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Résumé.

Le principe de Landauer a�rme qu’il existe une borne inférieure à l’énergie requise pour
changer l’état d’un petit système d’un état initial à un certain état final en intéragissant avec
un réservoir thermondynamique. La situation dans laquelle cette borne est saturée, et donc
le coût énergétique minimisé, pour une transformation donnée est d’un intérêt particulier.
Nous étudions le principe de Landauer dans le contexte des systèmes à intéractions répétées
(RIS), un classe de systèmes physiques dans laquelle un petit système d’intérêt intéragit avec
une suite de sondes thermales. En particulier, nous démontrons que, pour les RIS, la borne de
Landauer n’est généralement pas saturée dans la limite adiabatique, dans laquelle l’évolution se
fait, en un certain sens, infiniement lentement. Ce résultat présente un contraste au cas d’un
système intéragissant avec un seul réservoir thermondynamique. Toutefois, pour un RIS spé-
cifique modelant le petit système et les sondes par des systèmes à 2 niveaux intéragissants dans
l’approximation rotating wave, la borne de Landauer est saturée adiabatiquement. Dans ce tra-
vail, nous formulons et démontrons aussi un théorème adiabatique discret et non-unitaire pour
usage dans les RIS.

Abstract.

Landauer’s Principle states that there is a lower bound on the energy required to change the
state of a small system from an initial state to a final state by interacting with a thermodynamic
reservoir; of particular interest is when the bound is saturated and the minimal energy cost
obtained for a given state transformation. We investigate Landauer’s Principle in the context
of repeated interaction systems (RIS), a class of physical systems in which a small system of
interest interacts with a sequence of thermal probes. In particular, we show that for RIS, Lan-
dauer’s bound is not saturated generically in the adiabatic limit, in which time evolution can be
thought of as proceeding infinitely slowly, in contrast to the case of the interaction of a system
and a single thermodynamic reservoir. However, for a specific RIS which models the small sys-
tem and the probes as 2-level systems interacting via a dipole interaction in the rotating wave
approximation, Landauer’s bound is saturated adiabatically. In this work, we also formulate and
prove a discrete non-unitary adiabatic theorem to use for RIS.



Acknowledgments.

First, I would like to gratefully thank my collaborators Professor Alain Joye, Professor Yan
Pautrat, and Renaud Raquépas. Alain showed Renaud and I the wonders of adiabatic theorems,
clarified and dissected our muddled ideas, and carefully ensured our constants were constant.
He also greatly extended our work by tackling the small coupling regime. Yan conjured clean
proofs from our attempts, rewrote much of the work, and taught us about CPTP and irre-
ducible maps. And, certainly, I would like to thank Renaud, who worked alongside me for
many weeks with dedication, creative ideas, and good cheer. On that note, I would like to
thank Institut Fourier, where part of this research was carried out, for its support and warm
hospitality.
I sincerely thank Professor Vojkan Jašić, my supervisor; he introduced me to the field of

mathematical physics and all those named above, and taught me most of what I know in the
area. Vojkan o�ered me many projects and ideas to examine and attempt, was patient with my
failures, and served as a dedicated and supportive mentor.
I would also like to thank Professor Eduardo Martin-Martinez, Professor Achim Kempf,

Guillaume Verdon, and the whole Physics of Information Lab at Waterloo University for
their hospitality and insightful discussions about the rotating wave approximation and cool-
ing qubits adiabatically.
Lastly, I’d like to thank my family for their care and advice. In particular, I’m thankful to my

grandfather Edward Forde, whose support made my degree possible.
I was partly supported by ANR contracts ANR-13-BS01-0007 and ANR-14-CE25-0003-0.



Introduction

WE AIM to investigate Landauer’s Principle in the context of finite-dimensional repeated inter-
action systems, a class of quantum systems with several amenable properties. Briefly, repeated
interaction systems consist of a system of interest interacting with a chain of probes, one probe
at a time. This work is based on the preprint [HJPR15]; my coauthors Alain Joye, Yan Pautrat,
and Renaud Raquépas are responsible for most of the ideas, their mathematical formulation,
and their proof. In fact, this document does not prove many of the results of the important
small coupling limit section of that preprint. However, this report presents more details in the
proofs and hopefully provides more intuition for the ideas. We’ll use finite-dimensional pertur-
bation theory extensively, as formulated in chapters 1 and 2 of Tosio Kato’s Perturbation Theory
for Linear Operators [Kat76].
We’ll first discuss the context of this work, by introducing Landauer’s Principle in sec-

tion 1.1, adiabatic theorems in section 1.2, and repeated interaction systems in section 1.3.
With this background, we’re ready to formulate Landauer’s Principle for repeated interaction
systems in the adiabatic limit in section 2.1. With definitions in hand, we will proceed to our
first attempts to look for the saturation of Landauer’s bound in section 2.2. Our partial success
there will lead us to develop two tools: a discrete non-unitary adiabatic theorem (chapter 3),
and a perturbation result for the relative entropy function (chapter 4). Both seem to be novel,
although the methods and tools used to prove them are standard. Empowered by these results,
we will develop a criterion to check for the adiabatic saturation of Landauer’s bound at each
step of a repeated interaction system in section 5.1, and return to our initial explorations in sec-
tion 5.3. We will also discuss the small coupling limit in section 5.4, and apply those results to
an example system in section 6.1.



1
The setting

In order to describe Landauer’s principle for repeated interaction systems, we need to under-
stand both. We will have reason to suspect that Landauer’s principle in an adiabatically evolv-
ing system is of particular interest, so we will introduce the adiabatic limit here as well. These
well-trod grounds are included here to establish notation, highlight relevant features, and pro-
vide a unified exposition.

1.1 Landauer’s Principle

LANDAUER’S PRINCIPLE states that there is a minimal ener- See [Lan61] for Rolf Landauer’s
original description.getic cost for a state transformation ρi → ρf on a system S via

the action of a thermal reservoir E at temperature (kBβ)−1. In kB ≈ 1.38 × 10−23 Joules per
Kelvin is Boltzmann’s constant.particular, if ∆SS is the change of entropy of the system S,

and ∆QE is the change in energy of the reservoir E , then

∆QE ≥ β−1∆SS . (1.1)

This principle has generated interest since its inception in
1961; see [RW14, Section I] for a recent summary. First,
the bound has allusions to practicality: perhaps the energy
e�ciency of our computers will be limited. For changing the
state of a classical or quantum bit however, the bound is at
most

∆QE ≥ kB · T log 2 ≈ (9.6× 10−24J/K) · T
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which is extremely small for reasonable temperatures T ; yet,
modern processors are within several orders of magnitude
of this limit, as shown to the right in fig. 1.1. Moreover, in

Figure 1.1: Energy cost of chang-
ing state for modern silicon tran-
sistors, as compared to a theo-
retical minimum for classical bits
encoded in electron charge at
room temperature ([CZH+06]).
Figure reproduced from [Pop10,
Figure 1(a)].

1973 Bennett showed that any Turing machine program
may be implemented in a reversible manner [Ben73], so that
∆SS = 0. Reversible computing is an area of considerable
practical interest and continuing theoretical work [Vos10;
Jea15].
More fundamentally, Landauer’s bound is a direct rela-

tionship between energy and information (entropy). In fact,

From now on, we will use natural
units so that kB = ~ = 1, and
describe temperature in terms of
β, where β−1 = T .

Landauer’s principle follows from the entropy balance equation

∆SS + σ = β∆QE (1.2)

where σ is the entropy production.

WE WILL DEFINE σ and prove eq. (1.2), in a finite dimen-
sional quantum unitary setup, following [RW14] and [JP14,
Section 2]. We assume the system S is described by a finite
dimensional Hilbert space HS , with self-adjoint Hamiltonian
hS . The initial state on the system is given by a density ma-
trix1 ρi. Likewise, we assume the environment is described 1 non-negative trace-one operator

on HSby a finite dimensional Hilbert space HE with self-adjoint
Hamiltonian hE , and initial state

ξi =
exp(−βhE)

Tr(exp(−βhE))
(1.3)

the Gibbs state2 at temperature β−1. The system and envi- 2 Gibbs states on E are invariant
under the free dynamics hE ; in
this finite dimensional context,
they are uniquely so. They thus
have the interpretation of thermal
equilibrium states.

ronment start uncoupled, so the joint initial state is ρi ⊗ ξi.
The evolution of the joint system is given by a unitary opera-
tor U ∈ B(HS⊗HE), leading to the final joint state Uρi⊗ξiU∗.
We decouple the systems, yielding

ρf = TrE(Uρ
i ⊗ ξiU∗), ξf = TrS(Uρi ⊗ ξiU∗)

as the final state on the system, environment, respectively.
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We identify two quantities of interest during this process:
∆SS , the change of entropy of the system of interest, and
∆QE , the change of energy of the environment, defined as Note the sign convention.

∆SS := S(ρi)− S(ρf), ∆QE := Tr(hEξ
f)− Tr(hEξ

i),

where S(ρ) := −Tr ρ log ρ is the von Neumann entropy.
Recall the relative entropy S(η|ν) = Tr(η log η − log ν)) of
two faithful states η and ν has S(η|ν) ≥ 0 with equality if
and only if η = ν. With this function, we define the entropy See [JOPP12, Sections 2.5–2.6]

for a review of entropy functions
in finite dimensional quantum
mechanics.

production
σ := S(Uρi ⊗ ξi U∗|ρf ⊗ ξi). (1.4)

We may proceed to derive eq. (1.2), simply by expanding σ:

σ = −S(Uρi ⊗ ξiU∗)− Tr
(
Uρi ⊗ ξiU∗ (log ρf ⊗ Id)

)
− Tr

(
Uρi ⊗ ξiU∗ (Id⊗ log ξi)

)

= −S(ρi ⊗ ξi) + S(ρf)− Tr(ξf log ξi)

= −S(ρi)− S(ξi) + S(ρf)− Tr(ξf log ξi)

= −∆SS + β∆QE .

For a more detailed derivation, consult appendix B.

WE MAY INTERPRET eq. (1.2) as a microscopic Clausius formulation of the Second Law of
Thermodynamics [BHN+15]. More specifically, we may interpret β∆QE =

∫ f
i

dQE
T

= ∆S Clausius
E

as the Clausius entropy change of the environment. Then, with a minus sign to account for
our sign convention, ∆SClausius

S = −∆SS , and the Second Law is

∆S Clausius
E + ∆S Clausius

S = entropy production ≥ 0.

In this language then, σ serves as the entropy production. The classical Second Law, however,
is a statement about macroscopic quantities obtained from the behavior of & 1023 particles.
Within the theory of quantum mechanics and our assumptions, however, the balance equation
eq. (1.2) is exact on a microscopic level.

WE ARE INTERESTED in the case of equality: when is σ = 0? In fact, in this finite dimen-
sional framework, only in the case ∆SS = ∆QE = 0. In nontrivial cases, tighter bounds exist
[RW14].
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1.2 The adiabatic limit

LET US CONSIDER a finite dimensional quantum system described by a Hilbert space H with
dimH < ∞, and for each time s ∈ [0, 1], a self-adjoint Hamiltonian h(s) ∈ B(H). Time
evolution is governed by the solution to the Schrödinger equation

i
d

ds
U(s) = h(s)U(s), s ∈ [0, 1], with U(0) = Id.

The adiabatic limit concerns the evolution of the rescaled Schrödinger equation

i
d

dt
UT (t) = h(t/T )UT (t), t ∈ [0, T ], with UT (0) = Id (1.5)

in the limit T → ∞. The adiabatic parameter T corresponds to a physical time scale over which
the process takes place; the limit T → ∞ corresponds to the process being “infinitely slow”, or
quasi static.
Adiabatic theorems generally correspond to assumptions which can be made on h(s) and
H to guarantee properties of the solution UT (t). In particular, often assumptions are chosen so
that UT (t) approximately transports states starting in an eigenspace of h(0) to the states in the
corresponding eigenspace of h(t/T ), as demonstrated in the following result due to Tosio Kato
[Kat50].

Theorem 1.1 (Kato, 1950). Let e(s) be an eigenvalue of h(s) separated from the rest of spectrum of
h(s) by a gap. Let P (s) be its projection onto the associated eigenspace. Assume that e(s) and P (s) are
continuous functions of s ∈ [0, 1], and that dP

ds
and d2P

d2s
are piecewise continuous. Then there exists a

unitary operators W (t) for t ∈ [0, T ] such that

W (t)P (0) = P (t/T )W (t) (1.6)
(
UT (t)− exp

(
− iT

∫ t/T

0

e(s) ds
)
W (t)

)
P (0) = O(T−1), uniformly in t ∈ [0, T ]. (1.7)

The condition (1.6) is an intertwining relation; if a state η begins in the P (0) subspace (that is,
P (0)η = η), then

W (t)η = W (t)P (0)η = P (t/T )W (t)η

lies in the P (t/T ) subspace at time t. Equation (1.7) then has the interpretation that UT (t)

acting on the P (0) subspace is approximated up to an error of O(1/T ) by the operatorW (t)

when augmented by the dynamical phase factor exp
(
− iT

∫ t/T
0

e(s) ds
)
. This makes precise
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the notion that UT (t) approximately transports states from an eigenspace of h(0) to the corre-
sponding eigenspace of h(t/T ).

IN THE CONTEXT OF THIS WORK, a natural application of an adiabatic theorem is to the setup
of Landauer’s Principle in section 1.1. Given a self-adjoint time-dependent Hamiltonian

[0, 1] 3 s 7→ h(s) ∈ B(HS ⊗HE)

for the system and environment together, we may define UT (t) the adiabatic time evolution
operator as the solution to eq. (1.5). By choosing the time evolution unitary U of section 1.1 to
be UT = UT (1), we obtain Landauer’s Principle in an adiabatic setup: Just as before, we obtain
the change in entropy of the system, ∆SS,T , change in energy of the environment, ∆QE,T , and
entropy production σT , related by the balance equation

∆SS,T + σT = β∆QE,T ,

where we have explicitly written the T -dependence inherited from UT .
In [JP14], the authors formulate Landauer’s Principle in a setup where the environment is

described by an infinite-dimensional reservoir. They derive a balance equation analogous to
eq. (1.2). With an ergodicity assumption to ensure the system and environments interaction
mixes thoroughly enough and the Avron-Elgart adiabatic theorem, they show that σT → 0 as
T →∞. In this case then, Landauer’s bound is saturated in the adiabatic limit.

1.3 Repeated interaction systems (RIS)

A REPEATED INTERACTION SYSTEM (RIS) consists of a system of interest S which is coupled to
a sequence (or chain) of probes {Ek}∞k=1. The system S interacts with each probe, one at a time,
for some duration τ . Each probe is discarded after it interacts with the system; mathematically,
this is modeled by tracing out the probe. This is a type of open quantum system which has the
advantage of a simple mathematical model while being relevant to experiments in quantum
optics. For a recent review, see [BJM14].
In an RIS, the system S has an associated Hilbert space HS , and self-adjoint Hamiltonian

hS ∈ B(HS). Each probe Ek is described by a Hilbert space HEk with self-adjoint Hamiltonian
hEk ∈ B(HEk). We will assume each probe’s Hilbert space is identical: HEk ≡ HE . Additionally,
for this work we assume dimHS < ∞ and dimHE < ∞. We specify the state of the kth probe
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ξik to be the Gibbs state at inverse temperature βk:

ξik :=
exp(−βkhEk)

Tr(exp(−βkhEk))
. (1.8)

The system S begins in an initial state ρi. Then the system couples to the first probe E0 yield-
ing an initial joint state ρi ⊗ E i0. The coupling is described by a self-adjoint potential v0 ∈
B(HS ⊗HE) and coupling constant λ0 > 0. The joint state is evolved to time τ by

U0 = exp(−iτ0(hS ⊗ Id + Id⊗ hE0 + λ0v0)).

Then the joint state of S + E0 at the end of their interaction is U0(ρi ⊗ ξi0)U∗0 . We trace out E0

to obtain the final state on the system

ρ1 = TrHE (U0(ρi ⊗ ξi0)U∗0 ).

This state is then the initial state of the system for its interaction with E1. Now, assume the
system is in state ρk−1 after interacting with the first k − 1 probes. Then the kth probe is in the
state ξik, and the joint step at the start of the kth interaction is ρk−1 ⊗ ξik. Time evolution to the
end of the step is governed by

Uk = exp (−iτk(hS ⊗ Id + Id⊗ hEk + λkvk)) (1.9)

for λk > 0 and vk ∈ B(HS ⊗HE). This yields the joint state Ukρk−1 ⊗ ξikU∗k and hence the state
of the system after interacting with the kth probe is ρk = TrHE (Ukρk−1 ⊗ ξikU∗k ). This process is
depicted in fig. 1.2.

ρk−1

S, hS

λkvk

Ek, hEk
ξik

Ek−1, hEk−1

Ek−2, hEk−2
Ek+2, hEk+2

ξik+2

Ek+1, hEk+1

ξik+1

· · · · · · Figure 1.2: A schematic indicat-
ing a repeated interaction system
at the beginning of the kth step,
at time

∑k−1
n=1 τn.
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This process defines a family of maps {Lk}k on I1(HS), the trace-class operators on HS .
Since dimHS < ∞, I1(HS) ∼= B(HS), i.e. every operator is trace class. The notation is used
here to convey that spiritually, Lk acts on states, not observables; additionally, we will equip
I1(HS) with the trace norm, and B(HS) with the uniform norm. We define

Lk : I1(HS) → I1(HS)

η 7→ TrE
(
Uk(η ⊗ ξik)U∗k

)
.

(1.10)

These maps are called the reduced dynamics. Then the state of the system after step k is

ρk = LkLk−1 · · · L1ρ
i.

This is a Markovian form for the sequence of states of the system (ρk)k. Thus, when consid-
ering the state of the system at times (

∑k
n=1 τn)k the exact state of the system is described by

a Markovian process, which is determined by hS , hEk , vk, λk, τk, and the initial state ξik of the
probe.
Often, open quantum systems, which consist of a system of interest interacting with an en-

vironment (in this case, the chain of probes), can only be approximated by Markovian dy-
namics, and are only precisely described by Hamiltonian dynamics. Here, the two approaches
coincide at the times of interest, namely at the end of each step.

Remark. We will assume without loss of generality that the coupling λk ≡ λ > 0 is constant.
We will consider the small coupling limit (which involves λ → 0) in section 5.4. Additionally,
we will assume the interaction durations τk ≡ τ > 0 are constant.

The maps Lk are completely positive and trace preserving (CPTP). Let us equip I1(HS)

with the trace norm ‖η‖1 = Tr |η| = Tr
√
η∗η. Denote ‖Lk‖ = sup‖η‖1=1 ‖Lk(η)‖1 its uniform

norm as an operator on I1(HS). Then Lk is a contraction. In fact, we may prove this only
using that the Lk are CPTP.

Proposition 1.2. Let H be a Hilbert space and L : (I1(H), ‖ · ‖1) → (I1(H), ‖ · ‖1) be a CPTP
map. Then ‖L‖ = sup‖η‖1≤1 ‖L(η)‖1 = 1, i.e. L is a contraction.

Remark. For the initiated: this proof is simply an application of the Russo-Dye theorem.

Proof. Recall that the topological dual of trace class operators is the set of bounded operators:
(I1(H), ‖ · ‖1)∗ = (B(H), ‖ · ‖) [RS81, Theorem VI.26], where ‖A‖ = supψ∈H, ‖ψ‖≤1 ‖Aψ‖. In
this duality, we identify A ∈ B(H) with the map η 7→ Tr(ηA). Then we have the Banach space
adjoint of L,

L∗ : (I1(H), ‖ · ‖1)∗ → (I1(H), ‖ · ‖1)∗
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so that for all A ∈ (I1(H), ‖ · ‖1)∗ and η ∈ (I1(H), ‖ · ‖1), we have

Tr(AL(η)) = A(L(η)) = L∗(A)(η) = Tr(L∗(A)η)

where on the far left and far right we have recalled our identification (I1(H), ‖·‖1)∗ = (B(H), ‖·
‖). If we take A = Id, then using that L is trace preserving, we have

Tr(η) = Tr(L(η)) = Tr(L∗(Id)η).

Since the map A 7→ Tr(A·) is an isometric isomorphism of B(H) → (I1(H), ‖ · ‖1)∗ and Id

satisfies Tr(Id · η) = Tr(η) for all η ∈ I1(H), we must have that L∗(Id) = Id, and thus L∗ is
unital. This map is also completely positive, as we can see from the following argument.
Let n ∈ N. If A ∈ B(H⊗ Cn) has A ≥ 0, then for all η ∈ I1(H⊗ Cn),

(L∗ ⊗ Idn)(A)(η) = Tr((L∗ ⊗ Idn)(A)η) = Tr(A(L⊗ Idn)(η)).

Let us choose η = |ψ〉 〈ψ| = 〈ψ, ·〉ψ for ψ ∈ H ⊗ Cn. Then η is a rank one projection and
positive semi-definite. Then

〈ψ, (L∗ ⊗ Id)(A)ψ〉 = Tr((L∗ ⊗ Idn)(A)η) = Tr(A(L⊗ Idn)(η))

= Tr(A1/2[(L⊗ Idn)(η)]1/2[(L⊗ Idn)(η)]1/2A1/2)

= Tr(([(L⊗ Idn)(η)]1/2A1/2)∗[(L⊗ Idn)(η)]1/2A1/2) ≥ 0

where we have used that L is completely positive map, so that L ⊗ Idn(η) is positive semi-
definite, and the fact that positive semi-definite operators admit positive semi-definite square
roots. Thus, L∗ : (B(H), ‖ · ‖)→ (B(H), ‖ · ‖) is completely positive.
Since (B(H), ‖ · ‖) is a C∗-algebra, we may apply the Russo-Dye theorem [RD66, Corollary

1] to conclude that because L∗ is a positive unital map, we must have ‖L∗‖ = 1. But since the
mapping T → T ∗ of operators to their Banach space adjoints is an isometric isomorphism
[RS81, Theorem VI.2], we have ‖L‖ = ‖L∗‖ = 1.

