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Abstract

Fast, accurate and stable simulation algorithms targeting mechanical systems have long

been a major concern for engineers, computer scientists and physicists. Many important

applications of dynamics exist, ranging from exploring the behaviour of physical systems,

to designing new mechanical systems and objects with applications to manufacture, design,

computer graphics and fundamental research. Real-time numerical integration methods are

needed in interactive simulation, such as found in simulation environments for training,

haptic devices, and other interactive virtual environments, which simulate large, complex

systems whose models cannot be handled symbolically. In this thesis we are interested in

the problem of simulating large, fairly complex systems in real-time. Consequently, first-

order integration methods are studied, given that it is currently not possible to solve a

large number of highly nonlinear problems quickly enough to perform numerically stable,

high-order accuracy numerical integration in real time. Also, due to the time constraints at

play, numerical stability must be prioritized over accuracy, as large integration time steps

are required. The types of applications mentioned above tend to require the simulation of

systems involving articulated rigid bodies and contact, as many of the mechanisms that are

operated by humans are of this type. To that end, our first systems of interest are open

chains of rigid bodies, as explored in Chapters 3 and 4.

The contribution of Chapter 3 is a generalization of the geometric stiffness method. The

original method is only applicable to systems with a flat configuration space, thereby ruling

out real-life dynamic behaviour, such as rigid body rotation. The geometric stiffness method

is extended to cover the case of an arbitrary configuration space. Furthermore, a monitoring

method is developed to dynamically alter the extent of the energy dissipation due to the

geometric stiffness term, which allows for good enough control of dissipation so as to let the

analyst reach a better compromise between energy conservation and stability than with the

geometric stiffness term alone. The contribution of Chapter 4 on chains of rigid bodies is a

method of selection of constraint stabilization parameters. The stabilization coefficients are

related to the stiffness and damping coefficients that relax the system constraints, whereby

the constraints are integrated over a smaller time step using an asynchronous integration

method. This allows a physically-based choice of stabilization coefficients, and a guarantee
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of energy consistency, with, on average, an improvement in constraint satisfaction.

In Chapter 5, the real-time simulation of flexible bodies is investigated. Due to the con-

straints upon the integration method, i.e., speed and stability, we necessarily limit ourselves

to first-order time-stepping integration methods. The first part of this section demonstrates

a fast first-order method for the integration of models involving flexible bodies, which are de-

scribed using the Absolute Nodal Coordinate Formulation (ANCF). The integration method

can stably integrate ANCF elements over a large range of stiffness values. The key novel

contribution is a set of stabilization terms, which only require the computation of the first

derivatives of the strain. The method does not depend on any tunable parameters, the only

variable introduced in the discretization and stabilization of the method being the time step

itself. The integration method is then extended to arbitrary ANCF elements. This includes

cable elements, shell elements and volumetric elements with arbitrary shape functions.

In Chapter 6, an integration algorithm for ANCF elements in nonsmooth systems is

developed. Four different approximations of the Coulomb friction model are compared and

contrasted against each other. The four different models are adaptations of a penalty method

with regularized Coulomb friction, the box friction model, a more general discretized friction

cone model, and the full nonlinear problem solved via the prox method. Adaptations are

made to the models so that they can be applied to the finite-element case, e.g., via a set of

weighted contact forces that are introduced to improve the estimation of the overall contact

force. The introduction of these forces necessitates adaptations of the various relaxation

parameters and bounds in each of the methods. The models are evaluated by means of a

number of non-trivial examples, testing different aspects of the contact formulation. The final

part of Chapter 6 demonstrates the construction of a single monolithic integration method

for rigid and flexible bodies with contact, and, in particular, the construction of constraints

between the angular velocity of a rigid body and ANCF elements. Together with the above

contact work, a single monolithic time-stepper, which handles the flexible and rigid degrees

of freedom simultaneously, is presented.
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Résumé

Les algorithmes de simulation rapides, précis et stables pour les systèmes mécaniques sont

depuis longtemps l’intérêt des ingénieurs, informaticiens et physiciens. Plusieurs applications

dynamiques importantes existent, de l’exploration du comportement des systèmes physiques,

jusqu’à la conception de nouveaux systèmes mécaniques et objets ayant des applications en

fabrication, conception, et recherche fondamentale. Des méthodes temps réel d’intégration

numérique sont requises pour les simulations interactives, tels que les environnements d’en-

trâınement, les dispositifs haptiques ainsi que d’autres environnements virtuels qui simulent

des systèmes larges et complexes pour lesquels les modèles ne peuvent pas être définis sym-

boliquement. Dans cette thèse, nous sommes intéressés au problème de la simulation en

temps réel des systèmes larges et relativement complexes. Par consèquent, nous recherchons

les méthodes d’intégration du premier ordre, tout en, considérant qu’il n’est pas possible,

à l’heure actuelle, de résoudre un grand nombre de problèmes hautement non linéaires as-

sez rapidement pour rèaliser des intégrations numériques en temps réel qui soient stables

et précises. De plus, en raison des contraintes de temps, la stabilité numérique doit être

priorisée par rapport à la précision, puisque de grands intervalles de temps sont nécessaires.

Le type d’application mentionné ci-dessus, la simulation de systèmes impliquant des corps

rigides articulés et des contacts, puisque plusieurs mécanismes opérés par les humains sont

de ce type. À cet effet, nos premiers systèmes d’intérêt sont les châınes de corps rigides, tel

qu’exploré dans les Chapitres 3 et 4.

La contribution du Chapitre 3 est une généralisation de la méthode de rigidité géométrique.

La méthode originale est seulement applicable aux systèmes ayant un espace de configuration

plan, excluant ainsi des comportements dynamiques nécessaires tel que les rotations de corps

rigide. La méthode de rigidité géométrique est étendue afin de couvrir le cas d’un espace de

configuration arbitraire. De plus, une méthode de contrôle est développée afin d’altérer dy-

namiquement la dissipation d’énergie causée par le terme de la rigidité géométrique, ce qui

permet un bon contrôle de la dissipation, permettant ainsi aux analystes d’obtenir un meilleur

compromis entre conservation d’énergie et stabilité qu’avec le terme de rigidité géométrique

seulement. La contribution du Chapitre 4 pour les châınes de corps rigides est une méthode

de sélection des paramètres de contrainte de stabilisation. Les coefficients de stabilisation
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sont reliés aux coefficients du rigidité et d’amortissement qui relâchent les contraintes du

système, où les contraintes sont intégrées sur un plus petit intervalle de temps en utilisant

une méthode d’intégration asynchrone. Ceci permet de choisir les coefficients de stabilisation

en fonction de la physique, ainsi qu’une garantie de la consistance de l’énergie, ce qui, en

moyenne, améliore la satisfaction des contraintes.

Au Chapitre 5, la simulation temps réel des corps flexibles est ètudièe. En raison des

contraintes impliquées dans la méthode d’intégration, c’est-à-dire, la rapidité et la stabilité,

nous nous limitons aux méthodes d’intégration par intervalle de temps de premier ordre. La

première partie de cette section démontre une méthode d’intégration rapide de premier ordre

pour les corps flexibles qui sont décrits en utilisant la Formulation par Coordonnèes Absolues

des Nœuds (FCAN). Cette méthode peut intégrer stablement des éléments FCAN sur une

grande plage de valeurs de rigidité. La contribution est un ensemble de termes de stabilisa-

tion qui requiert uniquement le calcul de la première dérivée de l’élongation. Cette méthode

ne dépend d’aucun paramètre ajustable ; la seule variable introduite dans la discrétisation

et stabilisation de la méthode est l’intervalle de temps. La méthode d’intégration est ensuite

étendue aux éléments FCAN arbitraires. Ceci inclut des éléments câbles, des éléments coques

ainsi que des éléments volumétriques avec des fonctions de forme arbitraires.

Dans le Chapitre 6, un algorithme d’intégration pour éléments FCAN pour systèmes non

réguliers est développé. Quatre approximations différentes du modèle de friction de Coulomb

sont comparées. Les quatre modèles sont des adaptations de la méthode par pénalisation avec :

du frottement de Coulomb régularisée, un modèle de du frottement bôıte, une discrétisation

générale du frottement cône ainsi que le problème non linéaire complet résolu par la méthode

prox. Des adaptations sont faites à ces modèles afin qu’ils soient applicables à la méthode

par éléments finis, par exemple, au moyen d’un ensemble de forces de contact pondérées

introduit pour améliorer l’estimation de la force de contact globale. L’introduction de ces

forces de contact pondérées nécessite l’adaptation de quelques paramètres de relaxation et

de limites dans chacune des méthodes. Les modèles sont évalués par l’entremise d’un nombre

d’exemples non triviaux, vérifiant différents aspects de la formulation de contact. Dans la

dernière partie du Chapitre 6 l’auteur dèmontre la construction d’une méthode d’intégration

monolithique unique pour corps rigides et flexibles avec contact, plus particulièrement, la
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construction de contraintes entre les vitesses angulaires des corps rigides et les éléments

FCAN. Combinée avec le travail sur les contacts mentionné ci-dessus, l’auteur prèsente une

méthode unique monolithique par intégration en temps discret qui vise simultanément les

degrés de liberté flexibles et rigides.
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Chapter 1

Introduction

1.1 Motivation

The modelling and simulation of mechanical systems has been an ever present objective for

engineers since the advent of simulation. Simulation, a common tool in engineering, is often

used at an abstract level to assist in making decisions involving logistics, management and

risk assessment.[1–4] It can be used at various points in optimization and control; for this

kind of application, simulation of the system in question is often required [5, 6].

Simulation has a number of advantages when applied to the analysis and design of me-

chanical systems. This tool allows for a faster design process [3], testing of systems for which

this is not feasible in reality, due to safety issues or cost [7, 8], the savings of time and man-

power [9], while allowing access to system variables that are inaccessible in real life, such as

the strain distribution within a beam.

In the future, the applicability of simulation is only expected to increase. Machine learning

algorithms that can be trained by simulation are becoming a reality [10]. So are increasingly

sophisticated real-time simulators, which can train humans to operate complex, potentially

dangerous, and expensive pieces of machinery in complete safety. As computational power

increases, there are more opportunities to deploy realistic simulation in other haptic appli-

cations, as well as in robotic control systems.

Many of the current and potential future applications, therefore, have similar requirements.

That is, the requirement to simulate a fairly complex mechanical system, containing both

rigid and flexible bodies, in real-time. For example, a crane-operations training simulator
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requires both a simulation of the vehicle itself, as well as the cables it manipulates. The

Canadian Space Agency’s (CSA)’s Canadarm2 [11] uses extremely-high-tension cables to

snare a secure grip in zero gravity, and many robots and rovers contain flexible or deformable

parts, such as rubber wheels and/or continuous tracks [12]. Both training and control for

these systems must occur in real-time to be effective. It is also noteworthy that in many of

these systems, the flexible components are highly deformable. Cables must be able to bend

over pulleys, flexible belts must be able to wrap around rotating drive shafts etc. However,

there is one more noteworthy issue that all these systems have in common–they all rely

upon contact to perform their tasks. The cables in the crane are manipulated by pulleys

and winches, the CSA’s Canadarm2 must make contact with the pin to which it grapples,

and rovers and robots all require contact with the ground in order to move. Hence, there

is a real need for simulation technology capable of simulating systems of rigid and flexible

bodies that can undergo large deformations, in real-time and with contact. It is to this class

of tasks that this thesis is aimed.

The above tasks require a method of describing and simulating flexible bodies that can

capture large deformations, in addition to a good description of the rigid body modes. This

is particularly important for interactive, physically accurate simulation, due to the large dis-

placements bodies can undergo and the contact interactions between the bodies. The other

requirements for such an integration method are stability and speed. Such a method must be

stable at relatively long integration time-steps, which calls for some kind of numerical damp-

ing. This damping should affect the simulation as little as possible, leading to a situation of

graceful degradation [13], where instabilities are prevented at the cost of a minimal amount

of physical realism. The computer graphics community has developed a large number of

methods for such tasks [14] but these lack the accuracy and physical basis that is essential

for engineering applications.

Before going any further, it is worth defining what is meant by real-time in this thesis.

It is well known that certain problems can be solved fast enough for real-time simulation,

e.g., linear problems that have a sufficiently small number of variables. In this thesis, the

numerical integration will require the solution of a (Mixed) Linear Complementarity Problem

(MLCP). It is known, that with a good choice of algorithms and data structures, such
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problems can be solved in real-time if the lead matrix has a dimension lower than 1000×1000.

An example of this can be seen in CM Labs’ Vortex software [15]. The focus in this thesis

is the design of methods that balance accuracy, speed and stability, and produce problems

of this size so that, in principle, real-time simulation rates can be achieved. However, we

are not concerned with the software engineering which goes into solving those problems in

real-time. That is left to the computer scientists and software engineers.

Before beginning to put forth our work on this topic, and review the relevant technical

literature, it is worthwhile taking a quick, high-level survey of the current tools available to

perform real-time multibody and flexible-body physics simulation. It is not worth going into

great detail as to how they are formulated, but it is worthwhile to highlight the gap that the

work of this thesis aims to fill. Many finite element modelling systems are available on the

market, but they are not aimed at real-time simulation, nor do many of them have a focus

on mechanisms; however, there are a number of systems which perform real-time multibody

simulations and model flexible bodies to various degrees of accuracy.

There are a large number of software offerings with an extensive history for generic multi-

body simulation; as such, it is impossible to review them all. Possibly the most popular

software package is Adams, from MSC. This is a comprehensive multibody simulation pack-

age, with a flexible-body extension. Recently, Adams has released a real-time component

for use in hardware-in-the-loop vehicle simulation. Other well-established packages include

RecurDyn and Simpak. RecurDyn is a package for rigid and flexible multibody systems anal-

ysis, which is particularly focused on accuracy. Simpak is more focused on the modelling

of high-frequency vibration and shock in flexible bodies. Other large companies also offer

similar software packages, such as Altair, with a suite of software packages, mostly aimed at

structural design, and various problems involving deformable bodies, such as metal forming.

Siemans offers LMS Virtual.Lab, which, again, examines structural integrity and vibrations

of mechanical systems, while also providing software solutions for mechanism analysis and

multibody-system dynamics. Ansys and Abaqus also offer finite-element modelling pack-

ages, which are widely used in industry and academia. All of the software packages in this

short list, as well as the multitude of smaller packages available, are for critical engineering

purposes; as such, they target accuracy over speed, thereby not being suitable for real-time
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simlation.

In comparison, there are relatively few commercial software packages available for real-

time multibody simulation. Vortex, from CMLabs [15], is one example; it is used in training

simulators and for general real-time multibody simulation. Currently, flexible cables are

implemented as a chain of rigid bodies; to date, flexible bodies are not available in the main

release. Algoryx offers the AGX Dynamics software package [16]. This offering is focused on

rigid-body simulation, but includes wires and cables via lumped-mass models. Mevea [17],

is a multibody dynamics system more focused around the simulation of vehicles and other

machines, including hydraulics and power transmission. They do not advertise any particular

flexible body facilities.

There are a number of open-source software solutions that also offer multibody simulation

with contact, with some extra features for flexible bodies. The Open Dynamics Engine [18]

is an older offering focused on multibody simulation, and also contains a collision-detection

engine. It stills finds use in robotics applications [19]. More recent simulation libraries

are found in MuJoCo [20] and Bullet [21]. These software solutions are more aimed at

gaming applications than accurate physics simulations, but both do find use in robotics

simulation. Moreover, they both have relatively robust contact force solutions. Bullet uses

an LCP type formulation for contacts between rigid bodies, while MuJoCo uses its own soft

contact algorithms. They both implement flexible bodies using lumped-mass models, and so

effectively implement flexible bodies as chains or webs of rigid bodies with soft constraints

between them. Project Chrono [22] is a similar open source software library, which does

include plate and beam finite elements. However, its linearized implicit integrator has some

drawbacks, namely, energy overdissipation and the complexity of the Jacobian computation.

It is also unclear how contact forces are implemented for the flexible elements; for the general

integration method Chrono uses a Cone Complementarity problem formulation, which is only

accurate for rolling friction. Lastly MBDyn [23] has a relatively equal focus on rigid and

flexible bodies, but is aimed more at analysis applications rather than real-time simulation.

A number of comparisons of some of these real-time simulation solutions have been made.

Erez et al. [24], conducted a study comparing Bullet, Havok, MuJoCo, ODE and PhysX

in the engineering context of robotics simulation. They found that MuJoCo performs best
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at robotics applications, whereas the other four have various advantages and disadvantages,

though all perform similarly well overall. Other surveys are difficult to come by, but Kim et

al. [25] compared Vortex, Bullet and ODE in a simple contact task, and found Vortex to be

significantly more accurate in determining the contact forces than the others.

1.2 Thesis Objectives

There is currently no real-time, efficient, stable, large-deformation finite element method

available on the market that cleanly interfaces with rigid body solvers and includes a full,

accurate contact solution. Our overarching aim is to contribute to such a method. The

real-time flexible body methods that do exist are based mostly on rigid-body or lumped-

parameter type models, which, in the presence of high stiffness values, suffer from stability

problems [26]. It is a secondary aim of this work to develop improvements for the stabilization

of these already existing methods for simulating flexible bodies. Hence, the objectives of this

thesis break down into:

• Produce methods to stabilize chains of rigid bodies that can be subject to large mass

ratios, at a real-time rate of simulation. Particular care must be paid to attempting to

retain simulation accuracy; hence, the methods should include the ability to incorporate

contact.

• Produce methods to improve constraint satisfaction without sacrificing stability, to

increase the ability of lumped-parameter-type methods to simulate stiff systems.

• Develop methods to simulate flexible bodies in detail, at a real-time rate of simulation,

whilst retaining the essential elements of the whole flexible body. In other words,

develop a real-time finite element simulation method that is numerically stable and

can cope with stiff flexible bodies.

• Add an accurate contact model to such a method, to allow the real-time simulation

of flexible bodies such as beams and cables that are subject to contact, where the

contacts can be redundant and where the system can reproduce the nonsmooth aspects

of unilateral contact and friction.
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• Develop methods to interface such a simulation method with a rigid body solver, allow-

ing contact, constraints and other interactions between flexible and rigid bodies, and

do so such that the overall monolithic simulation can be performed in real-time.

1.3 Thesis Organization

The thesis consists of seven chapters, including this short introductory chapter. Chapter 2

is a comprehensive review of past and prerequisite material. The intention is that any

material relevant to more than one chapter of the thesis can be found in this chapter. It

consists of three sections, the first is a literature review on the numerical integration of

mechanical systems. This is a massive subject, and so, the focus is placed on methods to

stabilize constraints, and methods to incorporate contact into time-stepping algorithms. The

second section reviews the basic ideas of continuum mechanics, and focuses on the Absolute

Nodal Coordinate Formulation (ANCF) method aimed at the finite element simulation of

systems with flexible bodies. Due attention is paid to methods available in the literature

involving multibody applications of ANCF elements, and simulation tasks using the ANCF,

that involve contact. The last section is a brief review of some essential mathematical

prerequisites for the thesis. Extra background material can be found in the appendices.

In Chapter 3 an improvement to the geometric stiffness method of Tournier et al. [26] and

methods to improve the accuracy of the simulation are developed via a simple control law

to improve the energetic behaviour of the system. These methods are applied to chains of

rigid bodies, and demonstrate an improvement in simulation stability and accuracy. Chap-

ter 4 investigates a method inspired by the theory of Asynchronous Variational Integrators

to improve constraint satisfaction at large time steps. A systematic, novel method for im-

posing constraints, termed the Variational Penalty method is exhibited. The relationship

to other common methods is discussed, providing an interesting interpretation, and method

of selection, for common parameters in penalty and augmented Lagrangian-type methods.

In Chapter 5 the examination of the ANCF method is begun, and a first-order integrator

with novel stabilization terms is developed, which allows flexible body simulations to be

performed in real-time, whilst retaining a good degree of accuracy. It is shown how the inte-

gration method is appropriate for generic ANCF elements, which obey a generalized Hookean
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stress-strain relationship. The method is demonstrated via a number of simulation examples.

Chapter 6 continues this invesitgation, extending the integration method to a nonsmooth

generalization. Four different contact models are applied to the system; the penalty method

with regularized friction, the Anitescu-Potra method, the Box-friction method and the Prox

method. The methods undergo slight reformulation to be appropriate for the continuum

aspects of the simulation and are then compared and contrasted via a number of different,

non-trivial simulation examples. A monolithic integrator for the simulation of systems that

include both rigid and flexible bodies is then developed.

In Chapter 7 the main results of the thesis are summarized, and compared to the above

objectives. Recommendations for future work are also included.
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Chapter 2

Literature Review

2.1 Temporal discretization of the dynamics of mechan-

ical systems

In real-time simulation, one must employ robust methods of capturing the transient be-

haviour of the system. One common method is based on the discretization of the dynamical

equations in the time domain, to produce a map that takes a state xk at time tk to a state xk+1,

at time tk+1. This procedure is commonly known as time-stepping. This section discusses

and reviews the various time-stepping methods available in the literature, and evaluates them

against our objectives. First a brief overview of time-stepping methods, and a discussion

of the type of time-stepping most relevant to our problem are provided. Next, a discussion

of the numerical stability of first-order time-stepping methods is included. This is followed

by an overview of methods for constraint stabilization, and by a review of time-stepping

methods for simulating nonsmooth systems. As a brief note, the numerical integration of

mechanical systems is referred to in many ways, often the ‘numerical’ qualifier being left

implied, the phrase integration being used alone when the context of numerical integration

is clear. If it is established that an integration method is of the time-stepping variety, then

the numerical-integration scheme may be referred to as ‘time-stepping’ or ‘integration’. The

set of rules for performing the numerical integration are often referred to as an ‘integrator’,

a phrase that is used often in this context.
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2.1.1 Basic considerations for time-stepping

The objective of a time-stepping method for a mechanical system, which is not subject to

any explicit constraints, is to find an approximate solution to the differential equation:

x =


q

v


 , dx

dt
= g(x, t) =


 Nv(t)

M−1f(t)


 (2.1)

where q ∈Rn represents the configuration of the system and v ∈Rm, the generalized velocity

of the system. The matrix N(q) ∈ Rn×m is the map between the generalized velocities and

the time derivatives of the configuration variables, and the matrix M(q) is the mass matrix

of the system. An extraordinary amount of time-stepping integration schemes for mechanical

systems are available. Specifically for mechanical systems, single step, time-stepping methods

are based on an impulse-momentum formulation of the dynamics [27]. Many books contain

modern reviews of generic time-stepping methods, as well as other methods for the numerical

solution of ordinary differential equations [28, 29]. The first and most important classification

criterion of an integration scheme is the order of accuracy. Each time-stepping integrator

originates from some discretization of a system of differential equations. This discretization

has an order of accuracy in the time step h. This order describes the order in h of the error

between the solution of the continuous equation and the result of the numerical integration.

The general setup of a time-stepping algorithm is that there is a state of the system

x ∈ TQ at time t, while the time-stepping rule is a map that takes x and returns x+ where

x+ is the state at time t + h, h being the length of the time-step. In general, the state at

time kh is specified by a state xk. The more concise notation x and x+ will be used when it

is clear that only the current time step and next time step are involved. It is also useful to

define x− as the state at t−h.

The objective of any time-stepping method is to give a predictable and controllable esti-

mate of the true solution to the continuous dynamics under consideration. Predictable in

the sense that it is understood how the error between the numerical solution is related to

the solution of the continuous-time equations, and controllable in the sense that decreasing

the time step reduces the error between the discrete-time solution and the continuous-time
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Figure 2.1 Schematic comparison between the continuous and discrete trajectories.

solution. These properties are essential for the numerical solution to be trustworthy; they

are discussed in more detail in appendixA. In Fig.2.1 the comparison between the continuous

trajectory, and the discrete points produced by the time-stepper are depicted.

The basic suite of first-order accurate methods; explicit Euler, implicit Euler and semi-

implicit Euler are widely known. Explicit Euler is extremely fast, but very unstable; implicit

Euler is stable, but often requires the solution of a nonlinear equation; semi-implicit Euler,

also known as the Newton-Stormer-Verlet method, is widely used in real-time applications.

In fact, the semi-implicit Euler method, when properly formulated, is in fact a variational

integrator. Variational integrators are those that can be derived from a discrete variational

principle and enjoy many useful properties. A good summary can be found in the litera-

ture [30, 31].

The choice of integration method, e.g., implicit vs. explicit, order of accuracy, etc. is

largely determined by the type of equations to be integrated, the degree of accuracy required,

and the speed at which the integration must occur. In the bulk of this thesis, the focus is

on first-order accurate methods. Despite being the least accurate consistent methods, first-

order methods are considered for two reasons. Firstly, they are fast; secondly, any generic

time-stepping method that includes contact will only ever be first-order accurate.

When using a purely time-stepping integration method, unilateral constraints, i.e., con-

tact interactions, will reduce the order of accuracy of the integration method to first-order,

regardless of how the continuous dynamics is simulated [32, 33]. This is because the effect

of the unilateral constraint can only be incorporated at the instants of the time-stepper, but

10



Ph.D. Thesis 2.1. Temporal discretization of the dynamics of mechanical systems

the impact time itself can be critical in determining future behaviour. Since the impact time

is only ever accurate to first-order, so is the rest of the trajectory. There are ways around

this; for example, one can use an event driven scheme, to determine the impact time with

increased accuracy, but determining the impact time will drastically slow down any simula-

tion, especially in simulation tasks with a large amount of contacts, and this approach also

necessitates handling persistent contacts separately. Therefore, for relatively fast physics

simulation tasks with many contacts, a first-order integrator provides a good compromise

between speed and accuracy [32].

Having established that a good choice for the application is a first-order integrator, the

aforementioned Euler integrators are considered. The explicit Euler method is not used too

much, as it is very unstable, but it does find some use in finite element models [34]. To make

the discussion concrete, recall the form in Eq. (2.1). The method is extremely fast, as to

take a time step, one need only compute the value of g at the configuration of the current

instant. However, the performance is abysmal for stiff problems, an extremely small time

step being required for the explicit Euler method to remain stable. This instability manifests

itself as a spontaneous gain of energy in the system. In fact, for a linear test equation, the

explicit Euler method requires the smallest time step of the three to remain stable [35]. This

makes the method unsuitable for real-time simulation purposes, as the time steps required

for stability are too small for the computations to be completed in real-time.

The implicit Euler method is the other extreme. In this method, g is computed at the

upcoming state, xn+1 [35]. This gives a potentially highly nonlinear equation to solve. In

general, this requires some sort of iterative method to solve; computationally, this often

requires numerically approximating a Jacobian matrix [36]. Solving this equation makes the

implicit Euler method very slow, making it difficult to recommend for most problems. The

reason to use this method is that it is extremely stable because it is highly dissipative [35].

To derive an approximate form thereof one can linearize the implicit term, allowing a linear

system of equations to be solved to find the configuration at the next time step. This can

be useful, as it provides an increased amount of stability but only requires the solution of a

linear system; it is often called the linearly implicit or linearized implicit integrator; it has

stability properties that are the same as the regular implicit integrator for linear problems.
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However, this method can struggle when the numerical instabilities are due to nonlinearities

in the equations [37].

The semi-implicit method is strictly only available for Hamiltonian systems [38]. Essen-

tially, each of Hamilton’s equations is taken, i.e. q̇ =−∂H/∂p, and ṗ = ∂H/∂q, where H is

the Hamiltonian and p is the momentum conjugate to q, the first being integrated via the ex-

plicit Euler method, the second integrated via its implicit counterpart, or vice versa [30, 38].

Either choice gives the same time-stepping at the configuration level, and so, whichever is

simpler can be chosen. This integration method is actually a variational integrator, which

means it conserves a symplectic form [30]. The mathematical details are not important

here; it suffices to say that such integration methods tend to have much better long-term

accuracy than their order of accuracy would suggest, as well as being energy-stable [30].

It is worth mentioning here that the term ‘semi-implicit’ is often used more loosely in the

literature to refer to a similar method defined with respect to the equations based on the

configuration and velocity, e.g. the Euler-Lagrange equations, as in Eq.(2.1), where one is

integrated explicitly and the other implicitly [26, 39]. However, this only coincides with the

definition using Hamilton’s equations if there are no Coriolis and centrifugal terms (or more

general nonlinear inertial terms), the mass matrix is constant and the system is not dissi-

pative. In particular this means that these two semi-implicit integrator definitions are not

equivalent for a rigid body. This has led some authors to sometimes incorrectly state that

the ‘semi-implicit’ integrator defined in this second way produces an integration method that

is symplectic when it is not. The distinction is important, as the semi-implicit integration

method for rigid bodies defined via Hamilton’s equations requires the solution of a set of

nonlinear equations [40], whereas the second definition, discussed above, only requires the

solution of a linear system of equations [39]. In order to keep in line with the literature, we

will continue to refer to the second case as a semi-implicit integration scheme; however, it

will be made clear which set of equations are being referred to. We do not claim that the

integration method derived in this second way is necessarily symplectic.

Regardless of the mathematical details, this second method does produce an excellent bal-

ance of numerical stability and speed, making it appropriate for many real-time applications.

This integration method is quite popular in the real-time simulation of systems with relaxed
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constraints, finding use in many industrial sectors, including simulators and gaming [41].

Due to the balanced need for stability of our applications, the integration methods used will

be based upon the second semi-implicit scheme defined above.

2.1.2 Time-stepping with bilateral constraints

At this point, it has been argued, by reviewing the general concepts of time-stepping available

from the literature, that the most appropriate integration method to use as a basis for our

applications is the semi-implicit integration method. The next important consideration is

which method should be used to impose bilateral constraints in the system. In general, a

constraint is something that restricts the state space of the system. For example, a holonomic,

bilateral constraint can be represented by an equation of the form φb(q) = 0, which restricts

the possible configurations of the system. In multibody systems, constraints are extremely

important for building complex mechanisms; for example, if a cable model is being created

using a chain of rigid bodies, the bodies must be connected to one another using constraints.

If a crane is being modelled, the boom of the crane must be able to slide or rotate to allow

positioning of the load, which must be connected to the end of the cable and these joints and

connections can be represented via constraints. Due to the application, bilateral constraints

are a fundamental component of any system we wish to simulate, therefore, the imposition

of such constraints must be carefully considered.

Due to the ubiquity of the problem, however, extensive work has been reported as per-

taining to the problem of imposing bilateral constraints in the simulation of mechanical

systems [42, 43]. In this section we review the most relevant of these results, which form the

basis for some of the research reported in this thesis. The first, and most important decision

to make when imposing bilateral constraints, is whether to use a reduced set of coordinates

and eliminate the constraints entirely, thereby imposing the constraints exactly, or to use

the method of Lagrange multipliers to impose the constraints explicitly and solve a set of

Differential Algebraic Equations (DAE), or even to impose the constraints approximately

by inserting some sort of numerical relaxation. Each of these alternatives have their own

strengths and weaknesses.

Typically, constraint algorithms that aim to satisfy perfectly the constraints require a
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topological or recursive formulation of the equations of motion [44], sophisticated sparse

matrix techniques [45, 46], expensive projection techniques [47], or complex symbolic ma-

nipulation [48]. Note that the literature on efficient multibody formulations is extensive.

Comprehensive overviews can be found in the literature [43, 49, 50].

The simplest conceptual method for imposing constraints is outlined above: one eliminates

a number of variables from the problem and uses a reduced set of generalized coordinates

and velocities. However, there are two problems with this approach. The first is that

some constraints, namely, non-holonomic, do not allow the reduction of the generalized

coordinates in this way; this method is thus not general enough to handle all the systems

of interest to our case. The second problem is that eliminating a constraint typically makes

the mass matrix for the reduced problem configuration-dependent. Hence, new inertial force

terms are introduced, the equations of motion thus increasing in complexity. It is also the

case that systematically eliminating constraints becomes more difficult the more general the

system under study is. It may be relatively simple to eliminate prismatic and revolute joints

from a tree structured set of articulated rigid bodies, but introducing more complex joints

such as sliding and cylindrical joints, closing kinematic loops and introducing nonholonomic

constraints all necessitate the incorporation of additional provisions [51].

There are a number of alternative methods that can be used, such as null-space or projec-

tion methods [43, 47], or even formulating the problem directly as a set of DAE [52]. When

doing the latter, the biggest choice to be made is whether the bilateral constraints, denoted

by φφφ b =φφφ b(q), are imposed at the position, at the velocity or at the acceleration level [43, 53]

in the time-stepping method. In other words, the constraint can be written as:

φφφ b(q) = 0 (2.2a)

φ̇φφ b(q) = J(q)v = 0 (2.2b)

φ̈φφ b(q) = J(q)v̇+ J̇(q)v = 0 (2.2c)

Imposing constraints at the acceleration level does not give rise to general numerical problems,

but allows the constraint to drift at both the velocity and position levels. Imposing the

constraint at the velocity level can produce numerical problems, as unless the time-stepper
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is at the velocity level itself, the time step h begins to appear explicitly, though one can

often switch from forces to impulses to cope with this issue. The position in this case is

also susceptible to drift. Imposing constraints at the position level is most difficult, as often

some constraints are nonlinear functions of the coordinates, the problem thus becoming

more complex to solve. As well, numerical problems potentially arise due to an increasingly

ill-conditioned Newton iteration matrix as the time step becomes small [43].

Treating the dynamical systems as a set of DAE and imposing the constraint at either

the velocity or acceleration level often leads to drift. This occurs because the equations are

solved approximately, and so, for example, the velocity variables may satisfy the velocity

level constraint at a specific time step, but is treated as constant throughout the time step;

in reality, it is not. This can lead the constraint at the position level to be violated even

if the constraint is satisfied at every instant at the velocity or acceleration level. This drift

requires the addition of constraint stabilization to the system, i.e., some method by which

the constraint drift can be controlled and minimized.

In contrast to the above, which aims to solve the system with the constraints exactly,

a number of methods are available that can be classed as constraint-violation elimination

techniques. These methods aim to eliminate any violation of the constraints in the solution.

A number of these methods fall into the class of projection methods. These aim to define

a reduced set of equations using a projection, so that the constraints are satisfied exactly.

One example is the null-space formulation and its generalization using the Moore-Penrose

generalized inverse [42]. These methods perform this task by finding the matrix that projects

the velocities into the null space of the constraint Jacobian, and using it to project the

equations of motion into the subspace that satisfies the constraints. A complementary set

of projection methods use a regular time-stepping method and then project the generalized

coordinates and velocities onto the subspace that satisfies the constraints. These are often

based on a decomposition of the state increment into components that have obeyed the

constraints and those that have not. The part of the increment that violates the constraints

can then be removed [43, 54].

Furthermore, many classes of integrators and constraint-enforcement combinations exist;

the line between the two can be rather blurred. There are standard numerical integration
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schemes for simulating the above established equations of motion, as well as variational inte-

grators [55] and other structure-preserving integration schemes. There also exist variational

integrators adapted for multibody systems expressed with minimal coordinates [56], aug-

mented Lagrangian methods [47], penalty methods [49], and more. Together, these methods

give many options for a mechanical simulation; a method should be chosen depending on

the system and the objective of the simulation.

We now focus on some specific methods for the stabilization of constraint violation, i.e.,

the elimination of the constraint drift discussed above. There are a number of common

methods employed to stabilize constraint violation in DAEs [43]. These methods allow some

violation of the constraints, and so are said to relax the constraints, while attempting to

minimize the deviation from the constraint manifold in some way. Three representative

examples are the Baumgarte stabilization method [57], the Augmented Lagrangian method

and the Penalty-function method [58, 59]. In the Baumgarte method, which has its origins

in control theory, the original acceleration level constraint φ̈φφ b = 0, is replaced by:

φ̈φφ b +2αφ̇φφ b +β 2φφφ b = 0 (2.3)

where the constants α > 0 and β > 0 are tunable and problem dependent. In general there

is no method for choosing them a-priori. The Baumgarte technique is quite common, as

it is simple to implement and is tunable. It is also quite general, allowing the imposition

of nonholonomic constraints also, since β can be set to zero. This method, and many

extensions thereof, are still being developed to date [60, 61]. However, the interpretation of

the Baumgarte parameters is still widely discussed, as are methods for choosing them, since

they often require a large degree of tuning.

The penalty method [49] has its origins in optimization, but was first used in dynamics

problems by Bayo [58]. In the penalty method a term is added to the Lagrangian, given by

φ 2/(2c), per constraint, where φ is the constraint function. In the equations of motion, this
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leads to the addition of one term per constraint, the equations of motion thus becoming:

q̇ = Nv (2.4a)

Mv̇ = b(v,q)+ f(v,q)+
1
c

JTφ (2.4b)

where J, the Jacobian, is given by J= ∂φ/∂q. One can interpret this approach as introducing

a constitutive relationship for the Lagrange multiplier, of the form:

cλb =−φ (2.5)

which provides a restoring force that attempts to keep the system on the constraint subman-

ifold. This penalty formulation can be generalized by adding damping and inertial terms,

parameterized by coefficients β and γ , to the above constitutive relation:

cλb =−φ −β φ̇ − γφ̈ . (2.6)

The method is extremely simple to implement, and very general, including nonholonomic

constraints when using the more general constitutive relation given above. Now it is a well

established method; a review of applications thereof can be found in the book by Birgin [62].

However, the penalty method is not suitable for use with all integration methods, as it can

require an extremely large spring constant to give close adherence to the constraints [63],

which can cause the system of equations to become stiff, thus requiring a significantly small

time-step or an integration method suited for stiff systems. Numerous extensions and gen-

eralizations to the method have been developed, e.g. [47, 64, 65].

The last technique under discussion is the Augmented Lagrangian method. This starts as

a penalty method, such as that given above, but in addition, Lagrange multipliers at time

tk = hk, defined as λ (k), are retained from the original discrete time equation, and essentially

obeying a given dynamics specified by:

λ (k+1) = λ (k)+α(φ +β φ̇ + γφ̈). (2.7)
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This method has been shown to work quite well over a large range of penalty factors. It is also

generalizable to nonholonomic constraints. Its only real downside is that extra variables must

be introduced. This method also has a large number of extensions and generalizations [66, 67].

Of particular note is the mass-orthogonal projection technique. This is a combination of the

above augmented Lagrangian method and a subsequent projection that allows the elimination

of constraints to machine precision [47].

These three methods have a major advantage in that they allow constraints of most types

to be imposed in the same general way. The major downside of these methods is that

they only impose the constraints approximately, and all require parameters to be tuned.

Numerically, these methods work quite well, but care must be taken when choosing the

parameters in order to obtain good results. Methods to stabilize the semi-implicit integrator

subject to such constraints [26, 36] are almost an industry to themselves and continue to

be studied [26, 41]. In particular, methods that allow the discrete system to be integrated

on a relatively long time step, but still incorporate stiff penalty methods, are challenging to

develop. Sometimes, especially in the implicit integrator case, to improve the performance,

one sees the stiffness value of the penalty method taken to be large, and the penalty force can

no longer be physically interpreted as arising from a spring, but still such that the system

remains numerically stable. In this case it is extremely difficult to physically interpret the

result of the model and so, whilst this might lead to slightly better performance in terms of

a smaller constraint violation, it is difficult to know how well the trajectory of the system is

modelled. However, in comparison to the constraint-elimination methods which enforce the

constraints exactly, relaxation methods are significantly faster, and much more suited to the

general simulation of mechanical systems in real-time.

