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Abstract

Despite impressive achievements in domains such as video games, the ancient strategy

game of Go, and high-dimensional control problems, the application of Deep Reinforcement

Learning (DRL) in real-world scenarios remains challenging due to issues of data efficiency,

training complexity, model generalization, and safety concerns. Addressing these

challenges, the thesis introduces several innovative methods. Firstly, we propose a

multi-teacher knowledge distillation approach for model-based RL, aimed at improving

data efficiency. Secondly, a unified automatic curriculum learning framework is presented

to alleviate training complexity. Thirdly, we introduce an internal working memory

module, aimed at enhancing model generalization. Lastly, we address safety concerns via a

Hierarchical Policy Learning (HPL) framework, coordinating actions between different

policy levels to avoid potential conflicts and ensure safe operations. Our methods have

been applied and evaluated on a range of tasks, including network load-balancing, robotic

manipulation, Atari games, and object manipulation tasks. The results demonstrate the

effectiveness of the proposed approaches in improving the performance of DRL algorithms
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in real-world applications, signifying their potential in tackling the challenges of

implementing DRL in complex, dynamic, and safety-critical domains.



iii

Abrégé

Malgré des réalisations impressionnantes dans des domaines tels que les jeux vidéo, l’ancien

jeu de stratégie Go, et des problèmes de contrôle à haute dimension, l’application de la

DRL dans des scénarios du monde réel reste un défi en raison de problèmes d’efficacité des

données, de complexité de l’entrâınement, de généralisation du modèle et de

préoccupations de sécurité. Pour répondre à ces défis, cette thèse introduit plusieurs

méthodes innovantes. Tout d’abord, nous proposons une approche de distillation de

connaissances multi-enseignants pour le RL basé sur le modèle, visant à améliorer

l’efficacité des données. Ensuite, un cadre d’apprentissage de curriculum automatique

unifié est présenté pour alléger la complexité de l’entrâınement. En troisième lieu, nous

introduisons un module de mémoire de travail interne, visant à améliorer la généralisation

du modèle. Enfin, nous abordons les préoccupations de sécurité via un cadre

d’apprentissage de politique hiérarchique (HPL), coordonnant les actions entre différents

niveaux de politique pour éviter les conflits potentiels et assurer des opérations sûres. Nos

méthodes ont été appliquées et évaluées sur une gamme de tâches, y compris l’équilibrage
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de charge de réseau, la manipulation robotique, les jeux Atari, et les tâches de

manipulation d’objets. Les résultats démontrent l’efficacité des approches proposées pour

améliorer la performance des algorithmes de DRL dans les applications du monde réel,

signifiant leur potentiel pour relever les défis de la mise en œuvre de DRL dans des

domaines complexes, dynamiques et critiques pour la sécurité.
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Chapter 1

Introduction

Building upon the tremendous achievements made in the field of deep neural networks, deep

reinforcement learning (DRL) has established itself as a potent tool in a plethora of decision-

making tasks. With its unique ability to learn from interacting with an environment and

optimize a sequence of decisions, DRL has managed to impressively demonstrate its superior

performance across a multitude of diverse domains.

Most notably, in the realm of video games, DRL has been used to achieve performance

levels that match or even surpass human abilities. As documented in the groundbreaking

work of [5], deep reinforcement learning algorithms have successfully mastered a variety

of games, displaying an understanding and strategic aptitude that matches human game

players.

Similarly, the strategic game of Go, once thought to be impervious to machine learning
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due to its complexity, was eventually mastered by a DRL algorithm as demonstrated by

[6]. Furthermore, DRL has also showcased its capability in managing complex continuous

control tasks, a feat reported in the work of [7], where DRL agents proved adept at handling

high-dimensional control problems.

Looking ahead, researchers are focus on the potential applications of DRL in a wide array

of fields. The applicability of DRL extends to areas such as autonomous driving [8], where

it can be used to optimize decision-making processes in complex, dynamic environments.

Furthermore, it holds significant promise in networking [9], where it could efficiently manage

network traffic and optimize resource allocation. Also, in the field of robotics [10], DRL

can be utilized to empower robots to learn complex tasks through interaction with their

environments.

However, as promising as DRL may seem, the application of these algorithms in real-world

scenarios presents several notable challenges. The real world is fraught with stochasticity,

with outcomes subject to random variations. It’s also open-ended, with no predefined or

distinct states, and constantly changes over time. These characteristics introduce a high level

of complexity and uncertainty, which can significantly limit the effectiveness and potential

application of DRL algorithms. Therefore, the journey to fully realize the promise of DRL

in real-world applications requires more research to address these inherent challenges.
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1.1 Challenges

Despite extensive research on deep reinforcement learning over the past decades, most

studies have been restricted to games or simulator benchmarks, impeding its application in

real-world scenarios. The main challenges can be summarized as follows: data efficiency,

training complexity, model generalization, and safety concerns. These challenges are

further illustrated below:

• Data Efficiency. DRL algorithms typically require a large amount of data to learn

effectively. In real-world applications, obtaining sufficient data can be costly,

time-consuming, or even impractical. Collecting real-world data may involve physical

interactions, such as robots, where each interaction takes time and resources. In this

thesis, we apply DRL in network load-balancing problem. Recently, reinforcement

learning (RL) based methods [4], especially deep reinforcement learning (DRL),

illustrate their ability in finding an optimal load balancing policy. However, existing

RL-based methods normally learn from a specific traffic pattern, which requires a

large amout of data to be trained on a wide variety of situations. Although one can

learn a set of policies and pick a specific policy for each traffic pattern [11], data

efficiency is the main challenge preventing it from applying in real-world.

• Training Complexity. DRL often requires a significant number of interactions with the

environment to achieve good performance. This training complexity can be a challenge



1. Introduction 4

in real-world scenarios where interactions may be expensive, risky, or time-sensitive. In

this thesis, we adopt the automatic curriculum learning (ACL) to train agents’ policies

progressively. Oftentimes, only a single ACL paradigm (e.g., generating subgoals) is

considered. However, it remains an open question whether different paradigms are

complementary to each other and if yes, how to combine them in a more effective

manner similar to how the “rainbow” approach of [12] has greatly improved DRL

performance in Atari games.

• Model Generalization. DRL algorithms often struggle with generalizing from the

training environment to novel, unseen situations. Real-world applications often

require agents to adapt and perform well in varying environments, which may differ

significantly from the training setup. Ensuring generalization and robustness of

learned policies is a significant challenge. Recently, with the tremendous success of

large language model-based (LLM-based) foundation models [13]–[16], an increasing

number of researchers have focused on LLM-based decision-making agents. As shown

with GPT-3 [13] and follow-up work [17], [18], the generalization of these LLMs

depends significantly on the model size, i.e. the number of parameters. This is partly

because neural network parameters act as implicit memory [19], enabling models to

“memorize” a huge amount of training data by fitting these parameters. However,

relying purely on the scale has limits, practical and otherwise: there are economic

and ecological costs, it reduces accessibility, and more efficient uses of scale might
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improve performance further.

• Safety Concerns. In real-world applications, the actions taken by an RL agent may

have physical or societal consequences. Ensuring safety behaviour becomes critical.

For example, In the domain of autonomous driving, an RL agent’s decision-making

directly impacts passenger safety and traffic conditions. Incorrect actions can lead to

accidents, posing significant safety risks. In this thesis, we focus on safety problems

in network load-balancing problems. Existing work shows that either active user

equipment load balancing (AULB) or idle user equipment load balancing (IULB)

performs well individually. Thus, a natural question to ask is that can we combine

both AULB and IULB to better balance the communication load? The answer seems

to be a straightforward “yes” at first glance. However, it is actually difficult to

support an affirmative answer, due to the challenge that the actions of AULB may

conflict with the actions of IULB (and vice versa), resulting in unexpected

degradation on system performance and safety issues.

1.2 Motivations

To effectively tackle the aforementioned challenges, it is imperative to employ more advanced

techniques.Inspired by the latest advancements in machine learning, our approach involves

carefully selecting appropriate methods and seamlessly integrating them with existing RL
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algorithms Thus, we propose several different approaches to address the above-mentioned

challenges:

• Knowledge Distillation Enhanced Data Efficiency. We adopt knowledge distillation

(KD) to address the data efficiency challenge. The advantages can be summarized

in two folds: 1) KD can enable the student model to learn more efficiently from the

teacher model’s experience, requiring fewer training samples from the environment

and improving the data efficiency. 2) The student model can benefit from the teacher

model’s experience, particularly useful in cases where the teacher model has undergone

extensive training or has been trained on a wide range of tasks or environments.

• Curriculum learning Enhanced Training Complexity. To improve agent training in

complex real-world environments, we adopt a curriculum learning idea to generate

multiple curricula progressively. This is because: 1) In curriculum learning, agents start

learning from simple tasks. This process can make it easier to find initial policies that

yield positive rewards, helping to bootstrap the learning process. 2) By progressively

learning from simpler to more complex tasks, the model can converge faster, as it

doesn’t have to learn everything at once. This technique can reduce training complexity

and time.

• Sequence Modeling Enhanced Generalization. Our motivation comes from the recent

success of large language model-based (LLM-based) foundation models [13]–[16].
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Recently, [20] and [21] treat the RL problem as a sequence modeling problem and

proposed a Transformer-based architecture to solve it with offline RL. These findings

inspired researchers to develop more advanced Transformer-based RL methods. Thus,

we want to leverage generalization of LLM and propose an transformer architecture

to solve various tasks.

• Hierarchical Structure Enhanced Safety Actions. We adopt a hierarchical structure

to overcome the safety concerns. The main reason is that, with hierarchical DRL,

high-level policies make strategic decisions while low-level policies execute actions.

This separation can ensure safety-critical decisions are made at an appropriate level of

abstract instructions.

1.3 Contributions

Inspired by the motivations listed in Section 1.2, we investigate and design several

algorithms, which address challenges listed in Section 1.1 accordingly. In particular, the

major contributions of this thesis are listed as follows:

• In Chapter 4, we introduce a multi-teacher knowledge distillation approach to learn

the state transition function and reward function in model-based RL. The key is that

different teachers represent different traffic patterns, and can learn various system

models. By distilling and transferring the teacher knowledge, the student network
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is able to learn a generalized system model that covers different traffic patterns and

unseen situations, which decreases the number of data samples required for training.

Moreover, to improve the robustness of multi-teacher knowledge transfer, we learn a

set of student models and use an ensemble method to jointly predict system dynamics.

• In Chapter 5, we propose a unified automatic curriculum learning framework to

create multi-objective but coherent curricula that are generated by a set of

parametric curriculum modules. Each curriculum module is instantiated as a neural

network and is responsible for generating a particular curriculum. In order to

coordinate those potentially conflicting modules in a unified parameter space, we

propose a multi-task hyper-net learning framework that uses a single hyper-net to

parameterize all those curriculum modules. We evaluate our method on a series of

robotic manipulation tasks and demonstrate its superiority over other state-of-the-art

automatic curriculum learning (ACL) methods in terms of training efficiency and

final performance.

• In Chapter 6, we propose an internal working memory module to store, blend, and

retrieve information for different downstream tasks. Specifically, we instantiate the

internal working memory as a matrix and its functioning entails two primary steps:

memory update and memory retrieval. The memory update involves modifying

or replacing existing information. This enables the system to keep track of changes,

maintain task-relevant information, and facilitate decision-making. Memory retrieval
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refers to the process of accessing and recovering stored information. It involves

bringing relevant information back to condition decision-making. We use

content-based addressing [22]–[24] to locate the memory position to update or

retrieve from. To update the memory, we first map the input sequence and memory

into three entities: query, key, and value. Next, we use an attention-based mechanism

to calculate the correlations between the input and memory, and then we use the

attended weight of the input sequence to update the memory. To retrieve, we read

from the updated memory at the content-based address. Evaluation results show that

the proposed method improves training efficiency and model generalization in both

Atari games and meta-world object manipulation tasks. Moreover, we demonstrate

that memory fine-tuning further enhances the adaptability of the proposed

architecture.

• In Chapter 7, we propose a Hierarchical Policy Learning (HPL) framework, which

coordinates the actions between different policies with a two-level learning structure.

Concretely, the upper level adjusts one level of actions, and the lower level controls the

other level of actions. The upper level aims to optimize the system performance directly

as an RL reward, and at the same time, learns to set a subgoal for the lower level. This

subgoal is a desired RL state, which further improves the upper-level reward (and yet

cannot be achieved with only upper-level actions). By approaching this subgoal, the

lower level 1) indirectly enhances the system performance, and 2) is enforced to align
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with the upper level. In this way, collaboration is established between two levels of

action, eliminating potential conflicts and addressing safety concerns.
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Chapter 2

Background

In this chapter, we introduce the background of reinforcement learning (RL), the problem

settings in the RL research community, and the preliminaries of mechanisms adopt in this

thesis.

2.1 Overview

Reinforcement learning can be categorized in several ways in terms of the nature of the

learning process, the feedback received, and the environment. RL can be briefly divided into

the following categories:

• Model-based vs. Model-free: In model-based RL, the agent creates a model of the

environment to make decisions, which involves predicting the next state and the reward.
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In contrast, model-free RL directly learns a policy or a value function without explicitly

modelling the environment.

• Value-based vs. Policy-based In value-based RL, the agent aims to learn the value of

each state or state-action pair, which represents the expected cumulative future reward.

The policy (i.e., the strategy for choosing actions) is then derived from these values.

In policy-based RL, the agent directly learns the policy without explicitly learning the

value function.

• On-policy vs. Off-policy In on-policy learning, the agent learns the value of the policy

currently being used to make decisions. In off-policy learning, the agent learns the

value of one policy while following another policy. Off-policy learning allows an agent

to learn from previous experiences, even as its policy evolves.

• Single-agent vs. Multi-agent In single-agent RL, the agent learns to optimize its

decisions in an environment where it is the only entity making decisions. In

multi-agent RL, multiple agents interact with the environment and each other,

leading to more complex dynamics.

These categories are not mutually exclusive and many RL algorithms fall into different

categories. This thesis mainly focuses on single-agent settings and leaves the multi-agent

settings in the future research.
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2.2 Problem Setting

Formally the single-agent RL problem is formulated as a Markov decision process (MDP)

M . A MDP can be described by a tuple M = (S, A, P, R, γ):

• S: is the state set. The state of time t is denoted as St = s.

• A: is the action set. The action of time t is At = a.

• P : the state transition probability function, where P (St+1 = s′|St = s, At = a) maps a

state–action pair at time t to a probability distribution over states at time t + 1, such

that P : s× a× s′ → [0, 1].

• R: the reward function, where R× A→ R

• γ: is the discount factor, where γ ∈ [0, 1).

The goal reinforcement learning is to learn a set of agent policies {πa}a=1,...,A that

maximise the total expected return per episode J = Eτ∼P (τ |πa)[
∑

t γtrt]. In deep

reinforcement learning (DRL), optimization involves training neural networks that

represent policies and value functions.

A policy π : A = π(S) specifies a way of behaving, and its value function is the expected

return obtained by following policy π. The value function Vπ obeys the following Bellman

equations:
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Vπ(s) =
∑

a

π(a|s)(r(s, a) + γ
∑
s′

P (s′|s, a)Vπ(s′)),

where s′ is the state following state s. The policy gradient theorem provides the gradient of

the expected discounted return from an initial state d(s0) with respect to a parameterized

stochastic policy πθ:
∂J(θ)

∂θ
=

∑
s

d(s; θ)
∑

a

∂π(a|s)
∂θ

Qπ(s, a),

where we simply write π for πθ for ease of notation and d(s : θ) = ∑
s0 d(s0)

∑∞
t=0 γtP π(St =

s|S0 = s0) is the discounted state occupancy measure.

2.3 Preliminaries

2.3.1 Knowledge Distillation

To improve the performance of the student network, [25] introduces a knowledge distillation

framework, which uses the supervision knowledge distilled from teacher networks. In general,

the student network is trained to have similar output distribution with regard to teacher

networks. The output of the student network is regulated to be close to the ground truth

labels as well as the outputs of teacher networks.

LKD(θS) = H(y, fθS
) + αH(fθT

, fθS
),
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where H(·, ·) is the cross-entropy, α is a hyper-parameter that regularizes the second term,

and y stands for the ground-truth label. In addition, fθS
and fθT

are student network and

teacher network respectively.

2.3.2 Curriculum Learning

Automatic curriculum learning (ACL) is a learning paradigm where an agent is trained

iteratively following a curriculum to ease learning and exploration in a multi-task problem.

Since it is not feasible to manually design a curriculum for each task, recent work has

proposed to create an implicit curriculum directly from the task objective. Concretely,

it aims to maximize a metric P computed over a set of target tasks T ∼ Ttarget after some

episodes t′. Following the notation in [26], the objective is set to: maxD
∫

T ∼Ttarget
P t′

T dT , where

D : H → Ttarget is a task selection function. The input H can consist of any information

about past interactions. For example, in our experiments, the history consists of the last

state of the episode, and the output of D is a sequence of generated episodes, which contain

different desired goals, initial states, rewards, etc.

2.3.3 RL as a Sequence Modeling Problem

We formulate the RL problem as a Markov decision process (MDP) problem with tuples

T = (S,A,P ,R, γ): where S denotes the set of states, A the set of actions, p : S ×A×S →

(0, 1) the transition kernel, r : S × A → R the reward function, and γ ∈ [0, 1) the discount
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factor. In addition, π( · ; ϕπ) designates a policy parameterized by ϕπ, and π(a|s; ϕπ) denotes

the probability of choosing action a ∈ A given a state s ∈ S. Here, we consider a transfer

learning problem, where a pre-trained model is used as a starting point for a new task that

is related or similar to the original task on which the model was trained. The idea behind

transfer learning is to leverage the knowledge learned by the pre-trained model to improve

performance on the new task, for which data may be lacking or inaccessible.

Formally, in the context of model evaluation, we can define a set of training tasks and

testing tasks as T train and T test, respectively. These two sets deliberately have no overlapping

tasks, but they may share the same or similar observation and action spaces. To be more

specific, for each training task T i ∈ T train, we have access to a large training dataset,

which contains trajectories τ 0:H = (s0, a0, r0, · · · , sH , aH , rH), where H is the episode length.

However, we assume access to only a small amount of data for the testing tasks.

Our goal is to evaluate the proposed model in two dimensions. First, we want to assess

the model’s generalization, which refers to its ability to solve the testing tasks within a

finite time with no additional fine-tuning. Second, we want to test the model’s adaptability,

which refers to its ability to improve its performance on the testing tasks through fine-tuning

on limited data after pre-training on separate tasks.
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2.3.4 Hierarchical Reinforcement Learning

Hierarchical Reinforcement Learning (HRL) is a subfield of reinforcement learning that

seeks to address complex problems by dividing them into a series of simpler sub-tasks. This

approach is inspired by the hierarchical nature of human and animal decision-making

processes, where complex tasks are naturally broken down into more manageable parts.

In traditional reinforcement learning, an agent aims to learn a single policy that maps

every state to an optimal action. However, in complex environments with a large state-action

space, this approach can be computationally expensive and slow to converge.

HRL solves this problem by constructing a hierarchy of policies at different levels of

abstraction. At the highest level, a “meta-policy” makes broad, strategic decisions about

what type of action to take. At lower levels, sub-policies handle the specifics of how to

execute these high-level actions.

One way to do this is using options or skills frameworks. An option (or skill) is a pre-

defined sequence of actions that achieve a particular sub-goal. Instead of choosing from

individual actions at each step, the high-level policy chooses from these options, significantly

simplifying the decision-making process.

However, HRL also has challenges such as how to define the hierarchy, how to coordinate

the learning between different levels, and how to handle the trade-off between exploration

and exploitation at different levels. Despite these challenges, HRL remains a promising

approach for handling complex reinforcement learning problems.
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Chapter 3

Related Work

In this chapter, we provide a comprehensive review of the related work in the field of RL

algorithms, highlighting the various mechanisms that are adopted in this thesis.

Additionally, we focus on the specific RL scenario of network load balancing problem,

exploring the application of RL techniques in this domain. By examining the existing

literature and drawing insights from previous research, we lay the foundation for our

proposed methodologies and contribute to the advancement of RL for network load

balancing.

3.1 Overview of Reinforcement Learning

Contrary to supervised or unsupervised learning, reinforcement learning is primarily

concerned with deciphering how agents should operate within an environment to maximize
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their accumulated reward [27]. It has been successfully leveraged across various domains,

ranging from Atari games [28] and robotics [29], to natural language processing [30] and

healthcare [31]. In this thesis, we mainly focus on the following categories of RL methods.

3.1.1 Model-free Reinforcement Learning

Model-free RL is an extensive and active research area that has made numerous

advancements over the past few decades. The primary advantage of model-free RL is that

it doesn’t require learning the system dynamics (i.e., state transition function and reward

function). Instead, the agent treats the environment as a black box and approximates the

value or policy function by interacting with it. Broadly speaking, there are two primary

categories of model-free RL algorithms: value-based and policy-based methods.

Value-based methods stand for a series of RL algorithm that learns the state-value

function or action-value function. The policies are inferred by choosing actions that collect

the largest return value at the current state. The classical value-based method is

Q-learning, which learns optimal action-value functions directly from trajectories gained by

interacting with the environment [32]. State-action-reward-state-action (SARSA) is

designed to learn the Q-value associated with taking a specific action in a given state and

following the current policy thereafter [33]. Deep Q-Network (DQN) utilizes deep neural

networks (DNNs) to approximate the Q-function. DQN also introduces replay buffer and

target network techniques to overcome the challenges of applying DNNs in RL [28]. Double
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DQN is proposed to reduce the overestimation bias of DQN by using two separate networks

for action selection and policy evaluation, respectively [34]. The following work Prioritized

Experience Replay (PER) aims to improve learning efficiency by prioritizing the stored

experience in the buffer, instead of uniformly sampling from the replay buffer [35]. The

motivation behind Dueling DQN is to separately represent the state-value and

action-advantage functions in the network architecture, to better understand the

underlying state values without the need of learning all action values [36]. To solve the

partial observable environment, Deep Recurrent Q-Network (DRQN) incorporate recurrent

neural networks (e.g., LSTM) into the DQN architecture to allow the agent to maintain a

memory of past observations [37]. Compared to the epsilon-greedy approach used in DQN,

Noisy DQN aimed to encourage the agents’ exploration by adding parametric noise to the

weights of the network [38]. Rainbow DQN is presented to combine the above-mentioned

improvements (including DDQN, PER, Noisy DQN and Dueling Networks) into a single

architecture [12].

