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ABSTRACT 

Despite the vulnerability of unreinforced masonry (URM) structures to out-of-plane (OOP) loading, 

computational methods that can efficiently simulate OOP failure at the building scale are still limited. Current 

methods typically rely on simplified static analysis approaches or refined micro-modeling techniques that entail 

high computational expense, thus limiting their employment to reduced-scale and local problems. With a view to 

overcome these issues, a novel Finite-Distinct macroelement model which combines the efficiency of simplified 

modeling strategies with the multifaceted capabilities of discontinuum-based methods, is developed and 

implemented in the framework of the Distinct Element Method (DEM). Shear and flexural failure modes, either 

in-plane or out-of-plane, are accounted for by zero-thickness interface spring layers, whose layout is determined 

a priori as a function of the considered masonry bond pattern. Meanwhile, crushing failure is modeled through 

homogenized Finite Element macro-blocks. The proposed discretization scheme is conceived so that the model 

can also be used to simulate in-plane damage, for which the model has already been validated. Simplified 

expressions are proposed for determining equivalent mechanical properties of the interface spring layers, 

depending on their inclination. Similarly, analytically-based equations are used to significantly reduce the number 

of springs needed to adequately reproduce the OOP bending response at the joint level. Numerical simulations are 

compared to previous experimental quasi-static and dynamic tests on both brick and block URM components, 

characterized by markedly different vertical pressures, aspect ratios, boundary conditions and confinement; both 

one-way and two-way bending actions are considered. The results indicate that the model can satisfactorily 

reproduce the measured load-displacement curves in a reasonable timeframe, as well as the experimentally-

observed failure mechanisms. 

Keywords: out-of-plane; macroelement; Finite-Distinct Element Method; unreinforced masonry; confined 

masonry 

1. INTRODUCTION

The out-of-plane (OOP) failure of unreinforced masonry (URM) assemblies often precludes the exploitation 

of the global capacity associated with the in-plane (IP) resistance of URM members. Indeed, separation between 

transversal and longitudinal walls [1,2] and ineffectiveness of façade-diaphragm connections [3,4] might lead to 

the development of early collapse phenomena. Notwithstanding the possibility of obtaining unconservative 

predictions, the effects of local OOP failures, as well as the mechanical interaction among elements subjected to 

IP-OOP combined actions, are typically neglected by most of the presently-available simplified numerical 

approaches (e.g. [5,6] that are widely used by practitioners for full-scale buildings because of the reduced 

computational expense. Although promising novel modeling strategies are currently being explored, as further 

discussed in what follows, the low-cost numerical assessment of OOP-governed responses of URM structures still 

represents an open challenge. 

Equivalent frame simulation of a full-scale shake-table-tested URM building prototype has been proposed [7], 

in which the nonlinear contribution of OOP-loaded walls was considered by modeling them in the direction of 

motion, albeit without explicitly accounting for the effect of local failure mechanisms. This initial scheme was 

recently upgraded to include a newly-developed macroelement formulation [8], and validated against the dynamic 

response of a series of URM specimens. However, two-way bending OOP failures were not modeled, and a 

comprehensive validation process is still needed when considering either irregular opening layouts, non-periodic 

masonry or complex geometries. Indeed, in the latter case, the identification of the effective wall height and the 

definition of the equivalent frame becomes non-unique and may lead to non-negligible epistemic modeling errors 

(see e.g. [9,10]). Additional cost-effective modeling approaches for simulating OOP failure of URM structures 

rely on rigid body kinematics and multi-body dynamics, as those presented in e.g. [11–13], whose arrangement is 

often based on geometrical considerations and simplified assumptions. Despite the latter are usually supported by 

post-earthquake damage observations and the good agreement with experimental outcomes found by several 

authors, the fact that failure mechanisms need to be determined a priori, while infinite-compression and zero-
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tension models are often employed, makes this approaches not suitable for the modeling of mortared URM 

structures, IP-OOP cumulative damage and complex mechanisms involving crushing phenomena. 

 

     As discussed in D’Altri et al. [14] and Sorrentino et al. [15], to which interested readers are referred for a 

detailed review of presently-available options for the analysis of URM structures, more complex meso and 

micro-scale computational procedures have been also applied to the modeling of the OOP response of URM 

systems. Discontinuum-based techniques, including Discrete Element (e.g. [16,17]) and rigid body ad spring 

models (RBSM, see e.g. [18,19]), where either rigid or deformable blocks are usually connected through 

interface spring layers, proved to be capable of adequately reproducing OOP-governed behavior of URM 

components [20–22] and reduced-scale building specimens [23–25], also simulating explicitly damage 

propagation. Similarly, in the framework of continuous and homogenized models, including e.g. those based on 

the Finite Element (FE) numerical procedures, various authors (e.g. [26–28]) have proposed effective solutions 

of varying levels of detail for simulating the structural behavior of URM systems, and recent applications (e.g. 

[29–31] have shown that OOP modes and associated failure mechanisms can be satisfactory replicated 

numerically. However, such refined modeling strategies typically entail a high computational cost, especially in 

the post-damage range, thus limiting their applicability to the modeling of local and reduced-scale problems 

[32].  