So far, this review has established that the semi-implicit integration method is a good

choice, and that, for the purposes of real-time simulation, a relaxed-constraints method is

a better choice. The penalty method is easiest to implement, but has problems when the

stiffness value is large. This problem can be mitigated by treating the penalty term as an

implicit term, and then linearizing it around the current configuration. This operation leads
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to the following integration method:

(M−h2JLI)v+ = Mv+hf (2.8)

where JLI is the matrix of stiffness values, and is given by JLI = ∂ f/∂q (where f was defined

in Eq. (2.1)), v+ is the velocity at the upcoming time step, and M is the mass matrix of

the system. This method suffers from two shortcomings. The first is that it can be highly

dissipative for large stiffness values, thus producing inaccurate results. The second problem

is that, for large stiffness values, the lead matrix can become ill-conditioned, thereby leading

to numerical problems. The compliant constraints method [39, 41, 68] works slightly differ-

ently. This method begins from the semi-implicit time stepping equation with an additional

constraint force:

Mv+ = Mv+hJT
b (q)λλλ b++hf (2.9)

where the constraint force λλλ b+ is taken as coming from the upcoming time-step, the bilateral

constraint Jacobian being denoted by Jb. The upcoming constraint force λb+ is defined,

along with a compliance matrix Cb, usually taken to be Cb = cbI, which is associated with

the relaxed constraints, via a constitutive relation given by:

Cbλλλ b+ =−φφφ b(q+)≈−φφφ b(q)−hJbv+ (2.10)

where φφφ b is the m-dimensional vector of constraint equations (considered to be holonomic

and scleronomic), Jb is given by φ̇φφ b = Jbv and λλλ b is the m-dimensional vector of reaction

forces. The discretized equations of motion then read:

Mv+−hJT
bλb+ = Mv+hfapp (2.11a)

Cbλb+ =−φb(q)−hJbv+ (2.11b)

hN(q)v+ = q+−q− (2.11c)
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This set of time-stepping equations can be written in matrix form as:


M −JT

b

Jb Cb/h2




 v+

hλb+


=


Mv+h fapp

−1
hφb


 (2.12a)

q+ = q+hN(q)v+ (2.12b)

which shows that this time-stepper is linear. Either λb+ or v+ can be eliminated from

Eq.(2.12a). Doing so leads to the two equations below:

(
M−h2JT

b C−1
b Jb

)
v+ = Mv+hfapp−hJT

b C−1
b φb(q) (2.13a)

(
JbM−1JT

b +
Cb

h2

)
(hλb+) =−Jbv−hJbM−1fapp−φb/h (2.13b)

After, for example, solving Eq.(2.13b) for the constraint forces, they can be inserted back

into Eq.(2.13a) and the new velocities computed. In fact, Eq.(2.13b) is better behaved

numerically, as C can be taken as small as desired without increasing the condition number of

the lead matrix [26]. This compliant-constraints method suffers from less energy dissipation

than its linearized implicit counterpart, though it does still dissipate energy. This method

can be readily extended to velocity constraints via the alternative definition:

Cλ+ = w0−hJv+ (2.14)

where w0 is defined by the velocity level constraint Jv=w0. This is also suitable for imposing

non-holonomic constraints that are linear in the velocity. The compliant constraints method

detailed here is used extensively throughout this thesis and forms the basis for many of

the novel results. An extension to the above method was reported by Tournier et al [26],

whereby the main idea is that a first-order integrator can be further stabilized by evaluating

the constraint Jacobian matrix at the future time step. Essentially, one is evaluating the

constraint forces in an implicit way and using a linear approximation to evaluate the Jacobian

matrix. This will be detailed in Chapter3.

Many methods for imposing bilateral constraints on a mechanical system are available,

but, for the purposes of real-time simulation of large systems with complex constraints, the
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methods that relax constraints tend to work better, as they are faster, and are certainly

applicable to more general situations.

2.1.3 Time-stepping with contact

Having established a good basis for the numerical integration to be used in this thesis, we

must now turn to the other major physical aspect present in the multibody systems under

consideration, that of contact interactions. In this section, first, contact dynamics as a

subject will be briefly reviewed. The subject being extremely vast, it is not possible in

this thesis to provide a comprehensive catalogue of the problems, challenges and solutions

that have been developed over the years, although some comprehensive reviews [69–71] are

available. Instead, we will settle for a brief discussion of the overall problem, with a focus

on the applications in this thesis. Following this brief review, the imposition of unilateral

constraints in numerical simulation will be discussed in the context of the integration method

given above. This section will be concluded by a discussion of the major friction models

available in the literature, suitable for use with the aforementioned first-order time-stepping

method.

Contact dynamics is the study of the contact forces between two bodies in motion. A large

number of effects are associated with contact, contact occuring in many different scenarios,

from dry-surface contact between rigid bodies to lubricated joints. In order to capture the

many different effects that occur in these situations a plethora of models for the contact forces

generated upon interaction between two bodies exist. Generally, contact dynamics models

can be split into models for impact and models for sustained contact. For the simulation

applications under study in this thesis, we are most interested in sustained contact. The most

appropriate models are those that aim to capture the behaviour of normal contact, i.e., the

contact forces normal to the contacting surfaces, and those that aim to capture the behaviour

of dry friction, i.e. the frictional forces generated when one body slides along another without

lubrication. These kinds of forces are present when cables wrap around pulleys, when wheels

roll on hard ground or dry soil, or when shipping containers are stacked at the docks.

An impact model relates the pre-impact and post-impact velocities of a system over the

period when a contact is established, i.e. at the particular instant (or in time-stepping
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models, the time-step) when the bodies’ transition from no contact to contact. If the time

over which the bodies are in contact is very short, i.e., less than one time-step if the time-

stepping model, then it is possible to replace the entire contact interaction with a single

impact law. This is often done using a coefficient of restitution, which can be defined in

a number of ways. If the bodies remain in contact for a longer period, i.e. multiple time-

steps, then the post-impact velocity of the contact point must be zero (as the bodies do

not separate), and so the coefficient of restitution is zero. This is assumed to be the case

in the problems studied in this thesis; it is reasonable, because, for example, when a cable

wraps around a pulley, we do not expect to see or worry too much about the ‘bounce’ that

a non-zero coefficient of restitution may bring about.

However, whether or not a vanishing coefficient of resitution is used, a sustained contact

model is required in order to model the common case of contact interactions that take place

over a relatively long time, e.g., in the case of multiple time-steps. Classical candidates for

continuous contact models are, e.g., a spring-damper type model [72, 73], of the form:

fn = bφ̇u + kφu (2.15)

where b is the damping coefficient, k the spring constant, φu a function that evaluates the

signed distance between the contact points on each body, also known as a gap function,

and fn is the magnitude of the resulting normal force. This is a simple model, exhibiting

some weaknesses, namely, the initial force does not increase from zero due to the φ̇u term;

the model has some ‘stickiness’, as the bodies separate; and linear models are not generally

expected to be that accurate [73]. Other simple models include the Hertz [73] model, in

which the normal force is given by:

fn = kφ n
u (2.16)

where k is the stiffness constant and n is the power exponent. This model can be appropri-

ate for hard materials at low impact velocities, but it is not dissipative, which is a major

drawback, and makes it unsuitable for the problems studied in this thesis. The last notable

model is the nonlinear damping model, originally proposed by Hunt and Crossley [74], given
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by:

fn = bφ p
u φ̇ q

u + kφ n
u (2.17)

where b and k are similar to damping and stiffness parameters; as in the other models; the

exponents p,q,n are parameters that control the degree of nonlinearity. This model has

fewer weaknesses than the previous two, as it incorporates both dissipation and provides

a normal force that increases from zero. However, this model is slightly more complex

than the previous two. All these models are quite basic; there are many more complex

versions [69, 75]. These models, when used to model contact in a continuous-time system,

would handle impact in a slow way, rather than provide an instantaneous change in the

velocity. One would physically interpret these relations as modelling the deformation of the

bodies, during the compression and expansion phases. However, when time-stepping schemes

are implemented, terms that help increase numerical stability can alter the effective energetics

of the compression and expansion phases of the contact. Flexible body investigations have

also obtained good results with this kind of continuous-contact model while neglecting fast

time-scale impact [76, 77].

A complementary way of looking at the problem is via a unilateral constraint, rather than

the constitutive-type models outlined above. A unilateral constraint formulation for rigid

bodies ensures that contact can take place with no deformation in the rigid body. In the

literature, this problem is often formulated as a linear complementarity problem [32, 78, 79].

In this formulation the unilateral constraint is given by φu(q) ≥ 0, which describes the gap

between the bodies involved in the collision. If the bodies are in contact, then the value of

the gap function, φu, is zero. In this case the normal force can be nonzero, i.e. λn > 0. Here

we have used the notation λn for the normal force, rather than fn, as it is interpreted to

arise due to a constraint. Conversely, if φu > 0, then it must be the case that λn = 0. This

combination of conditions can be expressed as

0≤ φu ⊥ λn ≥ 0 (2.18)

which represent what are known as complementarity relations, whilst this specific condition
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is known as the Signiorini condition. Similarly, one can write:

0≤ λn ⊥ un ≥ 0 (2.19)

where un is the normal relative velocity of the contact points. If the bodies are in contact,

that is, if φu = 0, then there are two possibilities; first, un > 0. In this case the bodies are

moving away from one another, this contact is in the process of detaching, and so the normal

force λn should vanish. If however, λn > 0, then the bodies must be touching. The contact

velocity un cannot be negative as the bodies are solid objects, and so we must have un = 0.

Lastly, at the acceleration level there is again a similar situation. If we have a situation

where φu = 0 and un = 0, then if an, the acceleration in the normal direction, satisfies an > 0,

the contact is detaching, and so, λn = 0. Only if an = 0, which implies that the contact

persists, as the bodies are not accelerating away from one another, can λn > 0. Hence:

0≤ λn ⊥ an ≥ 0. (2.20)

The complementarity relation 0≤ λn ⊥ un ≥ 0 also implies that these models have a coeffi-

cient of resistution of zero, as, upon establishing contact, there must be a positive normal

contact force, which implies, by virtue of the complementarity relation, that the normal

velocity is zero.

One of these complementarity relations, together with the time-stepping equation, often

define a representation for the contact force. If the problem has no tangential contact forces,

i.e. friction, then this problem is actually a convex optimization problem, and is not too hard

to solve [78]. This type of formulation for establishing the normal forces was proposed by

Moreau [78]. The problem of finding the accelerations for rigid-body contact with no friction

has been solved [80, 81]; it was later extended and improved [82] to incorporate rolling and

sliding for small friction coefficients. Moreau also provided an extension [27] to the context

of time-stepping with unilateral constraints and dry friction. Many of the successive models

along the same lines also begin with the above complementarity relation, but treat frictional

forces differently; we will shortly return to the subject. First, it is important to have a general

understanding of the theoretical friction models available. A number of recent reviews are
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available that contrast different dry friction models and the behaviours each model can

exhibit [70, 71].

The basic friction model is usually considered to be that of Coulomb friction. whose

constitutive relation, popularly known as Coulomb’s Law, determines the frictional force

between two bodies. At each contact point there is a relative velocity between the contact

points uc, which can be decomposed into the normal velocity, un and the tangential velocity

u f . Coulomb’s friction law states that the friction forces at the contact point are given by:

|u f |= 0⇒ |β | ≤ µsλn (2.21a)

|u f | 6= 0⇒ β =−µkλn
u f

|u f |
(2.21b)

where β is the friction force. In general the coefficient of static friction µs and of kinetic

friction µk can depend on both the contact point, as the surfaces at each contact could be a

different material, and the relative tangential velocity u f . Often, separate kinetic and static

friction values are used, but in this thesis we will assume that µs = µk = µ is a fixed constant,

depending only on the materials of the contacting bodies.

This model is not smooth as a function of the velocity; other models that incorporate

different features, or smooth out this discontinuity in some way, have been proposed. These

models tend to fall into two different classes, those based directly on Coulomb friction, and

those based on the bristle model concept. Coulomb models aim to make this discontinuity

easier to handle, one way or another. One specific example is to calculate the friction force

using the relation

β f =−µλn tanh
( |u f |

u0

)
u f

|u f |
(2.22)

where f f is the friction force, uc is the relative velocity of the contact points in the tangent

plane, u0 is a parameter of the model determining how fast the function changes between

the two limits, λn is the previously defined normal force and µ is the coefficient of friction.

This model gives a smooth and continuous curve as a function of the contact velocity, and a

unique value for the friction force based on the velocity. Other smoothing means have also
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been used, such as one that, instead, interpolates between the friction force bounds with a

straight line. Some models, the velocity-based models, have a similar smoothing function,

but instead reach a peak friction force before decreasing to the Coulomb force bound in an

effort to mimic the static friction force. Karnopp models follow another approach, where the

discontinuity is ‘widened’, encompassing a band between the two velocities, given by −v0

and v0. In this band the force can take any value, including one higher than the friction

bound. Details on these models and more are available [83].

The bristle models are based on the idea that there are microscopic bristles between

the surfaces, the bristles provide a resistance to movement, bending as bodies try to slide

against one another, and returning to their original state after the bodies return to the initial

configuration. Once the maximum restoring force of the bristles are overcome, the bodies

slide against one another and generate a permanent displacement. The Dahl [84], LuGre [85–

87] and Stick-slip [88] models are all variations on this theme. Extensions to these models are

numerous; currently modern formulations of the bristle model are available that allow the

model to be formulated as a linear complementarity problem in a time stepping context [89].

Returning now to time-stepping methods, there are a suite of methods based on the

idea that the various features of Coulomb friction, in particular, static friction, are essential

to capture accurately in multibody dynamics models. Many of the models just discussed

regularize the Coulomb friction relationship [65, 70, 71, 90]; they are worth discussing as

they have been applied to real-time problems in the past; however, they cannot correctly

capture static friction or other features of friction that arise due to the non-smoothness of

Coulomb’s law. A large number of time-stepping methods that can be used with a nons-

mooth Coulomb-type friction model exist. The initial methods aimed at describing friction

either via an inclusion problem [91], developed by Moreau [27], or as a linear complementarity

problem. A successful intial effort into the latter by Lotstedt concerned planar contact [80],

later examples including the method proposed by Glocker and Pfeiffer [79], which tackled

the problem of finding the accelerations due to contacting rigid bodies. This problem has a

solution in a quite general class of cases [82], as long as the friction coefficient is sufficiently

small. However, developing a time-stepping method based on acceleration-level informa-

tion is problematic with contact forces, as the forces are discontinuous and certain friction
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problems such as that exhibited by the Painlevé paradox [92–94], also appear to generate dis-

continuities in the system velocities, which would theoretically correspond to an unbounded

acceleration. These unbounded forces do, however, impart a finite impulse between bodies.

The converse approach, looking at position level constraints, is possible, and was examined

using a polyhedral approximation to the friction cone [95], but can be overly restrictive; [96]

when there are collisions between bodies with non-convex surface geometries this method can

cause the system to become stuck. This suggests that velocity-level formulations are most

appropriate. The first such method was developed by Anitescu and Potra [97], based upon

the work of Stewart and Trinkle [95]. By approximating the friction cone by a polyhedral

cone, the authors developed the first time-stepping model with a proof of existence for the

solution of the LCP. However, as this is a velocity-based method, there can be issues with

penetration due to drift [98]. The literature on these models and their successors is extensive,

and far too broad to cover here. Most extensions target a specific application; hence, the

concentration in this thesis will be on those methods that are: applicable to real-time sim-

ulation; widely tested; and work well for general multibody problems. Particular attention

is paid to the box friction model [99], as this is used in the simulation software Vortex [15].

The other methods to receive attention are the penalty method with regularized Coulomb

friction; the velocity level methods based on a polyhedral-friction-cone approximation; and

the prox method, which is capable of modelling the full nonlinear friction cone.

If speed is the ultimate priority for the time-stepping scheme, then a ’Penalty method

with Regularized Friction’ (PRF) approach is the fastest available; however, this method

is quite inaccurate. In this method normal forces are computed via spring-damper-type

relaxations of the unilateral constraints. Once the penalty method determines the normal

forces, frictional forces are computed via a regularization of Coulomb’s law. The penalty part

comes in explicit and linearized implicit types; the friction force is then given by a smooth

function that interpolates between the limits of the Coulomb friction model based on the

value of the velocity. Therefore, the value is determined entirely by the velocity and unilateral

constraint violation at that particular contact point. There are two major drawbacks with

this kind of friction law. The first is that it only depends on the relative velocity at that

specific contact point, whereas in reality, the value of the normal and frictional forces at one
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contact point are dependent on those at other contact points. The second is that, when in

the static friction regime, the contact point must have a relative velocity in order to generate

a force at all, so this law will not be able to represent static friction accurately, i.e., a smooth

model cannot accurately reproduce nonsmooth behaviour. This method will be discussed

further in Chapter6.

The box friction and polyhedral cone approximation methods formulate the friction prob-

lem as a (Mixed) Linear Complementarity Problem (M)LCP. An (M)LCP, with a positive-

semi-definite lead matrix, can be solved with either iterative or direct solvers. Direct solvers

ensure the exact satisfaction (to machine precision) of the complementarity relations and so

have advantages when the system being simulated includes many stick/slip transitions. The

polyhedral cone approximation methods [95, 97] impose their respective complementarity

relations exactly. This has an effect on the way the methods treat impact, i.e., on how they

establish contact. In fact, both methods have a coefficient of restitution equal to zero. The

box friction method has a degree of relaxation in the unilateral constraints, and so would

nominally, with no damping, have a coefficient of restitution equal to unity. However, one

often says that the relaxation represents deformation in the material comprising the bodies,

in which case, one can state that the relative velocity at the contact point in the normal

direction is zero after the contact is established, in which case, the coefficient of resistution

can be considered to be zero. In practice, the energy conservation over the whole contact

interaction is much reduced due to the linearized implicit nature of the normal contact forces,

which is the most important aspect. Further details of these methods are given in Chapter6;

so further discussion here is not warranted. The disadvantages of these methods are that

they all approximate the friction cone, which can give both inaccurate forces, and lead to

anisotropy in the results. They are also significantly slower than the penalty method, al-

though using direct solvers can give an increased solution speed when compared to iterative

methods, which work with the exact friction cone [100]. Extensions to these methods have

been proposed, Anitescu and Potra [101] have extended their friction formulation to use a

linearized implicit integration method, rather than the explicit Euler method used originally,

which enables the method to address problems where the multibody dynamics model has

stiff forces.
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The prox method phrases the friction problem using the proximal operator, before propos-

ing an iterative scheme to solve the set of equations. Unlike the previous methods, the prox

method uses the exact friction cone, but, as it is an iterative method, the final solution will

not strictly satisfy complementarity [13]. However, as this method does attempt to impose

the complementarity relations, it, like the discretized friction cone methods, has a coefficient

of resitution equal to zero. This method is also discussed in detail in Chapter6. Other meth-

ods that treat the full nonlinear friction problem have also been developed, such as that by

Acary et al [102].

An alternative to the Coulomb law is provided by the maximum-dissipation principle.

This principle states that the correct friction force is the force within the friction cone that

dissipates the largest amount of energy from the system. This approach has been pursued

by other authors [103–105], mainly within the very-large-scale simulation community. The

advantage of this approach is that the optimization problem is often faster to solve computa-

tionally. The disadvantage is that it does not guarantee satisfaction of the complementarity

conditions. However, there is still much discussion on which model is more representative

of physical reality [19, 106]; some authors have demonstrated situations where velocity-level

complementarity conditions are clearly violated [106]; these situations may be better de-

scribed by the maximum-dissipation principle, as opposed to Coulomb’s law.

The Cone Complementarity Problem (CCP) formulations [107], developed by Tasora et

al, are intended to describe rolling friction, and perform well in that case. However, they

tend to struggle with the slip/stick transition and slipping behaviour in general [100], and

so, they will not be considered here. These problems rephrase the sticking friction phase

as a convex optimization problem, producing a correct solution for sticking contacts quite

efficiently. However, in order to do this, the method assumes that the contact forces can

generate no power, and so, this method cannot correctly model the sliding phase of friction.

Fundamentally, all these models and methods are intended to create an approximation

to a physical system with contact, which brings to mind the question: “What affect do

the joint models and relaxations on contact forces, as well as the choice of integrator, have

on the accuracy of the model?”. This is overall, both a simple and difficult question to

answer; simple, in that most alterations to the desired model, e.g. relaxing constraints, have
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a robust physical interpretation and so the alterations are understood, difficult in that the

ground truth model is unknown. It is unknown exactly how the frictional forces should be

calculated, the detailed physical properties of a joint are often unknown, but it certainly is

not an exactly satisfied constraint; also unknown are the environmental conditions that will

be experienced by any given mechanism when it is built and commissioned.

Understanding the alterations introduced by the various numerical integration techniques

available is more difficult. These techniques tend to introduce both well-understood inac-

curacies via the approximations involved and some spurious forces in the model, such as

numerical damping forces intended to stabilize the numerical integration. The problem is

that both the inaccuracies and spurious forces are dependent on the time-step, which im-

pedes a physical interpretation of these alterations to the model. They are therefore regarded

as different from the modeling inaccuracies, but can still be thought of as under control.

Ultimately, in these cases, we can understand the effects of the alterations to the original

model, and in some cases, use these alteration to model physical phenomena, such as in

the relaxation of constraints. There is an interesting tension between the two types of

alterations, the changes in the model, such as the aforementioned relaxations, opposing the

numerical inaccuracies, as reducing the changes to the model tends to increase the numerical

inaccuracies. Ultimately, we can understand the output of a model in the context of these

inaccuracies, and often, see that the numerical inaccuracies that ensure stable simulation

leech energy from the simulation out of the high-frequency behaviour. This can be acceptable

if, in the real system, this kind of behaviour occurs. This can often be the case in flexible

systems, where high energy frequencies are often transformed into heat and sound, which

have a relatively small effect on the overall behaviour of the system. However, in other

cases, one must accept that failing gracefully, allowing more accurate parts of the model to

continue, and the inaccurate parts to maintain their stability, is often preferable in many

contexts. Those contexts include our aims here, which include achieveing acceptably accurate

numerical models, useful for, for example, performing high-level design iterations, or for use

in interactive virtual environments such as those used in training simulation and virtual

reality simulation.

30



Ph.D. Thesis 2.2. Flexible bodies with Contact

2.2 Flexible bodies with Contact

2.2.1 Contact and contiuum mechanics

Continuum mechanics with contact is often said to have started in 1882, with the publica-

tion by Hertz [108], analyzing the impact between two homogeneous, elastic spheres. An

interesting book by Maugin [109] details the development of the subject through the 20th

century.

There are two main strands of research in continuum mechanics. The first was directed

at the expansion of the underlying physical theory of elasticity. Generalizing the theory to

cope with inhomogeneous and anisotropic materials, as well as introducing thermodynamic

effects and even electrostatic materials. The other branch of research in analytical contin-

uum mechanics was directed at the analytic solution of specific problems, particularly those

involving some contact.

Early work was dedicated to finding closed-form solutions to various simple contact or

deformation problems. For example, the calculation of the displacement field due to plane

waves travelling through a solid, or the displacement, stress and strain fields of an isotropic,

linear, half space subject to a time varying shear traction at the surface, or being subject to

a time-varying normal pressure. Other, highly symmetric problems, such as those dealing

with spheres or spherical cavities in isotropic materials also admit closed-form solutions [110].

More engineering driven examples of solvable problems can be found in the book of John-

son [111], which treats problems such as examining the creep of a belt stretched between

pulleys. Even now, closed-form solutions to specific problems continue to be developed [112].

One of the main characteristics of the simplest, solvable problems is their highly symmet-

rical nature and boundary conditions which are specified independently from the solution.

The modern birth of the mathematical subject of general continuum mechanics with unilat-

eral constraints may be said to have occurred with the proof of the existence and uniqueness

of the solution to the Signiorini problem [113]. This problem consists of finding the static

solution to a set of partial differential equations describing an anisotropic, non-homogeneous,

elastic body resting on a smooth, rigid surface. The boundary conditions in this problem

are said to be ambiguous [113], because it is not known, a priori, whether a point on the
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surface of the body is in contact with the ground before the problem is solved. Despite there

being no closed-form solution, this problem has had far-reaching impact in mathematics and

continuum mechanics.

With the advent of computation, these unsolvable problems could be approached numer-

ically; once computational power became readily available, a large number of methods were

developed to study continuum mechanics. A non-exhaustive list of such techniques contains

the boundary element method, the finite volume method, the analytic-element method, the

discrete-element method and the large number of mesh-free methods, which includes the

element-free Galerkin method, and so on. Many of these methods are targeted at other

continuum problems rather than multibody dynamics.

The two methods that are of most interest in this thesis involve the discretization of the

solid under consideration; one method attempts to model the solid by defining degrees of

freedom associated to point masses or rigid bodies. These are known as lumped-parameter

models; in these, the continuum is replaced by a spatial arrangement of separated discrete

entities. The finite element method (FEM), in turn, breaks up the continuum as a union of

continuous elements, and assumes a polynomial interpolation to describe the displacement

field in each element.

There are many excellent books containing expositions of the FEM [34, 114, 115], so we

do not review all of the basic work here. However, before continuing with this review, it is

important to establish the kind of FEM we are interested in, as different formalisms have

been developed to accomplish different tasks.

Many finite element formulations focus on small deformations and small rotations; these

are sometimes labelled incremental methods. These methods can be used to analyze vibra-

tional frequencies of relatively stiff deformable bodies [34], e.g., large beams or struts used

in construction, among other technical applications. The requirement of small deformations

and small rotations means that linearized internal elastic forces can be used [34, 114], and

that no finite rotational degrees of freedom are required, thereby allowing the parameteri-

zation of rotational degrees of freedom to be treated as a geometric vector [114]. It is not

possible to use these methods to analyze systems that undergo large rotations, which is a

requirement of this work, and so we will not pursue them further. However, other methods,

32



Ph.D. Thesis 2.2. Flexible bodies with Contact

suitable for problems with both large rotations and large deformations have been developed.

2.2.2 Methods for large rotations and large deformations

Before beginning the discussion on relevant finite element methods, it is worth briefly re-

viewing lumped parameter models. These can be quite simplistic, but the initial work in

this thesis is influenced by these ideas, as they can describe systems that undergo large de-

formations and large rotations in a simple way. The basic concept of the lumped-parameter

model is to use either point particles or rigid bodies to represent the degrees of freedom

of the system, e.g., the nodes of a mesh or parts of a device or complex rigid-body, and

introduce spring-type forces between the point particles or rigid bodies. This is known as

a lumped-parameter system, as the parameters are assigned to specific degrees of freedom

and are localized, i.e., the mass exists at the point particles or rigid bodies, rather than

being distributed throughout the system. Examples of this kind of formulation can be found

throughout the literature, for example, Li et al [103], Haering et al [116] and Zhang et al [117],

who investigated various mechanical systems, and examined both the (small deformation)

vibrational modes and the (large deformation) flexible-body behaviour of these systems us-

ing lumped-parameter models. Other authors have instead used fully rigid-body models,

where the bodies are held together by relaxed constraints in order to model systems such

as cloth [36], cables [118] and general soft bodies. Many of these applications have focused

on graphics, such as that by Kenwright et al [119], Baraff et al [36] and Tournier et al [26],

as such lumped-parameter or rigid-body systems are simpler to render numerically stable

when compared to other methods and produce realistic looking simulation results. They also

have a distinct advantage, in that, contact methods developed from rigid-body dynamics can

be directly applied. However, it was shown by Shabana [114, 120] that lumped-parameter

systems are typically not consistent in the deformable body sense, in that the internal elastic

degrees of freedom can be affected by rigid-body motions and vice-versa. As these models

do not necessarily preserve rigid-body modes, they are of less interest than they otherwise

would be; however, since many applications use them, they will be examined in further detail

in Chapters 3 and 4.

The usual model of flexible bodies treats them as a continuum. So, in direct contrast
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to the rigid-body model, the continuum model posits that an infinite number of degrees

of freedom are required to describe the configuration of the body, as one must specify the

global position of every point in the body. The Finite Element Method (FEM) is a piecewise

polynomial approximation, or interpolation, for the displacement field of the flexible body.

Each piece in the piecewise approximation is interpreted as a finite element of the body with

a finite number of degrees of freedom. The whole flexible body then has many degrees of

freedom encoded in the finite elements, which renders it capable of undergoing large changes

in its overall shape.

There are a number of methods for the finite element modelling of general deformable

bodies that can undergo large deformations and large rotations [120, 121], each having dif-

ferent advantages. The first was the Floating Frame of Reference (FFR) [122] method. This

method separates the rigid motion of the deformable body from the deformation by defining

a local frame attached to the body, in which the deformation is defined. The deformations

are therefore indifferent to any rigid-body motion. This method has the advantage that the

elastic forces can be stated quite simply, as conventional finite elements can be employed to

describe the elastic deformation of the material in the local frame. For small deformations,

it is also possible to use any small-deformation finite element to describe the deformations,

as well as associated reduction techniques, e.g., one can use modal reduction to reduce the

degrees of freedom required [114, 123]. This is well suited to the analysis of problems with

finite rotations and translations, but small deformations. However, there are some disadvan-

tages. When analyzing a problem which exhibits large translations, large rotations and large

deformations, one can no longer employ modal reduction, thus removing the main efficiency

advantage of FFR. Also, the main trade-off with FFR is that whilst the elastic forces can

admit a simpler description, the degrees of freedom describing the floating frame and those

describing the deformations become highly coupled due to the inertial forces. Hence, the

inertial forces, i.e. the mass matrix, Coriolis and centrifugal terms, can be computationally

complex. Often in industry these disadvantages are not so relevant, the small deformation

assumption being reasonably accurate for many purposes. However, as established, large

deformations are a requirement for the real-time simulation applications that are of interest

here. Lastly, the decomposition into a local frame can make imposing kinematic constraints
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more challenging as the location of points on the flexible body will be nonlinear functions

of the degrees of freedom of the finite element [124]. It is for these reasons that the FFR

formulation is not suited to our purposes; it will thus not be given further consideration.

The second method, and the one we will use throughout this thesis, is the Absolute Nodal

Coordinate Formulation (ANCF) method, first proposed by Shabana [125, 126]. The ANCF

formalism is well suited to our task, as it captures the rigid-body modes well, is suitable

for the description of large deformations and, due to the increased order of interpolation of

the elements, often requires fewer elements to obtain a good description. These features are

not accidental; the ANCF formalism was designed to be a large-deformation, large-rotation,

finite element method that preserves the rigid-body modes of the deformable bodies under

consideration. A full exposition of the mathematics of the ANCF method can be found in

Appendix B, and a summary at the end of this review. For now, the focus will be on the

general idea and historical development and the concept will be simply summarized here.

The idea is that a finite element is represented in a global inertial coordinate system by

specifying the locations of its nodes, e.g. the endpoints of a cable or beam element, and the

global position vector gradients, e.g. the slope of the cable/beam in global coordinates at the

endpoints. These degrees of freedom are known as the nodal coordinates of the element. Due

to the description in global coordinates, ANCF finite elements enjoy a constant mass matrix,

and the consequent absence of any nonlinear inertial force terms. Many elements have been

developed, only the most relevant elements being discussed below. The most important

concept for distinguishing elements is that of gradient deficiency. Elements are known as

gradient deficient, if they use fewer slopes than the number of dimensions of the element in

its degrees of freedom. For example, the standard cable element is gradient-deficient, as it

uses one location and one gradient vector at either end of the element to describe a cubic

curve in space. Conversely, a two-dimensional fully parameterized element in two dimensions

uses one location and two gradient vectors at either end of the element. This was the first

element developed by Shabana [125, 126] as a model for the Euler-Bernoulli beam.

A separate development arose in the formulation of the geometrically exact beam. This

formulation, in its modern incarnation, instigated by Simo et al [127, 128] places a coordinate

frame at each point along the beam centerline. The shape of the beam can then be described
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by the coordinate transformation that takes the initial frame, to the frame at that specific

point. This kind of beam has a fixed, non-deformable cross section, and when considered

in three dimensions, is quite complex, due to the non-commutative nature of rotations. A

comparison between the geometrically exact beam and the ANCF beam was reported by

Romero [129]. The general conclusion is that having rotational degrees of freedom in the

geometrically exact beam can lead to problems with preserving rigid-body modes as well as

interfacing with other systems. They also find that the element is not as suited to dynamic

analysis, though it can be used in this way regardless [130]. However, these methods do

suffer from fewer locking issues, can support a constant strain, and have the same or fewer

degrees of freedom per element when compared to ANCF elements. More geometrically

exact elements have been proposed, including other beam elements and shell elements [131].

2.2.3 The absolute nodal coordinate formulation

Immediately after the initial definition of the ANCF element for an Euler-Bernoulli beam a

link was made with the popular FFR formulation described above, where Shabana et al [123]

demonstrated that the FFR formulation using a finite element with a cubic interpolated

material displacement, was equivalent to a cubic ANCF element. Much of the early work

was dedicated to establishing that the ANCF formalism was able to reproduce known features

in other finite element formulations and that it resembled physical reality quite well. Further

work on refining the formalism and methods was undertaken [124, 132] to firmly establish

the advantages of ANCF over the incremental method and FFR formalism. That is, that

unlike methods based around linearizing the rotation of the element, the ANCF method was

able to exactly capture the rigid-body behaviour of the element.

These studies showed that the ANCF was a real alternative to the established methods,

and could reproduce their behaviour in the small-deformation regime. In particular, it was

shown that cables/beams and plates modelled using the ANCF method are isoparametric

elements with constant mass matrices [133]. Isoparametric elements are those which allow

the same shape function to be used to describe the displacement field of the flexible body,

and its global position in space. This isoparametric character of the ANCF elements is what

allows them to have a constant mass matrix. Even at this early point of development, efforts
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were being made to exploit the constant mass matrix to improve the computational efficiency

of finite element algorithms [134, 135], such efforts allowing for the determination of a sparse

matrix structure for the equations of motion.

Following this initial work, ANCF theory had become fairly well established; studies

were being conducted showing that it outperformed by far the incremental methods [136]

in problems that required large deformations and rotations. This was largely due to the

exact representation of the rigid-body degrees of freedom. In fact, even in static problems

the ANCF method was shown to outperform previously used incremental methods despite

the increased complexity of the elastic forces. The problems with the complexity of the

elastic forces were invesitgated [137], and a number of models of simplified elastic forces

were developed for a two-dimensional beam element, and shown to perform comparatively

well with respect to the models already available.

There was also a focus on formulating various elements that could be applied to finite

element problems of interest. Initially, a two-dimensional shear deformable beam was devel-

oped [138], and the theory of the fully parameterized three dimensional beam element was

established [139, 140]. Up until this point, the ANCF formulation in three dimensions had

been used to describe the center line of the beam, the cross section either assumed rigid, or

its deformation described using a local frame. This three-dimensional element used instead

all three gradient vectors at a nodal point to define a fully deformable element. In particular,

the fully parameterized beam element that used the full nonlinear elastic forces derived from

continuum mechanics was presented. Furthermore, a parallel effort was made to develop a

full Euler-Bernoulli beam model using the ANCF methodology, but parameterizing the rigid

cross-section with rotational parameters [141]. It was found, in support of previous work,

that the ANCF method was particularly well suited for large deformation problems, but

provided numerical advantages in the description of the elastic forces, showing that, in fact,

the nonlinear elastic forces used in the ANCF method were overall more efficient than the

linearized forces used in incremental methods for a given degree of accuracy.

An extension to the beam element that contains some extra mode functions [142] was

developed, which allowed for a reduction in the number of elements required to represent

certain phenomena. A number of plate and shell elements were developed analogously to the
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ANCF elements of Shabana [143–146]. Another two-dimensional deformable beam element

was developed [147], which uses a linear interpolation in a direction perpendicular to the

beam center line to generate an element that is free of shear locking (a topic that will be

revisited shortly), as well as a linear beam element developed largely by the same group [148].

Lastly, a thin beam element to simulate thin-cantilever beams was developed, that included

variables to capture the twist of the one-dimensional beam [149]. This was then generalized

by Yoo et al [150] by adding second derivatives as nodal coordinates to a cable element,

which were used to impose constraints on the second derivatives.

Tests of the ANCF method in the study of significant nonlinear effects in real deformable

bodies have also been conducted. In particular, the ANCF methodology naturally exhibited

the centrifugal stiffening observed in spinning beams [151]. This is a nonlinear effect, that

can be observed here as the ANCF formalism uses the continuum mechanics expressions

for the elastic energy of the beam. In parallel developments Takahashi et al [152] added a

damping matrix to the standard ANCF formalism, and used it to examine the response of

buildings and vehicles to earthquakes.

Simultaneously, a large amount of work applying the ANCF method to various mechan-

ical systems was undertaken. It was shown that the ANCF method could be employed to

effectively model systems with slope discontinuities [153], e.g., L-beams. Initial work aimed

at the modelling of cables via ANCF [154] was also reported. In the forgoing work, the

authors used what has come to be known as the ANCF cable element. This element is a

generalization of the original ANCF element [125, 126, 137]. It is a one-dimensional element

that models the center line, or axial line, of the element. The authors used the continuum-

mechanics-derived nonlinear longitudinal strain to model the elastic forces, but did not add

any stiffness related to the bending. The authors compared their results to the standard

linearized symbolic solutions to the dynamics of the cable, and found good agreement in the

small-deformation regime, where the linearization is valid.

The addition of plastic deformation to the ANCF methodology was also investigated

[155, 156]. It was shown therein that the ANCF method was particularly suited to describing

plasticity in finite elements as the results retained their properties under rigid-body motion,

unlike the existing finite element formulations at the time. A number of linearized implicit
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and fully implicit numerical integration methods were used to avoid the instabilities that

arise with explicit integration methods. To the author’s knowledge this is the first time

the use of linearized implicit methods with ANCF models appears in the literature. Omar

et al [157], studied the modelling of leaf springs, used for vehicle suspensions, via ANCF

fully parameterized beam elements. A leaf spring in a number of thick bent plates clamped

together extremely tightly, which is used to provide suspension for heavy loads, such as

vehicles. Due to their construction, accurate modelling requires the introduction of friction

forces between the leaves. This work is the first, to our knowledge, to include frictional

contact forces within the ANCF formalism. Other dissipative forces within an element were

introduced by Garćıa-Vallejo et al [158], who demonstrated that it was also possible to add

internal damping forces to the ANCF element without compromising the consistency of the

ANCF method. There was also a significant amount of work dedicated to solving locking

problems in ANCF elements and validation, as discussed in Appendix C. As these topics lie

outside the scope of the thesis they will not be discussed here.

Given that our purpose lies in the incorporation of deformable bodies into real-time rigid-

body solvers, it is appropriate to review the main literature involving general multibody

modelling with ANCF elements. To be used in multibody modelling the ANCF formulation

requires the construction of bilateral constraints to represent joints between ANCF elements

and rigid bodies. A large number of constraints suitable for use with ANCF elements have

been constructed.

Initial investigations into constraints in the ANCF formalism were conducted by Escalona

et al[124]. Standard kinematic constraints were explored, e.g., those representing a spherical

joint between two ANCF elements. These kinds of bilateral constraints in the ANCF formal-

ism can be imposed using linear functions of the variables. This is significantly simpler than

other FEM formulations. Quite systematic constructions of various constraints, including

nonlinear kinematic constraints, have been reported [159]. Both the kinematic relationship

and Jacobian for constraints representing a revolute, spherical, sliding, and cylindrical joint

along with a slope discontinuity applied between ANCF elements, have been reported. The

constraints on the rotation of the nodes of the ANCF elements required the definition of

an orthonormal coordinate frame at the element endpoints. This was done in a number of
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ways, either based on the axial direction vector, or on the cross-section directions. Numerical

studies were conducted, one demonstrating the numerical results of a pendulum modelled

by an ANCF element, connected to a rigid-body via a spherical joint [160], and another

demonstrating the imposition of constraints on the endpoints of a fully parameterized ANCF

element [161]. The latter required the choice between allowing or disallowing deformations

of the cross-section at the endpoints. Lastly, and probably most importantly, it was real-

ized that the nodal coordinates of a fully parameterized element can be used to consistently

define a rotation and stretch tensor at the endpoint via polar decomposition [162]. These

degrees of freedom are sufficient to describe, without redundancy, a completely arbitrary set

of three vectors at a nodal point [163]. An alternative method was proposed that used an

intermediate coordinate frame to allow rotational constraints to be defined in a systematic

way [164]. This intermediate coordinate frame method provides an interface that can be

used with constraints available in standard FEM libraries. For similar purposes, Shabana et

al [165] proposed an ANCF reference node for multibody system analysis.

A similar line of investigation was instigated by Garćıa et al [166]. This sequence of

investigations was more focused on constraining ANCF elements together with rigid bodies.

They found that describing the rigid bodies using natural coordinates provided a natural

way to connect rigid bodies and ANCF elements, often using linear kinematic relationships.

The same authors continued this line of investigation [167], generalizing the ANCF elements

to three dimensions, and removing redundant coordinates in a systematic way.

Some bilateral constraints that have been developed are worth examining in slightly more

detail. Slope discontinuity constraints allow the formation of ANCF-based flexible bodies,

such as L-beams. Shabana et al [153] first developed slope continuity constraints and fol-

lowed up a few years later using an intermediate frame method, and applying such constraints

to gradient-deficient beams [168]. Investigations into the numerics of such constrained de-

formable bodies were conducted by Maqueda et al[169]. Sliding joints were introduced by

Sugiyama et al [159] in 2003, but were further developed by Lee et al [170], who studied

a sliding joint on a very flexible element. The sliding joint is constructed by introducing a

parameter that measures the arc length along the body being slid along. This kind of formu-

lation is problematic if introducing an extra highly nonlinear degree of freedom is difficult,
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such as when using ‘relaxed’ constraints. An alternative was introduced by Hong et al[171].

This investigation used the recently proposed ALE element, which combines the ANCF cable

element with an Eulerian description to allow the cable to ‘flow’ along the axial direction.

The sliding in this investigation was implemented by means of ALE elements that can change

their length either side of the joint and a constraint ensuring that the total natural length of

the two ALE elements is preserved. As an extension of sliding joint models, cylindrical joint

models have been developed, and extended by Tian et al[172]. These joint models ensure

that the sliding elements are only able to rotate around the cable; this work examined dry

and lubricated cylindrical joints between ANCF elements and rigid bodies connected by a

cylindrical constraint.

At this point the literature on constraints is relatively well established, but it is focused

on the kinematic relationships, and the elimination of those constraints to remove degrees

of freedom from the formulation. However, in many real-time simulations, the nonlinear

constraints involved cannot be efficiently removed. In these cases the constraints can be

relaxed instead, giving approximate constraint satisfaction. There has been scarce study

into the performance of relaxed constraints with ANCF elements and rigid bodies.