Remark. This proof also shows us that 1 ∈ sp(L∗) = sp(L). Thus, 1 is an eigenvalue of Lk.
On the other hand, if we equip I1(HS) with the Hilbert Schmidt norm ‖ · ‖2 induced by

the inner product (A,B) 7→ Tr(A∗B), we do not in general have that Lk is a contraction. In
fact, Lk being a contraction in the uniform norm induced by ‖ · ‖2 is equivalent to Lk(Id) =

Id [PWPR06]. Additionally, since Lk is positive, Lk(η)∗ = Lk(η∗) ([JOPP12, Ch. 2]) and
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consequently sp(Lk) = sp(Lk), i.e., the spectrum of Lk is symmetric about the real axis.

1.3.1 An example

BEFORE MOVING ON, let us consider an example, the simplest non-trivial RIS. We will return
to this example throughout this report. In this case, both the system and probes are 2-level
systems, so HS = HEk ≡ HE = C2. We choose Hamiltonians hS = Ea∗a and hEk ≡ hE = E0b

∗b

where a/a∗, respectively b/b∗ are the annihilation/creation operators for S, resp. E . That is,
choosing the basis (ground state, excited state), we have

a = b =

(
0 1

0 0

)
, a∗ = b∗ =

(
0 0

1 0

)
, a∗a = b∗b =

(
0 0

0 1

)
.

We will consider two choices of potential; in either case, we will take the potential to be the
same for each interaction. The full dipole interaction is given by

vFD =
1

2
(a∗ + a)⊗ (b∗ + b) =

1

2
(a⊗ b+ a∗ ⊗ b+ a⊗ b∗ + a∗ ⊗ b∗).

If we drop the two “counter-rotating” terms a∗ ⊗ b∗ and a ⊗ b, we obtain the rotating wave
approximation

vRW =
1

2
(a∗ ⊗ b+ a⊗ b∗).

This is a common approximation in the regime |E − E0| � min{E,E0} and λ � |E0|. This
potential has the property that it commutes with the total number operator

Ntot = a∗a⊗ Id + Id⊗ b∗b.

This can be checked by hand, although by inspection we have the physical interpretation that
either a quanta of particle is created on the system and annihilated on the probe or vice-versa,
so the total number of quanta is preserved.
In these examples then, the only parameter which will change from probe to probe is the in-

verse temperature βk. In the rotating wave case, we may compute Lk (as defined in eq. (1.10))
by diagonalizing h using [h,Ntot] = 0. The results of this are shown in Example 2.4 of [BJM14].
Computationally the full dipole case is much more complicated. However, using Mathematica
to perform the symbolic manipulation, we may compute matrix representations of Lk in either
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case (see [Han16] for the code). We identify I1(HS) ∼= Mat2×2(C) ∼= C4 via

(
a b

c d

)
7→




a

b

c

d




where the basis of the matrices is (ground state, excited state) basis from earlier. Then we ob-
tain LRW

k (Lk when vk ≡ vRW) to be




(cos(ντ)−1)λ2

2(1+eE0βk)ν2
+ 1 0 0 − eE0βkλ2(cos(ντ)−1)

2(1+eE0βk)ν2

0 α 0 0

0 0 β 0

λ2 sin2( 1
2
ντ)

(1+eE0βk)ν2
0 0

2ν2+eE0βk(2ν2+λ2 cos(ντ))
2(1+eE0βk)ν2



,

where

α :=
e−

1
2
i(E0+E+ν)τ ((−1 + eiντ )E0 + E + eiντ (ν − E) + ν)

2ν
,

β :=
e−

1
2
i(−E0−E+ν)τ (−eiντE0 + E0 − E + eiντ (E + ν) + ν)

2ν
,

and ν =
√

(E0 − E)2 + λ2 > 0. We also find in the case vk ≡ vFD,

LFD
k =



eE0βk
(
2(E0+E)2+λ2+λ2 cos(ητ)

)
η2

+
2(E0−E)2+λ2+λ2 cos(ντ)

ν2

2
(
1+eE0βk

) 0 0

λ

(
− 2e−E0βkλ(cos(ητ)−1)

η2
− 2λ(cos(ντ)−1)

ν2

)
4
(
1+e−E0βk

)
0

C
0

0 0

λ

(
− 2λ(cos(ητ)−1)

η2
− 2e−E0βkλ(cos(ντ)−1)

ν2

)
4
(
1+e−E0βk

) 0 0

e−E0βk
(
2(E0+E)2+λ2+λ2 cos(ητ)

)
η2

+
2(E0−E)2+λ2+λ2 cos(ντ)

ν2

2
(
1+e−E0βk

)


,

where

C =



(
iη cos

(
ητ
2

)
+(E0+E) sin

(
ητ
2

))(
(E0−E) sin

(
ντ
2

)
−iν cos

(
ντ
2

))
√
E4

0+2
(
λ2−E2

)
E2

0+
(
E2+λ2

)2 λ2 sin
(
ητ
2

)
sin
(
ντ
2

)
√
E4

0+2
(
λ2−E2

)
E2

0+
(
E2+λ2

)2
λ2 sin

(
ητ
2

)
sin
(
ντ
2

)
√
E4

0+2
(
λ2−E2

)
E2

0+
(
E2+λ2

)2 e
− 1

2
iντ (−eiντE0+E0−E+ν+eiντ (E+ν)

)(
η cos

(
ητ
2

)
+i(E0+E) sin

(
ητ
2

))
2

√
η2ν2


,

and η =
√

(E + E0)2 + λ2. We include these matrix representations here for completeness and
concreteness. This explicit form for the reduced dynamics of this repeated interaction system
with the full dipole interaction is probably novel; perhaps it might be of use to others.



2
Rising action

In section 2.1, we will tie together Landauer’s Principle, adiabatic limits, and repeated inter-
action systems. From there, we will attempt to consider two simple systems of interest in sec-
tion 2.2. This investigation will motivate the tools and results of the rest of this report.

2.1 Formulation of Landauer’s Principle for repeated interaction systems

WE HAVE THREE subjects to reconcile. First, we’ll discuss Landauer’s bound in an RIS con-
text. Then, motivated by saturation of Landauer’s bound, we’ll interpret the adiabatic limit of
repeated interaction systems.
During each step, an RIS obeys unitary time evolution in exactly the same setup as that of

Landauer’s Principle (at least, as formulated in section 1.1). Thus, we may define at each step
the change in entropy of the system

∆SS,k = S(ρk−1)− S(ρk),

and the change of energy of the probe

∆QE,k = Tr(hEkξ
f
k)− Tr(hEkξ

i
k),

where ξfk = TrHS (Ukρk−1 ⊗ ξikU∗k ) is the final state of the kth probe. As before, these quantities
are related by the balance equation

∆SS,k + σk = βk∆QE,k, (2.1)
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where σk is the entropy production defined as

σk := S
(
Uk(ρk−1 ⊗ ξik)U∗k |Lk(ρk−1)⊗ ξik

)
.

Note σk ≥ 0. If consider T steps, we may sum over k to obtain

T∑

k=1

∆SS,k +
T∑

k=1

σk =
T∑

k=1

βk∆Qk.

Since σk ≥ 0 for each k, we have

T∑

k=1

∆Sk ≤
T∑

k=1

βk∆Qk

which is Landauer’s bound in an RIS setup. In particular, we are interested in the case of equal-
ity, which occurs when

∑T
k=1 σk = 0. Since each σk ≥ 0, we must then have σk ≡ 0.

LET US NOTE here that alternatively, we could describe this process in the large Hilbert space
of the entire chain up to step T along with the small system. On this space, time evolution at
step k is given by

Ũk = e−iτ1hE1 ⊗ · · · ⊗ e−iτk−1hEk−1 ⊗ Uk ⊗ e−iτk+1hEk+1 ⊗ · · · ⊗ e−iτT hET ,

that is, the free evolution on each Ej for j 6= k, and unitary evolution according to Uk as de-
fined in eq. (1.9), omitting tensor products with the identity operator. Then

Ũtot = ŨT ŨT−1 · · · Ũ1

is the joint time evolution operator from the first step to the end of step T . Define

Ltot(ρ) := TrE1,E2,...,ET
(
Ũtot(ρ⊗ ξE1,...,ET )Ũ∗tot

)

where ξE1,...,ET = ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξT . Then we have

T∑

k=1

σk = S(Ũtot(ρ
i ⊗ ξE1,...,ET )Ũ∗tot|Ltot(ρ

i)⊗ ξE1,...,ET )

by direct computation. In this way, we may delay tracing out the probes until the end of the
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process. If we consider our system and chain of probes interacting through the unitary opera-
tor Ũtot, the final state of the system is

ρ
1-step
T := Ltot(ρ

i) = ρT

where we use the 1-step superscript to indicate we are considering time evolution by Ũtot and
are tracing out the probes at the end. Since the change entropies

∆S
1-step
S := S(ρi)− S(ρ

1-step
T ) =

T∑

k=1

∆Sk

telescope, we may sum the balance equation eq. (2.1) to obtain

∆S
1-step
S + σ1-step =

T∑

k=1

βk∆QE,k,

defining

σ1-step := S(Ũtot(ρ
i ⊗ ξE1,...,ET )Ũ∗tot|Ltot(ρ

i)⊗ ξE1,...,ET ) =
T∑

k=1

σk.

Thus, we may model the process as occurring via unitary time evolution. This is a concrete
manifestation of an idea described well by Michael Wolf [Wol12, p. 7]:

[T]he division of a physical process into preparation and measurement is ambiguous. . . but,
fortunately, in the case of quantum mechanics predictions do not depend on this choice.

One may wonder then why the considerations of RIS here di�er from those of Landauer’s
Principle in the case of a small system interacting with an infinitely extended thermal reservoir
via unitary time evolution, as remarked on at the end of section 1.2 ([JP14]). The key di�er-
ences here are the state of the chain

ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξT

which in general is not a KMS state for the probes’ free Hamiltonian at a single temperature β,
and the specific unitary dynamics

Ũtot = ŨkŨk−1 · · · Ũ1

which reflect that the chain interacts with the system one probe at a time. Since this operator
depends on the properties of the first T environments, it is not clear how to control its spectral
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properties as T → ∞ in order to apply an adiabatic theorem. Instead, it is more natural to use
the special structure of the RIS system and model the system’s evolution by the operators Lk.

NEXT, WE WISH to formulate an adiabatic limit of an RIS. At each step, could replace Uk with
the solution to the rescaled Schrödinger’s equation corresponding to the Hamiltonian hS +

hEk + λvk. This would consider the RIS to be a sequence of essentially unrelated adiabatic
processes, each step of which proceeds infinitely slowly and takes infinite time. There is little
to say here; each step simply consists of the well-studied adiabatic time evolution of a small
system interacting with a thermal reservoir. In particular, Landauer’s principle in this context is
thoroughly understood [JP14].
Instead, we’ll try to formulate an adiabatic process natural to RIS. Given

[0, 1] 3 s 7→ hE(s), [0, 1] 3 s 7→ β(s), [0, 1] 3 s 7→ v(s)

C2 functions, we’ll define an RIS process with respect to a (fixed, large) adiabatic parameter T
by sampling:

hE,k,T = hE

( k
T

)
, βk,T = β

( k
T

)
, vk,T = v

( k
T

)
, k = 1, 2, . . . , T. (ADRIS)

In this setup, the chain consists of T probes. Thus, for each T , we have an RIS consisting of a
system S (with Hilbert space HS), a chain of probes {Ek}Tk=1 (with identical associated Hilbert
spaces HE,k ≡ HE ), and parameters {hE,k,T , βk,T , vk,T} chosen according to (ADRIS), as well
as fixed parameters {hS , τ, λ, ρi}. That an RIS is of this form will be known as the assumption
(ADRIS), short for adiabatic RIS. The limit T → ∞ is a double limit: we consider interac-
tions with T probes, whose parameters from step to step change by O(1/T ) by the mean value
theorem. We require the functions hE(s), β(s), v(s) to be C2 instead of C1 so that the second
di�erences, e.g.

(βk+1,T − βk,T )− (βk,T − βk−1,T ),

are O(T−2). We will use this assumption in section 3.2 to apply a discrete time non-unitary
adiabatic theorem to RIS. Since the Hamiltonians of the probes, the temperatures of the probes,
and the interaction Hamiltonians each depend on T , the change in entropy ∆SS,k,T of the sys-
tem at each step, the change in energy ∆QE,k,T of each probe, and the entropy production σk,T
each depend on T . We again have the balance equation eq. (2.1) at each step, but now each
parameter depends on T :

∆SS,k,T + σk,T = βk,T∆QE,k,T . (2.2)
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We are interested in

σk,T := S
(
Uk,T (ρk−1,T ⊗ ξik,T )U∗k,T |Lk,T (ρk−1,T )⊗ ξik,T

)
(2.3)

and in particular, the limit T →∞ of σtotT :=
∑T

k=1 σk,T .

NOTE THAT COMPUTATIONALLY the step-wise structure of the RIS only comes to play in
the sum σT :=

∑T
k=1 σk,T and in computing the state of the system at a given step. At the

level of an individual step of the RIS process however, the parameters are constant or sam-
pled at a single point from a C2 function; thus, regarding σk,T as a function of the parameters
{hS , τ, λ, ρi, hEk,T , βk,T , νk,T} we can substitute the k, T dependence for s dependence, and con-
sider σ(s). In this language, σtotT =

∑T
k=1 σ(k/T ). Likewise, we may consider L(s) instead of

Lk,T , or other quantities which depend on k and T via k/T only. We should be clear that the
functional notation L(s) does not reflect a continuity of the underlying physical process; sim-
ply, for each s we have a choice of parameters from which we can generate a step of an RIS
process with corresponding reduced dynamics L(s).

2.2 A first attempt

RECALL OUR EXAMPLE from section 1.3.1, with v = vRW. Since HS = HE = C2, we may
interpret the system and each probe as being a qubit (2-level quantum system).
Can we determine σk,T ? Given a step k, we know all the parameters to generate Uk,T and

compute Lk,T . But for some large k, we have the task of determining

ρk−1,T = Lk−1,TLk−2,T · · · L1,Tρ
i.

Given the matrix representation from section 1.3.1, theoretically we could compute this state
for any fixed step k, but we have little hope of a closed form. This motivates a consideration of
the spectral properties of Lk,T . From our computation of a matrix form of Lk,T in section 1.3.1,
we may compute the eigenvalues and eigenstates (see [Han16] for the code). We obtain for
eigenvalues θ1, θ2, θ3,

Lk,T (a) = θ1a, Lk,T (a∗) = θ2a∗, Lk,T (Id− 2a∗a) = θ3(Id− 2a∗a)

as well as the eigenvalue one: Lk,T (ρβ∗k,T ) = ρβ∗k,T where ρβ∗k,T is the Gibbs state at inverse tem-
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perature β∗k,T := E0

E
βk,T , namely

ρβ∗ =
exp(−β∗k,ThS)

Tr(exp(−β∗k,ThS))
. (2.4)

We have

θ1 =
e−

1
2
iτ(E0+E+ν) (E0 (−1 + eiντ ) + (ν − E)eiντ + E + ν)

2ν
,

θ2 =
e−

1
2
iτ(−E0−E+ν) (−E0 (−1 + eiντ ) + (ν + E)eiντ − E + ν)

2ν
,

θ3 =
2(E0 − E)2 + λ2 cos(ντ) + λ2

2ν2
,

where, as before, ν =
√

(E − E0)2 + λ2. Note that these eigenvalues are independent of βk,T
and thus of k and T . In fact, θ2 is θ1 after the substitutions E0 → −E0, E → −E. Thus, θ1 6= θ2

unless θ1 = f(E,E0) for some even function of E and E0; since we may write θ1 as a power
series in, say, E with non-zero odd terms, this must enot be the case. Similarly, for all but a
countable set of parameters, θ1 and θ2 have imaginary components, whereas for every choice of
parameters, θ3 is real, and for ντ 6∈ 2πZ, is strictly less than one. We will assume these restric-
tions. Then Lk,T has only simple eigenvalues, and we have that

max
j=1,2,3

|θj| ≤
(

1− λ2

ν2
sin2 ντ

2

)
=: ` < 1.

Then we may write

Lk,T = P +
3∑

i=1

θiQi (2.5)

the Jordan form of Lk,T , where Qi is the eigenprojection associated to θi. Then, using QjP =

PQj = QjQj′ = 0 for j 6= j′,

Lnk,T = P +
3∑

j=1

(θj)nQj.

But since |θj| < ` < 1 the terms in the sum vanish exponentially fast. Thus, we see repeated
applications of Lk,T to a state will drive it exponentially quickly towards the invariant state
ρβ∗k,T . We will return to this particular property in section 5.3.1.
This gives a hint to a possible approach to computing σk,T : since we assume successive probes

are close together (in some parameter space, at least), perhaps Lk,TLk−1,T · · · L1,T acts similar to
Lnk,T . Then we might expect ρk−1,T ∼ ρk,T ∼ ρβ∗k,T . Since σk,T only depends on parameters at
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step k and on ρk−1,T , we would then have that σk,T approximately only depends on the param-
eters at step k. In this case, we could compute σk,T as a function of T, λ, τ, E,E0 and βk,T , and
see if σk,T → 0, and if so, how quickly.

Remark. For those disappointed with the use of the rotating wave approximation, rest assured
that its use here was not at all essential; with a di�erent choice of ` < 1 and a di�erent (count-
able) set of excluded parameters, we would recover the same exponential driving towards the
(di�erent) invariant state when considering, say, the full dipole interaction. In fact if we as-
sume only that L is some reduced dynamics with a unique invariant state which is the only
eigenvalue on the unit circle, then we may write

L = P +
∑

j

θjQj +Dj

where P is the projection onto the invariant state, the θj are the other eigenvalues, Qj their
eigenprojections, and Dj their eigennilpotents, in the language of [Kat76, Section I.5.4]. Set
dimHS = d; since there are at most d2 eigenvalues of L, the sum is finite. Then, using QjP =

PQj = QjQj′ = DjQj′ = QjDj′ = 0 for j 6= j′,

Lnk,T = P +
∑

j

(θjQj +Dj)n = P +

j∑

j=1

n∑

m=0

(
n

m

)
(θj)n−mQj(Dj)m

by the binomial theorem. Since the Dj are nilpotent operators on Cd2 , they have degree at
most d2, so for n ≥ d2,

Lnk,T = P +
∑

j

d2∑

m=0

(
n

m

)
(θj)n−mQj(Dj)m.

Since
(
n
m

)
≤ c1n

d2 and (θj)n−m ≤ c2(maxj |θj|)n−d2 for constants c1, c2 > 0 and large n, the at
most d4 terms in the sums tend to zero exponentially fast (since maxj |θj| < 1). Thus, even in
a fairly general case, iterating a single choice of Lk,T provides a strong control on the resulting
state, just as with the example system with the RW approximation. For further discussion, see
[BJM14, Section 3].
We will return to both the full dipole interaction example and the rotating wave example,

and in fact compute the entropy production σk,T in each case (to some kind of leading order).
See section 5.3 for the rotating wave case, and section 6.1 for the full dipole interaction.



3
Turning point: An adiabatic theorem

To proceed past the explorations of the section 2.2, we would like a way to approximate the
entropy production at each step by a quantity which only depends on the parameters at that
step, and not all of the steps before it. The entropy production

σk,T = S(Uk,Tρk−1,T ⊗ ξik,T U∗k,T |ρk,T ⊗ ξi)

depends both on the parameters at step k and on ρk−1,T = Lk−1,T · · · L0,Tρ
i. We will thus first

try to approximate ρk−1,T by a state depending on only the parameters at step k, and then learn
how to propagate this uncertainty through the relative entropy function. In this chapter, we’ll
formulate a discrete time non-unitary adiabatic theorem in section 3.1, and then apply the
theorem to repeated interaction systems in section 3.2. In chapter 4, we will apply perturbation
theory to the relative entropy function to find a leading order term, and then in chapter 6 put
these results together to compute the entropy production of repeated interaction systems.

3.1 Discrete non-unitary adiabatic theorem (DNUAT)

OUR SETTING WILL BE a finite-dimensional Banach space X , with a norm ‖ · ‖. We consider
an operator-valued function

[0, 1] 3 s 7→ L(s) ∈ B(X).

Remark. We do not assume here that L(s) is the reduced dynamics of an RIS, nor an underly-
ing Hilbert space structure.
Here and in what follows, we say a function f on [0, 1] is C2 on [0, 1] if f is continuous on

[0, 1], twice continuously di�erentiable on (0, 1), and lims↓0 f
′(s), lims↑1 f

′(s), lims↓0 f
′′(s) and

lims↑1 f
′′(s) exist and are finite.
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We consider the following hypotheses:

H1. For each s ∈ [0, 1], L(s) is a contraction, i.e. ‖L(s)‖ ≤ 1.

