINE IS :*,//35X,*Y = (*,E15.6,*)*X 1 (*,E15.5,*)*,//) WRITE(6,7) STDVM, STDVB 7 FORMAT(1H0,15X,*STDVEV ON THE SLOPE M IS: *,E12.4,//15X,*STD DEV O 1N THE INTERCEPT B IS: *,E12.4,//) WRITE(6,12) XM,SX2, SXY,YM,SY2, SSD 12 FORMAT(1H0,20X,*XM = *,E12.4,10X,*SX2 = *,E12.4,10X,*SXY = *,E12.4 1,//20X,*YM = *,E12.4,10X,*SY2 = *,E12.4,10X,*SSD = *,E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,*END OF COMPILATION*) END</pre>		WRITE(6,17) BM, AB
<pre>1 (',E15.5,')',//) WRITE(6,7) STDVM, STDVB 7 FORMAT(1H0,15X,'STDVEV ON THE SLOPE M IS: ',E12.4,//15X,'STD DEV 0 1N THE INTERCEPT B IS: ',E12.4,//) WRITE(6,12) XM,SX2, SXY,YM,SY2, SSD 12 FORMAT(1H0,20X,'XM = ',E12.4,10X,'SX2 = ',E12.4,10X,'SXY = ',E12.4 1,//20X,'YM = ',E12.4,10X,'SY2 = ',E12.4,10X,'SSD = ',E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,'END OF COMPILATION') END</pre>		17 FORMAT(1H0,20X, THE REGRESSION LINE IS : ',//35X, 'Y = (',E15.6,')*X
<pre>WRITE(6,7) STDVM, STDVB 7 FORMAT(1H0,15X,'STDVEV ON THE SLOPE M IS: ',E12.4,//15X,'STD DEV O 1N THE INTERCEPT B IS: ',E12.4,//) WRITE(6,12) XM,SX2, SXY,YM,SY2, SSD 12 FORMAT(1H0,20X,'XM = ',E12.4,10X,'SX2 = ',E12.4,10X,'SXY = ',E12.4 1,//20X,'YM = ',E12.4,10X,'SY2 = ',E12.4,10X,'SSD = ',E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,'END OF COMPILATION') END</pre>		1 (',E15.5,')',//)
<pre>7 FORMAT(1H0,15X,'STDVEV ON THE SLOPE M IS: ',E12.4,//15X,'STD DEV 0 1N THE INTERCEPT B IS: ',E12.4,//) WRITE(6,12) XM,SX2, SXY,YM,SY2, SSD 12 FORMAT(1H0,20X,'XM = ',E12.4,10X,'SX2 = ',E12.4,10X,'SXY = ',E12.4 1,//20X,'YM = ',E12.4,10X,'SY2 = ',E12.4,10X,'SSD = ',E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,'END OF COMPILATION') END</pre>		WRITE(6,7) STDVM, STDVB
<pre>IN THE INTERCEPT B IS: ',E12.4,//) WRITE(6,12) XM,SX2, SXY,YM,SY2, SSD 12 FORMAT(1H0,20X,'XM = ',E12.4,10X,'SX2 = ',E12.4,10X,'SXY = ',E12.4 1,//20X,'YM = ',E12.4,10X,'SY2 = ',E12.4,10X,'SSD = ',E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,'END OF COMPILATION') END</pre>		7 FORMAT(1H0,15X, STOVEV ON THE SLOPE M IS: ',E12.4,//15X, STD DEV O
<pre>WRITE(6,12) XM,SX2, SXY,YM,SY2, SSD 12 FORMAT(1H0,20X,*XM = ',E12.4,10X,*SX2 = ',E12.4,10X,*SXY = ',E12.4 1,//20X,*YM = ',E12.4,10X,*SY2 = ',E12.4,10X,*SSD = ',E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,*END OF COMPILATION*) END</pre>		IN THE INTERCEPT B IS: ',E12.4,//)
<pre>12 FORMAT(1H0,20X,*XM = ',E12.4,10X,*SX2 = ',E12.4,10X,*SXY = ',E12.4 1,//20X,*YM = ',E12.4,10X,*SY2 = ',E12.4,10X,*SSD = ',E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,*END OF COMPILATION*) END</pre>		WRITE(6,12) XM,SX2, SXY,YM,SY2, SSD
1,//20X,*YM = ',E12.4,10X,*SY2 = ',E12.4,10X,*SSD = ',E12.4,/) 333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,*END OF COMPILATION*) END		12 FORMAT(1H0,20X, *XM = *, E12.4,10X, *SX2 = *, E12.4,10X, *SXY = *, E12.4
333 CONTINUE WRITE(6,111) 111 FORMAT(1H0,45X,°END OF COMPILATION°) END		1, //20X, *YM = *, E12.4, 10X, *SY2 = *, E12.4, 10X, *SSD = *, E12.4, /)
WRITE(6,111) 111 FORMAT(1H0,45X,'END OF COMPILATION') END		333 CONTINUE
111 FORMAT(1H0,45X,*END OF COMPILATION*) END		WRITE(6,111)
END		111 FORMAT(1H0,45X, 'END OF COMPILATION')
		END