3.1.2 Model-based Reinforcement Learning

Model-based reinforcement learning algorithms are famous for solving real-world sequential

decision-making problems due to their data efficiency [39]. Usually, one cannot directly

obtain the environment model (i.e., state-transition function and reward function), thus

there are plenty of ways to approximate the dynamic model by treating the system model
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as a black box. Among all the approximators, Neural Networks (NNs) based approximators

are widely used in model-based reinforcement learning, due to its asymptotic performance

of high-capacity approximate function [40]. Moreover, NNs can scale to high dimensional

control problems with better sample efficiency [41], [42]. The classical model-based algorithm

is Dyna-Q, which integrates planning, acting, and model learning into a unified system [43].

The motivation is to improve the agent’s policy by simulating the next states and rewards

from the learned model, thus decreasing the interactions with the environment. Lately,

model predictive control (MPC) is introduced for planning by optimizing actions over a

finite horizon and executing only the first action in the sequence. The motivation is to create

a feedback system that plans and re-plans at each time step to respond to environmental

changes [44]. The World Models framework learns a model of the environment and utilizes

the model to train the policy [45].

3.1.3 Hierarchical Reinforcement Learning

Hierarchical RL algorithms originate from the ideas of options framework [46]. The Options

Framework introduces temporal abstractions into reinforcement learning through options,

which are sub-policies covering multiple time steps. The motivation is to improve learning

and planning by structuring the decision process on multiple time scales. Lately, this options

framework is extended to the Option-Critic framework, which integrates the learning of

options and the policy over options into a unified learning process [47]. Hierarchical-DQN (h-
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DQN) adopt the hierarchical options framework idea to the DQN algorithm [48]. In h-DQN,

one DQN plays the role of selecting goals and another DQN take actions to achieve these

goals. This method brings the benefits of hierarchical decision-making to DRL. Inspired by

h-DQN, hierarchical actor-critic (HAC) is proposed to improve learning efficiency for sparse

and delayed rewards tasks [49]. HAC allows for flexible goal specifications and can learn

high-level strategies to achieve complex tasks.

3.1.4 Reinforcement Learning via Sequence Modeling

Transformer [50] is a powerful architecture designed for sequence modeling. Owing to the

capabilities that emerge as model and data size scale up, the Transformer has become a

foundational model in several domains, including natural language processing [13], [14], [16]

and computer vision [15]. However, applying Transformers in reinforcement learning settings,

such that they generalize to multiple tasks, remains an open problem.

Recently, [20] and [21] treat the RL problem as a sequence modeling problem and

proposed a Transformer-based architecture to solve it with offline RL. These findings

inspired researchers to develop more advanced Transformer-based RL methods. Subsequent

efforts mainly focus on two aspects: generalization and adaptability. To improve model

online adaptability, [51] propose the Online Decision Transformer (Online DT), which

utilizes the maximum-entropy idea to encourage pre-trained policies to explore during a

phase of online adaptation. To improve offline adaptation, [52] propose a
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Hyper-network-based module that helps DT adapt to unseen tasks efficiently. To facilitate

task adaptation, [53] introduce the prompt-based DT, which selects short trajectories to

use in a task prompt in analogy with in-context learning for large language models.

Furthermore, [54] propose a multi-game DT (MDT), which use the expert action inference

to consistently produce actions of highly-rewarding behavior. MDT demonstrating that DT

can generalize to various Atari games with human-level performance. We argue that the

generalization of the above-mentioned works relies on the size of models and does not learn

the data efficiently. To address this issue, we introduce a working memory module that can

store, blend, and retrieve training information for better model and training efficiency.

3.2 Related Mechanisms

3.2.1 Knowledge Distillation

Knowledge distillation is first proposed by [25] and aims to help the training process of a

smaller student network under the supervision of a larger teacher network. FitNets [55]

encourage an intermediate layer of the student network to have the ability to match the

outputs of some intermediate layers of the teacher network. The relationships among different

neural layers and neurons [56], [57] are also considered as knowledge distilled by teacher

models. To better transfer knowledge, multiple teacher networks have been introduced in

the knowledge distillation framework where a student network can simultaneously receive
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knowledge distilled from multiple teacher networks.

The average ensemble of logits is a commonly-used approach in multi-teacher knowledge

distillation. In such a setting, a student network is encouraged to learn the average softened

output of multiple teacher networks’ logits via minimizing the cross-entropy loss, and the

average softened output serves as the incorporation of multiple teacher networks in the

output layer [58], [59]. In [60], authors formulate the teacher selection problem under an RL

framework, where each teacher network is assigned an appropriate weight based on various

training samples and the outputs of teacher networks.

3.2.2 Transformer-based Reinforcement Learning methods

Transformer [50] is a powerful architecture designed for sequence modeling. Owing to the

capabilities that emerge as model and data size scale up, the Transformer has become a

foundational model in several domains, including natural language processing [13], [14], [16]

and computer vision [15]. However, applying Transformers in reinforcement learning settings,

such that they generalize to multiple tasks, remains an open problem.

Recently, [20] and [21] treat the RL problem as a sequence modeling problem and

proposed a Transformer-based architecture to solve it with offline RL. These findings

inspired researchers to develop more advanced Transformer-based RL methods. Subsequent

efforts mainly focus on two aspects: generalization and adaptability. To improve model

online adaptability, [51] propose the Online Decision Transformer (Online DT), which
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utilizes the maximum-entropy idea to encourage pre-trained policies to explore during a

phase of online adaptation. To improve offline adaptation, [52] propose a

Hyper-network-based module that helps DT adapt to unseen tasks efficiently. To facilitate

task adaptation, [53] introduce the prompt-based DT, which selects short trajectories to

use in a task prompt in analogy with in-context learning for large language models.

Furthermore, [54] propose a multi-game DT (MDT), which use the expert action inference

to consistently produce actions of highly-rewarding behavior. MDT demonstrating that DT

can generalize to various Atari games with human-level performance. We argue that the

generalization of the above-mentioned works relies on the size of models and does not learn

the data efficiently. To address this issue, we introduce a working memory module that can

store, blend, and retrieve training information for better model and training efficiency.

3.2.3 Working memory

In the context of machine learning, there is a long history of neural network-based models

that incorporate memory mechanisms [61]–[69]. Generally, this research aims to enhance

the capacity of neural networks to store and manipulate information over extended periods

of time, leading to improved performance on a range of tasks. It often takes inspiration

from human cognitive function. Most salient to our work, [22] merge concepts from Turing

machines and deep learning in “Neural Turing Machines” (NTMs), neural networks that

include a content-addressable matrix memory space for storing and updating information
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throughout time. They show NTMs to be effective for various algorithmic tasks.

Contemporaneously, [70] introduce “memory networks,” which use a content-addressable

matrix memory store and retrieve information from previous computational steps to

facilitate complex reasoning and inference tasks. [71] propose a rapidly adaptable neural

memory system, which they instantiate as a feedforward neural network trained by

metalearning. They evaluate the memory’s effectiveness in a simple RL setting, maze

exploration, and on various NLP tasks. This work can be seen as a precursor to our use of

LoRA to adapt the working memory module. More recently, [72] utilize the “global

workspace” theory from cognitive science, which posits that different input entities share

information through a common communication channel. The proposed shared global

workspace method utilizes the attention mechanism to encourage the most useful

information to be shared among neural modules. It is closely related to working memory

and inspires us to explore how an explicit working memory can improve the generalization

of Transformer-based models. An upshot of our work is that it may be valuable to revisit

earlier memory-augmentation methods in light of more powerful foundation models.

3.2.4 Curriculum Learning

Curriculum learning (CL) is an important learning strategy that can be applied to RL. The

reason is that CL helps decompose a hard task into several subtasks from simple to complex.

The intuition behind CL is inspired by the human learning process, in which one often starts
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with simpler tasks before gradually taking on more difficult ones [73].

As pointed out in [74], in the context of RL, CL can control five types of elements in

RL tasks: which are goal generation, reward shaping, environment generation, initial state

generation, and opponents generation. In [75], authors show the benefits of a diverse set

of starting states to guide the learning processing in manipulation tasks. Similarly, [76]

introduces a reverse curriculum generation strategy for robot locomotion tasks.

However, one of the key challenges in applying CL is how to define an effective and

scalable curriculum. To address this issue, recent works focus on automatic curriculum

learning (ACL), which adjusts curriculum based on the agents’ performance [77]. Specifically,

the teacher-student framework is proposed for ACL, where the teacher plays the role as

curriculum generator and the agent is the student [74].

While automatic curriculum learning has demonstrated successes, all of the above work

only considers single curriculum generation and doesn’t show the potential of multiple

curricula generation. In this thesis, we aim to generate multiple curricula in a unified

framework, where all curricula contribute to the agents’ policy learning.



3. Related Work 28

3.3 Applied Reinforcement Learning

3.3.1 RL for Network Load-balancing

Load Balancing (LB) has been important topic for cellular network performance and

efficiency. Both Active User Equipment LB (AULB) and Idle User Equipment LB (IULB)

have been explored in the literature. To control the LB actions, existing methods employ

either rule-based algorithms or RL-based algorithms. For rule-based algorithms, a set of

different LB strategies or parameters are pre-defined. Control actions are taken based on

the serving cell and the neighboring cells’ signal measurements to minimize the call

dropping rate, usually with a fixed size of control steps [78]. The adaptive step size has also

been studied for mobile load balancing in [79]. In general, the performance of rule-based

methods is limited by the mismatch between pre-define rules and the ever-changing

environment.

RL aims to learn a control policy to maximize some long-term expected reward, by

interacting with the environment. It also been used to balance the communication load.

In [80], Q learning is applied to deal with mobility load balancing. Compared with rule

based method, Q learning shows better performance on improving system performance in

changing environments. It is also shown that the number of unsatisfied users could be

improved by Q learning based load balancing method [81]. Q learning based method has

also been used to improve the load distribution and the system robustness in [82]. Fuzzy Q
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learning has been proposed in [83] to better deal with uncertainty in the observations.

However, Q learning methods, as well as classic joint control methods (e.g., OnCAR [84]),

suffer from the curse of dimensionality. To address this issue, Deep RL (DRL) methods use

deep neural networks as function approximators, and illustrate impressive performance for

different control tasks. Specifically, it has been applied in [85] to learn multiple LB policies

for a more robust cellular network. In [86], DRL also illustrate its advantage in balancing

the load in Device-to-Device (D2D) networks. In addition, DRL has been employed for the

LB in Internet of Things (IoT) networks [87].

3.3.2 Robotics Control

The second application we are interested in is robotics control. In this proposal, we adopt a

novel benchmark CausalWorld [88], as this environment enables us to easily design and test

different types of tasks in a fine-grained manner. It is worth noting that this environment also

provides a wrapper that makes the environment execute actions on the real robot, which

can be used in sim2real experiments. We choose five out of the nine tasks introduced in

CausalWorld since the other four tasks have limited support for configuring the initial and

goal states, which are shown in Figure 3.1. Specifically, we enumerate these five tasks here:

(1) Reaching requires moving a robotic arm to a goal position and reaching a goal block;

(2) Pushing requires pushing one block towards a goal position with a specific orientation

(restricted to goals on the floor level); (3) Picking requires picking one block at a goal height
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(a) Reaching/Pushing (b) Picking (c) Pick and Place (d) Stacking

Figure 3.1: Example tasks from the task generators provided in the benchmark. The goal
shape is visualized in opaque red and the blocks in blue.

above the center of the arena (restricted to goals above the floor level); (4) Pick And Place

is an arena divided by a fixed length block and the goal is to pick one block from one side of

the arena to a goal position with a variable orientation on the other side of the fixed block;

(5) Stacking requires stacking two blocks above each other in a specific goal position and

orientation.

3.3.3 Arcade Learning Environment

The third application we focus on is Atari games. The Arcade Learning Environment

(ALE), originally proposed by Bellemare [89], serves a dual purpose: it is both a

challenging problem and a platform for evaluating general competency in artificial

intelligence (AI). Atari 2600 games are ideal for AI agent assessment for three primary

reasons: 1) the variety of games provides multiple distinct tasks, necessitating a general

competence, 2) they offer interesting and human-engaging challenges, and 3) they are free

from experimenter bias, being developed independently. The significance of ALE is evident
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in the considerable attention it has garnered within the scientific community. There has

been a surge in research papers utilizing ALE as a testing ground in recent years. Notable

achievements include the development of Deep Q-Networks (DQN) [5], which was the first

algorithm to reach human-level control in many Atari 2600 games, garnering widespread

acclaim.

In this thesis, the offline datasets are derived from the work of [90]. The datasets,

known as the DQN replay datasets, were generated by training multiple DQN agents,

following the approach outlined by [5], across 60 Atari 2600 games. Each game involved

training sessions of 200 million frames, adhering to a standard protocol with a frame skip

of 4 and the inclusion of sticky actions. For each game, five unique agents were trained,

each initialized randomly. Throughout the training process, comprehensive data comprising

tuples of observation, action, reward, and subsequent observation were collected. This

resulted in the creation of five distinct replay datasets for each game, cumulating in a total

of 300 datasets. Remarkably, each individual game replay dataset is approximately 3.5

times the size of the ImageNet dataset. These datasets are particularly valuable as they

encompass samples from a wide range of intermediate and diverse policies observed during

the optimization process of the online DQN agents.
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Chapter 4

Knowledge Distillation Enhanced

Sample Efficiency

4.1 Introduction

Load balancing (LB) plays an important role in the cellular network, since it can maximize

resource usage, minimize response time, and reduce computation overload [1]. To provide

a balanced load, it is important to take a wide variety of network traffic patterns into

consideration. Because users or user equipments (UEs) may consume different bandwidths

due to different user habits and scenarios. For example, on workdays, users tend to use

low-frequency bandwidth that can provide better connectivity for lightweight tasks such as

mailing. On weekends, users are likely to consume high-frequency bandwidth, which can
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provide higher throughput, to watch streaming shows for entertainment purposes. Hence, it

is a challenge to come up with a generalized load balancing policy that can adapt to different

traffic patterns.

Recently, reinforcement learning (RL) based methods [2], especially deep reinforcement

learning (DRL), illustrate their ability in finding an optimal load balancing policy. However,

existing RL-based methods normally learn from a specific traffic pattern, which cannot be

applied to a wide variety of situations. Although one can learn a set of policies and pick

a specific policy for each traffic pattern [1], it remains a challenge to deal with unseen new

scenarios. There are two reasons. First, most existing RL-based load balancing algorithms

are model-free methods, which learn directly from interactions of environments and treat

system dynamics as a black box. When the traffic pattern changes, the trained agent cannot

adapt to unseen patterns. Second, the model-free RL-based method requires huge amounts

of data. As a result, the agent needs to make frequent interactions with the real environment,

making it impossible or hard to train a generalized load balancing policy.

To develop a generalized load balancing policy, we propose a Multi-teacher MOdel

BAsed Reinforcement Learning algorithm (MOBA), which embraces both the

multi-teacher Knowledge Distillation1 (KD) [3] and the model-based RL [4]. In particular,

we first utilize the model-based RL to learn a set of traffic pattern models (including a

state transition model and a reward model), which we called teacher models. Then, we
1Multi-teacher KD is first introduced for model compression. Recently, this technique has been widely

used in different problems such as data privacy, natural language processing (NLP), and few-shot learning.
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leverage the multi-teacher KD to transfer the knowledge of teacher models to a student

model. Our key observation is that the ability of policy generalization is closely related to

the learned student model because the learned student model will be generalized enough

with enough transferred knowledge. Motivated by this, we learn a generalized load

balancing policy by using multiple teacher models, where different teachers represent

different traffic patterns. In contrast to existing methods, we show that distilling

multi-teacher model knowledge not only improves the ability of model generalization but

also avoids frequent interactions between the agent and environment, thus reducing the

time cost and improving the data efficiency. Furthermore, we use an ensemble of student

networks to predict system dynamics and improve the stability of the learned student

model and policy. More importantly, our proposed framework is algorithm agnostic, which

can be easily combined with other state-of-the-art policy learning methods.

We conduct experiments on a communication network simulator over four performance

metrics. Compared to the state-of-the-art (SOTA) methods, MOBA improves system

minimum throughput and total throughput by up to 28.6% and 23.2%, respectively.

Results also show that MOBA can improve training efficiency by up to 64%.

To sum up, the contributions of this chapter are as follows:

• We introduce a multi-teacher knowledge distillation approach for a generalized load

balancing policy. The learned student model not only has high accuracy but also is

robust to traffic pattern changes.
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• We utilize a model-based RL approach for load balancing, which improves training

efficiency.

In this chapter, we delve into the experimental validation of the proposed models and

algorithms. While the initial focus of our study centers on the load balancing problem in

communication networks, it is crucial to illustrate the versatility and applicability of our

models in varied contexts. To this end, we extend our experimentation to include tasks in

robotics. This approach not only demonstrates the robustness of our models in handling

complex load balancing scenarios but also their adaptability to different domains.

• Load Balancing in Communication Networks: The primary focus of our

experiments lies in addressing the challenges in load balancing. We implement our

models in simulated network environments to evaluate their efficacy in optimizing

traffic distribution and managing network resources efficiently.

• Robotics Tasks: To further validate the generalizability of our models, we include

experiments in robotics. These tasks involve complex control and decision-making

scenarios, offering insights into how our models perform in dynamic and physically

constrained environments.

This chapter thus presents a comprehensive evaluation of our models, showcasing their

application not only in the specific context of load balancing but also in broader areas like

robotics. Such a diverse experimental setup allows us to thoroughly assess the capabilities



4. Knowledge Distillation Enhanced Sample Efficiency 36

and limitations of our proposed solutions.

4.2 Preliminaries

4.2.1 Model-based Reinforcement Learning

A discrete-time finite Markov decision process (MDP) is defined by the tuple < S, A, p, r, γ >.

Here, S is the state space, A is the action space, p : S ×A×S is a state transition function,

r : S ×A→ R is a reward function, and γ is the discount factor. The goal of reinforcement

learning is to learn an agent policy π that can collect the largest expected return E[∑T
t γtrt].

In contrast to model-free RL algorithms that don’t model system dynamics (i.e. state

transition function), model-based RL methods explicitly learn the state transition function

p. The system dynamics can be treated as a black box and learned using various means.

One of the methods we adopt in this chapter is a neural network function approximator. We

use a function fϕ(st+1|st, at) that parameterized by ϕ to represent this approximator. We

train this function by maximizing the log-likelihood of the state transition distribution.

4.2.2 Knowledge Distillation

To improve the performance of the student network, [3] introduces a knowledge distillation

framework, which uses the supervision knowledge distilled from teacher networks. In general,

the student network is trained to have similar output distribution with regard to teacher
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networks. The output of the student network is regulated to be close to the ground truth

labels as well as outputs of teacher networks.

LKD(θS) = H(y, fθS
) + αH(fθT

, fθS
),

where H(y, fθ) = −∑N
i=1 [yi log(fθi

) + (1− yi) log(1− fθi
)] is the cross-entropy, α is a hyper-

parameter that regularizes the second term, and y stands for the ground-truth label. In

addition, fθS
and fθT

are student network and teacher network respectively.

4.2.3 Active UE Load Balancing (AULB) Feature

In this chapter, we consider a hybrid load balancing problem, which is consist of AULB

and IULB. The load balancing solution AULB is based on active UE HandOver (HO). We

propose a common Reference Signal Received Power (RSRP) based handover mechanism

in LTE/5G networks for the purpose of generality, which can encompass several versions

such as Cell Individual Offset (CIO) based handover or A2/A5 event based HO. Specifically,

every UE compares the RSRP value of its serving cell to the values of its neighbors. If the

following condition holds, then the active UE will be handed over to a neighboring cell, i.e.,

RSRPj > RSRPi + αi,j + H, where RSRPi represents the UE’s RSRP from the serving cell

i, RSRPj denotes the UE’s RSRP from a neighboring cell j, αi,j is the HO threshold from

cell i to cell j, and H is the HO hysteresis. This HO threshold αi,j is a pair-wise directional
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variable (e.g., αi,j ̸= αj,i).

4.2.4 Idle UE Load Balancing (IULB) Feature

Another load balancing approach IULB relies on idle UEs’ Cell Re-selection (CR). When a

UE is initially turned on, it goes into idle mode and then ”camps” on a cell. A UE that is

idle is ready to start a dedicated service or receive a broadcast service. The UE will generally

stay in the same cell where it camped during the idle phase until it becomes active. An idle

UE might use the CR technique to camp on another cell in order to stay connected while

travelling. This CR procedure will be triggered, if the following condition holds for an idle

UE: RSRPi < βi,j, and RSRPj > γi,j, where βi,j and γi,j are pairwise and directional RSRP

thresholds to trigger CR from a camping cell i to a neighboring cell j.

4.3 Methodology
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Figure 4.1: The architecture of our multi-teacher reinforcement learning method.
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The overview of MOBA’s architecture is depicted in Figure 4.1. At a high level, it consists

of two parts, which are policy rehearsal and policy evaluation. Next, we detail our method.