H2. There is a uniform gap ε > 0 such that, for s ∈ [0, 1] |ej(s) − ei(s)| > 2ε for any peripheral
eigenvalues ej(s) 6= ei(s) in spL(s) ∩ S1.

H3. Let P j(s) be the spectral projector associated with ej(s) ∈ spL(s) ∩ S1, and P (s) =∑
j P

j(s) the peripheral spectral projector. The map s 7→ LP (s) := L(s)P (s) is C2 on [0, 1].

H4. There is a uniform bound on the strictly contracting part of L(s), i.e. if Q(s) := Id− P (s),

` := sup
s∈[0,1]

‖L(s)Q(s)‖ < 1.

3.1.1 Implications of H1–H4.

LET US SEE what we can get with these assumptions. First, we have a useful lemma.

Lemma 3.1. The peripheral eigenvalues of a contraction L on a finite-dimensional Banach space X
are semi-simple.

Proof. Write L it its Jordan canonical form, L =
∑

i eiPi +Di, where each ei is an eigenvalue of
L, Pi is the associated eigenprojection, and Di the associated nilpotent, summed from i = 1 to
dimX . Let mi = orderDi, and m = max{mi : 1 ≤ i ≤ dimX}. Assume for some eigenvalue
ei with |ei| = 1 that mi ≥ 2, i.e., ei has an eigennilpotent. We wish to derive a contradiction,
implying Di ≡ 0.
Note that for n > m, using DiPj = PjDi = δijDi, and PiPj = PjPi = δijPi, a binomial

expansion yields

Ln =
∑

i

m∑

k=0

(
n

k

)
en−ki Pi(Di)

k.

The plan of attack is to use that the binomial coe�cient
(
n
k

)
becomes large, while eni stays on

the unit circle, and ‖Ln‖ ≤ ‖L‖n = 1.
Now, since Dmi−1

i 6= 0, for some vector v we have Dmi−1
i v 6= 0. Let n ∈ N large enough so

that n‖Dmi−1
i v‖ > ‖Dmi−2

i v‖ and n > m. Then, since L is a contraction,

‖Dmi−2
i v‖ ≥ ‖LnDmi−2

i v‖ =

∥∥∥∥∥
∑

j

m∑

k=0

(
n

k

)
en−kj PjD

k
jD

mi−2
i v

∥∥∥∥∥ .
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Note PjPi = 0 implies PjDmi−2
i v = PjPiD

mi−2
i v = 0 for i 6= j, so we have

‖Dmi−2
i v‖ ≥

∥∥∥∥∥
m∑

k=0

(
n

k

)
en−ki Pi(Di)

kDmi−2
i v

∥∥∥∥∥ .

But, by choice of mi, only two terms in the sum survive: k = 0 and k = 1:

‖Dmi−2
i v‖ ≥

∥∥eniDmi−2
i v + nen−1

i Dmi−1
i v

∥∥ .

Then, by reverse triangle inequality and using |ei| = 1,

‖Dmi−2
i v‖ ≥

∣∣∥∥Dmi−2
i v

∥∥− n
∥∥Dmi−1

i v
∥∥∣∣ ≥ n

∥∥Dmi−1
i v

∥∥ .

By our choice of v, we have
∥∥Dmi−1

i v
∥∥ 6= 0, hence

‖Dmi−2
i v‖∥∥Dmi−1
i v

∥∥ ≥ n

for all n large enough. This is a contradiction to our choice of n; moreover, we could take
n→∞, while the LHS remains bounded.

Remark. We saw that the reduced dynamics for qubits with the RW approximation was simple
in eq. (2.5); this lemma shows that in general, the peripheral reduced dynamics LP is always
semi-simple. With this in hand, we may proceed to extend di�erentiability to the individual
eigenvalues and eigenprojections.

Lemma 3.2. Assume H1 to H4. Then the peripheral eigenvalues ej(s) and eigenprojectors P j(s) of
LP (s) are C2 as functions of s on [0, 1].

Remark. The assumption H4 here may be weakened; see lemma 3.8.

Proof. By theorem A.9, the set of eigenvalues {ej(s)} is continuous in s. Since the peripheral
eigenvalues are isolated by assumption H2, we can parametrize them by continuous functions
s 7→ ej(s).
Next, as shown in [Kat76], if an operator-valued function T (s) is di�erentiable and invert-

ible in a neighborhood of s, then T−1(s) is di�erentiable in that same neighborhood, and

d

ds
T (s)−1 = −T (s)−1T ′(s)T (s)−1.



TURNING POINT: AN ADIABATIC THEOREM 27

Applying this to RP (s, z) := (z − LP (s))−1, we obtain that s 7→ RP (s, z) is twice di�erentiable
on any interval of [0, 1] on which z is not an eigenvalue of LP (s), using H3. Choose some
peripheral eigenvalue ej(s) and fix s0. From our gap and bound assumptions H2 and H4, there
exists a circle Γ and δ > 0 such that Γ encircles ej(s) for |s − s0| < δ, but stays a uniform
distance away from ei(s) for any i 6= j. Then for any s in the above neighborhood of s0, the
spectral projector onto ej(s) is equal to

P j(s) =
1

2iπ

∫

Γ

RP (s, z) dz,

and the preceding discussion shows that P j(s) is C2 on [0, 1].
Next, because ej(s) is semi-simple (using H1 and lemma 3.1), we may write

LP (s)P j(s) = ej(s)P j(s).

Again, fix s0. Since P j(s0) 6= 0, in a matrix representation of P j(s0) in some fixed basis, some
matrix element a(s) must be nonzero at s0: a(s0) 6= 0. But since P j(s) is C2, s 7→ a(s) is C2

and in particular continuous, so on a neighborhood of s0, a(s) 6= 0. Choosing the correspond-
ing matrix element b(s) of LP (s)P j(s), we have

b(s) = ej(s)a(s)

with a(s) 6= 0 on a neighborhood of s0. Then on that neighborhood,

ej(s) =
b(s)

a(s)

is C2.

Remark. In particular, there exists cp > 0 such that for all s ∈ [0, 1],

max

(∥∥∥∥
d2P (s)

ds2

∥∥∥∥ ,
∣∣∣∣
d2e(s)

ds2

∣∣∣∣ ,
∥∥∥∥

dP (s)

ds

∥∥∥∥ ,
∣∣∣∣
de(s)

ds

∣∣∣∣
)
≤ cP , (3.1)

and for some N ∈ N, we have

∀ s ∈ [0, 1], dimP (s) ≡ N (3.2)

by corollary A.4. Note by H2, N ≤ min
(

2π
ε
, dimX

)
.
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Now, for T ∈ N and 0 ≤ k ≤ T , we set

Lk,T := L(k/T ), Pk,T := P (k/T ), ejk,T := ej(k/T ).

Let us suppress the subscript T for the rest of the section.

Lemma 3.3. Assume H1, H2 and H4 and let P j
k be the eigenprojector corresponding to a peripheral

eigenvalue ejk of Lk and Pk =
∑

j P
j
k . Then

1. for each j , ‖P j
k‖ = 1, and ‖Pk‖ = 1, so that ‖PkLk‖ ≤ 1,

2. if in addition Lk is CPTP, then both Pk and PkLk are CPTP.

Proof. Omit the subscript k. Using that LP is simple, we may write

ējL =
∑

i

ējeiP i + ējLQ.

Then using P iP j = P jP i = δijP
i, we compute the ergodic sum

1

M

M−1∑

n=0

(ejL)n = P j +
1

M

∑

i 6=j

1− (ej.ei)M

1− (ej.ei)
P i +

1

M

M−1∑

n=0

(ej)n (LQ)n. (3.3)

where we have used the geometric series
∑n−1

k=0 r
k = 1−rn

1−r for |r| < 1. The LHS is a contrac-

tion:
∥∥∥ 1
M

∑M−1
n=0 (ejL)n

∥∥∥ ≤ 1
M

∑M−1
n=0 ‖L‖n ≤ 1. The second term is of the form 1

M
times a

bounded function ofM . For the third term, the spectral radius satisfies

lim
n→∞

‖(LQ)n‖1/n = ` < 1

so for ε > 0 such that ` + 2ε < 1, for some n0 and n ≥ n0, ‖(LQ)n‖ ≤ (` + ε)n < 1. Since
|ēj| = 1, we have the bound

∥∥∥∥∥
1

M

M−1∑

n=0

(ēj)n(LQ)n

∥∥∥∥∥ ≤
∥∥∥∥∥

1

M

n0∑

n=0

(ēj)n(LQ)n

∥∥∥∥∥+
1

M

M−1∑

n=n0+1

(`+ ε)n

≤ 1

M

∥∥∥∥∥
n0∑

n=0

(ēj)n(LQ)n

∥∥∥∥∥+
1

M

1

1− (`+ ε)
= O(M−1).

Hence, the third term vanishes withM as well. Thus, taking the norm of eq. (3.3), we obtain
‖P j‖ ≤ 1. Since P j is a projection, ‖P j‖ = ‖(P j)2‖ and ‖P j‖ ≥ 1.
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Next, we wish to show ‖P‖ = 1. let us write ej = e2πixj for xj ∈ R, j = 1, . . . , r. By Dirich-
let’s approximation theorem for each q ∈ R \ {0} there exists a set of integers {p1, p2, . . . , pr}
and nq ≥ q in N such that |nqxj − pj| ≤ 1

q
for all j = 1, . . . , r. Then,

(ej)nq = e2πpje2π(nqxj−pj) ≤ 1(1 + (nqxj − pj) +
1

2
exp(ζ)(nqxj − pj)2)

by Taylor’s theorem, where ζ ∈ (0, nqxj−pj); then exp(ζ) ≤ exp(1). Thus, (ej)nq = 1+O(1/q).
Then

Ln =
∑

j

(ej)nP j +QLn =⇒ Lnq = P +O(1/q) +QLn.

Now, consider an increasing subsequence (ñq)q of (nq)q. Then as before for ε > 0 such that
`+ 2ε < 1, we have for su�ciently large q, ‖QLñq‖ ≤ (`+ ε0)ñq . Thus,

‖Lñq − P‖ = O(1/q) + (`+ ε0)ñq → 0.

So limq→∞ Lñq = P . Thus, similarly to before, since L is a contraction, ‖P‖ = 1.
Lastly, if L is CPTP, then Lñq is CPTP for each ñq. Note that the composition of CPTP is

CPTP, because if at each step (complete) positivity is preserved and trace is preserved, then the
composite map preserves those properties. Then since Lñq → P , by proposition A.10, P is
CPTP as well. Then the composition LP is CPTP.

The arguments showing Lñq → P are from [Wol12]. We should also note that although
‖P j‖ = 1, these projectors may not be self-adjoint, since ‖·‖ is induced by a norm on a Banach
space, not a Hilbert space.

WE WILL PROCEED to state the main result of this chapter.

Theorem 3.4. If L(s) satisfies H1 to H4, then there exists constants T0 > 0 and CP > 0 depending
only on cP defined by eq. (3.1) and on N defined by eq. (3.2) such that for all T ≥ T0 there exists two
family of maps (Ak,T )k=1,...,T and (A†k,T )k=1,...,T with uniform bounds

sup
k=0,...,T

max(‖Ak,T‖, ‖A†k,T‖) ≤ N
(
1− c2

P

T 2
0

)−T0/2 (3.4)
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satisfying

A†k,T Ak,T = P0, Ak,T A
†
k,T = Pk,T ,

Ak,T P
j
0 = P j

k,T Ak,T , A†k,T P
j
k,T = P j

0 A
†
k,T , Ak,TQ0 = Q0A

†
k,T = 0,

and such that for all k ≤ T ,

‖Lk,TLk−1,T · · · L1,T − Ak,T‖ ≤
CP

T (1− `) + 2`k. (3.5)

Additionally,

‖Lk,TLk−1,T · · · L1,T − Ak,T − LQk,TLQk−1,T · · · LQ1,T‖ ≤
CP

T (1− `) . (3.6)

Remark. From the point of view of adiabatic approximations, eq. (3.5) is the central result of
this chapter: an approximation of adiabatically-stretched non-unitary time evolution from
time t = 0 to some discrete time t = kτ via an operator which intertwines with the spectral
projectors of the dynamics. While less satisfying, eq. (3.6) provides a useful description of the
2`k error for later use.

We will prove this result in two steps: first by approximating the reduced dynamics Lk,T · · · L1,T

by the peripheral reduced dynamics LPk,T · · · LP1,T in proposition 3.5. This is essentially a com-
binatorial result. Then we will approximate the peripheral dynamics by operators which in-
tertwine with the peripheral eigenprojectors in proposition 3.6; this is modeled on a uni-
tary discrete time adiabatic theorem by Tanaka [Tan11]. The construction of the families
(Ak,T )k=1,...,T and (A†k,T )k=1,...,T is detailed in section 3.1.3.

Remark. All statements of this chapter hold for X an infinite dimensional Banach space, as-
suming the peripheral eigenvalues ej(s) are isolated and the di�erentiability conditions are
understood in the norm sense. These assumptions imply that sups dimP (s)X < +∞.

3.1.2 Approximation by peripheral dynamics

Proposition 3.5. If L(s) satisfies H1 to H4, then there exists a constant CP depending only on cP
defined by eq. (3.1), such that for any T ≥ 1 and k ≤ T ,

‖Lk,TLk−1,T · · · L1,T − LPk,TLPk−1,T · · · LP1,TP0 − LQk,TLQk−1,T · · · LQ1,TQ0‖ ≤
CP

T (1− `) , (3.7)
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where we have defined LPn,T = Ln,TPn,T and LQn,T = Ln,TQn,T . Moreover, we have the bound

‖LQk,TLQk−1,T · · · LQ1,TQ0‖ ≤ 2`k. (3.8)

Remark. Note first that eq. (3.7) implies that for some operator A with ‖A‖ ≤ CP

T (1−`) , and the
definitions

L := Lk,TLk−1,T · · · L1,T , LP := LPk,TLPk−1,T · · · LP1,TP0, LQ := LQk,TLQk−1,T · · · LQ1,TQ0,

we have
L = LP + LQ + A.

Multiplying from the left and right by projectors Pn or Qn, for n = 0, k yields

max(‖PnLn · · · L1Q0‖, ‖QmLm · · · L1P0‖) ≤
2CP

T (1− `) , (3.9)

‖Lk,TLk−1,T · · · L1,TP0 − LPk,TLPk−1,T · · · LP1,TP0‖ ≤
CP

T (1− `) . (3.10)

Equation (3.9) shows that there is little transition from the Q0 subspace to the Pn subspace un-
der the action of the reduced dynamics, nor from P0 to Qm, for any n,m ∈ N. Moreover,
eq. (3.10) has the interpretation that the action of the reduced dynamics on an initial state in
the peripheral subspace is well approximated by the peripheral reduced dynamics. If the ini-
tial state is not in the peripheral subspace, then by eq. (3.8) we see the non-peripheral part is
exponentially suppressed, although not vanishing in the limit T →∞.

Proof. We may rewrite eq. (3.7) as

∥∥(LkLk−1 · · · L1 − LPk LPk−1 · · · LP1
)
P0 +

(
LkLk−1 · · · L1 − LQk LQk−1 · · · LQ1

)
Q0

∥∥ ≤ CP

T (1− `) .

Let us bound (
LkLk−1 · · · L1 − LPk LPk−1 · · · LP1

)
P0. (3.11)

For each 0 ≤ n ≤ k, we write Ln = LPn + LQn . This yields 2k terms, corresponding to a choice
of LPn or LQn for each 1 ≤ n ≤ k; since P0Q0 = Q0P0 = 0, the choice for n = 0 must be P0. In
addition to the term LQk LQk−1 · · · LQ1 P0, we identify four forms, corresponding to starting with
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P/Q and to ending with P/Q:

( ∏

a∈Ad

LQa
)( ∏

b∈Bd

LPb
)
. . .
( ∏

a∈A1

LQa
)( ∏

b∈B1

LPb
)
P0, (3.12)

( ∏

b∈Bd+1

LPb
)( ∏

a∈Ad

LQa
)( ∏

b∈Bd

LPb
)
. . .
( ∏

a∈A1

LQa
)( ∏

b∈B1

LPb
)
P0, (3.13)

( ∏

a∈Ad+1

LQa
)( ∏

b∈Bd+1

LPb
)
. . .
( ∏

a∈A2

LQa
)( ∏

b∈B2

LPb
)( ∏

a∈A1

LQa
)
P0, (3.14)

( ∏

b∈Bd+1

LPb
)( ∏

a∈Ad

LQa
)( ∏

b∈Bd−1

LPb
)
. . .
( ∏

a∈A2

LQa
)( ∏

b∈B2

LPb
)( ∏

a∈A1

LQa
)
P0, (3.15)

where d ≥ 1, and each An and Bn is a nonempty set of consecutive elements of {1, . . . , k} such
that the {An, Bm}n,m are a partition of {1, . . . , k}. The products are ordered as

∏

a∈{a0+1,...,a0+t}

LQa := LQa0+t . . .LQa0+1,
∏

b∈{b0+1,...,b0+t}

LPb := LPb0+t . . .LPb0+1.

The partition {An, Bm}n,m is also ordered in a particular sense: for eq. (3.12), for example,
maxBn = minAn − 1 for each 1 ≤ n ≤ d. The key fact is that for c = 2cP ,

‖PnQn−1‖ ≤ c/T, ‖QnPn−1‖ ≤ c/T. (3.16)

This follows from ‖Pn − Pn−1‖ ≤ cP/T by the mean value theorem and definition of cP
(eq. (3.1)). Then, e.g., PnQn−1 = (Pn − Pn−1)Qn−1, and ‖Qn−1‖ ≤ ‖Id− Pn−1‖ ≤ 2.
We also have that

‖
∏

a∈An

LQa ‖ ≤ `|An|, ‖
∏

b∈Bn

LPb ‖ ≤ 1,

using H4 and lemma 3.3. This norm bound along with the estimate ‖Q0‖ ≤ 2 yields eq. (3.8).
Additionally, ‖LQk LQk−1 · · · LQ1 P0‖ ≤ c`kT−1, and

‖(3.12)‖ ≤ (c/T )2d−1 `
∑
n |An|, ‖(3.13)‖ ≤ (c/T )2d `

∑
n |An|,

‖(3.14)‖ ≤ (c/T )2d+1 `
∑
n |An|, ‖(3.15)‖ ≤ (c/T )2d `

∑
n |An|.

Thus, it remains to count the number of terms of each form; we’ll only consider the case (3.12)
as the others are very similar. The set of valid choices of d is {1, . . . , bk

2
c}. If we constrain∑

n |An| = α, then we need α ≥ d and k − α ≥ d as
∑

n |Bn| = k − α. Given such an α
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and d, the only remaining freedom is in choice of |A1|,. . . , |Ad| and |B1|, . . . , |Bd|, since once
the cardinalities are chosen, the particular elements are determined by the ordering. There are
respectively

(
α−1
d−1

)
and

(
k−α−1
d−1

)
such choices. We may see this with the “stars and bars” argu-

ment: if we write the elements of
⋃
nAn as stars

? ? ? ? ? · · · ?

then our task is to put d−1 bars between the stars and thus partition the elements into A1, . . . , Ad

(since the ordering is fixed).
?
A1

| ? ? ?
A2

| ? · · · ?

There are α − 1 gaps between the stars of which we must choose d − 1 to place bars. Parti-
tioning

⋃
nBn follows the same logic. Thus, the number of terms of form (3.12) at fixed d with∑

n |An| = α is

(
α− 1

d− 1

)(
k − α− 1

d− 1

)

and each such term has norm
(
c
T

)2d−1
`α as estimated above. Thus, the sum of all terms of the

form (3.12) has norm at most

bk
2
c∑

d=1

k−d∑

α=d

( c
T

)2d−1

`α
(
α− 1

d− 1

)(
k − α− 1

d− 1

)

=
T

c

k−1∑

α=1

`α
inf(α,k−α)∑

d=1

( c2

T 2

)d(α− 1

d− 1

)(
k − α− 1

d− 1

)
(3.17)

≤ T

c

k−1∑

α=1

`α
( α∑

d=1

( c2

T 2

)d/2(α− 1

d− 1

))( k−α∑

d=1

( c2

T 2

)d/2(k − α− 1

d− 1

))

≤ c

T

(
1 +

c

T

)k−2
k−1∑

α=1

`α ≤ c exp c

T (1− `) , (3.18)

We can expand the other forms (3.13) to (3.15) similarly, and obtain the same type of upper
bound. To bound

(LkLk−1 · · · L1 − LQk LQk−1 · · · LQ1 )Q0

we may again substitute Ln = LPn + LQn and obtain the term LPk LPk−1 · · · LP1 Q0 plus terms of the
forms (3.12) to (3.15) with P and Q interchanged. We note ‖LPk LPk−1 · · · LP1 Q0‖ ≤ c/T and we
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may bound the terms of the other forms in the same way as above.

Remark. We see that following this method of proof, we cannot obtain a better dependence on
T than 1/T . The expansion of eq. (3.11) via Ln = LPn + LQn yields terms

LQk · · · LQn+1LPn · · · LP1 P0

which have exactly one QnPn−1 part yielding a 1/T factor. Moreover, there are k − 1 such
terms; since we may have k = T , the assumption ‖LQ‖ ≤ ` < 1 is essential.
Additionally, the dependence on ` in eq. (3.18) will be important in section 5.4, but may not

be improved substantially. In fact, eq. (3.17) is bounded below by the term with d = 1, namely
c
T

∑k−1
α=1 `

α = c`(1−`k−1)
T (1−`) , which has the essential features of the bound.

