
Anomaly Detection in

Cryptocurrency Networks and Beyond

by

Farimah Ramezan Poursafaei

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Department of Electrical and Computer Engineering
McGill University

Montréal, Québec, Canada

August 2022

©Farimah Poursafaei, 2022

i

Abstract
Cryptocurrency networks that provide a new way of securing financial transactions have
gained a surge of interest in recent years. However, recent studies reveal that blockchain
networks are rampant with frauds and are prone to several privacy and security issues.
The public availability of cryptocurrency transaction records provides an unprecedented
opportunity for researchers to analyze cryptocurrency transactions. In particular,
anomaly detection techniques are promising avenues for fighting illicit activities such as
money laundering, terrorist financing, drug trafficking, scams, frauds, and many more.

In this dissertation, we address the challenges of detecting anomalous entities on
cryptocurrency networks. Firstly, we introduce effective techniques for generating
features for network entities that are directly devised from raw data and highlight the
utility of those features in detecting illicit accounts on the Ethereum network. Next, we
enrich the proposed method by expanding the feature set through the incorporation of
graph-based features that embed the relational information of networks. This also
enables us to generalize our methods to instances of cryptocurrency networks with
different architectural models. Based on the success of our method in anomaly detection
in cryptocurrency networks, we further generalize our model to encompass a generic
temporal weighted multidigraph and show the state-of-the-art results for anomaly
detection in other common domains including rating and social networks. In doing so,
we also investigate the challenges of employing node classification techniques for
anomaly detection, which is a common practice. Here, we discuss the importance of
performance metrics and evaluation settings when interpreting the efficiency of different
methods and tasks, which is often overlooked by the community. Finally, we shift our
focus to examining the inherent challenges of learning on dynamic networks, which is an
important emerging research field with applications in drug discovery, computational
finance, social networks, etc. Here, we propose solutions for providing a more robust
evaluation setup for dynamic graph learning methods.

The key contributions of this dissertation are twofold: First, we describe efficient
techniques for detecting anomalies on cryptocurrency networks and generalize them to
other real-world complex networks. Second, we focus on the temporal aspect of these
networks and investigate how the dynamism of networks affects the downstream tasks
and evaluation settings.

ii

Abrégé
Les réseaux de crypto-monnaies qui offrent une nouvelle façon de sécuriser les
transactions financières ont suscité un regain d’intérêt ces dernières années. Cependant,
des études récentes révèlent que les réseaux de blockchain sont truffés de fraudes et sont
sujets à plusieurs problèmes de confidentialité et de sécurité. La disponibilité publique
des enregistrements des transactions en crypto-monnaies offre aux chercheurs une
opportunité sans précédent d’analyser les transactions en crypto-monnaies. En
particulier, les techniques de détection d’anomalies sont des pistes prometteuses pour
lutter contre les activités illicites telles que le blanchiment d’argent, le financement du
terrorisme, le trafic de drogue, les escroqueries, les fraudes, et bien d’autres encore.

Dans cette thèse, nous abordons les défis de la détection des entités anormales sur
les réseaux de crypto-monnaies. Tout d’abord, nous introduisons des techniques
efficaces pour générer des caractéristiques pour les entités du réseau qui sont
directement conçues à partir de données brutes et nous soulignons l’utilité de ces
caractéristiques pour détecter les comptes illicites sur le réseau Ethereum. Ensuite,
nous enrichissons la méthode proposée en élargissant l’ensemble de caractéristiques par
l’incorporation de caractéristiques basées sur les graphes qui intègrent les informations
relationnelles des réseaux. Cela nous permet également de généraliser nos méthodes à
des instances de réseaux de crypto-monnaies avec différents modèles architecturaux. Sur
la base du succès de notre méthode de détection d’anomalies dans les réseaux de
crypto-monnaies, nous généralisons notre modèle pour englober un multidigraphe
pondéré temporel générique et montrons les résultats de l’état de l’art pour la détection
d’anomalies dans d’autres domaines courants, notamment les réseaux d’évaluation et les
réseaux sociaux. Ce faisant, nous étudions également les défis liés à l’utilisation de
techniques de classification des nœuds pour la détection des anomalies, ce qui est une
pratique courante. Nous discutons ici de l’importance des mesures de performance et
des paramètres d’évaluation lors de l’interprétation de l’efficacité de différentes
méthodes et tâches, ce qui est souvent négligé par la communauté. Enfin, nous nous
concentrons sur l’examen des défis inhérents à l’apprentissage sur les réseaux
dynamiques, qui est un important domaine de recherche émergent avec des applications
dans la découverte de médicaments, la finance computationnelle, les réseaux sociaux,

Abrégé iii

etc. Ici, nous proposons des solutions pour fournir une configuration d’évaluation plus
robuste pour les méthodes d’apprentissage de graphes dynamiques.

Les principales contributions de cette thèse sont de deux ordres : Premièrement,
nous décrivons des techniques efficaces pour détecter les anomalies sur les réseaux de
crypto-monnaies et nous les généralisons à d’autres réseaux complexes du monde réel.
Deuxièmement, nous nous concentrons sur l’aspect temporel de ces réseaux et étudions
comment le dynamisme des réseaux affecte les tâches en aval et les paramètres
d’évaluation.

iv

Acknowledgements
First and foremost, I am deeply grateful to my supervisors: Professor Zeljko Zilic and
Professor Reihaneh Rabbany. I would like to express my special appreciation to
Professor Zeljko Zilic for his insights and support. I am also extremely grateful to
Professor Reihaneh Rabbany for her constant guidance, commitment, and great advice.
I feel very lucky to have worked with her not only because of the numerous valuable
work and life lessons that I learned from her, but also to have her as a role model and a
great mentor. Our meetings were always very informative, a great source of inspiration,
and had a huge impact on shaping my personal and academic vision.

I would also like to express my gratitude to my committee members: Prof. Gordon
Roberts and Prof. Muthucumaru Maheswaran, for providing insightful comments and
suggestions during my dissertation proposal and seminar.

I take this opportunity to thank my amazing teammates from the Complex Data
Laboratory: Andy Huang, Kellin Perline, Aarash Feizi, Pratheeksha Nair, Michael
Galkin, Albert Orozco Camacho, Devin Kreuzer, Jacob Danovitch, and Yifei Li. In
particular, I would like to acknowledge the many enjoyable collaborations and research
discussions that I had with Andy and Kellin during our weekly meetings and through
developing our research projects. Moreover, I would like to thank my friends in
Integrated Microsystems Laboratory: Amirhossein Shahshahani, Junchao Wang,
Anastasios Alexandridis, and Ghassan Al-Sumaidaee.

On a personal note, I am thankful to my caring friends that made my life during the
Ph.D. journey unforgettable: Nima, Arezou, Ehsan, Razie, Hossein, Tahereh, Shahin,
Imman, Alireza, Saeed, Abbas, and many more. I have been tremendously lucky to
have the chance to spend most of my free time with you experiencing many different
adventurous and fun activities. Especially, I would like to thank Nima for being a real
friend and a helpful person in every possible aspect, and Arezou for our joyful chats about
nothing and everything. Cheers to many more years of friendship!

Finally, my deepest appreciation goes to my parents, Forooza and Reza, for their
endless love and inspiration, and for always being truly supportive and motivating. I also
want to thank my dear brother, Farshad, for his support and encouragement.

v

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Network Data as Graphs . 3
1.1.2 Graph Anomaly Detection . 4
1.1.3 Problem Studied . 5

1.2 Thesis Contributions . 6
1.3 Contribution of Authors . 6
1.4 Overview of Thesis Organization . 7

2 Background and Related Work 10
2.1 Blockchain-based Crypotcurrency Networks 10

2.1.1 An Overview of Blockchain . 13
2.1.2 An Overview of Bitcoin Network 14
2.1.3 An Overview of Ethereum Network 15
2.1.4 Related Studies on Blockchain Transactions Analysis 19
2.1.5 Related Studies on Smart Contracts Security Exploration 21
2.1.6 Categorization of Related Studies on Blockchain Analysis 23

2.2 Detecting Anomalous Entities in Networks 23
2.2.1 Anomaly Detection via Node Classification 25
2.2.2 Imbalanced Classification . 26

2.3 Graph Representation Learning . 27
2.3.1 Network Embedding . 27
2.3.2 Graph Neural Networks (GNNs) 28
2.3.3 Benchmarking Graph Learning Methods 29
2.3.4 Negative Sampling (NS) of Edges in Graphs 29
2.3.5 Dynamic Graph Neural Networks 30

3 Detecting Illicit Accounts on a Cryptocurrency Network 33
3.1 Introduction . 33
3.2 Detecting Malicious Ethereum Entities 35

Contents vi

3.2.1 Data Collection . 37
3.2.2 Feature Extraction and Dataset Preparation 38
3.2.3 Tasks and Solutions . 40

3.3 Experimental Evaluation . 42
3.3.1 Evaluating the importance of the feature extraction 42
3.3.2 Evaluating the performance of the unsupervised vs. supervised

classification methods . 43
3.3.3 Evaluating the impact of dataset imbalance and different

re-sampling techniques . 44
3.3.4 Evaluating the performance of the ensemble methods 47

3.4 Conclusion . 47

4 Graph-based Detection of Illicit Entities in Transaction Networks 48
4.1 Introduction . 48
4.2 Problem Formulation and Proposed Method 50

4.2.1 Transaction History Retrieval . 50
4.2.2 Network Construction . 51
4.2.3 SigTran . 52
4.2.4 Node Classification . 54

4.3 Experimental Analysis . 54
4.3.1 Datasets . 54
4.3.2 Baseline Methods . 55
4.3.3 Performance Evaluation . 57

4.4 Conclusion . 59

5 Graph-based Anomaly Detection in Temporal Graphs 61
5.1 Introduction . 61
5.2 TGBase for Node Classification . 63

5.2.1 TGBase . 64
5.2.2 Static vs. Dynamic Node Classification. 65
5.2.3 TGBase for Static Node Classification. 67
5.2.4 Impact of Different Groups of TGBase features. 71
5.2.5 TGBase for Dynamic Node Classification. 72

5.3 On Detection of Anomalies in Graphs . 74
5.3.1 Anomaly Detection in Graphs as Node Classification 76
5.3.2 Experimental Analysis . 77

vii

5.3.3 Evaluation Settings . 78
5.3.4 Results Analysis and Recommendations 80
5.3.5 Conclusion . 84

5.4 Appendix: Additional Results . 85

6 Towards Better Evaluation for Dynamic Link Prediction 88
6.1 Introduction . 88
6.2 Background . 90
6.3 Dynamic Graph Datasets . 91
6.4 Visualizing Dynamic Graphs . 93

6.4.1 Temporal Edge Appearance (TEA) Plot 93
6.4.2 Temporal Edge Traffic (TET) Plot 93

6.5 EdgeBank Baseline for Dynamic Link Prediction 94
6.6 Negative Sampling in Dynamic Graphs 97

6.6.1 Random Negative Sampling . 98
6.6.2 Historical Negative Sampling . 99
6.6.3 Inductive Negative Sampling . 99

6.7 Experiments . 100
6.8 Conclusion . 102
6.9 Appendix: Extended Results . 103

7 Conclusion 105
7.1 Future Directions . 106

7.1.1 Anomaly Detection on Dynamic Graphs 106
7.1.2 Learning on Dynamic Networks with Unbalanced Labels 107
7.1.3 Efficient Incorporation of Interpretable Features in GNNs 107
7.1.4 Consistent Benchmarks and Evaluation Setups 108

8 List of Publications 109

viii

List of Figures

2.1 The Ethereum blockchain architecture 15
2.2 An Ethereum transaction life cycle. 17

3.1 Malicious Ethereum accounts detection. 36
3.2 Extracting the Ethereum transaction dataset 36
3.3 Assessing the importance of the feature extraction 43
3.4 Unsupervised vs. supervised classification schemes 44
3.5 Assessing the impact of re-sampling techniques 45
3.6 Ensemble methods for malicious Ethereum accounts detection 46

4.1 SigTran . 50
4.2 Generating a generic graph model . 51
4.3 Embedding of Bitcoin nodes with different methods 56
4.4 Embedding of Ethereum nodes with different methods 58

5.1 TGBase overview . 64
5.2 Ablation study on different sets of TGBase features 71
5.3 Evaluating the balanced vs. unbalanced setting for anomaly detection . . 76
5.4 Assessing performance metrics . 83

6.1 Importance of the negative edge sampling in dynamic graphs 89
6.2 TEA plots of dynamic networks . 95
6.3 TET plots of dynamic networks . 96
6.4 Negative edge sampling approaches . 97
6.5 Dynamic link prediction performance with different negative samplings . 98
6.6 Impact of negative sampling in performance change per dataset. 100
6.7 Impact of negative sampling in performance change per dataset per method.100
6.8 Impact of memorization of SOTAs in dynamic link prediction 101

ix

List of Tables

2.1 Related works on blockchain . 24

3.1 Statistics of the processed Ethereum dataset 44

4.1 Cryptocurrency dataset statistics . 55
4.2 SigTran performance on Bitcoin dataset 55
4.3 SigTran performance on Ethereum dataset 57

5.1 TGBase properties compared with related studies 63
5.2 TGBase features list . 66
5.3 Benchmark datasets statistics . 67
5.4 TGBase performance in static node classification 69
5.5 TGBase performance in dynamic node classification 73
5.6 Assessing node classification on cryptocurrency networks 78
5.7 Assessing node classification on cryptocurrency rating networks 81
5.8 Assessing node classification on rating networks 82
5.9 Assessing correlation of performance metrics 82
5.10 Assessing node classification on cryptocurrency networks 86
5.11 Assessing node classification on cryptocurrency rating networks 86
5.12 Assessing node classification on rating networks 87

6.1 Dynamic network statistics . 93
6.2 Average precision of the dynamic link prediction in standard setting . . . 103
6.3 AU-ROC of the dynamic link prediction in standard setting 103
6.4 Average precision of the dynamic link prediction in historical NS setting . 104
6.5 AU-ROC of the dynamic link prediction in historical NS setting 104
6.6 Average precision of the dynamic link prediction in inductive NS setting . 104
6.7 AU-ROC of the dynamic link prediction in inductive NS setting 104

x

List of Abbreviations
List of Abbreviations:

Ether: ETH
DApp: Decentralized Applications
PoW: Proof-of-Work
PoS: Proof-of-Stake
UTXO: Unspent Transaction Output
EVM: Ethereum Virtual Machine
EOA: Externally Owned Account
ML: Machine Learning
AI: Artificial Intelligence
DL: Deep Learning
NN: Neural Networks
GNN: Graph Neural Networks
GCN: Graph Convolutional Neural Network
GAT: Graph Attention
DGNN: Dynamic Graph Neural Network
RNN: Recurrent Neural Networks
NS: Negative Sampling
RF: Random Forest
LR: Logistic Regression
SVM: Support Vector Machine
PCA: Principle Component Analysis
LOF: Local Outlier Factor
ISF: Isolation Forest
MLP: Multi-Layer Perceptron
AUROC: Area Under Receiver Operating Characteristic
AP: Average Precision
DTDG: Discrete Time Dynamic Graph
CTDG: Continuous Time Dynamic Graph

1

Chapter 1

Introduction

1.1 Motivation

The blockchain technology has emerged as one of the topics in the spotlight not only by
revolutionizing finance via introducing cryptocurrency, but also by significantly
changing other fields including healthcare [1, 2] and Internet of Things [3, 4]. The
blockchain consists of a public ledger that records the history of all transactions and
events permanently on a chain of blocks. Each block consists of a set of transactions,
has a timestamp, is linked to its previous block, and is identified by its unique hash
value. Before being appended to a block, transactions should be verified and signed via
cryptographic hash functions. Participants of the blockchain are connected through a
peer-to-peer network and each participant maintains a replication of the entire ledger.

The variety of the benefits that cryptocurrency networks offer has resulted in an
unseen growing uptick in their usage. As of 2022, there are more than 10, 000 active
cryptocurrencies being traded in online exchanges and the global cryptocurrency market
capitalization has exceeded $1.9T [5, 6]. The total volume of cryptocurrency transactions
has passed $15.8T in 2021, which has grown by %567 compared to 2020’s total volume
[7]. Although the legitimate cryptocurrency usage considerably surpasses the growth of
criminal usage and the share of cryptocurrency illicit activities hits its all-time low, the
total worth of illicit activities is still significant. For instance, the cryptocurrency crime
trend reveals that illicit addresses on cryptocurrency networks have gained $14B through
the year 2021, which is $6.2B more than the 2020’s share [7]. Malicious utilization of
the cryptocurrency increases the chance of governmental restriction and impedes the
cryptocurrency’s widespread adoption.

1. Introduction 2

The core data structure of the blockchain consists of a chain of hash values associated
with the blocks of transactions. The hash value of each block is computed based on the
transactions of the block as well as the hash values of the previous blocks. Therefore,
an update of a transaction in one block not only results in a change of the hash value of
the block containing the transaction, but also changes the hash values of all succeeding
blocks. This specific data structure makes it extremely difficult to delete or alter a
blockchain transaction and makes the blockchain ledger tamper-resistant [8]. Although
tamper-resistance increases the security of the blockchain by preventing some malicious
activities such as double-spending, this feature becomes problematic when fraudulent
transactions have been appended to the ledger [8]. Particularly, once an illicit transaction
such as a scam or fraud, which can be made via stolen secret keys or miss operations, is
appended to the blockchain ledger, it is infeasible to revise it due to the immutability of
the blockchain ledger. Therefore, even if we successfully detect a malicious transaction
that is already appended to the ledger, reverting its impact is not possible [9]. Thus, to
prevent the damage, efficient countermeasures are required to detect abnormal events,
illegal transactions, or predict suspicious users in advance.

Blockchain-based cryptocurrencies are not backed by any third parties or tangible
assets, though they gain users’ trust through disclosing their full transaction history
[10]. Each cryptocurrency transaction in a blockchain network mainly consists of
transferring a virtual value between a pair of virtual identities which are associated with
blockchain addresses. Although extracting, transforming, and analyzing transaction
histories are technically not easy tasks, the public availability of the blockchain ledgers
provides unprecedented opportunities for researchers to examine the interactions in
complex financial networks.

The importance of the network analysis has been proved in many diverse domains
such as economic, social, or recommender systems. Similarly, for forensic analysis of
cryptocurrency users’ activities, network analysis is promising, since it facilitates the
investigation of structural and temporal properties of the cryptocurrency networks.
Considering that the complex network theory offers several techniques that are useful in
the study of cryptocurrency networks, we can represent the flow of the blockchain
transactions as a network. For instance, in Ethereum and its derivatives like EOS and
Neo [11], the network nodes denote the account addresses, while the edges of the
network represent the transactions which can involve cryptocurrency transfers, smart
contract creations, or smart contract invocations. Utilizing the powerful quantitative
measures of complex network analysis leads us to important observations and insights

1. Introduction 3

about the cryptocurrency networks. For example, while most of the nodes in a
cryptocurrency network have relatively small number of interactions, there exist several
distinguishable nodes with a high degree that contribute the most towards the
blockchain evolution. Exploring the interactions of the highly interactive nodes
illustrates that it might be easier to realize the actual identity of these specific nodes
since they are exposed to lower anonymity [12]. Thus, modelling and analyzing the
cryptocurrency networks from a complex network perspective allows us to extract
significant insights that are imperative for the successful exercise of other important
tasks like anomaly detection. Additionally, like many other types of networks such as
communication networks, biological networks, and social networks, it is quite
conventional to represent the peer-to-peer distributed cryptocurrency networks as
complex networks.

1.1.1 Network Data as Graphs

Networks can be modelled as graphs that consist of nodes and edges among the nodes,
where the former corresponds to the network entities and the latter corresponds to the
relations among entities. In a directed graph (digraph), a direction is associated with
each edge, and in a multidigraph, there are multiple directed edges among pairs of nodes.
The nodes or edges of the graph can have properties or specific labels.

Although the available massive cryptocurrency datasets contain affluent insights,
exploiting the raw data for resolving challenging problems is not easy. For one thing,
statistical or machine learning models cannot exploit the raw data, while manual
interpretation of this huge data is impractical. For another thing, the network raw data
involves laborious issues like being high-dimensional, or relational. To study the
attributes and characteristics of real-world networks, we should take the relations of the
network entities into accounts, since these relations contain important sources of
information. Hence, a preliminary task for leveraging the large-scale network data is
attaining effective representations or features from the network data to accommodate
the relational complexities. Besides, rich and meaningful features are required to
commensurate with the complexity of the datasets when tackling hard problems.

Like blockchain-based cryptocurrencies, networks are ubiquitous in various other
domains such as rating or social platforms. The increasing prevalence of networks data
emphasizes the need for efficient methods that exploit digital traces of the networks to
improve our understanding and power of prediction of human behaviours. Leveraging

1. Introduction 4

the network datasets and novel learning methods empower us to design more secure and
efficient digital platforms. However, the main challenge lies in how we can utilize this
heterogeneous data to synthesize meaningful insights for combating complicated crises
such as illicit activities, frauds, money laundering, or human trafficking.

1.1.2 Graph Anomaly Detection

Despite many benefits of blockchain technology including security, immutability,
distributed consensus, and tamper-resistance, certain illicit activities still threaten its
security and it has been demonstrated that cryptocurrency networks are prone to a
tremendous number of attacks and illicit activities [13, 14]. For instance, money
laundering is performed by many malicious accounts that are regularly created, Ponzi
schemes are utilized for stealing money from users, or malicious forks are generated for
performing double-spending in the network [15]. Therefore, the importance of anomaly
detection in cryptocurrency networks is considerable for the precise discovery of the
vulnerabilities in a timely manner to prevent catastrophic consequences.

Essentially, anomalies are rare observations which are considerably deviating from
others [16]. Anomaly detection aims to identify these rare observations by specifying
considerable divergence from normal observations [17]. Normal observations are often
generated by monitoring the typical activities of entities or network connections over a
period. Anomaly detection has principal applications in preventing detrimental events
such as financial frauds, social spams, or network intrusions [16]. Although anomalies
rarely occur in real-world, for supporting downstream applications, it is critical to exploit
the information associated with them. Particularly, studying the behaviours of fraudsters
sheds light on useful evidence for the anti-fraud detection.

Conventional techniques of anomaly detection focus on representing real-world
objects as feature vectors and identify the abnormal objects in the vector space [18].
Although these methods have been proved to be efficient in identifying outliers in more
straightforward data formats, such as tabular data, they neglect the underlying complex
relations among objects in network data. The relations among entities in real-world
networks provide valuable complementary information that can significantly boost the
performance of anomaly detection approaches [16].

Graph anomaly detection aims to distinguish anomalous graph objects (such as
nodes, edges, sub-graph, etc.) and is often associated with increased difficulties due to
the irregular structures, non-independence, and large scale of the graphs. Identifying

1. Introduction 5

anomalies in graphs that comprise structural information raises a more complicated
problem in non-Euclidean space, where abnormal observation can be associated with
nodes (e.g., malicious users of a financial transaction network), edges, (e.g. malicious
transactions in financial networks), or sub-graph (e.g., a specific malicious group of
fraudsters in a financial network). Since the networks anomalies cannot be directly
represented in Euclidean feature space, traditional anomaly detection cannot be directly
employed for graph anomaly detection. Early works in graph anomaly detection often
rely on engineering handcrafted features or utilizing statistical models by domain
experts. However, this approach is not only very human-intensive, but also limits the
possibility of detecting unknown anomalies. To tackle these challenges, recent studies
search for the potential of adopting novel machine learning and deep learning solutions
to detect anomalous graph objects [16]. By employing the valuable information from
the structure and relations of the graphs, expressive representations can be generated in
such a way that normal and abnormal objects can be easily separated. Therefore,
detecting graph anomalies using machine learning methods is currently at the forefront
of anomaly detection techniques in real-world networks [16].

1.1.3 Problem Studied

In this dissertation, we investigate the task of anomaly detection in cryptocurrency
networks as an important emerging instance of financial networks and extend our
graph-based anomaly detection methods to other kinds of real-world networks with
diverse applications. Particularly, we study cryptocurrency transaction networks, rating
platforms, and social networks aiming to acquire insights about the relations and
attributes of the network’s entities. We focus on malicious entities on these networks,
and develop efficient representations for networks entities with the goal of detecting
anomalies. The general theme of this dissertation is the investigation of cryptocurrency
networks to detect traces of malicious entities and examine the possibility of extending
the solutions to other kinds of networks. We start by studying the underlying
technology of blockchain-based cryptocurrency networks and provide efficient
approaches for detecting illicit users and transactions on these networks. Then, we aim
to extend our solutions by examining novel learning methods on graphs that can
improve the performance of anomaly detection techniques on real-world networks.
Precise study of real-world networks reveals that employing models that are unaware of
the temporal evolution of networks could result in negligence of certain important

1. Introduction 6

properties of real dynamic networks. Therefore, we study various objectives and tasks,
evaluation practices, and state-of-the-art (SOTA) methods on dynamic graphs.

1.2 Thesis Contributions

In this dissertation, we mainly focus on anomaly detection in cryptocurrency networks
and the different ways that this problem can be generalized to other related tasks or
networks. The dissertation starts by discussing illicit activities in networks, their scale,
and their significance. Afterward, we focus on examining the research problem of
detecting these activities, which is the focus of this research. Essentially, we start by
investigating several approaches for detecting anomalous entities in cryptocurrency
networks. First, we formulate the research problem as a classification task and propose
a feature-based classification approach for detecting malicious addresses on the
Ethereum network. Then, we consider different approaches for improving the proposed
solution by reformulating the task as a node classification task in graphs which also
extends to anomaly detection in other domains. We move towards graph-based methods
for detecting illicit entities on Bitcoin or Ethereum networks. In addition, we extend
the solutions and investigate how the same methods can be applied for anomaly
detection in similar domains when we have a temporal graph. We also consider related
tasks in the broader domain of temporal graphs. Particularly, we examine the
application of node classification for anomaly detection and different setups that the
node classification task can be applied. Finally, we present our investigations on a
related task of link prediction in temporal dynamic graphs and how to improve the
evaluation setup in this problem set. Investigating diverse aspects of this problem, we
propose a simple baseline for dynamic link prediction as well as two negative sampling
strategies that are useful in better evaluation of the dynamic link prediction task.

1.3 Contribution of Authors

A list of all publications is presented in Section 8. I would like to declare that I am the
principal and first author among the co-authors. My contributions include developing
the research ideas, collecting and processing the data, designing the experimental
setups, implementing the models and baselines, analyzing the results, and writing the
manuscripts. The author’s supervisors, Prof. Zeljko Zilic and Prof. Rabbany, provided
guidance, helpful discussion for developing the research ideas, comments, editorial

1. Introduction 7

revisions, and research funding during the course of the process. My co-author in
publication #4, Dr. Ghaith Bany Hamad, contributed by meaningful discussions during
the development of the research as well as editing the papers. As for research #5, my
co-author, Andy Huang, contributed with providing helpful discussion during
developing of the research ideas, part of the data collection process, part of the
implementations, and editing the manuscript. My other co-author in research #5,
Kellin Perline, also helped with useful discussion thorough the project and editing the
manuscript.

1.4 Overview of Thesis Organization

The focus of this dissertation is the study of the cryptocurrency networks aiming to
detect malicious entities. We also investigate the applicability of the proposed solutions
to other kinds of real-world networks. We introduce techniques for learning features of
network entities and highlight the utility of such features in anomaly detection in
large-scale networks in diverse domains such as blockchain-based cryptocurrency
networks, rating platforms, and social networks. The key contributions of this
dissertation are twofold: First, we explore the underlying characteristics of large-scale
cryptocurrency networks whose data provides novel opportunities for studying
behavioural patterns of financial network participants. Additionally, we focus on
contrasting the behaviours of fraudsters and genuine network participants to obtain
meaningful features that are useful in the anomaly detection task in real-world networks
beyond cryptocurrency networks, such as rating or social networks. Second, we focus
our attention on developing representations that can accommodate the relational
complexity of networks data. In our study, we highlight the distinctness of dynamic and
static graph models and illustrate the importance of considering the dynamic nature of
real-world networks in developing representation learning methods together with the
evaluation setup. In the remainder of this chapter, we provide a high-level summary of
the organization of this dissertation.

The thesis starts with a broad exploration of different subcomponents of the task of
anomaly detection on cryptocurrency networks and the viability of extending the
proposed solutions to more general models of real-world networks. Specifically in
Chapter 2, we start by investigating blockchain-based cryptocurrency networks and
present the underlying technology, protocols, and different models of these networks.
Afterward, an overview of the two of the most important cryptocurrencies, i.e. Bitcoin

1. Introduction 8

and Ethereum, are introduced. This chapter continues by examining similar research on
anomaly detection and related challenges such as dataset imbalance. Then, several
network representation methods including network embedding methods and graph
neural networks are studied. We also investigate the evaluation setting of the graph
learning methods and dive into representation learning in dynamic networks.

Covering the related background on different components of the under-study problem,
Chapter 3 presents a framework for detecting malicious entities on the Ethereum network
utilizing features that are defined based on the attributes of the network participants [19].
We present a novel framework to identify malicious entities in the Ethereum blockchain
network. The framework composes of an efficient method for extracting a set of features
from the Ethereum blockchain data to represent the transactional behaviour of entities.

Since considerable information is embedded in relations of the network entities, in
Chapter 4, we focus on developing signature vectors for detecting illicit activities in
blockchain-based transaction networks that incorporate relational information [20].
According to the concurrent studies, cryptocurrency networks have evolved into
multi-billion-dorllar havens for a variety of disputable financial activities, including
phishing, Ponzi schemes, money laundering, and ransomware. We propose an efficient
graph-based method, SigTran, for detecting illicit nodes on blockchain networks.
SigTran first generates a graph based on the transaction records from the blockchain.
Then, it represents the nodes based on their structural and transactional characteristics.
These node representations accurately differentiate nodes involved in illicit activities.
SigTran is generic and can be applied to records extracted from different networks.

Realizing the importance and challenges of the anomaly detection in real-world
networks, we extend our research beyond the cryptocurrency networks to encompass
other types of use-cases such as rating platforms or social networks in Chapter 5. In
addition, we further investigate the temporal characteristics of real-world networks and
incorporate dynamic attributes of the networks [21]. Study of the current literature on
dynamic networks reveals that many real-world complex systems can be modelled by
temporal networks. Representation learning on these networks often captures their
dynamic evolution and is a first step for performing further analysis, e.g., node
classification. Node classification is a fundamental task for graph analysis in general and
in the context of temporal graphs, is often employed to categorize nodes based on their
activity patterns. Analysis of existing real-world networks from different high-stake
domains reveals that the rate of the malicious activities is on an uptick, resulting in
catastrophic social or economic consequences. This strongly motivates designing

1. Introduction 9

accurate node classification methods for temporal graphs. We propose TGBase, for
node classification on weighted temporal networks. TGBase efficiently extracts key
features to consider the structural characteristics of each node and its neighbourhood as
well as the intensity and timestamp of the interactions among node pairs. These
features accurately differentiate different classes of nodes, as shown on eight real-world
benchmark datasets, outperforming multiple state-of-the-art deep/complex models.

Focusing on the anomaly detection task, we further investigate the viability of
employing node classification methods for detecting anomalous entities, which is a
common practice [22]. In Section 5.3, we explore the impact of graph-based techniques
for detecting anomalous entities on real-world networks. Specifically, we focus on
modelling the problem of detecting anomalous entities as a node classification task, and
inspect the role of different approaches together with the evaluation setup and metrics
to provide several useful recommendations for practical applications. We investigate
different ways of handling the imbalance issue of the datasets which is a common
problem when dealing with datasets containing anomalies, and demonstrate how a
method that is agnostic to the dataset imbalance may show misleading performance.

Fascinated by the interesting yet challenging research opportunities on dynamic
networks, in Chapter 6, we focus on examining dynamic network and learning methods
that are specifically designed for them. We revisit current evaluation settings for the
link prediction task on dynamic graphs. Using two novel visualization techniques for
edge statistics in dynamic graphs, we observe that a large portion of edges in dynamic
graphs naturally reoccurs over time, and recurrent patterns vary significantly across
datasets. Based on these observations and motivated by real-world applications, we first
propose two novel negative sampling strategies for the evaluation of link prediction in
dynamic graphs. The performance of existing methods degrades significantly when the
set of negative edges used during evaluation is chosen more selectively. This shows that
it is necessary to conduct different negative sampling strategies beyond simple random
sampling to fully understand the performance of a given method. Second, we proposed
a simple baseline, EdgeBank, solely based on memorizing past edges.

Finally in Chapter 7, we conclude this dissertation with a summary of the
contributions and outcomes of this research and provides several interesting yet
challenging aspects that are open to investigate as future directions.

10

Chapter 2

Background and Related Work

2.1 Blockchain-based Crypotcurrency Networks

Blockchain technology becomes a game changer in many different application domains,
especially financial applications [23]. One of the most important usecases of the
blockchain technology is its adoption as an underlying technology in cryptocurrency
networks. The newer generation of the blockchain technology provides an open source
decentralized platform which enables a new paradigm of computing known as
Decentralized Applications (DApps) which are running on top of the blockchains [23].
Essentially, the blockchain is an append-only ledger which keeps track of all the
transactions and events happened in a network of mutually distrusted parties [24]. The
integrity of the blockchain’s records is guaranteed through a distributed consensus
mechanism which makes it almost impossible to tamper the records of the ledger
without being noticed by an entire network. Blockchains which offer a transparent and
integrity protected data storage are usually managed by a peer-to-peer network. Thus,
they are inherently resistant to the data modification. User computational devices, such
as computers or mobile devices, are nodes of this network.

Blockchain technology provides a secure mechanism for gaining a verifiable and
immutable sequence of records which are referred to as blocks and are publicly available
to every node on the network. The blocks are chronologically ordered by their discrete
timestamps. Blockchain is typically employed as a distributed ledger of transactions
that is shared and synchronized across a peer-to-peer network. Based on a consensus
protocol, participants of the blockchain network can reject or verify the record of the
data waiting to be appended to the ledger. After accepting the records, they are

2. Background and Related Work 11

appended to the blockchain in chronological order of their verification and no more
modification is possible. Generally in a blockchain-based cryptocurrency network, there
are two mechanisms that empower users to administer the network without relying on
any trusted parties: (I) a shared ledger of data, and (II) a consensus protocol [25].
Transactions are validated by special nodes, called miners, which have extensive
computational capabilities and are able to append a new block to the ledger only if they
can solve a proof-of-work puzzle [26]. Each miner that can successfully append a block
to the ledger gains the fees associated with that block as a reward. The chance of
winning the reward associated with each block (i.e.,the block’s fee) is proportional to
the computational power of the miners. The operational efficiency of the blockchain
technology has increased by the widespread usage of cryptocurrencies such as Bitcoin
[27] and Ethereum [11]. However, the application of the blockchain technology is not
limited to cryptocurrencies and it has many different usecases such as tracking
ownership of assets of high value, voting rights, healthcare applications, and many more.

The rise in the use of blockchain technology has a direct relation to the rise of
security vulnerabilities such as phishing, hacking, and heist [24]. In addition,
cyber-criminals are actively adopting the blockchain technology for their illegal
activities due to its pseudonymity which lets them implement virtually untraceable
scams [28]. The pseudonymity of the blockchain technology comes from the fact that
participants of the network are able to make transactions without revealing their actual
identities. In fact, participants use pseudonyms, specified as addresses, that can even be
generated for every single transaction [28]. On one hand, there have been several
attempts to de-anonymizing addresses on several blockchain-based cryptocurrency
networks [29, 30, 31, 32]. On the other hand, a dual effort has been put into
strengthening the anonymity of the blockchain [31, 33, 34, 35, 36] to reinforce the
perception of facilitating illegitimate activities, while at the same time, making them
hard to detect. Therefore, detecting any malignant behavior, which may be an
identification of a malignant activity on the network, is of paramount importance.

Human analysis of the blockchain scams often requires a laborious phase of manual
or semi-automated search on the web to collect addresses involved in malicious
activities [37, 38, 39, 40, 41, 42, 43]. This phase is required for automatizing the
analysis to quantify the impact of the malicious activities by inspecting the associated
transactions and addresses on the blockchain. However, the problem that makes this
approach intractable is that, in general, the addresses involved in malicious activities
are not publicly available. Therefore, it is highly desirable to have tools that

2. Background and Related Work 12

automatically monitor the blockchain network for suspicious behaviors and identify the
addresses associated with illicit activities. Considering the increasing volume of data
being appended to the blockchain ledger, it is impractical to employ human analysis for
the purpose of identification of suspicious transactions or entities [44]. Thus,
automating the identification of malignant entities by Machine Learning (ML)
techniques is essential.

Several widespread blockchain-based platforms that offer cryptocurrencies, such as
Ethereum and Bitcoin, focus on providing broad flexibility, which results in a public
dataset of transactions. It is widely believed that cryptocurrencies, like Ethereum, offer
digital anonymity. It should be noted that Ethereum is anonymous in the sense that
there is no direct way of associating user addresses with their actual identities. However,
Ethereum addresses are uniquely identifiable on the network and the ownership of the
addresses is not interchangeable. Thus, the activity records of the addresses can be
tracked, aggregated, and analyzed. By effectively clustering the Ethereum address space,
we can analyze user behavioral patterns. The results of these analyses can be later
employed to predict the type of the owner of an unknown address. Moreover, such analysis
can help in better understanding of network activities, enhance different strategies relying
on the blockchain networks including trading strategies, and help in improving anti-money
laundering practices [45].

The blockchain network has several characteristics that should be considered when
investigating and analyzing its data. First, the volume of data available in the
blockchain is very high. The investigation of this massive volume of data with manual
or semi-automated traditional methods is practically impossible. Therefore, we should
focus on the solutions that are capable of handling a high volume of data. Moreover,
blockchain-based networks are very dynamic and constantly evolving, therefore
updating and improving the analysis approaches should be possible within a certain
period of time. In addition, the blockchain technology is the basis for transferring assets
of high value, therefore its security is of paramount importance. Hence, the
performance of the investigation and analysis methods is significantly important.
Considering these inherent characteristics of the blockchain networks, adopting ML
methods for the analysis of the blockchain data seems an appealing solution.