4.3.1 Problem Statement

We intend to tackle a hybrid load balancing issue in this work, in which both AULB and

IULB are used to achieve a balanced load and improved system performance. Formally, we

define this hybrid load balancing problem as follows.

max
{αi,j},{βi,j},{γi,j}

E[
T∑

t=1
γtrt], (4.1)

s.t. αi,j ∈ [αmin, αmax], (4.2)

βi,j ∈ [βmin, βmax], (4.3)

γi,j ∈ [γmin, γmax], (4.4)

where γ is the discount factor, rt is the system performance measured by multiple metrics

(defined in Sec. 4.4.2), αmin and αmax represent the controlled range of AULB actions, and

βmin, βmax, γmin and γmax define the controllable range of IULB actions.
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4.3.2 System Model Learning

One of the vital components of this work is system model learning, which learns network

traffic patterns in a black-box manner. In particular, we learn two system dynamics, which

are the state transition function and reward function. We train a dynamic model as a

teacher for each traffic pattern. Then, we distill the knowledge from multiple teachers into

one student model. The student model will be used to train the policy.

The Teacher Model

In this work, we assume the state transition function to be a deterministic function of the

state st and action at. In this study, we employed a neural network with three hidden

layers to approximate the function, based on the outcomes of hyper-parameter tuning. This

tuning process utilized a grid search strategy to systematically explore and identify the

optimal hyper-parameters. For each model, we learn two dynamic functions: state transition

function fϕT
k
(st, at) and reward function fηT

k
(st, at), where k ∈ [1, . . . , K] and K is the number

of teacher models. In our work, the reward function remains the same across tasks while

the dynamics vary (i.e., various traffic patterns). Therefore, each teacher model constitutes

a different belief about what the dynamics in the true environment could be and minimizes

the loss:

LT =
K∑

k=1

∑
(st,at,st+1,rt)∈Dk

[||st+1 − fϕT
k
(st, at)||22

+ ||rt − fηT
k
(st, at)||22].

(4.5)
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In this thesis, we train teacher models using datasets individually collected from each

base station. The training of these models is continued until each model converges to a

predetermined, stable policy.

The Student Model

To distill the knowledge from the multi-teacher model, we adopt the idea from [5] and

construct two parts in the student model loss function, which are ground truth loss and

knowledge distillation loss, i.e.:

LS =
K∑

k=1

∑
(st,at,st+1)∈Dk

[||st+1 − fϕS (st, at)||22

+ ||fϕT
k
(st, at)− fϕS (st, at)||22],

(4.6)

where fϕS is the student network parameterized by ϕS, and LS denotes the overall loss

function of the student model. The sum is taken over K, representing the total number of

teacher models. (st, at, st+1) ∈ Dk indicates that the summation is over all data points in the

dataset Dk, comprising a state at time t (st), an action at time t (at), and the subsequent

state at time t + 1 (st+1). The term ||st+1− fϕS
(st, at)||22 is the ground truth loss, measuring

the difference between the actual next state and the next state predicted by the student

model, using squared Euclidean distance. The term ||fϕTk
(st, at) − fϕS

(st, at)||22 represents

the knowledge distillation loss, quantifying the difference between the predictions of the k-th

teacher model and the student model, also using squared Euclidean distance.
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This loss function is crucial in the knowledge distillation process, combining a ground

truth loss component, which ensures accuracy in state prediction, with a knowledge

distillation loss component, which aligns the student model’s predictions with those of

multiple teacher models.

4.3.3 Policy Rehearsal

LSreward
=

K∑
k=1

∑
(st,at,st+1)∈Dk

[||rt+1 − fηS (st, at)||22

+ ||fηT
k
(st, at)− fηS (st, at)||22],

We leverage the learned student model for policy learning. In this step, we train the policy

using generated trajectories, which we call policy rehearsal. We name generated trajectories

rehearsal trajectories. At each time-step t, the student model computes the hypothetical

state ŝt+1 and reward r̂t. This step mirrors the structure of the underlying MDP model M

and computes an approximate MDP M̂ with the expected reward and state. Given such

a model, we can help the agent rehearse future actions based on the current state, which

could be seen as a way of planning [6]. The goal of the agent is maximizing the future

return and updating the corresponding policy with respect to the approximate MDP M̂:

η̂(θ; ϕS) = Eτ̂ [∑T
t=0 r(ŝt, at)], where τ̂ = (s0, a0, . . .), s0 ∼ ρ0(·), at ∼ πθ(·|st) and ŝt+1 = fϕS .

Specifically, we adopt the PPO algorithm as our policy training strategy. In addition, we

adopt the idea from [7] for early stopping. We will keep the policy learning with rehearsal

trajectories over a while until η̂ no longer improves.
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4.3.4 Policy Evaluation

After policy rehearsal, we evaluate the learned policy in the real environment. We perform

a shallow trail, which rollout the environment with fixed timesteps using the current policy,

and calculate the collected return. In the real MDPM, the shallow trail is defined as η(θ) =

E[∑T
t=0 r(st, at)], where T is a small number of steps, and r(st, at) denotes the immediate

reward received at state st after acting action at. The policy learning continues as long as

the current policy still improves:

1
T

T∑
t=1

1[η(θnew) > η(θold) + C], (4.7)

where C is a threshold value that measures the relative improvements. We perform T times

of shallow trail and compute the average value. The iteration continues as long as this ratio

exceeds a certain threshold. In our implementation, we find 0.7 is a good threshold.

4.3.5 Student Model Ensemble

To prevent multi-teacher KD from unstable training performance [8], we propose a student

model ensemble solution. Instead of training one single student model, we train a set of

student models fϕS
1
, . . . , fϕS

k
using the same set of teacher models. All student models are

trained parallel via the same loss function Eqn. 4.6. Furthermore, to enlarge the discrepancies

among these student models, we uniformly sample different parameters’ weights ϕS
k , k ∈ K



4. Knowledge Distillation Enhanced Sample Efficiency 44

Algorithm 1: Multi-Teacher Model Based Reinforcement Learning (MOBA)
1 Require: Inner and outer step size α, β; Initialize policy πθ, models fϕ1 , . . . , fϕk

,
and D = 0 for T episodes do

2 Sample trajectories from the real environment with policies πθ1 , . . . , πθk
;

3 Add them to D1, . . . ,Dk;
4 Train model fϕk

using Dk;
5 for Model k ← 1 to K do
6 Optimise ϕk using Eqn. 4.5;
7 while Performance η̂ still improves do
8 Training K student model ϕS

k using Eqn. 4.6;
9 Sample imaginary trajectories from student models using Eqn. 4.8;

10 Update the policy according to the imaginary trajectories;
11 Terminate if the policy evaluation ratio (using Eqn. 4.7) is below the threshold;

as the model initialization.

States and Rewards Ensemble. Since our evaluation environments are continuous, it

is no harm to simply average the learned states and rewards. This approach not only avoids

student model overfitting but also stabilizes policy learning. We define the predicted next

state as ŝt+1 and r̂t, and the predicted reward as r̂t. The averaged predictions are given as:

ŝt+1 = 1
K

K∑
k=1

[fϕS
k
(st, at)], r̂t = 1

K

K∑
k=1

[fηS
k
(st, at)]. (4.8)

Although we don’t evaluate in discrete states or rewards environments, we propose a

solution to generate rehearsal trajectories. In every step, we use the majority vote to decide

the next state and reward. If predictions are different, we randomly choose one of them as

the next state and reward. The MOBA is described in Algorithm 1.
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Figure 4.2: The simulation scenario contains 7 BSs. Each hexagon denotes one sector.

4.4 Evaluation on Network Load Balancing

4.4.1 Environment Setup

We evaluate our method in a communication network simulator for the load balancing task,

which is illustrated in Figure 4.2. Specifically, each Base Station (BS) is made up of 3

sectors, each of which has 4 cells operating on different frequency channels. There are 26

traffic scenarios in this simulator, each of which has a different number of UEs and packet

sizes.



4. Knowledge Distillation Enhanced Sample Efficiency 46

0

0,5

1

1,5

2

2,5

3

3,5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m
in

Tp
ut

 (
M

bp
s)

Traffic ID

Rule-based PPO MOBA

(a) minTput

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

to
ta

lT
pu

t 
(M

bp
s)

Traffic ID

Rule-based PPO MOBA

(b) totalTput

Figure 4.3: Comparison of performance metrics (i.e., minTput and totalTpu, the higher
the better) in different traffic scenarios.

4.4.2 System Performance Metrics

We define ui,k as the k-th UE in the i-th cell. Let Ai,k denote the total size of packets received

by UE ui,k. We use T to represent the period of interest. In this chapter, we evaluate the

system performance over the following metrics.

• Minimum Throughput (minTput) shows the worst-case UE performance.

Maximizing this metric improves the worst-case user experience.

GminT put = min
i,k

(
Ai,k

T

)
. (4.9)

• Total Throughput (totalTput) evaluates overall system performance. This metric
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reflects the overall provided network services.

GtotalT put =
∑

i

∑
k

Ai,k

T
. (4.10)

• Dead Cell Count (DCC) refers to the number of cells whose throughput are less

than a threshold (e.g., 0.5 Mbps in this chapter), which we treat them as dead cells.

Reducing DCC can improve the utilization of different cells.

GDCC = 1
T

∑
k

1[
∑

i

Ai,k < 0.5]. (4.11)

• Intensive Care Unit cell Count (ICUC) captures the number of cells whose output

are less than a threshold (e.g., 1 Mbps in this chapter). We use ICUC and DCC

collaboratively measure the cells utilization.

GICUC = 1
T

∑
k

1[
∑

i

Ai,k < 1]. (4.12)

4.4.3 Methods Evaluated

We compare our method with the following SOTA methods.

• Rule-based manages the base station load balancing using pre-programmed control

parameters according to prior knowledge [1].
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• PPO (proximal policy optimization) [9] is one of the SOTA policy update algorithms

that has been widely used in control problems. To make a fair comparison, we train

PPO on several representative traffic scenarios and evaluate them on other unseen

scenarios.

4.4.4 Evaluation Results in Different Metrics

We first compare our method against the Rule-based method and the PPO method on the

system performance of minTput and totalTpu. To select the training traffic patterns, we

group the traffic scenarios into 5 clusters by using the K-nearest neighbours (KNN) method.

The number of clusters is the hyper-parameters we find that show the best results. Then,

for each group, we randomly select one traffic scenario as the representative. We collect

trajectories from these representatives and train our teacher model accordingly.

Method minTput (Mbps) totalTput (Mbps)
PPO 12.5% 11.7%

MOBA 28.6% 23.2%

Table 4.1: The average relative improvement of MOBA and PPO against the Rule-based
method over 21 traffic scenarios.

Figure 4.3 shows the results of minTput and totalTput. As we can see, MOBA

outperforms the Rule-based method and the PPO method in all traffic scenarios. We

summarize the relative improvement of MOBA and PPO against the Rule-based method in

Table 4.1. The results are averaged over 21 traffic scenarios and demonstrate the
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effectiveness of the proposed MOBA algorithm. The Rule-based method suffers from the

worst performance because it uses fixed pre-programmed control parameters, while MOBA

and PPO leverage RL to optimize control parameters. Moreover, PPO does not work as

well as our MOBA because PPO is a model-free RL method that can not model the system

dynamics. Specifically, in the training data, there are some similar states but with different

rewards due to different traffic patterns. Without knowing the underlying system

dynamics, the PPO method cannot distinguish these similar states, resulting in wrong

actions and poor performance.

To overcome the aforementioned issue, MOBA adopts two mechanisms: (i) MOBA is a

model-based method that models the system dynamics. When encountering similar states,

the learned system model predicts the next state and potential reward, which helps the

agent make the right decision. (ii) MOBA utilizes the multi-teacher KD to enhance the

generalization of the trained system model. The distilled system model can predict unseen

traffic patterns according to the teacher’s knowledge.

Moreover, we compare our method against the Rule-based method and the PPO method

on the system performance of DCC and ICUC, which can help us to understand whether

the load is balanced or not. Figure 4.4 shows the results of DCC and ICUC. As we can see,

compared with the Rule-based method and the PPO method, MOBA decreases both the

DCC and ICUC values, which illustrates the effectiveness of our MOBA method. On the

other hand, the decreased DCC and ICUC values imply that the number of working cells is
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Figure 4.4: Comparison of performance metrics (i.e., DCC and ICUC, the lower the better)
in different traffic scenarios.

increased. As a result, UEs can be migrated from a heavy load cell to a light load cell that

was recently added/worked, i.e., the load is balanced.

4.4.5 Evaluation results in training efficiency

Lastly, we compare the training efficiency of our method and PPO. The results in Figure

4.5 show that our method can achieve a better convergence rate and result in a better

performance than model-free methods (i.e., PPO). Specifically, MOBA reduce the average

training time by up to 64.0%.
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Figure 4.5: Learning curves of our method versus PPO. Each learning curve is computed
in three runs with different random seeds. The y-axis is the mean episode rewards, which
are the combinations of minTput and TotalTput.

4.5 Evaluation on Robotics Tasks

In this section, we further evaluate on robotics tasks to demonstrate the effectiveness of the

proposed method.

4.5.1 Environment Setup

We evaluate our algorithms in continuous control benchmark tasks in PyBullet

environment [10]. Specifically, we choose three standard benchmark tasks: Ant, Half

Cheetah, Humanoid, Walker, Inverted Double Pendulum, and Hopper, which are shown in

Figure 4.6. We create several instances, which only differ in environment parameters for

each task, and each instance has a corresponding teacher model.
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(a) Ant (b) Half Cheetah (c) Humanoid

(d) Hopper (e) Walker2D (f) Pendulum

Figure 4.6: The visualization of Pybullet environments

4.5.2 Comparison to SOTA: Model-Free Algorithms

We compare our method with state-of-the-art model free RL algorithms to show that our

method can achieve asymptotic performance with better convergence rate. The results are

shown in Figure 4.7.

• PPO: proximal policy optimization [9], which is one of the state-of-the-art policy

update algorithms that has been widely used in continuous control problems .

• SAC: soft actor-critic [11] is an algorithm that optimizes a stochastic policy in an off-

policy way, forming a bridge between stochastic policy optimization and DDPG-style

approaches.

• TD3: twin delayed DDPG [12] is an algorithm that addresses overestimate Q-values
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issue by introducing three critical tricks: clipped double-Q learning, “delayed” policy

updates and target policy smoothing.
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Figure 4.7: Learning curves of our method versus state-of-the-art model-free algorithms.
Each learning curve is computed in threee runs with different random seeds. The dash
line depict the desired best reward. MOBA (”Ours”) achieves faster convergence rate and
achieves better performance than model-free methods.

In all the locomotion tasks our method MOBA can outperform other model-free methods

in terms of convergence rate and mean episode return. More specifically, MOBA reduce

average 64.0% of the training time in most of tasks, 75% in pendulum task, and outperform

other algorihtms in walker2D. Since we adopt PPO as our policy learning algorithm, our

method can effectively improve the PPO performance in challenging tasks: hopper, walker2D

half cheetah, which PPO is hard to converge to the optimal solution.
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4.5.3 Comparison to SOTA: Model-Based Algorithms

To further understand advantages of multi-teacher knowledge distillation in improving data-

efficiency, we conduct some experiments with state-of-the-art model-based RL algorithms.

The results are shown in Figure 4.8.

• GrBAL: gradient-based adaptive learning [13], which uses gradient-based method to

learn a online adaptation of models in dynamic enviornmtns.

• MBPO: model-based policy optimization [14], which incorporates a linear

approximation of model generalization into the analysis and justify using the model

for truncated rollouts.
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Figure 4.8: Learning curves of our method versus state-of-the-art model-base algorithms.
Each learning curve is computed in three runs with different random seeds. MOBA (”Ours”)
achieves faster convergence rate than other model-free methods.
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All these method can achieve the desired performance with less training time compared to

model-based method shown in Figure 4.7. However, MOBA can still outperform other model-

based method in terms of sample efficiency in all tasks. We think the reason is the policy

rehearsal, which plays a role as planning in policy training. Previous model-based methods

mainly focus on separating the agent training from environment. In stead of directly interact

with environment, agent plays with the learned model and optimize its policy. However, in

our method, we utilize the planning idea to rehearsal the agent trajectories with current

policy and calculate its corresponding return. The agent learns to make the best decision

by planning in the rehearsal trajectories and updating its policy. After the policy rehearsal,

agent interact with real environment and collect real reward as well as new environment

trajectories, which, as a result, helps improve the policy rehearsal in next iteration.

4.5.4 Dealing with The Model-bias Problem

To illustrate the model-bias problem and how it affect the policy learning, we empirically

measure the policy performance under different dynamic systems with biased noise. We

adopt the idea from [15], which add biased Gaussian noise N (b, 0.12) to the next state

prediction, where b ∼ ⊓(0, bmax) is sampled from a uniform distribution between 0 and bmax.

In Figure 4.9 We show the policy performance under different ranges of adding bias.

Results show that our method consistently outperform other two model-based algorithm

when system model has some biased noises. Especially, when exposed to the strong bias
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Figure 4.9: Learning curves of our methods versus SOTA model-based algorithms using
three different bias ranged dynamic models in the half cheetah environment.

Method Range (0.0∼0.1) Range (0.0∼0.5) Range (0.0∼1.0)
MBPO 1532(±141) 581(±369) 539(±369)
GrBAL 1650(±125) 934(±378) 1046(±370)
Ours 1984(±60) 1707(±106) 1691(±112)

Table 4.2: Evaluation results of different model-bias ranges

environments i.e. bmax = 0.5 and bmax = 1.0, MBPO and GrBAL show large variance in the

learning curve and fail to converge to an optimal solution. On the country, MOBA manage to

solve model-bias problem in all three different bias range cases, which shows its effectiveness.

4.5.5 Ablation Study

In this section, we analyze the effect of student model ensemble component. Figure 4.10

shows the results of MOBA and Vanilla-MOBA.

The results indicate that our proposed method can achieve better stability and lower

variance by adding student ensemble component. This phenomenon is even more noticeable

in Pendulum environment, which shows both MOBA and Vanilla-MOBA (in best case) can
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Figure 4.10: Learning curves of MOBA and Vanilla-MOBA.

find the optimal policy. However, the mean value of the Vanilla-MOBA is lower than MOBA,

which shows the effectiveness of student ensemble component.

4.6 Summary

In this chapter, we propose a novel RL-based load balancing algorithm that can generalize

to various traffic patterns. A major challenge lies in how to learn the underlying patterns

of different scenarios and transfer them to a single model. To conquer this challenge, the

proposed MOBA algorithm learns a generalized dynamic model through the knowledge

distillation from multiple teacher models, where teacher models are learned from different

traffic patterns. To the best of our knowledge, this is the first multi-teacher knowledge
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distillation approach for network load balancing. Results demonstrate that MOBA

outperforms SOTA RL-based load balancing algorithms in terms of policy generalization.

MOBA increases the system’s minimum and total throughput by up to 28.6% and 23.2%,

respectively. Additionally, MOBA can reduce the training time by up to 64.0%.

Furthermore, evaluation results show that our method can outperform SOTA

model-free and model-based methods in high-dimensional control locomotion tasks.

Moreover, our method achieves the best performance when exposed to high-range

model-bias environments. The ablation study shows the effectiveness of leveraging the

student model ensemble component to stabilize the policy and model learning.
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Chapter 5

Curriculum Learning Enhanced

Training Efficiency

As we conclude Chapter 4, we have seen how our models and algorithms effectively address

the complexities of load balancing and robotics tasks. The insights gained here lay the

groundwork for further exploration into advanced methodologies. In Chapter 5, we will

build upon these foundational concepts, delving into the realm of knowledge distillation and

its application in machine learning frameworks.

5.1 Introduction

The concept that humans frequently organize their learning into a curriculum of

interdependent processes according to their capabilities was first introduced to machine
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learning in [1]. Over time, curriculum learning has become more widely used in machine

learning to control the stream of examples provided to training algorithms [2], to adapt

model capacity [3], and to organize exploration [4]. Automatic curriculum learning (ACL)

for deep reinforcement learning (DRL) [5] has recently emerged as a promising tool to learn

how to adapt a robot’s learning tasks to its capabilities during training. ACL can be

applied to robotics’ policies learning in various ways, including adapting initial states [6],

shaping reward functions [7], generating goals [8]. More broadly, curriculum learning can

also be used to modify the environment itself. For example, it can add new entities to the

world or change the behaviors of other agents [9].

Oftentimes, only a single ACL paradigm (e.g., generating subgoals) is considered. It

remains an open question whether different paradigms are complementary to each other

and if yes, how to combine them in a more effective manner similar to how the “rainbow”

approach of [10] has greatly improved DRL performance in Atari games. Multi-task learning

is notoriously difficult, and [11] hypothesize that the optimization difficulties might be due

to the gradients from different tasks conflicting with each other thus hurting the learning

process. In this work, we propose a multi-task bilevel learning framework for more effective

multi-objective curricula robotics’ policy learning. Concretely, inspired by neural modular

systems [12] and multi-task RL [13], we utilize a set of neural modules and train each of

them to output a sequence of tasks with different desired goals, rewards, initial states, etc.

To coordinate potentially conflicting gradients from modules in a unified parameter space,
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we use a single hyper-net [14] to parameterize neural modules so that these modules generate

a diverse and cooperative set of curricula. Multi-task learning provides a natural curriculum

for the hyper-net itself since learning easier curriculum modules can be beneficial for learning

more difficult curriculum modules with parameters generated by the hyper-net.

