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ABSTRACT

A three-dimensional aeroelastic solver using the Nonlinear Frequency Domain

(NLFD) method in conjunction with a novel dynamic mesh deformation approach

using Radial Basis Functions (RBF) is developed. A structured multiblock finite-

volume flow solver coupled to a plate bending finite-element model is employed for

aeroelastic computations. The novelty of the developed dynamic mesh deformation

method consists in the computation of the mesh velocities using the RBF matrix op-

erator for use in the Arbitrary Lagrangian-Eulerian formulation of the flow governing

equations. The approach is validated for a pitching two-dimensional NACA 0012

airfoil and a pitching three-dimensional LANN wing against the rigid grid motion

method, the Fast Fourier Transform (FFT) mesh velocity computation technique, as

well as experimental results. Both the accuracy and the efficiency of the method are

validated. A methodology for the assessment of flutter and limit cycle oscillations

(LCO) using the NLFD approach is developed. The NFLD/LCO aeroelastic solver is

validated based on previous work and experimental results for the AGARD I.-Wing

445.6 Weakened Model 3 in air and Solid Model 2 in R-12. The flutter boundary

and LCO trends are assessed for both cases. The method is estimated to perform

aeroelastic computations an order of magnitude faster than typical time-marching

methods.
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ABRÉGÉ

Un solveur aéroélastique tridimensionnel employant la méthode Non Linéaire

du Domaine Fréquentiel (NLDF) ainsi qu’une approche novatrice de déformation

dynamique de maillage par Fonctions de Base Radiales (FBR) sont dévelopés. Un

solveur fluide multibloc à maillage structuré couplé à un modèle d’éléments finis de

plaques en flexion est employé pour les calculs aéroélastiques. La nouveauté de la

méthode de déformation dynamique de maillage réside dans le calcul des vitesses

nodales du maillage à partir de l’opérateur des FBR, dans le but de les utiliser

par la suite dans la formulation Arbitrairement Lagrangienne-Eulérienne (ALE) des

équations gouvernant l’écoulement. Cette approche est validée pour un profil d’aile

NACA 0012 et une aile LANN tridimensionnelle soumis à une oscillation angu-

laire, et est comparée aux méthodes du mouvement rigide de maillage et du cal-

cul de vitesses de maillage par Transformée de Fourier Rapide (TFR), ainsi qu’à des

résultats expérimentaux. La précision et l’efficacité de la méthode sont validées. Une

méthodologie pour la détermination des conditions de flottement et d’oscillations

de cycle limite (OCL) est dévelopée en employant la méthode NLDF. Le solveur

aéroélastique NLDF/OCL résultant est validé en fonction de travaux antérieurs et

de résultats expérimentaux pour l’aile I.-Wing 445.6 de l’AGARD; le modèle affaibli 3

est testé dans l’air, et le modèle solide 2 est étudié dans le R12. Les conditions de

flottement linéaire et d’OCL de l’aile sont déterminées. Il est estimé que la méthode

proposée soit en mesure d’exécuter des calculs aéroélastiques environ un ordre de

grandeur plus rapidement que les techniques usuelles d’intégration en temps.
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CHAPTER 1
Introduction

1.1 Motivation

Over the past several decades, engineering disciplines have greatly converged

towards the employment of computational software due to the enormous efficiency

advantages computers are able to provide. As computer calculations became in-

creasingly fast, problems of greater complexity could be tackled by engineers within

reasonable time frames. Refined computer hardware technologies and increasing

computing capacities gave rise to novel engineering fields which took advantage of

those new possibilities. Among them stands the Computational Fluid Dynamics

(CFD) discipline, of which goal is to predict the behavior of fluid flows subject to

predefined conditions through the use of numerical simulations relying on the govern-

ing equations of fluid flows. The need for this discipline originates from the difficulty

to predict the flow behavior around even only slightly complex geometries such as

two-dimensional airfoils, using solely analytical methods. Although such methods

have been known to engineers for a long time, their very restrictive limitations moti-

vated the development of numerical techniques such as CFD. The latter is nowadays

widely employed in the industry. For instance, aircraft manufacturers make use of it

to characterize aircraft components, in view of producing optimal designs. Its utiliza-

tion directly translates into cost savings, as it shortens design duration and reduces
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the need for experimentation, such as wind tunnel and flight testing, of which costs

are orders of magnitude greater than CFD computations.

Despite the improvement in computing techniques, some complex problems re-

main very time-intensive due to the high amount of calculations they require. This is

the case, among others, of unsteady flow simulations, where the flow behavior varies

in time. Although steady-state problems already require a substantial amount of cal-

culations due to the nonlinear and hyperbolic characters of the governing equations,

unsteady flows necessitate additional effort, primarily because of two factors. First,

the solution typically needs to be marched in time by constructing the temporal his-

tory of the flow at multiple time instances, thus requiring more computational effort

than steady-state problems, which only need the solution at a single time instance.

Second, a lot of effort is deployed to eliminate the initial transient effects that are due

to the initialization of the flow domain to the free-stream values, which renders the

first few steps of the solution totally inaccurate. Despite these drawbacks, unsteady

flow simulations are widely employed in the industry since they are essential to the

aircraft design process, particularly in the assessment of the aeroelastic behavior of

aircraft components.

Aeroelasticity is the discipline studying the interaction between a structure and

the fluid flow surrounding it. It is primordial in the design process of aircraft since

undesired aeroelastic instabilities, be they static or dynamic, often lead to catas-

trophic structural failure or severe fatigue damage. For example, divergence is a

static instability characterized by aerodynamic loads exceeding the structural resist-

ing forces, leading to excessive deformation of structural components and, ultimately,

2



to their failure. On the other hand, dynamic instabilities are characterized by a dy-

namic interaction between the body and the fluid flow. Flutter is defined as the

dynamic instability caused by a positive feedback between the aerodynamic loads

and the deformation of the structure, producing a negative global damping. This

negative damping results in diverging oscillations of the body, ultimately leading to

its structural failure. For linear systems, the flutter point is defined as the exact

stability limit between diverging and damped oscillations of the body, corresponding

to the point where the net damping is exactly zero. Therefore, a linear stability

analysis is sufficient to assess accurately the flutter point of a structure.

Limit cycle oscillations (LCO), on the other hand, consist of self-sustained os-

cillations of constant energy that are caused by either aerodynamic or structural

nonlinearities. Hence, they cannot be modelled using linear stability analyses, and

require a nonlinear approach. Dynamic nonlinearities may be caused, among others,

by the movement of a shock wave on the surface of the body, flow separation, or

any structural nonlinearity. It is therefore common to encounter LCO in transonic

aeroelastic analyses, due to the presence of a moving shock wave. As regards to the

flutter point, it is characterized by an LCO of which amplitude is sufficiently small

that the nonlinear effects in the flow and the structure are negligible. In practice,

aircraft engineers are concerned by the lowest flight speed at which either flutter or

an LCO occurs, because none are desirable. In some cases, flutter will occur before

LCO of higher amplitudes. Such cases are deemed to possess benign LCO nonlin-

earities [15], since the flight speed at which LCO occur for a constant Mach number

increases as the LCO amplitude increases, as shown in Figure 1–1(a). Flutter is

3



(a) Benign Nonlinearity (b) Detrimental Nonlinearity

Figure 1–1: Benign and Detrimental Effects of Nonlinearities on Limit Cycle Oscil-
lations (reproduced and adapted from [15])

thus the sole phenomenon that needs to be assessed, since it is the most critical, by

occurring at the lowest flight speed. However, in other cases, so-called detrimental

nonlinearities [15] may cause LCO to occur at lower speeds than the flutter point, as

depicted in Figure 1–1(b), provided that the initial perturbation is sufficiently large.

In such cases, a strict assessment of the flutter speed would lead to dangerous de-

signs, since the occurrence of LCO below the flutter speed could dramatically reduce

the desired safety margins or the performance of the aircraft. This behavior is partly

responsible for the transonic dip phenomenon, which is characterized by a drop in

the flutter speed at transonic Mach numbers. Although it does not correspond to

flutter in the proper sense since it results from dynamic nonlinearities, the transonic

dip is said to reduce the flutter speed because LCO can occur before linear flutter.
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Because of the safety issues that dynamic instabilities engender, manufacturers

must ensure that they do not occur within the flight envelope of the designed aircraft.

However, modelling them requires a very high computational effort because of their

nonlinear unsteady character. For that reason, the aeroelastic behavior of aircraft

components is commonly assessed using low-fidelity or linear methods along with

generous safety margins to ensure a large stability region. As a consequence, designs

are generally suboptimal as far as aeroelastic behavior is concerned. High-fidelity

methods would allow design optimization based on aeroelastic constraints to be in-

cluded within the design loop, but current methods are computationally expensive

and render this approach impractical.

This research is therefore motivated by the need for high-efficiency high-fidelity

aeroelastic simulation techniques, such that they are viable for industrial applica-

tions. For example, a high-fidelity aeroelastic solver could be embedded in an aero-

dynamic shape optimization framework, which is now of common usage in the indus-

try, as it allows for numerical rather than manual optimization of designs. Optimal

designs, for their part, procure undeniable competitive advantages to aircraft manu-

facturers, since they directly result in cost savings for airliners by reducing the drag,

increasing the range, and improving other desirable properties of the aircraft. The

need for efficient high-fidelity aeroelastic solvers is thereby highly justified.

1.2 Frequency-Domain Solution Methods

Until lately, the most popular approach for solving unsteady flows was Jameson’s

dual time-stepping technique [38], which nowadays has the recognition of the entire

CFD community. The appellation stems from the technique’s distinction between

5



physical (or real) time and pseudotime. The unsteadiness of the flow is accounted

for by using a second-order backward finite-difference representation of the temporal

derivative of the solution in physical time, whereas the solution at each physical

time step is converged to a steady state using a pseudotime-marching approach.

This allows for acceleration techniques such as local time-stepping and multigrid

strategies [36, 37] to be employed. Since the solution is marched in time from the

initial free-stream values to the final solution by constructing the time history of

the flow, the method is deemed time-accurate (or time-marching). Unfortunately,

despite its benefits, the dual time-stepping method remains computationally costly

due to its need to converge to a solution at numerous time steps as well as because

of the lengthy initial transient effects.

Fortunately, some great advancements were made in the field of unsteady flow

computations in the last two decades, especially for periodic flows, characterized by

continually repeated properties over time. In such flows, the solution is repeated once

every period T , such that any property φ of the flow at time t is equal one period later;

φ(t) = φ(t + T ). Since a large amount of unsteady flows studied by engineers are

indeed periodic, many of the aforementioned advancements were directed towards

the efficient solving of such flows. In that respect, various frequency-domain flow

solution methods emerged, in which the periodicity of the flow is exploited in order

to accelerate the convergence to the final solution, based on the representation of the

flow using a chosen number of harmonics.

At first, periodic time-linearized techniques [27] were welcomed by the aerospace

industry due to their high computational efficiency. Such techniques use a temporal
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linearization of the flow by assuming small periodic perturbations to the nonlin-

ear steady background flow. A steady flow is solved using a conventional solver,

and a system of wave equations is then solved for all the desired harmonics of the

unsteady part of the flow. However, the required linearization translates directly

into a lack of ability to model nonlinearities, as occurs in unsteady transonic flows.

Semi-nonlinear methods, or deterministic stress [1] methods, such as the Nonlinear

Harmonic (NLH) [32, 66] or phase solution [30] techniques, were derived in order to

improve the capture of dynamically nonlinear flow patterns. These techniques are

very similar to linearized frequency-domain approaches, but retain from the equa-

tions some additional stress terms that account partially for the effect of the unsteady

perturbations to the steady background flow. The original approach could only be

used to represent the flow using its fundamental frequency and a number of its first

multiples, but He et al. [31] extended it such that various frequencies could be used

without being multiples of one another, and employed it in turbomachinery applica-

tions. Both versions allow for an accurate modelling of weak nonlinear patterns, but

still lack accuracy for flows containing strong dynamic nonlinearities.

This shortcoming motivated the development of fully nonlinear frequency-domain

techniques such as the Harmonic Balance (HB) [28] and Time Spectral (TS) [25]

methods. The former was thereafter modified by McMullen [54], giving rise to the

Nonlinear Frequency Domain (NLFD) method [52]. These methods take advantage

of the periodicity of the flow and use trigonometric interpolants to represent the

solution accurately with very few time instances. Therefore, the flow is decomposed

into a predefined number of harmonics (multiples of the fundamental frequency)

7



while preserving entirely the nonlinear character of the equations. Accordingly, the

accuracy of the solution is dependent on the number of harmonics used as well as

the level of unsteadiness in the flow. Further work demonstrated thoroughly the

increased efficiency and excellent accuracy provided by frequency-domain methods

in comparison with typical time-accurate approaches [43, 51, 53, 63]. In addition to

the reduced number of time instances, the computation of the initial transient flow

behavior that is usually necessary in a typical time-accurate framework is discarded

due to the direct convergence of frequency-domain methods to the final periodic

solution.

Later, the HB method was extended to a multi-frequential formulation where the

employed frequencies need not be multiples of the fundamental frequency [18,26]. An

adaptive version of the method was developed by Maple [50], in which the number of

harmonics vary throughout the domain proportionally to the local level of unsteadi-

ness of the flow. As flows often contain both regions of low and high unsteadiness, this

advancement allows for greater computational savings in regions where only a few

harmonics are necessary. Mosahebi extended the method for nonlinear problems and

developed an adapted approach for two-dimensional viscous flows using the NLFD

approach [57], and demonstrated its application on deformable grids [59]. Originally

developed using explicit solvers such as Runge-Kutta methods for the advancement

of pseudotime, the convergence speed of frequency-domain methods was improved

by the use of implicit algorithms such as block-Jacobi for the TS method [75] and

Lower-Upper Symmetric Gauss-Seidel (LU-SGS) for the adaptive NLFD method [58].

8



1.3 Aeroelastic Solutions using Frequency-Domain Methods

As emphasized earlier, engineers grant high importance to aeroelastic problems

such as flutter or LCO due to their potentially dangerous character. Those phenom-

ena are characterized by two parameters: the air speed and the oscillation frequency.

For flutter, they are referred to as the flutter speed and flutter frequency, which define

the flutter point. The V-g [15] and p-k [29] methods are commonly used by engineers

in order to compute iteratively both parameters and thus assess the conditions under

which the structure begins to flutter. However, these methods cannot model LCO

since they are unable to model aerodynamic nonlinearities and, as a consequence,

cannot predict the existence of detrimental nonlinearities.

Due to the failure of the V-g and p-k methods in that respect, researchers

first turned to time-marching methods for nonlinear aeroelastic computations; time-

accurate techniques in which the structural equations of motion are integrated in time

at each time step based on the aerodynamic loads, such that the body displacement

can be updated for the computation of the flow solution at the next time instance.

For a fixed air speed, the associated oscillation frequency thus automatically sets

to the appropriate value and it can thereafter be observed whether the selected

flow conditions lead to damped, neutral, or diverging oscillations. By iteration, the

flutter speed and frequency can be assessed when neutral oscillations are observed.

This method was employed with efficient convergence accelerators by Alonso and

Jameson [2] for a two-dimensional airfoil undergoing pitching and plunging motions,

and showed great accuracy in the prediction of the flutter boundary. Nevertheless,

this technique requires the expensive computation of the solution during the decay
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of the initial transients, as well as a high number of time instances in order for the

solution to be of sufficient accuracy.