.

ĺ

10 C	Caracire	OCDAN TO CALCULATE THE DECORRECTON CORRECTORY OF AND THETO HAD THE
ر. م	. PR	CONTINUE THE REGRESSION CUEFFICIENTS AND THEIR VARIANCE
C C		EQUATION $Z = AI = XI + AZ = XZ + AJ = XJ + B$
C C		N IS THE NUMBER OF PUINTS USED IN UNE SET
С		MISING ON ZARAN MAARA MAARAN MAARAN
		DIMENSION 2(100), XI(100), X2(100), X3(100)
	2	FORMAT(213)
		READ(5,33) $(X1(1), X2(1), X3(1), I=1,N)$
	.33	EORMAT(5(3=5,0))
		DD 19 J=1,M
	_	READ(5,2) (Z(I), I=1,N)
	3	FURMA1(20F463)
		SOXI = Pe
		$SUZ = U_0$
		$SJX12 = C_3$
		$SUX22 = C_2$
i.	•	$SUX32 = 0_0$
		$SUXIX2 = 0_0$
		$SUXIX 3 = 0_0$
		$SUX2X3 = 0_0$
•		$SUXIZ = V_0$
		$SUX2Z = 0_0$
		$SUX32 = C_3$
;		SSU = Vc
		SO(4 - 1 - 1) = SO(4 - 1) =
		SOX1 = SOX1 + X1(1) SOX2 = SOX2 + X2(1)
		SOX2 = SOX2 + X2(1)
•		SO(7) = SO(7) + 7(1)
		SO(1 = SO(2 + 2(1))) SO(12 = SO(12 + (1)))
		SDX22 = SDX22 + (X2(I)**2)
•		SOX32 = SOX32 + (X3(I)**2)
		SOX 1X2 = SOX1 X2 + (X1(I) * X2(I))
		SOX1X3 = SOX1X3 + (X1(I) * X3(I))
•		SOX 2X3 = SOX 2X3 + (X2(I) * X3(I))
•		SOX1Z = SOX1Z + (X1(I) * Z(I))
		SOX2Z = SOX2Z + (X?(I)*Z(I))
		$SOX3Z = SOX3Z + (X^{(I)}Z(I))$
	4	CONTINUE
		X1M = SOX1/N
		X2M = SOX2/N
		X 3M = SOX3/N
:		ZM = SOZ/N
		SX12 = SOX12 - (X1M*SOX1)
		SX22 = SOX22 - (X2M*SOX2)
		SX32 = SOX32 - (X3M*SOX3)
		$SX1X2 = SOX1X2 - (X2M \pm SOX1)$
·		SX1X3 = SOX1X3 - (X3M*SOX1)
		SX2X3 = SDX2X3 - (X3M*SDX2)
		SZX1 = SOX1Z - (ZM*SOX1)
		SZX2 = SOX2Z - (ZM*SOX2)
	•	SZX3 = SQX3Z - (ZM*SQX3)