Furthermore, existing ACL methods usually rely on manually-designed paradigms of

which the target and mechanism have to be clearly defined and it is therefore challenging

to create a very diverse set of curriculum paradigms. Consider goal-based ACL for

example, where the algorithm is tasked with learning how to rank goals to form the

curriculum [15]. Many of these curriculum paradigms are based on simple intuitions that

are inspired by learning in humans, but they usually take too simple forms (e.g., generating

subgoals) to apply to neural models. Instead, we propose to augment the hand-designed

curricula introduced above with an abstract curriculum of which paradigm is learned from

scratch. More concretely, we take the idea from memory-augmented meta-DRL [16] and

equip the hyper-net with a non-parametric memory module, which is also directly

connected to the DRL agent. The hyper-net can write entries to and update items in the

memory, through which the DRL agent can interact with the environment under the

guidance of the abstract curriculum maintained in the memory. The write-only permission

given to the hyper-net over the memory is distinct from the common use of memory

modules in meta-DRL literature, where the memories are both readable and writable. We

point out that the hyper-net is instantiated as a recurrent neural network [17] which has its



5. Curriculum Learning Enhanced Training Efficiency 64

internal memory mechanism and thus a write-only extra memory module is enough.

Another key perspective is that such a write-only memory module suffices to capture the

essence of many curriculum paradigms. For instance, the subgoal-based curriculum can

take the form of a sequence of coordinates in a game which can be easily generated as a

hyper-net and stored in the memory module.

The contributions of this work are as follows:

1. We introduce multi-objective curricula learning approach for improving the sample

efficiency of solving challenging deep reinforcement learning tasks, which is an

important problem that has not been adequately addressed before.

2. We further propose a unified automatic curriculum learning framework to create

multi-objective but coherent curricula that are generated by a set of parametric

curriculum modules. Each curriculum module is instantiated as a neural network and

is responsible for generating a particular curriculum. To coordinate those potentially

conflicting modules in unified parameter space, we propose a multi-task hyper-net

learning framework that uses a single hyper-net to parameterize all those

curriculum modules.



5. Curriculum Learning Enhanced Training Efficiency 65

5.2 Preliminaries

Automatic curriculum learning (ACL) is a learning paradigm where an agent is trained

iteratively following a curriculum to ease learning and exploration in a multi-task problem.

Since it is not feasible to manually design a curriculum for each task, recent work has

proposed to create an implicit curriculum directly from the task objective. Concretely, it

aims to maximize a metric P computed over a set of target tasks T ∼ Ttarget after some

episodes t′. Following the notation in [5], the objective is set to: maxD
∫

T ∼Ttarget
P t′

T dT ,

where D : H → Ttarget is a task selection function. The input H can be consist of any

information about past interactions. For example, in our experiments, the history consists

of the last state of the episode., and the output of D is a sequence of generated episodes,

which contain different desired goals, initial states, rewards, etc.

Hyper-networks were proposed in [14] where one network (hyper-net) is used to

generate the weights of another network. All the parameters of both networks are trained

end-to-end using backpropagation. We follow the notation in [18] and suppose that we aim

to model a target function y : X × I → R, where x ∈ X is independent of the task and

I ∈ I depends on the task. A base neural network fb(x; fh(I; θh)) can be seen as a

composite function, where fb : X → R and fh : I → Θb. Conditioned on the task

information I, the small hyper-net fh(I; θh) generates the parameters θb of base-net fb.

Note that θb is never updated using loss gradients directly.
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5.3 Learning Multi-Objective Curricula

We use a single hyper-net to dynamically parameterize all the curriculum modules over time

and modify the memory module shared with the DRL agent. We call this framework a Multi-

Objective Curricula (MOC). This novel design encourages different curriculum modules to

merge and exchange information through the shared hyper-net.

Following the design of hyper-networks with recurrence [14], this hyper-net is

instantiated as a recurrent neural network (RNN), which we refer to as the Hyper-RNN,

denoted as fh(I; θh), in the rest of this chapter to emphasize its dynamic nature.

Additionally, the Hyper-RNN can be viewed as a configurator for other modules as

suggested in [19]. Our motivation for the adoption of an RNN design is its capability for

producing a distinct set of curricula for every episode, which strikes a better trade-off

between the number of model parameters and its expressiveness. On the other hand, each

manually designed curriculum module is also instantiated as an RNN, which is referred as

a Base-RNN fb(x; θb) parameterized by θb = fh(I; θh). Each Base-RNN is responsible for

producing a specific curriculum, e.g., a series of sub-goals.

The architecture of MOC-DRL is depicted in Figure 5.1, and its corresponding pseudo-

code is given in Alg. 2. We formulate the training procedure as a bilevel optimization

problem [20] where we minimize an outer-level objective that depends on the solution of the

inner-level tasks.

In our case, the outer-level optimization comes from the curriculum generation loop
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Figure 5.1: Illustration of MOC-DRL with two loops. Curricula generation corresponds to
the outer-level loop. The DRL agent interacts with the environment in the inner-level loop.

where each step is an episode denoted as t′. On the other hand, the inner-level optimization

involves a common DRL agent training loop on the interactions between the environment

and the DRL agent, where each time-step at this level is denoted as t. We defer the discussion

on the details to Sec. 5.3.3.

Inputs, I, of the Hyper-RNN, fh, consist of: (1) the final state of the last episode, and

(2) role identifier for each curriculum module (e.g., for initial states generation) represented

as a one-hot encoding. Ideally, we expect each Base-RNN to have its own particular role,

which is specific to each curriculum.When generating the parameters for each Base-RNN,

we additionally feed the role identifier representation to the Hyper-RNN.

Outputs of the Hyper-RNN at episode t′ include: (1) parameters θt′
b for each Base-
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RNN, and (2) the abstract curriculum, ht′
h , maintained in the memory module. Here ht′

h

corresponds to the hidden states of the Hyper-RNN such that [θt′
b , ht′

h ] = fh(I t′ ; θh).
Algorithm 2: Multi-Objective Curricula Deep Reinforcement Learning (MOC-

DRL).

1 for Episode t′ in 1 to Touter do

2 · Sample a new environment from the distribution of environments;

3 · Hyper-RNN generates parameters for each curriculum module;

4 for Base-RNN in 1 to 3 do

5 · Generate a curriculum;

6 · Hyper-RNN updates the abstract curriculum in the memory;

7 for Training step t in 1 to Tinner do

8 · DRL agent reads memory;

9 · Train DRL agent following curricula;

10 · Update Hyper-RNN based on outer-level objective;

5.3.1 Manually Designed Curricula

In Sec. 5.3.1, we describe the details of generating manually designed curricula while the

process of updating the abstract curriculum is described in Sec. 5.3.2. We describe how to

train them in Sec. 5.3.3.

In this work, we use three curriculum modules responsible for generating pre-defined

curricula [5]: initial state generator, sub-goal state generator, and reward shaping generator.
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Our approach can be easily extended to include other forms of curricula (e.g., selecting

environments from a discrete set [21]) by adding another curriculum generator to the shared

hyper-net. These Base-RNNs simultaneously output the actual curricula for the DRL agent

in a synergistic manner. It should be noted that these Base-RNNs are not directly updated

by loss gradients, as their pseudo-parameters are generated by the Hyper-RNN.

Generating subgoal state gt as curriculum cgoal with Base-RNN ḟb. As one

popular choice in ACL for DRL, the subgoals can be selected from discrete sets [8] or a

continuous goal space [15]. A suitable subgoal state gt can ease the learning procedures by

guiding the agent on how to achieve subgoals step by step and ultimately solving the final

task.

To incorporate the subgoal state in the overall computation graph, in this chapter, we

adopt the idea from universal value functions [22] and modify the action-value function,

Q(·; ϕq), to combine the generated subgoal state with other information

Q := Q(st, at, gt; ϕq) = Q(st, at, cgoal; ϕq), where st is the state, at is the action, and gt is the

generated subgoal state. The loss is defined as

Jgoal = E(st,at,rt,st+1,gt)∼Hbuf
[(Q(st, at, cgoal; ϕq)− ẏ)2], where ẏ is the one-step look-ahead:

ẏ = rt + λEat+1∼πθ(st+1)[Q(st, at, cgoal; ϕq) − log(π(at+1|st+1; ϕπ))], (5.1)

Hbuf is the replay buffer and λ is the discount factor.
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Generating initial state s0 as curriculum cinit with Base-RNN f̈b. Intuitively, if

the starting state s0 for the agent is close to the end-goal state, the training would become

easier, which forms a natural curriculum for training tasks whose difficulty depends on a

proper distance between the initial state and the end-goal state. This method has been

shown effective in control tasks with sparse rewards [6], [23]. To simplify implementation,

even though we only need a single initial state s0 which is independent of time, we still use

a Base-RNN,f̈b, to output it.

The loss for this module is: Jinit = E(st,at)∼Hbuf
[(Q(st, at, cinit; ϕq) − ẏ)2], where ẏ is

defined in Eqn. 5.1.

Generating potential-based shaping function as curriculum crew with

Base-RNN
...
f b. Motivated by the success of using reward shaping for scaling RL

methods to handle complex domains [24], we introduce reward shaping as the third

manually selected curriculum. The reward shaping function can take the form of:
...
f ′

b(st, at, st+1) = µ ·
...
f b(st+1) −

...
f b(st), where µ is a hyper-parameter and

...
f b() is

base-RNN that maps the current state with a reward. In this chapter, we add the shaping

reward
...
f ′

b(st, at, st+1) to the original environment reward r. We further normalize the

shaping reward between 0 and 1 to deal with wide ranges.

Following the optimal policy invariant theorem [24], we modify the look-ahead function:

...
y = rt +

...
f b(st, at, st+1 + λEat+1∼πθ(st+1)[Q(st, at, crew; ϕq)− log(π(at+1|st+1; ϕπ))]. Thus the

loss is defined as: Jreward = Est,at,st+1,at+1∼Hbuf
[(Q(st, at, crew; ϕq)−

...
y )2].
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We implement the reward shaping mechanism through a potential-based shaping

function, specifically designed to enhance the learning process. The shaping function is

defined as:

f ′
b(st, at, st+1) = µ · fb(st+1)− fb(st) (5.2)

where µ is a hyper-parameter and fb() represents the base-RNN mapping the current state

to a reward. This shaping reward is then integrated with the original environment reward

r, and normalized between 0 and 1 to accommodate a wide range of values.

5.3.2 Abstract Curriculum with Memory Mechanism

Although the aforementioned hand-designed curricula are generic enough to be applied in

any environment/task, it is still limited by the number of such predefined curricula. It

is reasonable to conjecture that there exist other curriculum paradigms, which might be

difficult to hand-design based on human intuition. As a result, instead of solely asking the

hyper-net to generate human-engineered curricula, we equip the hyper-nets with an external

memory, in which the hyper-nets could read and update the memory’s entries. The Hyper-

RNN together with the memory can also be seen as an instantiation of shared workspaces

[25] for different curricula modules, in which those modules exchange information.

By design, the content in the memory can serve as abstract curricula for the DRL agent,

which is generated and adapted according to the task distribution and the agent’s dynamic

capacity during training. Even though there is no constraint on how exactly the hyper-net
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learns to use the memory, we observe that (see Sec. 5.4.3): 1) The hyper-net can receive

reliable training signals from the manually designed curriculum learning objectives1; 2) Using

the memory module alone would result in unstable training; 3) Utilizing both the memory

and manual curricula achieves the best performance and stable training. Thus, training this

memory module with other manually designed curriculum modules contributes to the shaping

of the content that can be stored in the memory and is beneficial for overall performance.

Specifically, external memory is updated by the Hyper-RNN. To capture the latent

curriculum information, we design a neural memory mechanism similar to [26]. The form of

memory is defined as a matrix M . At each episode t′, the Hyper-RNN emits two vectors

mt′
e , and mt′

a as [mt′
e , mt′

a ]T = [σ, tanh]T (Wt′
h ht′

h ): where Wt′
h is the weight matrix of

Hyper-RNN to transform its internal state ht′
h and [·] denotes matrix transpose. Note that

Wh are part of the Hyper-LSTM parameters θh.

The Hyper-RNN writes the abstract curriculum into the memory, and the DRL agent

can read the abstract curriculum information freely.

Reading. The DRL agent can read the abstract curriculum cabs from the memory

M. The read operation is defined as: ct′
abs = αt′Mt′−1, where αt′ ∈ RK represents an

attention distribution over the set of entries of memory Mt′−1. Each scalar element αt′,k in

an attention distribution αt′ can be calculated as: αt′,k = softmax(cosine(Mt′−1,k, mt′−1
a )),

where we choose cosine(·, ·) as the align function, Mt′−1,k represents the k-th row memory
1To some extent, tasking the hyper-net to train manually designed curriculum modules can be seen as a

curriculum itself for training the abstract curriculum memory module.
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vector, and mt′
a ∈ RM is a add vector emitted by Hyper-RNN.

Updating. The Hyper-RNN can write and update abstract curriculum in the memory

module. The write operation is performed as: Mt′ = Mt′−1(1 − αt′mt′
e ) + αt′mt′

a , where

mt′
e ∈ RM corresponds to the extent to which the current contents in the memory should be

deleted.

Equipped with the above memory mechanism, the DRL learning algorithm can read the

memory and utilize the retrieved information for policy learning. We incorporate the

abstract curriculum into the value function by Q(st, at, gt, ct′
abs; ϕq). Similar to manually

designed curricula, we minimize the Bellman error and define the loss function for the

abstract curriculum as: Jabstract = E(st,at,rt,st+1,ct′
abs

)∼Hbuf
[(Q(st, at, ct′

abs; ϕq) − ẏ)2], where ẏ is

defined in Eqn. 5.1.

5.3.3 Bilevel Training of Hyper-RNN

After introducing the manually designed curricula in Sec. 5.3.1 and the abstract curriculum in

Sec. 5.3.2, here we describe how we update the Hyper-RNN’s parameters θh, the parameters

associated with the DRL agent ϕq and ϕπ. Since the Hyper-RNN’s objective is to serve

the DRL agent, we naturally formulate this task as a bilevel problem [20] of optimizing the

parameters associated with multi-objective curricula generation by nesting one inner-level

loop in an outer-level training loop.

Outer-level training of Hyper-RNN. Specifically, the inner-level loop for the DRL
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agent learning and the outer-level loop for training Hyper-RNN with hyper-gradients. The

outer-level loss is defined as :Jouter = Jinitial + Jgoal + Jreward + Jabs.

Since the manually designed curricula and abstract curricula are all defined in terms of

Q-function, for the implementation simplicity, we combine them together

Jouter = Est,at,st+1,at+1∼Hbuf
[(Q(st, at, cgoal, crew, cinit, cabs; ϕq) −

...
y )2]. Following the

formulation and implementation in [20], we obtain

θ∗
h = argmin (θh;Jouter (argmin (ϕ;Jinner(θh, ϕ)))).

Inner-level training of DRL agent. The parameters associated with the inner-level

training, ϕq and ϕπ, can be updated based on any RL algorithm. In this chapter, we use

Proximal Policy Optimization (PPO) [27] which is a popular policy gradient algorithm that

learns a stochastic policy.

Influence of Reward Shaping on the Learning Process The integration of reward

shaping significantly alters the learning dynamics. By following the optimal policy invariant

theorem, we modify the look-ahead function in our learning algorithm. This modification

ensures that the policy optimization process is more aligned with both the immediate and

shaped rewards, enhancing the agent’s decision-making capabilities.

5.4 Experiments

We evaluate and analyze our proposed MOC DRL on the CausalWorld [28], as this

environment enables us to easily design and test different types of curricula in a
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fine-grained manner. This environment also provides wrapper makes the environment to

execute actions on the real robot, which can be used in sim2real experiments. It should be

noted that we do not utilize any causal elements of the environment. It is straightforward

to apply our method to other DRL environments without major modification. Moreover,

the training and evaluation task distributions are handled by CausalWorld. Take task

”Pushing” as an example: for each outer loop, we use CausalWorld to generate a task with

randomly sampled new goal shapes from a goal shape family
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Figure 5.2: Comparisons with state-of-the-art ACL algorithms. Each learning curve is
computed in three runs with different random seeds.

5.4.1 Environment Settings

We choose five out of the nine tasks introduced in CausalWorld since the other four tasks

have limited support for configuring the initial and goal states. Specifically, we enumerate
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these five tasks here: (1) Reaching requires moving a robotic arm to a goal position and

reach a goal block; (2) Pushing requires pushing one block towards a goal position with

a specific orientation (restricted to goals on the floor level); (3) Picking requires picking

one block at a goal height above the center of the arena (restricted to goals above the floor

level); (4) Pick And Place is an arena is divided by a fixed long block and the goal is to

pick one block from one side of the arena to a goal position with a variable orientation on

the other side of the fixed block; (5) Stacking requires stacking two blocks above each other

in a specific goal position and orientation.

CausalWorld allows us to easily modify the initial states and goal states. In general, the

initial state is the cylindrical position and Euler orientation of the block and goal state is the

position variables of the goal block. These two control variables are both three-dimensional

vectors with a fixed manipulation range. To match the range of each vector, we re-scale the

generated initial states.

The reward function defined in CausalWorld is uniform across all possible goal shapes as

the fractional volumetric overlap of the blocks with the goal shape, which ranges between 0

(no overlap) and 1 (complete overlap). We also re-scale the shaping reward to match this

range.

We choose the PPO algorithm as our vanilla DRL policy learning method. We list

the important hyper-parameters in Table. 5.1. We also provide the complete code in the

supplementary material.
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Parameter Value
Discount factor (γ) 0.9995

n steps 5000
Entropy coefficiency 0

Learning rate 0.00025
Maximum gradient norm 10

Value coefficiency 0.5
Experience buffer size 1e6

Minibatch size 128
clip parameter (ϵ) 0.3

Activation function ReLU
Optimizer Adam

Table 5.1: Hyper-parameter values for PPO training

Mean Episode
Reward Success Ratio

MOCRandInitState 936.9 (±35) 91% (±0.5%)
MOCF ixInitState 879.3 (±9) 89% (±1.1%)

MOCRandGoalState 921.0 (±46) 91% (±0.5%)
MOC

(Initial State) 1273 (±11) 100% (±0%)

(a) Analysis of initial state curriculum

Mean Episode
Reward Success Ratio

GoalGAN 609 (±23) 56% (±18%)
ALP-GMM 568 (±26) 39% (±28%)

MOC
(Goal State) 714 (±14) 68% (±15%)

(b) Analysis of subgoal curriculum

Table 5.2: Analysis of initial state curriculum and subgoal state curriculum.
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5.4.2 Comparing MOC with state-of-the-art ACL methods

We compare our proposed approach with the other state-of-the-art ACL methods: (1)

GoalGAN [29], which uses a generative adversarial neural network (GAN) to propose tasks

for the agent to finish; (2) ALP-GMM [5], which models the agent absolute learning

progress with Gaussian mixture models. None of these baselines utilize multiple curricula.

Figure 5.2 shows that MOC outperforms other ACL approaches in terms of mean

episode reward, fractional success, and sample efficiency. Especially, MOC increases

fractional success by up to 56.2% in all of three tasks, which illustrates the effectiveness of

combining multiple curricula in a synergistic manner.

5.4.3 Ablation Study

Our proposed MOC framework consists of three key parts: the Hyper-RNN trained with

hyper-gradients, multi-objective curriculum modules, and the abstract memory module. To

get a better insight into MOC, we conduct an in-depth ablation study on probing these

components. We first describe the MOC variants used in this section for comparison as

follows: (1) MOCBase− : MOC has the Hyper-RNN and the memory module but does not

have the Base-RNNs for manually designed curricula. (2) MOCMemory− : MOC has the

Hyper-RNN to generate three curriculum modules but does not have the memory module.

(3) MOCMemory−,Hyper− : MOC has Base-RNNs but does not have memory and

Hyper-RNN components. It independently generates manually designed curricula. (4)
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MOCMemory−,Goal+ : MOC with Hyper-RNN and one Base-RNN, but without the memory

module. It only generates the subgoal curriculum as our pilot experiments show that it is

consistently better than the other two manually designed curricula and is easier to analyze

its behavior by visualizing the state visitation.
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Figure 5.3: Comparison of algorithms with and without memory component on all four
tasks. Each learning curve is obtained by three independent runs with different random
seeds.

Ablations of Hyper-RNN. By comparing MOCMemory− with MOCMemory−,Hyper− as

shown in Figure 5.3, we can observe that letting a Hyper-RNN generate the parameters

of different curriculum modules indeed helps in improving the sample efficiency and final

performance. The advantage is even more obvious in the harder tasks pick and place and

stacking. The poor performance of MOCMemory−,Hyper− may be caused by the potential

conflicts among the designed curricula. For example, without coordination between the
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initial state curriculum and the goal curriculum, the initial state generator may set an

initial state close to the goal state, which is easy to achieve by an agent but too trivial to

provide useful training information to achieve the final goal. In sharp contrast, the Hyper-

RNN can solve the potential conflicts from different curricula. All the curriculum modules

are dynamically generated by the same hyper-net, and there exists an implicit information

sharing between the initial state and the goal state curriculum generator.

Ablations of the memory module. We aim to provide an empirical justification

for the use of the memory module and its associated abstract curriculum. By comparing

MOC with MOCMemory− as shown in Figure 5.3, we can see that the memory module is

crucial for MOC to improve sample efficiency and final performance. Noticeably, in pick

and place and stacking, we see that MOC gains a significant improvement due to the

incorporation of the abstract curriculum. We expect that the abstract curriculum could

provide the agent with an extra implicit curriculum that is complementary to the manually

designed curricula. We also find that it is better for the Hyper-RNN to learn the abstract

curriculum while generating other manually designed curricula. Learning multiple manually

designed curricula provides a natural curriculum for the Hyper-RNN itself since learning

easier curriculum modules can be beneficial for learning of more difficult curriculum modules

with parameters generated by the Hyper-RNN.

Ablations of individual curricula. We now investigate how gradually adding more

curricula affects the training of DRL agents. By comparing MOCMemory−,Goal+ and
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MOCMemory− as shown in Figure 5.3, we observe that training an agent with a single

curriculum receives less environmental rewards as compared to the ones based on multiple

curricula. This suggests that the set of generated curricula indeed helps the agent to reach

intermediate states that are aligned with each other and also guides the agent to the final

goal state.