2. Background and Related Work 13

2.1.1 An Overview of Blockchain

The blockchain technology has received significant attention from academia as well as
the industry because of its unprecedented innovations which provide the possibility for
mutually distrusting parties to exchange financial data without the need for a trusted
third party [17]. Blockchains are inherently resistant to the modification of the data,
since they are managed by a peer-to-peer network, and they offer transparent and
integrity-protected data storage. Blockchain provides a cryptographically secure
mechanism for acquiring a sequence of records (known as blocks) that are publicly
verifiable and immutable, while chronologically ordered by discrete timestamps. Every
participant of the blockchain network (i.e. node) can observe the data and verify or
reject it based on a consensus protocol. Upon the acceptance of a block of records, it is
appended to the blockchain in chronological order of its verification and no more
modification is feasible.

For block validation in blockchain networks, a distributed consensus mechanism is
required due to the lack of a universal trusted party. Based on the key property used for
achieving distributed consensus, there are different kinds of consensus protocols including:

• Proof-of-Work: a miner node (who is responsible to maintain the blockchain
ledger) can succeed in having a block accepted only if the node can demonstrate that a
predetermined amount of computational resources has been spent on that block.

• Proof-of-Stake: both a random selection procedure and the wealth or influence of
the participating (miner) nodes are considered in reaching a consensus. The assumption
is that the nodes with large stakes are interested in guaranteeing the blockchain integrity.

• Proof-of-Elapsed-Time: every potential miner node requests a secure random
waiting time from a trusted execution environment (such as Intel’s SGX) where the
waiting time has been set in the computing platform. Each node waits for the assigned
time to finish, and the first node that finishes will claim the validation leadership. Any
trusted computing environment has a similar chance of being selected, therefore the
number of resources contributed to the overall network specifies the probability for each
node to be in control of the validation leadership [17].

The notion of the blockchain was first proposed implicitly by Nakamoto as the key
underlying technology of the cryptocurrency known as Bitcoin [27]. Bitcoin uses a
transaction-centered model which is known as unspent transaction outputs (UTXOs).
Here, there is a distributed public ledger known as the blockchain in which the payment
transactions between nodes of a peer-to-peer network are recorded. One important

2. Background and Related Work 14

difference between the traditional digital cash systems and the blockchain-based
cryptocurrencies, such as Bitcoin and Ethereum, is the lack of a trusted third party (i.e.
bank). Since Bitcoin only offers payment services, it is often referred to as
Blockchain 1.0. The innovation of Bitcoin system is its consensus protocol; the nodes
reach a consensus on the outcome after executing payment transactions.

The success of Bitcoin in addition to the need of providing applications more complex
than just payments has inspired the notion of smart contracts. The concept of smart
contracts leads to a new paradigm of DApps that run on top of blockchain technology
[46]. Ethereum which uses an account-centered model (rather than the UTXO model of
Bitcoin) offers its exclusive cryptocurrency known as Ether (ETH). Currently, Ethereum
has become the de facto standard for DApps [23]. A total of 1.45 million smart contracts
were created on Ethereum blockchain just in the first quarter of 2022 [47], and the market
value of Ethereum is more than $166B as of July 2022 [5]. Blockchain 2.0, which goes
much beyond the payment-centered Blockchain 1.0, has ushered due to the success of
Ethereum.

Many high-profile attacks to the Ethereum systems have been observed in recent
years [8, 46, 48, 49, 50]. Examples include the DAO attack [51] in 2016 where an attacker
exploited a vulnerability in a smart contract code and stole approximately $60M [23].
In 2017, the vulnerability of the Parity wallet contract was exploited which caused the
loss of $31M [52]. These attacks demonstrate the limited capabilities in securing the
Ethereum system which is not a surprise, considering that smart contract programming
is a new programming paradigm on top of blockchains.

2.1.2 An Overview of Bitcoin Network

Since its introduction in 2008, Bitcoin has emerged as the most well-known
cryptocurrency among many competitors [14]. Bitcoin essentially exists in the form of
sets of computer codes that virtually have monetary values. On one hand, Bitcoin offers
several appealing characteristics including being fast, convenient, tax-free, and
revolutionary. On the other hand, the security, reliability, and confidentiality of Bitcoin
have been very controversial because of its disjoint form of the consolidated governance
and law enforcement [14].

Fundamentally, blockchain provides an innovative decentralized consensus scheme for
storing transactions, money transfers, and any other events in such a secure manner
which eliminates the involvement of a trusted authority. In the Bitcoin peer-to-peer

2. Background and Related Work 15

Figure 2.1: The Ethereum blockchain architecture [23].

network, each transaction is broadcasted to all network participants, and the integrity,
authentication, and correctness of the transactions are verified by a special group of
nodes, i.e. miners. A miner bundles several transactions that are waiting for verification
into a single unit (i.e. block), validates the block and then advertises it across the whole
network for claiming the rewards associated with the transactions of that block. Then,
the majority of the miners on the network verify the block and upon the acceptance of
the block, it is appended to a distributed public ledger known as the blockchain.

2.1.3 An Overview of Ethereum Network

As demonstrated in Fig. 2.1, the architecture of the Ethereum blockchain consists of
four layers. The application layer is for the Ethereum users to execute smart contracts.
The smart contracts are associated with Ethereum accounts and are executed on the
Ethereum Virtual Machine (EVM). The data layer mainly contains the blockchain data
structures. Every event happening on the network as well as all the transactions are
recorded on the blocks which are appended to the public blockchain ledger. The
consensus layer guarantees the consistent state of the blockchain among all nodes.
Currently, Ethereum uses Proof-of-Work (PoW); however, it is planned to be replaced
with Proof-of-Stake (PoS) [23]. The network layer manages the peer-to-peer networks of
nodes in such a way that each node can get the updated state of the blockchain from
some other active nodes. These four layers are served by the environment via different
components: for interacting with different applications, a web user interface is
employed; for storing the blockchain data, databases are adopted; cryptographic
mechanisms are used for supporting the consensus protocols, and internet services are

2. Background and Related Work 16

exploited in the network layer. The functionalities of these different four layer are
explained in more detail in the following subsections.

The Application Layer

Two types of accounts are supported in the Ethereum network: externally owned accounts
(EOAs) and contract accounts. An EOA is used for keeping a user’s funds. The funds are
saved in Wei which is the smallest sub-denomination of ETH and is worth 10−18 ETH.
An EOA is associated with a public key known as the public address. For accessing an
EOA and controlling its fund, the corresponding private key is required which is used for
authenticating the ownership of the EOA. In contrast, a contract account is associated
with a smart contract which is a piece of executable bytecode and defines the desired
business logic related to the smart contract of interest. Each account, EOA or contract,
has a dynamic state defined by four different parameters: (a) Nonce: for an EOA account,
this parameter keeps track of the number of transactions initiated by the owner of the
EOA. For a contract account, this parameter tracks the number of contracts created by
the contract account. (b) Balance: this parameter specifies the amount of Wei owned by
the EOA or contract account. (c) Storage root: this parameter, which is only applicable
to the contract accounts, is the hash of the root of the account’s storage data structure
tree. It records a contract’s state variables associated with the corresponding piece of
bytecode. (d) CodeHash: this parameter is only applicable to the contract account, and
defines the hash value of a contract account’s bytecode. In general, the state of the
accounts on the blockchain specifies the state of the blockchain.

Essentially, the building blocks of DApps are smart contracts that are running on the
Ethereum blockchain [23]. A DApp may consist of a user interface as its front end, while
its back end is controlled by some smart contracts. There are plenty of different DApps
running on top of Ethereum in diverse application domains including finance, governance,
gambling, exchange, wallet applications, etc. [23]. For different purposes such as Initial
Coin Offering (ICO) or exchange, some DApps may issue their cryptocurrencies which
are known as tokens. The tokens that are based on Ethereum are considered a special
kind of smart contract,e.g., ERC-20 [53]. Smart contracts are executed on EVM which
has a stack-based architecture and is a quasi-Turing-complete machine. The execution of
the commands of a smart contract on EVM is limited by the amount of gas provided as
a reward incentive for the miners.

2. Background and Related Work 17

Figure 2.2: An Overview of the life cycle of an Ethereum transaction [23].

The Data Layer

Considering the Ethereum blockchain network, an interaction between two accounts is a
transaction. A transaction is generally initiated by an EOA (i.e. sender) and is directed
to another EOA or contract account (i.e. recipient). Each transaction contains different
fields specifying the characteristics of the transactions. Some of the important fields of
a transaction are as follows [23]: (a) Nonce: this field denotes a counter for tracking
the total number of transactions that the sender has initiated. (b) Recipient: this field
specifies the destination of a transaction that can be either an EOA or a contract account.
(c) Value: this field specifies the amount of fund in Wei that should be transferred from
the sender to the receiver if applicable; (d) Input: corresponding to the purpose of the
transaction, this field specifies the bytecode or data needed for the transaction to be
considered validly executed; (e) GasPrice: this field denotes the price of the unit of gas
(i.e., reward) that the sender is willing to pay the miner who mines a block containing
that transaction; (f) GasLimit: which specifies the maximum amount of gas that the
sender is going to pay the winning miner who mines a block containing the considered
transaction; (g) (v, r, s): which denotes the signature of the sender for verifying the
transaction (the Elliptic Curve Digital Signature Algorithm (ECDSA) is considered as
the main cryptographic algorithm for verification of the signatures). As a result of the
execution of a transaction, the states of the involving accounts, as well as the state of the
blockchain, are updated.

The general lifecycle of an Ethereum transaction is illustrated in Fig. 2.2. As shown
in Fig. 2.2, a transaction lifecyle consists of different phases as follows [23]:

1. A sender generates a transaction and uses its private key to digitally sign it.
2. The sender can use a JSON-RPC to submit the transaction to an Ethereum node.
3. The Ethereum node validates the receipt of the transaction and broadcasts it to

2. Background and Related Work 18

the Ethereum peer-to-peer network.
4. Any miner who receives the transaction adds it to its transactions mining pool.
5. A miner chooses a sequence of transactions from its transactions mining pool,

executes them, and generates a block of the selected transactions. Then, for appending
the block to the blockchain ledger and updating the state of the blockchain, the miner
should do the following tasks: if the transaction is a money-transfer transaction, the
specified value is transferred from the sender account (i.e. EOA) to the recipient’s EOA or
contract account. If the transaction is a contract-creation transaction, a new contract
account is created and it is associated with the bytecode provided by the input (which is
a piece of bytecode). If the transaction is a contract-invocation transaction (in this
case, the recipient is a callee contract, and the input identifies the callee function and the
required arguments), the bytecode which is associated with the callee contract account
will be loaded into the EVM.

6. The miner solves a PoW puzzle: the miner should find a random nonce such that
the hash value of the block is smaller than a predefined threshold. The threshold controls
the difficulty of creating the block.

7. After generating the block, the miner broadcasts it to the Ethereum network so
that other nodes of the network can validate this block.

8. Finally after validating a block, the block is appended to the blockchain.
Each node on the Ethereum network stores the public blockchain ledger which consists

of all validated blocks. Therefore, the history of all verified transactions is available to
every node on the network.

The Consensus Layer

Creating a block on the Ethereum blockchain takes several seconds (specifically, Ethereum
block mining takes about 12 to 15 seconds [54]). Hence, multiple miners could create valid
blocks simultaneously, which requires a consensus about which new blocks to continue
with and which one to reject. In Ethereum, the rejected blocks are called uncle blocks
which are rewarded with a lower amount [55]. A modified version of the Greedy Heaviest
Observed Subtree (GHOST) protocol derives the generation of an uncle block where the
longest chain is selected as the canonical path [55]. On the Ethereum blockchain, not only
the regular blocks on the main chain are rewarded, but also the stale blocks referred to
as regular blocks are rewarded. However, there are different rewards to better advertising
mining of the stale blocks. Upon mining of a block, the miner receives the gas fee
associated with the transactions as well as some portion of the static block reward based

2. Background and Related Work 19

on the state of the blocks (i.e. whether the block is stale or on the main chain as well as
its relation to a the main block).

The Network Layer

The Ethereum network consists of a structured peer-to-peer network in which each node
stores a copy of the entire blockchain ledger. Nodes can discover other nodes and route the
path on the network by means of a dynamic routing table that contains 160 buckets and
each bucket has up to 16 entries including other nodes’ Ethereum addresses, IP addresses,
and UDP/TCP ports [23]. Special protocols are used for the discovery of different nodes
and facilitating the exchange of the Ethereum blockchain information, such as blocks and
transactions, among the clients.

The Environment

The environment in which the Ethereum blockchain is running naturally encompasses
infrastructures to provide services across all different four layers [23]. For users to
interact with the Ethereum blockchain, a web interface is devised. For the Ethereum
nodes to store the blockchain data, a database is provided. For security purposes,
cryptographic mechanisms are deployed, and finally for supporting networking and
communication among Ethereum nodes, the internet infrastructure are considered.

2.1.4 Related Studies on Blockchain Transactions Analysis

There are different studies that investigate and analyze the transactional patterns of
entities on blockchain-based cryptocurrency networks. We mainly focus on the related
studies that employ ML methods for their analysis. There are different studies considering
the adoption of ML solutions for anomaly detection in the blockchain technology [24,
56, 57, 58, 59]. These studies mainly consider Bitcoin which is the most widely used
blockchain-based cryptocurrency. Monamo et. al. [56] apply clustering algorithms for
labeling transactions committed to the Bitcoin blockchain ledger. The labels, which
specify whether a transaction is normal or outlier, are further used to train and validate a
supervised learning method to detect outlier instances in a set of unseen transactions. The
main challenge of applying ML solutions in the blockchain environments is the scarcity
of labeled data, which plays a pivotal role in the learning process [56, 57, 59].

Considering anomalies as abnormal or unlikely events, Pham and Lee [57] propose
an anomaly detection solution for Bitcoin transactions which aims to detect suspicious

2. Background and Related Work 20

users and transactions. This study considers that illegal activities are essentially
anomalous because the majority of the network participants are expected to behave
logically. Therefore, anomalous behaviours can be considered as proxies for suspicious
behaviours. The efficiency of the proposed approach is evaluated by checking whether
the proposed solution is able to identify the transactions belonging to a group of known
malicious transactions.

One important challenge of the previous studies in detecting Bitcoin anomalous
transactions is the abundance of different assumptions in the process of evaluating the
proposed approaches, which are made due to the fundamental problem of scarcity of the
appropriate labeled data. For instance in [59], first, it is assumed that exactly one
percent of all the transactions are anomalous. The authors also assume that the high
popularity of Bitcoin causes more incentives for the attackers to leverage illicit activities
to take advantage of the network; thus, there is a higher chance of detecting abnormal
behaviors due to the abundance of illicit activities.

There are several studies focusing on detecting special cybersecurity illegal activities
[28, 60, 61]. Bartoletti et al. [28] identify a special type of illicit investment known as
Ponzi scheme. The presented approach consists of adopting data mining techniques for
the automatic detection of Bitcoin Ponzi schemes using supervised learning algorithms.
Although the idea of extracting the characteristics of special illegal activity and training
a learning algorithm to predict such activity in unseen data is quite interesting, most
the illegal activities are unprecedented and there is no way to retrieve the transactions
related to a specific type of illegal activity to train the models accordingly. Similarly,
Shaukat and Ribeiro [60] consider a special malicious software, known as Ransomware,
where a cyber attacker uses the Bitcoin wallet to request ransom payment from a victim.
This work does not primarily focus on the anomalous transactions on the blockchain, and
only considers the adoption of the Bitcoin platform for transferring ransom payments.

In spite of the adoption of ML algorithms for anomaly detection in Bitcoin
transactions, efficient learning solutions have been proposed for de-anonymizing
[29, 30, 31, 32, 62, 63], as well as reinforcing the anonymity of addresses
[31, 33, 34, 35, 36] on the blockchain network. For instance, Harlev et al. [62] exploit
supervised learning algorithms for reducing the anonymity of the Bitcoin blockchain
network, while using a pre-processed dataset (i.e., addresses of the transactions have
been already clustered based on their behavioral patterns using manual analysis. Hence,
different addresses that seem to be from a specific entity are clustered together and
labeled according to their patterns). Using this pre-processed dataset, the proposed

2. Background and Related Work 21

approach aims to identify the category to which any of the unseen entities belongs. The
objective of this study, similar to [63], is to reduce the anonymity of the Bitcoin
blockchain network. However, the dataset provided to these studies is already labeled
manually or through statistical analysis where the availability of such pre-processed
data makes the proposed approach feasible.

2.1.5 Related Studies on Smart Contracts Security Exploration

In this section, we investigate the two main categories of the previous studies that analyze
the security of the smart contracts and investigate existing vulnerabilities.

Static Analysis of Smart Contracts

Several studies investigate the vulnerabilities of smart contracts through analytical and
static verifications [25, 64, 65]. Specifically, Atzei et al. [65] provide a survey of
programming pitfalls in the Ethereum platform that may result in vulnerabilities of
smart contracts. This study provides instances of real attacks that have exploited these
vulnerabilities and resulted in considerable financial losses. Since the code of the smart
contracts is fixed and it is impossible to change the codes after the creation and
deployment of the contracts, if a security or semantic bug was unintentionally inserted
into the code of the contract, there would be no way to debug the code to prevent an
adversarial activity. Hence, it is often deemed that smart contracts are unpatchable and
it is highly important to take necessary precautions when writing and developing smart
contracts to deliver correctly implemented and secure contracts.

Several security problems that allow adversaries to manipulate the smart contract
execution to gain benefits have been introduced in [25]. Luu et al. [25] believe that
there exists a subtle gap in understanding of the distributed semantics of the underlying
blockchain platform which results in many security issues. In this regard, they propose
OYENTE [25] that is a symbolic execution tool for discovering specific types of
potential security vulnerabilities in smart contracts before the actual deployment. This
study investigates multiple security vulnerabilities in smart contracts which allow
malignant participants to gain benefits. The vulnerabilities include transaction-ordering
dependence, timestamp dependence, mishandled exceptions, and re-entrancy.
Considering the characteristics of each of these vulnerabilities, OYENTE [25] tries to
analyze Ethereum smart contracts by taking the bytecode of contracts as well as the
current global state of the Ethereum as input, and then, it tries to identify the existence

2. Background and Related Work 22

of any of the considered vulnerabilities. Unfortunately, OYENTE is only able to inspect
smart contracts for the vulnerabilities whose behaviors have been fully specified rather
than a zero-day vulnerability.

It is worth noting that the previously proposed analyzer tools or techniques are mostly
designed for specific types of attacks and they are impotent in confronting unseen illegal
behavioral patterns. In contrast, the identified security breaches have been resolved in
the newer version of the compilers, which made it impossible to generate and exploit
the known attacks. Besides, an application-level solution cannot be extended to other
cases, since it is based on the characteristics of the considered smart contract. A more
practical approach consists in identifying attacks at the transaction-level. Needless to
analyze the flow of the attack at the application-level, a solution at the transaction-
level investigates the normal patterns of transactions and uses the acquired insight for
predicting the authenticity of new transactions or users. Therefore, investigation at the
transaction-level is not only independent of the considered smart contract but also is
deemed to be scalable to diverse usecases.

Employing Machine Learning for Enhancing Smart Contracts Security

Chen et al. [61, 66] exploit the blockchain data for detecting Ponzi schemes that are
implemented as smart contracts. They manually check the source code of several smart
contracts, find out whether these contracts implement Ponzi schemes, and label the
smart contracts accordingly. Then, they utilize the constructed dataset for training and
evaluation of an ML classification model which is used for the detection of Ponzi scheme
contracts. This work utilizes the source code of the smart contracts to generate the
training dataset, which requires a high-level understanding of the functionality of target
smart contracts. Moreover, it only considers Ponzi contracts, while the behavior of
these contracts are fully characterized. Therefore, a new method to investigate the
transaction-level patterns of smart contract participants without requiring any prior
knowledge of the high-level behavior of the contracts is required.

Despite the adoption of ML algorithms for fraud detection in blockchain
transactions, efficient learning solutions have been applied for other types of data
analysis in blockchain networks. Harlev et al. [62] exploit supervised learning methods
for reducing the anonymity of the Bitcoin blockchain network. The authors use a
preprocessed dataset in which addresses of the transactions have been already clustered
based on their behavioral patterns. Hence, different addresses that seem to be from a
specific entity are clustered together and labeled according to their patterns. Using this

2. Background and Related Work 23

preprocessed dataset, the proposed approach aims to identify the category to which any
of the unseen entities belongs. The objective of this study, similar to [63], is to reduce
the anonymity of the Bitcoin blockchain. It should be noted that the dataset available
for these research works has been already labeled manually or through statistical
analysis, and the availability of such preprocessed data makes the proposed approaches
feasible.

2.1.6 Categorization of Related Studies on Blockchain Analysis

A classification of the previous works together with their main objectives are presented
in Table 2.1. In this classification, we consider different categories of the related studies.
First, we consider the works that focus on the general concept of the blockchain-based
cryptocurrency. Then, different groups of previous works with diverse objectives have
been considered. Specifically, we consider the concept of anonymity and investigate
several papers aiming to reduce the anonymity of the blockchain network. Another
important category of the previous work is anomaly detection research; we investigate
different research focusing on detecting anomalous behavior, fraud, or money laundering
issues on the blockchain network. We also study the inherent vulnerabilities, attacks,
and probable solutions of the blockchain-based cryptocurrencies, specifically Bitcoin
and Ethereum. At the application-layer, we focus on different characteristics of smart
contracts including general concepts and considerations, the standards for developing
secure smart contracts, common and specific vulnerabilities of smart contracts, software
engineering tools for developing, compiling, and verification of smart contracts, and
finally adopting ML solutions for automatic classification of contracts. Apart from the
blockchain-centered research, we also investigate several papers on credit card fraud
detection and cybersecurity intrusion detection. Exploration of these two categories of
research helps us better understand efficient solutions for better investigation of the
blockchain data, since these categories share common concepts and effective solutions
that can be employed for the problem of analysis of the blockchain data, in case a
careful modification is applied.

2.2 Detecting Anomalous Entities in Networks

Cryptocurrency Networks. The increasingly huge amount of data being appended
to the blockchain ledger makes the manual analysis of the transactions impossible.

2. Background and Related Work 24

Table 2.1: An overview of several previous studies on the blockchain analysis.

Category Main Focus Network ML Reference

General concept
Introduce Bitcoin Bitcoin ✗ [27]

Discussion Bitcoin ✗ [14]
Bitcoin ✗ [9]

Anonymity De-anonymizing Bitcoin ✗ [30]
Bitcoin ✓ [62]

Anomaly detection Anomalous Behavior

Bitcoin ✓ [67]
Bitcoin ✓ [56]
Bitcoin ✓ [59]
Bitcoin ✓ [57]

Ethereum ✓ [68]
Ethereum ✓ [58]
Bitcoin ✓ [44]
Bitcoin ✓ [24]

Anti-money laundering Bitcoin ✓ [45]

Vulnerabilities Discussion N.A. ✗ [64]
Vulnerability detection Bitcoin ✓ [28]

Smart contracts

Setting standards Ethereum ✗ [69]

Common vulnerabilities Ethereum ✗ [25]
Ethereum ✓ [70]

Comprehensive discussion

Ethereum ✗ [65]
Ethereum ✗ [71]
Ethereum ✗ [23]
Ethereum ✗ [72]

A specific vulnerability
Ethereum ✓ [66]
Ethereum ✓ [61]
Ethereum ✗ [23]

Software engineering tools Ethereum ✗ [73]
Labeling of smart contracts Ethereum ✓ [74]

Fraud detection Credit card
Financial ✓ [75]
Financial ✓ [76]
Financial ✓ [77]

Intrusion detection Cybersecurity N.A. ✗ [78]
IDSs and blockchain N.A. ✗ [17]

Multiple works propose different ML techniques for detection of the illicit entities on
cryptocurrency networks [24, 45, 62, 79, 80, 81]. Specifically, [24, 45, 62] investigate
supervised detection methods for de-anonymizing and classifying illegitimate activities
on the Bitcoin network. In parallel, Farrugia et al. [80] focus on examining the
transaction histories on the Ethereum aiming to detect illicit accounts through a
supervised classification approach.

Lorenz et al. [79] address the problem of tracking money laundering activities on the
Bitcoin network. Concentrating on the scarcity of the labeled data on a crypocurrency
network such as Bitcoin, Lorenz et al. [79] argue against the unsupervised anomaly
detection methods for the detection of illicit patterns on the Bitcoin transaction
network. Instead, they propose an active learning solution as effective as its supervised

2. Background and Related Work 25

counterpart using a relatively small labeled dataset.
Previous works often focus on analyzing the transactions on the cryptocurrency

networks with platform-dependent features, e.g. works in [56, 79, 80, 82]. There are also
several task-dependent studies investigating a specific type of illicit activities, for
example [28, 61] focus on Ponzi schemes, which are illicit investments.

Graph-based anomaly detection approaches have emerged recently as a promising
solution for analyzing the growing data of the blockchain ledger, for both Bitcoin [83],
and Ethereum [81, 84, 85, 86, 87]. In particular, Wu et al. [85] model the transaction
network of Ethereum as a multi-edge directed graph where edges represent transactions
among Ethereum public addresses, and are assigned weights based on the amount of
transactions and also a timestamp. They propose trans2vec which is based on adopting
a random walk-based network embedding method and is specifically designed for the
Ethereum network. Weber et al. [45] model the Bitcoin transaction network as a directed
acyclic graph where the nodes represent the transactions and the edges illustrate the flow
of cryptocurrency among nodes. They construct a set of features for the transactions
of the network based on the publicly available information. Then, they apply Graph
Convolutional Networks to detect illicit nodes. For node features, they consider local
information (e.g. transactions fee, average Bitcoin sent/received), and other aggregated
features representing characteristics of the neighborhood of the nodes.

In addition, there is an increasing surge of interest in employing machine learning
methods for the study and investigation of blockchain-based cryptocurrency networks
in recent years. Considering the abundance and public availability of the blockchain-
based cryptocurrency data, various tasks have become viable using machine learning
algorithms. These tasks span from general knowledge discovery in the cryptocurrency
networks [10, 54, 87, 88, 88, 89, 90, 91, 92] to other challenging tasks [93] including fraud
detection [94, 95, 96], rate prediction on cryptocurrency exchange [97], cryptocurrency
price analysis [98, 99, 100, 101, 102, 103, 104, 105], security threats analysis [49, 50, 106,
107, 108, 109, 110, 111, 112, 113], and scalability analysis [114].

2.2.1 Anomaly Detection via Node Classification

An important supervised task on graphs is the node classification in which the objective
is to gain node representations that can be utilized for accurate prediction of node
labels. Node classification is employed by many related research for anomaly detection
in different applications. In this regard, there are several methods that leverage

2. Background and Related Work 26

heuristic approaches for generating task-dependent node representations tailored to a
special application. The generated features are then exploited in a downstream task of
node classification. Depending on the characteristics of the datasets or usecases, the
node classification task may be applied aiming to detect anomalous instances; examples
of which include credit card fraud detection [76, 115, 116, 117], detecting addresses
associated to phishing activities in cryptocurrency transaction networks
[19, 20, 118, 119], and prediction of fraudsters in rating platforms [120, 121].

Depending on the platforms and the underlying networks, different sets of features can
be extracted. For instance in rating platforms, timestamp [122] or reviews [123] associated
with ratings are exploited to derive meaningful features. Specifically, REV2 [120] focuses
on predicting fraudulent users on rating platforms. It considers a rating network as a
signed graph and generate node representation vectors through an iterative process while
incorporating behavioral attributes of the users. In cryptocurrency networks, [80, 124]
produce features for the Ethereum accounts based on their transaction histories, while
[45, 125, 126, 127, 128] consider the Bitcoin transactions network and aim to detect
instances of anomalous activities such as phishing, money laundering, and ransomware
attacks.

More recently, Graph Neural Networks (GNNs) have been widely adopted for
detecting anomalous entities in graph-structured data [16, 129, 130, 131, 132, 133]. In
particular, Goodge et al. [134] unify local outlier methods and show that these methods
are special cases of GNNs’ message passing framework. Liu et al. [133] focus on issue of
heavily unbalanced distribution of the node labels in anomaly detection applications
and propose a solution for imbalanced supervised learning on graphs. Deng and Hooi
[135] combine GNNs and a structure learning approach aiming to provide explainability
for anomaly detection.

2.2.2 Imbalanced Classification

Class imbalance problem is one of the important issues in data mining and it refers to
the situation where one of the classes has significantly less number of instances than the
others [136]. While in many cases, like anomaly detection scenarios, instances of the
minority class are very important, most of the algorithms mainly focus on classification
of the majority classes and neglect minority samples [136]. Traditionally, there are three
flavors of methods intending to tackle the class imbalance problem namely data-level,
algorithm-level, and hybrid [136]. Data-level methods adjust the class imbalance by

2. Background and Related Work 27

under- or over-sampling [137]. When applying under-sampling, samples from majority
classes are discarded aiming to make balanced classes, which causes information loss.
On the other hand, over-sampling involves replication of minority samples for reducing
class imbalance, though it comes at the price of over-fitting.This problem happens as no
additional information is introduced by the replicated samples and one solution for this
issue has been proposed as SMOTE [138]. In contrast to the data-level methods,
algorithm-level methods assign different mis-classificaion penalties to different classes
aiming to increase the importance of the minority samples [139]. Finally, the hybrid
methods combines ideas from data-level and algorithm-level approaches to propose
countermeasures against class imbalance issue [140, 141].

2.3 Graph Representation Learning

Generally, graph representation learning has become commonplace in network analysis
with superior performance in a wide range of real-world tasks including the detection
of illicit entities in a network. Graph representation learning includes several diverse
categories. Some of the relevant techniques are introduced in the following sections.

2.3.1 Network Embedding

These methods aim at developing a mapping function from a discrete graph to a
continuous domain [142, 143]. The goal is to learn a vector representation for each node
such that important global or local properties are preserved [144, 145, 146]. Shallow
embedding methods are similar to lookup tables where the vector representation of a
node is found by its ID [142, 147]. A popular category of these methods is the random
walk-based approach where the embeddings are learned in an unsupervised manner
[145]; examples include node2vec [148], and RiWalk [149]. In random walk-based
approaches, for each node of the network, several random walks with a fixed length are
generated. The nodes in these walks are then considered as words of sentences where
their representations are learned through natural language processing techniques (e.g.,
by skip-gram architecture [150]). As pioneering methods, deepwalk [151] and node2vec
[148] employ random walks to capture the structure of the given graph which are fed
into the skip-gram architecture [150] to generate embeddings that place similar nodes
close to each other. With the biased random walks, node2vec embeddings can
interpolate between embeddings based on the community structure and structural roles.

2. Background and Related Work 28

More recently, RiWalk [149] proposes to relabel nodes based on their structural roles
before generating the random walks to further improve the embeddings. Specifically,
RiWalk first assigns new labels to the nodes based on their structural roles. After that,
it employs the random walk generation and skip-gram model for extracting final
embeddings. For a supervised problem such as node classification, these methods first
learn the embeddings in an unsupervised way and then train a supervised classifier in
the embedding space. The shallow unsupervised embeddings models are outperformed
by more powerful Graph Neural Networks (GNNs) specifically for node classification
where it seems better to learn the task in an end-to-end fashion.

2.3.2 Graph Neural Networks (GNNs)

These methods mainly employ message passing procedures over the graph to generate
node representations by feature smoothing over the local neighborhoods, where the
representations are initialized with the explicit node features when the features are
available [152, 153, 154, 155, 156, 157]. Graph Convolutional Network (GCN) [154] is a
pioneering model that learns node representations for the semi-supervised node
classification by deriving the importance of each neighbor in the aggregate function
directed from a normalized adjacency matrix. Graph Attention (GAT) [156] is an
attention-based variation of GCN where at every layer, it learns the importance of
neighbor nodes instead of deriving it. GraphSAGE [155] reduces the computational
complexity of GCN by sampling the neighbors. Xu et al. [158] focus on understanding
the representational properties and limitations of GNNs and propose a theoretical
framework for analyzing the expressive power of GNNs in terms of capturing different
graph structures. They also propose Graph Isomorphism Network (GIN) and
theoretically and empirically show that GIN has a high representational power [158].

There is a surge interest in the study and application of GNNs. In particular, there
are several studies survey the extension of deep learning for graph-structured data [159,
160, 161, 162, 163, 164, 165, 166, 167, 168]. There are several surveys investigating
applications of GNNs in different domains [163, 169] which includes recommendation
systems [170, 171, 172], traffic forecasting [173, 174, 175], and natural language processing
[176, 177]. Some researchers study diverse tasks defined on GNNs. These studies span in
different domains such as the study of graphs with heterophily [178], node classification
task [179], financial applications [180], expressivity of GNNs [181], explainability of GNNs
[182], compute vision [183, 184], and drug discovery [185, 186, 187].

2. Background and Related Work 29

2.3.3 Benchmarking Graph Learning Methods

Among the key factors for evaluating the performance of different methods are the
availability of benchmark datasets and comprehensive benchmarking frameworks. There
are various benchmarks for general graph mining [188], graph representation learning
[189], graph contrastive learning [190], graph robustness evaluation [191], graph-level
anomaly detection [191], as well as benchmarks for time-series outlier detection [192],
and outlier detection for tabular data [193].

Several studies identify several issues in the evaluation of existing GNN models.
Focusing on static graphs, Dwivedi et al. [194] identify issues with a comparative
evaluation due to inconsistent experimental settings. Shchur et al. [195] show that
reusing the same train-test split in many different works has led to overfitting and using
different splits of the data could result in a different ranking of the methods. Similarly,
Errica et al. [196] highlight issues with GNN evaluations, while focusing more on
reproducibility. Hu et al. [188] aim to facilitate reproducibility and scalability of graph
learning tasks by providing a diverse set of datasets, unified evaluation protocols,
metrics, and data splits. Focusing on heterogeneous GNNs, Lv et al. [197] find that
improper setting leads to underestimation of simple homogeneous GNN methods.

Evaluating Link Prediction: Yang et al. [198] examine the importance of the
selected metric for reporting the performance of various methods and argue that metrics
based on threshold curves such as AU-ROC (Area Under the ROC curve) are more
suitable. Regarding dynamic graphs, Junuthula et al. [199] differentiate dynamic and
static link prediction by the consideration of edge insertion or deletion. Junuthula et al.
[200] consider the problem of incorporating information from friendship networks into
predicting future links in social interaction domains. Haghani and Keyvanpour [201]
provide a comprehensive review of link prediction methods for social networks and
categorize the link prediction task into two groups: missing link prediction, and future
link prediction.

2.3.4 Negative Sampling (NS) of Edges in Graphs

Although the majority of the research in sampling and network embedding investigates
criteria to efficiently sample positive edges, there are several studies examining the role of
NS on performance. Yang et al. [202] argue that NS is as important as positive sampling
in graph representation learning. For static link prediction, the most common method is
to sample negative edges at random [148, 203, 204]. Alternatively, the sampling can be

2. Background and Related Work 30

based on connecting nodes with specific properties (e.g., a sufficiently large degree) [205],
or it can be based on a particular geodesic distance [206, 207]. For example, Maruf and
Karpatne [208] sample negative edges based on the shortest path of node-pairs, which
results in maximization of similarity of nearby nodes as well as dissimilarity of distant
nodes in the embedding space. Kotnis and Nastase [209] provide an empirical study of
the impact of different NS strategies during training on the learned representations of
various methods in knowledge graphs.

2.3.5 Dynamic Graph Neural Networks

A dynamic network is considered a network where edges and nodes appear and/or
disappear, or the attributes of the nodes or edges change over time [210]. A Dynamic
Graph Neural Network (DGNN) is a deep learning-based architecture that encodes both
temporal and structural attributes of dynamic networks and mainly holds two
properties. First, it has a neural network architecture that encodes a dynamic network.
Second, neighboring node features are aggregated as part of the neural network
architecture. DGNNs often make use of graph neural networks (GNNs) and time series
modules (like Recurrent Neural Networks (RNN)) for encoding structural and temporal
patterns, respectively.

Depending on the temporal granularity, a dynamic network can be represented in
one of the following ways [210]: (a) static (no temporal information), (b) edge-weighted
(the temporal information is included as labels on the edges and/or nodes of a static
network), (c) discrete (multiple snapshots, represented in discrete time intervals), (d)
continuous (no temporal aggregation). Dynamic graphs can be investigated from several
perspectives including temporal granularity, node dynamics, and link duration. From
the temporal perspective, we can have static, edge-weighted, discrete, and continuous
networks, where only the last two categories are considered dynamic networks [210].
From a node dynamics perspective, we group networks into static, dynamic, or growing
networks. From a link duration perspective, we have a spectrum including interaction
networks, temporal networks, evolving networks, and strictly evolving networks.

DGNNs combine two modules: deep time series encoding and aggregation of
neighboring nodes. In the discrete version, most often a GNN is combined with an
RNN. A discrete DGNN considers a dynamic network snapshot by snapshot and
encodes each snapshot all at once. This is similar to how static GNN encodes static
networks. However, in the continuous version, baseline GNNs can not be adopted

2. Background and Related Work 31

directly because they need a static graph, thus the node aggregation should be
modified. A continuous DGNN goes over the dynamic network edge by edge, thus no
notion of the size of any snapshot is required. The important property of all DGNNs is
their intention to capture temporal as well as structural patterns and encode them into
embeddings [210].