To facilitate the construction of more complex deformable bodies, a number of notable

elements have been developed for general, rather than specialized purposes. The notable

elements of interest to this thesis are the parallel sets developed by Olshevskiy et al [173–

175] and Pappalardo et al [176, 177]. Olshevskiy et al initially developed a set of solid brick

elements [173], followed by three-, six- and eight-node triangular or quadrilateral plate ele-

ments [174], and, finally, a tetrahedral element, along with a recipe for generating a large

family of ANCF elements in one, two and three dimensions [175]. Pappalardo et al [176], in

a similar development, proposed a set of triangular elements distinct from Olshevskiy, and

their own tetrahedral element. Most recently, beam elements such as the ‘ANCF/Consistent

Rotation-Based Formulation’ element have been proposed [178], which have rotational pa-

rameters as degrees of freedom at the nodal points, allowing for constraints between these

elements and other multibody elements to be constructed quite simply.

Given that Coulomb frictional contact problems with rigid bodies can be formulated as

nonlinear complementarity problems with associated advantages as discussed in the previ-
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ous section, it is possible to do the same with flexible bodies, which may provide similar

advantages. However, in the flexible-body literature, there has been scarce exploration into

different contact formulations in the real-time context. Specifically, in the ANCF literature,

contact formulations tend to be one of two types. The first type is used when the finite

element model is already very detailed, and so detailed normal and friction force models

can be used to capture the details of the interface between the materials [179]. However,

these methods are far too complex for our purposes, and so, we will not consider them

further. Similarly, we will not focus on contact methods developed for small deformation

FEM methodologies and restrict the review to those designed with ANCF in mind. The

second type of contact formulation focuses on methods that are not particularly accurate,

but are quite fast, such as penalty-based methods or regularized Coulomb friction, with

some exceptions. Simple LCP formulations have been used to establish the normal forces

for a two dimensional belt-drive model [76, 180], and combined with a penalty-based friction

model to compute the frictional forces. This method is quite interesting, the initial contact

between pre-specified contact points on the belt is modelled as an impact using a penalty-

based force. Once the normal velocity of the contact point has dropped to zero due to the

penalty damping, the contact point is assumed to be active. Once in contact, the authors

apply the acceleration-level frictional model proposed by Glocker and Pfeiffer [79]. As the

problem is two dimensional, this results in an LCP for the system. In fact, this method

showed quite good agreement with analytical results. Omar [157], mentioned above, who

investigated the dynamics of lead springs, developed a simplified model in this way, while

assuming that contacts are always sliding. Wang et al [181] also modelled parabolic leaf

springs. Real world data, e.g., photographs, were used to construct the finite element mesh

for leaf springs. Friction was modelled using the method of Cepon [76]. A higher order

beam element was used to avoid locking problems; it was found that the friction effect is

smaller for parabolic leaf springs than with regular leaf springs. Other than these models,

to the author’s knowledge there are only two well-developed contact formulations for use

specifically with the ANCF methodology.

The first, and most frequent example of a contact force formulation used with ANCF

elements, is a penalty method to compute normal forces and some version of regularized
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Coulomb friction to model the frictional forces, a concept we will refer to as a Penalty

with Regularized Friction (PRF) model. Examples of this approach outside of ANCF can be

found in various applications [182, 183]. This is sufficient for some purposes, but its accuracy

is not usually acceptable. In the ANCF literature there are a number of examples of this

method. It is also the case that regularized Coulomb friction is often not accurate [71], as,

although it provides a force opposing the motion, the force is proportional to the speed,

up to the limit given by Coulomb’s friction law. Therefore the friction force is non-zero

only when the system is in motion. Regularized Coulomb friction is therefore not a good

way of formulating the stick/slip transition, and suffers from continuous drift in situations

when the system should be static. It is sometimes useful, however. Experimental studies

such as those reported by Sugiyama [184], used a regularized friction model to simulate the

frictional contact interaction between a rubber tire and the terrain, which performed well

when compared to experimental results for tire response. Other examples include the work

of Bulin et al [185], who used a penalty-based model to describe the interactions of a cable

element with a pulley.

A number of recent investigations have combined many of these techniques to describe

complex systems. Patel et al [186] examined tire modelling in some detail, but contact

between the tire and terrain used a PRF model. Sun et al[187] investigated structural

optimization of the flexible components in a multibody system. The flexible components

were modelled with ANCF elements, a numerical example of a robot arm was presented, and

the PRF recipe was used to model grasping contact. Recuero et al [188] used ANCF ‘bricks’

to model soil plasticity to examine tire performance. Both soil and tires were modelled using

ANCF elements, with contact implemented again using the PRF recipe.

The second contact-force formulation, sometimes seen in the literature, is based on a cone

complementarity problem (CCP) [189]. In particular, use of the CCP formulation has been

found successful in wheel-terrain simulation [190, 191], as it is designed to capture rolling

friction. In these applications the CCP formulation works well, but in the more general

applications targeted by the work in this thesis, i.e., those that involve many bodies and see

many stick/slip transitions, the CCP formulation is not sufficient, as discussed previously in

relation to rigid bodies.
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Whichever contact-force formulation is chosen, it must be interfaced with some time-

stepping scheme in order to conduct a simulation, as the methods referenced above have

done. A number of time-stepping schemes have been used in the above work, and integra-

tion methods with regards to finite element models have been discussed in many places,

and in the context that is of interest here, such as reported by Hussein et al[192]. These

authors compared implicit and explicit integration schemes in the solution of the absolute

nodal coordinate differential/algebraic equations. They used two methods: one higher-order

implicit method with tunable damping, and one explicit predictor-corrector method; they

found the implicit method better for stiff problems, although both are still too slow for

real-time simulation.

One relatively common second-order time-stepping method is also worth mentioning; the

Generalized α method. This method allows the analyst to set appropriate tuning parame-

ters for their dissipation and numerical accuracy; it has been used previously with ANCF

elements, for example, in the work by Hu et al [193]. The Generalized α method is neither

slower nor faster than a typical second-order method, but it does require the solution of a

nonlinear equation, which is usually done using the Newton-Raphson method. More recently,

an extension of the method to cope with nonsmooth systems, e.g., systems with unilateral

contact, was proposed [194]. The authors combined the second-order accurate Generalized

α-method to simulate the continuous motion, with a first-order backward Euler scheme to

account for the unilateral constraints. This produced a good integration method; however,

in the presence of many contacts, the first-order errors still dominate, as discussed in the

previous section. The Generalized α method is also significantly slower than an explicit or

semi-implicit first-order method, which makes it unsuitable for real-time simulation.

2.2.4 ANCF dynamics

As the latter chapters of this thesis rely heavily on the ANCF formalism, the basic concepts

will be introduced here using the example of the cable element [137, 154]. A more in-

depth discussion of the ANCF formulation can be found in Appendix B. Consider a one

dimensional straight line to represent the undeformed cable, and denote by the material

coordinate x the distance along the longitudinal axis of the undeformed cable. The spatial
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location of the point on an element of length L, at an undeformed location x, is denoted

by r(x). The dependence of r(x) on x will be suppressed below, unless the clarity of the

exposition requires it. The generalized coordinates of the two nodes of a single ANCF cable

element are:

q1 =
[
rT(0) rT

x (0)
]T

, q2 =
[
rT(L) rT

x (L)
]T

(2.23)

where rx(x) = ∂r(x)/∂x. As the cable is in three dimensional space, there are three position-

vector components, and three components of the gradient vector, thus resulting in six degrees

of freedom per nodal point. The element nodal coordinate vector is then defined as:

q =
[
qT

1 qT
2

]T
∈ R12 (2.24)

The position of the longitudinal axis in space is specified by a cubic interpolation function.

A cubic function can be uniquely determined by specifying the position and gradient at each

end; consequently, a shape function matrix S ∈R3×12, can be defined, such that the location

in space of any point on the center line is given by:

r(x) =
[
S1(x)I S2(x)I S3(x)I S4(x)I

]

q1

q2


= S(x)q (2.25)

The scalar factors in the above matrix have been determined [126, 137, 195], as given below:

S1(Lξ ) = 1−3ξ 2 +2ξ 3, S2(Lξ ) = L
(
ξ −2ξ 2 +ξ 3)

S3(Lξ ) = 3ξ 2−2ξ 3, S4(Lξ ) = L
(
−ξ 2 +ξ 3) (2.26)

where ξ = x/L is the dimensionless local coordinate along the cable axis, with 0≤ ξ ≤ 1.

The mass matrix of the cable element is constant and determined by integration with

respect to x along the element axis [195]. The expression for the mass matrix is:

M = A
∫ L

0
ρST(x)S(x) dx ∈ R12×12 (2.27)
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where A is the cross-sectional area and ρ the (assumed constant) mass density.

Two types of strain fully define the internal forces of this element, longitudinal stretch

ε and curvature κ associated with longitudinal deformations and transverse deformations

respectively. The virtual work of the internal forces can be expressed as:

δWe =
∫

L
[EεAεδε +Eκ Iκδκ]dx (2.28)

where Eε and Eκ are the Young moduli associated with stretching and bending, respectively,

I being the second moment of area of the cable element. Based on Green’s strain definition,

the axial strain and the curvature [196] are defined as:

ε =
1
2
(
rT

x rx−1
)
, κ =

|rx× rxx|
|rx|3

, where rxx =
∂ 2r
∂x2 (2.29)

We note here that potentially more accurate results can be obtained using the ‘material

curvature’ K, rather than the geometric curvature κ [197]. The material curvature is given

by K = |rx|κ . The generalized elastic force vector due to the longitudinal deformation, Qel,

and the transverse deformation Qet, can then be determined from the principle of virtual

work as:

Qel =−EεA
∫ L

0

(
∂ε
∂q

)
ε dx, Qet =−Eκ I

∫ L

0

(
∂κ
∂q

)
κ dx, Qe = Qel +Qet (2.30)

Applied forces can act at any point of an element, or in a distributed way along the element.

Using the principle of virtual work, and the relationship r(x) = S(x)q, the generalized force

Qapp resulting from the applied force in the global coordinate frame fapp acting at material

coordinate x = a, is determined to be:

Qapp = S(a)Tfapp (2.31)

Consequently, a force acting along some segment of a cable, from l0 to l1, can be computed
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via:

QT
app =

∫ L1

L0

fT S(x)dx, where 0≤ L0 < L1 ≤ L (2.32)

which can be evaluated numerically using Gaussian quadrature, to give:

QT
app =

n

∑
i=1

wifT (r(xi), ṙ(xi))S(xi), where 0≤ L0 ≤ xi ≤ L1 ≤ L ∀ i

where an appropriate quadrature rule for the length of the segment being considered is

applied. With these definitions the dynamic equation for the ANCF beam model is given

by,

Mq̈ = Qe(q)+Qapp (2.33)

whre, the matrix, M is positive definite, and so is invertible, and the function Qe(q) is smooth

and differentiable. This means that this set of equations, given a set of boundary conditions,

always has a unique solution. For a sufficient number of elements the expectation is that the

solution of this set of equations will converge to the solution for the continuum model of the

flexible body.
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Chapter 3

Numerical Stabilization for

Articulated Rigid Bodies

3.1 Introduction

Several methods exist for the simulation of large, complex constrained mechanical systems.

Various constraint stabilization schemes were discussed in the literature review, in section

2.1.2; and it was concluded that this thesis is most interested in schemes that relax the

constraints, yet it is possible when using such schemes for the dynamics to become stiff and

the simulation to become numerically unstable.

We are interested in maintaining the numerical stability of simulation tasks using the semi-

implicit Euler integration method, with relaxed constraints. In the following the compliant

constraints method is used to enforce the constraints. The problems with numerical stability

arise when relaxed constraints are applied to complex systems, such as chains of rigid bodies

or cloth models [26, 36]. It is challenging, when simulating these systems, to both maintain

reasonably stiff constraints, whilst still achieving real-time performance without the loss of

numerical stability.

To define a concrete problem, recall the first-order accurate, semi-implicit Euler scheme

for mechanical systems with compliant constraints [41]. The discretized Equations of Motion

(EoM) are a map (q,v)→ (q+,v+) allowing the generation of a trajectory that approximates
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that of the corresponding continuous system. The EoM are given below:


M −JT

b

Jb Cb/h2




 v+

hλλλ b+


=


Mv−hb+h fapp

−φφφ b/h


 (3.1a)

q+ = q+hNv+ (3.1b)

where q ∈ Q is the vector of generalized coordinates in the n-dimensional configuration

space Q; vector v is the n-dimensional generalized velocity of the system, related to the time

derivatives of the coordinates by the matrix N via the equation q̇ = Nv; M is the (n× n)-

dimensional mass matrix; φφφ b is the m-dimensional vector of constraint equations (considered

to be holonomic and scleronomic); Jb is the (n×m)-dimensional constraint Jacobian matrix

defined by φ̇φφ b = Jbv; λλλ b is the m-dimensional vector of reaction forces; b contains the velocity-

dependent inertial forces; fapp is the vector of applied forces; h is the time-step; and Cb is

the (m×m)-dimensional compliance matrix associated with the relaxed constraints. Unless

otherwise indicated, all functions of q are evaluated at the current time-step, e.g., Jb = Jb(q),

whereas the + subscript indicates the future time-step. We will also let the compliance

matrix be Cb = cI, where I is the n×n identity matrix, and hence all constraints have the

same compliance.

Adding compliance to the constraints generally makes the problem easier to solve, and is

equivalent to having implicit linearized penalty forces, which can compromise the realism of

the results. This is not necessarily apparent in very large or complex simulation tasks, which

are precisely the types of applications that benefit from these solvers. The reason for this

is twofold: most of the times there is no symbolic or expected solution to those problems;

therefore, this phenomenon is not readily detected; moreover the simulation requirements

prioritize stability and speed before accuracy, thus accepting plausible solutions rather than

physically realistic solutions. Furthermore, certain systems will seldom encounter stability

problems, and hence the dissipation is not needed from a mechanical point of view, especially

if the dissipation is not quantified.

Ideally, multibody formulations should be able to eliminate or at least limit the energy

offset. Our objective in this chaper is to adaptively find a balance between the stability of an
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overdamped implicit Euler scheme and the energetic consistency of the semi-implicit Euler

scheme.

3.2 Geometric Stiffness

We include here a summary of the theoretical foundations of the geometric stiffness approach,

in order to lay the groundwork for an alternative scheme.

3.2.1 Motivation

An extension to the compliant constraints stabilization method by Lacoursiere [39, 41] was

reported by Tournier et al [26]. The main idea is that the first-order integrator with compliant

constraints can be further stabilized by evaluating the constraint Jacobian matrix at the

future time-step. Essentially, one is evaluating the constraint forces in an implicit way, while

using a linear approximation to evaluate the Jacobian matrix. Their proposal resulted in

the extension of the discretized equations of motion:


M−h2K̃ −JT

b

Jb
1
h2 Cb




 v+

hλλλ b+


=


Mv−hb+hfapp

−1
hφφφ b


 (3.2)

where the geometrix stiffness matrix, K̃, is defined as:

K̃ =
∂JT

b
∂q

λλλ b (3.3)

which is essentially the correction required to give a first-order approximation to an implicit

evaluation of the constraint forces. This evaluation helps to stabilize the system, whilst

allowing the discretized dynamic equations to remain linear.

However, this definition is problematic in a number of ways: firstly, it is notationally

unclear, as the derivative of the Jacobian is a rank-3 object, i.e., it has three covariant

indices; secondly, the way it is written above, the rank-3 object is not a tensor as it does

not have the correct transformation properties; thirdly, it does not appear as though any

changes in the basis vectors are taken into account, since a rigid body not only uses, but

requires the use of non-constant basis vectors; and lastly, this definition is not appropriate
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for situations in which the generalized velocities are not taken to be the time derivatives of

the generalized coordinates.

Here we propose an alternative derivation that resolves these ambiguities and agrees with

the previous result as applicable. First, the constraint force is expressed as

fb(q(t),λλλ b(t)) = Jb(q(t))T λλλ b(t). (3.4)

With this, the geometric stiffness can be conveniently defined as

dfb

dt
= Kq̇+JT

b λ̇λλ b = K̃v+JT
b λ̇λλ b. (3.5)

The first term is due to the change in the configuration between t and t + ε , and takes into

account changes in the basis vectors. The second term is due to the change in λλλ b between

t and t + ε . As both of these terms, and v, are vectors, this definition ensures that K̃ is a

tensor. The Jacobian Jb(q) is a function of the coordinates, and through the coordinates, a

function of time. Thus, we can perform a Taylor expansion of the contact force to evaluate

fb at a later time:

fb(t + ε,λλλ b)≈ fb(t,λλλ b)+ ε
dfb

dt
(t,λλλ b) = fb(q,λλλ b)+ ε

(
K(q,λλλ b)q̇+JT

b λ̇λλ b

)
(3.6)

In order to discretize this expression, we need to state at which time-step we should evalutate

q̇ and λ̇λλ b. In the expansion, q̇≈ (q(t+ε)−q(t))/ε and λ̇λλ b≈ (λλλ b(t+ε)−λλλ b(t))/ε . Therefore,

setting the time difference ε = h and using q+−q = hNv+, λλλ b+−λλλ b ≈ hλ̇λλ b and fb(q,λλλ b) =

JT
bλλλ b, we find that the above expansion discretizes to:

fb(q+,λλλ b+) = fb(q,λλλ b)+hK̃(q,λλλ b+)v++JT
b (q)(λλλ b+−λλλ b)+O(h2) (3.7)

= JT
b (q)λλλ b++hK̃(q,λλλ b+)v++O(h2) (3.8)

It is also useful to note that a good, reliable way to compute the geometric stiffness is to set
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λλλ b to a constant value. Then:

dfb

dt
= K̃v (3.9)

Therefore, by taking the time derivative of the expression for the constraint force, and then

extracting the factor of the velocity, one can quickly recover the correct tensorial expression

for the geometric stiffness. The discretized equations of motion then take the form:

M(v+−v) = h fb(q+,λλλ b+)−hb+hfapp (3.10a)

q+−q = hNv+ (3.10b)

Inserting the expression derived for fb then gives the map (q,v,λλλ b)→ (q+,v+,λλλ b+), which

models the mechanical system under consideration, i.e.,


M−h2K̃ −JT

b

Jb Cb/h2




 v+

hλλλ b+


=


Mv−hb+hfapp

−φφφ b/h


 (3.11)

q+ = q+hNv+ (3.12)

The interpretation of the geometric stiffness is related to the ‘implicitization’ of the con-

straint Jacobian matrix. As the latter is evaluated at the next time-step, the direction of the

constraint forces changes to be that of the constraint forces at the upcoming time-step. This

is schematically shown in a single pendulum example in Fig. 3.1. The force K̃(q+−q) is also

shown, and the deviation between fk + K̃(q+−q) and fk+1 is given by the remaining terms

in the Taylor series. Thus, this is a good approximation for the force at the next time-step

as long as the angle between the two force vectors is small. The direction of K̃(q+−q) is

almost tangential to the constraint surface, so that the contribution of the geometric stiffness

force is almost entirely a damping force, helping to stabilize the integration. Importantly,

this means that the geometric stiffness term must be interpreted as an artifact of the dis-

cretization scheme; it should not be used as a substitute for an actual damping force if there

physically exists one in the problem.
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fk−1

fk

fk+1 fk+1
fk

K̃(q+ − q)

Figure 3.1 Single pendulum with compliant constraints. The constraint surface, minor deviations from it, forces at

successive time-steps and the origin of the geometric stiffness are indicated.

m1, I1

m2, I2

1l

2l

1θ

2θ

x

y

g = 9.81 m/s2

Figure 3.2 Double pendulum.

3.2.2 Discussion

Let us examine, as a second example, a planar system made up of two bodies, symmetric

around their centers of mass, connected in a double pendulum configuration, as per Fig. 3.2.

Initially the bodies are oriented with θ1 = θ2 = π/2 and are at rest. The system is under

the effect of gravity along the −y-direction. The time-step is h = 10 ms. The masses and

moments of inertia are 1 kg and 1 kg·m2, respectively. The half lengths of the bodies, as

shown in the figure, are l1 = l2 = 0.5 m. The compliance of the joints is set to 10−5 m/N.

Six variables can be introduced to represent the locations of the centers of mass of the
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Figure 3.3 Double pendulum. Net energy (without constraint energy) of the original and geometric stiffness methods.

bodies and their orientations :

q1 ≡ [x1,y1,θ1]
T, q2 ≡ [x2,y2,θ2]

T (3.13)

The constraint equations are given by

φφφ b =




x1− l1 sinθ1

y1 + l1 cosθ1

x1 + l1 sinθ1− x2 + l2 sinθ2

y1− l1 cosθ1− y2− l2 cosθ2



= 0 (3.14)

which, if imposed as hard constraints, would reduce the system to the required two degress
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of freedom. Their Jacobian matrix is given by

JT
b =




1 0 1 0

0 1 0 1

−l1 cosθ1 −l1 sinθ1 l1 cosθ1 l1 sinθ1

0 0 −1 0

0 0 0 −1

0 0 l2 cosθ2 l2 sinθ2




(3.15)

We define the net energy to be given by the mechanical energy of the system, excluding

the energy stored in the contraints. The total energy is defined to include the energy stored

in the constraints. Figure 3.3 shows the net energy in a 25 s simulation. The original

compliant constraint approach, shown with solid curves, preserves the energy of the system

fairly effectively. On the other hand, when geometric stiffness is considered, the formulation

struggles to preserve the energy, which results in a physically unrealistic motion as the

system is conservative. In fact, the pendulum comes to rest in about 30 s. Nevertheless, the

dissipation provides greater stability with higher applied forces.

Numerical dissipation can also be desirable, if the main objective is to ensure the stability

of the integration algorithm. However, care must be taken in the interpretation of the

results, as the dissipation is not ‘real’, but a numerical artifact. Sometimes the real system

does have in-built damping mechanisms, which can be difficult to model and tune. Thus

numerical dissipation can help to produce plausible trajectories in a stable way by replacing

these actual forces with numerical dissipation (as an example, consider a cable with bending

damping). In other cases, however, damping in the system which is being modelled is local

(or nonexistent) and cannot be applied to the entire system in an algorithmic way. Two

examples are the double pendulum we just analyzed and a vehicle running through speed

bumps.
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3.3 Adaptive Constraint Stabilization

We extend the previous method by introducing a parameter that allows one to control the

geometric stiffness effect, and ultimately to regulate the energy dissipation.

3.3.1 Geometric Stiffness Control

The velocity-level discretized equations of motion, with constraints evaluated at the upcom-

ing time-step, are given by:

M (v+−v) = hJT
b+λλλ b++hf (3.16)

where f collects the velocity-dependent inertial force and other applied forces acting on the

system. In order to introduce a control parameter, we define a new integrator in which the

Jacobian is evaluated at some point (t = αh) during the time-step

M (v+−v) = h Jb(t +αh)T λλλ b++hf≈ hJT
bλλλ b++αh2K̃v++hf (3.17)

This is equivalent to evaluating the constraint forces implicitly when α = 1 and evaluating

the constraint forces at the current time-step when α = 0. The α parameter can therefore

be seen as an interpolation parameter that evaluates the Jacobian matrix at a given point

along a straight line joining q and q+. After rearranging the constraint terms, the discretized

equations of motion become:

(M−αh2K̃)v+ = Mv+hJT
bλλλ b++hf (3.18)

which is the standard result, except for the addition of α as a multiplier of the geometric

stiffness term. For yet more control, we can also evaluate the constraint forces at some point

during the previous time-step, using a pair of discretized equations of motion:

M (v+−v) = h Jb (t +αh)T λλλ b++hf, α ∈ (0,1] (3.19a)

M (v+−v) = h Jb (t +αh)T λλλ b++hf, α ∈ [−1,0) (3.19b)
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Expanding the constraint Jacobian matrix in the above equations and truncating to first-

order gives

M (v+−v) = hJT
bλλλ b++αh2K̃v++hf, α ∈ (0,1] (3.20a)

M (v+−v) = hJT
bλλλ b++αh2K̃v+hf, α ∈ [−1,0) (3.20b)

Rearranging terms in the foregoing relations leads to:

(
M−αh2K̃

)
v+ = Mv+hJT

bλλλ b++hf, α ∈ (0,1] (3.21a)

Mv+ =
(
M+αh2K̃

)
v+hJT

bλλλ b++hf, α ∈ [−1,0) (3.21b)

Equation (3.21b) has a damping term added with sign opposite (α < 0) to that of the right-

hand side. However, for a sufficiently small h, the first-order approximation below is used

(
I−αh2K̃M−1)−1 ≈ I+αh2K̃M−1 (3.22)

which means Eq. (3.21a) can be rewritten similarly as

(
I−αh2K̃M−1)Mv+ = Mv+hJT

bλλλ b++hf (3.23)

⇒ Mv+ =
(
I−αh2K̃M−1)−1

(Mv+hJT
bλλλ b++hf) (3.24)

⇒ Mv+ =
(
M+αh2K̃

)
v+hJT

bλλλ b++hf+O(h3) (3.25)

Therefore,

Mv+=
(
M+αh2K̃

)
v+hJT

bλλλ b++hf, −1≤ α ≤ 1 (3.26)

Upon inversion of the lead matrix of this equation, again using Eq. (3.22), one can also write,

to the same order of accuracy:

(M−αh2K̃)v+ = Mv+hJT
bλλλ b++hf, −1≤ α ≤ 1 (3.27)
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α

fk fk+α

αK̃(q+ − q)

Figure 3.4 Single pendulum. The choice of α is equivalent to the choice of the instant at which the Jacobian is

evaluated, indicated by the dashed line. The geometric stiffness force is assumed dissipative, since it opposes the

motion.

where the ends of the range of α treat the geometric stiffness as though arising from an

implicit force and an explicit force; which results in the geometric stiffness term entering as

a damping force evaluated using the velocity between the current and the upcoming time-step,

or the velocity between the previous and current time-step. Both sets of discretized equations

of motion are accurate to the same order, but they have different stability properties.

The choice of α is equivalent to choosing the time at which the Jacobian is evaluated,

along the straight lines between the three points q+, q and q−. This is shown in Fig. 3.4,

where we go back to the single pendulum example. Due to the explicit and implicit evaluation

of forces, there is a rough relationship between the change in the energy and the time at

which the constraint Jacobian is evaluated. Evaluations in the future lead to a decrease in

the energy; evaluations in the past lead to an increase in the energy. One can choose when

the Jacobian is evaluated, so that the geometric stiffness force drives the system towards the

known energy via damping (to dissipate energy) or driving (to add energy).

It is known that an implicit solver is numerically absolutely stable, but that the lineariza-

tion of an implicit solver is not [52]. This is why the original compliant constraints scheme

produces instabilities; it should also be true that there are system parameters for which

the standard geometric stiffness method is unstable. However, in [26] they observe that

the geometric stiffness method is significantly more numerically stable than the compliant

constraints method in a wide variety of systems. This is expected as the method includes

some extra contributions present in the fully implicit, absolutely stable implicit integrator.

We do not, therefore, expect our method to be absolutely stable; we do expect it to be more

58



Ph.D. Thesis 3.3. Adaptive Constraint Stabilization

stable than the original compliant constraints integrator and less stable than the standard

geometric stiffness method. This satisfies our objective, as we only wish to be able to strike

a better balance between energy conservation and stability than both the original compliant

constraints method and the standard geometric stiffness method.

A simple feedback scheme can be proposed for choosing α to track the energy of the

system. Let us take E to be the net energy of the system, E0 the target energy, and Emax> 0

a scale to set the spread of energy over which α changes.

We propose three possible schemes for choosing α based on the energy. The first, called

the linear scheme: we choose α to lie between a maximum αmax and a minimum αmin, based

on how far the computed energy of the system is from the target energy. The function used

to compute α is:

α =





αmin for E < E0−Emax

αmin

(
E−E0

Emax

)
for E0−Emax < E < E0

αmax

(
E−E0

Emax

)
for E0 < E < E0 +Emax

αmax for E0 +Emax < E

(3.28)

The second approach is termed the ‘hyperbolic tangent scheme’, which is chosen so that α

stays within its bounds:

α =





αmin tanh
(

E−E0

Emax

)
for E < E0

αmax tanh
(

E−E0

Emax

)
for E > E0

(3.29)

Finally, we test the quartic scheme, which is used to give a broad band of energy that results

in small α values, in the hope that α will remain small when stabilization is not required.
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Figure 3.5 Three relationships between (E−E0)/Emax and α .

The quartic scheme computes α via the function:

α =





αmin for E < E0−Emax

αmin

(
E−E0

Emax

)4

for E0−Emax < E < E0

αmax

(
E−E0

Emax

)4

for E0 < E < E0 +Emax

αmax for E0 +Emax < E

(3.30)

In order to cope with dissipative systems, the target energy E0 must be changed at every

time-step. To do so, an approximation to the target energy is computed at the given time;

then E0 is set to this target, and α can be chosen so that the energy of the system is driven

towards it. The energy at a given instant is

E (t) = E0−
∫ t

t0
f Tnc (t)v(t)dt (3.31)

where fnc is a generic non-conservative force. This can then be discretized in order to obtain

an expression for the target energy:

Ek+1 = Ek−h(fnc)
T
k vk (3.32)
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which is then used to provide the target E0 for the energy scheme. A similar expression

can be derived for any external force acting on the system, since the above holds even for

conservative forces. Thus the correct energy can always be targeted by this scheme.

3.3.2 Implementation

The two sets of discretized equations of motion in Eqs. (3.26) and (3.27) give two possibilities

for performing the numerical integration. We define the first, termed the explicit biased

formulation, as given by:


M −JT

b

Jb
1
h2 Cb




 v+

hλλλ b+


=



(
M+αh2K̃

)
v+h f

−1
hφφφ b


 (3.33)

We define the second as the implicit biased formulation, namely:


M−αh2K̃ −JT

b

Jb
1
h2 Cb




 v+

hλλλ b+


=


Mv+h f

−1
hφφφ b


 (3.34)

We also define an unbiased formulation, which changes the set of discretized equations of

motion used to compute the next state based on the sign of α ; if α is positive, the implicit

biased set of equations is used; if negative, the explicit biased set is used.

In any event the geometric stiffness runs from implicit (α = 1) to explicit (α = −1), all

having the same order of accuracy. However, they will have different stability properties, as

compared presently.

Parameters E0, Emax, αmin and αmax must be chosen. Since E0 is the target energy, it

should be selected as the initial energy of the system, provided that the initial conditions

are consistent with the constraints.

The parameter Emax will be chosen to range between 1% and 10% of an energy scale,

Es, of the system, to allow α to change relatively slowly and take any value in its domain.

The energy scale Es can be taken to be any representative energy for the system. In what

follows we will take Es to be the magnitude of the minimum potential energy. One could

also choose Emax directly. Note that Emax should be at least as large as the amplitude of the

energy oscillations when no geometric stiffness is applied. Since the integration algorithm is
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of order h, the oscillations in the energy will be of order h2. Therefore, ensuring that Emax is

greater than these oscillations is not difficult: either the simulation can be observed to pick

an approriate value, or Emax can simply be chosen to be comparable to Es.

Parameter αmax can be safely taken to be equal to unity, as this was shown to be stable

by Tournier et al [26] and corresponds to the linearization of the implicit constraint force.

Regarding αmin, it will be observed later that for sufficiently small values of the compliance,

taking αmin =−1 will destabilize the system. This is because taking αmin =−1 corresponds

to the linearization of an explicit constraint force, which we know to be unstable. Note that

the approximation we make is only valid if αh2K̃ is small. Therefore, as K̃ contains a factor

of λλλ b, itself proportional to c−1, we may see some destabilization in the explicit biased form,

unless |αmin| < ch−2. This gives the rough value of αmin that is needed to try to prevent

destabilization due to adding energy to the system.

For short time-steps, the lead matrix can become ill-conditioned, causing numerical errors

in the matrix inversion. To overcome this problem, one can use preconditioning schemes [198],

although here we will not implement such a scheme because we are interested in longer time-

steps.

3.4 Results

Two systems are simulated in this section in order to validate the proposed approach. The

first one is the 2D double pendulum introduced in Sec. 3.2.2, the second a 3D chain. These

examples illustrate the theory and capture unstable mechanical phenomena.

3.4.1 Double Pendulum

Recall the double pendulum in Fig. 3.2, with parameters: mass m1 = m2 = 1 kg; moment

of inertia I1 = I2 = 1 kg·m2; length l1 = l2 = 0.5 m. Initially the system is in a horizontal

configuration, and, unless otherwise stated, we take β = 0. The Jacobian matrix was

introduced in Eq. (3.15).
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Constructing the constraint force via fb = Jb(q)T λλλ b gives

Jb(q)T λλλ b =




λ1 +λ3

λ2 +λ4

−l1((λ1−λ3)cosθ1 +(λ2−λ4)sinθ1)

−λ3

−λ4

l2(λ3 cosθ2 +λ4 sinθ2)




(3.35)

Differentiating the above expression with respect to time and extracting the geometric stiff-

ness gives

K̃ = diag(0,0, K̃33,0,0, K̃66) (3.36)

K̃33 = l1 sinθ1(λ1−λ3)− l1 cosθ1(λ4−λ2), K̃66 =−λ3l2 sinθ2 +λ4l2 cosθ2 (3.37)

To display the behaviour of the energy-tracking and produce a more physically realistic

model, we impose a damping torque on the joints of the system, with damping constant β .

With damping, the generalized forces on the bodies are

f1(q) =




0

−m1g

−β
(
2θ̇1− θ̇2

)


, f2(q) =




0

−m2g

−β
(
θ̇2− θ̇1

)


 (3.38)

To analyze the energetic consistency of the different integration schemes discussed above,

the target energy of the system has to be updated according to Eq. (3.32) as

Ek+1 = Ek−
β
h

((
2(θ1k−θ1k−1)−(θ2k−θ2k−1)

)
(θ1k−θ1k−1)

+
(
(θ2k−θ2k−1)−(θ1k−θ1k−1)

)
(θ2k−θ2k−1)

)
(3.39)

where Ek is the net energy at time tk = kh, i.e., the total mechanical energy of the system

excluding the constraint-violation energy. Parameter α can then be set to drive the energy

towards this updated value. Let us also define the reference energy for the system as the
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Figure 3.6 Double pendulum with c = 10−5 m/N, h = 10−2 s, Emax = 0.01Es, β = 0. Value of α over a short

duration (top) and a longer duration (bottom)

magnitude of the minimum of the potential energy:

Es = m1gl1 +m2g(2l1 + l2) (3.40)

The simulation results in Fig. 3.6 show that the three different adaptive schemes are

quite robust in that they all exhibit the same qualitative behaviour. However, the quartic

scheme tends to give lower α values; due to the flatness of the function around α = 0, the

quartic scheme does allow the energy to drift slightly from the initial value. The other two

schemes are steep enough such that no such drift occurs. All three provide energy conserving

behaviour better than in the α = 0 simulation, and all give comparable trajectories. It can

also be seen that the adaptive schemes are stable in the long term, and have good energy

properties in this case too.

A comparison among the linear scheme and the α = 1 and α = 0 cases was conducted.

The results, summarized in Fig. 3.7, show the large difference between the adaptive scheme

and α = 1. In contrast, the difference between α = 0 and the adaptive schemes is quite small.
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Figure 3.7 Net energy for a double pendulum with c = 10−5 m/N, h = 10−2 s, Emax = 0.01Es, β = 0.

However, the adaptive schemes do preserve energy better than the other two.

In Fig. 3.8, a comparison between the implicit biased and explicit biased formulations

is shown. There is little apparent difference between the two in this case, other than the

explicit biased formulation is computationally faster. Simulation tests were also conducted

over the long term, and again, little apparent difference was seen. Even with very small c

values the two formulations behaved in the same way. One should keep in mind, though,

that the system itself is not unstable.

All three adaptive schemes are similar, and tracking the correct energy works well, as can

be seen in Fig. 3.9. There is some variation between the schemes, as the energy loss is path-

dependent and the different schemes follow slightly different trajectories. This difference is

more pronounced if β is smaller, although every scheme gives comparable results to α = 0,

and much better behaviour than α = 1. While not shown here, it was also found that

the implicit biased and explicit biased formulations with dissipation showed little apparent

difference.

There is a broad range of Emax values over which the adaptive schemes give good results;

α need not be large to push the energy back to the reference value. Previous results have

taken Emax = 0.01Es. It can be seen in the bottom chart of Fig. 3.10 that the result with

Emax = Es is still good, and provides better energy balance than α = 0. The top chart in

Fig. 3.10 displays the maximum value of |α| attained in the simulation whilst varying the

multiplier, defined to be the ratio Emax/Es. We see that over four decades the maximum

value of |α| is less than unity, indicating that the feedback scheme was easily able to cope
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Figure 3.8 Double pendulum with c = 10−5 m/N, h = 10−2 s, Emax = 0.01Es. Trajectories of the implicit biased

(top left) and explicit biased (top right) formulations; net energy (bottom left) and α values (bottom right), β = 0.
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Figure 3.9 Double pendulum with fixed β = 0.01 (top), β = 1 (bottom), c = 10−5 m/N, h = 10−2 s, Emax = 0.01Es.

Net energy (left) and α values (right).
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Figure 3.10 Double pendulum with Emax = Es, c = 10−5 m/N, h = 10−2 s. Maximum value of |α| (top) and net

energy (bottom).

with adjusting the energy of the system. Therefore, the choice of Emax is quite robust, and

large values are appropriate.

3.4.2 Chain Modelled using Euler Parameters

The second system is a multibody chain made up of 18 bars connected by revolute joints [26].

All bars are 0.1 m long. One of the ends of the chain is pinned to the ground. The chain

is under the effect of gravity, along the −z-direction. The thickness of the links is neglected

and their mass, m, is uniformly distributed. An external point mass, M, is placed on the free

end. We consider a mass ratio of M/m = 10. Initially, the angle between the chain and the

vertical reference is 45◦, as shown in Fig. 3.11.

Even though there are no out-of-plane forces in this specific example, and thus the motion

will be planar, the full expressions for the revolute joints are included. These expressions
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depend on the parameterization of rotations and the specific multibody formulation. We let

p be the three-dimensional vector of Cartesian coordinates of the centre of mass in the fixed

frame, the four Euler parameters denoted by the array e. Together they are collected in the

array:

qT
k =

[
pT

k ,e
T
k
]

(3.41)

for a generic body k. The constraint equations associated with a generic revolute joint

between bodies i and j can be expressed as

φφφ b,i j =




φφφS

φR
1

φR
2


=




pi +Ris̄i−p j−R j s̄ j
(
R jc̄ j

)T Rin̄i
(
R jd̄ j

)T Rin̄i


= 0 (3.42)

where Rk ∈ SO(3) is the rotation matrix of body k; s̄ is the three-component joint posi-

tion vector in the local frame; n̄ is the three-dimensional unit vector along the joint axis,

expressed in the local frame; and c̄ and d̄ are two linearly independent three-dimensional unit

vectors that define a plane perpendicular to the joint axis [199, 200]. The upper bar denotes

expression in the local reference frame. The corresponding Jacobian matrix is omitted for

the sake of brevity.

The geometric stiffness term can then be written as

K̃i j =




0 0 0 0

0 CPM(λλλ b
S)CPM(Ris̄i)+γγγ 0 −γγγT

0 0 0 0

0 −γγγ 0 −CPM(λλλ b
S)CPM(R j s̄ j)+γγγT




(3.43)

γγγ=
(

λR
1 CPM(R jc̄ j)+λR

2 CPM(R jd̄ j)
)

CPM(Rin̄i) (3.44)

where CPM(·) denotes the cross-product matrix of the vector argument. Note that λλλS
b collects

the three components of λλλ b associated with the first three constraint equations (spherical

joint), while λR
1 and λR

2 correspond to the alignment of the revolute joint.

The compliance of the joints is set to 10−8 m/N. The adaptive scheme strategy is the same

68



Ph.D. Thesis 3.4. Results

Figure 3.11 Chain system simulated for 1.7 s with (a) the original method, (b) the geometric stiffness method , and

(c) the adaptive method (hyperbolic tangent). One snapshot in every 0.1 s.

as in the previous examples, its parameters (e.g., the reference energy Es) being similarly

determined. However, only the results corresponding to the implicit biased approach are

discussed.

The subfigures in Fig. 3.11 show a 1.7 s simulation (which covers the first swing of the

chain) using the traditional compliant-constraints method, the geometric stiffness method

and the adaptive method, respectively. The instability of the traditional method is clearly

seen in the way the cable separates in Fig. 3.11 (a). On the other hand, when constant or

adaptive geometric stiffness is used the simulation is smooth, and the adaptive scheme lacks

the crumping seen in the initial fall of the geometric stiffness method. Figure 3.12 shows the

variation of the α value in the adaptive-scheme simulation.