Fortunately, in many practical cases, flutter and LCO are characterized by peri-

odic oscillations of constant amplitude. The previously described frequency-domain

methods are therefore attractive approaches to solve aeroelastic problems in an effi-

cient fashion. However, an additional difficulty arises when using frequency-domain

methods: whereas time-accurate approaches naturally allow for the oscillation fre-

quency to set automatically and therefore leave the air speed as the only independent

variable for given flow conditions, frequency-domain methods require the frequency

to be determined a priori in order to perform the appropriate trigonometric interpo-

lation. Therefore, while time-accurate methods may iterate over the air speed only,

frequency-domain methods must iterate over both the air speed and the frequency

until a pair leads to neutral oscillations, regarded as LCO.

Thomas et al. [80, 81] first showed the possibility to employ the HB technique

in order to compute LCO of pitching and plunging airfoils using a linear structural

solver. By imposing the amplitude of one degree of freedom as an independent

displacement (in this case, the angle of attack), the HB/LCO method applies a

Newton-Raphson technique to a system of four equations to compute the real and

imaginary parts of the plunging motion as well as the air speed and frequency that

satisfy the conditions for neutral stability. This method not only allows for the

computation of flutter when the imposed independent displacement is small such

that nonlinearities are negligible, but also provides a method to assess nonlinear

LCO of higher amplitudes by forcing the independent displacement to higher values.
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The same authors later extended the HB/LCO method to three dimensions [16,

79, 83], in which the structural mode shapes of the body are assessed beforehand,

and the two-dimensional technique is repeated using the first mode shape as the

independent displacement. Then, using Nms mode shapes for the displacement basis

of the body, 2(Nms − 1) equations are solved for the real and imaginary parts of

every modal displacement numbered from 2 to Nms, and 2 additional equations

are solved for the LCO frequency and air speed, for a total of 2Nms equations in

the global system. The structural modal displacements are represented using one

harmonic only, whereas the flow solution can be represented using more modes.

This approach leads to good results, but require the evaluation of numerous finite-

difference derivatives to build the 2Nms × 2Nms Jacobian matrix of the Newton-

Raphson method at each iteration. Moreover, the computed values of frequency and

airspeed exhibit convergence with respect to Nms, the number of retained structural

mode shapes. Therefore, this method imposes a convergence study over the employed

number of mode shapes, which may become tedious when added to the traditional

spatial and temporal accuracy studies.

Kachra and Nadarajah [43] first coupled an NLFD flow solver to a fully nonlin-

ear two-degree-of-freedom structural solver using multiple structural harmonics, in

order to assess the aeroelastic behavior of a two-dimensional airfoil. The structural

displacements and aerodynamic loads were decomposed via Fourier transforms be-

tween each period of the flow solution, and a 2 × 2 system of structural equations

was obtained and solved for each harmonic separately. The issue of the a priori

unknown frequency was however left unresolved since the oscillation frequency was
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fixed to the value obtained from a previously executed time-accurate solution of the

same test case, therefore defeating the purpose of using the NLFD technique. Ekici

and Hall [19] afterwards revisited the HB/LCO technique using a nonlinear one-

degree-of-freedom structural model, in which multiple harmonics are considered in

the structural displacements and the frequency of oscillation is determined iteratively

for a fixed air speed. They also developed a one-shot frequency-determination ap-

proach, based on the fully coupled fluid-structure system, which proved more efficient

than the Newton-Raphson technique developed by Thomas et al. [81]. Nevertheless,

the cost associated with the method was only assessed for a one-degree-of-freedom

structural solver, and extending it to more degrees of freedom would require new

computational cost analyses to ensure its efficiency.

Mundis and Mavriplis [61] later performed two-dimensional quasi-periodic aeroe-

lastic computations using a hybrid Backward Differentiation Formula/Time-Spectral

(BDFTS) solver along with a Generalized Minimal Residual (GMRES) method, in

which they assumed the flutter frequency to be known beforehand and applied a

fluid-structure coupling between each oscillation period. They later developed a

fully-coupled TS aeroelastic solver, in which the structural equations of motion are

solved along with the flow at each iteration by the mean of a single system of equa-

tions [62]. However, this method still assumes an a priori known frequency since

a forced pitching motion is prescribed to the airfoil, while still allowing it to move

aeroelastically in pitch and plunge directions. Although this allows for a somewhat

free motion of the airfoil, it is still supposed that the airfoil is to oscillate at the same

frequency as the forced pitching motion.

12



The HB method was afterwards adapted for simulating aeroelastic flows in tur-

bomachinery using a predefined frequency [34] or set of frequencies [73,74] that were

deduced from the blade passage pattern. In both cases, however, since the frequencies

are fixed, the aeroelastic analysis is unidirectional: the motion is prescribed based

on the structural mode shapes with a given amplitude, and combined structural and

aerodynamic damping is assessed afterwards and employed in an aeroelastic stability

analysis. The same is true for the work of Rahmati et al. [68]. In the case of flut-

ter and LCO computation, this approach cannot be employed, since the vibration

frequency is a priori unknown, and thus the requirement for a novel approach is

justified.

1.4 Dynamic Mesh Deformation for Aeroelastic Solutions

By definition, aeroelastic solutions do not only involve unsteady flows but also

moving boundaries, induced by body motion. In two dimensions, such movements

may often be modelled by a rigid translation and rotation of the entire computational

grid along with the body, since the assumption that the body is undeformable is

generally acceptable. For instance, two-dimensional aeroelastic simulations often

involve two-degree-of-freedom rigid airfoils that can freely pitch and plunge about a

specific pivot point, but of which shape remains constant in time. However, this is not

the case for most three-dimensional aeroelastic simulations, since three-dimensional

bodies are often prone to more complex deformation, such as bending and torsion,

that cannot be modelled by rigid translation and rotation only, but rather require a

deformable grid approach.
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Mesh deformation has been extensively studied in the past and, as a con-

sequence, various algorithms have been developed in that respect. Spring anal-

ogy [6, 9, 14, 23, 24, 92], Laplacian smoothing [7, 20, 49], linear elasticity [5, 42, 76, 86],

and Delaunay mapping [48] techniques are as many famous mesh deformation meth-

ods. Whereas spring analogy and linear-elasiticy methods may be computation-

ally expensive, Laplacian smoothing and Delaunay mapping are best suited for

unstructured grids, yet structured meshes are employed in the present research.

Interpolation-based techniques, such as algebraic mesh movement [10, 11, 21] and

Radial Basis Functions (RBF) [13] deformation schemes, represent a possible alter-

native. In this work, the RBF approach is employed due to its ability to model

large displacements in a robust fashion that is suitable for structured meshes [22].

It consists in a meshless approach as it acts only on grid vertices regardless of their

connectivity, which makes it particularly attractive due to its simplicity of imple-

mentation. Although the original method was computationally expensive, many

have contributed to improve its efficiency [35, 55, 56,67,71,72]. Despite the author’s

knowledge of these improvements, the method used in this work is the original ap-

proach, modified by Walther [88] for parallel computations. Since the objective of

this research is not to compare the efficiency of the RBF deformation technique with

other schemes, the usage of the full-cost RBF is justified.

One direct effect of dynamic grid movement is the necessity to modify the eval-

uation of the fluxes at the grid cell interfaces in finite-volume schemes. A common

approach is to employ the Arbitrary Lagrangian-Eulerian (ALE) formulation [33]

of the governing equations to solve modified flow equations in a moving referential,
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which requires the evaluation of the velocity of all cell faces at all time instances of

the solution. The method is applied very easily for rigid grid movement, as the veloc-

ity of each mesh point is only based on the analytical derivative of the grid position

with respect to time, provided that a known function describes the movement of the

grid. However, the computation of mesh velocities may prove difficult for deforming

grids, since there might not exist a simple function describing the movement of all

grid points, therefore not allowing the necessary time differentiation. For this type

of grid movement, time-accurate solvers have the possibility of computing mesh ve-

locities through the use of a backward finite-difference method at each time instance

for all grid points. However, frequency-domain techniques use a very low number of

time instances per period, thus preventing the use of a finite-difference approach due

to the enormous error that would be introduced by the large time steps. Since the

movement of the grid is assumed periodic in such techniques, one possible option is

to use the same differentiation operator for the computation of the mesh velocities

as that employed for the differentiation of the flow variables in the frequency-domain

solver [17, 60]. Nevertheless, the accuracy of this method depends on the ability of

the position of each grid point to be accurately represented by Fourier series using

a finite number of harmonics. As a consequence, the accuracy of this approach de-

pends on the number of modes that is chosen to represent the solution, which is

not desirable. Following that rationale, frequency-domain solvers would benefit from

a mesh-velocity computation technique of which accuracy does not depend on the

number of harmonics.
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1.5 Research Objectives

The main objective of this research is to further extend the use of the NLFD

method to three-dimensional aeroelastic solutions, such that it allows for the efficient

assessment of flutter and limit cycle oscillation conditions. This objective is to be

achieved through the steps listed below.

• Develop an alternative approach to that of Mosahebi and Nadarajah [60] and

Dufour et al. [17] for the computation of the mesh velocities for the NLFD

method using deforming grids, of which accuracy is not dependent on the em-

ployed number of harmonics.

• Develop a novel and efficient method for the determination of flutter and LCO

conditions (air speed and frequency) using a three-dimensional NLFD aeroe-

lastic solver.

• Validate the developed methods using experimental results and previously pub-

lished numerical data.

The results obtained from the proposed methods are to be discussed in detail,

and their limitations are to be addressed in the conclusions of this document.
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CHAPTER 2
Flow Solver

The following sections present the employed formulation for the flow field along

with its numerical discretization. The two-dimensional flow solver employed in sec-

tion 6.1 is the single-block single-processor code used in the work of Kachra and

Nadarajah [43]. The three-dimensional implementation is based on the work of

Nadarajah et al. [65] and Nadarajah and Jameson [64], and consists in a parallel

multiblock finite-volume NLFD flow solver.

2.1 Governing Equations

This research employs the Euler equations, therefore assuming the flow as in-

viscid. The three-dimensional Euler equations in integral form for an element V of

volume Ω, delimited by boundary ∂V of which surface element is dS, are

∂

∂t

∫
V
wdΩ +

∮
∂V

FcdS = 0, (2.1)

where w is the state vector and Fc is the convective flux vector. On moving meshes,

they are defined respectively in ALE form as
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w =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ

ρu

ρv

ρw

ρE

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, Fc =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρVr

ρuVr + nxp

ρvVr + nyp

ρwVr + nzp

ρHVr + pVt

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where ρ, u, v, w, E, H and p represent the fluid density, cartesian velocity com-

ponents, total energy per unit mass, total enthalpy per unit mass, and pressure,

respectively. Pressure is evaluated through the equation of state for ideal gases,

p = (γ − 1)ρ

(
E − u2 + v2 + w2

2

)
,

γ being the specific heat ratio of the fluid, and total enthalpy is expressed as

H = E +
p

ρ
.

Also, nx, ny and nz are the components of the outward facing unit normal vector n

of surface ∂V . Vr is the contravariant velocity of the flow relative to the motion of

the boundary, and Vt is the velocity of the control volume boundary. Those velocities

can be expressed as [8]

V = n ·V = nxu+ nyv + nzw,

Vt = n ·Vg = nx
dxg

dt
+ ny

dyg
dt

+ nz
dzg
dt

,

Vr = n · (V −Vg) = V − Vt,
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where V is the flow velocity vector and Vg is the control volume boundary velocity

vector.

2.2 Spatial Discretization

The Euler equations are spatially discretized using a second-order finite-volume

method. The flow field is divided into the desired number of control volumes (cells),

and the solution is evaluated at the cell centroids. Assuming a three-dimensional

structured hexahedral grid with i, j and k indices for the three computational-domain

directions, equation (2.1) is rewritten in semi-discrete from for an arbitrary cell of

indices (i, j, k) as

∂ (Ωi,j,kwi,j,k)

∂t
+R (wi,j,k) = 0 in Vi,j,k, (2.2)

where Ωi,j,k is the cell volume and R(wi,j,k) is the discrete residual vector. R(wi,j,k)

is evaluated through the summation of the fluxes through all the faces of the control

volume. Defining the flux vectors to be pointing away from the control volume and

collecting terms from each face leads to

R(wi,j,k) =

Nf∑
m=1

(Fc − Fd)m Sm, (2.3)

where indexm denotes each of the faces of Ωi,j,k from 1 to its total number of faces Nf

(equal to 6 in this work), Sm is the surface area of the mth face of the control volume,

and Fd represents the vector of dissipative fluxes. Artificial dissipation is added in

order to prevent solution oscillations near discontinuities such as shocks, as well as to

avoid odd-even decoupling of the solution. In this work, both the Jameson-Schmidt-

Turkel [41] (JST) and Convective Upwind Split Pressure [39] (CUSP) schemes are
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employed for the evaluation of artificial dissipation. The fluxes at each face of the

control volume are evaluated through an average of the fluxes at the center of adjacent

cells. For example, the fluxes at the face between computational cells Ωi,j,k and

Ωi+1,j,k are computed from the following relation,

((Fc − Fd)S)i+ 1
2
,j,k =

1

2

(
Fci,j,k − Fdi,j,k + Fci+1,j,k

− Fdi+1,j,k

)
Si+ 1

2
,j,k , (2.4)

where indices (i+ 1
2
, j, k) indicate that the value is computed at the interface between

cells (i, j, k) and (i+ 1, j, k).

2.3 Temporal Discretization

The next subsections describe the approach for discretizing the governing equa-

tions in physical time, as well as for converging the discretized equations in pseudo-

time.

2.3.1 Nonlinear Frequency Domain Method

As mentioned previously, the present work employs an NLFD solver, and there-

fore the temporal discretization is the same as that demonstrated by McMullen et

al. [52]. In order to solve the unsteady flow field, the semi-discrete form of the gov-

erning equations presented in equation (2.2) is discretized with respect to time in

two steps: first, it is discretized with respect to real (or physical) time; second, it

is discretized with respect to pseudotime. The discretization of the physical time

accounts for the flow solution unsteadiness, while that of the pseudotime is needed

for iterative convergence to a periodic steady-state solution.

Rewriting equation (2.2) without cell indices for an arbitrary control volume as
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∂ (Ωw)

∂t
+R (w) = 0 in V , (2.5)

the physical time discretization is performed by substituting the volume-modified

state vector w̄ = Ωw and the residual vector R(w(t)) by their corresponding dis-

crete Fourier representations using a finite number of harmonics or modes. This is

accomplished through the following equations,

w̄(t) =
N∑

k=−N
ŵke

i 2πk
T

t, (2.6)

R(w(t)) =
N∑

k=−N
R̂ke

i 2πk
T

t, (2.7)

where i =
√−1, N is the number of modes employed in the Discrete Fourier Trans-

form (DFT), k is the wave number, T is the time period, and ŵk and R̂k are the

kth Fourier coefficients of the state and residual vectors, respectively. For computa-

tions on deformable grids, it is essential to include the cell volume Ω inside the time

derivative in order to account for the variation of the volume in time. To perform the

appropriate transforms, the solution and residual need to be sampled at Nts equally

spaced time instances, such that Nts = 2N +1. The Fourier coefficients are therefore

readily found by

ŵk =
2N∑
n=0

Ω(tn)w(tn)e
i 2πk

T
tn , for −N ≤ k ≤ N, (2.8)

R̂k =
2N∑
n=0

R(w(tn))e
i 2πk

T
tn , for −N ≤ k ≤ N, (2.9)

where subscript n denotes values computed at the nth time sample tn, such that

tn = n
2N+1

T . It is important to note that the residuals are evaluated in the time
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domain at all time instances, and only then transferred into the frequency-domain

using a DFT. The Fourier representation of the vectors are then substituted into

equation (2.5), thus yielding

d

dt

(
N∑

k=−N
ŵke

i 2πk
T

t

)
+

N∑
k=−N

R̂ke
i 2πk

T
t = 0. (2.10)

Calculating the temporal derivative of the leftmost term of the equation leads to

N∑
k=−N

i
2πk

T
ŵke

i 2πk
T

t +
N∑

k=−N
R̂ke

i 2πk
T

t = 0. (2.11)

Due to the orthogonality of the Fourier basis functions, the above equation can be

rewritten as a system of 2N + 1 independent equations, each of which is associated

with a wave number k as

i
2πk

T
ŵk + R̂k = 0, for −N ≤ k ≤ N. (2.12)

As there is no evident representation of R̂k as a function of ŵk, equation (2.12)

cannot be solved easily and a numerical method must be employed. An unsteady

residual R̂∗
k is consequently defined as the residual of equation (2.12), such that

i
2πk

T
ŵk + R̂k = R̂∗

k, for −N ≤ k ≤ N, (2.13)

and R̂∗
k is driven to zero using a pseudotime-marching approach expressed as

dŵk

dt∗
+ R̂∗

k = 0, for −N ≤ k ≤ N, (2.14)

where t∗ represents pseudotime. At convergence, as R̂∗
k = 0 and equation (2.14)

is satisfied, equation (2.12) is also satisfied and the final periodic flow solution is
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obtained. Equation (2.14) can be solved iteratively using any time-stepping scheme,

such as Euler or Runge-Kutta methods, in which the flow solution is initialized using

the free-stream values. Between each pseudotime step, the solution is transformed

back into the time domain using an Inverse Discrete Fourier Transform (IDFT), and

the time-domain solution is obtained at each time instance tn through a division by

the cell volume, as follows,

w(tn) =
w̄(tn)

Ω(tn)
, for n = 0, 1, 2, . . . , 2N.