Several recent studies examine diverse approaches for learning the representations of
dynamic graphs [142, 210, 211, 212, 213, 214, 215, 216, 217]. For modeling dynamic
graphs, several methods employ RNNs as a common choice for extending the sequence
models to temporal graphs [142]. JODIE [218] focuses on the temporal interactions of
the users and items in social networks and learns the node embeddings through coupled
RNNs. DyRep [219] is a model that updates the node representations upon observing a
new event in the network via its custom RNN. TGAT [220] propagates messages from
sampled neighbors of a specific node similar to GNN methods. The sampling strategy
of TGAT requires saving historical neighbors, which may hinder the method from being
adopted in online learning. TGN [221] combines graph-based and memory operators for
presenting an efficient and generic framework for learning on temporal graphs. Rossi
et al. [221] demonstrate that TGN is a generalization of several models for learning on
temporal graphs which are presented as a sequence of events.

Recently there is an increasing number of studies targeting temporal networks.
Kazemi et al. [142] present a survey of advances in representation learning on dynamic
graphs. They mainly review two categories of methods. First, they examine methods
that capture the essence of nodes and edges of evolving graphs by producing
time-dependent representations. Second, they introduce various methods that use
representations for distinct downstream tasks such as node classification, event
prediction, or link prediction. More recently, Skardinga et al. [210] concentrate on
recent studies on DGNNs and provide a detailed terminology of dynamic networks.
Skardinga et al. [210] and Kazemi et al. [142] both argue that modeling dynamic graphs
with continuous representations has a higher potential, since it offers a superior
temporal granularity. With that in mind, in our experiments we further investigate five
recent models of this type:

• JODIE [218]: focuses on bipartite networks of instantaneous user-item
interactions. JODIE has an update operation and a projection operation. The
former utilizes two coupled RNNs to recursively update the representation of the
users and items. The latter predicts the future representation of a node, while
considering the elapsed time since its last interaction.

2. Background and Related Work 32

• DyRep [219]: has a custom RNN that updates node representations upon
observation of a new edge. For obtaining the neighbor weights at each time,
DyRep uses a temporal attention mechanism that is parameterized by the
recurrent architecture.

• TGAT [220]: aggregates features of temporal-topological neighborhood and
temporal interactions of a dynamic network. The proposed TGAT layer employs a
modified self-attention mechanism as its building block where the positional
encoding module is replaced by a functional time encoding.

• TGN [221]: consists of five main modules: (1) memory: containing each node’s
history and used to store long-term dependencies, (2) message function: for
updating the memory of each node based on the messages that are generated
upon observation of an event, (3) message aggregator : aggregating several
messages involving a single node, (4) memory updater : responsible for updating
the memory of a node according to the aggregated messages, and (5) embedding:
generating the representations of the nodes using the node’s memory as well as
the node and edge features. Similar to TGAT, TGN also utilizes time encoding
for effectively capturing the inter-event temporal information.

• CAWN [222]: generates several Causal Anonymous Walks (CAWs) for each node,
and uses these CAWs to generate relative node identities. The identities together
with the encoded elapsed time are used for encoding the CAWs by an RNN. Finally,
the encodings of several CAWs are aggregated and fed to an MLP for predicting
the probability of a link between two nodes.

As shown in the experiments section, these methods can often achieve very high
performance for the link prediction tasks on dynamic graphs. This hinders researchers’
ability to evaluate if new models are superior. Also, it exaggerates the efficacy of current
models on real-world tasks. Hence, we further examine the evaluation procedure, from
the perspective of both benchmark datasets and negative sampling.

33

Chapter 3

Detecting Illicit Accounts on a
Cryptocurrency Network

In this chapter, we present our work on detecting malicious Ethereum entities by
formulating the problem as a classification task. For detecting malicious entities on the
Ethereum cryptocurrency network, we need labeled data. There was no labeled dataset
available at the time of conducting this research, since this task was mainly tackled by
unsupervised methods. Here, we explain how we curated a labeled dataset of malicious
accounts and analyzed the malicious activities on the Ethereum blockchain network.

3.1 Introduction

For safeguarding online financial systems, a critical role is carried out by anti-money
laundering regulations. However, applying such regulations increases costs.
Blockchain-based cryptocurrencies enable the investigation of network-level interaction
and forensic analysis due to the public availability of their ledger [223]. However,
analysis and investigation of the interactions on the blockchain network are laborious
tasks due to its dynamic nature, the large amount of data, and a high level of
anonymity. Particularly, blockchain-based cryptocurrencies allow the illegitimate parties
to easily hide in plain sight by providing a high degree of anonymity. In fact, current
anti-money laundering methods are doing a poor job of stopping money laundering
efforts [45]. Therefore, developing efficient solution for detection of suspicious users or
activities is necessary for online transactions.

Widespread adoption of cryptocurrencies such as Bitcoin and Ethereum paved the way

3. Detecting Illicit Accounts on a Cryptocurrency Network 34

for further investigation on emerging technological and economical issues [9]. Different
scenarios of misuse and abuse resulted in considerable financial losses in addition to
the unreliability of Bitcoin and Ethereum [9, 17, 65]. For instance, the anonymity of
the blockchain-based cryptocurrencies is employed by the criminals to compromise the
network security by running illegitimate activities such as ransomware attacks, or being
involved in the dark business of human trafficking, drug cartel, and exchange of illegal
goods and services [28, 45].

Blockchain-based cryptocurrencies impose new security vulnerabilities resulting from
illegitimate activities related to phishing, hacking, heists, and scams. Therefore,
detecting any malicious user or behavior at the initial state is of paramount importance
for preventing further disastrous failures. Although different methods were proposed to
detect malicious users or transactions through the inspection of the transactional
records of entities on the blockchain networks, they mostly relied on the laborious
manual or semi-automated analysis process that have been shown to be ineffective
[224, 225]. Hence, a goal is to attain automatic analysis tools that identify the public
addresses of the entities associated with malicious activities for improving the
blockchain networks security. Furthermore, it is often impractical to employ human
analysis for identifying the suspicious addresses on the blockchain network due to the
increasingly high volume of data appending to the ledger [44].

Although several studies dealing with the problem of detecting malicious entities in
the Bitcoin network exist [45, 56, 226], they are not directly applicable to Ethereum due
to the fundamental differences between Bitcoin and Ethereum [227]. While Bitcoin is
based upon UTXOs (Unspend Transaction Outputs) model, where the transactions
constitute building blocks of the blockchain interaction network and the flow of the
cryptocurrencies specifies the financial interactions, in Ethereum, accounts are
associated with unique public addresses and transactions that take place among
accounts constitute the interactions of the network [65]. Moreover, a transaction of
Bitcoin may have change in the case when a UTXO is larger than the desired amount
to transfer. However, in Ethereum, the exact amount is transferred among the accounts,
hence there is no change. Besides, to aggregate multiple UTXOs for payment, or send
money to many recipients in a single transaction, a Bitcoin transaction can have
multiple inputs or outputs. However, an Ethereum transaction takes place from one
sender to one recipient only. There are also major differences between Bitcoin and
Ethereum in terms of the block processing time, how miners are awarded, the monetary
supply, and transactions costs that make the two blockchain networks significantly

3. Detecting Illicit Accounts on a Cryptocurrency Network 35

distinguishable [9, 17, 65, 227].
An interesting approach to investigate the problem of detecting malicious entities on

a blockchain-based cryptocurrency network is by utilizing the power of efficient machine
learning methods to automate the detection process. The objective of this work is to
facilitate automatic tracking, aggregation, and analyzing activity records of different
entities. An efficient novel framework based on supervised machine learning methods is
proposed to analyze the transactional records of different entities, learn the behavior of
the malicious and genuine ones, and predict the authenticity of the unseen entities. Our
main contributions are as follows: (1) we collect a set of Ethereum public addresses
associated with illegitimate activities such as phish, hack, heist, and scam through
extensively searching online resources and consider them as malicious addresses. We
extend this set with addresses interacting with the malicious addresses; (2) a set of
features is extracted based on the transactional behaviors of entities. The importance of
the feature extraction process is examined by comparing the performance of the
classification of the raw dataset with that of the processed dataset generated through
our proposed framework; (3) we employ different re-sampling techniques for alleviating
the dataset imbalance issue, and conduct extensive experiments to investigate the
impact of different techniques; (4) the proposed framework trains and evaluates several
different classes of learning methods including ensemble classification methods, and
utilizes the best-trained model for detecting the malicious entities in the dataset. Our
extensive evaluations demonstrate that the proposed framework achieves high
performance in classification of the Ethereum entities with average F1 score of 0.996 for
the ensemble methods.

3.2 Detecting Malicious Ethereum Entities

An overview of our proposed framework is shown in Fig. 3.1. Each module is presented
in detail in the following subsections: first, we describe the data collection and parsing
which are followed by the feature extraction and dataset pre-processing. The dataset
generation algorithm including data collection, feature extraction, and pre-processing
are represented in Fig. 3.2. We complete this section by the proposed solutions to the
detection of malicious Ethereum entities.

3. Detecting Illicit Accounts on a Cryptocurrency Network 36

Figure 3.1: The proposed framework for detecting the Ethereum malicious entities.

Figure 3.2: A pseudocode presenting the dataset generation procedure.

3. Detecting Illicit Accounts on a Cryptocurrency Network 37

3.2.1 Data Collection

One important step in our investigation is collecting and preparing the dataset for
analysis. There are numerous entities on the Ethereum blockchain network with
different transactional patterns, which make the behavioral pattern analysis non-trivial
due to the complex diversity. These entities may belong to different types of addresses
such as miners, exchanges, smart contracts, or advertising nodes. Each entity on the
Ethereum network is uniquely identified by a public address. The public addresses are
used for making transactions and transferring funds [11]. Besides, some
meta-information about the addresses including the labels associated with some of the
addresses can be retrieved by manually crawling the information available in the main
Ethereum block explorer etherscan.io. These labels have been associated with the
addresses by the Ethereum community as a result of demonstrating special behaviors.
For instance, relevant labels are assigned to the addresses for showing special
transactional patterns associated with illegal activities. In some other cases, several
entities may become suspicious about the authenticity of an address, or an address may
have a history of conducting illegal activities; thus, the malicious address is reported
and a special label is assigned to that address.

It should be noted that there is no exhaustive database of labels for all the
Ethereum entities, since the ever-increasing size of the Ethereum network data requires
extensive investigation. Besides, such a comprehensive analysis is neither present nor
fully plausible considering the dynamic nature of the Ethereum network. Therefore,
only a very small portion of the addresses have special labels. On the contrary, it is
assumed that the majority of the addresses on the network are honest with only a small
number of entities involving in illegitimate activities. The labels associated with the
known malicious addresses are retrieved from the Ethereum block explorer (i.e.,
etherscan.io), while the other addresses without any labels can be considered as being
genuine, since they are not associated with illegitimate activities.

Aiming to find the addresses of entities associated with malicious activities, we
searched through the main Ethereum block explorer etherscan.io, which enabled us to
find 3128 addresses associated with phish, hack, heist, or scam activities. These
addresses constituted our malicious address list. For analyzing the authenticity of
different addresses on the Ethereum network, we aimed to generate a dataset consisting
of behavioral profiles of different addresses. We start our dataset generation process by
collecting a set of malicious addresses associated with illegitimate activities. Then, for

3. Detecting Illicit Accounts on a Cryptocurrency Network 38

constructing our target list of Ethereum addresses, we find all different addresses that
have sent Ether to or received Ether from any of the malicious addresses. The target
address list includes a total of 53, 087 addresses where only 3, 128 of them are malicious
ones and the rest of the addresses might belong to other categories of addresses such as
exchange, miner, or they may not have specific labels. A pseudocode illustrating the
overall dataset generation procedure is presented in Fig. 3.2. Specifically, at lines 1 to
11, the data collection processed is demonstrated. At line 1, a list of addresses
associated with the target labels is collected. Then at line 2 to 5, the target address list
consisting of the labeled addresses and all other addresses in interaction with them is
constructed. Line 6 through 10 shows the assignment of labels to the target addresses.
Finally, at line 11, the transaction history of each target address is retrieved from the
Ethereum blockchain ledger. The feature extraction and dataset pre-processing are
executed in lines 12 through 16.

For investigating the behavioral patterns of target addresses, we need to understand
their transaction histories in the Ethereum public ledger. It is noteworthy that although
the Ethereum blockchain ledger is publicly available, one of the most challenging tasks
when investigating the blockchain data is gathering an appropriate large dataset for
analysis. By joining the Ethereum network, we have access to the whole ledger, consisting
of the total transactions history. However, processing the whole ledger requires huge
processing power and memory requirements. Our proposed methodology does not require
the investigation of all transactions on the ledger.

For retrieving the transaction histories of target addresses, we use the Ethereum
Development APIs (from etherscan.io) to pull the transactions of each target address.
Note that the Ethereum network is dynamic, so to feed recent information to the
detectors, we adopt a forget approach [228, 229], taking the most recent 10K

transactions of the target addresses into consideration (in case they have more than
10K transactions). In this way, we are able to pull the transaction histories of target
addresses, consisting of more than 18M transactions (specifically, 18, 686, 447). Having
the transaction histories of target addresses, the next step extracts the appropriate
features and prepares the dataset for classification.

3.2.2 Feature Extraction and Dataset Preparation

Using the transaction histories, this step extracts features that best describe the
transactional behaviors of target addresses. The goal is to generate a dataset that can

3. Detecting Illicit Accounts on a Cryptocurrency Network 39

be leveraged by the binary classifiers for detecting malicious entities. To examine the
importance of extracting an efficient set of features and the dataset pre-processing, we
investigated the classification on some of the initial raw attributes of the retrieved data
from the Ethereum public ledger. Particularly, we started with considering four simple
features describing the transactional behavior of each Ethereum entity: (a) the average
value transferred, (b) the average amount of incentive for verification of all the
transactions of that entity, (c) the average unit price of the incentive for all the
transactions, and (d) the average amount of incentive that has been actually used for
the transactions. We refer to the dataset consisting of these features as the ”raw”
dataset inferring that a limited simplistic set of initial attributes has been adopted.
Moreover, no data pre-processing has been applied to the raw dataset. We applied three
binary classification methods, Logistic Regression (LR) [230], Support Vector Machine
(SVM) [231], and Random Forest (RF) [232], to detect the malicious entities.

Essentially, considering the necessity of the feature extraction process, our goal is to
generate a set of features that best describe the characteristics of the Ethereum entities.
Based on the different parameters of the transactions, e.g., the value sent/received and
the incentive considered for the verification of the transactions, we extract a new set of
features that could reasonably describe the overall behavior of entities. The extracted
features form a behavioral profile for each entity that could be utilized by the classification
methods for identifying the malicious entities. Each profile consists of 54 features:

• General features: including balance and active duration of the considered entity.

• Neighborhood features: including in-degree, out-degree, unique in-degree, and
unique out-degree of the entity.

• Local features: including the aggregated value of parameters related to the incoming
or outgoing transactions. These features include the minimum, maximum, average,
standard deviation, and the total value of the transactions, the offered incentive
for verification of the transactions, the incentive worth, and the actual amount of
spent incentives for verifying the transactions.

• Timestamp-related features: including the minimum, maximum, average, and
standard deviation of the time interval between incoming and outgoing
transactions.

After constructing a behavioral profile for each entity, the aggregated dataset used
for classification is constructed by augmenting the profiles of all target entities. As a

3. Detecting Illicit Accounts on a Cryptocurrency Network 40

final step, we apply a data pre-processing and cleaning pipeline consisting of imputation,
standardization, and principal component analysis (PCA) on our aggregated dataset in
order to have clean and standardized features. The objective of PCA is to eliminate
the probable correlation between the extracted features that can result in information
redundancy. The principal components extracted by applying PCA are independent, so
they do not have redundant information.

3.2.3 Tasks and Solutions

The challenge of detecting malicious entities in Ethereum is the accurate classification
of a small number of malicious instances in a massive dataset. The goal is to reduce
the false-positive rate without increasing the false-negative rate. Among the methods
employed in anti-money laundering and fraud detection applications, RF and LR are two
of the most widely used ones where the former is known for its high accuracy and the
latter for its explainability [45, 56, 75, 77].

The task considered in this thesis is to monitor the transactional profiles of target
Ethereum entities to assess their probabilities of conducting malicious activities.
Specifically, in the final evaluation of the proposed detection process, each entity should
be classified as malicious or genuine, and then by comparing the prediction results with
the actual labels associated with the entities, the performance of the classification task
is evaluated. The benchmark machine learning methods which are used in a supervised
fashion for the binary classification task are LR, SVM, and RF.

We are tackling a classification problem where the legitimate entities far outnumber
the malicious ones, thus the dataset is highly unbalanced. Most supervised learning
methods are not designed to cope with highly imbalanced datasets, which makes it a
difficult task [233]. For alleviating the imbalance problem of the dataset, we employ data-
level re-sampling techniques including under-sampling, over-sampling [137], and SMOTE
(Synthetic Minority Over-sampling Technique) [138] which were used as a pre-processing
step to balance the dataset before the classification. When applying under-sampling,
we down-size the genuine addresses (i.e. the majority class) by randomly omitting some
instances until the dataset is balanced. This method reduces the data size and results in
information loss. On the other hand, in our over-sampling process, we supplement the
training dataset with multiple copies of some randomly chosen instances of the minority
class (i.e. the malicious entities). Finally, when applying SMOTE, we augment the
training dataset by synthetically generated instances of the minority class. Particularly,

3. Detecting Illicit Accounts on a Cryptocurrency Network 41

we pick random elements of the minority class and compute their k-nearest neighbors.
The synthetic instances are added among the selected elements and their neighbors. It
should be noted that in different cases of re-sampling, we balance the dataset in such a
way that the number of instances in both classes becomes almost equal.

As a result of applying different re-sampling techniques, we gain three additional
versions of the dataset (i.e., under-sampled, over-sampled, and SMOTE-based dataset).
For classifying the instances into malicious and genuine, we adopt two ensemble
approaches for our binary classification problem namely Stacking Classifier and
AdaBoost [231]. Essentially, an ensemble is a combination of models consisting of a
series of other classifiers to create an improved classifier. For each instance in the
dataset, the individual classifiers vote for a specific class, and the final prediction is
returned based on a majority voting policy. Indeed, the ensemble learning methods are
meta-algorithms which are a composite of several machine learning methods to increase
the performance [231]. Specifically, stacking is a meta-learning approach in which there
are two levels of classifiers. The first-level classifiers are learned on the original dataset.
Then, a new dataset is constructed based on the prediction results of the first-level
classifiers as new features. The second-level classifier is learned on the newly
constructed dataset [231]. Alternatively, AdaBoost or Adaptive Boosting increases the
accuracy of the classification by combining classifiers. AdaBoost is an iterative ensemble
approach wherein each round, the probability or weight of selecting an instance of the
training set is adjusted based on the learning performance of the previous round, and
newly updated weight distributions are generated to be fed into the next round. In each
round, higher weights are assigned to the instances which were incorrectly classified in
the previous round. Therefore, the probability of selecting an incorrectly predicted
instance for the next round is higher. This process ends either when a maximum
number of iterations is reached or all the training data fits without any error. Our
stacking classifier consists of a RF and a LR Classifier as the first-level classifiers and
for the second-level classifier it employs another LR classifier. Besides, our version of
AdaBoost uses RF as its base classifier. These two ensemble approaches together with
our benchmark methods (i.e., LR, SVM, and RF) are evaluated on all four versions of
the dataset (i.e., the original, under-sampled, over-sampled, SMOTE-based dataset)
through a 10-fold cross-validation process. The best-trained model in each case is
applied to an unseen set of data instances for evaluating the final prediction.

3. Detecting Illicit Accounts on a Cryptocurrency Network 42

3.3 Experimental Evaluation

We applied our proposed malicious entity detection framework to the constructed
Ethereum profiles dataset. We performed a 70:30 split of the training and test data,
respectively. The majority of the entities on the blockchain network are honest, with
only a small minority of the entities being malicious, so the considered dataset is highly
imbalanced. It has been shown that for the unbalanced dataset accuracy is inadequate
as a performance measure because if the classifier predicts all cases into the majority
class, it will achieve a high accuracy value [75]. Therefore, although the classifier may
show high accuracy, it does not indicate its high performance considering the dataset
imbalance. Hence, we considered other performance indicators, such as precision, recall,
and F1 score, which take the imbalance issue into account.

3.3.1 Evaluating the importance of the feature extraction

The objective of this set of experiments is to investigate the importance of feature
extraction and dataset pre-processing. Hence, the performance of the classification task
for the raw dataset (presented in Section 3.2.2) is compared to that of the pre-processed
dataset of the extracted features. In these experiments the proposed framework was
employed for three standard classification methods namely LR, SVM, and RF (all from
the scikit-learn [234] Python package with the following settings: LR with default
parameters, SVM with linear kernel, and RF with 50 estimators and the maximum
depth equal to 100). The results are illustrated in Fig. 3.3.

It should be mentioned that the SVM classifier could not converge in a reasonable
time (specifically, even after 54 hours). As shown in Fig. 3.3, RF outperforms LR
considering the raw data. However for the raw dataset, none of the methods
demonstrate acceptable performance in terms of precision, recall, or F1 score. These
observations imply that the features considered in the raw dataset are not efficient in
demonstrating the behavioral patterns of the entities. Next, to better realize the
importance of the feature extraction and pre-processing, we examined the performance
of the RF classifier when it is applied to the processed dataset (i.e., after applying the
proposed steps to extract features and pre-process the data). As shown in Fig. 3.3,
when the RF classifier is applied to the pre-processed dataset of extracted features
(noted as RF-F.E.) considerably higher performance has been achieved. Therefore,
extracting a set of features that can better describe the characteristics of the entities is

3. Detecting Illicit Accounts on a Cryptocurrency Network 43

Figure 3.3: Assessing the importance of the feature extraction and dataset pre-
processing of the proposed framework. The performance of LR and RF when classifying
the raw dataset are compared to the RF when classifying the processed dataset of
extracted features (noted as RF-F.E.).

imperative.

3.3.2 Evaluating the performance of the unsupervised vs.
supervised classification methods

We also investigated the performance of unsupervised anomaly detection methods,
namely Local Outlier Factor (LOF) [235] and Isolation Forest (ISF) [236], for detection
of malicious Ethereum entities. LOF [235] is an unsupervised method which computes
the local density of each point as its estimated distance to its k-nearest neighbors, and
compares the local density of points to detect the anomalous points. It is important to
note that LOF was adopted in [226] for detection of anomalous Bitcoin users and
transactions. As another unsupervised method, we employed ISF which has shown good
performance for high dimensional data [236].

We implemented LOF and ISF using the scikit-learn Python package [237] with
default parameters and compared their performance with RF when all methods are
applied to the pre-processed dataset of extracted features. The results are demonstrated
in Fig. 3.4. As can be observed, LOF and ISF are not efficient in detecting the
malicious Ethereum entities. The reason for the inefficiency of these anomaly detection
methods is that malicious entities mainly endeavor to show behavioral patterns similar
to normal entities in order to remain undetected. Thus, their malicious behaviors are
not obviously different from the normal behavior of other entities, which make the

3. Detecting Illicit Accounts on a Cryptocurrency Network 44

Figure 3.4: Comparing the performance of unsupervised (i.e. LOF and ISF) and
supervised (i.e. RF) learning methods for classification of the pre-processed dataset of
extracted features.

detection of malicious entities more challenging. Considering the inferiority of the
unsupervised methods, we preferred to consider the supervised methods for detection of
malicious entities in our framework.

Table 3.1: The Ethereum dataset specification.

Dataset Malicious Genuine Total
all data 3, 128 49, 959 53, 087

training set

original 2, 190 34, 971 37, 161
over-sampled 34, 971 34, 971 69, 942

under-sampled 2, 190 2, 190 4, 380
SMOTE-based 34, 971 34, 971 69, 942

test set 938 14, 988 15, 926

3.3.3 Evaluating the impact of dataset imbalance and different
re-sampling techniques

In this set of experiments, we investigated the impact of the data imbalance on the
performance of different classification methods such as LR, SVM, and RF. The considered
dataset consisted of extracted features, and the re-sampling techniques were implemented
to alleviate the imbalance issue. Each classification approach was evaluated on four
distinct datasets (including the original, over-sampled, under-sampled, and SMOTE-
based dataset) through a 10-fold cross-validation process. We generated SMOTE-based

3. Detecting Illicit Accounts on a Cryptocurrency Network 45

(a) Original dataset. (b) Over-sampled dataset.

(c) Under-sampled dataset. (d) SMOTE-based dataset.

Figure 3.5: Results of the experiments investigating the impact of dataset imbalance
and the re-sampling techniques.

version of the dataset using the imbalance-learn Python API [238], and over- and under-
sampled dataset using scikit-learn [234] Python package. The detailed specification of
each different version of the dataset is presented in Table 3.1, and the performance results
are summarized in Fig. 3.5. We observed that most learning classification methods do
not perform well when the dataset is unbalanced. Moreover, detecting a positive instance
(i.e., a malicious entity) and negative instance (i.e., a genuine entity) do not have a similar
impact. False-negative cases (where a malicious entity has been incorrectly detected as
genuine) have a more severe impact, since these cases may incur more further cost as a
results of conducting illegitimate activities. Considering the results in Fig. 3.5, it can be
observed that although most approaches show acceptable performance with regard to the
accuracy, their precision, recall, and F1 score are considerably different, with the original
dataset having the lowest performance in terms of F1 score in roughly all cases.

As can be observed in Fig. 3.5, among the methods of re-sampling, the best results
were obtained with over-sampling in comparison with under-sampling and SMOTE. These
findings can be explained by the fact that in the case of under-sampling, by randomly
omitting some negative class instances from the original dataset to achieve the under-

3. Detecting Illicit Accounts on a Cryptocurrency Network 46

(a) Original dataset. (b) Over-sampled dataset.

(c) Under-sampled dataset. (d) SMOTE-based dataset.

Figure 3.6: Evaluating the performance of different ensemble learning methods for the
malicious entity detection.

sampled dataset, we lost a considerable portion of the information. Thus, the ability
of the classifier to learn the dataset characteristics decreased, which resulted in lower
performance. In the case of the SMOTE-based re-sampled dataset, the size of the positive
class is increased by generating random instances that are in the neighborhood of the
original positive instances. However, there are two important notes to consider. First,
the number of positive instances are considerably lower than the negative instances.
Second, the positive instances are malicious entities with different unique characteristics
where there is no guarantee that they would show similarities in their behavioral patterns.
Therefore, it is not guaranteed to find a distinguished community of malicious entities in
all cases, rather each malicious entity being surrounded by genuine entities. With these
notions in mind, the SMOTE-based dataset could not show very similar behaviors to the
actual dataset, resulting in inferior performance for SMOTE-based dataset compared to
the over-sampled dataset.

3. Detecting Illicit Accounts on a Cryptocurrency Network 47

3.3.4 Evaluating the performance of the ensemble methods

Observing the superior performance of RF in comparison to the traditional classification
methods, we extended our evaluations by exploiting two other ensemble classification
methods for the detection of malicious entities. Particularly, we proposed a stacking
classifier consisting of a RF and a LR as the first-level classifiers, and a LR as the second-
level classifier. In addition, we utilized an AdaBoost approach consisting of a RF as its
base classifier. The stacking classifier as well as the AdaBoost classifier were also applied
to the four versions of the dataset. The results of these experiments are demonstrated in
Fig. 3.6.

In general, ensemble methods have been developed to improve the classifiers’ ability of
generalization by combining information from multiple sources (such as prediction results
of several classifiers) [231]. It can be observed that ensemble classification methods show
high performance, while there are no significant differences in the performance of RF,
Sck, or Ada in terms of F1 score. In fact, the high performance of Sck and Ada mainly
comes from the adoption of RF which has been proven to show superior performance in
unbalanced classifications with usecases in fraud and anomaly detection [28, 45, 56, 75,
77]. Thus, other ensemble methods only present a slightly better performance than RF.

3.4 Conclusion

We proposed a novel framework for detecting malicious entities on the Ethereum
network which incorporates data collection, feature extraction, and model
training/evaluation with the goal of detecting malicious entities from public parameters
of Ethereum transactions. By extensive evaluations, we deducted that the malicious
behaviors on the Ethereum network may be detectable considering the transaction
histories of the Ethereum entities. In addition, the proposed framework is easy to
employ and it is adaptable to similar tasks. The evaluations demonstrated the good
performance of the proposed framework for the ensemble learning methods including
Random Forest, Stacking Classifier, and AdaBoost. Moreover, it is revealed that the
extracted features were efficient in finding malicious entities on the Ethereum network.

48

Chapter 4

Graph-based Detection of Illicit
Entities in Transaction Networks

While the proposed method in Chapter 3 is efficient in detecting malicious Ethereum
addresses, we aim to employ the structure of the transaction networks, since relations
of networks offer valuable information. In addition, employing relational attributes of
the networks and exploiting graph-based analysis help in proposing richer feature sets.
We are also motivated to have a unified generic pipeline for detecting illicit entities on
cryptocurrency networks that encompasses both UTXO (e.g., Bitcoin) and account-based
(e.g., Ethereum) architectural models. Hence, we move towards a graph-based approach.

4.1 Introduction

Blockchain-based cryptocurrencies, such as Bitcoin and Ethereum, have taken a
considerable share of the financial market [9]. Malicious users increasingly exploit these
platforms to undermine legal control or conduct illicit activities [9, 65, 239, 240]. In
particular, billions of dollars attained through illegal activities such as drug smuggling
and human trafficking are laundered smoothly through blockchain-based
cryptocurrencies exploiting their pseudonymity [79]. Given the openness and
transparency of blockchain [241], it is of paramount importance to mine this data for
detecting such illicit activities.

Although the recent machine learning advances have enhanced the exploration of
large-scale complex networks, the performance of these methods relies on the quality of
the data representations and extracted features [242]. Likewise, in blockchain networks

4. Graph-based Detection of Illicit Entities in Transaction Networks 49

with high anonymity and large number of participants with diverse transactional patterns,
any illicit node detection method is effective only when the extracted characteristics of
the data efficiently distinguish the illicit and licit components of the network. Hence,
developing effective illicit node detection method depends heavily on the efficiency of
the data representations and extracted features. Considering that network topologies
can reflect the roles of the different nodes, graph representation learning methods have
been potentially conceived as great means for capturing neighborhood similarities and
community detection [149]. Additionally, machine learning analysis on large networks is
becoming viable due to the efficiency, scalability and ease of use of graph representation
learning methods [148, 149].

Driven by the need to enhance the security of the blockchain through transaction
network analysis, and by recent advances in graph representation learning, we propose
an efficient graph-based method SigTran for detecting illicit nodes in the transaction
network of blockchain-based cryptocurrencies. SigTran can be applied for warning
honest parties against transferring assets to illicit nodes. In addition to providing a
trading ledger for cryptocurrencies, blockchain can be perceived as a network that
analyzing its dynamic properties enhances our understanding of the interactions within
the network [227, 243]. SigTran first constructs a graph based on the extracted
transactions from the blockchain ledger considering integral characteristics of the
blockchain network. Then it extracts structural, transactional and higher-order features
for graph nodes; these features strengthen the ability to classify the illicit nodes.
SigTran shows superior performance compared to the previous platform-dependant
state-of-the-arts (SOTAs), while it is generic and applicable to different blockchain
network models. Particularly, SigTran achieves an F1 score of 0.92 and 0.94 for
detecting illicit nodes in Bitcoin and Ethereum network, respectively. Moreover,
SigTran is scalable and simpler compared to much more complex SOTA contenders.
In short, SigTran is:

• Generic: SigTran is platform independent and applicable to different blockchain
networks, unlike current contenders.

• Accurate: SigTran outperforms much more complex SOTA methods on the
platforms they are designed for.

• Reproducible: we use publicly available datasets, and the code for our method and
scripts to reproduce the results is available at: https://github.com/fpour/SigTran.

https://github.com/fpour/SigTran

4. Graph-based Detection of Illicit Entities in Transaction Networks 50

Figure 4.1: Overview of SigTran to detect illicit nodes on a blockchain network.

4.2 Problem Formulation and Proposed Method

Given the publicity of the transaction ledger, our aim is to detect illicit activities on a
blockchain-based cryptocurrency network. We formulate the problem as a node
classification task in the transaction graph. Specifically, given the transaction records of
a set of blockchain nodes, we devise the transaction graph and investigate the
authenticity of different nodes by predicting the probability of each being involved in an
illegitimate activities such as phishing, scam, malware, etc. We propose an efficient
feature vector generation approach for nodes in these networks which demonstrates
node activity signatures which can be used to distinguish illicit nodes. An overview of
SigTran framework is illustrated in Fig. 4.1. SigTran extracts the transaction (TX)
history from the blockchain ledger and constructs a transaction network from those
records. To generate node representations, it then extracts a set of useful features which
are fused with the corresponding node representations produced by a node embedding
method. The final representations are then classified to detect illicit nodes. These steps
are explained in detail in the following.

4.2.1 Transaction History Retrieval

The required transaction records can be obtained directly from the blockchain public
ledger of the target cryptocurrency. For instance, for Bitcoin or Ethereum, we can use the
client software of these peer-to-peer networks to pull down the blockchain data in binary
format which is converted to human-readable formats like CSV via an appropriate parser.
As an example, for converting the binary records of the Bitcoin and Ethereum ledger,
SoChain [244] and [245] can be employed respectively. The transaction records contain
details such as timestamp, amount sent or received, incoming and outgoing addresses,
and other related information. Different authoritative websites (such as EtherScamDB

4. Graph-based Detection of Illicit Entities in Transaction Networks 51

Figure 4.2: SigTran creates a generic graph model based on the transaction networks.

[246] for Ethereum network) helps in gathering a list of illicit nodes on the blockchain
network. Together transaction records and the information about the authenticity of the
network nodes constitute the dataset required.

4.2.2 Network Construction

A cryptocurrency transaction network is modeled as a graph demonstrating the
interactions among participants of the network. We model a blockhchain network as a
graph G = (V, E), where V represents the set of nodes and E expresses the set of edges.
Nodes and edges could have extra attributes, such as labels for nodes, and amount and
timestamp of transaction for edges. Essentially, blockchain networks can be classified
into two categories: (a) unspent transaction output (UTXO) model where the nodes
specify the transactions, and the edges denote the flow of the cryptocurrency among
nodes. Bitcoin, Dash, Z-Cash, and Litecoin are cyrptocurrencies based on the UTXO
model [243], and (b) account-based model, where the account addresses are considered
as the nodes and the transactions among addresses as the edges of the graph. Ethereum
network is based on the account-based model. Considering the different categories of
blockchain networks, we construct a generic graph model, as illustrated in Fig. 4.2, to
which the instances of both the UTXO as well as the account-based network models are
easily convertible. In the generic graph, the nodes specify the network entities in which
we are interested to investigate their authenticity, while the edges denote the
interactions among the nodes. The generated graph model entails any features
associated with the nodes, whereas multiple edges between any two nodes with the
same direction are aggregated into a single edge. It is noteworthy that based on the
underlying blockchain network (i.e. UTXO or account-based), nodes and edges of the

4. Graph-based Detection of Illicit Entities in Transaction Networks 52

generic graph can have different intuitions. Particularly, if the graph is constructed
based on an UTXO blockchain, the nodes represent cryprocurrency transactions which
may belong to licit or illicit categories of real entities. However, if the graph is
constructed based on an account-based blockchain, each node represents either an illicit
or licit address. In both cases, node representations and classification are applied
incognizant of the underlying blockchain model.

4.2.3 SigTran

SigTran: Signature Vectors for Detecting Illicit Activities in Blockchain
Transaction Networks

After modeling the blockchain transactions network as a graph, we need to develop
proper representations for the nodes. This consists of a set of carefully crafted features
which are fused with learned node representations, explained below respectively.

SigTran-Feature Extraction

For each node u, we gain a diverse set of features consisting of four main categories as
follows. It is important to note that the features of the nodes (e.g., labels) and edges
(e.g., amount and timestamp) of the original network are preserved in the constructed
generic model, since we employ these attributes for extracting the features of the nodes.

• Structural features consist of in-degree (Din(u) = ∑
v∈Nu

|evu|), out-degree
(Dout(u) = ∑

v∈Nu
|euv|), and total degree (Dtot(u) = Din(u) + Dout(u)) of node u. As

there may exist multiple edges between two nodes, |evu| determines the number of edges
from v to u, and Nu consists of all first-order neighbors of node u.

• Transactional features investigate the characteristics related to the amount and
time interval of the transactions. Indeed, blockchain specific information of the
transaction network is mainly enriched in this set of features. Each edge euv from u to v

is associated with a set of attributes including the amount and time interval of the
transactions from node u to node v. For obtaining transactional features, we consider a
set of aggregation functions, G, which includes summation, maximum, minimum,
average, standard deviation, and entropy operations over an arbitrary given set of values
X as follows:

G = {
∑

({X}), max({X}), min({X}), {X}, σ({X}), H({X})} (4.1)

4. Graph-based Detection of Illicit Entities in Transaction Networks 53

With the set of aggregation functions G, transactional features of node u are defined as:

txamnt
u = {g({ea

u}) | g ∈ G, ea
u ⊆ {ea

uv, ea
vu}}, txfreq

u = {g({eτ
u}) | g ∈ G, eτ

u ⊆ {eτ
uv, eτ

vu}}

where ea
u denotes the amount related to (in/out) edges of node u. Similarly, eτ

u denotes
the time interval related to (in/out) edges of node u.

• Regional features are defined with regard to the ego network of a node. We consider
the egonet of node u (Su = (Vu, Eu)) as a subgraph of the original graph consisting of u

and its first-order neighbors (i.e. Nu), with all the edges amongst these nodes. As an
example, considering the generic graph model in Fig. 4.2, the egonet of node0 consists
of {node1, node2, node4}. Having the definition of the egonet in mind, we consider the
number of edges of Su as one of the regional features of node u. Besides, the in-degree,
out-degree, and total degree of Su are considered as the other regional features according
to Din(Su) = |{ewv ∈ E | w /∈ Vu, v ∈ Vu}|, Dout(Su) = |{ewv ∈ E | w ∈ Vu, v /∈ Vu}|, and
Dtot(Su) = Din(Su) + Dout(Su) , where Vu = u ∪ Nu.