5.4.4 Curricula Analysis and Visualization

In this section, we analyze the initial state curriculum and goal state curriculum. First, we

replace the initial state curriculum with two different alternatives: (1) MOCRandInitState, in

which we replace the initial state curriculum in MOC with a uniformly chosen state. Other

MOC components remains the same; (2) MOCF ixInitState, in which we replace the initial

state curriculum in MOC with a fixed initial state. The other MOC components remains the

same. (3) MOCRandGoalState, in which we replace the goal state curriculum in MOC with a

uniformly chosen state. The other MOC components remains the same. The evaluations are

conducted on the reaching task and the results are shown in Table 5.2a. From this table,

we observe that MOC with initial state curriculum outperforms other two baseline schemes

in terms of mean episode rewards and success ratio. This demonstrates the effectiveness

of providing initial state curriculum. Besides, since “random sampling” outperforms “fixed

initial state”, we conjecture that it is better to provide different initial states, which might

be beneficial for exploration.
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Figure 5.4: Comparison of algorithms with and without memory component in pushing.
Each learning curve is computed in three runs with different random seeds.

In Sec. 5.4.2, we show that providing multi-objective curricula can improve the training

of DRL agents. To further evaluate the advantages of hyper-RNN base-RNN framework, we

conduct an experiment with GoalGAN, ALP-GMM and MOC with goal curriculum only.

We evaluate on reaching task and the results are shown in Tab. 5.2b. In this table, we see

that MOC Goal State (MOCMemory−,Goal+), which is MOC has goal curriculum but doesn’t

have memory component, slightly outperform other two baseline schemes.

5.4.5 Additional Experimental Results

This section serves as a supplementary results for Sec. 5.4.

Figure 5.4 shows the results of with and without Hyper-RNN in pushing tasks. The
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results validate the effectiveness of using Hyper-RNN. It is clear that, the incorporation

of memory module consistently helps the DRL agent outperform other strong baselines in

all scenarios. More importantly, in pushing task, we can observe a 5-fold improvement

compared to the method with only the Hyper-RNN component.

Figure 5.4, 5.5, 5.6, 5.7 clearly validate the effectiveness of our proposed method in

achieving both the best final performance and improving sample efficiency.

0.2 0.4 0.6 0.8 1.0
Episodes 1e7

400

200

0

200

400

600

800

M
ea

n 
ep

iso
de

 re
wa

rd

Reaching

0.2 0.4 0.6 0.8 1.0
Episodes 1e7

24

22

20

18

16

14

Picking

0.2 0.4 0.6 0.8 1.0
Episodes 1e7

18

16

14

12

10

8

6

4

Pushing

0.2 0.4 0.6 0.8 1.0
Episodes 1e7

20

18

16

14

12

10

8

6

4

M
ea

n 
rp

iso
de

 re
wa

rd

Pick_and_Place

0.2 0.4 0.6 0.8 1.0
Episodes 1e7

20

15

10

5

Stacking

MOCBase Direct-abstract_curriculum

Figure 5.5: Comparison between read memory from memory and direct generate abstract
curriculum

In Sec. 5.4.2, we compared MOC with state-of-the art ACL algorithms. Here, we add

two more baselines algorithms. The results are shown in Figure 5.8:

• InitailGAN [6]: which generates adapting initial states for the agent to start with.

• PPOReward+ : which is a DRL agent trained with PPO algorithm and reward shaping.

The shaping function is instantiated as a deep neural network.
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5.4.6 The visualization of generated sub-goal

The visualization of generated sub-goal state is shown in Figure 5.9. Specifically, the arm is

tasked to manipulate the red cube to the position shown as a green cube. As we can see,

MOC generates subgoals that gradually change from ”easy” (which are close to the initial

state) to ”hard” (which are close to the goal state). The generated subgoals have different

configurations (e.g., the green cube is headed north-west in 7000k steps but is headed north-

east in 9000k steps ), which requires the agent to learn to delicately manipulate robot arm.

(a) 1000k steps (b) 3000k steps (c) 5000k steps (d) 7000k steps (e) 9000k steps (f) Goal state

Figure 5.9: Visualization of generated subgoals



5. Curriculum Learning Enhanced Training Efficiency 86

5.4.7 Hyperparameters

In this section, we extensively evaluate the influence of different hyperparameters for the

baselines and MOC, where the search is done with random search. We choose the reaching

and stacking tasks, which are shown in Figure 5.10, 5.11, 5.12. For example, in

Figure 5.10-(a), the first column represents the different values for outer iterations. A

particular horizontal line, e.g., {4, 512, 5, 0.5}, indicates a particular set of hyperparameters

for one experiment. Besides, during the training phase, we adopt hyperparameters of PPO

from stable-baselines3 and search two hyperparameters to test the MOC sensitivity.

We can observe that: (1) It is clear that MOC outperforms all the baselines with extensive

hyperparameter search. (2) MOC is not sensitive to different hyperparameters.

5.5 Summary

This chapter presents a multi-objective curricula learning approach for solving challenging

deep robotics tasks. Our method trains a hyper-network for parameterizing multiple

curriculum modules, which control the generation of initial states, subgoals, and shaping

rewards. We further design a flexible memory mechanism to learn abstract curricula.

Extensive experimental results demonstrate that our proposed approach significantly

outperforms other state-of-the-art ACL methods in terms of sample efficiency and final

performance.
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Figure 5.10: Hyperparameter tuning results for GoalGAN
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Figure 5.11: Hyperparameter tuning results for ALP-GMM
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Chapter 6

Sequence Modeling Enhanced Model

Generalization

Chapter 5 provided an in-depth exploration of knowledge distillation techniques and their

significance in our models. The advancements discussed here are pivotal in enhancing the

efficiency and effectiveness of machine learning systems. Moving forward, Chapter 6 will

pivot to a broader examination of model generalization of our proposed models. We will

analyze their performance in diverse scenarios, highlighting their versatility and potential in

addressing a wide range of real-world challenges.
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6.1 Introduction

Recently, with the tremendous success of large language model-based (LLM-based)

foundation models [1]–[4], an increasing number of researchers have focused on LLM-based

decision-making agents. As shown with GPT-3 [1] and follow-up work [5], [6], the

generalization of these LLMs depends significantly on the model size, i.e. the number of

parameters. This is partly because neural network parameters act as implicit memory [7],

enabling models to “memorize” a huge amount of training data by fitting these parameters.

However, relying purely on scale has limits, practical and otherwise: there are economic

and ecological costs, it reduces accessibility, and more efficient uses of scale might improve

performance further. To address some limits of implicit, parameter-based memory in large

models, we borrow the concept of “working memory” [8], [9] to explicitly store and recall

past experiences for use in future decision-making. The term “working memory” originates

from cognitive psychology and neuroscience [8], [10], where it refers to the system

responsible for temporary storage and manipulation of information during cognitive tasks.

Asteroids

Asteroids Delux

Games

Space Invaders

Space Invaders II

Asteroids 
Knowledge

Asteroids Delux 
Knowledge

Space Invaders 
Knowledge

Space Invaders II 
Knowledge

Working Memory

Shared 
Knowledge

Memory 
Update

Memory 
Retrieve

Figure 6.1: A robot uses its working memory
to guide its playing strategy.

Our motivation comes from how humans

think before they act: they are able

to reason on past experience to generate

appropriate behavior in new situations.

As an illustration, imagine we want to

train a robot to play four different Atari
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games: Asteroids, Asteroids Deluxe, Space

Invaders, and Space Invaders II (Figure 6.1).

Asteroids Deluxe is a sequel to Asteroids

that introduces new boss fights and enemies, and the same is true for Space Invaders and

Space Invaders II. For the robot to play these four games, it must actively store what it

has learned in each game in its working memory and choose the appropriate strategy for

each game. Throughout training, the robot’s working memory continuously processes and

updates relevant game information, allowing it to make informed decisions and adapt its

strategies. However, training this robot using implicit memory may cause confusion between

similar games and result in incorrect playing strategies. This can ultimately lead to the need

for more training time, parameters, and training data.

Thus motivated, we propose Decision Transformers with Memory (DT-Mem). We

instantiate the internal working memory as a matrix and its functioning entails two

primary steps: memory update and memory retrieval. The memory update involves

modifying or replacing existing information. This enables the system to keep track of

changes, maintain task-relevant information, and facilitate decision-making. Memory

retrieval refers to the process of accessing and recovering stored information. It involves

bringing relevant information back to condition decision-making. We use content-based

addressing [11]–[13] to locate the memory position to update or retrieve from. To update

the memory, we first map the input sequence and memory into three entities: query, key,
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and value. Next, we use an attention-based mechanism to calculate the correlations

between the input and memory, and then we use the attended weight of the input sequence

to update the memory. To retrieve, we read from the updated memory at the

content-based address.

Since experience must often be mapped from one task to another (e.g., through analogy

in humans) to be useful, we also equip our memory module with an adaptable mapping

capability. In particular, we use the low-rank adaptation (LoRA) [14] method in conjunction

with a small set of adaptation parameters to modulate the memory module’s output. The

main idea behind LoRA is to utilize a small amount of labeled data from a new task to learn a

low-rank projection matrix. This matrix maps the parameters of a pre-trained model to a new

task. We utilize this idea to fine-tune the working memory—via the adaptation parameters—

on a new task, using limited data. We fine-tune only the working memory in this work

because we rely on the generalization capacity of a pre-trained Decision Transformer (DT).

Transformers are often pre-trained on large-scale datasets, as in the case of models like

Multi-game DT [15] and Hyper-DT [16], and this pre-training enables them to capture broad

knowledge that is transferable across tasks. In contrast, working memory stores task-specific

knowledge that should be adapted for new tasks.

DT-Mem differs from external memory and information retrieval-based methods in

several ways: (1) memory size, (2) representation of stored information, and (3) retrieval

method. In contrast to internal working memory, external memory methods generally
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require a large dataset that serves as a look-up table. Each raw data point in the external

memory also requires an extra step of representation learning to be input to the neural

network. And finally, our working memory relies on an attention-based retrieval method,

since attention has demonstrated the ability to generalize across tasks. However, attention

is computationally impractical for large sets, and hence external/retrieval-based memory

systems tend to rely on k-nearest neighbor (k-NN) search.

DT-Mem builds on earlier work on memory-augmented neural networks [17]—including

neural Turing machines [11] and memory networks [18]—in several ways, as we detail in the

related work.

To validate our approach, we evaluate DT-Mem on Atari games, as used in Multi-

game Decision Transformer (MDT) [15], and Meta-World environments, as used in Prompt

Decision Transformer (PDT) [19] and Hyper-Decision Transformer (HDT)[16]. Our results

show that DT-Mem improves generalization and adaptability with fewer model parameters

and less training time.

We summarize our contributions in the following:

1. We propose Decision Transformers with Memory (DT-Mem), a novel Transformer-

based DT that improves model generalization, computational efficiency and model

efficiency.

2. We introduce a LoRA-based memory module fine-tuning method that further helps

DT-Mem adapt to unseen tasks.
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In this chapter, we explore various aspects and applications of our proposed models

and algorithms. The focus here is not only on demonstrating their effectiveness in specific

tasks but also on examining their broader implications and potential applications in diverse

scenarios.

• Initial Sections (6.2 - 6.3): These sections delve into the detailed analysis and

discussion of the primary applications of our models. We evaluate their performance

in specific scenarios, providing insights into their strengths and areas for improvement.

• Further Exploration (Section 6.4): Moving beyond the initial applications, Section

6.4 presents an exploration into additional domains and scenarios where our models

can be applied. This section is crucial in demonstrating the versatility and adaptability

of our approaches, extending their applicability to wider contexts.

This chapter aims to present a well-rounded discussion of our models, highlighting not

just their core applications but also their potential in extending to various other domains, as

elaborated in Section 6.4. This comprehensive approach allows us to fully capture the scope

and capabilities of our proposed solutions.
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Figure 6.2: An overview of the proposed DT-Mem architecture. In 6.2a, Transformer
module interact with working memory multiple times.

6.2 Methodology

6.2.1 Overview of DT-Mem

In Figure 6.2 we depict the architecture of DT-Mem, which consists of three components: the

Transformer module, the Memory module, and the Multi-layer perceptron (MLP) module.

The primary role of the Transformer module is to capture dependencies and relationships

between states, actions, and returns in a sequence. The input of the Transformer module

is a fixed-length sequence of trajectories, denoted as τ t+1:t+K . The output is a sequence

of embeddings, where each entry can be attended state embeddings, action embeddings,

or return-to-go embeddings. The Transformer module follows the architecture of GPT-2

[20], but without the feed-forward layer after attention blocks. We separate the GPT-2

architecture into two pieces: the Transformer module and the MLP module, following the
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setup for natural language processing tasks: one GPT-2 model can be applied to a wide

variety of tasks with different MLP modules [20]. Finally, we introduce a working memory

module for storing and manipulating intermediate information. This is inspired by the Neural

Turing Machine [11], where the memory is utilized to infer multiple algorithms.

6.2.2 Working Memory Module

The design for the working memory is inspired by the way humans think before they act.

Its functioning consists of three parts: identifying salient information output from the

transformer module, determining where to store new information and how to integrate it

with existing memories, and considering how to use these memories for future

decision-making. We have broken down these questions and designed the following steps to

address them.

Step 0: Working Memory Initialization. The working memory is initialized as a

random matrix M , where each row mi ∈ Rd, with i ∈ [0, N ], represents a memory slot.

Step 1: Input Sequence Organizing. To start, we need to reorganize the input

sequence into a different structure. As shown in the problem formulation, the input sequence

consists of multiple steps of a tuple < r̂t, st, at >. Instead of inputting this sequence to the

transformer module, we treat each tuple as an entity and embed them in the same space.

In other words, we define embedding functions gs(s) = es, ga(a) = ea, and gr(r̂) = er̂, where

es, ea, and er̂ ∈ Rd and d is the dimension in latent space. The final input sequence is the
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concatenation of embeddings E = [· · · ; est , eat , er̂t ; · · · ].

Step 2: Content-based Address. We use an attention-based method to locate the

correct memory slot for new input by identifying correlated information. This approach is

based on the idea that humans tend to store and group similar information together. To

locate the memory position, we utilize an attention mechanism. The position address w

is calculated as: w = softmax
(

QKT
√

d

)
. Here, Q = MW q and K = EW k, where W q

and W k are parameters for the Multi-layer perceptron (MLP). The objective is to map the

memory and input information into the query and key matrix, and then use the dot product

to determine the similarities between these two matrices. The softmax function guarantees

that the sum of all addresses equals one.

Step 3: Memory update. To store incoming information and blend it with existing

memory, we calculate two vectors: an erasing vector, ϵe, and an adding vector, ϵa. The

erasing vector erases the current memory, while the adding vector controls information flow

to the memory. To achieve this goal, we again utilize the attention mechanism. First,

we map memory and input information to query, key, and value vectors, denoted as Q̂ =

MŴ q, K̂ = EŴ k, and V̂ = EŴ v, respectively, where Ŵ q, Ŵ k, and Ŵ v are parameters.

Next, we calculate the writing strength, β = softmax
(

Q̂K̂T
√

d

)
. The erasing vector is used to

selectively erase information from the memory matrix and is computed as a function of the

content-based addressing vector and the write strength. The erasing vector is calculated as

ϵe = w(1− β). The complement of the write strength is 1 minus the write strength, so this
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will result in a vector where the elements corresponding to the selected memory locations are

set to 0, and the elements corresponding to the unselected memory locations are unchanged.

The adding vector is used to selectively add information to the memory matrix and is

computed as a function of the write strength and the input vector. Specifically, the adding

vector is calculated as ϵa = wβŴ vx.

Finally, the memory is updated as Mt = Mt−1(I − ϵe) + ϵa. If the selected memory slot

is empty or erased, the new information will be stored. Otherwise, the new information will

be blended with the existing memory contents.

Step 4: Memory retrieve To utilize memory for decision-making, we retrieve

information from the updated memory slot. Reading from the memory matrix is done by

computing a read position vector. This vector can be computed using the above

content-based addressing mechanism that involves comparing the query vector with the

contents of the memory matrix. Note that in other retrieval-based methods [21], [22],

nearest neighbor is the common way to retrieve related information. However, in our case,

the internal working memory is smaller than the typical external working memory, which

makes attention-based retrieval feasible. Since the query information is the same as the

input information, we use the same content address to retrieve the memory: Eout = wMt.
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6.2.3 Pre-training DT-Mem

We use a set of training tasks T train, where each task Ti ∈ T train has an associated offline

dataset Di consisting of hundreds of trajectories τ generated by a behavior policy. The

behavior policy can be either a pre-trained policy (such as DQN) or a rule-based policy,

depending on what is available. Each trajectory τ = (s0, a0, r0, · · · , sH , aH , rH), where si ∈

S, ai ∈ A, ri ∈ R, and H is the episode length.

To serve as an input to the DT-Mem, we first segment the trajectory τ into several

pieces, each with length K. We denote τt+1:t+K = (st+1, at+1, rt+1, · · · , st+K , at+K , rt+K)

as one of the input sequence. However, we modify these trajectories instead of inputting

them directly. Specifically, we follow the return-to-go Decision Transformer idea [23] and

calculate the return to go, r̂t = ∑t+1
t=t+K rt, for every timestep. This is effective because

r̂t acts as a subgoal. It encourages the Transformer module to generate actions that can

reduce this value as close to zero as possible. Then we input the modified trajectories

τ̂t+1:t+K = (r̂t+1, st+1, at+1, · · · , r̂t+K , st+K , at+K) to the transformer module. The output of

the transformer module is a sequence embedding eseq ∈ Rd×3K , where d is the dimension of

the embedding space.

Next, we transmit eseq to the Working Memory module to update and retrieve the memory

information. Finally, we use the retrieve memory Eout and MLP modules to generate the

corresponding actions ât. We minimize a supervised training loss with three terms: predicted
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actions ãt, predicted reward r̃t, and predicted return-to-go R̃t. The loss function is:

L =
t+K∑
t+1
||ãt − at||2 + α||r̃t − r̂t||2 + λ||R̃t − rt||2, (6.1)

where α and λ are scalar hyper-parameters. In experiments, we found that the final

performance is not sensitive to these two hyper-parameters, so we set them to 1 for

simplicity.

6.2.4 Fine-tuning DT-Mem with LoRA

Fine-tuning LLMs involves heavy computation due to the large number of parameter updates

required. We argue that fine-tuning only the working memory can achieve results comparable

to those of fine-tuning the entire parameter space. LLMs benefit from being trained on

large-scale datasets, which expose the model to a diverse range of linguistic patterns and

semantic relationships, such as models like [24] or GPT [20]. This exposure helps the model

learn robust and generalized representations that can capture different aspects of language

understanding and generation. After pre-training, the model can be fine-tuned on specific

downstream tasks with task-specific labeled data. In our case, this task-specific knowledge

is stored in working memory. Thus, fine-tuning the working memory helps the model update

its working memory to adapt to the new task.

We apply the low-rank adaptation approach [14] to fine-tune the working memory module.
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Specifically, we modify the forward pass by adding low-rank matrices to W q, W k, W v, Ŵ q,

and Ŵ k. Let’s take W q as an example. Assuming the original output for query information

is Q = MW q, we adapt this query value to a new task as Q′ = M (W q + BqAq), where

W q ∈ Rn×d, B ∈ Rn×m, and A ∈ Rm×d, and m is the size of the working memory. Since the

rank m≪ min(n, d), fine-tuning the parameters Bq and Aq reduces the number of trainable

parameters for downstream tasks. We perform supervised training by computing the loss

between the model’s output and the labels in the fine-tuning dataset. During this process,

only Bq and Aq are updated.

6.3 Evaluation on Games

We designed our experiments to answer the following questions:

• Q1: Does DT-Mem improve model generalization?

• Q2: Does DT-Mem improve networking and training efficiency?

• Q3: Does fine-tuning only the memory module improve model adaptability?

Recall that we use generalization to refer to performance on tasks the model has never

trained on (zero-shot), and adaptability to refer to performance after fine-tuning.
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6.3.1 Environments and Models Setup

Atari Games To ensure a fair comparison with the Multi-Game Decision Transformer, we

used the same Atari dataset1, which comprises multiple training runs of DQN trajectories.

Due to limited compute resources and to prevent cherry picking, we selected 17 games

from the available 41 based on their alphabetical order, as introduced in [15]. For each

game, the data contains 50 policy checkpoints, each of which contains 500k environment

steps. For the fine-tuning dataset, we randomly selected 10% of the data from the unseen

dataset, which yielded 50k environment steps. Following the settings from [15], we choose

five games (Alien, Ms. Pac-Man, Pong, Space Invaders and Star Gunner) to be used only

for fine-tuning. Moreover, [25] suggests that return-conditioned supervised learning (RCSL)

algorithms require strong dataset coverage to select a near-optimal policy. Therefore, our

dataset contains both expert and non-expert behaviors.

Meta-World To make a fair comparison with Hyper-DT and Prompt-DT, we evaluate

the proposed method on the Meta-World environment [26]. We conducted the evaluation

using the Meta-World ML45 benchmark, which includes 45 training tasks and 5 testing tasks.

Following the approach taken in [16], for each training task, we generated an offline dataset

containing 1000 episodes for each game, using a rule-based script policy. For fine-tuning data,

we randomly pick 10k episodes from the testing dataset, as compared to 20k-80k episodes

used in Hyper-DT.
1https://research.google/tools/datasets/dqn-replay/
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DT-Mem settings We report results for DT-Mem 20M (20 million parameters), which

consists of 13M transformer parameters and 7M memory module parameters.