The boundary conditions are also evaluated in the time domain before another pseu-

dotime cycle is accomplished. It is important to note that, in practice, since the

solution w and the residual R(w) are always real-valued, the Fourier coefficients

associated with their negative wave numbers are only the complex conjugates of the

coefficients associated with their corresponding positive wave numbers. Therefore,

the equations associated with negative wave numbers can be saved from computation.

2.3.2 Pseudotime-Stepping Scheme

The NLFD method is similar to the computation of a steady-state solution in

pseudotime for each wave number k. In this work, the pseudotime discretization

is performed using a modified Runge-Kutta scheme, which is an explicit multistage

method that was first implemented for the solution of the Euler equations by Jame-

son [41]. In order to update the solution from pseudotime instance m to m+1 using

an M -stage scheme, the procedure is as follows [8] for each wave number k:
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ŵ
(0)
k = ŵm

k

ŵ
(1)
k = ŵ

(0)
k − α1Δt∗R̂∗(0)

k

ŵ
(2)
k = ŵ

(0)
k − α2Δt∗R̂∗(1)

k

...

ŵ
(p)
k = ŵ

(0)
k − αpΔt∗R̂∗(p−1)

k for p = 1, 2, . . .M

...

ŵm+1
k = ŵ

(M)
k , (2.15)

where ŵm
k and ŵm+1

k are the solution vectors at pseudotime steps m and m + 1

respectively, ŵ
(p)
k and R̂

∗(p)
k are the intermediary solution and unsteady residual

vectors at stage p, and αp are the stage coefficients. The main difference between

this method and the classical Runge-Kutta technique is that the solution only needs

to be known at the beginning of the time interval (ŵ
(0)
k ), and only the residual from

the previous stage (R̂
∗(p−1)
k ) is required, so that memory requirements are reduced.

In order to increase the stability region of the scheme, blending coefficients βp are

included at each stage to control the amount of artificial dissipation. Combining

equations (2.3), (2.7) and (2.13), and introducing parameter βp, the unsteady residual

at each stage is expressed as

R̂
∗(p)
k = i

2πk

T
ŵ

(p)
k + R̂

(p)
c,k −

(
βpR̂

(p)
d,k + (1− βp) R̂

(p−1)
d,k

)
, (2.16)

where R̂
(p)
c,k and R̂

(p)
d,k are the respective contributions of the convective and dissipative

fluxes to the Fourier coefficients of the residual vector associated with wave number k
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at stage p. It can therefore be seen that the dissipation at stage p is a combination of

the computed dissipative fluxes at stages p and p−1. For simplification, the blending

is applied to F
(p)
d and F

(p−1)
d before the application of the DFT to the residual vector,

which is equivalent to the above formulation. This is called a hybrid scheme since

the blending coefficients βp allow the dissipative fluxes not to be calculated at each

stage in order to reduce the associated computational cost. The parameters for αp

and βp are chosen as listed in Table 2–1, in order to be optimized for multigrid

computations [8].

Table 2–1: Stage and Blending Coefficients of the Hybrid Multistage Pseudotime-
Stepping Scheme

Stage α β
1 0.2500 1.0000
2 0.1667 0.0000
3 0.3750 0.5600
4 0.5000 0.0000
5 1.0000 0.4400

Between each Runge-Kutta stage, the updated solution is transferred back into

the time domain using an IDFT, and the wall and far-field boundary conditions are

applied. Figure 2–1 schematizes one stage of the employed multistage technique in

the NLFD framework. In this work, all DFT and IDFT calculations are performed

using the FFTW library [3], which is a Fast Fourier Transform (FFT) algorithm

scaling Nts log(Nts) in terms of computational effort, rather than Nts
2 as would a non

optimized DFT, where Nts is the number of time instances used in the transform.

In order to further accelerate the convergence to the steady-state periodic so-

lution, a W-cycle multigrid strategy [36, 37] is employed in conjunction with a local
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Figure 2–1: Simplified Dataflow Diagram of the Nonlinear Frequency Domain
Method Using a Modified Runge-Kutta Technique

time-stepping technique and an implicit residual averaging method [40]. Charac-

teristic boundary conditions using one-dimensional Riemann invariants are used at

the far-field boundary [40] whereas, at the body surface, the normal flow velocity is

required to be zero and the pressure is determined through a linear extrapolation of

the flow field pressure from the adjacent cells.
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CHAPTER 3
Structural Solver

The following sections present the structural model employed for aeroelastic

computations along with its numerical discretization. A plate bending finite-element

method is employed for the spatial discretization, whereas the temporal discretization

is carried out in the frequency domain in a similar fashion as the flow solver.

3.1 Governing Equations

Since this work is mainly focused on assessing the aeroelastic behavior of aircraft

wings, which are commonly sufficiently thin to be represented as plates, the structural

solver derivation is based on the classical small-deflection theory of thin plates and

supposes that all studied bodies satisfy the following assumptions [77]:

• the body geometry allows for a thin-plate representation, that is, its thickness

is small compared to its other dimensions;

• the constituting material of the plate is isotropic, homogeneous and linearly

elastic;

• the middle plane of the plate remains unstrained during bending.

Since the transverse aerodynamic loads (perpendicular to the wing planform) are

in general much higher than the streamwise loads, only bending was considered,

whereas membrane deformation was neglected. The governing partial differential

equation for the transverse motion of bending plates can be expressed as [77]:

27



∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4
+

m̄

D

∂2w

∂t2
=

pz
D
, (3.1)

where w(x, y, t) is the local instantaneous deflection of the plate, pz(x, y, t) is the

local instantaneous load per unit area in the transverse direction z (perpendicular to

the plate), m̄ is the plate mass per unit area, and D is defined as

D =
Eh3

12(1− ν2)
,

where E and ν are respectively Young’s modulus and Poisson’s ratio of the mate-

rial, and h is the thickness of the plate. For the sake of brevity and because the

present work is focused primarily on the computational fluid dynamics discipline,

the procedure for deriving the finite element formulation of the above equation will

not be presented here. The interested reader is referred to the work of Szilard [77]

for a comprehensive review of plate bending analysis. Therefore, since a finite ele-

ment method for plate bending analysis is employed in this work, only the relevant

equations are provided herein.

3.2 Spatial Discretization

The procedure detailed in this section is based primarily on references [69]

and [77]. The governing equations for a linear undamped dynamic structural system

can be expressed in discretized matrix form as

[M] Q̈+ [K]Q = P, (3.2)

where [M] and [K] are the mass and stiffness matrices, Q = Q(t) is the discrete

displacement vector, Q̈ = Q̈(t) is its second time derivative, and P = P(t) is the
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Figure 3–1: Arbitrary Structural Element and Example of Three-Point Quadrature
Points (qi)

exciting force vector. Note that the upper-case notation is adopted for vectors and

matrices evaluated in global coordinates, while lower-case notation is used for values

computed in local (elemental) coordinates. In order to define these matrices and

vectors precisely, the structure is first discretized using the nonconforming straight-

sided triangular element developed by Tocher [85], which has nine degrees of freedom:

one translation and two rotations per node. An arbitrary element is displayed in

Figure 3–1 along with its degrees of freedom and examples of quadrature points that

can be employed for the integration of the mass and stiffness matrices, described

subsequently in equations (3.6) and (3.7).

According to the formulation of the triangular elements, formula (3.2) thus

represents a system of NDOF equations, where NDOF is the total number of degrees

of freedom of the discretized structure and is equal to nine times the number of
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nodes, Nnodes. Now considering an arbitrary triangular element, it is assumed that

the solution w(x, y, t) over the element at time t can be expressed by a nine-term

polynomial as

w(x, y, t) = uTα(t), (3.3)

with

uT =

{
1 x y x2 xy y2 x3 (x2y + xy2) y3

}
,

α(t)T =

{
α1(t) α2(t) α3(t) α4(t) α5(t) α6(t) α7(t) α8(t) α9(t)

}
,

where u is called the shape function vector and α(t) is the vector of polynomial

coefficients. Note that variable t is omitted onward in order to alleviate the upcoming

expressions, although the presented derivation retains its time-dependency. It can

be seen that a complete third-order polynomial cannot be obtained since it would

require ten terms, but only nine are available due to the number of degrees of freedom;

therefore, two terms are combined in forming the eighth term. This causes the

element to lack invariance, and thus the solution to depend on the local coordinates

orientation. Nevertheless, despite its nonconformity and its lack of invariance, this

element was chosen due of its simplicity of implementation and because it has been

demonstrated to provide reasonably good results and has been widely used in the

past [77]. Note that cartesian coordinates x and y, employed in the definition of

the shape functions, are computed in a local coordinate system where the x and y

axes are in the plane of the plate element, while the local z axis is perpendicular to

the element. Considering the transverse displacement w and the rotations θx and
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θy about the x and y axes at each node as the degrees of freedom, the elemental

displacement vector is expressed as

q(e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1

θx,1

θy,1

w2

θx,2

θy,2

w3

θx,3

θy,3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1

∂w1

∂y

−∂w1

∂x

w2

∂w2

∂y

−∂w2

∂x

w3

∂w3

∂y

−∂w3

∂x

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where subscript numbers 1, 2 and 3 denote the elemental node at which the value is

computed, and the subscript (e) signifies that the vector is evaluated for the noted

element only, as a subset of the displacement vector of the entire model introduced

in equation (3.2). Proceeding with the common method, detailed in [77], a matrix

[A] can be defined to relate the local displacement vector q(e) to the polynomial

coefficient vector α, such that

q(e) = [A]α. (3.4)

From the strain-displacement relations, defined as follows,

31



ε =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
εxx

εyy

γxy

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= −z

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂w

∂x2

∂w

∂y2

2
∂w

∂y∂x

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

matrix [B] can be defined such that

ε = [B]α, (3.5)

where ε is the strain vector. Then, the stiffness matrix for an arbitrary element of

volume Ω(e) can be obtained from

[
k(e)

]
=

(
[A]−1

)T (∫
Ω(e)

[B]T [D] [B] dΩ

)
[A]−1, (3.6)

where [D] is obtained from the stress-strain relations and is expressed as

[D] =
E

(1− ν2)

⎡
⎢⎢⎢⎢⎣
1 ν 0

ν 1 0

0 0
1− ν

2

⎤
⎥⎥⎥⎥⎦ .

The same procedure is employed for orthotropic plates, except for the evaluation of

[D], which is instead calculated as

[D] =
1

(1− νxyνyx)

⎡
⎢⎢⎢⎢⎣

Exx νyxExx 0

νxyEyy Eyy 0

0 0 Gxy(1− νxyνyx)

⎤
⎥⎥⎥⎥⎦ ,

where subscripts account for the directionality of the material properties, and Gxy

is the shear modulus of the material. In addition, the relation Exxνyx = Eyyνxy is
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assumed to be always satisfied. For both isotropic and orthotropic materials, the

elemental mass matrix is obtained from

[
m(e)

]
=

(
[A]−1

)T (∫
Ω(e)

ρ [u]T [u] dΩ

)
[A]−1, (3.7)

where ρ is the density of the plate material. Both the mass and stiffness matrices

require the evaluation of an integral over the volume of the element, which can be

simplified to an area integral. Both integrals are evaluated numerically using a 12-

point Gaussian quadrature providing exact integrals for polynomials of degree 6 or

less [12]. All matrices and vectors can then be transferred to the global coordinate

system using a simple rotation matrix in order to obtain the elemental stiffness and

mass matrices in global coordinates, [K(e)] and [M(e)], and the elemental displace-

ment vector in global coordinates, Q(e). Then, collecting all elemental matrices and

vectors and sorting them properly according to the node-numbering scheme, global

matrices [K] and [M], as well as global displacement vector Q, can be calculated and

used in equation (3.2). The same technique is applied to the force vectors p(e), P(e)

and P, in the case where the excitation forces are provided in local coordinates. Once

the global mass and stiffness matrices are computed, the structural natural frequen-

cies and mode shapes can be determined via a common eigenvalue and eigenvector

calculation procedure.

3.3 Temporal Discretization

For generality, the equations for the temporal discretization detailed herein are

an extension of those demonstrated by Kachra and Nadarajah [43], and yield a fully

nonlinear structural solver. Assuming that both the flow solution and the structure
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behave in a periodic fashion, and considering that the mass and stiffness matrices

are constant in time, the displacement and load vectors of equation (3.2) can be

expressed using their DFT representation as

Q(t) =
Ns∑

k=−Ns

Q̂ke
i 2πk

T
t, (3.8)

P(t) =
Ns∑

k=−Ns

P̂ke
i 2πk

T
t, (3.9)

where Ns is the number of harmonics employed in the discretization of the structural

equations of motion, and is not necessarily equal to N , the number of harmonics

used for the flow solution. Differentiating the displacement vector twice with respect

to time therefore leads to

Q̈(t) =
Ns∑

k=−Ns

−
(
2πk

T

)2

Q̂ke
i 2πk

T
t. (3.10)

Substituting these expressions into equation (3.2) and again taking advantage of

the orthogonality of the Fourier basis functions, a system of 2Ns + 1 equations is

obtained, each associated with a wave number k:(
[K]−

(
2πk

T

)2

[M]

)
Q̂k = P̂k, for −Ns ≤ k ≤ Ns. (3.11)

Equation (3.11) thus only consists of a linear problem, of which size is equal to the

total number of degrees of freedom in the structure (NDOF), and is easily solved

either by a direct or iterative method, such that

Q̂k =

(
[K]−

(
2πk

T

)2

[M]

)−1

P̂k, for −Ns ≤ k ≤ Ns. (3.12)
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The displacements at each time instance are then retrieved via an IDFT, and can

be employed as desired in the flow solver. However, since the system is at first

under-constrained due to possible rigid body translations and rotations, boundary

conditions have to be imposed. In all studied cases, the structure (wing) is clamped

at its root; the associated boundary conditions require that no displacement nor

rotation occur at the nodes located at the root. This is accomplished by removing

lines and columns of the corresponding degrees of freedom from matrices [K] and [M]

and vectorsQ andP, and solving equation (3.11) for a reduced set of well-constrained

equations.

As explained for a similar method in [19], the nonlinear character of the detailed

approach is due to the fact that the load vector is discretized using multiple harmon-

ics, which are coupled in the time domain at each flow solver iteration (see chapter 5).