-----

2)

 $\overline{01} = (S \times 22 \times S \times 32) - (S \times 2 \times 3 \times 2)$ D2 = (SX1X3*SX2X3) - (SX32*SX1X2)D3 = (SX1X2 # SX2X3) - (SX22 # SX1X3)D = (D1 + SX + (D2 + SX + (D3 + SX + X3)))C11 = D1/DC22 = ((SX12#SX32) - (SX1X3**2))/D C33 = ((SX12*SX22) - (SX1X2**2))/DC12 = D2/DC13 = 03/0C23 = ((SX1X3*SX1X2) - (SX12*SX2X3))/D $A1 = (C11 \pm S7X1) + (C12 \pm SZX2) + (C13 \pm SZX3)$ A2 = (C12*SZX1) + (C22*SZX2) + (C23*SZX3) $A3 = (C13 \times SZX1) + (C23 \times SZX2) + (C33 \times SZX3)$ 3 = 7M - (A1 + X1M) - (A2 + X2M) - (A3 + X3M)5 CONTINUE DD 6 I = 1, N6 SSD = SSD + ((Z(I) - (A1 * X1(I)) - (A2 * X2(I)) - (A3 * X3(I)) - B) * * 2)VARF = SSD/(N-4)STOVE = SQRT(VARE) VARA1 = C11*VARE VARA2 = C22*VARE VARA3 = C33*VARECOV12 = C12*VARECOV13 = C13*VARE COV23 = C23 * VARESTDA1 = SQPT(VARA1) STDA2 = SQRT (VARA2)STDA3 = SQRT(VARA3) VARB = VAPE/N STDB = SORT(VARB) 7 CONTINUE WRITE(6.8) B FORMAT(1H1,40X,*EQUATION - $Z = A1 \times X1 + A2 \times X2 + A3 \times X3 + B$ 1//20X+*EXPERIMENYAL DATA*+/17X+*Z*+23X+*X1*+22X+*X2*+22X+*X3*) WRITE(6.9) (2(I), X1(I), X2(I), X3(I), I = 1.N9 FORMAT(1H0,4(10X,E12,4,3X)) WRITE(6,10) A1, A2, A3, B 10 FORMAT(1H , 20X, 'CALCULATED RESULTS - LEASTS SQUARES FIT',///,15X, 1*A1 = *,E12,4,/15X,*A2 = *,E12,4,/15X,*A3 = *,E12,4,/15X,*B = *,E1 22.04) WRITE(6,11) SX12, SX22, SX32, SX1X2, SX1X3, SX2X3, SZX1, SZX2, SZX3 11 FORMAT(1H ,30X, SX12 = ',E12.4,4X, SX22 = ',E12.4,4X, SX32 = ',E12 1,4,//30X, 'SX1X2 = ',F12,4,4X, 'SX1X3 = ',E12,4,4X, 'SX2X3 = ',E12,64, 2//30X+'SZX1 = '+E12+4+4X+'SZX2 = '+E12+4+4X+'SZX3 = '+E12+4) WRITE(6,12) C11,C22,C33,C12,C13,C23,D 12 FORMAT(1H ,30X, *C11 = *, E1204,4X, * C22 = *, E1204,4X, *C33 = *, E1204 1,//30X+*C12 = *.E12.04.4X.*C13 = *.E12.04.4X.*C23 = *.E12.04.//30X.*D  $2 = 1, E12_{2}4$ WRITE(6,13) SSD, VARE, STDVE 13 FORMAT(1H +40X, STATISTICAL DATA /30X, SSD = +, E12.4, 4X, VARE =  $1E12_04.4X.*STDVE = *.E12_04$ WRITE(6,14) VARA1,VARA2,VARA3,STDA1,STDA2,STDA3,COV12,COV13,COV23 14 FORMAT(1+ ,30X, VARA1 = ',E1204,4X, VARA2 = ',E1204,4X, VARA3 = ', 1E12.4./30X.*STDA1 = .E12.4.4X.*STDA2 = .E12.4.4X.*STDA3 = .E12. 24,/30X, COV12 = ',E1204,4X, COV13 = ',E1204,4X, COV23 = ',E1204) WRITE(6,15) VARB, STOB 15 FORMAT(1H ,30X, *VARB = ', E12, 4,10X, *STDB = ', E12, 4,////50X, *END OF 1 COMPILATION*) 19 CONTINUE

