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Sommaire 

Il a été démontré qu'un encodage et décodage tandem atteint des taux d'erreurs arbitrairement 

bas étant donné une longe ur de bloc suffisamment élevée. Cependant, lorsque appliquée à des 

systèmes pratiques qui sont intrinsèquement limités en terme de compléxité et donc en terme de 

longueur de bloc, la stratégie tandem peut être largement sous-optimale. En effet, un décodage 

tandem ignore deux types d'information: la mémoire de la source ansi que la redondance résiduelle 

de l'encodeur de source. De plus, les décodeurs de source conventionels, dans une stratégie de 

décodage tandem, sont conçus pour accomplir l'application inverse de l'encodeur de source et 

peuvent donc causer une détérioration importante de la performance dans le cas où des erreurs 

seraient encore présentes à leur entrée. La conception d'un décodage joint source-canal, qui 

prendrait en considération les deux types de redondances additionelles - c'est à dire, la mémoire 

de la source et la redondance résiduelle de l'encodeur de source - est une possibilité viable qui 

génère nécessairement des gains. 

Dans ce contexte, nous proposons un nouvel algorithme itératif de décodage joint source

canal. Cet algorithme est dérivé d'une représentation par réseaux Bayesiens de la chaîne de 

codage et prend en compte trois types d'information: la mémoire de la source, la redondance 

résiduelle de l'encodeur de source ainsi que la redondance amenée par l'encodeur de canal. Plus 

précisemment, nous modifions un algorithme existant en dérivant une nouvelle représentation 

équivalente par réseaux Bayesiens de la chaîne de codage. De plus, nous proposons une nouvelle 

méthode, entièrement consistente par rapport au cadre des réseaux Bayesiens, pour accomplir les 

itérations. Lorsque comparé avec l'algorithme existant, notre algorithme montre non seulement 

des gains substantiels mais encore une importante réduction de complexité. Enfin, nous exposons 

quelques améliorations additionelles qui peuvent être apportées à notre algorithme. Ces dernières 

incluent des méthodes de réduction de complexité supplémentaires qui dans un cas, viennent sans 

coût en terme de performance et dans un autre cas, avec un moindre coût en performance. 
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Abstract 

Tandem coding and decoding has been demonstrated to yield arbitrarily low error rates provided 

a sufficiently large block length is used. When applied to practical systems that are inherently 

limited to a finite complexity and therefore to finite block lengths, such a strategy may be largely 

suboptimal. Indeed, a tandem decoding strategy ignores two types of information: the source 

memory and the residual redundancy of the source coder. Moreover, conventional source decoders, 

within a tandem decoding strategy, are designed to perform the inverse operation of the source 

coder and may severely decrease performance if errors are still present at their input. One viable 

alternative, that has been demonstrated to yield gains, is the design of a joint source-channel 

decoding scheme that would take the additional sources of redundancies - the source memory 

and the source coder's residual redundancy - into account. 

In this context, we propose a novel, iterative joint source-channel decoding algorithm. The 

proposed scheme is derived from a Bayesian network representation of the co ding chain and 

incorporates three types of information: the source memory; the residual redundancy of the source 

coder; and finally the redundancy introduced by the channel coder. Specifically, we modify an 

existing algorithm by first deriving a new, equivalent Bayesian network representation of the 

coding chain. Next, we derive a fully consistent methodology, within the framework of Bayesian 

networks, for performing the iterations. The proposed algorithm is shown to yield significant gains 

along with a drastic reduction in computational complexity when compared with the existing one. 

Finally, we outline additional possible improvements on the proposed algorithm. They include 

methods for further reductions in computational complexity at no cost in performance in one 

case, and at a slight cost in performance in the other. 
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Random variable X. 
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event X = x. 
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probability of X = x and Y = y. 

Equality is understood to hold over aH possible events X = x 

and Y = y. 

Probability mass function for random variable X. 

Used when needed to distinguish the different possible values of x. 
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Preamble 

Systems that employ separate encodings, namely source coding followed by channel coding, are 

ubiquitous. lndeed, separate encodings simplify the co ding operation, breaking it into two dual 

and separately defined tasks: the removal of natural redundancy present in the data on one hand, 

and the addition of artificial redundancy for error resilience against the channel on the other. 

On the decoding end, the same phenomenon holds as separation entails the data to be decoded 

sequentially, first using the appropriate channel decoder and next the source decoder, designed 

to perform the inverse operation of the source coder. A separate encoding strategy possesses 

more tangible advantages such as inter-operability, meaning the ability to easily adapt to the 

transmission of data obtained from different sources, simply by changing the source encoder. 

More importantly, it has been demonstrated that arbitrarily low error rates may be achieved with 

separate encodings and decodings, under the proviso of choosing sufficiently large block lengths. 

The situation in practice is somewhat different since the proviso of larger block lengths im

mediately translates to higher complexities that are simply unaffordable with constraints such as 

delay. For this reason the bottleneck of coding theory is embodied by the problem of obtaining 

the most performance, in terms of error rate, for a given complexity. Sorne researchers have 

suggested and demonstrated the possibility of a joint coding strategy, namely the design of a 

code that would take both the characteristics of the source and those of the channel into account, 

outperforming the separate encoding strategy for a given complexity. Such systems, that utilize 

joint coding, naturally use joint decoding on the receiver end, in order to capitalize on potential 

gains. 

However, it is also possible to consider the possibility of using joint decoding for systems that 

employ separate encodings. The premise is that practical systems that utilize separate encodings 

must necessarily use fini te complexity and therefore finite block lengths for the source coder and 

the channel coder. This in turn implies that the data at the output of the source coder possesses 

additional redudancies ~ the residual redundancy of the source coder and the source memory 

(inter-symbol correlation). Whereas these redundancies are necessarily present in the received 

data stream, separate decodings will simply ignore them. One can therefore consider designing 

2005/05/12 



Preamble 2 

a joint decoder that would incorporate the two former sources of natuml redundancy along with 

that artificial redundancy introduced by the channel coder; a possibility mentioned as early as 

Shannon's seminal paper [2]. Such a design strategy is motivated further by the fact that optimal 

source coders of the variable length code variety have corresponding source decoders that are 

extremely sensitive to noise: the lack of set symbol boundaries resulting in a vulnerability to 

synchronization errors. Joint decoders, therefore, are a viable alternative that will necessarily 

imply performance gains. 

Murad et al. [15] developed a generic solution to the joint decoding problem by deriving the 

product finite state machine model of the source, the source coder and the channel coder. Various 

algorithms su ch as Hard Viterbi, Soft Viterbi and BCJR (Kalman smoothing) are then readily 

applicable yielding the optimal solution with respect to the algorithms' criteria. Unfortunately, 

this solution has intractable complexity. This phenomenon leads to the need for less complex 

and therefore sub-optimal joint decoders. In this context, the authors in [17]-[18] provided a 

sub-optimal joint decoding solution under the additional assumption of a memoryless source. 

Specifically, their proposed algorithm uses the principle of turbo-decoding and alternat es the use 

of a soft source decoder with a soft channel decoder. This approach was recently extended in [20] 

to include sources with memory. The algorithm, which also relies on the principles of turbo

de co ding and was derived in the context of Bayesian networks, has the advantage of isolating the 

constituent components and therefore has limited complexity. 

Contribution and Organization 

In this text we present an enhanced sub-optimal joint decoder that is largely inspired from the 

developments of [20], and incorporates three types ofredundancies: the source memory, the source 

coder's residual redundancy and the artificial redundancy of the channel coder. In particular, we 

first derive a new, equivalent Bayesian network representation of the coding chain. Next, we 

derive a fully consistent methodology, within the framework of Bayesian networks, for effecting 

the Iterations. The proposed algorithm is shown to yield significant gains along with a drastic 

reduction in computational complexity when compared with the existing one [20]. 

This text is organized as follows. In Chapter 1, we attempt to frame the joint decoding 

problem within the larger context of coding. Specifically, we introduce and define the notions 

of source and channel coding. Next we develop on the separation principle, expose the possible 

advantages of joint codingj decoding and define the problem of joint decoding separately from 

joint coding. Finally, we examine the optimal joint decoding solution and explore the need for 

sub-optimal joint decoders. 
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In Chapter 2, Bayesian networks are seen to provide a graphical framework for the analysis 

of statistical problems. Belief Propagation is derived from first principles and is shown to be an 

efficient, graphically based solution to the inference problem that may be used in the context of 

decoding. 

Chapter 3 is based on the developments of [20] and shows how the joint decoding problem may 

be approached and analyzed in the context of Bayesian Network. Specifically, we consider the 

derivation of the Bayesian network corresponding to the entire coding operation and demonstrate 

how the resulting graph may be used by the receiver ~ which has the additional knowledge of 

the received data stream and possibly the length of the received symbol sequence length ~ in a 

sub-optimal yet robust joint iterative decoding scheme. 

In Chapter 4, we present our proposed algorithm. We first derive in detail the algorithm that 

is based on one hand on an equivalent Bayesian network representation of the coding chain and on 

the other, on a different approach with respect to the iterations. The theoretical analysis indicates 

both better convergence properties as well as a reduction in computational complexity when 

compared with [20]. These expected results are, next, substantiated by experimental computer 

simulations. 

Finally, Chapter 5 depicts in detail the possibilities of additional improvements, both in terms 

of computational complexity reduction and performance amelioration. 



Chapter 1 

Joint Source-Channel Coding and 

Decoding 

4 

This chapter aims at elucidating the various considerations that have led researchers to seriously 

consider the problem of joint coding and decoding. This point merits particular attention since 

it is commonly accepted that the transmission problem may be broken into two separate tasks: 

source coding and channel coding. Indeed the source-channel theorem dictates that if Infinite 

complexity is allowed, there is no loss in optimality in such a strategy. However researchers 

have recently pointed out that this optimality is only asymptotic and does not necessarily hold 

for practical systems. We attempt to clarify this point in order to better frame the problem of 

joint co ding and joint decoding that we are interested in. To this end, we begin this chapter 

with a brief and concise review of the coding theorems. Second, the joint co ding problem is 

examined. Specifically, the source-channel theorem is stated and a brief discussion with respect 

to its implications ensues; next we attempt to give a heuristic motivation for joint coding along 

with sorne examples of attempts at joint coding. Finally, we introduce the problem of joint 

de co ding that, as will be seen, can be considered as separately defined from joint coding. In this 

setting, we present the optimal joint decoding solution and explore the need for suboptimal joint 

decoders. 

1.1 Coding Theorems 

1.1.1 Source coding 

The ultimate objective of source coding is to achieve data compression!. This is motivated in 

practice by the need to store data in its most efficient form, removing all superfluous or unwanted 

lThe ter ms data compression and source coding are to be used interchangeably. 