3.1.3 Approximation of peripheral dynamics

THE RESULTS of the previous section, namely proposition 3.5, motivates us to restrict our
attention to LPk,TLPk−1,T · · · LP1,TP0. This operator is a product of contractions, each with all
eigenvalues on the unit circle.
In order to construct the families of operators (Ak,T )k=0,...,T and (A†k,T )k=0,...,T , we will con-

struct several intermediate families. First, define (Wk,T )k=0,...,T and (W †
k,T )k=0,...,T byW0,T =

W †
0,T = P0,T , and

Wk+1,T :=
∑

j

P j
k+1,TP

j
k,T

(
Id− (P j

k+1,T − P j
k,T )2

)−1/2
,

W †
k+1,T :=

∑

j

P j
k,TP

j
k+1,T

(
Id− (P j

k+1,T − P j
k,T )2

)−1/2
.

(3.19)

Note for an operator R with sprR < 1, the operator (Id − R) is invertible, and its inverse is
positive definite, thus admitting a unique positive definite square root.
By lemma 3.2 and the mean value theorem, ‖P j

k+1,T − P j
k,T‖ ≤ cP

T
, so the operatorsWk+1,T

andW †
k+1,T are well-defined for T ≥ T0(cP ) := 2cp (that is, the spectral radius condition is

met). Each (P j
k+1,T − P j

k,T )2 commutes with both P j
k,T and P j

k+1,T (as shown in the proof of
lemma A.3), yielding

Wk+1,TP
j
k,T = P j

k+1,TP
j
k,T (Id− (P j

k+1,T − P j
k,T )2)−1/2P j

k,T = P j
k+1,TWk+1,T .
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We also have the identity

P j
k,T (Id− (P j

k+1,T − P j
k,T )2) = P j

k,T (Id− P j
k+1,T − P j

k,T + P j
k+1,TP

j
k,T + P j

k,TP
j
k+1,T )

= P j
k,TP

j
k+1,TP

j
k,T .

which we may use to compute

W †
k+1,TWk+1,T =

∑

j

P j
k,TP

j
k+1,TP

j
k,T (Id− (P j

k+1,T − P j
k,T )2)−1

=
∑

j

P j
k,T (Id− (P j

k+1,T − P j
k,T )2)(Id− (P j

k+1,T − P j
k,T )2)−1 = Pk,T .

By interchangingW †
k,T andWk,T , we find similar results; all together, we have

Wk+1,T P
j
k,T = P j

k+1,T Wk+1,T , W †
k+1,T P

j
k+1,T = P j

k,T W
†
k+1,T ,

W †
k+1,T Wk+1,T = Pk,T , Wk+1,T W

†
k+1,T = Pk+1,T .

(3.20)

Remark. The operatorW †
k+1,T is a pseudo-adjoint ofWk+1,T , in the sense that we would have

W ∗
k+1,T = W †

k+1,T if the spectral projectors P j
k,T were self-adjoint. We continue with this nota-

tion throughout this section, and every operator Y † will be a pseudo-adjoint of Y , depending
on {P j

k,T}k,j .

From these families, we have the natural constructions K0,T := K†0,T := Id, and

Kk,T := Wk,T . . .W1,T , K†k,T := W †
1,T . . .W

†
k,T . (3.21)

From eq. (3.20), we have

Kk,T P
j
0 = P j

k,T Kk,T , K†k,T P
j
k,T = P j

0 K
†
k,T ,

K†k,T Kk,T = P0, Kk,T K
†
k,T = Pk,T .

(3.22)

These intertwining relations have the interpretation that Kk,T accounts for the motion of the
spectral projections of the dynamics from step 1 to step k.
We may bound their norm using that P j

k,TP
j′

`,T = 0 for j 6= j′ and any k, `, so by eq. (3.21)
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we have for T ≥ T0 and any k = 0, . . . , T ,

‖Kk,T‖ ≤
∥∥∥∥∥
∑

j

k−1∏

`=0

P j
`+1,TP

j
`,T

(
Id− (P j

`+1,T − P j
`,T )2

)−1/2

∥∥∥∥∥

≤ N

∥∥∥∥∥
k−1∏

`=0

(
Id− (P j

`+1,T − P j
`,T )2

)−1/2

∥∥∥∥∥

≤ N
k−1∏

`=0

(
1− (cp/T )2

)−1/2
= N

(
1− (cp/T )2

)−(k−1)/2

≤ N
(
1− (cp/T )2

)−T/2
.

Since K†k,T is bounded in the same way, we have

sup
k=0,...,T

max(‖Kk,T‖, ‖K†k,T‖) ≤ Nmax(1− c2
P

T 2
)−T/2. (3.23)

Next, define two families (Φk,T )k=1,...,T and (Φ†k,T )k=1,...,T by Φ0,T = Φ†0,T = P0,T , and

Φk,T =
∑

j

( k∏

n=1

ejn,T
)
P j

0 , Φ†k,T =
∑

j

( k∏

n=1

ejn,T
)
P j

0 . (3.24)

These operators have Φk,TΦ†k,T = P0 = Φ†k,TΦk,T , and have the interpretation of accounting
for the motion of the phase within each spectral subspace of the dynamics from step 1 to step k.
The construction is finished by setting Ak,T = Kk,TΦk,T and A†k,T = Φ†k,TK

†
k,T . Note that by

eq. (3.22),
Ak,TA

†
k,T = Pk, A†k,TAk,T = P0. (3.25)

Remark. The bound eq. (3.4) in theorem 3.4 follows from the bound eq. (3.23) using that the
RHS is monotone decreasing with T .

With this construction in hand, we are ready to state the result of this section.

Proposition 3.6. If L(s) satisfies H1 to H4, then there are positive constants T0 and CP depend-
ing only on cP defined by eq. (3.1) and N defined by eq. (3.2) such that the adiabatic approximation
(Ak,T )k defined above satisfies for all T ≥ T0,

‖LPk,TLPk−1,T · · · LP1,TP0 − Ak,T‖ ≤ CP/T, (3.26)

where Ak,TP j
0 = P j

k,T , Ak,TQ0 = 0, and ‖Ak,T‖ is uniformly bounded in k, T for k ≤ T .
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The proof follows a similar strategy to that of [Tan11], a unitary discrete-time adiabatic
theorem. To simplify notation, we will omit T subscripts, and say an expression in OP (T−α)

if there exists a numeric constant C depending on cP and N only such that the expression is
bounded by C · T−α. In this language, we wish to show

LPk LPk−1 · · · LP1 P0 −KkΦkP0 = OP (T−1). (?)

If we define
Ωk := Φ†kK

†
kLPk LPk−1 · · · LP1 P0

then (?) is equivalent to
Ωk = P0 +OP (T−1) (??)

by eq. (3.25) and eq. (3.23). Note that Ω0 = P0, P0Ωk = ΩkP0 = Ωk, and that Ωk is bounded
uniformly in k by eq. (3.4).
Define Θk := Φ†kK

†
kLPkKk−1Φk−1 so that Ωk = ΘkΩk−1 and Θ0 = P0. Then we may write the

telescoping sum

Ωk = P0 +
k∑

n=1

ΘnΩn−1 − Ωn−1 = P0 +
k∑

n=1

(Θn − P0)Ωn−1.

If we define Vn :=
∑n

m=1(Θm − P0) and V0 := 0, we have

Ωk = P0 +
k∑

n=1

(Vn − Vn−1)Ωn−1.

Now, we are in a position to use summation by parts:

Ωk = P0 + VkΩk−1 −
k−1∑

n=1

Vn(Ωn − Ωn−1) = P0 + VkΩk−1 −
k−1∑

n=1

Vn(Θn −Θ0)Ωn−1.

Now, we will show that each Θn − Θ0 = OP (T−1) in claim 1, and Vn = OP (T−1) in claim 2,
which proves (??), as the sum is over k − 1 ≤ T terms.

Claim 1. We have

1. Q0(Θk −Θ0) = (Θk −Θ0)Q0 = 0,

2. P j
0 (Θk −Θ0)P `

0 = OP (T−1) for any j 6= `,

3. P j
0 (Θk −Θ0)P j

0 = OP (T−2) for any j .
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Remark. This claim shows Θk−Θ0 = OP (T−1), since we may write Id = Q0 +
∑

j P
j
0 to obtain

Θk −Θ0 =
(∑

j

P j
0 +Q0

)
(Θk −Θ0)

(∑

`

P `
0 +Q0

)
=
∑

j,`

P j
0 (Θk −Θ0)P `

0 .

Here, we only need P j
0 (Θk −Θ0)P j

0 = OP (T−1), but the sharper estimate is used in claim 2.

Proof of claim 1. The first relation follows from Q0Φk† = Φk−1Q0 = 0 and the definition of Θk

and Θ0. For the second and third, fix j and `. Then

P j
0 ΘkP

`
0 = P j

0A
†
kLPk Ak−1P

`
0 = A†kP

j
kLPk P `

k−1Ak−1

Now, LPk =
∑

j′ P
j′

k e
j′

k , so P
j
kLPk = P j

ke
j
k. Then, P

j
0 (Θk −Θ0)P `

0 = ejkA
†
kP

j
kP

`
k−1Ak−1.

Now, if j 6= ` we have

‖P j
kP

`
k−1‖ = ‖(P j

k − P j
k−1)P `

k−1‖ ≤ ‖P `
k−1‖ · ‖P j

k − P j
k−1‖ = OP (T−1),

hence P j
0 (Θk − Θ0)P `

0 = OP (T−1), using that P j
0 Θ0P

`
0 = P j

0P
`
0 = 0. On the other hand, if

j = `, we have

P j
0 ΘkP

`
0 = ejkA

†
kP

j
kP

j
k−1Ak−1 = A†kP

j
kW

†
kWkKk−1e

j
kΦk−1P

j
0 = A†kP

j
kW

†
kKkΦk = A†kP

j
kW

†
kAk

Then,

P j
0 (Θk −Θ0)P j

0 = A†kP
j
kW

†
kAk − P j

0 = A†kP
j
kW

†
kAk − A†kP j

kAk

= A†k(P
j
kW

†
k − P j

k )Ak = A†kP
j
k

[
(Id− (P j

k − P j
k−1)2)−1/2 − Id

]
Ak.

Since ‖P j
k − P j

k−1‖ ≤ cp/T , and

(Id− (P j
k − P j

k−1)2)−1/2 = Id− 1

2
(P j

k − P j
k−1)2 +OP ((P j

k − P j
k−1)4) (3.27)

we have the result.

Lastly, the property Vn = OP (T−1) follows from the next claim.

Claim 2. For any k ∈ {1, . . . , T}, we have

1. Q0Vk = VkQ0 = 0.

2. P j
0VkP

`
0 = OP (T−1) for any j, `.
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Proof. The first is immediate. For the second, in the case j = `, summing over k in the third
part of claim 1 yields the result. Next, fix j and ` with j 6= `. We have

P j
0VkP

`
0 =

k∑

m=1

ejmA
†
mP

j
mP

`
m−1Am−1.

as shown in the proof of claim 1. We may write

ejmA
†
mP

j
mP

`
m−1Am−1 = ejmP

j
mΦ†mK

†
mP

j
mP

`
m−1Φm−1Km−1

=
(m−1∏

z=1

ējz
)
K†mP

j
mP

`
m−1

(m−1∏

z=1

e`z
)
Km−1

=
(m−1∏

z=1

ējz · e`z
)
K†mP

j
mP

`
m−1Km−1.

Define Zm−1 =
(∏m−1

z=1 ē
j
z · e`z

)
and Rm = K†mP

j
mP

`
m−1Km−1. Then

P j
0VkP

`
0 =

k∑

m=1

Zm−1Rm.

Note that Zm−1 = Zm−Zm−1

ējme`m−1
, so that we may sum by parts to obtain

P j
0VkP

`
0 =

k∑

m=1

(Zm − Zm−1)
Rm

ējme`m − 1

=
ZkRk

ējke
`
k − 1

− Z0R1

ēj1e
`
1 − 1

−
k−1∑

m=1

Zm

(
Rm+1

ējm+1e
`
m+1 − 1

− Rm

ējme`m − 1

)
. (3.28)

The first two terms (the boundary terms) are OP (T−1) by the gap assumption H2, and that
Rm = OP (T−1) for each m, which was shown in claim 1 in di�erent language. Next,

Zm

(
Rm+1

ējm+1e
`
m+1 − 1

− Rm

ējme`m − 1

)
=

Zm

ējme`m − 1
(Rm+1 −Rm) +OP (T−2)
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since we may expand

1

ējm+1e
`
m+1 − 1

=
1

ējme`m + (ējm+1e
`
m+1 − ējme`m)− 1

=
1

ējme`m
− (ējm+1e

`
m+1 − ējme`m)

ējme`m
+OP ((ējm+1e

`
m+1 − ējme`m)2)

and use that (ējm+1e
`
m+1 − ējme

`
m) = OP (T−1) by lemma 3.2, and Rm+1 = OP (T−1) as stated

earlier. Thus, if we show Rm+1 − Rm = OP (T−2), we sum may over k − 1 ≤ T terms in
eq. (3.28) to recover P j

0VkP
`
0 = OP (T−1). By definition,

Rm+1 −Rm = K†m+1P
j
m+1P

`
mKm −K†mP j

mP
`
m−1Km−1

= K†m(W †
m+1P

j
m+1P

`
mWm − P j

mP
`
m−1)Km−1.

Recalling the expansion eq. (3.27), we have bothW †
m+1P

j
m+1 = P j

mP
j
m+1 + OP (T−2) and

P `
mWm = P `

mP
`
m−1 +OP (T−2), hence

Rm+1 −Rm = K†mP
j
m[P j

m+1P
`
m − P j

mP
`
m−1]P `

m−1Km−1 +OP (T−2).

By strategically adding zero,

P j
mP

j
m+1P

`
mP

`
m−1 − P j

mP
`
m−1 = P j

mP
j
m+1(P `

m − P `
m+1)P `

m−1 − P j
m(P `

m−1 − P `
m)

= P j
m[P j

m+1(P `
m − P `

m+1)− (P `
m−1 − P `

m)]P `
m−1.

Now, write P j
m+1 = P j

m + A, i.e. A = P j
m+1 − P j

m = OP (T−1). Then,

P j
mP

j
m+1P

`
mP

`
m−1 − P j

mP
`
m−1 = P j

m[(P `
m − P `

m+1)− (P `
m−1 − P `

m)]P `
m−1 + P j

mA(P `
m − P `

m+1)P `
m−1.

But

(P `
m − P `

m+1)− (P `
m−1 − P `

m) = (P `(m
T

)− P `(m+1
T

))− (P `(m−1
T

)− P `(m
T

)) = OP (T−2))

by the Taylor-Lagrange theorem, and ‖A(P `
m − P `

m+1)‖ ≤ ‖A‖ · ‖P `
m − P `

m+1‖ = OP (T−2).
This concludes the proof.
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3.1.4 Relaxing H4

THE ASSUMPTION H4 requires a uniform bound sups∈[0,1] ‖L(s)Q(s)‖ = ` < 1. However, in
our examples in section 2.2, we don’t have an easy way to check this condition. The spectral
radius, on the other hand, is simple to compute. Motivated by this, we define the following
weaker version of H4:

wH4. We have the uniform spectral bound ` := sups∈[0,1] sprL(s)Q(s) < 1.

Then we have the following result.

Lemma 3.7. Assume that [0, 1] 3 s 7→ L(s) is continuous and satisfies H1 to H3 and wH4. Then
there exists m0 ∈ N such that for any m ≥ m0, the map [0, 1] 3 s 7→ Lm(s) satisfies H1 to H4.

Remark. Note we have the additional condition that the whole map s 7→ L(s) is continuous.

Proof. For any m ∈ N, we have ‖Lm‖ ≤ ‖L‖m ≤ 1 and hence H1. Since (Lm)P = (LP )m, we
also have H3. Let ε0 > 0 so that 1 − ` > 2ε0 > 0, and fix s ∈ [0, 1]. Since spr(L(s)Q(s)) =

limm→∞ ‖Lm(s)Q(s)‖1/m ≤ ` for some m(s),

‖Lm(s)Q(s)‖ ≤ (`+ ε0)m ≤ `+ ε0

for any m ≥ m(s), using that ` + ε0 < 1. Since P (s) =
∑

j P
j(s) is C2 by lemma 3.2,

Q(s) = Id = P (s) is C2, and hence s 7→ Lm(s)Q(s) is continuous, using the assumption
that s 7→ L(s) is continuous. Thus, there exists an open interval Is 3 s such that if s′ ∈ Is, then
‖Lm(s)(s′)Q(s′)‖ ≤ `+ 2ε0. Then for m ≥ m(s), we have for s′ ∈ Is,

‖Lm(s′)Q(s′)‖ ≤ ‖L(s′)m−m(s)‖‖Lm(s)(s′)Q(s′)‖ ≤ `+ 2ε0.

Since [0, 1] is compact and {Is}s∈[0,1] is an open cover of [0, 1], we may consider a finite sub-
cover Is1 , . . . , Isp and take m0 = max{m(s1, . . . ,m(sp)}.

Let us also note that the assumptions for lemma 3.2 may be weakened. The lemma states
that peripheral eigenvalues and eigenprojections of L(s) are themselves C2, under H1 to H4.
However, in the proof assumption H4 is only used to ensure the eigenvalues stay away from
the unit circle, which is achieved simply by wH4. Thus, we have the following.

Lemma 3.8. Assume H1 to H3 and wH4. Then the peripheral eigenvalues ej(s) and eigenprojectors
P j(s) of LP (s) are C2 as functions of s on [0, 1].



42 LANDAUER’S PRINCIPLE IN REPEATED INTERACTION SYSTEMS

3.2 Applying DNAUT to RIS

WE’VE FORMULATED THEOREM 3.4 in terms of H1 to H4, but we would like to obtain as-
sumptions more naturally formulated for the reduced dynamics L(s) of an RIS (defined in
eq. (1.10), written as a function of s as discussed in the remark at the end of section 2.1). As
discussed in section 1.3, the reduced dynamics L(s) are CPTP contractions. Let us take H to
be a finite dimensional Hilbert space, X = I1(H) the trace-class operators on H, equipped with
the trace norm ‖η‖1 = Tr((η∗η)1/2).

Def 3.9. A CPTP map L on I1(H) is called irreducible if the only self-adjoint projections P ∈
B(H) satisfying L(PI1(H)P ) ⊂ PI1(H)P are P = 0 and P = Id.

Recalling our identification of (I1(H), ‖ · ‖1)∗ with (B(H), ‖ · ‖) from chapter 6, we have the
following lemma.

Lemma 3.10. If L on I1(H) is CPTP and irreducible, then L∗ is CP, unital, and irreducible on
B(H).

Remark. That L∗ is irreducible on B(H) means that the only self-adjoint projections P ∈ B(H)

satisfying L∗(PB(H)P ) ⊂ PB(H)P are P = 0 and P = Id.

Proof. We’ve shown directly by hand that if L is CPTP then L∗ is CP and unital in propo-
sition 1.2. Here, we’ll use the Kraus representation (see, e.g. [Sch01]): L is CPTP i� it has a
Kraus representation L(η) =

∑
i∈I ViηV

∗
i , where Vi ∈ B(H) for all i ∈ I . In the finite dimen-

sional case we have here, we may take |I| ≤ (dimH)2, and we will restrict to this case. As L is
trace-preserving,

∑
i∈I V

∗
i Vi = Id.

For A ∈ B(H) and η ∈ I1(H),

L∗(A)(η) = Tr(L∗(A)η) = Tr(AL(η)) =
∑

i∈I

Tr(AViηV
∗
i )

=
∑

i∈I

Tr(V ∗i AViη) =

(∑

i∈I

V ∗i AVi

)
(η).

So, L∗(A) =
∑

i∈I V
∗
i AVi is a Kraus representation for L∗ on B(H), where we have recalled our

identification (I1(H))∗ = B(H). Thus, L∗ is CP. Since∑i∈I V
∗
i Vi = Id, we have L∗(Id) = Id,

so L∗ is unital.
Now, to prove the equivalence of irreducibility, we will use the following claim, proven in

[Far96] with di�erent language.
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Claim. L is irreducible i� there is no non-trivial subspace of H left invariant by all Vi.

Proof of claim. Let P ∈ B(H) be a self-adjoint projector. Assume ViPH = PH for all i ∈ I . Fix
i ∈ I . Then for all ψ ∈ H, ViPψ = Pφ for some φ ∈ H. But, left multiplying by P , we have
PViPψ = Pφ = ViPψ. Thus, we may take φ = ViPψ. We have ViPψ = PViPψ for all ψ ∈ H.
That is, ViP = PViP . On the other hand, if ViP = PViP , then ViPH = PViPH ⊂ PH, so
ViP = PViP is equivalent to Vi leaves PH invariant.
Now, assuming each Vi leaves PH invariant, for any η ∈ I1(H), we have

L(PηP ) =
∑

i∈I

ViPηPV
∗
i =

∑

i∈I

ViPη(ViP )∗ =
∑

i∈I

PViPη(PViP )∗ = PL(PηP )P.

That is, L(PI1(H)P ) ⊂ PI1(H)P . So if L is irreducible, then P ∈ {0, Id}, and there must be
no non-trivial subspace of H left invariant by all Vi.
On the other hand, assume there is no non-trivial subspace left invariant by all Vi. Assume

P ∈ B(H) is a self-adjoint projector such that L(PI1(H)P ) ⊂ PI1(H)P . Let η ∈ I+
1 (H) be

positive semi-definite and trace-class. Let ξ ∈ kerP .