The structural solution is therefore fully coupled to the nonlinear flow solution, and

is thus also deemed nonlinear. However, although the temporal discretization was

developed for generality in a fully nonlinear fashion, a linear version is employed in

this work. Indeed, the employed number of structural harmonics is always Ns = 1,

such that no coupling can occur between the higher harmonics of the flow and the

sole mode of the structure, except for the effect of the higher harmonics of the flow

on its own first mode, which in turn influences the harmonic of the structure. Nev-

ertheless, this linear structural solver is equivalent to that employed by Thomas et

al. [79–81] and Dowell et al. [16], which showed the capability of assessing flutter and

LCO.
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CHAPTER 4
Dynamic Mesh Deformation

As emphasized previously, a dynamic mesh deformation framework must be

adopted for three-dimensional aeroelastic computations. This chapter presents the

developed approach and the accuracy implications related to the Geometric Conser-

vation Law (GCL).

4.1 Radial Basis Function Framework

A Radial Basis Function (RBF) algorithm is employed for mesh deformation

since it provides grids of good quality, while remaining robust and easily imple-

mentable. The following subsections describe the procedure for the mesh deformation

as well as the computation of the mesh velocities, resulting in a complete dynamic

mesh deformation framework.

4.1.1 Mesh Deformation

The RBF deformation method first makes a distinction between RBF points

and volume points: RBF points are grid points of which displacements are known a

priori, that is, before the mesh deformation; volume points are grid points of which

displacements are unknown a prori, and for which the post-deformation position is

desired. Here, displacement refers to the variation of the position of a point from the

undeformed mesh to the deformed mesh. In this work, the RBF points are always

chosen to be all or a subset of the body surface points; therefore, the position of the

body must be known before and after deformation. This does not pose any problem
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since, in the case of prescribed body motion, an analytical function describes the

position of the body in time, wheras in the case of aeroelastic solutions, the motion

of the body is provided by the structural solver. It is important to note that, since the

NLFD method requires the evaluation of the fluxes in the time domain, as denoted

by equation (2.3), a grid must be generated at all 2N + 1 time instances, where N

is the number of harmonics employed in the computation of the flow.

Here, the RBF technique will be detailed for displacements in the x-direction

only, but the procedure is exactly identical for the y- and z-directions. The RBF

method relies on the assumption that the displacement of any grid point p may be

calculated via a weighted sum of its distance to all RBF points as follows,

sx(xp, t) =

Nrp∑
i=1

αi(t)φ(‖xp − xi‖2), (4.1)

where sx(xp, t) is the x-direction displacement of point p during deformation, Nrp

is the number of RBF points, αi are the interpolating coefficients, and xp and xi

are the position vectors of noted point p and RBF point i in the undeformed grid,

respectively. φ is the basis function and depends on ‖xp−xi‖2, the distance between
points xp and xi in the undeformed grid. Various basis functions are available for

this purpose, but this work considers only Wendland’s C2 function [89] for two-

dimensional cases,

φ(ξ) =

⎧⎪⎨
⎪⎩

(1− ξ)4(4ξ + 1) if ξ < 1

0 if ξ ≥ 1
, ξ =

‖xp − xi‖2
R

, (4.2)

and Wendland’s C0 function [89] for three-dimensional cases,

37



φ(ξ) =

⎧⎪⎨
⎪⎩

(1− ξ)2 if ξ < 1

0 if ξ ≥ 1
, ξ =

‖xp − xi‖2
R

, (4.3)

where, in both cases, R is a user-defined support radius defining the radial distance

from the RBF points within which the remainder of the grid is to be deformed. In

other words, if a volume point is farther than R from all RBF points, its position

will not change during deformation. It is important to note that, in equation (4.1),

s and αi are defined as a function of time t, because their value differ from one

deformation to another, that is, from one time instance to another in the NLFD

scheme. Therefore, as stated previously, since 2N + 1 deformed meshes are required

for an N -mode solution, equation (4.1) is repeated for each time instance tn =

n
2N+1

T, n = 0, 1, . . . , 2N , and thus s and αi are reputed to be functions of time. The

time variable t will however be dropped from the subsequent equations for clarity,

since the process is identical regardless of the time instance at which it is performed.

It should also be stressed that xp denotes the position of any arbitrary point p, be

it an RBF point xr or a volume point xv, in the undeformed grid. Regrouping all

RBF-point displacements in vector Δxr, equation (4.1) may be rewritten in matrix

form as

sx(xr) = Δxr =

⎡
⎢⎢⎢⎢⎣
φr1r1 φr1r2 · · ·
φr2r1

...
. . .

⎤
⎥⎥⎥⎥⎦
Nrp×Nrp

⎡
⎢⎢⎢⎢⎣
α1

α2

...

⎤
⎥⎥⎥⎥⎦

Nrp

= [M]α, (4.4)

where φr1r2 = φ (‖xr1 − xr2‖2) is the value of φ as a function of the distance between

RBF points r1 and r2, and α is the vector of interpolating coefficients αi. Since the
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displacement of the RBF points is known, the vector of coefficients is easily computed

by

α = [M]−1 Δxr. (4.5)

Similarly, regrouping the displacement in the x-direction of all volume points in

vector Δxv, equation (4.1) is rewritten as

sx(xv) = Δxv =

⎡
⎢⎢⎢⎢⎣
φv1r1 φv1r2 · · ·
φv2r1

...
. . .

⎤
⎥⎥⎥⎥⎦
Nvp×Nrp

⎡
⎢⎢⎢⎢⎣
α1

α2

...

⎤
⎥⎥⎥⎥⎦

Nrp

= [A]α, (4.6)

where Nvp is the number of volume points in the mesh. Substituting equation (4.5)

into equation (4.6) yields

Δxv = [A] [M]−1 Δxr, (4.7)

and the displacement of all volume points is hence defined as a function of the

displacement of all RBF points through matrices [A] and [M]−1. The displacements

are afterwards readily used as position increments from the original mesh in order to

yield the deformed mesh. The procedure is repeated for all three directions, x, y and

z, and comes down to evaluating equation (4.7) three times for each time instance. In

the case where a symmetry plane is imposed at some specific location in the mesh, it

is essential that the grid points contained in the plane be imposed a null out-of-plane

displacement in order to preserve symmetry. In the case of a wing of which root is

located on the z = 0 plane, a scaling function is used for the deformation of the mesh

in the spanwise (z) direction such that the spanwise displacements are exponentially
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decreasing and are exactly zero at the wing root [35, 67]. The displacement in the

spanwise direction of an arbitrary point is therefore expressed as

sz(xp) = κ(z, γ)

Nrp∑
i=1

αiφ(‖xp − xi‖2), (4.8)

with

κ(z, γ) = 1− exp

(
−γ

z

ztip

)
, (4.9)

where κ(z, y) is the scaling function, γ is a tuning parameter, z is the spanwise

coordinate of the point, and ztip is the spanwise coordinate of the wing tip.

Besides, since the employed solver for three-dimensional problems handles multi-

block grids, the deformation is performed in two steps, as proposed by Walther [88].

In the first step, the body points are used as RBF points and only the block faces are

deformed on a single processor. In the second step, the displacements of the points

located on the block faces are passed to all processors, and the face points are used

as RBF points for the parallel computation of the displacement of the interior points

of the blocks. It is also extremely important to note that, in order to minimize the

computational cost of the method, deformation at all time instances is performed

based on the same undeformed mesh, and only one evaluation of matrices [M]−1 and

[A] is therefore required. However, in practice, matrix [A] is very memory-intensive,

and would require excessive space if stored entirely. Therefore, only the inverse of

[M] is computed during preprocessing, and [A] is computed at execution without

being assembled. In this work, all matrix computations are carried out using the

LAPACK library [4]. An example of a mesh deformation using the RBF method in
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(a) Initial Mesh, α = 0◦ (b) RBF-Deformed Mesh, α = 30◦

Figure 4–1: Deformation of the Mesh around a NACA 0012 Airfoil using the RBF
Method

two dimensions is illustrated in Figure 4–1 for a NACA 0012 airfoil pitched at a 30◦

angle of attack.

4.1.2 Mesh Velocities

As mentioned in section 2.1, the ALE formulation of the flow governing equa-

tions require the computation of the mesh velocities in order to modify the value of

the convective fluxes at the cell faces. The method employed herein for the com-

putation of the mesh velocities was previously developed by the present author and

his advisor [78]. First, it is convenient to consider the displacement vector of an

arbitrary mesh point, defined in section 4.1.1, as a position vector having its origin

on the point in the undeformed grid and its other end on the point in the deformed

grid. This consideration is perfectly admissible since the computed displacement

corresponds to the subtraction of the initial position vector of the point from its
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final post-deformation position. Therefore, for a deformation performed at time t,

the displacement of an arbitrary point p may be expressed as

s(xp, t) = xf (t)− xp, (4.10)

where xf (t) is the position of point p after deformation at time t. It should be

stressed that xf is a function of time, since it corresponds to the position of the

point after deformation (which varies according to the time instance at which the

deformation is carried out), whereas xp is always taken as the position of the point

in the fixed, original grid.

Equation (4.10) may also be rewritten by defining the final position of the point

as the sum of its initial position and its displacement,

xf (t) = xp + s(xp, t), (4.11)

and afterwards be differentiated with respect to time, such that

d (xf (t))

dt
=

d (xp)

dt
+

d (s(xp, t))

dt
. (4.12)

It can be seen that the left-hand side of the equation represents the velocity of point

p after deformation at time t, which is thus rewritten as vf (t) or, equivalently, as

v(xp, t). On the right-hand side, the first term vanishes since the position of the point

in the undeformed grid is the same regardless of the time at which the deformation

is performed. Equation (4.12) is therefore rewritten as

v(xp, t) =
d (s(xp, t))

dt
. (4.13)
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After substitution of equation (4.1) in equation (4.13) and evident simplifications,

the x-direction velocity of the grid point is expressed as

vx(xp, t) =

Nrp∑
i=1

βi(t)φ(‖xp − xi‖2), βi(t) =
d

dt
(αi(t)) ∀ i. (4.14)

This equation is very similar to equation (4.1), and the remainder of the procedure is

thus very straightforward. Regrouping all RBF-point x-direction velocities in vector

vr and following the same procedure as for the computation of the αi coefficients,

the vector β of βi coefficients is evaluated through

β = [M]−1 vr. (4.15)

Then, regrouping all volume-point x-direction velocities in vector vv, those velocities

are readily computed using the same procedure as for displacements, such that

vv = [A]β, (4.16)

which, after substitution of equation (4.15), simplifies to

vv = [A] [M]−1 vr. (4.17)

By evaluating equation (4.17) in all three directions, the volume-point velocities

are related to the RBF-point velocities in an identical fashion as their displace-

ments. Consequently, the developed formulation assumes that RBF-point velocities

are known a priori and are used as the basis for the computation of volume-point

velocities. This in general does not pose any problem since, similarly to displace-

ments, the RBF-point velocities may either be provided by analytical functions in
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the case of prescribed body motion, or by the structural solver in the case of aeroelas-

tic simulations. Besides, a similar modification is applied to the method to prevent

out-of-plane velocities in the symmetry plane, such that

vz(xp, t) = κ(z, γ)

Nrp∑
i=1

βi(t)φ(‖xp − xi‖2), (4.18)

where κ(z, γ) is given in equation (4.9).

The approach described by equation (4.17) for computing the mesh velocities

will be referred to as the Radial Basis Function method for Velocities (RBFV), in

reference to its usage of the same RBF operator as is employed for the deformation

of the mesh. The cell face velocities, required in the ALE formulation of the flow

governing equations, are afterwards easily computed as the average of the velocity

of the four vertices defining each face.

In contrast, the developed RBFV method will be compared to what will be

referred to as the Fast Fourier Transform method for Velocities (FFTV), introduced

by Mosahebi [60] for the NLFD method in a fashion analogous to Dufour [17] for the

HB method, where the time spectral derivative operator is applied to the position of

the mesh points in order to yield the velocities. By assuming that the position of an

arbitrary grid point after mesh deformation at any time t can be represented via its

N -mode Fourier series as follows,

xf (t) =
N∑

k=−N
x̂ke

i 2πk
T

t, (4.19)

its velocity at time t is then expressed as
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vf (t) =
N∑

k=−N
i
2πk

T
x̂ke

i 2πk
T

t. (4.20)

The FFTV approach has the advantage of being very simple to implement and

computationally efficient, but its accuracy is dependent on the number of modes N

employed to represent the grid position in time [78]. By opposition, since the RBFV

method relies directly on the mathematics of the deformation, the computed mesh

velocities are exact. The developed RBFV method is employed in the present work,

and its accuracy and efficiency is compared to the FFTV method in chapter 6. It is

very important to note that, regardless of the approach employed for the computation

of the mesh velocities (RBFV or FFTV), the RBF method is always employed for

the mesh deformation. When applicable, results obtained using the RBFV method

are also be compared to those obtained from a rigid grid movement technique, in

which the entire computational grid is translated and rotated rigidly with the body.

4.2 Treatment of the Geometric Conservation Law

As first demonstrated by Thomas and Lombard [84], an additional conservation

law, called the Geometric Conservation Law (GCL), must be solved concurrently with

the other governing equations on deforming grids in order to avoid errors induced by

the deformation of the control volumes. Such errors have been reported by Lesoinne

and Farhat [46], among others, who illustrated the impact of the non-satisfaction of

the GCL on aeroelastic solutions. In fact, the GCL states that the rate of change of

the volume of a computational cell must equal the rate of change of the volumetric

increment caused by the motion of its boundary, such that
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∂

∂t

∫
V
dΩ−

∮
∂V

(V · n) dS = 0. (4.21)

In continuous form, this equation is always satisfied since it relies purely on geo-

metrical considerations, as can be demonstrated for an arbitrary control volume V .
It is also always satisfied for meshes where the shape of the control volumes does

not change in time, that is, for rigid grid motion. The satisfaction of the GCL en-

sures that the state of a uniform flow is preserved, regardless of the movement of the

control volumes. However, in order to yield a consistent solution method, the GCL

must be discretized using the same numerical scheme as employed for the solution of

the other conservation laws [8]. In the case of the present work, this translates to a

finite-volume spatial discretization and an NLFD temporal discretization of the GCL.

Applying the spatial discretization, equation (4.21) is expressed in semi-discrete form

for an arbitrary control volume as

dΩ

dt
−

Nf∑
m=1

(V · n)m Sm = 0, in V . (4.22)

Previous work has considered satisfying the GCL separately for each face of the

discretized control volumes, such that the increase in the cell volume due to the

movement of one face is equal to the volume swept by this same face. Although

equation (4.22) does not require this methodology to be employed, the approach is

more intuitive and has been shown to provide good results [87]. Nevertheless, this

method is easily applicable to linear or quadratic temporal discretizations, commonly

employed in time-marching unsteady flow solvers, but its extension to frequency-

domain solution techniques is not straightforward. Effectively, since the GCL needs
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to be discretized in the same fashion as are the governing equations, the discretization

procedure is similar to that detailed in section 2.3.1, such that

Ω(t) =
N∑

k=−N
Ω̂ke

i 2πk
T

t, (4.23)

G(t) =
N∑

k=−N
Ĝke

i 2πk
T

t, (4.24)

with

G(t) =

Nf∑
m=1

(V · n)m Sm. (4.25)

Substituting the above Fourier representations in equation (4.22) yields

d

dt

(
N∑

k=−N
Ω̂ke

i 2πk
T

t

)
−

N∑
k=−N

Ĝke
i 2πk

T
t = 0. (4.26)

Evaluating the temporal derivative, the above equation is rewritten as

N∑
k=−N

i
2πk

T
Ω̂ke

i 2πk
T

t −
N∑

k=−N
Ĝke

i 2πk
T

t = 0. (4.27)

Taking advantage of the orthogonality of the Fourier series, this equation is decom-

posed in a system of 2N +1 equations, each of which corresponds to a wave number

k as follows:

i
2πk

T
Ω̂k − Ĝk = 0, for −N ≤ k ≤ N. (4.28)

The criterion for the satisfaction of the GCL using the NLFD method is therefore

the satisfaction of equation (4.28) for all wave numbers. It is not satisfied automat-

ically in general and must therefore be enforced through the modification of either
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the cell volume or the cell face velocities. However, many obstacles prevent this con-

dition from being fulfilled in a straightforward fashion. First, it seems particularly

attractive to split the GCL in separate parts for each face of the control volume as

was shown in previous work for time-marching methods [87, 93]. In fact, the exact

volume of the cell is known at all time instances since it is only a function of the

position of the cell vertices, which is known from the mesh deformation algorithm.