 

To overcome the abovementioned limitations, hybrid numerical models, consisting of the mixed-use of interface 

spring layers and deformable macroelements, have been proposed. Yi at al. [33] analyzed the cyclic response of 

a statically-loaded two-story URM building prototype by introducing nonlinear discontinuities in FE models 

corresponding to the experimentally-observed failure locations. Analogous approaches were also used by e.g. [34] 

and [35] for simulating the response of a C-shaped URM assembly tested under incremental OOP shake-table test 

(idealized by the authors as an assembly of large and irregular rigid and deformable regions respectively), and 

reasonable results were obtained. However, given that in the applications above the discrete crack layouts were 

tailored to the damage pattern of specific tests, their general applicability of the model is limited. Pantò et al. [36] 

proposed a model in which 7-DOF deformable macroelements are connected through transversal interface links 

to simulate IP and OOP flexural behavior of adjacent macroelements, while additional interface elements account 

for shear-sliding, compression and torsion modes. Despite the acceptable results obtained in terms of actual versus 

numerical failure modes, the possibility of capturing local crushing damage (which might be relevant in the case 

of hollow units and low-compressive strength masonry types, particularly with confinement) and its impact on 

the overall OOP capacity is not yet considered. Finally, because of the simplified idealization of URM 

components, the non-negligible influence of masonry texture on the overall IP-OOP response [37,38] cannot 

presently be taken into consideration.  

 

In this work, to combine the efficiency of simplified approaches with the multifaceted capabilities of interface-

based discrete methods, a new Macro-Distinct Element Model (M-DEM) for the analysis of URM structures is 

presented and validated against a wide range of laboratory tests on both reduced and full-scale brick and block 

URM prototypes subjected to either one or two-way bending conditions. In the proposed methodology,  

compressive failure is accounted for within homogenized FE blocks, enabling simulation of local crushing, while 

flexural and sliding/diagonal shear phenomena are represented through equivalent interface (or contact) springs, 

automatically generated at contact points among adjacent elements. The novel approach is implemented within 

the 3DEC Distinct Element Method (DEM)-based commercial software framework [39] and might be of interest 

to both practitioners and researchers. Further, the explicit time-integration scheme on which the selected 

computational platform is founded makes this model compatible with large-displacement and collapse analysis. 

2. M-DEM IDEALIZATION OF OUT-OF-PLANE-LOADED URM ASSEMBLIES 

In the framework of the M-DEM, a given URM panel is idealized as an assembly of six deformable FE macro-

blocks, internally discretized with a tetrahedral mesh and connected through zero-thickness nonlinear interface 

springs. As shown in Fig. 1(a), their layout is determined a priori through the definition of the average slope (φ) 

of the lines connecting consecutive head joints along the wall length, i.e. potential failure planes are identified 

through the masonry texture. The layout varies as a function of the aspect ratio λw (calculated as hw/lw, i.e. wall 

height over its length) of the considered URM member (see Fig. 1(b)).  
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Fig. 1 (a) M-DEM idealization, (b) spring layers layout as a function of the aspect ratio, (c) examples of IP/OOP 

failures 

As previously demonstrated by the authors [40], this modeling strategy is suitable for reproducing the IP 

failure mechanisms typically observed during experimental tests on URM spandrels [41], isolated wall 

components [42] and building specimens [43]. Meanwhile, as qualitatively shown in Fig. 1(c) and further 

discussed in what follows, it also enables the possibility of simulating the main OOP collapse modes under both 

one-way [44] and two-way [45] bending. 

Elastic OOP behavior is governed by the deformable FE blocks, to which Young’s modulus (E) and shear 

modulus (G, set to 0.4E in this endeavor) of masonry are assigned. Dummy normal and shear stiffnesses are 

assigned to the spring layers (as further detailed in the next section). The interface springs are characterized by a 

Mohr-Coulomb failure criterion (no shear softening) with tension cut-off (see Fig. 2(a)), thus accounting for 

system nonlinearity with respect to shear and bending actions. While the friction angle ϕ, cohesion c and tensile 

strength ft of horizontal joints (colored in dark grey in Fig. 1(a)) are assumed equal to those inferred through triplet 

and bond wrench tests respectively, equivalent values (i.e. 𝜙̅, 𝑐,̅ 𝑓𝑡̅) are calculated for the diagonal interfaces 

(highlighted in orange Fig. 1(a))using Eqs. 1, 2, 3 (where tj stands for mortar joint thickness). On the other hand, 

the equivalent shear/tensile strength parameter 𝑓𝑡̿ (Eq. 4) proposed by Beyer [46], evaluated by also considering 

the resistance provided by interlocking units (with thickness 𝑡𝑢, length 𝑙𝑢 and width 𝑤𝑢), is allotted to the vertical 

joints (red-colored in Fig. 1(a)). 

𝜙̅ =
𝜙 𝑐𝑜𝑠(𝜑) + 𝑠𝑖𝑛⁡(𝜑)

𝑐𝑜𝑠(𝜑) − 𝜙𝑠𝑖𝑛⁡(𝜑)
 

(1) 
𝑐̅ =

𝑐 𝑐𝑜𝑠⁡(𝜑)

𝑐𝑜𝑠(𝜑) − 𝜙𝑠𝑖𝑛⁡(𝜑)
 

(2) 𝑓𝑡̅ =
𝑓𝑡

𝑐𝑜𝑠⁡(𝜑)
⁡ (3) 𝑓𝑡̿ =

𝑐(𝑡𝑢 + 𝑡𝑗) + (𝑙𝑢𝜙)(𝜙 + 𝑐)/1.5

2𝜙(𝑡𝑢 + 𝑡𝑗)
⁡ (4) 

Similarly to e.g. Pantò et al., [36], local torsional mechanisms are herein accounted for numerically by 

considering the differential elongation and failure of shear springs along interface joints, whose response is 

independent from n (i.e. number of uniform mesh subdivisions across the thickness – as extensively discussed in 

the next section) and governed by G, ϕ, c, as well as calculated acting normal stresses. This simplified modeling 

strategy has been already validated against small-scale torsion-compression characterization tests performed at 

the Eucentre laboratory (Pavia, Italy) by Sharma et al. [47] in the work lately presented by Malomo et al. [48], 

where a good agreement among measured and numerical results (inferred using an interface spring-based micro-

modeling technique) were obtained. 