END

# 3) SPECTR3

{

с	PF	ROGRAM SPECTR3	
Ċ	L	L IS THE NUMBER OF SETS OF DATA FIELD 12	
ĉ		N IS THE NUMBER OF WAVELENGTHS USED TO CALCULATE THE SPECTRA	4
r	M	IS THE NUMBER OF CONCENTRATION USED	
~		DOUGLE DECISION CLICAL ALIGN USED	NTING
		10) DEDA/100)	NICED
		TOJ, SERA(TOO)	
·		READ(5,70) L	
	70	FURMAT(I2)	
		00.71 J1 = 1,L	ļ
		READ(5,1) N.M	[
	1	FURMAT(214)	1
		READ(5,2) (LAMDA(I), $I=1,N$ )	1
	2	FORMAT(2513)	
		READ(5,3) ((A(I,J),J=1,M),I=1,N)	
	3	FORMAT(20F4.3)	:
		READ(5,4) (C(J), J = 1,M)	
•	4	FORMAT(10E8.3)	· i
		$S_{\rm JMC} = 0$ .	
		SOMCAR = 0.	
		SUM = 0	
		SIMAC = 0	
		DD 6 1-1 M	
	•		;
		SUMC = SUMC + C(J)	
	6	SUMCAR = SUMCAR + (C(J) * * 2)	
		D = (M*SUMCAR) - (SUMC**2)	1
		DD 7 1=1,N	
		DD 8 J=1,M	
		SOMAB = SOMAB + A(I,J)	
		SOMAC = SOMAC + (A(I,J)*C(J))	1
	8	CONTINUE	
		ABSO(I) = (M*SOMAC-SOMAB*SOMC)/D	-
		AINT(I) = {(SOMAB*SOMCAR)-{SOMC*SOMAC})/D	
		DD 28 J=1.M	
	28	SUM = SUM + (ABSO(I) $*$ C(J) + AINT(I) - A(I,J)) $*$ 2	
		SOMAB = 0.	1
		SOMAC = 0.	
		ERR = (SUM/D)**2	
		ERR2 = SQRT(ERR)	1
		$PERA(I) = 10C_{*}(SQRT(ERR2))/ABSO(I)$	
	7	' SUM = 0.	
		IF (J1-1) 99,99,100	
	99	CONTINUE	
		WRITE (6.20)	
	20	EORMAT(1H1.///.15X. EXPERIMENTAL DESULTS	
		$WRITE(6.22) (I AMDA(I)) (A(I, I)) = I_0 M(AII)$	
	22	= 1000000000000000000000000000000000000	
		WDITE(6.23) (C(1), 1 - 1.4)	
	27	$\frac{1}{100} = \frac{1}{100} = \frac{1}$	
	23	- FURMAI(1HU9///90A90E12049//)	
	100	/.WRIIE(0,14) 	
	14	FURMAILIHI,///,15%, TOALCULATED SPECIRAT,////%, TLAMBDA ABSOR	PI IVI
	1	INTERCEPT')	
		WRITE(0,16) (LAMDA(I),ABSO(I),PERA(I), AINT(I), I=1,N)	
	16	FURMAT(1H ,8X,I3,4X,F6.0,3X,F5.2,7X,F8.3)	<b>1</b> 11
	71	CONTINUE	
		WRITE(6,17)	
	17	FORMAT(1H ,////,25X,****END OF COMPILATION****)	
		END	· _ ]

.