Regarding energy conservation, the adaptive scheme better preserves the energy and the

load on the end of the chain reaches a higher final position. In other words, it will take

longer for the chain to come to rest. To evaluate the methods, we examine the variation

(or drift) in the energy, both total and net, as previously defined (the latter does not include

the constraint violation energy). Quantitatively speaking, Fig. 3.12 shows the final energy

drift in a 1.7 s simulation, using each of the three methods. The adaptive scheme can be

regarded as a trade-off between the high energy spikes of the original method (mostly due
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to the constraint violation) and the final energy drift of the geometric stiffness method. The

net energy drift displayed in Fig. 3.13 shows a similar result. Note that in this particular

simulation the final drift of the adaptive scheme is only slightly better than that of the

geometric stiffness method.
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Figure 3.12 Chain system. Energy drift and α value in a 1.7 s simulation with (a) the original method (α = 0), (b)

the geometric stiffness method (α = 1) and (c) the adaptive method (hyperbolic tangent scheme).

It is also worth analyzing the effect of the time-step size on the energy drift. Figure 3.14

shows the maximum total energy drift and the final total energy drift for all three methods

in a logarithmic scale, during a 1.7 s chain simulation with time-steps ranging from 1 ms

to 20 ms in increments of 1 ms. We observe the results for this simulation, from the
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Figure 3.13 Chain system. Net energy drift (without constraint violation energy) in a 1.7 s simulation.

previously stated initial condition for the time-steps denoted by the points in the figure. By

comparing the two charts, we can establish whether the result can be trusted. If there are

spikes in the maximum energy drift chart, then we should not trust the result, as somewhere

in it the energy ‘exploded’; for time-steps longer than one on which a spike occurred, we

probably cannot trust the qualitative properties of the simulation either. We see that, for

this particular range of practical time-steps, the figure shows that the adaptive scheme is the

best in terms of maximum total energy drift. Even though the final energy drift is not as

small as that of the original method for time-steps shorter than 10 ms, we see that, due to

the maximum total energy drift of this method, motion instabilities occur and the method

cannot be trusted. The adaptive method is able to keep drifts lower or comparable to the

other two methods for the majority of time-step values, and it does not have energy spikes as

large as the geometric stiffness method (α = 1). Note that despite the spikes these methods

can still remain stable, but don’t necessarily. Spikes tend to occur when the chain stretches

out and suddenly high tension develops. In the geometric stiffness and adaptive geometric

stiffness methods this can manifest in a large energy spike, which can be dissipated away by

the geometric stiffness force. In contrast, with the compliant constraint routine the system is

definitely unphysical and quite unstable. It is also worth noting that it is only at the lowest

time-step tested, of h = 0.001s, that the maximum energy drift of the compliant constraints

method is comparable to the other two, meaning that a useful simulation using the compliant

constraints method would take 10 times longer than with the stabilized methods.
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Figure 3.14 Chain system. Effect of time-step size on (a) the maximum total energy drift and (b) the final total

energy drift.

3.4.3 Chain Modelled using Natural Coordinates

The effect of modelling coordinates on the simulation results is expected to be minor. As an

example, the chain has been simulated in 2D using natural coordinates, that is, Cartesian

coordinates of points and Cartesian components of unit vectors [49]. This involves defin-

ing significantly different constraint equations, inertia expressions, etc. Nevertheless, the

discretized equations and the mechanical properties of the system are exactly the same.

Figure 3.15 shows a comparison between the trajectories corresponding to natural-coordinate

and Euler-parameter formulations (both with time-step h = 0.01 s) for different α values,

and their comparison to a benchmark simulation that used the original formulation with a

time-step of h = 10−5 s. Despite the formulation differences, the results are almost identical,

whenever geometric stiffness is used. This is a positive feature of the geometric stiffness in

general and the adaptive scheme in particular.
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Figure 3.15 Chain system. Comparison of Natural coordinate and Euler parameter trajectories in a 1.7 s simulation

with; (a) the original method (α = 0); (b) the geometric stiffness method (α = 1) and (c) the adaptive method (hyperbolic

tangent, α = adaptive).

3.5 Conclusions

There are three main contributions in this work. The first is a concise and general derivation

and interpretation of the geometric stiffness. This understanding underlies the logic of the

adaptive schemes.

The second contribution is the observation that both the currently known implicit biased

and the new explicit biased formulations produce comparable results for stable systems,

and that the explicit biased formulation has the advantage of not having to invert a more

complicated lead matrix to solve for the next step.

The third contribution is the set of adaptive schemes to manage the energetic behaviour.

For conservative and dissipative systems without too much constraint violation, the proposed

energy-monitoring scheme works quite well. It gives much better energy behaviour while

preserving stability.

In the chain example, the proposed scheme is an (albeit small) improvement in the final

energy drift over the simulation with geometric stiffness. Furthermore, the effect of the time-

step size on the energy drift is minimized. Compensation of rapid energy increases or losses

may require predictive algorithms, which would potentially be less efficient.
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Regarding the broadness of these conclusions, we recall that, originally, the geometric

stiffness is the linearization of an implicit scheme, which is known to be absolutely stable

due to its dissipative properties. Thus, any system for which the linear approximation is

good should see similar benefits. It is also the case that whilst not every system is a chain,

many articulated multibody systems are formed by assembling together the bodies with

constraints, as we have. In our paper, we have used the geometric stiffness expression for

a revolute joint, whereas Tounier et al [26] computed the geometric stiffness for a spherical

joint. The expressions for these are then universal, and thus we would expect many (if not

most) articulated multibody systems constructed in this way to have similar properties. If

we know that the force due to the geometric stiffness is disspative, then α is a scaling of

this force, and because the vector points in the same direction, the force should always be

dissipative.

The results are promising, as even the simple energy monitoring feedback scheme goes

some way towards reducing the artificial energy dissipation as well as providing some protec-

tion against instability. Furthermore, these benefits are achieved at time-steps suitable for

real time simulation with large, complex physical systems.
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Chapter 4

Constraint Stabilization via Time

Step Rescaling

4.1 Introduction

Of the many methods previously discussed for imposing bilateral constraints, one simple

method is so straightforward to implement that it has found its way into a large number of

simulation schemes-the penalty method. In this chapter one possible answer is given to two

different questions: 1) How can the parameters of a penalty method be chosen to enforce

the constraints as strictly as possible; and 2) what is the physical interpretation of these

parameters?

Here, a method is proposed that has a clear physical interpretation and reduces the con-

straint violation as though the stiffness of the constraint is too large for a numerically stable

simulation. We also provide a new interpretation for the parameters in penalty formula-

tions [58], or other similar stabilization methods like Baumgarte’s [57] or the Augmented

Lagrangian method [58, 59].

Much of the literature the work in this chapter draws from has been discussed in the

literature review in Section 2.1.2. In particular, the methods related to imposing constraints

in a relaxed way and, specifically, the penalty method, is relevant to this work; the reader

is refered back to the literature review for the relevant background. The penalty method

is now well established; a good review of applications thereof can be found in the book by

Birgin [62]. However, the penalty method is often not suited for current needs, as it can
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require an extremely large spring constant to give good adherence to the constraints [63],

which requires a small time-step. Sometimes, especially in the implicit case, one sees the

spring constant taken to be large, beyond the point where the system ceases to be a good

model, but still such that the system remains stable. In this case it is difficult to physically

interpret the result of the model and so, whilst this might lead to slightly better performance

in terms of a smaller constraint violation, it is difficult to know how well the trajectory of

the system is modeled.

The techniques arising in the variational integrator (VI) literature are also an important

part of the background of this chapter. A good summary can be found in the literature[30, 31].

VI capabilities continue to be extended to larger multibody systems in a scalable way [56, 201],

and can be used to formulate optimal control problems [6, 202]. The asynchronous varia-

tional integrator (AVI) [203] has applications in finite element modelling, but the method is

actually far broader. For example, the method of asynchronous contact mechanics by Har-

mon et al [204, 205], used an AVI to enforce unilateral constraints with a number of good

properties. Further studies on the stability of AVIs have been conducted [206]; one possible

parallelization of AVIs was proposed by Kale et al [207].

4.1.1 Problem Statement

Here we examine the range of validity of a system with bilateral holonomic constraints,

where a penalty method is used to enforce the constraints. The equations of motion for such

a system are:

Mq̈ = JT
b (q)λb−b(q, q̇)+ f(q, q̇) (4.1a)

λb = Mpenφ̈φφ b +Bφ̇φφ b +Kφφφ b (4.1b)

where M is the mass matrix, J is the constraint Jacobian, λ is the array of Lagrange multi-

pliers enforcing the constraints, b represents the centrifugal and Coriolis forces, f represents

the applied forces acting on the system, and q is the array of generalized coordinates. In the

second line, φφφ b is the bilateral constraint violation, Mpen = diag(mpen, ...,mpen) is the ‘penalty

mass’ matrix, B = diag(β , ...,β ) is the damping coefficient matrix, and K = diag(k, ...,k) is
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the stiffness matrix. This problem is to be simulated numerically, using a semi-implict Euler

method, for the many aforementioned reasons. We will ignore the instabilities that may arise

if the applied forces are too large, as nothing can be done about it, apart from decreasing

the step size. However, one can also destabilize the system if the stiffness parameters for the

penalty system are too large. Denoting the largest natural frequency of the system by ωmax,

and the integration time-step by h, in order to have a physically accurate simulation with

the specified integration method, we would impose

hphys = h� 2π
ωmax

. (4.2)

However, it is often necessary to only have

hstable = h <
2πα
ωmax

(4.3)

to ensure stability, where α is a parameter of order one. i.e., there is a range of time-steps

for which the system is stable, but for which we have no good physical interpretation of the

resulting trajectory, this range being given by:

hphys < h < hstable (4.4)

Our primary question is, can we use this range of time-steps, and develop a physical inter-

pretation, which will allow us to improve the degree to which constraints are satisfied in the

semi-implicit time-stepping algorithm?

This chapter is organized as follows: first, in Section 4.2 we will review the relevant

background material on VIs, in particular the AVI formulation, which is used as a basis

for construction of the method. In Section 4.3 we soften the constraints and, using the AVI

concepts, in Section 4.4 demonstrate how the coefficients of a Baumgartner-style stabilization

method could be selected and interpreted. In Section 4.5 the example of a N-body planar

chain is included to demonstrate the method. Finally, in Section 4.6 we discuss the possible

applications of the method, and future extensions.
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4.2 Variational Integrator Backgound

4.2.1 Variational Integrators

These methods are designed to conserve both a symplectic form and the momentum of the

system, as discussed by Marsden and West [30]. VIs tend to have significantly better behavior

than their order of accuracy would suggest, and comparably excellent long-term behaviour.

It is especially interesting, because of these properties, to consider VIs for fast, physically

accurate methods to simulate contact to be used in many applications, such as the real-time

performance required in the rendering of a haptic-system virtual environment.

Time steps are chosen to be ∆t = h, so that the discrete time is tk = hk, where k ∈N. The

trajectory is then given by the discrete setq(kh)≈ qk where q∈Rn is the array of generalized

coordinates. From this the ‘discrete action’, a discrete counterpart of the classical mechanical

action is formulated:

S[q0,q1, ...,qN ,qN+1] =
N

∑
k=0

Ld(qk,qk+1)≈
N

∑
k=0

∫ tk+1

tk
L(q, q̇)dt (4.5)

Moreover, Ld(qk,qk+1), known as the discrete Lagrangian of the system, is chosen to approx-

imate the value of the continuous-time action between tk and tk+1 along the actual trajectory

of the system, as shown in Eq.(4.5). One can make this approximation in a number of ways.

The semi-implicit Euler integrator is equivalent to choosing:

Ld(qk,qk+1) = hL
(

qk,
qk+1−qk

h

)
(4.6)

However, other choices could be made, a midpoint approximation, or higher order quadrature

approximations, or even using approximate trajectories for the variables and evaluating the

integral. Taking variations of the generalized coordinates, and demanding that the discrete

action be stationary, gives rise to the Discrete Euler Lagrange (DEL) equations:

δqk [D1Ld(qk,qk+1)+D2Ld(qk−1,qk)] = 0 (4.7)

where Di is an operator indicating differentiation with respect to the ith argument. The
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detailed background behind this material can be found in the literature [30]; this paper also

contains a discussion on how to include applied forces in the formalism, which amounts to

adding a term to the RHS of eq.(4.7) that approximates the generalized impulse transferred

in the time interval.

4.2.2 Asynchronous Variational Integrators

The idea behind the AVI, proposed by Lew and Ortiz [203], is to define a time-step for each

potential in the Lagrangian. In analogy with finite element models, we refer to a potential

and the degrees of freedom upon which the potential acts, as an element K, the nodes of

the element being those degrees of freedom. We then construct an approximation to the

equations of motion for each node, where the impulses that act on it from a given element

occur at the time-steps for the element from which the force orignates. As a node may be

shared between multiple elements, the time-steps of a node may change, giving a variable

time-step approximation to the equations of motion for each node. The Lagrangian for an

element K is given by:

LK = T K(q, q̇)−V K(qK, t), (4.8)

where K denotes the element in the set of elements E , T K is the kinetic enery of the element,

V K is the potential energy of the element, and qK is an array of the subset of generalized

coordinates of the degrees of freedom upon which the potential of element K acts.

We now conduct a time discretization. To this end we define the sets of instants for each

element K, which is given a regular time-step hK . We have:

Θ
K = {t = 0,hK,2hK, ...,NKhK} (4.9)

and we define, as convenient shorthand:

qK
j = qK( jhK) ∀ j ∈ {0, ...,NK}, ∀ K ∈ E (4.10)

So far a set of instants for a given element have been defined, but each node of a given
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element will have a different set of time-steps as the nodes are shared between elements. Let

the set of nodes be denoted by N and, letting an index a ∈ N represent a specific node,

define Θa, the set of timesteps for node, a as

Θ
a =

⋃

K∈E |a∈K

Θ
K = {ta

1 ≤ ta
2 ≤ ...≤ ta

Na
} (4.11)

where K ∈ E|a ∈ K is to be read as the set of elements that contain the node a. In other

words, Θa is the set of instants for a given node a and is the union of all the discrete-time

sets of the elements to which a belong. Define the configurations of the node a as:

qa
i = qa(ta

i ) ∀ i ∈ {0, ...,Na}, ∀ a ∈N (4.12)

and, lastly, define the discrete action sum Sd as:

Sd ≈ ∑
K∈E

∫ tK
j+1

tK
j

LK (4.13)

One particular time-discretization approximation is given by Lew et al [203], which, for

brevity, we do not reproduce here. Computing it, constructing Sd and taking variations with

respect to qa
i the DEL equations are found to be

Ma
(

qa
i −qa

i−1

ta
i − ta

i−1
− qa

i+1−qa
i

ta
i+1− ta

i

)
− ∑

K|a∈K
ta
i ∈ΘK

hK∇V (qK
i ) = 0 (4.14)

where Ma is the nodal mass matrix for node a. The first term is an approximation of the

acceleration at the time-step ta
i , the second term being the set of impulses from the elements

that contain a and that have a time-step at ta
i .
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4.3 Theoretical Results

4.3.1 Variational Penalty (VP) Method

The objective is to cast a standard penalty method in a variational form. The standard

method involves imposing a bilateral or unilateral constraint approximately by providing

the Lagrange multiplier, or contact force, with a dynamic origin. Thus, violation of the con-

straint is penalized, and the constraint is approximately satisfied. The penalty system being

interpreted as a simple model for the deformation of the bodies involved in the constraint, a

linear spring is used to model the elastic force due to deformation and the penalty mass is

the reduced mass of the deforming parts of the bodies.

Now, let φφφ b(q) be the array of constraint functions in terms of the generalized coordinates

and ϕ to be an array of new variables, termed the penalty variables, which will provide the

desired dynamics. Further, let λλλ denote the array of Lagrange multipliers which enforce the

constraint φφφ b(q) =ϕ. The Lagrangian describing the system is given by:

L = Lq(q, q̇)+
1
2
ϕ̇T Mpenϕ̇−

1
2
ϕT Kϕ+(φφφ b(q)−ϕ)Tλλλ (4.15)

where Lq is the Lagrangian for the main system, Mpen is the mass matrix for the penalty

variables, and K is the stiffness matrix for the penalty variables. Adding nonconservative

forces gives a standard penalty formulation:

d
dt

(
∂Lq

∂ q̇

)
− ∂Lq

∂q
−JT

b (q)λ− f(q, q̇) = 0 (4.16a)

−λ−Mpenϕ̈−Kϕ= 0 (4.16b)

φb(q)−ϕ= 0 (4.16c)

∂φb

∂q
−JT

b (q) = 0 (4.16d)

The above ‘penalty system’ is connected to the main system only via the Lagrange multiplier

λ, and has its own mass and potential, which allows a physical interpretation of the penalty

system as representing the response of the body, i.e., a deformation. One sees that the value

of the Lagrange multiplier is always the force of the penalty term on the system of interest,
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i.e., the contact or constraint force.

To derive a variational integrator, a time discretization for the Lagrangian must be chosen.

There are many choices, but in this chapter, in order to demonstrate the concept, we will

use the first-order approximation:

Ld = hLq

(
qk,

qk+1−qk

h

)
+hLϕ

(
ϕk,

ϕk+1−ϕk

h

)
+h(φ(qk)−ϕk)

Tλk. (4.17)

Then it is straightforward to derive a Discrete Mechanics version of the penalty method by

computing the DEL equations. Notice that the constraint equations developed from this will

ensure that the constraints are satisfied at each time-step, i.e. that the constraint function

φφφ b(qk) =ϕk for all k.

4.4 Application to Stiff Constraints

Here we combine the above two methods, AVIs and the VP method, to formulate a new

method. This method can cope with bilateral holonomic constraints imposed via a penalty

method with a large stiffness that would only be stable for smaller time-steps. As with the

AVI formalism, an element of the system is taken to be a potential plus the bodies upon

which it acts, and the nodes of the system are the rigid bodies involved. The basic idea

follows: penalty degrees of freedom are added, as in the VP method, and each given their

own time-step, hs, potential and kinetic energy terms. If the potentials are quadratic, then

the DEL equations for the penalty variables can be solved when they are not interacting

with the rest of the system. Doing this will produce an equation of the same form, but on a

larger time-step. The objective of this section is to obtain this equation, as this will allow

us to write down a single integrator on the long time-step, h.

4.4.1 Problem Set-up

We wish to simulate a constrained mechanical system. The mechanical system is split into

two parts, the penalty system(s) and the remainder of the system, which we will call the

main system. The main system is given a time-step h. The constraints are enforced using a

penalty force that has a smaller time-step, given by hs = h/2N , where N is chosen by us to
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control the ratio between the large and the small time-steps. Therefore the sets of time-steps

for the penalty system(s) and main system are, respectively:

Θ = Θ
C = {0,hs,2hs, ...,nhs} (4.18)

Θ
K = {0,h,2h, ...,(n/2N)h} (4.19)

Let the index for ΘC be i and that for ΘK be j. We write:

ti = ihs ∈Θ
C, τ j = jh ∈Θ

K (4.20)

In our model, we have a main system, a constraint that locks the value of the constraint

deviation function to the extra degree of freedom, ϕ , introduced in the penalty system, and

the penalty system itself. The latter is linear, so that it can be exactly solved for ϕi+1.

The constraint, φφφ b(q) = ϕ is imposed at the same instants as the main system, requiring a

potentially nonlinear solver every time-step. This constraint is imposed only on the large

time-step as the main system runs on the large time-step, and any impulses acting on the

main system must act on the large time-step also. With b defined as the stiffness of the

penalty system, this gives the following equations:

M
(

q j−q j−1

h
− q j+1−q j

h

)
−h∇V (q j)+hJT

b (q j)λ j = 0 (4.21a)

mpen

(
ϕi−ϕi−1

hs
− ϕi+1−ϕi

hs

)
−hsbϕi−hλ j = 0 if ti = τ j (4.21b)

mpen

(
ϕi−ϕi−1

hs
− ϕi+1−ϕi

hs

)
−hsbϕi = 0 if ti 6= τ j (4.21c)

φφφ b(q j)−ϕ j = 0 (4.21d)

We can add applied, nonconservative forces by simply evaluating the forces at the current

state of the system and putting the forces on the RHS of Eqs.(4.21a,4.21b,4.21c) [30].

4.4.2 Penalty System Trajectory Rescaling

In order to solve Eqs.(4.21a–4.21d), we wish to solve the linear penalty system, such that

we find a new system, with different parameters, on the long time-step h that has the same
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behaviour. As mentioned above, could in principle add forces to the discrete equations above.

The general form of Eq.(4.21b) is therefore:

−hλ j =
mpen

hs
(ϕi+1 +ϕi−1−2ϕi)+ahsϕi+1 +bhsϕi + chsϕi−1 for ti = τ j (4.22)

This integrator has an acceleration term (proportional to mpen, and three more terms, with

coefficients a,b,c, which represent all possible linear terms the system could have. Note that

the Lagrange multiplier λ j has a coefficient h, not hs. This is because the constraint only

acts on the large time-step, the impulse imparted to the small time-step system thus being

given by −hλk. Consequently, the DEL for the rest of the small time-steps, i.e., those where

λk does not appear, are given by:

0 =
mpen

h2
s

(ϕi+1 +ϕi−1−2ϕi)+aϕi+1 +bϕi + cϕi−1 for ti 6= τ j (4.23)

which yields:

ϕi+1 =
(1+ h2

s a
mpen

)ϕi+2 +(1+ h2
s c

mpen
)ϕi

2− h2
s b

mpen

(4.24)

ϕi−1 =
(1+ h2

s a
mpen

)ϕi +(1+ h2
s c

mpen
)ϕi−2

2− h2
s b

mpen

(4.25)

Using these equations to eliminate ϕk+1 and ϕk−1 from Eq.(4.23) we obtain two more

equations of the form:

−∆
(2) h

2hs
λ j =

mpen

(2hs)2 (ϕi+2 +ϕi−2−2ϕi)+a(2)ϕi+2 +b(2)ϕi + c(2)ϕi−2 for ti = τ j (4.26)

0 =
mpen

(2hs)2 (ϕi+2 +ϕi−2−2ϕi)+a(2)ϕi+2 +b(2)ϕi + c(2)ϕi−2 for ti 6= τ j (4.27)

Repeating this procedure n times allows us to develop recursion relations for the a(n),b(n),c(n)
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parameters. We find:

a(n) = a(n−1)

(
1
2
+

(2n−2hs)
2a(n−1)

4mpen

)
(4.28)

b(n) =
a(n−1)+ c(n−1)

2
+b(n−1)+

(2n−2hs)
2

4mpen
(2a(n−1)c(n−1)− (b(n−1))2)

c(n) = c(n−1)

(
1
2
+

(2n−2hs)
2c(n−1)

4mpen

)
(4.29)

∆
(n) = ∆

(n−1)

(
1− (2n−2hs)

2b(n−1)

2mpen

)
(4.30)

and the discrete equation:

−∆(n)hλ j

2n−1hs
=

mpen

(2n−1hs)2 (ϕi+2n−1 +ϕi−2n−1−2ϕi)+a(n)ϕi+2n−1 +b(n)ϕi + c(n)ϕi−2n−1 for ti = τ j

(4.31)

Using these formulae one can exactly solve any single-variable, first-order linear system.

Note that we have only done this for one single penalty system; however, this can be readily

extended to multiple penalty systems for multiple constraints. As each penalty system is

independent, we can just perform the above procedure in parallel.

4.4.3 Implicit Bilateral Penalty Rescaling

If we have solved the rescaling problem and applied the solution to the linear penalty system,

then the penalty system is described by the DEL of the form given in Eq.(4.31). We can

have any discrete Lagrangian for the main system, in which case the main system will obey

the DEL equations

D1Ld(q j,q j+1)+D2Ld(q j−1,q j)+hJT
b (q j)λ j = 0 (4.32)

but we will choose a specific example in order to make the following equations concrete and

to facilitate our example.

We assume that the main system has a discrete Lagrangian such that the DEL equations
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are given by:

M
(

2q j−q j+1−q j−1

h

)
−h∇V (q j)+hJT

b (q j)λ j = 0 (4.33)

In either case, in order for the penalty system and the main system to interact properly, as

described in section II, the time-steps of the main system and the penalty system must have

a ratio of some power of 2, giving,

2n−1hs = h which implies ti+2n−1 = τ j+1 if ti = τ j (4.34)

Assuming that a= c= 0, we can write the entire system as arising from a discrete Lagrangian,

ensuring the excellent properties that come with it. This ‘rescaled’ penalty system has a

spring constant of

k(n) = b(n)/∆
(n) (4.35)

and a mass of

m(n)
pen = mpen/∆

(n), (4.36)

thereby obtaining an effective system for the main system to interact with on the larger time

scale h. Eliminating λk leads to the relation below, which has the stiff constraints acting as

though they had a time-step hs, with the main system responding to their behaviour on the

longer time-step h.

M
(

2q j−q j+1−q j−1

h

)
−h∇V (q j)−

h
∆(n)

JT (q j)
(mpen

h2 (φ(q j+1)+φ(q j−1)−2φ(q j))
)

− h
∆(n)

JT (q j)
(

a(n)φ(q j+1)+b(n)φ(q j)+ c(n)φ(q j−1)
)
= 0

(4.37)

This equation is interpreted as follows: We see that the term JT (q j)φ(q j) appears therein;

this is essentially a coordinate transformation of the constraint deviation function(s) into the

86



Ph.D. Thesis 4.5. Simulation Results

generalized coordinates. Knowing this, we can see that the rescaling has given the system a

larger mass in the constrained directions, and additional forces. Since we want to solve for

q j+1 we can define:

hf̃(q j,q j−1) =−h∇V (q j)−
h

∆(n)
JT (q j)

(
b(n)φ(q j)+ c(n)φ(q j−1)

)

− h
∆(n)

JT (q j)
(mpen

h2 (φ(q j−1)−2φ(q j))
)

(4.38)

which we can interpret as a force coming from the current and previous time-steps, and

rearrange Eq.(4.37) to obtain:

q j+1 +
mpen

∆(n)

(
1+

h2a(n)

mpen

)
M−1J(q j)

Tφ(q j+1)−
(
2q j−q j−1

)
−h2M−1f̃(q j,q j−1) = 0 (4.39)

This is the integrator for the trajectory that we are interested in simulating. We choose the

initial values of the constants, perform the calculations for the rescaling before running the

simulation, and then simulate using those constants and the above integrator. Note that,

as we can write a discrete Lagrangian for this set of DEL equations, it has a conserved

symplectic form and enjoys the associated properties, as outlined by Marsden and West

[30]. In particular, the momentum in any direction orthogonal to the constraint should be

conserved, and the integrator should approximately conserve an energy function.

4.5 Simulation Results

4.5.1 Nb-body Planar Chain

This method was implemented in Matlab for testing. We used Matlab’s fsolve function to

solve the set of non-linear equations at every step, as we are just interested in validating the

method, rather than the computational efficiency.

To test the algorithm we simulate the Nb-body planar chain. For this, one has the con-
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m1, I1

l1

mNb
, INb

lNb

θ1

θNb

Nb − 2 bodies

Figure 4.1 Nb-body planar chain system

straints:

φ0,1 =


−x1 + l1 sin(θ1)

−y1− l1 cos(θ1)


= 0 (4.40)

φi,i+1 =


 xi + li sin(θi)− xi+1 + li+1 sin(θi+1)

yi− li cos(θi)− yi+1− li+1 cos(θi+1)


= 0 (4.41)

where φi, j gives the constraint deviation function between the ith and jth bodies, li is the

half-length of the ith body, and θi defines the orientation of the ith body to the vertical. The

Jacobian takes the form:

JT =




J2
0,1 J1

1,2 0 · · · 0

0 J2
1,2 J1

2,3 · · · 0
...

...
. . . . . .

...

0 0 · · · J2
N−1,N−2 J1

N−1,N

0 0 · · · 0 J2
N−1,N




(4.42)

its blocks being

J1
i,i+1 =




1 0

0 1

li cos(θi) li sin(θi)


 , J2

i,i+1 =




−1 0

0 −1

li+1 cos(θi+1) li+1 sin(θi+1)


 (4.43)
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The mass matrix of each link is

Mi = diag(mi, mi, Ii) (4.44)

where mi is the mass of the ith body, and Ii its moment of inertia. The complete mass matrix

is, then,

M =




M1 0 · · · 0

0 M2 · · · 0
...

...
. . .

...

0 0 · · · MN




(4.45)

From these ingredients the full integrator can be constructed.

4.5.2 Parameters

In Fig.4.2 the relationship between the small time-step stiffness and the rescaled stiffness

or the parameter ∆(n) are shown for various n. The value of k(n) is quasiperiodic, but never

leaves the stability bounds. The value of ∆(n) oscillates about zero, and as the input stiffness

is increased, the value of ∆(n) approaches zero, which has the effect of increasing the effective

mass of the penalty system. Finally, the parameter values leave the region of stability for a

given N if the input stiffness becomes too large, as the system would be unstable even on

the small time-step.

These requirements for the stability of the method are on the penalty part of the system,

the large time-step is still required to be sufficiently small such that the simulation of the

main system is stable. Note the relationship between hs and h is determined by N. In Fig.4.2

it can be seen that once N is large enough the resulting k(n) no longer changes with N; in

this way the method is insensitive to hs.

4.5.3 Results

We look at the simulation with two sets of initial conditions. A ‘nice’ initial condition, to

observe the behavior of the routines without any of the added problems associated with sim-
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Figure 4.2 How the parameters change with input stiffness.

ulating chains, and a ‘challenging’ set of initial conditions where we can test the robustness

of the methods.

A Nb = 10 link chain (link masses are 1kg, moments of inertia are 0.1kgm2 and lengths

are 1m) was simulated, the ‘nice’ initial conditions were such that the chain begins straight,

and at rest, at an angle of π/3 to the vertical (y-axis), with gravity in the −y direction. The

chain was then released and left to oscillate for 15s. These initial conditions are sufficient to

examine the nonlinearity inherent in a chain or pendulum, but not so challenging as to create

large waves in the chain itself. It is observed that energy becomes ‘stuck’ in the oscillations

of the penalty systems. However, it is not lost entirely and is a small amount of the overall

energy. Moreover, this energy is being lost in a ‘physical’ way; we understand that, once

excited, the springs mediating the constraints would absorb energy from the system. The

‘challenging’ initial conditions pertain to the same chain as above. These initial conditions

start the chain from rest, at π/4 above the horizontal. There would therefore be an impact

as the chain collapses. We observe that the nonlinear integrator always works as long as

sufficient time is alloted to find the solution, one particular example of which can be seen in

Fig. 4.3. The integrator is also stable even in this challenging situation for a large range of

spring constants.

The difficulty with the nonlinear integrator is that all nonlinear solvers have a tolerance.
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lation.

Figure 4.3 Chain simulation with N = 20, k = 1010N/m, l = 1m, m = 1kg per link, mpen = 0.01kg over 30 seconds,

with the nonlinear integrator

Therefore, we cannot expect better performance, in terms of minimizing the constraint de-

viation, from that defined by the tolerance of the solver. Interestingly, similar amounts of

energy loss occur in both cases. In the new integrators, this energy becomes ‘stuck’ in the

penalty systems. It appears as though, over time, it is possible for this energy to ‘build up’

and destabilize the system, but adding a small amount of damping in the penalty systems

rectifies the problem.

In Fig. 4.4 we display the maximum constraint deviation for a variety of stiffness values.

The two lines compare a ‘traditional’ first-order compliant-constraints formalism (which is a

linearization of an implicit penalty term, as previously noted [41]) with the integrator devel-

oped here. The tradtional first-order integrator maintains some damping in the constraints,

and hence is stable for every value of k. Increasing k past a certain point gives no benefit to

constraint enforcement and causes greater energy loss. The new integrator has part of the

stiffness range where the method does not work so well (which is likely due to being close to

the stability bound), but once the stiffness becomes sufficiently large the method not only
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’implicit’ constraints vortex type formulation vs the nonlinear rescaled formulation

performs quite well in terms of the constraint violation, but actually continues to reduce the

violation. If one changes h the point at which the traditional method levels off will change,

but the nonlinear line remains largely the same, and still shows the decrease in constraint

violation at larger stiffness values. Due to this, the method appears, at least in this case, to

require little tuning in order to obtain good results.

4.6 Conclusions

The integrator proposed here gives an improvement in stability and constraint violation

over a standard symplectic method with constraints enforced by regular penalty functions.

However, there are downsides, namely, the constraints are not exactly satisfied at all times,

and, a set of nonlinear equations must be solved. In other words, the new integrator is

interesting, but is useful only in situations where it is desirable to enforce constraints more

strictly; the accuracy of the integrator is acceptable, as is the cost of some speed. Hence, this

integration method is less useful for real-time simulation. Some further work could include

the linearization of the implicit parts of the integrator to enable a step to be taken with a

single linear solve. Regardless, the integrator is still a VI, which is a desirable property, and

can certainly provide an alternative to a small time-step or nonlinear higher-order symplectic

integrator if a main requirement is to obey the constraints with high precision.
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The formalism also allows for an interpretation of the coefficients of a Baumgarte-type sta-

bilization. We see that coefficients outside the physically realistic range can be re-interpreted

as the mass, stiffness and damping constants for an oscillator running on a smaller time scale.

There are still a number of questions to be answered. In some cases the routines work

reasonably well, but it appears as though there were parameter choices that are unstable; it

is not known which parameters will be unstable. From our examples, and from other work

on the stability of AVIs [206] it should not be difficult in any given situation to find good

parameters, which leads to this method requiring a relatively low degree of tuning.

We have also demonstrated a novel formulation of a penalty method, suitable for use

with Variational Integrators, demonstrated how to impose constraints in an AVI model, and

developed a VI with attractive mathematical and numerical properties. This method also

suggests a number of extensions, such as the possibility of using a similar algorithm, with

two systems on different time scales, connected by a rescaled constraint that may be useful

for co-simulation or parallelization of a similar algorithm.
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Chapter 5

First-order Time-stepping for Flexible

Bodies

5.1 Introduction

In this chapter the purpose is to move to a finite element model to capture large deformation,

large rotation flexible bodies for use in real-time multibody-system simulation. In particular,

cables and chains are often required as components in multibody systems e.g. in cranes,

winch systems, cable laying systems etc. Many methods to simulate cables/chains in real-

time have been proposed and extensively studied. In this application a number of challenges

arise, as not only is a fast numerical integration method required, but it must also be

numerically stable. As discussed in the literature review (Section 2.1.2), if one chooses

to use chains or mats of rigid bodies to simulate cables or fabric, respectively, problems

with numerical stability can arise when relaxed constraints are applied to these complex

systems[26, 36]. The accuracy of such simulation results is also questionable; while it is not

without its detractors, an ANCF formulation is a dramatic improvement on a deformable

body model based on lumped parameters, or by chains or mats of rigid bodies.

In this chapter it will be shown that with the application of ANCF elements and our

proposed integrator, one can use a relatively small number of ANCF elements to drastically

improve both the accuracy and stability of simulation tasks requiring these flexible compo-

nents in multibody systems, whilst retaining the real-time performance of these rigid-body

based simulation approaches.
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The effect of the internal elastic forces in an ANCF element shall be imposed in a way

similar to that of the constraints in the compliant constraint formalism. This will be seen

to provide both an efficient first-order integration routine, and ample numerical stability to

the simulation.

An in-house, C++ software framework has been implemented to allow us to test, compare

and contrast our new integration method with other common first-order methods requiring

the solution of a linear system of equations, such as the semi-implicit method, and the

Newmark-β method.

In Section 5.2, we introduce our new integrator for the gradient-deficient cable element,

and the extension to general dimensional elements. In Section 5.3, we introduce the issues of

implementation, discuss quadrature methods and the stability properties of the integrator.

In Section 5.4, we demonstrate our simulation method using three benchmark problems, a

validation problem, wherein the cable is curled up via application of a torque on its end,

a cantilever beam problem, and a pendulum problem, both using multiple ANCF cable

elements. We see that the simulation is relatively fast, its results look realistic, and it

retains stability over a large range of stiffness values. Finally, in Section 5.5 we comment on

the applicability of our method and compare it to other flexible-body integration methods,

and to multibody integration methods that aim to simulate the same systems.

5.2 The First-order Integrator

The background material on the ANCF formulation is covered in Section 2.2 and expanded

upon in Appendix B, and so, will not be reproduced here. The compliant constraints for-

mulation with the semi-implicit Euler-integration method is the basis for this new ANCF

integrator. That material was reviewed in Section 2.1.2 and in appendix A; in particular, the

integrator derived here resembles the integrator given in Eq.(2.13b), and hence the notation

is retained here. The new first-order integrator derived here uses as its example element an

ANCF cable element, but the method is readily extended to other elements, as demonstrated

in the sections following the derivation.
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5.2.1 The ANCF Cable Element

In this derivation, the notation and definitions thereof will be those defined in Section 2.2.4.

First, we recall the expression for the elastic energy of the ANCF cable element given in

Section 2.2.4:

We =
∫

L

(
EεAε2 +Eκ Iκ2)dx (5.1)

The elastic forces are derived by taking the gradient of the strain energy expression. Impor-

tantly, as the element is a flexible extended body, the expression for the energy is given as an

integral over the length or volume of the element. In order to compute this integral numeri-

cally, the forces are often approximated using Gaussian quadrature (see Appendix B), but it

makes no difference to the result of the calculation whether the quadrature approximation

is performed before or after the gradient of the strain energy is calculated. Therefore, the

strain energy integral can itself be broken up using a quadrature approximation as

V ≈IEκ
2

Ng

∑
i=1

wiκ(xi,q)2 +
AEε

2

Ng

∑
i=1

wiε(xi,q)2 (5.2)

=
IEκ

2

Ng

∑
i=1

wi

[ |rx(xi,q)× rxx(xi,q)|
|rx(xi,q)|3

]2

+
AEε

2

Ng

∑
i=1

wi
[
rx(xi,q)T rx(xi,q)−1

]2
(5.3)

where the wi are the quadrature weights. By using the Gaussian quadrature approximation

the strain energy can be reinterpreted as arising from a finite number of quadratic elastic

energy densities, evaluated at the quadrature points (xi) along the element, allowing the

compliant constraints method of Servin et al [68] to be applied. Each of these quadratic

potentials gives rise to a force, which is found by taking the gradient with respect to the

generalized coordinates, q. The total force then reads

Qe =−IEκ

Ng

∑
i=1

wi
∂κ(xi,q)

∂q
κ(xi,q)−AEε

Ng

∑
i=1

wi
∂ε(xi,q)

∂q
ε(xi,q).
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To draw an analogy between this and the compliant constraints integrator [68], ‘Jacobian’

columns can be defined as:

jT
i,κ(q) =−

∂κ(xi,q)
∂q

, and jT
i,ε(q) =−

∂ε(xi,q)
∂q

(5.4)

To condense notation, the shorthand rx(xi,q) = rx(xi) = rxi, rxx(xi,q) = rxx(xi) = rxxi and

similarly for S(xi) is adopted. The above Jacobian columns are then given by:

jT
i,κ =− 1

|rxi|3
[
(rxi× rxxi)

T (r̃xiSxxi− r̃xxiSxi)

|rxi× rxxi|
−3
( |rxi× rxxi|rT

xiSxi

rT
xirxi

)]
(5.5a)

jT
i,ε =−ST

xirxi (5.5b)

The forces acting on the cable element, which are derived by taking variations of the strain

energy with respect to the ANCF nodal coordinates, can then be written as:

Qe =
Ng

∑
i=1

jT
i,κ IEκwiκ(xi,q)+

Ng

∑
i=1

jT
i,εAEεwiε(xi,q) (5.6)

Note that the ji,κ and ji,ε are the gradients of the functions, κ and ε . This suggests that

it is possible to interpret the functions κ and ε as ‘constraint violations’, used to ‘relax’ a

constraint, the constraint being that the cable element is undeformed, i.e. ε(xi) = κ(xi) = 0.

The prefactors of each of these terms, (IEκwi and AEεwi, respectively) could then be regarded

as the compliance of these constraints. Hence, we introduce the following definitions:

JT
κ (q) =

[
jT
1,κ(q) jT

2,κ(q) · · · jT
Ng,κ(q)

]
(5.7a)

JT
ε (q) =

[
jT
1,ε(q) jT

2,ε(q) · · · jT
Ng,ε(q)

]
(5.7b)

φφφ κ(q) =
[
κ(x1,q) κ(x2,q) . . . κ(xNg,q)

]T
(5.8a)

φφφ ε(q) =
[
ε(x1,q) ε(x2,q) . . . ε(xNg,q)

]T
(5.8b)

97



Ph.D. Thesis 5.2. The First-order Integrator

C−1
κ = diag

[
IEκw1 IEκw2 · · · IEκwNg

]
(5.9a)

C−1
ε = diag

[
AEεw1 AEεw2 · · · AEεwNg

]
(5.9b)

Based on these definitions, the elastic forces can then be written as:

Qe(q) = JT
κ (q)C

−1
κ φφφ κ(q)+JT

ε (q)C
−1
ε φφφ ε(q) (5.10)

where we can interpret Jκ and Jε as Jacobians specifying the direction of the force, which

arises due to the ‘constraint violations’ φφφ κ and φφφ ε that have corresponding compliance ma-

trices Cκ and Cε .