To simulate crushing phenomena, a linearized version of the Feenstra-De Borst strain-softening compression 

model [49] (depicted in Fig. 2(b)) was developed by modifying the Mohr-Coulomb plasticity model (MPM) 

originally proposed by Marti and Cundall [50], and assigned to the FE blocks. By writing the MPM failure 

envelope equations in terms of principal stresses 𝜎1, 𝜎2, 𝜎3 (with 𝜎1 ≤ 𝜎2 = 0 ≤ 𝜎3, see Eq. 5, 6) as suggested 

by Zucchini and Lourenço [51], and applying the maximum-shear-stress criterion of Tresca (i.e. assuming that 

the internal block friction angle 𝜙𝑏 is equal to zero), a simple correlation between a fictitious cohesion within 

the blocks, 𝑐𝑏, and the uniaxial strength in compression 𝑓𝑐 of masonry can be obtained, as shown in Eq. 7. 

(𝜎1 − 𝜎3) cos 𝜙𝑏 = 2𝑐𝑏 − [(𝜎1 − 𝜎3)(1 + sin𝜙𝑏)] tan𝜙𝑏 (5) 𝑐𝑏 =
2𝑐 𝑐𝑜𝑠(𝜙𝑏)

1 − 𝑠𝑖𝑛(𝜙𝑏)
 (6) 𝑓𝑐 = ⁡2𝑐𝑏 = 𝑓𝑐̂ (7) 
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A bilinear stress-strain relationship is assumed up to the elastic strain 𝜅𝑒 = 4𝑓𝑐/𝐸𝑚, followed by linear negative 

stiffness when the stress exceeds the reference initial yielding point value 𝑓𝑐/3, whose adoption is a 

simplification based on the work of Feenstra and De Borst on the modeling of uniaxial compressive failure of 

concrete elements [49]. Analogous reference values were also successfully employed by several other 

researchers for the modeling of brick masonry structures e.g. [52,53]. 

The ultimate strain 𝜅𝑢 = 3𝐺𝑐/2ℎ𝑓𝑐, where Gc stands for fracture energy in compression and h is the crack 

bandwidth [54]. In Malomo et al. [40], the adequacy of the abovementioned constitutive laws is shown through 

comparison with a number of characterization tests on small-scale masonry samples, and demonstrates that the 

implementation of this fracture energy-based simplified criterion essentially eliminated the mesh-dependency of 

compression-governed failure predictions, while accounting for the post-peak softening branch typically 

exhibited by masonry specimens under uniaxial compression. This crushing formulation also enables simulation 

of local crushing effects during OOP failure in this work, representing a significant advancement with respect to 

conceptually similar simplified numerical approaches. 

 

Fig. 2 (a) Shear-compression and (b) tension-compression constitutive laws implemented in the M-DEM model  

3. EFFECT OF MESH REFINEMENT ON NUMERICAL PERFORMANCE 

In this section, the effect of mesh size on both numerical accuracy and analysis time is investigated. First, the 

influence of the FE macro-block discretization along the xz-plane (see Fig. 3) on its elastic response is assessed, 

considering various degrees of mesh refinements, boundary conditions and aspect ratios. Then, since in the 

proposed model the characteristics and number of interface springs depends on the extent of yz-plane FE mesh 

subdivisions, a simplified analytical approach is proposed to further reduce the number of interface springs and 

therefore analysis time, without significantly affecting the quality of results. 

 

Fig. 3 (a) Selected aspect ratios and boundary conditions, (b) effect of FE mesh size on numerical performance 

(solid lines represent the best-fit curves, dashed lines represent individual panel results). 

When considering IP loading, as shown in [40], the influence of FE mesh size on the M-DEM performance is 

limited. Contrarily, when subjected to OOP actions, the FE macro-blocks might exhibit different initial 

mechanical responses depending on the adopted discretization along the xz-plane. To address this issue, a 

sensitivity study is performed that includes the simulation of the elastic behavior of wall members under OOP 
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actions (no vertical load is applied). Four aspect ratios λw (see Fig. 3(a)) are considered (representative of both 

slender (λw=4, 2) and squat walls (λw=1, 0.5) tested under one and two-way bending respectively), while the wall 

thickness tw is 0.15 m for all specimens. Because of the complexity of the boundary conditions (BC) typically 

imposed to experimentally-tested members, only the extreme cases of simply supported (SS) and fixed-fixed (FF) 

structures are modeled (only top and bottom edges are constrained for the slender walls subjected to one-way 

bending, all the edges are constrained for the squat ones under two-way bending). Four xz-plane FE mesh 

dimensions are specified for the macro-blocks, characterized by a maximum element length (EL) of 0.025, 0.05, 

0.10 and 0.20. A linearly increasing uniform pressure is applied to the wall until 0.1 mm of OOP mid-height 

displacement occurs. The assumed Young’s modulus is 10000 MPa, and the adopted value of φ is 45°. As shown 

in Fig. 3(b), similar results were obtained for both SS and FF boundary conditions, where the OOP bending 

stiffness (in red color, normalized with respect to the value obtained with the EL=0.025 model) increases 

exponentially as a function of EL. As expected, the corresponding computational time (in black color, normalized 

with respect to that required to perform the EL=0.025 analysis) is instead inversely proportional (best fitting 

obtained using power-law fitting function). Based on the outcomes of this modeling exercise, a value of EL=0.05 

along the xz-plane, which represents an acceptable compromise between computational cost and numerical 

accuracy, is selected and consequently implemented in the M-DEM models employed in the rest of this paper. 