• Neighborhood features analyze the aggregated characteristics of neighbors of node
u. Considering the aggregation functions in (5.1), the neighborhood features of node u

are defined as: Din(Nu) = {g({Din(v)}) | g ∈ G, v ∈ Nu}, Dout(Nu) = {g({Dout(v)}) |
g ∈ G, v ∈ Nu}, and Dtot(Nu) = {g({Dtot(v)}) | g ∈ G, v ∈ Nu}.

Network Representation Learning

In order to learn node representations which fuse topological perspectives of the nodes in a
cryptocurrency transaction network, SigTran combines the extracted features explained
in above (which are obtained focusing on the specific characteristics of the cryptocurrency
networks such as amount and time interval of transactions) with the node representations
that are learned automatically through a network embedding procedure. For retrieving
more efficient node representations, we exploit a common network embedding method
for learning the features of the nodes in the generic graph model. Then, we fuse the
extracted features with the node embeddings in an effective manner so that the ultimate
node representations effectively demonstrate the fundamental characteristics of the nodes.
For fusing the extracted features and the node embeddigns, we investigate two approaches
explained in the following subsections.

RiWalk-enhanced. In this approach, we focus on the fact that nodes with different
functionalities have different roles in a network, and the structure of the network can
be investigated for gleaning these roles [149]. Hence, we consider the SigTran-features

4. Graph-based Detection of Illicit Entities in Transaction Networks 54

as powerful indicators of similarity among nodes, and decouple the node embedding
procedure into two steps. First, we identify the top ten SigTran-features with the
highest importance in detecting the illicit nodes and retrieve the values of those features
for each node u as f∗

u . We then relabel each neighbor of node u such as v according to the
function ϕ(v) = h(f∗

u) ⊕ h(f∗
v) ⊕ duv. Here, duv denotes the shortest path length from u

to v, ⊕ is the concatenation operation, and h(x) is defined as h(x) = ⌊log2(x + 1)⌋. The
new labels which are generated based on the node features infer the role of the nodes
(thus, Ri: Role identification). Thereafter, the second step consists of a random-walk-
based network embedding method for learning the node representations. Specifically, we
generate several random walks starting from each node, then merge the random walks to
construct a corpus and adopt the Skip-Gram model with negative sampling of word2vec
[150] to learn the node representations.

SigTran. In this approach, we consider the fusion of the SigTran-features and
automatically generated node embeddings through a concatenation procedure.
Particularly, we apply a random-walk-based node embedding method such as node2vec
[148] and for each node u obtain its embedding as e∗

u. Then, we generate the final
representations by concatenating the SigTran-features f∗

u with the node embeddings
for each node (i.e., e∗

u ⊕ f∗
u) intending to achieve accurate node representations.

4.2.4 Node Classification

The generated node representations can then be used in the downstream task for
classification of the illicit and genuine nodes. The illicit node detection task is akin to
the common task of fraud detection and anti-money laundering applications. We simply
employ Logistic Regression for the classification task because of its widespread adoption
in similar tasks as well as its high interpretability [45, 56, 75, 77]. This simple choice
enables us to better compare the effect of different embedding techniques.

4.3 Experimental Analysis

This section evaluates SigTran experimentally.

4.3.1 Datasets

We investigated two real-world transaction datasets consisting of the most widely adopted
cryptocurrencies: (a) Bitcoin blockchain network which is the largest cryptocurrency

4. Graph-based Detection of Illicit Entities in Transaction Networks 55

Table 4.1: Statistics of the investigated Blockchain-based Cryptocurrency Networks.
Dataset Nodes Edges Illicit Nodes Average Degree
Bitcoin 203,769 234,355 4,545 1.3002
Ethereum 2,973,489 13,551,303 1,165 9.1148

Table 4.2: SigTran outperforms baselines on the Bitcoin dataset. The average and
standard deviation of 10 different runs are reported. The last three rows are introduced
in this study.

Algorithm Precision Recall F1 Accuracy AU-ROC
Weber et al. [45] 0.901 (±0.011) 0.929 (±0.008) 0.915 (±0.007) 0.913 (±0.008) 0.976 (±0.003)
node2vec 0.627 (±0.028) 0.312 (±0.031) 0.415 (±0.028) 0.563 (±0.013) 0.580 (±0.020)
RiWalk 0.549 (±0.016) 0.343 (±0.039) 0.421 (±0.030) 0.530 (±0.010) 0.547 (±0.014)
RiWalk-enhanced 0.582 (±0.041) 0.486 (±0.140) 0.522 (±0.100) 0.573 (±0.047) 0.619 (±0.077)
SigTran-Features 0.905 (±0.008) 0.926 (±0.005) 0.915 (±0.004) 0.914 (±0.004) 0.976 (±0.002)
SigTran 0.890 (±0.010) 0.947 (±0.008) 0.918 (±0.006) 0.915 (±0.006) 0.976 (±0.003)

system based on UTXO model, and (b) Ethereum that support smart contracts, holds
the second largest cryptocurrency, and provides an account-based model.

We employed Bitcoin transactions dataset shared by Weber et al. [45] in which 21%
of the transactions are labeled as licit (corresponding to different legitimate categories
such as exchanges, miners, wallet provider, etc.), 2% as illicit (corresponding to different
categories of illegitimate activities such as scams, malware, ponzi scheme, ransomeware,
etc.), and there are no labels for the rest of the transactions. In addition to the transaction
records, the Bitcoin dataset consists of a set of handcrafted features representing the
characteristics of the considered transactions. Since the dataset is fully anonymized, we
could only generate structural, regional, and neighborhood features for the nodes of the
Bitcoin graph. We combined SigTran-features with the initial attributes available in the
dataset to form the node features of the Bitcoin network. In addition, we investigated the
Ethereum transactions data shared by Wu et al. [85]. This dataset consists of Ethereum
transaction records for a set of addresses consisting of licit addresses as well as illicit
addresses reported to be involved in phishing and scam activities. The statistical details
of the Bitcoin and Ethereum dataset are shown in Table 4.1.

4.3.2 Baseline Methods

Several SOTA methods were evaluated and compared.

• node2vec [148] is a random walk-based node representation method which employs

4. Graph-based Detection of Illicit Entities in Transaction Networks 56

(a) SigTran (b) SigTran-features (c) RiWalk-enhanced

(d) RiWalk (e) node2vec (f) TX network

Figure 4.3: Bitcoin Embeddings: SigTran better separate illicit (red) and genuine
(blue) transactions in Bitcoin network (plotted in (f)) compared to other baselines.

biased random walks to explore the neighborhood of the nodes with the
consideration of local and global network similarities. Default parameters of the
node2vec are set in line with the typical values mentioned in the paper [148]:
context size k = 10, embedding size d = 64, walk length l = 5, and number of
walk per node r = 20. We have also considered setting p = 0.25 and q = 4 to
better exploit the structural equivalency of the nodes according to the discussion
in the paper [148].

• RiWalk [149] is another random walk-based node embedding methods which
focuses on learning structural node representations through decoupling the role
identification and the network embedding procedures [149]. We considered the
RiWalk-WL which aims to imitate the neighborhood aggregation notion of the
Weisfeiler-Lehman graph kernels, and captures fine-grained connection similarity
patterns.

We also compared the performance of SigTran with methods specifically designed for
Bitcoin or Ethereum network.

• Bitcoin: we considered the method proposed by Weber et al. [45] as the baseline.

4. Graph-based Detection of Illicit Entities in Transaction Networks 57

Table 4.3: SigTran outperforms baselines on the Ethereum dataset. The average and
standard deviation of 10 different runs are reported. The last three rows are introduced
in this study.

Algorithm Precision Recall F1 Accuracy AU-ROC
trans2vec [85] 0.919 (±0.017) 0.894 (±0.019) 0.906 (±0.013) 0.908 (±0.012) 0.967 (±0.006)
node2vec 0.917 (±0.016) 0.907 (±0.019) 0.912 (±0.015) 0.912 (±0.015) 0.964 (±0.007)
RiWalk 0.931 (±0.016) 0.764 (±0.027) 0.838 (±0.017) 0.853 (±0.015) 0.894 (±0.011)
RiWalk-enhanced 0.928 (±0.017) 0.832 (±0.038) 0.877 (±0.022) 0.884 (±0.019) 0.899 (±0.015)
SigTran-Features 0.923 (±0.016) 0.926 (±0.005) 0.925 (±0.008) 0.925 (±0.009) 0.958 (±0.006)
SigTran 0.944 (±0.014) 0.940 (±0.012) 0.942 (±0.008) 0.942 (±0.008) 0.976 (±0.005)

• Ethereum: we considered phishing scams detection method by Wu et al. [85]
denoted as trans2vec as the baseline method. To make a fair comparison, we set
the default parameters of trans2vec inline with the parameters of the node2vec.

4.3.3 Performance Evaluation

To evaluate the performance of SigTran, we considered the illicit nodes as the target of
the detection approach and randomly selected an equal number of genuine nodes to form
our set of anchor nodes. We extracted the first-order neighbors of all the anchor nodes and
all edges among these nodes to construct a subgraph for investigation. Random selection
of genuine nodes was repeated for 50 times, thus 50 different subgraphs were examined
and the average performance was reported. Logistic regression with L1 regularization
was implemented in Scikit-learn Python package as the node classifier. The performance
evaluation results for the Bitcoin and Ethereum network are illustrated in Table 4.2 and
Table 4.3, respectively. To investigate the importance of SigTran-features, both tables
also report the performance of the classification tasks when only SigTran-features were
used as the node representations.

Bitcoin

Considering the results of illicit node detection on Bitcoin network in Table 4.2, it can
be observed that node embedding methods namely node2vec and RiWalk did not
generate efficient node representations. Therefore, the classification task had very low
performance in detecting illicit nodes. The poor performance of node2vec and RiWalk is
due to the fact that these methods are not specifically dealing with the intrinsic
characteristics of financial networks, such as having multiple edges among nodes, or

4. Graph-based Detection of Illicit Entities in Transaction Networks 58

(a) SigTran (b) SigTran-features (c) RiWalk-enhanced

(d) RiWalk (e) node2vec (f) TX network

Figure 4.4: Ethereum Embeddings: SigTran better separate illicit (red) and
genuine (blue) accounts in Ethereum network (plotted in (f)) compared to other baselines.
Notice the red nodes mixed in the blue cluster in (c-e).

being dependent on the amount and time interval of the transactions. These methods
mainly focus on exploiting the structural similarities in order to maximize the likelihood
of preserving neighborhoods of nodes. However, the results demonstrate that ignoring
the specific characteristics of cryptocurrency networks, such as amount and timestamp
of the transactions, results in embeddings that are not efficient for achieving decent
illicit node classification performance. On the other hand, methods likes Weber et al.
[45] and SigTran that are designed specifically for cryptocurreny networks show much
better performance. Superior performance of SigTran compared to Weber et al. [45]
is due to its extended set of features as well as the exploitation of the structural
information via node embedding methods. It is noteworthy to mention that SigTran
is more efficient than the proposed RiWalk-enhanced method. This can be attributed to
two main reasons. First, in RiWalk-enhanced, we employed the extracted features only
for relabeling the nodes. Although the labels of the nodes impact the node embeddings,
the exact values of the extracted features do not directly influence the embeddings
values which are later used for the node classification task. Moreover, it should be

4. Graph-based Detection of Illicit Entities in Transaction Networks 59

noted that the new labels combine the extracted features of the anchor and neighbor
nodes as well as their shortest path distance. Thus, modified values of the extracted
features are used for labeling. However, it is noteworthy that RiWalk-enhanced
outperforms its counterpart RiWalk, which underlines the importance of fusing the
extracted features with the node embeddings in terms of improving the performance of
the node classification task. For a qualitative comparison of the different embedding
methods, we have depicted the t-SNE [247] transformations of different node
representations methods for one of the subgraphs of the Bitcoin network in Fig. 4.3.
According to Fig. 4.3, it can be observed that the embeddings produced by SigTran
shape more separable distributions.

Ethereum

For the Ethereum dataset as shown in Table 4.3, it can be observed that SigTran
demonstrates considerably better performance than the other methods. Although
trans2vec and node2vec demonstrate high performance, the superior performance of
SigTran underlines its efficiency in employing the native characteristics of the
cryptocurrency networks as well as structural information obtained by the node
embedding methods. Besides, we can observe that the extracted features improved the
performance of the RiWalk-enhanced compared to RiWalk. Due to the fact that
SigTran better incorporates the extracted features with the network structural
embeddings, it achieves the most decent performance on the Ethereum network as well.
We have also depicted t-SNE [247] transformations of different node embedding
methods for a subgraph of the Ethereum network in Fig. 4.4. Considering Fig. 4.4, it is
observable that embeddings obtained by SigTran show considerable distinction
between illicit and licit nodes, while for example in Fig. 4.4e, there are several illicit
nodes (marked with red) in the licit cluster (marked with blue).

4.4 Conclusion

We propose SigTran that extracts signature vectors for detecting illicit activities in
blockchain network. Our proposed SigTran transforms the blockchain network into
a simple graph and then extracts carefully designed features which explain structural,
transactional, regional, and neighborhood features of the nodes. These features are then
combined with generic node representations which encode the roles of the nodes in a given

4. Graph-based Detection of Illicit Entities in Transaction Networks 60

graph. SigTran should be considered as a simple and strong baseline when developing
more complex models. Our proposed SigTran baseline is:

• Accurate: SigTran outperforms state-of-the-art alternatives in detecting illicit
activities in blockchain transaction records.

• Generic: SigTran is platform independent and we apply it to blockchain data
extracted from both Bitcoin and Ethereum.

61

Chapter 5

Graph-based Anomaly Detection in
Temporal Graphs

Considering the performance of our proposed approaches for detecting malicious entities
in cryptocurrency networks in Chapter 3 and Chapter 4, in this Chapter, we discuss
how the research problem and the proposed approaches can be extended to the node
classification task in temporal graphs.

5.1 Introduction

Various real-world complex systems can be abstracted by temporal networks that describe
relations or interactions. Temporal networks have ubiquitous applicability in wide range
of domains such as cryptocurrency transactions networks [19], social networks [221], and
recommendation systems [218, 220]. Recently, extensive research has been conducted
over graph structured data to learn vector representations of network elements such as
nodes or interactions [153, 156, 219, 220, 221, 222]. Although temporal evolution is a
principal property of many applications, research has mainly focused on static graphs
where network elements or their attributes are fixed over time [142]. In representation
learning on temporal graphs, it is important to note that topological structure as well
as node and edge features are evolving over time [220]. Therefore, it is necessary to
efficiently integrate temporal, structural, and semantic characteristics of the networks
elements.

A fundamental task in network analysis is node classification where the objective is
to categorize the node into one of the predefined classes [142, 147]. Node classification

5. Graph-based Anomaly Detection in Temporal Graphs 62

has many practical applications on real-world networks. In particular, it can be adopted
to predict the authenticity of network users to prevent illicit activities. In fact, as a
side effect of the relentless growth of various networks, increasing opportunities exist for
the malicious parties to take advantage of manipulating the network data in different
context: from cryptocurrency transaction networks (e.g. scammers), to social network
(e.g. trolls), to e-commerce interaction networks (e.g. fraudsters) and many more [248].
For instance, in e-commerce networks where consumers make decisions based on the
user-generated contents, such as ratings and reviews, there is a financial motivation to
manipulate the network by fake ratings [120, 249]. Similarly, rating platforms also exist in
the context of cryptocurrency transaction networks, where participants examine reviews
and ratings of an online service or product as a measure of trust to decide about whom
to trade cryptocurrency with. Thus, fraudulent users find significant incentives to give
fake ratings [250].

Considering the huge economical and social impacts of conducting malicious activities
on large networks, considerable attention has been given to protecting the networks [248].
In particular, a large body of data mining and machine learning techniques have been
developed for examining the interactions of the users within a network and discovering
potentially malicious activities. Among them, the most effective ones are the graph-based
approaches such as [45, 85, 120, 249], which look at the activity patterns summarized as
a network structure. Here, we follow this graph-based line of work and propose a strong
baseline for node classification in temporal graph that outperforms more expensive state-
of-the-art contenders (see Table 5.1).

In this part of the thesis, we model online interaction networks, including
cryptocurrency transaction networks, rating networks, and social networks, as weighted
temporal graphs. In these commonplace graphs, there is a time associated with each
interaction between users, as well as an intensity (or weight) and direction. Our
proposed approach, TGBase, incorporates interaction-based, as well as structural and
semantic attributes of the nodes to set out a carefully-designed set of features for each
node with no learning needed or parameters to adjust. TGBase provides simple yet
effective node representations that can be employed for distinguishing different types of
nodes. We compare TGBase with many state-of-the-art models which learn
representations from the data often using complex deep models. We show that our
shallow model which incorporates these effective features outperforms these contenders
while being a simpler and more efficient approach for node classification in both static
and dynamic setting. The main contributions of this part of the thesis are three-fold:

5. Graph-based Anomaly Detection in Temporal Graphs 63

Table 5.1: TGBase meets all desirable properties. * : Network embedding methods. †:
Graph neural networks methods. ‡: Temporal graph representation learning methods.

NE* GNN† TGRL‡ Platform-dependent

no
de

2v
ec

[1
48

]

R
iW

al
k

[1
49

]

G
C

N
[1

54
]

G
ra

ph
SA

G
E

[1
55

]

G
AT

[1
56

]

JO
D

IE
[2

18
]

D
yR

ep
[2

19
]

T
G

AT
[2

20
]

T
G

N
[2

21
]

W
eb

er
et

al
.

[4
5]

tr
an

s2
ve

c
[8

5]

R
EV

2
[1

20
]

T
G

B
as

e

Uses network structure " " " " " " " " " " "

Uses interaction information " " " " " " " "

Considers network dynamics " " " " " "

Parameter free " " "

Scalable " " " " " " "

Generic " " " " " " " " " "

• We propose an efficient method, TGBase, for node classification in temporal
interaction graphs.

• We conduct extensive experiments, on large scale graphs with millions of edges, to
show TGBase is accurate, scalable and general.

• We release TGBase as a simple baseline for node classification in temporal graphs.
The TGBase-features are simple and easy to generate.

Reproducibility: Our code is open-sourced at
https://github.com/fpour/TGBase. This includes the datasets and scripts for
reproducing the reported results.

5.2 TGBase for Node Classification

We devise comprehensive node encodings to represent semantic, structural, and temporal
attributes of each node in a temporal network useful to distinguish different types of
nodes. The network is modeled as a weighted temporal graph G = (V, E), where V and
E denote the sets of nodes and edges, respectively. For each edge euv ∈ E from node
u ∈ V to node v ∈ V , we denote its intensity by w(euv), and its timestamp by t(euv).

https://github.com/fpour/TGBase

5. Graph-based Anomaly Detection in Temporal Graphs 64

Figure 5.1: TGBase features for a given node u incorporates two types of local features:
structure-based features (self and neighborhood), and interaction-based features (intensity
and timestamp).

5.2.1 TGBase

For each node u in a given weighted temporal directed graph, we extract a set of
features. The TGBase features include two main types (see Fig. 5.1): i), the
structural attributes of node u (self) and its neighboring nodes (neighborhood); ii) the
interaction-based features that specify the intensity and timestamp of interactions
between u and its neighbors. More specifically we have:

• Structure-Self features, which consist of in-degree, out-degree, and total degree of
u. More formally defined as: Din(u) = ∑

v∈V |evu|, Dout(u) = ∑
v∈V |euv|, and Dtot(u) =

Din(u) + Dout(u), respectively.
• Structure-Neighborhood features, which aggregate the structural attributes of the

neighbors of node u. We consider a set of six aggregation functions, denoted by A,
consisting of average, maximum, minimum, summation, standard deviation, and entropy
over an arbitrary set of values, denoted by X. More specifically:

A = {{X}, max({X}), min({X}),
∑

({X}), σ({X}), H({X})} (5.1)

Given the first-order neighbors of node u, Nu = {v | euv ∈ E ∨evu ∈ E}, we first derive
the three structural attributes of each neighbour v, i.e. [Din(v), Dout(v), Dtot(v)], and
then apply the six aggregation functions in Eq. (5.1) over each of these three attributes
to get our 18 aggregated neighborhood features for u. Table 5.2 provides the complete

5. Graph-based Anomaly Detection in Temporal Graphs 65

list of the resulted features.
• Interaction-Intensity features express the aggregated statistics of the intensity of

interactions among node u and its neighbours. We consider three sets of edges,
incoming, outgoing and total edges, and aggregate their intensity with the same
aggregation functions in (5.1) to gain 18 edge-weight or intensity related features. More
specifically: Win(u) = {g(win

u) | g ∈ A, win
u = {w(evu) | v ∈ Nu}},

Wout(u) = {g(wout
u) | g ∈ A, wout

u = {w(euv) | v ∈ Nu}}, and
Wtot(u) = {g(wtot

u) | g ∈ A, wtot
u = {w(evu), w(euv) | v ∈ Nu}}. This generalizes to

multi-graphs, where there may exist several edges among each pair of nodes, since it is
inherently summarizing the characteristics of multiple interactions.

• Interaction-Timestamp features express the aggregated statistics of interval of
interactions among node pairs. Considering the interaction time interval of node u and
its neighbor v together with aggregation functions in (5.1), the timestamp features of
node u are acquired as follows: Tin(u) = {g(tin

u) | g ∈ A, tin
u = {t(evu) | v ∈ Nu}},

Tout(u) = {g(tout
u) | g ∈ A, tout

u = {t(euv) | v ∈ Nu}}, and Ttot(u) = {g(ttot
u) | g ∈ A, ttot

u =
{t(evu), t(euv) | v ∈ Nu}}.

The aforementioned features are summarized in Table 5.2. In total, we defined only
57 local features per node. It is worth noting that for preserving semantic information
of the nodes, we concatenate nodes initial attributes with the TGBase features in case
the graphs are attributed, i.e. explicit features are provided for nodes.

5.2.2 Static vs. Dynamic Node Classification.

TGBase can provide node representations for static as well as dynamic node
classification. Traditionally, node classification on graphs have been considered in a
static setting, meaning that the categories of the nodes are fixed, and based on the
observed interactions of the nodes, we predict the node classes. Therefore, it suffices to
construct only one representation per node to be exploited by the downstream
classification task. In this setting, we construct TGBase representations only once
based on the observed history of the evolution of the graph.

However, the evolution of the temporal graphs can be considered as a sequence of
timestamped events where at each timestamp, a new decision regarding the classes of the
nodes should be made. This dynamic node classification setting implies that the label
of the nodes may change over time and the goal is to predict the correct label/category
of the nodes at specific timestamps. It is important to note that in the dynamic node

5. Graph-based Anomaly Detection in Temporal Graphs 66

Table 5.2: Full list of TGBase features.

interaction-based structure-based
intensity (w) time (t) neighborhood (Nu) self (u)

ta
rg

et
min(win

u) min(tin
u) min(Din(Nu))

Din(u)

max(win
u) max(tin

u) max(Din(Nu))
win

u tin
u Din(Nu)∑

win
u

∑
tin
u

∑
Din(Nu)

σ(win
u) σ(tin

u) σ(Din(Nu))
H(win

u) H(tin
u) H(Din(Nu))

so
ur

ce

min(wout
u) min(tout

u) min(Dout(Nu))

Dout(u)

max(wout
u) max(tout

u) max(Dout(Nu))
wout

u tout
u Dout(Nu)∑

wout
u

∑
tout
u

∑
Dout(Nu)

σ(wout
u) σ(tout

u) σ(Dout(Nu))
H(wout

u) H(tout
u) H(Dout(Nu))

ei
th

er

min(wtot
u) min(ttot

u) min(Dtot(Nu))

Dtot(u)

max(wtot
u) max(ttot

u) max(Dtot(Nu))
wtot

u ttot
u Dtot(Nu)∑

wtot
u

∑
ttot
u

∑
Dtot(Nu)

σ(wtot
u) σ(ttot

u) σ(Dtot(Nu))
H(wtot

u) H(ttot
u) H(Dtot(Nu))

classification, we need to update node representations after observation of an event (such
as evolving connectivity or features over time) to keep the most up to date representation.
Moreover, in contrast to static node classification where node categories are predicted
only once, in dynamic setting, classification can happen after each event to evaluate the
impact of the network evolution on node categories. In dynamic node classification, after
observation of each event, TGBase updates representation of the affected nodes to reflect
the alteration. The update procedure for all the features is straightforward. For node
classification, TGBase always utilizes the most up to date representation of the nodes
based on the observed history so far.

This section presents the evaluation of TGBase for static and dynamic node
classification task. We investigated eight real-world datasets presented in Table 5.3 in
the context of two tasks, static (Section 5.2.3) and dynamic (Section 5.2.5) node
classification. The first six rows of Table 5.3 provide information of the datasets for
static node classification where the node classes are fixed, and the last two rows present
the datasets utilized for dynamic node classification where node states may change over

5. Graph-based Anomaly Detection in Temporal Graphs 67

Table 5.3: Statistics of the different benchmark datasets used for evaluation.
Dataset Nodes Edges Benign nodes Illicit nodes Avg. degree Node States Network Category
Bitcoin 203,769 234,355 42,019 4,545 1.3002 static cryptocurrency
Ethereum 2,973,489 13,551,303 2,972,324 1,165 9.1148 static cryptocurrency
alpha 3,783 14,124 138 102 7.4671 static cryptocurrency rating
OTC 5,881 21,492 136 180 7.3090 static cryptocurrency rating
Amazon 330,317 560,804 2,358 241 3.3956 static general rating
Epinions 195,805 4,835,208 9,291 1,013 42.7914 static general rating
Reddit 10,000 672,447 10,634 366 15.6986 dynamic social network
Wikipedia 8,227 157,474 8,010 217 4.4327 dynamic social network

time. We explain the two settings and their corresponding datasets and baselines in the
following sections.

5.2.3 TGBase for Static Node Classification.

Here, we evaluate TGBase for static node classification in temporal weighted networks.

Datasets. We consider the following available benchmark datasets:
• Bitcoin. We adopted Bitcoin transactions dataset presented by Weber et al. [45] that

consists of more than 200K transactions of which 2% are labeled as illicit (corresponding
to different categories of malicious activities including scams, ransomware, etc.), 21% are
licit (corresponding to transactions of genuine categories including miners, exchanges,
etc.), and there are no ground truth labels available for the rest of the transactions.
Weber et al. [45] have also shared their defined set of features. The dataset is fully
anonymized and the intensity and timestamp of the edges are not available. Therefore, we
are only able to extract structural features (namely self and neighborhood). To preserve
the semantic attributes of the nodes, we combined features provided by Weber et al. [45]
with TGBase features.

• Ethereum. Transaction records of Ethereum network are presented by Wu et al. [85].
This dataset includes the transaction histories of different Ethereum accounts where 1165
accounts were involved in phishing activities. No ground truth labels are available for
other nodes which are therefore assumed to be genuine.

• OTC and Alpha. These datasets consist of the user-to-user trust network of
Bitcoin clients using OTC and Alpha platform for trading cryptocurrencies [120]. In
these platforms, users who are anonymously trading Bitcoin can rate other members of
the network based on their trustworthiness. Thus, fraudulent users have high monetary
incentive for giving fake ratings. The ground truth in these networks are set based on
the platform’s founder rating. The founder and all other users he/she has rated highly

5. Graph-based Anomaly Detection in Temporal Graphs 68

positive are considered as benign, and the users who have been negatively rated by the
benign users are marked fraudulent.

• Amazon. This is a user-to-product rating network [120]. The helpfulness of a rating
can be a good indicative of a fraudulent behavior, thus users with equal to or more than
50 votes, where the fraction of helpful-to-total votes is ≥ 0.75, are considered as genuine,
while if the same fraction is ≤ 0.25 the user is considered as fraudulent.

• Epinions. This dataset consists of a user-to-post network in which rating values
varies in range [1, 6]. A user-to-user trust network is used for defining the ground truth,
where a user is labeled as fraudulent if its total trust rate is ≤ −10, and genuine if its
trust rate is ≥ +10 [120, 251].

Baselines. To make a comprehensive performance evaluation, we considered
following baselines:

• Network Embedding Baselines: node2vec [148] and RiWalk [149]. We set the
parameters of the node2vec in line with [148]: context size k = 10, embedding size
d = 64, walk length l = 5, and number of walk per node r = 20. In addition, for better
exploitation of the structural equivalency of the nodes, we set p = 0.25 and q = 4. We
also used RiWalk-WL which captures the fine-grained similarities by imitating the
neighborhood aggregation of the Weisfeiler-Lehman graph kernels [149].

• GNN Baselines: We compared the performance of TGBase against three GNN
baselines which offer end-to-end node classification: GCN [154], GraphSAGE [155], and
GAT [156]. The GNN baselines contain multiple layers where at each layer, the input is
the node representations at that layer and the output is the transformed
representations. At the final layer, the node representations are utilized for the
classification task. We implemented all the GNN baselines in PyTorch Geometric with
three layers and weighted loss function to considered the class imbalance of the datasets.
We considered two different cases for initializing the node features for GNN baselines.
In the first scenario, GNN models exploited one-hot encoding of the nodes as the initial
features, which is a common practice. In the second scenario, TGBase is exploited for
generating the initial features (indicated as ”TGBase → GNN” in Table 5.4).

• Platform-dependent Baselines. We also compared the performance of TGBase
with state-of-the-art (SOTA) baselines that are specifically designed for a particular type
of network. These methods rely on particular characteristics of the network for which
they are developed.

◦ Cryptocurrency networks. We considered the method proposed by Weber et al. [45]
and trans2vec [85] as baselines for Bitcoin and Ethereum network, respectively. We set

5. Graph-based Anomaly Detection in Temporal Graphs 69

Table 5.4: Comparing the performance of TGBase in terms of AUC with SOTA
baselines in static node classification task. The first, second, and third best performing
method are colored correspondingly.

Method Bitcoin Ethereum Alpha OTC Amazon Epinions
Platform-dependent 0.955 ±0.006 0.827 ±0.010 0.833 ±0.112 0.873 ±0.104 0.847 ±0.155 0.856 ±0.112

GCN 0.545 ±0.056 0.556 ±0.069 0.729 ±0.042 0.697 ±0.036 0.610 ±0.011 0.534 ±0.071
GraphSAGE 0.553 ±0.054 0.647 ±0.145 0.624 ±0.101 0.681 ±0.114 0.571±0.051 0.560 ±0.069
GAT 0.582 ±0.005 0.576 ±0.103 0.732 ±0.081 0.836 ±0.033 0.513 ±0.019 0.521 ±0.031
TGBase → GCN 0.901 ±0.007 0.792 ±0.020 0.912 ±0.023 0.942 ±0.019 0.934 ±0.020 0.859±0.011
TGBase → GraphSAGE 0.970 ±0.003 0.958 ±0.010 0.984 ±0.003 0.983 ±0.004 0.930±0.012 0.950 ±0.008
TGBase → GAT 0.928 ±0.010 0.709 ±0.041 0.926 ±0.024 0.948 ±0.012 0.926 ±0.015 0.555 ±0.156
node2vec

+ RF
0.669 ±0.012 0.817 ±0.026 0.990 ±0.003 0.996 ±0.001 1.000 ±0.000 nc

RiWalk 0.636 ±0.050 0.805 ±0.022 0.991 ±0.003 0.995 ±0.002 1.000 ±0.000 nc
TGBase 0.953 ±0.006 0.906 ±0.010 0.999 ±0.001 1.000 ±0.000 1.000 ±0.000 0.999 ±0.000
node2vec

+ MLP
0.636 ±0.020 0.793 ±0.026 0.716 ±0.071 0.784 ±0.046 0.999 ±0.001 nc

RiWalk 0.626 ±0.055 0.722 ±0.036 0.681 ±0.068 0.770 ±0.042 0.999 ±0.001 nc
TGBase 0.940 ±0.008 0.892 ±0.014 0.764 ±0.102 0.892 ±0.0.052 0.936 ±0.017 0.932 ±0.010

the parameters of the trans2vec similar to those of node2vec for a fair comparison. Please
note that these methods cannot be applied to a different domain or even cryptocurrency
platform. For example, trans2vec is not applicable to Bitcoin and is defined only for
Ethereum.

◦ Cryptocurrency rating and general rating networks. We considered REV2 [120],
which is the SOTA method for detecting fraudsters in rating benchmark datasets.

Performance Evaluation. In case of Bitcoin and Ethereum networks, we considered
the malicious nodes and an equal number of genuine nodes as the set of anchor nodes and
then, extracted the first-order neighbors of the anchor nodes and all the edges amongst
them to extract subgraphs from the original networks. We repeated the random genuine
anchor nodes selection procedure 10 times, and reported the average performance. For
the rating networks, namely Alpha, OTC, Amazon, and Epinions we considered the
classification task to be applied on all labeled nodes, while the available graphs are
utilized in generating node representations. We reported the average performance over
10 different iterations of random train-test splits. The performance is measured using
area under the ROC curve (AUC).

After generating node representations with TGBase, we need a classifier for
predicting the category of the nodes. We considered two different classifiers. Namely,
we implemented a three-layered Multi-Layer Perceptron (MLP) classifier with a ReLU
activation function in PyTorch. We also exploited Random Forest (RF) due to its high
performance [45, 120]. RF (with the following setup: number of estimator = 50,

5. Graph-based Anomaly Detection in Temporal Graphs 70

maximum number of features = 10, and maximum depth = 5) was implemented using
Scikit-learn Python package. The evaluation results are illustrated in Table 5.4.

Results. We discuss the results of each dataset in the following.
• Bitcoin. The results in the second column of Table 5.4 show that both generic

node embedding methods and GNNs (with one-hot encodings) achieve a relatively low
performance on this benchmark. This is expected since these models do not deal with
the intrinsic characteristics of financial networks, and mainly emphasize on the structural
similarities to gain the node embeddings. However, TGBase which is also a generic
method performs competitively to the platform dependent contender on this dataset. This
can be attributed to the fact that TGBase takes into account important characteristics
of the network mainly the interaction intensity and timestamp, which are overlooked by
the baselines.

• Ethereum. The results in the third column of Table 5.4 suggest that TGBase
significantly outperforms the baselines in classification of the malicious nodes on the
Ethereum network. Notably, TGBase shows higher performance compared to
trans2vec that is specifically designed for the Ethereum network. The generic node
embedding methods also give a relatively good performance on this dataset which
suggests the structural information are important. The GNNs, when do not exploit
TGBase features, are however still underperforming on this dataset.

• Alpha and OTC. The results in the fourth and fifth column of Table 5.4 represent
the higher performance of TGBase compared to the baselines for OTC and Alpha
datasets, respectively. Again, TGBase achieves better performance compared to
REV2, the domain specific SOTA, demonstrating that TGBase’s representations are
more suitable for distinguishing malicious nodes. It is important to note that the size of
the Alpha and OTC are much smaller than the size of the Bitcoin and Ethereum
networks. This might explain why node2vec and RiWalk show better performacne on
Alpha and OTC networks, compared to bigger networks. TGBase can achieve good
performance regardless of the network size.

• Amazon. The evaluation results are presented in the sixth column of Table 5.4. We
observe a similar pattern where more powerful or complex models have lower performance,
while TGBase achieves a perfect results. It should be noted that labeled nodes in the
Amazon dataset are extremely imbalanced which can explain the higher AUC values.

• Epinions. The results on Epinions dataset is presented in the seventh column of
Table 5.4. Due to the huge size of Epinion network, node2vec and RiWalk did not converge
in reasonable time. However, we can observe that TGBase reaches significantly better

5. Graph-based Anomaly Detection in Temporal Graphs 71

Figure 5.2: Results of ablation study on the performance of different sets of TGBase
features in the static node classification task, where the reported metric is AUC.

performance compared to REV2 [120], which implies the effectiveness of the proposed
feature set on this dataset.

Overall, TGBase achieves the best perfomance across different networks, and GNN
methods (in case they did not employ TGBase for generating node initial features)
mostly achieve lower performance on all datasets compared to other methods. There
are two reasons that can explain the lower performance of GNN methods when using
one-hot encoding as initial features. First, GNN methods considerably depend on the
initial features of the nodes, however, the considered datasets do not provide any initial
node features. Second, GNN methods performs end-to-end node classification where
they optimize the loss function to achieve high accuracy. However, these datasets are
highly unbalanced and high accuracy can be achieved even by incorrectly predicting all
instances as negative. Thus, although the methods can achieve high accuracy, we can
observe that other performance measures, including AUC, which are more proper for
unbalanced datasets, indicate a low performance when initial features are not expressive
enough.

5.2.4 Impact of Different Groups of TGBase features.

To better evaluate the impact of different TGBase’s sets of features, we conducted
node classification when only one set of TGBase features are used. Particularly, we
evaluate the node classification performance, when only intensity, neighborhood, self, or
timestamp features are employed as the node representations. As shown in Fig. 5.2, the
aggregation of all features results in the best overall performance. Moreover, comparing
the classification performance of individual feature sets, we can observe that intensity
features can mostly achieve the best results, which implies the importance of

5. Graph-based Anomaly Detection in Temporal Graphs 72

incorporating the edge-weight based attributes in the node representations. Note that
the Bitcoin dataset is anonymized and we could not define all sets of features for nodes
of Bitcoin network, therefore this dataset is dropped here.

5.2.5 TGBase for Dynamic Node Classification.

This section elaborates on evaluating the performance of TGBase for dynamic node
classification task against strong baselines that are specifically designed for representation
learning on temporal graphs.