It would therefore be straightforward to consider the volumetric increment due to

the movement of each face separately, based on this analytical function. However,

this analytical function Ω(t) is known only in continuous form; this information is

lost during the temporal discretization of the volume described by equation (4.23),

and only the spectral representation of the volume is known in equation (4.28). A

separation of the volumetric increments induced by each face is therefore not feasible

in the discrete form of the GCL.

A second approach would consist in modifying the value of Ω̂k for all wave

numbers such that the GCL is satisfied. This would result in

Ω̂k =
T

i2πk
Ĝk, for −N ≤ k ≤ N, k �= 0, (4.29)

where the exception to the zeroth mode would be required to avoid a divison by zero.

The average volume of the cell would therefore remain unchanged, while its Fourier

coefficients would be modified to satisfy the GCL. The issue with this approach is

that the computed volume, Ω(t), retrieved using an IDFT after the satisfaction of

the GCL, would not correspond to the volume computed from the actual metrics at
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each time instance. Such inconsistency could lead to solution errors by rendering the

discretization non conservative.

The inverse approach would consist in modifying the value of Ĝk such that it

equals i2πk
T
Ω̂k for all wavenumbers. However, this would lead to non unique solutions

since G(t) comprises a sum and scalar products, which are irreversible operations.

A decision would therefore need to be taken regarding the manner in which the face

velocities are modified individually. Moreover, great care would need to be taken in

order to ensure that the GCL is satisfied for every volume cell; indeed, modifying

the face velocities for a specific cell would result in the non-satisfaction of the GCL

in the adjacent cells, since they are coupled through the requirement that the face

velocity be equal for the two cells adjacent to that face. One possible solution to this

issue would consist in solving implicitly the cell face velocities simultaneously via

the construction of a global linear system regrouping the velocities of all cell faces

in the domain. Since every cell has six faces and as the GCL must be satisfied for

every cell, this would yield a 6-banded matrix, of size equal to the total number of

cell faces in the domain. The system would need to be solved every time the grid

is deformed, and thus an efficient approach would need to be adopted to minimize

the computational cost of the procedure. This seems to be the most promising

approach to the author. However, it was not implemented in the present work

due to time constraints, and therefore the GCL was not enforced for deforming

grids. Nevertheless, since the employed temporal discretization provides results close

to spectral accuracy, it is expected that the error induced by the omission of the

GCL will be negligible in comparison with typical time-marching methods which
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use low-order integration techniques. This assumption seems to be confirmed by the

results obtained in chapter 6, where solutions obtained using deforming grids compare

extremely well with rigid grid solutions, for which the GCL is automatically satisfied.
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CHAPTER 5
Aeroelastic Framework

This chapter describes the employed technique for the coupling of the flow and

structural solvers, and details the proposed NLFD/LCO method for the determina-

tion of flow conditions leading to limit cycle oscillations.

5.1 Fluid-Structure Coupling

Typical time-accurate aeroelastic solvers [2] couple the fluid and structural so-

lutions at each time step; after the flow solution has converged satisfactorily in

pseudotime, the aerodynamic loads are transferred to the structural solver, which

integrates the structural equations in time in order to provide the body displace-

ment and velocity at the next time step to the flow solver. The process is repeated

until the transient effects due to the initialization of the flow field to the free-stream

values have vanished, such that the obtained solution does not depend on the initial

conditions. As the main advantage of the NLFD method is its direct convergence to

a periodic steady-state solution, the fluid and structural solutions cannot be coupled

at each physical time step, and are instead coupled for an entire period at once.

Indeed, the coupling method employed in this work is based on the work of

Kachra and Nadarajah [43]. The flow and structural solvers are coupled every Nmg

multigrid cycles, where Nmg is a user-defined parameter chosen such that the con-

vergence of the flow solution is satisfactory between each coupling. To initiate the

motion, the first oscillation is prescribed to the body at a predefined frequency in the
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vicinity of that of the final motion. Then, after each block of Nmg multigrid cycles,

the aerodynamic loads obtained from the flow solution are provided as an exciting

force vector to the structural solver, which may therefore solve the equations of mo-

tion to calculate the displacements and velocities of the body points. These values

are transferred back to the flow solver and are used in the dynamic mesh deformation

framework detailed in chapter 4. A new flow solution is then computed using the

modified displacements and velocities. The flow conditions are also updated during

the fluid-structure coupling, based on the Newton-Raphson method described in sec-

tion 5.3, and the process is repeated until the solution has converged to a limit cycle

oscillation.

5.2 Interpolation of Aerodynamic Forces and Displacements

As the spatial and temporal discretizations may differ from the flow to the struc-

tural solver, interpolation approaches are employed for the fluid-structure coupling,

as detailed hereafter.

5.2.1 Spatial Interpolation

Since the structural grid employed for the discretization of the body is in general

not coincident with the fluid grid employed for the discretization of the fluid domain,

an interpolation algorithm has to be employed in order to transfer aerodynamic

loads from the flow solver to the structural solver. Here, a very simple interpolation

procedure is employed for the sake of simplicity. Effectively, the forces resulting from

the integration of the pressure at the face of each fluid cell are assumed to be acting

exactly through the face center. Accordingly, for an arbitrary cell face located on

the body surface in the fluid mesh, the acting point is first located on the structural
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grid, and the corresponding element containing the point is determined. Knowing

the force vector and the acting point on the element, the nodal forces and moments

for the noted element are computed based on the elemental shape functions defined

in equation (3.3), following the procedure described in [69]. The so-called consistent

load vector is thus determined by superimposing the discrete representation of the

distributed forces and moments acting at the body surface for all elements.

Since the displacements obtained from the structural solver are expressed as

structural-model nodal displacements, a similar procedure must be employed for the

computation of the fluid-model body displacements. Effectively, each body point of

the fluid mesh is mapped to the structural model and is associated with the structural

element containing it. When the body displacements need to be mapped back from

the structural to the fluid model, the nodal displacements from the structural model

are used along with the shape functions defined in equation (3.3) for the interpola-

tion of the displacement of the fluid-mesh body point, based on its position inside

the structural element. The same approach is employed using the nodal velocities,

which therefore translate into body point velocities in the fluid mesh. The computed

displacements and velocities can then be used in the mesh deformation algorithm

described in chapter 4.

5.2.2 Temporal Discretization Interface

Because the harmonics of the structural displacements are directly computed

from the harmonics of the aerodynamic loads, as expressed by equation 3.12, the

number of harmonics employed in the flow solution (N) must be greater or equal to

that employed in the structural solution (Ns). Therefore, an interpolation approach
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has to be used for the transfer of the aerodynamic loads to the structural solver, and

of the structural displacements to the flow solver. This is done identically to the

work of Thomas et al. [79], in which the highest harmonics of the aerodynamic loads

are dropped during the transfer to the structural solver, such that only the first Ns

harmonics are passed. During the inverse operation, the highest harmonics of the

displacements, for which |k| > Ns, are zeroed out for the transfer to the flow solver,

such that all N harmonics of the displacements are defined. Figure 5–1 schematizes

the procedure for the transfer of data between the flow and structural solvers.

Flow solver
(Nmg multigrid cycles)

P̂k =

2N∑
n=0

P(tn)e
i 2πk

T tn , −Ns ≤ k ≤ Ns Q̂k =

⎧⎪⎪⎨
⎪⎪⎩

2Ns∑
n=0

Q(tn)e
i 2πk

T tn , −Ns ≤ k ≤ Ns

0, Ns < |k| ≤ N

Structural solver

Q̂k =

(
[K]−

(
2πk

T

)2

[M]

)−1

P̂k

N

Ns Ns

N

Figure 5–1: Dataflow Diagram of the Temporal Discretization Interface of the Fluid-
Structure Coupling

It is important to note that, to the author’s knowledge, this approach does

not guarantee that the transfer is conservative, on the point of view of the work

done by the aerodynamic forces on the body over a period. Effectively, if N differs

from Ns, information about the highest harmonics is lost during the transfer of

the aerodynamic loads. Moreover, the value of the aerodynamic loads in the time
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domain at all solution points may not be preserved, and therefore the approach

cannot be referred to as an interpolation method. The only solution to this issue

would consist in the employment of the same discretization for both solvers, such that

Ns = N . However, the method proposed in section 5.3 for the computation of LCO

flow conditions was observed to behave improperly using Ns = N . This behavior

is still under investigation, in hope that a fully nonlinear structural solver may be

employed in the future. To prevent this issue, the discretization of the structural

solver is set to Ns = 1 for all cases of the present work, yielding a linear structural

solver. This also signifies that only the first harmonic of the aerodynamic loads

is employed during the fluid-structure coupling. However, the first harmonic still

contains the nonlinear effects of the flow since it is computed as part of a multiple-

harmonic solution, as explained by Ekici and Hall [19].

5.3 Limit Cycle Oscillation Determination Methodology

Since the NLFD method is only able to model purely periodic flows, the extent

of the present work is limited to the study of periodic aeroelastic motion, such as

periodic LCO, which can also be used to model flutter onset if the amplitude of the

motion is sufficiently small that the nonlinearities are negligible. In fact, periodic

LCO are primarily characterized by two independent parameters; frequency and

airspeed. For a wing, they are represented in nondimensional form by the reduced

frequency and the speed index, defined respectively as

ωr =
ωc

2V∞
, (5.1)

Vf =
V∞

bsωα

√
μ̄
, (5.2)
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where ω is the angular frequency of the motion, c is the reference chord, V∞ is the

modulus of the free-stream flow velocity, bs is one half of the reference chord, ωα is

the angular frequency of the first torsional mode of the wing, and μ̄ is the mass ratio

of the wing, defined as

μ̄ =
mb

ρbΩfrus

. (5.3)

In this equation, mb is the total mass of the wing, ρb is the density of the wing

material, and Ωfrus is the volume of the conical frustum having the streamwise root

chord of the wing as lower-base diameter, the streamwise tip chord as upper-base

diameter, and the wing span as height.

In time-accurate aeroelastic computations, the speed index is the only indepen-

dent variable, since the frequency tends to set naturally while the solution is marched

in time. Therefore, one may choose a given speed index, and observe the flow be-

havior after the initial transients have vanished in order to assess whether the flow

conditions lead to damped, neutral, or diverging oscillations. However, the NLFD

method requires that a reduced frequency be provided a priori to the flow solver

such that the flow can be decomposed in Fourier harmonics accordingly. The pro-

posed NLFD method for aeroelastic computations thus possesses both the reduced

frequency and speed index as independent variables. For example, one cannot assess

uniquely the aeroelastic behavior of a body under a given speed index, since dif-

ferent reduced frequencies could lead to different results for this single speed index.

Nevertheless, these different results may not all be physically sensible, as explained

hereafter.
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Firstly, a solution of which amplitude varies from period to period has a ques-

tionable physical meaning for the NLFD method since the latter assumes that the

solution is periodic in time. Therefore, for a chosen pair of reduced frequency and

speed index, if the fluid-structure coupling tends to increase or decrease the ampli-

tude of the motion from period to period, the pair is then reputed to be physically

meaningless from an NLFD point of view. This thus justifies the requirement accord-

ing to which the amplitude of the motion needs to be constant from period to period

in NLFD-based aeroelastic computations. Secondly, a physically sensible flow solu-

tion must be continuous in time and space from one period to the next. Therefore,

a solution experiencing phase jumps between periods due to the fluid-structure cou-

pling must be considered nonphysical, since it would represent either space or time

discontinuities in the flow or structural solution. This concept was also exploited by

Kielb et al. [44] for vortex shedding frequency determination using the HB method.

Based on these two concepts, a methodology is developed for the computation of

periodic aeroelastic phenomena using the NLFD technique, called the NLFD/LCO

method. Assuming that the reduced frequency and speed index are the only two

unknown parameters, they are employed as the independent variables of the problem.

Since lift provides a good measure of the global behavior of the flow around the

structure, it is used as a basis for the definition of the two dependent variables of

the system. As the amplitude and phase lag of the first mode of the lift coefficient

are defined respectively as
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A1 = 2

√(
Re(ĈL,1)

)2

+
(
Im(ĈL,1)

)2

,

ψ1 = arctan

(
Im(ĈL,1)

Re(ĈL,1)

)
,

it can be seen that they are both only functions of the real and imaginary parts of the

first mode of the lift coefficient. The two latter are therefore employed as dependent

variables. The objective, in order to get a constant-amplitude and constant-phase

solution, is to find the pair of reduced frequency and speed index that yields constant

Re(ĈL,1) and Im(ĈL,1) from period to period. To achieve this objective, two functions

φ1 and φ2 are defined as the variation of those parameters over a given number of

periods Mp, such that

φ1 = ΔRe(ĈL,1) = Re(ĈL,1)m+Mp − Re(ĈL,1)m,

φ2 = ΔIm(ĈL,1) = Im(ĈL,1)m+Mp − Im(ĈL,1)m, (5.4)

where the subscript m denotes the index of the period at which the lift coefficient

is computed. In addition, φ1 and φ2 are assumed to be functions of the reduced

frequency and speed index, such that

φ1 = f(ωr, Vf ),

φ2 = g(ωr, Vf ).

A root-finding Newton-Raphson technique is employed in order to drive the two

dependent variables to zero as follows,
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⎧⎪⎨
⎪⎩
ωr

Vf

⎫⎪⎬
⎪⎭

n+1

=

⎧⎪⎨
⎪⎩
ωr

Vf

⎫⎪⎬
⎪⎭

n

− α [J]−1n

⎧⎪⎨
⎪⎩
φ1

φ2

⎫⎪⎬
⎪⎭

n

, (5.5)

where subscripts n and n + 1 denote the Newton-Raphson iteration number, α is a

relaxation factor, and [J] is the Jacobian of the system, defined as

[J] =

⎡
⎢⎢⎣
∂φ1

∂ωr

∂φ1

∂Vf

∂φ2

∂ωr

∂φ2

∂Vf

⎤
⎥⎥⎦ . (5.6)

In this work, the Jacobian is evaluated using a first-order forward finite-differencing

technique, and the relaxation factor is defined as

α = 1− 1

2
e−n.

This iterative method is employed until satisfactory values are obtained for the de-

pendent variables φ1 and φ2, that is, when they are both sufficiently close to zero

for engineering purposes. In theory, the dependent variables could be defined using

Mp = 1, that is, always comparing two successive solution periods. However, using

a greater number of periods (increased Mp) may provide a better approximation of

the variation of Re(ĈL,1) and Im(ĈL,1) in the solution due to a longer sample length

and a better fluid-structure coupling. The sequential approach is detailed below.

1. At the beginning of period m, which begins the nth iteration of the Newton-

Raphson method, the flow solution is stored, along with Re(ĈL,1)m, Im(ĈL,1)m,

ωr, and Vf .