Analogous values were adopted in [40] for the simulation of IP-loaded isolated URM components and large-scale 

façades. 

In 3DEC, when contact is detected between two adjacent blocks, and after having specified the maximum 

allowable EL, faces are arbitrarily triangulated to generate subcontacts, located at contact points, where interface 

springs are subsequently created. As discussed in [55] and qualitatively represented in Fig. 4(a), the tributary area 

of each sub-contact varies, in general, as a function of the disposition of the finite elements. Indeed, if n is the 

number of uniform mesh subdivisions across the thickness (n = 3 in Fig. 4(a)), and m is the number of finite 

elements that converge at a given node, a different tributary area At (equal to m/6n) is assigned to each yz-plane 

spring depending on the automatically-generated mesh pattern. This means that the distribution of interface 

properties across the whole contact area A (see Fig. 4(b)) is generally not uniform, and inner and outer springs 

have different material properties, because both spring stiffness and calculated peak tensile force are directly 

proportional to A. This variability has no influence on translational degrees of freedom at the interface, since the 

springs work in parallel. However, as further discussed in what follows, the impact on the rotational degrees of 

freedom might be relevant, particularly for low n values. 

For OOP response, numerical studies e.g. [56,57] have confirmed that the number of springs across the wall 

thickness is important, and the use of a very limited number of interface springs may lead to a significant 

overestimation of the OOP capacity of rocking components, resulting in unconservative predictions. This effect 

is well-epitomized in Fig. 4(c), which shows the 2D response of a single rigid prismatic block (2 m-high and 0.5 

m-wide) resting on a deformable interface, and subjected to lateral top loading. Various values of n (3,10, 20, 

100), are considered. Results were normalized by the results for n = 100, which represents a nearly continuous 

solution. Increasing n increases accuracy, but could entail a prohibitive computational expense (Fig. 3(a)).  

To balance these competing objectives, a simple procedure is desired to adequately reproduce the smooth 

curve for n = 100 in Fig. 4(c), while conveniently using a reduced number of n subdivisions. The procedure should 

also account for the possibility of a non-uniform distribution of inner and outer spring properties.  Six parameters 

can be modified to achieve this goal, namely the inner and outer spring spacing (ti, to), the inner and outer layer 

Youngs’s moduli (Ei, Eo) and the inner and outer layer tensile strengths (fti, fto). Alternatively, the ratio the inner 

to outer layer value for each parameter, defined as rt, rE, rft respectively, can be adjusted. By varying these ratios, 

a large range of responses can be obtained. For example, the simulations in Fig. 4(c) assume rt = rE = rft = 1. 

Assuming again that n = 3, Eo = 10000 MPa and fto = 0.6 MPa, but varying one of these ratios (from 0.1 to 4) 

while leaving the other ratios equal to one, results in the range of responses in grey in Fig. 4(d).  Instead, an 

optimization procedure for defining these parameters is desired. Since the number of independent variables is 

limited, as further discussed below, a constrained error minimization problem needs to be solved to infer optimal 

values of Ei, fti, Eo, fto, ti, to. 
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Fig. 4 (a) Nodal At values for n = 3, (b) continuous vs. discrete spring system, (c) overturning responses of a 

free-standing column model with varying n and (d) effect of varying rt, rE, and rft on numerical predictions 

The procedure proposed here initially aims to reproduce exactly the initial bending stiffness and peak strength 

(referred to as maximum moment in this section). Taking as a reference the discrete (with rt, rE, rft<1, n<∞, 

subscript D) and continuous (with rt, rE, rft=1, n=∞, subscript C) symmetric systems of Fig. 4(b) and considering 

an applied clockwise small rotation around their centroidal axis, the corresponding bending (or rotational) 

stiffnesses of the discrete (kD) and the continuous (kC) can be computed according to Eqs. 8 and 9 respectively 

(with rAi = tolw(1+rt)/(2A) and rAo = tolw/A representing the tributary areas of inner and outer springs normalized 

with respect to A). Eq. (8) is derived by summing up the mechanical contribution of each spring separately 

(assuming normal stiffnesses of inner and outer springs of the discrete system equal to kiD=rAoEiA/tj, koD=rAiEoA/tj, 

which correspond to those of the continuous one, kiC, koC, for rt =1) and imposing equilibrium conditions with 

respect to the center of stiffness (equal to tw/2 in the initial configuration).  

𝑘𝐷 = 𝛿𝐷 (
𝑟𝐴𝑜
2

+ 𝑟𝐴𝑖𝛥𝐷),⁡⁡⁡ ⁡⁡𝑤𝑖𝑡ℎ⁡ ⁡𝛿𝐷 =
𝐸𝑜𝑡𝑤

3𝑙𝑤
𝑡𝑗

, ⁡⁡⁡𝛥𝐷 = ⁡
𝑟𝑡
2(𝑛 − 2)[𝑛2𝑟𝐸 + (3 − 4𝑟𝐸)𝑛 + 6(𝑟𝐸 − 1)]

12(𝑛𝑟𝑡 − 2𝑟𝑡 + 2)2
 (8) 

𝑘𝐶 = 𝛾𝐶 𝛤𝐶 ,⁡⁡⁡ ⁡⁡𝑤𝑖𝑡ℎ⁡ ⁡⁡𝛾𝐶 =
𝐸𝑡𝑤

3𝑙𝑤
𝑡𝑗

, ⁡⁡⁡𝛤𝐶 =
(𝑛 − 1)(𝑛 − 2) + 3𝑛

12𝑛2
 (9) 

An analogous approach can be followed for calculating the maximum moments MD and MC, as well as the 

associated small rotations θD and θC, as summarized in Eqs. 10 and 11 (note that for diagonal and vertical joints, 

the tensile strength is modified to 𝑓𝑡 = 𝑓𝑡̅ and 𝑓𝑡 = 𝑓𝑡̿ respectively). In Fig. 5(a), the proposed expressions, equivalent 

for rt= rE=1, are validated against numerical results (MD, 3DEC, obtained using the free-standing column model 

described above) for various n values, showing adequate agreement. 