Datasets. For the experiments, we consider Reddit and Wikipedia datasets consisting
of timestamped interactions of users on these social networks with evolving node labels
corresponding to their reputation in the network. The goal of the classification task is
to predict whether the state of a user will change due to an interaction. Specifically, for
normal users that are not banned from posting sub-Reddits or editing Wikipedia pages,
their label is always ’0’, while the label of a banned user changes to ’1’ after its final
interaction.

• Reddit. This dataset consists of a bipartite graph including 1, 000 most active posts
made by 10, 000 most active users on sub-Reddits during a period of one month [218]. The
interactions among users and sub-Reddits are associated with text attributes representing
the text information of the posts.

• Wikipedia. The dataset consists of a bipartite graph representing the edits made
by users on Wikipedia pages. The 1, 000 most edited pages together with the users who
made a minimum of 5 edits are considered as the nodes, and an edge demonstrates a user
editing a page [218]. The interactions are associated with text attributes related to the
page edits. Similar to the Reddit dataset, the edge weights of the Wikipedia network also
consist of vectors of attributes; thus, the intensity features of TGBase are defined for
each attributes of the edge weight vectors. Node labels and interactions are timestamped,
and nodes are labeled based on their states which represent whether a user is banned from
editing a page.

Baselines. For dynamic node classification task, we compared TGBase with four
SOTAs on representation learning on temporal networks including JODIE [218], DyRep
[219], TGAT [220], and TGN [221]. According to node interaction timestamps, we did
a chronological train-validation-test split with 70%-15%-15% in line with the baseline
methods [218, 219, 220, 221].

• JODIE [218] models the interactions of the users and items in domains such as

5. Graph-based Anomaly Detection in Temporal Graphs 73

Table 5.5: Comparing the performance of TGBase in terms of AUC with SOTA
baselines in dynamic node classification task. The first, second, and third best
performing method are colored correspondingly.

Method Wikipedia Reddit
JODIE [2019] 0.862 (±0.004) 0.675 (±0.006)
DyRep [2019] 0.837 (±0.007) 0.691 (±0.005)
TGAT [2020] 0.501 (±0.001) 0.502 (±0.001)
TGN [2020] 0.881 (±0.001) 0.668 (±0.008)
TGBase + RF 0.874 (±0.010) 0.713 (±0.007)
TGBase + MLP 0.882 (±0.004) 0.730 (±0.001)

social networks. JODIE utilizes RNNs to update the representations of the source and
target nodes every time an interaction takes place.

• DyRep [219] intends to consider the topological evolution, as well as activities
between the nodes to capture the dynamics of the interactions in the networks.

• TGAT [220] aims to aggregate temporal and topological features to recognize the
node representations as function of time. It leverages GAT as its building blocks and
develops functional time encoding

• TGN [219] is an efficient and generic framework that combines graph-based
operators and memory modules for representation learning on temporal graphs.

Performance Evaluation. For Reddit and Wikipedia datasets, we predict the
dynamic node labels, as related to the reputation ranking. Particularly, the downstream
dynamic node classification task is used to predict whether the user is banned. The
results are illustrated in Table 5.5.

Results. In Table 5.5, we can see that TGBase obtains state-of-the-art results on
both benchmark datasets. On Wikipedia, results are on par with TGN, whereas TGBase
significantly outperforms the baselines on Reddit dataset. We want to reemphasize that
the features we extract require zero-learning or parameter adjustment. Yet, coupled with
a shallow classifier, they are outperforming SOTA methods across different domains and
settings.

5. Graph-based Anomaly Detection in Temporal Graphs 74

5.3 On Detection of Anomalies in Graphs

While investigating different state-of-the-art baseline methods, we observe that there is
increasing usage of anomaly detection datasets in the node classification task with a
balanced setting. Specifically, many of the datasets that are used for the evaluation
of the node classification methods contain anomalous instances. Since anomalies are
essentially exceptional instances, there are very rare, which results in a high imbalance
of these datasets. Therefore in this section, we are motivated to investigate the node
classification settings for the anomaly detection task.

In the present epoch of big data, many real-world phenomena can be explored and
represented through the unifying abstractions offered by graphs. In many diverse and
complex data exploration and management ecosystems, big graphs processing has
emerged as a principal computing framework with applications in many domains
including security, social networks, finance, and many more [252]. Considering that in
many usecases the big data consists of relations, as well as vectors of features, a vital
challenge is to leverage information embedded in interconnected data that is modelled
by graphs.

The most universal data structures that can be leveraged for extracting information
from complex relational structures are graphs that are deployed in many different
applications, such as financial networks (e.g., graph of cryptocurrency transactions,
supply chain graph), rating networks (e.g., user-to-user rating platforms,
user-to-product rating graph), social networks (e.g., relations represented as friendship
between users, message, or email), etc [147]. Due to the importance of the additional
valuable information provided by the relations of the entities in networks, graph-based
methods are emerging as the mainstream approaches in industrial applications involving
relational information [142]. Recently, investigation of graphs via machine learning
approaches has witnessed a great surge of interest [147] in myriad of domains including
social science [253], knowledge graphs [254], and finance [20]. The impact of employing
efficient machine learning algorithms for big graph analysis is observable in mitigating
important and complex problems such as alleviating the current pandemic through
analytic offered by Graph 4 COVID-19 initiative [252, 255].

One main category of tasks in network analysis is node classification [148, 155]. The
task of node classification involves classifying each node of a network into one of predefined
sets of classes [142]. When modeling node classification as a supervised machine learning
task, the node representations can be employed by any off-the-shelf machine learning

5. Graph-based Anomaly Detection in Temporal Graphs 75

classifier to predict the classes of the nodes [148]. Therefore, the representations of the
nodes can be considered as a vector that efficiently encodes information about each node’s
neighborhood into a feature vector which can be exploited in different downstream tasks
[155].

Node classification can be also employed for detecting anomalous entities on
networks. For instance, detecting malicious users in financial networks [20], detecting
fraudulent users in rating platforms that give fake rating for monetary outcomes [120],
or spammer in social or financial networks [256] have all been modeled as machine
learning tasks where the ultimate objective is to efficiently predict the node classes
using node representations as feature vectors. In fact, it can be observed that many of
the datasets that are extensively being used in node classification tasks contains one
class of nodes that is associated with anomalous activities [45, 85, 120, 218]. Hence, the
node classification task on these networks are indeed a supervised anomaly detection
task.

Essentially, anomalous instances refer to those that considerably deviate from
seemingly normal observations [16]. In order to prevent various detrimental events such
as scams and frauds in financial transaction networks or social spams, a vital task is the
detection of anomalous instances. One important challenge in anomaly detection is the
insufficiency of labelled data, which leads the main approaches for anomaly detection
towards unsupervised methods or rule-based heuristic approaches [10]. Although most
of classification methods address the problem in a relatively balanced setting, real-world
scenarios often present datasets where some classes have considerably fewer number of
instances. Training the classifiers unaware of the of the intrinsic imbalance of the
datasets may results in under-representation of instances from the minority class and
consequently, sub-optimal performance of the classification task [257]. In this work, we
explore the application of supervised methods for classification of unbalanced datasets
and demonstrate the importance of considering the intrinsic imbalance of the instances.
Specifically, we focus on datasets consisting of anomalous and normal instances and
investigate the performance of various node embedding and classification approaches for
supervised classification task.

Imbalance problem is one of the greatest issues in data mining which relates to the
case that one of the classes have considerably less number of the instances compared
to others [136]. The classification methods, if overlooking the imbalance issue, mostly
focus on the samples from the majority class and aim to optimize classification accuracy,
while ignoring or misclassifying minority samples [136]. This becomes a vital drawback

5. Graph-based Anomaly Detection in Temporal Graphs 76

Figure 5.3: Overview of the experimental pipeline. Red and green nodes respectively
denote anomalous and normal nodes, while the nodes that are not included in the balanced
setting classification are colored in gray.

when applying classification for anomaly detection. For one thing, the datasets including
anomalies are extremely unbalanced which results in poor performance of the methods.
For another thing, although the minority samples are very rare, there are extremely
important to be detected and predicting false negatives could be very costly. Examples
of which include credit card fraud detection or detecting faults in safety critical systems
[18, 136].

In this study, we demonstrate the importance of considering the class imbalance in
supervised anomaly detection when using node classification techniques. This study is
motivated by the increased usage of anomaly detection datasets in node classification
works [45, 85, 120, 249], as well as many recent works ignoring the class imbalance
issue. We employ various node embedding methods including task-dependent and
structural network embedding for generating node representations, while employing
several classifiers for the downstream node classification task. We evaluate the
performance of various approaches in two different settings namely balanced and
unbalanced which are defined based on the distribution of the minority anomalous class.
We investigate various evaluation metrics in either setting to thoroughly contrast the
characteristics of different settings and provide recommendations for choosing practical
strategies when dealing with unbalanced datasets.

5.3.1 Anomaly Detection in Graphs as Node Classification

In this work, we focus on assessment of leveraging node classification approaches for
anomaly detection in real-world networks. Given a large network of entities, where only
a small portion of them are labelled as being associated with anomalous activities, the
goal is to evaluate the performance of different node representations working jointly with

5. Graph-based Anomaly Detection in Temporal Graphs 77

classification methods for detection of the anomalous instances. In addition, we are
interested to investigate the effectiveness of different evaluation metrics in demonstrating
the performance of different approaches. We basically consider two different settings,
namely balanced and unbalanced, for applying node classification. In the balanced setting,
we focus on the classification of a balanced set of instances including all anomalous
nodes and an equal number of normal nodes. In contrast, in the unbalanced setting,
the classification is applied to all the available nodes of the networks. The performance
of the node classification task in each setting is inspected based on different evaluation
metrics and several recommendations from a practitioner’s perspective are provided. An
overview of the experimental assessment pipeline is demonstrated in Fig. 5.3. As shown,
for both of the the setting, different sets of experimental assessments are performed.
Mainly, we consider generating node representations by a task-dependent or a general
network embedding method. The generated node representations are then employed by
several classifiers for detection of anomalous instances. At the end, the performance of the
downstream task are evaluated with different performance metrics. Our main objective
is the assessment of different settings, node representations, and classification methods
with a comprehensive sets of performance metrics for the anomaly detection problem.
The outcomes of the assessment are represented as several recommendations that can
be helpful to the practitioners when applying node classification methods for detecting
anomalies in large graphs.

Datasets

We assess the performance of different node representations and classification methods on
six real-world datasets (with static node labels) whose statistics are presented in Table 5.3.
These datasets (specifically, Bitcoin, Ethereum, OTC, Alpha, Amazon, Epinions) are
basically examples of real-world networks in which a small portion of entities are labelled
as being associated with different malicious activities, while the majority of the nodes are
assumed to be normal. These datasets are explained in more detail in Section 5.2.3.

5.3.2 Experimental Analysis

One of our main goal is to provide a comparative perspective of the two different settings
(namely balanced and unbalanced) that are currently used by the practitioners for the
anomaly detection problem. Considering that anomaly detection has several important
usecases, it is important to have an efficient combination of an evaluation setting and

5. Graph-based Anomaly Detection in Temporal Graphs 78

Table 5.6: Performance evaluation on cryptocurrency networks.

Balanced Setting Unbalanced Setting
Algorithm Precision Recall F1 Accuracy AU-ROC AU-PR Precision Recall F1 Accuracy AU-ROC AU-PR

B
it

co
in

R
F

Weber et al. [45] 0.987 0.845 0.911 0.911 0.982 0.986 0.923 0.687 0.788 0.921 0.955 0.888
node2vec 0.804 0.378 0.513 0.617 0.684 0.745 0.710 0.119 0.203 0.806 0.602 0.379
RiWalk 0.632 0.364 0.453 0.540 0.582 0.647 0.728 0.108 0.189 0.806 0.635 0.397

LR

Weber et al. [45] 0.918 0.906 0.912 0.906 0.972 0.974 0.824 0.700 0.757 0.905 0.940 0.777
node2vec 0.694 0.285 0.399 0.548 0.579 0.662 0.813 0.150 0.254 0.816 0.652 0.472
RiWalk 0.666 0.261 0.367 0.533 0.574 0.643 0.735 0.082 0.146 0.801 0.635 0.393

M
LP

Weber et al. [45] 0.934 0.861 0.896 0.892 0.961 0.966 0.730 0.855 0.787 0.902 0.949 0.873
node2vec 0.732 0.435 0.480 0.573 0.596 0.665 0.315 0.540 0.393 0.646 0.624 0.387
RiWalk 0.745 0.245 0.358 0.540 0.571 0.641 0.360 0.472 0.408 0.706 0.634 0.391

E
th

er
eu

m

R
F

trans2vec 0.888 0.973 0.928 0.920 0.961 0.958 0.110 0.002 0.004 0.956 0.829 0.198
node2vec 0.891 0.972 0.930 0.922 0.967 0.964 0.488 0.039 0.072 0.956 0.815 0.212
RiWalk 0.918 0.932 0.925 0.920 0.934 0.939 0.100 0.000 0.001 0.956 0.805 0.178

LR

trans2vec 0.911 0.910 0.911 0.905 0.958 0.958 0.276 0.073 0.115 0.951 0.783 0.178
node2vec 0.915 0.932 0.923 0.918 0.964 0.959 0.286 0.146 0.192 0.946 0.799 0.173
RiWalk 0.921 0.852 0.885 0.882 0.932 0.932 0.120 0.009 0.017 0.951 0.726 0.095

M
LP

trans2vec 0.890 0.970 0.928 0.921 0.955 0.952 0.097 0.730 0.170 0.676 0.761 0.164
node2vec 0.887 0.973 0.928 0.920 0.955 0.953 0.103 0.836 0.183 0.665 0.797 0.160
RiWalk 0.912 0.899 0.905 0.900 0.913 0.911 0.093 0.761 0.165 0.655 0.723 0.100

performance metrics in order to better inspect different methods. To this end, we have
employed node representation learning methods including task-dependent and network
embedding for generating node representations for binary classification of the nodes to
anomalous versus normal ones.

5.3.3 Evaluation Settings

We focused on assessing the performance of node classification approaches for anomaly
detection in two distinct settings. Having in mind the high imbalance nature of datasets
containing anomalies, we considered the following settings.

Balanced Setting. Since imbalance issue of the datasets makes several challenges
for the classification task which may result in its poor performance, in this setting, we
intended to eliminate the dataset imbalance through under-sampling of the normal
nodes with the goal of attaining a roughly balanced dataset for the classification task.
Particularly, we considered all the available nodes of the network in the node
representation learning procedure. Therefore, when generating node representations
through task-dependent or network embedding methods, no information is lost, and
these methods can exploit all the available structural and content-related information.
However, in the classification phase, we under-sampled the normal nodes in such a way
to have a balanced dataset. Thus, the under-sampling happened in the feature space.
For balancing the dataset, we preserved all the anomalous nodes, and randomly selected
similar number of normal nodes to produce the set of node features that is used by the

5. Graph-based Anomaly Detection in Temporal Graphs 79

classifier. We repeated the random selection procedure of the normal nodes in 10
different runs and reported the average performance.

Unbalanced Setting. This is the conventional setting used in majority of the node
classification approaches where all nodes are considered in representation learning as well
as in the classification procedure. The advantage of this setting is that all available
information is exploited for the classification. However, since the distribution of the
classes in datasets containing anomalous instances is highly skewed, the performance of
the classifier can be severely damaged.

In each of the two different settings, first the node representations were generated by
either a task-dependent method (such as Weber et. al. [45] for Bitcoin, trans2vec [85]
for Ethereum, or REV2 [120] for cryptocurrency rating and general rating networks) or
a general network embedding technique (such as node2vec [148] or RiWalk [149]). Then,
the node representations were leveraged by a binary classifier (such as Random Forest
(RF), Logistic Regression (LR), or Multi-Layer Perceptron (MLP)) for the detection of
the anomalous nodes. Different methods and their implementation details are elaborated
as follows.

• Task-dependent node representation approaches. These approaches mainly
provide meaningful feature vectors for each node of the network considering the
characteristics of the nodes on a specific network. Particularly, the feature sets are
specifically designed for each task based on the attributes and content of the application
as well as the underlying network.

• Weber et. al. [45]. For the Bitcoin network dataset, we considered the feature
set provided by Weber et. al. [45] as the node representations for the downstream
classification task. The proposed feature set consisted of 94 features which
expressed the local information about each transaction node (e.g., the timestamp
and transaction fee) and 72 aggregated features gained by aggregating information
from direct neighbors of each node.

• Trans2vec [85]. In case of the Ethereum transaction network, we employed
trans2vec [85] for generating the node representations for Ethereum accounts.
Trans2vec is a random walk-based node embedding method that exploited the
timestamp and amount of transactions in edge weight generation which were then
used to direct the selection of nodes in random walks. The parameters of the
trans2vec were set inline with those of node2vec for a fair comparison.

• REV2 [120]. Regarding the rating platforms, namely cryptocurrency rating and

5. Graph-based Anomaly Detection in Temporal Graphs 80

general rating, we adopted the node representation learning approach proposed by
Kumar et. al. [120] which is the state-of-the-art approach for the task of detecting
fraudulent users in rating platforms. REV2 leveraged an iterative process where the
network information as well as the behavioral properties were used for generating
the node representations.

• Network embedding approaches. Another group of node representation
methods that we have exploited for gaining node features were two state-of-the-art
shallow network embedding methods namely node2vec and RiWalk that are random
walk-based methods generating node representations in an unsupervised manner. In
line with the initial paper proposing node2vec [148, 149], we set the parameters of
node2vec and RiWalk as follows: walk length l = 5, number of walks per node r = 20,
embedding size d = 64, context size k = 10, and p = 0.25 and q = 4 for better
exploitation of the structural equivalency of the nodes.

• Binary classifiers. Gaining the node representations from the aforementioned
approaches, we utilized three different classifiers for the downstream node classification
task. We tested Random Forest (RF), Logistic Regression (LR), and Multi-Layer
Perceptron (MLP) as our supervised classifiers. The implementation details of the
classifiers are as follows: RF with number of estimator = 50, maximum number of
features = 10, and maximum depth = 5, and LR with L1 regularization were
implemented using Scikit-learn Python package. The MLP was implemented in
PyTorch with three layers and ReLU activation function.

The results of node classification in balanced and unbalanced setting are illustrated
in Table 5.6, Table 5.7, and Table 5.8 for cryptocurrency, cryptocurrency rating, and
rating network, respectively. These tables represent the average performance of different
settings among 10 different runs. The standard deviations corresponding to the results
reported in Table 5.6, Table 5.7, and Table 5.8 are illustrated in Table 5.10, Table 5.11,
and Table 5.12 in Appendix 5.4, respectively.

5.3.4 Results Analysis and Recommendations

Considering the experimental results of node classification in two different setting, namely
balanced and unbalanced, which are represented in Table 5.6, Table 5.7, and Table 5.8,
we can make several observations. First, it can be observed that task-dependent node
representations approaches mostly generate more efficient representations that help in
achieving higher performance of node classification in both balanced and unbalanced

5. Graph-based Anomaly Detection in Temporal Graphs 81

Table 5.7: Performance evaluation on cryptocurrency rating networks.

Balanced Setting Unbalanced Setting
Algorithm Precision Recall F1 Accuracy AU-ROC AU-PR Precision Recall F1 Accuracy AU-ROC AU-PR

A
lp

ha

R
F

REV2 0.827 0.645 0.702 0.771 0.818 0.723 0.802 0.659 0.698 0.746 0.815 0.701
node2vec 0.672 0.629 0.644 0.698 0.761 0.710 1.000 0.000 0.000 0.973 0.571 0.031
RiWalk 0.681 0.650 0.660 0.708 0.782 0.718 1.000 0.000 0.000 0.973 0.602 0.042

LR

REV2 0.785 0.671 0.708 0.758 0.833 0.762 0.611 0.532 0.569 0.879 0.788 0.711
node2vec 0.714 0.622 0.658 0.715 0.804 0.745 1.000 0.000 0.000 0.973 0.611 0.051
RiWalk 0.698 0.590 0.630 0.701 0.798 0.759 1.000 0.000 0.000 0.973 0.596 0.047

M
LP

REV2 0.883 0.594 0.708 0.756 0.820 0.646 0.689 0.469 0.558 0.847 0.887 0.464
node2vec 0.690 0.743 0.698 0.724 0.736 0.657 0.039 0.641 0.073 0.552 0.600 0.036
RiWalk 0.706 0.740 0.701 0.724 0.747 0.671 0.054 0.519 0.085 0.630 0.572 0.039

O
T

C

R
F

REV2 0.818 0.858 0.838 0.823 0.897 0.835 0.631 0.672 0.651 0.879 0.922 0.598
node2vec 0.779 0.853 0.823 0.789 0.829 0.828 0.600 0.021 0.041 0.969 0.740 0.109
RiWalk 0.776 0.816 0.794 0.758 0.801 0.802 0.800 0.027 0.052 0.970 0.737 0.110

LR

REV2 0.802 0.787 0.794 0.801 0.873 0.842 0.596 0.643 0.619 0.833 0.855 0.687
node2vec 0.790 0.760 0.772 0.742 0.819 0.838 0.100 0.003 0.006 0.969 0.740 0.111
RiWalk 0.767 0.744 0.753 0.721 0.788 0.805 1.000 0.000 0.000 0.969 0.728 0.106

M
LP

REV2 0.835 0.722 0.774 0.788 0.766 0.718 0.704 0.568 0.635 0.877 0.852 0.547
node2vec 0.778 0.795 0.774 0.736 0.715 0.728 0.067 0.660 0.122 0.703 0.675 0.056
RiWalk 0.749 0.767 0.724 0.692 0.642 0.689 0.062 0.619 0.112 0.694 0.648 0.056

setting. This is mainly because of the fact that these methods incorporate the extra
information available in the dataset as edge weights or edge timestamps. While the
general network embedding methods (such as node2vec and RiWalk) do not generally
leverage edge features, task-dependent methods define their sets of features according to
the intrinsic characteristics of the networks and their contents. Therefore, although their
application is tailored to a specific task and they cannot be directly extended to other
applications, they mostly show higher performance on their specific platform compared
to more general approaches.

Moreover, we can observe that different performance metrics demonstrate different
characteristics in balanced and unbalanced setting. For example, while high value of
accuracy is observed in both settings, other performance measures, like the precision
and recall, that are more commonly adopted in datasets with imbalance issue tell a
different story about the performance of the approaches in these two settings. Specially
in unbalanced setting, methods can predict all instances as negative and still achieve
a high accuracy value. However, as detection of the positive instances in the anomaly
detection task is of great importance, this scenario is not appealing and infers the necessity
of better performance metrics.

For better comparison of the balanced and unbalanced setting, we have presented
the correlation and average difference (i.e., balanced. perf. − unbalanced. perf.) of each
performance metric in the two setting in Table 5.9. We have also demonstrated the
correlation of various performance metrics in either balanced or unbalanced setting in

5. Graph-based Anomaly Detection in Temporal Graphs 82

Table 5.8: Performance evaluation on rating networks. *NC denotes that the node
representation approach did not converged in reasonable time (we set the time limit as
two days). Thus, we were not able to gain the node embeddings for the classification
task.

Balanced Setting Unbalanced Setting
Algorithm Precision Recall F1 Accuracy AU-ROC AU-PR Precision Recall F1 Accuracy AU-ROC AU-PR

A
m

az
on

R
F

REV2 0.801 0.811 0.806 0.804 0.854 0.678 0.587 0.623 0.604 0.919 0.921 0.536
node2vec 0.501 0.509 0.502 0.484 0.470 0.491 1.000 0.000 0.000 0.999 0.480 0.001
RiWalk 0.551 0.606 0.576 0.538 0.545 0.562 1.000 0.000 0.000 0.999 0.519 0.001

LR

REV2 0.802 0.799 0.800 0.807 0.847 0.841 0.647 0.591 0.618 0.927 0.914 0.657
node2vec 0.519 1.000 0.683 0.519 0.500 0.759 1.000 0.000 0.000 0.999 0.500 0.500
RiWalk 0.519 1.000 0.683 0.519 0.500 0.759 1.000 0.000 0.000 0.999 0.500 0.500

M
LP

REV2 0.816 0.678 0.739 0.769 0.811 0.789 0.624 0.657 0.633 0.837 0.807 0.769
node2vec 0.558 0.462 0.440 0.534 0.464 0.505 0.001 0.711 0.002 0.345 0.473 0.001
RiWalk 0.589 0.606 0.543 0.549 0.487 0.515 0.001 0.687 0.002 0.367 0.485 0.001

E
pi

ni
on

s

R
F

REV2 0.821 0.768 0.794 0.863 0.877 0.873 0.576 0.498 0.534 0.944 0.896 0.655
node2vec NC* NC NC NC NC NC NC NC NC NC NC NC
RiWalk NC NC NC NC NC NC NC NC NC NC NC NC

LR

REV2 0.769 0.758 0.764 0.841 0.856 0.857 0.503 0.434 0.466 0.895 0.887 0.699
node2vec NC NC NC NC NC NC NC NC NC NC NC NC
RiWalk NC NC NC NC NC NC NC NC NC NC NC NC

M
LP

REV2 0.834 0.713 0.771 0.827 0.892 0.773 0.648 0.597 0.621 0.898 0.896 0.624
node2vec NC NC NC NC NC NC NC NC NC NC NC NC
RiWalk NC NC NC NC NC NC NC NC NC NC NC NC

Fig. 5.4. Considering the results, we can make the following recommendations.

• Recommendation 1: The evaluation setting should be consistent with
the task’s objective.
The evaluation setting when detecting anomalies by a node classification approach
is important and the performance in the balanced setting does not correlate
closely with the performance in unbalanced setting as shown in Table 5.9.
Therefore, it is important to note that when evaluating different approaches for
datasets containing anomalous samples, selecting the right setting is of paramount

Table 5.9: Comparing the correlation and average difference of various evaluation
metrics in balanced and unbalanced setting. For computing performance differences,
the value of a metric in the unbalanced setting is deducted from its counterpart in the
balanced setting.

Precision Recall F1 Accuracy AU-ROC AU-PR
Correlation -0.216 0.244 0.421 0.017 0.785 0.366

Average Difference 0.072 0.388 0.386 -0.165 0.061 0.355

5. Graph-based Anomaly Detection in Temporal Graphs 83

(a) Balanced setting. (b) Unbalanced setting.

Figure 5.4: Correlation of different evaluation metrics in balanced or unbalanced setting.

importance. Particularly, different approaches should be evaluated in the setting
that they are designed for or expected to perform in, otherwise the evaluation of
their performance may be misleading. Indeed, we suggest to investigate the
performance of node classification tasks in balanced setting, while evaluating the
performance of anomaly detection tasks in unbalanced setting; or considering
evaluation in both setting for a general purpose approach. This is inline with the
fact that the real-world datasets for the anomaly detection tasks are extremely
unbalanced, which is highly important to be considered when designing an
anomaly detection method.

• Recommendation 2: The appropriate performance metric should be
selected in line with the task under study.
In unbalanced setting, accuracy and AU-ROC are not appropriate performance
metrics. As it is shown in Table 5.6, Table 5.7, and Table 5.8, classification tasks
achieved high accuracy and AU-ROC in most of the cases. Additionally, we can
see in some cases, the accuracy and AU-ROC of the unbalanced setting is even
higher than the balanced setting, while obviously the classification task is more
challenging in unbalanced setting due to high data imbalance. It is important to
note that in the unbalanced setting, even if the classifier predicts every instances
as negative, it can reach high accuracy, which again underlies the fact that
accuracy is not an appropriate performance measure in unbalanced setting, and
other performance measure should be considered for performance evaluation of

5. Graph-based Anomaly Detection in Temporal Graphs 84

different approaches. Most notably, we observe a negative correlation between
AU-ROC and precision in the unbalanced setting, as it is indicated in Fig. 5.4 and
Table 5.9. It has been shown that compared to the accuracy, precision recall (and
F1-score that combines these latter two) are more informative performance
metrics for the imbalance classification problem because they focus on the
prediction of the positive instances [45, 248]. Hence, we are interested in achieving
higher values for these two metrics. However, the negative correlation of AU-ROC
and precision in the unbalanced setting infers that AU-ROC is not a reliable
metric when the dataset is highly unbalanced.

• Recommendation 3: Evaluation of the node classification methods on
anomaly detection datasets could cause results misinterpretation.
For the anomaly detection task, the balanced setting is overestimating the
performance as shown in Table 5.6, Table 5.7, and Table 5.8. Essentially, most
datasets presented for the anomaly detection task are extremely unbalanced and
detecting anomalies in these datasets is very important. Evaluating an approach
in balanced setting although may results in better performance of the
classification task, is far from the actual setting in anomaly detection problems
where normal samples outnumber anomalous ones. In addition, the difference of
the performance between these two settings could be considerable as shown in
Table 5.9. Hence, performance metrics in balanced and unbalanced setting do not
always show high positive correlation (e.g., note that the correlation of precision
in balanced and unbalanced setting is negative as shown in Table 5.9), which
implies that reaching good performance in balanced setting does not necessarily
results in good performance in the unbalanced setting as well.

5.3.5 Conclusion

In this chapter, we first proposed TGBase, a simple yet powerful method for node
classification in weighted temporal graphs. TGBase encodes each node by extracting a
small set of features based on the structural attributes of the node and its neighbors, as
well as the intensity and timestamp attributes of the interactions among node pairs.
Through extensive set of experiments we show that our simple shallow model
outperforms more complex models which are currently the state-of-the-art in the static
and dynamic node classification task. Moreover, our method is more general compared
to these methods, as they are defined per specific datasets or a class of datasets.

5. Graph-based Anomaly Detection in Temporal Graphs 85

TGBase is therefore generic and generates efficient node representations for all the
available benchmark datasets that we know of. Given its low time and model
complexity, our proposed TGBase is perfectly suited as a baseline when designing
models for node classification in temporal graphs.

Furthermore, throughout Section 5.3, we explored the exploitation of node
classification methods for anomaly detection in the context of real-world large graphs.
Since an important challenge in the era of big data is to leverage the information as
effectively as possible, graph-based techniques have emerged as leading approaches in
different applications aiming to exploit the extra information available in relational
data. One important challenge in big data and graph analysis is the existence of
anomalous patterns in wide range of disciplines. Hence, anomaly detection is amongst
the vital tasks in network analysis whose performance is principal in preventing adverse
situations like financial frauds and social spams. In this thesis, we assessed the
performance of node classification for an anomaly detection task in balanced and
unbalanced setting. We investigated different performance metrics in our evaluation and
showed that the tasks, settings, and performance metrics should be selected in
accordance with the intrinsic characteristics of the datasets and usecases. Based on our
extensive assessments, we made several recommendations that could help practitioners
to better decided about the experimental settings when resolving a node classification
or anomaly detection problem on large networks. As a future direction, it is interesting
to investigate the performance of other representation learning methods. Important
examples of these methods include graph neural networks that jointly generate node
representations and classify the instances, and are trained end-to-end. Considering the
training procedure of these methods being aware of the dataset imbalance is another
challenging future work.

5.4 Appendix: Additional Results

The additional results related to the ones reported throughout Section 5.3.3 are presented.

5. Graph-based Anomaly Detection in Temporal Graphs 86

Table 5.10: The standard deviation of 10 different runs when evaluating the performance
of the balanced and unbalanced setting for cryptocurrency networks. The average results
when evaluating the performance on these datasets are reported in Table 5.6.

Balanced Setting Unbalanced Setting
Algorithm Precision Recall F1 Accuracy AU-ROC AU-PR Precision Recall F1 Accuracy AU-ROC AU-PR

B
it

co
in

R
F

Weber et al. [45] 0.004 0.013 0.009 0.008 0.003 0.002 0.009 0.011 0.007 0.004 0.005 0.007
node2vec 0.092 0.070 0.082 0.048 0.059 0.066 0.274 0.052 0.087 0.011 0.051 0.087
RiWalk 0.042 0.088 0.070 0.018 0.028 0.033 0.245 0.037 0.064 0.010 0.050 0.066

LR

Weber et al. [45] 0.007 0.011 0.006 0.006 0.003 0.004 0.014 0.018 0.014 0.007 0.004 0.020
node2vec 0.052 0.071 0.081 0.027 0.030 0.038 0.242 0.043 0.073 0.011 0.037 0.059
RiWalk 0.041 0.084 0.097 0.026 0.021 0.030 0.247 0.035 0.061 0.009 0.042 0.059

M
LP

Weber et al. [45] 0.018 0.020 0.005 0.005 0.004 0.004 0.024 0.018 0.008 0.008 0.004 0.013
node2vec 0.113 0.256 0.155 0.028 0.030 0.041 0.045 0.079 0.035 0.052 0.042 0.059
RiWalk 0.093 0.074 0.068 0.017 0.024 0.033 0.048 0.033 0.044 0.043 0.045 0.060

E
th

er
eu

m

R
F

trans2vec 0.010 0.007 0.007 0.009 0.008 0.009 0.191 0.003 0.007 0.004 0.013 0.015
node2vec 0.015 0.009 0.011 0.012 0.008 0.009 0.191 0.003 0.007 0.004 0.013 0.015
RiWalk 0.011 0.018 0.013 0.013 0.014 0.013 0.300 0.001 0.002 0.004 0.021 0.032

LR

trans2vec 0.010 0.018 0.008 0.008 0.008 0.009 0.033 0.017 0.023 0.005 0.017 0.015
node2vec 0.012 0.022 0.013 0.014 0.009 0.010 0.039 0.018 0.022 0.007 0.023 0.017
RiWalk 0.011 0.032 0.018 0.017 0.013 0.017 0.108 0.005 0.009 0.008 0.023 0.013

M
LP

trans2vec 0.011 0.007 0.008 0.009 0.008 0.010 0.018 0.092 0.025 0.083 0.021 0.021
node2vec 0.013 0.008 0.010 0.011 0.009 0.009 0.014 0.035 0.021 0.064 0.026 0.030
RiWalk 0.022 0.038 0.027 0.028 0.026 0.016 0.017 0.067 0.027 0.047 0.043 0.019

Table 5.11: The standard deviation of 10 different runs when evaluating the performance
of the balanced and unbalanced setting for cryptocurrency rating networks. The average
results when evaluating the performance on these datasets are reported in Table 5.7.

Balanced Setting Unbalanced Setting
Algorithm Precision Recall F1 Accuracy AU-ROC AU-PR Precision Recall F1 Accuracy AU-ROC AU-PR

A
lp

ha

R
F

REV2 0.021 0.032 0.067 0.056 0.073 0.099 0.043 0.033 0.058 0.010 0.065 0.022
node2vec 0.102 0.120 0.091 0.081 0.099 0.109 0.000 0.000 0.000 0.002 0.049 0.005
RiWalk 0.099 0.095 0.077 0.070 0.070 0.109 0.000 0.000 0.000 0.001 0.067 0.015

LR

REV2 0.087 0.049 0.071 0.039 0.037 0.019 0.021 0.056 0.009 0.012 0.028 0.017
node2vec 0.143 0.087 0.088 0.081 0.076 0.108 0.000 0.000 0.000 0.001 0.049 0.025
RiWalk 0.094 0.111 0.074 0.060 0.065 0.085 0.000 0.000 0.000 0.001 0.054 0.022

M
LP

REV2 0.089 0.093 0.021 0.013 0.077 0.079 0.026 0.019 0.023 0.064 0.042 0.006
node2vec 0.098 0.149 0.058 0.059 0.104 0.122 0.005 0.131 0.009 0.122 0.055 0.006
RiWalk 0.139 0.127 0.063 0.071 0.096 0.116 0.031 0.252 0.028 0.232 0.042 0.007

O
T

C

R
F

REV2 0.037 0.056 0.044 0.051 0.053 0.047 0.090 0.015 0.023 0.011 0.016 0.022
node2vec 0.046 0.071 0.047 0.049 0.045 0.048 0.490 0.020 0.038 0.001 0.026 0.028
RiWalk 0.051 0.091 0.065 0.067 0.061 0.056 0.400 0.016 0.031 0.001 0.043 0.019

LR

REV2 0.047 0.071 0.048 0.061 0.039 0.047 0.093 0.010 0.010 0.011 0.018 0.022
node2vec 0.063 0.093 0.064 0.061 0.049 0.050 0.300 0.009 0.017 0.001 0.029 0.034
RiWalk 0.062 0.099 0.073 0.070 0.060 0.057 0.000 0.000 0.000 0.001 0.027 0.036

M
LP

REV2 0.081 0.073 0.061 0.039 0.089 0.076 0.013 0.038 0.029 0.024 0.037 0.016
node2vec 0.073 0.135 0.050 0.046 0.101 0.101 0.007 0.073 0.013 0.025 0.037 0.007
RiWalk 0.103 0.218 0.138 0.078 0.105 0.060 0.006 0.062 0.009 0.032 0.041 0.010

5. Graph-based Anomaly Detection in Temporal Graphs 87

Table 5.12: The standard deviation of 10 different runs when evaluating the performance
of the balanced and unbalanced setting for rating networks. The average results when
evaluating the performance on these datasets are reported in Table 5.8. *NC denotes
that the node representation approach did not converged in reasonable time (we set the
time limit as two days). Thus, we were not able to gain the node embeddings for the
classification task.