2005/05/12 
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content. There are two types of source coding: lossy co ding and lossless coding. Lossy coding 

assumes that the original data is not to be recovered in its entirety. Such a situation occurs 

for example when a continuous-time signal is sampled and quantized in order to be stored in a 

digital form. There is no fundamental limit on lossy source coding2 since we may choose to get 

rid of as much information from the data as desired. Lossless coding on the other hand assumes 

full recovery of the original data. A Fourier series decomposition of a periodic signal satisfying 

Dirichlet's conditions is in principle lossless coding since the entire signal can be reconstructed 

from its real Fourier coefficients. However this scheme is utterly impractical since an infinite 

amount of st orage space on a general purpose device is required to store just one real sample. 

This is not to say that Fourier decomposition is not a valid data compression scheme: the original 

data is now represented in a far more compact manner, yet the method does not provide practically 

implementable solutions. 

Source co ding theorem 

The difficulty stated above arises more generally when attempting lossless source coding on dis

crete data with either uncountable alphabets or countably infinite alphabets. Most practical 

systems will implement lossy coding as a first stage - sampling, quantization - before consid

ering the problem of lossless co ding on the now finite-alphabet discrete data. For this reason, we 

consider the case of lossless source coding applied to discrete finite-alphabet data and refer to 

source coding in this context. The gui ding principle of data compression in this case is to assign 

short descriptions to the most frequent outcomes of the data and necessarily longer descriptions 

to the less frequent outcomes. It is convenient to consider data as a stochastic process so that we 

may refer to the likelihood of a particular symbol or sequence of symbols. A source code can then 

be a mapping from each time sample of the stochastic process (symbol) to a set of finite length 

strings (codewords). With such a definition in mind, each source code is nothing more than a 

particular representation of the data, according to the chosen codewords. The smaller the average 

length of the codewords, the more compactly we have represented our data and the better the 

compression. We define a source code and then state the source co ding theorem. 

Definition 1.1. A source code, S, for a random variable X taking values on a discrete set X 

with probability mass function p(.), is an injective mapping from X to D*, the power set of the 

alphabet D. Let S(x) denote the codeword corresponding to x, an instance of X and let l(x) 

denote the length of S(x). The expected length, L, of the source code is given by, 

L = LP(x)l(x) (1.1 ) 
xEX 

2Rate-distortion theory in fact provides fundamental limits in terms of rate-distortion functions 
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The definition of a source code given ab ove rephrases mathematically the elements of the pre

vious paragraph. SpecificaIly, it states that a source code is nothing more than a representation 

of the data through finite length strings obtained by concatenating elements of D, which in most 

applications is {a, 1}. One notable difference: given a stochastic pro cess {Xd, the definition of 

source code above is not restrictive to a mapping from symbols Xi to D* but aUows as weIl map

pings from super-symbols {Xi+l, Xi+2, ... ,Xi+n } to D*. In words, it is possible to assign finite 

length strings to a concatenation of n data symbols. By so doing, we are achieving compression 

on sequences of symbols instead of symbols alone and hence, the inter-symbol correlation can be 

removed. The quantity n is referred to as the black length of the code. The expected length of 

a source code is the statistical average of the codeword lengths and provides a measure for the 

code's performance or efficiency: a source code with a smaU expected length will likely require 

less st orage space, to store the same data, than a source code with a larger expected length. The 

source coding theorem, stated below, defines the limit to data compression. 

Theorem 1.1. [1 J Let {Xi} be a discrete stationary ergodic stochastic process. Let L~in be the 

minimum expected codeword length per symbol over aU possible source codes of block length n. 

Then, 

(1.2) 

We use H(.) to denote the entropy of a random variable and we will refer to the quantity, 

(1.3) 

as the entropy rate3 of the process and denote it as H(X). The theorem contains sever al points 

of interest. First, at any given block length, the best possible source code will have an expected 

length obeying equation 1.2. Second, as is implied by the first statement, there is no source code 

that will represent data in such a way that the expected length per symbol is smaUer than the 

data's entropy rate. Therefore the entropy rate of the data is the fundamentallimit to data com

pression. In view of the fact that entropy represents the uncertainty of a random variable or more 

precisely, its true mndamness and information without which it is irrecoverable, it is indeed intu

itively meaningful that the limit to source co ding is related to the data's entropy. Compressing the 

data down to its entropy entails that aU redundancy is removed and hence a representation with 

i.i.d equiprobable elements of Dis necessarily obtained4 . Thirdly, we may also deduce through a 

limiting argument, that with larger block lengths, one can find a sequence of source codes with 

an expected length per symbol that asymptotically approaches entropy. Restated another way, 

3 t he entropy rate of a stationary ergodic stochastic process is always weil defined. 
4any other distribution implies that redundant information is still present. 
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it implies that it is possible to compress data arbitrarily close to to its entropy rate, if we use a 

sufficiently large block length. The theorem was first proven by Shannon [2] under the additional 

assumption that the process is i.i.d and the proof actually provided guidelines for the construction 

of a code satisfying inequality 1.2. It was shown that the assignment l(x) = ilog(Px\x))l allows 

the construction of a source code that compresses the data within one bit of entropy. Applying 

the same method on larger super-symbols, one can get arbitrarily close to entropy. 

On a final note, source codes are generally split into two categories in the literature: constant 

length codes (CLC's) and variable length codes5 (VLC's). CLC's assume that a fixed codeword 

length is to be used for all data symbols or super-symbols while VLC's relax that assumption and 

allow variable codeword length. It is important to mention that source codes that obey equation 

1.2 are called optimal since they provide us with the best possible compression for a given block 

length. For sources with unequal symbol probabilities, it should be clear that most optimal codes 

are of the VLC variety6. One such class of codes can be obtained through the weIl established 

method called the Huffman algorithm. Huffman codes are particularly interesting because they 

are easily implementable if one has access to the statistics of the data, but more importantly, they 

are optimal. Other algorithms such as the Lempel-Ziv algorithm, run-Iength limited coding and 

Tunstall coding also yield optimal source codes. 

1.1.2 Channel co ding 

The fundamental goal of channel co ding is to protect data against corruption during a wireless or 

wireline transmission. Corruption occurs for various reasons during a transmission, reasons that 

are outside the control of the sender and the receiver. Thermal noise, destructive interference 

caused by echoes or other transmissions, fading and data collision all contribute to errors in the 

received data stream. It is impossible to directly eliminate the causes of corruption at their source 

and reduce the likelihood of errors in such a manner. What is possible however is to mitigate the 

effects as much as possible through the insertion of redundant information that will help protect 

the data stream. If redundant information is sent along with the original data and the receiver is 

aware of the scheme, it becomes intuitively conceivable that sorne errors may be recovered at the 

receiving end. Here, we define the structure of communication systems with a channel code and 

subsequently state the channel coding theorem. 

Consider figure 1.1 below of a general communication system with a channel code. There are 

three essential components - the channel encoder, the communication channel and the channel 

5equivalently, fixed rate codes and variable rate codes. 
6for sources with equiprobable or quasi-equiprobable symbols, CLC's should perform as well or nearly as well. 
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Message Channel X 
(~.Y::V) 

y 
Channel Guess .. 

Encoder Decoder 

Fig. 1.1 General communication system with channel code. 

decoder - which we now define. 

Definition 1.2. A general communication channel consists of a set X called the input alphabet, a 

set 'tJ called the output alphabet as weIl as a set 3'" of conditional probability measures relating X to 

'tJ. At every time instant, an element of X is selected for transmission and subsequently mapped to 

an element of'tJ according to the appropriate7 element of T We denote a communication channel 

by (X, 3'", 'tJ). With this broad definition in mind, different classes of channels may be obtained 

by considering the various restrictions that can be placed on the set X, the set 'tJ, the set 3'" of 

probability measures modeling the effects of corruption, as weIl as on the nature of the time index. 

The function of the channel encoder is to add redundancy to the data. This is usually do ne by 

representing each data symbol with more information, the new information being deterministically 

related to the original one. The function of the channel decoder is to make the best possible guess 

about the source symbols based on the received data. We assume that the data to be transmitted 

is drawn from the index set {l, 2, ... ,M} for generality. 

Definition 1.3. An (M,n) channel encoder, with n > rl~~(~?l, for the channel (X,3'",1j) is an 

injective mapping from the index set {l, 2, ... ,M} to the set xn, 

xn : {l, 2, ... M} -+ Xn (1.4) 

yielding codewords Xn(l), X n(2), ... ,Xn(M). The set of codewords is called the codebook and 

the quantity n is once again referred to as the block length of the code. The corresponding channel 

decoder is a mapping from 'tJn to {l, 2, ... M} 

9 : 'tJn -+ {l, 2, ... M} (1.5) 

a deterministic rule assigning a guess to each possible received vector. 

There does exist a duality between the definition of source co ding and that of channel coding. 

They are both injective mappings and where one tries to remove redundancy, the other adds. 

7Depending on the current time, the current input and possibly, past inputs and outputs. 
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Intuitively, assuming all alphabets to be binary, the definition of a channel code above states that 

we must map every symbol in our data from the set {O, 1} llog2(M)l to a distinct codeword in the 

set {O, l}n. Since n > llog2(M)l, we are now using more bits per symbol and hence we are adding 

redundant information. A common strategy is to try to distinguish the codewords in {O, l}n as 

much as possible by maximizing the distance between the codewords. The Hamming distance 

which returns the total number of coordinates (bit positions) in which the codewords are different 

is especially useful. The decoding strategy is then to match the received codeword with the closest 

known one in terms of Hamming distance: the hard input Viterbi algorithm essentially implements 

that process. Channel codes that have greater distances between their codewords are clearly less 

susceptible to error and in fact, the minimum Hamming distance between two codewords provides 

an important measure that sets the lower bound on error rate. In the remainder of this text, we 

will assume all alphabets to be binary. The quantity R = log2~M) is called the rate of the code 

and we equivalently denote an (M, n) code by (f2nRl, n) or simply (2nR , n). 

Channel coding theorem 

The channel coding theorem essentially justifies the use of channel co ding for the purposes of 

error correction. It states that it is possible to reduce the probability of error arbitrarily close to 

zero by choosing an appropriate channel code with sufficiently large block length. 

Theorem 1.2. [1] Let R represent the rate measured in bits per channel use that we wish to 

transmit at. For every rate R < C, there exists a sequence of (2nR , n) channel codes with a 

maximum probability of error tending to zero as n increases to infinity. Conversely, any sequence 

of (2nR ,n) channel codes with a maximum probability of error tending to zero as n increases to 

infinity must have R::=; C. 