𝑀𝐷 = 𝑘𝐷𝜃𝐷 = 𝛿𝐷 𝛥𝐷 𝜃𝐷 ,⁡⁡⁡⁡⁡⁡𝑤𝑖𝑡ℎ⁡⁡𝜃𝐷 =
2𝑓𝑡𝑜𝑡𝑗

𝐸𝑜𝑡𝑤
 

,  

 

(10) 𝑀𝐶 = ( lim
𝑛→∞

𝑘𝐶) 𝜃𝐶 = 𝛾𝐶 ( lim
𝑛→∞

𝛤𝐶) 𝜃𝐶 ,⁡⁡⁡⁡⁡⁡𝑤𝑖𝑡ℎ⁡⁡𝜃𝐶 =
2𝑓𝑡𝑡𝑗

𝐸𝑜𝑡𝑤
 

(11) 

By equating kC to kD and MC to MD, and solving for Eo and fto respectively, the equations above can be rewritten 

as Eq. 12, 13, where the values of Ei and fti are expressed as a function of rE, rft. 

𝐸𝑜 =
𝐸

6(𝑟𝐴𝑜 + 2𝑟𝐴𝑖𝛥𝐷)
,⁡⁡⁡⁡⁡⁡𝐸𝑖 = 𝑟𝐸𝐸𝑜 

,  

 

(12) 𝑓𝑡𝑜 = ⁡
𝑓𝑡

12(𝑟𝐴𝑜 + 𝑟𝐴𝑖𝛥𝐷)
,⁡⁡⁡⁡⁡⁡𝑓𝑡𝑖 = 𝑟𝑓𝑡𝑓𝑡𝑜 

(13) 

As depicted in Fig. 5(a), when using the values inferred with Eqs. 12 and 13, the calibrated analytically-derived 

moment of the discrete system (MD, CAL) perfectly matches that of its continuous counterpart, for any value of n. 

Fig. 5(b), demonstrates that the reduced-n (in this case n=3) implementing this procedure for the previously 
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described free-standing column model (for n = 3), both the initial bending stiffness and the maximum moment of 

the continuous system are reproduced accurately numerically, albeit still noticeably overestimating the dissipated 

energy. However, according to the constitutive interface spring model employed in this work (see Fig. 2), the 

same Young’s modulus and tensile strength parameters for the inner and outer layers must be defined to 

simultaneously represent uniaxial tension and IP and OOP response; these responses are thus unavoidably 

coupled, making the equation system above intrinsically indeterminate. To obtain optimal parameters, an error 

minimization problem is proposed (see Fig. 5(c)). Depending on the modeling goals (e.g. IP/OOP-governed 

behavior), and after having set appropriate constraints and tolerances, an iterative solver (the evolutionary 

algorithm proposed by [58] was herein employed) is used to compute suitable values of the ratios rt, rE, rft (leading 

to the definition of Ei, fti, Eo, fto, ti, to ) that keep the error objective functions within acceptable limits. The error 

objective functions are herein defined as the percentage difference among discrete and continuous quantities. 

 
Fig. 5 (a) Analytical validation of Eq. 10, (b) discrete free-standing column models vs. continuous counterpart, 

(c) error minimization flowchart, (d) discrete OOP-loaded wall models vs. continuous counterpart and (e) 

associated ratios 

Since the main goal of this work is to validate the M-DEM model under OOP loading, the minimization problem 

has been herein structured to reduce the error related to the simulation of OOP bending-dominated responses. 

Thus, the error objective functions in the red box in Fig. 5(c) have been selected, where FiD, FoD, FiC, FoC, stand 

for the maximum tensile resisting forces of inner and outer springs of discrete and continuous systems 

respectively, which also governs the IP bending peak strength. The light gray box in Fig. 5(c) shows the 

constraints, where MDi are the subsequent peaks in resisting moment (after the initial peak), and θDi are the 

rotations corresponding to these peaks. These peaks are generated by the response of the inner springs after the 

failure of the outer one, and can be easily obtained by manipulating Eqs. 10 and 11. 

The proposed optimization approach was validated against numerical results, this time considering the same M-

DEM model presented for the previous mesh sensitivity study (assuming EL = 0.05 m, λw = 2 and simply supported 

conditions), again subjected to an increasing monotonic OOP pressure. Two discretization (n = 3 or n = 20) were 

considered . The optimization procedure outlined in Fig. 5(c) was used to define the parameters for the nCAL = 3 

model, while no optimization was employed for the n = 3 and n = 20 models. Note that the n = 20 model adequately 

matches the continuous solution (see Fig. 4(c)) without the need for optimization. Fig. 5(d) shows that the nCAL = 

3 model satisfactorily reproduces the OOP response predicted by its continuous (i.e. n = 20) counterpart for a 

specific set of assumed wall material properties (E = 10000 MPa, ft = 0.6 MPa) and overburden stress (σ = 0.1 

MPa). The optimized parameters for this solution are: Eo=6838 MPa, Ei=13936 MPa, to=0.059 m, ti=0.032 m, fto 

= 00.49 MPa and fti = 0.81 MPa. 

