
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly trom the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The qualfty of thfs reproduction fs dependent upon the qualfty of the

copy submftted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins. and improper

alignment can adversely affect reproduction.

ln the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be notad. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left·hand corner and continuing

trom left to right in equal sections with small overlaps.

ProCuest Information and Leaming
300 North Zeeb Raad, Ann Arbor, MI 48106-1346 USA

Soo-521-Q600

•

•

•

SOOT: A JAVA BYTECODE OPTIMIZATION FRAMEWORK

by
Raja Vallée-Rai

School of Computer Science
McGili University. Montreal

October 2000

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Copyright © 2000 by Raja Vallée-Rai

14'1 National Library
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
Ottawa ON K1A 0N4
canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue Wellington
Ottawa ON K1 A 0N4
canada

The author bas granted a non
exclusive licence allowing the
National Library ofCanada to
reproduce, loan, distribute or sell
copies of this thesis in microfonn,
paper or electronic fonnats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
May be printed or otherwise
reproduced without the author's
penmsslon.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur fonnat
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-70521-8

Canadl

•

•

•

Abstract

Java provides many attractive features such as platform independence, execution safety,

garbage collection and object orientation. These features facilitate application development
but are expensive to support; applications written in Java are often much slower than their
counterparts written in C or C++. To use these features without having to paya great

performance penalty, sophisticated optimizations and runtime systems are required.

We present SOOT, a framework for optimizing Java bytecode. The framework is imple

mented in Java and supports three intermediate representations for representing Java byte
code: BAF. a streamlined representation of bytecode which is simple to manipulate; JIM
PLE. a typed 3-address intennediate representation suitable for optimization; and GRIMP
an aggregated version of JIMPLE suitable for decompilation. SOOT also contains a set of
transformations between thcse intennediate representations, and an application program
ming interface (API) is provided to write optimizations and analyses on Java bytecode in

these forms.

In order to demonstrate the usefulness of the framework, we have implemented in
traprocedural and whole program optimizations. Ta show that whole program bytecode

optimization can give perfonnance improvements, we provide experimental results for lO
large benchmarks. including 8 SPECjvm98 benchmarks running on JDK l.2. These results
show a speedup of up to 38%.

11

•

•

•

Résumé

Java possède beaucoup de propriétés attrayantes telles que l'indépendance de plateforme,

la sûreté d'exécution, le ramasse-miettes et l'orientation d'objets. Ces dispositifs facilitent

le développement d'applications mais sont chers à supporter; les applications écrites en

Java sont souvent beaucoup plus lentes que leurs contre-parties écrites en C ou C++. Pour

utiliser ces dispositifs sans devoir payer une grande pénalité d'exécution, des optimisations

sophistiquées et des systèmes d'exécution sont exigés.

Nous présentons SOOT, un cadre pour optimiser le bytecode de Java. Le cadre est

programmé en Java et supporte trois représentations intermédiaires pour le bytecode de

Java: BAF, une représentation simplifiée du bytecode qui est simple à manipuler; JIMPLE,

une représentation intermédiaire à 3 addresses appropriée à l'optimisation; et GRIMP, une

version agrégée de JIMPLE appropriée à la décompilation. SOOT contient également un

ensemble de transformations entre ces représentations intermédiaires, et une interface de

programmation d'application (api) est fournie pour écrire des optimisations et des analyses

sur le bytecode de Java sous ces formes.

Afin de démontrer l'utilité du cadre, nous avons implémenté des optimisations intrapro

cedurales et globales de programme. Pour prouver que l'optimisation globale de bytecode

de programme peut donner des améliorations d'exécution, nous fournissons des résultats

expérimentaux pour 10 applications. y compris 8 programmes de SPECjvm98 exécutant

sur IDK 1.2. Les résultats produisent une amélioration allant jusqu'à 38%.

iii

•

•

•

Acknowledgments

The SOOT framework was really a monumental team effort.

1 would like to thank my advisor, Laurie Hendren, who played a huge role in leading
the project and keeping the mood of the development team optimistic even when the going
got tough. 1can not thank her enough for her support and constant encouragement.

The co-developers of SOOT were key in making SOOT a reality. Large scale projects
need many developers; thanks to ail those people who contributed to SOOT. In particular,
1 would like to thank (1) Patrick Lam for his superb help with the mainlainence and devel
opment of the later phases of the framework, (2) Etienne Gagnon for his excellent work on
developing a robust typing algorithm for JIMPLE, and (3) Patrice Pominville for his great
BAF bytecode optimizer.

What is a framework without users'? 1 would like to thank ail the SOOT users for the
feedback that they gave. In particular, 1 would like to give a special thanks to the two
super users, Vijay Sundaresan and Chrislain Razafimahefa, who gave me a great amount
of support in the early days of SOOT and who tolerated the constant changes that 1made to
the APL

Special thanks goes to my good friends Paul Catanu and Karima Kanji-Tajdin who
encouraged me and helped me out both in Victoria and in Montreal. 1 would also like
to thank Derek Rayside for his encouragement and advice as [re-established myself in
Montréal in Spring of 2000.

And last, but not least, 1 would Iike to thank my family members. They have been
extremely supportive despite the troubled times that we have gone through recently. Thanks
Moro, Dad, Anne-Sita and Manuel!

This work was supported by the Fonds pour la Formation de Chercheurs et l'Aide à la
Recherche as well as IBM's Centre for Advanced Studies.

iv

•

•

Contents

Abstract

Résumé

Acknowledgments

1 Introduction

1.1 Moti vation .

1.2 Contributions of Thesis

1.2.1 Design ...

1.2.2 Implementation .

1.2.3 Experimental Validation

1.3 Related Work

1.4 Thesis Organization .

ii

iii

iv

1

3

3

4

4

5

6

2 Intermediate Representations

2.1 Java Bytecode as an Intermediate Representation

2.1.1 Benefits of stack-based representations .

2.1.2 Problems of optimizing stack-based code

•
2.2 BAF

2.2.1 Motivation

v

7

8

8

9

12

12

•

•

•

2.2.2 Description.....................

2.2.3 Design feature: Quantity and quality of bytecodes

2.2.4 Design feature: No JSR-equivalent instruction

2.2.5 Design feature: No constant pool .. '

2.2.6 Design l'eature: Explicit local variables

2.2.7 Design feature: Typed instructions .

2.2.8 Design feature: Stack of values ..

2.2.9 Design feature: Explicit exception ranges

2.2.10 Walkthrough of example

2.3 llMPLE .

2.3.1 Motivation

2.3.2 Description

2.3.3 Design feature: Stackless 3-address code

2.3.4 Design feature: Compact

2.3.5 Design feature: Typed and named local variables

2.3.6 Walkthrough of example

2.4 GRIMP .

2.4.1 Motivation

2.4.2 Description

2.4.3 Design l'eature: Expression trees

2.4.4 Design feature: Newinvoke expression.

2.4.5 Walkthrough of example

2.4.6 Summary........

3 Transformations

3.1 Bytecode --10 Analyzable llMPLE .

3.1.1 Direct translation to BAF with stack interpretation

3.1.2 Direct translation to lIMPLE with stack height

vi

12

14

14

14

15

16

17

17

19

19

19

22

23

26

26

27

29

29

29

29

32

33

33

35

35

35

39

•

4 Experimental Results

4.2 Benchmarks and Baseline Times

4.3 Straight through SOOT . .

4.4 Optimization via Inlining .

3.1.3 Split locals

3.1.4 Type locals

3. L.5 Clean up JIMPLE

3.2 Analyzable JIMPLE ---7 Bytecode (via GRIMP)

3.2.1 Aggregate expressions

3.2.2 Traverse GRIMP code and generate bytecode

3.3 Analyzable JIMPLE to Bytecode (via BAF)

3.3.1 Direct translation to BAF

3.3.2 Eliminate redundant store/loads

l\lethodology . .

63

63

64

65

65

39

44

46

46

48

55

56

56

58

58

60

62

Pack local variables

3.3.4 Direct translation and calculate maximum height

Summary .. ' .

3.3.3

4.1

3.4

•

5.3.1 Scene.

5.3.2 SootClass

5 The API

5.1 Motivation.

5.2 Fundamentals

5.2.1 Value factories

5.2.2 Chain ..

5.3 API Overview . .

• 5.3.3 SootField

69

69

70

70

70

7L

72

73

75

vii

•
5.3.4 SootMethod. 75

5.3.5 Intennediate representations 76

5.3.6 Body 76

5.3.7 Local 77

5.3.8 Trap .. 77

5.3.9 Unit .. 79

5.3.LO Type 80

5.3.11 Modifier 81

5.3.12 Value .. 82

5.3.13 Constants 83

5.3.14 Box ... 83

5.3.15 Patching Chains 84

• 5.3.16 Packages and Toolkits 85

5.3.17 Analyses and Transfonnations 86

5.3.18 Graph representation of Body 86

5.4 Usage examples 87

5.4.1 Creating a hello world program 87

5.4.2 Implementing live variables analysis .. 90

5.4.3 Implementing constant propagation 93

5.4.4 Instrumenting a classfile 95

5.4.5 Evaluating a Scene 99

5.4.6 Summary " ... " 100

6 Experiences 101

6.1 The Curse of Non-Detenninism 101

6.2 Sentinel Test Suite . " 102

• 7 Conclusions and Future Work 103

viii

•

•

•

Chapter 1

1ntroduction

1.1 Motivation

Java provides many attractive features such as platform independence. execution safety.
garbage collection and object orientation. These features facilitate application development
but are expensive to support; applications written in Java are often rnuch slower than their
counterparts wriuen in C or C++. To use these features without having to paya great per
formance penalty. sophisticated optimizations and runtime systems arc required. Using a
Just-In-Time compiler[l], or a Way-Ahead-Of-Time Java compiler[19] [18]. to convert the
bytecodes to native instructions is the most often used method for improving perfonnance.
There are other types of optimizations. however. which can have a substantial impact on
performance:

Optimizing the bytecode dil"Ktly: Sorne bytecode instructions are much more expensive
than others. For exarnple, loading a local variable onto the stack is inexpensive;
but virtual methods calls, interface calis, object allocations, and catching exceptions
are ail expensive. Traditional C-like optimizations, such as copy propagation, have
liule effect because they do not target the expensive bytecodes. To perform effective
optimizations at this level, one must consider more advanced optimizations such as
method inlining, and statie virtual method cali resolution, which directly reduce the
use of these expensive bytecodes.

Annotating the bytecode: Java's execution safety feature guarantees that ail potentially
illegal memory accesses are checked for safety before execution. In sorne situations it

1

•
can be detennined at compile-time that particular checks are unnecessary. For exam

pie, many array bound checks can he detennined to be completely unnecessary(12].
Unfortunately, after having determined the safety of sorne array accesses, we can not

eliminate the bounds checks directly from the bytecode. because they are implicit in
the array access bytecodes and can not be separated out. But if we can communicate
the safety of these instructions to the Java Virtual Machine by sorne annotation mech
anism, then the Java Virtual Machine could speed up the execution by not performing
these redundant checks.

•

Java
source

SML Scheme
source

/KAWA

Eiffel
source

Ahead-of-lime
Compiler

•
Figure 1.1: An overview of Soot and its usage.

The goal of this work is to provide a framework which simplifies the task of optimiz

ing Java bytecode, and to demonstrate that significant optimization can he achieved. The

2

•

•

•

SOOT[22] framework provides a set of intermediate representations and a set of Java APis

for optimizing Java bytecode directly. The SOOT framework is used as fol1ows: (figure 1.1)

1. Bytecode is produced from a variety of sources. such as the j avac compiler.

2. This bytecode is fed into SOOT. and SOOT transforms and/or optimizes the code and

produces new c1assfiles.

3. This new bytecode can then he executed using any standard Java Virtual Machine

(JVM) implementation. or it can he used as the input to a bytecode~C or

bytecode~native-codecompiler or other optimizers.

Based on the SOOT framework we have implemented both intraprocedural optimiza

tions and whole program optimizations. The framework has also been designed 50 that we

will be able to add support for the annotation of Java bytecode. We have applied our tool

to a substantial number of large benchmarks. and the best combination of optimizations

implemented sa far can yield a speed up reaching 38%.

1.2 Contributions of Thesis

The contributions of this thesis are the design. implementation and experimental validation

of the SOOT framework.

1.2.1 Design

The SOOT framework was designed to simplify the process of developiog new optimiza·

tians for Java bytecode. The design can he split ioto two parts. The first part is the actual

design of the three intermediate represeotations for Java bytecode:

• BAF. a streamlined representation of bytecode which is simple to manipulate;

• JIMPLE. a typed 3-address intennediate representation suitable for optimization;

• GRIMP. an aggregated version of JIMPLE suitable for decompilation.

3

•

•

•

GRIMP was designed with Patrick Lam, and the development of lIMPLE was built upon
a prototype designed by Clark Verbrugge. Optimizing Java bytecode in SOOT consists of
transforming bytecode to the JIMPLE representation and then back. BAF and GRIMP are
used in the transformation process.

1.2.2 Implementation

SOOT was a team effort. However. 1 was the main designer and implementator. In partic
ular, 1 implemented large portions of the framework and then coordinated the implementa
tion of many aspects of the framework. In particular, 1 implemented the following:

• implementation of the base framework. consisting of the main classes such as
Scene. SootClass. SootMethod. SootField and ail the miscellaneous
classes.

• the bytecode to verbose JIMPLE transformation (used Clark Verbrugge's code as a
prototype).

• compacting the verbose JIMPLE code by copy and constant propagation.

• implementation of the tlow analysis framework and various flow analyses such as
live variable analysis. reaching defs and using defs,

• implementation of a simple register colorer. of local variable splitting and of local
variable packing.

• implementation of unreachable code elimination and dead assignment elimiration.

1.2.3 Experimental Validation

A large amount of effort has been placed in validating our framework on a large set of
benchmarks on a variety of virtual machines. In particular. we tested our framework on
five different virtual machines (three under Linux and two under NT), and report results on
ten large programs. seven of which originate from the standard specSuite set.

4

•

•

•

1.3 Related Work

Related work falls into five different categories:

Bytecode optimizers: The only other Java tool that we are aware of which performs sig
nificant optimizations on bytecode and produces new c1ass files is Jax[26]. The main
goal of Jax is application compression where, for example. unused methods and fields
are removed. and the class hierarchy is compressed. They also are interested in speed
optimizations. but at this time their current published speed up results are more Iim
ited than those presented in this paper. It would be interesting. in the future, to
compare the results of the two systems on the same set of benchmarks.

Bytecode manipulation tools: there are a number of Java tools which provide frameworks
for manipulating bytecode: JTrek[l4], Joie[3], Bit[15] and JavaClass[13]. These

tools are constrained to manipulating Java bytecode in their original fonn. however.
They do not provide convenient intermediate representations such as BAF, JIMPLE
or GRIMP for performing analyses or transformations.

Java application packagers: There are a number of tools to package Java applications,
such as Jax[26]. DashO-Pro[5] and SourceGuard[23]. Application packaging con
sists of code compression and/or code obfuscation. Although we have not yet applied
SOOT to this application area, we have plans to implement this functionality as weil.

Java native compilers: The tools in this category take Java applications and compile them
to native executables. These are related because they ail are forced to build 3-address
code intennediate representations, and sorne perfonn significant optimizations. The
simplest of these is Toba[19] which produces unoptimized C code and relies on GCe
to produce the native code. Slightly more sophisticated, Harissa[18] also produces
C code but performs sorne method devirtualization and inlining first. The most so
phisticated systems are Vortex[6] and Marmot[8]. Vortex is a native compiler for
Cecil, C++ and Java, and contains a complete set of optimizations. Marmot is also
a complete Java optimization compiler and is SSA based. Each of these systems in
clude their customized intermediate representations for dealing with Java bytecode.
and produce native code directly. There are also numerous commercial Java native
compilers, such as the IBM High Performance for Java Compiler[20], Tower Tech
nology's TowerJ[27]. and SuperCede[25], but they have very liule published infor
mation. The intention of our work is to provide a publically available infrastructure

5

•

•

•

for bytecode optimization. The optimized bytccode couId he used as input to any of
these other tools.

Java compiler infrastructures: There are at least two other compiler infrastructures for
Java bytecode. Flex is a Java compiler infrastructure for emhedded parallel and dis
tributed systems. Il uses a form of SSA intermediate representation for its bytecodc
called QuadSSA. Optimizalions and analyses can be written on this intermediate rep
resentation, bUl new bytecodes can not he produced.[9]

The other weil known compiler infrastructure is the Suif compiler system [24]. It
possesses a front-end which translates Java bytecode to OSUIF code which is an
object oriented version of Suif code which can express object orientation primitives.
Analyses and transfonnations can be wrillen on this intermediate representation and
numerous back-ends enable the compilation of the code to native code. It is not
possible to produce new bytecode, however.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 describes the three intermediate
representations contained in SOOT. Chapter 3 presents the transformations which are re
quired to transform code between these intermediate representations. Chapter 4 presents
the experimental results which validate the framework. Chapter 5 presents the application
programming interface (API) which we developed to enable the use of the framework, and
chapler 6 presents sorne experiences that we had while developing the framework. Finally,
chapter 7 gives our conclusions and future work.

6

•

•

•

Chapter 2

Intermediate Representations

SOOT provides the three intermediate representations BAF, JIMPLE, and GRIMP. Each
representation is discussed in more detaiJ below, and figures 2.7. 2.12 and 2.16 provide
an example program in each form. Figure 2.1 gives the exarnple program in the original
Java l'orm. As a starting point. the following section discusses sorne general aspects of
stack-based representations.

int a;
int b;
public int steppoly(int x)
{

int[} array = new int[lO};

if(x > 10)
{

array[O] = a;
Systern.out.println("foo") ;

}
else if(x > 5)

x = x + 10 .. b;

x = array[O}i

return Xi

Figure 2.1: stepPoly in its original Java form.

7

•

•

•

2.1 Java Bytecode as an Intermediate Representa
tion

ln this section we discuss the benefits of stack-based code in general (subsection 2.1.1), and
then examine sorne disadvantages of analyzing and optimizing stack-based code directly
(subsection 2.1.2).

2.1.1 Benefits of stack-based representations

The stack machine model for the Java Virtual Machine was perhaps a reasonable choice
for a l'ew reasons. Stack machine interpreters are relatively easy to implement and this
was originally important because the goal was to implement the Java Virtual Machine on
as many different platforms as possible. More relevantly, stack-based code tends to be
compact and this is essential to allow c1ass files to be rapidly downloaded over the Internet.
A third justification for this model is that it simplifies the task of code generation. Since
the operand stack can be used to store intermediate results, simple traversais of the code's
abstract syntax tree(AST) suffice to generate Java bytecode.

There are two good reasons for manipulating Java bytecode directly:

The stack code is immediately available: No transformations are required to get the
stack code in this form~ as it is the native form found in Java classfiles. This is
important if execution speed is critical (such as for JlT compilers).

The resultant stack code is final: Since the code does not need to be transformed to be
stored in the c1assfiles, we have complete control over what gets stored. This is
important for obfuscation since many of the obfuscation techniques make heavy use
of the stack to confuse decompilers, and a 3-address code representation hides the
stack.

In specifie cases, such as those mentioned above, a stack-based representation is useful.
However, in the general case where we optimize classfiles offline, these advantages pale in
comparison to the following disadvantages.

8

•

•

•

2.1.2 Problems of optimizing stack-based code

Even though there are advantages for choosing a stack-based intermediate representation,
there are potential disadvantages with respect to program analysis and optimization. To
analyze and transform Java bytecode directly, one is forced to add an extra layer of com
plexity to deal with the complexities of the stack-based model. Given that it is of cntical
importance to optimize Java this drawback is very important and must be eliminated to
allow the c1earest and most efficient development of optimizations on Java.

Below, we enumerate sorne ways in which stack-based Java bytecode is complicated to
optimize.

Expressions are not explicit: In 3-address code, expressions are explicit. Usually they
only occur in assignment statements (such as x = a + b) and branch statements
(such as a if a<b goto Ll). There is a fixed set of possible expressions, simpli
fying analyses by restricting the number of cases to consider. For the purposes of this
section, we shaH distinguish (Wo classes of Java bytecode instructions: the expres
sion instructions, and action instructions. Expression instructions are those which
only produce an effect on the operand stack. Examples of this class are: i load 1

iadd, imul, pop. Action instructions, on the other hand, produce a side ef
fect, such as modifying a field (putfield), calling a method (invokestatic)

or storing into a local variable (istore). These instructions have concrete effects,
whereas the expression instructions are merely used to build arguments on the stack.

Thus in order to determine the expression being acted upon by an action instruction,
you need to parse the expression instructions and reconstruct the expression tree.
whereas in JIMPLE these are readily available. And as the next points illustrate. this
reconstruction process is not a trivial problem.