The quantity C, called the channel capacity, depends on the class of channel considered. 

Shannon [2] initially proved his theorem for the case of the Discrete Memoryless Channel8 . The 

theorem was indeed surprising for researchers had believed that the uncontrollable effects of 

corruption necessarily meant that an error Hoor existed for any rate of transmission. Unlike 

Theorem 1.1, the channel coding theorem does not provide as useful guidelines for the construction 

of good channel codes since the pro of relies on random codes. Such codes may be used and 

do provide good results, however they are very difficult to decode and entail a high degree of 

complexity. Dobrushin [3] proved the theorem for the class of information stable9 channels and 

SSuch a channel assumes countably finite X and 1J. In ter ms of the restrictions on 1", the set is time invariant, 
its elements are conditionally dependent on the current element of X alone, and the current output is statistically 
independent of future inputs. 

9Those channels can be roughly described as having the property that the input that maximizes mutual infor
mation and its corresponding output behave ergodically. 
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finally Verdli [4] proved the theorem for arbitrary non-feedback channels and established the most 

general formula for capacity. 

1.2 The Joint Coding Problem 

In light of the previous section, we can now reconsider the problem of sending data obtained from 

a discrete finite alphabet source. For example, suppose we want to transmit English text over 

an erasure channellO . We could design a joint code that can consider the characteristics of the 

source and at the same time those of the channel so as to find an optimal way of mapping the 

sequence of letters directly to the input of the channel. Or we could use a two-stage method 

before sending the information: first compress the text as efficiently as possible and subsequently 

use an appropriate channel code, designed for the channel, to add redundancy. The question of 

which of these two methods will imply the best performance is the topic of discussion. 

1.2.1 Source-channel theorem 

It turns out that it is indeed possible to combine the results of Theorem 1.1 and Theorem 1.2 and 

express the condition, under which it is possible to transmit reliably, in terms of the characteristics 

of the source. The source-channel theorem provides such a statement. It states that a sufficient 

and necessary condition for transmission with arbitrarily low error rate is that the entropy rate 

of the data be strictly smaller than channel capacity. 

Theorem 1.3. [1] Source-channel theorem: A stochastic pro cess {Ud with entropy rate H(ll) 

cannot be sent reliablyll over a channel if H(ll) > C. Conversely, if the pro cess is stationary and 

ergodic, then the source can be transmitted reliably if H(ll) < C. 

Shannon originally proved the theorem for the case of the discrete memoryless channel and 

the process {Ud was assumed to have finite alphabet. As is the case with the channel coding 

theorem, the source-channel theorem was later extended to include larger classes of channels. The 

part of interest to our discussion is the pro of of the converse in which the aforementioned two-stage 

method is used. Specifically, it is shown that an arbitrarily low error rate can be reached with the 

two-stage method provided a sufficiently large block length is used for both codes. And because 

of the direct part of the theorem, it follows that either reliable transmission is possible with 

separate source-channel co ding or it is not possible at aIl. The interpretation of the theorem was 

that one can therefore transmit data in a two-stage method with no loss in optimality. This had 

lOSuch a channel produces no error when the data is received however it does have a certain probability that the 
transmitted symbol is lost. 

llThe term reliably in the statement is understood ta mean that an arbitrarily small error rate can be reached 
pravided a sufficiently large black length is used. 
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tremendous practical implications as it meant that we can consider the design of a communication 

system as a combinat ion of two parts: source coding and channel co ding as is shown in figure 1.2. 

Among other things, the separation principle entailed that when designing the source code, only 

u 
Source 

Source 
encoder 

z Channel 
encoder 

Fig. 1.2 Separation princip le 

x 
(X,j, 'IJ) 

y 

the characteristics of the data need be considered and similarly wh en designing the channel code, 

only the characteristics of the channel are taken into account. The task of the source coder is 

therefore to remove as much natural redundancy from the data as possible and ideally present an 

input of i.i.d equiprobable bits to the channel coder. The latter's task is the reinsertion of artificial 

redundancy for error resilience against the channel's corruption. Hence the design strategy for a 

communication scheme is expressed in terms of two dual, yet weIl defined tasks. On the receiver 

end, the same phenomenon holds as we are able to decode the data sequentially first using the 

corresponding channel decoder and second the source decoder. The task of the channel decoder is 

to estimate the received sequence based on the channel coding scheme alone, whereas the source 

decoder, referring to definition 1.1, is the corresponding inverse12 mapping. 

1.2.2 A heuristic motivation for joint co ding 

Recently, however, the separation principle has been put to question. lndeed, the source-channel 

theorem's interpretation is very different in terms of its implications when compared with the 

source coding theorem or the channel coding theorem. The source coding theorem establishes 

the limit to compression; the channel coding theorem establishes the possibility of arbitrary error 

rate; the source-channel theorem is special in that it offers a strategy of design. The point of 

contestation is that the separation principle is only shown to be optimal as the block length of 

both codes increases to infinity. In other words, no statement is made concerning the case of finite 

complexity. Under such a constraint, it is not clear that the strategy of separation remains opti

mal: it is indeed possible that a joint co ding strategy would generate a better performance. This 

point of contestation is motivated further by the fact that aIl practical systems are fundamentally 

limited to a finite complexity. More importantly, practical systems have severe limitations such 

as delay that further li mit the complexity of the co ding and decoding schemes. 

12t he latter is guaranteed to exist because of the definition of the source coder as an injective mapping. 
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Although a rigorous proof, concerning the sub-optimality of the two-stage method under fi

nite complexity, has yet to be put forth, sorne works have laid strong theoretical foundations. 

Massey [5], who was amongst the first researchers to consider joint coding, showed that for a 

distortionless transmission across a binary symmetric channel, a significant reduction in complex

ity with equivalent performance to separate co ding can be achieved using a joint source-channel 

coder. This, under the premise that linear (block) source and channel codes are used. On a 

more general note, the separation principle has been shown to break down for sorne examples of 

multiuser channels [1], and even sorne examples of single-user information stable channels [6]. 

Many other arguments exist that demonstrate the possibility of joint coding outperforming sepa

rate encoding under finite complexity. If we reconsider the example of sending English text across 

an erasure channel, we can note that English text, like aIl languages, has a significant amount of 

natural redundancy due to its grammatical structure, syntax and morphology. For this reason, if 

we send the English text directly over the channel, we can lose up to half the letters and yet still 

be able to decode the text. It does seem in this particular case that the natural redundancy of 

the data is weIl adapted to the channel and it is perhaps better to leave it intact for the purposes 

of error resilience against the channel. More generally, there is perhaps an advantage in having 

channel codes designed according to the characteristics of the source. It is clear that when a finite 

complexity source coder is used, the data presented to the channel coder is not perfectly i.i.d 

and equiprobable. If a block length of 1 is used in a binary compression scheme - a commonly 

used one - equation 1.2 tells us that there can be as much as 1 redundant bit per symbol left. 

The remaining natural redundancy, termed residual redundancy can of course be used by the 

channel coder. In addition, a block length 1 source coder leaves aIl source memory (inter-symbol 

correlation) intact and again the same argument applies. 

There are sorne examples in the literature of su ch attempts. In [7], Cox et al. develop a method of 

passing important source information such as the statistics of the data, termed source significance 

information (881), to the channel coder. In particular, the 881 is used by the channel coder for 

both static and dynamic unequal error protection. 8ignificant gains were obtained when compared 

to the separate counterpart of equal error protection. His approach was termed "source-controlled 

channel coding". In [8], 8ayood presented a technique for providing error protection without the 

additional overhead of channel coding. The original premise was that imperfect source coding, 

due to lack of knowledge of the exact source statistics or due to complexity limitations, necessarily 

me ans that residual redundancy is present at the output of the source coder. He essentially pro

vided a method of utilizing this redundancy much the same way that channel code redundancy is 

used. His technique showed substantial gains for image transmission over a dis crete memoryless 
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channel with the standard DPCM source coding scheme. In essence, Sayood implemented the 

image transmission version of the English text example discussed earlier. His approach was later 

extended in [9] to the more widely used DPCM/ convolutional coder combinations. In [10], Alajaji 

and Fuga considered the problem of designing channel codes that exploit the residual redundancy 

in CELP-encoded speech. His work focused on the fact the line spectral parameters (LSP's) of 

the CELP scheme contain a great amount of redundant information. SpecificaIly, as many as one

third of the LSP bits in every frame of speech are redundant. He considered the design of adapted 

forward error control (FEC) codes as weIl as block codes and convolutional codes. Once again, 

significant gains were obtained under the widely utilized model of the Additive White Gaussian 

Noise (AWGN) channel. It is not surprising that aIl these works considered working on data such 

as speech, audio and image since they aIl contain a great deal of natural redundancy. 

1.3 The Joint Decoding Problem 

As previously mentioned, the separation principle entailed that on the receiver end, data can be 

decoded sequentially via the channel decoder first and the source decoder next. It is clear that 

when a joint coding strategy is used, one must also use a corresponding joint decoding strategy in 

order to capitalize on the possible gains of the former. In the case that a channel coder is designed 

to take into account the residual redundancy of the source coder, the joint source-channel decoder 

should in its turn rely on both sources of redundancy in its operations: the residual redundancy 

of the source coder and the artificial redundancy of the channel coder. AlI of the previously 

mentioned works on joint co ding developed not only joint coding schemes, but also corresponding 

joint decoding schemes. 

1.3.1 Joint decoding as a separate problem 

The previous point notwithstanding, it is possible to consider the joint decoding problem as a 

separately defined one. SpecificalIy, it is reasonable that joint decoding may be implemented on 

systems that utilize separate encodings (or tandem encoding) as is shown in figure 1.3. As we 

Fig. 1.3 Joint decoding for separately encoded systems. 

have seen, when finite complexity separate encodings are used, residual redundancy is necessarily 

present at the input of the channel coder and it is therefore also necessarily present in the received 



1 Joint Source-Channel Coding and Decoding 14 
.. " .................................•.•....................... -

data stream. The same is true for the source memory. Whereas tandem decoding will ignore both 

the residual redundancy and the source memory, we can consider designing a joint source-channel 

decoder that would take either one or both sources of natural redundancy into account. In fact 

Shannon mentioned this possibility already in his 1948 paper [2] as part of the discussion on the 

implications of the source-channel theorem: 

"However, any redundancy in the source will usuaIly help if it is utilized at the receiving 

point. In particular, if the source already has redundancy and no attempt is made to 

eliminate it[ ... ], this redundancy will help combat noise." 