One can then apply a numerical integration method to this set of dynamics, where we

evaluate the φφφ ε and φφφ κ at the upcoming timestep, to obtain:

Mv+ = Mv+hJT
κ (q)C

−1
κ φφφ κ(q+)+hJT

ε (q)C
−1
ε φφφ ε(q+)+Qg. (5.11)

Using the backwards time differentiation to approximate the value of the ‘constraint viola-

tions’ at the upcoming time-steps, and recalling the relationship between the Jacobians and

the gap functions, one finds

Cκλλλ κ+ =−φφφ κ(q+)≈−φφφ κ(q)−hJκ(q)v+ (5.12a)

Cελλλ ε+ =−φφφ ε(q+)≈−φφφ ε(q)−hJε(q)v+ (5.12b)

This can then be placed in a matrix form resembling the integrator defined in Eq .(2.13b).




M −JT
κ −JT

ε

Jκ Cκ/h2 0

Jε 0 Cε/h2







v+

hλλλ κ+

hλλλ ε+


=




Mv+Qg

−φφφ κ/h

−φφφ ε/h


 (5.13)

This results in twice the number of ‘constraint’ forces as the order of the quadrature used

in the approximation of the strain energy. This is very similar to the usual methods, as the
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stiffness matrix is computed as a sum of terms found via quadrature. Also, in this case the

connection between constraint violations and Jacobians is maintained and so the relation-

ship between strong potentials and constraints detailed by Servin [68] is maintained. It is

important to note that unlike the regular compliant constraints method, here the compli-

ance matrices have a direct physical meaning given by the model, and hence this method

has introduced no extra parameters to the problem. Thus, no tuning of the integrator is

required.

Regular compliant constraints can be added in the usual way, giving the first-order linear

integrator:




M −JT
κ −JT

ε −JT
b

Jκ Cκ/h2 0 0

Jε 0 Cε/h2 0

Jb 0 0 Cb/h2







v+

hλλλ κ+

hλλλ ε+

hλλλ b



=




Mv+Qg

−φφφ κ/h

−φφφ ε/h

−φφφ b/h




(5.14)

where Cb is the compliance for the bilateral constraints defined by φφφ b, that have correspond-

ing constraint forces λλλ b and Jacobian Jb. This equation can be summarized by writing it in

a condensed form:


M −JT

J C/h2




 v+

hλλλ+


=


Mv+Qapp

−φφφ/h


 (5.15)

where C, J, and φφφ are arrays consisting of all compliances, Jacobians and constraint violation

functions, respectively. By taking the Schur complement of the lead matrix in two different

ways, two equations are found, one enabling a direct solution for the elastic forces, the other

allowing a direct solution for the new velocities, v+. These equations read:

(
JM−1JT +

C
h2

)
(hλλλ+) =−Jv−JM−1Qapp−φφφ/h (5.16a)

(
M+h2JT C−1J

)
v+ =−hJT C−1φφφ +Mv+Qapp (5.16b)
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5.2.2 Two- and Three-dimensional Elements

Here the calculations of the Jacobians and ‘constraint violation’ functions for two- and

three-dimensional elements are introduced. The method extends directly to elements of any

dimension that use the standard linear constitutive relationship between stress and strain,

i.e. σ = E : ε, where σ is the stress tensor. The expressions for the strains for elements of

each dimension can be found in the literature [114] and discussed in Appendix B.

Two Dimensions

In the plate case, there is both a three-dimensional extension strain array, denoted ε and a

three-dimensional curvature strain array, κ. The elastic potential is then:

W =
d
2

∫
εTEεε dS+

d
2

∫
κTEκκ dS (5.17)

where

ε=




ε1

ε2

ε3


 , κ=




κ1

κ2

κ3


 , Eε =

Ed
1−ν2




1 ν 0

ν 1 0

0 0 2(1−ν)


 , Eκ =

d2

12
Eε (5.18)

where ν is Poisson’s ratio, E is the Young modulus and d is the thickness. The deformation

quantities, ε and κ, are defined as

ε=




(rT
x rx−1)

(rT
y ry−1)

rT
x ry


 , κ=

1
||n||3




rT
xxn

rT
yyn

rT
xyn


 (5.19)

where the vector, n, normal to the plate element and is given by n = rx×ry. The derivatives

of the elastic quantities can then be computed. The derivative of ε is given by

∂ε
∂q

=
∂

∂q




qTST
x Sxq−1

qTST
y Syq−1

qTST
x Syq


=




2ST
x Sxq

2ST
y Syq

(ST
x Sy +ST

y Sx)q


 (5.20)
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The derivative of κ is given, in turn, by

∂κ1

∂q
=

∂
∂q

(
qTST

xx(Sxq×Syq)
|Sxq×Syq|3

)
(5.21)

=
1

|rx× ry|3
(
(rx× ry)

TSxx +(rxx× rx)
TSy +(ry× rxx)

TSx

− (rT
xx(rx× ry))((rx× ry)

T(r̃xSy− r̃ySx))

|rx× ry|2
)

(5.22)

and similarly for κ2 and κ3, where the only difference is that Sxx and rxx are replaced by Syy

and ryy for κ2, and by Sxy and rxy for κ3; these can be collected into the regular Jacobian

form outlined previously. Finally, the ‘constraint deviation’ functions and compliance matrix

are given by:

φφφ(q) =




ε1(x1,q)
...

ε1(xNg,q)
...

ε3(x1,q)
...

ε3(xNg,q)

κ1(x1,q)
...

κ1(xNg,q)
...

κ3(x1,q)
...

κ3(xNg,q)




, C−1 =


WNg×Ng⊗Eε 0

0 WNg×Ng⊗Eκ


 (5.23)

where ⊗ represents the tensor product. With these elements the previously described inte-

gration method can be constructed for any two-dimensional element.
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Three Dimensions

In the 3d case, there is no force due to a curvature, κ as there is no curvature quantity.

Instead we have a full strain tensor,

εi j =
1
2




ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33


=

1
2




(rT
x rx−1) rT

x ry rT
x rz

rT
x ry (rT

y ry−1) rT
y rz

rT
x rz rT

y rz (rT
z rz−1)


 (5.24)

As εi j is symmetric there are six independent components that can be expressed in an array.

The elastic potential energy, W , is then:

W =
∫
εTEε dV (5.25)

where, for a homogeneous and isotropic material,

ε=




ε11

ε22

ε33

2ε12

2ε23

2ε13




, E =




λ +2G λ λ 0 0 0

λ λ +2G λ 0 0 0

λ λ λ +2G 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G




(5.26)

where λ and G are the Lamé constants and can be related to the Young modulus and the

Poisson ratio. As this is a quadratic function the same technique used before can be applied.

First the integration is approximated via Gaussian quadrature to give:

W =
1
2

∫
εTEε dV ≈ 1

2 ∑
i, j,k

wi jkε
T(q;xi,y j,zk)Eε(q;xi,y j,zk). (5.27)

Each individual force then arises from a potential given by:

Vi jk(q) =
1
2

wi jkε
T(q;xi,y j,zk)Eε(q;xi,y j,zk) =

1
2

wi jkε
T
i jk(q)Eεi jk(q) (5.28)
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The force is then given by:

fi jk =−
∂Vi jk(q)

∂q
=−wi jk

(
∂εi jk(q)

∂q

)T

Eεi jk(q) (5.29)

So the resulting Jacobian columns are given by:

∂ε11

∂q
= ST

x (xi,y j,zk)rx,
∂ε12

∂q
=

1
2
(
ST

x (xi,y j,zk)ry +ST
y (xi,y j,zk)rx

)

∂ε22

∂q
= ST

y (xi,y j,zk)ry,
∂ε13

∂q
=

1
2
(
ST

x (xi,y j,zk)rz +ST
z (xi,y j,zk)rx

)

∂ε33

∂q
= ST

z (xi,y j,zk)rz,
∂ε23

∂q
=

1
2
(
ST

y (xi,y j,zk)rz +ST
z (xi,y j,zk)ry

)
(5.30)

Hence the Jacobian, ‘constraint violation’ functions and compliance matrix per quadrature

point are defined as

JT
i jk =−

∂εi jk(q)
∂q

, φφφ i jk = εi jk(q), C−1
i jk = wi jkE, Ci jkλλλ i jk =−φφφ i jk(q) (5.31)

These quantities can then be placed into appropriate arrays to construct the required quan-

tities for the three-dimensional element version of the aforementioned integration method.

General Integrator

The above-developed general first-order integrator can therefore be cast into the general

form:


M −JT

A

JA CA/h2




 v+

hλλλ A+


=


Mv+Qapp

−φφφ A/h


 (5.32)

where JA is the ANCF Jacobian appropriate for the element, which will be one of those

defined above, λλλ A+ being the generalization of
[
λλλ T

ε λλλ T
κ

]T
defined above for the particular

element under consideration, CA the compliance matrix appropriate for that specific element,

which is, again, defined above, and φφφ A is the array of deviation functions for the element,

also defined above.
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5.2.3 Discussion

The above integrator relies on two aspects of the problem for its formulation. The first

is that the integrand for the internal energy of the finite element is quadratic. Without

the quadratic nature (which can be the case for more complex constitutive relations), the

Jacobians cannot be defined the same way, and the method would fail. As a partial solution

to this problem, the integrand can always be defined to be the square of some other function,

i.e. the square root of the integrand, but this can lead to numerical problems when the

integrand has a value close to zero. The second aspect is that some kind of quadrature

method needs to be used to approximate the internal energy integral.

Considering the problem of the real-time simulation of flexible bodies, there are advan-

tages in this case to using both the Gaussian quadrature method and the ANCF formulation

in terms of the accuracy and efficiency of the model, as discussed below. However there is no

requirement that the ANCF definition be used, and other finite-element formulations could

just as easily be cast in this form.

Even in the case of a configuration-dependent mass matrix, or if the degrees of freedom of

the finite-element model, and global space coordinates of the element, are not linearly related

by a shape function, such a method would still be viable. This is because the difference would

be the generation of an extra inertial force term, which, with appropriate stabilization could

be inserted into the integrator. So, this is a broad method of stabilizing first-order integration

for finite element models, which relies on the two aspects mentioned above, and which could

be applied beyond the ANCF.

This integrator extends the application of the integrator proposed by Servin et al [68]

by reinterpreting the elastic forces in a continuum flexible body as representing a constraint

on the deformations of that flexible body. The application of the compliant constraints

integrator is then made possible by use of the Gaussian quadrature method. This allows

us to extend the application of the compliant constraints method outside of the realm of

rigid bodies, and allows it to be used to simulate flexible bodies, in effect, creating a novel

integration method for flexible bodies.
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5.2.4 Comparison with the Linearized Implicit Integrator

A comparison between the integration method described here and the linearized implicit

integrator can now be made. The linearized implicit integrator is a first-order approximation

to a fully implicit integrator. Recall that the continuous-time dynamic equations for an

ANCF system are given by:

Mq̈ = Qe(q)+Qapp (5.33)

where Qe(q) are the internal elastic forces of the ANCF element. To time-discretize with an

implicit integrator, one makes the following substitutions:

ha+→ v+−v, hv+→ q+−q (5.34)

where, by definition:

a+ = Qe(q+)+Qapp (5.35)

This gives the implicit integrator to be:

Mv+ = Mv+hQe(q+)+hQapp (5.36)

For the ANCF model, due to the highly nonlinear nature of the elastic forces, this is a

highly nonlinear equation which cannot be solved in general without resorting to more com-

putationally expensive methods. However a linear approximation can be taken instead, to

obtain:

Qe(q+) = Qe(q+hv+)≈Qe(q)+h
∂Qe

∂q
v+ = Qe(q)+hJLI(q)v+ (5.37)

The integrator then becomes:

(M−h2JLI(q))v+ = Mv+hQe(q)+hQapp (5.38)

105



Ph.D. Thesis 5.2. The First-order Integrator

The term including the Jacobian JLI(q) serves to damp the motion of the system along the

directions given by the columns of the Jacobian, thus increasing its stability. The aforemen-

tioned term can be computed numerically, but must be symmetrized for large compliances,

otherwise numerical instabilities can be introduced. This symmetrization reflects the sym-

metry of partial derivatives, and, theoretically, is a guaranteed property of this Jacobian.

As the Gaussian quadrature approximation is still used, an expression for this Jacobian can

be written. For a concrete example, consider the ANCF cable element, beginning from the

expression for the elastic potential and performing the Gaussian quadrature approximation,

the Jacobian for the longitudinal strain component being given by:

−∂ 2V (q)
∂q∂q

=
∂Qe(q)

∂q
=−

Ne

∑
i, j=1

Ng

∑
k=1

(
ckIV Eεi j

(
∂εi(q,xk)

∂q
∂ε j(q,xk)

∂q
+ εi(q,xk)

∂ 2ε j(q,xk)

∂q∂q

))

(5.39)

a similar formula holding for both higher dimensional elements and for the bending strain κ .

It can thus be seen that, in general, JLI is a dense matrix for a single ANCF element,

of dimensions given by the number of degrees of freedom for that element. For multiple

elements, this matrix possesses the same block structure as the multiple-element mass matrix.

Recalling the definition in Eq.(5.7b) the Jacobian, JLI, can be written as:

JLI =−JT
ε C−1Jε −

Ne

∑
i, j=1

Ng

∑
k=1

εi(q,xk)
∂ 2ε j(q,xk)

∂q∂q
(5.40)

The linearized implicit integrator has a few distinct disadvantages over the new proposed

method. The first is that the second term in the Jacobian above has to be computed, and

hence the second derivatives of the deformation quantities must be computed too. A quick

observation shows that this second term requires the computation of the number of degrees

of freedom of an element times as many quantities as in the first term, thus, generically,

making it significantly costlier to compute. The second disadvantage is that the second term

damps the motion in a direction that is almost perpendicular to the direction of the elastic

force. In general this is not needed, and serves to remove extra energy from the system.

Next, recall that the proposed ANCF integrator had two proposed forms in Eqs.(5.16a) and
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(5.16b). If the number of elastic forces is lower than the number of degrees of freedom of the

ANCF element, then the first form is more efficient, as it is a smaller linear problem, as well

as possessing superior numerical qualities [26]. If the number of elastic forces is greater than

the number of degrees of freedom, the second form can be used and the problem can still be

solved just as quickly as in the linearized implicit case, but still retaining the aforementioned

advantages in the computation of the Jacobian. This means that, in general, the new method

is about as stable as the linearized implicit method, but significantly faster, and possibly

with superior numerical qualities.

5.3 Implementation

5.3.1 Algorithm

To to test the method, simulation experiments using the integrator have been implemented in

both Matlab and C++. The Matlab implementation uses Matlab’s built-in matrix-handling

routines and the C++ implementation uses the Eigen library.

As noted above, there are two methods for solving for v+ given the current position and

velocity of the system. The second, Eq.(5.16b) solves for v+ directly, and the first, Eq.(5.16a)

first computes all the elastic forces, and then substitutes these in a previous equation to find

the new velocities. Only one of these linear solves needs to be performed. The fastest method

will depend on the dimension of the lead matrix that must be inverted. The dimension of the

lead matrix of Eq.(5.16b) depends on the number of degrees of freedom, and the dimension

of the lead matrix of Eq.(5.16a) depends on the number of quadrature points used. The

simulation results shown later will confirm that a relatively small number of quadrature

points per ANCF element can be used without compromising the quality of the result.

It is worth noting that the computation of the lead matrices in Eqs.(5.16a) and (5.16b) are

relatively simple, as the inverse of the mass matrix is constant, and so can be pre-computed.

Ditto, for C−1. Either Eq.(5.16b) can be used to solve for the velocities of the system first,

or Eq.(5.16a) can be used to solve for the elastic forces, which can then be used to determine

the velocities. Each method has slight advantages, depending on what is desired from the

solution. Solving for the velocities first can be faster if many quadrature points are used,
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and if knowledge of the elastic forces are not required. Solving for the elastic forces first

could be faster if a smaller number of quadrature points are used, and the solution can then

be used to compute v+ quickly.

5.3.2 Approximations

In terms of the approximations used, an appropriate choice of quadrature rule must be

made. In this paper, the standard Gaussian quadrature rules are used, and the number

of quadrature points is chosen based on the simulation we are conducting. There is an

important link between the number of quadrature points and the stability of the integrator.

Each quadrature point gives a linearized implicit force acting on the element, which, when

taken together, approximate the total force. Therefore, the larger the number of quadrature

points used, the more stable the integrator will be, as each quadrature point contributes a

numerical damping force, which is likely linearly independent of the other numerical damping

forces (up until the number of quadrature points starts to become larger than the number

of degrees of freedom of a node). If the number of quadrature points chosen per element is

greater than the number of degrees of freedom of a single element, the whole configuration

space is slightly damped, (as, for this case, we expect each Jacobian row to be linearly

independent up to the dimension of the configuration space), which increases the stability

of the algorithm for high stiffnesses.

Notably, as these elastic forces are internal to the cable, the rigid-body modes of the

element should not be affected by the linearized implicit nature of the integrator. Therefore,

a simple estimate of the number of quadrature points required can be made. The rigid-

body modes of the ANCF cable element correspond to only five degrees of freedom. This is

because rotation of the cable around its axis is not modelled by this element, i.e. the element

is one-dimensional. Since the ANCF cable element has a total of twelve degrees of freedom,

we would only require seven quadrature points to stabilize the system. Furthermore, as the

ANCF cable element has elastic forces originating from both the stretching and bending

of the cable, which are captured seperately, we in fact require only four quadrature points

to render the simulation acceptably stable, and we will see this in simple situations in the

numerical experiments below.
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However, if one chooses to have many more than N forces acting on the element, by

having a very large amount of quadrature points, then the Jacobian matrix becomes very

large, which slows down the computation, although the accuracy of the computation of the

elastic forces will be improved. So, this trade-off should be considered when choosing how

many quadrature points to use. Using five quadrature points [195] gives a good approxima-

tion. The simulation examples below are conducted using nine quadrature points, unless

otherwise stated, which, for the ANCF cable, is both accurate and stable. The use of nine

quadrature points is chosen to increase the accuracy of the method, so we can better evalu-

ate the performance at large time-steps. However, using this many quadrature points makes

Eq.(5.16a) the slower equation to solve, as it has a larger lead matrix. Hence, the simulation

procedure uses Eq.(5.16b) to solve for the velocities v+ directly. Whilst not shown here, the

simulation examples have been performed using both methods, and found both work well

and produce essentially identical results.

Other quadrature methods can also be used. The best strategy is to choose a quadrature

method based on the shape function of the ANCF that is used. Gaussian quadrature is

excellent for integrating polynomials, and in the case of the basic elements explicitly outlined

above, which have polynomial shape functions, Gaussian quadrature is therefore a preferred

choice.

5.3.3 Parameters

One of the most interesting aspects of this integrator is that the only free parameter that is

not model based is the time-step. All compliances (and other parameters) are all calculated

directly from the physical parameters of the system or arise from the choice of the quadrature

method. Due to this there is no parameter tuning required for running simulations. The

only other aspect that must be chosen before conducting a simulation is the number of

quadrature points, as discussed above. Finally, so long as enough quadrature points are

used the simulation is stable for all material stiffness values, thus this single integrator can

simulate very flexible elements, as well as extremely stiff, almost entirely rigid elements. The

number of elements required for an accurate simulation can be established by examining the

convergence of the model as the number of elements is increased, which is explored in the
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results below.

5.4 Results

A number of simulation examples have been conducted to evaluate the strengths and weak-

nesses of the integrator, and to verify the validity of the formulation with respect to known

analytic results from the theory of flexible beams. The first simulation consists of a beam

being wrapped up by the application of a torque at the endpoint of the beam. This can

be compared to analytic results. Secondly, a cantilever beam with variable numbers of ele-

ments and quadrature points is simulated to compare the effect of quadrature points, and

to determine how many elements are required for convergence. The third simulation is that

of a flexible cable falling from horizontal and oscillating like a pendulum. A final simulation

examples consists of a flexible cable element being dropped onto two cylindrical supports, to

test how the integration method works in a less trivial situation. The simulation tasks use

a number of different stiffness values. The parameters are based around those of isotropic,

homogeneous steel, and the elements being chosen to have the density of steel. The Young

Moduli for the different simulation examples are chosen based on the simulation. For the

first, beam-wrapping simulation, the stiffness is chosen to be very large, to reduce the tran-

sient affects of wrapping the cable, since the benchmark is supposed to ignore these effects.

In the second simulation example, parameters are chosen to be those of steel. For the third

simulation the Young modulus is varied to show how the integrator can also cope with very

stiff or very flexible systems. In addition to the results shown, the algorithm has been tested

with a number of different combinations of stiffness values/Young moduli and mass densities,

which are not displayed here. As the time scale of vibrations in the cable depends both on the

mass density and stiffness, the mass density is fixed (to be that of steel) in the results shown.

This gives a wider range of vibration time scales to test over, and so a more challenging

range of parameters over which the integration method is shown to stably integrate. Physi-

cally, this could be considered to be due to the use of composite materials, or materials with

significantly different microstructures, which can retain the same average density, but have

significantly different stiffness properties. In the final simulation, the regular parameters of

isotropic and homogeneous steel are used once again.
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5.4.1 Beam Benchmark

The main objective of this analysis is to validate the formulation using the Euler–Bernoulli

beam theory, which states that, when an external moment is applied at the tip of a planar

uniform cantilever beam, the static equilibrium of the beam is a circular arc. This problem

has served as a benchmark for validation of beam formulations [136, 208–211].

Let us consider a 10-m-long slender cantilever beam of 6 ANCF cable elements, with a

Young Modulus of E = 2× 1014 Pa. By applying a linearly increasing torque of (0 ≤ M ≤
2πnEI/L) or a constant angular velocity to the free end, the beam deforms into a circular

shape where both the ends overlap each other. Here M is the applied moment and n the

number of turns in the final circle. A schematic of this benchmark is shown in Fig. 5.1.

/M EI L=

/M EI Lp=

2 /nM EI Lp=

L

Figure 5.1 Pure moment benchmark

We see in Fig.(5.2) the result of the simulation. In order to carry out the simulation

procedure constraints were imposed at either end of the beam by eliminating the relevant

degrees of freedom from the model. The left side has the nodal position fixed at the origin,

and the gradient fixed along the x-axis. The right hand end has a kinematic constraint

applied, which rotates the gradient at a constant rate. Figure 5.2 shows that the beam

does indeed wrap up into a circle with this constraint applied. The torque acting on the

right-hand end was also computed from the simulation, and is plotted in Fig.5.3. This figure

also includes plots of the moment vs. time for a cable consisting of different numbers of

elements. It is observed that for three elements, the torque is incorrect, and we conclude

that this number of elements is insufficient to model the beam; but for a larger number of

elements, the torque matches the theoretical prediction extremely well.
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Figure 5.2 Beam validation benchmark result. Each collection of points of the same shape gives the location of the

nodes when a specific force is applied, showing how the profile of the cable changes.

5.4.2 Convergence and Accuracy

The purpose of this set of simulation examples is to establish the requirements for conver-

gence of the simulation with increasing numbers of elements and quadrature points. To this

end, two simple benchmark simulation tasks, archetypal simplifications of rather common en-

gineering systems, are chosen, that of a cantilever beam, and a swinging cable. The cantilever

beam is simulated with a Young Modulus of E = 2×1011Pa, radius r = 0.1m, length L = 25m

and density ρ = 7750kg/m3. The simulation time-step is set to be h = 0.02s. The left hand

end of the beam has a fixed location and position gradient that is exactly constrained during

the motion. The simulation procedure is performed using all combinations of N = 1,3,6,9

elements, and nG = 3,5,7,9 numbers of Gaussian quadrature points per element. In Fig. 5.4

a schematic of the system is displayed. The schematic shows six elements and seven nodes

deforming under gravity. The node on the far left of the beam is defined as the end node.

In Fig. 5.5, a plot of the y-component of the position of the end node of the beam against

time is displayed. It is observed that the end-node oscillates as expected. It can also be seen

that simulation convergence is reached upon simulating with six elements. The trajectory

using only a single element is very different from the trajectories with higher numbers of

elements, showing that a single element is not sufficient for this situation. However, the
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Figure 5.3 Applied torque in beam validation benchmark
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Figure 5.4 Cantilevered beam benchmark

trajectory with only three elements is still quite close to the trajectory upon convergence.

A major observation is that the number of quadrature points does not have much effect on

the trajectory. Slight differences can be observed, especially in the single element case for

different numbers of quadrature points, but these differences are definitely secondary when

compared to the changes due to different numbers of elements. Lastly, it can be seen that

the amplitude of the oscillation decreases slightly with time. This is to be expected, as the

integrator will damp away some energy when the stiffness is large enough.

The energy balance is plotted in Fig. 5.6. The energy is dissipated over time as expected.

It is again apparent that there is a large difference between the simulation with a single

element and with multiple elements. The dissipation is noticeable, and amounts to around

10% of the energy available in the system over the simulation period. This is an unavoidable

consequence of having quite a large time-step when compared with the natural frequency of

the beam, and is especially apparent when one considers precisely how stiff the beam is.

The other simulation performed to observe the convergence is that of a swinging cable.
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Figure 5.5 Convergence benchmark--Cantilevered beam
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Figure 5.6 Energy balance--Cantilevered beam

The parameters are given as: a Young Modulus of E = 2× 108Pa, radius r = 0.1m, length

L = 10m and density ρ = 7750kg/m3. The simulation time-step is set to be h = 0.02s. The

results are similar in nature to the previous simulation. Any number of elements greater

than one appears to be sufficient to obtain a good result; using N = 6 elements or more

produces no appreciable change to the trajectory, i.e., we achieve convergence.

The energy balance is plotted in Fig. 5.8. The energy is dissipated over time, as expected;

unlike in the cantilever-beam case, the dissipation varies, rather than remaining at a constant

rate. There is again a large difference between the simulation with one single element and

with multiple elements. We observe that, as time goes on, the N = 3 element simulation

begins to diverge from the others, showing that, over time, more elements are required to

capture the behaviour of the cable. The energy dissipation is noticeable, and amounts to
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Figure 5.7 Convergence benchmark--Pendulum
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Figure 5.8 Energy balance--Pendulum

around 10% of the energy available in the system over the simulation period. The energy

dissipation overall is less, which is due to the cable having a significantly lower stiffness than

that of the beam in the previous simulation. However, we also observe that the energy drift

decreases as we decrease the time-step, showing that the method is consistent, and that

the energy loss is due to the damping of the higher-frequency modes of the cable. This

damping is, for the application of the method to real-time simulation, a desirable feature, as

a sufficiently large timestep is required to achieve real-time speeds, and the motion of the

cable remains qualitatively accurate, i.e., it looks like a swinging cable. This is satisfies our

requirements in that, if the time-step is small enough for an accurate simulation, then one

is produced, if the time-step is too large then the simulation still produces a qualitatively
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satisfactory simulation, even if the details are less accurate. This provides our previously

discussed ‘graceful degredation’ approach to dealing with larger time steps.

5.4.3 Stability and Performance

In this section the stability and computation time of the proposed integrator are compared

to those of a semi-implicit and Newmark-β integrator. In order to perform the comparison,

two flexible pendulums are simulated. The parameters are: L = 10m, Young Moduli of

E = 2× 1011 Pa and 2× 108 Pa and a radius of r = 0.1m. We produce two tables below,

showing the largest time-step possible for each integrator to remain stable, and the real-time

elapsed whilst running the 10s simulation. Table 5.1 shows the results for 16 ANCF cable

elements, and Table 5.2 shows the results for 5 ANCF cable elements. The trajectory of the

cable in the simulation task with five elements are shown in Figs. 5.9 and 5.10.

Semi-implicit Newmark-β Proposed Integrator

E = 2×1011 Pa
t f (s) 2680.2 5791.2 6.14

∆tmax (s) 2×10−5 2×10−5 0.06

E = 2×108 Pa
t f (s) 66.9 322.7 6.15

∆tmax (s) 8×10−4 7×10−4 0.06

Table 5.1 Achieved elapsed time and maximum stable time increment with 16 elements

Semi-implicit Newmark-β Proposed Integrator

E = 2×1011 Pa
t f (s) 102.613 378.124 0.429

∆tmax (s) 8×10−5 7×10−5 0.1

E = 2×108 Pa
t f (s) 4.251 9.672 0.396

∆tmax (s) 2×10−3 2×10−3 0.1

Table 5.2 Achieved elapsed time and maximum stable time increment with 5 elements

The results show that the proposed integrator can perform the simulation at a far larger
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time-step and, consequently, conducts the simulation procedure in a much shorter time. Both

the semi-implicit and Newmark-β integrator require time-steps many orders of magnitude

smaller in order to maintain their stability. In examining Figs. 5.9 and 5.10 it is observed

that the trajectory given by the new integrator is qualitatively comparable to the others, de-

spite having a far larger time-step. In particular, Fig. 5.9 shows that the rigid-body modes

of the ANCF element are almost undamped and so the new integrator is particularly suited

to interfacing with rigid-body solvers. The more flexible pendulum, shown in Fig. 5.10 shows

some fairly large differences between the different integrators, but notably the differences be-

tween the newly proposed integrator and the Newmark-β and semi-implicit integrators are

no more pronounced than the differences between the Newmark-β and semi-implicit integra-

tors themselves. This seems to indicate that even at large timesteps, the new integrator has

qualitatively good performance, comparable to the others, despite the time-step difference.

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

-10

-8

-6

-4

-2

0

2

Y
-t

ip
 (

m
)

X-tip (m)

 Semi-implicit      Newmark-β      Proposed integrator

Figure 5.9 Performance benchmark with E = 2×1011 Pa

5.4.4 Stability with Contact

As a more non-trivial test of the integration algorithm the simulation in Fig.(5.11(a)) is

performed. This involves dropping a stiff ANCF cable element onto two cylinders. The

cable element has a Young Modulus of E = 2×1011Pa, radius r = 0.1m, length L = 25m and

density ρ = 7750kg/m3. In Fig. 5.11b an image of the cable deformation at times separated

by 0.4s is displayed. The contact force is generated by a simple penalty formulation based
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Figure 5.10 Performance benchmark with E = 2×108 Pa

on the penetration of the cable into the cylinder, with the impulse at the current time-

step given by: hf = −hkφu(q)∇φu(q)− hβv∇φu(q), where k = 1.0× 106Nm−1 is the penalty

stiffness, β = 50.0Nsm−1 is a damping coefficient and φ(q) is the penetration depth.

x

yz

g

(a)

(b)

Figure 5.11 Contact stability benchmark. (a) Schematic of the test. (b) Cable deformation at different time-steps

In Fig. 5.12 the results of the simulation can be seen. The coordinates of the center

point of the beam have been plotted against time. It is observed that the point oscillates,

and over time energy is dissipated, due to both the energy loss in the cable element and,

more importantly, the damping in the contact forces. It can be seen that the contact force

damping is the largest contribution as when compared to a simulation with a substantially

smaller time-step, (h = 0.0005s vs 0.01s) with a larger number of elements (N = 10 vs 6),

118



Ph.D. Thesis 5.5. Conclusions

the trajectory of the middle node is essentially unchanged. At the end of the simulation, the

cable eventually comes to rest on the cylinders. One other important point to note is that

this algorithm shows a remarkable amount of stability. There is no friction in this simulation

task, so small deviations could cause the beam element to fall off the cylinders, on one side

or the other. However, the proposed integration routine maintains the mirror symmetry of

the problem and the beam element remains balanced on the cylinders.
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Figure 5.12 Displacement of mid node

This simulation is a demonstration of the integration method in a more nontrivial situation

and shows that the method performs without any problem, and that the bending of the

element is realistic and qualitatively accurate in that it behaves as expected.

5.5 Conclusions

In this chapter we have demonstrated a novel, stable and fast first-order integrator for the

simulation of ANCF cable elements. The integrator outperforms other common first-order

methods in terms of stability and speed. The physical realism of the integrator has been

demonstrated by simulating a quasi-static process with a theoretically known result, that of

slowly wrapping a beam via the application of a torque. The convergence of the simulation via

increasing the number of cable elements was also studied, and it was found that a surprisingly

low number of elements were required, and that the number of quadrature points required

was also quite low.

The integrator itself is shown to not require tuning, as all parameters are physically based.
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The integrator is also shown to operate over many orders of magnitude of stiffness values

whilst maintaining speed and stability.

At large stiffnesses the integrator shows some energy loss. This dissipation ensures that

the simulation remains stable. The energy of the rigid-body modes of the element is well

maintained, so it is the energy found in the high frequency modes of the system, which is

dissipated. This energy can arise from two places, either the form of the integrator, i.e. it is a

first-order integrator with high stiffness which can produce instabilities, or the system itself,

i.e. the system is putting energy into high frequency modes. This effect is most apparent in

the extremely stiff case. In this case, the rigid-body motion of the cable is extremely well

preserved, and it is the internal energy of the cable, which is spuriously generated due to

having a large time-step, that is dissipated by the integrator. It is also observed that the

energy dissipation is reduced with smaller time-steps.

In comparing the integration method to other first-order integrators it is seen that this

method remains stable at much larger time-steps, without a significant sacrifice in qualitative

accuracy. It would also be possible to compare to a fully implicit first-order integrator, but a

fully implicit integrator would be far too slow for real-time applications. Another possibility

is to compare to a linearized implicit integrator, but as has been discussed in the above

chapter, this method would again be significantly slower. Therefore, out of the suite of first-

order integration methods available, the proposed integrator strikes an excellent balance

between speed, stability and accuracy which makes it useful for real-time simulation.

Lastly, in the next chapter, the integrator will be generalized to show how the simulation

of unilateral contacts can be incorporated, allowing for the formulation of a full nonsmooth

ANCF contact integration algorithm, which can easily interface with multibody solvers.
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Chapter 6

Real-time Flexible-Body Simulation

with Contact

6.1 Introduction

The objective of this chapter is to develop and demonstrate a first-order non-smooth inte-

gration method for ANCF models, that is stable and capable of operating in real-time. The

contact problem can be formulated in a number of ways. In this chapter we assume that the

Coulomb friction model underlies the friction forces.

The Prox method [212] is used to solve the problem when the exact Coulomb friction

model is employed. Three other approximations to the Coulomb friction model are also

tested; the velocity level model of Anitsecu and Potra, that is characterized by a polyhedral

approximation of the friction cone [97] and a velocity-level treatment of the unilateral ‘non-

penetration’ constraint. In reference to the friction-cone approximation, this method will

be referred to as the Polyhedral Cone (PC) model hereafter. It is the earliest example of

a provably solvable polyhedral cone approximation model. A further simplification of the

Coulomb friction model via decoupling the normal and friction forces leads to the box friction

model[99], though the coupling between normal and friction forces can be accounted for

via iteration. The last method tested is the penalty-with-regularized-friction (PRF) model,

which is based on a regularized Coulomb friction model and treats the normal contact via a

penalty method.

Each of these four methods is tested for the flexible-body contact problem using the ANCF

formalism upon combining them with the integrator developed in the previous chapter. The
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adaptations required rely on the definitions of the stabilizing forces used in the previous

work, the identification of contact points, and the friction model at each contact point.

The work described here is based on the cable element, and low-order beam element (fully

parameterized element) discussed in Section 2.2.4 and Appendix B.

A fundamental aspect of any system for dynamically simulating systems with contact is

that of contact detection and the generation of contact points or contact patches. Contact

detection has been extensively studied in the literature [213–219], and so will not be con-

sidered in this thesis. However, the generation of contact points has received less attention.

Often, simulations seed the bodies with contact points, and then, upon detection of a colli-

sion between one of these points with another body uses it as a contact point upon which the

contact formulation is based. Other methods of generating contact points in flexible bodies

do not appear to have been well investigated, although which contact points are chosen can

make a difference in the accuracy of the simulation [25].

An in house, C++ software framework has been implemented in a way that allows for the

configuration of the various contact methods, i.e., PRF, box friction, PC and Prox models

to be tested in a number of different benchmark simulations.

In the remainder of this introductory section is some notational discussion, where a shape

function appropriate for the entire set of nodal coordinates is defined, and a discussion

of the applicability of torsional forces to the various elements, and how frictional contacts

are affected by these differences. In Section 6.2, the various aspects of introducing contact

with ANCF elements are discussed, including identification of the contact points and for-

mulating the contact problem. Section 6.3 is devoted to the different representations of the

unilateral constraint used in this chapter. Section 6.4 contains the discussion of the various

contact models implemented in this chapter. Specifically, in Section 6.4.1 the penalty-with-

regularized-friction model is developed, in Section 6.4.2 the box friction model is discussed,

and in Section 6.4.3 and Section 6.4.4 the PC formulation and the prox method are studied,

respectively. In Section 6.5, issues of implementation are discussed. In Section 6.6, the re-

sults of the benchmark tests are presented. Finally, in Section 6.8 we conclude with some

recommendations, and discussion of the four methods.
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6.1.1 Multiple-Element Shape Function

When we have multiple elements the notation S̄ will be used for the shape function of the

flexible body composed of all elements. The shape function for the entire flexible body must

evaluate the shape function at the requisite location within the element under consideration.

To make this precise, consider the cable element. We define:

S(x) =
[
Sl(x) Sr(x)

]
, (6.1)

Sl(x) =
[
S1(x)I S2(x)I

]
, (6.2)

Sr(x) =
[
S3(x)I S4(x)I

]
, (6.3)

to split up the shape function into parts that apply to each set of nodal coordinates, a similar

definition for the fully parameterized element and other elements can also be developed. The

functions below are now defined:

�a,b(x) =





0, x < a

1, a≤ x≤ b

0, b < x

, Θc(x) =





0, x≤ c

1, x > c
(6.4)

where �a,b(x) is a top-hat function that is non-zero between a and b, and the Θ function is

the step function. These allow us to localize the shape function at some point within the

material space of the element, via:

SnL,(n+1)L(x) =�nL,(n+1)L(x)S(x−nL) (6.5)

and similarly for Sl and Sr, so that for nL ≤ x ≤ (n+1)L we have SnL,(n+1)L(x) = S(x−nL);

otherwise, SnL,(n+1)L(x) = 0. Then, for N elements we have a shape function for the whole
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cable given by:

S̄T(x) =




SlT
0,L(x)

Θl(x)SrT
0,L(x)+SlT

L,2L(x)
...

Θ(Ne−2)L(x)SrT
(Ne−2)L,(Ne−1)L(x)+SlT

(Ne−1)L,NeL(x)

SrT
(Ne−1)L,NeL(x)




(6.6)

With these definitions, the coordinate x has a range given by: 0 < x < NeL, and r(x) = S̄(x)q

where q is the entire array of nodal coordinates. Note that this definition is general enough to

function for elements that do not have the same natural lengths, but this is not required for

the work in this chapter. The purpose of this definition is only to make a succinct notation

for referring to the shape function at any material point within the whole flexible body.

6.1.2 Torsion

It should be kept in mind that the ANCF cable element is a model which has no radial

extent, and therefore, cannot rotate around its axis. Similarly, the ANCF cable element

cannot model torsion due to shear. This is the torque that originates from a shear force in

the plane perpendicular to the axis of the cable. Thus, when applying a tangential force to

the ANCF cable, e.g., friction, the cable element cannot rotate due to this torque around

the axis, neither can the torque be transmitted along the cable. There are two possibilities

for how to handle such forces and their action on the cable element. The first possibility

is that transverse frictional forces are applied to the central axis of the cable. This should

be regarded as the cable not being able to roll, but having to slide everywhere. This is

appropriate in certain situations, i.e., when the cable simulates a band, or if the actual

torsion due to shear forces in the cable are very high, the cable thus being prevented from

twisting. This is similar to modelling a block as a point particle, and allowing friction to act

on it.

The second case is to not apply any transverse friction force. This is the case where the

cable can freely roll at any point, i.e. when there is essentially no torsion-due-shear force in

the cable. This is appropriate for very thin, flexible cables.
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For situations where the torsion force of the cable is important, or, in terms of contact,

where the effect of the transverse frictional force is important for the accuracy of the simula-

tion, the fully parameterized element must be used. As this is a volumetric element, forces

can be applied on the outer edge of the element and so generate a torque around the center

of the cable.

6.2 ANCF Contact

6.2.1 Material Frame Contact Forces

Recall the equations of motion for a flexible body formed from ANCF elements given in

Section 2.2.4. These equations are given by:

Mq̈ = Qel +Qb +Qapp +Qc (6.7)

where M was the mass matrix of the ANCF elements, Qel is the generalized force correspond-

ing to the internal elastic forces of the body, Qapp is the generalized force that is applied to

the flexible body and Qb are the generalized constraint forces due to bilateral constraints.

Contact forces enter in the generalized force Qc.