-

APPENDIX VIII

(

## <u>Table 26</u>

Molar absorptivities of Cu(TTAPAN), Cu(PAN)₂ and of HPAN in 35.4 mol¹/₂ methanol in bonzene, at 5 nm. intervals in the spectral range 400 nm. to 600 nm.

The No. of solutions for the least-squares fit was 8.

Wave-	Least-sq	uares val	ues of molar absorptivity and				
in no.	Cu(TT	APAN)	EU(PAN)2		HPAN	<u> </u>	
400	6510.	0.75	13649.	0.25	95420	1.06	
4 05	6807 <b>.</b>	0.27	14211.	0.26	122320	0.12	
4 10	7174.	0.27	14248.	0.29	10935,	0.17	
415	7518.	0.26	141010	0.23	114760	0.14	
420	7646s	0.18	13926	0.36	119440	0011	
425	7584.	0.26	13784。	0.44	124390	0.06	
4 30	74910	0.32	13503,	0.37	130330	C o 14	
435	7535。	0.28	127490	0.44	136675	0.18	
440	74420	0.30	11791.	0.64	141890	0.17	
445	5923.	0.44	11029.	0.68	147940	0.18	
4 50	6038.	0.63	10797.	0.66	15533,	Co 1 3	
455	5007.	0.48	11274,	0.51	16504.	0.19	
460	41160	0.34	12231.	0.54	173940	0.27	
465	36760	0.24	13588.	0.36	17995.	C°53	
470	3702.	0.31	151440	0.28	18151 0	0.30	
475	40220	0.35	16986.	0.25	17993.	0.30	
480	45610	0.26	19117.	0.33	17605,	0.32	
4 85	52280	0.2.0	21582.	0.21	17081.	0.35	
490	51110	0.38	23961.	0.23	163320	0.45	
4 95	7148.	0.40	26247.	0.25	150560	Q. 38	
500	8371.	0.41	28293.	0.15	131410	0.49	
505	9795.	0.28	30456.	0.16	10478.	0.65	
510	111550	0.23	32941.	0.18	78690	0.73	
515	12344.	0.19	35635.	0.24	54600	1.04	
520	13625.	0.13	38535.	0.26	34430	C o 94	
525	14825.	0.17	40597。	0.29	3341 .	2.82	
5 30	162705	0.24	412745	0.35	1921.	1.28	
5 35	17543.	0.26	40825。	0.27	1037.	1.29	
540	18851.	0.20	40 222.	0.29	569o	1.62	
545	20007.	0.28	40076.	0.30	3160	2,98	
550	210470	0.27	406460	0.27	181.	0.96	
555	21990.	0.24	418360	0.30	101.	2.26	
560	227740	0.30	42659.	0.36	61.	3 86	
565	23313.	0.31	41 396.	0.44	41.	8.22	
570	23307.	0.31	38120.	0.63			
575	220720	0.31	30855	0.72			
580	20412.	0.31	258890	0.61			
585	17359.	0.30	19948.	0.86		•	
590	137710	0.35	14802.	0.90			
5 <b>95</b>	11024.	0.59	11575.	1.17			
600	8470.	1.14	8719.	1.37		<u></u>	

! Defined as s/c x 100, where s is the standard deviation.

(

## APPENDIX IX

# .

Table 27

Spectrophotometric data for the equilibrium solutions of set A, used in the calculation of the function  $K_1 \varphi/r$  of equation (5.14) at each wavelength, at 25±2°C.

							·····	
Sol.	Solvent; mol%		Absorbance x 10 ³					
<u>    No.                                </u>	<u>methanol in benzene</u>			Wē	vere	ength	1, nm.	·
		540	555	560	565	570	580	
1	8.38	178	195	207	211	209	177	
2	N .	202	222	237	240	239	204	
3	11	242	264	281	286	284	240	
4	11	259	285	304	309	309	258	
5	11	304	335	356	362	359	303	
6	17	356	394	420	428	426	360	
7	11	375	415	442	449	446	377	
8	n	396	438	468	477	475	406	
9	11	425	470	502	510	507	-433	
10	11	465	515	550	560	558	473	
11	. "	478	528	564	575	571	482	
12	11	494	548	585	596	593	508	
13	17	519	575	613	625	620	529	
!		574	636	678	690	686	583	

The composition of each solution has been given in Table 13.