Expressions cao be arbitrarily large: In order to determine the expression being com
puted by expression instructions, the analysis must examine the instructions preced
ing the action instruction and build an expression tree. For a simple case such as:

iconsc 5
iload 0
iadd
istore 1

it is easy to determine that the expression being stored in varl is 5 + varO. In
sorne cases, such as:

9

•

•

•

iload 3
iconst 5
iload 6
iload 3
iadd
irnul
idiv
istore 0

the expression tree is more complex. In this case it is (var3 + 5) * var6 1
varO. Variable expression length is a complication. sorne analyses such as common
subexpression elimination require having simple 3-address code expressions avail
able to be implemented efficiently. To use expression trees in such analyses. they
would need to first be simplified to use temporary locals. which the JIMPLE form
provides directly.

Coocrete expressions cao oot a.ways be constructed: Due to the nature of the operand
stack. the associated expression instructions for a given action instruction are not
necessari ly immediately next ta il. The following store still stores varO + 5 in
var 1, despite the intermingled bytecode instructions which store var2 * var3 in
var4.

iconst 5
iload 0
iadd
iload 2
iload 3
irnull
istore 4
istore 1

If a complete sequence of expression instructions reside in a basic block. then it
is always possible to recover the computed expression. However. since the Java
Virtual Machine does not require a zero stack depth across control f10w junctions. an
expression used in a basic black can be partially computed in a different basic black.
Consider the following example:

iload a
iload 2
if_icrnpeq labell
goto labe12

labell:
ineg

labe12:
istore 1

10

\
imul
istore S
useeS)

•

•

•

When computing the possible definitions for a variable in a 3-address code interme
diate representation, the number of possible definitions can not exceed the number
of assignments to that variable. This example illustrates that this is not the case with
stack code, for a single assignment (i store 0) can yield two different definitions
(-varO or varO). By allowing the control flow to produce such conditional expres
sions obviously increases the complexity of analyses such as reaching definitions
and optimizations such as copy and constant propagation. Instead of considering
just assignments, they must consider the origins of expressions and their possible
multiplicity.

Simple transformations become complicated: The main reason why stack code compli
cates analyses and transformations is its piecemeal form. The fact that the expression
is split into several pieces and is separated l'rom the action instruction causes almost
aIl the complications, for as a result. you can interleave these instructions with other
instructions, and spread them over control fiow boundaries. Transforming the code
in this l'orm is difficult because ail the separate pieces need to be kept track of and
maintained. To illustrate this point, this subsection considers the problems associated
with performing dead code elimination.

ln 3-address code. eliminating a statement is often accomplished by simply deleting
it From a graph or list of statements. In Java bytecode, removing an action instruction
is similar, except that you must also remove ail the associated expression instructions.
in order to avoid accumulating unused arguments on the stack. This sounds relatively
simple, but there is a catch: if the set of expression instructions cross a control flow
boundary, then this may not he possible, because other paths depend on the stack
depth to be a certain height. For example:

iload 0
iload 1

/
iadd
istore S

Despite the fact that on the left hand side the local variable 5 is dead, the iadd and
istore 5 cannot he simply deleted, because we mustensure the two arguments on
the stack are still consumed. The best we can do is replace the two instructions with
two pops.

For developing analyses and transformations, it should he clear that working with 3
address code is much simpler and more efficient than dealing with stack code.

Il

•

•

•

2.2 BAF

BAF is a bytecode representation which is stack-based, but without the complications that

are present in Java bytecode. Although the primary goal of the Soot framework is to avoid

having to deal with bytecode as stack code, it is still sometimes necessary to analyze or

optimize bytecode in this form. The following subsections give BAF's motivation, a de

scription of BAF, its design features, and then a walkthrough of sorne sample code.

2.2.1 Motivation

The main motivation for BAF is to simplify the developmcnt of analyses and transforma

tions which absolutely must be performed on stack code. In our case. there are two such

occurances. First. in order to produce JIMPLE code. it is necessary to calculate the stack

height before every instruction. Second, before producing new bytecode, it is convenient

to perform sorne peephole optimizations and stack manipulations to eliminate redundant

load/stores. These analyses and transformations could he performed on Java bytecode di

rectly, but it is much more convenient to implement them on BAF because of its design

features, which are described below.

2.2.2 Description

BAF is a stack-based intermediate representation of Java bytecode which consists of a set of

orthogonal instructions. See figure 2.2 for the list of BAF instructions. The words in italics

represent attributes for the instructions. For example, t means a type. so actual instances of

add.t can be add. i, add. 1, add. f, add. d depending on whether the type of the add

instruction is an integer. long, fioat or double. For instructions such as load or store,
there are two attributes, the local variable and the type of the instruction. For dup2, there

are two types as weil, the two types to he duplicated on the stack. Most of these instructions

follow the Java Virtual Machine specification[16], except that the instruction narnes have

been made more consistent by requiring that the more specifie portion of the variable name

be on the left. Hence the name interfaceinvoke as opposed to invokeinterface.

12

•

•

•

local := @this interfaceinvoke metlrod Il add.t
local := @parameterll specialinvoke method and.t
local := @exception staticinvoke meriloc/ cmpg.t
dupl.t virtualinvoke metilod cmp.t
dup l_x l.t_t fieldget field cmpl.!
dup l_x2.!_tl fieldputfield div.t
dup2.tt staticget field mul.l
dup2_x 1.((_t staticputjield neg.!
dup2_x1.tt_1t load.! local or.1
12! store.! local rem.!
checkcast rejType inc.i local cOllstant shl.t
instanceof type new reJType shr.l
lookupswitch newarray type ushr.t

{case vaillel: goto labell newmultiarray type Il xor.t
... arraylength ifne label
case Vaillen : goto labeln ifcmpne.t label ifeq label
default: goto defallltLahel} ifcmpeq.! label ifge label

tableswitch ifcmpge.t label ifle label
{case low: goto lowulbel ifcmple.t label ifgt label
... ifcmpgt.t label iflt label
case /zig": goto /ziglrLabel ifcmplt.t label goto label
default: goto defallltLabel} nop retum.t

entermonitor breakpoint throw.r
exitmonitor push COllsta1lt pop.t

Figure 2.2: The list of BAF statements.

13

•

•

•

2.2.3 Design feature: Quantity and quality of bytecodes

One of the headaches in dealing with Java bytecodes directly is the massive number of

different instructions present. Upon inspection of the Java Virtual Machine specification.

we can see that there are over 201 different bytecodes. BAF, on the other hand, contains

only about 60 bytecode instructions. This compaction has been achieved in two ways:

(1) by introducing type attributes such as the. i and .1 in add. i, add.1, and (2) by

eliminating multiple forms of the same instruction such as i load_O, i load_l. This

can be achieved because BAF is not concerned with the compactness of the encoding, as

were the designers of the Java Virtual Machine specification, but with the compactness of

the representation. Thus we can compact twenty different variants of the load instruction

into one load which has two type attributes: a type and a local variable name.

2.2.4 Design feature: No JSR-equivalent instruction

The jump subroutine bytecode (JSR) instruction present in Java bytecode is often very

complicated to deal with, because it is essentially an interprocedural feature inserted into

a traditionally intraprocedural context. Analyses and transformations on BAF can be sim

plified considerably by requiring that the BAF instruction set not have a JSR-equivalent

instruction. One might think that this means that BAF can not represent a large variety of

Java programs which contain JSRs. But in fact, most JSR bytecode instructions can be

eliminated through the use of subroutine duplication. The idea is to transform each j sr x
into a goto y where y is a duplicate copy of the subroutine x with the final ret having

been transfonned into a goto to the instruction following the j sr x. Sec figure 2.3 for

an example of code duplication in action.

The code growth in worst case is exponential (with respect to the number of nested

JSRs), but in practice the technique produces very little code growth because JSRs are not

used that much, and the subroutines represent a small fraction of the total amount of code.

2.2.5 Design feature: No constant pool

One of the many encoding issues in Java bytecode is the constant pool. Bytecode instruc

tions must refer to indices in this pool to access fields, methods, classes, and constants, and

this constant pool must he tediously maintained. BAF abstracls away the constant pool, and
thus it is easier to manipulate BAF code. In textual BAF (when il is written out to a text

14

•
istore_2
goto Iabell

label_ret_l:
istore_2
jsr labell

istore_3
jsr Iabell

Iabell:
invokestatic f
ret

istore_3
goto labell

label_ret_2:

labell:
invokest.atic f
gor.o label_retl

labe12:
invokest.atic f
goto label_ret2

•

•

Figure 2.3: Example of code duplication to elirninate JSRs.

file) the rnethod signature or field is writteo out explicitly. For exarnple:

bytecode:invokevirtual ~lO

Baf: virtualinvoke <java.io.PrintStream:
void printIn(java.lang.String»;

Or, another example:

byteeode: Ide ~1

Baf: push ~foo~;

[ntemally, these references are represented directly in the code. For exarnple, the BAF
instruction PushIns t has a field modifiable by getlsetStringO.

2.2.6 Design feature: Explicit local variables

BAF also has another comestic advantage over Java bytecode as it has explicit narnes for
its local variables. This allows for more descriptive oarnes when the BAF code is pro
duced from JIMPLE code in which the local variables rnight already have oarnes. There
are two local variables types in BAF, ward and dward. These correspond to 32-bit and
64-bit quantities respectively. We split the local variables ioto these two categories to sirn
plify code generation, and local variable packing, a technique thut we use to minimize the
number of variables used. Note that because the local variables have narnes and not slot
numbers then sorne sort of equivalence must be established between the local variables
which contain the initial values such as this, or the first parameler, etc.

15

•

•

•

2.2.7 Design feature: Typed instructions

A large proportion of the bytecodes are typed, in the sense that their effect on the stack is
built into the name of the instruction. For example. i load loads an integer on the stack
and iadd adds two integers l'rom the stack. There are, however, a few instructions such as
dup, dup2, swap which are not typed. and this causes sorne complications. Consider
the following code:

What does the dup2 instruction do? Il duplicates the top two 32-bit elements of the
stack. Although this operation is easy to implement for a Java virtual machine whose stack
representation is a series of 32-bit elements, if you are perfonning typed analyses on this
bytecode you may run into sorne confusion as to what exactly is occuring with the dup2
instructions. [n particu1ar, if you are atternpting to convert this code to typed 3-address
code, there are two possible conversions, based on the types present on the stack. If the
types present on the stack before the dup2 is a 64-bit quantity then it should be converted
to a single copy such as:

long $51, $50;

$51 = $50

But if the types present before the dup2 are ints say. then you gel a conversion such
as:

int $53, $52, $51, $50;

$53 = $51;
$52 = $50;

So which one do you pick when you perform a conversion ta 3-address code? Weil that
depends on the contents of the stack. Unfortunalely, the contents of the stack can not he de
termined locally by the type of the dup2 because it is untyped. 50 in order ta detennine the
exact effect of an instruction such as dup2 on the stack, one must perfonn an abstract stack
simulation. This means that the cumulative effect of each bytecode preceeding the dup2
must be considered to determine the exact contents of the stack preceeding the iload.
This is easy to implement but non-trivial because this is a fixed point iteration problem that
spans basic blocks.

16

•
We uvoid having to perform abstract stack simulations on BAF by imposing the follow

ing constraint on BAF: each BAF instruction is l'ully typed; its effect on the stack is fully
specified by the type attnbute, as in i load. i which means load an integer and dup. f
means duplicate a floal.

This constraint simplifies analyses on BAF considerably. Note thut in order to create
BAF instructions from Java bytecode sorne abstract stack interpretation must be perfonned.
But at least this is performed by the SOOT l'ramework, and not by analysis writers who work
with the BAF code directly. More on this tapie in chapter 3.

2.2.8 Design feature: Stack of values

The BAF stack is a stack of values. as opposed to a stack of words. Effectively, ail clements
on the stack have size 1. See figure 2.4 for an illustration.

• int
doubleh
doublet

bytecode stack

long
int

double

BAF stack

•

Figure 2.4: The bytecode staek has size 5. and the BAF stack has size 3.

This means that a dup instruction is interpreted to duplieate the top element of the
stack, no matter what the implementation size of that element is. Similarly, dup2 du
plicates two elements. This allows BAF to be somewhat more expressive than byteeode
beeause dup2 . dl means duplieate the double and long which are on the stack. a total of
12S-bit elements.

The goal of this design feature is also to simplify analyses.

2.2.9 Design feature: Explicit exception ranges

Exceptions in Baf are represented as explicit exceptions ranges using labels. This mirrors
the Java bytecode representation as opposed to the Java representation which uses strue
tured try-catch pairs. See figure 2.5 for an illustration of this.

17

•

•
try {

System. out.
println (Of try-block lt 1 ;

}
catch(Exception el
{

System.out..
printlnlltexcept.ionltl;

original Java code

word rO;

rO := @this;

labelO:
staticget java.lang.Syscem.out;
push "cry-block";
virtualinvoke println;

labell:
goto labe13;

labe12:
score.r rOi
scacicgec java.lang.System.out;
push "exception";
virtualinvoke princln;

labe13:
recurn;

catch java.lang.Exception from
labelO co labell with labe12;

BAF code

•

Figure 2.5: Example demonstrating explicit exception ranges.

18

•

•

•

2.2.10 Walkthrough of example

This subsection highlights the differences explicitly between figures 2.6 and 2.7. Figure
2.6 consists of dissassembled Java bytecode as produced by j avap, and 2.7 consists of
BAF code. Notice:

1. there are local variables in the BAF example which are named this, x. and array
and given the type word.

2. the instructions with the : =. These are the identity instructions which identify which
local variables are pre-Ioaded with meaning, such as this or the contents of pa
rameters.

3. the pushing of constants in the javap code come in two different forms: bipush and
icons t_O. But in BAF, there is a single instruction which does the job: push.

4. The code layout is also interesting because in the javap code ail code is referred to
by index. but in BAF labels are used which make it much easier to read. and makes
the basic blocks in the code more evident.

5. the constant pool has been eliminated in BAF. and that ail references to methods and
fields are directly inlined into the instructions such as in
fieldget <Main: int a>

6. the clearer names in BAF. For example, an array read is iaload in javap code but
in BAF is arrayread. i.

2.3 JIMPLE

This section describes JIMPLE. The motivation for JIMPLE is given, ilS description, a list
of ilS design features, and then finally a walklhrough of the example piece of code.

2.3.1 Motivation

Optimizing stack code directly is awkward for multiple reasons, even if the code is in a
streamlined form such as BAF. First, the stack implicitly participates in every computation~

there are effectively two types of variables. the implicit stack variables and explicit local
variables. Second, the expressions are not explicit. and must be located on the stack. These
disadvantages were discussed in detail in section 2.1.2.

19

•

•

•

Method int steppoly(inc)
o bipush 10
2 newarray int
4 astore_2
5 iIoad_1
6 bipush 10
8 if_icmple 29

11 aIoad_2
12 ieonst_O
13 aload_O
14 getfield #7 <Field int a>
17 iastore
18 getstatic #9 <Field java.io.PrintStrearn out>
21 Ide #1 <String "foo">
23 invokevircual ~10 <Method void princln(java.lang.String»
26 goto 44
29 iload_l
30 ieonst_5
31 if_iemple 44
34 iload_l
35 bipush 10
37 aload_O
38 getfield #8 <Field int b>
41 irnul
42 iadd
43 istore_1
44 aload_2
45 ieonsc 0
46 iaload
47 istore_1
48 iload_l
49 ireturn

Figure 2.6: stepPoly in disassembled foon, as produced by javap.

20

•

•

•

word this, x, array;

this := @this: Test;
x := @parameterO: inti
push 10;
newarray.i;
store.r array;
load.i x;
push 10;
ifcmple.i labelO;

load.r array;
push 0;
load.r this;
fieldget <Test: int a>;
arraywrite.i;
staticget <java.lang.System: java.io.PrintStream out>;
push "foo";
virtualinvoke <java.io.PrintStream: void println(java.lang.String»;
goto labell;

labelO:
load.i x;
push 5;
ifcmple.i labell;

load.i x;
push 10;
load.r this;
fieldget <Test: int b>;
mul.i;
add.i;
store.i X;

labell:
load.r array;
push 0;
arrayread.i;
return.i:

Figure 2.7: stepPoly in BAF form.

21

•
public void example()
{

int x;

if(a)
{

String S ~ "hello";
s.toString() :

}
else
{

int sum ~ 5:
x ~ SUffi:

(a) Original Java code

a aload_O
1 getfield #6
4 ifeq 18
7 Ide #1
9 astore_2

la aload_2
11 invokevirtual #7
14 pop
15 goto 22
18 ieonst_S
19 istore_2
20 iload_2
21 istore_1
22 return

(b) bytecode

•

•

Figure 2.8: Example of type overloading.

A third difficulty is the untyped nature of the stack and of the local variables in the
bytecode. For example, in the bytecode in figure 2.8.

The local variable in slot 2 is used in one case as an java. lang. String at instruc
tions 9 and 10, but then another situation at instructions 19 and 20 as a int. This type
overloading can confuse analyses which expect explicitly typed variables.

2.3.2 Description

JIMPLE is a typed and compact 3-address code representation of bytecode. ft is our ideal
fonn for perfonning optimizations and analyses, both traditional optimizations such as
copy propagation and more advanced optimizations such as virtual method resolution that
object-oriented languages such as Java require. See figures 2.9 and 2.10 for the complete
JIMPLE grammar. There are essentially Il different types of JIMPLE statements:

• The ass;gllStmt statement is the most used JIMPLE instruction. ft has four forros:
assigning a n'aille to a local. or an Immediate (a local or a constant) to a static field,
to an instance field or to an array reference. Note that a n'aille is a field access, ar
ray reference, an Immediate or an expression. We can see that with this grammar
any significant computation must be broken down into multiple statements, with 10
cals being used as temporary storage locations. For example, a field copy such as
this. x = this. y must he represented as two JIMPLE statements, a field read
and a field write (trop = this. y and this. x = trop.)

22

•

•

•

• idenlÏtyStmts are statements which define locals to he pre-Ioaded (upon method entry)
with special values such as parameters or the t.hi s value. For example. 10 : =
@this : A defines local lOto be the thi s of the method. This identification is
necessary because the local variables are not numbered (normally the thi s variable
is the variable in local variable slot 0 at the bytecode level.)

• gotoStmt. and ijStmr represent unconditional and conditional jumps, respectively.
Note the use of labels instead of bytecode offsets.

• ÎllvokeSrmt represents an invoke without an assignment to a local. (The assignment
of a retum value is handled by a assîgllSrmt \Vith an illvokeExpr on the right hand
side of the assignment operator.)

• su:itclzStml can either be a lookupswi tch or a t.ableswi tch. The lookupswitch
takes a set of integers values. whereas tableswi tch takes a range of integer values
for the lookup values. as the t.ableswi t.ch and lookupswi t.ch Java bytecodes
do. The target destinations are specified by labels.

• mOllitorSrmt represents the enter/exitmonitor bytecodes. They take a local or constant
as the monitor lock.

• retlirnStmt can either represent a return void, or a retum of a value. specified by a
local or a constant.

• tlzrolvStmt represents the explicit throwing of an exception.

• breakpointStmt and nopStmt represent the breakpoint. and nop (no operation)
bytecode instructions respectively.

2.3.3 Design feature: Stackless 3-address code

Every statement in JIMPLE is in 3-address code form. 3-address code is a standard repre
sentation where the instructions are kept as simple as possible. and where most of them are
of the form x = y op z[17].

Every statement in JIMPLE is stackless. Essentially. the stack has been eliminated and
replaced by additional local variables. Implicit references to stack positions have been
transformed into explicit references to local variables. Figure 2.11 illustrates this transfor
mation of references. Note how the local variables representing stack positions are prefixed
with dollar signs. Note also that each instruction in the original BAF code corresponds to
a new instruction in the JIMPLE form. Further, this code can he compacted ioto x ::: y +
z. This will he discussed further in the section on transformations.

23

•

•

•

stlnt~ ass;gnStmt 1 identüySrmr 1

goroStml 1 ifStml 1 invokeStml 1

SWilc/1Stl1lt ImollÏlorStml 1

relllnlSrml 1 r/zrowStmt 1

breakpo;l1tSrmt jllopStmt;
assignSrmt~ local =rv(llue; 1

field =imm; 1

local. fie Id =;m",; 1

local [imm] =imm;
idelltityStmt~ local : =@this: type; 1

local : =@parameterll: type; 1

local : =@exception;
gotoStmt~ go to label;
ifSrmr~ if cOllditiollExpr go to label;
il1vokeSrml~ invoke illvokeExpr;
swilc/zStmr~ lookupswi tch imm

{case valuel: goto labelr;
...
case valuc n : goto label ll ;

default: goto defaultLabel;}; 1

tableswi tch im",
{case low: goto lowLabel;
...
case high: goto highLabel;
default: goto defaultLabel;}

mOllitorSlml~ entermoni tor imm; 1

exi tmoni tor imm;
retunlStml~ return imm; 1

return;
rlzrowSrml~ throw imm;
breakpoilllStmt~ breakpoint;

llopStmt ----+ nop;

Figure 2.9: The JIMPLE grammar (statements)

24

•

•

•

im", -). local 1constant
COllditiollExpr -). ;,m1lL condop iml1l'2

cOlldop -). > 1 < 1 = 1 1= 1 ~ 1 2::
rvallie --f cOllcreteRef 1 imm 1 expr
cOllcreteRef -). field 1

local. field 1

local [im",]

illvokeErpr --t specialinvoke local.m(im/1lh ... , ;'Ilmn) 1

interfaceinvoke local.m(imllll' ... , ;'llm (1) 1

virtualinvoke local.m(il1l1IlL• irmll n) 1

staticinvoke m(il1l11lb ... , ;'1II11n)

expr --+ iI,lI1'L billop imm'l 1

(type) im", 1

imm ins tanceo f type 1

illvokeExpr 1

new retType 1

newarray (type) [imm] 1

newmul tiarray (type) [immd ... [imI11 r1] []* 1

length ;mm 1

neg ;mm
binop --f + 1 - 1 > j < 1 = 1 1= 1 ~ 1 2:: 1 * 1 1 1

<< 1 > > 1 < < < 1 ex 1 rem 1 &: 1 1 1

cmp 1 cmpg 1 cmp1

Figure 2.10: The JlMPLE grammar (support productions)

ward x, y, z int $50, $51, x, y, z

laad.i x $50 = x
load.i y $51 = Y
add.i $50 = $50 + $51
5tore.i z z = $50

(a) BAF (b) JIMPLE

Figure 2.11: Example of bytecode to JIMPLE code equivalence.