A typical contact interaction with an ANCF element occurs over a patch of the element,

because the flexible body is extended, and can wrap or deform around other bodies. A

contact force then arises due to the interactions between the bodies over this patch. The

contact patch can be one dimensional in the case of a one dimensional element, such as a

cable, or two dimensional, in the case of plate or volumetric elements. To make the ensuing

calculation concrete, assume that the ANCF element is a one-dimensional element, such as

the cable element, although the results readily generalize to higher dimensions. The contact

force density, i.e., force per unit length, in the global coordinate frame is defined to be fg
c(s)

where s is a parameter s1 ≤ s≤ s2 that characterizes the contact patch as the curve r(s). The

principle of virtual work applied to the contact force then reads:

δW =
∫ s2

s1

δrT(s)fg
c(s) ds (6.8)
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where δW is the change in the virtual work. In order to compute this, and to find the contact

force on the ANCF element, the integral should be transformed into one over the material

coordinate x. This is useful because the cable is parameterized by x, and the contacting patch

will be specified by a range of x, e.g. x1 ≤ x≤ x2. There exists a relationship s = s(x) between

the two parameterizations of the contact patch, regardless of whether this relationship has

an explicit expression. Likewise, this transformation is required so that the map between

the global location and the nodal coordinates can be established via: r(s) = r(s(x)) = S̄(x)q.

So, changing integration variables and transforming to nodal coordinates gives the virtual

work expression:

δW =
∫ b

a
δrT(s)fg

c(s) ds =
∫ b

a
δrT(x)fg

c(x)
ds
dx

dx =
∫ x2

x1

δqTS̄T(x)fg
c(x)

ds
dx

dx. (6.9)

One can see that there is a map between the expressions for the force in the global and

material reference frames given by:

fg
c(s)ds → fg

c(x)
ds
dx

dx = fc(x)dx (6.10)

where fc(x) is the force density in the material reference frame. This map is entirely expected,

as fg
c(x) is in this case a force density, i.e. is akin to a pressure. This is important to establish,

as in applying the various contact models, it is necessary to supply a constitutive relation to

represent some of the contact forces. This relation should be in reference to the undeformed

configuration of the body, similarly to how Hooke’s law is defined in relation to the strain

tensor and the second Piola-Kirchoff stress tensor. So it is the contact force density fc(x), for

which a constitutive relationship must be defined. Hence, the generalized force representing

the contact forces as applied to the ANCF elements can be defined as:

Qc =
∫ x2

x1

S̄T(x)fc(x)dx (6.11)
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6.2.2 Dynamics

In practice, this integral cannot be computed symbolically; an approximation must be em-

ployed. One common approach, which will be useful here, is to use a quadrature method to

evaluate the above integral. The details of these methods can be found in Appendix B, and

in Chapter 5. It is recalled that an integral can be approximated by a weighted sum of the

values of the integrand along the integration range, i.e.

∫ x f

xi

p(x)dx≈ (x f − xi)
Ng

∑
i=1

wi p(xi) (6.12)

where the weights wi and points xi are defined by the quadrature scheme. The quantity Ng

denotes the number of quadrature points. Note that, potentially, the ANCF element under

consideration can contact other bodies at multiple places; hence there can be multiple contact

patches of different lengths that use different numbers of quadrature points. Let us denote

the number of contact patches by Np, and the number of quadrature points at the jth contact

patch by Ng j. The contact force integral can then be approximated by:

Qc ≈
Np

∑
j=1

Ng j

∑
i=1

∆L jwiS̄T(xi, j)fc(xi, j) (6.13)

where xi, j is the ith quadrature point in patch j and ∆L j is the length (or area) of patch j.

To condense the notation, the ith quadrature point in patch j will be denoted by a single

index I, i.e. xi, j = xI, and let the quantity ∆L jwi = w̃I. The contact force densities fc(xI) can

be written using the following force representation:

fc(xI) = NI
nλ I

n +DI
fβββ

I (6.14)

where NI
n is the Jacobian for the normal contact force density at the quadrature point xI,

λ I
n is the normal contact force density at the same quadrature point, DI

f is the friction force

density Jacobian, with columns made up of all independent friction force directions in the

contact plane at the quadrature point, and the force density βββ I represents the array of friction
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force density components for the Ith quadrature point. The quantities:

f̃c(xI) = w̃Ifc(xI) (6.15)

can be interpreted as contact forces acting at the contact points specified by xI. However, due

to the origin of the forces, it is the force densities that are taken to obey the Coulomb-force

law, i.e.

|uI
f |= 0⇒ |β I| ≤ µλ I

n (6.16a)

|uI
f | 6= 0⇒ β I =−µλ I

n
uI

f

|uI
f |

(6.16b)

where uI
f is the relative velocity of the Ith contact point and µ is the constant friction

coefficient. It will be seen in the next section that this is an important distinction if the

forces are computed using a regularization or a relaxation method. The possible values of

the Coulomb friction force are displayed in the diagram of the friction cone in Fig. 6.1. The

two independent directions dI
1 and dI

2 are displayed in the diagram as the basis vectors for

the contact plane, and form the columns of the previously defined matrix DI
f . Finally, the

continuous dynamics of the ANCF elements representing the flexible body subject to contact

forces are approximately given by:

Mq̈ = Qel +Qb +
Np

∑
j=1

Ng j

∑
i=1

S̄T(xI)
(

NI
nλ̃ I

n +DI
f β̃ββ

I)
+Qapp (6.17)

Note that this decomposition will be valid for any element; thus this is a general method of

establishing the action of a finite set of contact forces on the ANCF elements.

6.2.3 Contact Jacobians

Before proceeding to the incorporation of each of the friction models, the contact Jacobians

NI
n and DI

f can be described in a general way. The normal force Jacobian is simply given by

128



Ph.D. Thesis 6.2. ANCF Contact
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Figure 6.1 Friction cone for Coulomb friction law

the array of normal vectors from each contact point, i.e.

NI
n = nI (6.18)

where nI is the normal vector at the contact point specified by I. To determine the tangential

or frictional part of the Jacobian, one requires a unit vector in the contact plane for every

independent component of the friction force. The directions of these independent components

are denoted by d1 . . .dn, where there are n independent friction components. The friction

Jacobian is therefore given by:

DI
f =
[
d1 . . .dn

]
(6.19)

Finally, we define the contact Jacobians with respect to the ANCF nodal coordinates, which

allow the generalized forces that act on the nodal coordinates to be computed from the global
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frame forces, as:

(JI
n)

T = S̄T(xI)NI
n (6.20a)

(JI
f )

T = S̄T(xI)DI
f (6.20b)

where JI
n is the Jacobian for the normal contact force at contact point I, and JI

f is the

Jacobian for the friction forces at contact point I. With these definitions for the contact

Jacobians, the dynamic equations can be written as:

Mq̈ = Qel +Qb +∑
I

(
(JI

n)
Tλ̃ I

n +(JI
f )

Tβ̃ββ
I)

+Qapp (6.21)

and the contribution due to the contacts is now expressed in terms of the contact forces λ̃ I
n

and β̃ββ
I

and the contact Jacobians. Lastly, by arranging the contact forces and the Jacobians

in arrays: JT
n =

[
. . . (JI

n)
T . . .

]
, λλλ n =

[
. . . λ I

n . . .
]T

and similarly for the friction forces,

the contact forces can be written as:

∑
I

(
(JI

n)
Tλ̃ I

n +(JI
n)

Tβ̃ββ
I)

= JT
nλ̃λλ n++JT

f β̃ββ (6.22)

where the sum is no longer required due to the definitions of the full contact Jacobians Jn

and J f . One can define a Jacobian that can be used to give the full contact force at contact

point I via the definitions

λλλ I
c =


λ I

n

βββ I


 , λλλ c =




...

λλλ I
c

...


 , JI

c =


JI

n

JI
f


 , Jc =




...

JI
c
...


 (6.23)

where λλλ I
c is the total contact force at contact point I, while λλλ c is the array of these contact

forces. Likewise for the Jacobian definitions. Using this definition, the total contact force

can be written as

∑
I

(
(JI

n)
Tλ̃ I

n +(JI
n)

Tβ̃ββ
I)

= ∑
I
(JI

c)
Tλ̃λλ

I
c = JT

c λλλ c (6.24)
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Both of these contact force representations can be useful, depending on the application.

6.3 Unilateral Contact Force Representations

The contact forces will be represented either via some combination of a constitutive relation-

ship, and a set of complementarity relations. In this section, both methods are developed

for use with the set of contact forces described above. The emphasis is on the normal force

representations, although ultimately, most of the friction force representations fall into the

same mathematical forms as either a complementarity relation or a constitutive relationship.

6.3.1 Complementarity Relations

Let us recall that the complementarity relations at the velocity level for the normal compo-

nent of the contact force, i.e. 0≤ λn ⊥ un ≥ 0, are given by

λn ≥ 0, un ≥ 0, λnun = 0 (6.25)

where λn is the normal component of the contact force and un is the normal component. For

the problem of the ANCF model undergoing a contact interaction, the above general contact

forces become, λn → λ I
n and un → uI

n, and these quantities representing the normal force

density and normal contact velocity at the contact point represented by the index I. Note

that the normal contact force represents a completely inelastic collision, as, by definition, in

order for the normal contact force to be non-zero, the normal velocity must be zero. Hence,

at the time-step immediately after the contact has occurred, the force must be positive, and

so, the contact velocity must be zero. This is the impact model for a contact interaction

represented by a complementarity relation. As discussed in the Section 6.2.3, the actual

contact force at the point denoted by index I should be considered to be:

λ̃ I
n = w̃Iλ I

n (6.26)
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where w̃I = ∆L jwi > 0 has been defined defined previously. Hence, if Eq. (6.25) is multiplied

by w̃I the complementarity relationships read:

λ̃ I
n ≥ 0, un ≥ 0, λ̃ I

nun = 0 (6.27)

and so, the same complementarity relationships hold for the contact forces λ̃ I
n as for the

contact force densities λ I
n. The reason this works is due to the homogeneity properties of the

equations. In exactly the same way that a complementarity relationship for a contact force

can become one for the contact impulse in a time-stepping equation (via a multiplication

by h), here a complementarity relationship for a contact force density will become one for

the contact force via multiplication by w̃I. The only difference that can arise is if the

complementary variables have bounds. In this case, then the bounds must also be multiplied

by w̃I, which changes the value of the bound, but the complementarity variables do retain

the same relationship to one another.

6.3.2 Constitutive Relations

To determine the effect on constitutive relations, it is instructive to consider a general,

abstract version of such a relation. This abstract constitutive relation can be written as:

cIλ I =−ϕ(q, q̇) (6.28)

where c−1 is interpreted as a Young-modulus-type quantity, for the elastic deformation of

the flexible body, λ I is a contact force density component and ϕ(q, q̇) is a generic func-

tion representing the force density resulting from the constraint violation. As discussed

previously, the constitutive relation must be imposed on the contact force densities, but the

problem is more conveniently formulated in terms of the contact forces. Hence, an equivalent

constitutive relationship can be defined by:

cIλ I =
cI

w̃I

(
w̃Iλ I)= c̃Iλ̃ I =−ϕ(q, q̇) (6.29)
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where c̃I = cI/w̃I is a new weighted compliance for the contact force λ̃ I. Note that, due to

the division by w̃I, the Young modulus quantity c−1→ w̃Ic−1. Hence, the Young modulus

quantity now actually has the units of a stiffness, and it is appropriate to refer to c̃I as a

compliance.

6.4 ANCF Time-stepping with Contact

With the dynamic equations established, it is straightforward to apply the integration method

detailed in the Chapter 5, and arrive at the time-stepping equation:




M −JT
A −JT

b

JA CA/h2 0

Jb 0 Cb/h2







v+

hλλλ A+

hλλλ b


=




Mv+hQapp +hQc

−φφφ A/h

−φφφ b/h


 (6.30)

where the unknown contact forces Qc have been added to the right-hand side of the equation

and the remaining symbols were defined in Eq.(5.32). Unknown contact forces are given by

the normal forces λ I
n and the friction forces βββ I in the expression for the contact forces:

Qc = JT
nλ̃λλ n +JT

f β̃ββ (6.31)

which should be determined by a given unilateral contact representation as previously stated.

In order to specify a friction model, one has to specify how the friction direction array D f is

defined, along with how both the normal and friction forces are determined. The first line

of the above integrator reads:

Mv+−hJT
Aλλλ A+−hJT

bλλλ b+ = Mv+hQapp +hJT
nλ̃λλ n +hJT

f β̃ββ (6.32)

where the contact forces are on the right hand side. As this is now a time-stepping equation,

the contact forces must be labeled as implicit, i.e. with a + subscript, or left with no subscript

and interpreted as explicit quantities. The choice made depends on the contact model and

will be specified for each method below. It will also be useful to eliminate the quantities λλλ A+

and λλλ b+ from the above equation using the other two lines present in Eq.(6.30). Doing so
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gives

(
M+h2JT

AC−1
A JA +h2JT

b C−1
b Jb

)
v+ = Mv−hJT

AC−1
A φφφ A−hJT

b C−1
b φφφ b +hQapp +hJT

nλ̃λλ n +hJT
f β̃ββ

(6.33)

where, simplify the notation, the following quantities can be defined: M̄ = M+h2JT
AC−1

A JA+

h2JT
b C−1

b Jb and τ = Mv− hJT
AC−1

A φφφ A− hJT
b C−1

b φφφ b + hQapp, the simplified expression can be

stated as:

M̄v+ = τ +hJT
nλ̃λλ n +hJT

f β̃ββ . (6.34)

From these results, the relative velocity of the contact point can be expressed as:

uI
n+ = JI

nv+ = JI
nM̄−1τ +JI

nM̄−1JT
nλ̃λλ n +JI

nM̄−1JT
f β̃ββ (6.35a)

uI
f+ = JI

f v+ = JI
f M̄−1τ +JI

f M̄−1JT
nλ̃λλ n +JI

f M̄−1JT
f β̃ββ (6.35b)

uI
c+ = JI

cv+ = JI
cM̄−1τ +hJI

cM̄−1JT
c λ̃λλ c (6.35c)

where uI
n+ is the relative normal velocity at contact point I, uI

f is the relative contact point

velocity in the contact plane at point I and uI
c is the total relative velocity of the contact

points, also at contact point I. Once the model is specified, and the contact forces computed,

it is important to remember that the original contact force densities with respect to the

material can be recovered via the relations

λ̃ I
n = w̃Iλn, β̃ββ

I
= w̃Iβββ I. (6.36)

These can be used to give an approximation to the contact force density profile over the

contact patches of the flexible body.

With this formalism, the discussion can proceed to the incorporation of the various contact

models into the ANCF integration method. Each contact model leads to a distinct problem

formulation: the PRF model stabilizes the normal force, but provides an explicit regularized

formula for the friction force; the box friction [99] and Polyhedral Cone approximation (PC)
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[97] methods formulate the problem as an (M)LCP; in these cases, direct solvers are used

and so complementarity is preserved exactly. Lastly, the Prox method [212] is an iterative

solution to the full nonlinear Coulomb friction problem. These different models have been

chosen as they all have different weaknesses and strengths in the rigid-body literature; PRF

is fast, but inaccurate; box friction is robust, but the normal/friction force coupling can only

be imposed through iterating the problem, and the resulting friction force can lie outside the

original friction cone; PC is guaranteed to find a solution, but if the problem is redundant,

then the frictional forces may not be realistic; the Prox method uses the full friction cone,

but the problem must be solved iteratively, which can take a prohibitive amount of time.

The details of each method will be discussed below, as will their strengths and weaknesses.

6.4.1 Penalty Method with Regularized Friction

In the PRF method, all forces are specified via constitutive relationships. The normal force

is defined via the spring-type constitutive relationship

c̃I
nλ̃ I

n =−φ I
u(q) (6.37)

In order to stabilize the normal forces, the normal contact force λ̃ I
n is evaluated at the

upcoming configuration, q+, and then linearized around the current configuration using

q+ = q+hv+, which results in

c̃I
nλ̃ I

n+ =−φ I
u(q)−hJI

nv+ (6.38)

and is used to provide a linear relationship between λ̃ I
n+ and v+. The Jacobian columns for all

contact points can be collected into a single array denoted by Jn =
[
. . .JI

n . . .
]
, and similarly

for the other quantities. The compliance values for each contact point can also be assembled

into a diagonal matrix, given by C̃n = diag(. . . , c̃I
n, . . .). The above linear relationship can

then be written as

C̃nλ̃λλ n+ =−φφφ u(q)−hJnv+ (6.39)
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µλ I
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|uI
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|βββ I |

Figure 6.2 Velocity friction relationship for PRF

where the newly defined variables have been inserted. This accounts for all normal contact

forces at every contact point. The friction force is instead defined to enter the dynamics

explicitly, as opposed to implicitly. The friction Jacobian is readily defined via the functional

relationship defining the friction force; this relationship gives the friction force at contact

point I as:

DIβββ I =−µ

(
uI

f

|uI
f |

)
min

(
1,

uI
f

|uI
0|

)
λ I

n (6.40)

which is homogeneous, and hence can be multiplied by w̃I to give an expression that relates

the contact force density to the contact force. The model was initially discussed in Section

2.1.3, where all symbols were defined, a schematic representation of the relationship is shown

in Fig. 6.2. This is a slightly different regularization of Coulomb friction as that discussed in

Section 2.1.3; here, a slope with gradient |u0|−1 interpolates between the two Coulomb fric-

tion bounds. As the normal forces, λ̃ I
n are described via constitutive relationship Eq. (6.37),

in this model, this constitutive relationship is also used to replace λ̃ I
n by (c̃I)−1φ I

u(q) to obtain

D f β̃ββ
I
=−µ

(
uI

f

|uI
f |

)
min

(
1,

uI
f

|uI
0|

)
(c̃I)−1φ I

u(q) (6.41)
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which gives an explicit calculation for the friction force during the time step. The linearized

implicit equation for the normal contact force can then be combined with the integrator in

Eq. (6.30), and the friction force defined in Eq. (6.41) inserted into the right-hand side of

the equation to give the integrator




M −JT
A −JT

b −JT
n

JA CA/h2 0 0

Jb 0 Cb/h2 0

Jn 0 0 C̃n/h2







v+

hλλλ A+

hλλλ b+

hλ̃λλ n+



=




Mv+hQapp +h∑I S̄T(xI)DI
f β̃ββ

I

−φφφ A/h

−φφφ b/h

−φφφ u/h




(6.42)

Due to the compliances on the left hand side of this equation, and the explicit nature of

the friction forces, this equation always has a unique solution, which depends continuously

on the initial configuration and velocity, and so provides a well-posed formulation of this

problem.

6.4.2 Box Friction

In the box friction method, the forces are specified by a combination of complementarity

relationships and constitutive relations. The complementarity relationships are used to ap-

proximately model the Coulomb friction force, the constitutive relations acting as a numerical

regularization that ensures a unique solution. As in the PRF model, the normal force enters

the time-stepper in a linearly implicit way; it is thus denoted by λλλ n+. The normal force

obeys the relationship

C̃nλ̃λλ n+ =−φφφ u(q)+hJnv++η (6.43)

0≤ λ̃λλ n+ ⊥ η ≥ 0 (6.44)

which is similar to the normal force in the PRF case and the symbols retain their definitions

from there. Here the new quantity η can be interpreted as the ‘slack’ unilateral constraint

violation as it has the same dimensions as the unilateral constraint violation function φφφ u.

If the normal force λλλ n+ becomes negative in any component, then it is set to zero and the

above equation can be satisfied with a nonzero η. This ensures that there can be no adhesive
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Figure 6.3 Box friction approximation to the Coulomb friction law

normal forces in the box friction model. It should also be noted that this relationship occurs

at the position level, and so will ensure that there is no position level drift.

For the frictional force densities, a simple approximation is made for the friction cone.

First, the array of independent friction directions at a contact point, DI, is chosen to contain

two orthogonal vectors tangent to the contact plane at each contact point. In this work, the

first friction direction, dI
1, is chosen to be the vector in the axial direction of the cable, i.e.,

dI
1 = rx(xI)/|rx(xI)|. The second friction direction is then chosen to be the cross product of

the normal vector and dI
1, i.e., it is given by dI

2 = nI×dI
1. The two components of βββ I at each

contact point are then the components of the friction force in each of these directions. The

friction force densities obey the complementarity relations:

0≤ βββ −βββ L ⊥ σ+ ≥ 0, 0≤ βββU −βββ ⊥ σ− ≥ 0 (6.45a)

where βββU and βββ L are upper and lower bounds respectively and σ+ and σ−, denoting the

slack velocity variables, represent the positive and negative components of the contact point
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velocity in the basis of the friction directions defined above. These complementarity relations

ensure that each component of βββ I can only range between the upper and lower bounds, but

the two components of βββ I are independent from one another. This confines the values of

the components of βββ I to a box, as shown in Fig 6.3. Only if the bounds are saturated can

the contact point velocity in the contact plane become non-zero. Due to the above comple-

mentarity relations, the contact point velocity in the positive direction of one of the friction

directions can only become nonzero if the lower bound is saturated and vice-versa; in this

way, the contact point velocity opposes the frictional force density. As discussed previously,

these relations persist when applied to the contact force, rather than force densities; they

are given by:

0≤ β̃ββ − β̃ββ L ⊥ σ+ ≥ 0 (6.46)

0≤ β̃ββU − β̃ββ ⊥ σ− ≥ 0 (6.47)

The slack velocity variables can be combined to give:

σ = σ+−σ− (6.48)

where σ is the combination of the slack velocities to give a single overall velocity. A small

amount of viscous friction is added to the model by defining

C̃ f β̃ββ+ = hσ−hJ f v+, (6.49)

which introduces a constitutive-type relation for the friction force. The linearized implicit

nature of this relation allows for C̃ f to be taken to be extremely small, giving an accurate

stick-slip transition, but still providing some numerical regularization. If the compliance

were set to zero, then the relationship would read σ = J f v+ and the slack velocity would be

exactly the contact point velocity in the contact plane, as required.
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The bounds β̃ββ
I
L and β̃ββ

I
U should be defined using the Coulomb friction law, i.e.

β̃ββ
I
L = β̃ I

L


1

1


, β̃ I

L =−µλ I
n+, β̃ββ

I
U = β̃ I

U


1

1


 , β̃ I

U = µλ I
n+ (6.50)

However, λ I
n+ isn’t available until after the problem is solved. This issue is solved via an

iterative process. First, the problem is solved without friction forces, i.e. with µ = 0. The

result of this calculation is then used to provide the normal force for the bounds above, and

the problem with µ 6= 0 is solved. This procedure can be iterated upon in order to restore

an approximation of the normal/friction force coupling, and should be regarded as a type

of fixed point iterative method for satisfying the full set of equations. Eq. (6.43) and (6.49)

can be combined with Eq. (6.30) and supplemented by the complementarity relations of

Eq. (6.45a) and (6.44) to give the set of time-stepping equations:




M −JT
A −JT

b −JT
n −JT

f

JA CA/h2 0 0 0

Jb 0 Cb/h2 0 0

Jn 0 0 C̃n/h2 0

J f 0 0 0 C̃ f /h2







v+

hλλλ A+

hλλλ b+

hλ̃λλ n+

hβ̃ββ+




=




Mv+hQapp

−φφφ A/h

−φφφ b/h

−φφφ u/h

0




+




0

0

0

η

σ




(6.51)

subject to the conditions

0≤ β̃ββ+− β̃ββ L ⊥ σ ≥ 0 (6.52a)

0≤ β̃ββU − β̃ββ+ ⊥ σ ≤ 0 (6.52b)

0≤ λ̃λλ n+ ⊥ η ≥ 0. (6.52c)

A succinct set of complementarity variables can be defined as:

z+ =
[
hλλλ T

ε+ hλλλ T
κ+ hλλλ T

b+ hλ̃λλ
T
n+ hβ̃ββ

T
+

]T
, w =

[
0T 0T 0T 0T ηT σT

]T
(6.53)
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and the time-stepping equation rewritten as:


M −JT

J C/h2




v+

z+


+


bv

bz


=


0

w


 (6.54)

where the Jacobian matrix is an array of all seperate Jacobians given by JT =
[
JT

A JT
b JT

n JT
f

]

and the compliance matrix C is given by C = diag(CA,Cb, C̃n, C̃ f ). The array of impulses, z+

can then be solved for by means of the equation:

(
JTM−1J+C/h2)z+−JTM−1bv +bz = w (6.55)

subject to the complementarity conditions in equations (6.52a–6.52c). This is a Mixed

Linear Complementarity Problem (MLCP), and can be solved using the Judice block pivoting

algorithm [220]. The positive definite compliance matrix ensures that the lead matrix of this

MLCP is symmetric and positive definite, which is why the Judice algorithm can be used; it

also ensures that the problem always has a unique solution.

6.4.3 Polyhedral Cone Approximation

In the PC method, all contact forces are implicit, in that they are dependent upon the

upcoming velocities. Three sets of complementarity relationships are used to form the model.

The first is the velocity level normal force complementarity condition given by:

0≤ λ̃λλ n+ ⊥ un+ ≥ 0 (6.56)

where un+ = NIv+ is the relative velocity between the contact points normal to the contact

plane. The constraint is interpreted physically to mean that the contact points can only

move apart, and if they are moving apart, then there is no normal force.

The second complementarity condition relates the normal and friction forces to one an-

other. In this model, the friction cone defined by Coulomb friction at a contact point
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Figure 6.4 Polyhedral approximation to the friction cone with 8 facets.

represented by I, i.e.,

F I
µλ I

n
= {λ I

nnI +βββ I : λ I
n ≥ 0, |βββ I| ≤ µλ I

n, (nI)Tβββ I = 0} (6.57)

where F I
µλ I

n
is the set of points within the friction cone and βββ ∈ R2, is given a polyhedral

approximation. The polyhedral approximation takes the form of a polyhedral cone defined

by the set

P I
µλ I

n
= {λ I

nnI +DIβββ I : λ I
n ≥ 0, βββ I ≥ 0, (eI)Tβββ I ≤ µλ I

n} (6.58)

where βββ I ∈ Rk, where k is the number of columns of D, the previously defined array of

independent friction directions, and is also the number of edges of the polyhedral cone. The

array eI is a k-dimensional array of ones for the k edged polyhedral cone at contact point I.

The polyhedral cone can be seen in Fig. 6.4. Note that, as each component of βββ is positive,

the set of friction directions must include both d and −d for a given direction. With this
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definition of the cone, the second complementarity relation is given by:

0≤α⊥ (µλ̃λλ n−ETβ̃ββ )≥ 0 (6.59)

where ET is the array of arrays eI for all contact points. The quantity α is a variable that

is non-zero only when the friction force is on the edge of the cone. This complementarity

relation ensures that the total contact force remains inside, or on the edge of, the polyhedral

approximation to the friction cone by imposing the three conditions specified in the definition

of P I
µλ I

n
.

The final complementarity relationship ensures that the friction force opposes the relative

contact velocity. It reads

0≤
(
u f++Eα

)
⊥ β̃ββ ≥ 0 (6.60)

where the relative velocity of the contact point, u f+, is given by J f v+, as discussed in Section

6.4.2. Note that J f v+ for this polyhedral choice of friction directions D actually gives an

array of the relative velocities in each one of these directions. Also note that a component of

the quantity α is only non-zero if the friction bound is saturated along that direction of the

cone. If a component of α is non-zero, and the corresponding component of βββ is non-zero,

which must be so, as per Eq. (6.59) as long as the normal force is non-zero. In this case, the

component of the relative velocity in the direction of the polyhedral cone corresponding to

the positive value of ααα must be negative, i.e., the velocity must oppose the friction force. If

the contact force is within the cone, then also by Eq.(6.59) all the components of α are zero.

In this case, if the friction force is non-zero then the relative velocity must be zero and the

contact is sticking. To summarize, the three complementarity conditions are:

0≤ λ̃λλ n+ ⊥ un+ ≥ 0 (6.61a)

0≤α⊥ (µλ̃λλ n−ETβ̃ββ )≥ 0 (6.61b)

0≤
(
u f++Eα

)
⊥ β̃ββ ≥ 0 (6.61c)

Previously, expressions for both v+ in terms of the contact forces, and uc in terms of v+
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were given. These can be substituted for the relative contact point velocity, from which the

following quantities are defined:

a = un+ = JnM̄−1τ +JnM̄−1Jnλ̃λλ n +JnM̄−1J f β̃ββ (6.62a)

b = u f++Eα= J f M̄−1τ +J f M̄−1Jnλ̃λλ n +J f M̄−1J f β̃ββ +Eα (6.62b)

c = µλ̃λλ n−ETβ̃ββ (6.62c)

which can be put into a block-array form as




a

b

c


=




hJnM̄−1JT
n hJnM̄−1JT

f 0

hJ f M̄−1JT
n hJ f M̄−1JT

f E

µ −ET 0







λ̃n

β̃ββ

α


+




JnM̄−1τ

J f M̄−1τ

0


 (6.63)

the complementarity relationships then becoming:




a

b

c


≥ 0,




λ̃n

β̃ββ

α


≥ 0,




a

b

c




T


λ̃n

β̃ββ

α


= 0. (6.64)

Note that this problem has now been reduced to a standard LCP. However, the lead matrix

is not symmetric, nor is it necessarily positive definite. Due to this, the only means guaran-

teeing a solution is Lemke’s algorithm. As the lead matrix is not necessarily positive definite

this problem admits multiple solutions. The problem is thus ill-posed, but it does always

admit at least one solution. Lemke’s algorithm is guaranteed to find one of these solutions,

which solution is found depending on the initial set of active contact points given to the

algorithm. For the normal forces, this isn’t really a problem, in that the same dynamics will

be reproduced regardless of the solution found by Lemke’s algorithm as every solution must

give the same resultant force and torque on the rigid bodies involved, if the collision is to be

resolved. If friction forces are considered this is no longer true, the dynamics generated will

be different, depending on the solution found for the frictional forces. Hence, this method is

unlikely to be reliable if the frictional forces are relevant in the simulation.
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6.4.4 Prox Method

The prox method [212] is an alternative way of stating the problem of solving for contact

forces. It is applicable for a fairly general contact law, the caveat being that the contact

forces must belong to a convex set. In particular, regular Coulomb friction can be formulated

in this way. The proximal operator for a given set C ⊂ Rn is defined by

proxC(z) = arg min
x∈C
||z−x||2, z ∈ Rn, C ⊂ Rn (6.65)

the equations defining the contact forces then take the form

λλλ c = proxC(Aλλλ c +b) (6.66)

where λλλ c is the contact force, and the matrix A and vector b are quantities determined by

the specific problem. A number of ways to solve this equation numerically are available, but

a standard approach is to employ a fixed point method on Eq.6.66. For a single contact

point with no friction, the complementarity relationship for the normal contact force can be

equivalently stated as:

λ I
n = proxN (λ I

n−ζnuI
n), ζ I

n > 0 (6.67)

where N = {x ∈ R : x > 0} and ζn is an arbitrary positive constant, assumed to be the same

for every contact point. As the set C is the positive half line, the value of the prox operator

is given by:

x = max(0,λ I
n−ζnuI

n), x ∈N (6.68)

were x is the value of the proximal operator. However, the equality requires

x = λ I
n (6.69)

And so we must find a solution that satisfies both of these requirements:
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• If uI
n > 0, we must have that ζnuI

n > 0,

– If λ I
n > ζnuI

n then the first equation yields x > 0, but x 6= λ I
n

– Hence, we must have λ I
n ≤ ζnuI

n

– Hence, the first equation gives x = 0, so the only consistent solution is λ I
n = 0.

• If uI
n = 0, then x = λ I

n is a consistent solution if λ I
n > 0.

• If uI
n < 0, then we would again run into an inconsistency, but this time, we cannot

resolve the inconsistency by setting λ I
n = 0, this case thus admitting no solution.

Thus we have that uI
n > 0, λ I

n > 0, uI
nλ I

n = 0, and hence, 0≤ uI
n ⊥ λ I

n ≥ 0 must hold.

A similar equation holds for the friction forces in the Coulomb friction model. Given the

coefficient of friction µ , and the magnitude of the normal force λ I
n > 0. The friction force on

the contact plane lies within the friction cone, i.e.

βββ I ∈ F(µλ I
n) = {γ f ∈ R2 : |γ f |< µλ I

n} (6.70)

and given this definition the Coulomb friction law is equivalent to the implicit equation [212]

βββ I = proxF(µλ I
n)
(βββ I−ζ I

f uI
f ) (6.71)

where ζ I
f is a an arbitrary positive constant. This equivalence is demonstrated in Fig. (6.5).

In the figure, various initial values of the potential friction force are shown, denoted by βββ

with a letter subscript along a dashed arrow. The value is shown by the black dot. The

result of the map βββ → βββ − ζ f u f is shown by the asterisk, and the map denoted by a solid

arrow. The result of the prox operation is then shown by the smaller, white circle, and the

operation itself indicated by a dotted arrow. In order to satisfy Eq.(6.71), the smaller white

dot must lie on top of the black dot. When uI
f = 0, it can be seen that any friction force

within the circle, represented by βββ A, can do this, but any force outside the circle, represented

by βββ B does not. If uI
f 6= 0, then a force inside the circle, denoted by βββC, does not satisfy the

requirement, nor do any friction forces outside the circle, represented by βββ G and βββ F . The

forces on the edge of the circle, represented by βββ E , also do not satisfy the requirement, unless

146



Ph.D. Thesis 6.4. ANCF Time-stepping with Contact

−ζ f u f

βββC

βββ D

βββ E

βββ F

βββ G

b). uI
f 6= 0

F(µλ I
n)

F(µλ I
n−ζ f uI

f )

βββ A

βββ B

a). uI
f = 0

F(µλ I
n)

Figure 6.5 Demonstration of the equivalence of the Coulomb friction law to the proximal operator equation in

Eq.(6.71).

the force is parallel to the direction of −ζ f uI
f ; this solution is denoted by βββ D in the figure.

Hence, Eq.(6.71) has the same solution as the regular definition of the Coulomb friction

force.

The set of equations that must be solved for a single contact point is then given by:

λ I
n = proxN (λ I

n−ζnuI
n), βββ I = proxF(µλ I

n)
(βββ I−ζ f uI

f ) (6.72)

Lastly, note that for these equations the relations below also hold:

λn = proxN (λn−ζnun) ⇒ w̃Iλn = proxN (w̃Iλn− w̃Iζnun) (6.73a)

βββ = proxF(µλn)(βββ −ζ f ut) ⇒ w̃Iβββ = proxF(µw̃Iλn)(w̃
Iβββ − w̃Iζ f u f ) (6.73b)

which will be used to apply the factor, w̃I, that transforms the impulse densities into impulses.

It can be seen from the above Eq. (6.73b) that the only difference in the equations is

a transformation of the arbitrary constants ζn and ζ f . Whilst this may be beneficial for
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tuning purposes, it does not really affect the construction of the method. One now needs

the time-stepping version of this set of equations, which calls for the definition

λ̃ I
n+ = proxN (λ̃ I

n+− ζ̃ I
nuI

n+), β̃ββ
I
+ = proxF(µλ̃ I

n+)
(β̃ββ

I
+− ζ̃ I

f uI
f+). (6.74)

To solve these equations, one needs an expression for the relative velocity of the contact

point, i.e., uI
n+ and uI

f+. This can be found in Eqs. (6.35a–6.35c). Once the velocity has

been inserted, the equations describing the contact become:

λ̃ I
n+ = proxN (λ̃ I

n+−hζ̃nJI
nM̄−1JT

c λ̃λλ c+− ζ̃nJI
nM̄−1τ ) (6.75a)

β̃ββ
I
+ = proxF(µλ̃ I

n+)
(β̃ββ

I
+−hζ̃ f JI

f M̄−1JT
c λ̃λλ c+− ζ̃ f JI

f M̄−1τ ) (6.75b)

The simplest way to solve this set of equations is via a Jacobi method to solve for the fixed

point. We define the kth iterate of the scheme as λλλ I
n+,k and βββ I

+,k. The fixed point iteration

for contact point I is then:

λ̃ I
n+,k+1 = proxN (λ̃ I

n+,k−hζ̃nJI
nM̄−1JT

c λ̃λλ c+,k− ζ̃nJI
nM̄−1τ ) (6.76a)

β̃ββ
I
+,k+1 = proxF(µλ̃ I

n+,k+1)
(β̃ββ

I
+,k−hζ̃ f JI

f M̄−1JT
c λ̃λλ c+,k− ζ̃ f JI

f M̄−1τ ) (6.76b)

Note that the argument inside the prox function uses the weighted contact force. The rate

of convergence of this iterative procedure is dependent on the constants ζn and ζ f . For

a discussion of the various options for choosing these constants we refer the reader to the

literature [212]. It is worth noting that this calculation has produced a natural choice for

the ζ factors. It is seen in the equation above that there can be multiple ζ factors, one for

each contact, and each is rescaled by a factor of the weights, essentially becoming ζ̃ . So, if

it is desired to use a single ζ -factor for all contact points, which, as tested by Erleben et

al [212], is often the best choice for a generic problem, then the ζ -factors should be weighted

as above to solve directly for the contact forces. Similarly to the PC method, this presents

an ill-posed problem, though one which does always have at least one solution. The iterative

method outlined here will approach one of these solutions.
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6.5 Implementation

To perform the numerical simulations to test the contact models detailed in the previous

section the implementation of the integration method used in Chapter 5 has been extended

to incorporate the four contact models. The C++ implementation uses the Eigen library

[221] for the linear algebra and the Bullet implementation of Lemke’s algorithm [21].

The time-step for all simulation tasks is chosen to be h = 0.01s. This time-step is large

enough to be realistic for real-time simulation applications.

We are able to choose the number of quadrature points, Ng, used for calculating the

internal elastic forces in the integrator. A discussion of the required number of quadrature

points, and the impact of the choice can be found in the previous chapter. For the simulation

tasks performed here, the cable element is chosen to have seven quadrature points along the

axis of the element and for the fully parameterized element, acceptable results are achieved

for a choice of five quadrature points in the axial direction, and two quadrature points in each

of the cross section directions. The number of contact points used in a single contact patch

must also be selected. As larger patches require a larger number of quadrature points it is

decided that the number of quadrature points will vary between three and nine depending

on the example. The number of quadrature points used in a specific example will be stated

in the results for that example.

One of the most interesting aspects of the integrator without contact is that the only free

parameter that is not model-based is the time-step [222]. Hence the only parameters that

must be set for this integration method are those involved in the contact models. As each

method requires different parameters to be selected, we will discuss each in turn.

The PRF method requires the choice of both the compliance value for the relaxation

in the normal direction, and the reference speed for regularizing the friction forces. The

compliance for normal contact with the plane is set to be c = 1× 108m2/N. The reference

speed is set equal to 1.75ms−1, as this was the largest number before the simulation with

the PRF method began to become unstable.

The Box friction method requires the most parameters. It assumes only two friction

directions, but these directions must still be chosen. It also requires the choice of a compliance
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to stabilize the integration method. As detailed in the previous section, the two friction

directions are chosen to be those that are parallel and perpendicular to the axis of the cable,

whilst remaining in the contact plane. The compliance for both the normal contact and the

frictional forces is set to be c = 1×108m2/N. The MLCP formulated with the box friction

model has a symmetric and positive definite lead matrix, as seen in Eq. (6.55), and so the

Judice block pivoting algorithm [220] can be used. Whilst there is no proof of convergence

for this algorithm, in general it works very well and is more efficient when compared to a

basic pivoting algorithm such as Lemke.

Whilst the PC method requires no extra parameters, it does require a choice of basis

for the friction cone, which affects the physical output of the simulation. Horak et al [100]

have recently demonstrated that a fairly coarse approximation of the friction cone can be

made whilst the accuracy is quite well preserved. In the following, the friction cone is chosen

to have eight facets, with one of the friction directions, d1, being aligned with the axis

of the cable at the contact point. Choosing more facets results in a larger LCP problem,

and so a slower solution. Eight facets are chosen to provide a more accurate friction cone

approximation than the box friction method, as this is the main advantage of the PC model.

Anitescu and Potra [97] showed that the LCP problem produced by the PC model always

has a solution. However, the problem is often redundant and the LCP can only be reliably

solved by Lemke’s algorithm [97, 223], which is a reliable but slow algorithm. It is guaranteed

to find one of the solutions to the redundant LCP problem produced by the PC model, but

only a single one of the solutions to the problem will be found.

The Prox method requires a choice of ζn and ζ f . This is not a physical parameter, but

sets the convergence rate of the iterative method, hence; in practice, the output of the

simulation can depend on the choice of this parameter. Methods for choosing and adapting

the ζ parameters are discussed by Erleben et al [212]. The standard method is to choose

parameters such that ζ = a(ζ0)
k where a is a real positive number, k is the iteration number

and ζ0 is a second positive real number. This scheme decreases the ζ parameter with the

iteration and helps to improve the convergence rate. However, in the following simulations,

it was found that the best results were obtained by setting ζn = ζ f = 0.4.