Sol.	Solvent; mol%				AE	sorb	ance x 10 ³
· No.	<u>methanol in benzene</u>		1.6.6		WE	vele	ength, nm.
	· · · · · · · · · · · · · · · · · · ·		550	560	560	570	
1	16.0		202	214	219	218	
2	11		215	229	234	232	
3	17		243	260	267	266	
4	11		26C	278	284	282	
5	17		277	296	304	302	
6	11 .		312	334	340	337	
7	Ħ		353	378	387	384	
8	11		422	44B	455	452	
9	11		438	468	478	474	
10	11	-	462	493	503	498	
11	11		490	525	535	531	
12	11		532	568	578	573	
!	11		645	686	695	686	
<u></u>				<u> </u>			
		54C	550	560	565	570	580
1	23.0	168	183	195	198	195	163
2	11	203	220	234	237	234	193
[`] 3	11	228	248	264	268	266	220
4	17	265	289	308	312	307	255
5	. 11	327	358	383	388	385	320
6	11	346	382	406	412	407	337
7	Ħ	372	410	437	445	438	365
8	11	402	442	472	478	472	391
9	11	445	491	525	533	526	437
10	11	460	509	543	551	545	452
11	11	480	530	568	577	570	475
12	. 11	510	563	602	609	602	502
1	n '	577	638	679	689	678	568
			ł			ł	

.

(

Table 27 (continued)

. <u></u>		·				
Sol.	Solvent; mol‰	Absorbance x 10 ³				
No.	<u>methanol in benzene</u>	wavelength, nm.				
		550 560 565 570				
1	35.4	162 172 173 171				
2	11	172 183 187 183				
3	"	200 213 215 212				
4	11	222 232 236 233				
5	11	242 256 261 256				
6	n ·	271 288 292 287				
7	11	315 336 342 336				
8	11	388 413 419 411				
9	11	408 435 441 433				
10	H	435 462 468 458				
11	11	467 498 505 495				
12	11	512 549 555 542				
!	11	648 686 691 675				
<u> </u>						
		550 560 570 .				
1	35.4	177 187 187				
2	. 11	220 234 234				
3	11	261 278 279				
4	11	299 320 321				
5	11	367 390 392				
6	11	419 448 451				
7	17	504 538 542				
8	n	590 632 638				
9	11	608 652 655				
10	11	640 682 682				
11		685 732 733				
12	<b>n</b>	710 758 758				
1	11	768 814 814				

Table 27 (continued)

		1					11 _
Sol.	Solvent; mol%		Absorbance x 10 ³				
No.	<u>methanol in benzene</u>		VJa	avelo	ngtl	ר <mark>, הו</mark>	<u>n.</u>
		540	550	560	564	570	,580
1	40.9	180	195	206	210	206	168
2	11	203	220	235	238	235	193
З		240	262	278	282	277	229 [.]
4	11	303	332	355	359	355	291
5	11	325	356	380	385	378	309
6	11	348	382	409	415	409	337
7	11	362	421	448	455	448	370
8	11	429	474	508	515	508	418
9	11	445	491	526	533	525	431
10	Ħ	. 466	515	551	560	553	455
11	11	495	548	586	594	588	482
!	11	575	635	675	682	669	549
· <u> </u>					1		
	۱ ۱	540	550	560	570	580	
1	55.2	160	172	183	177	137	
2	11	185	199	212	204	158	
3	"	220	238	254	245	190	
4	11	248	269	285	275	214	
5	11	287	312	332	322	250	
6	"	309	336	357	344	268	
7.	11	338	369	392	380	295	
8	"	351	382	407	394	305	
9	11	370	404	430	415	320	
10	11	422	462	492	478	372	
11	17	442	482	513	498	392	
12	11	468	512	546	532	416	
13	11	479	527	560	545	426	
14	11	498	546	584	568	445	
1	12	578	634	670	652	522	

Table 27 (continued)

.