Another advantage of such a joint decoding scheme lies in the fact that conventional source 

decoders, designed to perform the inverse operation of the source coder, cannot handle errors. In 

aIl practical systems, errors are still present at the channel decoder output/source decoder input 

and the source decoder's performance significantly decreases. This decrease in performance is 

further exacerbated in the case of VLC codes. This stems mainly from the fact that VLC codes 

do not have set symbol boundaries since the data symbols are encoded with variable bit lengths. 

One symbol error in the beginning of the data stream and the decoder may falsely estimate aIl 

the remaining symbol boundaries resulting in multiple decoding errors. It is in fact possible to 

partially resolve this problem in a joint decoding scheme. Recently, Miller [11] has shown that 

a joint decoder utilizing the source residual redundancy decreases this de-synchronization effect. 

SpecificaIly, his work considers the case of Huffman encoding of a Markov source sent directly 

through a Binary Symmetric Channel. Miller's approach was later extended by Bauer [12], as he 

incorporated channel codes (specifically FEC codes) into the problem and again showed significant 

improvements with respect to the de-synchronization issue. We should note here however that 

Bauer used reversible variable length codes (RVLC's) which were introduced in [13] and have 

the advantage that the symbol boundaries may be recovered by decoding in both forward and 

backward directions. As such they assure far better synchronization, since the data stream will 

most likely be synchronized in its beginning and end. 

1.3.2 Optimal joint decoding solution 

The above arguments outline incontestable reasons for considering the problem of joint decoding 

as applied to systems that employ separate encodings: gains are necessarily possible. It was not 

until 1998 that the authors in [15] developed a generic solution to the joint decoding problem 

as defined in our setting. The fundamental premise of Murad et al.'s optimal joint decoding is 

that three elements of the coding chain in figure 1.3 have an equivalent graphical representation. 

SpecificaIly, with no loss in generality, we can consider that each element is represented by a Finite 

State Machine (FSM). One can then build the product FSM of aIl three models that would hence 
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characterize the entire coding operation. From this point, all known decoding algorithms apply. 

This methodology is best explained with a simple example. Consider a finite-alphabet discrete 

source with memory 1. The source alphabet or equivalently the state-space of its corresponding 

FSM is given by SI = {A, B, C}. The FSM is depicted in figure 1.4 where we refrained, for 

simplicity, from specifying the transition probabilities that should quantify each arrow. If we 

Fig. 1.4 FSM model of the assumed source. 

assume further that P(A) = 0.5, P(B) = 0.3 and P(C) = 0.2, a block length 1 binary Huffman 

encoder may result in the assignment A -7 0, B -7 10 and C -7 11. Below, we show the placement 

of the source symbols on a binary tree, from which one can immediately der ive a corresponding 

FSM representation of the Huffman encoding: this can be do ne by considering each one of the 

black vertices as a state. The state-space of the Huffman encoder FSM is S2 = {X, Y}. Finally, 

1/C 

Fig. 1.5 FSM model of the Huffman encoding. 

let us assume we are using a rate ~ systematic convolutional encoder with generator polynomial 

g(D) = (1, 1 + D), the method of obtaining a corresponding FSM is well-established [16]. The 

0/00 

0/01 

Fig. 1.6 FSM model of the channel coder. 

state space of the channel encoder FSM is S3 = {l, J}. With the FSM of every element in the 
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coding chain available, we may construct the product FSM of aIl three models. This is done 

by considering aU possibilities of triplets of states and connecting them according to the rules 

dictated by each constituent model. Figure 1. 7 below shows the product model of our example. 

Note that some states were redundant and hence they were removed. We also did not quant if y 

the links for simplicity: the latter should be quantified by either deterministic transitions (from 

the Huffman coder and the channel coder) or probabilistic transitions (from the source model) 

along with appropriate outputs. With such a model available, various algorithms may be applied 

Fig. 1. 7 Product FSM. 

to yield the optimal joint decoding solution with respect to the algorithms' criteria. In particular, 

hard Viterbi, soft Viterbi, BCJR (or Kalman smoothing) and Kalman filtering are aU readily 

applicable. Snch a joint decoding scheme therefore uses three types of information: the source 

memory, the source coder residual redundancy and finally, the redundancy introduced by the 

channel coder. 

1.3.3 Need for suboptimal joint decoding schemes 

Unfortunately, the optimal solution remains intractable for most practical systems. In general, 

the state-space Sp of the product model satisfies Sp ç {SI X S2 X S3} and hence we have that 

ISpl:::; ISl11S211S31 where x denotes the Cartesian product. This state-space explosion is unafford

able in practical situations: a source alphabet, for say image transmission, will satisfy ISll = 28 , 

the state-space of a VLC code will then conservatively reach IS21 = 28 , while the channel coder, if 

it uses 5 bits of memory will have IS31 = 25 , leading to a product model with ISpl = 220 or more. 
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The need for less complex and therefore suboptimal decoding schemes, is flagrant. 

In this context, the works of Bauer and Hagenauer in [17]-[18J provided a sub-optimal joint 

decoding under the assumption that the source is memoryless. Indeed, he considered the case of 

a general VLC code followed by a channel code - the two components separated via an inter

leaver. The proposed algorithm uses the principle of turbo-decoding and alternates the use of a 

VLC soft decoder with a soft channel decoder. His approach is particularly interesting since it 

has the advantage of isolating two soft-decoders and therefore, it has limited complexity. Since 

turbo-decoding is essentially sub-optimal decoding of a complex code [19], Bauer's inspiration is 

especially meaningful. 

Finally, Guyader [20] et al. extended this approach to encompass aIl three elements of the coding 

chain and therefore include the source's memory. Their proposed sub-optimal algorithm, which 

this text is largely inspired from, relies as well on the principles of turbo-decoding and was devel

oped in the context of Bayesian networks. It is important to also mention the related works of 

Villasenor et al. and Zhu et al. in [21]-[23] who also considered the problem of joint source-channel 

iterative decoding. However, whereas the works of Villasenor deals with systems that require the 

use of small packets, Zhu deals with systems with multiple channels or descriptions and as such, 

these works are not directly relevant to the topic at hand. Chapter 3 is reserved for the discussion 

of Guyader's algorithm. For now, a review of Bayesian networks is in order. 
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The original inspiration for Bayesian networks stems from an attempt to mimic human inferential 

reasoning within the natural frameworks of probability theory and graph theory. The original 

idea, as introduced by Judea Pearl [24], was that human knowledge, generally uncertain and 

incomplete, is stored not in joint distributions but rather in conditional distributions. This was 

thought to account for the relative ease with which we de al with statements such as the probability 

of min given a cloudy day as well as the speed and reliability of human decisions involving similar 

statement. Pearl's Belief Propagation algorithm, developed in this context, in fact represents an 

efficient solution to the generalized inference or estimation problem; a solution that exploits the 

conditional dependence relations of the random variables involved. Although Bayesian networks 

were mainly to be limited to the field of Artificial Intelligence, researchers are finding various new 

applications for the idea such as data mining, and more importantly the problem of decoding that 

we are concerned with. This chapter begins with a rigorous definition and method of construction 

for Bayesian networks, followed by a discussion on sorne emergent properties of such networks. 

Next, we present in detail Pearl's BeliefPropagation algorithm as applicable to polytrees and trees. 

We consider how various algorithms that solve the inference problem may be seen as particular 

instances of Belief Propagation. Finally, convergence issues with respect to Belief Propagation 

are presented and discussed. 

2.1 Defining a Bayesian Network 

Bayesian networks are directed acyclic graphs (DAG) in which the nodes represent random vari

ables and the arcs, quantified by conditional probability measures, represent direct statistical 

2005/05/12 
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dependencies between the linked random variables. Strictly speaking, it should be noted that 

Bayesian networks are not graphs but rather hyper-graphs since their topology is augmented with 

a set of conditional probability measures. Networks of this sort can be used to equivalently rep

resent the generic knowledge, as determined by a joint probability measure, of a given statistical 

problem. They may also be turned into a computational architecture to manipulate the addi

tion of new knowledge. Specifically, if the network is not merely used to store knowledge, one 

can consider using the network's topology together with its corresponding conditional probability 

measures to define and direct computations necessary for incorporating new information. In this 

sense, Bayesian networks provide a graphical framework for the analysis of statistical problems. 

In the following we assume, unless otherwise specified, that the random variables are discrete. 

The question of how one represents the generic knowledge of a statistical problem via the Bayesian 

networks framework arises. In particular, given a joint distribution, specified l by P(XI' X2, . .. ,xn ), 

on the random variables Xl, X 2 , ... , X n , how does one determine the corresponding Bayesian net

work representation of this problem domain? It should be clear from the previous discussion that 

the nodes of the graphs are already available: the corresponding Bayesian network consists of a 

total of n nodes, one for each random variable Xi with i ranging from 1 to n. The arcs linking the 

random variables as weIl as the conditional probability measures are the only elements lacking 

for a full specification of the Bayesian network. Choosing an arbitrary ordering d on the random 

variables as Xl, X 2 , ... ,Xn , a recursive application of Bayes' law will yield the following relation: 

In this expression, each factor contains only one variable on the left hand side of the conditioning 

bar and an conditional dependencies, assuming the ordering d, are represented. Therefore it may 

be used as a prescription for consistently determining the linking arcs together with the condi

tional probability measures. Specifically, for each factor, we may simply draw an arc emanating 

from each random variable on the right hand side of the conditioning bar and terminating at the 

random variable on the left hand side of the conditioning bar; this set of arcs is then quantified 

by the factor itself. If no arcs terminate at a given node, the latter is assigned an a-prior marginal 

distribution. For ex ample , with the ordering specified above, there would be one arc from Xl to 

X2 quantified by the probabilities P(x2IxI); one arc, from X 2 to X 3, and another, from Xl to X3, 

who together are quantified by the probabilities P(x3Ix2' Xl) and so on. Since no arc terminates 

Inote that the joint probability mass function is given by 

(2.1) 
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at Xl it is assigned the a-prior probabilities P(XI). 

In general, equation 2.2 can be further simplified. It is indeed possible that given knowledge 

of X 2, X 3 is statistically independent of Xl. Expressed mathematically, P(X3IX2' Xl) = P(x3Ix2). 

In this case, in fact, only one arc from Xl to X 3, quantified by P(X3IX2), is necessary. This may 

be done for every factor. For example consider a joint distribution factoring according to, 

P(X7I XI' X3, X4)P(X6IxI, X2, X4) 

P(x5I x I' X2, X3)P(X4)P(X3)P(X2)P(xI) 

The corresponding Bayesian network is shown below in figure 2.1. 