A particular point should be made of the choice of Poisson’s ratio ν for the fully param-
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eterized element. Many studies have been performed to validate the various elements. In

particular, there have been a number of studies that validate the fully parameterized element

against other finite element models [195, 224]. It was found in these studies that this ele-

ment is accurate for ν = 0, but does not converge to the correct solution with an increasing

number of elements if ν 6= 0. These issues are related to shear locking problems in the fully

parameterized ANCF element, discussed in Appendix C. Other authors have used the fully

parameterized element with ν = 0 to test the ANCF concept [195, 224] as the element is

verified and so can be used to test certain aspects of the methodology. This is the strategy

employed here. When the fully parameterized element is used in examples, the Poisson ratio

is set equal to zero. Concerns about the engineering potential of the ANCF methodology

have been adressed by the development of a large number of elements that are accurate for

ν 6= 0 [195, 225, 226]. The current contact method can be readily applied to other ANCF

elements, and so can certainly be used for simulation exercises where ν 6= 0 if appropriate

ANCF elements are employed in the model.

6.6 Results

A number of simulation examples were investigated to evaluate the different methods of

incorporating unilateral contact with friction into the integration method. The basic sce-

narios examined were dropping a cable/beam onto an inclined plane, dropping a cable onto

some inclined cylinders and allowing an initially deformed element to move while subject to

friction.

6.6.1 Cable Element on an Inclined Plane

The first simulation example is dropping a single cable element onto an inclined plane. The

physical setup, and the definitions of θ and φ for the example, are shown in Fig. 6.6, the cable

element, of natural length L = 10m, is dropped onto a plane inclined at either θ = 0◦,θ = 10◦

or θ = 30◦. The cable has a Young modulus of E = 5×109N/m2, density ρ = 7750kg/m3 and

radius r = 0.1m. The coefficient of friction is assumed to be µ = 1. The cable is oriented with

φ = 0◦. The gravitational constant is taken to be g = 9.81ms−2. The total simulation time

is t f = 5s. As mentioned before, seven quadrature points will be used for the computation
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θ

φ

Figure 6.6 Setup for the first comparison simulation, the x = 0 end of the cable is furthest up the plane.
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(a) Normal contact impulse profile
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(b) Normal impulse density profile

Figure 6.7 Impulse/Impulse density profiles at the final time-step for all four methods with θ = 0◦

of the elastic forces, and seven quadrature points will be used along the contact patch.

First the flat plane is examined, i.e. θ = 0◦. The plots in Figs. 6.7a and 6.7b shows the

impulse force profile and impulse density (impulse transferred per meter) profile respectively

of the different methods at the final time in the simulation period, when the cable element

has come to rest. The expectation in this case, as the cable element is unstrained when

dropped, and the inclined plane is flat, is that there will be no deformation at the final time,

and that the impulse density will be constant along the element. We see that in this case,

the PC method does not produce an equal impulse density profile along the cable. The prox

method is closer, but is not quite even, which is likely due to having to iterate to a solution

and so only partially converging. The PRF and box friction methods both seem to do a

good job at finding a constant impulse density profile along the cable length.

Next, a plot for each model of the normal impulse density along the length of the cable
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Figure 6.8 Normal contact impulse density λn with θ = 10◦

element against time is presented in Fig. 6.8 for θ = 10◦ and in Fig. 6.9 for θ = 30◦. The

plot consists of the time along the x-axis, and the material coordinate of the cable element

along the y-axis. The impulse density is represented via color, the corresponding numerical

values stated in the color bar on the right of the figure. The color is linearly interpolated

between contact points on the cable to display an approximate contact impulse profile for

the cable element at every instant.

Immediate differences between the models can be seen from this data. It can be observed

from the figure that there is an initial period (from t = 0.5s to approximately t = 2s), where

there is intermittent contact between cable element and plane. It is clearly seen that there

are remarkable differences when comparing the box and PRF methods to the PC and prox

methods in this initial period. This arises from the different ways in which the normal forces

are computed. The box and PRF methods use a constitutive relationship, under which the

bodies will move towards each other slightly for a number of time-steps; however, the PC

and prox methods have zero coefficient of resitutition, and hence the bodies, once contact

is established, will no longer move toward one another. Also, the box and PRF methods
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Figure 6.9 Normal contact impulse density λn with θ = 30◦

determine the normal force based on the unilateral constraint violation at each contact point,

whereas the PC and prox methods enforce a complementarity relationship requiring that the

normal velocity vanishes.

The plots in Fig. 6.10 show a representative normal impulse density profile taken at

t = 0.7s during the θ = 10◦ simulation. Two immediately apparent observations follow: the

first is that the contact patch for the prox and PC methods is substantially smaller than the

contact patch for the PRF and box methods. This is due to the previously mentioned strict

complementarity on the normal velocities of the two methods. Once contact is established,

the normal velocity becomes essentially zero; as the contact patch cannot increase in size

by the bodies moving towards one another, this leads to a smaller contact patch in contrast

to the PRF and Box methods. The second is that the PC method only has the rightmost

contact impulse strictly positive and the Prox method has the rightmost two contact impulses

positive, as well as the values of the normal impulse at these points is many times larger

than the values present in the box and PRF methods, the former feature arising due to the

ill-posed nature of the latter two methods. The latter feature arising as the normal velocity
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(a) Representative impulse density profiles at t = 0.7s
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(b) Representative impulse density profiles at t = 0.7s with a smaller y-axis range

Figure 6.10 Normal impulse density profiles taken at t = 0.7s with θ = 10◦
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Figure 6.11 Results for the axial impulse density βa, due to friction, of the comparison simulation with θ = 10◦

must be reduced to zero within a single time-step, along with a smaller patch needing a

larger pressure to provide the same force as a larger patch. This is typical during the initial

dynamic part of the simulation, in Fig. 6.8, where it can be seen that the majority of the

contact patch in the PC and prox methods corresponds to zero impulse density.

In all models the largest, or close to the largest, normal impulses occur at the end of

the patch where contact with the plane has just been established. For the PRF and box

methods, as the normal impulse is, a-priori, determined by the penetration depth, most of

the difference between the ends of the contact patch arise due to the stabilizing damping

term, hJnv+ in Eqs.(6.38) and (6.43). This is further justified by noting that the normal

impulse is actually negative on the far left end of the contact patch for the PRF method,

thus resulting in a sticking force due to this damping term. Once again, the blue flecks at

the bottom edge of each contact patch in Figs. 6.8 and 6.9 show this is typical.

Once enough energy has been dissipated, the cable element lies on the plane. There are

again substantial differences between the friction methods. It is observed for both θ = 10◦

and θ = 30◦ simulation tasks that the box and PRF normal impulse profiles are quite similar,
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Figure 6.12 Results for the axial impulse density βa, due to friction,of the comparison simulation with θ = 30◦

which is likely due to them having similar constitutive relationships for the normal forces,

and the normal impulse profiles for the PC and prox methods are different from them and

from each other. This is due to the redundancy in both these formulations, and the different

methods used to solve both. Lemke’s algorithm will find a solution with a minimal number

of active contacts, while iterative methods tend to find solutions with a maximal number of

active contacts. Both the box and PRF cases end with a uniform normal impulse profile,

the profile produced via the prox method is close to constant, and the PC method produces

a profile that is highly variable along the cable. It is also observed in the θ = 10◦ simulation

that the contact patches for the PC and prox methods are substantially different from the

box and PRF methods. This is due to the difference between the constitutive relations in

the normal direction. The PRF and box methods have a compliance, which allows for a

larger contact patch, whereas the PC and prox methods attempt to exactly zero out the

normal velocity precisely when the contact is established, thereby leading to thinner contact

patches. The PC method is observed to contact in a patch shorter than the length of the

cable element and remain like that after the initial dynamic response. The prox method
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(a) Normal contact impulse profile
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(b) Axial contact impulse profile

Figure 6.13 Impulse profiles at the final time-step (t = 5s) for all four methods, for the normal impulse (a) and the

axial friction impulse (b) with θ = 30◦

creates two separate contact patches, which eventually combine. The axial friction forces

are shown in Fig. (6.11), and it can be seen that the friction force on one end of the cable is

negative, whereas the other friction forces are positive. This implies that part of the element

is being pushed up the incline in this model and so the element itself has a non-trivial strain

profile in this case. This could explain why parts of the element are not in contact with the

plane. As the model forbids any velocity normal to and along the plane, with enough contact

points the element is completely constrained, which explains why the element cannot adjust

to lie flat along the plane. Something similar is likely happening in the prox case, but as

the complementarity relationships are never fulfilled exactly, the element is able to adjust

its configuration over time.

When looking at the final impulse profile, displayed in Fig. (6.13), one can also see that

the PC method is in drastic disagreement with the other three methods. Some contact points

have zero normal impulse, and so the profile is not smooth, unlike the box, PRF and prox

methods. This is likely due to the PC formulation of the problem, because the cable element

is kinematically restricted, i.e., it has a finite number of degrees of freedom, the contact

problem being redundant if there are enough contact points. Therefore, as PC uses Lemke’s

algorithm to find one solution from many, some of the normal impulses may end up being

equal to zero. Therefore, if one wishes to know the values of the contact impulses, the PC

method is not good.

The PRF method is also produces weaker simulation results for this task, as, though not
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θ

Figure 6.14 Setup for the second set of comparison simulations.

displayed in the figure, it is observed that the frictional impulse can only be generated when

the cable is sliding, so there is drift appearing down the incline in the PRF case.

6.6.2 Falling onto Two Sloped Cylinders

The next simulation experiments again all pertain to the cable element, but the elements

will be falling onto two cylinders as shown in Fig. (6.14). First, the simulation is conducted

with θ = 0◦. The cable is the same as before, except the Young modulus has been reduced

to E = 2×108N/m2 to give the cable more flexibility, to test the ability of the formulation

to cope with a more flexible element wrapping the cylinder. The numerical constants for

the simulation remain the same, but the simulation is now conducted with three elements

rather than one, as the cable is expected to bend around the cylinders. The number of

quadrature points for each contact patch is also reduced to three, as the contact patches are

much smaller. The friction coefficient is set to µ = 0.3, so that the cable will slide over the

cylinders. Each contact model is tested, and a plot for each model of the normal contact

impulse densities along the length of the cable element against time is presented in Fig. 6.15.

A similar plot of the friction impulse densities is illustrated in Fig. 6.17. This figure contains

only the leftmost contact patch, as the rightmost contact patch is the mirror image of the
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Figure 6.15 Plot of normal impulse density at each contact point along the leftmost contact patch of the cable element

against time, for cylinders at θ = 0◦

left for all friction models in the θ = 0◦ case. The normal impulse densities for each contact

point at the final time-step are also presented in Fig. 6.16.

We see results similar to those of the first test. All four methods show a short bounce after

the initial impact. The contact patch moves along the cable element as the cable element

bends around the cylinders over time. The PRF method, once again, suffers from some

adhesive forces just before the cable element lifts off from the cylinders, as shown by the

short blue patch in Fig. (6.15). Otherwise the box and PRF methods show highly similar

normal forces. Similarl to the previous simulation results, the size of the contact patch is

much shorter in the PC and prox methods; as well, only one side of the contact patch has

a non-zero impulse in the PC method, also as before. This will make it impossible for the

PC method to accurately model the effect of the friction forces as they act along the entire

contact patch, rather than at just a single point. The final profile, shown in Fig. 6.16, is

not from a static situation, but each contact patch contributes the same impulse, and so

symmetry has been preserved. Finally, the prox method is acceptable, the dynamic response
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Figure 6.16 Profile of normal impulse densities at the last time-step for the cable falling onto two flat cylinders

Figure 6.17 Plot of axial friction impulse density at each contact point along the leftmost contact patch of the cable

element against time, for cylinders at θ = 0◦
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Figure 6.18 Time lapse for the sloped cylinder simulation, θ = 30◦. Frames are taken from the beginning of the

simulation every 0.3̇s. The green cylinders show the static collision geometry with which the falling cable, depicted as

the red and yellow cylinder, is interacting. The configuration of the cable at various times is shown as a translucent

image of the cable. The times at which each cable configuration occurs is shown next to each image of the cable.

appears reasonable, but the impulse profile is not the same as the box and PRF methods,

although it is impossible to tell which is more accurate.

The plot of the axial friction impulse densities is shown in Fig. 6.17. It can be observed

that all methods have roughly the same pattern of positive and negative friction forces

with time, although there are differences. The PRF method has a more gradual transition

between friction limits due to the regularization, which makes it easy to see that the stick/slip

transition is not well described by the PRF method.

Now we look at the same setup, but this time the slope angle of the cylinders is set to

θ = 30◦. Fig. 6.18 contains a series of snapshots at equal times for each method. It can be
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Figure 6.19 Plot of normal contact impulse at each contact point along the leftmost contact patch of the cable element

against time for cylinders at θ = 30deg.

seen here that there are slight differences in the dynamics, but all methods look physically

realistic. In the simulation examples that use the box and PRF friction models the cable

slides off the cylinders faster than the ones that use the prox and PC methods, which does

show that the friction models do make a difference in the simulation experiment.

In Fig. 6.19 the normal impulse densities are displayed. Here, there are no adhesive forces,

the box and PRF methods thus producing extremely similar normal impulse density profiles.

The PC and prox methods produce different dynamic behaviour, and stay in contact with

the cylinders for a longer duration. The impulse densities are typical, however, with a shorter

contact patch and the PC method once again concentrating all the impulse density into one

single contact point.

In Fig. 6.20 the axial friction impulse density is displayed. The structure of the impulse

density is largely the same in the box and PRF methods, which appears to be a meaningful

result. The prox method produces a similarly meaningful result. The two different contact

patches have opposite-sign impulses, as the situation is mirrored, and all three of these
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Figure 6.20 Plot of axial contact impulse at each contact point along the leftmost contact patch of the cable element

against time for cylinders at θ = 30deg.

methods preserve the mirror symmetry of the problem. The PC method does not produce

a meaningful result as it is not symmetric. This is once again due to the redundancy of the

problem, a non-symmetric solution to the LCP problem must exist and is found by Lemke’s

algorithm, instead of a symmetric one. A similar situation can be seen in the transverse

impulse density plot in Fig. 6.21.

6.6.3 Fully Parameterized Element Rolling

The last example for the comparison between all four methods uses the fully parameterized

element. Here, the situation in Fig. 6.6 is used once again, where θ = 30◦ and φ = 90◦ so that

the element is dropped across the plane. The objective here is to test whether the friction

models can effectively model a rolling cable. The transverse velocity profile cable element

at t = 2.5s is plotted in Fig. 6.22. If the cable element is rolling without slipping, then the

tangential velocity at every contact point should be equal to zero. Here the affect of the

position level stabilization of the box friction and PRF methods is observed.
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Figure 6.21 Plot of transverse contact impulse at each contact point along the leftmost contact patch of the cable

element against time for cylinders at θ = 30deg.
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Figure 6.22 Relative contact point velocity at each contact point at t = 2.5s.
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Figure 6.23 Trajectory of x = 0 node in the y-z plane for each friction model, markers are every 0.25s, total time

displayed is 3s.

In this case, the PC method has the velocity as expected, due to the exact satisfaction

of the complementarity relationship at the velocity level. However, the rolling cable element

falls through the plane when using the PC and Prox methods. This is because the method

has no position-level stabilization, and hence, even though the velocity of the contact point

is forced to be zero, the fully parameterized element can rotate around that contact point

and penetrate the plane. This leads the element to drift through the plane; this method thus

cannot be said to be a good model for rolling friction. The trajectory taken in this case can

been seen in Fig. 6.23. The box friction method does a good job at rolling without slipping,

in that the transverse velocity is extremely small (too small to be seen in the figure), and the

cable rolls down the plane very well. The PRF method, however, performs poorly. Due to the

explicit implementation of the friction force, and because the time-step is quite large, upon

hitting the plane and beginning to roll, a large, spurious, frictional force is generated that

causes the cable element to rapidly move up the plane. This line is not shown in Fig. (6.22),

as it is not useful for comparison, and made it difficult to see the useful results. Thus, for

the rolling friction, the only acceptable model is the box friction model.
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(a) Transverse impulse profile

0 1 2 3 4 5 6 7 8 9 1 0
- 2 0

0
2 0
4 0
6 0
8 0  B o x

 P R F
 P r o x
 P C

(b) Transverse impulse density profile

Figure 6.24 Transverse contact impulse / impulse density at each contact point at t = 2.5s for the fully parameterized

element falling across a plane at θ = 30◦.

There are also problems with the PC and prox methods similar to those seen previously.

The transverse force profiles are shown in Fig. 6.24, the box friction model has the expected

constant impulse density profile along the element, but the PC and prox models do not.

Again, the PRF model must be disregarded, due to the initial spurious behaviour.

6.6.4 Deformed Cable Elements on a Flat Plane

The last simulation task is schematically described in Fig. 6.26. In this experiment, a de-

formed cable is lying on a flat plane, and then allowed to move under its own internal elastic

forces. The friction coefficient is µ = 0.25. In this simulation five cable elements are used.

The configuration is chosen to be symmetric, as we then know that the results should also

be symmetric.

The time-lapse shown in Fig. 6.25 shows the qualitative difference between the methods in

this simulation task. When moving against the friction forces on the plane, it is observed the

the friction forces for the box, PC and prox models are large enough to prevent continuous

movement of the cable back to its undeformed (straight) configuration, demonstrated by the

time-lapse in Fig. 6.25. This figure shows a number of snapshots of the five elements of the

cable. Each snapshot is translucent, and represents the configuration of the cable at a certain

time, with one second between them. The fainter parts of the image therefore correspond to

the cable being in motion, and the clearer part of the image showing a configuration which

is moving much more slowly, or not at all. The figure shows some faint parts, but a mostly

clear final configuration of the cable for the Box, PC and prox methods. In the case of

167



Ph.D. Thesis 6.6. Results

(a) Box - movement under friction (b) PRF - movement under friction

(c) PC - movement under friction (d) Prox - movement under friction

Figure 6.25 Time lapse of the deformed cable contact task, frames are taken every 1s.

the PRF method, this isn’t possible, due to the lack of stick-slip behaviour, and the cable

slowly returns to its undeformed configuration, demonstrated by the multitude of fainter

cable configurations visible in the image.

The transverse velocity of the contact points of the cable against time are shown in

Fig. 6.27 for all methods. It can be seen that the velocity of the box, PC and prox methods

are all quite similar, even though there are some slight differences. The box method appears

to have the slowest transverse velocity in general, with smaller, and less intense, patches

of red and blue corresponding to a lower-magnitude velocity. This would suggest that the

Figure 6.26 Initial configuration for the deformed cable contact task
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Figure 6.27 Transverse velocity along the central cable element against time for the dragging task

friction forces in this model are higher. Most significantly, it is observed that all cables stop

moving at approximately t = 0.7s. The PRF method, however, continues to move, with the

outer edges continuing to move upwards.

The axial impulse density due to friction along the center element against time is shown

in Fig. 6.28. The most salient observation is that the PRF method has the most symmetric

result, followed by the prox method, which is very close. The box friction method is almost

entirely symmetric, but a small asymmetry appears around t = 0.75s. This is most likely due

to the MLCP solver algorithm exhausting its allotted number of iterations, and not finding

a solution. The PC method again violates symmetry all the way through the motion, once

again demonstrating that the frictional impulses given by the model cannot be trusted as

a realistic representation of the system. None of the models really resemble one another in

this case, which makes it difficult to establish the most accurate method.

The transverse impulse densities are displayed in Fig. 6.29. In this case the box, PRF and

prox models are all remarkably symmetrical. The transverse impulse densities of the box and

prox models are also highly similar, suggesting that this is probably a good approximation
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Figure 6.28 Axial contact impulse along the central cable element against time for the dragging task

to physical reality for the transverse friction representation.

It is worth discussing the adherence of the friction forces to the friction cone limit.

Figs. 6.30 and 6.31 show the satisfaction of the individual friction components, i.e. they

display the value of h(|βa| − µλn) and h(|βt | − µλn). It can be seen from these plots that

these quantities are always negative, and so the box friction conditions are satisfied by all

the methods throughout the simulation. In the case of the PRF method, the friction forces

will always lay either inside, or on, the friction cone, as the cone is the fixed limit of the

friction force. The prox method will also produce forces that lie inside or on the friction cone,

as the final step in the iteration given by Eq.(6.76b) involves a projection onto the friction

cone. The PC method will also produce a friction force that lies inside the friction cone, as

one can see in the diagram of the polyhedral approximation in Fig. 6.4 that the polyhedral

approximation to the friction cone lies inside the true friction cone.

However, in Fig. 6.32, the value of the quantity h(|β |−µλn) is shown. Here, the box fric-

tion method is often in violation of the friction cone bound, which means that the frictional

impulse density found by the method often lies in the corner of the box. This is possible, as
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Figure 6.29 Transverse contact impulse along the central cable element against time for the dragging task

Figure 6.30 Plot of h(|βa|−µλn)
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Figure 6.31 h(|βt |−µλn)

Figure 6.32 h(|β |−µλn)
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the box extends outside the friction cone. Indeed, this is expected as the friction force upon

sliding will tend to arise in the corner of the box, which is always outside the friction cone.

The other three methods however still satisfy the bound as expected.

6.6.5 Further Discussion

In almost every example, a clear distinction can be seen in most of the figures, between

the part of the simulation that contains a lot of dynamic behaviour, i.e., when the cable is

bouncing or deforming, and the part where the behaviour is static, i.e., the cable has come

to rest. However, this distinction can never be seen for the PRF method, as there is no

non-smoothness present in the regularized friction law.

In terms of speed, a good quantitative comparison is not possible, as the methods are

not implemented in the most efficient way possible, however, some qualitative statements

can be made. The penalty method will be the fastest, as no MLCP needs to be solved,

the forces are simply calculated and applied. The PC and box friction methods should

be roughly comparable in speed, as the (M)LCP generated by each are approximately the

same size. The PC LCP is larger than the equivalent box friction LCP, as it requires more

friction directions and includes some extra variables. It is also the case that the PC LCP

is redundant, and so requires Lemke’s algorithm to solve. The MLCP generated by the

box friction method can be solved with the Judice algorithm, which tends to be faster than

Lemke’s. Overall we may expect box friction to be slightly faster than PC, but this could

depend on the implementation. The Prox method will be the slowest, as it is solving the full

nonlinear friction problem, and requires many iterations in order to converge to a solution.

There are methods of speeding up convergence [212], which have not been implemented here,

but the expectation is still that this method is significantly slower than the others.

It is important to note that improvements can be made to all of these methods, e.g.

• Box friction could be improved by iterating, so that the friction bounds can be updated

and the problem solved again to give a more accurate result.

• The PRF method could have the state extended to include the normal force at each

time-step; this could be used to improve the calculation of the friction force.
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• The Prox method could use a tuned adaptive scheme for choosing the r-factors to

improve the speed of convergence

• In the PC method position-level stabilization could be introduced to prevent the

position-level drift.

However, none of these additions would fix the most fundamental issues of the methods.

• The box friction method is still a relaxed method, and hence, it doesn’t satisfy the

complementarity conditions exactly.

• The PRF method still has an explicit force acting, and hence, it will still be less stable.

• The Prox method is still going to be slow, and its iterative nature still means it will

not satisfy the complementarity constraints exactly.

• The PC method will still be using Lemke’s algorithm to solve a redundant problem,

and hence, it will not generate realistic frictional forces.

In terms of simulation quality, the box friction method appears to be the best overall. It

lacks the significant problems of the PRF method in these real-time, very dynamic, simulation

tasks. The method also gives better estimates of the contact impulse densities than the PC

and Prox methods do, maintains symmetry better than the PC method, and has position

level stabilization built-in, the lack of which was a significant drawback in the PC and Prox

methods. The main drawback of the box friction method is that it can overestimate the

frictional forces, producing a result that lies outside the friction cone, whereas the PC, Prox

and PRF methods cannot do this. However, the satisfactory accuracy, combined with being

the second fastest method makes apparent that it is the best method tested for this kind of

simulation task.

6.7 Incorporating Rigid Bodies

In this section it is shown that a similar integration and contact modelling method for rigid

bodies can be implemented in tandem with the methods proposed above for the simulation

of ANCF flexible bodies. The main area of discussion is the description of contact forces,
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which have been represented by both bilateral constraints and unilateral contact with dry

friction above.

In general, there has been a reasonable amount of work involved in enforcing bilateral

constraints compatible with rigid bodies in the ANCF literature; some of those methods

can definitely be implemented to represent joints between ANCF elements and rigid bodies.

This body of work has been discussed in detail in Section 2.2.3 of this thesis.

6.7.1 Bilateral Constraints

A generic set of bilateral constraints are specified by a constraint function φφφ b(q), with {q :

φφφ b(q) = 0}, the set of configurations of the system that satisfy the constraints. For the

interaction between rigid bodies and ANCF flexible bodies the constraint function is given

by φφφ b(qRB,qA, t), where qRB are the generalized coordinates describing the configuration

of the rigid bodies and qA are the generalized coordinates describing the configuration of

the flexible bodies. Examples of joints that can be modelled in this way can be found in

a number of places in the literature. In order to impose a constraint on the rotational

degrees of freedom of the rigid-body the definition of an orthonormal coordinate frame at

the element endpoints is useful. This has been done in a number of ways, either based on

the axial direction vector, or on the cross-section directions. Examples can be found in the

literature [160, 161]. Lastly, and probably most importantly, it was realized that the nodal

coordinates of a fully parameterized element can be used to consistently define a rotation and

stretch tensor at the endpoint via polar decomposition [162]. These degrees of freedom are

sufficient to describe, without redundancy, a completely arbitrary set of three vectors at a

nodal point [163]. An alternative method was proposed that used an intermediate coordinate

frame with no inertial properties to allow rotational constraints to be defined in a systematic

way [164]. This intermediate coordinate frame method provides an interface that can be

used with constraints available in standard FEM libraries. For similar purposes, Shabana et

al [165] proposed an ANCF reference node for multibody system analysis. Regardless of the

method used to develop the bilateral constraint function, the time derivative of the above
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abstract expression of the constraint gives the Jacobian below:

dφφφ b

dt
= J̃Ib


q̇RB

vA


= J̃Ib


NvRB

vA


+ ∂φφφ b

∂ t
=
[
JIbRB JIbA

]

vRB

vA


+w0 (6.77)

where both JIbRB = JIbRB(qRB,qA) and JIbA = JIbA(qRB,qA) can be functions of the entire

configuration, and the transformation matrix N, present to transform the time derivatives

of the generalized coordinates which define the rotation of the rigid-body into the angular

velocity, has been incorporated into the rigid-body Jacobian JIbRB–see the literature for more

details. Despite this function not being given by the gradient of the constraint function with

respect to the coordinates, due to the aforementioned factor N, we will still call this object the

Jacobian, as it serves an almost identical purpose. As mentioned before, velocity constraints

do not have a configuration-level constraint, but can be directly imposed at the velocity level.

In the literature, constraints that can represent spherical joints, revolute joints, cylindrical

and sliding joints, among others, have been presented.

6.7.2 Unilateral Constraints

When a contact is detected between two bodies, a similar process to that which happens

when the flexible body comes into contact with a non-dynamic body i.e., the ground, as

defined above. The only essential difference is that the constraint violation function, φφφ u, is

now a function of the configurations of both bodies, and that the Jacobian, which measures

the relative velocity of the contact points on each body, now includes terms that compute

the velocities of the contact point on both bodies in the collision. In this case the relative

velocity of the contact points, uc is given by:

uc = JIcRBvRB +JIcAvA = J̃Ic


NvRB

vA


 . (6.78)

where, similar to the bilateral case, the rigid-body Jacobian, JIcRB includes a factor N to map

from the time derivatives of the configuration parameters, to the angular velocity of the rigid-

body. Therefore, it can be seen that the elements of the Jacobian, J̃Ic, act on the generalized

velocities of both bodies involved in the collision. Otherwise, the formulation of the contact
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Jacobian and unilateral constraint violation functions is identical to that which has already

been demonstrated, making the generalization to incorporate rigid bodies straightforward.

6.7.3 Monolithic Integration

To demonstrate how the rigid and flexible systems are coupled, let us take a constrained rigid-

body system; of mass matrix MRB, bilateral constraints φφφ b = 0 with Jacobian Jb, unilateral

constraints φφφ u ≥ 0 with Jacobian Ju, and a friction force Jacobian J f , a compliance matrix

for the bilateral constraints Cb and a compliance matrix for the unilateral constraints and

friction forces C̃u and C̃ f respectively. There is an applied force fapp acting on the system

with the Coriolis and centrifugal forces of the rigid bodies denoted by b. The bilateral

constraint forces are denoted by the array λλλ b, the normal contact forces by the array λλλ n

and the frictional forces by βββ . The semi-implicit integrator, using the compliant constraints

formalism [68], together with the box friction model [99] leads to the time-stepping equation

for a time-step h below,




MRB −JT
b −JT

n −JT
c

Jb Cb/h2 0 0

Jn 0 Cu/h2 0

Jc 0 0 C f /h2







v+

hλλλ b+

hλλλ u+

hβββ+



=




Mv−hb−hfRB

−φφφ B/h

−φφφ u/h

0



+




0

0

η

σ




(6.79)

which can be solved for the upcoming velocities v+, and the variables η and σ , which

have the same interpretations as previously discussed. By collecting the Jacobians as JT
RB =[

JT
b JT

n JT
c

]
, the compliances as CRB = diag(Cb,Cu,C f ) the constraint and contact forces

as zT
RB =

[
hλλλ T

b+ hλλλ T
u+ hβββ T

+

]
, the constraint deviations as φφφ T

RB =
[
φφφ T

B/h φφφ T
u/h 0T

]
and

the complementarity variables as wRB =
[
0T ηT σT

]
, this equation can be written more

succinctly as:


MRB −JT

RB

JRB CRB/h2




vRB+

zRB


=


MRBvRB−hb(v)−hfRB

−φφφ RB


+


 0

wRB


 (6.80)

Consider an ANCF model of a flexible-body system, with mass matrix MA, bilateral

constraints φφφ b with Jacobian Jb, unilateral constraints φφφ u with Jacobian Ju, and a friction
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force Jacobian J f , and Jacobians for the longitudinal and bending elastic forces Jε and Jκ ,

respectively. The system also has a compliance matrix for the bilateral constraints Cb and a

compliance matrix for the unilateral constraints and friction forces Cu and C f , respectively.

Also compliance matrices for the elastic forces Cε and Cκ , as in Eq.(5.13). There is an

applied force QA acting on the system, and the bilateral constraint forces are denoted by the

array λλλ b and the normal contact forces by the array λλλ n and the frictional forces by βββ . The

elastic forces are denoted by λλλ ε and λλλ κ . The time-stepping form of the ANCF dynamics

with box friction, subject to the bilateral constraints, φφφ b, is given by:




MA −JT
ε −JT

κ −JT
b −JT

n −JT
f

Jε C̃ε/h2 0 0 0 0

Jκ 0 C̃κ/h2 0 0 0

Jb 0 0 C̃b/h2 0 0

Jn 0 0 0 C̃u/h2 0

J f 0 0 0 0 C̃ f /h2







v+

hλλλ ε+

hλλλ κ+

hλλλ b+

hλλλ u+

hβββ+




=




Mv+hQA

−φφφ ε/h

−φφφ κ/h

−φφφ b/h

−φφφ u/h

v0




+




0

0

0

0

η

σ




(6.81)

which, again, by collecting essentially the same sets of variables as in the rigid-body case,

can be written more succinctly as:


MA −JT

A

JA CA




vA+

zA


=


MAvA +hQA

−φφφ A


+


 0

wA


 (6.82)

These two sub-systems can be combined. They can be connected via bilateral constraints,

whose Jacobian is denoted by JIb and contact interactions between the two systems, with

Jacobian denoted by JIc. The corresponding compliance matrices are given by CIb and CIc
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respectively. The combined time-stepping equation can then be written as:




MRB 0 −JT
RB −JT

IbRB −JT
IcRB 0

0 MA 0 −JT
IbA −JT

IcA JT
A

JRB 0 CRB/h2 0 0 0

JIbRB JIbA 0 CIb/h2 0 0

JIcRB JIcA 0 0 CIc/h2 0

0 JA 0 0 0 CA







vRB+

vA+

zRB+

hλλλ Ib+

hλλλ Ic+

zA+




=




MRBvRB +hb+hfRB

MAvA +hQA

−φφφ RB/h

−φφφ Ib/h

−φφφ Ic/h

−φφφ A/h




+




0

0

wRB

0

wIc

wA




(6.83)

Note again, that this integrator fits the form:


M −JT

J C/h2




v+

z+


=


Mv+hb+hf

−φφφ


+


0

w


 (6.84)

and so this MLCP can be solved via the same methods used for either the rigid-body or

ANCF solvers individually, which have been described earlier in this chapter. This gives a

single monolithic integration method, that can solve problems that include both rigid and

flexible bodies as well as constraint and contact interactions between them.

6.8 Conclusions

In this chapter, we developed an extension to the first-order integration method described

in the previous chapter, which enables it to numerically integrate nonsmooth systems. This

nonsmooth extension was applied with a number of different friction models. The friction

models examined were the penalty method with regularized friction, the box friction model,

the PC method and the Prox method. It was observed that the box friction method gives

the best combination of speed and realism of all the methods.

The integration method also carries through the benefits of the first-order method, in

that it is stable at large time-steps, and does not require tuning. The nonsmooth aspects

do introduce some relaxation parameters in the box friction and PRF methods, and these

do require some tuning, although the simulation is realistic and stable for a large range of
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these parameters.

All friction models were adjusted to take into account the nature of both the contact patch

of the flexible body and the flexible body itself, and provide an accurate model for a given

number of contact points. The Gaussian quadrature method was used to select the points

in the undeformed space of the body, and an equivalent set of point forces were defined.

The homogeneity of the PC model meant that no real changes were required. For the prox

method, defining an equivalent set of point forces leads to an alternative choice for the ζ

parameters controlling the convergence. Regularization was conducted with respect to the

material reference frame, so that each contact point had an equivalent relaxation in the box

and PRF methods.

It was shown that the only friction method that produced a physically realistic result in

every simulation was the box friction method. The PC and prox methods behaved similarly

to one another in most cases. However, the prox method proved much better at maintaining

the symmetry of the physical situation than the PC method. The dynamics of the ANCF

cable from the PC and prox methods appeared qualitatively realistic, but the force profiles

generated by the PC and Prox methods were unrealistic. When required to model a rolling

cable, both the PC and Prox method failed due to their lack of position-level stabilization.

The PRF method functioned fairly well with no friction, although it did sometimes produce

spurious adhesive forces. With friction, the PRF method fared worse, due to the regularized

friction, and the large time-step, it was not possible for the cable element to stick. Similarly,

large spurious frictional forces could be generated due to a relatively large penetration, as

the method treats the frictional forces explicitly, which lead to some unrealistic behaviour

during the rolling simulation when the cable element was dropped onto an inclined plane.

The rolling simulation demonstrated that the rigid-body motion of the cable element was

well reproduced by the box friction method, even under rolling contact. And other simulation

results showed that the contact methods were also effective and stable when the cable was

significantly more flexible.

A monolithic integrator for real-time simulation of rigid and flexible bodies was also

proposed. Testing of the full integration method requires additional implementation, which

is left for future work, along with the evaluation of the combined integration method.
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It was argued that the Prox method is slowest, and the penalty method is fastest, with the

box friction and PC methods falling in-between. The lead matriices produced by these two

methods are both of less than 100× 100, in all simulation examples, which give (M)LCP’s

that are known to be solvable fast enough for real-time simulation. However, that software

engineering aspect, and if there are any specific computational optimization methods that

can be made, was not studied here, it is recommended for future work.
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Chapter 7

Conclusions and Recommendations

for Future Research

7.1 Summary of Contributions

In Chapter 3 a novel generalization and extension to the geometric stiffness method was

developed and demonstrated. This method was used to improve energy conservation in

systems subject to relaxed constraints via adaptive control of the contribution provided

by a geometric stiffness term. The correct and general definition and derivation of said

geometric stiffness term was also introduced, so that the method can be effectively used

for any mechanical system. Two versions of the integration method were discussed, their

stability properties being compared. The implicit biased method was more stable than its

explicit counterpart; it was shown how the implicit biased integrator can stabilize chains of

rigid bodies, at a real-time rate of simulation, whilst maintaining better energy behaviour

than just using the geometric stiffness term alone.

As this method is based on simulating articulated bodies, it is straightforward to incor-

porate contact into these models, and give lumped-parameter, flexible-body models, which

include contact. There are drawbacks to the method, in that the control scheme requires

tuning, and the computation and inversion of the geometric stiffness matrix decreases the

speed at which the integration can run. Some methods have since been proposed to try and

mitigate these efficiency issues by truncating the geometric stiffness matrix [227, 228] in the

time since the original publication.
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In Chapter 4, we took a different approach to constraint stabilization. Prioritizing the

recreation of realistic dynamics, the constraint stabilization method, known as the penalty

method, was adapted into a novel variational integrator framework. This allowed the concep-

tual leap to provide the penalty system with its own state variables, and couple the penalty

system to the dynamic system under study by way of a constraint. An asynchronous vari-

ational integrator was then introduced, to integrate the penalty system on a smaller time

step, allowing a much stiffer penalty system than would be stable to be rigourously defined,

interpreted and simulated. The effect of the increased stiffness can be interpreted in the

coefficients of an equivalent, longer time step penalty system.

The proposed stabilization method gives an improvement in numerical stability and re-

duces constraint violation when compared to a standard symplectic method with constraints

enforced by regular penalty functions. However, the constraints are not exactly satisfied at

all times and a set of nonlinear equations must be solved. In other words, the new integrator

is interesting, but is useful only in situations where it is desirable to enforce constraints

more strictly at the cost of some speed. Hence, this integration method is less useful for

real-time simulation. The formalism also allows for an interpretation of the coefficients of

a penalty/augmented Lagrangian-type stabilization. We see that coefficients outside the

physically realistic range can be re-interpreted as the mass, stiffness and damping constants

for an oscillator running on a smaller time scale. Whilst sometimes parameter values were

observed to lead to instabilities, from our examples, and from other work on the stability of

AVIs [206], it can be seen that it should not be difficult in any given situation to find good

parameter values, which leads to this method requiring a relatively low degree of tuning.

This method could be applied to articulated bodies or lumped-parameter systems to

enforce constraints in flexible-body simulation; it would be interesting to do so. As this is

an integration method for standard articulated rigid-body systems, it is also possible to add

contact to the integration method whilst still enforcing the constraints in this way.

In Chapter 5, the study of the ANCF methodology begins. In the effort to simulate flexible

bodies in real-time with an accurate and numerically stable procedure, a new first-order

integration method was developed, which includes numerical stabilization terms to enable

the integration method to work at large time steps even for very stiff ANCF elements. The
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integrator is faster than a linearized implicit integrator, and it is inspired by the compliant

constraints method; it shares the desirable mathematical properties thereof. The integration

method is also able to integrate on a much longer time step than the other first-order methods

to which it is compared, including the explicit Euler method, and the Newmark β method,

whilst providing a similar qualitative accuracy. The physical realism of the integrator was

demonstrated by simulating a quasi-static process with a theoretically known result; the

convergence of the simulation via increasing the number of cable elements was studied, as

was the required number of quadrature points for convergence of the solution. The integrator

itself is shown not to require tuning, as all parameters are based on the properties of the

material, and the integrator was shown to operate over several orders of magnitude of stiffness

values whilst maintaining speed and stability.

At high stiffness values, the integrator shows some energy loss, which ensures stability.

The energy of the rigid -body modes of the element is well maintained; it is thus the energy

found in the high frequency modes of the system which is dissipated. The comparison to a

linearized implicit integrator was discussed; it was argued that a linearized implicit method

would be significantly slower than the proposed method, due to the extra time required to

compute the second derivatives of the strain quantities. Therefore, out of the suite of first-

order integration methods available, the proposed integrator strikes an excellent balance

between speed, stability and accuracy, which makes it useful for real-time simulation.

The expressions for the required stabilization terms were displayed for line, surface, and

volumetric elements, including two-dimensional elements, e.g., plates, shells, and three-

dimensional elements, e.g., LOBE24, a brick element. These elements can also be used

with the integration method. The only drawback with using the integrator with these higher

dimensional elements is that the number of quadrature points, and so the number of compu-

tations required, increases.

In Chapter 6, an accurate contact model was added to the integrator defined in Chapter 5,

to allow for the real-time dynamic simulation of flexible bodies such as beams and cables,

subject to contact, where the contacts can be redundant and where the system can reproduce

the nonsmooth aspects of unilateral contact and friction. Four different contact methods, the

PRF method, the box friction method, the PC method and the Prox method, were extended
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to work with the proposed ANCF integration method. The contact-force approximation was

carefully derived in order to understand how the contact forces act in the simulation process.

The box friction method was found to be the most robust and best performing in general.