〈ξ,L(PηP )ξ〉 =
∑

i∈I

〈ξ, ViPηPV ∗i ξ〉 =
∑

i∈I

〈ξ, PViPηPV ∗i Pξ〉 = 0

since Pξ = 0. But, 〈ξ, ViPηPV ∗i ξ〉 = 〈PV ∗i ξ, ηPV ∗i ξ〉 ≥ 0 since η ≥ 0. Thus, 〈ξ, ViPηPV ∗i ξ〉 =

0 for all i. Since η ≥ 0, there exists unique η1/2 ≥ 0. We have

〈η1/2PV ∗i ξ, η
1/2PV ∗i ξ〉 = 0

Thus, the vector η1/2PV ∗i ξ = 0 for each i ∈ I . Choose η = Id; since we are in finite dimen-
sions, the identity operator is trace-class. Then PV ∗i ξ = 0 for all ξ ∈ kerP . That is, PV ∗i Q = 0,
and hence, PV ∗i = PV ∗i P for each i ∈ I . By taking the adjoint, we have ViP = PViP . Then
ViPH = PViPH ⊂ PH. Hence, Vi leaves PH invariant; by assumption then, P ∈ {0, Id}.
Thus, L is irreducible.

The same proof (up to change of symbols I1(H) → B(H)) shows that L∗ is irreducible i�
there is no non-trivial subspace left invariant by all V ∗i .
But,

ViP = PViP ⇐⇒ QViP = 0 ⇐⇒ PV ∗i Q = 0 ⇐⇒ V ∗i Q = QV ∗i Q

That is, all the Vi leave PH invariant i� all the V ∗i leave QH invariant. Thus, L is irreducible i�
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L∗ is irreducible.

Then if L is CPTP and irreducible, L∗ is CP, unital, and irreducible. Then by [Wol12, The-
orem 6.6], for some z ∈ N, the peripheral spectrum of L∗ is Sz := {exp(2πik/z) : k =

1, 2, . . . , z − 1}, and each peripheral eigenvalue is simple. Note S1 ⊂ C is the unit circle, i.e.
S1 = exp(iR). Since sp(L∗) = spL = spL, we have that

sp(L) ∩ S1 = Sz := {exp(2πik/z) : k = 1, 2, . . . , z − 1}, (3.29)

and each eigenvalue exp(2πik/z) is simple. Additionally, by, e.g. [Wol12, Theorem 6.3], the
eigenvector for the eigenvalue 1 may be chosen to be positive definite. With simplicity we
then have that there exists a unique invariant state ρinv.
We may now formulate (stronger) assumptions for theorem 3.4 relevant to this context.

Proposition 3.11. Assume X is a finite dimensional Banach space, [0, 1] 3 s 7→ L(s) ∈ B(X) is an
operator-valued function such that for each s ∈ [0, 1], L(s) is an irreducible CPTP map. If s 7→ L(s)

satisfies H3 and H4 then it satisfies H1 to H4. If s 7→ L(s) is continuous and satisfies H3 and wH4,
then there exists m ∈ N such that s 7→ Lm(s) satisfies H1 to H4.
In either case, there exists z ∈ N such that sp(L(s)) ∩ S1 = Sz for all s ∈ [0, 1].

Proof. By proposition 1.2, the CPTP map L(s) is a contraction for each s, and hence s 7→ L(s)

satisfies H1.
As discussed above, since L(s) is irreducible, for each s there exists zs ∈ N such that sp(L(s))∩

S1 = Szs , and each peripheral eigenvalue is simple. We have that 1 ≤ zs ≤ dimX for each
s. Thus, sp(L(s)) ∩ S1 ⊂ ⋃dimX

z=1 Sz for each s ∈ [0, 1]. Since |⋃dimX
z=1 Sz| ≤

∑dimX
z=1 z =

1
2

dimX(dimX + 1) <∞, the minimal distance

ε :=
1

2
min

{
|e1 − e2| : e1, e2 ∈

dimX⋃

z=1

Sz, e1 6= e2

}

has ε > 0. For any s then, any two distinct peripheral eigenvalues ej(s), ei(s) have |ej(s) −
ei(s)| > 2ε, which is H2. This proves the first statement, and aided by lemma 3.7, the second.
Now, we have that s 7→ L(s) satisfies at least H1 to H3 and wH4, so by lemma 3.8, s 7→

P (s) is C2. Since dimP (s) = zs, by corollary A.4, continuity implies that zs is constant: zs ≡ z

for some z ∈ N. This proves the last statement.

Remark. In the case where s 7→ L(s) satisfies H1 to wH4 we may (and will) choose m so that
the peripheral eigenvalues of Lm(s) are simple. If sp(L(s)) ∩ S1 = Sz, then simply choose
m ≥ m0 such that gcd(m, z) = 1, where m0 is the exponent guaranteed by lemma 3.7.



4
Perturbation of relative entropy

LET η BE A FAITHFUL STATE on a finite-dimensional Hilbert space H, and let D1 and D2 be
two operators on H. We call these operators D1 and D2 corrections to our state, although
for the sake of generality we won’t make any assumptions on them yet; eventually, we will be
interested in the case when both η+D1 and η+D2 are themselves states, i.e., non-negative and
trace 1, implying in particular that each Dj is traceless and self-adjoint. We wish to expand
the relative entropy S(η + D1 |η + D2) in terms of ‖D1‖ and ‖D2‖, for su�ciently small
‖D1‖, ‖D2‖.
Let’s note right away that if η + D1 and η + D2 are states, there is a known lower bound

which does not require perturbation theory, the Quantum Pinsker Inequality:

S(η + D1 |η + D2) ≥ 1

2
‖D1 − D2‖2

1 =
1

2
Tr(|D1 − D2 |)2 . (4.1)

See Theorem I.1.15 of [OP93] for a proof of this lower bound in algebraic terms, e.g. commu-
tative subalgebras, and Theorem 11.9.2 of [Wil11] for essentially the same proof in language
probably more familiar to quantum information theorists, e.g. states diagonal in the same basis.
For our purposes, we will use perturbation theory to expand the relative entropy, and obtain

a leading term, for a lower bound alone will not always su�ce. To do so, we wish to use the
Dunford-Taylor holomorphic functional calculus to write the relative entropy as an integral
around the spectrum of η + D1 and η + D2 (see e.g. [Kat76, Section I.5.6] for reference). The
choice of path for the integral will be important, but we won’t know what we require from the
path until further into the computation.
Our strategy will be to expand the resolvent R`(ζ ) := Rη+D` (ζ ) = (η+D`− ζ )−1 of η+D`
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for ` = 1, 2, in terms of the resolvent Rη(ζ ) of η, using the Neumman expansion

R`(ζ ) = Rη(ζ )(Id + D`Rη(ζ ))−1 = Rη(ζ )
∑

n≥0

(−D`Rη(ζ ))n

which converges absolutely if ‖D`Rη(ζ )‖ < 1 [Kat76, Section II.1.3]. Let us assume we
may choose a curve Γ encircling sp(η + D`) and sp(η) so that for each ζ ∈ Γ we have
‖D`Rη(ζ )‖ < 1, for ` = 1, 2. We also require that Γ ⊂ {z ∈ C : Re z > 0} so that the
logarithm is well-defined. These are the minimal requirements we have of a path for our inte-
gration to use the holomorphic calculus and this expansion; we will find another requirement
later. Then, in lemma 4.4 we will prove that a path satisfying our requirements exists.
Now, we may write

S(η + D1 |η + D2) = Tr

(
− 1

2πi

∫

Γ

ζ log ζR1(ζ ) + (η + D1)
1

2πi

∫

Γ

log ζR2(ζ ) dζ

)

= Tr
(
− 1

2πi

∫

Γ

ζ log ζRη(ζ )
∑

n≥0

(−D1Rη(ζ ))n dζ

+ (η + D1)
1

2πi

∫

Γ

log ζRη(ζ )
∑

n≥0

(−D2Rη(ζ ))n dζ
)
.

Separating the higher order terms, we have

= Tr

(
1

2πi

∫

Γ

ζ log ζRη(ζ )D1Rη(ζ ) − ζ log ζRη(ζ )(D1Rη(ζ ))2 dζ

)

− Tr(D1 log η)

− Tr
(

(η + D1)
1

2πi

∫

Γ

(log ζRη(ζD2Rη(ζ )

− log ζRη(ζ )D2Rη(ζ ))D2Rη(ζ ))
)

+ r(Γ, η, D1 , D2),

where the remainder term is

r(Γ, η, D1 , D2) : = Tr

(
− 1

2πi

∫

Γ

ζ log ζRη(ζ )
∑

n≥3

(−D1Rη(ζ ))n dζ

)

+ Tr

(
− η + D1

2πi

∫

Γ

ζ log ζRη(ζ )
∑

n≥3

(−D2Rη(ζ ))n

)
.
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We may group the earlier terms by the number of factors of D` they contain.

Def 4.1. Let f be a function of ζ holomorphic in some open domain Ω ⊂ C containing sp η,
and M and D two matrices on H. Then for any curve Γ ⊂ Ω encircling sp η, define

T1(M, D, f ) : = Tr

(
− 1

2πi
M

∫

Γ

Rη(ζ )DRη(ζ )f (ζ ) dζ

)

T2(M, D, f ) : = Tr

(
− 1

2πi
M

∫

Γ

Rη(ζ )DRη(ζ )DRη(ζ )f (ζ ) dζ

)
.

Now, let us return to our curve Γ defined above. We may define f (ζ ) = ζ log ζ , and
g(ζ ) = log ζ ; both functions are holomorphic in Ω = {z ∈ C : z > 0}, which contains
Γ, which, in turn, encircles sp η. Returning to our expansion of S(η + D1 |η + D2), we have

S(η + D1 |η + D2) = −T1(Id, D1 , f ) + T2(Id, D1 , f ) − Tr(D1 log η)

+ T1(η, D2 , g) + T1(D1 , D2 , g) − T2(η, D2 , g)

− T2(D1 , D2 , g) + r(Γ, η, D1 , D2).

(4.2)

It thus remains to compute or estimate T1 , T2, and r. To do so, we will write the spectral de-
composition of η as η =

∑
i µipi.

Lemma 4.2. As defined in definition 4.1, T1 and T2 satisfy

T1(M, D, f ) = −
∑

i

Tr(MpiDpi)f
′(µi) −

∑

i<j

Tr(M (piDpj + pjDpi))
f (µi) − f (µj )

µi − µj
,

and, if [M, η ] = 0,

T2(M, D, f ) =
∑

i

Tr(MDpiDpi)
f ′′(µi)

2

+
∑

i 6=j

Tr(MDpjDpi)
f ′(µi)

µi − µj
+ Tr(MDpjDpi)

f (µi) − f (µj )

(µi − µj )2
.

Proof. Since η =
∑

i piµi, we can write

Rη(ζ ) =
∑

i

(µi − ζ )−1pi
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by the spectral theorem. Then we have

T1(M, D, f ) = Tr

(
− 1

2πi
M
∑

i,j

∫

Γ

(µi − ζ )−1(µj − ζ )−1piDpjf (ζ ) dζ

)

= Tr

(
− 1

2πi
M
∑

i,j

piDpj

∫

Γ

(µi − ζ )−1(µj − ζ )−1f (ζ ) dζ

)
.

The integral is only over C-valued functions, and we may apply Cauchy’s theorem:

1

2πi
(ζ − µi)

−1(ζ − µj )
−1f (ζ ) dζ =




f ′(µi) if i = j

f (µi)−f (µj )

µi−µj if i 6= j.

Thus, we have

T1(M, D, f ) = − Tr

(
M
∑

i 6=j

piDpj
f (µi) − f (µj )

µi − µj

)
− Tr

(
M
∑

i

piDpif
′(µi)

)
.

Lastly, the symmetry

∑

i 6=j

Tr(MpiDpj )
f (µi) − f (µj )

µi − µj
=
∑

i<j

Tr(M (piDpj + pjDpi))
f (µi) − f (µj )

µi − µj

yields the result. Next,

T2(M, D, f ) : = Tr

(
− 1

2πi
M

∫

Γ

Rη(ζ )DRη(ζ )DRη(ζ )f (ζ ) dζ

)

= Tr

(
− 1

2πi
M
∑

i,j,k

∫

Γ

(µi − ζ )−1piD(µj − ζ )−1pjD(µk − ζ )−1pkf (ζ ) dζ

)

= Tr

(
− 1

2πi
MpiDpjDpk

∑

i,j,k

∫

Γ

(µi − ζ )−1(µj − ζ )−1(µk − ζ )−1f (ζ ) dζ

)
.

Now, we use the assumption [M, η ] = 0 and the cyclicity of the trace to write

T2(M, D, f ) = Tr

(
− 1

2πi

∑

i,j,k

MpkpiDpjD

∫

Γ

(µi − ζ )−1(µj − ζ )−1(µk − ζ )−1f (ζ ) dζ

)
.
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But pkpi = δikpi, so we may sum over k to obtain

T2(M, D, f ) = Tr

(
− 1

2πi

∑

i,j

MpiDpjD

∫

Γ

(µi − ζ )−2(µj − ζ )−1f (ζ ) dζ

)
.

Another application of Cauchy’s theorem yields

1

2iπ

∫

Γ

(ζ − µi)
−2(ζ − µj )

−1f (ζ ) dζ =

{
f ′′(µi)

2
if i = j

f (µj )−f (µi)

(µj−µi)2 + f ′(µi)
(µi−µj )

if i 6= j,

which yields our result.

Recalling the specific terms we need to compute from eq. (4.2), from lemma 4.2 we can
obtain simpler forms of two types of terms which appear often.

Corollary 4.3. In the setup of lemma 4.2, if [M, η ] = 0, we have

T1(M, D, f ) = − Tr(MDf ′(η)).

Additionally, when M = Id we have

T2(Id, D, f ) =
∑

i

Tr((Dpi)
2)
f ′′(µi)

2
+
∑

i<j

Tr(DpjDpi)
f ′(µi) − f ′(µj )

µi − µj
.

Proof. For the T1 result, we note if [M, η ] = 0, then [M, pi ] = 0 for each i. Then Tr(MpiDpj ) =

Tr(MDpjpi) = 0, using the cyclicity of the trace and that pjpi = 0. So the second term van-
ishes, and the first term is

T1(M, D, f ) = −
∑

i

Tr(MpiDpi)f
′(µi) = −

∑

i

Tr(MDpif
′(µi)) = − Tr(MDf ′(η))

as we wanted. For the T2 result, Tr(DpjDpi) = Tr(pjDpiD) = Tr(DpiDpj ) using cyclicity
of the trace. Then the symmetry

Tr(DpjDpi)
f (µi) − f (µj )

(µi − µj )2
= −(i ↔ j)

yields that the sum over i 6= j of this term is zero. Lastly, given (i, j) with i 6= j , then

Tr(DpjDpi)
f (µi)

µi − µj
+ (i ↔ j) = Tr(DpjDpi)

f (µi) − f (µj )

µi − µj
.
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Using lemma 4.2 and corollary 4.3, we find

T1(Id, D1 , f ) = − Tr
(
D1(log η + Id)

)
= − Tr(D1 log η) − Tr(D1),

T1(η, D2 , g) = − Tr(ηD2η
−1) = − Tr(D2),

T1(D1 , D2 , g) = −
∑

i

Tr(D1piD2pi)
1

µi
−
∑

i<j

Tr
(
D1(piD2pj + pjD2pi)

) log(µi) − log(µj )

µi − µj
,

T2(Id, D1 , f ) =
∑

i

Tr
(
(D1pi)

2
) 1

2µi
+
∑

i<j

Tr(D1pjD1pi)
log(µi) − log(µj )

µi − µj
,

T2(η, D2 , g) = Tr
(
−
∑

i

(D2pi)
2 1

2µi
+
∑

i<j

D2pjD2pi
log(µj ) − log(µi)

µi − µj

)
.

We only have left to bound the remainder term r(Γ, η, D1 , D2) and the term T2(D1 , D2 , g).
To do so, we will make use of our remaining freedom to choose the shape of Γ; so far, we’ve
only required that Γ encircle η, η + D1, and η + D2 with ‖D`Rη(ζ )‖−1 < 1 for each ζ ∈ Γ

and both ` = 1, 2.
We’ll call a stadium shaped path two semi-circles joined by straight lines, as shown in fig. 4.1.

R

iR
a b

`

δ δ

Figure 4.1: Illustration of a sta-
dium shaped path. As depicted,
a stadium shaped path consists of
two semicircles at a and at b with
radii δ, connected by segments of
length `. The length of the path is
2(`+ πδ).

Lemma 4.4. There exists a stadium shaped path Γ ⊂ {z ∈ C : Re z > 0} with the following
properties:

1. For some constant cη only depending on η, then for ` = 1, 2 if ‖D`‖ < cη , then Γ encircles η +D`.

2. Additionally, for ‖D`‖ < cη , we have ‖D`R`(ζ)‖ < 1.

3. Lastly, defining B := 29 dimH log(2/µ1)

µ41
(‖D1‖ + ‖D2‖)3, where µ1 := inf sp η, we have the

bounds

|r(Γ, η,D1, D2)| ≤ B, |T2(D1, D2, g)| ≤ B.

Proof. Let the set of eigenvalues of η be S(η) = {µ1, . . . , µN} ⊂ R, with µ1 = inf sp η > 0,
using that η is a faithful state. Let Γ be the stadium shaped path depicted in fig. 4.2.
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µ1 10 R

iR
Γ

δ

Figure 4.2: We define Γ to be
the stadium shaped path with
radii δ < µ1, with semicircles
centered on µ1 and 1, as shown.
Note sp η ⊂ [µ1, 1] ⊂ R. We may
choose any δ with 0 < δ < µ1;
we choose to keep it arbitrary for
clarity, to see the role this radius
plays.

Then supζ∈Γ ‖Rη(ζ)‖ = δ−1, by proposition A.7.
Since S(η + D`) the set of eigenvalues of η + D`, is continuous by theorem A.9, for small

enough D`, we have dist(S(η + D`),S(η)) < δ. Then in some ordering of the eigenvalues of
η + D`, say (µ

(`)
1 , . . . , µ

(`)
N ), we have |µ(`)

k − µk| < δ for each k = 1, . . . , N . Thus, Γ encircles the
spectrum of η +D`, for small enough ‖D`‖, for ` = 1, 2.
Moreover, if we choose ‖D`‖ < 1

2
infζ∈η ‖Rη(ζ)‖−1 = 1

2
δ for ` = 1, 2, then

‖D`Rη(ζ)‖ ≤ ‖D`‖ · ‖Rη(ζ)‖ < 1

2
‖Rη(ζ)‖−1‖Rη(ζ)‖ =

1

2

for all ζ ∈ Γ. Now, for any function f and ` = 1, 2, we may bound

∥∥∥∥∥−
1

2πi

∫

Γ

f(ζ)Rη(ζ)
∑

n≥3

(−D`Rη(ζ))n dζ

∥∥∥∥∥ ≤
1

2π
length(Γ) sup

ζ∈Γ
|f(ζ)| · δ−1 ·

∑

n≥3

‖D`‖n · δ−n

=
1

2π
length(Γ) sup

ζ∈Γ
|f(ζ)| · δ−1 · ‖D`‖3δ−3

1− ‖D`‖δ−1

≤ 1

π
(2 + 2πδ) sup

ζ∈Γ
|f(ζ)| ‖D`‖3δ−4.

Now, to bound r, we take f(ζ) = ζ log ζ. Then

|f(ζ)| = |ζ| · | log ζ| = |ζ| · | log |ζ|+ i arg ζ| ≤ |ζ|(| log |ζ||+ π).

But by monotonicity of the logarithm, for ζ ∈ Γ, we have

log(µ1 − δ) ≤ log |ζ| ≤ log(1 + δ). (4.3)

For simplicity, let us take δ = µ1
2
. This fixes cη = µ1/4. Note that if dimH ≥ 2, we must have
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µ1 ≤ 1
2
, otherwise Tr(η) > 1. But for x ∈ (0, 1

2
],

− log(x) ≥ log(1 + x) ⇐⇒ 1

x
≥ 1 + x ⇐⇒ 1 ≥ x(1 + x)

and x(1 + x) ≤ 3
4
. Thus, our bound eq. (4.3) becomes

log
µ1

2
≤ log |ζ| ≤ log(1 +

µ1

2
) ≤ − log

µ1

2
.

and we have | log |ζ|| ≤ log 2
µ1
. Hence, for all ζ ∈ Γ,

|f(ζ)| = |ζ log ζ| ≤
(
1 +

µ1

2

)(
log

2

µ1

+ π
)

using that |ζ| ≤ 1+δ = 1+µ1
2
. We may simplify the expression by noting π < 3 log 4 ≤ 3 log 2

µ1
,

since µ1 ≤ 1
2
. Also, 1 + µ1

2
< 2, so |f(ζ)| < 23 log 2

µ1
. Then,

∥∥∥∥∥−
1

2πi

∫

Γ

f(ζ)Rη(ζ)
∑

n≥3

(−D`Rη(ζ))n dζ

∥∥∥∥∥ ≤ 28 1

π
(1 +

πµ1

2
) log

2

µ1

· ‖D`‖3 1

µ4
1

.

≤ 29‖D`‖3 1

µ4
1

log
2

µ1

.