2. The flow solution is computed for Mp consecutive periods, between each of

which the flow and structural solvers are coupled.
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3. After Mp periods, Re(ĈL,1)m+Mp and Im(ĈL,1)m+Mp are obtained, and reference

values for φ1 and φ2 are computed via equation (5.4).

4. The solution is reinitialized to that of step 1. The reduced frequency is incre-

mented by Δωr, determined based on the level of convergence of the solution.

5. The solution is computed for Mp consecutive periods, with a reduced frequency

equal to ωr +Δωr.

6. After Mp periods, φ∗1 and φ∗2 are computed via equation (5.4), but differ from

φ1 and φ2 because of the increment in reduced frequency.

7. The solution is reinitialized to that of step 1. The reduced frequency is set

back to its initial value ωr, and the speed index is incremented by ΔVf , based

on the level of convergence of the solution.

8. The solution is computed for Mp consecutive periods, with a speed index equal

to Vf +ΔVf .

9. After Mp periods, φ
∗∗
1 and φ∗∗2 are computed via equation (5.4), but differ from

φ1 and φ2 because of the increment in speed index.

10. The Jacobian of the method is constructed through the computation of the

derivatives as follows,

∂φ1

∂ωr

=
φ∗1 − φ1

Δωr

,
∂φ1

∂Vf

=
φ∗∗1 − φ1

ΔVf

,

∂φ2

∂ωr

=
φ∗2 − φ2

Δωr

,
∂φ2

∂Vf

=
φ∗∗2 − φ2

ΔVf

,

and the reduced frequency and speed index are updated through equation (5.5)

to yield their value at iteration n+ 1.

11. The process is repeated from step 1 until satisfactory convergence is achieved.
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Using the NLFD/LCO method, it is possible to find limit cycle oscillations using

the NLFD method. Unfortunately, the amplitude of the resulting LCO is undeter-

mined a priori since the employed approach converges to constant amplitude and

phase lag, but does not impose the final value they reach. It is therefore impossible

to determine the reduced frequency and speed index values leading to an LCO of

a given amplitude using this method, although this feature would be useful in the

assessment of LCO parameters over a predefined range of LCO amplitudes. Further

development on the technique is thus needed in order to allow the calculation of

LCO of predefined amplitudes. However, it is assumed that the amplitude of LCO

resulting from the use of the described Newton-Raphson method is strongly depen-

dent on the amplitude of the forced oscillation prescribed to the body to initiate the

solution. Therefore, pairs of reduced frequency and speed index leading to LCO can

be found for various a priori unknown LCO amplitudes.

It is also important to note that the described Newton-Raphson method is car-

ried out using the real and imaginary parts of the first mode of the lift coefficient

only, and not the higher harmonics. However, since the structural solver employs

only one harmonic, driving solely the first mode of the lift coefficient is sufficient for

the convergence of the structural solution. Further development would be necessary

for a structural solver where Ns > 1, since the higher harmonics of the structural

solution could cause the higher harmonics of the flow solution to diverge while the

first harmonic converges. A more involved study should therefore be carried out in

order to transpose the presented method to a structural solver where Ns > 1.
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CHAPTER 6
Results - Dynamic Mesh Deformation

The objective of this chapter is to validate the employed dynamic mesh defor-

mation framework for the NLFD method, and more specifically the developed RBFV

method for computing the mesh velocities, described in section 4.1.2. Results are

obtained for a two-dimensional pitching NACA 0012 airfoil and a three-dimensional

pitching LANN wing. Parts of the results presented at the 53rd AIAA Aerospace

Sciences Meeting by the present author [78] are integrally reproduced herein.

6.1 NACA 0012 Airfoil - Run 81 of the CT1

The dynamic mesh deformation framework is first tested on a two-dimensional

pitching NACA 0012 airfoil. The flow conditions are those described by Run 81

of the Central Transonic test case CT1, carried out by Landon [45] at the Aircraft

Research Association (ARA). The airfoil is subject to a sinusoidal pitching motion

described by

α(t) = αm + α0 sin(ωt+ ψ), (6.1)

where α(t) is the angle of attack of the airfoil at time t, αm and α0 are respectively the

mean angle of attack and the amplitude of the motion, ω is the oscillation frequency

and ψ is the phase lag of the motion. The reduced frequency of the motion is

ωr = 0.0808, the mean angle of attack is αm = 2.89◦, the pitching amplitude is

α0 = 2.41◦, and the free-stream Mach number is M = 0.60. The pivot point is
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located one quarter-chord aft of the leading edge of the airfoil. The flow solution is

computed on a 192× 32 C-mesh.

6.1.1 Accuracy of Mesh Velocities using the RBFV and FFTV Methods

Before computing flow solutions for the presented test case, the accuracy of

the RBFV method for computing mesh velocities is compared to that of the FFTV

method. Accordingly, the mesh is deformed dynamically to model the displacement

of the airfoil over a period, and the mesh velocities are compared at the beginning

of the period (t = 0) for the two methods using various numbers of harmonics.

Figure 6–1 depicts examples of undeformed and deformed meshes at angles of attack

α = 0◦ and α = 2.41◦, which correspond to the position of the airfoil at times

t/T = 0 and t/T = 1/4. A reference solution for the mesh velocities at time

t = 0 is computed using the FFTV method with 17 modes. The L∞- and L2-norms

of the error with respect to the reference solution are reported in Figure 6–2 as a

function of the employed number of modes for both the RBFV and FFTV methods.

It can be observed that, as expected, whereas the accuracy of the FFTV method

depends on the number of harmonics, it is not the case for the RBFV method,

which introduces a machine-precision error regardless of the number of modes. The

mathematical approach developed in section 4.1.2 is therefore validated.

6.1.2 Solution Accuracy using the RBFV Method

In order to validate the accuracy provided by the RBFV method in the com-

putation of unsteady flows using deformable grids, the solution obtained for Run 81

using the RBFV method is compared to that obtained using rigid grid motion. To

ensure that the flow is correctly converged, the rigid grid motion solution is first
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(a) Undeformed Mesh, α = 0◦ (b) Deformed Mesh, α = α0 = 2.41◦

Figure 6–1: NACA 0012 Undeformed and Deformed Meshes
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Figure 6–2: Convergence of Mesh Velocity Errors in L∞ and L2 for the FFTV and
RBFV Methods at t = 0, Run 81
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calculated over 400 multigrid cycles for various numbers of harmonics. Figure 6–3

shows the flow solver convergence for all solutions, where “2 Modes − 1” in the

legend indicates the convergence curve of the first harmonic of a 2-mode solution.

As can be observed in Figure 6–4, the drag coefficient hysteresis loop is very similar

from the 3-mode solution to the 4-mode solution. Therefore, 3 modes are employed

for the comparison of the RBFV and rigid grid motion solutions.

Figure 6–5 displays the superposition of both the lift and drag coefficient hys-

teresis computed via the rigid grid motion and RBFV methods using 3 modes. The

two solutions agree very well for both parameters. The pressure coefficient distribu-

tion along the chord of the airfoil is also presented in Figure 6–6, and it can again

be seen that the rigid grid motion and RBFV approaches agree perfectly. The figure

also shows that the pressure distribution is very close to experimental results for the

two presented time instances, except at the leading edge for t/T = 0.314, where

the pressure is slightly overpredicted.

6.1.3 Efficiency of the RBFV and FFTV Methods

To assess the computational efficiency of the RBFV method, it is compared to

the FFTV method, since the latter is the only other method known to the author for

the computation of mesh velocities in deforming grid cases using frequency-domain

schemes. The flow conditions of Run 81 are once again used, and the solution is

computed on a 384 × 64 C-mesh using 4 harmonics for 400 multigrid cycles. The

finer mesh is intended to provide a better precision in the determination of the com-

putational cost of the methods. Table 6–1 reports the computational time results for

the two approaches, as well as the associated percentage of the total computational
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Figure 6–5: Comparison of the Rigid Grid Motion and RBFV Methods for the
Computation of Lift and Drag Coefficient Hysteresis, Run 81
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(a) t/T = 0.005, α = 2.97◦
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Figure 6–6: Comparison of the Rigid Grid Motion and RBFV Methods for the
Computation of the Pressure Coefficient Distribution along the Airfoil Chord, Run 81
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Table 6–1: Computational Cost of the FFTV and RBFV Methods for Run 81 using
4 Modes

CPU time CPU time
(s) (% of complete flow solution time)

FFTV method 0.06 0.02
RBFV method 0.11 0.04
Complete flow solution 291.88 100.00

time of the flow solution. From the results, it can be seen that the FFTV approach

is roughly twice as fast as the RBFV method. This is due to the extremely low

cost associated with the FFT computations, in comparison to the additional matrix

operations required for the RBFV method. Nevertheless, the computational time for

both approaches represents a very low percentage of that required to compute the

entire solution. For that reason, the RBFV method is still an attractive alternative

to the FFTV method.

6.2 LANN Wing - Run 73 of the CT5

Tests similar to those applied to the two-dimensional NACA 0012 are carried

out for a wing in order to validate the RBFV method in three dimensions. The flow

conditions are those described by Run 73 of the central transonic test case CT5,

conducted by Zwaan [94] at the National Aerospace Laboratory (NLR). It consists

of a LANN wing subject to a sinusoidal pitching motion described by equation (6.1),

where the wing is pitched rigidly around an axis located 0.621 root chord lengths

aft of the root leading edge. The oscillatory parameters are set to αm = 0.59◦,

α0 = 0.25◦ and ψ = 0. The reduced frequency, based on the root chord, is set to

ωr = 0.102, and the Mach number is M = 0.822. As it was shown to provide good

results in previous work [65], a multiblock 192 × 32 × 96 C-mesh, consisting of 12
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(a) Close-Up View (b) Cross Section at η = 25%

Figure 6–7: LANN Wing Mesh

blocks of 48×32×32 cells each, is employed for the computations. Figure 6–7 shows

a close-up view of the wing mesh, as well as a cross section of the mesh at η = 25%,

where η is the spanwise location. In order to determine the number of harmonics to

use for the solution, the calculations are first carried out with 1, 2, and 3 modes using

a rigid grid motion over 2500 multigrid cycles. The flow solver convergence and drag

coefficient hysteresis are displayed in Figures 6–8 and 6–9 for all solutions. As can

be observed, the 2- and 3-mode drag coefficient hysteresis agree very well together,

and 2 modes are therefore employed onward for the validation of the RBFV method

for Run 73.

6.2.1 Solution Accuracy using the RBFV Method

The same procedure is employed for the assessment of the accuracy of the RBFV

method in three dimensions as in two dimensions: the flow solution is computed us-

ing both the rigid grid motion and RBFV methods and the obtained results are
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Figure 6–8: Flow Solver Convergence using Rigid Grid Motion, Run 73
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Figure 6–9: Drag Coefficient Hysteresis using Rigid Grid Motion, Run 73
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compared together and to experimental values. The flow solver convergence using

the RBFV method with 2 modes for Run 73 is shown in Figure 6–10. As reported

in Table 6–2, the Fourier representations of the lift and drag coefficients using the

RBFV method show very good comparison with those of the rigid grid motion ap-

proach. In all cases, values agree up to at least the fourth digit, which is sufficient for

engineering purposes. Comparison of the lift and drag coefficient hysteresis confirms

the strong agreement between the two solutions, as depicted in Figure 6–11. The

pressure distribution at spanwise positions η = 20% and η = 65% is also illustrated

in Figure 6–12, and the agreement between the two methods is once again excellent.

The numerical solutions predict the leading edge pressure peak accurately for both

positions, but clearly mispredict the position of the shock on the upper surface of

the wing. This discrepancy may partly be due to the absence of viscous effects in

the flow solver. Nevertheless, the agreement between rigid- and deformable-grid solu-

tions is excellent. This is consistent with the two-dimensional results, and the RBFV

method is therefore validated. This also partly confirms the hypothesis according to

which the non-satisfaction of the GCL, detailed in section 4.2, does not introduce

significant errors in the solution using frequency-domain methods, at least for the

selected cases.

6.2.2 Efficiency of the RBFV and FFTV Methods

In order to evaluate the efficiency of the RBFV method in comparison to the

FFTV method in three dimensions, Run 73 flow conditions are employed, again us-

ing 2 harmonics. Table 6–3 reports the noted computational time for both methods

to execute the calculation of mesh velocities. For an equal number of modes, the
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Figure 6–10: Flow Solver Convergence using the RBFV Method, Run 73

Table 6–2: Fourier Coefficients of Lift and Drag Coefficients using the Rigid Grid
Motion and RBFV Methods for Run 73

Mode Method
Lift Coefficient Drag Coefficient
Real Imaginary Real Imaginary

0
Rigid Grid Motion 0.475690 0.00000 0.0014751 0.00000

RBFV 0.475691 0.00000 0.0014752 0.00000

1
Rigid Grid Motion -0.004608 -0.016648 -0.000075 -0.001483

RBFV -0.004615 -0.016651 -0.000075 -0.001485

2
Rigid Grid Motion 0.000061 0.000004 -0.000037 0.000027

RBFV 0.000062 0.000004 -0.000037 0.000027
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Figure 6–11: Comparison of the Rigid Grid Motion and RBFV Methods for the
Computation of Lift and Drag Coefficient Hysteresis, Run 73
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Figure 6–12: Comparison of the Rigid Grid Motion and RBFV Methods for the
Computation of the Pressure Coefficient Distribution at Two Spanwise Stations,
t = 0, Run 73
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Table 6–3: Computational Cost of the FFTV and RBFV Methods for Run 73 using
2 Modes

CPU time CPU time
(s) (% of complete flow solution time)

FFTV method 0.04 0.0005
RBFV method 2.35 0.0288
Complete flow solution 8147.35 100.00

RBFV method is more expensive than the FFTV method by roughly two orders of

magnitude. Still, both methods only require a small fraction of the total computa-

tional time for the whole flow solution, as can be seen in the rightmost column of the

table. In comparison with the time required for the deformation of the mesh only

(and no computation of the mesh velocities), which is approximately 60 seconds, the

time required for computing the velocities is very small (2.35 seconds). This is due to

the fact that the RBF operators, matrices [A] and [M]−1, are already set up during

the mesh deformation part, regardless of the method employed for the computation

of the mesh velocities, be it the RBFV or the FFTV approach. Therefore, the RBFV

method takes advantage of the work accomplished beforehand for the RBF defor-

mation and is thus equivalent to a matrix-vector product only. This explains why

the cost of the RBFV method is so low in comparison with the cost of the RBF

deformation.

To evaluate the efficiency of the RBFV method from another point of view,

it is compared to the FFTV method by taking into account the accuracy of the

mesh velocity computation. Since it was shown mathematically (section 4.1.2) and

numerically (Figure 6–2) that the RBFV method provides exact mesh velocities, the

values computed using the FFTV technique are compared to the reference values of
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the RBFV approach. Since the flow solution for Run 73 requires 2 modes (5 time

steps), it is assumed that only 5 mesh deformations are absolutely necessary. The

mesh velocities are therefore evaluated at t = 0 using the RBFV method with 5 time

steps as a reference, and are again evaluated at t = 0 using the FFTV method with 2,

3, 4, and 5 modes (5, 7, 9, and 11 time steps). The first line of Table 6–4 reports the

actual time for the computation of the mesh velocities only using the FFTV method.

Since as many mesh deformations as time steps are needed, the FFTV method with

7, 9, and 11 time steps requires more mesh deformations than the RBFV method,

which uses only 5 time steps, since it is the minimum required for the accuracy of the

flow solution. The second line of Table 6–4 therefore lists the computational time

required for the additional mesh deformations for the FFTV approach that are not

required for the RBFV method. The value in the first column of this line is zero since,

at that point, the RBFV and FFTV require the same number of mesh deformations,

that is, 5. The total time, in the third line of the table, is to be compared with

the total time of the RBFV approach, whereas the fourth line lists the order of the

L∞-norm of the error induced in the mesh velocities by the FFTV method.