Fig. 2.1 Typical Bayesian network. 

(2.3) 

This, more generally, leads to a simple method for the construction of a Bayesian Network for 

any joint distribution. We start by imposing an arbitrary ordering d on the set of random 

variables2 , Xl, X 2 ,···, Xn. We then choose Xl as a root of the graph and assign it the marginal 

probabilities P(XI) as dictated by P(XI' X2, ... , xn ). Next, we form node X 2; if X 2 is dependent 

on Xl, a directed link from Xl to X 2 is established and quantified by P(x2IxI). Otherwise, we 

leave Xl and X 2 unconnected and assign the prior probabilities P(X2) to node X 2 . At the ith 

stage, we form node Xi and establish a group of directed links to Xi from the smallest subset of 

nodes Si ç {Xl, X 2, ... , X i-l} sa tisfying the condition 

(2.4) 

The links are then quantified by P(xiISi). Each element of Si is called a parent of Xi while 

Xi is referred to as a child of each element of Si and we may clearly write, P(XI' X2, ... ,xn ) = 

IIi P(XiISi). It can be shown that the set of subsets satisfying condition 2.4 is closed under 

2we assume for simplicity of notation and with no 10ss in generality that the chosen ordering is as indicated by 
the indices. 
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intersection [24], therefore the minimal subset Si is unique. Thus, the joint distribution, specified 

by P(XI' X2, ... , x n ), together with the ordering d uniquely identify a set of parent nodes for each 

variable Xi, and that constitutes a full specification of a directed acyclic3 graph representing 

P( Xl, X2, ... ,xn ). It is clear that different orderings will yield different factorizations of the joint 

distribution which in turn le ad to significantly different Bayesian networks: a Bayesian network 

representing n independent coin tosses together with the modulo-2 sum of these tosses is turned 

from a tree to a full graph if we change the position of the sum variable from first to last as is 

shown in figure 2.2. However aH the resulting Bayesian networks are equivalent in the sense that 

they encode the same joint distribution. 

toss 1 toss 1 

toss 2 toss 2 

sum toss 3 toss 3 sum 

toss n toss n 

(a) SIllU variable b first in ol'dering. (b) S\lm variable is last il! ordering. 

Fig. 2.2 Bayesian network corresponding to n coin tosses and their modulo-2 sumo 

2.2 Emergent Properties 

From a mathematician's perspective, a Bayesian network representation of a statistical problem is 

utterly trivial. lndeed, the joint distribution of a set of random variables already contains aH pos

sible information of interest: any probabilistic question is readily available through an appropriate 

arithmetic manipulation of the joint distribution. However, as is the case with any framework, 

Bayesian networks posses emergent properties that may consolidate and simplify the understand

ing and analysis of statistical problems. In this section, we consider two such properties: the 

reduction in storage space for the representation of the joint distribution and necessarily compu

tational savings when incorporating new information, as weIl as the representation of conditional 

independence and dependence relations. 

3 a simple proof by contradiction shows that the method of construction, for any ordering and any distribution, 
implies the absence of directed cycles. 
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2.2.1 Computational savings 

Let us reconsider the example given above with the joint distribution satisfying the factorization 

of equation 2.3 and let us further assume that aIl random variables are binary. If we were to store 

the joint distribution directly, we would require 27 = 128 entries. If we consider the Bayesian 

network representation that is based upon the factoring of the joint distribution into conditional 

distributions, we note that for a given node of k parents, a function of k + 1 arguments is necessary 

for the specification of the condition al probability measures that quantifies the k links. Renee, we 

would require 3 x 24 + 4 x 2 = 56 entries to equivalently store the same information, a significant 

decrease in storagé. More importantly, Bayesian network representations aIlow for computa

tional savings wh en say computing posterior marginaIs given the instantiation of a set of random 

variables. Supposing for ex ample that we wish to compute the quantity P(x7IxI). Working from 

the joint distribution alone, one would apply Bayes' law and write P(x7IxI) = P(X7,XI)/P(XI), 

where both the numerator and denominator are obtained via the law of total probability by sum

ming the joint distribution over aIl remaining variables. Such an approach therefore requires 

25 + 26 = 96 summation operations and 1 division operations for each pair (X7, Xl). Using the 

Bayesian network representation, we note that X 7 is in fact only statistically dependent on Xl, 

X 3 and X 4. We may obtain P(x7IxI) by summing the product P(x7IxI' X3, X4).P(X3).P(X4), aIl 

of which are readily available, over X 3 and X 4 . Rence only 8 multiplications and 4 summation 

operations are neeessary for each (X7, Xl) pair. 

In general, storing a joint distribution requires a spaee growing exponentially with the num

ber of random variables and the answer to queries regarding marginaIs, be they prior or posterior, 

is as weIl exponentially long with the number of variables. The point here is that, by exploiting 

statistical dependence and independence relations and storing conditional distributions, Bayesian 

networks allow for considerable savings with respect to both these issues. 

2.2.2 Conditional independence relations 

A significant emergent property of the Bayesian network framework is that the network's topology 

may be used to establish various types of conditional independence relations. Consider a triplet 

of random variables, Xl, X 2 , X 3 , where Xl is connected to X 3 via X 2 . The two links, connecting 

the pairs (Xl, X 2 ) and (X2 , X 3 ) can join at the midpoint X 2 in three possible ways: 

l. Tail-to-Tail: Xl +--- X 2 --7 X 3 

4 to be completely exact, storage space for the topology of the graph is also required. However with more 
random variables and particularly ones taking values on alphabets with greater cardinality, this st orage space 
becomes quickly negligible. 
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3. Head-to-Head: Xl ---t X 2 ..- X3 

Assuming that X I ,X2 ,X3 are the only variables involved, it should be clear from the aforemen

tioned method of construction that in the first two cases, Xl and X3 are conditionally independent 

given X2. Indeed in these two cases, X 2 cannot be the last variable in the imposed ordering: this 

position must have been filled by either Xl or X3 and since there is no link between the two, the 

previous statement immediately follows. In the last case, Xl and X3 are marginally independent: 

X2 is necessarily the last variable in the ordering and since no link connects Xl and X 3 , we have 

P(x3IxI) = P(X3). However, Xl and X3 may become dependent given knowledge of X 2 . More

over, if X2 has descendants X 4 , X 5 , . .. , then Xl and X3 may also become dependent if one of 

those variables is known (instantiated). These considerations motivate definitions for a qualified 

notion of graph-separability sensitive to the directionality of the links and to aIl variables that 

are known as mentioned in [24]. 

Definition 2.1. Two links meeting Tail- to-Tai l or Head- to-Tail at node X are blocked by a subset 

of variables Se if X E Se. Two links meeting Head-to-Head at node X are blocked by Se if neither 

X nor any of its descendants is in Se. 

Definition 2.2. A path P is separated by a subset Se of variables if at least one pair of successive 

links along P is blocked by Se. 

Definition 2.3. Se is said to separate Xi from X j if aIl paths between Xi and X j are separated 

by Se. 

where a path is defined as a sequence of nodes {Xl, X 2 , ... , Xn} such that the pairs {Xi-l, Xd 

are linked either as Xi ---t Xi+l or Xi ..- Xi+l . This definition of separation provides a graphical 

criterion for testing conditional independence. It is in fact possible to prove [25] that if Se separates 

Xi from X j then Xi is conditionally independent of X j given Se. That is, 

(2.5) 

The implication of this statement being that one can visually determine a set of variables that 

would cause two other given variables to be conditionally independent. Moreover, this graph

separation criteria permits the identification by inspection of a screening neighborhood for any 

given node, namely, a set Sc of variables that renders a given variable independent of every vari

able not in Sc. Indeed the union of the the following three types of neighbors is sufficient for 

forming a screening neighborhood: direct parents, direct children and aIl direct parents of the 
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x, 

Fig. 2.3 Bayesian network example representing the distribution specified by 
P(XI, ... , X6) = P(x61x5 )P(x5Ix2, X3)P(X4IxI, X2)P(X3IxI)P(X2IxI)P(XI) 
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latter as dictated by the above definitions. Considering for example the Bayesian network shown 

in figure 2.3, we note that X 2 and X 3 are separated by Se = {Xl, X4} since the two paths be

tween X2 and X 3 are blocked and hence P(x2IX3, Xl, X4) = P(x2IxI' X4). Such a relation is read 

with ease off the graph but would imply a significant amount of arithmetic tedium if it were to be 

proven from the joint distribution. Note that a screening neighborhood of X 3 is Sc = {Xl, X 5 , X 2}. 

It is important to note that although graph-separability implies conditional independenee, the 

converse is by no me ans true. Since the structure of a Bayesian network is heavily dependent on 

the node ordering, not aIl conditional independenee relations are made transparent by the graph's 

topology: networks corresponding to particular orderings may very weIl express graphical separa

bility conditions that are not graphicaIly valid for networks with different orderings. Therefore a 

particular Bayesian network do es not provide a complete characterization of aIl conditional inde

pendenee relations via the graph separability definition. However sinee conditional independence 

is a property of the underlying distribution and therefore order-invariant, those relations that do 

become transparent under a particular ordering remain valid under aIl other ordering eventhough 

a graph-separation is not induced. For a rigorous discussion of the above, the reader is referred 

to [25]. On a final and brief note, the graph-separation criterion is extremely useful when at

tempting to model complex statistical problems in the Bayesian network framework. Consider 

for example building a Bayesian network corresponding to a medical expert system that is to 

model the interactions between aIl known symptoms and aIl known diseases. A joint distribu

tion for this problem is hardly available. What is available however is expert opinion on which 

symptoms may be expressed given a disease. Therefore, we may build the network, making sure 

graph-separability holds where it must and aIl that remains, to consistently solve this problem, is 

defining the appropriate conditional probabilities [26]. 
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2.3 Pearl's Belief Propagation 

As previously mentioned, once a Bayesian network is constructed, it can not only be used to rep

resent the generic knowledge of a given domain, but can also be consulted to calculate the impact 

of specific input data on some nodes (random variables). This process, essentially involves the 

instantiation of a subset of nodes and the subsequent calculation of posterior marginaIs for those 

remaining nodes of interest. In general, this process may be guided by an external interpreter that 

has knowledge of the entire network and would therefore select and direct calculations. However, 

the algorithm presented in this section, termed Belief Propagation and originaUy introduced by 

Judea Pearl [24], assumes no such interpreter. In fact, the network's topology is seen as providing 

a computational architecture aUowing the incorporation of new information as represented by 

the instantiation of a set of nodes. As such, the links of the network are treated as pathways 

for directing the fiow of data in the updating of probabilities and the nodes of the network are 

treated as activation centers that propel the entire process. Accordingly, it is assumed that each 

node in the network is designated a separate processor responsible for two tasks: maintaining the 

current probabilistic information pertaining to its host variable and managing the communication 

links to the set of neighboring nodes. The communication links are assumed open at aU times so 

that each processor may at any time verify whether its own information corresponds with that 

provided by its neighbors: if the information agrees, no activity takes place, otherwise the node 

activates its update mechanism. In the next subsections, we show in the details the working of 

this algorithm for various classes of graphs. 