To validate the procedure for a larger range of scenarios, the error in peak moment (MD,CAL / MC) was quantified 

for a range of tensile strengths ft (0.0, 0.3, 0.6 MPa) and vertical loads σ (0.0, 0.1, 0.3 MPa).  Fig. 5(e) shows that 

the error ranged from 0.3 to 4.8%  across the entire range of simulations, while reducing the average analysis time 

by approximately 230%. Note that in this modeling exercise, an attempt was made to use tolerance values (TOL 

1-4) comparable with the scatter typically associated with experimentally-derived masonry parameters (which 

often results in relatively large coefficients of variation, see e.g. [59]). 
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4. VALIDATION WITH OUT-OF-PLANE TESTS ON UNREINFORCED MASONRY WALLS 

To validate the M-DEM model at the component scale, the outcomes of a number of experimental tests on OOP-

loaded URM walls, subjected to either one-way or two-way bending, are compared in this section with numerical 

predictions. To assess the model capabilities with respect to multiple failure modes, both quasi-static and dynamic 

responses of clay brick and concrete block panels, characterized by significantly different geometrical and 

mechanical characteristics, are considered. Regarding FE mesh discretization, analogous assumptions to that of 

the models of the previous section (whose results are reported in Fig. 5(e) are adopted. Similarly, the error 

minimization algorithm described in Fig. 5(c) was employed. 

4.1 OUT-OF-PLANE ONE-WAY BENDING TESTS 

Eight different full-scale one-way bending tests were simulated.  The main test dimensions are summarized in 

Table 1 (where λs is the slenderness ratio, calculated as hw/tw). For  clarity, the nomenclature used by the 

researchers who conducted the original experiments is adopted. The first set of tests considered are those tested 

in 1971 by Yokel et al. [60], and include solid clay brick walls ( i.e. specimens 4-3, 6-3 and 6-7, 1.25 m wide, 

2.44 m high, 0.09 m thick) and concrete block walls (i.e. specimen 3-3, 1.21x2.44x0.19 m), with a running-bond 

pattern, subjected to incremental quasi-static OOP monotonic pressure (imposed with an inflated airbag) until 

failure. The brick and block masonries are characterized by markedly different ft values (Table 1); this is 

particularly evident for specimens 3-3 and 6-7, which were both built using high tensile strength mortar. Similarly, 

the compressive strength fc of the concrete block wall was 3-4 times lower than the strength of the brick walls. 

Relatively high vertical top loads (3.86, 5.41, 11.20 and 0.47 MPa, assigned to walls 4-3, 6-3, 6-7 and 3-3 

respectively) were imposed through a steel beam, resulting in a crushing-dominated response.  

 

The second set of tests involved double-leaf (with header bricks located at every fourth course) clay brick 

walls (specimens D1-A and D2-A), tested at the University of Auckland (New Zealand) by Derakhshan in 2013 

[61]. The walls were tested under post-cracked conditions (for this reason, ft = c =0 in Table 1). An incremental 

quasi-static monotonic pressure (plus an unloading cycle for D1-A) was applied in the OOP direction by airbags, 

while no vertical load was considered. Finally, the third set of tests are dynamic post-cracked OOP tests of two 

clay brick running-bond URM walls (specimen S10 with no vertical load, and S10ov with a vertical load of 0.075 

MPa) tested at the University of Adelaide by Doherty et al. in 2002 [62]. These are release tests, which involved 

displacing the wall at mid-height close to the point of instability and then releasing it from that position; the wall 

underwent damped free vibrations until the initial vertical position was reached. Zero damping was implemented 

in the S10 and S10ov models. Based on the actual experimental setups, partial fixity (bottom) – pinned (top) 

boundary conditions were imposed for all the selected prototypes. 

Table 1 One-way bending walls dimensions and measured/equivalent material properties  

Wall λw λs to ti E Eo Ei 𝑓𝑐 𝑓𝑡 𝑓𝑡̅ 𝑓𝑡̿ 𝑓𝑡𝑜 𝑓𝑡𝑖 c 𝑐̅ φ 𝜙 𝜙⁡̅ Gc
1 

ID [-] [m] [MPa]  [N/mm] 

3-3 2.0 12.6 0.068 0.054 6206 4244 10511 11.38 0.17 0.24 0.47 0.14 0.26 0.10 0.92 44.3 30 74.41 19.43 

4-3 2.0 26.4 0.032 0.026 20685 13768 32091 50.47 0.24 0.34 0.81 0.19 0.33 0.13 0.59 29.3 30 59.41 27.53 

6-3 2.0 26.4 0.032 0.026 20685 13768 32091 50.47 1.52 2.15 2.48 1.25 2.11 0.79 2.43 29.3 30 59.41 27.53 

6-7 2.0 26.4 0.032 0.026 20685 13768 32091 50.47 1.52 2.15 2.48 1.25 2.11 0.79 2.43 29.3 30 59.41 27.53 

D1-A 3.6 17.8 0.084 0.062 1769 1105 2962 6.91 0.00 0.00 0.48 0.00 0.00 0.00 0.00 30.8 30 60.93 17.80 

D2-A 3.0 15.2 0.086 0.058 1407 962 2411 5.41 0.00 0.00 0.48 0.00 0.00 0.00 0.00 30.8 30 60.93 17.22 

S10 1.6 30 0.019 0.013 9800 5897 16699 26.7 0.00 0.00 0.67 0.00 0.00 0.00 0.00 20.5 30 50.64 23.91 

S10ov 1.6 30 0.019 0.013 9800 5897 16699 26.7 0.00 0.00 0.67 0.00 0.00 0.00 0.00 20.5 30 50.64 23.91 

1 Computed as 𝐺𝑐 = 15 + 0.43𝑓𝑐 − 0.036𝑓𝑐
2, according to [54] 

Experimental outcomes and numerical counterparts are compared in Fig. 6 in terms of OOP force-

displacement curves. Three main quantities are monitored, namely OOP initial bending stiffness, maximum force 