25

•

•

•

2.3.4 Design feature: Compact

Java bytecode has about 200 different bytecode instructions. BAf has about 60 and JIMPLE
has 19.

JIMPLE'S compactness makes it an ideal form for writing analyses and optimizations.
The simpler the intermediate representation. the simpler the task of writing optimizations
and analyses for it, because fewer test cases cases need to be developed for il. For example,
accesses from a field in JIMPLE are always of the form local = obj ect. f, whereas
in Java. field accesses can occur practically anywhere such as in a method cali ar arbitrarily
nested array references.

2.3.5 Design feature: Typed and named local variables

The local variables in JIMPLE are named and fully typed. They are given a primitive. c1ass
or interface type. They are typed for two reasons.

To improve analyses

JIMPLE was designed to facilitate the implementation of optimizations and analyses. Hav
ing types for local variables allows subsequent analyses on JIMPLE to be more accurate.
For example, class hierarchy analysis, which usually uses just the methad signature to de
termine the possible method dispatches can alsa use the type of the variable which leads ta
strictly better answers. For example:

Map rn = new HashMap();
m.get ("key ") ;

becames the following JIMPLE code:

java.util.HashMap $rl, r2;

$rl = new java.util.HashMap;
specialinvoke $rl.<java.util.HashMap: void <init>(»();
r2 = $rl;
interfaceinvoke r2.<java.util.Map:

java.lang.Object get(java.lang.Objectl>(lkey");

sinee we know that r2 is a java. utile HashMap, wc can in faet statically resolve the
interfaceinvoke ta be a cali to <HashMap: Obj ect get (Obj ect) >. If we
did not know this type, the interfaeeinvoke eould map to any method which implements the
Map interface.

26

•

•

•

As another exarnple, having typed variables allows a coarse-grained side effect analysis
to be perfonned. For exarnple, take the following code:

Chair x;
House y;

x === someChair;
y = someHouse;

Suppose one is trying to re-order the assignment statements. If the types of x and y were
unknown. then they could possibly be aliased, and a re-ordering would not be possible. But
since in JIMPLE ail variables are typed. and assuming that x, and y are distinct classes and
one is not a subclass of another. they can be re-ordered.

To generate code

The second reason that it is necessary for JIMPLE to have typed local variables is because
its operators are untyped. Consider the problem of generating BAF code for a Jirnple state
ment such as x + y. The code generator must choose one of the following adds: (add. i.
add. f, add. d or add .1) since BAF instructions are l'ully typed. Having the local vari
ables typed allows this choice to be made without requiring that the operators be typed as
weil.

2.3.6 Walkthrough of example

This subsection describes the exarnple round in 2.12. Note that:

1. ail local variables are declared at the top of the method. They are fully typed; we
have reference types such as Test. int [] . java. io . PrintStream and prim
itive types such as int. Variables which represent stack positions have their narnes
prefixed with $.

2. identity statements follow the local variable declarations. This marks the local vari
ables which have values upon method entry.

3. the code resembles simple Java code (hence the term JlMPLE).

4. assignment statements predominate the code.

27

•

•

int a;
int b;

public int stepPoly(int)
(

Test this;
int x, SiO, Sil, x;
int [] array;
java.io.PrintStrearn $rO;

this ;= @this;
x ;= @parameterO;
array = newarray (int) (10];
if x <= 10 goto labelO;

SiO = this.a;
array[O] = SiO;
SrO = java.lang.System.out;
SrO.println(nfoo n) ;
goto labell;

labelO:
if x <= 5 goto labell;

SiO this.bi
Sil = 10 ... SiO;
x = x + Sil;

labell:
x = array[O];
return x;

(a) JIMPLE

int ai

int bi

public int stepPoly(int x)
{

intel array = new int[lO]:

if{x > 10)
{

array[O] = a;
System.ouc.println(nfoQ") ;

}
else if{x > 5)

x = x ~ 10 .. bi

x = array[Ol:

return X;

(b) Original Java code

•

Figure 2.12: s tepPoly in JIMPLE form. Dollar signs indicate local variables representing
stack positions.

28

•

•

•

2.4 GAIMP

This section describes GRIMP. The motivation for GRIMP is given followed by its descrip
tion. its design features, and finally a walkthrough of an example piece of code.

2.4.1 Motivation

One of the common problems in dealing with intermediale representations is that they are
difficult to read because they do not resemble structured languages. ln general. they contain
many goto's and expressions are extremely fragmented. Another problem is that despite
its simple form. for sorne analyses, 3-address code is harder to deal with than complex
structures. For example. we found that generating good stack code was simpler when large
expressions were available.

2.4.2 Description

GRIMP is an unstructured reprcsentation of Java bytecode which allows trces to be con
structed for expressions as opposed to the flat expressions present in JIMPLE. ln general. it
is much easier 10 read than BAF or JIMPLE, and for code generation, especially when the
target is stack code, il is a much better source representation. Il also has a representation for
the new operalor in Java which combines the new bylecode instruction with the invoke
special bytecode instruction. Essentially, GRIMP looks like a partially decompiled Java
code. We are also using GRIMP as the foundation for a decompiler.

See figures 2.13 and 2.14 for the complete GRIMP grammar. Here are the main differ
ences between the JIMPLE and the GRIMP grammar:

• references to immediates have been replaced with objExpr or expr. representing ob
ject expressions or general expressions.

• illvokeExpr can now express a fifth possibility: newinvoke. This combines the
new JIMPLE statement and the cali to the constructor (via a specialinvoke.)

These differences are discussed further in the following two design features.

2.4.3 Design feature: Expression trees

The main design feature ofGRIMP is that references to immediates have been replaced with
references to expressions which can be nested arbitrarily deeply. Figure 2.15 explicitly

29

•

•

•

j

stllll --). assignStmt 1 idelltityStI1lt 1

gotoStmt 1 ijStmt 1 ÎnvokeStmt 1

switchStmt 1 mOllitorStmt 1

retunlStmt 1 throH:Stmt 1

breakpo;lltStmt [llopStmt;
assigllStmt~ local =expr; 1

field =expr; j

objExpr. field =expr; 1

objExpr [expr] =expr;
idelltitySt1llt~ local: =@this: type; 1

local : =@parameteol: type; 1

local : =@exception;
gotoSt",t --f goto label;
ifStmt --f if cOllditiollExpr goto label;
invokeStmt --f invoke ÎllvokeExpr:
s,vitcl,Stmt~ lookupswi tch expr

{case valuel: goto labell;
...
case valuen : goto label n ;

default: go to defauitLabel;}; 1

tableswi tch expr
{case low: goto lowLabel;
...
case high: goto highLabel;
default: goto defaultLabel;}

11l0llÎtorStmt~ entermoni tor objExpr; 1

exi trnoni tor objExpr:
retllnlStmt~ return objExpr; 1

return;
throwStmt~ throw objExpr;
breakpoÏlttStmt --+ breakpoint;
nopStmt --f nop;

Figure 2.13: The GRIMP grammar (statements)

30

•

•

•

cOllditiollExpr -f eXprl CO'U/Op eXpr'2
cOlldop -f > 1 < 1 = 1 1= 1 :5 1 ~

cOllcreteRef-f field 1

objExpr. field 1

objExpr [expr]
illvokeExpr -f specialinvoke local.m(exprl t expr,J 1

interfaceinvoke local.m(exprL •.... expr,J 1

virtualinvoke local.m(exprlt exprn) 1

staticinvoke m(exprL, exprn)

newinvoke type(exprl• exprn)

expr -f exprL billop expr'2 1

(type) expr 1

expr instanceof type 1

new reIType 1

1eng th expr 1

neg expr 1

objExpr 1

constant
objExpr -f cOllcreteRef 1

(type) objExpr 1

illvokeExpr 1

newarray (type) [expr) 1

newmul tiarray (type) [exprd ... [exprll] []*I
local 1

nullConstant 1 slringConslant

binop -f + 1 - 1 > 1 < 1 =1 1= 1 ::; 1 ~ 1 * 1 / 1

« 1 » 1 «< 1 % 1 rem 1 &: III

cmp 1 cmpg 1 cmpl

Figure 2.14: The GRIMP grammar (support productions)

31

•
illustrates this difference. Note that the original Java statement is one line long. but the
equivalent GRIMP code is note This is because GRIMP code, like JIMPLE, only allows for
one side effect (memory modification) per stalement. Java statements can, on the other
hand, modify multiple memory locations such as with x = y++ + z++ which modifies
three locals. We impose this restriction to simplify analyses on GRIMP. This has the
unfortunate consequence of not allowing the same compactness as the original Java code
to be achieved which affects code generation and code decompilation. This is discussed
funher in chapter 3.

•

return this.a.x++ +
m*n*(x*lOO+10) ;

(a) Java

$rO=this.a;
$iO=$rO.x;
$il=$iO+l;
$rO.x=$il;
$i2=m*n;
$i1=this.x;
$i1=$i1*100;
$i1=$i1+10;
$i2=$i2*$i1;
$i3=$iO+$i2;
return $i3;

(b) Jimple

$rO=this.a;
SiO=$rO.x;
SrO.x=$iO+1;
return $iO+m*n*this.x*100+10;

(c) Grimp

•

Figure 2.15: Example of nesting of expressions in Grimp.

2.4.4 Design feature: Newinvoke expression

The second key feature of GRIMP is its ability to represent the Java new construct as
one expression. For example, the Java code Obj ec t obj = new A (new B ()) ; is
represented in JIMPLE by:

A $rl, r3;
B $r2;

$r1 = new A;
$r2 = new Bi
specia1invoke $r2.<B: void <init>(»();
specialinvoke $rl.<A: void <init>(B»($r2);
r3 = $rl;

Normally, aggregalion of expressions is performed by malching single use-defs such
as x = ... ; and . .. = x; Because the specialinvokes modify the receiver
object without redefining it we can not aggregate new and specialinvoke statements
in this way. This is a problem because new statements occur frequently and it is thus

32

•

•

•

highly desirable to be able to aggregate them. To achieve this, we introduce a newinvoke
expression to the GRIMP grammar to express pairs of the form x = new Obj ect ()

specialinvoke x.<Object: void <init>(»();.

2.4.5 Walkthrough of example

This subsection describes the example found in 2.16. Note that:

1. the GRIMP code is extremely similar to the original Java code. The main differences
are the unstructured nature of the code (no if-then-else), and the identity statements

2. the statements

$iG = this.<Test: int b>;
Sil = 10 * SiG;
x = x + Sil;

from the JIMPLE version in figure 2.12 have been aggregated to x =x + LO * this.b
in the GRIMP form.

2.4.6 Summary

This chapter has presented the three intermediate representations that SOOT provides: BAF,
JIMPLE, and GRIMP. Their main design features were discussed. and their respective gram
mars were given. Each interrnediate representation was also illustrated with an example
program.

33

•

•

inc. a;
int b;

public int stepPoly(int)
{

Test this;
int X, x#2;
inc. [] array;

this :: @this;
X := @paramec.erO;
~rray = newarray (int) [10];
~f X <= 10 gOc.o labelO;

array[O] = c.his.a;
java.lang.Sysc.em.

out.println("foo") ;
goto labell;

labelO:
if x <= 5 goto labell;

x = x ~ 10 ... c.his.b;

labell:
x = array[OJ;
return x;

inc. a;
int b;

public inc. sc.epPoly(int x)
{

int[] array = new int[lO];

iE(x > 10)
{

array[O] = a;
Sysc.ern.out.println("foo") ;

}
else if(x > 5)

x = x ... la ... b;

:< = array[O] ;

return x;

•

(a) GRIMP (b) Original Java code

Figure 2.16: stepPoly in GRIMP form.

34

•

•

•

Chapter 3

Transformations

This chapter describes the transformations present in SOOT which enable it as an optimiza
tion framework. SOOT operates as follows: (see figure 3.1) Classfiles are produced l'rom
a variety sources, such as the j avac or ML compiler. These c1assfiles are then l'ed into
SOOT. A JIMPlE representation of the c1assfiles is generated (section 3.1) at which point
the optimizations that the developer has written using the SOOT framework are applied.
The resulting optimized JIMPlE code must then be converted back to bytecode, via one of
two alternatives. The first alternative is covered in section 3.2 and consists of generating
GRIMP code which is tree-like code and traversing il. The second alternative, covered in
section 3.3, consists of generating naive BAF code which is stack code and then optimizing
il. The newly generated c1assfiles consist of optimized bytecode which can then be fed into
one of many destinations such as a Java Virtual Machine for execution.

3.1 Bytecode -t Analyzable JIMPLE

This section describes the five steps necessary to convert bytecode to analyzable Jimple
code. This is a non-trivial process because the bytecode is untyped stackcode, whereas
JIMPLE code is typed 3-address code. The five steps are illustrated in figure 3.2.

Throughout this chapter wc use a running example to show how these five steps trans
form Java code. See figure 3.3 for the original Java code.

3.1.1 Direct translation ta BAF with stack interpretation

The first step is to convert the bytecodes to the equivalent BAF instructions. Most of the
bytecodes correspond directly to equivalent BAF instructions. For example, as seen in fig
ure 3.4, iconst_O corresponds to push 0, istore_2 corresponds to store. i 12

35

•

•

•

Soot

Jimple

1Optimlze

Optimized Jimple

Ahead-of·lime
Compiler

Figure 3.1: An overview of Soot and its usage.

36

•

•

•

3.1.1 direct translation
with staek interpretation

~.2 direct translation1~illh stack heighl

verbose untyped
limple

~ 3.1.3 split loeals

verbose untyped
split Jimple

3.1.4 type loeals

verbose typed
split Jimple

t 3.1.5 cleanup

analyzable
limple

Figure 3.2: Bytecode to JIMPLE in five steps.

37

•

•

•

public class Test
(

A a;
boolean condition;

public int runningExarnple()
{

.:... a;
int. SUffi = 0;

if(condition)
(

int z = 5;
a = new B();
SUffi += z++;

}
else
{

String s = nfour";
a = new C(S)i

return a.value + surn;

class A
{

int value;

class C extends A
(

public C(St.ring s) {}

class B ext.ends A
{
}

Figure 3.3: The running example in ils original Java form.

38

•

•

•

and so forth. Each untyped local variable slot in the bytecode gets converted to an explicit
(but still untyped) local variable in BAF code.

The only difficulty lies in transfonning the dupx.xx class of instructions and the swap
instruction. These bytecode instructions are umyped. but since BAF instructions are l'ully
typed. we must determine which kind of data is being duplicated or swapped by these
instructions before they can be transformed. This can be achieved by performing an abstract
stack interpretation. in which we compute the contents of the computation stack after every
instruction (abstract stack interpretation is discussed in detail in [16].) Figure 3.4(b) gives
the contents of the stack explicitly. and it is used to determine that both dups should be
converted to dup. r. because the top of the stack bcfore each dup contains a ref.

3.1.2 Direct translation to JIMPLE with stack height

The next phase is to convert each BAF instruction to an equivalent JIMPLE instruction
sequence. This is done in three steps:

1. Compute the stack height after each BAF instruction. by performing a depth-first
traversai of the BAF instructions. Note that a simple traversai can compute the stack
height exactly because the Java Vinual Machine specification [16] guarantees that
every program point has a fixed stack height which can be be pre-computed.

2. Create a JIMPLE local variable for every BAF variable, and create a JIMPLE local
variable for every stack position (numbered 0 to IIuv:imum s((lC:k Ileight - J.)

3. Create the equivalent JIMPLE instructions for every BAf instruction, mapping the
implicit effect that the BAF instruction has on the stack positions to explicit refer
ences to the JIMPLE local variables which represent those stack positions (created in
step 2.) For example. the first occurence of push 0; becomes $stackO = 0;
and both dupl. r; instructions become $stackl = $stackO;. Note that an
instruction such as dup2 . r gets translated to multiple JIMPLE instructions, which
is necessary to duplicate two stack positions.

This method of transforming bytecode is relatively standard and is also covered in the
works of Proebsting et al [19] and Muller et al [18]. See figure 3.5 to see how the complete
running example is transformed.

3.1.3 Split locals

To prepare for typing, the local variables must be split so that each local variable corre
sponds to one use-def/def-use web, because the JIMPLE code generated by the previous sec
tion may be untypable. In particular, in our running example (figure 3.5) we see that on one

39

•

•

a iconst 0
1 istore_2
2 aload_O
3 getfield #10
<Field boolean condition>

6 ifeq 29

9 iconst_5
la istore_3
11 new *t3

<Class B>
14 dup
15 invokespecial *t7

<Method B () >
18 astore_1
19 i1oad_2
20 i1oad_3
21 iinc 3 1
24 iadd
25 istore_2
26 goto 41

29 1dc #1
<String "four">

31 astore_3
32 new #4 <C1ass C>
35 dup
36 aload_3
37 invckespecial #9

<Method C(java.1ang.String»
40 astore_l

41 aload_1
42 getfield #11

<Field int value>
45 iload_2
46 iadd
47 ireturn

(a) Java bytecode

tint}
{}
{ref}
tint}

{}

tint}
{ }
{ref}

{ref,ref}
{ref}

{ }
tint}
{int,int}
{int,int}
tint}
{ }
{}

{reE}

{}
{ref}
{ref,ref}
{ref, ref , ref}
{ref,ref}

{ }

Cret}
{int}

{int,int}
tint}
{ }

(b) stack

push 0;
store.i 12;
load.r la;
fieldget
<Test: boolean cond .. >;

ifeq 1abe10;

push 5;
store.i 13;
new B;

dup1.r;
specia1invoke

<B: void <init>(»;
store.r Il;
load.i 12;
load.i 13;
inc.i 13 1;
add.i;
store.i 12;
goto labe11;

labelO:
push Il four" ;

store.r 13;
ne"" C;
dup1.r;
load.r 13;
specialinvoke

<C: void <init>(Str .. »;
store.r 11;

labe11:
load.r 11;
fie1dget

<A: int value>;
load.i 12;
add.i;
recurn.i;

(c) Baf code

•
Figure 3.4: Running example: Java bytecode to Baf code.

40

•
word 10, 11,

12, 13;
unknown la, $scackO, 12,

13. $stack1, 11, Sscack2;

•

10 := @this: Type;
push 0;
store.i 12;
load.r 10;
fieldget
<Test: boolean condition>;

ifeq labelO;

push 5;
store.i 13;
new B;
dup1.r;
specialinvoke

<B: void <inic>(»;
store.r 11;
load.i 12;
load.i 13;
inc.i 13 1;
add.i;
score.i 12;
goto label1;

1
o
1
l

o

1
o
1
2
1

o
1
2
2
1
o
o

10 := @this: Type;
$stackO = 0;
12 = $scacKO;
$stackO = 10;
$stackO = $stackO.condicion;

if $scackO == 0 goto labelO;

$stackO = 5;
13 = $stackO;
$stackO = new B;
$stack1 = $stackO;
specia1invoke

$stackl.<inic>() ;
Il = $scackO;
$stackO :: 12;
$stackl = 13;
13 = 13 + 1;
$stackO :: SscackO ? Sscack1;
12 = SstackO;
goto labell;

11;
$stackO.va1ue;

1abelO:
push "four";
store.r 13;
new C;
dup1. r;
load.r 13;
soecialinvoke
~C: void <init>{String»;

score.r 11;

1abell:
load.r 11;
fie1dget

<A: int value>;
load.i 12;
add.i;
return.i;

l
o
1
2
3
2

o

1
1

2
1
o

labelO:
$stackO = "four";
13 = SscackO;
$scackO = new C;
$stackl = SstackO;
Sscack2 = 13;
specialinvoke

$stack1.<init>($stack2);
Il = $scackO;

labe11:
$stackO
$stackO

$stackl 12;
SstackO $stackO + $stackl;
return $stackO;

(c) verbose untyped JIMPLE code(b) stack
height

Figure 3.5: Running example: BAF code to verbose untyped JIMPLE code

(a) BAF code

• 41

•
branch of the if, 13 is used as an int (in $stackO = 5; 13 = $stackO;), and on
the other branch, 13 is used as a String (in $ s tackO = Il four Il ; 13 = $ s tackO ; .)