2.3.1 Discrete Polytrees 

Here we assume that aU random variables are discrete and we further assume that that the re

sulting Bayesian network is singly connected5 . FinaIly, we suppose a set of leaf nodes6 have been 

instantiated and denote the total evidence obtained bye. We wish to compute the posterior 

marginal probabilities of aIl remaining nodes. We consider a typical fragment of a singly con

nected network as shown in figure 2.4. We denote ex' the evidence connected to the random 

variable X, with instance x, through the set of its children Y = {YI, Y2 , . .. , Ym}, and e1 the 

evidence connected to X through its set of parents U = {UI , U2, ... ,Un}. 

We use BEL(·) as shorthand notation7 for the current posterior marginal probability PCle) 

5namely, no more than one path exists between any two nodes. 
6 t his assumption is simply ta avoid cumbersome notation and cornes with no loss in generality as will be seen. 
7 we refer ta this quantity as the belief of a random variable. 
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Fig. 2.4 Parents and children of a typical node X in a singly connected network. 

so that a simple application of Bayes' law yields 

BEL(x) aP(ex lx)P(xle1) 

aÀ(x)7f(x) 
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(2.6) 

where a = [P(ex le1)]-l is a normalizing real constant. Here À(x) represents the retrospective 

informationS that X receives from its descendants and 7f(x) represents causal information by aIl 

non-descendants of X, mediated by X's parents. Now, ex and e1 can be further decomposed 

into 

and (2.7) 

where e Xy stands for the evidence contained in the subnetwork on the head side of X -+ 1j, and 
J 

et;x stands for the evidence in the subnetwork contained on the tail side of the link Ui -+ X. 

Now, to see how information from several descendants may be combined, we note, 

À(X) ~ P(exlx) 

P(eXY1 "'" eXyJx) 

P(exy1Ix), P(exy2 Ix)" .P(exymlx) 
m 

(2.8) 

8 note that À(x) = P(exlx) is used to denote the probability of the data or evidence ex given X=x, and should 
be understood ta be a function of x. 
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where Àyj(x) = P(eXY)x) and where the second equality follows from the fact that graph

separation implies that Yi is conditionally independent from îj given X for i i- j and hence any 

evidence contained in these nodes' corresponding subnetworks is as weIl conditionally independent 

given X. Therefore À(x) may be computed from information present within its descendants. To 

see how X may compute its 1r(x) vector from information contained within its parents, we note, 

1r(x) ~ P(xle!) 

P(xlet1x, ... , etnx) 

L P(XIUl, U2,···, un) . P(Ul, U2,···, unlet1x,···, etnX) 
'Ul,U2"")Un 

L P(XIUl, U2,···, Un) . P(ullet1x) . P(u2Iet
2
x)··· P(unletnx) (2.9) 

where the second equality follows from the law of total probability and the third equality follows 

from the fact that each pair {Ui , etx} is independent of {Uj , etx} for i i- j (see previous section 
, J 

on graph separation). Letting, 1rX(Ui) = P(uiletix), we can write, 

n 

1r(x) = L P(xlu) II 1rX(Ui) (2.10) 
u i=l 

Substituting equation 2.8 and equation 2.10 into equation 2.6, we have: 

(2.11) 

Therefore, node X may compute its belief (posterior probability) if it receives messages ÀYj (x) 

from its children and 1rX(Ui) from its parents. We must now define how a typical node, say X, 

will compute its outgoing messages ÀX(Ui) and 1rYj(x) from the incoming messages Àyj(x) and 

1rX(Ui) with i = 1, ... , n and j = 1, ... , m. It is convenient to temporarily treat aIl parents of X 

except for Ui as a single compound variable V = {U1 , ... ,Ui - 1 , Ui+l, ... , Un} connected to X via 

a single link V ---+ X, as shown in figure 2.5. 

Consider the message ÀX(Ui) which no de X must send its parent Ui so that the latter may 

in its turn update its belief. By definition, we have, Àx (Ui) = P( eUiX Iud· Now the evidence eUiX 
can be decomposed into two components: eux = {etx' ex} where etx = U et x' therefore 

, k~i k 
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Fig. 2.5 Messages and evidence sets used in derivation of ÀX(Ui). 

we now have, 

x v 

x v 

x v 
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(2.12) 

where (3 is a real normalizing constant; (1) is given by the law of total probability; (2) follows 

since X separates ex from etx and since V separates etx from Ui ; (3) follows from Bayes' law; 

and (4) follows since Ui and V are marginally independent: P(UilV) = P(Ui). Now, ungrouping 

the parents V and using 7rX ( Uk) as previously defined, we have, 

P(vletx) = rr P(ukletx) = rr P(ukle&kX) = rr 1f'X(Uk) (2.13) 
k#i k#i k#i 

and noting that À(x) = P(exlx) as defined, and that {v,ud = u, ÀX(Ui) becomes 

(2.14) 
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Consider now the message 1rYj (x) w hich node X must send to its child Yj. By definition, we have, 

1rYJ(x) = P(xlekY)' NowekY represents the evidence in the entire network with the exception 
J J 

of the evidence present in the subnetwork on the he ad side of the link X --+ Yj: ekY = e - eXY ' 
J J 

Therefore, 1rYJ(x) = P(xlekY) is in fact equal to BEL(x) when the evidence eXY is omitted. 
J J 

Following the same lines as the previous derivation of BEL(x), we get, 

1rYj (x) = cm ( x) II À Yk (x) = BEL (x) 1 

ktj ÀYj (x)=l 

(2.15) 

This equation illterestillgly indicates that an incoming message, ÀYk (x), on a link will not affect 

the outgoing message, 1rYj (x), on the same link. 

Summary of Belief Propagation for polytrees 

The belief of node X can be computed if three parameters are available: messages 1rX(Ui) = 

P ( Ui 1 etix) from each parent Ui; messages À Yj (x) = P ( e XYj 1 x) from each child Yi; and finally 

the conditional probability matrix P(XIU1' ... ,un) = P(xlu) relating X to its parent set. Local 

updating may be essentially implemented in three steps. 

STEP I-Belief updating 

The belief of X is given below with Œ such that L BEL(x) = 1, 
x 

BEL(x) ŒÀ(X)1r(X) 

Œ[il ÀYj(X)] [2:P(x1u) il 1rX(Ui)] 
J=l U 2=1 

STEP 2-Bottom-up propagation 

Message ÀX(Ui) to be sent to parent Ui is given below with (3 such that L ÀX(Ui) = 1, 

STEP 3-Top-down propagation 

To compute message 1rYj (x) to be sent to child Yj 

1rYj (x) = Œ1r(X) II ÀYk (x) 
ktj 

Ui 

(2.16) 

(2.17) 

(2.18) 
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These three steps may be executed by a node in any desired order and constitute complete and 

consistent local operations that will eventually lead all nodes to their correct posterior probabili

ties: recalling that the original assumption that communication links are open at aU times, nodes 

that detect changes in their belief values will trigger their update algorithm (steps 2 and 3) and 

the graph will eventually reach equilibrium with no further updates necessary. We have yet to 

establish boundary conditions that will allow the proper functioning of the algorithm. Without 

further ado, we provide the boundary conditions: 

1. Root nodes: If X is anode with no parents, we set 1f( x) to be equal to the prior distribution 

P(x). 

2. Uninstantiated leaf nodes: If X is a childless node that has not been instantiated, we set 

À(x) = (1,1, ... ,1). 

3. Instantiated nodes: If X is any node and evidence X = x' is obtained, we set À(x) = 6X,x' = 

(0, ... ,0,1,0, ... ,0) with a 1 at the x'-th position. 

Boundary condition 3 merits sorne explanations. We recall that in the derivation it was assumed 

that only leaf nodes were to be instantiated. However this assumption does not affect the gen

erality of the algorithm because the fact that X is say an evidence node, with value x', can be 

represented by instantiating a child node Z, representing a noiseless observation and therefore 

delivering a message ÀZ(x) to X, 

{
Ix = x' 

ÀZ(x) = 6X ,x' = 0 
x =f x' 

from which boundary condition 3 immediately follows. 

Finally, it is convenient at this point to consider the number of computations necessary for each 

node activation as represented by the three ab ove steps. We assume for simplicity that all parent 

nodes of X host variables taking values on the same set of cardinality lUI. Equivalently, we assume 

all child nodes to take values on a set of cardinality 12J 1. Finally, with X taking on values on a set 

of cardinality IXI, the tota19 number of operations necessary for a node activation were found to 

be, 

{ 

n21UlniXI + nlUI (IXI + 1) + IXI(m + 1) + m21XI 

(n + 1)IUlnIXI + mlXI- (m + n + 1) 

multiplications 

additions 

(2.19) 

9here, our derivation assumes equations 2.16, 2.17 and 2.18 are to be implemented as given and we include as 
weil the operations necessary for normalization. lndeed, it was noted by the author that normalization is necessary 
for stability in a software implementing the Belief Propagation algorithm. See Appendix A. 
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2.3.2 Discrete Trees 

In this section, we consider Belief Propagation for trees. In terms of our previous assumption, 

trees are singly connected networks where in addition each node is allowed, at most, one parent. 

Therefore equations 2.16, 2.17 and 2.18 remain entirely valid. Denoting by U, the single parent 

of X and now using superscripts to denote the values taken by a random variable, we form the 

matrix M, where 

(2.20) 

Belief Propagation as obtained by reducing equations 2.16,2.17 and 2.18 to the case where one 

parent is allowed is succinctly depicted below in figure 2.6. 