(i.e. the product between the applied pressure and the airbag-loaded surface) and ultimate displacement capacity 

at mid-height. The differences between the test and modeling results are expressed though the ratios Rk, RF, Rd 

respectively, where predicted values are normalized with respect to the actual ones (i.e. when R>1, test values are 

overestimated). As shown in Fig. 6(a) and Fig. 6(b), the models adequately reproduced the OOP response of the 

selected specimens (i.e. the R values are generally close to unity), under either quasi-static or dynamic actions 

respectively. 
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Fig. 6 One-way bending walls: experimental vs. numerical (a) OOP force-displacement curves under quasi-

static loads, S10 and S10ov mid-height displacement time histories (c), (b) selected failure modes 

In the case of the specimens 3-3 and 6-7, the local crushing failure modes were adequately represented by the 

model (see Fig. 6(c)), although the ultimate displacement capacities were noticeably overestimated. Better 

agreement for ultimate displacement was found for walls 4-3, 6-3, D1-A and D2-A, whose behavior was governed 

by mortar joint failure. For the release tests,  the results obtained by [20] using a DEM micro model are also 

included. For S10, the progressive decay of the mid-height OOP displacement was satisfactorily simulated, 

although the M-DEM model produced a slightly out-of-phase response. For specimen S10ov, the effect of the 

applied top load was accounted for numerically, also with enhanced accuracy with respect to the DEM outcomes. 
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4.2 OUT-OF-PLANE TWO-WAY BENDING TESTS  

To validate the M-DEM model for OOP two-way bending actions, four different running-bond URM tests were 

simulated (geometrical and mechanical properties are reported in Table 2). All test specimens were simply-

supported along their four edges and subjected to incremental quasi-static airbag pressure (with negligible vertical 

load).  

Table 2 Two-way bending walls dimensions and measured/equivalent material properties 

Wall λw λs to ti E Eo Ei 𝑓𝑐 𝑓𝑡 𝑓𝑡̅ 𝑓𝑡̿ 𝑓𝑡𝑜 𝑓𝑡𝑖 c 𝑐̅ φ 𝜙 𝜙⁡̅ Gc
1 

ID [-] [m] [MPa]  [N/mm] 

8,12 1.5 22.5 0.019 0.014 15000 6765 3401 6 0.12 0.17 0.82 0.09 0.18 0.22 0.38 33.1 30 65.75 17.45 

WI 0.8 18.7 0.063 0.023 10000 5921 3201 20 0.32 0.45 1.02 0.23 0.54 0.40 1.59 44.2 30 74.11 22.16 

WII 0.6 18.7 0.063 0.023 10000 4781 2134 20 0.32 0.45 1.02 0.23 0.54 0.40 1.59 44.2 30 74.11 22.16 

1 Computed as 𝐺𝑐 = 15 + 0.43𝑓𝑐 − 0.036𝑓𝑐
2, according to [54] 

The first two panels are identical reduced-scale clay brick prototypes (specimens 8 and 12, 0.79 x 1.19 x 0.053 

m) tested at the University of Edinburgh by [63]. Both specimens exhibited similar failure modes, characterized 

by an hourglass-shaped crack pattern, where mid-height central bricks and those in contact with the fixed 

external frame also failed in compression. However, the scatter in terms of recorded peak strength capacity is 

significant, given that the maximum OOP force inferred for wall 12 (whose complete force-displacement curve 

is not available) is approximately 25% higher than that of wall 8 (see Fig.7(a)). The remaining two specimens 

are concrete block URM panels (specimen WI, 3.4x2.8x0.15 m, and specimen WII, 5.0x2.8x0.15 m) tested at 

McMaster University by [64]. In this case, mortar joint failure was predominant, although minor damage due to 

compressive stress localizations was observed at mid-height. During the tests, cracks extended from the center 

of the panel towards the corners, following the layout of the bond pattern, as depicted in Fig.7(c, d). 

The OOP response of wall 8/12 predicted by the M-DEM model is in good agreement with the experimental 

results, for both force-displacement curves and failure modes, particularly in light of the variability between the 

two identical experimental tests. The numerically-inferred peak OOP force is closer to the wall 12 result (the R 

ratios were computed taking wall 12 as the reference) and agrees well with the prediction by [65] who employed 

a FEM-based interface meso-model. Of interest is also the similarities in terms of initial bending stiffness and 

post-peak softening branch. The OOP resistance obtained using the damaging block model recently developed 

by [22] is slightly lower, yet larger than that of wall 8 so within the experimental variability. When comparing 

the associated displacement profile at the onset of cracking (corresponding to an OOP displacement of circa 

0.35 mm, see Fig.7(b)), both the FEM method [22] and the M-DEM model produce deformed shapes similar to 

the experimental result.  The modeling outcomes for the concrete block walls were satisfactory as well (see 

Fig.7(c, d)), with the M-DEM model adequately approximating the experimental force-displacement envelopes 

and the ultimate displacement capacities. R ratios close to the unity were obtained in most of the cases. 

Although the actual extent of the mid-height masonry crushing has been slightly overestimated numerically, 

acceptable agreement was found in terms of damage pattern.  
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Fig. 7 Two-way bending walls: experimental vs. numerical (a) OOP force-displacement curves, failure modes 

and (b) displacement profiles for specimens 8/12 [63], OOP force-displacement curves and failure modes for 

specimens WI (c) and WII (d), [64]. 