Balanced Setting Unbalanced Setting
Algorithm Precision Recall F1 Accuracy AU-ROC AU-PR Precision Recall F1 Accuracy AU-ROC AU-PR

A
m

az
on

R
F

REV2 0.047 0.088 0.071 0.038 0.039 0.047 0.029 0.027 0.025 0.013 0.025 0.031
node2vec 0.040 0.098 0.065 0.044 0.058 0.037 0.000 0.000 0.000 0.000 0.040 0.000
RiWalk 0.045 0.055 0.037 0.043 0.054 0.067 0.000 0.000 0.000 0.000 0.038 0.000

LR

REV2 0.021 0.031 0.025 0.024 0.022 0.017 0.015 0.026 0.019 0.018 0.022 0.028
node2vec 0.024 0.000 0.021 0.024 0.000 0.012 0.000 0.000 0.000 0.000 0.000 0.000
RiWalk 0.024 0.000 0.021 0.024 0.000 0.012 0.000 0.000 0.000 0.000 0.000 0.000

M
LP

REV2 0.079 0.067 0.048 0.049 0.053 0.052 0.029 0.081 0.045 0.098 0.023 0.021
node2vec 0.211 0.303 0.222 0.016 0.047 0.055 0.000 0.309 0.000 0.310 0.052 0.000
RiWalk 0.089 0.297 0.145 0.022 0.054 0.052 0.000 0.197 0.000 0.198 0.030 0.000

E
pi

ni
on

s

R
F

REV2 0.024 0.036 0.037 0.021 0.017 0.057 0.054 0.056 0.054 0.013 0.018 0.035
node2vec NC* NC NC NC NC NC NC NC NC NC NC NC
RiWalk NC NC NC NC NC NC NC NC NC NC NC NC

LR

REV2 0.035 0.061 0.032 0.054 0.024 0.043 0.052 0.042 0.064 0.062 0.041 0.075
node2vec NC NC NC NC NC NC NC NC NC NC NC NC
RiWalk NC NC NC NC NC NC NC NC NC NC NC NC

M
LP

REV2 0.001 0.032 0.025 0.018 0.005 0.081 0.053 0.073 0.012 0.012 0.018 0.019
node2vec NC NC NC NC NC NC NC NC NC NC NC NC
RiWalk NC NC NC NC NC NC NC NC NC NC NC NC

88

Chapter 6

Towards Better Evaluation for
Dynamic Link Prediction

In this chapter, we discuss the extension of our research into the investigation of another
important related task on temporal dynamic graphs which is the dynamic link prediction.
Here, we discuss how we can investigate the dynamics of a temporal network and how
to examine the consistency of relations among networks entities. We also investigate the
evaluation setup of the dynamic link prediction task and propose a simple baseline as
well as two negative sampling strategies for this task.

6.1 Introduction

Many evolving real-world relations can be modelled by a dynamic graph where nodes
correspond to entities and edges represent relations between nodes. Understanding and
analyzing the temporal patterns of a dynamic graph is an important open problem.
Nodes, edges, weights or attributes can be added, deleted or adjusted over time. For
instance, in popular online social networks, many users join the platform on a daily
basis while connections between users are constantly added or removed [201]. To
facilitate better learning on dynamic graphs, increasing efforts have been devoted to the
development of dynamic graph representation learning
methods [220, 221, 222, 258, 259].

In particular, the link prediction task focuses on predicting future connections between
nodes. Recent methods such as [218, 219, 220, 221, 222] show promising performance on
this task with the state-of-the-art (SOTA) performance [221, 222] being often perfect or

6. Towards Better Evaluation for Dynamic Link Prediction 89

Standard Historical Inductive0.0

0.2

0.4

0.6

0.8

Av
g.

 A
U-

RO
C

EdgeBank
EdgeBanktw

JODIE DyRep TGAT TGN CAWN

Figure 6.1: The ranking of different methods changes in the proposed negative sampling
settings, which eliminate easy negatives. Our proposed baselines (horizontal lines) show
competitive performance.

close to perfect on many existing benchmark datasets. However, considering that link
prediction in static graphs, an arguably less complex task, still faces major challenges
and remains an open problem [188, 260], it is important to examine the near-perfect
performance of dynamic link prediction methods. We hypothesize that current evaluation
procedures and datasets fail to properly differentiate between proposed approaches.

In this study, we identify drawbacks in the existing evaluation pipeline for dynamic
link prediction and propose novel strategies for more robust and effective evaluation.
We start by examining the existing benchmark datasets and observe that these datasets
are mostly social networks in nature and thus limited in diversity. Therefore, we
incorporate 5 new datasets for dynamic link prediction from politics, economics, and
(air) transportation. Next, we propose novel visualization techniques for dynamic
graphs. We show that in most networks, a significant portion of edges reoccur over
time, but the recurrence patterns vary widely across different networks and domains.
Based on these observations, we introduce two novel Negative Sampling (NS) strategies,
specifically designed for dynamic graphs, which select negative edges based on the
recurrence of observed edges. As shown in Fig. 6.1, SOTA methods have a significant
decrease in performance when a different set of negative edges is sampled during test
time. In addition, the relative ranking of methods changes across NS settings.
Therefore, it is important to evaluate methods on different sets of negative edges.

Finally, we introduce a simple memorization-based baseline named EdgeBank which
simply stores previously observed edges in memory, and predicts the set of edges in
memory as positive at test time. In Fig. 6.1, we contrast the performance of SOTAs

6. Towards Better Evaluation for Dynamic Link Prediction 90

with that of EdgeBank (in horizontal lines). EdgeBank is a surprisingly strong baseline
and in the historical NS setting, EdgeBank achieves the second best ranking amongst
all methods. As EdgeBank requires neither learning nor hyper-parameter tuning, it is a
strong baseline for future methods to compare against.

The goal of this study is to propose more effective evaluation strategies to better
differentiate dynamic link prediction methods. Our main contributions can be
summarized as follows:

• We identify challenges and drawbacks in the current evaluation of the link prediction
task for dynamic graphs: existing strategies for sampling negative edges during
evaluation are insufficient, memorization leads to over-optimistic evaluation, and
there is a lack of diversity in graph domains.

• We propose a novel non-parameterized and memorization-based method,
EdgeBank, as a strong baseline for current and future approaches to compare
against.

• We collect and process 5 novel dynamic graph datasets from various domains such
as political network, flight network and economics network. These datasets exhibit
different temporal edge evolution patterns and can facilitate more robust evaluation.

• Lastly, to evaluate the impact of negative edges on the performance, we outline
two novel sampling strategy: historical NS and inductive NS for selecting negative
edges based on the recurrence of previously observed edges in the train and test
sets respectively.

6.2 Background

Dynamic graphs can be broadly categorized into Discrete Time Dynamic Graphs (DTDG)
or Continuous Time Dynamic Graphs (CTDG). While DTDGs comprise a series of static
graph snapshots obtained at specific times, CTDGs are more general and have exact
temporal information. In this study, we focus on CTDGs, which can be represented by
a series of timestamped events G = {η(t1), η(t2), ...} where the timestamps are ordered
(0 ≤ t1 ≤ t2 ≤ ...). An event η(t) can be of different kinds such as edge insertion, edge
deletion, node insertion, node deletion, feature alteration, etc.

Dynamic Link Prediction. We investigate the task of predicting the probability of
existence of an edge between a node pair at a given timestamp in the future. We divide

6. Towards Better Evaluation for Dynamic Link Prediction 91

edges of a dynamic graphs into three categories: (a) edges that are only seen during
training, (b) edges that are seen during training and reappear during test (we denote
them as transductive edges), and (c) edges that have not been seen during training and
only appear during test (we denote them as inductive edges).

In our evaluation, we focus on models that are based on Dynamic Graph Neural
Networks (DGNNs) which encode structural patterns and aggregate the neighboring node
features by a Graph Neural Network (GNN) architecture, while positional encoding or
time series models (such as recurrent neural networks (RNNs)) are utilized for encoding
temporal patterns. Some of these DGNN models also rely on time embedding methods
for capturing inter-event times.

6.3 Dynamic Graph Datasets

We aim to understand the differences between dynamic graph datasets across a variety of
domains. To this end, we investigate 7 widely used benchmark datasets and contribute
5 novel dynamic graphs (marked as new) from diverse domains currently under-studied
in dynamic link prediction literature. The statistics of these datasets are summarized in
Table 6.1, and details are explained below:

• Wikipedia [218]: consists of edits on Wikipedia pages over one month. The
network models editors and the Wiki pages as nodes, and the timestamped
posting requests as edges. Edge features are LIWC-feature vectors of edit text.

• Reddit [218]: includes the network of one month posts made by users on subreddits,
where the nodes specify users or posts and the edges specify the timestamped
posting requests.

• MOOC [218]: is a network of students interacting with online course content units
such as problem sets and videos. Each edge represents a student accessing a specific
content unit.

• LastFM [218]: is a network of users and songs as nodes where each edge represents
a user-listens-to-song relation. The dataset consists of the relations of 1000 users
listening to the 1000 most listened songs over a period of one month, and the
network is non-attributed.

http://snap.stanford.edu/jodie/wikipedia.csv
http://snap.stanford.edu/jodie/reddit.csv
http://snap.stanford.edu/jodie/mooc.csv
http://snap.stanford.edu/jodie/lastfm.csv

6. Towards Better Evaluation for Dynamic Link Prediction 92

• Enron [261]: is an email correspondence dataset containing around 50K emails
exchanged among employees of the ENRON energy company over a three-year
period.

• Social Evolution [262]: is a mobile phone proximity network which tracks the
everyday life of a whole undergraduate dormitory from October 2008 to May 2009.

• UCI [263]: is a Facebook-like online communication network among students of
the University of California at Irvine, along with timestamps with the temporal
granularity of seconds.

• Flights (new) [264]: is a directed dynamic flight network illustrating the
development of air traffic during the COVID-19 pandemic. It was extracted and
cleaned for the purpose of this study. Each node represents an airport and each
edge is a tracked flight.

• Canadian Parliament (new) [265]: is a dynamic political network documenting
the interactions between Canadian Members of Parliaments (MPs) from 2006 to
2019. Each node is one MP representing an electoral district and each edge is
formed when two MPs both voted ”yes” on a bill.

• US Legislative (new) [265, 266]: is a senate co-sponsorship network which
documents social interactions between legislators from the US Senate. If two
politicians co-sponsor a bill, an edge is formed.

• UN Trade (new) [267]: is a weighted, directed, food and agriculture trading
network between 181 nations and spanning over 30 years. The data was originally
collected by the Food and Agriculture Organization (FAO) of the United Nations.
The weight of each edge is the sum of all trading goods from one nation to another
in a year. We extracted and cleaned this dataset for the purpose of this study.

• UN Vote (new) [268]: is a dataset of roll-call votes in the United Nations General
Assembly from 1946 to 2020. If two nations both voted ”yes” for an item, then the
edge weight between them is incremented by one. We extracted and cleaned this
dataset for this study.

https://www.cs.cmu.edu/~./enron/
http://realitycommons.media.mit.edu/socialevolution.html
http://konect.cc/networks/opsahl-ucforum/
https://zenodo.org/record/3974209/#.Yf62HepKguU
https://github.com/shenyangHuang/LAD
https://github.com/shenyangHuang/LAD
https://www.fao.org/faostat/en/#data/TM
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/LEJUQZ

6. Towards Better Evaluation for Dynamic Link Prediction 93

Table 6.1: Dynamic network dataset statistics.

Measurement Existing Datasets New Datasets
Wikipedia Reddit MOOC LastFM Enron Social Evo. UCI Flights Can. Parl. US Legis. UN Trade UN Vote

Domain Social Social Social Social Social Social Social Transport Politics Politics Economics Politics
Nodes 9,227 10,984 7,144 1,980 184 74 1,899 13,169 734 225 255 201
Total edges 157,474 672,447 411,749 1,293,103 125,235 2,099,519 59,835 1,927,145 74,478 60,396 507,497 1,035,742
Uniq. edges 18,257 78,516 178,443 154,993 3,125 4,486 20,296 395,072 51,331 26,423 36,182 31,516
Uniq. timestamps 152,757 669,065 345,600 1,283,614 22,632 565,932 58,911 122 14 12 32 72
Duration 1 month 1 month 17 month 1 month 3 years 8 months 196 days 4 months 14 years 12 congresses 32 years 72 years

6.4 Visualizing Dynamic Graphs

We visualize the differences across dynamic graphs using two types of plots, explained in
the following.

6.4.1 Temporal Edge Appearance (TEA) Plot

This illustrates the portion of repeated edges versus newly observed edges for each
timestamp in a dynamic graph, as shown in Fig. 6.2. The grey bar indicates the number
of edges which were observed in previous time steps and the red bar represents the
number of new edges seen at each step. This visualization shows high variance across
datasets in temporal evolutionary patterns in terms of new and repeated edges. Some
datasets such as Social Evo. comprise mainly repeated edges, while others such as
MOOC have a high proportion of new edges. These differences can be important when
designing and choosing methods for the link prediction task, because when many edges
are repeated, a simple memorization approach can potentially achieve strong
performance. On the other hand, if there are many new edges, memorization cannot be
sufficient. The TEA plots also show significant differences in when edges occur, and
distinctions between our new datasets and existing ones. For example, our new Flights
dataset has significantly more unique edges and higher numbers of edges per timestamp.

While the TEA plot shows how many edges are repeated or new overall, it does not
directly show how consistent the repeats are. Thus, we next propose:

6.4.2 Temporal Edge Traffic (TET) Plot

This visualizes the recurrence pattern of edges in different dynamic networks over time,
as shown in Fig. 6.3. To construct these plots, we first sort edges based on the timestamp
they first appear. Then for edges occurring in the same timestamp, we sort them based
on when they last occur. Further, we color edges based on whether they are seen in train

6. Towards Better Evaluation for Dynamic Link Prediction 94

only (green), test only (inductive edges, red), or both (transductive edges, orange).
TET plots help us get more insights about the edges that are used for training and

testing of different DGNN methods. A memorization approach can potentially predict
the transductive positive edges, since it has observed and hence recorded them during
training. In particular, if they appear consistently, then simple memorization is likely
to be successful. On the other hand, if they appear at some time(s) but then disappear
later, then memory is likely still helpful, but simple and full memorization will not work.
It would incorrectly predict that those edges still exist. Meanwhile, memorization is
not helpful at all for predicting inductive positive test edges at their first appearance,
since these are new edges that have not been observed before. For example, while Social
Evo. and UN Trade have a relatively similar proportion of repeated vs. new edges based
on their TEA plots, we see in their TET plots that UN Trade has far more consistent
recurrence. The clear difference we can observe in the visualization is mirrored in the
results - the best model on UN Trade is among the worst on Social Evo., and vice versa
(Fig. 6.5).

We encourage researchers to investigate the proposed TET plots to get a more
comprehensive overview of dynamic graphs in addition to the network statistics.

6.5 EdgeBank Baseline for Dynamic Link Prediction

Observing that many edges in dynamic networks reoccur over time, we want to understand
if a simple approach purely based on memorizing past edges can be a competitive baseline.
To this end, we propose a pure memorization-based approach called EdgeBank. The
memory component of EdgeBank is simply a dictionary which is updated with observed
edges at each timestamp. In this way, EdgeBank resembles a bank of observed edges and
requires no parameters. The storage requirement of EdgeBank is the same as the number
of edges in the dataset.

At test time, EdgeBank predicts a test edge as positive if the edge was seen
before (in the memory), and negative otherwise. At each timestamp, EdgeBank updates
its memory with newly observed edges, similar to the memory update procedure of
TGN [221]. EdgeBank can predict correctly for edges which reoccur frequently over
time. There are two scenarios where EdgeBank will make an incorrect prediction: (i) an
unseen edge, or (ii) an edge observed before (in memory) that is a negative edge at the

6. Towards Better Evaluation for Dynamic Link Prediction 95

0 5 10 15 20 25 30
Timestamp

0

200

400

600

800

1000

1200

1400
Nu

m
be

r o
f e

dg
es

x

Repeated
New

(a) Wikipedia (0.46)

0 5 10 15 20 25 30

Timestamp
0

2000

4000

6000

8000

10000

Nu
m

be
r o

f e
dg

es

x

Repeated
New

(b) Reddit (0.26)

0 5 10 15 20 25

Timestamp
0

2000

4000

6000

8000

10000

Nu
m

be
r o

f e
dg

es

x

Repeated
New

(c) MOOC (0.75)

0 10 20 30 40 50

Timestamp
0

2000

4000

6000

8000

10000

12000

14000

16000

Nu
m

be
r o

f e
dg

es

x

Repeated
New

(d) LastFM (0.28)

0 5 10 15 20 25 30 35 40
Timestamp

0

100

200

300

400

500

600

700

800

Nu
m

be
r o

f e
dg

es

x

Repeated
New

(e) Enron (0.30)

0 10 20 30 40
Timestamp

0

200

400

600

800

1000

1200

1400

1600

Nu
m

be
r o

f e
dg

es

x

Repeated
New

(f) Social Evo. (0.11)

0 5 10 15 20 25 30 35
Timestamp

0

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f e
dg

es

x

Repeated
New

(g) UCI (0.73)

03-01 03-16 03-31 04-15 04-30 05-15 05-30 06-14 06-29
Timestamp

0

5000

10000

15000

20000

25000

Nu
m

be
r o

f e
dg

es

x

Repeated
New

(h) Flights (0.21)

2006 2008 2010 2012 2014 2016 2018
Timestamp

0

1000

2000

3000

4000

5000

6000

7000

8000

Nu
m

be
r o

f e
dg

es

x

Repeated
New

(i) Can. Parl. (0.69)

98 100 102 104 106 108
Timestamp

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f e
dg

es

x

Repeated
New

(j) US Legis. (0.44)

1990 1995 2000 2005 2010 2015

Timestamp
0

2500

5000

7500

10000

12500

15000

17500

20000

Nu
m

be
r o

f e
dg

es

x

Repeated
New

(k) UN Trade (0.07)

1950 1960 1970 1980 1990 2000 2010

Timestamp
0

5000

10000

15000

20000

25000

Nu
m

be
r o

f e
dg

es

x

Repeated
New

(l) UN Vote (0.03)

Figure 6.2: TEA plots show many real world dynamic networks contain a large
proportion of edges that reoccur over time. Thus, even a simple memorization approach
such as EdgeBank can potentially achieve strong performance. The numbers in
parentheses denote the average of the ratio of new to total edges in different timestamps.

current time. In the standard random negative sampling evaluation [220, 221, 222], as
graphs are often sparse, it is unlikely that an edge observed before will be sampled as a
negative edge. Therefore, EdgeBank has strong performance on negative edges in many
cases.

We consider two different memory update strategies for EdgeBank thus resulting in
two variants of EdgeBank:

• EdgeBank∞: stores all observed edges in memory, thus remembering edges even
from a long time ago. EdgeBank∞ is prone to false positives on edges which appear
once but rarely reoccur over time.

• EdgeBanktw: only remembers edges from a fixed sized time window from the
immediate past. The size of the time window is set to the duration of test split,

6. Towards Better Evaluation for Dynamic Link Prediction 96

(a) Wikipedia (0.74 & 0.42) (b) Reddit (0.48 & 0.18) (c) MOOC (0.98 & 0.79)

(d) LastFM (0.70 & 0.35) (e) Enron (0.78 & 0.27) (f) Social Evo. (0.49 & 0.02)

(g) UCI (0.99 & 0.56) (h) Flights (0.40 & 0.19) (i) Can. Parl. (0.99 & 0.57)

(j) US Legis. (0.92 & 0.45) (k) UN Trade (0.13 & 0.04) (l) UN Vote (0.07 & 0.01)

Etrain ∩ Etest Etrain ∩ Etest Etrain ∩ Etest

Figure 6.3: TET plots illustrates varied edge traffic patterns in different temporal
graphs. Networks are chronologically split into the train and test set, which is the common
practice. The horizontal line starting with “x” shows the timestamp of the resultant test
split. The numbers in parentheses denote |Etrain ∩ Etest|/|Etrain| and |Etrain ∩ Etest|/|Etest|,
respectively.

6. Towards Better Evaluation for Dynamic Link Prediction 97

(a) (b) (c)

Figure 6.4: Negative edge sampling strategies during evaluation for dynamic link
prediction. (a) random sampling (standard in existing work), (b) historical sampling
(ours), (c) inductive sampling (ours).

based on the intuition of predicting the test set behavior from the most similar
(recent) period in the train set. Thus, EdgeBanktw focuses on the edges observed
in the short-term past.

Note that EdgeBank is not designed to replace state-of-the-art methods. Rather we
argue that all dynamic graph representation methods should be able to do better than
memorization, thus beating EdgeBank. EdgeBank provides a simple and strong baseline
to demonstrate how far pure memorization can go on each dataset.

6.6 Negative Sampling in Dynamic Graphs

Current SOTA methods for dynamic link prediction often achieve very high performance
on existing benchmark datasets [218, 219, 220, 221, 222, 259]. Consequently, one can
argue that either the existing datasets are too simplistic or the current evaluation process
is insufficient to differentiate methods. We discussed the dataset aspect extensively. Next,
we also need to carefully examine the current evaluation setting of DGNNs. In particular,
although negative edges constitute half of the evaluation edges, little attention has been
dedicated to understanding the effect of different sets of negative edges on the overall
performance. In this section, we take a closer look at Negative Sampling (NS) strategies
for evaluation of dynamic link prediction, and propose two novel NS strategies for more
robust evaluation and better differentiation amongst methods. To better motivate the
two new methods, we first explain the standard NS strategy widely used in the literature.

6. Towards Better Evaluation for Dynamic Link Prediction 98

W
ik

ip
ed

ia

Re
dd

it

M
OO

C

La
st

FM

En
ro

n

So
cia

l E
vo

.

UC
I

Fl
ig

ht
s

Ca
n.

 P
ar

l.

US
 L

eg
is.

UN
 Tr

ad
e

UN
 V

ot
e0.0

0.2
0.4
0.6
0.8
1.0

AU
-R

OC

JODIE DyRep TGAT TGN CAWN EdgeBank EdgeBanktw

(a) Standard setting.

W
ik

ip
ed

ia

Re
dd

it

M
OO

C

La
st

FM

En
ro

n

So
cia

l E
vo

.

UC
I

Fl
ig

ht
s

Ca
n.

 P
ar

l.

US
 L

eg
is.

UN
 Tr

ad
e

UN
 V

ot
e0.0

0.2

0.4

0.6

0.8

AU
-R

OC

JODIE DyRep TGAT TGN CAWN

(b) Historical setting.

W
ik

ip
ed

ia

Re
dd

it

M
OO

C

La
st

FM

En
ro

n

So
cia

l E
vo

.

UC
I

Fl
ig

ht
s

Ca
n.

 P
ar

l.

US
 L

eg
is.

UN
 Tr

ad
e

UN
 V

ot
e0.0

0.2

0.4

0.6

0.8

1.0

AU
-R

OC

JODIE DyRep TGAT TGN CAWN

(c) Inductive setting.

Figure 6.5: Performance of different methods in three evaluation settings based on the
negative sampling approach.

6.6.1 Random Negative Sampling

Current evaluation samples negative edges randomly from almost all possible node pairs
of the networks [218, 219, 220, 221, 222]. At each time step, we have a set of positive
edges consisting of source and destination nodes together with edge timestamps and
edge features. To generate negative samples, the standard procedure is to keep the
timestamps, features, and source nodes of the positive edges, while choosing destination
nodes randomly from all nodes. This has two significant issues:

(1) No Collision Checking: existing implementations have no collision check
between positive and negative edges. Therefore, it is possible for the same edge to be
both positive and negative. This collision is more likely to happen in denser datasets,
such as UN Vote and UN Trade. A basic accept-reject sampling could address this
issue, as applied in our experiments.

(2) No Reoccurring Edges: the probability of sampling an edge which was observed
before is often very low due to the sparsity of the graph. Therefore, a simple method

6. Towards Better Evaluation for Dynamic Link Prediction 99

like EdgeBank can perform well on negative edges. However, in many real-world tasks
such as flight prediction, correct prediction of the same edge for different time steps is
particularly important. For example, predicting that, yet again, there will be no flight
between the north and south poles this week is not nearly as practical as predicting
whether a standard commuter flight will be canceled.

To address this second issue, we need to sample from previously observed edges, which
can be from train or test set. This constitutes the two alternative NS strategies proposed
here, illustrated in Fig. 6.4. Here S is the sample space for negative edges. Let U , Eall,
Etrain be the set of all possible node pairs, all edges in the dataset (train and test) and
all edges in the train set, respectively. Note that Eall = Etrain + Etest where Etest is all
edges in the test set. Lastly, we set Uneg = U − Eall. Now, in random NS, we sample
from edges e ∈ U , with the proportion from Eall and Etrain regulated only by the sizes of
those sets relative to U. To resolve the issues with random NS, in the following sections
we propose historical NS and inductive NS.

6.6.2 Historical Negative Sampling

In historical NS, we focus on sampling negative edges from the set of edges that have been
observed during previous timestamps but are absent in the current step. The objective
of this strategy is to evaluate if a given method is able to predict in which timestamps
an edge would reoccur, rather than, for example, naively predicting it always reoccurs
whenever it has been seen once. Therefore, in historical NS, for a given time step t,
we sample from the edges e ∈ (Etrain ∩ Et). It should be noted that if the number
of available historical edges is insufficient to match the number of positive edges, the
remaining negative edges are sampled by the random NS strategy.

6.6.3 Inductive Negative Sampling

While in historical NS we focus on observed edges from the training set, in inductive
NS, our focus is to evaluate whether a given method can model the recurrence pattern
of edges only seen during test time. At test time, after edges unseen during training are
observed, the model is asked to predict if such edges exist in future steps of the test phase.
Therefore, in inductive NS, we sample from the edges e ∈ (Etest ∩ Etrain ∩ Et) at time
step t. As these edges are not observed during training, they are considered as inductive
edges. Similar to before, if the number of inductive negative edges is not adequate, the
remaining negative edges are sampled by the random NS strategy.

6. Towards Better Evaluation for Dynamic Link Prediction 100

W
ik

ip
ed

ia

Re
dd

it

M
OO

C

La
st

FM

En
ro

n

So
cia

l E
vo

.

UC
I

Fl
ig

ht
s

Ca
n.

 P
ar

l.

US
 L

eg
is.

UN
 Tr

ad
e

UN
 V

ot
e

0.00
0.05
0.10
0.15
0.20
0.25
0.30

Av
g.

 A
U-

RO
C

Lo
ss

Historical
Inductive

Figure 6.6: Average AU-ROC loss (lower = better) of SOTA methods with different
NSs. The impact of moving to historical or inductive NS varies across datasets.

6.7 Experiments

W
ik

ip
ed

ia

Re
dd

it

M
OO

C

La
st

FM

En
ro

n

So
cia

l E
vo

.

UC
I

Fl
ig

ht
s

Ca
n.

 P
ar

l.

US
 L

eg
is.

UN
 Tr

ad
e

UN
 V

ot
e0.6

0.5
0.4
0.3
0.2
0.1
0.0

AU
-R

OC
 C

ha
ng

e

JODIE DyRep TGAT TGN CAWN

(a) Performance change in historical compared
to standard NS.

W
ik

ip
ed

ia

Re
dd

it

M
OO

C

La
st

FM

En
ro

n

So
cia

l E
vo

.

UC
I

Fl
ig

ht
s

Ca
n.

 P
ar

l.

US
 L

eg
is.

UN
 Tr

ad
e

UN
 V

ot
e

0.5
0.4
0.3
0.2
0.1
0.0
0.1

AU
-R

OC
 C

ha
ng

e

JODIE DyRep TGAT TGN CAWN

(b) Performance change in inductive compared
to standard NS.

Figure 6.7: Analyzing performance change (higher = better) of SOTAs in the historical
and inductive settings.

In this section, we present a comprehensive evaluation of the dynamic link prediction
task on all 12 datasets with 5 SOTA methods. Our experimental setup closely follows [218,
219, 220, 221, 222]. The objective of the link prediction task is to predict the existence
of an edge at a given time between a node pair. For all DGNN based methods, we
use a Multilayer Perceptron as the final output layer for edge prediction, where the
concatenated node embeddings are the input and the probability of the edge is the output.
For all experiments, we use the same 70% − 15% − 15% chronological splits for the train-

6. Towards Better Evaluation for Dynamic Link Prediction 101

Standard0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Co
rr.

 w
/ E

dg
eB

an
k

Historical Inductive 0.00

0.05

0.10

0.15

0.20

0.25

AU
-R

OC
 L

os
s

JODIE DyRep TGAT TGN CAWN

Figure 6.8: Performance correlation with the proposed memorization baseline,
EdgeBank∞ (on the left), predicts the performance loss (lower = better) of the methods
in both of the harder negative sampling settings (on the right).

validation-test sets as [220, 221, 222]. The averaged results over five runs are reported.
The Area Under Receiver Operating Characteristic (AU-ROC) metric is selected as the
main performance metric. We visualize the results for easier interpretation, but the
exact numbers that produce the visualizations – as well as the equivalents with Average
Precision (AP) – are presented in the appendix.

Fig. 6.5a compares the performance of all models under the standard random
negative sampling strategy. First, we observe significant variation in performance for all
models across datasets. This supports the benefits of evaluation on datasets from
different domains. Second, we observe a strong inconsistency in relative ranking
amongst methods across datasets. For example, while CAWN achieves SOTA on most
datasets, on MOOC and Social Evo. it performs significantly worse than several other
models. Lastly, note that EdgeBank demonstrates competitive performance even when
compared against SOTA methods. Despite being a simple baseline, EdgeBank
outperforms highly parametrized and complex models on some datasets such as
LastFM, Enron and UN Trade.

Next, we examine the impact of negative sampling strategies on performance.
Fig. 6.5b and Fig. 6.5c shows the performance of different methods with the historical
NS and inductive NS strategies, respectively. First, we observe that the ranking of
models can change significantly across different NS settings. This shows that relying on
a single NS strategy such as the random NS is insufficient for the complete evaluation of
methods. Second, for the historical NS setting, EdgeBanktw becomes highly
competitive, often beating most methods and even achieving SOTA for UN Trade, UN

6. Towards Better Evaluation for Dynamic Link Prediction 102

Vote, Flights and Enron. This shows that in these datasets, recently observed edges
contain crucial information for link prediction. Third, EdgeBank∞ has a significant
drop in performance in both NS strategies. This shows that as the negative edges are
sampled from either previously observed edges or unseen edges, naively memorizing all
past edges is no longer sufficient. However, EdgeBank can perform competitively under
random NS. This further shows that the standard random NS is limited in its ability to
effectively differentiate methods.

Fig. 6.6 shows the average drop in performance with historical and inductive NS across
different SOTAs. In general, the decrease is at least 10 percentage points. The new
Flights dataset is particularly challenging, with nearly 30 percentage points average loss
when comparing historical NS with random NS. This means models struggle to correctly
predict whether a flight that happened in the past will happen again.

In Fig. 6.7, we examine the performance drops for each model in the historical or
inductive NS setting. CAWN, which performed best overall with random NS, collapses
on certain datasets such as LastFM and Enron. Other models fare much better on these
datasets. All models exhibit a large performance drop on the Flights dataset.

The performance degradation is also correlated with the degree of memorization.
Fig. 6.8 shows that the models which are more correlated with EdgeBank∞ tend to
perform worse in the historical and inductive NS settings. Since EdgeBank∞ is naively
dependent on the memory, higher correlation with it indicates a model relies more heavily
on memorization. For example, CAWN has the highest correlation and JODIE the second
highest. They have the largest and second largest losses (respectively) in performance
with the more challenging negative sampling. Similarly, DyRep is the least correlated
with EdgeBank, and experiences the least drop in performance with historical NS and
second least with inductive NS.

6.8 Conclusion

In this study, we have presented four tools to improve evaluation of models for dynamic
link prediction. First, we created new visualizations (TEA and especially TET plots) to
better understand the patterns of temporal edges in different dynamic network datasets.
Second, we introduced five new datasets which provide new diversity and challenges for
modeling. Third, we showed limitations of random negative sampling and introduced
two new strategies for negative sampling (historical and inductive) to overcome these
limitations and more thoroughly evaluate models. Lastly, we proposed a simple but

6. Towards Better Evaluation for Dynamic Link Prediction 103

competitive baseline, EdgeBank. It can also yield insights into how much different models
rely on memorization, in addition to helping understand to what degree memorization is
effective on a specific dataset.

Thorough evaluation is critical to producing better models. When we applied these
tools to compare existing models, we found that performance and ranking of different
models varies significantly. We hope that these tools will provide practical ways to
improve the evaluation and overcome the limitations of the current standard process,
and in turn help produce models that are rigorously superior to existing ones.

In future work, we aim to synthesize insights here into concise measurements that
summarize the difficulty of different datasets. We will also expand this work to temporal
node classification, another key task. Finally, we hope to apply our tools to produce
novel and effective DGNN models.

6.9 Appendix: Extended Results

Here, we report the extended results used to plot the figures in main body of Chapter 6.

Table 6.2: Average precision, standard setting with random negative sampling.

Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCI Flights Can. Parl. US Legis. UN Trade UN Vote
JODIE 0.95 0.95 0.78 0.68 0.78 0.79 0.75 0.94 0.75 0.76 0.64 0.64
DyRep 0.95 0.98 0.80 0.71 0.80 0.87 0.46 0.93 0.58 0.64 0.61 0.65
TGAT 0.95 0.98 0.61 0.50 0.59 0.76 0.78 0.89 0.68 0.70 0.58 0.52
TGN 0.99 0.99 0.90 0.72 0.85 0.93 0.88 0.98 0.64 0.77 0.64 0.71
CAWN 0.99 0.99 0.75 0.98 0.95 0.72 0.99 0.99 0.94 0.97 0.97 0.82
EdgeBanktw 0.87 0.91 0.58 0.79 0.84 0.61 0.76 0.84 0.65 0.58 0.60 0.57
EdgeBank∞ 0.90 0.95 0.53 0.77 0.80 0.52 0.76 0.89 0.60 0.55 0.57 0.55

Table 6.3: AU-ROC, standard setting with random negative sampling.

Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCI Flights Can. Parl. US Legis. UN Trade UN Vote
JODIE 0.96 0.97 0.83 0.69 0.83 0.86 0.83 0.95 0.81 0.84 0.67 0.67
DyRep 0.94 0.98 0.82 0.71 0.82 0.90 0.44 0.94 0.64 0.70 0.62 0.68
TGAT 0.95 0.98 0.65 0.50 0.62 0.78 0.81 0.90 0.73 0.77 0.60 0.51
TGN 0.98 0.99 0.91 0.73 0.87 0.95 0.88 0.80 0.71 0.83 0.68 0.75
CAWN 0.99 0.99 0.71 0.97 0.93 0.67 0.99 0.99 0.92 0.96 0.96 0.75
EdgeBanktw 0.87 0.91 0.61 0.84 0.87 0.68 0.76 0.84 0.64 0.63 0.67 0.62
EdgeBank∞ 0.91 0.95 0.55 0.84 0.85 0.54 0.77 0.90 0.60 0.59 0.62 0.58

6. Towards Better Evaluation for Dynamic Link Prediction 104

Table 6.4: Average precision, historical negative sampling. The number in the
parentheses show the performance loss compared to the standard setting. The intensity
of the color relates to the amount of loss.

Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCI Flights Can. Parl. US Legis. UN Trade UN Vote
JODIE 0.77 (0.18) 0.77 (0.18) 0.70 (0.08) 0.68 (0.00) 0.56 (0.22) 0.73 (0.07) 0.62 (0.13) 0.65 (0.29) 0.43 (0.31) 0.45 (0.31) 0.56 (0.08) 0.66 (-0.02)
DyRep 0.81 (0.14) 0.79 (0.19) 0.74 (0.06) 0.71 (0.00) 0.71 (0.08) 0.93 (-0.06) 0.45 (0.01) 0.63 (0.30) 0.57 (0.01) 0.63 (0.02) 0.58 (0.03) 0.64 (0.01)
TGAT 0.76 (0.19) 0.77 (0.21) 0.59 (0.02) 0.50 (0.00) 0.53 (0.06) 0.77 (-0.01) 0.61 (0.18) 0.65 (0.24) 0.67 (0.02) 0.63 (0.07) 0.51 (0.07) 0.51 (0.01)
TGN 0.88 (0.11) 0.81 (0.18) 0.84 (0.06) 0.76 (-0.05) 0.72 (0.13) 0.95 (-0.01) 0.76 (0.12) 0.64 (0.34) 0.56 (0.08) 0.56 (0.21) 0.57 (0.07) 0.67 (0.04)
CAWN 0.89 (0.10) 0.89 (0.11) 0.66 (0.09) 0.56 (0.42) 0.63 (0.32) 0.64 (0.08) 0.79 (0.20) 0.63 (0.37) 0.90 (0.05) 0.82 (0.16) 0.72 (0.25) 0.75 (0.07)
EdgeBanktw 0.71 (0.16) 0.70 (0.21) 0.57 (0.01) 0.69 (0.10) 0.68 (0.15) 0.71 (-0.10) 0.65 (0.10) 0.65 (0.18) 0.64 (0.01) 0.63 (-0.05) 0.73 (-0.13) 0.71 (-0.13)
EdgeBank∞ 0.50 (0.41) 0.51 (0.44) 0.43 (0.10) 0.50 (0.27) 0.50 (0.31) 0.53 (-0.01) 0.44 (0.32) 0.49 (0.41) 0.48 (0.12) 0.46 (0.10) 0.52 (0.05) 0.51 (0.03)

Table 6.5: AU-ROC, historical negative sampling. The number in the parentheses show
the performance loss compared to the standard setting. The intensity of the color relates
to the amount of loss.

Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCI Flights Can. Parl. US Legis. UN Trade UN Vote
JODIE 0.79 (0.17) 0.79 (0.19) 0.77 (0.06) 0.69 (0.00) 0.62 (0.21) 0.83 (0.03) 0.71 (0.11) 0.67 (0.27) 0.45 (0.36) 0.49 (0.35) 0.60 (0.07) 0.70 (-0.04)
DyRep 0.79 (0.16) 0.80 (0.18) 0.80 (0.02) 0.70 (0.01) 0.74 (0.08) 0.93 (-0.04) 0.44 (0.00) 0.66 (0.28) 0.64 (0.00) 0.69 (0.01) 0.59 (0.03) 0.68 (0.00)
TGAT 0.74 (0.21) 0.78 (0.20) 0.61 (0.04) 0.50 (0.00) 0.53 (0.09) 0.78 (0.00) 0.57 (0.23) 0.65 (0.25) 0.71 (0.02) 0.73 (0.04) 0.52 (0.08) 0.51 (0.01)
TGN 0.84 (0.14) 0.81 (0.18) 0.85 (0.07) 0.77 (-0.04) 0.75 (0.12) 0.95 (0.01) 0.72 (0.16) 0.66 (0.32) 0.63 (0.07) 0.68 (0.15) 0.61 (0.07) 0.73 (0.02)
CAWN 0.84 (0.14) 0.85 (0.15) 0.60 (0.12) 0.40 (0.57) 0.51 (0.43) 0.56 (0.11) 0.73 (0.26) 0.61 (0.39) 0.86 (0.06) 0.74 (0.23) 0.60 (0.36) 0.65 (0.11)
EdgeBanktw 0.77 (0.10) 0.77 (0.14) 0.60 (0.01) 0.76 (0.08) 0.75 (0.12) 0.80 (-0.12) 0.69 (0.07) 0.71 (0.13) 0.63 (0.01) 0.68 (-0.05) 0.81 (-0.14) 0.79 (-0.17)
EdgeBank∞ 0.49 (0.42) 0.51 (0.44) 0.29 (0.26) 0.50 (0.33) 0.48 (0.37) 0.55 (-0.01) 0.35 (0.42) 0.47 (0.43) 0.27 (0.33) 0.39 (0.20) 0.54 (0.09) 0.53 (0.05)

Table 6.6: Average precision, inductive negative sampling. The number in the
parentheses show the performance loss compared to the standard setting. The intensity
of the color relates to the amount of loss.

Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCI Flights Can. Parl. US Legis. UN Trade UN Vote
JODIE 0.66 (0.28) 0.84 (0.11) 0.66 (0.12) 0.60 (0.08) 0.59 (0.18) 0.72 (0.08) 0.49 (0.26) 0.68 (0.25) 0.48 (0.27) 0.45 (0.31) 0.59 (0.05) 0.67 (-0.02)
DyRep 0.69 (0.26) 0.85 (0.13) 0.63 (0.17) 0.63 (0.08) 0.67 (0.12) 0.92 (-0.05) 0.54 (-0.08) 0.65 (0.28) 0.57 (0.01) 0.64 (0.00) 0.62 (-0.01) 0.64 (0.01)
TGAT 0.82 (0.14) 0.88 (0.10) 0.54 (0.06) 0.50 (0.00) 0.57 (0.02) 0.79 (-0.03) 0.62 (0.17) 0.70 (0.19) 0.67 (0.01) 0.58 (0.12) 0.54 (0.04) 0.51 (0.00)
TGN 0.87 (0.12) 0.88 (0.11) 0.77 (0.13) 0.67 (0.04) 0.70 (0.15) 0.95 (-0.01) 0.69 (0.19) 0.69 (0.28) 0.52 (0.12) 0.53 (0.24) 0.63 (0.01) 0.70 (0.01)
CAWN 0.86 (0.13) 0.97 (0.03) 0.66 (0.09) 0.70 (0.28) 0.57 (0.38) 0.60 (0.12) 0.83 (0.16) 0.69 (0.30) 0.85 (0.10) 0.81 (0.17) 0.67 (0.31) 0.76 (0.06)
EdgeBanktw 0.46 (0.41) 0.47 (0.44) 0.42 (0.16) 0.46 (0.33) 0.54 (0.30) 0.69 (-0.08) 0.43 (0.32) 0.47 (0.37) 0.59 (0.05) 0.65 (-0.06) 0.56 (0.04) 0.55 (0.03)
EdgeBank∞ 0.48 (0.43) 0.49 (0.46) 0.42 (0.11) 0.48 (0.30) 0.54 (0.26) 0.55 (-0.03) 0.44 (0.33) 0.49 (0.40) 0.55 (0.06) 0.56 (-0.01) 0.55 (0.02) 0.53 (0.02)

Table 6.7: AU-ROC, inductive negative sampling. The number in the parentheses show
the performance loss compared to the standard setting. The intensity of the color relates
to the amount of loss.

Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCI Flights Can. Parl. US Legis. UN Trade UN Vote
JODIE 0.66 (0.30) 0.81 (0.16) 0.67 (0.16) 0.59 (0.10) 0.63 (0.19) 0.82 (0.04) 0.55 (0.28) 0.69 (0.26) 0.50 (0.31) 0.50 (0.35) 0.64 (0.03) 0.71 (-0.05)
DyRep 0.67 (0.28) 0.82 (0.16) 0.63 (0.19) 0.61 (0.10) 0.68 (0.14) 0.93 (-0.03) 0.54 (-0.10) 0.67 (0.27) 0.63 (0.01) 0.71 (-0.01) 0.63 (-0.01) 0.69 (-0.01)
TGAT 0.79 (0.17) 0.86 (0.12) 0.55 (0.10) 0.50 (0.00) 0.58 (0.04) 0.80 (-0.02) 0.59 (0.22) 0.70 (0.20) 0.71 (0.02) 0.68 (0.08) 0.58 (0.02) 0.53 (-0.02)
TGN 0.82 (0.17) 0.85 (0.14) 0.77 (0.15) 0.65 (0.08) 0.71 (0.17) 0.95 (0.01) 0.62 (0.26) 0.70 (0.28) 0.58 (0.13) 0.64 (0.19) 0.68 (0.00) 0.77 (-0.02)
CAWN 0.80 (0.19) 0.96 (0.04) 0.60 (0.12) 0.59 (0.39) 0.42 (0.52) 0.50 (0.17) 0.78 (0.21) 0.68 (0.32) 0.79 (0.13) 0.72 (0.24) 0.52 (0.44) 0.67 (0.08)
EdgeBanktw 0.40 (0.47) 0.43 (0.49) 0.19 (0.42) 0.41 (0.43) 0.52 (0.35) 0.77 (-0.10) 0.29 (0.47) 0.38 (0.46) 0.54 (0.11) 0.69 (-0.06) 0.57 (0.09) 0.58 (0.04)
EdgeBank∞ 0.43 (0.47) 0.47 (0.49) 0.22 (0.33) 0.45 (0.39) 0.53 (0.32) 0.59 (-0.06) 0.31 (0.47) 0.44 (0.46) 0.49 (0.11) 0.60 (-0.01) 0.57 (0.05) 0.56 (0.03)

105

Chapter 7

Conclusion

In this dissertation, we started by considering the task of anomaly detection in
cryptocurrency networks. Public availability of the transaction histories of
cryptocurrency networks provides abundant opportunities for investigation of human
behaviour in financial domains. Nevertheless, leveraging this massive, high-dimensional,
large-scale data is not an easy task. An imperative step prior to designing new
analytical solutions is to design data features or representations that are proportionate
with the complexity of the relationships in cryptocurrency networks. It is essential to
have representations that can accommodate the high-dimensional, multi-modal, and
relational nature of the data in order to truly leverage the potential of the network
data. In this dissertation, we proposed efficient techniques for generating features
aiming to detect anomalous entities in cryptocurrency networks. These features
incorporated domain knowledge extracted from the investigation of the cryptocurrency
networks as well as more general attributes obtained through complex network analysis.
Further, we considered the generalization of the proposed features to encompass a more
general model of temporal weighted graphs, and demonstrated that the proposed
anomaly detection approach achieved state-of-the-art results in domains beyond
cryptocurrency networks such as rating and social networks. Meanwhile, we examined
the challenges of graph anomaly detection task utilizing node classification techniques,
which is commonplace in the literature. We demonstrated the significance of
performance measures and evaluation setups on the actual performance of different
methods. Ultimately, we concentrated on one of the important research topic on
networks, i.e. learning on dynamic graphs, that has diverse applications such as social
networks, recommender systems, drug discovery and many more. We precisely
inspected the evaluation setting of dynamic link prediction tasks and provided more

7. Conclusion 106

robust approaches for the evaluation of dynamic graph learning methods.
At the core of this dissertation is the notion of graph anomaly detection,

fundamentals of blockchain-based cryptocurrency networks, and dynamic networks. We
presented a comprehensive overview of these quickly-expanding areas of research
(Chapter 2). Focusing on cryptocurrency transactions, we first proposed methods for
detecting malicious accounts on the Ethereum network through generating a limited set
of features being leveraged by machine learning algorithms (Chapter 3). Then, we
extended the feature set with useful additional features exploiting the relational
characteristics of the data, and prolong our anomaly detection scheme to handle
cryptocurrency networks with diverse architectural models (Chapter 4). We further
expanded our research in two more directions. First, we generalized the anomaly
detection task to other kinds of real-world networks, such as rating platforms and social
networks, that could demonstrate dissimilar characteristics from the already
investigated cryptocurrency networks. Second, we investigated scenarios where the node
labels vary over time, and introduced solutions to reflect the dynamic evolution of the
networks in feature sets. Additionally, we contrasted dynamic and static node
classification (Chapter 5). We also closely inspected the importance of the evaluation
setting as well as performance metrics when leveraging node classification for anomaly
detection purposes. Finally, centring our attention on dynamic networks and the quickly
expanding trend of research in this nascent area, we introduced the challenges of current
evaluation settings for the dynamic link prediction task, and presented new datasets,
novel visualization techniques, as well as evaluation strategies to further facilitate the
development of dynamic graph representation learning methods (Chapter 6).

7.1 Future Directions

While we explored several important directions for anomaly detection in cryptocurrency
and other real-world networks, many questions remain unanswered and multiple
directions are open to explore.

7.1.1 Anomaly Detection on Dynamic Graphs

Dynamic graph representation learning is still in its infancy phase and many important
tasks, such as anomaly detection, are almost untouched when it comes to dynamic
networks. While anomaly detection involves several challenges including scarcity of the

7. Conclusion 107

labelled data, unbalanced datasets, and difficulty in extracting real data due to security
issues, learning tasks on dynamic graphs exacerbates the difficulties. Analysis of the
dynamic graphs requires an understanding of graph-structured relations as well as
dynamic evolution of the networks. Additionally, the anomalous patterns can appear as
structural or temporal anomalies. The increased difficulty of anomaly detection on
dynamic graphs requires significant works to provide efficient methods for the full
realization of this task.

7.1.2 Learning on Dynamic Networks with Unbalanced Labels

Although there are several approaches for resolving the dataset imbalance issue, it is
relatively unexplored in the realm of dynamic networks. In many different applications,
such as anomaly detection, fraud detection, intrusion detection, misinformation
detection, combating human trafficking, etc., the underlying data not only contains
relational information, but also demonstrates considerable unbalanced patterns among
instances of different classes. Particularly on dynamic graphs, the scarcity of the
appropriate labels can appear in different forms. For instance, the records of network
activities at specific timestamps can be inadequate, we may be restricted to access
specific parts of the networks which results in a scarcity of the structural information
about those regions of the networks, or different types of nodes or edges of the networks
may not necessarily have similar distributions regarding the label dispensations.
Therefore, it is of great importance to be cognizant of the imbalance issue of the
real-world networks and design methods that meet the requirements for tackling this
mostly overlooked issue.

7.1.3 Efficient Incorporation of Interpretable Features in GNNs

Improving the interpretability of representation learning methods, specially GNNs, is
one of the most pressing challenges. One important factor that may impede the
widespread adoption of representation learning methods in areas other than computer
science is the uninterpretability of these methods. In contrast, feature engineering
approaches provide more insight into the analysis of network characteristics. We showed
that our elaborated set of features is efficient in detecting anomalies in instances of
real-world applications in diverse domains and settings. An interesting future direction
is to efficiently fuse these features in GNN architectures. This objective has two
forthright advantages. First, incorporating the well-defined features in GNNs could help

7. Conclusion 108

in increasing the interpretability of representation learning methods. Second,
incorporating automatic representation learning methods helps relieve the painstaking
and brittle feature engineering process.

7.1.4 Consistent Benchmarks and Evaluation Setups

Like other areas of science, one important driver of progress in dynamic graph
representation learning is the availability of benchmark tasks and datasets. Currently,
the available dynamic network datasets come from domains that are not much diverse.
Moreover, these datasets are rarely labelled and, in most cases, demonstrate highly
skewed labels. Also, these datasets are not interesting, realistic, or original enough to
maintain the surging interests of the research community. Therefore, it is critical to
enforce this challenging area of research by providing rich, diverse, and appropriate
datasets. Moreover, there is a considerable lack of a consistent and efficient evaluation
setup for assessing the dynamic graph learning methods. There is no consistent
terminology, performance metrics, and evaluation setup that are efficient enough to
differentiate the true performance of different learning methods. The development of
the benchmark datasets and consistent evaluation setup are critical factors in future
growth of this area, since they will make a common ground for comparing various
methods and help further advance the reproducibility culture of algorithmic progress.

109

Chapter 8

List of Publications

1. F. Poursafaei, A. Huang, K. Perline, and R. Rabbany, ”Towards Better Evaluation
for Dynamic Link Prediction.” arXiv preprint arXiv:2207.10128. 2022.

2. F. Poursafaei, Z. Zilic, and R. Rabbany, “A Strong Node Classification Baseline for
Temporal Graphs.” in Proceedings of the 2022 SIAM International Conference on
Data Mining (SDM). SIAM, 2022.

3. F. Poursafaei, Z. Zilic, and R. Rabbany, “On Anomaly Detection in Graphs as Node
Classification,” in 2022 the 4th International Conference on Big Data Engineering
and Technology (BDET), 2022.

4. F. Poursafaei, R. Rabbany, and Z. Zilic, “Sigtran: Signature Vectors for Detecting
Illicit Activities in Blockchain Transaction Networks.” in Proceedings of the 25th
Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD-2021).
Springer, 2021, pp. 27–39.

5. F. Poursafaei, G. B. Hamad, and Z. Zilic, “Detecting Malicious Ethereum Entities
via Application of Machine Learning Classification,” in 2020 2nd Conference on
Blockchain Research & Applications for Innovative Networks and Services
(BRAINS). IEEE, 2020, pp. 120–127.

110

Bibliography
[1] T. McGhin, K.-K. R. Choo, C. Z. Liu, and D. He, “Blockchain in Healthcare

Applications: Research Challenges and Opportunities,” Journal of Network and
Computer Applications, vol. 135, pp. 62–75, 2019.

[2] A. Hasselgren, K. Kralevska, D. Gligoroski, S. A. Pedersen, and A. Faxvaag,
“Blockchain in Healthcare and Health Sciences: A Scoping Review,” International
Journal of Medical Informatics, vol. 134, p. 104040, 2020.

[3] T. M. Fernández-Caramés and P. Fraga-Lamas, “A Review on the Use of Blockchain
for the Internet of Things,” IEEE Access, vol. 6, pp. 32 979–33 001, 2018.

[4] H.-N. Dai, Z. Zheng, and Y. Zhang, “Blockchain for Internet of Things: A Survey,”
IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8076–8094, 2019.

[5] “CoinMarketCap,” https://coinmarketcap.com/currencies/ethereum/, accessed:
2022-07-17.

[6] “Statista,” https://www.statista.com/statistics/863917/
number-crypto-coins-tokens/, (Accessed on 04/10/2022).

[7] K. Grauer, W. Kushner, and H. Updegrave, “Original Data and Research into
Cryptocurrency-based Crime,” Chainalysis Inc., The 2022 Crypto Crime Report,
2022.

[8] J. Li, C. Gu, F. Wei, and X. Chen, “A Survey on Blockchain Anomaly Detection
Using Data Mining Techniques,” in International Conference on Blockchain and
Trustworthy Systems. Springer, 2019, pp. 491–504.

[9] M. Conti, E. S. Kumar, C. Lal, and S. Ruj, “A Survey on Security and Privacy
Issues of Bitcoin,” IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp.
3416–3452, 2018.

[10] X. F. Liu, X.-J. Jiang, S.-H. Liu, and C. K. Tse, “Knowledge Discovery in
Cryptocurrency Transactions: A Survey,” IEEE Access, vol. 9, pp. 37 229–37 254,
2021.

https://coinmarketcap.com/currencies/ethereum/
https://www.statista.com/statistics/863917/number-crypto-coins-tokens/
https://www.statista.com/statistics/863917/number-crypto-coins-tokens/

Bibliography 111

[11] V. Buterin et al., “Ethereum: A Next-Generation Smart Contract and
Decentralized Application Platform,” White Paper, vol. 3, no. 37, pp. 2–1, 2014.

[12] S. Ferretti and G. D’Angelo, “On the Ethereum Blockchain Structure: A Complex
Networks Theory Perspective,” Concurrency and Computation: Practice and
Experience, vol. 32, no. 12, p. e5493, 2020.

[13] M. U. Hassan, M. H. Rehmani, and J. Chen, “Anomaly Detection in Blockchain
Networks: A Comprehensive Survey,” arXiv preprint arXiv:2112.06089, 2021.

[14] M. Rahouti, K. Xiong, and N. Ghani, “Bitcoin Concepts, Threats, and Machine-
Learning Security Solutions,” IEEE Access, vol. 6, pp. 67 189–67 205, 2018.

[15] S. Rouhani and R. Deters, “Security, Performance, and Applications of Smart
Contracts: A Systematic Survey,” IEEE Access, vol. 7, pp. 50 759–50 779, 2019.

[16] X. Ma, J. Wu, S. Xue, J. Yang, C. Zhou, Q. Z. Sheng, H. Xiong, and L. Akoglu, “A
Comprehensive Survey on Graph Anomaly Detection with Deep Learning,” IEEE
Transactions on Knowledge and Data Engineering, 2021.

[17] W. Meng, E. W. Tischhauser, Q. Wang, Y. Wang, and J. Han, “When Intrusion
Detection Meets Blockchain Technology: A Review,” IEEE Access, vol. 6, pp.
10 179–10 188, 2018.

[18] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A Survey,” ACM
Computing Surveys (CSUR), vol. 41, no. 3, pp. 1–58, 2009.

[19] F. Poursafaei, G. B. Hamad, and Z. Zilic, “Detecting Malicious Ethereum
Entities via Application of Machine Learning Classification,” in 2nd Conference
on Blockchain Research & Applications for Innovative Networks and Services
(BRAINS). IEEE, 2020, pp. 120–127.

[20] F. Poursafaei, R. Rabbany, and Z. Zilic, “SigTran: Signature Vectors for Detecting
Illicit Activities in Blockchain Transaction Networks,” in Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD). Springer, 2021, pp. 27–39.

[21] F. Poursafaei, Z. Zilic, and R. Rabbany, “A Strong Node Classification Baseline for
Temporal Graphs,” in Proceedings of the SIAM International Conference on Data
Mining (SDM). SIAM, 2022.

Bibliography 112

[22] ——, “On Anomaly Detection in Graphs as Node Classification,” in The 4th
International Conference on Big Data Engineering and Technology (BDET), 2022.

[23] H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A Survey on Ethereum Systems
Security: Vulnerabilities, Attacks, and Defenses,” ACM Computing Surveys
(CSUR), vol. 53, no. 3, pp. 1–43, 2020.

[24] S. Dey, “Securing Majority-Attack In Blockchain Using Machine Learning And
Algorithmic Game Theory: A Proof of Work,” arXiv preprint arXiv:1806.05477,
2018.

[25] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making Smart Contracts
Smarter,” in Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 254–269.

[26] J. Garay, A. Kiayias, and N. Leonardos, “The Bitcoin Backbone Protocol:
Analysis and Applications,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2015, pp. 281–310.

[27] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” White Paper,
2008.

[28] M. Bartoletti, B. Pes, and S. Serusi, “Data Mining for Detecting Bitcoin Ponzi
Schemes,” in Crypto Valley Conference on Blockchain Technology (CVCBT).
IEEE, 2018, pp. 75–84.

[29] F. Reid and M. Harrigan, “An Analysis of Anonymity in the Bitcoin System,” in
Security and Privacy in Social Networks. Springer, 2013, pp. 197–223.

[30] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker,
and S. Savage, “A Fistful of Bitcoins: Characterizing Payments Among Men with
No Names,” in Proceedings of the Conference on Internet Measurement Conference.
ACM, 2013, pp. 127–140.

[31] M. Möser and R. Böhme, “Anonymous Alone? Measuring Bitcoin’s Second-
Generation Anonymization Techniques,” in IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW). IEEE, 2017, pp. 32–41.

Bibliography 113

[32] M. Spagnuolo, F. Maggi, and S. Zanero, “Bitiodine: Extracting Intelligence from
the Bitcoin Network,” in International Conference on Financial Cryptography and
Data Security. Springer, 2014, pp. 457–468.

[33] J. H. Ziegeldorf, R. Matzutt, M. Henze, F. Grossmann, and K. Wehrle, “Secure and
Anonymous Decentralized Bitcoin Mixing,” Future Generation Computer Systems,
vol. 80, pp. 448–466, 2018.

[34] M. Möser and R. Böhme, “The Price of Anonymity: Empirical Evidence from a
Market for Bitcoin Anonymization,” Journal of Cybersecurity, vol. 3, no. 2, pp.
127–135, 2017.

[35] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, and E. W. Felten,
“Mixcoin: Anonymity for Bitcoin with Accountable Mixes,” in International
Conference on Financial Cryptography and Data Security. Springer, 2014, pp.
486–504.

[36] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun,
“Evaluating User Privacy in Bitcoin,” in International Conference on Financial
Cryptography and Data Security. Springer, 2013, pp. 34–51.

[37] T. Slattery, “Taking a Bit Out of Crime: Bitcoin and Cross-Border Tax Evasion,”
Brook. J. Int’l L., vol. 39, p. 829, 2014.

[38] M. Möser, R. Böhme, and D. Breuker, “Towards Risk Scoring of Bitcoin
Transactions,” in International Conference on Financial Cryptography and Data
Security. Springer, 2014, pp. 16–32.

[39] T. Moore, “The Promise and Perils of Digital Currencies,” 2013.

[40] M. Vasek and T. Moore, “Analyzing the Bitcoin Ponzi Scheme Ecosystem,” in
International Conference on Financial Cryptography and Data Security. Springer,
2018, pp. 101–112.

[41] ——, “There’s No Free Lunch, Even Using Bitcoin: Tracking the Popularity and
Profits of Virtual Currency Scams,” in International Conference on Financial
Cryptography and Data Security. Springer, 2015, pp. 44–61.

Bibliography 114

[42] M. Möser, R. Böhme, and D. Breuker, “An Inquiry into Money Laundering Tools
in the Bitcoin Ecosystem,” in 2013 APWG e-Crime Researchers Summit. IEEE,
2013, pp. 1–14.

[43] C. Brenig, G. Müller et al., “Economic Analysis of Cryptocurrency Backed Money
Laundering,” 2015.

[44] S. Jovicic and Q. Tan, “Machine Learning for Money Laundering Detection in the
Blockchain Financial Transaction System,” Journal of Fundamental and Applied
Sciences, vol. 10, no. 4S, pp. 376–381, 2018.

[45] M. Weber, G. Domeniconi, J. Chen, D. K. I. Weidele, C. Bellei, T. Robinson, and
C. E. Leiserson, “Anti-Money Laundering in Bitcoin: Experimenting with Graph
Convolutional Networks for Financial Forensics,” arXiv preprint arXiv:1908.02591,
2019.

[46] A. H. H. Kabla, M. Anbar, S. Manickam, T. A. Alamiedy, P. B. Cruspe, A. K. Al-
Ani, and S. Karupayah, “Applicability of Intrusion Detection System on Ethereum
Attacks: A Comprehensive Review,” IEEE Access, 2022.

[47] “Ethereum Statistics,” https://www.alchemy.com/overviews/ethereum-statistics,
accessed: 2022-07-17.

[48] H. Zhou, A. Milani Fard, and A. Makanju, “The State of Ethereum Smart
Contracts Security: Vulnerabilities, Countermeasures, and Tool Support,” Journal
of Cybersecurity and Privacy, vol. 2, no. 2, pp. 358–378, 2022.

[49] O. Sürücü, U. Yeprem, C. Wilkinson, W. Hilal, S. A. Gadsden, J. Yawney, N. Alsadi,
and A. Giuliano, “A Survey on Ethereum Smart Contract Vulnerability Detection
Using Machine Learning,” Disruptive Technologies in Information Sciences VI, vol.
12117, pp. 110–121, 2022.

[50] S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H.-N. Lee, “Systematic Review
of Security Vulnerabilities in Ethereum Blockchain Smart Contract,” IEEE Access,
2022.

[51] “The DAO,” https://github.com/blockchainsllc/DAO/tree/v1.0, accessed: 2021-
12-25.

https://www.alchemy.com/overviews/ethereum-statistics
https://github.com/blockchainsllc/DAO/tree/v1.0

Bibliography 115

[52] “The Parity Wallet Hack Explained,” https://blog.openzeppelin.com/
on-the-parity-wallet-multisig-hack-405a8c12e8f7/, accessed: 2021-12-25.

[53] “EIP-20: Token Standard,” https://eips.ethereum.org/EIPS/eip-20, accessed:
2021-12-26.

[54] C. G. Akcora, Y. R. Gel, and M. Kantarcioglu, “Blockchain Networks: Data
Structures of Bitcoin, Monero, Zcash, Ethereum, Ripple, and Iota,” Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 12, no. 1,
p. 1436, 2022.

[55] H. Arslanian, “Ethereum,” in The Book of Crypto. Springer, 2022, pp. 91–98.

[56] P. M. Monamo, V. Marivate, and B. Twala, “A Multifaceted Approach to
Bitcoin Fraud Detection: Global and Local Outliers,” in 15th IEEE International
Conference on Machine Learning and Applications (ICMLA). IEEE, 2016, pp.
188–194.

[57] T. Pham and S. Lee, “Anomaly Detection in Bitcoin Network Using Unsupervised
Learning Methods,” arXiv preprint arXiv:1611.03941, 2016.

[58] A. Bogner, “Seeing is Understanding: Anomaly Detection in Blockchains with
Visualized Features,” in Proceedings of the ACM International Joint Conference
on Pervasive and Ubiquitous Computing and Proceedings of the ACM International
Symposium on Wearable Computers. ACM, 2017, pp. 5–8.

[59] P. Monamo, V. Marivate, and B. Twala, “Unsupervised Learning for Robust Bitcoin
Fraud Detection,” in Information Security for South Africa (ISSA). IEEE, 2016,
pp. 129–134.

[60] S. K. Shaukat and V. J. Ribeiro, “RansomWall: A Layered Defense System
Against Cryptographic Ransomware Attacks Using Machine Learning,” in 10th
International Conference on Communication Systems & Networks (COMSNETS).
IEEE, 2018, pp. 356–363.

[61] W. Chen, Z. Zheng, E. C.-H. Ngai, P. Zheng, and Y. Zhou, “Exploiting Blockchain
Data to Detect Smart Ponzi Schemes on Ethereum,” IEEE Access, vol. 7, pp.
37 575–37 586, 2019.

https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://eips.ethereum.org/EIPS/eip-20

Bibliography 116

[62] M. A. Harlev, H. Sun Yin, K. C. Langenheldt, R. Mukkamala, and R. Vatrapu,
“Breaking Bad: De-Anonymising Entity Types on the Bitcoin Blockchain Using
Supervised Machine Learning,” in Proceedings of the 51st Hawaii International
Conference on System Sciences, 2018.

[63] D. Ermilov, M. Panov, and Y. Yanovich, “Automatic Bitcoin Address Clustering,”
in 16th IEEE International Conference on Machine Learning and Applications
(ICMLA). IEEE, 2017, pp. 461–466.

[64] J. J. Xu, “Are Blockchains Immune to All Malicious Attacks?” Financial
Innovation, vol. 2, no. 1, p. 25, 2016.

[65] N. Atzei, M. Bartoletti, and T. Cimoli, “A Survey of Attacks on Ethereum Smart
Contracts (sok),” in Principles of Security and Trust. Springer, 2017, pp. 164–186.

[66] W. Chen, Z. Zheng, J. Cui, E. Ngai, P. Zheng, and Y. Zhou, “Detecting Ponzi
Schemes on Ethereum: Towards Healthier Blockchain Technology,” in Proceedings
of the World Wide Web Conference. International World Wide Web Conferences
Steering Committee, 2018, pp. 1409–1418.

[67] J. Hirshman, Y. Huang, and S. Macke, “Unsupervised Approaches to Detecting
Anomalous Behavior in the Bitcoin Transaction Network,” Technical Report,
Stanford University, Tech. Rep., 2013.

[68] J. Payette, S. Schwager, and J. Murphy, “Characterizing the Ethereum Address
Space,” 2017.

[69] K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi, “Step by Step Towards
Creating a Safe Smart Contract: Lessons and Insights from a Cryptocurrency
Lab,” in International Conference on Financial Cryptography and Data Security.
Springer, 2016, pp. 79–94.

[70] T. H.-D. Huang, “Hunting the Ethereum Smart Contract: Color-Inspired
Inspection of Potential Attacks,” arXiv preprint arXiv:1807.01868, 2018.

[71] M. Di Angelo and G. Salzer, “A Survey of Tools for Analyzing Ethereum Smart
Contracts,” in IEEE International Conference on Decentralized Applications and
Infrastructures (DAPPCON). IEEE, 2019, pp. 69–78.

Bibliography 117

[72] J. Liu and Z. Liu, “A Survey on Security Verification of Blockchain Smart
Contracts,” IEEE Access, vol. 7, pp. 77 894–77 904, 2019.

[73] G. Destefanis, M. Marchesi, M. Ortu, R. Tonelli, A. Bracciali, and R. Hierons,
“Smart Contracts Vulnerabilities: A Call for Blockchain Software Engineering,” in
International Workshop on Blockchain Oriented Software Engineering (IWBOSE).
IEEE, 2018, pp. 19–25.

[74] R. Norvill, B. B. F. Pontiveros, R. State, I. Awan, and A. Cullen, “Automated
Labeling of Unknown Contracts in Ethereum,” in 26th International Conference
on Computer Communication and Networks (ICCCN). IEEE, 2017, pp. 1–6.

[75] S. Bhattacharyya, S. Jha, K. Tharakunnel, and J. C. Westland, “Data Mining for
Credit Card Fraud: A Comparative Study,” Decision Support Systems, vol. 50,
no. 3, pp. 602–613, 2011.

[76] A. Dal Pozzolo, O. Caelen, Y.-A. Le Borgne, S. Waterschoot, and G. Bontempi,
“Learned Lessons in Credit Card Fraud Detection from a Practitioner Perspective,”
Expert systems with applications, vol. 41, no. 10, pp. 4915–4928, 2014.

[77] N. Carneiro, G. Figueira, and M. Costa, “A Data Mining Based System for Credit-
Card Fraud Detection in e-Tail,” Decision Support Systems, vol. 95, pp. 91–101,
2017.

[78] A. L. Buczak and E. Guven, “A Survey of Data Mining and Machine Learning
Methods for Cyber Security Intrusion Detection,” IEEE Communications Surveys
& Tutorials, vol. 18, no. 2, pp. 1153–1176, 2016.

[79] J. Lorenz, M. I. Silva, D. Apaŕıcio, J. T. Ascensão, and P. Bizarro, “Machine
Learning Methods to Detect Money Laundering in the Bitcoin Blockchain in the
Presence of Label Scarcity,” arXiv preprint arXiv:2005.14635, 2020.

[80] S. Farrugia, J. Ellul, and G. Azzopardi, “Detection of Illicit Accounts over the
Ethereum Blockchain,” Expert Systems with Applications, vol. 150, p. 113318, 2020.

[81] Z. Yuan, Q. Yuan, and J. Wu, “Phishing Detection on Ethereum via Learning
Representation of Transaction Subgraphs,” in International Conference on
Blockchain and Trustworthy Systems. Springer, 2020, pp. 178–191.

Bibliography 118

[82] T. Pham and S. Lee, “Anomaly Detection in the Bitcoin System: A Network
Perspective,” arXiv preprint arXiv:1611.03942, 2016.

[83] Y. Hu, S. Seneviratne, K. Thilakarathna, K. Fukuda, and A. Seneviratne,
“Characterizing and Detecting Money Laundering Activities on the Bitcoin
Network,” arXiv preprint arXiv:1912.12060, 2019.

[84] J. Wu, D. Lin, Z. Zheng, and Q. Yuan, “T-EDGE: Temporal Weighted
Multidigraph Embedding for Ethereum Transaction Network Analysis,” arXiv
preprint arXiv:1905.08038, 2019.

[85] J. Wu, Q. Yuan, D. Lin, W. You, W. Chen, C. Chen, and Z. Zheng, “Who Are the
Phishers? Phishing Scam Detection on Ethereum via Network Embedding,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2020.

[86] D. Lin, J. Wu, Q. Yuan, and Z. Zheng, “Modeling and Understanding Ethereum
Transaction Records via A Complex Network Approach,” IEEE Transactions on
Circuits and Systems II: Express Briefs, 2020.

[87] A. Khan, “Graph Analysis of the Ethereum Blockchain Data: A Survey of Datasets,
Methods, and Future Work,” 2022.

[88] J. Wu, J. Liu, Y. Zhao, and Z. Zheng, “Analysis of Cryptocurrency Transactions
from a Network Perspective: An Overview,” Journal of Network and Computer
Applications, vol. 190, p. 103139, 2021.

[89] Y. Xie, J. Jin, J. Zhang, S. Yu, and Q. Xuan, “Temporal-Amount Snapshot
MultiGraph for Ethereum Transaction Tracking,” in International Conference on
Blockchain and Trustworthy Systems. Springer, 2021, pp. 133–146.

[90] Y. Xie, J. Zhou, J. Wang, J. Zhang, Y. Sheng, J. Wu, and Q. Xuan, “Understanding
Ethereum Transactions via Network Approach,” in Graph Data Mining. Springer,
2021, pp. 155–176.

[91] J. Liang, L. Li, and D. Zeng, “Evolutionary Dynamics of Cryptocurrency
Transaction Networks: An Empirical Study,” PloS one, vol. 13, no. 8, p. e0202202,
2018.

[92] R. Kher, S. Terjesen, and C. Liu, “Blockchain, Bitcoin, and ICOs: A Review and
Research Agenda,” Small Business Economics, vol. 56, no. 4, pp. 1699–1720, 2021.

Bibliography 119

[93] A. A. Monrat, O. Schelén, and K. Andersson, “A Survey of Blockchain from the
Perspectives of Applications, Challenges, and Opportunities,” IEEE Access, vol. 7,
pp. 117 134–117 151, 2019.

[94] M. Bhowmik, T. S. S. Chandana, and B. Rudra, “Comparative Study of Machine
Learning Algorithms for Fraud Detection in Blockchain,” in 5th International
Conference on Computing Methodologies and Communication (ICCMC). IEEE,
2021, pp. 539–541.

[95] L. Chen, J. Peng, Y. Liu, J. Li, F. Xie, and Z. Zheng, “Phishing Scams Detection
in Ethereum Transaction Network,” ACM Transactions on Internet Technology
(TOIT), vol. 21, no. 1, pp. 1–16, 2020.

[96] A. K. Mandal and P. Dinda, “A Survey on Unsupervised Machine Learning
Approach for Fraud Detection in Bitcoin,” AIJR Abstracts, p. 33, 2022.

[97] Z. Shahbazi and Y.-C. Byun, “Knowledge Discovery on Cryptocurrency Exchange
Rate Prediction Using Machine Learning Pipelines,” Sensors, vol. 22, no. 5, p. 1740,
2022.

[98] S. E. Charandabi and K. Kamyar, “Prediction of Cryptocurrency Price Index Using
Artificial Neural Networks: A Survey of the Literature,” European Journal of
Business and Management Research, vol. 6, no. 6, pp. 17–20, 2021.

[99] S. A. H. Havidz, V. E. Karman, and I. Y. Mambea, “Is Bitcoin Price Driven by
Macro-Financial Factors and Liquidity? A Global Consumer Survey Empirical
Study,” Organizations and Markets in Emerging Economies, vol. 12, no. 2, pp.
399–414, 2021.

[100] A. M. Khedr, I. Arif, M. El-Bannany, S. M. Alhashmi, and M. Sreedharan,
“Cryptocurrency Price Prediction Using Traditional Statistical and Machine-
Learning Techniques: A Survey,” Intelligent Systems in Accounting, Finance and
Management, vol. 28, no. 1, pp. 3–34, 2021.

[101] R. G. Tiwari, A. K. Agarwal, R. K. Kaushal, and N. Kumar, “Prophetic Analysis of
Bitcoin Price Using Machine Learning Approaches,” in 6th International Conference
on Signal Processing, Computing and Control (ISPCC). IEEE, 2021, pp. 428–432.

Bibliography 120

[102] Y. Mezquita, A. B. Gil-González, J. Prieto, and J. M. Corchado, “Cryptocurrencies
and Price Prediction: A Survey,” in International Congress on Blockchain and
Applications. Springer, 2021, pp. 339–346.

[103] M. Iqbal, M. S. Iqbal, F. H. Jaskani, K. Iqbal, and A. Hassan, “Time-Series
Prediction of Cryptocurrency Market Using Machine Learning Techniques,” EAI
Endorsed Transactions on Creative Technologies, p. e4, 2021.

[104] F. Ozer and C. O. Sakar, “An Automated Cryptocurrency Trading System Based
on the Detection of Unusual Price Movements with a Time-Series Clustering-Based
approach,” Expert Systems with Applications, vol. 200, p. 117017, 2022.

[105] M. J. Hamayel and A. Y. Owda, “A Novel Cryptocurrency Price Prediction Model
Using GRU, LSTM and bi-LSTM Machine Learning Algorithms,” AI, vol. 2, no. 4,
pp. 477–496, 2021.

[106] L. Lai, T. Zhou, Z. Cai, Z. Liang, and H. Bai, “A Survey on Security Threats and
Solutions of Bitcoin,” Journal of Cybersecurity, vol. 3, no. 1, p. 29, 2021.

[107] Z. Wang, H. Jin, W. Dai, K.-K. R. Choo, and D. Zou, “Ethereum Smart Contract
Security Research: Survey and Future Research Opportunities,” Frontiers of
Computer Science, vol. 15, no. 2, pp. 1–18, 2021.