	C-1		A 1			
ND.	methanol in benzene	•	ADSC Wave	elenr	nce ; nth.	
		570	550	560		
1	59.4	236	219	236	[	
2	n	252	232	247	ļ	
3	11	266	240	258		
4	11	287	265	282,	{	
5	11	308	283	302	-	
6	11	331	309	331	1	
7	11	366	337	362		
8	11	380	358	379		
9	H H	405	372	398		
10	11	460	425	452		
11	11	542	505	539		
12	H .	598	572	609		
1	11	813	761	813		
		540	550	560	570	580
1	76.7	142	152	158	147	107
2	11	162	173	183	171	128
[.] 3	11	198	214	225	209	153
4	11	261	283	298	280	206
5	11	285	309	325	307	222
6	n	310	338	358	335	248
7	11	355	386	406	380	284
. 8	11	410	448	476	447	332
9	· · · <b>II</b>	429	468	496	464	343
10	. 11	452	496	525	493	362
11	11	490	537	568	530	391
:	11	586	639	670	622	460

Table 27 (continued)

! The absorbance values for this solution are A values.

APP

.

(

APPENDIX X

. . .

## Table 28

(

Spectrophotometric data for the equilibrium solutions of set A, used in the calculation of the function  $K_2\Psi/p$  of equation (5.23) at each wavelength, at  $25 \pm 2^{\circ}C$ .

Sol.	Solvent; mol%	Absorbance × 10 ³					
NU•	methanor in denzene	550	560	566			
1	16.0	728	764	748			
2	17	711	746	731			
3	n	692	726	717			
4	11	704	737	724			
5	11	668	708	704			
6	11	677	71.5	709			
7	· n	659	696	692			
8	11	651	687	686			
9	11	643	679	678			
10	и.	616	652	652 ·			
11	. 11	616	654	654			
12	.11	583	620	625			
1	n	539	576	586			

The composition of each solution has been given in Table 15.

Sol.	Solvent;	mol./o	AE	sort	pance x 10 ³
No.	methanol	in benzene	Wa	evelo	ength, nm.
<u> </u>					550
1	35.	• 4			559
2	Ħ	•			553
3	11				547
4	**				540
5	11		•		531
6	Ħ	· ·			528
7	, ¹				521
8	**				512
9.	11				502
10	tt -				489
11.	11				475
12	11				460
:	. 11				385
					······································
			540	550	560 .
1	35	• 4	734	759	788
2	12		715	742	770
· 3	11		700	729	762
4	tt		676	712	745
5	· 11	•	662	700	728
6	.11		655	692	722
7	11		638	678	710
8	11		623	665	698
9	11		605	652	684
10	"		587	632	665
11			555	603	638
	· 11		489	540	574
•					· ·

(

Table 28 (continued)

<b></b>				
Sol.	Solvent; mol% Abso			cbance x 10 ³
No.	methanol in benzene	V	avel	Length, nm.
	· ·	540	550	56C
1	41.0	844	875	894
2	11	830	870	890
3	11	823	860	885
4	11	808	650	872
5	11	795	844	867
6	17	778	825	855
7	n	767	811	845
8	n .	755	804	832
9	11	735	784	815
10	11	. 685	736	772
11	11	650	704	741
12	n	633	688	725
1	11	571	627	665
<b></b>	· · · · · · · · · · · · · · · · · · ·	540	550	560
1	50.9	864	892	918
. 2	11	855	890	915
3	11	836	872	896
4	11	825	865	892
5	H · · ·	815	856	872
6.	11	792	845	862
7	H .	786	829	854
8	n	762	810	835
9	N -	740	792	820 .
10	11 ·	691	746	772
11	H · .	637	688	725
:	11	569	622	659 .
		J	·	•

Table 28 (continued)