Next, we use that for an operator A on H, |Tr(A)| ≤ Tr |A| ≤ dimH‖A‖to obtain

|r(Γ, η,D1, D2)| ≤ dimH · 29 1

µ4
1

log
2

µ1

(
‖D1‖3 + ‖η +D1‖ · ‖D2‖3

)
.

Using ‖η‖ ≤ 1, as η is self-adjoint with all eigenvalues at most 1,

≤ dimH · 29 1

µ4
1

log
2

µ1

(
‖D1‖3 + (1 + ‖D1‖) · ‖D2‖3

)

≤ dimH · 29 1

µ4
1

log
2

µ1

(‖D1‖+ ‖D2‖)3 .

Finally,

T2(D1, D2, log ζ) := Tr

(
− 1

2πi
D1

∫

Γ

Rη(ζ)D2Rη(ζ)D2Rη(ζ) log ζ dζ

)
.

Clearly, we may use our estimate of | log ζ| on Γ and our other bounds to obtain the (even
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looser) estimate of

|T2(D1, D2, log ζ)| ≤ dimH · 29 1

µ4
1

log
2

µ1

(‖D1‖+ ‖D2‖)3 .

With this choice of path Γ, we have that

S(η +D1|η +D2) = Tr(D1 −D2) +
∑

i

Tr
((

(D1 −D2)pi
)2
)

(2µi)
−1

+
∑

i<j

Tr((D1 −D2)pj(D1 −D2)pi)
log(µi)− log(µj)

µi − µj
+Oη(‖D‖3).

(4.4)

where we write Oη(‖D‖k) to mean a term which is bounded by Cη(‖D1‖ + ‖D2‖)k for ‖D1‖
and ‖D2‖ small enough, where Cη is a constant only depending on η. We may compile the
main results of the chapter thus far in the following proposition.

Proposition 4.5. Let η be a faithful state with spectral decomposition η =
∑

i µipi, where µj are the
eigenvalues and pj the associated spectral projections. Let D1, D2 be two perturbations of η. There exist
constants Cη > 0 and Dη > 0 depending only on η, such that if D1, D2 satisfy ‖Dj‖ ≤ Dη , j = 1, 2,
then the relative entropy S(η +D1|η +D2) satisfies

∣∣S(η +D1|η +D2)− Fη(D1 −D2)− Tr(D1 −D2)
∣∣ ≤ Cη(‖D1‖+ ‖D2‖)3 (4.5)

where Fη(A) := Fη(A,A) for

Fη(A,B) :=
∑

i

Tr(ApiBpi)
1

2µi
+
∑

i<j

Tr(ApjBpi)
log(µi)− log(µj)

µi − µj
. (4.6)

Moreover, we may take Dη = inf sp(η)/4.

Remark. We see that if η = η0 + ∆ with Tr ∆ = Tr(D1 +D2) = 0, then

S(η +D1|η +D2) = Fη0(D1 −D2) +Oη0

(
(‖D1‖+ ‖D2‖+ ‖∆‖)3

)
.

Note that this proposition holds true if any of the norms ‖ · ‖ are replaced by the trace norm
‖ · ‖1 due to the inequalities

‖D‖ = sup
ψ∈H
‖ψ‖=1

‖Dψ‖ ≤
√

Tr(D∗D) ≤ Tr |D| = ‖D‖1.
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E.g. if ‖D‖1 < Dη then ‖D‖ < Dη, and if F (D) ≤ C(‖D‖)3 then F (D) ≤ C(‖D‖1)3.

WE’LL CONCLUDE this chapter with some properties of the leading order term Fη(A,B).

Corollary 4.6. The map Fη(·, ·) defined in eq. (4.6) has the following properties:

1. Fη is a bilinear form.

2. We have the bound

|Fη(A,B)| ≤ 2‖A‖‖B‖(dimH)2

µ1

where µ1 > 0 is the smallest eigenvalue of η.

3. If A is self-adjoint, then Fη(A) ≥ 0 with equality i� A = 0.

Proof. The first point is immediate from the definition. For the second, we will first employ the
result

|Tr(AB)| ≤ ‖A‖Tr |B|. ([JOPP12, Inequality 2.4])

Using this and ‖pi‖ = 1,

∑

i

|Tr(ApiBpi)| ≤
∑

i

‖ApiB‖Tr |pi|

≤
∑

i

‖A‖‖pi‖‖B‖Tr |pi| ≤ ‖A‖‖B‖
∑

i

Tr |pi|.

By proposition A.2, Tr |pi| = dim Ran pi. Furthermore,
∑

i dim Ran pi = dimH, since H =

⊕i Ran pi. We have thus bounded the first term.
To bound the second, we’ll use the mean value theorem: for each 1 ≤ i, j ≤ dimH, there

exists some cij ∈ [µ1, 1] such that

log(µi)− log(µj)

µi − µj
=

1

cij
≤ 1

µ1

.

Then,
∣∣∣∣∣
∑

i<j

Tr(ApjBpi)
log(µi)− log(µj)

µi − µj

∣∣∣∣∣ =

∣∣∣∣∣
∑

i<j

Tr(ApjBpi)
1

cij

∣∣∣∣∣ ≤
1

µ1

∑

i<j

|Tr(piApjBpi)|

≤ 1

µ1

‖A‖‖B‖
∑

i<j

Tr |pi| ≤
1

µ1

‖A‖‖B‖(dimH)2,
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which completes the bound. For the third point,

Fη(A) =
∑

i

Tr(ApiApi)
1

2µi
+
∑

i<j

Tr(ApjApi)
log(µi)− log(µj)

µi − µj

=
∑

i

Tr(piApipiApi)
1

2µi
+
∑

i<j

Tr(piApjpjApi)
log(µi)− log(µj)

µi − µj

=
∑

i

Tr((piApi)
∗piApi)

1

2µi
+
∑

i<j

Tr((pjApi)
∗pjApi)

log(µi)− log(µj)

µi − µj

=
∑

i

Tr(|piApi|2)
1

2µi
+
∑

i<j

Tr(|pjApi|2)
log(µi)− log(µj)

µi − µj
.

Each term is thus non-negative, using the monotonicity of the logarithm. If Fη(A) = 0 then
(since (X, Y ) 7→ Tr(X∗Y ) is an inner product), for all i, j we must have pjApi = 0. Summing
over i and j yields A = 0.



5
Assemblage

5.1 General results

COMBINING OUR ADIABATIC THEOREM, theorem 3.4, with the perturbative expansion of the
relative entropy, proposition 4.5, we may compute the entropy production

σk,T := S
(
Uk,T (ρk−1,T ⊗ ξik,T )U∗k,T |Lk,T (ρk−1,T )⊗ ξik,T

)

to leading order.

Proposition 5.1. Consider an RIS process obeying the assumption (ADRIS), such that the reduced
dynamics L(s) is irreducible for all s ∈ [0, 1] and satisfies H4. Let ρinvk,T denote the (unique) invari-
ant state of Lk,T , and let P 1

k,T denote the associated spectral projector. Let ρi be the initial state of the
system, and assume (P 1

0,T +Q0,T )ρi = ρi. Define:

Xk,T := Uk,Tρ
inv
k,T ⊗ ξk,TU∗k,T − ρinvk,T ⊗ ξk,T , (5.1)

Dk,T := Lk,T (ρk−1,T − ρinvk,T )⊗ ξk,T − Uk,T ((ρk−1,T − ρinvk,T )⊗ ξk,T )U∗k,T . (5.2)

Then there exists T0 > 0 and D0 > 0 such that for T ≥ max(T0, (D0(1 − `))−1) and k ≤ T large
enough so that ‖Q0,Tρ

i‖`k < D0, and assuming ‖Xk,T‖1 < D0, one has

|σk,T − Fk,T (Xk,T −Dk,T )| ≤ CP
ηk,T

(
(‖Xk,T‖1 + ‖Q0,Tρ

i‖1`
k + (T (1− `)−1)3)

)
, (5.3)

where Fk,T = Fηk,T is associated to ηk,T := ρinvk,T ⊗ ξk,T , D0 depends on ηk,T only, T0 on cP defined by
eq. (3.1) and N = dimP (s) only, and CP

ηk,T
on cP , N , and on ηk,T only. In particular, we may take

D0 = inf sp(ηk,T )/4.

Remark. This detailed proposition calls for some remarks. First, the assumption (P 1
0,T+Q0,T )ρi =
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ρi ensures that
(Id− P 1

0,T )ρi = (Id− P 1
0,T )(P 1

0,T +Q0,T )ρi = Q0,Tρ
i

which we may interpret as the non-invariant part of the state is strictly contracting. We must
be careful with such language as the eigenprojections need not be self-adjoint. This way, the
adiabatic theorem theorem 3.4 will transport ρi to ρinvk,T , up to loss from the strictly contracting
part. Of particular interest is the case P 1

0,Tρ
i = ρi, when Q0,Tρ

i = 0. Next, Xk,T characterizes
the invariance of ρinvk,T ⊗ ξk,T under the full dynamics, i.e. how invariant the invariant state
of the reduced dynamics is under the full dynamics when coupled with the probe. This term is
inherent to the non-equilibrium nature of the RIS dynamics. The quantity Dk,T quantifies the
error in both arguments of σk,T = S(·|·) when approximating ρk−1,T ∼ ρk,T ∼ ρinvk,T . Note that
‖Dk,T‖1 ≤ 2‖ρk−1,T − ρinvk,T‖. The result of the proposition, eq. (5.3), yields a leading order term
Fk,T (Xk,T −Dk,T ) to the entropy production σk,T in a sense the proposition makes precise.
In section 5.4, we will consider the small coupling version of this proposition; in particular,

we will show the condition on Xk,T holds for λ small.

Proof. We will drop the subscript T , and use the notation OP
η (Z) for any term bounded by

CP
η Z for non-negative Z small enough and a constant CP

η depending only on a given state η
and cP , z =: dimP (s), and dimX . If such a quantity does not depend on a state η, we’ll write
OP (Z) instead.

Claim. ‖ρinvk − ρk−1‖ ≤ 2‖Q0ρ
i‖1 +OP ((T (1− `))−1).

First, we’ll show ‖ρinvk−1 − ρk−1‖ has a similar bound, and then approximate the di�erence
between the consecutive invariant states. By theorem 3.4,

Lk−1Lk−2 · · · L1 = Ak−1 + LQk−1LQk−2 · · · LQ1 +OP ((T (1− `))−1).

Then applying this to ρi,

‖ρinvk−1 − ρk−1‖1 ≤ ‖ρinvk−1 − Ak−1ρ
i‖1 + ‖Q0ρ

i‖1`
k +OP ((T (1− `))−1)

using H4. Note we can obtain ‖Q0ρ
i‖1 instead of ‖Q1ρ

i‖1 by using Q0 + P0 = Id and Q1P0 =

OP (T−1). Now, we wish to show the first term is small. We have that Ak−1ρ
i = Ak−1P

1
0 ρ

i =

P 1
k−1Ak−1ρ

i ∈ RanP 1
k−1 = Cρinvk−1. So for some α ∈ C, Ak−1ρ

i = αρinvk−1. Then,

‖ρinvk−1 − Ak−1ρ
i‖1 = ρinvk−1 − αρinvk−1‖1 = |1− α|‖ρinvk−1‖1 = |1− α|

using that ‖ρinvk−1‖1 = 1 as ρinvk−1 is positive semi-definite and trace one. Next, because each Ln is
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trace preserving,

1 = Tr(ρi) = Tr(Lk−1 · · · L1ρ
i) = α + Tr(LQk−1 · · · LQ1 ρi) +OP ((T (1− `))−1).

Then, using Tr(·) ≤ Tr | · | = ‖ · ‖1, we have |1−α| ≤ ‖Q0ρ
i‖1`

k +OP ((T (1− `))−1) and hence,

‖ρinvk−1 − ρk−1‖1 ≤ ‖Q0ρ
i‖1 +OP ((T (1− `))−1).

To prove the second step, we again use that the invariant state is unique: RanP 1(s) = Cρinvs ,
so for any η ∈ I1(HS), we have P 1(s)η = αs(η)ρinvs for some αs(η) ∈ C. Taking the trace, we
have Tr(P 1(s)η) = αs(η). In particular, P 1(s)ρinvs0 = Tr(P 1(s)ρinvs0 )ρinvs . Define γ by s 7→ γs =

Tr(P 1(s)ρinvs0 ). Then [0, 1] 3 s 7→ γs is a C2 function with γs0 = 1. In particular, γs 6= 0 for s
near s0. Then

ρinvs − ρinvs0 = (γ(s)−1P 1(s)− P 1(s0))ρinvs0 = OP (|s− s0|).

Then, for su�ciently large T , taking s = k/T and s0 = (k − 1)/T yields the claim:

‖ρinvk − ρk−1‖1 ≤ ‖ρinvk − ρinvk−1‖1 + ‖ρinvk−1 − ρk−1‖1 ≤ 2‖Q0ρ
i‖1 +OP ((T (1− `))−1).

Now, define

D′k =Lk(ρk−1)⊗ ξk − ρinvk ⊗ ξk = Lk(ρk−1 − ρinvk )⊗ ξk,
D′′k =Uk(ρk−1 ⊗ ξk)U∗k − ρinvk ⊗ ξk = Uk

(
(ρk−1 − ρinvk )⊗ ξk

)
U∗k +Xk,

so that σk,T = S(ηk + D′′k |ηk + D′k) for ηk = ρinvk ⊗ ξk. We also have Tr(D′k) = Tr(D′′k) = 0, and,
importantly,

Dk −Xk = D′k −D′′k . (5.4)

Note that
‖Dk‖1 ≤ 2‖ρinvk − ρk−1‖1 ≤ 4‖Q0ρ

i‖1 +OP ((T (1− `))−1) (5.5)

by the claim.
To apply proposition 4.5, we must assume T and k ≤ T are su�ciently large so that ‖Dk‖1

and ‖Xk‖1 are smaller than a constant D0 which we may take to be inf sp(ηk,T )/4. Then propo-
sition 4.5 yields

σk = Fk(Dk −Xk) +OP
ηk

(
(‖Q0ρ

i‖1`
k + ‖Xk‖1 + (T (1− `))−1)3

)
. (5.6)
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Remark. • If Q0,Tρ
i = 0 then eq. (5.6) holds even for k = 1.

• Moreover, eq. (5.4) yields an interesting lower bound via the Quantum Pinsker Inequal-
ity, eq. (4.1):

σk,T ≥
1

2
‖Xk,T −Dk,T‖2

1 ≥
1

2
(|‖Xk,T‖1 − ‖Dk,T‖1|)2

=
1

2

(
‖Xk,T‖2

1 + ‖Dk,T‖2
1 − 2‖Xk,T‖1‖Dk,T‖1

)
.

If we consider the case Q0,Tρ
i = 0, then we have

σk,T ≥
1

2
‖Xk,T‖2

1 +OP ((T (1− `))−1) (5.7)

using eq. (5.5). In particular, if infs∈[0,1] ‖X(s)‖1 = C > 0 for some constant C, then
σk,T ≥ 1

2
C2 + OP ((T (1 − `))−1). We recall our notation OP indicates that there is no

dependence on k or T . Then we may sum over steps to obtain

σtotT :=
T∑

k=1

σk,T ≥
1

2
TC2 +O(1).

Thus, σtotT diverges as T in the adiabatic limit T →∞. Proposition 5.1 treats the case when
Xk,T is su�ciently small at each step k; the Quantum Pinsker Inequality along with an
analysis of the above proof yields the case when infs ‖X(s)‖1 > 0. We’ll return to this in
corollary 5.3.

5.2 m-RIS

MOTIVATED BY OUR CONSIDERATIONS in section 3.1.4 and the results of proposition 3.11, we
wish to formulate a repeated interaction system to take advantage of wH4.
Consider an RIS with constant elements HS , hS , λ, τ,HE , and variables (hEk)k=1,...,T , (vk)k=1,...,T ,

and (βk)k=1,...,T . We define the m-repeated version of this RIS to be the RIS associated to HS , hS , λ, τ,HE ,
and variables (hEb(k′−1)/mc+1

)k′=1,...,mT , (vb(k′−1)/mc+1)k′=1,...,mT , and (βb(k′−1)/mc+1)k′=1,...,mT . That
is, we obtain the m-RIS from the original by repeating each probe m times.

NOW, LET US CONSIDER the adiabatic setup (ADRIS) with an RIS corresponding to parame-
ters hS , λ, τ , s 7→ hE(s), s 7→ β(s), s 7→ v(s) such that the induced map L(s) obeys H1 to H3
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and wH4. Note that since L is obtained via (ADRIS), s 7→ L(s) is continuous, so all the as-
sumptions of lemma 3.7 are satisfied. Then Lk,T = L(k/T ) describes the time evolution of S
from time (k − 1)τ to kτ at fixed adiabatic parameter T .
Lemma 3.7 yields an m ∈ N such that Lm(s) obeys H1 to H4. This is then a natural can-

didate for an m-RIS. Choosing the m of lemma 3.7, we have that the time evolution of the
m-RIS from time (k − 1)mτ to kmτ at fixed adiabatic parameter T is given by Lm(k/T ). We
may consider in an ordinary 1-RIS that the way the parameters are sampled from the curves of
(ADRIS) is by stretching the curves by a factor of T ; in this language, an m-RIS approximately
stretches the curves by a factor mT , as illustrated in fig. 5.1. In this sense, we may consider an
m-RIS as a further slowing of the process, in the spirit of the adiabatic limit.
Note as well that an m-RIS is still an RIS in the sense of the original definition; it is simply

a constraint on the choice of parameters. This constraint manifests itself in the way parameters
are sampled from functions in the adiabatic setup of (ADRIS).
We should emphasize that although the origins of the idea of an m-RIS are mathematical

(wH4 instead of H4), the “stretching” of an RIS to the corresponding m-RIS is a change of
physical setup. One experimentally-oriented interpretation is that if the assumptions of theo-
rem 3.4 are hard to check or false for a given RIS, the result may still be able to be applied to a
modified setup.
We may formalize the above discussion by defining the following assumption.

mADRIS The repeated interaction system is the m-repeated version of a system satisfying
(ADRIS), i.e. we have for k = 1, . . . , T ,

hE,k′,T = hE

( [(k′ − 1)/m] + 1

T

)
, βk′,T = β

( [(k′ − 1)/m] + 1

T

)
,

vk′,T = v
( [(k′ − 1)/m] + 1

T

)
,

(mADRIS)

where s 7→ hE(s), β(s), v(s) are C2 functions on [0, 1] and m is given by lemma 3.7.

WE MAY NOW FORMULATE an analog of proposition 5.1 for m-RIS.

Corollary 5.2 (m-RIS). Consider a repeated interaction system satisfying (mADRIS) where the
CPTP map L(s) is irreducible for all s ∈ [0, 1] and satisfies wH4. Assume that the initial state
ρisatisfies (P 1

0,T +Q0,T )ρi = ρi. Define

D
(j)
k,T := Lk,T (ρ

(j)
k,T − ρinvk,T )⊗ ξk,T − Uk,T

(
(ρ

(j)
k,T − ρinvk,T )⊗ ξk,T

)
U∗k,T .
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1 Tmτ
time

mτ

β((k + 1)/T )

inv. temp.

β(s)

mkτ
mkτ + τ

mkτ +mτ

βmin

Figure 5.1: For a C2 curve β(s)
on [0, 1] with positive minimum,
the m-repeated RIS is such that,
between time mkτ and time
mkτ +mτ , the system S interacts
one-by-one with m atoms at
the same inverse temperature
β((k + 1)/T ).

With the same conditions on T , k ≤ T , and ‖Xk,T‖1 as in proposition 5.1, we have

∣∣σ(j)
k,T − Fk,T (Xk,T −D(j)

k,T )
∣∣ ≤ CP

ηk

(
(‖Xk,T‖1 + ‖Q0,Tρ

i‖1`
k + (T (1− `)−1)3

)
, (5.8)

where Fk,T = Fηk,T and CP
ηk,T

are the same as in proposition 5.1.

Remark. Then an m-RIS has approximately an m-fold increase in entropy as compared to the
associated 1-RIS.

Proof. For T and k ≤ T large enough, as described in the proof of proposition 5.1, after k − 1

steps each consisting of m interactions with external probes, the system is in the state ρ(m)
k−1 =

Lmk−1 · · ·Lm1 ρi, and from the proof of proposition 5.1 applied to Lm, we have

‖ρinvk − ρk−1‖1 ≤ 2‖Q0ρ
i‖1`

k +OP ((T (1− `))−1)

where ρinvk is the unique invariant state for Lmk and thus for Lk. This thus approximates the state
of the m-RIS after switching steps (i.e., at times (kmτ)k). For 1 ≤ j ≤ m,

‖ρinvk − ρ(j)
k ‖1 = ‖Ljk(ρinvk − ρk−1)‖1 ≤ ‖ρinvk − ρk−1‖1 ≤ 2‖Q0ρ

i‖1`
k +OP

(
(T (1− `))−1

)
. (5.9)

Thus, within a single step, we have the same bound between the state of the system and the
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invariant state of the start of the step. Thus, we could proceed as in the proof of eq. (5.3) to
obtain eq. (5.8), noting that Xk,T is independent of j.

Remark. In either proposition 5.1 or corollary 5.2, if the assumptions are met and we addition-
ally have Xk,T ≡ 0 and Q0,Tρ

i = 0, then

∣∣σ(j)
k,T − Fk,T (D

(j)
k,T )
∣∣ ≤ CP

ηk,T

(
(T (1− `)−3

)
.