To split the local variables. we simply compute the webs [17] by traversing the lIse-def
and def-llse chains, and associate one local variable with each produeed web. A web is
essentially a subset of ail the uses and definitions of a partieular local variable whieh are
self-contained in the sense that this subset ean be renamed without affecting the behavior
of the code. Figure 3.6 illustrates this with an example.

Figure 3.6: Jimple code illustrating webs.

Figure 3.7 gives the running example after the splitting of the loeals. Note how the code
now has 23 different local variables, whereas the original code had only 7. In particular.
13 was split into three different webs, and stack position 0 was split 12 times. This is to
he expeeted heeause stack position 0 is the most used position for performing temporary
computations.

With the local variables split in this way, the resulting JIMPLE code tends to he easier to
analyze because it inherits sorne of the disambiguation benefits of SSA[4). Local variables
will have fewer definitions, and most will in faet have a single definition.

Here is an example to illustrate how Jimple code is casier to analyze with the local
variables being split:

•

if (condit.ion)
x 1;

else
x = 2;

print.(x);
x = 1;
print (x) ;

Before

if (condition)
xl 1;

else
xl = 2;

print.(xl) ;
x2 = 1;
print(x2) ;

After renaming aeeording to wcbs

•

x = toCopy;
use (y) ;
z = X + y;
print. ("hello") ;
use (x) ;

with the variables split. there is a good chance that toCopy is only defined once (this cao
be deteremined easily with a linear sweep of the code.) Ifthis is the case and since use (x)

has only one reaching definition of x, x=toCopy can be propagated ioto use (x) without
any further checks. NormaIly, one must perform an available copies allalysis or check the
interleaving statements for redefinitions of toCopy. In SOOT this simplification speeds
up our analyses and transformations considerably.

42

•

•

•

public int runningExample()
{

unknown 10, $stackO, 12, 13, $stackl, 11, $stack2, $stackO~2,

$stackO#3, $stackO~4, $stackO#5, $stackO#6, $stackl#2,
13#2, $stackO#7, $stackO#8, 13~3, $stackO#9, $stackl#3,
$stackO#lO, $stackO#ll, $stackl#4, $stackO#12:

10 := @this: Test;
$stackO = 0;
12 = $st.ackO;
$stackO#2 = 10;
$st.ackO#3 = $stackO#2.condition;
if $stackO#3 == 0 goto labelO;

$stackO#4 = 5;
13 = $stackO#4:
$stackO#5 = new B;
$stackl = $stackO#5;
specialinvoke $stack1.<init>();
11 = $stackO#5;
$stackO#6 12;
$stackl#2 :: 13;
131'2 :: 13 + 1:
$stackO#7 = $stackO#6 + $stackl#2;
12 = $stackO#7;
goto labell;

labelO:
$stackO#8 = "four":
131'3 = $stackO#8;
$stackO#9 = new C:
$stackl#3 = $stackO#9;
$stack2 :: 13#3:
specialinvoke $stackl~3.<init>(Sstack2);

11 :: $stackOlf9;

labell:
$stackO#lO = Il;
$stackOlfll = $stackO#lO.value;
$stackl#4 = 12;
$stackO#12 = $stackO#ll + $stackl#4;
return $stackO#12:

Figure 3.7: JIMPLE code of running example~ after splitting the local variables (section
3.1.3.)

43

•
3.1.4 Type locals

The next step is to give each local variable a primitive, c1ass or interface type. To do this, we
invoke the typing algorithm developed by Etienne Gagnon et al. [10]. The general solution
to this problem is non-trivial as it is NP-Hard. However, the typing algorithm in SOOT is an
efficient multistage typing algorithm based on solving a type constraint system; each stage
is attempted in tum to provide a solution, and each is progressively more complex. The first
stage is described below, very brietly. See [10] for a complete discussion of the problem
and its solution. The first stage consists of building a constraint system represented by a
directed graph. These constraints are gathered from individual statements. The constraints
of the first five statements of the running example in figure 3.7 follow.

T(lO) ~ Test
10 @this: Test;. -

T($stackO) ~ int $stackO = 0;
T(12) ~ T($stackO) 12 = $stackO;

T($stackO#2) ~ T(lO) $stackO#2 = 10;

T($stackO#3) int $stackO#3 =
~• $stackO#2.candition;

Test ~ T(SstackO#2)

(a) Collected constraints (b) Original statements

•

T(lO) ~ Test corresponds ta 10 : = @this: Test; and indicates that 10 must
be able to contain an instance of class Tes t, that is, be a superclass of Tes t. Note
that the statement $stackO#3 = $stackO#2. candi tian; creates two constraints:
one on $stackO#2, indicating that $stackO#2 must he a subclass of Test since the
condi tian field is accessed and the second indicating that $stackO#3 must be able to
contain an int.

After the constraints are collected, they are represented as a graph \Vith soft nodes
representing the types of variables and hard nodes representing actual types. Based on this
graph, cycles are collapsed, and the soft nodes are collapsed into the hard nodes. Based on
this scheme we can see that from the constraints that $stackO#2 and 10 must be of type
Tes t, and $ s tackO $ s tackO # 3 and 12 must he of type int (assigning an int to a
local variable means that it must he exactly of type in t).

If this first stage fails, then the llMPLE code is transformed by inserting assignment
statements and the typing algorithm is repeated. If this second phase l'ails then casts are
inserted as necessary, and the typing algorithm is repeated, with the modification that only
the set of constraints corresponding to definitions are collected. The third phase is guaran
teed to succeed and produce a typing solution for the local variables. See figure 3.8 for the
typed JIMPLE code of the running example.

44

•

•

•

public int runningExample()
{

Test 10, SscackO~2;

int $stackO, 12, 13, SstackO#3, SstackO~4, SstackOlt6,
Sstackllt2, 13#2, SstackO#7, $stackOltll, Sstackl#4,
SstackO#12;

B $stackl, SscackO#5;
A Il, $stackO#lO;
java.lang.String $stack2, SscackO#8, 13#3;
C $scackO#9, $scackl#3;

10 := @this;
$stackO = 0;
12 = $stackO;
$stackOlt2 = 10:
$stackO#3 = SscackO#2.canditian;
if $stackO#3 == 0 gata 1abelO;

$stackO#4 = 5;
13 = $stackO#4:
$stackO#5 = new B;
$stackl = $stackO#5;
specialinvoke $stackl.<init>();
Il = $stackO#5;
$scackO#6 == 12:
$stackllt2 = 13;
13 #2 = 13 + 1;
$scackO#7 = $stackO#6 + $stackl#2;
12 = $stackO#7;
gato labell;

labelO:
SscackOlt8 = "four";
131t3 = SstackO#8;
$scackO#9 == new C;
$stackl#3 = SscackOlt9;
$stack2 = 13#3;
specialinvoke $stackl#3.<inic>($scack2);
Il = SstackO#9;

labell:
$scackO#lO = 11;
$stackO#ll = SstackO#10.va1ue;
Sscackl#4 == 12;
$stackO#12 = $stackO#ll + $stackl#4;
return $stackO#12;

Figure 3.8: JIMPLE code of the running example, after typing the local variables. (section
3.1.4).

45

•

•

•

3.1.5 Clean up JIMPLE

After the locals have been typed the code itself remains very verbose. The step discussed
in this subsection consists of perfonning sorne cornpaction to eliminate the redundant copy
staternents which are present in the code due to the direct translation frorn bytecode.

We see from figure 3.8 that there are several statements which can be elirninated. For
exarnple, the pair $stackO = 0; 12 = $stackO; can be optimized to 12 = 0;
Note that, in general, copy propagation and constant propagation are not sufficient to fully
eliminate the redundant copy statements. For example, in the code:

$:<: = La;
y = $=<;

wc do not have a copy to propagate forward, but instead a copy to propagate backwards.
A combination of copy propagation and back copy propagation has been suggested as a
solution to this exact problem[21 l. We use. instead. the aggregation algorithm developed on
GRIMP on JIMPLE code (see subsection 3.2.1). This simulates the back copy propagation
phase as weil as a limited fonn of copy propagation by collapsing single def-use pairs.
However. we sti Il need to pcrfonn a phase of copy propagation afterwards to catch patterns
of the l'arm:

$x = iO;
use ($=<) ;
use ($:<) ;

which are single def-multiple use "-tuples. These patterns usually originate l'rom the use of
dups which are used ta implement statements with multiple side effects such as x. f +=
a[i++]

Compare figures 3.9 and 3.8. The cornpacted version has 18 statements whereas the
original version has 30. Most of the eliminated references were references ta stack vari
ables.

3.2 Analyzable JIMPLE --t Bytecode (via GRIMP)

This section describes the first method of transforming JIMPLE code back to bytecode: via
GRIMP(see figure 3.10 for an illustration of these two paths.)

A compiler such as j avac is able to produce efficient bytecode because it has the
structured tree representation for the original program, and the stack based nature of the
bytecode is particularly weil suited for code generation frorn trees[2]. Essentially, this

46

•

•

•

public int runningExample()
{

Test 10;
int 12, 13, $stackOit3, 13#2,

$stackO#11, $stackO#12;
A 11;
B $stackO#5;
java.lang.String 13#3;
C $st.ackOI*9;

10 := @this;
12 = 0;
$st.ackO#3 = 10.condit.ion;
if $st.ackOit3 0 got.o 1abelO;

13 = 5;
$st.ackO#5 = new B;
specialinvoke $st.ackO#5.<init.>();
11 = $st.ackO#5;
13#2 = 13 + 1;
12 = 12 + 13;
goto labe11;

1abelO:
13#3 = "four";
$stackO#9 = new C;
specia1invoke $st.ackO#9.<init>(13#3);
11 = $st.ackO#9;

labell:
$stackO#ll = 11.value;
$st.ackO#12 = $stackOitll ~ 12;
ret.urn $stackO#12;

Figure 3.9: JIMPLE code of running example, al'ter cleanup. (section 3.1.5)

47

•
method attempts to recover the original structured tree representation, by building GRIMP.

an aggregated forro of JIMPLE, and then producing stack code by standard tree traversai
techniques.

There are two steps necessary for this transformation and they are covered in the fol
lowing two subsections. This method was mainly developed and added to the framework
by Patrick Lam and is described further in our overview paper[28]. A summary of the
method is included here for completeness.

analyzable
Jimple

•

Option 1

3.2.1 aggregation

3.2.2 traversai
and local packing

Option Il

3.3.1 direct translation

3.3.2 eliminate redundant
store and loads

3.3.4 direct translation
with max height

•

Figure 3.10: Two paths for the JIMPLE to bytecode transformation.

3.2.1 Aggregate expressions

Producing GRIMP code from JIMPLE is relatively straightforward given that GRIMP is es
sentially JIMPLE with arbitrarily deeply nested expressions and with a newinvoke expres
sion construct. To build GRIMP there are two algorithms which must be applied: expression
aggregation, and constructor folding.

1. Expression aggregatioll: for every single def/use pair. attempt to move the right hand
side of the definition into the use. Currently, we only consider def-use pairs which

48

•

•

•

reside in the same extended basic block, but our results indicates that this covers al
most ail pairs. Sorne care must be taken to guard against violating data dependencies
or producing side cffects when moving the right hand side of the definition.

2. Constnlclor fo/ding: pairs consisting of new and specialinvoke are collapsed
into one GRIMP expression calied newinvoke.

The expression aggregation algorithm is tricky to implement and is described in full
detail below in the subsection entitled "In Detail",

Note that folding the constructors usually exposes additional aggregation opportunities
<namely the aggregation of the newinvokes), and these are aggregated in a second aggre
gation step. See figure 3.11 for the results of performing these three transformations. Note
that the definition $stackO#3=lO has been aggregated ioto the statement

if lO.condition == 0 goto labelO;

and that the three statements

$stackO#ll = Il.value;
$stackO#12 = $stackO#ll + 12;
return $stackO#12;

have been collapsed down to

return Il.value + 12;

Furthermore, two constructor foldings have taken place, one for new B and one for
new c. Note that the definition 13 # 3 = " four" has not been aggregated into
new C (13 # 3) because this assignment is present in the original Java code. and we are
only aggregating stack variables.

The GRIMP code generated by these three steps is extremely similar to the original Java
source code; almast ail introduced stack variables are usually eliminated. Statements from
Java which have multiple local variable side-effects. however. cannot he represented as
compactly, and this complicates bytecode code generation. An example is given in figure
3.12 and this is further discussed in section 3,2.2.

49

•

•

public int runningExample()
(

Test 10;
int 12, 13, $stackOlt3, 13#2,

$stackOltll, $stackO#12;
~. 11;
B $stackOlt5;
java.lang.String 13lt3;
C $stackOlt9;

10 := @this;
12 = 0;
$stackO#3 = 10.condition;
if $stackOlt3 == 0 goto labe10;

13 = 5;
$stackOlt5 = new B;
specialinvoke

$stackO#5.<init>() ;
Il = $stackO#5;
13#2 = 13 + 1;
12 = 12 + 13;
goto labe1l;

labelO:
13#3 = "four";
$stackO#9 = new C;
specialinvoke

$stackO#9.<init>(13#3) ;
11 = $stackO#9;

labell:
$stackOltll = ll.value;
$stackO#12 = $stackO#ll + 12;
return $stackO#12;

JIMPLE code

public int runningExamp1e()
(

Test 10;
int 12, 13, 13 #2;
A 11;
java.lang.String 13#3;

10 := @this;
12 = 0;
if 10.condition 0

goto 1abelO;

13 5;
11 = new B();
131*2 = 13 ~ 1;
12 = 12 + 13;
goto labell;

1abe10:
13#3 = "four";
11 = new C(13#3);

labell:
return 11.value + 12;

GRIMP code

•

Figure 3.11: GRIMP code of running example, after aggregation and constructor folding.
(see subsection 3.2.1)

50

•
a[j++] 5;

aload_2
iload_l
iinc 1 1
iconst_5
iastore

(a) Java code

$stack = j;
j = j + 1;
rl[$stackl = 5;

(c) equivalent GRIMP code

(b) bytecode of Java code

iload_l
istore_2
iinc 1 1
aloaà 0
iload 2
iconst_5
iascore

(d) bytecode of GRIMP code

•

•

Figure 3.12: Example of Java code which does not translate to compact GRIMP code.

ln Detail

The ideas behind expression aggregation are relatively simple, but in practice we found it
difficult to implement it correctly. Thus. we give the complete algorithm in figures 3.13
and 3.14 and explain it here in detail.

Overvie\v: The algorithm consists of considering single use-def pairs and attempting to
insert the def into the use. assuring that no data dependencies are violated by this move. The
algorithm is a fixed point iteration~ it iterates until no more aggregations can be perforrned.
The following points comment on specifie portions of the algorithrn presented in figures
3.13 and 3.14. Refer to the figures to see the correspondence: each numbered step below
corresponds to a labelled step in the figure.

1. Considering the statements in reverse pseudo topological arder is desired in order to
minimize the nurnber of iterations. For example. in the following code:

a = f () ;
b = f () ;
use (a, bl;

the first statement can not be aggregated past the second because of potential side
effect violations. Thus the second should he aggregated first.

2. Only single use-def pairs are considered for aggregation. These are pairs of the forrn
x = •.. , ... x ... ; where there is only one definition of x, and only one use
ofx.

51

•

•

•

3. The use-def pair must be in the same exception context. For example, in the code:

t.ry
(

x = chrowSomeException();
catch(Exception e)

System.out.println("caught!") ;
ret.urn;

System.out.println(x) ;

The x must not be aggregated out of the try block because if an exception is thrown
then it would no longer be caught.

4. This section of code simply notes what kind of structures are on the right hand side
of s.

5. The next step is to consider the path between s and use and determine if il is legal
to move s pasl aH those statements into use. Note that we consider only pairs of
statements which are in the same extended basic block. This guarantees that the
connecting palh is unique.

6. A redefinition of a local in s occurs in the path, preventing aggregation. Here is an
example:

x = a + b;
a = 1;
use(x) ;

7. This block of code prevents the moving of method calls past field writes, or field
reads past field writes (of the same name), or method calls or array reads past array
writes.

It also prevents propagating method caHs past EnterMonitorStmt or ExitMonitorStmt.

8. This block of code prevents the re-ordering of method calls with array references,
field references or other method calls. Note that (Sa) handles the following situation:

x = f();

z = 1;
use(x, ml), z);

upon inspection of the statement use which in this case is use (x, m(), z) the
verification of moving f () past other method caBs stops at the first use of x because
the arguments are evaluated from left to right.

9. At this point it is safe to aggregate s and use together.

52

•
hasChanged = true;

while hasChanged do
hasChanged = faise;

(1) for each staternent s in reverse-pseudo-topological ar
der for graph G do

canAggregate = false;

if s is an assignrnent statement and lhs(s) is a local then
x=lhs(s);

fieldRefList = emptyList;
localsUsed = emptyList;
propagatingInvokeExpr = faise;
propagatingFieldRef false;
propagatingArrayRef = false;

1 for all values v in s do
1 if v instanceof Local
1 localsUsed.add(v) ;
1 else if v instanceof InvokeExpr
1 propagatingInvokeExpr = true;

(4) 1 else if v instanceof ArrayRef
1 propagatingArrayRef = true;
1 else if v instanceof FieldRef
1 propagatingFieldRef = true;
1 fieldRefList.add(v) ;

•
(2)
(3)

if s has only one use in Gand that use u has s as its sole def
if s and use are in the sarne exception zone

canAggregate = true;

if not ca~.ggregate then
next staternent;

•

(5) path G. extendedBasicBlockPathBetween(s, use);

Figure 3.13: The aggregation algorithm. (part 1)

53

•
if path is null then

next statement;

for each node nodeStmt in pach do
if noàeStmc == s chen

nexc scatemenc;

if nodeStmt != use and nodeStmc is an assig~~enc chen
def = Ihs(nodeStrnt);

•

(6)

1

1

1

1

1

(7) 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 (8a)

1

(8) 1

1

1

Ref or
1

1

if localsUsed.contains(def) then
next statemenc;

if propagatingInvokeExpr or propagatingFieldRef or
propagatingArrayRef then
if def inscanceof FieldRef then

if propagatinglnvokeExpr chen
next stacement;

if propagacingFieldRef then
for f in fieldRefList do

if f = def.getField()
nexc scacement;

else if def instanceof ArrayRef then
if propagacinglnvokeExpr or propagacingArrayRef chen

next scatement;

if propagatingInvokeExpr and nodeStmt instanceof
MonitorStmt then
next scaternent;

if propagatingInvokeExpr or propagatingFieldRef or
propagacingArrayRef then
for all values y in nodeStmc do

if use = nodeStmc and def == y
goco aggregace;

if Y instanceof InvokeExpr or
(propagacingInvokeExpr and (def inscanceof Field-

def instanceof ArrayRef))
next statemenc;

•

(9)aggregate:
aggregate(s, use)
hasChanged = true;

Figure 3.14: The aggregation algorithm (part Il)

54

•
3.2.2 Traverse GRIMP code and generate bytecode

Generating BAF code from GRIMP is straightforward because GRIMP consists of tree-Iike
statements and BAF is a stack-based representation. Standard code generation techniques
for stack machines are used here[2], that is, pre-order tree traversaI. In the running example.
for example, we have the following conversion:

return 11.value + 12:

GRIMP code

43 aload_2
44 gecfield ~20 <Field int value>
47 iload_l
48 iadd
49 ireturn

bytecode

•

•

The code generated in sorne cases by this tree traversai may be inefficient compared to
the original Java bytecode. This occurs when the original Java source contained compact
C-like constructs such as a [j ++] = 5 in the example 3.12. Note how the bytecode
generated from the GRIMP code has two extra bytecodes. This inefficiency may have a
significant impact on the program execution lime if such a statement occurs in loops (and
they often do.)

To eliminate this source of inefficiency we perform peephole optimizations on the code
generated from GRIMP. To optimize the increment case. we search for Grirnp patterns of
the form:

sI: local = <lvalue>;
s2: <lvalue> = local/<lvalue> + 1;
s3: use<local)

and we ensure that the local defined in S1 has exactly two uses, and that the uses in S'2. S:J

have exactly one definition. Given this situation, we emit code for only o5:J. However, during
the generation of code for 053. when local is to be emitted, we also emit code to duplicate
local on the stack, and increment <1value>.

This approach produces reasonably efficient bytecode. In sorne situations the peephole
patterns fai 1and the complete original structure is not recovered. In these cases. the second
option of producing bytecode via BAF performs better. See the chapter 4 for more details.

Before performing the tree traversaI. we al50 perfonn a phase of register allocation
which maps the GRIMP local variables to bytecode local variable slots. This mapping is
performed twice; once for 32-bit quantitîes and another time for 64-bit quantities. The
register allocation scheme is a simple scheme based on heuristic coloring which uses in
tereference graphs to prevent conflicts.