Ĺ

Sol.	Solvent; mol‰	Absorbance x 10 ³			
No.	methanol in benzene	wavelength, nm.			
<u></u>	·	540	550	554	560
l,	76.7	678	698	709	698
2		661	685	695	687
3	<b>n</b>	647	612	680	676
4	11	636	663	675	667
5	11	626	657	664	656
6	n an	612	643	656	646
7	n	598	627	638	630
8	H .	573	606	618	610
9	11	568	602	613	610
10	11	. 534	568	584	579
11	11	495	532	542	542
:	11	403	438	451	458
<u> </u>	<u> </u>	540	550	554	560
1	89.8	948	990	992	952
2	. 11	930	978	994	950
З		915	962	975	935
4	Ħ	915	962	972	935 .
5	11	885	936	948	915
6	11	880	930	938	908
7.	n .	855	905	918	894
8	11	838	888	892	872
9	"	810	868	875	860
10	11	738	792	810	796 .
11	11	681	745	754	747 .
12	11	661	715	731	730
!	11	580	651	659	659

(

Table 28 (continued)
## References

- 1- P. Gray, Ph.D. Thesis, Department of Chemistry, McGill University (1968).
- 2- T. Khin, Ph.D. Thesis, Department of Chemistry, McGill University (1970).

3- M. d'Amboise, Private Communication.

- 4- J. Kirchnerova, Private Communication.
- 5- J. Starry and J. Ruzicka, Talanta 15, 505 (1968).
- 6- A.M. Poskanzer and B.M. Foreman, Jr., Inorg. Nucl. Chem. 16, 323 (1961).
- 7- J.C. Reid and M. Calvin, J. Am. Chem. Soc. 72, 2949 (1950).
- 8- A.E. Chichibabin and M. Rjasanzew, Zh. Russk. Fiz.-Khim. Obshch. 47, 1582 (1951).
- 9- W.S. Geary, G. Nickless and F.H. Pollard, Anal. Chim. Acta 27, 71 (1962).
- 10- R.G. Anderson and G. Nickless, The Analyst 92, 207 (1967).
- 11- K.L. Cheng and R.H. Bray, Anal. Chem. 27, 782 (1955).
- 12- F.B. Pease and M.B. Williams, Anal. Chem. 31, 1044 (1959).

## <u>References (continued)</u>

13- K.L. Cheng, Anal. Chem. 30, 243 (1958).

14- Th. Miles, A.C. Delasanta and J.C. Barry, Anal. Chem. 33, 685 (1961).

15- S. Shibata, Anal. Chim. Acta 23, 376 (1960).

16- A. Galik, Talanta 16, 201 (1969).

- 17- J.P. Fackler, Jr., "Progress in Inorganic Chemistry", Interscience Publishers, A Division of John Wiley and Sons, Inc., New York-London-Sydney, 1966.
- 18- P.J. Elving and P.G. Grodzka, Anal. Chem. 33, 2 (1961).
- 19- Ritcie and Heffley, J. Am. Chem. Soc. 87, 5402 (1965).
- 20- E.L. King and W.H. Reas, J. Am. Chem. Soc. 73, 1806 (1951).
- 21- P.J. Elving and P.G. Grodka, Anal. Chem. 33, 2 (1961).
- 22- E.H. Cook and R.W. Taft, Jr., J. Am Chem. Soc. 74, 6103 (1952).

23- E.L. King and W.H. Reas, J. Am . Chem. Soc. 73, 1806 (1951).

24- A.C. Adams and E.M. Larsen, Inorg. Chem. 5, 814 (1966).

## References (continued)

- 25- E.S. Gould, "Mechanism and Structure in Organic Chemistry", Holt, Rinehart and Winston, New York (1959).
- 26- N. Suzuki, K. Akiba, T. Kanno and T. Wakayashi, J. Inorg. Nucl. Chem. 30, 2521 (1968).
- 27- W. Partenheimer and R.S. Drago, Inorg. Chem. 9, 47 (1970).

28- P. Gray and G.C.B. Cave, Can. J. Chem. 47, 4543 (1969).

29- P. Gray and G.C.B. Cave, Can. J. Chem. 47, 4555 (1969).