Training and Fine-tuning For all games, we use eight V100 GPUs for model training

and one V100 GPU for fine-tuning. We train on both Atari games and Meta-World for 10M

steps. For fine-tuning on unseen scenarios, we train for 100k steps.

6.3.2 Baseline Methods

We compare DT-Mem’s performance against the following baselines.

MDT Multi-game Decision Transformer [15], which trains a large transformer-based

model on multi-game domains.

HDT Hyper-Decision Transformer [16], which utilizes a hyper-network module to help

DT adapt rapidly to unseen tasks. Since we do not have access to the implementation at the

time of writing, for the sake of correctness, we compare our model with HDT on Meta-World

only. The results reported in our evaluation section come from the HDT paper.

PDT The Prompt Decision Transformer [19] generates actions by considering both recent

context and pre-collected demonstrations from the target task.

6.3.3 DT-Mem improves model generalization.

We evaluate five held-out games fine-tuning results as listed in Table 6.1. Each evaluation

signifies an average derived from 16 runs, each under differing random seeds. The derived
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Alien MsPacman Pong SpaceInvaders StarGunner

MDT 3.8%
(±0.4%)

13.2%
(±1.3%)

0%
(±0%)

8.6%
(±1.6%)

2.3%
(±0.1%)

RMDT 22.3%
(±10.7%)

22.9%
(±8.9%)

0%
(±0%)

17.6%
(±9.2%)

27.7%
(±11.5%)

DT-Mem 51.0%
(±32.2%)

69.3%
(±19.3%)

0%
(±0%)

53.6%
(±29.0%)

62.2%
(±19.1%)

Table 6.1: Evaluation results on 5 held-out games after pre-training on other Atari Games.
Each value represents the DQN-normalized score, computed with a 95% confidence interval.

results show that the memory-incorporated method, RMDT and DT-Mem, enhances model

generalization when compared to their ablation method MDT. A noteworthy observation is

that DT-Memdemonstrates superior generalization performance than RMDT in four out of

the five games. Neither of the methods achieves a good result in ”Pong”. We further discuss

whether fine-tuning helps to improve the performance in Section 6.3.5.

6.3.4 DT-Mem enables more computationally efficient training.

Model Training time (hours)

DT-Mem 50

MDT-13M 200

MDT-40M 400

MDT-200M 1600

Table 6.2: Model training time

To demonstrate training efficiency, we illustrate the

model training time in Table 6.2 During training,

we found that DT-Mem reduces the training time

by approximately 4 times, 8 times, and 32 times

compared to MDT-13M, MDT-40M, and MDT-

200M, respectively. For the training curve, it is

reasonable to report the prediction loss on the
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training dataset since we use a supervised loss.

Here, the prediction accuracy consists of three parts: action prediction accuracy, reward

prediction accuracy and return prediction accuracy.

6.3.5 Fine-tuning only the memory module improves model

adaptability.
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Figure 6.3: Fine-tuning performance on 10% of dataset in unseen Atari games. NFT stands
for no fine-tune model and FT stands for fine-tune model. Note that these games are in the
training dataset of MDT. The y-axis is the logarithm of the improvement percentage.

Another question we care about is how the pre-trained DT-Mem performs on unseen

tasks. We randomly selected nine unseen Atari games and evaluated their performance

through relative improvement scores, as shown in Figure 6.3. Without fine-tuning, DT-

Mem cannot compete with the human-best scores across the dataset. After fine-tuning with

10% of the unseen data, DT-Mem-Top3 surpasses the human-best scores in eight out of nine

games, while DT-Mem-Average only outperforms the human-best scores in two out of nine
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games. It is reasonable that none of the proposed methods can compete with MDT-Top3,

since MDT was trained on these nine games with the full dataset. Thus, DT-Mem with simple

fine-tuning yields promising performance, demonstrating its generalization and adaptability.

To compare the generalization of MDT and DT-Mem, we evaluated 5 held-out games

that were not included in either model’s training dataset. We observed that no-fine-tune

DT-Mem failed to achieve good results in all 5 games for both average and top 3 rollouts.

After fine-tuning, the average rollout results of DT-Mem outperformed the DQN score in 3

out of 5 games and achieved similar performance compared to MDT in Alien, Ms. Pac-Man,

and StarGunner games. The top3 DT-Mem rollouts results outperformed MDT-Top3 in 4

out 5 games and increase the DQN-normalized score on average by 15.5%. This result is

an indication of the effectiveness of the proposed method. However, we also noticed that

fine-tuning DT-Mem on the Pong game did not produce good results. We hypothesize that

the limited number of training games is the reason. To mitigate this issue, we increased

the fine-tuning datasets from 10% to 20% and fine-tuning steps from 100k steps to 200k

steps. After fine-tuning on more data and steps on Pong, results show that when compared

to MDT-Top3, using DT-Mem on average decreased performance by 0.978%, but using DT-

Mem Top3 increased performance by 1.154%. In conclusion, our findings suggest that the

proposed DT-Mem improves the generalization of the model, especially in games that are

not included in the training dataset. However, the effectiveness of fine-tuning may depend on

the number of training games and the amount of fine-tuning steps. Therefore, future research
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should explore the optimal combination of these factors to further enhance the performance

of the model.

To further understand the adaptability of the proposed method, we compare

DT-Mem with HDT and PDT in meta-world environments. The quantitative fine-tuning

results are shown in Table 6.3. Overall, DT-Mem achieves the best performance in the

comparison. As we can see, compared to HDT, DT-Mem increases both training, testing

(no-FT) and testing (FT) scores by an average of 3%, 8% and 3%, respectively. Moreover,

the HDT adaptation module (hyper-network module), while small (69K) relative to the full

model (13M), relies on the pre-trained hyper-network, which contains 2.3M parameters.

We argue that the hyper-net is more burdensome than our design: it uses more than 10x

the number of adaptation parameters (147K) used by DT-Mem and requires an extra

compute phase to pre-train the hyper-network module.

Model Sizes Meta-World ML45 Performances
Adaptation Percentage Train Test (no-FT) Test (FT)

HDT 69K 0.5% 0.89± 0.00 0.12± 0.01 0.92± 0.10
PDT 6K 0.05% 0.88± 0.00 0.06± 0.05 0.09± 0.01

DT-Mem 147K 0.7% 0.92± 0.00 0.20± 0.01 0.95± 0.10

Table 6.3: Evaluation results on Meta-World ML45 benchmarks
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Base Station
(BS)

Sectors in each
BS

Figure 6.4: The simulation scenario contains one BS. Each hexagon represents one cell,
which controls 120 degrees. The yellow, red, green, and blue dots stands for idle UEs, active-
downlink UEs, active-handover UEs, and inactive UEs, respectively.

6.4 Evaluation on Network Load Balancing

6.4.1 Environment Setup

To evaluate the effectiveness of our approach for load balancing, we conducted experiments

in a communication network simulator. The simulator is designed to emulate a real-world

network environment, and it includes various traffic scenarios with different numbers of UEs

and packet sizes. As shown in Fig. 6.4. The load balancing task was performed on a network

consisting of several Base Stations (BS), each of which consists of 3 sectors, each with 4

cells operating on different frequency channels. In total, we evaluated 26 traffic scenarios

in the simulator, each representing different network conditions. The scenarios were chosen
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to represent a diverse range of network conditions, including low and high network traffic,

as well as different types of packet sizes. This allowed us to test the effectiveness of our

approach across a range of different network conditions.

6.4.2 System Performance Metrics

In this paper, we evaluate the system performance using several metrics over a period of

interest denoted by T . We define ui,k as the k-th UE in the i-th cell, and Ai,k as the total

size of packets received by UE ui,k.

• Minimum Throughput (minTput) GminT put = mini,k

(
Ai,k

T

)
shows the worst-case

UE performance. Maximizing this metric improves the worst-case user experience.

• Total Throughput (totalTput) GtotalT put = ∑
i

∑
k

Ai,k

T
evaluates overall system

performance. This metric reflects the overall provided network services.

6.4.3 Methods Evaluated

We compare our method with the following SOTA methods.

• Rule-based manages the base station load balancing using pre-programmed control

parameters according to prior knowledge [27].

• PPO (proximal policy optimization) [28] is one of the SOTA policy update algorithms2

2Compared with other SOTA RL algorithms such as TD3 [29] and SAC [30], we find PPO achieves the
best system performance overall metrics, which we choose as the compared schemes here.
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that has been widely used in control problems. To make a fair comparison, we train

PPO on several representative traffic scenarios and evaluate them on other unseen

scenarios.

• BC (Behavior Cloning) [31] is a method that involves training a policy to imitate or

replicate an existing behavior policy. The aim of behavior cloning is to produce a

model that can replicate the expert’s behavior on new, unseen data, with the hope of

achieving similar or better performance than the expert.

• CQL (Conservative Q-Learning) [32] is another important SOTA offline RL approach,

which learns a Q-function that is conservative with respect to the data distribution.

For fair comparison, we substitue the Q-learning algorithm with PPO method. CQL

serves as our primary comparison.

• HDT (Ours): as point out in [19] we use 20% of the trajectories as the task information.

In our case, the total length of the trajectories is 24, which means the task information

contains the first 5 timesteps.

6.4.4 Training Datasets Preparation

Our simulator consists of a total of 100 traffic scenarios, each with different parameter

settings such as number of UEs, packet size, and request interval. Due to page limits, we

are unable to include all the details of the traffic settings in the paper. To provide a basic
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Number of UEs Packet Size Request Interval
#21 35 1.2 180
#22 40 0.2 40
#23 40 0.1 9
#24 35 0.4 40
#25 40 2 280
#26 35 1 120
#27 55 0.8 80
#28 30 1.2 60

Table 6.4: The environment parameters of 8 traffic patterns.

understanding, we summarize 8 out of the 100 traffic scenarios in TABLE 6.4.

To prepare the datasets, we follow the data-collection framework proposed in [33]. The

framework stores the training trajectories (st, at, rt) for every timestep t. In this paper, we use

the PPO method as the training policy, as it has shown the best performance among all state-

of-the-art model-free RL algorithms. Following the data splitting convention, we randomly

separate the 100 training scenarios into 80 training scenarios and 20 testing scenarios. This

results in 80% and 20% for training and testing, respectively.

6.4.5 Evaluation Results on Metrics

We first show the collected mean episode rewards during the model training phase. As shown

in Fig. 6.5, the proposed method HDT achieves the highest rewards as the training going on.

CQL method achives around the same mean episode rewards as collected in the datasets.

BC method cannot achieve the best reward stored in the datasets.

We compared the zero-shot adaptation abilities of different schemes, and due to the
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Figure 6.5: Collected mean episode rewards during training. Each curve represents a
offline-RL method. The purple dash line denotes the best rewards stored in the datasets,
which is collected by PPO method.
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Figure 6.6: Comparison of minTput metric results for 20 unseen traffic scenarios. For
better observation, we stack different methods in one bar plot with overlapping. The higher
results show better performance.
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page limit, we only report one performance metric in this result. However, the phenomenon

remains consistent across all metrics 3. As shown in Fig. 6.6, HDT achieves the best minTput

values in 17 out of 20 scenarios, demonstrating its zero-shot generalizability. In scenario

5, none of the baselines achieve competitive results compared to the Rule-based method.

We performed further analysis on this scenario and found that it is different from other

traffic patterns. In scenario 8, CQL receives mean episode rewards of 2.45, which is slightly

better than HDT’s 2.42. Since CQL is the state-of-the-art offline RL algorithm, this result is

reasonable and does not affect the main observation. The same conclusion applies to scenario

13, where the PPO method achieves the best reward of 2.06, slightly better than HDT’s 2.03.

The reason for this is that the PPO method is overfitted to the training scenarios and can

achieve good results only if the testing scenarios are similar to the training datasets.

We further evaluated the effectiveness of the proposed component in the ablation study.

To illustrate the effectiveness of the proposed method, we added a variation of HDT without

the hypernet module and named it vanilla-HDT. As shown in Table 6.5, both DT and HDT

outperform CQL and improve performance by an average of 8.9% and 15.1%, respectively.

The reason can be summarized in two parts: (1) the transformer module takes advantage

of the whole existing trajectories to make the current decision. Unlike classical RL methods

that choose actions based on current state, DT utilizes the trajectories τ0:t−1 up to the current

timestep t and makes decisions accordingly, and (2) the hypernet module further improves
3This also applies to the results shown in the ablation study
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the adaptability of DT by utilizing the task information and inferring the parameter settings

for the MLP module.

Traffic ID Rule-based CQL vanilla-HDT HDT
1 3.09 4.07 4.42 4.85
2 3.43 4.14 4.23 4.66
3 4.07 4.24 4.33 4.61
4 2.78 3.03 3.35 3.51
5 1.49 1.64 2.4 2.52
6 2.48 3.02 2.86 3.05
7 2.49 2.65 2.66 2.95
8 3.13 3.25 3.61 3.62
9 2.41 2.39 2.41 2.63
10 2.89 3.3 3.87 4.02
11 3.03 3.21 3.48 3.55
12 2.49 2.69 3.71 3.95
13 3.7 4.07 4.42 4.57
14 3.62 4.14 4.77 4.92
15 1.73 1.81 2.1 2.61
16 2.51 2.61 3.21 3.4
17 3.92 4.06 4 4.17
18 3.78 3.98 4.05 4.28
19 3.94 5.21 5.58 5.63
20 3.28 3.38 3.36 3.51

Average 3.01 3.34(+11%) 3.64(+21%) 3.85(+61%)

Table 6.5: Ablation study on totalTput metric results for 20 unseen traffic scenarios. Each
value shows the mean episode reward during evaluation. The relative average improvements
over baselines are shown in brackets.
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6.5 Implementation Details

6.5.1 DT-Mem network architecture

Table 6.6 summarizes the different model configurations used for evaluation. In this section,

we describe these model configurations in detail. While Table 6.6 provides a summary, we

will also provide additional information here. DT-Mem, PDT and HDT are all share the

same transformer architectures. However, for task-adaptation, HDT utilizes a pre-trained

2.3M hyper-network, while DT-Mem introduces 147K LoRA parameters. To compare with

MDT, we use the same parameter size as reported in [15].

Model Layers Hidden size (d) Heads Params Memory Size
HDT 4 512 8 13M N.A.

MDT-200M 10 1280 20 200M N.A.
DT-Mem 4 512 8 13M 559K

Table 6.6: Detailed Model Sizes

6.5.2 Hyper-parameters

In this section, we will delve into the specifics of the model parameters. Understanding these

parameters is key to understanding the workings of the model. It is worth noting that the

source code for this model is publicly available at https://github.com/luciferkonn/DT_

Mem/tree/main. This allows for a deeper understanding of the model’s inner workings and

may facilitate the replication of its results.

https://github.com/luciferkonn/DT_Mem/tree/main
https://github.com/luciferkonn/DT_Mem/tree/main
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Hyperparameters Value
K (length of context) 28

dropout rate 0.1
maximum epochs 1000

steps for each epoch 1000
optimizer learning rate 1e-4

weight decay 1e-4
gradient norm clip 1.

data points for each dataset 500,000
batch size 64

memory slots 1290
activation GELU
optimizer AdamW
scheduler LambdaLR

Table 6.7: Hyperparameters for DT-Mem training

6.5.3 Training and fine-tuning algorithm

In this section, we present the pre-training DT-Memin Appendix 6.5.3 and fine-tuning DT-

Mem with LoRA in Appendix 6.3.5.

We pre-train DT-Mem on multiple offline datasets. Each gradient update of the DT-

Memmodel considers information from each training task.

We fine-tune the memory module to adapt to each downstream task. To achieve this,

we fix the pre-trained DT-Mem model parameters and add additional LoRA parameters for

the memory module feed-forward neural networks. The fine-tune dataset is used to update

these LoRA parameters only.
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Algorithm 3: Pre-train DT-Mem
1 for T episodes do
2 for Task Ti ∈ T train do
3 Sample trajectories τ = (s0, a0, r0, · · · , sH , aH , rH) from the dataset Di.;
4 Split trajectories into different segments with length K and calculate

return-to-go in the input sequence.;
5 Given τ̂t+1:t+K , compute the sequence embedding eseq.;
6 Update the working memory and retrieve the relative information as Eout;
7 Given Eout, predict actions ãt, reward r̃t, and return-to-go R̃t.;
8 Compute the loss according to Eqn. 6.1.;
9 Update all modules parameters.;

Algorithm 4: Fine-tuning DT-Mem
1 Require: Fine-tuning dataset T i ∈ T test dataset Di for T i. Initialize LoRA

parameters B̂q, B̂k, B̂v, Âq, Âk, Âv, Bq, Aq, Bk, Ak. for T steps do
2 Split trajectories into different segments with length K and calculate

return-to-go in the input sequence.;
3 Given τ̂t+1:t+K , compute the sequence embedding eseq.;
4 Update working memory using Q̂ = M (Ŵ q + B̂qÂq),

K̂ = M(Ŵ k + B̂kÂk),V̂ = M (Ŵ v + B̂vÂv),
Q = M (W q + BqAq),K = M(W k + BkAk);

5 Retrieve the relative information as Eout;
6 Given Eout, predict actions ãt, reward r̃t, and return-to-go R̃t.;
7 Compute the loss according to Eqn. 6.1.;
8 Update LoRA parameters only.;
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6.5.4 Evaluation Parameters

To evaluate the performance of our model on Atari games, we randomly selected 16 different

random seeds for evaluation. We chose the random seed by multiplying the number of runs

by 100. For example, the random seed for run 6 is 6× 100 = 600.

6.5.5 DT-Mem improves training performance.

We want to evaluate pre-training whether adding the working memory module helps

improve the pre-training performance. Thus, we choose relative improvement:

rel-imp(%) = (scoremodel − scoredataset)/scoredataset × 100 to measure the model

performance. As shown in Figure 6.7, the proposed DT-Mem-Top3 out performs

MDT-Top3 in 13 out of 17 games. DT-Mem-Average outperforms MDT-Top3 in 6 out of

17 games. These results demonstrates the effectiveness of the proposed method.

6.5.6 Training Efficiencies

To demonstrate training efficiency, we illustrate the model training curve in Figure 6.8. For

the training curve, it is reasonable to report the prediction loss on the training dataset

since we use a supervised loss. Here, the prediction accuracy consists of three parts: action

prediction accuracy, reward prediction accuracy and return prediction accuracy. The y-axis

shows the average value of these three predictions, and the x-axis is the relative walltime

based on same computing resources.
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Figure 6.7: The percent improvement for training dataset. We take the logarithm of the
original improvements for better visualization. The evaluation are done in 16 runs with
different random seeds. Average stands for the mean value of 16 runs. Top3 represents the
top 3 rollouts out of 16 runs.

6.5.7 The analysis of memory size

In this section, we investigate the impact of the memory module size on the performance of

DT-Mem. We employ the Bayes optimization strategy to tune the parameters. It’s worth

noting that the memory size is calculated by multiplying the number of memory slots by the

size of each slot, which is fixed at 512 dimensions for the sake of evaluation simplicity. To

expedite the hyper-parameter tuning process, we present the evaluation results based on 100k

training steps of the StarGunner game. We assess various configurations of memory slots

and calculate their corresponding average rewards over 16 runs. Figure 6.9 reveals several

key findings: (1)Increasing the size of memory slots leads to a higher reward accumulation.

Notably, there is a significant performance boost when the number exceeds 1200. (2)In
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is displayed in a separate figure.
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Figure 6.9: The parameter tuning results for the number of memory slots. The blue curve
shows the like from left to right over the x axis and plots the running average y value.

summary, when the number of memory slots exceeds 1800, the performance of the system

decreases. This decline occurs because there is a trade-off between the number of memory

slots and the training steps. With a larger number of memory slots, it becomes necessary to

allocate more training time.

6.5.8 Ablation study of LoRA adaptor

In this section, we conduct an ablation study of LoRA-based memory adaptor. We

substitute LoRA adaptor with hyper-networks. Specifically, the parameters of the memory

module are generated from hyper-networks. This approach is based on [34], where

hyper-networks take task-related information as input and generate the corresponding
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Meta-World ML45 Performances Data size Model
Train Test (no-FT) Test (FT) Adap. Per.

DT-Mem
(hyper-net) 0.92± 0.01 0.23± 0.10 0.81± 0.15 30 5.7M 43.8%

DT-Mem 0.92± 0.00 0.20± 0.01 0.95± 0.10 10 147K 0.7%

Table 6.8: Ablation study results on Meta-World ML45 benchmarks. DT-Mem (hyper-
net) denotes the variation of DT-Mem, which substitute LoRA adaptation module with
hyper-networks. Adap. stands for adaptation parameters, and Per. stands for percentage of
original model.

networks for the downstream MLP. We use the same approach and generate parameters

that are conditioned on two types of inputs: the task embedding from the task encoder and

the sequence embeddings from the Transformer module.

To generate task embeddings, we adopt the same idea from PDT [19], which demonstrates

that a small part of trajectories can represent the task-related information. We further

extend this idea to fully extract the task information. To achieve this goal, we use a Neural

Networks (NNs) as a task encoder. Specifically, this task encoder is implemented as a

transformer encoder-like structure [35]. We first formulate the first i steps of collected

trajectories τ0:i = (s0, a0, r0, · · · , si, ai, ri) as a task specific information. The task trajectory

τ0:i is treated as a sequence of inputs to the task encoder. The output of the task encoder is

a task embedding etask ∈ Rd, where d is the dimension of the embedding.

Then, we concatenate the task embedding and sequence embedding e = [etask; eseq] and

input them to the hyper-networks. Specifically, we define the hyper-network as a function

of fω(·) parameterized by ω. The output Θ = fω(e) is a set of parameters for the memory
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module.