[108] E. Rabieinejad, A. Yazdinejad, and R. M. Parizi, “A Deep Learning Model for
Threat Hunting in Ethereum Blockchain,” in IEEE 20th International Conference
on Trust, Security and Privacy in Computing and Communications (TrustCom).
IEEE, 2021, pp. 1185–1190.

[109] A. Alqahtani and F. T. Sheldon, “A Survey of Crypto Ransomware Attack
Detection Methodologies: An Evolving Outlook,” Sensors, vol. 22, no. 5, p. 1837,
2022.

[110] S. UmaMaheswaran, D. Uike, K. Ramachandran, A. Tharangini, T. Suba,
and D. Verma, “The Critical Understanding on the Emerging Threats and
Defensive Aspects in Cryptocurrencies using Machine Learning Techniques,” in
2nd International Conference on Advance Computing and Innovative Technologies
in Engineering (ICACITE). IEEE, 2022, pp. 1938–1942.

Bibliography 121

[111] N. Rani, S. V. Dhavale, A. Singh, and A. Mehra, “A Survey on Machine Learning-
Based Ransomware Detection,” in Proceedings of the 7th International Conference
on Mathematics and Computing. Springer, 2022, pp. 171–186.

[112] A. Trozze, J. Kamps, E. A. Akartuna, F. J. Hetzel, B. Kleinberg, T. Davies, and
S. D. Johnson, “Cryptocurrencies and Future Financial Crime,” Crime Science,
vol. 11, no. 1, pp. 1–35, 2022.

[113] U. Urooj, B. A. S. Al-rimy, A. Zainal, F. A. Ghaleb, and M. A. Rassam,
“Ransomware Detection Using the Dynamic Analysis and Machine Learning: A
Survey and Research Directions,” Applied Sciences, vol. 12, no. 1, p. 172, 2021.

[114] D. Khan, L. T. Jung, and M. A. Hashmani, “Systematic Literature Review of
Challenges in Blockchain Scalability,” Applied Sciences, vol. 11, no. 20, p. 9372,
2021.

[115] M. Lu, Z. Han, S. X. Rao, Z. Zhang, Y. Zhao, Y. Shan, R. Raghunathan, C. Zhang,
and J. Jiang, “BRIGHT - Graph Neural Networks in Real-Time Fraud Detection,”
arXiv preprint arXiv:2205.13084, 2022.

[116] G. Zhang, Z. Li, J. Huang, J. Wu, C. Zhou, J. Yang, and J. Gao, “eFraudCom: An
e-Commerce Fraud Detection System via Competitive Graph Neural Networks,”
ACM Transactions on Information Systems (TOIS), vol. 40, no. 3, pp. 1–29, 2022.

[117] Q. Lai, J. Tian, W. Wang, and X. Hu, “Spatial-Temporal Attention Graph
Convolution Network on Edge Cloud for Traffic Flow Prediction,” IEEE
Transactions on Intelligent Transportation Systems, 2022.

[118] N. Sharma, I. Kaushik, B. Bhushan, C. K. Dixit et al., “Cryptocurrency Revolution:
Bitcoin Time Forecasting & Blockchain Anomaly Detection,” in Blockchain
Technology in Healthcare Applications. CRC Press, 2022, pp. 61–85.

[119] K. Martin, M. Rahouti, M. Ayyash, and I. Alsmadi, “Anomaly Detection in
Blockchain Using Network Representation and Machine Learning,” Security and
Privacy, vol. 5, no. 2, p. e192, 2022.

[120] S. Kumar, B. Hooi, D. Makhija, M. Kumar, C. Faloutsos, and V. Subrahmanian,
“REV2: Fraudulent User Prediction in Rating Platforms,” in Proceedings of the
11th ACM International Conference on Web Search and Data Mining, 2018, pp.
333–341.

Bibliography 122

[121] J. Tang, J. Li, Z. Gao, and J. Li, “Rethinking Graph Neural Networks for Anomaly
Detection,” arXiv preprint arXiv:2205.15508, 2022.

[122] A. J. Minnich, N. Chavoshi, A. Mueen, S. Luan, and M. Faloutsos, “TrueView:
Harnessing the Power of Multiple Review Sites,” in Proceedings of the 24th
International Conference on World Wide Web, 2015, pp. 787–797.

[123] N. Hussain, H. Turab Mirza, G. Rasool, I. Hussain, and M. Kaleem, “Spam Review
Detection Techniques: A Systematic Literature Review,” Applied Sciences, vol. 9,
no. 5, p. 987, 2019.

[124] W. Chen, X. Guo, Z. Chen, Z. Zheng, and Y. Lu, “Phishing Scam Detection on
Ethereum: Towards Financial Security for Blockchain Ecosystem,” in International
Joint Conferences on Artificial Intelligence Organization, 2020, pp. 4506–4512.

[125] C. Akcora, “BitcoinHeist: Topological Data Analysis for Ransomware Prediction
on the Bitcoin Blockchain,” in Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), 2020.

[126] P. Nerurkar, S. Bhirud, D. Patel, R. Ludinard, Y. Busnel, and S. Kumari,
“Supervised Learning Model for Identifying Illegal Activities in Bitcoin,” Applied
Intelligence, pp. 1–20, 2020.

[127] L. Nan and D. Tao, “Bitcoin Mixing Detection Using Deep Autoencoder,” in IEEE
3rd International Conference on Data Science in Cyberspace (DSC). IEEE, 2018,
pp. 280–287.

[128] S. Sayadi, S. B. Rejeb, and Z. Choukair, “Anomaly Detection Model over Blockchain
Electronic Transactions,” in 2019 15th International Wireless Communications &
Mobile Computing Conference (IWCMC). IEEE, 2019, pp. 895–900.

[129] J. Kim, K. Kim, G.-Y. Jeon, and M. Sohn, “Temporal Patterns Discovery of
Evolving Graphs for Graph Neural Network (GNN)-based Anomaly Detection in
Heterogeneous Networks,” Journal of Internet Services and Information Security,
vol. 12, no. 1, pp. 72–82, 2022.

[130] O. Atkinson, A. Bhardwaj, C. Englert, V. S. Ngairangbam, and M. Spannowsky,
“Anomaly Detection with Convolutional Graph Neural Networks,” Journal of High
Energy Physics, vol. 2021, no. 8, pp. 1–19, 2021.

Bibliography 123

[131] L. Xie, D. Pi, X. Zhang, J. Chen, Y. Luo, and W. Yu, “Graph Neural Network
Approach for Anomaly Detection,” Measurement, vol. 180, p. 109546, 2021.

[132] M. Jin, Y. Liu, Y. Zheng, L. Chi, Y.-F. Li, and S. Pan, “ANEMONE: Graph
Anomaly Detection with Multi-Scale Contrastive Learning,” in Proceedings of the
30th ACM International Conference on Information and Knowledge Management,
2021, pp. 3122–3126.

[133] Y. Liu, X. Ao, Z. Qin, J. Chi, J. Feng, H. Yang, and Q. He, “Pick and Choose: A
GNN-Based Imbalanced Learning Approach for Fraud Detection,” in Proceedings
of the Web Conference, 2021, pp. 3168–3177.

[134] A. Goodge, B. Hooi, S.-K. Ng, and W. S. Ng, “LUNAR: Unifying Local Outlier
Detection Methods via Graph Neural Networks,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 36, no. 6, 2022, pp. 6737–6745.

[135] A. Deng and B. Hooi, “Graph Neural Network-based Anomaly Detection in
Multivariate Time Series,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 5, 2021, pp. 4027–4035.

[136] R. Longadge and S. Dongre, “Class Imbalance Problem in Data Mining Review,”
arXiv preprint arXiv:1305.1707, 2013.

[137] C. Drumnond, “Class Imbalance and Cost Sensitivity: Why Undersampling Beats
Oversampling,” in ICML-KDD Workshop: Learning from Imbalanced Datasets,
vol. 3, 2003.

[138] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:
Synthetic Minority Over-sampling Technique,” Journal of Artificial Intelligence
Research, vol. 16, pp. 321–357, 2002.

[139] Z.-H. Zhou and X.-Y. Liu, “Training Cost-Sensitive Neural Networks with Methods
Addressing the Class Imbalance Problem,” IEEE Transactions on Knowledge and
Data Engineering, vol. 18, no. 1, pp. 63–77, 2005.

[140] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, “SMOTEBoost:
Improving Prediction of the Minority Class in Boosting,” in European Conference
on Principles of Data Mining and Knowledge Discovery. Springer, 2003, pp. 107–
119.

Bibliography 124

[141] H. He and E. A. Garcia, “Learning from Imbalanced Data,” IEEE Transactions on
Knowledge and Data Engineering, vol. 21, no. 9, pp. 1263–1284, 2009.

[142] S. M. Kazemi, R. Goel, K. Jain, I. Kobyzev, A. Sethi, P. Forsyth, and P. Poupart,
“Representation Learning for Dynamic Graphs: A Survey,” Journal of Machine
Learning Research, vol. 21, no. 70, pp. 1–73, 2020.

[143] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Network Representation Learning: A
Survey,” IEEE Transactions on Big Data, vol. 6, no. 1, pp. 3–28, 2018.

[144] J. Jin, M. Heimann, D. Jin, and D. Koutra, “Toward Understanding and Evaluating
Structural Node Embeddings,” ACM Transactions on Knowledge Discovery from
Data (TKDD), vol. 16, no. 3, pp. 1–32, 2021.

[145] P. Jiao, X. Guo, T. Pan, W. Zhang, Y. Pei, and L. Pan, “A Survey on Role-Oriented
Network Embedding,” IEEE Transactions on Big Data, 2021.

[146] M. Scholkemper and M. T. Schaub, “Local, Global and Scale-Dependent Node
Roles,” in IEEE International Conference on Autonomous Systems (ICAS). IEEE,
2021, pp. 1–5.

[147] I. Chami, S. Abu-El-Haija, B. Perozzi, C. Ré, and K. Murphy, “Machine
Learning on Graphs: A Model and Comprehensive Taxonomy,” arXiv preprint
arXiv:2005.03675, 2020.

[148] A. Grover and J. Leskovec, “node2vec: Scalable Feature Learning for Networks,”
in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 855–864.

[149] X. Ma, G. Qin, Z. Qiu, M. Zheng, and Z. Wang, “RiWalk: Fast Structural Node
Embedding via Role Identification,” in IEEE International Conference on Data
Mining (ICDM). IEEE, 2019, pp. 478–487.

[150] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
Representations of Words and Phrases and Their Compositionality,” Advances in
Neural Information Processing Systems, vol. 26, pp. 3111–3119, 2013.

[151] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online Learning of
Social Representations,” in Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2014, pp. 701–710.

Bibliography 125

[152] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional Neural Networks
on Graphs with Fast Localized Spectral Filtering,” Advances in Neural Information
Processing Systems, vol. 29, 2016.

[153] P. Li, Y. Wang, H. Wang, and J. Leskovec, “Distance Encoding: Design Provably
More Powerful Neural Networks for Graph Representation Learning,” arXiv
preprint arXiv:2009.00142, 2020.

[154] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph
Convolutional Networks,” arXiv preprint arXiv:1609.02907, 2016.

[155] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive Representation Learning
on Large Graphs,” in Proceedings of the 31st International Conference on Neural
Information Processing Systems, 2017, pp. 1025–1035.

[156] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph
Attention Networks,” arXiv preprint arXiv:1710.10903, 2017.

[157] F. Chen, Y.-C. Wang, B. Wang, and C.-C. J. Kuo, “Graph Representation Learning:
A Survey,” APSIPA Transactions on Signal and Information Processing, vol. 9,
2020.

[158] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How Powerful Are Graph Neural
Networks?” arXiv preprint arXiv:1810.00826, 2018.

[159] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A Comprehensive
Survey on Graph Neural Networks,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 32, no. 1, pp. 4–24, 2020.

[160] Y. Zhou, H. Zheng, X. Huang, S. Hao, D. Li, and J. Zhao, “Graph Neural Networks:
Taxonomy, Advances, and Trends,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 13, no. 1, pp. 1–54, 2022.

[161] J. M. Thomas, A. Moallemy-Oureh, S. Beddar-Wiesing, and C. Holzhüter, “Graph
Neural Networks Designed for Different Graph Types: A Survey,” arXiv preprint
arXiv:2204.03080, 2022.

[162] J. Han, Y. Rong, T. Xu, and W. Huang, “Geometrically Equivariant Graph Neural
Networks: A Survey,” arXiv preprint arXiv:2202.07230, 2022.

Bibliography 126

[163] A. Gupta, P. Matta, and B. Pant, “Graph Neural Network: Current State of Art,
Challenges and Applications,” Materials Today: Proceedings, vol. 46, pp. 10 927–
10 932, 2021.

[164] S. Georgousis, M. P. Kenning, and X. Xie, “Graph Deep Learning: State of the Art
and Challenges,” IEEE Access, vol. 9, pp. 22 106–22 140, 2021.

[165] S. Abadal, A. Jain, R. Guirado, J. López-Alonso, and E. Alarcón, “Computing
Graph Neural Networks: A Survey from Algorithms to Accelerators,” ACM
Computing Surveys (CSUR), vol. 54, no. 9, pp. 1–38, 2021.

[166] F. Xia, K. Sun, S. Yu, A. Aziz, L. Wan, S. Pan, and H. Liu, “Graph Learning: A
Survey,” IEEE Transactions on Artificial Intelligence, vol. 2, no. 2, pp. 109–127,
2021.

[167] Y. Xie, Z. Xu, J. Zhang, Z. Wang, and S. Ji, “Self-Supervised Learning of Graph
Neural Networks: A Unified Review,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2022.

[168] L. Waikhom and R. Patgiri, “Graph Neural Networks: Methods, Applications, and
Opportunities,” arXiv preprint arXiv:2108.10733, 2021.

[169] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
“Graph Neural Networks: A Review of Methods and Applications,” AI Open, vol. 1,
pp. 57–81, 2020.

[170] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, “Graph Neural Networks in
Recommender Systems: A Survey,” ACM Computing Surveys (CSUR), 2020.

[171] C. Gao, X. Wang, X. He, and Y. Li, “Graph Neural Networks for Recommender
System,” in Proceedings of the 15th ACM International Conference on Web Search
and Data Mining, 2022, pp. 1623–1625.

[172] J. Chicaiza and P. Valdiviezo-Diaz, “A Comprehensive Survey of Knowledge Graph-
Based Recommender Systems: Technologies, Development, and Contributions,”
Information, vol. 12, no. 6, p. 232, 2021.

[173] W. Jiang and J. Luo, “Graph Neural Network for Traffic Forecasting: A Survey,”
Expert Systems with Applications, p. 117921, 2022.

Bibliography 127

[174] K.-H. N. Bui, J. Cho, and H. Yi, “Spatial-Temporal Graph Neural Network for
Traffic Forecasting: An Overview and Open Research Issues,” Applied Intelligence,
pp. 1–12, 2021.

[175] Z. Diao, X. Wang, D. Zhang, Y. Liu, K. Xie, and S. He, “Dynamic Spatial-Temporal
Graph Convolutional Neural Networks for Traffic Forecasting,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 890–897.

[176] L. Wu, Y. Chen, K. Shen, X. Guo, H. Gao, S. Li, J. Pei, and B. Long, “Graph
Neural Networks for Natural Language Processing: A Survey,” arXiv preprint
arXiv:2106.06090, 2021.

[177] M. Malekzadeh, P. Hajibabaee, M. Heidari, S. Zad, O. Uzuner, and J. H.
Jones, “Review of Graph Neural Network in Text Classification,” in IEEE 12th
Annual Ubiquitous Computing, Electronics & Mobile Communication Conference
(UEMCON). IEEE, 2021, pp. 0084–0091.

[178] X. Zheng, Y. Liu, S. Pan, M. Zhang, D. Jin, and P. S. Yu, “Graph Neural Networks
for Graphs with Heterophily: A Survey,” arXiv preprint arXiv:2202.07082, 2022.

[179] S. Xiao, S. Wang, Y. Dai, and W. Guo, “Graph Neural Networks in Node
Classification: Survey and Evaluation,” Machine Vision and Applications, vol. 33,
no. 1, pp. 1–19, 2022.

[180] J. Wang, S. Zhang, Y. Xiao, and R. Song, “A Review on Graph Neural Network
Methods in Financial Applications,” arXiv preprint arXiv:2111.15367, 2021.

[181] R. Sato, “A Survey on the Expressive Power of Graph Neural Networks,” arXiv
preprint arXiv:2003.04078, 2020.

[182] H. Yuan, H. Yu, S. Gui, and S. Ji, “Explainability in Graph Neural Networks: A
Taxonomic Survey,” arXiv preprint arXiv:2012.15445, 2020.

[183] P. Pradhyumna, G. Shreya et al., “Graph Neural Network (GNN) in Image and
Video Understanding Using Deep Learning for Computer Vision Applications,”
in 2nd International Conference on Electronics and Sustainable Communication
Systems (ICESC). IEEE, 2021, pp. 1183–1189.

[184] K. Han, Y. Wang, J. Guo, Y. Tang, and E. Wu, “Vision GNN: An Image is Worth
Graph of Nodes,” arXiv preprint arXiv:2206.00272, 2022.

Bibliography 128

[185] X. Zeng, X. Tu, Y. Liu, X. Fu, and Y. Su, “Toward Better Drug Discovery with
Knowledge Graph,” Current Opinion in Structural Biology, vol. 72, pp. 114–126,
2022.

[186] T. Gaudelet, B. Day, A. R. Jamasb, J. Soman, C. Regep, G. Liu, J. B. Hayter,
R. Vickers, C. Roberts, J. Tang et al., “Utilizing Graph Machine Learning within
Drug Discovery and Development,” Briefings in Bioinformatics, vol. 22, no. 6, p.
bbab159, 2021.

[187] P. Bongini, M. Bianchini, and F. Scarselli, “Molecular Generative Graph Neural
Networks for Drug Discovery,” Neurocomputing, vol. 450, pp. 242–252, 2021.

[188] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec,
“Open Graph Benchmark: Datasets for Machine Learning on Graphs,” arXiv
preprint arXiv:2005.00687, 2020.

[189] S. Freitas, Y. Dong, J. Neil, and D. H. Chau, “A Large-Scale Database for Graph
Representation Learning,” arXiv preprint arXiv:2011.07682, 2020.

[190] Y. Zhu, Y. Xu, Q. Liu, and S. Wu, “An Empirical Study of Graph Contrastive
Learning,” arXiv preprint arXiv:2109.01116, 2021.

[191] Q. Zheng, X. Zou, Y. Dong, Y. Cen, D. Yin, J. Xu, Y. Yang, and J. Tang,
“Graph Robustness Benchmark: Benchmarking the Adversarial Robustness of
Graph Machine Learning,” arXiv preprint arXiv:2111.04314, 2021.

[192] K.-H. Lai, D. Zha, J. Xu, Y. Zhao, G. Wang, and X. Hu, “Revisiting Time Series
Outlier Detection: Definitions and Benchmarks,” in 35th Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2021.

[193] G. O. Campos, A. Zimek, J. Sander, R. J. Campello, B. Micenková, E. Schubert,
I. Assent, and M. E. Houle, “On the Evaluation of Unsupervised Outlier Detection:
Measures, Datasets, and an Empirical Study,” Data Mining and Knowledge
Discovery, vol. 30, no. 4, pp. 891–927, 2016.

[194] V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and X. Bresson, “Benchmarking
Graph Neural Networks,” arXiv preprint arXiv:2003.00982, 2020.

[195] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls of Graph
Neural Network Evaluation,” arXiv preprint arXiv:1811.05868, 2018.

Bibliography 129

[196] F. Errica, M. Podda, D. Bacciu, and A. Micheli, “A Fair Comparison of Graph
Neural Networks for Graph Classification,” in International Conference on Learning
Representations (ICLR), 2020.

[197] Q. Lv, M. Ding, Q. Liu, Y. Chen, W. Feng, S. He, C. Zhou, J. Jiang, Y. Dong, and
J. Tang, “Are We Really Making Much Progress? Revisiting, Benchmarking, and
Refining Heterogeneous Graph Neural Networks,” pp. 1150–1160, 2021.

[198] Y. Yang, R. N. Lichtenwalter, and N. V. Chawla, “Evaluating Link Prediction
Methods,” Knowledge and Information Systems, vol. 45, no. 3, pp. 751–782, 2015.

[199] R. R. Junuthula, K. S. Xu, and V. K. Devabhaktuni, “Evaluating Link
Prediction Accuracy in Dynamic Networks with Added and Removed Edges,” in
IEEE International Conferences on Big Data and Cloud Computing (BDCloud),
Social Computing and Networking (SocialCom), Sustainable Computing and
Communications (SustainCom)(BDCloud-SocialCom-SustainCom). IEEE, 2016,
pp. 377–384.

[200] ——, “Leveraging Friendship Networks for Dynamic Link Prediction in Social
Interaction Networks,” in 12th International AAAI Conference on Web and Social
Media, 2018.

[201] S. Haghani and M. R. Keyvanpour, “A Systemic Analysis of Link Prediction in
Social Network,” Artificial Intelligence Review, vol. 52, no. 3, pp. 1961–1995, 2019.

[202] Z. Yang, M. Ding, C. Zhou, H. Yang, J. Zhou, and J. Tang, “Understanding
Negative Sampling in Graph Representation Learning,” in Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2020, pp. 1666–1676.

[203] L. Backstrom and J. Leskovec, “Supervised Random Walks: Predicting and
Recommending Links in Social Networks,” in Proceedings of the 4th ACM
International Conference on Web Search and Data Mining, 2011, pp. 635–644.

[204] J. Scripps, P.-N. Tan, F. Chen, and A.-H. Esfahanian, “A Matrix Alignment
Approach for Link Prediction,” in 19th International Conference on Pattern
Recognition. IEEE, 2008, pp. 1–4.

Bibliography 130

[205] D. Liben-Nowell and J. Kleinberg, “The Link-Prediction Problem for Social
Networks,” Journal of the American Society for Information Science and
Technology, vol. 58, no. 7, pp. 1019–1031, 2007.

[206] R. N. Lichtenwalter, J. T. Lussier, and N. V. Chawla, “New Perspectives
and Methods in Link Prediction,” in Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2010, pp. 243–
252.

[207] L. Lü and T. Zhou, “Link Prediction in Complex Networks: A Survey,” Physica A:
Statistical Mechanics and Its Applications, vol. 390, no. 6, pp. 1150–1170, 2011.

[208] M. Maruf and A. Karpatne, “Maximizing Cohesion and Separation in Graph
Representation Learning: A Distance-Aware Negative Sampling Approach,” in
Proceedings of the SIAM International Conference on Data Mining (SDM). SIAM,
2021, pp. 271–279.

[209] B. Kotnis and V. Nastase, “Analysis of the Impact of Negative Sampling on Link
Prediction in Knowledge Graphs,” arXiv:1708.06816, 2017.

[210] J. Skardinga, B. Gabrys, and K. Musial, “Foundations and Modelling of Dynamic
Networks Using Dynamic Graph Neural Networks: A Survey,” IEEE Access, 2021.

[211] G. Xue, M. Zhong, J. Li, J. Chen, C. Zhai, and R. Kong, “Dynamic Network
Embedding Survey,” Neurocomputing, vol. 472, pp. 212–223, 2022.

[212] Y. Han, G. Huang, S. Song, L. Yang, H. Wang, and Y. Wang, “Dynamic Neural
Networks: A Survey,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021.

[213] C. D. Barros, M. R. Mendonça, A. B. Vieira, and A. Ziviani, “A Survey on
Embedding Dynamic Graphs,” ACM Computing Surveys (CSUR), vol. 55, no. 1,
pp. 1–37, 2021.

[214] C. Wu, G. Nikolentzos, and M. Vazirgiannis, “EvoNet: A Neural Network for
Predicting the Evolution of Dynamic Graphs,” in International Conference on
Artificial Neural Networks. Springer, 2020, pp. 594–606.

[215] L. Cai, Z. Chen, C. Luo, J. Gui, J. Ni, D. Li, and H. Chen, “Structural
Temporal Graph Neural Networks for Anomaly Detection in Dynamic Graphs,”

Bibliography 131

in Proceedings of the 30th ACM International Conference on Information and
Knowledge Management, 2021, pp. 3747–3756.

[216] D. Jin, S. Kim, R. A. Rossi, and D. Koutra, “On Generalizing Static Node
Embedding to Dynamic Settings,” in Proceedings of the 5th ACM International
Conference on Web Search and Data Mining, 2022, pp. 410–420.

[217] C. Gao, J. Zhu, F. Zhang, Z. Wang, and X. Li, “A Novel Representation Learning
for Dynamic Graphs Based on Graph Convolutional Networks,” IEEE Transactions
on Cybernetics, 2022.

[218] S. Kumar, X. Zhang, and J. Leskovec, “Predicting Dynamic Embedding Trajectory
in Temporal Interaction Networks,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2019, pp.
1269–1278.

[219] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha, “DyRep: Learning
Representations over Dynamic Graphs,” in International Conference on Learning
Representations, 2019.

[220] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan, “Inductive Representation
Learning on Temporal Graphs,” arXiv preprint arXiv:2002.07962, 2020.

[221] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bronstein,
“Temporal Graph Networks for Deep Learning on Dynamic Graphs,” arXiv preprint
arXiv:2006.10637, 2020.

[222] Y. Wang, Y.-Y. Chang, Y. Liu, J. Leskovec, and P. Li, “Inductive Representation
Learning in Temporal Networks via Causal Anonymous Walks,” in International
Conference on Learning Representations (ICLR), 2020.

[223] Z. Cheng, X. Hou, R. Li, Y. Zhou, X. Luo, J. Li, and K. Ren, “Towards a First
Step to Understand the Cryptocurrency Stealing Attack on Ethereum,” in 22nd
International Symposium on Research in Attacks, Intrusions and Defenses (RAID),
2019, pp. 47–60.

[224] M. Vasek and T. Moore, “Analyzing the Bitcoin Ponzi Scheme Ecosystem,” in
International Conference on Financial Cryptography and Data Security. Springer,
2018, pp. 101–112.

Bibliography 132

[225] C. Brenig, R. Accorsi, and G. Müller, “Economic Analysis of Cryptocurrency
Backed Money Laundering,” in ECIS, 2015.

[226] T. Pham and S. Lee, “Anomaly Detection in the Bitcoin System-A Network
Perspective,” arXiv preprint arXiv:1611.03942, 2016.

[227] T. Chen, Y. Zhu, Z. Li, J. Chen, X. Li, X. Luo, X. Lin, and X. Zhange,
“Understanding Ethereum via Graph Analysis,” in IEEE Conference on Computer
Communications (IEEE INFOCOM). IEEE, 2018, pp. 1484–1492.

[228] J. Gao, W. Fan, J. Han, and P. S. Yu, “A Ggeneral Framework for Mining Concept-
Drifting Data Streams with Skewed Distributions,” in Proceedings of the SIAM
International Conference on Data Mining. SIAM, 2007, pp. 3–14.

[229] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining Concept-Drifting Data Streams
Using Ensemble Classifiers,” in Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2003, pp. 226–235.

[230] C. M. Bishop, Pattern Recognition and Machine Learning. springer, 2006.

[231] C. C. Aggarwal, Data Classification: Algorithms and Applications. CRC Press,
2014.

[232] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[233] G. E. Batista, A. C. Carvalho, and M. C. Monard, “Applying One-Sided Selection
to Unbalanced Datasets,” in Mexican International Conference on Artificial
Intelligence. Springer, 2000, pp. 315–325.

[234] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine
Learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

[235] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying
Density-Based Local Outliers,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2000, pp. 93–104.

[236] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation Forest,” in 8th IEEE International
Conference on Data Mining. IEEE, 2008, pp. 413–422.

Bibliography 133

[237] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,
V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler et al., “API Design for
Machine Learning Software: Experiences from the Scikit-Learn Project,” arXiv
preprint arXiv:1309.0238, 2013.

[238] G. Lemâıtre, F. Nogueira, and C. K. Aridas, “Imbalanced-Learn: A Python
Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning,”
Journal of Machine Learning Research, vol. 18, no. 17, pp. 1–5, 2017. [Online].
Available: http://jmlr.org/papers/v18/16-365.html

[239] E. Badawi and G.-V. Jourdan, “Cryptocurrencies Emerging Threats and Defensive
Mechanisms: A Systematic Literature Review,” IEEE Access, 2020.

[240] B. E. Howell and P. H. Potgieter, “Industry Self-Regulation of Cryptocurrency
Exchanges,” 2019.

[241] H. Huang, W. Kong, S. Zhou, Z. Zheng, and S. Guo, “A Survey of State-of-the-Art
on Blockchains: Theories, Modelings, and Tools,” arXiv preprint arXiv:2007.03520,
2020.

[242] P. Goyal and E. Ferrara, “Graph Embedding Techniques, Applications, and
Performance: A Survey,” Knowledge-Based Systems, vol. 151, pp. 78–94, 2018.

[243] A. P. Motamed and B. Bahrak, “Quantitative Analysis of Cryptocurrencies
Transaction Graph,” Applied Network Science, vol. 4, no. 1, pp. 1–21, 2019.

[244] “Bitcoin Block Explorer and API,” https://sochain.com/, (Accessed on
09/15/2020).

[245] “Blockchain-ETL/Ethereum-ETL,” https://github.com/blockchain-etl/
ethereum-etl, (Accessed on 09/15/2020).

[246] “Ethereum Scam Database,” https://etherscamdb.info/scams, (Accessed on
05/14/2020).

[247] L. v. d. Maaten and G. Hinton, “Visualizing Data Using t-SNE,” Journal of Machine
Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[248] T. Pourhabibi, K.-L. Ong, B. H. Kam, and Y. L. Boo, “Fraud Detection: A
Systematic Literature Review of Graph-Based Anomaly Detection Approaches,”
Decision Support Systems, vol. 133, p. 113303, 2020.

http://jmlr.org/papers/v18/16-365.html
https://sochain.com/
https://github.com/blockchain-etl/ethereum-etl
https://github.com/blockchain-etl/ethereum-etl
https://etherscamdb.info/scams

Bibliography 134

[249] W. Kudo, M. Nishiguchi, and F. Toriumi, “GCNEXT: Graph Convolutional
Network with Expanded Balance Theory for Fraudulent User Detection,” Social
Network Analysis and Mining, vol. 10, no. 1, pp. 1–12, 2020.

[250] S. Kumar and N. Shah, “False Information on Web and Social Media: A Survey,”
arXiv preprint arXiv:1804.08559, 2018.

[251] P. Massa and P. Avesani, “Trust-Aware Recommender Systems,” in Proceedings of
the ACM conference on Recommender Systems, 2007, pp. 17–24.

[252] S. Sakr, A. Bonifati, H. Voigt, A. Iosup, K. Ammar, R. Angles, W. Aref, M. Arenas,
M. Besta, P. A. Boncz et al., “The Future is Big Graphs: A Community View on
Graph Processing Systems,” Communications of the ACM, vol. 64, no. 9, pp. 62–71,
2021.

[253] F. Monti, F. Frasca, D. Eynard, D. Mannion, and M. M. Bronstein, “Fake
News Detection on Social Media Using Geometric Deep Learning,” arXiv preprint
arXiv:1902.06673, 2019.

[254] I. Chami, A. Wolf, D.-C. Juan, F. Sala, S. Ravi, and C. Ré, “Low-Dimensional
Hyperbolic Knowledge Graph Embeddings,” arXiv preprint arXiv:2005.00545,
2020.

[255] “Get Involved in Graphs 4 COVID-19,” https://neo4j.com/graphs4good/covid-19/,
accessed: 2021-11-04.

[256] M. Paquet-Clouston, M. Romiti, B. Haslhofer, and T. Charvat, “Spams Meet
Cryptocurrencies: Sextortion in the Bitcoin Ecosystem,” in Proceedings of the 1st
ACM Conference on Advances in Financial Technologies, 2019, pp. 76–88.

[257] T. Zhao, X. Zhang, and S. Wang, “GraphSMOTE: Imbalanced Node Classification
on Graphs with Graph Neural Networks,” in Proceedings of the 14th ACM
International Conference on Web Search and Data Mining, 2021, pp. 833–841.

[258] Y. Wang, Y. Cai, Y. Liang, H. Ding, C. Wang, S. Bhatia, and B. Hooi, “Adaptive
Data Augmentation on Temporal Graphs,” Advances in Neural Information
Processing Systems, vol. 34, 2021.

https://neo4j.com/graphs4good/covid-19/

Bibliography 135

[259] S. Tian, T. Xiong, and L. Shi, “Streaming Dynamic Graph Neural Networks for
Continuous-Time Temporal Graph Modeling,” in IEEE International Conference
on Data Mining (ICDM). IEEE, 2021, pp. 1361–1366.

[260] W. Hu, M. Fey, H. Ren, M. Nakata, Y. Dong, and J. Leskovec, “OGB-LSC: A Large-
scale Challenge for Machine Learning on Graphs,” arXiv preprint arXiv:2103.09430,
2021.

[261] J. Shetty and J. Adibi, “The Enron Email Dataset Database Schema and Brief
Statistical Report,” Information Sciences Institute Technical Report, University of
Southern California, vol. 4, no. 1, pp. 120–128, 2004.

[262] A. Madan, M. Cebrian, S. Moturu, K. Farrahi et al., “Sensing the ”Health State”
of a Community,” IEEE Pervasive Computing, vol. 11, no. 4, 2011.

[263] P. Panzarasa, T. Opsahl, and K. M. Carley, “Patterns and Dynamics of Users’
Behavior and Interaction: Network Analysis of an Online Community,” Journal of
the American Society for Information Science and Technology, vol. 60, no. 5, pp.
911–932, 2009.

[264] M. Schäfer, M. Strohmeier, V. Lenders, I. Martinovic, and M. Wilhelm, “Bringing
up OpenSky: A Large-Scale ADS-B Sensor Network for Research,” in IPSN-14
Proceedings of the 13th International Symposium on Information Processing in
Sensor Networks. IEEE, 2014, pp. 83–94.

[265] S. Huang, Y. Hitti, G. Rabusseau, and R. Rabbany, “Laplacian Change Point
Detection for Dynamic Graphs,” in Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2020, pp. 349–
358.

[266] J. H. Fowler, “Legislative Sponsorship Networks in the US House and Senate,”
Social Networks, vol. 28, no. 4, pp. 454–465, 2006.

[267] G. K. MacDonald, K. A. Brauman, S. Sun, K. M. Carlson, E. S. Cassidy, J. S.
Gerber, and P. C. West, “Rethinking Agricultural Trade Relationships in an Era
of Globalization,” BioScience, vol. 65, no. 3, pp. 275–289, 2015.

[268] E. Voeten, A. Strezhnev, and M. Bailey, “United Nations General Assembly
Voting Data,” 2009. [Online]. Available: https://doi.org/10.7910/DVN/LEJUQZ

https://doi.org/10.7910/DVN/LEJUQZ

	Introduction
	Motivation
	Network Data as Graphs
	Graph Anomaly Detection
	Problem Studied

	Thesis Contributions
	Contribution of Authors
	Overview of Thesis Organization

	Background and Related Work
	Blockchain-based Crypotcurrency Networks
	An Overview of Blockchain
	An Overview of Bitcoin Network
	An Overview of Ethereum Network
	Related Studies on Blockchain Transactions Analysis
	Related Studies on Smart Contracts Security Exploration
	Categorization of Related Studies on Blockchain Analysis

	Detecting Anomalous Entities in Networks
	Anomaly Detection via Node Classification
	Imbalanced Classification

	Graph Representation Learning
	Network Embedding
	Graph Neural Networks (GNNs)
	Benchmarking Graph Learning Methods
	Negative Sampling (NS) of Edges in Graphs
	Dynamic Graph Neural Networks

	Detecting Illicit Accounts on a Cryptocurrency Network
	Introduction
	Detecting Malicious Ethereum Entities
	Data Collection
	Feature Extraction and Dataset Preparation
	Tasks and Solutions

	Experimental Evaluation
	Evaluating the importance of the feature extraction
	Evaluating the performance of the unsupervised vs. supervised classification methods
	Evaluating the impact of dataset imbalance and different re-sampling techniques
	Evaluating the performance of the ensemble methods

	Conclusion

	Graph-based Detection of Illicit Entities in Transaction Networks
	Introduction
	Problem Formulation and Proposed Method
	Transaction History Retrieval
	Network Construction
	SigTran
	Node Classification

	Experimental Analysis
	Datasets
	Baseline Methods
	Performance Evaluation

	Conclusion

	Graph-based Anomaly Detection in Temporal Graphs
	Introduction
	TGBase for Node Classification
	TGBase
	Static vs. Dynamic Node Classification.
	TGBase for Static Node Classification.
	Impact of Different Groups of TGBase features.
	TGBase for Dynamic Node Classification.

	On Detection of Anomalies in Graphs
	Anomaly Detection in Graphs as Node Classification
	Experimental Analysis
	Evaluation Settings
	Results Analysis and Recommendations
	Conclusion

	Appendix: Additional Results

	Towards Better Evaluation for Dynamic Link Prediction
	Introduction
	Background
	Dynamic Graph Datasets
	Visualizing Dynamic Graphs
	Temporal Edge Appearance (TEA) Plot
	Temporal Edge Traffic (TET) Plot

	EdgeBank Baseline for Dynamic Link Prediction
	Negative Sampling in Dynamic Graphs
	Random Negative Sampling
	Historical Negative Sampling
	Inductive Negative Sampling

	Experiments
	Conclusion
	Appendix: Extended Results

	Conclusion
	Future Directions
	Anomaly Detection on Dynamic Graphs
	Learning on Dynamic Networks with Unbalanced Labels
	Efficient Incorporation of Interpretable Features in GNNs
	Consistent Benchmarks and Evaluation Setups

	List of Publications