Since the total computational time required for the computations of the mesh

velocities using the RBFV approach is 2.35 seconds, as reported in Table 6–3, the

FFTV method is faster than the RBFV method for the 2-mode deformation only,

which induces an error on the order of O(10−9). If the flow solution was computed

using 3 modes instead of two, then the 2- and 3-mode deformations would be faster

for the FFTV approach than for the RBFV. It can also be seen that a minimum

of 4 modes in the computation of the mesh velocities are required for the FFTV

77



Table 6–4: Computational Cost of the FFTV Method for Various Accuracy Levels
for Run 73

Number of modes
2 3 4 5

Pure FFTV method CPU time (s) 0.04 0.06 0.08 0.09
Required additional deformation time (s) 0.00 25.39 51.35 80.91
Total velocity computation time (s) 0.04 25.45 51.43 81.00
Order of mesh velocity error (L∞-norm) 10−9 10−12 10−15 10−15

method to provide results of machine-precision accuracy. In that case, the RBFV

method becomes far less expensive due to the additional mesh deformations saved

from computation. Nevertheless, the 2-mode FFTV shows good accuracy (O(10−9))

and high efficiency. Therefore, it would be needed to verify if the level of error induced

in the computation of the mesh velocities using the FFTV method with 2 modes is

of sufficient importance to impact the final flow solution. In conclusion, the RBFV

method is an attractive alternative to the FFTV approach due to its exactitude, and

because its superior requirements in terms of computational effort are not significant

in comparison with the computational cost of an entire flow solution.
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CHAPTER 7
Results - Aeroelastic Solutions

This chapter presents aeroelastic results obtained via the NLFD/LCO frame-

work described in chapter 5, using the flow and structural solvers detailed in chapters

2 and 3, respectively.

7.1 AGARD I.-Wing 445.6 Weakened Model 3

The first analyzed aeroelastic case is based on experimental results obtained by

Yates et al. [91] regarding the aeroelastic response of the three-dimensional AGARD

I.-Wing 445.6 Weakened Model 3. The geometry of the wing is defined as follows:

• Root chord: cr = 1.833 ft;

• Taper ratio: λ = 0.66;

• Semi-span:
b

2
= 2.500 ft;

• Quarter-chord sweep angle: Λc/4 = 45◦;

• Streamwise section: NACA 65A004 airfoil.

All aeroelastic computations are carried out using the root chord cr as the reference

chord for the evaluation of the reduced frequency and speed index.

7.1.1 Structural Solver Validation

In order to produce unbiased aeroelastic results, the structural solver is first

validated against available experimental and numerical data. The wing is discretized

using 15 node stations in the spanwise and streamwise directions, for a total of 225

nodes and 392 triangular elements, as portrayed in Figure 7–1. The thickness of
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each element is dictated by the wing geometry, and the density is adjusted such that

the total wing mass is mb = 0.12764 slugs, as is the case in the experimental model.

The orthotropic properties of the wing are modified such that its first and second

natural frequencies match those of the experimental model. As a result, the material

properties are set to:

• Exx = 8.690× 106 lb/ft2 (across fibre);

• Eyy = 7.070× 107 lb/ft2 (along fibre);

• Gxy = 8.680× 106 lb/ft2;

• νyx = 0.310.

The wing is considered to be clamped at its root, and the fibres are oriented along

the wing quarter-chord (y-direction). The first four resulting natural frequencies are

listed in Table 7–1, along with those obtained from the experimental model and

from Yates’ numerical model [90]. Small discrepancies can be noted in the third

and fourth natural frequencies, but similar differences are observed in Yates’. The

structural mode shapes obtained by Yates are illustrated in Figure 7–2, whereas

those obtained in the present work are displayed in Figure 7–3. Note that the non-

dimensionalization of the eigenvectors is not the same in the two cases, and therefore

only the contour line patterns should be compared, regardless of the contour values.

The oscillations in the contour lines of the calculated mode shapes are only due to

the nonconformity of the plate elements, which causes the slope of the solution to be

discontinuous across element boundaries. However, it can be seen that the overall

shapes agree very well with those computed by Yates, and this structural model is

therefore retained for aeroelastic computations.
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Table 7–1: First Four Natural Frequencies of the AGARD I.-Wing 445.6 Weakened
Model 3

Mode 1 Mode 2 Mode 3 Mode 4
(Hz) (Hz) (Hz) (Hz)

Present work 9.60 38.10 49.13 91.60
Experiment [90] 9.60 38.10 50.70 98.50
Yates [90] 9.60 38.17 48.35 91.54

Figure 7–1: Structural Mesh for the AGARD I.-Wing 445.6
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 7–2: Mode Shapes of the AGARD I.-Wing 445.6 Weakened Model 3 as Cal-
culated by Yates [90]
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Figure 7–3: Calculated Mode Shapes of the AGARD I.-Wing 445.6 Weakened
Model 3
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7.1.2 Spatial and Temporal Accuracy Analyses

For the spatial and temporal accuracy analyses, a harmonic motion is prescribed

to the wing, using the first structural mode shape as the displacement basis. It is

known to the author that a thorough analysis would have required the calculation of

aeroelastic results at various Mach numbers and amplitudes, but such study would

have been extremely time-intensive. The wing is therefore deformed harmonically,

and all structural nodes are moved in the same proportion as the first eigenvector of

the structure. The fluid is air and the selected Mach number is M = 0.960, since it is

the highest subsonic Mach number at which aeroelastic solutions are assessed in this

work. For all cases, the amplitude of the motion is characterized by an amplitude

parameter, which will be referred to as δ. Its purpose is to quantify the displacement

of the wing with solely one parameter, since detailing the amplitude of all structural

degrees of freedom would severely reduce the conciseness of this work. The amplitude

parameter is defined as the nondimensional average amplitude in root chord lengths

of all vertical (transverse) displacements of the structural nodes, such that

δ =

2
Nnodes∑
i=1

∣∣∣Q̂1,y

∣∣∣
i

cNnodes

,

with

∣∣∣Q̂1,y

∣∣∣
i
=

√(
Re

(
Q̂1,y

)
i

)2

+
(
Im

(
Q̂1,y

)
i

)2

,

where Nnodes is the number of nodes in the structural model, c is the reference chord,

and
(
Q̂1,y

)
i
is the Fourier coefficient of the first mode of the vertical displacement

of node i. The amplitude of any periodic wing motion can therefore be described by
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this amplitude parameter, δ. In aeroelastic cases, the amplitude parameter of the

initial prescribed motion of the wing will be referred to as δi.

For the accuracy studies, the amplitude parameter is set to δ = 377.0 × 10−5

which, as an indication, corresponds to a vertical displacement of the wing tip trailing

edge of about 0.07 root chords. The reduced frequency is set to ωr = 0.07892,

since it corresponds to the experimental frequency at which flutter occurs for the

wing at M = 0.960. For the spatial accuracy analysis, the flow is computed on

three grids: coarse (96 × 32 × 48 cells), medium (192 × 64 × 96 cells), and fine

(384×128×192 cells), each grid consisting of 12 blocks. To ensure that the error due

to the temporal discretization is minimal, 4 modes are employed in the flow solution,

which is computed over 2500 multigrid cycles. Table 7–2 reports the relevant Fourier

coefficients of the lift and drag coefficients for the three grids. Since the wing is

symmetric and its mean displacement is zero, the zeroth mode of the lift coefficient

is very close to zero and is not reported in the table, nor is the second mode of the

lift coefficient due to its very small value. On the other hand, since symmetric wings

still produce drag and since two modes are necessary to accurately capture the drag

coefficient hysteresis of the wing, as depicted in Figure 7–6(b), only the real parts of

the zeroth and second modes of the drag coefficient are reported in the table. As a

reference, Re(ĈD,0) is synonymous with the real part of the zeroth mode of the drag

coefficient. It can be seen that the medium grid provides results of good accuracy,

since the difference with the fine grid for lift and drag coefficients is always within

0.0002, which is considered sufficient for aeroelastic computations. The 192×64×96
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Table 7–2: Fourier Coefficients of Lift and Drag Coefficients on Various Grids for the
AGARD I.-Wing 445.6 Undergoing Prescribed Oscillatory Deformation, M = 0.960,
ωr = 0.07892, δ = 377.0× 10−5

Grid Re(ĈD,0) Re(ĈL,1) Im(ĈL,1) Re(ĈD,2)
Coarse 0.0014 0.0005 0.0318 -0.0002
Medium 0.0010 0.0011 0.0309 -0.0002
Fine 0.0009 0.0013 0.0309 -0.0002

(a) Close-Up View (b) Cross Section at Wing Root

Figure 7–4: AGARD I.-Wing 445.6 Flow Solver Mesh

grid is therefore employed onward, and a close-up view as well as a cross section of

the mesh are depicted in Figure 7–4.

For the temporal accuracy study, the same test case is analyzed using 1, 2, and 3

harmonics on the medium grid. The convergence of the solution for all numbers

of harmonics is shown in Figure 7–5. The lift and drag coefficient hysteresis loops

obtained using each number of harmonics are displayed in Figure 7–6. Pressure

distributions are shown in Figure 7–7 for all cases at t = 0. It can be observed from

these graphs that the 2-mode and 3-mode solutions produce very similar results, and
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Figure 7–5: Flow Solver Convergence for the AGARD I.-Wing 445.6 Weakened
Model 3 Undergoing Prescribed Oscillatory Deformation, M = 0.960, ωr = 0.07892,
δ = 377.0× 10−5

that it is thus sufficient to employ 2 modes for the flow solution in this case. It is

thus assumed that 2 modes are sufficient for the entire set of aeroelastic solutions.

7.1.3 Flutter Results in Air

All aeroelastic solutions are initiated by imposing a sinusoidal motion to the

wing proportionally to its first structural mode shape with a predefined speed index

and reduced frequency, before letting it respond aeroelastically using the NLFD/LCO

method described in section 5.3. Hence, to assess the flutter boundary of the Weak-

ened Model 3 of the AGARD I.-Wing 445.6 in air, a very low amplitude parameter

(δi = 3.8 × 10−5) is chosen for the initial motion of the wing, and only one mode

is employed in the flow solution (N = 1), such that the nonlinearities in the re-

sulting aeroelastic solution are negligible. The calculations are performed at Mach
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Figure 7–6: Lift and Drag Coefficient Hysteresis for the AGARD I.-Wing 445.6
Weakened Model 3 Undergoing Prescribed Oscillatory Deformation, M = 0.960,
ωr = 0.07892, δ = 377.0× 10−5
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Figure 7–7: Pressure Coefficient Distribution at Two Spanwise Stations on the
AGARD I.-Wing 445.6 Weakened Model 3 Undergoing Prescribed Oscillatory De-
formation, M = 0.960, ωr = 0.07892, δ = 377.0× 10−5, t = 0
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numbers 0.499, 0.678, 0.901, 0.960, and 1.072, in order to cover the entire range

of transonic flow speeds. The mass ratios μ̄ are set to their experimental values,

reported by Yates [91]. For each case, except at M = 1.072 where the initial speed

index is increased to prevent the solution to fail, the initial speed indices and reduced

frequencies are set to those obtained from the experimental flutter conditions. Un-

fortunately, in this work, no suitable solution is obtained at M = 1.141 as was done

by Yates et al. [91], because no stable convergence of the Newton-Raphson method

could be achieved due to the sensitivity of the method to the initial guess of reduced

frequency and speed index. This result is correlated by previous work, where strong

discrepancies are observed at M = 1.141 between the calculated solution and the

experimental data [82]. A solution is nevertheless obtained for all other five Mach

numbers.

All runs are carried out using Mp = 1 period for the computation of the finite

differences in the Newton-Rahpson method, except for M = 0.499, where Mp = 2

is employed for a better fluid-structure coupling (Mp being defined in section 5.3).

The flow and structural solvers are coupled every Nmg = 50 multigrid cycles. Al-

though the wing is symmetrical, it is observed that the NLFD method can yield a

nonzero value for the zeroth mode of the lift coefficient due to discretization errors,

which could cause the structural solver to diverge. The zeroth mode of the body

displacement vector is hence forced to zero in order to prevent such a problem. For

an asymmetric wing, a static aeroelastic solution would have to be calculated first,

and then the dynamic aeroelastic computations could be carried out.
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(a) Flutter Speed Index Boundary
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Figure 7–8: Flutter Boundary of the AGARD I.-Wing 445.6 Weakened Model 3 in
Air: Calculated, Thomas et al. [82], and Experimental [91]
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Using the proposed NLFD/LCO technique for all Mach numbers, the flutter

speed index boundary is obtained, and is depicted in Figure 7–8(a) along with lin-

ear results of Thomas et al. [82] and experimental values [91]. The frequency ratio,

which is the ratio of the flutter frequency to the natural frequency of the first tor-

sional mode, ω
ωα
, is also depicted in Figure 7–8(b) alongside experimental results

and previous work. The results show good overall comparison against experimen-

tal values for subsonic Mach numbers, especially for the speed index, but a large

discrepancy is observed at M = 1.072. This discrepancy has also been observed

for Euler calculations in previous work [47, 70, 82] and is yet poorly understood by

researchers. Dowell et al. [15], among others, supposed that the error could be due

to wall interference or other uncertainties in the flutter test procedures. Considering

viscous effects could also improve the accuracy of the numerical solutions.

7.1.4 Limit Cycle Oscillation Results in Air

For the assessment of LCO in air, a very similar procedure to that of flutter

is employed. The initial oscillation is imposed using experimental flutter reduced

frequency and speed index, but the amplitude of the initial motion is varied in

order to produce final LCO of different amplitudes. To achieve this goal, the initial

amplitude parameter is sequentially varied such that δi×105 = 3.8, 75.4, 150.8, 226.2,

and 301.6. Although the amplitude parameters of the converged LCO are not exactly

equal to those imposed for the initial motion, it is noted that they are nevertheless

proportional to it in general. All cases are run using 2 flow-solver modes and Mp = 1,

except at M = 0.960, where Mp = 2 is used. This allows to create the plots displayed

on Figure 7–9, where the amplitude of the LCO is reported as a function of the speed
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index (7–9(a)) and frequency ratio (7–9(b)) for Mach numbers M = 0.678, 0.901,

0.960, and 1.072. It can be noticed that the lines of constant Mach number are almost

vertical, which is consistent with the work of Thomas et al. [79]. These results denote

the very low level of nonlinearity in the solution, which is expected since the wing is

very thin and, therefore, no large shock motion is observed. It is important to note

that the amplitude parameters are maintained low because viscous effects would

need to be accounted for in oscillations of higher amplitude. Nevertheless, Thomas

et al. [79] were able to obtain LCO of higher amplitude using an inviscid flow solver,

and hence the LCO trends in [79] show slightly greater deviation than those presented

herein. In any case, a small deviation of the M = 1.072 curve to the right shows

the ability of the method to model at least weak nonlinearities. It is expected that

higher amplitudes and viscous effects would lead to stronger nonlinearities.

To illustrate the convergence of the Newton-Raphson method, Figure 7–10

shows the convergence of the flow solution at M = 0.960 and M = 1.072 with

δi = 301.6 × 10−5, from which the multigrid cycles necessary for the evaluation of

the Jacobian have been removed during post-processing. The small jumps in the

residual are due to the update of the reduced frequency and speed index during the

convergence to the LCO conditions. Figure 7–11 displays the convergence of the re-

duced frequency and speed index at M = 0.960 using the proposed Newton-Raphson

method, whereas Figure 7–12 shows analogous results at M = 1.072. The errors are

computed based on the final values, at the end of the computations. It is observed

that the solution at M = 0.960 converges almost monotonously, whereas that at

M = 1.072 experiences more oscillations. This behavior may be attributed to the
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Figure 7–9: LCO Behavior Trends of the AGARD I.-Wing 445.6 Weakened Model 3
in Air
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unoptimized relaxation coefficient α employed in the algorithm (see equation 5.5).