According to the evaluation results in Table 6.8, the inclusion of a hyper-network in

the DT-Memmodel improves generalization without the need for fine-tuning. However, it is

worth noting that the hyper-network variant of DT-Mem(hyper-net) exhibits higher variance

compared to DT-Mem. The primary reason for this higher variance is the uncertainty

arising from the task information. In each run, different task-related sequences are collected,

resulting in varying generated parameters for the memory module. Regarding the task fine-

tuning results, we observe that the LoRA module outperforms other methods. This finding

indicates that fine-tuning with LoRA enhances the model’s adaptability. We hypothesize

that the size of the hyper-networks model plays a role in these results. Fine-tuning a large

model size (5.7M) with a small step-size (100k steps in our case) becomes challenging. In

an effort to improve hyper-networks fine-tuning performance, we increased the fine-tuning

dataset from 10k episodes to 30k episodes. These findings suggest that LoRA-based fine-

tuning demonstrates better data efficiency.

6.5.9 LoRA hyper-parameters tuning

In this section, we explore the impact of LoRA hyper-parameters on the final fine-tuning

results. LoRA employs three hyper-parameters: rank, lora dropout, and lora alpha. The

rank parameter, denoted as m, determines the low-rank of adaptation matrices B ∈ Rn×m

and A ∈ Rm×d, as described in Section 6.2.4. The lora dropout refers to the dropout rate
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Figure 6.10: LoRA hyper-parameters tuning results.

applied to the LoRA neural networks, while lora alpha controls the scaling factor of the

LoRA outputs. Figure 6.10 presents the fine-tuning results, with the last column

(eval/rew mean/StarGur) specifically showcasing the fine-tuning results for the

StarGunner game. To obtain the optimal set of parameters, we employ the Bayesian

optimization method for parameter tuning, which suggests various parameter combinations

that maximize the fine-tuning results.

Parameter Importance score Correlation score
rank 0.486 -0.132

lora dropout 0.285 -0.561
lora alpha 0.229 0.550

Table 6.9: Analysis of LoRA hyper-parameters

We further analyze these parameters and present the findings in Table 6.9. To gain
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insights, we utilize two widely used metrics in the MLOps platform Weights&Biases4.

Regarding the importance score, we train a random forest model with the hyper-

parameters as inputs and the metric as the target output. We report the feature importance

values derived from the random forest. This hyper-parameter importance panel disentangles

complex interactions among highly correlated hyper-parameters. It facilitates fine-tuning of

hyper-parameter searches by highlighting the hyper-parameters that significantly impact the

prediction of model performance.

The correlation score represents the linear correlation between each hyper-parameter

and the chosen metric (in this case, val loss). A high correlation indicates that when the

hyper-parameter has a higher value, the metric also tends to have higher values, and vice

versa. Correlation is a useful metric, but it does not capture second-order interactions

between inputs and can be challenging to compare when inputs have widely different ranges.

As shown in Table 6.9, rank emerges as the most important hyper-parameter that requires

careful tuning. The correlation score of rank is -0.132, indicating that a smaller rank number

leads to better fine-tuning results. Based on our findings, a rank value of 4 yields the best

outcome. Lora dropout and lora alpha exhibit similar importance scores, suggesting that

these two parameters can be treated equally. The correlation score reveals that a smaller

lora dropout value and a larger lora alpha value result in improved performance.
4For better understanding, please refer to https://docs.wandb.ai/guides/app/features/

panels/parameter-importance?_gl=1*4s7cuj*_ga*MTQxNjYxODU0OC4xNjgzNjY4Nzg3*_ga_
JH1SJHJQXJ*MTY4NDc5NDkzNS40MS4xLjE2ODQ3OTQ5NDIuNTMuMC4w

https://docs.wandb.ai/guides/app/features/panels/parameter-importance?_gl=1*4s7cuj*_ga*MTQxNjYxODU0OC4xNjgzNjY4Nzg3*_ga_JH1SJHJQXJ*MTY4NDc5NDkzNS40MS4xLjE2ODQ3OTQ5NDIuNTMuMC4w
https://docs.wandb.ai/guides/app/features/panels/parameter-importance?_gl=1*4s7cuj*_ga*MTQxNjYxODU0OC4xNjgzNjY4Nzg3*_ga_JH1SJHJQXJ*MTY4NDc5NDkzNS40MS4xLjE2ODQ3OTQ5NDIuNTMuMC4w
https://docs.wandb.ai/guides/app/features/panels/parameter-importance?_gl=1*4s7cuj*_ga*MTQxNjYxODU0OC4xNjgzNjY4Nzg3*_ga_JH1SJHJQXJ*MTY4NDc5NDkzNS40MS4xLjE2ODQ3OTQ5NDIuNTMuMC4w
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6.6 Memory Module Visualization

Figure 6.11 illustrates the visualization of the memory module. Since memory operations

are trained in conjunction with the transformer module, we select a later training episode at

random to mitigate uncertainties regarding operational parameters. Due to time constraints,

we trained on only two games simultaneously. In the revised version of the paper, we intend

to provide visualizations for all games. For clearer visualization, we opted for a memory

module of a smaller size, containing 128 memory slots.

Let’s first discuss how memory modules update within the same game. As observed in

the figure, for the Amidar game, the actively updated memory slots concentrate around

rows 18, 84, and 117. This pattern is consistent across episodes, albeit with reduced activity.

Such a trend indicates that during each training iteration, the transformer agent tends to

overwrite the same memory slot contents. We noted a similar observation in the Assault

game. Furthermore, we observed that the memory module’s activity diminishes in later

episodes. For instance, in the Assault game, the active memory slot in row 12 during episode

200k becomes less active by episode 201k. We hypothesize that as training progresses,

the accumulated knowledge becomes sufficiently robust for retrieval, reducing the need for

updates.

Moving on, when comparing the activity of memory slots across different games, there

are intriguing overlaps. For instance, comparing Amidar 200k and Assault 200k reveals that

memory slots around row 120 are active in both games. We surmise that this region retains
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Figure 6.11: This visualization represents the memory module. In the figure, each row is
derived from the mean of a vector that signifies a memory slot. Each depiction calculates
the variation between two write operations in a single episode for each memory slot. Lighter
shades indicate memory slots that have been actively updated post-write operations. The
encircled areas highlight the comparison of active memory slots across different episodes.
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cross-task knowledge shared between games. Additionally, the varying attention across other

memory slots demonstrates how these slots assist the agent in decision-making across diverse

games.

6.7 Summary

LLM-based RL algorithms have shown generalization across multiple tasks and games. We

argue that this ability comes from implicit memory that fits a large number of parameters to

the training data, which is inefficient in terms of model size. In contrast, we propose a new

approach inspired by the concept of “working memory” called Decision Transformers with

Memory (DT-Mem), which stores training experience explicitly in a content-addressable

matrix module for later retrieval and use. Evaluation demonstrates that DT-Mem achieves

better generalization on Atari games with only 10% of the model parameters compared to

the state-of-the-art method. Furthermore, we demonstrate that fine-tuning DT-Memwith

a small amount of data can produce state-of-the-art results on both Atari games and the

Meta-World environment, when compared to MDT [15], PDT [19], and HDT [16].

Limitations The first limitation of our work is the sample efficiency of memory fine-

tuning. The 10% fine-tuning dataset is still sizeable, and we plan to explore more sample-

efficient methods in the future. We could for instance consider a setting with more tasks,

each one with less data so that the inter-task generalization would be even more crucial to

its performance. Additionally, this work does not propose a control strategy for collecting
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data on a new task. For future work, we plan to investigate online data collection methods,

which includes the design and learning of exploration strategies for an efficient fine-tuning

on new tasks. Finally, the approach has been intuitively motivated, but it would be valuable

to have a theoretical grounding that would show the structural limits of large models and

how equipping them with a memory component overcomes them.

Societal Impact We do not foresee any significant societal impact resulting from our

proposed method. The current algorithm is not designed to interact with humans, nor

any realistic environment yet. If one chooses to extend our methods to such situations,

caution should be exercised to ensure that any safety and ethical concerns are appropriately

addressed. As our work is categorized in the offline-RL domain, it is feasible to supplement

its training with a dataset that aligns with human intents and values. However, one must be

wary that the way our architecture generalizes across tasks is still not well understood and as

a consequence we cannot guarantee the generalization of its desirable features: performance,

robustness, fairness, etc. By working towards methods that improve the computational

efficiency of large models, we contribute to increase their access and reduce their ecological

impact.
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Chapter 7

Hierarchical Enhanced Safety Actions

In Chapter 6, we explored the extensive applications of our models, showcasing their

adaptability and impact across various domains. The insights garnered from these

applications underscore the practical relevance of our research. Chapter 7 will take us into

the realm of enhanced safety actions in hierarchical models. This chapter aims to address

some of the critical challenges and ethical considerations associated with the deployment of

these models in real-world scenarios, marking a crucial step in our journey towards

responsible and effective AI systems.

7.1 Introduction

Cellular communications have penetrated to every corner of our daily lives. To support our

ever-increasing communication demands, cells have been deployed across the territory to
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provide better services [1]. However, due to regulatory and engineering constraints, cells can

not be deployed arbitrarily [2]. This leads to a mismatch between the relatively uniform

distribution of cells and the uneven demographic distribution of people. As a result, a

cellular system usually witnesses highly imbalanced loads across different cells, resulting in

unsatisfied users and wasted resources.

Extensive efforts have been made to balance the load by migrating User Equipment

(UEs) across cells [3]–[5]. The existing Load Balancing (LB) methods can be divided into

two categories, the Active-UE LB (AULB) and the Idle-UE LB (IULB). The AULB

methods utilize the Handover (HO) mechanism to offload active mode UEs (i.e., UEs

currently transceiving signals) from busy serving cells to less-busy neighboring cells [6], [7].

Such methods achieve instantaneous load balancing results, by paying the price of

increased system overhead. The IULB methods leverage the Cell Re-selection (CR)

mechanism to move idle mode UEs (i.e., UEs connected but not transceiving signals) from

congested camping cells to other cells [8], [9]. These methods are more lightweight, since

CR requires less system overhead than HO. Yet, the benefit is realized only after the

migrated idle UEs become active.

Challenge: The actions of AULB may conflict with the actions of IULB (and vice versa),

resulting in unexpected degradation on system performance and safety issues.

In order to overcome this challenge, in this chapter, we adopt a Hierarchical Policy

Learning (HPL) method, which integrates both AULB and IULB into a two-level
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Reinforcement Learning (RL) structure. Concretely, the upper level adjusts AULB actions,

and the lower level controls the IULB actions. The upper level aims to optimize the system

performance directly as an RL reward, and at the same time, learns to set a subgoal for the

lower level. This subgoal is a desired RL state, which further improves the upper-level

reward (and yet cannot be achieved with only upper-level actions). By approaching this

subgoal, the lower level 1) indirectly enhances the system performance, and 2) is enforced

to align with the upper level. In this way, a collaboration is established between AULB and

IULB, eliminating the potential conflicts.

The major contribution is summarized as follow.

Contribution: this chapter develops HPL - the first hierarchical learning method that

integrates different LB mechanisms (i.e., AULB and IULB) in a collaborative way.

We evaluate the proposed HPL method against the State-Of-The-Art (SOTA) RL-based

LB methods in a system-level network simulator. The simulation results show that, under

different UE density settings, our HPL method always outperforms the SOTA methods.

Specifically, compared to a direct combination of SOTA AULB and IULB, HPL improves

the average throughput by up to 24.1%, while reducing the standard deviation of throughput

by up to 31.0%.
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7.2 Preliminaries

7.2.1 Cellular Network Terminologies

For the sake of clarity, we define some cellular network terminologies. We use the term

“load” to refer to the number of UEs being served. We use a Base Station (BS) to describe

a physical site, where radio access devices are placed. Consider a cellular network with NB

BSs, each of which consists of NS non-overlapping sectors. A sector is serving the UEs

located on a certain direction of its hosting BS. A sector supports NC carrier frequencies,

each of which corresponds to a cell. A cell is a service entity serving the UEs within a

certain direction of a BS and on a certain carrier frequency.

7.2.2 Performance Metrics

Suppose there are NU UEs (either active or idle) in the network. Define Ui as the set of UEs

associated with the i-th cell. Among Ui, there are both active UEs (denoted as Ua
i ) and idle

UEs (denoted as Ud
i ). Naturally, we have Ui = Ua

i ∪ Ud
i . Further, let ui,k denote the k-th

UE in the i-th cell. Note that an idle UE at the current moment may become active in the

future, and vice versa. We aim to balance the assignments of UEs to different cells, so as to

enhance the following metrics.
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The first metric is the average throughput Gaver, i.e.,

Gaver = 1
NU

∑
i

∑
k

Ai,k

T
, (7.1)

where T is the time period of interest, and Ai,k is the total size of packets received by ui,k

within T . Improving this metric means to increase the overall system performance.

The second metric is the minimum throughput Gmin, i.e.,

Gmin = min
i,k

(
Ai,k

T

)
, (7.2)

which captures the worst-case UE performance.

Last but not least, we consider the reciprocal of the Standard Deviation (SD) of

throughput as the third metric Gsd , i.e.,

Gsd =
√√√√ 1

NU

∑
i

∑
k

(Ai,k

T
−Gaver)2

−1

. (7.3)

Maximizing this metric reduces the gap between different UEs’ performance, and thus

provides fairer services to all UEs.
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7.2.3 Active UE Load Balancing (AULB) via Handover

The first category of LB methods rely on the HO of active UEs. For the sake of generality,

we consider a common Reference Signal Received Power (RSRP1) based HO mechanism,

which can cover different variants, such as Cell Individual Offset (CIO) based HO or A2/A5

event based HO in LTE/5G networks. Concretely, every UE compares the RSRP value of

its serving cell against the values of its neighboring cells. If the following condition holds,

then the active UE will be handed over to a neighboring cell, i.e.,

RSRPj > RSRPi + αi,j + H, (7.4)

where RSRPi represents the UE’s RSRP from the serving cell i, RSRPj denotes the UE’s

RSRP from a neighboring cell j, αi,j is the HO threshold from cell i to cell j, and H is the

HO hysteresis. This HO threshold αi,j is a pair-wise directional variable (e.g., αi,j ̸= αj,i).

By changing {αi,j}, we are able to adjust the HO boundaries between cells, and therefore

balance the numbers of active UEs across cells.

7.2.4 Idle UE Load Balancing (IULB) via Cell Re-selection

Another category of LB methods depend on the Cell Re-selection (CR) of idle UEs. When

a UE is turned on, it first enters the idle mode and “camps” on a cell. An idle UE is ready
1This variable can be Reference Signal Received Quality (RSRQ) as well.
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to initiate a potential dedicated service or to receive a broadcast service. Once becoming

active, the UE usually will stay in the same cell, where it camped during the idle mode.

An idle UE can camp on another cell via the CR procedure, so as to stay connected when

moving. This CR procedure will be triggered, if the following condition holds for an idle UE:

RSRPi < βi,j, and RSRPj > γi,j, (7.5)

where βi,j and γi,j are pairwise and directional RSRP thresholds to trigger CR from a camping

cell i to a neighboring cell j. Again, the CR mechanism represented by condition (7.5) is a

generalized one2. By adjusting {βi,j} and {γi,j}, we can achieve a balanced distribution of

idle UEs across cells. This helps reduce the congestion when idle UEs become active.

7.3 The Problem and The Challenge

7.3.1 The Hybrid Load Balancing Problem

In this chapter, we aim to solve a hybrid LB problem, where both AULB and IULB are

applied to achieve balanced load and better system performance. Formally, we define this

hybrid LB problem as follows.

max
{αi,j},{βi,j},{γi,j}

G, (7.6)

2The current format follows LTE/5G’s lower priority inter-frequency CR. Also, βi,j = 0 provides
LTE/5G’s higher priority inter-frequency CR.
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s.t. αi,j ∈ [αmin, αmax], (7.7)

βi,j ∈ [βmin, βmax], (7.8)

γi,j ∈ [γmin, γmax], (7.9)

where G is the system performance, αmin and αmax define the controllable range of AULB

actions, and βmin, βmax, γmin and γmax define the controllable range of IULB actions. In this

chapter, we use three different type of metrics (Gaver, Gmin, and Gsd) to measure system

performance G.

7.3.2 Potential Conflicts Between AULB and IULB

Although individual AULB and IULB work quite well respectively, it is non-trivial to fuse

them together, mainly due to the potential conflicts between these two methods (i.e., the

Challenge stated in Section 7.1).

A motivating example is presented as follows. Consider two co-located cells, cell 1 and cell

2, residing on different carrier frequencies. Support an AULB method sets α1,2 = α2,1 = 2dB

and H = 1dB, while an IULB method sets β1,2 = −100dB and γ1,2, = −106dB3. A UE

is now idle, and camps on cell 1 with RSRP1 = −101dB and RSRP2 = −105dB. As

one can see, the CR condition (7.5) is satisfied, i.e., RSRP1 < β1,2 and RSRP2 > γ1,2,.

Hence, this UE re-selects cell 2 and camps on it. Let’s say, immediately after that, this UE
3A system may set γi,j < βi,j and γj,i > βj,i, so that UEs can be migrated towards more preferable cells,

e.g., cells with larger bandwidth.
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becomes active, and uses cell 2 as its serving cell. As this moment, the UE finds out that

the HO condition (7.4) from cell 2 to cell 1 holds now, i.e., RSRP1 > RSRP2 + α2,1 + H.

Consequently, this UE is moved back to cell 1 via HO. Such UE oscillations among cells could

lead to degraded performance and wasted resources (evidence to be presented in Section 7.5).

7.4 Hierarchical Policy Learning

To overcome the aforementioned challenge, in this section, we propose our Hierarchical Policy

Learning (HPL) method.

7.4.1 Markov Decision Process Modeling

We adopt the (deep) RL framework, which has been proven as effective and efficiency for

LB problems [5], [7]. The first step of applying RL is to formulate the hybrid LB problem as

a Markov Decision Process (MDP). This MDP is defined as a tuple (S, A, R, P ) as follows:

• S: is the state space s ∈ R12, which comprises the number of active UEs in each cell

sue ∈ R4, bandwidth utilization in each cell sband ∈ R4, and average throughput in

each cell stput ∈ R4.

• A: is the action space. Every action contains two parts. The first part aH corresponds

to the HO parameters that control AULB actions (i.e., αi,j). The second part aL

corresponds to the CR parameters that control IULB actions (i.e., βi,j and γi,j).
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Figure 7.1: The Architecture of Hierarchical Policy Learning

• R: is the reward (to be defined in Section 7.4.3).

• P : is the transition probability function.

7.4.2 Hierarchical RL Structure

To solve the conflicts between AULB and IULB, we propose a two-level hierarchical policy

learning structure, which is shown in Figure 7.1. Basically, the higher level controls the

AULB actions aH with policy µH , and the lower level controls the IULB actions aL with

policy µL. The actions aH and aL are HO and CR parameter adjustments, respectively. The

resulting system performance is then collected as the RL reward.

At every time step t, both higher-level and lower-level policies receive a state st from

the environment. Based on this state, the higher-level policy µH(st) produces a higher-level
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control action aH . This higher-level action is used in two ways. 1) It is fed to the system

to HO control. 2) This higher-level action is also used to produce the subgoal for the lower

level. The subgoal is denoted as gt ∈ Rd, where d is the dimension of subgoal and t is the

timestep. It is generated by the goal transition function gt = f(st, aH
t ). In other words, every

time step, this function generates a subgoal according to the current state st and higher-level

action aH
t . We utilize a LSTM[10] network to implement our subgoal transition function,

i.e., gt = LSTM(st, aH
t ). The use of LSTM makes sure that the current generated goal is

consistent with the previous goals.

Based on the current state st and the subgoal gt, the lower-level policy µL(st, gt) produces

an IULB action aL
t . Since the subgoal embeds the higher-level actions, the lower-level policy

is forced to be aligned with the higher-level policy when achieving this subgoal. The combined

higher and lower actions at = aH
t ⊕ aL

t is applied to the system, so that the environment can

return the next state st+1 and reward rt.

In our hierarchical reinforcement learning framework, the LSTM (Long Short-Term

Memory) network plays a pivotal role in generating subgoals. The architecture of this

LSTM network is designed to capture the complex dynamics of subgoal transitions, which

are integral to the system’s overall performance.

The LSTM network comprises several layers, each designed to process temporal sequences

of data effectively. Specifically, the architecture includes:

• Input Layer: Receives the current state st and the higher-level action aHt as input.
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• Hidden Layers: Multiple LSTM layers, each consisting of a certain number of

LSTM units. These layers are responsible for capturing the temporal dependencies

and nonlinearities in the sequence of states and actions.

• Output Layer: Produces the subgoal gt for the next timestep. The output dimension

is determined by the dimensionality of the subgoals.

• Loss Function: The training of the LSTM network is guided by a loss function,

specifically designed to optimize the subgoal generation. This is expressed as

Lgenerator = −QµL
(st, at, gt), where QµL

represents the advantage value function.

This architecture ensures that the generated subgoals are consistent with the system’s

current state and the objectives set by the higher-level policy. The LSTM’s ability to

maintain a memory of past states allows for a smoother transition of subgoals over time,

essential for the stability and effectiveness of the hierarchical learning process.

The specific configuration details, such as the number of LSTM units in each layer and

the total number of layers, should be tuned according to the complexity of the task and the

dimensional requirements of the state and action spaces.

By detailing the architecture of the LSTM network used in our subgoal generation process,

we aim to provide clarity and enhance the reproducibility of our approach for future research

endeavors.

he LSTM network’s functionality can be mathematically represented as follows:
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ft = σ(Wf · [ht−1, xt] + bf ) (7.10)

it = σ(Wi · [ht−1, xt] + bi) (7.11)

C̃t = tanh(WC · [ht−1, xt] + bC) (7.12)

Ct = ft ∗ Ct−1 + it ∗ C̃t (7.13)

ot = σ(Wo · [ht−1, xt] + bo) (7.14)

ht = ot ∗ tanh(Ct) (7.15)

where xt is the input at timestep t, ht is the hidden state, Ct is the cell state, ft, it, ot are

the forget, input, and output gates, respectively, and W and b are the weights and biases for

each gate.