55

•
$stackO#ll = 11.va1ue;

$stackOj12 = $stackO#ll + 12;

return $stackO~12;

(a) orlganal JIMIlLE cod~

•

•

Figure 3.15: Excerpt of the running example explicitly demonstrating the JIMPLE (0 BAF

conversion statement by statcment.

3.3 Analyzable JIMPLE to Bytecode (via BAF)

This section describes the second method of transforming JIMPLE code back to bytecode:
via BAF. (see figure 3.10 for an illustration of these two paths.)

This method attempts to achieve efficient bytecode by producing BAF code naively and
then optimizing it. as oppcsed to the GRIMP method which attempts to produce efficient
BAF code directly.

There are four steps necessary for this transformation. and they are described in the
following subsections. This method was mainly developed and added to the framework by
Patrice Pominville and is described further in our overview paper [28]. Il is included here
for completeness.

3.3.1 Direct translation to BAF

The first step to produce bytecode l'rom JIMPLE is to treat JIMPLE as a tree representation
and convert it to BAF code directly. using standard tree traversai techniques as was done in
section 3.2.2.

Generating code in this manner produces inefficient BAF code because local variables
are used for the storage of intermediate results. instead of using the stack. For example. an
excerpt of the running example is given in figure 3.15 explicitly showing the conversion.

We can see in figure 3.15 that the store. i. load. i pairs for variables $ s tackO # 11
and $ s tackO # 12 can be eliminated, because their values are just temporarily left on the
stack. The next step of eliminating redundant load/store seeks to optimize this situation as
weil as others. The complete translation can be found in figure 3.16.

56

•
pub1~c 1n1: ~unnlngExarnp1e()
{

'Nord 10. 12. 13. 1:' SstackOID,
SstackO.S. 13'2, 131$3, SstackO.9,
SstackO#11. SstackO#12;

•

public int rup~ingExample(1
{

Test. 10;
int. 12, 13, $st.ackOlt3, 1H2,

SstackO.ll, SstackOt12;
A 11;
a SstackOltS;
Java.lang.Strlng 13.3;
C $stackOlt9;

10 := @thlS;
12 = 0;
SstackO.3 = IO.cond~t.lon;

:.: $stackOlt3 0 goto labelO;

l3 = S;
SstackOltS = new B;
speclal;.nvoke

SstackO.5.<lnlt>(};
Il = $stackO#S;
1.3"2 = 1.3 .. 1;
12 = 12 ~ :'3;
g01:0 label!.;

labelO:
131$3 = "four";
Sst.ackOt9 = new C;
specia1i:1voi<e

SstackOt9.<init>(13#)I;
Il = SstackOt9;

labell:
$stackOtll = Il.value;
$stackOt12 = $stackOtl1 • 12;
return SstackO#12;

JlMPLE code

la := @tnls: ~est;

push 0;
st.ore.i 12;
10ad.r 10;
fieldget <Test: boolean condit1on>;
store.i SstackOt3;
load.i SstackOt3;
1Eeq labelO;

oush 5;
~tore.l 13;
ne'N B;
store.r Sst.ackO#S;
load.r SstackOltS;
speClallnvoke <8: vOld <lnlt>(»;
load.r $stackO#S;
store.r Il;
load.l 13;
push 1;
add. ~;

store.;' 13#2;
load.l :2;
:"oad. l 13:
add.;.;
store.;. :2;
got.o labe:":';

:abelO:
push • Eou~" :
store.r 1,3#3:
ne''''' C:
store.r SstackOt9;
load.r SstackOl$9;
load. r 13113:
speclall.nvoke

<C: vOld <lnit>(Java.:ang.Str;.ngl>;
load.r SstackOt9;
store. r Il;

labell:
load.r 11;
fleldget <A: i:1t value>;
store.i $stackO'll;
load.i SstackOtll;
load.i 12;
add.i;
store.i SstackO.12;
load.i SstackOt12;
return.l;

After direct translation

•
Figure 3.16: BAF code of running example, before and after direct translation from J[MPLE.
(section 3.3.1»

57

•

•

•

3.3.2 Eliminate redundant storelloads

Afler the naive BAF code is generated, it remains to be optimized. In particular. we must re
move a1l the redundant store/load instructions which were introduced by the previous step.
Although in theory there are many different patterns of redundant storelload instructions
possible. in practice there are just a few which account for the majority:

storelload : a store instruction followed by a load instruction refening to the same local
variable with no other uses. Both the store and load instructions can be eliminated.
and the value will simply remain on the stack.

storelloadlload : a store instruction followed by :2 load instructions. ail refening to the
same local variable with no other uses. The 3 instructions can be eliminated and a
dup instruction introduced. The dup instruction replaces the second load by dupli
cating the value left on the stack after eliminating the store and the first load.

Eliminating redundant patterns is trivial when ail the relevant instructions follow each
other. If there are interleaving instructions (as is the case with load. r 13#3.
store. r 13 # 3 in the running example in figure 3.17) then sorne care must be taken
to eliminate the pair safely. In particular, we compute the mi"imum stack heiglu varia
tioll and net stack Ireiglu variation for these interleaving instructions and only if these both
are equal to zero can we eliminate the pair (or triple). If they are not zero. then sorne re
ordering of the BAF instructions is attempted. These eliminations are performed on basic
blocks. and iterations are performed until there are no more changes. This optimization is
discussed in complete detail in our overview paper[28].

ln the running example in figure 3.17. the examples of load/store elimination are dear:
three store/load triplets on the local variables $stackO#3. $stackO#ll and
$ s tackO #12 and two store/load/load triplets on the local variables $ s tackO # 5 and
$stackO#9.

3.3.3 Pack local variables

ln bytecode. the local variables are untyped. whereas in BAF there are two types (word
and dword). This step consists of performing a form of register allocation which attempts
to minimize the number of local variables used al the BAF level.

The allocation scherne that we use is based on a greedy graph coloring using interfer
ence graphs to assure that locals with overlapping lifespans are given distinct colors. Colors
are then used as the basis for new variable narnes. Two packings are actually perfonned.
one for variables of type word and another for variables of type dword. This prevents
the interchange of 64-bit wide local variable SIOls with two 32-bit wide local variable slots.

58

•
public in~ ~unn~ngExample()

(

'Norà 10, 12, 13. 11. 5stack0#3.
Sstack01f5, 13112. 13113.
Ss~ack01f9. SstackOllll.
$stackOIl12;

•

10 :~ @this: Test;
push 0;
store.~ 12;
load.r 10;
fieldget

<Test: boolean condit~on>;

store.i $stackOIl);
load.l SstackOIl);
ifeq labelO;

push 5;
store.ll);
new B;
store.r SstackOIlS;
1oad.r SstackOIlS;
speclal~nvoke

<B: vOld <lnlt>(»;
1oad.r SstackOll5:
store.!" 11;
1oad. i lJ;
push 1;
add. l;
stor-e.l 13~2;

loaà.l 12;
load.l 13;
add.l:
st.ore.: 12;
goto label!.;

1abelO:
push ·four·;
store.r 1311);
new C;
store.!" Sstack01f9;
load.r $stackOIl9;
load. r 130;
specialinvoke <C: void

<lnit>(java.lang.String»;
load.r SstackOll9;
st.ore.r 11;

label!:
load.r 11;
fleldget

<A: int value>;
store.i $stackOllll;
load.i SstackOllll;
load.l12;
add.i;
store.i SstackOll12;
load.l Sst.ackOIl12;
return.i;

before load/store elimination

public lnt runningExa~ple()
(

wor-d la. 12. 11. 13.2;

10 :~ @this: Test;
push 0;
store.l 2.2;
load.!" la;
fieldget

<Test: boolean conàltlon>;
lfeq labe10;

load.i 12;
push 5;
dupl.l;
new B;
dupl. r;
speclal1nvoke

<B: vOld <:nlt>(»;
s~ore.r- ,
push 1;
adà.:.;
store. l 13112:
adà.:. ;
st.or-e.: l2;
got.o label:;

labe10:
:"lew C;
dupl.:-;
push "four·;
speclallnvoke <C: vOld

<lnlt>(]ava.lang.Scrlngl>;
store.:- 11;

labe11:
loaà.r 11;
fleldget

<A: lnt value>;
load.:. 12;
adà.l;
return.':' ;

after load/store elimination

•
Figure 3.17: BAF code ofrunning example. before and after load store elimination.

59

•

•

•

For example, in figure 3.18 we see that when la is used iO and il are no longer needed.
But in practice, separating the cases into two types produces reasonably small sets of local
variables which are acceptable.

ward rO, iO, il;
dword 10;

rO := @this: Test2;
push 0;
store.i iO;
push 1;
store.i il;
load.i iO:
staticinvoke <Test2: void useInt(int»;
load.i il;
staticinvoke <Test2: void useInc(int»;
push iL;
store.l 10;
load.l 10;
scaticinvoke <Tesc2: void useLong(long»;
return;

Figure 3.18: Example of BAF code which could profit l'rom untyped local variable coloring~

when lOis used. i a and il are no longer needed.

ln our running example (figure 3.19), wc see that variables 13#2 and Il are mapped
ta 12 and la respectively, thus saving two local variables.

3.3.4 Direct translation and calculate maximum height

The Java Virtual Machine requires that the maximum stack height be given for each method.
This can be computed by performing a simple depth first traversai of the BAF code and
recording the accumulated effect that each Bal' instruction has on the stack height.

Every BAF instruction is then converted to the corresponding bytecode instruction. This
is a straightforward mapping which consists of two steps:

1. Map clle local variables. Since the local variables are already packed we simply
associate each BAF local variable with a Java bytecode variable. Note that specifie
local variables in the Java bytecode have special meaning, and these are allocated
by parsing the BAF code for identity instructions which associate specifie local vari
ables with special raies. such as 10 : = @this: Test which indicates that 10
corresponds to @thisand thus should be assigned to local variable slot O.

2. Map the bytecode illstnlctions. Each BAF instruction corresponds to one or more
bytecode instructions. This is a straightforward association. For example. push 0

60

•

•

public int runningExample()
(

word 10, 12, Il, 13~2;

10 := @this: Tesc;
push 0;
store.i 12;
load.r 10;
fieldget

<Test: boolean condition>;
ifeq labelO;

load.i 12;
push 5;
dupl.i;
new B;
dupl.r;
specialinvoke

<B: void <init>(»;
store.r Il;
push 1;
add.i;
store.i 13!t2;
add.i;
store.i 12;
goto 1abell;

labelO:
new C;
dupl.r;
push "four";
specialinvoke <C: void

<inic>{java.lang.String»;
store.r Il;

labell:
load.r Il;
fieldget <A: inc value>;
load.i 12;
add.i;
recurn.ii

Before packing

public int runningExarnple{)
(

word ID, 12;

la := @this: Test;
push 0;
store.i 12;
load.r la;
fieldgec

<Test: boolean condition>;
ifeq 1abelO;

load.i 12;
push 5;
dup1.i;
new Bi
dup1.r;
specialinvoke

<B: void <init>(»;
store.r la;
push 1;
add.i;
store.i 12;
add.i;
store.i 12;
goto label1;

labelO:
new C;
dupl.r;
push "four";
specialinvoke <C: void

<init>(java.lang.Scring»;
store.r la;

label1:
load.r la;
fieldget <A: int value>;
load.i 12i
add.i;
return.i;

After packing

•
Figure 3.19: BAF code of running example before and after local packing. (subsection
3.3.3)

61

•

•

•

corresponds to iconst_O and load. i la may correspond to iload a depend
ing on the mapping of the local variables.

3.4 Summary

This chapter described the transfonnations present in SOOT which allow code in one inter
mediate representation to be transfonned to intennediate representation. We presented the
steps required to transfonn bytecode to JIMPLE, and then JIMPLE back to bytecode via two
different paths.

62

•

•

•

Chapter 4

Experimental Results

Here we present the results of two experiments. The first experiment. discussed in section
4.3, validates that we can pass c1ass files through the framework. without optimizing the
JIMPLE code. and produce c1ass files that have the same performance as the original ones.
In panicular. this shows that our methods of convening from JIMPLE to stack-based byte
code are acceptable. The second experiment, discussed in Section 4.4. shows the effect of
applying method inlining on JIMPLE code and demonstrates that optimizing Java bytecode
is feasible and desirable.

4.1 Methodology

Ail experiments were performed on dual 400Mhz Pentium IIT~l machines. Two operat
ing systems were used, Debian GNUlLinux (kemel 2.2.8) and Windows NT 4.0 (service
pack 5). Under GNUlLinux we ran experiments using three different configurations of the
Blackdown Linux JDK 1.2, pre-release version 2. 1 The configurations were: interpreter,
Sun nT, and a public beta version of Borland's JIT.!. Under Windows NT, two different
configurations of Sun's JDK 1.2.2 were used: the nT, and HotSpot (version 1.0.1)

Execution times were measured by running the benchmarks ten times. discarding the
best and worst runs, and averaging the remaining eight. Ali executions were verified for
correctness by comparing the output to the expected output.

1hup://www.blackdown.org
1hup://www.borland.com

63

•

•

•

JIMPLE Linux Linux NT
Stmts Sun [nt. Sun Bor. Sun Sun

(secs) JlT JlT JIT Hot.

compress 7322 440.30 .15 .14 .06 .07
db 7293 259.09 .56 .58 .26 .14
jack 16792 151.39 .43 .32 .15 .16
javac 31054 137.78 .52 .42 .24 .33
jess 17488 109.75 .45 .32 .21 .12
jPClt-p 1622 47.94 l.01 .96 .90 .80
mpegalldio 19585 368.10 .15 - .07 .10
raytrace 10037 121.99 .45 .23 .16 .12
schroeder-s 9713 48.51 .64 .62 .19 .12
sOOI-C 42107 85.69 .58 .45 .29 .53

I-~-;d~~-r~....::~:.-:-.--+----:-1======_:~1_:~_~__:4_2~_-......l-I_:_;~_-__:;_~....JI
Figure 4.1: Benchmarks and their characteristics.

4.2 Benchmarks and Baseline Times

The benchmarks used consist of seven of lhe eight standard benchmarks from the
SPECjvm983 suite, plus lhree addilional applications from our collection. See figure 4.1.
We discarded the mIn benchmark from our set because it is essenlially the same benchmark
as raytrace. The program soot-c is a benchmark based on an aider version of SOOT. and
is interesting because it is heavily object oriented. The program schroeder-s is an audio
editing program which manipulates sound files, andjpat-p is a protein analysis tool.

Figure 4.1 also gives basic characteristics such as size, and running times on the five
platforms. Ali of these benchmarks are real world applications that are reasonably sized,
and they ail have non-trivial execution times. We used the Linux interpreter as the base
lime, and alllhe fractional execution limes are with respect to this base.

Benchmarks for which a dash is given for the running time indicates that the benchmark
failed validity checks. [n ail these cases, the virtual machine is ta blame as the programs
run correctly with the interpreter with the verifier explicitly turned on. Arithmetic averages
and standard deviations are also given, and these automatically exclude those running times
which are not valid.

For this set of benchmarks, we can draw the following observations. The Linux nT

3http://www.spec.orgl

64

•

•

•

is about twice as fast as the interpreter but it varies widely depending on the benchmark.
For example, with compress it is more than six times faster, but for a benchmark like
schroeder-s it is only 56% faster. The NT virtual machines also tend to be twice as fast
as the Linux JIT. Furthermore, the performance of the HotSpot performance engine seems
to be, on average, not that different l'rom the standard Sun JIT. Perhaps this is because the
benchmarks are not long running server side applications.

4.3 Straight through SOOT

Figure 4.2 compares the effect of processing applications \Vith SOOT with BAF and GRIMP.
without performing any optimizations. Fractional execution times are given, and these are
with respect to the original execution time of the benchmark for a given platform. The ideal
result is 1.00. This means that the same performance is obtained as the original application.
For javac the ratio is .98 which indicates thatjavac's execution time has been reduced by
2%. The benchmark raytrace has a ratio of 1.02 which indicates that it was made slightly
slower; its execution time has been increased by 2%. The ideal arithmetic averages for
these tables is l.oo because we are trying to simply reproduce the program as is. The ideal
standard deviation is 0 which would indicate that the transformation has a consistent effect,
and the results do not deviate from l.00.

On average, using BAF tends to reproduce the original execution time. Ils average is
lower than GRIMP's, and the standard deviation is lower as weil. For the faster virtual
machines (the ones on NT), this difference disappears. The main disadvantage of GRIMP
is that it can produce a noticeable slowdown for benchmarks like compress which have
tighl loops on Java statements containing side effects, which it does not always catch.

80th techniques have similar running times, but implementing GRIMP and ilS aggre
galion is conceptually simpler. In terms of code generation for Java virtual machines, we
believe that if one is interested in generating code for slow VMs, then the BAF-like ap
proach is best. For fast VMs, or if one desires a simpler compiler implementation, then
GRIMP is more suitable.

4.4 Optimization via Inlining

We have selected ta investigate the feasibility of optimizing Java bytecode by implementing
method inlining. Our approach is simple. We build an invoke graph using c1ass hierarchy
analysis[7] and inline method calls whenever they r~solve to one method. Our inliner is a
bottom-up inliner, and attempts to inHoe aIl cali sites subject to the following restrictions:
1) the method to he inlined must contain less than 20 JIMPLE statements, 2) no method may

65

•

•

•

BAf GRIMP

Linux NT Linux NT
Sun Sun Bor. Sun Sun 1 Sun Sun Bor. Sun Sun
[nt. nT nT JlT Hot. Int. JlT nT nT Hot.

compress 1.01 1.00 .99 .99 1.00 1.07 1.02 1.04 1.00 1.01
db .99 1.01 1.00 1.00 1.00 1.01 1.05 1.01 1.01 1.02
jack 1.00 1.00 1.00 - 1.00 1.01 .99 1.00 - 1.00
javac 1.00 .98 1.00 1.00 .97 .99 1.03 1.00 1.00 .95
jess 1.02 1.01 1.04 .99 1.01 1.01 1.02 1.04 .97 1.00
jpat-p 1.00 .99 1.00 1.00 1.00 .99 1.01 1.01 1.00 1.00
mpegalldio 1.05 1.00 - - 1.00 1.03 1.00 - 1 - 1.01
raytrace 1.00 1.02 1.00 .99 1.00 1.01 1.00 .99 .99 1.00
schroeder-s .97 1.01 - 1.03 1.01 .98 .99 - 1.03 1.00
soot-c .99 1.00 1.02 .99 1.03 1.00 1.01 1.00 LOI 1.01

average 1.00 1.00 1.01 1.00 1.00 l.01 1.01 1.01 1.00 1.00
std. dey. .02 .01 .01 .01 .01 .02 .02 .02 .02 .02

Figure 4.2: The effect of processing c1assfiles with SOOT using BAF or GRIMP, without
optimization .

66

•

•

•

contain more than 5000 JIMPLE statements, and 3) no method may have its size increase
more than by a factor of 3.

After inlining, the following traditional intraprocedural optimizations are perfonned to
maximize the benefit from inlining,

• copy propagation

• constant propagation and folding

• conditional and unconditional branch folding

• dead assignment elimination

• unreachable code elimination

These are described in [2] and were implemented in SOOT using the SOOT API.

Figure 4.3 gives the result of performing this optimization. The numbers presented are
fractional execution limes with respect to the original execution time of the benchmark for
a given platforrn. For the Linux virtual machines, we obtain a significant improvement in
speed. In particular, for the Linux Sun JlT, the average ratio is .92 whieh indicates that the
average running time is reduced by 8%. For raytrace, the results are quite significant, as
we obtain a ratio of .62. a reduction of 38%.

For the virtual machines under NT, the average is 1.00 or 1.0 l, but a number of bench
marks experience a significant improvement. For example, under the Sun JlT, raytrace
yields a ratio of .89, and under HotSpot. javac, jack and mpeg(llu/io yield significant
improvements. Given that HotSpot itself performs dynamic inlining, this indicates that
our statie inlining heuristics sometimes capture opportunities that HotSpot does not. Our
heuristics for inlining were also tuned the Linux VMs, and future experimentation could
produce values which are better suited for the NT virtual machines.

These results are highly encouraging as they strongly suggest that a significant amount
of improvement can be achieved by performing aggressive optimizations whieh are not
performed by the virtual machines.

67

•

•

•

Linux NT
Sun Sun Bor. Sun Sun
Int. JlT JlT JlT Hot.

compress 1.01 .78 1.00 1.01 .99
db .99 1.01 1.00 1.00 1.00
jack 1.00 .98 .99 - .97
javac .97 .96 .97 1.11 .93
jess .93 .93 1.01 .99 1.00
jpat-p .99 .99 1.00 1.00 1.00
mpegClIldio 1.04 .96 - - .97
raytrace .76 .62 .74 .89 1.01
sclrroeder-s .97 l.oo .97 1.02 1.06
~'oot-c .94 .94 .96 1.03 1.05

average .96 .92 .96 1.01 1.00
std. dev. .07 .12 .08 .06 .04

Figure 4.3: The effect of inlining with c1ass hierarchy analysis.