The nonsmooth integration method does carry through the benefits of the first-order

method, in that it is stable at large time steps, and does not require tuning. The nonsmooth

aspects do introduce some relaxation parameters in the box friction and PRF methods; these

do require some tuning, though the simulation is realistic and stable for a large range of these

parameters. The Gaussian quadrature method was used to select the points in the unde-

formed space of the body, and an equivalent set of point forces were defined. Regularization

was performed in the material space so that each contact point had an equivalent relaxation.

The homogeneity of the PC model meant that no real changes were required; this alteration

led to an alternative choice for the numerical parameters in the Prox method.

It was shown that the only friction method that produced a physically realistic result

in every simulation experiment was the box friction method. The dynamics of the cable

when there was no rolling involved looked realistic, but the force profiles generated by the

PC and Prox methods were unrealistic. When required to model a rolling cable, both the

PC and Prox method failed, due to their lack of configuration-level stabilization. The PRF

method functioned fairly well with no friction, although it did sometimes produce spurious

adhesive forces. With friction, the PRF method fared worse, due to the regularized friction,

and the large time step; it was not possible for the cable element to stick. Similarly, large

spurious frictional forces could be generated due to a relatively large penetration, as the

method treats the frictional forces explicitly, which led to some unrealistic behaviour during

the rolling simulation when the cable element was dropped onto an inclined plane.

Lastly, a monolithic integrator for real-time simulation of rigid and flexible bodies was

also discussed, which allowed contacts, constraints and other interactions between the flexible

and rigid bodies such that, for a reasonable number of rigid and flexible bodies, the overall

monolithic simulation can be performed in real-time.

This research work served to expand the capabilities in simulating flexible bodies in real-

time, which opens up many opportunities for both research and industrial applications. The

key contribution to enable this was the discovery of the simple, and efficiently computable
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stabilization terms in the first order ANCF integrator. The addition of the contact forces was

also a critical contribution, as the systems under study are heavily influenced by their contact

interactions. The method goes some way to filling the gap discussed in the Introduction, as

this does provide a method that can operate in real-time for a combined rigid and flexible

multibody system, whilst being highly stable, and having the ability to simulate a large

variety of ANCF elements at a large variety of stiffness values.

7.2 Recommendations for Future Work

A large number of possibilities for expanding all aspects of this work lie ahead, although

some appear more promising than others. The extension to the geometric stiffness method

shows potential for further study. The literature published since the research project was

conducted that uses the geometric stiffness method [227, 228] shows that the method can

gain further potential efficiency increases. Improving the energy control is also recommended,

as it may be possible to obtain a better prediction about the geometric stiffness required at

any point, and so improve the degree to which energy is to be dissipated.

The method introduced in Chapter 4 shows less promise going forward for the simulation

of real-time systems. Whilst it is interesting, and a novel application of the AVI method,

having to solve a nonlinear equation does mitigate the advantages it gives. The method could

find a better use with a higher-order integration method, where nonlinear equations must

already be solved to take a time step forward. The other possibility is that the method be

combined with an event-driven simulation method, to be applied to unilateral constraints,

possibly improving the simulation of nonsmooth phenomena, as those phenomena could

occur on a much smaller time scale than the smooth dynamics.

Many possibilities for the extension of the ANCF work exist. For the basic integrator,

a first extension would be to study more general constitutive relations, to develop similar

stabilization terms for those, to allow for the simulation of more general materials. It is

also possible to relate damping forces to nonholonomic constraints in the same way that the

conservative internal elastic forces are related to holonomic constraints. With this, adequate

terms for stabilizing materials with controllable internal damping could be developed.

Exploring the various other elements available, and testing and evaluating them with
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the method in this thesis, or developing methods specifically tailored to higher dimensional

elements to further increase the simulation efficiency should be straightforward. This could

take the form of exploring which quadrature scheme is suited best for evaluating the elastic

forces, or introducing some sort of reduced integration over the quadrature points, thereby

allowing only a certain number of quadrature points to have stabilization terms associated

with them. The method so far has only been tested with homogeneous, isotropic materials;

whilst this is sufficient for the purpose of this thesis, it would be worth exploring the efficacy of

the method for more complex materials. In particular, using material parameters that better

model cables, and testing the method with these would be a priority for the applications

described in this thesis.

In terms of contact, the priority would be to extend the current contact model to include

a controllable impact model. Whilst this is less relevant in the applications targeted in this

thesis, it is still important. This would be significant work, both in terms of understanding

how impact models with flexible bodies should be constructed, and in implementing such a

method. The distribution of contact points over the contact patch should also be studied.

Most approaches in the literature seed the body with many contact points at fixed material

locations. In this work, the contact points are dynamically generated. The best approach

for real-time simulation of multibody dynamics is still an open question even for rigid body

systems. Lastly, the monolithic integrator developed in the final chapter must be tested and

optimized. The methods developed in this thesis can have the largest impact if they are

used in real-time simulation.

The other aspect that has not at all been addressed in this thesis is validation. If the

methods contained here are to be useful for real time simulation, then the results of any

given simulation should be validated. This is difficult for such complex situations, but

simple experiments could be performed to evaluate the pressure profiles and friction forces

generated by the solver. Likewise, the dynamics generated could be compared to real cranes

or other vehicles, to validate the simulation via larger and more complex experiments.
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Painlevé paradox in multibody systems,” Multibody System Dynamics, vol. 45, no. 3,

pp. 361–378, 2019.

[95] D. E. Stewart and J. C. Trinkle, “An implicit time-stepping scheme for rigid body

dynamics with inelastic collisions and coulomb friction,” International Journal for

Numerical Methods in Engineering, vol. 39, no. 15, pp. 2673–2691, 1996.

[96] J. Williams, Y. Lu, and J. C. Trinkle, “A complementarity based contact model for

geometrically accurate treatment of polytopes in simulation,” in ASME 2014 Interna-

tional Design Engineering Technical Conferences and Computers and Information in

Engineering Conference, American Society of Mechanical Engineers, 2014.

[97] M. Anitescu and F. A. Potra, “Formulating dynamic multi-rigid-body contact prob-

lems with friction as solvable linear complementarity problems,” Nonlinear Dynamics,

vol. 14, no. 3, pp. 231–247, 1997.

[98] M. B. Cline and D. K. Pai, “Post-stabilization for rigid body simulation with contact

and constraints,” in 2003 IEEE International Conference on Robotics and Automation,

vol. 3, pp. 3744–3751, 2003.

[99] C. Lacoursiere, “Splitting methods for dry frictional contact problems in rigid multi-

body systems: Preliminary performance results,” in The Annual SIGRAD Conference.

Special Theme-Real-Time Simulations. Conference Proceedings from SIGRAD2003,

195



Ph.D. Thesis 7.2. Recommendations for Future Work

no. 010, pp. 11–16, 2003.

[100] P. C. Horak and J. C. Trinkle, “On the similarities and differences among contact

models in robot simulation,” IEEE Robotics and Automation Letters, vol. 4, no. 2,

pp. 493–499, 2019.

[101] M. Anitescu and F. A. Potra, “A time-stepping method for stiff multibody dynamics

with contact and friction,” International journal for numerical methods in engineering,

vol. 55, no. 7, pp. 753–784, 2002.
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Appendix A

First-order integrators

A.1 Time Discretization Errors

The predictability of the time-stepper is described by its order of accuracy. That is, the

exponent of the time-step in the error between the solution to the continuous time equations

which model the system, and the solution to the time discretized equations. One way of

defining this, especially useful for mechanical systems, is that of backward error analysis.

Backward error analysis is based off of a proof, which essentially says, that if the time

stepping method is order O(hn) accurate, then the numerical solution is the exact solution of

a differential equation ˙̃q = f̃ (q̃,h) where f̃ (q,h)− f (q) is of order O(hn) and the continuous

solution is the solution of q̇ = f (q) and the local truncation error of the solution is also

O(hn). This is a useful property, as it lets the truncation error of the numerical solution be

determined by a taylor expansion of the time stepping equations. This will not be reproduced

here, but can be found in many books on numerical analysis [28, 29, 229].

The other point of note, is that, for consistency, to first order in h, it must be the case

that f̃ (q,h) = f (q)+O(h), otherwise the solutions will not agree in the limit as h→ 0.

This perspective allows time-stepping methods to be built from some discretization of the

equations of motion. There are other methods to generate time-stepping algorithms, such

as the Variational Integrator (VI) method, which directly discretizes the action integral.

A.2 First order time-stepping

In this thesis we are only concerned with first order methods, the three Euler methods are

reviewed here.
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Explicit Euler makes the following definitions

q+−q
h

= N(q)v (A.1)

v+−v
h

= M−1(q)f(q,v) (A.2)

Here both q+ and v+ can be directly computed given the previous state.

Implicit Euler instead makes the definitions:

q+−q
h

= N(q+)v+ (A.3)

v+−v
h

= M−1(q+)f(q+,v+) (A.4)

which are generically a highly nonlinear and difficult to solve, set of equations.

The semi-implicit Euler integration method instead takes one line from explicit Euler and

one from implicit Euler and defines:

q+−q
h

= N(q)v+ (A.5)

v+−v
h

= M−1(q)f(q,v) (A.6)

For this set of equations, the second line can be used to compute v+ first, which can then

be directly inserted into the first line.

Each of these methods has different stability properties. In numerical analysis it is often

not possible to make statements about the stability of a method for all possible functions.

Instead, one relies on the error analysis to give some insight as well as testing on particular

problems to gain some sense of the stability overall. This analysis was performed for the

semi-implicit integrator [230], and it is found to be significantly more stable than the explicit

integrator, but not as stable as the implicit integrator. It is however found to preserve the

energy with much more accuracy than the other two. Sometimes authors appeal to the

Variational Integrator literature for the semi-implicit method, but, as noted previously, the

above method is not the semi-implicit Euler method spoken of in the VI literature unless

N(q) = 1 and f(q,v) = f(q) = −∂V/∂q. In that case one can appeal to the properties of
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variational integrators, which are known to be energy stable in a finite region of time step

values.
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Appendix B

ANCF Formalism

B.1 ANCF kinematics

The ANCF formalism is characterized by the use of ANCF elements in a finite element type

approach. ANCF elements use the position of nodes, and position vector gradients at those

nodes, where both are taken in the global, absolute, coordinate system, as the generalized

coordinates to describe the configuration of the system of finite elements. The type of ANCF

element is characterized by three distinct components.

1. The number and interpretation of the nodal coordinates

2. The shape function which interpolates those nodal coordinates to give global positions

3. The spatial extent of the element

In this kinematics section the shape functions and nodal coordinates for the most relevant

ANCF elements for this thesis are reviewed. First, the ANCF cable element. The original

ANCF element [125, 126] was a planar cable element, and was updated by Berzeri et. al.

[137] and Sugiyama [154] to a three dimensional element, has degrees of freedom given by

the position coordinates of the end points, and the axial gradient vector components at those

positions, as shown in Fig. B.1. As has been discussed in Chapter 2, these elements have

distinct advantages for applications requiring large deformations, and preserve the rigid body

properties of the system [125].

The cable element is the simplest element studied in detail in this thesis. It gives the

ability to simulate cables or beams, without torsion or shear, relatively accurately, with few
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Introduction

Overview of the ANCF beam elements

Basic ANCF beam elements:
(a) 8 DOF, 2D, (b) 12 DOF 3D, (c) 12 DOF 2D, (d) 24 DOF 3D
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Figure B.1 Degrees of freedom of the basic cable element

degrees of freedom. The element is characterized by a cubic curve in space, whose nodal

coordinates correspond to the specification of the locations and direction gradients at either

end of the element. The element has a natural length L. The material space is the segment

of the real line given by:

M= [0,L] = {x : 0≤ x≤ L} (B.1)

each point x ∈M has global coordinates given by: r(x) where x denotes the corresponding

point on the unstrained element represented by the line segment in the material space. The

nodal coordinates q are defined by:

q =
[
qT

1 qT
2

]T
=
[
rT

1 rT
x1 rT

2 rT
x2

]T
(B.2)

where r1,r2 ∈R3 are the global positions at the x = 0 and x = L ends of the cable respectively.

The vectors rx1,rx2 ∈ R3 are the gradients at the indicated ends of the cable. As each of

these vectors has three dimensions in 3D space, and the total number of nodal coordinates

for a single cable element is twelve.

The shape function is parameterized by the material coordinate x and is given by:

S(x) =
[
S1(x)I3 S2(x)I3 S3(x)I3 S4(x)I3

]
(B.3)

where I3 is the 3×3 identity matrix, and the functions S1 through S4 are defined, using the
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parameterization x = L(ξ +1)/2, as:

S1(L(ξ +1)/2) =
1
2
− 3

4
ξ +

ξ 3

4
, S2(L(ξ +1)/2) =

L
8
(1−ξ −ξ 2 +ξ 3) (B.4)

S3(L(ξ +1)/2) =
1
2
+

3
4

ξ − ξ 3

4
, S4(L(ξ +1)/2) =

L
8
(−1−ξ +ξ 2 +ξ 3) (B.5)

A point in space corresponding to the location x on the cable element is then given by:

r(x) = S(x)q (B.6)

These shape function polynomials are actually Hermite splines, a method developed to per-

form precisely this task in another context. The shape functions are cubic in the material

coordinates and provide a cubic interpolation along the cable element.

The fully parameterized beam element has double the number of degrees of freedom of

the cable element, and also models shear forces, allowing the element to model torsion and

shear forces. The fully parameterized beam element, or low order beam element (LOBE24

element) has a natural length L, and a natural radius R. The material space is now given by

a cylinder, i.e.

M= {(x,y,z) : 0≤ x≤ L, y2 + z2 ≤ R2} (B.7)

The nodal coordinates have the form:

q =
[
rT

1 rT
x1 rT

y1 rT
z1 rT

2 rT
x2 rT

y2 rT
z2

]T

where r1 ∈R3 is the location of the end of the element corresponding to x= 0 and rx1,ry1,rz1 ∈
R3 are the directional gradients at the x = 0 end of the element, and r2,rx2,ry2,rz2 are the

corresponding quantities at the x = L end of the element, giving the LOBE24 element in

three dimensions twenty-four degrees of freedom.

The shape function is parameterized by the three material space coordinates, x,y,z. The
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shape function is given by:

S(x,y,z) =
[
S1I3 S2I3 S3I3 S4I3 S5I3 S6I3 S7I3 S8I3

]

where I3 is the 3×3 identity matrix, and the functions S1 through S8 are defined, using the

parameterization x = Lξ ,y = Rη ,z = Rζ , as:

S1(Lξ ,Rη ,Rζ ) = 1−3ξ 2 +2ξ 3, S2(Lξ ,Rη ,Rζ ) = L(ξ −2ξ 2 +ξ 3)

S3(Lξ ,Rη ,Rζ ) = R(1−ξ )η , S4(Lξ ,Rη ,Rζ ) = R(1−ξ )ζ

S5(Lξ ,Rη ,Rζ ) = 3ξ 2−2ξ 3, S6(Lξ ,Rη ,Rζ ) = L(−2ξ 2 +ξ 3)

S7(Lξ ,Rη ,Rζ ) = Rξ η , S8(Lξ ,Rη ,Rζ ) = Rξ ζ

Note that the S3,S4,S7 and S8 components of this shape function are linear in the η and ζ

variables. Define:

SC(x) =
[
S1I3 S2I3 0 0 S5I3 S6I3 0 0

]

which is the shape function for the cable element defined above, and also define:

Sη(lξ ) =
[
0 0 R(1−ξ )I3 0 0 0 Rξ I3 0

]

Sζ (lξ ) =
[
0 0 0 R(1−ξ )I3 0 0 0 Rξ I3

]

as the rest of the shape function. The entire shape function can now be written as:

SFP(x,y,z) = SC(x)+ηSη(x)+ζ Sζ (x)

and a point in the LOBE24 element is given by:

SFP(x,y,z)q = SC(x)q+ηSη(x)q+ζ Sζ (x)q (B.8)

= rc(x)+Rηry(x)+Rζ rz(x) (B.9)

= rc(x)+ yry(x)+ zrz(x) (B.10)
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where rc(x) the position of the centerline of a cubic cable element. This shows us that as a

given x value, the gradients ry(x) and rz(x) define two independent vectors which span the

potentially deformed cross section at that point. The cross section remains planar, as for

the given x value, these two vectors are independent of y and z.

Plate or shell elements are often two dimensional elements, but sometimes also have a

finite thickness. Plate elements are often quadrilaterals, but triangular elements exist too.

The standard bilinear plate element is a quadrilateral. The material space is given by:

M= {(x,y,z) : 0≤ x≤ l, 0≤ y≤ w, −d/2≤ z≤ d/2} (B.11)

for this element, the nodal coordinates have the form:

q =
[
rT

1 rT
2 rT

3 rT
4 rT

z1 rT
z2 rT

z3 rT
z4

]T

where r1 through r4 are the locations of the corners of the quadrilateral in anti-clockwise

order. The vectors rz1 through rz4 are the normals to the plate at each corner, each is three

dimensional, and so the plate has twenty-four degrees of freedom. The main characteristic

which separates a plate elements from a brick is that the plate element has one dimension

much smaller than the others, and so this dimension is either not modelled at all, or is only

modelled using a linear interpolation, for this case one only requires four nodal points at the

corners of the plate, rather than the eight nodal points a brick requires (one at each corner

of the cuboid). The bilinear shell element has a shape function given by:

S(x,y,z) =
[
S1I3 S2I3 S3I3 S4I3 zS1I3 zS2I3 zS3I zS4I

]

where I3 is the 3×3 identity matrix, and the functions S1 through S4 are defined as:

S1(lξ ,wη) =
1
4
(1−ξ )(1−η), S2(lξ ,wη) =

1
4
(1+ξ )(1−η)

S3(lξ ,wη) =
1
4
(1+ξ )(1+η), S4(lξ ,wη) =

1
4
(1−ξ )(1+η)

where l and w are the length and width of the plate respectively. One can see that in fact,
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this bilinear plate element is a little unusual in that it has some thickness, given by z. The

shape function separates into two parts:

Sc(x,y) =
[
S1I3 S2I3 S3I3 S4I3 0 0 0 0

]
(B.12)

Sz(x,y) = z
[
0 0 0 0 S1I3 S2I3 S3I S4I

]
(B.13)

a point on the bilinear plate is given by:

r(x,y,z) = S(x,y,z)q (B.14)

= Sc(x,y)q+ zSz(x,y)q (B.15)

= rc(x,y)+ zrz(x,y) (B.16)

where once again, the point on the central plane of the plate element is given by rc(x,y) and

the spatial extent in the normal direction is specified by the z coordinate. These functions

linearly interpolate the nodal values across the plate.

In general, the shape functions vary between different elements and in different dimensions.

Olshevskiy et. al. [175] have produced a number of shape functions for a variety of different

elements. It is also possible to use other interpolation functions, such as those used in

the RANCF formalism [231], which are rational functions of polynomials based on NURBs

curves, allowing the RANCF elements to exactly match conic sections. Other elements have

also been invented, some of which were discussed in Chapter 2.

B.2 ANCF dynamics

Now that the kinematics of some of the large number of available ANCF elements has been

discussed, the dynamical theory can be developed. The dynamical theory requires the calcu-

lation of the inertial and internal elastic forces of the element, as well as the action of external

forces on an element. Before beginning, it is important to outline some of the underlying

assumptions of this method. There are three important points to keep in mind when using

the ANCF formalism to construct a finite element model. The first is that the model must

be dynamic, otherwise quantities like the mass matrix do not make sense. The second is
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that the mass matrix formulation must be such that the rigid body modes are preserved,

i.e. the finite element model should be objective. Finally, connectivity between elements

must be enforced, and the gradient vectors must be matched at the element interfaces in

order to create a continuous and consistent strain field over the whole deformable body. The

first is definitely the case in the applications considered in this thesis, the second is satisfied

by using the ANCF model for finite elements, as we automatically define a consistent mass

matrix, and the third condition we can choose, and should choose, to satisfy.

There is one other important concept underlying this model for deformable bodies. As is

commonly known, deformable bodies and in general, systems of dynamics with an infinite

number of degrees of freedom, have their dynamics described by partial differential equations

(PDEs). A standard solution method, which works on a large class of PDEs, is that of separa-

tion of variables. In this method, the solution is assumed to be written as a sum of products

of functions, where the different factors in each product depend on different variables. The

same assumption is made here. The solution to whichever PDE governs the dynamics of the

deformable body is assumed to admit a separable solution, the shape functions defined above

are the factor of the solution which depend upon the spatial parameters, but are assumed

independent of time. The nodal coordinates are independent of the spatial parameters, but

they are assumed to be time dependent. Hence we have some relevant relationships which

will be used below:

r(x) = S(x)q, ṙ(x) = S(x)q̇, r̈(x) = S(x)q̈ (B.17)

∂r(x)
∂x

=rx(x) = Sx(x)q, rxx(x) = Sxx(x)q (B.18)

where the first statement in the second line above is a definition for the subscript notation

which will be used to succinctly denote the spatial derivatives. Next, the exploration of the

inertial forces can begin, first, this requires the definition and calculation of the mass matrix.

To derive the mass matrix for the nodal coordinate degrees of freedom, first consider a

mass element of mass dm and at location r(x) in global coordinates. The kinetic energy of
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this mass element is given by:

ψ(x) =
1
2
||ṙ(x)||2 dm (B.19)

The kinetic energy of the beam is given by:

KE =
∫

ψ(x) =
∫ 1

2
q̇TS(x)S(x)q̇ dm =

1
2

q̇T
(∫

S(x)S(x) dm
)

q̇

from the above formula, the mass matrix is defined to be:

M =
∫

ST(x)S(x) dm

and the kinetic energy of the entire element is therefore given by:

KE =
1
2

q̇TMq̇ (B.20)

As ANCF elements use polynomial interpolation to define the shape function for an element,

the mass matrix can often be computed symbolically. It is constant, as the shape functions

are independent of time and it is in global coordinates. As the mass matrix is constant

and in global coordinates, there are no coriolis forces associated with an element. The mass

matrix has a very regular structure. It can be written as a tensor product between a dense

matrix and the identity. One can write the shape function for an arbitrary element in the

ANCF system as:

S(x) = I3⊗
[
S1(x) S2(x) . . . Sn−1(x) Sn(x)

]
= I3⊗ Ŝ

We therefore have that

M = I3⊗
∫

Ŝ(x)T Ŝ(x) dm = I3⊗M̂

The array M̂ is, generically, dense, and it is likely that all components will be filled. For the

usual choice of shape function for all basic elements this matrix is completely dense, and has
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





Figure B.2 Structure of the mass matrix of an ANCF element

no elements equal to zero. Each component in the dense matrix will multiply an identity

matrix, giving precisely 1/3 of the components non-zero in the full mass matrix. In fact,

denoting the zero elements with lines, and the non-zero elements with dots, the mass matrix

for a single generic element has the structure shown in Fig. B.2:

For the cable element defined above, with a constant density ρ and cross sectional area

A, the mass matrix is given by:

M(3) =
∫

A
dA
∫ L

0
dx ρS(x)TS(x) (B.21)

= ρA
∫ L

0
dx S(x)TS(x) (B.22)

performing this calculation gives the result:

M(3) = ρAL




I3⊗




13
35

11L
210

9
70 −13L

420
11L
210

L2

105
13L
420 − L2

140
9

70
13L
420

13
35 −11L

210

−13L
420 − L2

140 −11L
210

L2

105







(B.23)

Having computed the mass, one can find the virtual work of the inertial forces by varying

the kinetic energy term with respect to the nodal variables, one calculates:

δW = (Mq̈)Tδq (B.24)
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which gives the inertial force as:

Qinertial = Mq̈ (B.25)

In this section the discussion is limited to conservative constitutive relationships between

the stress and strain. Damping forces, and other non-conservative forces have been added

to the formalism, but they will not be discussed here. The internal elastic energy is different

for different dimensionality elements. Here, the different expressions will be discussed and

exhibited, and the forces computed in terms of the shape function and nodal coordinates.

First, the strain energy for a one-dimensional element, e.g. the cable element, is given by:

We =
1
2

∫ L

0
EεAε2 dx+

1
2

∫ L

0
Eκ Iκ2 dx, where ε =

1
2
(
rT

x rx−1
)
, κ =

|rx× rxx|
|rx|3

(B.26)

where ε is the longitudinal strain, κ is the curvature strain, Eε is the longitudinal Young’s

modulus and Eκ is the curvature Young’s modulus. From this one can substitute in r(x) =

S(x)q and compute the strain energy in terms of the nodal coordinates and shape functions.

ε =
1
2
(
qTST

x Sxq−1
)

(B.27)

κ =
|(̃Sxq)Sxxq|
|Sxq|3 (B.28)

where, as before, the tilde indicates the cross product matrix of the corresponding vector.

The force is computed by taking the gradient of the energy, to find:

Qel =−EεA
∫ L

0

∂ε
∂q

ε dx−Eκ I
∫ L

0

∂κ
∂q

κ dx

where the young’s modulus values for the longitudinal strain and bending strain are allowed

to be different in this model, however, for a usual isotropic material Eε = Eκ . Note that

more recent papers suggest that the ‘material curvature’ is a more accurate measure of the
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bending strain. It is given by:

K = |rx|κ =
|rx× rxx|
|rx|2

(B.29)

where EK is a corresponding stiffness-type value. In this case the strain energy is changed

to:

We =
1
2

∫ L

0
dx EεAε2 +

1
2

∫ L

0
dx EKIK2 (B.30)

and the elastic forces can be computed in a straightforward way.

In the plate case, the longitudinal strain is now given by a three dimensional array: ε and

the bending strain is given by a curvature array: κ. Once again assuming a linear stress-

strain constitutive relationship and a homogeneous isotropic material, the elastic potential

is then:

W =
d
2

∫

S
εTEεε dS+

d
2

∫

S
κTEκκ dS (B.31)

where the integral is taken over the shell or plate surface, S. The other quantities are given

by:

ε=




ε1

ε2

ε3


 , κ=




κ1

κ2

κ3


 , Eε =

Ed
1−ν2




1 ν 0

ν 1 0

0 0 2(1−ν)


 , Eκ =

d2

12
Eε (B.32)

where ν is Poisson’s ratio, E is the Young’s modulus and d is the thickness ε and κ are

defined as:

ε=




(rT
x rx−1)

(rT
y ry−1)

rT
x ry


 , κ=

1
||n||3




rT
xxn

rT
yyn

rT
xyn


 (B.33)

and the normal vector n at a specific point is given by n = (rx× ry)/|rx× ry|. Once again,
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the elastic forces are given by:

Qel =−
d
2

∫

S
εTEε

∂ε
∂q

dS− d
2

∫

S
κTEκ

∂κ
∂q

dS (B.34)

Lastly, the 3d case is examined. In this case there is no force due to the curvature, κ , as there

is no curvature quantity and instead there is a full tensor of strain quantities as discussed

previously.

εi j =
1
2




ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33


=

1
2




(rT
x rx−1) rT

x ry rT
x rz

rT
x ry (rT

y ry−1) rT
y rz

rT
x rz rT

y rz (rT
z rz−1)


 (B.35)

As εi j is symmetric there are six independent components which can be written as an array

The elastic forces are then:

W =
∫

V
εTEε dV (B.36)

where

ε=




ε11

ε22

ε33

2ε12

2ε23

2ε13




, E =




λ +2G λ λ 0 0 0

λ λ +2G λ 0 0 0

λ λ λ +2G 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G




(B.37)

As this is a quadratic function we can use the same technique as we did before using gener-

alized gaussian quadrature. i.e, The elastic force is then given by:

Qel =−
∫

V
εTE

(
∂ε(q)

∂q

)
(B.38)

To determine the form that a force acting at a point on the element takes, consider a

point force, fapp acting at a point on the flexible body. The virtual work associated to that
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force is given by:

δW = fT
appδr (B.39)

This can be transformed into a generalized force which acts on the nodal coordinates of the

body by using the relationship r(x) = S(x)q. This gives:

δW = fT
appδr = fT

appδ (S(x)q) (B.40)

= fT
appS(x)δq (B.41)

Hence, the generalized force associated to a force expressed in global coordinates at a material

point given by x is given by:

Qapp = ST(x)fapp (B.42)

A force, or more accurately, a pressure acting along some segment of a cable or surface of a

deformable object can be computed via:

QT
app =

∫

P
pT

app(x)S(x)d
nx

where P is the material patch that the pressure acts over, dnx is the length/area element

for this patch. There is an important subtlety in this formula, which is that the integration

is taken over the material space, not the global space. The difference can be observed if

the coordinates are changed back into the global coordinates. The patch P is associated to

some patch P′ in the global coordinates, the length/area measure for the space in the global

coordinates will be denoted by dnr. There is a transformation matrix which relates these

coordinates, given by:

dr =
∂r
∂x

dx = Gdx (B.43)

Given a vector n, which is normal to the surface in global coordinates, the area elements are
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related by:

ds =
det(G)√
nTGGTn

dS (B.44)

and alternatively the length elements are related by:

dl =
√

rL(x(L))rL(x(L))dL (B.45)

where L is the coordinate in the material space along the length that the pressure is pressure.

Let the factors which contain the information about the relationship between the surface

elements and length elements be denoted by J, the expression for the applied pressure force

can be written as an integral in the global space as:

QT
app =

∫

P
pT

app(x)S(x)d
nx =

∫

P′
JpT

app(x)S(x)d
nr (B.46)

So the quantity, papp transforms as a density, not simply as a vector, so the corresponding

quantity in the global space is given by Jpapp, where papp is now expressed in the global

coordinate system. This is a consequence of the deformable body being able to occupy

different lengths/areas/volumes in the material space that it does in the global space where

it is deformed. This is important because usually, in the various problems that will be

encountered in common applications, these forces which are distributed over the surface of

the object are almost always found and given in the global space. Hence, to construct the

generalized force on the nodal coordinates which corresponds to these pressure distributions

involves not only identifying the expression for the patch in the material space, and using

the transpose of the shape function, but also multiplying by the factor which corresponds to

the relationship between the length/area/volume in the global and material spaces.

Given the set of inertial forces, internal elastic forces and applied forces the principle of

virtual work can be used to write the equation of motion for an ANCF element as:

Mq̈+Qel +Qapp = 0 (B.47)
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Sometimes it is convenient to write the elastic forces as though they are defined by a nonlinear

stiffness matrix. In that case the elastic forces are written as:

Qel = K(q)q (B.48)

inspection of the expressions for the elastic forces given above show that this decomposition

is a valid one.

This dynamic equation can be used to model the motion of a single element. But, in

order to create a good model of a deformable body, multiple elements must be joined. This

is demonstrated now. Consider two elements a and b, with nodal coordinates denoted by

qa and qb. The element is assumed to require two nodes, such as in the cable element or

LOBE24 element cases. The nodal coordinates of the leftmost node are denoted by qa
1 and

the rightmost node by qa
2. All the terms in the equation of motion, namely the mass matrix

and nonlinear stiffness matrix defined above can be decomposed into acting on the leftmost

and rightmost nodal coordinates. This is denoted by subscripts with the corresponding

number. The dynamic equation for the single element a with no external applied forces can

therefore be written as:


Ma

11 Ma
12

Ma
21 Ma

22




q̈a

1

q̈a
2


=−


Ka

11 Ka
12

Ka
21 Ka

22




qa

1

qa
2


 (B.49)

and similarly for element b. This expression splits up the mass and stiffness matrix of an

element based on which coordinates are associated to each node. The combined mass and

stiffness matrices of the two elements connected in a chain can then be determined as:

M =




Ma
11 Ma

12 0

Ma
21 Ma

22 +Mb
11 Mb

12

0 Mb
21 Mb

22


 (B.50)

K =




Ka
11 Ka

12 0

Ka
21 Ka

22 +Kb
11 Kb

12

0 Kb
21 Kb

22


 (B.51)
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So it can be seen that, for a chain created from multiple elements, constructing a single

mass matrix is quite simple. The mass matrix remains constant and can be systematically

computed once the chain of elements is determined. For more complex arrangements of

elements, or elements with more than two nodes, a slightly more sophisticated method can

be employed, as demonstrated by Shabana [120], suffice to say, that similar expressions can

be generated for arbitrary connections between the nodal points.

The last topic in this section is that of evaluation of the internal elastic forces. Whilst, in

principle, the elastic forces associated to the longitudinal strain can be computed symboli-

cally, the elastic forces associated with bending in one and two dimensions cannot. Even for

the longitudinal forces, computing the integral is quite slow as the expressions become quite

complex. Therefore, another method is often used to give a numerical approximation to the

elastic forces. A suite of common methods for numerically computing integrals are known

as quadrature methods. A quadrature method replaces an integral of a function f by a sum,

i.e.:

∫ x1

x0

f (x)dx≈
Ng

∑
i=1

wi f (xi) (B.52)

where the set of points {xi} are known as the quadrature points and the set of constants {wi}
are known as the weights associated to those points. The most basic quadrature methods

take evenly spaced points, these are the Newton-Coates formulas. The Gaussian quadra-

ture formulas are those where the locations of the points {xi} are taken to achieve the best

accuracy. The way these rules are constructed is to replace the function f (x) by an approxi-

mating polynomial. Writing f (x) = PNg(x)+δ (x) where PNg(x) is the polynomial and δ (x) is

the error. This replacement need only be accurate over the domain of integration to give a

good approximation. The integral is then given by:

∫ x1

x0

f (x)dx =
∫ x1

x0

PNg(x)dx+
∫ x1

x0

δ (x)dx (B.53)

In the procedure for determining the weights is based on the theorem that, if we have a
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polynomial PNg(x) such that:

∫ x1

x0

xkPNg(x)dx = 0 ∀ k = 0, ...,Ng−1 (B.54)

then if the quadrature points {xi} are chosen to be the zeros of PNg(x) there is a selection of

weights {wi} that make the Gauss quadrature sum exact for all polynomials of degree 2n−1

or less. In other words, for this particular selection of weights, the integral:

∫ x1

x0

f (x)dx =
Ng

∑
i=1

wi f (xi) (B.55)

is exactly computed by the Gaussian quadrature rule with Ng quadrature points if f (x) is a

polynomial of less than degree 2Ng− 1. There are a number of generalizations of this rule,

such as the ability to introduce a weighting function to the above definition. These lead

to a variety of quadrature rules, such as the Gauss-Jacobi rules or the Chebyshev-Gauss

rules, it is also possible to extend this to integrate over semi-infinite intervals. Note that the

quadrature rules can be extended to multiple dimensions by repeated application, i.e.

∫ x1

x0

∫ y1

y0

f (x,y)dxdy≈
∫ x1

x0

Ngy

∑
i=1

wi f (x,yi)dx≈
Ngx

∑
j=1

Ngy

∑
i=1

wiw j f (x j,yi) (B.56)

There are also other generalized Gaussian quadrature rules which can prove useful [120].

The number of quadrature points determines the accuracy of the approximation, the larger

the number of quadrature points, the better the approximation. In practice it has been

found that five to seven quadrature points per element is an appropriate number to obtain

a good approximation for the elastic forces for the cable element [126]. The last point to

mention is that these quadrature rules require a standardized interval for the weight values

to be transferable between integrals. So, when employing such methods, one must change

variables to use them.
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Appendix C

ANCF Locking and Validation

C.1 Locking

Locking problems are a fundamental consequence of the basic continuum mechanics model.

The basic problem is known as Poisson locking [195], and arises when the Poisson ratio of the

material approaches 1/2[224]. The Poisson ratio of a material describes the ratio of transverse

contraction strain, to longitudinal extension strain, coupling different directional strains of

the material in question. When Poisson’s ratio approaches 1/2 it corresponds to the Young’s

modulus becoming extremely large in isotropic materials, which, in terms of modelling and

analysis, results in a very stiff problem, which is difficult to solve. Poisson locking can be

removed or mitigated in a number of ways. Reduced integration, as employed by Kerkkanen

[148], where the number of quadrature points used in the numerical integration of the elastic

forces is reduced to avoid the locking problem entirely. Gerstmayr et. al.[195] simply set

the Poisson ratio to zero for all materials. Later, selective reduced integration has been

employed to avoid the locking effects in both one dimensional [232] and three dimensional

[233] ANCF elements. Other methods are available also, which avoid the volumetric locking

problems by employing alternative kinematic relations for the beam cross section [234, 235],

however these methods tend to introduce shear locking instead.

The two other main locking phenomena are membrane locking and shear locking, these

occur in different circumstances but for similar reasons. When the finite element discretiza-

tion is not sufficient to consistently model the strain fields across the body, adjacent elements

impose spurious strains on one another as they cannot bend or shear properly, leading to
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unphysical results. Locking problems are often present in elements which have a linear inter-

polation in one or more directions. Shear and membrane locking issues have been observed

in some ANCF finite elements, such as the fully parameterized beam element [139, 140]

and bilinear plate elements. Similar methods to those employed above have been used to

ameliorate the effect of shear locking on ANCF elements, such as reduced integration and

selective reduced integration [148, 232, 236]. Similarly, reducing the dimensionality of the

element along certain directions can remedy the problem, these lead to gradient deficient

ANCF elements, such as the originally proposed cable element which has no locking prob-

lems. Membrane locking has also been observed in ANCF plate/shell elements [237], and has

been mitigated by redefining the strain measure to avoid the strain distortions introduced

by the definition of the element. Likewise, the performance of elements can be improved by

using higher order elements [238, 239], which better model the strain field over the object,

and are less susceptible to locking behaviours.

There is a significant amount of literature investigating locking in FEM, and locking

in ANCF elements specifically. As this is not the focus of this thesis, we will not delve

into the area further. However the interested reader can find the aforementioned methods

and other such methods for dealing with locking surveyed by Patel and Shabana [240] in a

comprehensive review article.

C.2 Validation

In order to become accepted as a useful finite element formulation ANCF had to be checked

for correctness by validation against both experiments and other FEM methodologies that

have been validated themselves. No small amount of work has gone into validating the

ANCF formulation. The earliest work was carried out by the group of Yoo [149, 241] in

2003/2004. The ANCF models of a thin cantilever beam and thin plate were validated

against experiments carried out by the group and found to be in excellent agreement with

the experimental results.

More complex validation efforts were undertaken in 2006, again by Yoo et. al. [242]

who began to validate the multibody properties of the ANCF methodology by comparing

an ANCF model of a beam with motion at the base to a physical experiment, testing the
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ability of the formulation to truly incorporate rigid body motion correctly. Also in 2006, Seo

et. al. [243] conducted a validation of an ANCF model of a pantograph mechanism, which

again served to validate the large deformation and large rotation properties of the method.

Around the same time, Kawaguti et. al [244] also validated the cable element, rather than

modelling a beam, it was used in their study to model a tether such as those used in elevators

or cranes. Their study attached the cable element to a winch, and sinusoidally oscillated the

winch perpendicular to the hanging direction of the cable, moving through the resonance

of the system. Even in this challenging scenario, the cable element performed well when

compared to experimental data of the same situation.

Increasingly complex experiments were performed in order to validate the methodology,

with particular attention being paid to shell elements. Cepon et al. [76, 180] compared the

behaviour of a belt drive model to experiment and analytical results. First, they developed a

two-dimensional belt drive model with contact forces, which performed well when compared

to analytic results. Secondly they added internal damping to their belt drive model and used

experimental data to fit the internal damping forces. Their resulting model agreed well with

their experiments. Sugiyama et. al. [184] compared an ANCF model of a tire with regular-

ized contact interactions to experimental results for the vibrational and dynamic response

of the tire and found good agreement. Jung et. al. [245] used the ANCF methodology to

test various nonlinear elastic models for a rubber-like material using the fully parameterized

ANCF beam element. The methodology was sufficient for them to analyse the nonlinear

aspects of each model and compare to the experimental results of a cantilevered beam made

from the material.

More recently, validation efforts have focused on increasing complex multibody situations.

Orzechowski et. al.[239] examined nearly incompressible beams modelled using a novel beam

element. They again found good agreement with reference results. Likewise Bauchau et. al.

[246] compared both the geometrically exact beam element and the fully parameterized

ANCF beam element to the results of the ‘Princeton beam experiment’ and found that

both FEM performed well compared to each other and the experiment. It was at this

point ANCF beam elements and plate elements were added to the Chrono [22] multibody

dynamics modelling software. Some verification efforts were undertaken to compare the
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implementation with other FEM packages and were found to perform comparably [247].

Most recently, validation against experiment for silicon beams was performed by Xu et.

al. [238]. This group used a higher-order ANCF beam element to avoid locking problems

and find that when compared to the lower order beam elements, the higher order element is

better at capturing the large deformation behaviour of the beams. This confirms that whilst

some ANCF elements do suffer from locking issues, the aforementioned methods to mitigate

these problems are effective.

Extensive comparisons with other FEM formulations have also been made and in general

the ANCF methodology has fared very well when compared against the FFR formulation

as well as geometrically exact beam elements and other commercially available elements,

see e.g. [124, 126, 136, 147, 235, 236]. Now the correctness of the ANCF formulation has

become accepted enough that the ANCF methodology has been confidently applied to many

different engineering problems, including the analysis of tracks, beams, belts, vehicles and

even knee ligaments [77, 186, 248, 249].
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