The following pseudocode outlines the procedure of subgoal generation using the LSTM

network:

Algorithm 5: Subgoal generation
1 Initialize LSTM network with weights and biases;
2 for for each timestep t do
3 Receive current state st and higher-level action aHt;
4 Concatenate st and aHt to form input xt;
5 Pass xt through LSTM network;
6 Compute new cell state Ct and hidden state ht;
7 Output the generated subgoal gt;

This pseudocode and mathematical formulation provide a detailed view of the internal
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workings of the LSTM network in our subgoal generation process. By understanding these

operational details, researchers and practitioners can replicate and build upon our

methodology more effectively.

7.4.3 Reward Optimization for Conflicting Actions

The reward for each level is different. At time step t + 1, the higher-level policy receives

the reward rt directly from the environment, i.e., rH
t = rt, which is a system performance

metric (e.g., average throughput). The lower-level reward rL
t evaluates whether the subgoal

has been achieved, and is calculated by a reward function rL
t = η(gt, st+1).

A subgoal is defined as a goal state that is expected to provide a larger higher-level

reward than the current state. Usually, a goal state is not achievable with only the higher-

level actions. Hence, the lower level comes in to play, so that the system performance could

be further improved. Accordingly, we define the lower-level reward function based on the

distance between the current state and the goal state, i.e.,

rL
t = η(gt, st+1) = −||ϕ(gt)− ϕ(st+1)||2, (7.16)

where ϕ(·) is an embedding function to map a high-dimensional space to a low-dimensional

space, so that we can use the low-dimensional euclidean distance to describes how close two

high-dimensional states are. The lower-level policy is rewarded for taking actions that yield
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states st+1 close to the desired subgoal gt.

Both policies can be trained using advanced RL methods, by incorporating gt as an

additional input into the value and policy functions. In this chapter, we choose the state-of-

the-art on-policy learning method Proximal Policy Optimization (PPO) [11] as our policy

training method, due to its robustness.

Given the lower-level reward in Eqn. (7.16), the lower-level Q-value function is to

minimize the loss:

L(µL, D) =E(st,at,gt,rt,st+1,at+1,gt+1)∼D[(QµL(st, at, gt)

− r(gt, st+1)− γQµL(st+1, at+1, gt+1)],
(7.17)

where QµL is the advantage value function of the lower level, and D is the replay buffer. This

lower-level loss enforces that the learned actions should move the state close to the subgoal.

The higher-level reward function is shown in Eqn. (7.18). The learned policy aims to

maximize the future collective rewards based on the current state. In other words, the

higher-level policy generates a subgoal that is expected to improve the system performance

(which is our major objective).

L(µH , D) = E(st,at,rt,st+1,at+1)∼D[(QµH (st, at)− r−

γQµH (st+1, at+1)],
(7.18)

where QµH is the advantage value function of the higher level.
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Combining the proposed two policies, the learned actions for hybrid AULB and IULB

work collaboratively in terms of improving the system performance without conflict with

each other. The higher-level AULB policy takes the major step towards the optimal system

performance by choosing it’s own actions as well as setting the subgoal for the lower-level

IULB policy. By fulfilling the subgoal, the lower-level policy helps further improve the system

performance upon what has been achieved by the higher level.

7.4.4 Subgoal Generation

Recent advances on Hierarchical RL (HRL) employ the higher-level policy to generate the

subgoal directly. Different from them, in our proposed HRL method, we employ a Long-

Short Term Memory (LSTM) Neural Network (NN) as our goal generator. The benefit

Algorithm 6: Hierarchical Policy Learning Procedure
1 Randomly initiate a0 and g0;
2 for every time step t (t = 1, 2, ...) do
3 Apply action at−1 to the environment;
4 Collect the current state st and the reward rt−1 from the environment;
5 Calculate the rewards of both levels, i.e.,rL

t−1 = R(gt−1, st) and rH
t−1 = rt−1;

6 Compute the advantage functions QµL and QµH ;
7 Update the parameters of the lower-level policy µL by minimizing the loss presented in

Eqn. (7.17);
8 Update the parameters of the higher-level policy µH by minimizing the loss presented

in Eqn. (7.18);
9 Update the LSTM parameters fLST M of the subgoal generator by minimizing the loss

presented in Eqn. (7.19);
10 Generate a higher-level action aH

t with policy µH(st) ;
11 Use the subgoal generator to produce a new subgoal gt = fLST M (st, aH

t );
12 Generate a lower-level action aL

t with policy µL(st, gt);
13 Concatenate actions from both levels to generate the united action at = aH

t ⊕ aL
t ;
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for this design is two-fold. First of all, a LSTM NN can approximate a non-linear high-

dimensional goal transition function, which is not achievable with existing two-dimensional

goal-transition function [12].. Second, when generating the subgoals, it is important to

maintain a certain level of consistency between the current subgoal and the previous ones.

An LSTM NN recursively computes the hidden state with the previous states being taken

into consideration, and therefore generates subgoals smoothly.

We need to train this LSTM NN to generate gt that can further improve rt. To this end,

the training loss of this LSTM NN is set as the opposite of advantage value function (note

that the advantage value function captures the increment in the reward), i.e.,

Lgenerator = −QµL(st, at, gt). (7.19)

By minimizing this loss, the LSTM NN is trained to produce a goal state gt that can

further improve rt. This LSTM-based goal generator is trained together with control policies.

7.4.5 The Overall HPL Procedure

The whole HPL procedure is summarized as Procedure 6.
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7.5 Evaluation

7.5.1 Experiment Setup

The experiments reported here utilizes a proprietary system-level network simulator. This

simulator is designed for emulate 4G/5G communication network behaviors. The simulation

scenario is presented in Figure 7.2. There are in total 7 BSs, each of which supports 3 sectors.

In each sector, there are 4 cells residing on 4 different carrier frequencies, respectively. (These

4 carrier frequencies are identical across different sectors and BSs). The scenario is wrapped

around at the edges. We emulate different UE density settings, by setting the average

number of UEs per cell to 10, 20, and 30, respectively. Theses UEs are uniformly distributed

geographically at initialization. The UE movement follows a random walk process with

an average speed of 3m/s. The packet arrival follows a Poisson process with an average

inter-arrival time of 200ms.

7.5.2 Methods Evaluated

• AULB is trained to control AULB only with one-level PPO. The IULB actions are set

to the default values. This emulates the SOTA deep RL based mobility load balancing

methods (e.g., [7], [13], [14]).

• IULB is trained to control IULB only with one-level PPO. The AULB actions are set

to the default values. This serves as the representative of the SOTA cell re-selection
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Figure 7.2: The simulation scenario.

methods (e.g., [8]).

• Sequential It produces AULB and IULB actions separately using the above two

methods, and then directly combines two kinds of actions together as one action.

• AULB+IULB is trained to control both IULB and AULB simultaneously with one-

level PPO.

• HPL is trained to control both IULB and AULB at the same time with the proposed

HPL method.
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7.5.3 Performance Comparison

To evaluate whether the system load is balanced, we first present the Standard Deviation

(SD) of throughput across different cells in Figure 7.3. The lower the SD of throughput is,

the more balanced the load is. From Figure 7.3, we can observe that the proposed HPL

algorithm consistently outperforms other baselines methods in terms of the balance of load.

In the most dense scenario, compared to AULB, IULB, Sequential, and AULB+IULB, HPL

reduces the SD of throughput by 23.1%, 28.6%, 20.2% and 31.0%, respectively. We also notice

that with the increasing number of UEs, the performance of AULB+IULB decreases quickly.

It achieves much higher SD of throughput than AULB or IULB alone. This phenomenon

indicates that the conflicts between the IULB and AULB increase with the number of UEs.

It also shows that the proposed HPL is able to resolve the conflicts between IULB and AULB,

and thus better balances the load.

The balanced load does not necessarily lead to better services, as a low SD of

throughput could imply either equally good services or evenly bad services. Therefore, we

further evaluate the average throughput to show that our HPL method can provide better

service while keeping the load balanced. In Table 7.1, we presented the average throughput

of different methods. We can see that the proposed HPL achieves the best performance

among all. In the most dense scenario, compared to AULB, IULB, Sequential, and

AULB+IULB, HPL improves performance by 13.0%, 13.9%, 32.3%, and 24.2%,

respectively. Specifically, compared to the joint RL of AULB+IULB, HPL increases the
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Figure 7.3: The SD of throughput of different methods (the lower the better).

average throughput by 0.3%, 18.9%, and 24.1%, respectively under three UE densities.

There is one interesting finding: although Sequential and AULB+IULB both combine two

LB mechanisms, they achieve lower throughput than methods using only one individual LB

mechanisms. This is another evidence that different LB mechanisms can conflict with each

other, leading to large degradation of system performance. By applying our HPL method,

we are able to reduce these conflicts and thus achieve better performance than all SOTA

methods.

While average throughput measures the overall performance, we further analyze the

minimum throughput that reflects the worst-case performance of individual UEs. In
4The percentage shows the improvement over AULB+IULB.
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Average UEs per cell
Method 10 20 30
AULB 0.593 0.231 0.123
IULB 0.491 0.199 0.122
Sequential 0.400 0.103 0.105
AULB+IULB 0.595 0.201 0.112
HPL4 0.597 (+0.3%) 0.239 (+18.9%) 0.139 (+24.1%)

Table 7.1: The average throughput (Mbps) of different methods

Table. 7.2, we present minimum throughput achieved by different methods. From this

table, we note that HPL outperforms all SOTA methods in terms of the worst-case

throughput across UE density settings. Compared to AULB+IULB, HPL increases the

minimum throughput by 0.2%, 0.176%, and 13.6%, respectively under three UE densities.

This result again confirms the advantage of our hierarchical RL structure, comparing to the

straightforward joint AULB+IULB method.

Average UEs per cell
Method 10 20 30
AULB 0.400 0.161 0.085
IULB 0.402 0.156 0.079
Sequential 0.392 0.150 0.073
AULB+IULB 0.415 0.158 0.081
HPL 0.416 (+0.2%) 0.176 (+11.4%) 0.092 (+13.6%)

Table 7.2: The minimum throughput (Mbps) of different methods

Finally, we evaluate the system overhead in terms of UE HO counts. Table 7.3 presents

the averaged number of HO per cell within a hour. From this table, we observe that HPL

results in the smallest number of HO in all UE density settings. More precisely, compared to
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AULB+IULB, HPL decreases the number of handovers by 5.5%, 9.9%, and 2.2%, respectively

under three UE densities. This suggests that, by resolving the conflicts between AULB and

IULB, the proposed HPL method avoids some meaningless or even harmful HO operations,

and thus overcomes the aforementioned challenge.

Average UEs per Cell
Method 10 20 30
AULB 8.82 39.86 99.59
IULB 6.61 35.04 102.48
Sequential 6.91 34.21 107.20
AULB+IULB 5.86 34.28 102.83
HPL 5.54 (-5.5%) 30.90 (-9.9%) 98.52 (-2.2%)

Table 7.3: The number of handovers per cell per hour of different methods (the lower the
better)

7.6 Summary

In this chapter, we study a hybrid communication LB problem, where both active and idle

UEs can be migrated across cells for better system performance. A major challenge lies in

the conflicts between active UE LB and idle UE LB mechanisms. To conquer this challenge,

we propose a two-level Hierarchical Policy Learning (HPL) method. HPL coordinates AULB

and IULB, by setting an AULB-determined subgoal for IULB to accomplish. To the best of

our knowledge, this is the first hierarchical learning structure for the hybrid communication

LB problem. System-level simulations demonstrate HPL’s significant improvements over the

SOTA methods on three key performance metrics.
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Chapter 8

Conclusion and Future Work

This chapter brings the thesis to a close. In Section 8.1, we conclude the significant

contributions of our work. Section 8.2 provides a comprehensive summary of the key

findings and insights derived from this research. Finally, Section 8.3 outlines various

promising avenues for future research, building upon the groundwork laid by this thesis.

8.1 Conclusion

Throughout this thesis, we have embarked on a comprehensive exploration of the challenges

and innovations in applying deep reinforcement learning (DRL) to real-world applications.

Focusing on critical areas such as data efficiency, training complexity, model generalization,

and safety concerns, this work has not only addressed existing gaps but also set forth a new

paradigm in the application of DRL.
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In the quest to enhance data efficiency, as detailed in Chapter 4, we introduced a

multi-teacher knowledge distillation approach. This novel strategy leveraged the strengths

of various system models, each representing unique traffic patterns, to facilitate a more

efficient and robust learning process in model-based reinforcement learning. The

application of knowledge distillation techniques has been a game-changer, significantly

reducing the required volume of training data while simultaneously enhancing the model’s

generalization capabilities across diverse scenarios. This breakthrough is a testament to the

synergy that can be achieved by integrating concepts from different realms of machine

learning.

Addressing the daunting challenge of training complexity, Chapter 5 presented a

groundbreaking automatic curriculum learning framework. By employing a hyper-net to

parameterize a network of curricula, this approach has demonstrated remarkable

proficiency in streamlining the training process. This methodology is particularly potent in

the context of robotic manipulation tasks, where it has shown to not only accelerate

training efficiency but also elevate final performance outcomes, thereby marking a

significant advancement in the field.

In tackling the perennial issue of model generalization, as elucidated in Chapter 6, our

research made a pioneering leap by integrating an internal working memory module. This

innovation, featuring a memory matrix capable of sophisticated information processing, has

propelled our models to new heights of adaptability and effectiveness. The ensuing
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improvements in training efficiency and task versatility across various domains – from

gaming to object manipulation – underscore the transformative potential of this approach.

Chapter 7 addressed the intricate safety concerns inherent in network load-balancing

problems. The development and implementation of the Hierarchical Policy Learning (HPL)

framework marks a significant stride in this domain. By orchestrating a two-tiered learning

structure, the HPL framework has shown remarkable adeptness in coordinating actions and

mitigating conflicts, thus enhancing both system performance and safety. The efficacy of

this framework in reconciling multi-level actions and addressing complex safety challenges

paves the way for safer and more reliable DRL applications.

In conclusion, this thesis stands as a testament to the notion that while the challenges

of applying DRL in real-world scenarios are formidable, they are far from insurmountable.

The methodologies and insights presented in this work constitute a significant leap forward

in enhancing the efficiency, generalization, and safety of DRL applications. The

implications of these advancements are far-reaching, extending well beyond the academic

sphere into practical realms spanning networking, robotics, and other industries. It is with

great optimism that we anticipate these contributions to act as a catalyst for future

explorations and innovations in deep reinforcement learning, ultimately unlocking its full

potential in a plethora of real-world applications.
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8.2 Synthesis of Key Findings

This section synthesizes the findings about the thesis, reflecting on the journey from the

fundamental concepts of deep reinforcement learning (DRL) to the specific applications and

challenges addressed in this thesis.

8.2.1 The Evolution of DRL: Concepts and Foundations

Chapter 1 laid the groundwork by exploring the fundamental principles of DRL. It discussed

the evolution of reinforcement learning (RL) from its theoretical origins to its integration

with deep learning techniques, providing the conceptual framework that underpins the rest

of the thesis.

8.2.2 State-of-the-Art and Technological Advancements

In Chapter 2, we delved into the state-of-the-art in DRL, highlighting recent technological

advancements and their implications for both research and practical applications. This

chapter emphasized the rapid growth and potential of DRL in various domains.

8.2.3 Challenges and Opportunities in DRL

Chapter 3 offered an in-depth analysis of the challenges and opportunities in DRL. It

critically examined issues such as data efficiency, training complexity, and the

transferability of learned policies to real-world scenarios.
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8.2.4 Innovations in Data Efficiency and Model-Based RL

Our exploration in Chapter 4 introduced novel methodologies to enhance data efficiency in

model-based RL. The multi-teacher knowledge distillation framework proposed here marked

a significant step towards more efficient learning algorithms.

8.2.5 Training Complexity and Curriculum Learning

Chapter 5 addressed the training complexity in DRL through the lens of curriculum learning.

The development of an automatic curriculum learning framework exemplified a structured

approach to training in complex environments.

8.2.6 Model Generalization and Memory-Augmented Neural

Networks

In Chapter 6, we tackled the critical issue of model generalization in DRL. The introduction

of an internal working memory module opened new doors for the application of memory-

augmented neural networks, enhancing the adaptability of DRL models.

8.2.7 Safety Concerns in Network Load Balancing

Chapter 7 brought to the fore the safety concerns in network load balancing. The

Hierarchical Policy Learning framework proposed in this chapter represented a novel



8. Conclusion and Future Work 172

approach to mitigating conflicts and enhancing system safety in load-balancing tasks.

8.3 Future Work

My future research will continue to delve deeper into the topics discussed above while also

exploring new research directions that aim to bridge the gaps between RL algorithms and

their real-world applications. As indicated in [91], a general path to Artificial General

Intelligence (AGI) can be accomplished through an RL-based decision-making paradigm.

To work towards the goal of AGI and broaden the scope of applied-RL, I intend to explore

a range of research topics:

Embodied LLMs. Embodied AI seeks to create intelligent agents that interact with

their environment via physical embodiment. The recent success of LLMs has inspired

researchers to explore the potential of building embodied LLMs capable of handling various

real-world tasks. To realize this objective, there are two paths I want to pursue:

1. LLMs for Embodied Agents. Recent research indicates that pre-trained LLMs, such as

GPT-4 [14], LLAMA [16], or Flamingo [92], can generate text outputs of planning

trajectories [93]. However, translating these language outputs into real agent actions

remains a challenge. I plan to address this by exploring the possibility of extending

LLMs to a hierarchical structure, seen as an options framework [47]. The higher level

comprises text planning instructions, and the lower level generates agent actions
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through fine-tuned transformers (e.g., Decision Transformers), where an action

sequence is generated conditional on the high-level planning instructions.

2. Embodied Agents for LLMs. I am also interested in investigating how to utilize current

embodied agents to fine-tune LLMs. At present, LLMs are primarily equipped to

handle language-related tasks, and they lack a comprehensive understanding of the

real world. Embodied agents interacting with the real world can gather a plethora

of trajectories that could be beneficial for LLMs. Therefore, incorporating embodied

agents into the training or fine-tuning of LLMs is an urgent question. To this end, I

aim to expand current multi-modal LLMs to include actions and rewards, allowing the

fine-tuned LLMs to achieve better embodied reasoning capability and reducing their

hallucination outputs due to a lack of real-world understanding.

Explainability of RL. The ’black box’ nature of many RL algorithms poses a

substantial obstacle to their integration into various real-world scenarios. This issue is

especially pertinent in safety-critical applications, such as autonomous driving or

multi-agent taxi scheduling, etc. Providing clear explanations for an agent’s specific actions

can aid both users and researchers in understanding the algorithm and acting accordingly.

In future research, I plan to enhance the explainability of RL algorithms by developing new

techniques to visualize the decision-making process (like a binary tree) or elucidating the

learned policy. Recent advancements in explainable AI (XAI) offer promising

methodologies for opening the ’black boxes’ of deep RL, ranging from interpretable
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symbolic decision trees to numerical methods like Shapley Values. Deep RL, which employs

a Markov Decision Process for training, can produce innovative solutions but may also

contain biases or non-obvious decision paths, making XAI crucial for ensuring safe,

bias-free, and understandable solutions.

Ethical issues in RL. Ethical considerations always warrant careful research,

particularly in instances where human interaction is involved. In future research, I intend

to give more consideration to the following ethical issues when proposing new algorithms:

1. Bias and Fairness: RL models, learned from either data or specific environment

interactions, unavoidably incorporate and amplify biases and unfair decisions

established during the training phase. For example, if an RL agent is used in a

financial lending system and trained on historical data where certain demographic

groups were unfairly denied loans, the agent might perpetuate this unfair practice.

2. Privacy: Training RL agents can potentially infringe on privacy rights. If not

properly designed, this privacy data could be exposed to the public, leading to

disastrous consequences. For instance, if an autonomous driving RL agent is trained

on drivers’ data, it could potentially learn and leak sensitive information about the

inhabitants.

3. Misuse of Technology: Like any technology, RL can be misused for detrimental

purposes. Preventing the misuse of RL algorithms remains a significant topic that
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warrants further attention.

The vulnerability of RL to security and privacy attacks in applications like healthcare and

autonomous driving necessitates a focus on developing robust solutions to these challenges.

Methods for defending against data poisoning and adversarial perturbations are of particular

interest, as well as the protection of privacy-sensitive data used in RL training.

LLM-based RL agents. The recent success of large language models (LLMs) has shined

optimism for the advancement of intelligent agents, with the community making notable

strides [94]–[96]. LLMs utilize internet-scale textual data, yet they exhibit profound skills in

knowledge acquisition, instruction comprehension, planning, reasoning, and natural language

interaction. Recognized as catalysts for Artificial General Intelligence (AGI), LLMs, when

transformed into agents with broader perceptual and action capacities, could ascend to the

third and fourth world scope levels. These enhanced LLM agents, capable of complex task

management through cooperation or competition contributing to a society where humans

and AI agents coexist and collaborate.

A significant challenge with current large language models (LLMs) is the issue of

hallucination, where they generate incorrect responses or decisions. This limitation might

be mitigated by integrating a world model to bolster the planning capabilities of

reinforcement learning (RL) agents. Such models are particularly vital for managing

long-horizon tasks, including multi-round scenarios. My objective is to develop a world

model component that learns system dynamics, like state transitions and reward functions,
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from offline datasets. This world model could adopt the form of either a multi-layer

perceptron or a transformer model, providing a solid basis for enhancing decision-making

and planning in LLM-based RL agents.
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