68

•

•

•

Chapter 5

The API

5.1 Motivation

Much of the effort in designing SOOT was spent defining (and revising) the application
programming interface (API). In particular. we wanted to design an API with the following
attributes:

Useable The API should be structured in a way which is natural and eusy to use. The
complexity of the base system should be kept at a minimum, since in compiler work
there is already a great deal of complexity.

Extendable The API should be structured such that it is easily extended, in the sense
that additional concepts can be added without interfering with the concepts already
present.

General The API should allow as much code re-use as possible. In particular. we wanted
an API which allows analyses and transformations to be perfonned on code without
knowing the specifies of the intermediate representation or as little as possible.

We believe that we have achieved our goals with the API presented in this chapter. We
have created an API which we use at McGill University and which is being used by other
institutions as weil. We hope it will be adopted by more research groups which will enable
the widespread sharing of code and experimental results to further the state of research on
optimizing Java bytecode.

This chapter is organized as follows. First, we explain a few fundamental concepts
relating to the overall API, and then we describe each concept of the API in detail. Finally,
we give five example programs wrillen with SOOT and provides simple walkthroughs of
the code.

69

•

•

•

5.2 Fundamentals

This section describes two concepts in SOOT which are not specifie to SOOT per se, but are
important to understand to use SOOT.

5.2.1 Value factories

SOOT makes heavy use of the vaille factory design pattern which is defined here. This
pattern is similar to the factory pattern [11) except we add the additional restriction that the
instances returned are unmodifiable. This makes the values more important then the actual
instances.

The standard name of v () is used for the factory method which generates the instances.
The v stands for value. Value factories are used in at least two different ways: to implement
types and to implementconstants. Forexample. RefType. v (Il java. lang. String")
refers to the reference type for strings, and IntCons tan t . v (5) refers to the integer
constant 5.

Note that the singleton pattern is a special case of the value factory pattern that takes
no arguments, and which has the property that the sume object is guaranteed to be returned
each time.

5.2.2 Chain

The Chain is probably the most useful basic data structure in SOOT. It combines the
functionality of the Li stand the Set to provide a natural representation of an ordered
collection of unique elements. To argue the necessity of the Chain, let us consider rep
resenting a list of statements in a Java method with a Lis t. The two standard imple
mentations of List are ArrayList and LinkedList. Both of these implementations
are inadequate because they provide worst-case linear time contains (Obj ect) and
remove (Obj ect) , the latter being used very frequently in order to delete arbitrary ele
ments, for example, when performing dead code elimination.

To achieve our goals ofconstant time add (Obj ect), remove (Obj ect), and con
tains (Obj ec t) methods, we define the Chain to be essentially an ordered collection
of elements which are guaranteed to be unique. The HashChain is our default imple
mentation of the Chain. It is essentially a LinkedList augmented with a HashMap.
By guaranteeing that the clements are unique, the HashMap can contain a mapping from
element to the link node in the LinkedList which allows for a constant time implemen
tation of contains and remove. See figure 5.1 for an illustration.

70

•
c
A

B

D

•

•

Figure 5.1: An example of a Chain and its implementation using a doubly linked list and
a hash table.

In addition to being a nice representation for the contents of method bodies in SOOT,

Chains are also convenient for implementing many algorithms in compilers. A prime ex
ample of this is the worklist algorithm for performing data flow analysis. In this algorithm,
one must store a Iist of nodes to visit in sorne sol1 of list. When visiting a pal1icular node,
however, one must add ail the successors of that node to the Iist of nodes to visit. Il is
preferable to not add the same node twice, thus one must first check for containment which
is a linear time operation on a regular list, or altematively, one must manually maintain an
additional HashSet with provides an alternative representation of the nodes to visit with
constant time contains () .

We have also noticed that one often wants ta modify a Chain as it is being traversed
with an iterator. In general, modifying a collection while iterating through it is bad prac
tice because of the confusing consequences it can have on the current iterators. For this
reason, if this occurs, a ConcurrentModificationException is thrown. We do
provide, however, a method called snapshotIterator () which copies the contents of
the Chain to a buffer, and retums an iterator of the buffer. This allows one to modify the
Chain while iterating through a static copy of it.

5.3 API Overview

This section gives an overview of the application programming interface (API). Only the
subset required to understand the five examples at the end of the chapter is given. The

71

•

•

•

complete API, which is quite extensive, can he found online on our web site[22].

5.3.1 Scene

[n SOOT the application which is being analyzed is represented by a Scene object. In
faet, we have made the simplifying assumption that only one application will be analyzed
at a time and so the Scene abject is reprcsented by a singleton aeeessed through the static
method Scene . v () . The Scene provides the following functionality.

SootClass loadClassAndSupport(String className)
Loads the given c1ass and resolves ail the classes neeessary to support that class. that
is. the transitive c10sure of ail the referenees of classes within the c1ass. [f the class
cannot be found, it returns a phantom class reference (phantom classes are defincd in
the next subseetion.)

Chain getApplicationClasses(), Chain getLibraryClasses() 1

Chain getContextClasses() 1 Chain getPhantornClasses()
Retums a baeked Chain of application, library, context or phantom classes in this
seene. These four types of classes are described in the next subsection .

SootClass getSootClass(String className)
Atlempts to find and return the given class within the Scene. Throws an instance of
RuntimeException if the c1ass can not be found.

void addClass(SootClass class)
Adds the given c1ass to the Scene. Throws an instance of Run timeException
if the c1ass is already present.

SootMethod getMethod(String methodSignature)
Returns the SootMethod eorresponding to the given method signature. Throws a
runtime exception if the method can not be found. Method signatures are defined as
follows:

< clas8;.Vame : returnType rnethocLVarne(paran1.Type L: ••• ~ paramTypen) >

For example:

<java.lang.String: java.lang.String valueOf(char[], int, int»

is the signature for the method valueOf () in the c1ass java .lang. String
which takes an array of characters, an integer, and an integer and returns a String.

72

•

•

•

SootField getField(String fieldSignature)
Retums the SootField corresponding to the given field signature. Throws a run
time exception if the field can not be found. Field signatures are defined as follows:

< classJVame: type fieLd.:.Vame >

For example:

< java.lang.String : long serialFer:-JionF 1D >

is a field named seriaIVersionUID in String.

SootClass getMainClass()
Retums the SootClass which contains the entry point for the application being
analyzed. Throws a null pointer exception if there is no main class set.

Pack getPack(String packName)
Retums the Pack of transformations by this name. A Pack is list of Trans forros
which encapsulate transformations.

5.3.2 SootClass

Individual classes in the Scene are represented by instances of the SootClass class.
Note that this includes interfaces as weil. A SootCIass contains ail the relevant infor
mation about a Java class, such as:

new SootCIass(String name, int rnodifiers)
Creates a SootCIass with the given name and the set of modifiers. Modifiers are
described in section 5.3.11.

int getModifiers(}/void setModifiers(int rnods}
Sets the modifiers for this class.

int getNarne(}/void setName(String name)
Sets the name for this class.

Chain getInterfaces()
Returns a backed 1 Chain of interfaces which are implemented by this Soot
Class.

1A backed Chain is a Chain which. if modified will modify the collection of objects that it represents.
Modifying this Chain will modify the set of interfaces for this SootClass.

73

•

•

•

SootClass getSuperclass(}/void setSuperclass(SootClass s}
Retums Of sets the superclass of this c1ass.

Chain getFields(}
Retums a backed Chain of SootFields which are present in this c1ass.

Chain getMethods(}
Retums a backed Chain of SootMethods which are members of this class.

void addMethod(SootMethod m)
Adds the given method to this c1ass. Throws a runtime exception if this method
already belongs to SootClass.

SootField getFieldByName(String s)
Retums the field given by name. Throws a runtime exception if there is no field by
the given name, or if there are two fields with the same name ~

void wri te ()
Writes this c1ass out to a classfile named 'className. class'

Types of Classes

There are four different types of classes: application. library, context and phantom. Each
type of class has a different role to play with respect to optimizations and transformations.
These role of each dass is set upon SOOT's start-up.

• Application classes can be fully inspected and modified.

• Library classes can be fully inspected, but not modified. These classes are not re
generated when optimizing the application, but are assumed to be present exactly as
is when the application is run.

• Context classes represent classes for which the implementation is unknown. The
signatures of ail the fields, methods and of the class itself are known, but nothing
can assumed about the actual implementation of each method. This restriction is
enfofced in SOOT; accessing the implementation of a method of a context class will
throw an exception.

• Phantom classes are those which are known to exist (because they are referenced
in the constant pool of c1assfiles), but SOOT was unable to load . This occurs with
obfuscated code, for example. Phantom classes and regular classes can also contain
phantom fields and phantom methods. These are created whenever a class which

2Two fields with the name can occur in a SootClass. as long as they have different types.

74

•

•

•

SOOT has loaded refers to fields or methods which do not exist in existing classes or
in a phantom c1ass.

5.3.3 SootField

Instances of the SootField c1ass represent Java fields. They possess at least the follow
ing methods:

SootField(java.lang.String name, Type type, int modifiers)
Constructs a SootField \Vith the given name, type and modifiers. Types are de
scribed in subsection 5.3.10.

String getName{)/void setNarne{String)
Gets or sets the name for this Soot.Field.

Type getType()/void setType{Type t)
Gets or sets the type for this SootField.

int getModifiers()/void setModifiers(int rn)
Gets or sets the modifiers for this SootField.

5.3.4 SootMethod

Instances of the SootMethod class represent Java methods. There is only one code rep
resentation at given time for methods and this is represented by the active Body for the
SootMethod. Bodys are described in subsection 5.3.6. SootMethods possess the fol
lowing methods:

SootMethod(java. lang. String name, java.util.List paramTypes,
Type returnType, int modifiers)
Constructs a SootMethod with the given name, type and modifiers.

String getName()/void setName(String)
Gets/sets the name for this SootMethod.

Type getReturnType()/void setReturnType(Type t)
Gets/sets the retum type for this SootMethod.

List getParameterTypes()
Retums a backed list of parameters types for this SootMethod.

75

•

•

•

int getModifiers()/void setModifiers(int m)
Gets/sets the modifiers for this SootMethod.

boolean isConcrete()
Retums true if this method can have a body.

Body getActiveBody()/void setActiveBody(Body b)
Retums the CUITent active body for this method, throws an exception if there is
none/sets the active body to the given body.

Body retrieveActiveBody()
Retums the current active body for this method, or the default JimpleBody if there
IS none.

5.3.5 Intermediate representations

The three intermediate representations BAF, JIMPLE, GRIMP are referred by the following
three singletons: Baf . v () , Jimple. v () and Grimp. v () . These intermediate repre
sentation singletons are used to create objects belonging to the intennediate representation,
such as Locals, Traps, or expressions. Forexample, Jimple. v () . newLocal (Il a Il ,

IntType. v ()) creates a Jimple local variable of type integer.

5.3.6 Body

The implementation of the method is represented by an implementation of the Body inter
face. There are multiple implementations for Body, one for each intermediate represenla
tion: JimpleBody, BafBody and GrimpBody. There is also a StmtBody interface
which is implemented by JimpleBody and GrimpBody which allows methods 10 target
both JIMPLE code and GRIMP code simultaneously.

Chain getLocals()
Retums a backed chain of the Locals in this method.

Chain getTraps ()
Retums a backed chain of the Traps in this method.

PatchingChain getUnits()
Retums a backed patching chain of the Uni ts in this method. Pa tchingChains
are described in subsection 5.3.15.

76

•

•

•

5.3.7 Local

Instances of the Loca1 class represent local variables.

String getNarne()/ void setName(String s)
Gets or sets the name of the local variable.

Type getType()/ void setType(Type t}
Gets or sets the type of the local variable. The types available depend on the particular
intermediate representation used.

Locals are created with the method newLocal (String name, Type t) called
on the intermediate representation singleton. For example, Ba f . v () . newLacal (Il a" ,
WordType . v () } creates a BAF local variable named "a~' with type ward.

5.3.8 Trap

Instances of the Trap class represent exception handler traps. At the Java level, exceptions
are represented by try-catch blocks. At the bytecode level. exceptions are represented by
explicit begin/end catch ranges. Traps represent these explicit ranges. See figure 5.2 for
an illustration.

Unit getBeginUnit(), void setBeginUnit(Unit u)
Gets or sets the beginning unit of the exception trap.

Unit getEndUnit(), void setEndUnit(Unit u)
Gets or sets the ending unit of the exception trap.

Unit getHandlerUnit(), void setHandlerUnit(Unit u)
Gets or sets the handling unit of the exception trap.

SootClass getExceptian(), void setException(SootClass c)
Gets or sets the exception class to trap.

Traps are created with the method newTrap (a, b, c, d) called on the intennedi
ale representation singleton. For example, Ba f . v () . newTrap (a , b, c , d) creates
a BAF trap which catches exceptions of type d thrown between a and b with handler c .

77

•

public void f ()
{

Test rO;
java.io.PrintStream $rl, $r3;
java.lang.Exception Sr2;

rO := @this;

•
public void f ()
{

try (
System. out.

println(rttrying ... rt) ;
} catch<Exception e)
{

System.out.
println(rtException!U) ;

labelO:
Srl = java.lang.Systern.out;
$rl . println (Utrying ... ") ;

labell:
goto label3;

label2:
$r2 := @caughtexception;
$r3 = java.lang.Syscem.out;
Sr3.println("Exceptiont U};

label3:
return;

catch java.lang.Exception from
labelO to labell with label2;

JIMPLE code

•

bytecode

Figure 5.2: An example of an exception trap.

78

•

•

•

5.3.9 Unit

The Uni t interface is the most fundamental interface in SOOT as it is used to represent
instructions or statements. In BAF these are stack based instructions such as Pushlns t
and AddIns t. and in JIMPLE the legal Uni ts are 3-address code statements such as
AssignStmt and InvokeStmt.

These are created through methods such as newXXX on the intennediate representation
singleton. For example. on the Baf . v () singleton the following methods can be called:

Addlnst newAddlnst(Type opType)
Creates a BAF add instruction which deals with operands of type opType.

DivInst newDivlnst(Type opType)
Creates a BAF divide instruction which deals with operands of type opType.

And on the Jimple. v () singleton we can cali methods such as:

IdentityStmt newldentityStmt(Value local, Value identityRef)

Creates an identity statement of the form local : = identi tyRef.

AssignStmt newAssignStmt(Value lvalue, Value rvalue)
Creates an assignment statement of the forro l value = rvalue.

InvokeStmt newlnvokeStmt(InvokeExpr e)
Creates an invoke statement for the given invoke expression.

ReturnVoidStmt newReturnVoidStmt()
Creates a return void statement.

The Uni t interface contains the following methods:

boolean branches()
Retums true if this Uni t has the possibility of branching to another Uni t. such as
is the case with gotos.

Obj ect clone ()
Returns a clone of this Uni t.

boolean fallsThrough()
Retums true if this Uni t has the possibility of falling through to the next Uni t in
the Chain. such as is the case with an if-statement or a nop statement. as opposed
to a goto statement which does not fall through.

79

•

•

•

List getBoxesPointingToThis()
Retums a Iist of Uni t Boxes containing pointers to this Uni t. Boxes are defined
in subsection 5.3.14.

List getDefBoxes()
Retums a list of Value Boxes which contain definitions of values in this Uni t.

List getUnitBoxes()
Retums the list of Uni t Boxes which contains Uni ts referenced in this Uni t.

List getUseAndDefBoxes(}
Retums a list of Value Boxes which contains both definitions and uses of values in
this Unit.

List getUseBoxes(}
Retums a list of Value Boxes which contains value uses in this Uni t.

List redirectJumpsToThisTo(Unit newLocation)
Redirects ail jumps to this Uni t to the given Uni t. This functionality is possible
because backpointers to this Uni tare kept.

Being able to invoke these methods on Uni ts without knowing the particular type
of Uni t is one of the features of SOOT which allows us to write compact analysis and
optimization code which is also general.

5.3.10 Type

Types in SOOT are represented with the value factory pattern. Different contexts allow
different types to be used. In JIMPLE, we have the following types:

• Base types:

BooleanType . v () , ByteType . v () . CharType . v () . DoubleType . v () .
FloatType. v (), IntType. v (). LongType. v (), ShortType. v (),
VoidType. v ()

• ArrayType. v (a, b) where a is the base type of the array and b is the number of
di mensions.3

3Unfortunately. when the types were designed ArrayType was not made a sub class of Re fType which
it turns out to have been a mistake. However. since there are many users of SOOT. we have chosen not to
change the API at this lime.

80

•

•

•

• RefType. v (a) where a is the name of the class for which this is a reference to.
Note this is distinct from a reference to a Soo te las s object.

Parameters of methods and fields can have any of the above types. A local variable in
llMPLE may only be given basic Java Virtual Machine types; booleans, shons. bytes, and
chars are not allowed. But there is an additional type called null (NuIlType. v ()). In
BAf, local variables can only have one of two types: WordType . v () or DoubleWord
Type.v() .

5.3.11 Modifier

Modifiers are represented by final static integer constants:

• Modi fier.ABSTRACT

• Modifier.FINAL

• Modifier.INTERFACE

• Modifier.NATIVE

• Modifier.PRIVATE

• Modifier.PROTECTED

• Modifier.PUBLIC

• Modifier.STATIC

• Modifier.SYNCHRONIZED

• Modifier.TRANSlENT

• Modifier.VOLATILE

Modifiers can he merged together by "or"ing their values.

81

•

•

•

5.3.12 Value

The Value is an interface which is implemented by objects which represent productions
or leaves in the grammar of the intermediate representation. and which are not Uni ts.
ln JIMPLE. some examples of Values are Constants and subclasses of Expr such as
AddExpr which represent the addition of two ditferent Values. Instances of the Value
can be created through the singleton Jimple. v () :

newParameterRef(Type type, int n)
Constructs a parameter reference value of the given type with the given argument
number. where the arguments are numbered starting at O.

newStaticFieldRef(SootField f)
Constructs a statie field reference value ta the given field.

newVirtuallnvokeExpr(Local base, SootMethod method, List args)

Constructs a virtual invoke expression on the given receiver to the given methad
with the given arguments.

newVirtuallnvokeExpr(Local base, SootMethod m, Value arg)
Canstructs a virtual invoke expression on the given recciver to the given method with
a si ngle parameter.

newAddExpr(Value leftOp, Value rightOp)
Constructs an add expression value for the given values.

The following methods are provided for ail Values:

Obj ect clone ()
Retums a clone of this Value.

Type getType ()
Returns the SOOT type for this Value.

List getUseBoxes()
Retums a list afValueBoxes containing the values used in this Value.

Note that there is no method named getDefBoxes () for Value. This is because
Values never have any definition side effects, unlike Uni ts.

82

•

•

5.3.13 Constants

Constants are represented with the value factory pattern. These implement the Value
interface.

IntConstant.v(a)

FloatConstant.v(a)

DoubleConstant.v(a)

LongConstant.v(a)

NullConstant. v ()

StringConstant.v(a).

5.3.14 Box

One of the fundamental concepts in SOOT is the notion of the Box. There are two types
of Boxes: Uni tBox and ValueBox. These contain Uni ts and Values respectively.
Whenever a Uni t. Value. or any other abject contains a reference to a Value or a Uni t
it is done 50 indirectly through a Box of the appropriate type. Figure 5.3 demonstrates this
explicitly.

AssignStmt

Ihs: ValueBox rhs: ValueBox.

InvokeStmt

base: ValueBox arg l: ValueBox. arg2: Value Box.

•
Figure 5.3: A layer of boxes is used between the containers and the Values. Boxes provide
a de-referencing mechanism.

83

•

•

•

Boxes serve two fundamental roles.

The first role is to provide a de-referencing mechanism for references to Va 1ues and
Uni ts. A Box is essentially a pointer. We have noticed during the development of SOOT
that it is convenient to be able to inspect and change references to other Values and Uni ts
without knowing where they occur in a Body, or in a Uni t. Perhaps the simplest exam
pie occurs when performing constant propagation in JIMPLE. In constant propagation. if
there is a use of a local variable for which only one definition exists and that definition is a
constant, then we can replace the use of the local with a reference to the constant. Clearly,
we do not care where the use occurs: it can occur in a InvokeExpr or a AssignStmt
and in both cases the constant propagation should take place. To facilitate these construct
independent transformations or inspections we added methods to the Body. Value, and
Uni t classes such as getUseBoxes () which retums a list of ValueBoxes which con
tain Values which are considered to be used as opposed to defined. Similarly, Body
and Uni t have a method named getUni tBoxes () which returns a list of Boxes which
contains references to other Uni ts. These are extremely useful when perfonning code
migration from one method to another. for example. in order to preserve the consistency of
the branches amongst the Uni ts.

The second role is to enforce the grammar on the actual object representations. For ex
ample, in JIMPLE the arguments of an InvokeExpr can only be Locals or Cons tants.
Changing the arguments is done through a method on the InvokeExpr which in tum at
tempts to change the contents of the ValueBoxes which represent the arguments. Since
the ValueBoxes in this case are ImmediateBoxes. they will only accept Constants
or Locals (and throw an exception if an object of a different type is inserted.) Note that
by changing the ValueBox to something more flexible which accepts Exprs as weil is
how we implement the InvokeExpr for Grirnp.