, 
1 
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Fig. 2.6 Belief Propagation in trees. 
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2.3.3 Continuous observation on a discrete node 

In this section we consider how a continuous observation on a discrete node may be incorporated 

into the Belief Propagation algorithm. Although this is not found in the literature, the derivation 

is straightforward. We assume that the discrete variable X has observation Z, 

Z=aX+W (2.21) 

where a E lR, and where W is a unidimensional gaussian random variable and therefore fully 

characterized by its mean m W and variance CT&r: W rv (m W , CT&r). The corresponding Bayesian 

networ k is shown in figure 2.7 below. In gener al X may be connected to a networ k however for 

simplicity we only show the nodes involved. Since Z is simply an observation node, we need not 

Fig. 2.7 Gaussian observation on discrete node. 

be concerned with messages that it receives from X but rather the message '\z(x) that it will 

send to its parent X. It should be clear from section 2.3.1 that if Z is not instantiated, 

'\z(x) = (1,1, ... , 1) (2.22) 

In the case that the event Z = ZO occurs, we must use a modified definition of '\z(x), namely that 

it represents the likelihood LC) of the data exz , given x: 

'\z(x) = L(exzlx) (2.23) 

where we recall that ex z stands for the evidence on the head side of the link X -+ Z and therefore 

is in fact the evidence contained in Z. Hence, we may write, 

'\z(x) = L(Z = zolx) (2.24) 

It is clear that given X = x, Z rv (ax+mw,CT&r) and hence, with Cl: such that 2:'\z(x) = 1, we 
x 

may write, 
Cl: -~(zo-ax-mw)2 

'\z(x) = --2-e 2a w 
21WW 

(2.25) 
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2.4 More on Belief Propagation 

2.4.1 Organized strategies 

The Belief Propagation algorithm presented in the previous section will result in information being 

passed 10caIly from one node to the other and is guaranteed to converge provided the assumption 

of a singly connected graph is not violated. The convergence time is proportional to the network 

diameter. It is also possible to externaIly direct node activations and so to speak organize the 

computations necessary for the network to reach equilibrium. In general this can be done with 

relative ease. Simply choose a node in the network and designate it the center node. Graph 

equilibrium can then be reached in two steps: bringing aH the information to the center node 

where it is combined and subsequently redistributed to the rest of the network. Figure 2.8 shows 

this process. Belief Propagation in two steps has the disadvantage that knowledge of the entire 

(a) Bringillg information in ta the center nude. (b) Bringing information out of the center node. 

Fig. 2.8 Belief Propagation in two steps. 

network's topology is required and hence breaking in spirit the assumption that computations are 

to be local. However it does provide the advantage at the end of the second step, aH nodes are 

guaranteed to have appropriate posterior distributions. We note that belief updating in two steps 

in nothing more than a particular organization of computation of Pearl's Belief Propagation. 

2.4.2 Belief Propagation and the inference problem 

In the context of the general inference problem, namely the problem of estimating the values for 

a set of unobserved random variables given sorne data, Belief Propagation is in fact nothing more 

than an efficient, graphicaIly based solution to the problem. Referring back to equation 2.19 and 

assuming aIl alphabet cardinalities of the random variables to be equal to q, we note that Pearl's 

algorithm solves the inference problem on singly connected networks with O(qe+l) computations 
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where e is the maximum number of parents of any node. This stands in sharp contrast with the 

O(qm) computations, where m is the number of unknown random variables, which is required by 

the brute-force method of working from the joint distribution. 

Interestingly, other algorithms which also solve the inference problem turn out to be particu

lar instances of Belief Propagation. Consider for example the hidden Markov Chain problem, 

where an unobserved Markov Process X is to be estimated from its corresponding point-wise 

noisy observation pro cess Y. The appropriate Bayesian network is shown in figure 2.9. Applying 

Fig. 2.9 Bayesian network for the hidden Markov chain problem. 

Belief Propagation in two passes with X 5 as a center node will result in a linear-time exact solu

tion which is functionally entirely identical to the BCJR algorithm [31]. As a final step, similarly 

to the BCJR algorithm, the posterior marginaIs computed by Belief Propagation may be used to 

provide maximum-a-posteriori (MAP) estimates for each Xi given the observations Y = y, that is 

Xi = argmaxx P(Xi = xly)· All of the ab ove applies as well to Kalman smoothing. A particular 

organization, on the other hand of node activation will yield the Kalman filtering solution, namely 

if the nodes are activated in the following order: YI, Xl, Y2 , X 2 , ... ,Y5 , X 5 . Similarly, Kalman 

prediction of order T turns out to be a particular organization of node activation: activate Yi, Xi 

for i = 1 ... t and finally activate X t+l to Xt+T' Finally a small modification pertaining to the 

messages and update rules of Belief Propagation will result in a solution, equivalent to the Viterbi 

algorithm. 

Belief Propagation seems therefore to be a generalization of the forward-backward algorithm. 

In the context of decoding, other algorithms have also been shown to be particular instances of 

Belief Propagation. In particular, McEliece, MacKay and Cheng [32] have recently shown the 

surprising yet intuitively meaningful relation between turbo (iterative) decoding and Belief Prop

agation. Specifically, it was shown that if Belief Propagation is applied to the Bayesian network 

corresponding to a parallel concatenation of two or more codes, the turbo decoding algorithm 

immediately results. McEliece also shows that the saIne connection holds for other previously 

known iterative algorithms. 
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2.4.3 Graphs with loops 

In general, during the construction of a Bayesian network, it is possible that undirected cycles 

(loops) are formed. An undirected cycle is simply defined as a path in which the first node cor

responds to the last. In such a situation the network is no longer singly connected and hence 

Belief Propagation is not guaranteed to yield correct posterior marginals. Indeed, the derivation 

of equations 2.16,2.17 and 2.18 heavily depends on the assumption that evidence obtained from 

different parents is independent and the same applies for evidence obtained from different children. 

There are essentially three methods that would allow us to cope with loops in such a situa

tion and still compute correct posterior marginals. The first, node aggregation, collapses a set of 

particular nodes into one, so that a particular loop may be broken. In the ex ample of figure 2.3, we 

may collapse nodes X2 and X3 into a single node representing (X2, X3) and the network becomes 

singly connected. This method works well on small loops but requires exponential storage space 

with the number of compounded variables. The second, stochastic relaxation, assumes that each 

processor examines the states of the nodes within its screening neighborhood, computes its belief, 

then randomly selects one of these values with the computed probability. The value chosen is then 

interrogated by the neighbors upon computing their beliefs, and so on. This scheme requires a 

very long time before reaching steady state. Finally, the third, conditioning, is based on rendering 

the network singly connected by instantiating a selected group of variables: as many networks as 

possible values of the selected group are created, Belief Propagation is carried out on each of those 

networks and the results are finally combined. This solution suffers from combinatorial explosion. 

For a rigorous discussion of the above the reader is referred to [27] 

If on the other hand, we ignore the existence of loops and apply Pearl's Belief Propagation 

algorithm, messages may circulate indefinitely arOlU1d the graph and applying the two step strat

egy will generally result in incorrect posterior distributions. However, in some situations, say 

for calculating the posterior marginal distribution of a bit, one does not necessarily need the 

exact distribution, as long as the final hard decision is correct. Therefore, in some cases, one can 

sim ply ignore the presence of loops and carry on with Belief Propagation. This misunderstood 

phenomenon is explored in detail in [28] and [29]. 



Chapter 3 

Joint Source-Channel Decoding via 

Bayesian N etwor ks 

36 

In the first chapter, we saw that a joint decoding strategy applied to systems that employ separate 

encodings will necessarily result in gains with respect to a tandem decoding strategy: particularly 

so in the case where a variable length source code is used. The optimal joint decoding solution 

was exposed and the flagrant need for sub-optimal joint decoders became apparent. In the last 

chapter, Bayesian networks were seen to provide a convenient graphical framework for the analysis 

of statistical problems. Belief Propagation, on the other hand, was shown to provide an efficient 

solution to the general inference problem and in the context of decoding, we saw that Belief 

Propagation may be used to yield MAP estimates of the quantities of interest. Here, we show how 

the joint decoding problem may be approached and analyzed within the framework of Bayesian 

networks. The discussion is based on the developments of Guyader et al. [20] who originally tackled 

the problem. However an attempt was made to reformulate and expande upon their ideas and 

derivation, for completeness and for the purposes of better understanding the algorithm proposed 

in the subsequent chapter. We begin this chapter with a brief section reiterating the problem of 

joint decoding as defined in our setting. Next, we show how the Bayesian network representation 

of the entire coding chain may be derived. A section expanding on the possibility of adapting the 

derived graph for the purposes of decoding under various restrictions follows. Finally, we show 

how iterative decoding may be applied on the resulting graph to yield a sub-optimal yet robust 

joint decoding algorithm applicable to both CLC's and VLC's. 

2005/05/12 
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3.1 The Joint Decoding Problem 

We recall that in our predefined setting, of systems employing separate encodings, the joint de

coding problem reduces to that of providing an estimate of the transmitted data based on the 

redundancy introduced by the channel coder and on either one or both the residual redundancy 

of the source coder and the source memary. Rence, figure 3.1 is the paradigm of our discussion. 

Our general assumption of a discrete finite-alphabet source is maintained. The source pro duces a 

Fig. 3.1 The joint decoding problem. 

symbol sequence S, which is in turn mapped via a binary source coder to a sequence of (informa

tion) bits U. The bits are sent to a channel coder, possibly systematic, producing the sequence 

(U, R) where R is the sequence the redundant bits. The sequence (U, R) is subsequently sent 

through a channel producing the observation sequence (Y, Z). The only assumptions that we 

impose on the channel are that it admits a binary input alphabet and that its set of conditional 

probability measures is causal: hence we are restricting ourse Ives to non-feedback, binary-input 

channels. The design of the last element, producing an estimate S of S, is the point of concern. 

We note that in the case that the channel coder is a non-systematic one, we may simply drop U 

and its corresponding observation Y from (U, R) and (Y, Z) respectively. 

3.2 Deriving the Bayesian Network Representation of the Co ding Chain 

In this section, we will show the detailed derivation of the Bayesian network corresponding to the 

entire coding operations under the aforementioned assumptions. 

3.2.1 Preliminaries 

We will further assume that the source is given by a first arder, stationary Markov process l gener

ating symbols S = SI, S2, ... , SN. We assume in addition that the source symbols are mapped via 

a block length one2 , binary source coder into a sequence of information bits U = Ul, U2 , ... , U K. 

We denote by Un the codeword corresponding to Sn. Note that we have not specified whether 

the source coder is of the CLC or the VLC variety. In the CLC case with codewords of length, l, 

we have that K = Nl, whereas in the VLC case, K is in fact a random variable given knowledge 

of N and vice-versa. Rence, in general, we note the presence of two time indices that are not 

1,2 these additional assumptions on the source and source coder may be relaxed as will be seen later 
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deterministically related: the symbol dock index, denoted by n, and the bit dock index, which 

we denote by k. 