5. EXTENSION TO THE TWO-WAY BENDING BEHAVIOR OF CONFINED MASONRY 

Given the positive results obtained in the case of standard URM walls under either one or two-way bending 

actions, the proposed approach was used to simulate the OOP biaxial monotonic response of confined running-

bond masonry wall components (again, no vertical load was considered). Two quasi-static airbag tests conducted 

by [66,67] at the Autonomous University of Yucatán were modeled using the M-DEM model. Wall specimen E1 

(3.6x1.76x0.15 m) featured reinforced concrete (RC) confining elements with a cross-section of 0.15 x 0.15 m; 

the reinforcement consisted of four 9.5 mm diameter longitudinal steel bars, with 8.3 mm diameter stirrups spaced 

uniformly every 0.20 m. Wall specimen E4 (2.8x2.7x0.15 m) had the same reinforcement layout but the cross-

section measured 0.15 x 0.20 m. Because of the relatively high bending stiffness of the RC members, and since 

they suffered negligible damage during the tests, a linear elastic isotropic material was assigned to the 

corresponding numerical elements, with Young’s modulus of 10000 MPa [67]. To simulate the frame-wall 

interaction, a Mohr-Coulomb criterion with tension cut-off was allotted to the frame-wall interface springs. For 

the masonry elements, the same assumptions made in the previous sections were adopted; the employed material 

properties are summarized in Table 3. 

Table 3 Confined masonry walls dimensions and measured/equivalent material properties 

Wall λw λs to ti E Eo Ei 𝑓𝑐 𝑓𝑡 𝑓𝑡̅ 𝑓𝑡̿ 𝑓𝑡𝑜 𝑓𝑡𝑖 c 𝑐̅ φ 𝜙 𝜙⁡̅ Gc
1 

ID [-] [m] [MPa]  [N/mm] 

E1 0.49 11.73 0.056 0.038 10000 6479 15364 15 0.14 0.2 0.91 0.13 0.32 0.39 0.83 42.3 30 60.11 20.64 

E4 0.96 18.67 0.056 0.038 10000 6479 15364 15 0.14 0.2 0.91 0.13 0.32 0.39 0.83 42.3 30 60.11 20.64 

1 Computed as 𝐺𝑐 = 15 + 0.43𝑓𝑐 − 0.036𝑓𝑐
2, according to [54] 

An adequate agreement was found in terms of force-displacement curves, as shown in Fig. 8. The M-DEM failure 

modes predicted for both E1 (Fig. 8(a)) and E4 (Fig. 8(b)) walls are also comparable with the experimental 

counterparts. Both of the specimens exhibited diagonal cracks from the center of the wall to the wall corners. 

However, the extent of crushing damage in the M-DEM model started to increase significantly after the strength 

peak, which was not been observed experimentally; only minor cracks due to compressive failure were detected 

in the experiments. It is also worth noting that in the case of E4, the M-DEM model was capable of reproducing 
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the uplift of the RC frame due to the interaction with the adjacent wall (see Fig. 8(a), lower right side). Note that 

the vertical displacement was not monitored in the experiment for E1, so it could not be compared. 

 
Fig. 8 Confined masonry walls under two-way bending: experimental vs. numerical OOP force-displacement 

curves and failure modes for E1 [66] and E4 [67] specimens  

6. CONCLUSIONS 

In this work, a new Finite-Distinct macroelement model (M-DEM) is proposed that aims to combine the efficiency 

of simplified numerical modeling methods with the possibility of simulating OOP failure mechanisms. In the 

proposed M-DEM model, a given URM member is idealized as an assembly of deformable Finite Element (FE) 

macro-blocks (which account for compressive damage) and zero-thickness interface springs (representing 

potential shear-tensile failure planes), whose layout is determined a priori as a function of the bond pattern. This 

simple yet effective modeling strategy preserves the ability to reproduce in-plane (IP) responses of large-scale 

URM systems in a reasonable timeframe demonstrated previously [40], while also enabling simulation of OOP 

behavior.  

 

First, to investigate the effect of FE mesh refinement on the OOP bending behavior, a parametric study (in which 

various wall aspect ratios and boundary conditions were considered) was conducted, allowing the selection of an 

optimal degree of discretization of the FE macro-blocks, balancing computation time and accuracy. Further, an 

analytically-based procedure is proposed that allows to reduce the number of FE subdivisions and interface springs 

in the OOP direction (and hence analysis time) without significantly affecting numerical accuracy. To this end, 

new expressions for M-DEM parameters are presented that force the equivalence between an ideal continuous 

system (with an infinite number of springs) and the employed discrete system. Because a single set of interface 

spring values must be effective for both  IP/OOP bending problems, an iterative error minimization procedure is 

proposed to define values that are suitable for simulating coupled problems. Comparisons between continuous 

and equivalent discrete models indicate that similar results can be obtained with the proposed methodology, while 

reducing the analysis time more than 200%. 

 

A comprehensive validation process was then undertaken, including the simulation of six quasi-static airbag tests 

and two dynamic free-release tests for one-way bending URM panels. Four wall specimens quasi-static under 

two-way bending actions were also considered for validation. The selected tests included both clay bricks and 

concrete block walls, characterized by markedly different geometrical and mechanical properties and subjected to 

a variety of boundary conditions and vertical loads. The M-DEM procedure was found to be capable of 

reproducing several failure mechanisms, ranging from crushing-dominated responses to those governed by 
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damage of mortar joints. Satisfactory predictions of force-displacement curves were also obtained. The approach 

was also applied to simulate the biaxial OOP response of confined concrete block masonry walls, and a good 

agreement was found between experimental and numerical outcomes. 

 

The proposed methodology lays the foundation for future simulation of IP/OOP interaction, with the ability to 

simulate cumulative damage. Because of the relatively low computational cost, the methodology also enables the 

possibility of directly simulating failure of full-scale structures and building aggregates under more realistic 

dynamic loading and boundary conditions, on which further developments are thus warranted. 
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