5.3.15 Patching Chains

The Uni ts in a Body are contained in a PatchingChain, a subclass of Chain. The
PatchingChain has sorne special properties which are desired when implementing
compiler transformations. In particular, a common operation that one performs on a col
lection of Uni ts is ta delete a particular Uni t. But what happens to ail the Uni ts which
are referring to this Uni t? They must somehow be patched in order to refer to the element
which cornes after the Uni t removed. Similarly, one often wishes to insert a Uni t Q be
fore another Uni t b, and that the newly inserted Uni t is in the same basic block. This
is achieved by changing ail references of b to Q. The PatchingChain takes care of ail
these details automatically.

84

•

•

•

5.3.16 Packages and Toolkits

To structure SOOT, the API has been split into several packages. There is at least one pack
age per intelmediate representation. and code containing transformations or optimizations
is usually stored in a toolkit package. Here is a list of the current packages available:

soot
Base SOOT classes. shared by different intennediate representations.

soot.baf
Public classes for the BAF intennediate representation.

soot.baf.internal
Internai implementation-specifie classes for the BAF intennediate representation.

soot.baf.toolkits.base
A toolkit to optimize the BAF IR.

soot.coffi
Contains classes from the Coffi tool, by Clark Verbrugge.

soot.grimp
Public classes for the GRIMP intermediate representation.

soot.grimp.internal
Internai implementation-specifie classes for the GRIMP intermediate represcntation.

soot.grimp.toolkits.base
A toolkit to optimize the GRIMP IR.

soot.jimple
Public classes for the JIMPLE intermediate representation.

soot.jimple.internal
Internai implementation-specifie classes for the JIMPLE interrnediate representation.

soot.jimple.parser
An interface to the llMPLE parser.

soot.jimple.toolkits.base
A toolkit to optimize the JIMPLE IR.

soot.jimple.toolkits.invoke
A toolkit to deat with JIMPLE and invoke statements.

85

•

•

•

soot.jimple.toolkits.scalar
A toolkit for scalar optimization of JIMPLE .

soot.jimple.toolkits.typing
Implements a typing algorithm for JIMPLE .

soot.toolkits.graph
Toolkit to produce and manipulate various types of control flow graphs.

soot.toolkits.scalar
A number of scalar optimizations which are not intennediate representation specific
and the flow analysis framework.

soot.util
Generally useful utility classes for SOOT.

The complete API for these can be found online on the SOOT website[22].

5.3.17 Analyses and Transformations

As much as possible analyses and transformations are represented by singleton classes
This occurs more frequently for transformations than for analyses. In particular, transfor
mations for the Body must extend the BodyTrans former class. And transfonnations of
the entire Scene (ail the classes, fields and methods) extend the SceneTrans former
class. Representing transformations in this way allows them to be referred to in a way
which is useful for enabling and disabling specific optimizations.

5.3.18 Graph representation of Body

SOOT provides a basic infrastructure for inspecting and modifying Chains of Uni ts in
the fonn of control flow graphs. There are IwO types of graphs, the Uni tGraph and the
BlockGraph. The latter represents control flow graphs as they are usually represented
in traditional compiler textbooks[2]. The BlockGraph contains nodes called Blocks
which are basic blacks. The Uni tGraph, however, is a control flow graph in which in
dividual nodes are Uni ts. This has advantages and disadvantages. One advantage is that
it simplifies the control flow graphs; there is no notion of a basic block. This simplifies
implementing traditional and nontraditional fixed point data flow analyses. The main dis
advantage, however, is that without basic blocks these data flow analyses take longer to
run because basic blacks normally provide short cuts by summing the effect of multiple
instructions.

86

•

•

Both the Uni tGraph and the BlackGraph implement the DirectedGraph inter
face. This allows the development of methods which can operate on arbitrary Direct
edGraphs. he lhey Uni t or Black based. For example. there are methods which retum
pseudo-topological orderings on DirectedGraphs which are extremely useful for iter
ating on the Blocks or Uni ts in an efficient manner.

Uni tGraph and BlockGraph are in fact abstract classes. The concrete subclasses
that may be instantiated are CampleteUni tGraph, BriefUni tGraph. Carnplete
BlockGraph and BriefBlackGraph. The words complete and brief relate to how the
exception edges are handled. [n the brief forms of the graphs. exceptions are practically
ignored. as there are no edges between any Uni ts and exception handlers. The excep
tion handler Uni ts are made to be heads of the graphs in this form. Complete graphs
on the other hand include these edges. For most analyses the complete form is required.
For example, computing udldu chain information with a brief graph will yield incorrect
information. as the uses of local variables \'vithin exception handlers will be ignored.

Note that most of the implementations of these graphs provide only static, snapshot
views of the Uni ts. [1 is not possible to modify the graph directly. or make a modification
in the Chain of Uni ts and have thut change be reflected in the graph. This means that
modifications in the Chain requires a regeneration of the active graphs for them to be
correct. The only exception to this is the BlockGraph. [fthe Black objects are modified
directly, the modifications will trickle down to the Chain of Uni ts. So it is possible in
this case to modify the basic blocks of the graph and maintain a correct view.

5.4 Usage examples

5.4.1 Creating a hello world program

This first example on how to use SOOT consists of creating a hello world program from
scratch. Executing the program will create a c1ass called "HelloWorld". which in tum,
when executed, will print "Hello world!".

The code is first given. and then each numbered step is explained. The basic idea is to
create an empty c1ass, create an empty body, and then create the JIMPLE code for that body.

public class Ma~n

(
publLC s~atic vOLd mainIString[! args)
{

SootClass sClass;
SootMethod method;

Il Create the class
(1) 1 Scene.v().loadClassAndSupport('java.lang.ObJect·);

• (2) 1
Il Declare 'public class HelloWorld'

sClass = new SootClass('HelloWorld', ModiEier.PUBLIC);

87

•
/1 'ex~ends übJect'

(3) 1 sClass.secSuperclass(Scene.v(l .getSoocClass("Java.~ang.Object");

1 Scene.v() .addClass(sClass);

Il Create the method, public scaC1C vOld maln(String(!)
method: new SootMethod("main",

(4) Arrays.asLlst(new Type(] (ArrayType.v(RefType.v("java.lang.St.rlng"). ll}',
VOldType.v(), Modlfier.?UBLIC 1 Modifler.STATIC);

sClass.ad~~ethod(met.hod);

/1 Creat.e the method body

•

(5) 1

(6) 1

(7) 1

(81 i

(9) :

(10)

(11) 1

1

(12) 1

1

(13) 1

(14) 1

}

Il create ernpty body
JimpleSody body: Jimple.v() .newSody(met.hodl;

method.setActlveBody(bodyl;
Chaln units = body.get.Unlts();
Local arg, tmpRef;

Il Add sorne Locals. Java.lang.Strlng(! 10
arg : Jlmple.v(1 .newLocal("~O". ArrayType.vIRefType.v("Java.lang.Strlng"). :11;
body.getLocalsl) .add(arg);

il Add locals. Java.io.prlntStrea~ r.mpRef
tmpRef = JlmpLe.vl) .newLocal("tmpRef", RefType.v("Java.lo.?rlntStrea~"11;
body.getLocalsl) .add(tmpRef);

,/ add "10 = ~pararneterO·

~nlts.add(Jlmple.v() .newldentltyStmt.larg.
Jlmple.v() .newParameterRef(ArrayType.vIRefType.v("Java.lang.Strlng"). :1.

0) }) ;

;: add ~tmpRef =]ava.lang.System.out 4

unlts.addIJlmple.v() .newAsslgnScmtttmpRe:. Jlmple.v(l .newStatlc~leldRef(

Scene.'/() .getField("<Java. lang.System: Java. :0. ?rlr'.tStream out>"))));

/1 lnsert "t.mpRef.prlntln("Hello world!")"
(

SootMethod toCall = Scene.vll .get~ethod(

"<Java.:o.PrlntStrea~; vOld prlntlnIJava.lang.St.rlngl>");
unlt.s.add(Jlmple.v() .new!nvo~eSt.mtIJimple.vl).r.ewVlrtuallnvo~eE:<pr(t.mpRef.

toCall. St.rlngConstant.vl"Hello world!"»);

Il lnsert "return"
units.add(Jlmple.v() .newReturnVOldStmt(»);

sClass .•....rite () ;

•

Walkthrough of the code

1. The first step is load the class java. lang . Obj ec t into the Scene. This step
loads aU the fields and methods of the c1ass, as weil as aIl the objects needed to load
this c1ass, transitively. This is done in order (0 reference the java. lang . Obj ect
class later on.

2. Creates a new public c1ass with the name uHelioWorld" .

88

•

•

•

3. Makes the c1ass HelloWorldextend java. lang. Obj ect. and adds the c1ass to
the Scene. Ail classes should be added to the Scene once created. Note how we re
trieve the c1ass java .lang. Obj ect with a cali to Scene. v () . getSootClass
(~java.lang.Object").

4. Create a method void main (String [1 args) for this class. Note how the
ArrayType is composed of a Re fType and a dimension count. and that the mod
ifiers are combined together by ORing them together.

5. Creates a new empty JimpleBody. There are no locals. no units and no traps at the
moment.

6. Sets the body that was created to be the active body of this method. There cao only
be one active body.

7. Adds a local of type java. 1ang. String [] named 10. Note how the local cre
ated must be explicitly added to the Chain of loeals retumed by
body.getLoca1s().

8. Adds a temporary local java. io. PrintStream tmpRef .

9. Creates and adds an identity statement of the form

10 := @parameterO: java.lang.String[]

This indicates that lOis the local variable which corresponds to the first argument
passed to this method.

10. Creates an assignment statement of java .lang. System. out to the local vari
able tmpRef. Note how the field is accessed through its absolute signature in the
Scene. The signature format is straightforward: the c1ass name containing the
field, followed by the type of the field and then the name of the field. This assign
ment statement is then added to the chain of units.

Il. Gets the method class corresponding to the given method signature. Note how it is
aeeessed through its absolute signature in the Scene.

12. Creates a cali to the above method. with as argument the string constant "Hello
World!".

13. Creates and adds a retum void statement to the Chain of Uni ts.

14. Writes the c1assfile to a file called "HelioWorld.class".

89

•
5.4.2 Implementing live variables analysis

•

This second usage example consists of implementing the standard live variables analysis
using the SOOT framework.

To implement this analysis, we extend the BackwardFlowAnalysis c1ass which
is provided with SOOT. Then it suffices to provide a constructor for the analysis and
to override four methods: newIni tialFlow (), flowThrough (), merge () and
copy () . There is also a fifth method which can generally be overriden: eus torni zeIni
tialFlowGraph () . Although we do not use this method here, this method can be used
to customize the initial tlow graph so that, for example, sorne oodes stan with differeot
initial tlow nodes.

We first provide the code, then we provide a walkthrough describing each step in dctail.

class SimpleL~veLocalsAnalys~sextends 9ackwa~dFlow~~alys~s

(
FlowSet emptySet;
Map un~tToGenerateSet;

Map unl~ToPreserveSet;

S~mpleLlveLocalsAnalysls(Un~tGraph gl
(

superlg) ;

/1 Generate 11St of locals and empty set

Chaln locals = g.getBody().ger:Localsl);
(111 FlowUniverse :ocalUnlverse = new FlowUnlverse<locals.toArray(»);

(2) 1 emptySec = new ';~ray?ackedSet(loca:'.:n~ '..erse) :

:1 Create preserve secs.

unltTo?reserveSec = new Has~~ap(g.sl=e() • 2 - ., 0.7f);

Iterator unit!t = g.iteratorl);

while(unltIt.hasNext(»
{

Unit s = (Unit) unltlt.next();

(3) la) 1

lb)

BoundedFlowSet killSet = 1BoundedFlowSet) emptySet.clonel);

Iterator boxIt = s.getDefBoxesl) .lterator{);

whlle(boxIt.hasNext())
{

ValueBox box = (ValueBox) box!t.next();

ifloox.getValuel) inscanceof Locall
klllSet.add(box.getValuel), killSet);

•
i Il Store complement

(cl 1 klllSec.compleme~t{klllSet);

1 ~~itToPreserveSet.putls, killSec);

90

•
Il Create generate sets
(

unitToGenerateSet new Has~~ap(g.size() • 2 • l, C.ïf);

Iterator unit!t = g.iteratorl);

'",hi le (unl. t Ir.. has~rext () 1
{

Unl.t s = (Unttl un~tIt.next();

(..)

(al F10wSet genSet

Iterator box!t

(FlowSet) emptySet.clone();

s.getUseBoxes() .l.terator();

(bl

whlle(boxIt.hasNext() }

Value30x box = (Value30xl boxIt.nex:();

l:(box.getVal~ell ~nstanceo: Local)
genSet.add(box.getValue(). genSet};

(5) doAnalysls();

!procected übJect new!nl.tlalFlow(1
1 (• (6) i
1 }

(cl unl.tToGenerateSet.putls, genSec);

ret~rn emptySet.clor.e();

(i)

Iprotected vOld flo'NThrough(ObJect l.nValue. Dl.rected unlt. ObJect outValuel
1 {

FlowSet ln = (FlowSet) lnValue. out = (FlowSetl outValue;

If Perform klll
ln.l.nterSeC1:1on((FlowSet) ~nl.tToPreserveSet.getlun~tl,out);

1

1

1, }

/1 Perform generatlon
oU:.unl.on«FlowSet) unl.tToGenerateSet.get(~~lt),outl;

•

(8)

(9)

protected void merge(Object inl, abject ~n2. ObJect out)
{

F10wSet lnSetl = (FlowSet) inl.
lnSet2 = (FlowSet) in2;

FlowSet outSet = (FlowSetl out;

lnSet:.unl.onlinSet2, outSetl;

protected vOld copylObJect source, Ob;ect des:)
{

FlowSet sourceSet = (FlowSet) source,
destSet = (FlowSetl dest;

sourceSet.copy(destSet);

91

•

•

•

New classes

This subsection describes the classes which are specific to this example and are not de
scribed elsewhere in this chapter.

FlowSet
The data which flows around the flow analysis framework should (although is not
required to) implement the FlowSet interface. The FlowSet interface imple
ments methods such as union () , intersection () , isEmpty () and 50 forth.
There are two standard implementations of FlowSet: ArrayPackedSet and
ArraySparseSet. The latter implements the set using a list, whereas the for
mer implements the set using a bit-data vector.

BoundedFlowSet
A BoundedFlowSet is a special FlowSet which is bounded, in the sense that
the flow seCs domain is restricted to a F lowUniverse set which is given upon the
creation of the set. BoundedFlowSets are useful because the complement method
can be used.

FlowUniverse
übjects of this c1ass are arrays of elements which are given to BoundedFlowSets
upon theircreation. They are used to specify the domain of the BoundedFlowSets.

Walkthrough of the code

l. The first step is to define the FlowUniverse to be the set of local variables in this
Body.

2. Create an empty set for the given FlowUniverse using the ArrayPackedSet
representation which is essentially a regular bit-vector representation. Note that Ar
rayPackedSet is a BoundedFlowSet. ArraySparseSet is the other repre
sentation for the bit-vector data, but it is unsuitable because it is unbounded.

3. Note that normally for the live variable flow analysis, we compute in's and ouCs as
follows:

out(s) = (in(s)\kiLL(s)) u gen(s)

We use the following equation instead:

out(s) = (in(s) n preserve(s)) U gen(s)

which simply uses a preserve set instead of a kill set. This block of code computes
the preserve set for each statement in advance.

92

•

•

•

(a) Generate a new empty set.

(b) Iterate over the list of definitions for this unit. For each definition, add that local
to the kil! set. This is done by retrieving the defBoxes and then inspecting
each defBox for a local.

(c) Store the complement of the kill set as the preserve set for this unit.

4. The next step is to create the generate set for each statement.

(a) Create an empty set.

(b) Iterate over the use boxes in this statement. If the use box contains a local, then
add the local to the generate set.

(c) Store the resulting set as the generate set for this statement.

5. Do the tlow analysis which iterates until a fixed point is achieved. This calls the four
following methods.

6. This method retums a brand new empty set. This is used to decorate each program
point with an initial tlow set. The method eus tomi zeIni tialFlowGraph can
be used if different initial tlow sets must he put on each program point.

7. Perform the effect of flowing an inValue through Uni t. Store the result in out
Value. In our case this means performing an intersection of the in set with the
preserve set and then a union with the generate set.

8. Merge the flowsets inl with in2 and store the result in ou t. In our case. for live
variable analysis, we use union.

9. Implement a simple copy from source to des t.

5.4.3 Implementing constant propagation

This example implements a simple constant propagator for SOOT using the the results of the
SimpleLoealDefs flow analysis provided with SOOT. Note that this example is self
contained and can be invoked to petfonn the transformation through its main method.

public class Ma~n

{
publ~c sta~ic void ma~nIStr~~gL] argsl
{

iflargs.length ~~ 0)
{

System.ou~.printlnl·Syntax: java Main <classfile> [soot options]"';
Syscem.exl.tIOl;

93

•
(1) Scene.v() .getPack("jtp") .add(new Transforrnl"Jcp.propagator", Propagator.v() ll;

soot.Main.main(argsl;

class Propagator exte~ds 90dyTransforrner
(

Iprivate scatic Propagator lnstance = new ?ropagacorl);
\prlvace Propagator() (i

(2) 1

IpubllC stacic Propagator vI) (retUl:"l"l ll"ls:ance:

star-lc Strll"lg oldPath;
(3) Iprotected vOld intel:"na17rar.sEo~130dyb. Strlng phaseNa~e. Map optlonsl

{

lE (soot.Maln.:sVerbose)
System.out.prlntlnl" (" ~ b.getMethodl) .getN~~el) • "1 Propagatlng constants ... ");

Jimple90dy body = (Jlmple90dyl b;

Chaln ~~ltS = body.getUnlts();
(4) CompleteUnltGraph stmtGraph = ~ew CompleteU~ltGraph(body);

LocalDefs localDeEs = new SlmpleLocalDeEs(stmtGraphl;
Iterator stmt!t = un:cs.:teratorl);

•
(5)

(6)

17)

(8)
(9l

whllelstmt!t.hasNext())
{

Stmt stmt = (Stm:) st~t!t.next();

Iteracor use90xIt = stmt.getUse90xes() .lteratorl);

whlle(use90xIt.hasNexti))
(

ValueBox use30x = IValueBox) useBoxIc.nextl);

if(use30x.getValue() lnstanceo: Local)
(

Local l = (Local) r..:seBox.get'lalue();
Llst defsOfUse = localDefs.get~efsOfAt(l. st~tl;

lfldefsOfUse.Sl=e() == 11
(

Deflnltior.St~t def = l~eE:nl~lonStmtl

de:sOfUse.get(O} ;

:f(def.getRlghtOp() :nstanceof Constant)
{

lf(use30x.canContainValueldef.getRlghtOp(»))
useBox.setValue(deE.getRightOpll 1;

•

Walkthrough of the code

1. This hooks a calI to the propagator into SOOT'S list of transfonnations. The cali
Scene . v () . getPack (11 j tp Il) retums the Pack which corresponds to the 1fM
PLE transformation pack (which is a list of aIl the transformations performed on J(M
PLE). Other packs are j op and wjtp which stand for llMPLE optimization pack and
the whole JIMPLE transfonnation pack. Then we add a Transform instance to this

94

•

•

•

pack which is essentially a name for the transformation and the transformer c1ass
implementing the BodyTrans former interface.

2. This code implements the singleton functionality for the class.

3. This is the entry point method which contains the body of the transformation.

4. Retrieve the list of units for this body, build the CompleteUni tGraph and the
SimpleLocalDefs object which contains use-def and def-use information.

5. Iterate over ail the uses in the program. looking for uses of local variables.

6. Get the definition for that local variable. If only one definition exists. then do step 7.

7. If the right hand side of the definition is a constant.

8. If the use box can contain a constant.

9. Set the contents of the use box to the right hand side of the definition. that is. the
constant.

5.4.4 Instrumenting a classfile

This example instruments the given application so that when it is executed. it outputs the
number of gotos that were dynamically executed. The general idea is to:

1. Insert a counter in the main class called gotoCount.

2. [nsert counter incrementors before each goto statement present in the JIMPLE code.

3. (nsert a print of the counter at the end of the mainClass. or before any caH to
System. exi t () .

public class Main
{

public scat~c void rna~n(String(l argsl
(

if (args.lengch == 0)
(

Sysc~~.out.prlntln(·Syntax: Java ~a~n --app <rna~n_classfile> [soot •
- ·opt~onsl·);

System.ex~t(O) ;

(1) 1 Scene.v() .getPack("Jtp") .add(new Transform("Jtp.lnscr~~enter·.