If we make the additional assumption infs∈[0,1] inf sp ρinv(s) > 0, then we may remove the
ηk,T dependence from the constant on the RHS as shown by the explicit form computed in
lemma 4.4. Lastly, we make use of the bound on Fη given in corollary 4.6 to obtain

σ
(j)
k,T = Fk,T (D

(j)
k,T ) +OP

(
(T (1− `)−3

)
= OP (‖D(j)

k,T‖2) +OP
(
(T (1− `)−3

)
.

Lastly, the bound eq. (5.9) yields ‖D(j)
k,T‖ = OP ((T (1− `))−1), and we have

σ
(j)
k,T = OP

(
(T (1− `))−2

)
.

Summing over j and k yields

σtotT =
T∑

k=1

m∑

j=1

σ
(j)
k,T = OP

(
(T (1− `)−1

)
(5.10)

and in particular σtotT → 0 as T →∞.
On the other hand, if infs∈[0,1] ‖X(s)‖1 > 0 and Q0,Tρ

i = 0, we may generalize our analysis
after proposition 5.1 to conclude σtotT →∞ as T →∞, by replacing eq. (5.5) with eq. (5.9). We
may summarize this discussion in a corollary.

Corollary 5.3. Consider a repeated interaction system satisfying either

• assumption (ADRIS), such that the reduced dynamics L(s) is irreducible for all s ∈ [0, 1] and
satisfies H4, or

• assumption (mADRIS), such that the reduced dynamics L(s) is irreducible for all s ∈ [0, 1] and
satisfies wH4.

Denote ρinvs by the unique invariant state for L(s), and define

X(s) = U(s)ρinvs ⊗ ξsU(s)∗ − ρinvs ⊗ ξs.

Assume the initial state ρi satisfies P 1(0)ρi = ρi. Then,
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• If sups∈[0,1] ‖X(s)‖1 = 0, then σtotT → 0 in the limit T →∞, assuming infs∈[0,1] sp ρinvs > 0.

• If infs∈[0,1] ‖X(s)‖1 > 0, then σtotT →∞ in the limit T →∞.

5.3 Qubits with RW interaction

LET US RETURN to our example of section 2.2. We will use that, as established in section 2.2,

spr(Lk,TQk,T ) ≤
(

1− λ2

ν2
sin2 ντ

2

)
:= `,

and ` < 1 for ντ 6∈ 2πN, which we will assume for now on. Since Lk,T has a trivial peripheral
spectrum, in the sense that sp(Lk,T ) ∩ S1 = {1} and 1 is a simple eigenvalue, and the corre-
sponding eigenvector ρinvk,T = ρβ∗k,T the Gibbs state at temperature β∗k,T = E0

E
βk,T is positive

definite, we have that Lk,T is an ergodic (or primitive) CPTP map, by e.g. [Wol12, Theorem
6.7]. In particular, it is irreducible. Thus, we may apply proposition 3.11 to conclude there ex-
ists m ∈ N such that L(s) satisfies H1 to H4. We will consider the resulting m-RIS for the rest
of this section.
Motivated by corollary 5.2, we compute Xk,T .

Uk,Tρ
inv
k,T ⊗ ξk,TU∗k,T =

1

Tr(· · · )Uk,T exp(−βE0

E
Ea∗a) exp(−βE0b

∗b)U∗k,T

=
1

Tr(· · · )Uk,T exp(−βE0(a∗a+ b∗b))U∗k,T .

But, as discussed in section 1.3.1, vRW commutes with Ntot = a∗a+b∗b. Thus, Uk,t = exp(−τ(Ea∗a+

E0b
∗b+ λ

2
(a∗ ⊗ b+ a⊗ b∗) commutes with exp(−βE0Ntot), and we have

Uk,Tρ
inv
k,T ⊗ ξk,TU∗k,T = ρinvk,T ⊗ ξk,TUk,TU∗k,T = ρinvk,T ⊗ ξk,T .

Thus, Xk,T = 0. If we choose the initial state ρi = ρinv0,T , then Q0,Tρ
i = 0. Since ρinvs > 0 for all

s ∈ [0, 1] as a Gibbs state at positive temperature, by corollary 5.3, we conclude σtotT → 0.
On the other hand, if we start in a di�erent initial state, the first steps alone may produce en-

tropy which will not vanish in the adiabatic limit, although this contribution will exponentially
decrease with the step number k.

Remark. The qubit setup with the full dipole interaction (introduced in section 1.3.1) does not
have Xk,T ≡ 0; we will postpone its analysis to section 6.1.
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5.3.1 An aside on adiabatic cooling

THE FORM OF THE INVARIANT STATE as a Gibbs state

ρβ∗ =
exp(−β∗k,ThS)

Tr(exp(−β∗k,ThS))
.

prompts a question. Since β∗ = E
E0
β where β is the temperature of the probes, if E0 < E, we

may cool the system below the temperature of the probes (i.e., reach higher inverse temperature
β). In particular, we can adiabatically drive the initial state of the system to the thermal state at
temperature β∗ < β, that is, without entropy production. Given Landauer’s bound, this enables
the preparation of such a state with a minimal energetic cost, making the cooling e�ect more
surprising. To truly produce no entropy production, we must start with ρi as the invariant
state for L0; thus, we must start with the system in a thermal state which is already cooler than
the initial probe. If are willing to allow some entropy production, however, we may start in a
di�erent initial state, and produce ∼ `k entropy production at each step k, i.e. exponentially
decaying entropy production at each step. If we need no control over the entropy production,
then we could simply fix the target temperature β∗ and apply L(β) many times to drive the
system to ρβ∗ exponentially fast, as in section 2.2. We could also investigate a system with E0 =

E0(s) varying.
Before being carried away, however, we should be suspicious: it does not seem plausible to

cool, say, a fermion by interacting with a chain of hot fermions. In fact, the larger E0 is com-
pared to E, the larger the cooling. However, the rotating wave approximation is known to
hold best when E0 ≈ E. Thus, the cooling phenomenon improves just as the RWA is known
to break down. We will return to this when we consider the full dipole interaction in sec-
tion 6.1.

5.4 Discussion of the small coupling limit

COROLLARY 5.3 ESSENTIALLY CHARACTERIZES the entropy production of RIS in two ex-
tremal cases when T is independent of the other parameters. We are now interested in look-
ing for an intermediate case: Xk,T decreasing with T . We will see shortly in lemma 5.4 that
Xk,T = O(λ). This suggests considering the small coupling regime of |λ| � 1, which is the
focus of this section. However, small λ is technically challenging.
For an RIS with λ = 0, the reduced dynamics L(s) is simply the free evolution of the small

system, and any density matrix which commutes with hS will be invariant. In the 2 × 2 exam-
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ple with the RW approximation considered in section 5.3, then both ρ = a∗a and ρ = Id − a∗a
will be invariant states of L(s) at every s ∈ [0, 1], and we no longer have a unique invariant
state. In general, as λ → 0, we expect the eigenvalues of L(s) to move towards the unit circle,
which makes the `-dependence in the discrete non-unitary adiabatic theorem theorem 3.4 rel-
evant: we approximate the state of S up to an error of order ((1 − `)T )−1, which may or may
not be small.

A brief aside on the conceptual structure of analyzing repeated interaction systems. We wish to con-
sider the mathematical behavior of a fixed RIS where we change the parameter λ and under-
stand the behavior of the entropy production. What do we mean by this? Implicitly, we’ve
already done something similar by considering the large T limit: for each T , we obtain a “dif-
ferent” RIS, from which we compute the entropy production. We are taking T large then in
this “RIS-parameter-space” and evaluating the resultant total entropy production. This may be
clarified by the following diagram.

Input T ~p =
{
λ, τ, HS , hS , HE , s 7→ hE(s), s 7→ β(s), s 7→ v(s)

}

~pk,T =
{
λ, τ, HS , hS , HE , hE(k/T ), β(k/T ), v(k/T )

}

RIS((~pk,T )
T
k=1)

(σk)
T
k=1

Sample

Process

Output

Figure 5.2: Diagram of an adiabatic RIS process. Inputs T , ~p are selected which meet some assumptions A. These
are sampled to determine the parameters for T interactions. The system S interacts with the T probes as outlined
in section 1.3, yielding an entropy production σk for each step. .

We make assumptions on the inputs: on the constant parameters, on the C2 functions, and
on T . Then we sample the functions to obtain the list of parameters for the T steps of the RIS
process. We run the RIS process for all T steps, and finally output the entropy productions
from each step: (σk)

T
k=1.
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Mathematically, we compute (σk) by making some assumptions A on the set of inputs (for
the sake of discussion, we won’t be specific). Then, via e.g. eq. (5.3), we obtain informa-
tion I(~p, T ) about σk, e.g. an expansion like eq. (5.3), which is a function of the inputs. If we
change the inputs to ~p′, T ′ in a way such that they still obey our assumptions A (e.g., taking
T + 1 instead of T ), then running this whole process again must yield the same information
about σk evaluated at the new inputs: I(~p′, T ′).
This is why we may take the limit T → ∞ in eq. (5.10) to conclude the entropy produc-

tion of an RIS vanishes in the adiabatic limit T → ∞: at each increasingly large T , we meet
our assumptions A and obtain the same type of expansion such that σtotT = O(1/T ). Since the
constants hidden in the ‘O’ do not depend on T , the parameter which is changing, we find that
changing T as an input yields an output σtotT which yields a vanishing sequence of real numbers.
However, if we change our inputs ~p, T such that our assumptions are violated (e.g. taking

λ = 0), we cannot simply evaluate I which was derived for λ > 0 and obtain a valid result
for the entropy production of an RIS without coupling. On the other hand, we may simply
find that our information I is unhelpful for some choices of parameters, as in the case when
` → 1 and we obtain estimates up to order ((1 − `)T )−1. In fact, we are additionally troubled
by the fact that the constants here depend on the regularity of the spectral projectors of the
reduced dynamics, which then depends on λ. Thus, they are not “constant” as we move λ in
RIS-parameter space.

RETURNING TO THE SMALL COUPLING LIMIT, we will outline the plan of approach to the
small coupling limit taken in [HJPR15] and quote the main result.

1. We wish to ensure taking λ small yields small Xk,T to ameliorate the assumption ‖Xk,T‖1 <

D0 from proposition 5.1. We show the first step of this in lemma 5.4.

2. Then, we need to control the λ-dependence of cP as defined in eq. (3.1) so that our adi-
abatic theorem, theorem 3.4, yields helpful estimates of the state of the RIS at each step.
Note that since N :≡ dimP (s) ≤ min(2π

ε
, dimX), this parameter is already bounded uni-

formly in λ. This would allow us to formulate an analog of theorem 3.4 to estimate the the
state of S at each step of the RIS process.

3. As discussed in section 3.1.2, the (1 − `)−1 dependence of the adiabatic theorem cannot be
improved in our approach. Since ` ≥ spr(L(s)Q(s)), and the spectral radius approaches 1
as λ → 0, even the newly hardened adiabatic theorem of step 2 will not su�ce to estimate
σk in the small coupling limit. We will have to resort to wH4 and switch to an m-RIS
with m = m(λ) increasing as λ → 0. We can interpret this as a further adiabatic slowing
of the process.
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4. Finally, we will be able to prove an analog of corollary 5.2 to estimate σ(j)
k,T with a clear

understanding of the λ-dependence of the error. Thus we may estimate

σT,λ =
T∑

k=1

m(λ)∑

j=1

σ
(j)
k,T

with control over both the T and λ dependence. This allows, e.g., computation of the limit
λ→ 0, T →∞, λT ≡ 1.

FIRST, WE WILL SHOW that Xk,T should be small as λ→ 0.

Lemma 5.4. Assume we may expand

ρinvk,T = (ρinvk,T )(0) + λ(ρinvk,T )(1) +O(λ2) (5.11)

uniformly in k. Then Xk,T as defined in eq. (5.1) satisfies

Xk,T = λMk,T +O(λ2)

where

Mk,T := U (0)
(
(ρinvk,T )(1) ⊗ ξk,T

)
(U (0))∗ − (ρinvk,T )(1) ⊗ ξk,T

−
[
(ρinvk,T )(0) ⊗ ξk,T ,

∑

i

πi,k,Tvπi,k,T (−iτ) +
∑

i 6=j

πi,k,Tvπj,k,T

(exp(−iτ(Ei,k,T − Ej,k,T ))− 1

Ei,k,T − Ej,k,T

)]
,

πj,k,T , resp. Ej,k,T , are the spectral projectors, resp. eigenvalues, of h0 = hS + hE,k,T , and U (0) :=

exp(−iτh0). Note thatMk,T is traceless, self-adjoint, and depends on ρinvk,T , ξk,T , v(k/T ), and τ , but is
independent of λ, and is bounded uniformly in k.

Remark. We will not address assumption eq. (5.11) here, although it is shown in [HJPR15] to
follow from an investigation of the operator

Lλ(s)(·) = TrE
(
e−iτ(h0(s)+λv(s))(·)⊗ ξ(s)eiτ(h0(s)+λv(s))

)
(5.12)

where ξ(s) = exp(−β(s)hE(s)) and h0(s) := hS + hE(s).

Proof. Let us drop the subscripts k and T for notational simplicity. Since U = exp(−iτ(h0 +

λv)), the operator U is analytic in λ. Since by assumption ω := ρinv ⊗ ξ admits a second order



68 LANDAUER’S PRINCIPLE IN REPEATED INTERACTION SYSTEMS

expansion in λ, we have

ω = ωλ = ω(0) + λω(1) +O(λ2), U = Uλ = U (0) + λU (1) +O(λ2).

Let Rλ(z) = (h0 + λv − z)−1 to be the resolvent of the coupled Hamiltonian and R0(z) =

(h0 − z)−1. The holomorphic functional calculus yields

Uλωλ(Uλ)∗ =
1

(2iπ)2

∫

Γ

∫

Γ′
exp(−iτ(ζ − ζ ′))Rλ(ζ)ωλRλ(ζ ′) dζ ′ dζ,

where Γ′ is a contour contained in the interior of Γ, and both contain the spectrum of the cou-
pled Hamiltonian h. Note that since U is entire such contours trivially exist, unlike with the
relative entropy in chapter 4 where we need to use the faithfulness of the state. Next, we sub-
stitute the Neumann expansion Rλ(z) = R0(z)[Id + λvR0(z)]−1 = R0(z)[Id− λvR0(z) +O(λ2)]

for z ∈ Γ, to obtain

Uλωλ(Uλ)∗ =
1

(2iπ)2

∫

Γ

∫

Γ′
exp(−iτ(ζ − ζ ′))R0(ζ)[Id− λvR0(ζ)]ωλR0(ζ ′)[Id− λvR0(ζ ′)] dζ ′ dζ

+O(λ2).

We insert our expansion for ωλ and use U (0)ω(0)(U (0))∗ = ω(0) to rearrange Uλωλ(Uλ)∗ as

ω(0) + λU (0)ω(1)(U (0))∗−
λ

(2iπ)2

∫

Γ

∫

Γ′
exp(−iτ(ζ − ζ ′))R0(ζ)[vR0(ζ)ω(0) + ω(0)R0(ζ ′)v]R0(ζ ′) dζ ′ dζ +O(λ2).

We compute these integrals using standard techniques. For example, the first term is

I :=
1

(2iπ)2

∫

Γ

∫

Γ′
exp(−iτ(ζ − ζ ′))R0(ζ)vR0(ζ)R0(ζ ′) dζ ′ dζ.

We apply the first resolvent identity (see proposition A.6) on the last factor R0(ζ)R0(ζ ′), then
perform the ζ ′ integral. Next, we write remaining resolvents using the spectral representation
h0 =

∑
i πiEi, and use Cauchy’s integral formula to obtain

I = −
∑

i

πivπi(−iτ)−
∑

i 6=j

πivπj

(
exp(−iτ(Ei − Ej))

Ei − Ej
− 1

Ei − Ej

)
.
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We deal with the other term in the same way to obtain, using that [ω(0), R0(z)] = 0,

Uλωλ(Uλ)∗ = ω(0) + λU (0)ω(1)(U (0))∗

− λ
[
ω(0),

∑

i

πivπi(−iτ) +
∑

i 6=j

πivπj

(exp(−iτ(Ei − Ej))− 1

Ei − Ej

)]
+O(λ2).

NOW, LET US CONSIDER eq. (5.12). When λ = 0, we have

L0(s)(·) = e−iτhS · eiτhS .

This map is independent of s. Since hS is self-adjoint, it has dimHS linearly independent
eigenvectors {φj} satisfying hSφj = Ejφj for some Ej ∈ R. Then

L0(s)(|φj〉 〈φk|) = eiτ(Ek−Ej) |φj〉 〈φk| .

Then L0(s) has eigenvalue 1 with multiplicity at least dimHS (corresponding to Ek = Ej), and
all (dimHS)2 eigenvalues in spL0(s) are on the unit circle. In order to perform steps 2 and 3,
we need to make a genericity assumption to forbid accidental degeneracy.
wGEN The spectrum of L0(s) consists of dimHS(dimHS − 1) simple eigenvalues di�erent
from 1, and 1 which is dimHS-fold degenerate. Furthermore, hypotheses H1 to H3 and wH4
hold for all λ ∈ R∗ small enough, uniformly in s ∈ [0, 1].

Remark. In particular, we assume hS is not degenerate. This assumption also ensures that v(s)

e�ectively couples the system and probes in the sense that for small but strictly positive cou-
pling λ, H4 still holds, and the strictly contracting part of Lλ(s) is separated from the periph-
eral part.

This assumption and an analysis of the operator eq. (5.12) along with wGEN allows the tasks
in step 2 and 3 to be performed, yielding the following results.

Lemma 5.5 (m-RIS control of `(λ)). Assume wGEN. For all 0 < G < 1, there exists m(λ) ∈ N
such that for any λ ∈ R∗ small enough,

`(λ) := sup
s∈[0,1]

‖Lλ(s)m(λ)Q(λ, s)‖ ≤ 1−G.
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We can take m(λ) ≥M ′
0

ln(1/|λ|)
|λ|r whereM ′

0 > 0 is a constant, and r > 0 satisfies the estimate

sup
s∈[0,1]

spr(Lλ(s)Q(λ, s)) ≤ 1− S0|λ|r, for some S0 > 0.

If dimHS = 2, `(λ) ≤ 1−G for m(λ) ≥ M0

λ2
for someM0 > 0, for λ ∈ R∗ small enough.

Then by choosing an m(λ)-RIS, we may eliminate the λ-dependence from `. However,
these estimates yield m(λ) with m(λ) → ∞ as λ → 0. We may think of this as a further adi-
abatic slowing of the process, just as with a constant m-RIS. Now, we may formulate the final
result of the section (i.e. step 4).

Proposition 5.6 (SCL m-RIS). Consider a repeated interaction system satisfying assumption (mADRIS)
such that the induced CPTP map Lλ(s) is irreducible for all s ∈ [0, 1], and satisfies wGEN. De-
note by ρinvk,T (λ) the unique invariant state of Lλk,T and P 1

k,T (λ) the associated spectral projector of
Lλk,T . Assume this state is faithful up to λ = 0. Let ρi be the initial state of the system, and assume
(P 1

0,T (λ) + Q0,T (λ))ρi = ρi. Then, using the notation of corollary 5.2, for T large enough, λ small
enough, and k ≤ T large enough, we have ρinvk,T (λ) = (ρinvk,T )(0) + λ(ρinvk,T )(1) + O(λ2), and for all
1 ≤ j ≤ m(λ),

σ
(j)
k,T = λ2F

(0)
k,T (Mk,T ,Mk,T ) + F

(0)
k,T (D

(j)
k,T , D

(j)
k,T )− λF (0)

k,T (D
(j)
k,T ,Mk,T ) (5.13)

− λF (0)
k,T (Mk,T , D

(j)
k,T ) +O({λ+ ‖Q0,Tρ

i‖`(λ)k + T−1}3),

where F (0)
k,T (·, ·) = F(ρinvk,T )(0)(·, ·) andMk,T is defined in lemma 5.4.

This allows the computation of σ(j)
k,T at every step of the RIS, as a function of all the parame-

ters, with control over both λ and T . Let us apply this to the special case with Q0ρ
i = 0 so that

Dk,T = O(1/T ), using eq. (5.5).
We assume that inf sp(ρinvs )(0) > 0, which yields a lower bound for the spectrum of (ρinvk,T )(0)

uniform in k and T . Then our bound on the function Fη from corollary 4.6 yields e.g., (0)
k,T (D

(j)
k,T ) =

O(T−2) uniformly in k and T . Thus we have

σ
(j)
k,T = λ2F

(0)
k,T (Mk,T ) +O(1/T 2) +O(λ/T ) +O(λ3).
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Then,

σtotλ,T :=
T∑

k=1

m(λ)∑

j=1

σ
(j)
k,T = m(λ)

T∑

k=1

[
λ2F

(0)
k,T (Mk,T ) +O(1/T 2) +O(λ/T ) +O(λ3)

]

= m(λ)

[
λ2

T∑

k=1

F
(0)
k,T (Mk,T ) +O(1/T ) +O(λ) +O(Tλ3)

]
.

= m(λ)
[
λ2TF0 +O(1/T ) +O(λ) +O(Tλ3)

]
. (5.14)

where

F0 := lim
T→∞

1

T

T∑

k=1

F
(0)
k,T (Mk,T ).