It may also be due to the fact that the fluid-structure coupling is better in the

M = 0.960 case, since it is performed with Mp = 2, therefore leading to a more

accurate computation of the Jacobian. In any case, it is inferred from the error con-

vergence plots that a line search algorithm is not necessary since the error tends to

decrease at each iteration. It is also seen that the error decreases below engineering

accuracy (10−4) within 5 iterations at M = 0.960 and 11 iterations at M = 1.072.

As an indication, 5 iterations with Mp = 2 require around 3.6 hours of computations,

whereas 11 iterations with Mp = 1 require approximately 5 hours.

Figures 7–13 and 7–14 show examples of the time history of the lift and drag

coefficients for LCO computed at M = 0.960 and M = 1.072, respectively. It can

be seen that both the lift and drag coefficients stabilize to steady periodic functions

as the Newton-Raphson method converges, therefore confirming the presence of an

LCO. Figure 7–15 displays the pressure coefficient and Mach number distributions

on the surface of the wing at t/T = 0.25 for the case at M = 1.072, whereas

Figure 7–16 shows the streamwise pressure distribution at two different spanwise

locations. Although a shock is found on the surface of the wing, its motion is observed

to follow closely the wing movement; the absence of shock motion lag may therefore

explain the low amount of flow nonlinearities. Although it was mentioned previously

that the NLFD/LCO method using Ns < N does not guarantee energy conservation

because of the different temporal discretizations of the structural and flow solvers,

it is observed that the relative error in the work done by the aerodynamic loads on

the wing over a period due to the removal of the highest modes from the structural
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solution does not exceed 2% for all studied cases, thus confirming the validity of the

approach for the analyzed cases.
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Figure 7–10: Flow Solver Convergence for a Limit Cycle Oscillation of the AGARD
I.-Wing 445.6 Weakened Model 3 in Air Obtained with the NLFD/LCO Method,
δi = 301.6× 10−5
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Figure 7–11: Convergence of Reduced Frequency and Speed Index for a Limit Cycle
Oscillation of the AGARD I.-Wing 445.6 Weakened Model 3 in Air Obtained with
the NLFD/LCO Method, δi = 301.6× 10−5, M = 0.960
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Figure 7–12: Convergence of Reduced Frequency and Speed Index for a Limit Cycle
Oscillation of the AGARD I.-Wing 445.6 Weakened Model 3 in Air Obtained with
the NLFD/LCO Method, δi = 301.6× 10−5, M = 1.072
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Figure 7–13: Truncated Time History of the Lift and Drag Coefficients for a Limit
Cycle Oscillation of the AGARD I.-Wing 445.6 Weakened Model 3 in Air Obtained
with the NLFD/LCO Method, δi = 301.6× 10−5, M = 0.960
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(b) Drag Coefficient Time History

Figure 7–14: Truncated Time History of the Lift and Drag Coefficients for a Limit
Cycle Oscillation of the AGARD I.-Wing 445.6 Weakened Model 3 in Air Obtained
with the NLFD/LCO Method, δi = 301.6× 10−5, M = 1.072
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Figure 7–15: Contour Plots for a Limit Cycle Oscillation of the AGARD I.-Wing
445.6 Weakened Model 3 in Air Obtained with the NLFD/LCO Method, δi = 301.6×
10−5, M = 1.072, t/T = 0.25
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(b) η = 90%

Figure 7–16: Pressure Coefficient Distribution at Two Spanwise Stations for a Limit
Cycle Oscillation of the AGARD I.-Wing 445.6 Weakened Model 3 in Air Obtained
with the NLFD/LCO Method, δi = 301.6× 10−5, M = 1.072, t/T = 0.25
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7.2 AGARD I.-Wing 445.6 Solid Model 2

In this section, the AGARD I.-Wing 445.6 Solid Model 2 [90] is considered. The

geometry is identical to that of Weakened Model 3, but the material properties differ.

For this model, the spatial discretization of the body is the same as that mentioned

in section 7.1.1, and the density of the wing is adjusted to match the total mass of

the experimental model, that is, mb = 0.14658 slugs. The structural properties of

the wing are modified to enhance the match with the experimental frequencies, and

are enumerated below:

• Exx = 8.680× 106 lb/ft2 (across fibre);

• Eyy = 1.798× 108 lb/ft2 (along fibre);

• Gxy = 1.642× 107 lb/ft2;

• νyx = 0.310.

For conciseness, only the natural frequencies are compared to the experiment and

to the calculations of Yates [90], without comparing the associated mode shapes.

Considering the very good agreement observed for Weakened Model 3, it is assumed

that the structural mode shapes of Solid Model 2 also agree very well with those of

Yates. It is observed, from Table 7–3, that the natural frequencies match well those

obtained experimentally.

It is known to the author that a complete spatial and temporal accuracy analysis

would need to be carried out for Solid Model 2 for a thorough validation of the code.

However, since the same geometry is employed, the previously performed analyses on

Weakened Model 3 are considered sufficient for the purposes of this work. Therefore,
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Table 7–3: First Four Natural Frequencies of the AGARD I.-Wing 445.6 Solid
Model 2

Mode 1 Mode 2 Mode 3 Mode 4
(Hz) (Hz) (Hz) (Hz)

Present work 14.10 50.70 69.87 122.37
Experiment [90] 14.10 50.70 69.30 127.10
Yates [90] 14.12 50.91 68.94 122.26

a 192×64×96 mesh and 2 modes are used in the flow solver for all LCO computations

concerning Solid Model 2, in accordance with the results obtained in section 7.1.2.

7.2.1 Flutter Results in R-12

The procedure employed for the flutter results of Solid Model 2 is identical

in all points to that of Weakened Model 3. However, since the experimental tests

are carried out in R-121 , the value of the specific heat ratio of the fluid is set to

γ = 1.1389. Solutions are obtained at Mach numbers 0.870, 0.920, 0.960 and 1.020.

All other parameters, such as the mass ratio, are set to their experimental values.

The motion is again initiated using the shape of the first eigenvector of the wing,

with an amplitude parameter of δi = 3.8× 10−5, at the experimental flutter reduced

frequency and speed index. The NLFD/LCO technique is then employed to converge

to neutral oscillations, using 1 mode for both the flow and structural solvers. The

obtained flutter boundaries for the speed index and frequency ratio are depicted in

Figure 7–17. Small discrepancies are observed between calculated and experimental

results, part of which may be explained by the absence of viscous effects from the

1 Dichlorodifluoromethane, commonly referred to as Freon�-12, commercialized by
DuPont�.
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computations. Nevertheless, the general trends are consistent with those obtained

experimentally.

7.2.2 Limit Cycle Oscillation Results in R-12

The procedure employed herein is identical to that described in section 7.1.4.

The amplitude is set sequentially such that δi×105 = 3.8, 75.5, 151.1, 226.6, and 302.1

to produce LCO of varying amplitude, and 2 modes are employed in the flow solver.

Simulations are performed for M = 0.870, 0.920, and 0.960. Figure 7–18 illustrates

that nonlinearities are stronger in this case, as denoted by the slight deviation of the

curves of constant Mach number from the vertical. This phenomenon is especially

obvious in Figure 7–18(b), where all curves tend to bend to the right. Moreover, a

detrimental nonlinearity is observed in Figure 7–18(a) at M = 0.920, where the

curve tends to bend slightly to the left. This therefore demonstrates the ability of the

NLFD/LCO method to model nonlinearities, and specifically justifies its employment

for the computation of detrimental nonlinearities, which may lead to a reduction of

design safety margins. It is again expected that the nonlinear behavior of the wing

be more evident for LCO of higher amplitudes, and for cases where viscous effects

are considered.
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Figure 7–17: Flutter Boundary of the AGARD I.-Wing 445.6 Solid Model 2 in R-12:
Calculated and Experimental [91]
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Figure 7–18: LCO Behavior Trends of the AGARD I.-Wing 445.6 Solid Model 2 in
R-12
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7.3 Estimated Acceleration

This section intends to provide an estimate of the computational savings re-

sulting from the use of the proposed NLFD/LCO methodology in comparison with

a typical time-marching technique. The comparison detailed herein assumes that

the frequency of oscillations sets automatically in time-accurate aeroelastic compu-

tations, and therefore that a one-dimensional Newton-Raphson method is necessary

for the determination of the LCO speed index only. In addition, it assumes that

the convergence rate of the proposed two-dimensional Newton-Raphson technique

is similar to that of its one-dimensional counterpart, and that a time-accurate flow

solver converges at a similar rate to that of an NLFD flow solver. In order to get a

conservative estimate, it is assumed that Mp = 2 is employed for the computation

of the Jacobian of the NLFD/LCO method. Therefore, 7 time periods are required

for the computation of one Newton-Raphson iteration: 2 for the evaluation of the

reference φ1 and φ2 (see section 5.3), 2 for the evaluation of ∂φi

∂ωr
, 2 for the evalua-

tion of ∂φi

∂Vf
, and 1 additional period to allow a good fluid-structure coupling between

iterations. Analogously, 12 time periods are required for one Newton-Raphson it-

eration in a time-marching framework: 6 for the reference φ1 and φ2, and 6 for

the computation of ∂φi

∂Vf
. This number of periods (6) intends to be conservative as

it stems from the computations of Kachra and Nadarajah [43], in which 8 periods

were used for the assessment of the aeroelastic behavior of a two-dimensional air-

foil. The comparison is done between a 2-mode (5-time-step) NLFD solution and a

36-time-step time-accurate solution, which was considered sufficient by Kachra and

Nadarajah. The computational cost of grid deformation is not accounted for, since
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the best-suited algorithm may differ from one approach to the other. As reported

in Table 7–4, where NR is synonymous with Newton-Raphson, the total cost per

Newton-Raphson iteration is more than 12 times higher in a time-accurate frame-

work than using the proposed NLFD/LCO methodology. It can therefore be stated

that the proposed methodology is about an order of magnitude faster than a typical

time-marching technique.

No quantitative comparison is offered with the HB/LCO method proposed by

Thomas et al. [79], since the difference between the two Newton-Raphson methods

might lead to different convergence rates. Nevertheless, for equal Newton-Raphson

convergence rates, it is supposed that the NLFD/LCO approach is computationally

less costly, since it only requires the evaluation of a 2 × 2 Jacobian, whereas the

HB/LCO technique requires the construction of a 2Nms×2Nms Jacobian, where Nms

is the number of structural mode shapes employed in the modal structural solver.

Since the derivatives constituting the Jacobian are generally evaluated through finite-

differencing, reducing the size of the Jacobian can lead to significant computational

cost savings. Moreover, the method proposed in the present work does not require

any convergence study to be performed with respect to Nms, unlike the HB/LCO

approach. It is therefore expected that the NLFD/LCO method is computationally

advantageous.
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Table 7–4: Comparison of the Estimated Computational Cost of the NLFD/LCO
Method and of a Time-Marching Approach for the Determination of Limit Cycle
Oscillation Flow Conditions

Element NLFD/LCO Method Time-Marching Method
Basic time-step cost 1 1
Time steps per period 5 36

Cost of FFT [43] 1.02 1
Periods per NR iteration 7 12

Total cost per NR iteration 35.7 432

111



CHAPTER 8
Conclusions

8.1 Summary

The assessment of aeroelastic nonlinearities of aircraft designs is important due

to the reduction of safety margins they can engender. Typical time-marching tech-

niques enable such calculations but require intensive computational time, whereas

frequency-domain approaches were shown to provide accurate results in an efficient

fashion. However, frequency-domain approaches were either employed using fixed

flow conditions, or using suboptimal methods for the computation of the conditions

leading to periodic aeroelastic behavior. In addition, three-dimensional aeroelastic

calculations require the use of some deformable grid approach, in which the efficient

computation of accurate mesh velocities may be challenging for frequency-domain

techniques. Based on this premise, following is a summary of the contributions and

conclusions resulting from this research.

• A simple and accurate dynamic mesh deformation framework is developed for

the NLFD method using an RBF algorithm. The accuracy of the proposed

method for computing mesh velocities, that is, the RBFV method, is demon-

strated to be independent of the number of harmonics employed in the NLFD

solver, unlike the FFTV method. Flow solutions are shown for a pitching

NACA 0012 airfoil and a pitching LANN wing.

112



• The RBFV method is observed to be roughly twice as computationally expen-

sive as the FFTV method in two dimensions, and two orders of magnitude

more expensive in three-dimensions, but nevertheless represents a very small

portion of the computational time required for the entire flow solution.

• An NLFD/LCO methodology for the determination of flow conditions leading

to LCO of an aircraft wing using a linear plate bending structural solver and an

NLFD flow solver is proposed, using a root-finding Newton-Raphson approach

in order to find the equilibrium point where LCO occur.

• The proposed methodology is validated for the AGARD I.-Wing 445.6 Weak-

ened Model 3 in air and Solid Model 2 in R-12, where the flutter boundary

and the LCO trends of the wing are calculated. Results show that the pro-

posed technique generally converges to engineering precision within 11 Newton-

Raphson iterations.

• The proposed NLFD/LCO method is estimated to perform LCO computations

an order of magnitude faster than a typical aeroelastic time-marching approach.

No quantitative comparison is offered with the HB/LCO method [79] but,

according to a qualitative analysis, it is expected that the proposed technique

is computationally more efficient.

8.2 Limitations

Below are listed the limitations regarded by the author as the most important

of this research.
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• The Geometric Conservation Law is not satisfied using the proposed dynamic

mesh deformation framework, and may thus lead to a reduction in the order

of accuracy of the method.

• Only LCO of small amplitude are studied in the context of this research due

to the employed inviscid flow solver. Little nonlinear behavior is therefore

obtained since higher amplitudes and viscous effects would account for flow

nonlinearities.

• Dynamic structural nonlinearties may not yet be modelled using the employed

technique since only one harmonic is employed in the discretization of the

structural equations of motion.

• The temporal discretization interface between the flow and structural solvers

is not conservative on the point of view of the work done by the aerodynamic

forces over a period. Although the work loss is observed to be less than 2%

for the analyzed cases, this assumption may not hold for other cases where the

higher harmonics of the flow solution are stronger.

• The amplitude of the final LCO cannot be selected as an input to the method.

The determination of LCO trends rely on the assumption that the amplitude

of the final LCO is proportional to the amplitude of the initial oscillation

prescribed to the structure. Trends may therefore be observed, but LCO of

specified amplitudes are difficult to obtain.

• The method is only capable of assessing periodic LCO. Other types of LCO, in

which the total energy of the system is constant but the motion is not periodic,

cannot be modelled by the proposed approach.
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8.3 Future Work

According to the objectives that could be reached in this research and the limi-

tations imposed by the developed methods, following is a list of the envisioned future

work related to this research.

• Develop an approach that guarantees the satisfaction of the GCL using the

RBFV method for the computation of unsteady flows with the NLFD method

on deforming grids, as discussed in section 4.2.

• Perform viscous calculations to allow oscillations of greater amplitude to be

modelled and observe stronger nonlinear aeroelastic behavior.

• Employ a fully nonlinear structural solver, such that no assumption has to be

made regarding the work lost by discarding the higher harmonics of the flow

solution during the fluid-structure coupling.

• Extend the proposed LCO-determination method to a fully nonlinear structural

solver, in which all modes of the solution converge to a constant value in order

to obtain a perfect LCO.

• Include the aeroelastic solver inside an aerodynamic shape optimization frame-

work in order to use the aeroelastic properties of aircraft components as design

constraints.
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