GotoInstr~~enter.v()Il;
soot.~a~n.main(args);

class GotoInstrumenter extends BodyTransformer

95

•
Iprivate static Gotolnstrumenter instance = new GotoInstr~~enterl);

(2) Iprivate Gotolnstr~~enterl) (j
Ipubl~c static Gotolnstr~~enter '.II) return instance; }

public String getDeclaredOptionsl) return super.getDeclaredOpt~onsll;

prlvate boolean addedFieldToMainClass~~dLoaded?rlntStream= taIse;
prlvate SoatClass)ava!o?rlntStrea~;

!prlvate Local addTmpRet(90dy body)
1 (

1J) 1 Local tmpRe f = .; impIe. v () . newLocall "tmpRef", Re fType. VI": aa. 10. Pr H'ltSt rea.'11 ")) ;
1 body.gctLocals() .addltmpRefl;
1 return tmpRef;
i)

:pr:vate Local addTmpLonglBody body)
1 (

(4) Local tmpLong = J:mple.v() .newLocal("tmpLang", LongType.v());
body.getLocalsl) .add(tmpLongl;
return tmpLang;

pr~vate vOld addStmtsTogefore(Chaln ~nlts. Stmt s. SootF:eld gotoCounter, Local trnpRef,
Local tmpLong)

• 1

(5) i

" 1 i.nsert "tmpRe f = Java. lang. System. out; "
unlts.lnsertBefare(Jlmple.v() .newAsslgnStmt(

tmpRef. Jimple.v() .newStaticFieldRef(
Scene.v() .getFleldl"<Java.lang.System: Java.lo.PrlntStrea~out>") l). sI;

,/ lnsert "trnpLong = gotoCounter;"
unlts.lnsertBetorelJ'lmple.vl) . newAss 19n5tmt 1tmpLong,

Jlmple.v(l .newStaticFieldReElgotoCounterl). 5);

Il lnsert "trnpRef.prlntln(trnpLongl;"
SootMethod toCall = JavaloPrlntStrea~.getMethodl"vaid pr:ntlnllong)");
unlts.insertBeforeIJlrnple.v() .newInvokeStmt(

Jlmple.v() .newVlrt~allnvokeExpr(tmpRet.tOCall, tmpLong»). 51;

•

16) protected void lnterna~~ransfo~(Bodybody, Str:ng phaseNa~e. Xap optlons)
(

SootClass sClass = body.getMethod() .get~eclarlngClass(J;

SootField gotoCounter = null;
boolean addedLocals = faise;
Local tmpRef = null. tmpLong = nul:;
Cha:n ~~ltS = boèy.getUnltsl);

lE (!Scene.v() .getMalnClassl).
declares!1ethod("'/oid maln(Java.lang.Strlng[l) "Il

throw new RuntimeExcept~on("couldn'tEind maln() ln malnClass");

(7) 1 lE (addeàFieldToMainClassfu~dLoadedPrintStrea~l

1 gotoCounter = Scene.v() .getMalnClass() .getFieldBy~~.e("gotoCo~~t");

eise
(

Il Add gotoCo~~ter Eleld
1 gotoCo~~ter = new SootField\"gotoCount", LongType.vl).
1 Modifier.STATIC);
1 Scene.v() .getMa~nClasSl).addFieldlgotoCounter);

(8) 1

! JavaroPr~ntStrea~ = Scene.v() .getSootClass("Java.io.Pr~ntStream"l;

i addedFieldToMa~nClassAndLoadedPrintStream = crue;

1/ Add code ta ~ncrease gotO co~~ter each time a goto is encountered
(

boolean isMainMethod = body.getMethod() .gecSubSignature() .equals("void " +

96

•

•

{91

1

1

1

1

i
1

(9all
!
1

1

i
!

19b)

·ma~n(Java.lang.Scr:ng(J)·,;

Local tmpLocal = Jimple.v() .~ewLocal("tmp", LongType.vl));
body.getLocals() .addltmpLocall;

!terator stmt!t = un~ts.snapshot!teratorl);

wh~lelstmtlt.hasNextll)
{

Stmt 5 = (Stmt) 5tmt!t.nextll;

lE(s :nstanceoE GotoStmtl
(

Ass:gnStmt toAddl = J:mple.V(1 .newAssignStmtltmpLocal,
Jimple.v() .newStat:cFleldReflgotoCounter));

Ass~gnStmt toAdd2 ;: Jimple.vl) .newAssignStmtltmpLocal,
J:mple.vl) .neWAddExprltmpLocal. LongConstanc.vllLI l);

AsslgnStmt toAddJ ;: Jimple.vl) .newAsslgnStmt(J:mple.v().
newStatlcFieldReflgOtOCounter). tmpLocall;

/1 lnsert "tmpLocal = gotoCounter;"
unltS.lnsertBefore(toAddl. sI;

l' :.nsert "tmpLocal ;: tmpLocal • IL;"
unlts.:nsertBefore(toAdd2. sJ;

., lnSert "gotoCounter ;: tmpLocal;"
unl':s.:.nsertBeforeltoAddJ. s);

}
el se lf (5 lnstanceo: :nvakeStmtl

(

rnvokeExpr le:<pr = (:nvokeExpr) 1 1!:-.vokeStmt) s) . get :r:vokeExpr () ;
__ (:.expr lnstanceof StatlcrnvokeExpr)

SootMethod target = (IStat:cInvokeExprllexprl .getMethodll;

lf (target.getS:gna::urel) .equalSI"<:ava.lang.System: vOld " •
"ex.lt 1:nt) >"))

lE (!addedLocalsl

tmpReE ;: addTm?Reflbody); tmpLong
addedLocals = crue;

addTmpLonglbodyl;

}

addStmtsTo8eforelunits. s. gotoCounter. tmpReE. tmpLongl;

}
else lf {lsMainMechod && {s insta~ceof ReturnStmt Ils lnstanceof

Ret urnVo l.dStmt: l 1

i
1

19c) 1

!

if (!addedLocalsl

tmpRef = addTmrRef(body); tmpLong
aàdedtocals = true;

addTmpLonglbody) ;

•

}

addStmtsToBeforel~~~ts. s, gotoCo~~ter. tmpRef. tmpLong);

97

•

•

•

Walkthrough of the code

1. This hooks a cali to the propagator into SOOT's Iist of transformations. The cali
Scene. v () . getPack (Il j tp Il) retums the Pack which corresponds to the lIM
PLE transformation pack (which is a Iist of ail the transformations performed on lIM
PLE). Then we add a Transform instance to this pack which is essentially a name
for the transfonnation and the transformer class implementing the BodyTrans
former interface.

2. These fields and methods implement the singleton functionality.

3. Adds a temporary reference local variable of type java. io. PrintStrearnto the
given body.

4. Adds a temporary long local variable of type LongType to the given body.

5. Inserts the following section of code before s:

tmpRef = java.lang.System.out;
tmpLong = gotoCount;
trnpRef.println(tmpLong) ;

This is used to just print out the contents of the goto counter.

6. This is the entry method for the transformation.

7. If the goto counter has been already added to the PrintStream class. then retrieve il.

8. Else. create a field called gotoCount of type long, and add it to the main c1ass.

9. Iterate over aH the statements in the class. Note that a snapshot iterator is used to
allow modifications to the Chain of units while iterating.

(a) If the statement is a goto statement. then insert the following code before the
goto. to increment the counter:

tmpLocal = gotoCounter;
tmpLocal = tmpLocal + lL;
gotoCounter = tmpLocal;

(b) If the statement is a static invoke to the method Sys tem. exi t (int) then
cali addStmtsToBefore which inserts a pont of the goto counter.

(c) If the statement is the retum void of the main method then cali addStmtsTo
Before which inserts a print of the goto counter.

98

•
5.4.5 Evaluating a Scene

•

This is a simple example which counts the number of classfiles. methods and fields in
the active Scene. The idea is to iterate over ail of these objects and increment counts
whenever appropriate.

public class Main
(

publlC scaClC void maln(Sc~lng() argsl
(

l:(a~gs.lengch == 01
(

Sysca~.ouc.prineln(·Syncax: Java Haln --app <main_classflle~ [sooe opcl0ns!·):
Syscem.exlt.(Ol:

(1. 1 1 Scene. v () . getPack (••../J cp·) . add (new Trans Eo~ (",."j cp. p:-o ElIer". Evah.:acor. v ())) ;
soot..Main.maln(argsl;

class Evaluat.or ext.ends SceneTransformer

Iprlvace stat.1C Evaluat.or lnst.ance = new Evaluacor();
(2) !prlVate Evaluator() (i

!st.aclc Strlng old?ath;

public stat.1C Evaluator VI) (recurn lnstance; i

(3) !~rocect.ed vOld lncernal~ransEo~(Strlngphase~jarr.e. Map opCions)

long classCount. = 0;
long scmcCount = 0;
long met.hodCount. = û;

il ?re-process each class. cons~rucelng the lnvoke~o~jw~ber~ap

:eerator class:t. = Scene.v() .getAppllcaclonClasses(} .lt.e~at.or();

•

(4)

1

1
(5) 1

1

1

1

(6) i
!

(711
1

whlle(class!t.has~ext())
(

SootClass sClass = (SootClassl class!t..next();
classCount ;

It.erator methodIt = sClass.get~ethods() .lterat.or();

whlle(met.hodlt.hasNext() 1
{

SootMet.hod m = (Soot.Method) met.hodlt.next();
met.hodCount ;

lf(!m.isConcrete())
contlnue:

Jimple90dy body = (Jimple90dy) m.retrieveActiveBodyil;
stmt.Co~~t. ... = body.get.Unlts() .size(j:

ûecimalFormat fo~at = new DecimalFor.nat("O.O"I;

Systa~.out.println(·Classes: \t" classCount);
Systa~.out.prlntln("Methods: \t" methodCount ... " (" ...

Eormat.for.nat«doublel methodCount 1 classCo~~tl " methodsiclassl" l;
Syste.~.out.prlntln("Stmts: \t" ... stmtCount ... " (" ...

format.format.({doublel s~~tCount / methodCount) ... " unics/mechods) .,;
System.exitIOI;

99

•

•

•

Walkthrough of the code

1. This hooks a cali to the propagator into SOOT's list of transfonnations. The cali
Scene . v () . getPack (Il wj tp ") returns the Pack which corresponds to the
JIMPLE transformation pack (which is a list of ail the whole program transformations
performed on JIMPLE). Then we add a Transform instance to this pack which is
essentially a name for the transformation and the transformer c1ass implementing the
BodyTransformer interface.

2. lmplements the singleton functionality for this interface.

3. This is the entry point method which contains the body of the analysis.

4. Iterate over the application classes in the Scene.

5. Iterate over the methods in each c1ass.

6. If the method has no body, skip this method.

7. Retrieve the active body for this method. and increase the statement count by the size
of the Uni t Chain in the Body.

5.4.6 Summary

This chapter presented a complete overview of the basic SOOT Application Programming
Interface (API). Five example programs built using the SOOT framework were presented
and walkthroughs were given to describe them.

The current and complete API can be found online on our web site[22] .

100

•

•

•

Chapter 6

Experiences

6.1 The Curse of Non-Determinism

While developing SOOT, we encountered the interesting phenornenon of nondeterministic
optimization. [n the first version of SOOT, the same program would be fed into SOOT
twice, and two different optimized versions wou Id be produced. This is undesirable for
several reasons. First, it makes it very difficult ta debug SOOT because each time you run it
on a test program different results are produced. Second, because the optimized programs
produced by SOOT are not always the sarne, it makes it difficult to reproduce results and to
understand the effect of the optimizations. For example, one technique which is commonly
used to isolate the effect of an optimization is to tum it off and note the slowdown. Having
any of the optimizations behave nondetenninisticly invalidates this common technique.
Thus it is quite clear that nondeterminism must be avoided.

So where is the nondetenninism being introduced? Although we are not using random
numbers explicitly, they are being used implicitly when using a java. u ti 1 . Hashtable
without overriding the hashCode () method. The default implementation for this method
is to provide a hash code based on the actual memory location of the Obj ect. Although
this provides a great hash code, it is clear that on every execution of SOOT the hash tables
will he different. This differenee has a noticeable effeet when one iterates through the hash
table, because the elements are retumed following the natural order of the table.

To avoid nondeterminism one must simply avoid iterating on a hash table. or provide
a deterministic hashCode () method for the objects being inserted into the hash table.
Sometimes the latter is impossible without producing a hash method with several collisions.
In this case, if you absolutely need sorne sort of set which has constant time insenion,
removal, and queries, and produees deterministic enumerations then your best bet is the
Chain deseribed in subseetion 5.2.2. These techniques were used in the more recent
versions of SOOT and the framework is deterministie.

101

•

•

6.2 Sentinel Test Suite

We have coined the leon sentine/ test suite to denolc a suite of programs which arc used
to validate the correctness of our compiler framework. Due to the complexity of compiler
work. it is essential to perform regular tests on this test suite to ensure that the compiler op
erates properly, and that we have not introduced bugs with the latest modification to SOOT.
Currently the sentinel test suite contains 266 different programs of varying complexity.
Each lime a substantial bug is found in our framework. the program which produces the
bug is isolated and shrunk to its smallest size and added to the sentinel test suite.

102

•

•

Chapter 7

Conclusions and Future Work

We presented SOOT, a framework which simplifies the task of optimizing Java bytecode.
The contributions of this thesis are the design. implementation and experimental validation
of this framework. The implementation of the framework consists of roughly 80.000 lines
of code.

Java bytecode is a poor choice of intermediate representation for the implementation of
optimizations because it is stack based. The stack implicitly participates in every compu
tation. expressions are not explicit and they can be arbitrarily large. Even simple optimiza
tions and transformations become difficult to design and implement in this form. SOOT
rectifies this situation by providing three intermediate representations:

1. BAF, a streamlined representation of bytecode which is simple to manipulate. This is
used to simplify the development of analyses and transformations which absolutely
must be performed on stack code. Unlike bytecode. BAF does not require a JSR
equivalent instruction or a constant pool. Further, BAF has explicit local variables.
exception ranges and typed instructions.

2. JIMPLE, a typed 3-address code intermediate representation suitable for optimiza
tion. Il is our ideal form for optimization because it is compact. stackless. consists of
3-address code, and the local variables are typed and named.

3. GRIMP, an aggregated version of JIMPLE suitable for decompilation and for reading.
Il allows trees to he constructed as opposed to the fiat expressions present in JrMPLE.

SOOT also provides a set of transformations between these intermediate representa
tions: from bytecode to JIMPLE via one path and JIMPLE to bytecode via two different
paths (one via BAF, and the other via GRIMP).

Extensive results of two experiments were given. The first experiment validated that
Java bytecode can be converted to JIMPLE code and back to bytecode without a loss of

103

•

•

•

performance. Two methods of producing bytecode from JIMPLE code were examined.
with the BAF method being the most effective. The second experiment showed thm the
effect of applying optimizations on JIMPLE code can in fact yield a speed-up. and that the
framework is a valid approach to optimizing bytecode. We are encouraged by our results
so far, and we have found that the SOOT API has been effective for a variety of tasks
including the devirtualization of methods using variable type analysis, decompilation. and
the optimizations presented in this thesis. as up to 38% speed-up is achieved.

SOOT provides an API which we believe is useable, extendable and general for imple
menting analyses and optimizations. Il is widely being used at McGill University for most
of our ongoing compiler projects. It was released as publicly available code in March 2000
and it has also been adopted by several research groups at other institutions. We hope that
it will he adopted by more research groups which will enable the widespread sharing of
code and experimental results to further the state of research on optimizing Java bytecode.

We are actively engaged in further work on SOOT on many fronts. We have been explor
ing additional optimizations, such as loop invariant removal and common sub-expression
elimination with side effect information. We have also begun researching the use of at
tributes with stack allocation and array bounds check elimination. as weil as investigating
the optimization of SOOT itself.

104

•

•

•

Bibliography

[1] Ali-Reza Adl-Tabatabai. Michal Ciemiak. Guei-Yuan Lueh. Vishesh M. Parikh, and
James M. Stichnoth. Fast and effective code generation in a just-in-time Java com
piler. ACM SIGPlAN Notices, 33(5):280-290, May 1998.

[2] Alfred V. Aho, Ravi Selhi. and Jeffrey D. Ullman. Compi/ers Prillciples. Techniques
and Tools. Addison-Wesley, 1986.

[3] Geoff A. Cohen. Jeffrey S. Chase. and David L. Kaminsky. Automatic program trans
formation with JOIE. In Proceedillgs oftlte USEN1X 1998 AllImal Teclmical Confer
ence. pages 167-178. Berkeley. USA. June 15-19 1998. USENIX Association.

[4] Ron Cytron. Jeanne Ferrante, Barry K. Rosen. Mark K. Wegman. and F. Kenneth
Zadeck. An efficient method of computing slatic single assignment forme In 16th
Annllll/ ACM Symposium 011 Principles of Programmillg Lallguages. pages 25-35,
1989.

[5] DashOPro.
. http://www.preemptive.com/products.html.

[6] Jeffrey Dean, Greg DeFouw, David Grove. Vassily Litvinov. and Craig Chambers.
VORTEX: An optimizing compiler for object-otiented languages. In Proceedings
OOPSLA '96 Conference on Objec:t-Oriellted Progrlllllming S.vstems, Ulilguages, and
Applications. volume 31 of ACM SIGPlAN Notices. pages 83-100. ACM. October
1996.

[7] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In Walter G. Olthoff, editor.
ECOOP'95-0bject-Oriented Programming, 9th Europeall Conference. volume 952
of Lecture NoIes in Computer Science, pages 77-101, Aarhus, Denmark, 7-11 August
1995. Springer.

[8] Robert Fitzgerald, Todd B. Knoblock, Erik Ruf, Bjarne Steensgaard, and David
Tarditi. Marmot: an Optimizing Compiler for Java. Microsoft technical report, Mi
crosoft Research, October 1998.

105

•

•

•

[9] Flex
· http://www. ftex-compi1er. les.mit.edu/.

[10] Etienne M. Gagnon. Laurie J. Hendren. and Guillaume Marceau. Efficient inference
of static types for java bytecode. In Sultic Analysis Symposium 2000. Lecture Notes
in Computer Science, Santa Barbara, June 2000.

[Il] Mark Grand. Pattenrs ill Java: A Cata/og of Rellsab/e Design Pattenrs Illllstrated
\Vitll UML, volume Volume 2. Wiley. 1998.

[12] Rajiv Gupta. Optimizing array bound checks using flow analysis. ACM Letlers 011

Programmillg umguages and Systems, 2(4): 135-150, March 1993.

[13] JavaClass.
· http://www.inf.fu-berlin.de/dahmlJavaClass/ .

[14] Compaq JTrek.
· http://www.digital.comljava/downloadljtrek .

[15] Han Bok Lee and Benjamin G. Zorn. A Tooi for Instrumenting Java Bytecodes. In
Tire USENIX S.vmposillm 011 brtenlet Technologies and Systems, pages 73-82, 1997.

[16] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison
Wesley. 1996.

[L 7] Steven S. Muchnick. Advallced Compiler Design and Implementation. Morgan Kauf
mann, L997.

[18] Gilles Muller, Barbara Moura, Fabrice Bellard, and Charles Consel. Harissa: A flex
ible and efficient Java environment mixing bytecode and compiled code. In Proceed
Îllgs oftire 3rd Conference on Object-Oriented Technologies mrd Systems, pages 1-20,
Berkeley, June 16-20 1997. Usenix Association.

[19] Todd A. Proebsting. Gregg Townsend, Patrick Bridges, John H. Hartman, Tim New
sham, and Scott A. Watterson. Toba: Java for applications: A way ahead of time
(WAT) compiler. In Proceedillgs ofthe 3rd Conference Oll Objecr-Orienlec/ Tee/m%
giesalld Systems, pages 41-54, Berkeley, June 16-20 1997. Usenix Association.

[20] Ven Seshadri. IBM High Performance Compiler for Java. In AIXPert i\1aga:ilZe, sep
1997.

[21] Tatiana Shpeisman and Mustafa Tikir. Generating Efficient Stack Code for Java. Tech
nical report, University of Maryland, 1999.

[22] Soot - a Java Optimization Framework.
. http://www.sable.mcgill.calsootl.

106

•

•

•

[23] 4thpass SourceGuard.
· hup://www.4thpass.comlsourceguard/.

[24] Suif. hup://www.suif.stanford.edu/.

[25] SuperCede, Inc. SuperCede for Java.
· hup://www.supercede.coml.

[26] Frank Tip, Chris Laffra, Peter F. Sweeney, and David Streeter. Practical Experience
with an Application Extractor for Java. iBM Research Report Re 21451. IBM Re
search, 1999.

[27] Tower Technology. Tower J.
· http://www.twr.coml.

[28] Raja Vallée-Rai. Etienne Gagnon. Laurie Hendren, Patrick Lam, Patrice Pominville,
and Vijay Sundaresan. Oplimizing Java bytecode using the SOol framework: Is il
feasihle? ln David A. Watt, editor. Compiler Constnu:tÎoll, 9t" IlltenratÎollal Con
ference, volume 1781 of Lecture Notes in Computer Sciellce. pages 18-34. Berlin.
Germany. March 2000. Springer.

107