In fact, if we consider the C2 functionM(s),

M(s) =
[
(ρinv(s))(0) ⊗ ξ(s),

∑

i

πi(s)vπi(s)(−iτ) +
∑

i 6=j

πi(s)vπj(s)

(
exp(−iτ(Ei(s)− Ej(s)))− 1

Ei(s)− Ej(s)

)]

+ U (0)(s)(ρinv(s))(1) ⊗ ξ(s)(U (0)(s))∗.

then we may write

F0 = lim
T→∞

T∑

k=1

Fρinv(k/T )(0)(M(K/T ))(k/T − (k − 1)/T ) =

∫ 1

0

Fρinv(s)(0)(M(s)) ds. (5.15)

SinceM(s) is C2 and F([s]inv)(0) bounded independently of s, the integral is finite. Additionally,
sinceM(s) is self-adjoint, by corollary 4.6, the integrand is non-negative, so 0 ≤ F0 <∞.
Equation (5.14) shows that for any small but finite λ0 > 0, the adiabatic limit T → ∞ yields

divergent entropy production. This agrees with our analysis in terms of the Quantum Pinsker
Inequality.
Moreover, if dimHS = 2, then we may choose m(λ) = dM0/λ

2e, and obtain for F0 > 0

σtotλ,T = TM0F0(1 +O(1/(T 2λ2)) +O(1/Tλ) +O(λ)).

Then σtotλ,T diverges as T even in the limit T → ∞, λ → 0, λT = constant. In higher dimen-
sional spaces, lemma 5.5 yields larger estimates for m(λ), so the corresponding m(λ)-RIS also
has divergent entropy production in this limit.



6
Dénouement

6.1 Qubits with full dipole interaction

WE NOW HAVE THE TOOLS to return to the example of qubits with the full dipole interaction
considered in section 1.3.1. In that section, we computed the reduced dynamics, L as a func-
tion of the parameters. We may compute its eigenvalues and eigenvectors (see [Han16]). Since

hS =

(
0 0

0 E

)
, for τE 6∈ 2πZ we have sp(L0) = {e±iτE, 1} where 1 has multiplicity two. We

may check via perturbation theory or computationally that for λ > 0, 1 is a simple eigenvalue
and the only peripheral eigenvalue of Lλ(s). We also see that all eigenvalues of Lλ(s) are in
fact independent of β and thus of s ∈ [0, 1]. We may compute the eigenvector associated to 1

for λ > 0:

ρinvs =




eβ(s)E0 (1−cos(ντ))η2+ν2(1−cos(ητ))

(1+eβ(s)E0)((1−cos(ντ))η2+ν2(1−cos(ητ)))
0

0 (1−cos(ντ))η2+eβ(s)E0ν2(1−cos(ητ))

(1+eβ(s)E0)((1−cos(ντ))η2+ν2(1−cos(ητ)))




where ν =
√

(E0 − E)2 + λ2 and η =
√

(E + E0)2 + λ2, using the basis described in sec-
tion 1.3.1, the eigenbasis of the unperturbed Hamiltonian h0 = hS + hE . Since this matrix
is strictly positive-definite for whenever either ντ 6∈ 2πZ or ητ 6∈ 2πZ. Thus, if we exclude
a countable set from parameter space, this invariant state is faithful for small enough λ, uni-
formly in s. Thus, similarly to the RW case discussed in section 5.3, since Lλ(s) has trivial pe-
ripheral spectrum with positive-definite eigenvector to eigenvalue 1, we have that Lλ(s) is an
ergodic CPTP map, and in particular irreducible. Additionally, these considerations show that
wGEN is satisfied.
By lemma 5.5, there exists m(λ) ∈ N for each λ 6= 0 small enough to bound `(λ) uniformly

away from one. The lemma shows we may take m(λ) = dM0
1
λ2
e for some constantM0 > 0.
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We will consider the corresponding m(λ)-RIS, where each probe is repeated m(λ) times.
First, let us consider corollary 5.3: do we have infs ‖X(s)‖1 > 0? Even with Mathematica,

a simplified form of ‖Xk,T‖1 was not found. However, we may recognize that ifMk,T 6= 0, as
will be shown below, then Xk,T can only vanish with a conspiracy of the higher order terms,
which can only happen for a countable set of λ. For any other choice of parameters then,

σtotT,λ →∞

as T →∞ when Q0,Tρ
i = 0.

Now, let us consider the small coupling limit. Let ρi = (ρinv0 )(0), the invariant state at s = 0.
Then Q0,Tρ

i = 0, and we are in the case computed after proposition 5.6. We may explicitly
computeM(s), using that ρinvs has no term which is first order in λ. We obtain

Mk,T = Ak,T




0 0 0 −(eiτη0−1) sin2(ν0τ/2)η0

0 0 −(eiτν0−1) sin2(η0τ/2)ν0 0

0 e−iν0τ(eiτν0−1) sin2(η0τ/2)ν0 0 0

e−iη0τ(eiτη0−1) sin2(ν0τ/2)η0 0 0 0


,

where

Ak,T =

1
2

tanh
(
βk,TE0

2

)

2E0E sin(E0τ) sin(Eτ)− (E2
0 + E2) (1− cos(E0τ) cos(Eτ))

and ν0 = |E − E0| and η0 = |E + E0|.
Since [ρinvs , ξ(s)i, h0] = 0, using that ρinvs and ξs are diagonal in the eigenbasis of h0, the spec-

tral projectors in the definition of Fρinvs ⊗ξis are the same as those for h0. We use this to compute
Fρinvs ⊗ξis(M(s)). We sample at s = k/T to conclude for small λ that

σ
(j)
k,T = Fρinvk,T⊗ξik,T (Mk,T ) +O(λT−1) +O(T−2) +O(λ3),

Fρinvk,T⊗ξik,T (Mk,T ) =




λ2 βk,TE0

2
tanh

(
βk,TE0

2

)
(cos(E0τ)−cos(Eτ))2

2E0E sin(E0τ) sin(Eτ)−(E2
0+E2)(1−cos(E0τ) cos(Eτ))

E 6= E0

λ2βk,TE0 tanh
(
βk,TE0

2

)
τ2 sin2(E0τ)

1+2E2
0τ

2−cos(2E0τ)
E = E0.

Given a curve s 7→ β(s), we may then compute F0 via eq. (5.15). However, we notice that F0

vanishes or not depending only on E,E0, τ , and not depending on β or λ. As pointed out at
the end of section 5.4, if F0 6= 0 then σtotλ,T diverges as T in the limit T → ∞, λ → 0, λT =

constant. In particular, for any small λ > 0, the entropy production σtotλ,T diverges as T →∞.
Naively, when would we have F0 = 0 by the expression above? This occurs exactly when
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(E−E0)τ ∈ 2πZ. But this implies ν0 = ν|λ=0 ∈ 2πZ violating our assumption that the invariant
state is faithful for all λ small enough, including λ = 0. Thus, for any choice of parameters
meeting our assumptions we obtain divergent entropy production for the m(λ)-RIS.

6.1.1 A return to cooling

LET US RETURN to our considerations of cooling in the RW system discussed in section 5.3.1.
First, we have seen we may not drive the system to the invariant state without entropy produc-
tion in this way. Next, we may rewrite the invariant state in the full dipole system as a Gibbs
state as some e�ective temperature βe�, which may not be positive. We can then check to see if
βe� > β.

Writing ρinv =

(
γ

1− γ

)
, we equate

(
γ

1− γ

)
= exp(−βe�hE)/Tr(· · · ) =

(
1

e−β
e�E0

)
1

1 + e−βe�E0
.

This generates two equivalent conditions, one of which is

γ =
1

1 + e−βe�E0
⇐⇒ e−β

e�E0 =
1

γ
− 1 ⇐⇒ −βe�E0 = log

(
1

γ
− 1

)

That is, βe� = − 1
E0

log
(

1
γ
− 1
)
. First, when is βe� > 0? We have

βe� > 0 ⇐⇒ log

(
1

γ
− 1

)
< 0 ⇐⇒ 1

γ
− 1 < 1 ⇐⇒ γ >

1

2
.

Substituting the definition of γ into this inequality, we see this occurs when

eβE0(1− cos(ντ))η2 + ν2(1− cos(ητ)) >
1

2

(
1 + eβE0

) (
(1− cos(ντ))η2 + ν2(1− cos(ητ))

)

1

2
eβE0(1− cos(ντ))η2 +

1

2
ν2(1− cos(ητ)) >

1

2
(1− cos(ντ))η2 +

1

2
eβE0ν2(1− cos(ητ))

(
eβE0 − 1

)
(1− cos(ντ))η2 >

(
eβE0 − 1

)
ν2(1− cos(ητ))

(1− cos(ντ))η2 > ν2(1− cos(ητ))

which we can rewrite and simplify as

(
(E0 − E)2 + λ2

)
cos
(
τ
√

(E0 + E)2 + λ2
)

+4E0E >
(
(E0 + E)2 + λ2

)
cos
(
τ
√

(E0 − E)2 + λ2
)
.
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By inspection, in the RWA regime, λ small and E0 ≈ E, for example, this condition holds. It
does not always hold; take, say, λ = 2, E0 = 2, E = 1, and τ = 3, and we have the LHS as
13 cos(3

√
5) ≈ 11.84 and the RHS as 8 + 5 cos(3

√
5) ≈ 7.11. Moving on, can we have βe� > β?

βe� > β ⇐⇒ −βe�E0 < −βE0 ⇐⇒ e−β
e�E0 < e−βE0

⇐⇒ e−β
e�E0 + 1 < e−βE0 + 1

⇐⇒ 1

e−βE0 + 1
<

1

e−βe�E0 + 1
= γ

⇐⇒ 1

e−βE0 + 1
<

eβE0(1− cos(ντ))η2 + ν2(1− cos(ητ))

(1 + eβE0) ((1− cos(ντ))η2 + ν2(1− cos(ητ)))

⇐⇒ eβE0 =
eβE0 + 1

e−βE0 + 1
<
eβE0(1− cos(ντ))η2 + ν2(1− cos(ητ))

(1− cos(ντ))η2 + ν2(1− cos(ητ))

⇐⇒ eβE0
(
(1− cos(ντ))η2 + ν2(1− cos(ητ))

)
< eβE0(1− cos(ντ))η2 + ν2(1− cos(ητ))

⇐⇒ eβE0ν2(1− cos(ητ)) < ν2(1− cos(ητ))

⇐⇒ eβE0 < 1 ⇐⇒ βE0 < 0

which we’ve assumed to not be the case. Therefore, the cooling seen in section 5.3.1 cannot
occur with the full dipole interaction, at least in the sense shown here. That cooling may thus
indicate a failure of the rotating wave approximation.

6.2 Retrospective

REPEATED INTERACTION SYSTEMS have two sources of entropy production: the di�erence be-
tween the actual dynamics and the adiabatic dynamics, and the failure of the invariant state of
the reduced dynamics to be invariant under the full dynamics. We would expect the first for
any adiabatic limit. The second is indicative of the non-equilibrium nature of repeated interac-
tion systems, which is due to the probes being swapped out every step. Even if one starts in the
invariant state for the first step, we expect order λ2 entropy to be produced from each subse-
quent step. As the number of steps is given by the adiabatic parameter T , in the adiabatic limit
we obtain infinite entropy production, growing as m(λ)λ2T for small but finite coupling λ.
This more or less resolves our initial question: Landauer’s Principle is not saturated in the adi-
abatic limit. However, we saw when the system and probes are given by two level systems
interacting through their dipoles, in the rotating wave approximation, the entropy production
vanishes even for large coupling.



A
Linear algebra

A.1 Projections

Def A.1. If X is a vector space, a bounded operator P ∈ B(X) is a projection if P 2 = P .

Projections have the following properties.

Proposition A.2. If X is a finite-dimensional vector space and P ∈ B(X) a projection, then

1. spP ⊂ {0, 1}

2. TrP = Tr |P | = rankP = dim RanP .

Lemma A.3. Let X be a finite-dimensional vector space. Let P and Q be projections on X with
spr(P −Q)2 < 1. Then P is similar to Q.

Proof. We wish to find an invertible operator U such that P = U−1QU . Consider

U ′ = QP + (1−Q)(1− P ).

On the P subspace, U ′ maps to Q, and on the 1 − P subspace, U ′ maps to 1 − Q; in particular,
U ′P = Q. But the map isn’t bijective: U ′P (1 − Q) = Q(1 − Q) = 0. But P (1 − Q) 6= 0 in
general. We could similarly consider

V ′ = PQ+ (1− P )(1−Q),
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which then has V ′ : QX → PX . We have

U ′V ′ = QPQ+ (1−Q)(1− P )(1−Q)

= QPQ+ (1−Q)(1− P −Q+ PQ+QP )

= ���QPQ+ 1− P −Q+ PQ+�
��QP − ��Q+QP + ��Q−���QPQ−�

��QP

= 1− P −Q+ PQ+QP

= 1− (P −Q)2.

Since the RHS is invariant under P ↔ Q, the LHS is too, and we have V ′U ′ = 1 − (P − Q)2.
Let R = (P −Q)2. Then U ′V ′ = V ′U ′ = 1−R. If the far right side was 1 instead of 1−R, then
U ′ and V ′ would be inverses to each other, and we would have found a bijective map. We will
try to modify U ′ and V ′ to let this happen. Note that

PR = P + PQ− PQ− PQP = P − PQP = P +QP −QP − PQP = RP

and similarly, R commutes with Q. Thus, R commutes with U ′ and V ′. With our assumption
sprR < 1, we have the absolutely convergent series

(1−R)−1/2 =
∞∑

n=0

(−1/2

n

)
(−R)n

where we define
(
α
n

)
:= α(α−1)(α−2)···(α−n+1)

n!
for α ∈ C. This sum satisfies ((1 − R)−1/2)2 =

(1 − R)−1 as we would expect, according to [Kat76]. Alternatively, we may see that since
sprR < 1, at least in this finite dimensional case, 1 − R is positive definite. Then its inverse
(1 − R)−1 is positive definite and so admits a unique positive square root, which we will call
(1 − R)−1/2. Now, define U = U ′(1 − R)−1/2, and V = V ′(1 − R)−1/2. Then UV = V U =

(1−R)(1−R)−1 = 1, so V = U−1.
Finally,

UP = U ′P (1−R)−1/2 = QP (1−R)−1/2 = QU ′(1−R)−1/2 = QU

So P = U−1QU , and the two operators are similiar.

Corollary A.4. Let Y and X be finite dimensional vector spaces, and P : B(Y ) → B(X), A 7→ PA

be a projector-valued map, which is continuous at A0 ∈ B(Y ). Then for su�ciently small ‖A − A0‖,
the range PAX is isomorphic to PA0X . In particular, dimPAX is constant.
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Proof. Since A 7→ PA is continuous at A0, there exists δ > 0 such that for ‖A − A0‖ < δ, the
norm ‖PA − PA0‖ < 1. Fix A with ‖A− A0‖ < δ. Then

spr(PA − PA0)
2 ≤ [spr(PA − PA0)]

2 ≤ ‖PA − PA0‖2 < 1.

Then by lemma A.3, PA = U−1PA0U for some invertible U ∈ B(X). Then UPA = PA0U , so
U : PAX → PA0X is a vector space isomorphism.

A.2 Resolvents

Def A.5. For X a finite dimensional vector space, and T ∈ B(X), define the resolvent as the
operator-valued map

RT : P (T )→ B(X)

ζ 7→ RT (ζ) = (T − ζ)−1,

where P (T ) is the resolvent set of T , namely C \ sp(T ) where sp(T ) is (in finite dimensions) the
set of eigenvalues of T .
We will follow convention and also call the operator RT (ζ) the resolvent of T at ζ.

Remark. The resolvent encodes all of the information of T in a way that allows us to access the
powerful results of complex analysis.

Proposition A.6 (Properties of the resolvent). For X a finite dimensional vector space and T,A,B ∈
B(X), we have the following properties.

1. For ζ ∈ P (T ), the resolvent RT (ζ) commutes with T and has exactly the eigenvalues {(λ− ζ)−1 :

λ is an eigenvalue of T}.

2. For ζ1, ζ2 ∈ P (T ), we have the first resolvent equation

RT (ζ1)−RT (ζ2) = RT (ζ1)(ζ1 − ζ2)RT (ζ2) = (ζ1 − ζ2)RT (ζ1)RT (ζ2).

In particular, RT (ζ1) and RT (ζ2) commute.

3. The second resolvent equation: for ζ ∈ P (A) ∩ P (B),

RA(ζ)−RB(ζ) = RA(ζ)(B − A)RB(ζ).
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Proposition A.7. Let X be a Hilbert space with dimX = N < ∞ and T ∈ B(X) be a normal
operator on X with eigenvalues {λ1, . . . , λN} counted with multiplicity. Then

‖RT (ζ)‖ = min
k=1,...,N

1

|ζ − λk|
.

Remark. This is problem 6.43 of [Kat76], page 60.

A.3 Continuity of eigenvalues

Def A.8. Let C(n) = {{z1, z2, . . . , zn} : zj ∈ C, zj 6= zi for i, j = 1, 2, . . . , n} be the set
of unordered n-tuples of complex numbers. Given two tuples A = {a1, . . . , an} ∈ C(n) and
B = {b1, . . . , bn} ∈ C(n), define

dist(A,B) = min
σ∈Sn

max
1≤k≤n

|aσ(k) − bk|

where Sn is the symmetric group on n letters.

Remark. It is straightforward to check that the function dist : C(n) × C(n) → R+ is a metric.
This distance is a natural one for sets; we rearrange A and B so that their largest elementwise
distance is minimal, and use that distance for the distance between the tuples.

Theorem A.9 (Continuity of eigenvalues). Let X be an n-dimensional vector space. Let S :

(B(X), ‖ · ‖)→ (C(n), dist) map T ∈ B(X) to its n-tuple of eigenvalues, repeatedly according to their
algebraic multiplicies, in any order. Then S is continuous.

Proof. This follows from the continuity of zeros of polynomials, e.g. [Zed65, Theorem 1].

A.3.1 CPTP maps

Proposition A.10. Let H be a finite dimensional Hilbert space. Then set C of CPTP maps on
(B(H), ‖·‖2)→ (B(H), ‖·‖2) is a compact subset of B(B(H)) with the norm ‖Φ‖ = sup‖ρ‖2=1 ‖Φ(ρ)‖2.

Remark. Since all norms are equivalent on these finite dimensional spaces, we recover compact-
ness of CPTP maps on (I1(H), ‖ · ‖1).

Proof. See [Cro13, Lemma 1.9].



B
Detailed derivation of eq. (1.2)

By definition of relative entropy, the entropy production (eq. (1.4)) may be written

σ = Tr
(
Uρi ⊗ ξiU∗ log(Uρi ⊗ ξiU∗)

)
− Tr

(
Uρi ⊗ ξiU∗ log(ρf ⊗ ξi)

)
.

We then recognize the first term as an entropy, and expand the second term using the follow-
ing lemma.

Lemma B.1. If A,B are strictly positive operators, then

log(A⊗B) = log(A)⊗ Id + Id⊗ log(B).

Proof. If A,B have spectral decompositions A =
∑

i µiPi and B =
∑

j λjQj , then A ⊗ B =∑
ij µiλjPi ⊗Qj . With this,

log(A⊗B) =
∑

ij

log(µiλj)Pi ⊗Qj

=
∑

ij

(log µi + log λj)Pi ⊗Qj

=
∑

ij

log µiPi ⊗Qj +
∑

ij

log λjPi ⊗Qj

=
∑

i

log µiPi ⊗ Id +
∑

j

log λjId⊗Qj

= log(A)⊗ Id + Id⊗ log(B).
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This yields

σ = −S(Uρi ⊗ ξiU∗)− Tr
(
Uρi ⊗ ξiU∗ (log ρf ⊗ Id)

)

− Tr
(
Uρi ⊗ ξiU∗ (Id⊗ log ξi)

)
.

Since entropy is invariant under a unitary transformation , we have S(Uρi ⊗ ξiU∗) = S(ρi ⊗
ξi). Furthermore, by definition of the partial trace,

Tr
(
Uρi ⊗ ξiU∗ (log ρf ⊗ Id)

)
= Tr

(
TrS(Uρi ⊗ ξiU∗) log ρf

)
,

which is simply Tr(ρf log ρf) = −S(ρf). Using this argument for the third term as well, we are
left with

σ = −S(ρi ⊗ ξi) + S(ρf)− Tr(ξf log ξi).

But

S(ρi ⊗ ξi) = −Tr
(
ρi ⊗ ξi log(ρi ⊗ ξi)

)

= −Tr
(
ρi ⊗ ξi(log ρi ⊗ Id)

)
− Tr

(
ρi ⊗ ξi(Id⊗ log ξi)

)

= −Tr
(
ρi log ρi ⊗ ξi

)
− Tr

(
ρi ⊗ ξi log ξi

)

= −Tr(ρi log ρi) Tr(ξi)− Tr(ξi log ξi) Tr(ρi)

= S(ρi) + S(ξi),

using that Tr(ρi) = Tr(ξi) = 1. Then,

σ = −S(ρi) + S(ρf)− S(ξi)− Tr(ξf log ξi)

= −∆SS − Tr
(
(ξf − ξi) log ξi

)
.

Additionally, using eq. (1.3),

log ξi = −βhE − log(Tr(exp(−βhE)),

so, using that Tr(ξf − ξi) = 1− 1 = 0,

σ = −∆SS + β Tr
(
(ξf − ξi)hE

)
+ log(Tr(exp(−βhE)))������

Tr(ξf − ξi)
= −∆SS + β∆QE .
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