Deriving the Bayesian network corresponding to the Markov source and the source coder for 

the symbol clock is relatively straightforward. Simply consider the natural ordering imposed by 

the symbol dock time index, namely Sl,U1 ,S2,U2, ... ,SN,UN. This ordering results in the 

following factorization of the joint distribution, 

N 

P(Sl, ... ,Sn, Ul, ... , un) = P(Sl)P(U1IS1) il P(unlsn)P(SnISn-l) (3.1) 
n=2 

The corresponding Bayesian network is shown in figure 3.2. Unfortunately, attempting inference 

Fig. 3.2 Symbol dock model for the Markov source and source coder. 

on such a graph leads to inescapable difficulties. First and foremost, knowledge of the transmitted 

symbol sequence length, N, is required. Second, in the VLC case, each Un represents an unkown 

variable number of bits. Hence the very structure (topology) of the Bayesian network, if we were 

to exp and Un into its corresponding bit sequence, is random. For these reasons, it becomes much 

more convenient to derive the appropriate Bayesian network based on the bit clock time index. 

In that case, as will be seen, knowledge of the received bit sequence length, K, is required - a 

less restrictive assumption for the later context of decoding - and the topology of the Bayesian 

network, given K, is entirely deterministic. In the following, we derive the Bayesian network of 

the entire co ding chain based on the bit dock time index. 

3.2.2 The Markov source and source coder 

To design the bit dock Bayesian network corresponding to the Markov source and the source 

coder, we must focus on U and analyze the structure of its distribution. This was essentially 

achieved in section 1.3.2, for the particular example the Markov source of three symbols. Indeed, 

the state-space representation of the source and that of the source coder may be combined in a 

single product state-space model. The result is an FSM with the information bits Ui depending 

on the transition from one state to another. Expanded in time, an order one Markov pro cess is 
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obtained, once again with the information bits depending on the transition of states. 

We now derive this process formally for a general or der one Markov source and a general source 

coder. The state-space representation of the source is readily available: it consists of the set S 

of possible source symbols, namely the source alphabet, and the transitions from one state to 

another is given by the family of source transition probabilities P(SnISn-l)' A natural starting 

point is then to derive the state-space representation of the source coder. Recalling the definition 

of a binary source coder as an injective mapping from a symbol space to the power set of {a, 1}, 

we let T be the binary tree representing the source coder mapping, where a transition upwards 

corresponds to a codeword or information bit of 1 and a transition downward corresponds to a ° 
bit. We begin first, for simplicity, by overspecifying the source coder's state-space and define it 

as the set V of all vertices of T where a transition from one vertex (state) to the next produces 

the appropriate information bit. Now, we define the state-space X of the product Markov source 

and source coder model as X = S x V. The corresponding state variable is given by X = (r, V) 

where r, with instance 'l'(i) E S, is a variable representing the last completed symbols and V, 

with instance v(j) E V, is variable representing the current vertex of T describing the construction 

of the next symbol. The state transition probabilities are then fully determined by the source 

transition probabilities and the topology of T. Specifically, for every ,,(c), we consider the tree T 

and determine the transitions of all possible ('l'(i) , v(j)), producing the information bits, according 

to P(SnISn-l = 'l'(c)). This is shown in figure 3.3 for the three symbol source of section 1.3.2. 

(y(]), v(l)) 

0.3 

(y(C) , vIOl ) 
(y(2) , v(3)) 

• 
0.6 

0.7 

(y(C), V(2)) 

0.4 

(y()), V(4») 

Fig. 3.3 Example of determining the transition probabilities of X. We have assumed 
a three symbol source with symbols corresponding to ,(1) = '1',,(2) = '01',,(3) = '00'. 
The last completed symbol is ,(cl for generality and P(SnISn-1 = ,(cl) = (0.3,0.42,0.28) 
resulting in the labeled transitions. 
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We note that in general, when vU) is a leaf vertex, then 1(i) is necessarily the corresponding sym

bol. Hence, not al! pairs b(i), v(j)) are possible. In other words, we can consider that knowledge 

of v(j) is irrelevant when a new symbol terminates and we denote such states by b(i), v(O)) where 

v(O) is the root vertex of T. Thus, the state-space of X is reduced to X = S x 'J where 'J is the set 

of inner vertices of T. For the example of the three symbol source the state-space X is given by, 

X = {b(l), v(O)), b(l), v(2)), 

(1(2) , v(O)), (1(2) , v(2)), 

(1(3) , v(O)), (1(3) , v(2)) } (3.2) 

We have therefore completely specified the state-space representation of the Markov source and 

source coder. The result is a Markov process X with the transitions from X k to X k+l pro duc

ing the information bit Uk. Once again, using the natural ordering imposed by the bit dock, 

X o, Xl, UI , X2, U2 , ... , X K , UK, the joint distribution factors according to, 

K 

P(xo, ... , XK, UI,···, UK) = P(xo) II P(uklxk-l' Xk)P(Xklxk-l) 
k=l 

(3.3) 

The corresponding Bayesian network is shown in figure 3.4. We note that the conditional prob-

Fig. 3.4 Bit clock model for the Markov source and source coder. 

abilities P(uklxk-l' Xk) and P(xklxk-l) can be specified by matrices formed with the sets of 

corresponding probability mass functions p(uklxk-l' Xk) and p(xklxk-l). The prior probabilities 

P(xo) may be specified by, 

p(XO) = . 
{

Pi Xo = (1(i) , v(O)) 

o otherwlse 

where Pi is the a-prior probability of the source symbol corresponding to 1(i). As long as the 

total bit sequence length K is known, the topology of the Bayesian network is weIl defined for 

both CLC's and VLC's. Thus the resulting graph is generally amenable to Belief Propagation. 

Unfortunately, since a product Markov source and source coder model was derived, the complexity 
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is increased. lndeed, with l'JI:::, ISI, we have that 1:X1 = ISII'JI :::' ISI 2
. Rence Belief Propagation 

on the given Bayesian network would result in complexity of approximately O(ISI 4 ) (see previous 

chapter, section 2.4.2). Rowever the complexity should not be evaluated so loosely because the 

transition matrix of X is in fact very sparce as each state is allowed only two possible transitions. 

Therefore a careful handling of the product model, should result in a complexity of O(ISI 2), 

equivalent to the complexity of the Markov source alone. More on this point later. 

3.2.3 The channel coder 

Deriving the bit dock Bayesian network for the channel coder is a much easier exercise. We 

sim ply rely on a state-space representation of the channel code. This directly captures the case 

of block codes and convolution al codes. As for any other kind of channel code, a state-space rep

resentation, if not immediately available, may always be derived. It is assumed that the channel 

code has X' as a state variable and with no loss in generality, we assume a bit dock recursion 

for the state equation with the output depending on the current state. Rence the channel coder 

is seen to take information bits one at a time and yields a number of redundant bits, possi

bly none. We denote by Rk for simplicity the sequence of redundant bits, Rk,l, Rk,2,"" Rk,M, 

obtained at time k. Once again, using the natural ordering imposed by the bit dock, namely 

Xb, U1 , X~, RI, U2, X~, R2, ... , UK, X~, RK, the joint distribution over the random variables in

volved factors according to, 

K 

P(x~, ... , x~, Ul,···, Uk, 1'1,···, rK) = P(x~) II P(rklx~)P(x~lx~_l' Uk)P(Uk) (3.4) 
k=l 

The corresponding Bayesian network is shown in figure 3.5. We have assumed for simplicity that 

x~ x; x~ x~ 

Fig. 3.5 Bit dock model for the channel coder. 

a rate 1/2 systematic channel code is used. Rence each Rk corresponds to one bit as shown. If for 

example a rate 1/3 systematic channel code were to be used, there would be two nodes emanating 
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from X~, one for Ri,l and another for Ri,2 and so on. The conditional probabilities P(rklxU 

P(x~lx~_I' Uk) may be derived; the same is true for the prior distribution P(x~) since we can 

initialize the channel coder to a known state. Again, if knowledge of the bit sequence length K 

is known, the topology of the graph representing the channel coder is well defined. Thus Belief 

Propagation is generally applicable and will result in a complexity of 0(IX'1 2 ). 

3.2.4 The entire coding chain 

With the Bayesian network of the Markov source and source coder, and the Bayesian network of 

the channel coder available, deriving the graph corresponding to the entire co ding chain is straight

forward. The quantities involved are X, U, X', R. Choosing the natural ordering imposed by the 

bit dock on the random variables as X o, Xb, Xl, UI, X~, RI, X 2, U2, X~, R2,···, XK, UK, Xk-, RK, 

the joint distribution factors according to, 

K 

P(xo)P(x~) II P(rklx~)P(x~lx~_I' Uk)P( uklxk-l, Xk)P(Xklxk-l) 
(3.5) 

k=l 

The appropriate graph is shown in figure 3.6. The graph shows the Bayesian network corre-

source 
+ source coder 

channel coder 

Fig. 3.6 Bit dock model for the entire co ding chain. 

sponding to the entire coding chain. The connections (directed links) between the variables are 

intuitively meaningful. Indeed, we could have essentially drawn the graph without any consid

eration to the factorization of the joint distribution by noting which variables a particular node 

depends on, not in the statistical dependence sense but rather in the sense of causality. Rence 

for ex ample Xo causes Xl, both of which cause UI. The same may be said about Xb which 

along with U1 causes X~, which finally causes RI. Although this is a natural consequence of 
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using the ordering imposed by causal time, it nonetheless demonstrates that a Bayesian network 

corresponding to a particular ordering graphicaIly reveals the conditional dependence relations of 

the random variables. Another relevant remark lies in the fact that the only source of randomness 

of the above Bayesian network is in the variables Xi and their inter-connections, with aIl other 

variables being deterministicaIly related. 

We reiterate the fact that the topology of the above graph is deterministic and weIl defined 

as long as the total transmitted sequence length, K is known. And the graph is therefore again 

amenable to Belief Propagation in that sense for both CLC's and VLC's. Since the graph rep

resents the serial connection of the Markov source and source coder model with the model of 

the channel coder, the constituent components have been isolated and the number of required 

computations are O(IXI 2 ) + O(IX'1 2 ) where the first term is with respect to the Markov source 

and source coder model and the last one is with respect to the channel coder model. 

FinaIly, the assumption of an order one stationary Markov source Sand that of a block length one 

source coder may be relaxed to higher order stationary pro cesses and source codes with greater 

block length. The steps to foIlow in the derivation of the model for the coding chain are entirely 

analogous and networks with the same topology are obtained. This cornes at the cost of an 

increase in the state-space 1 XI refiecting the increase in the coding complexity. 

3.3 Joint Decoder 

In light of the previous section, graphs with the same topology as the one in figure 3.6 may be 

built to represent any coding chain employing separate source and channel coding on a general, 

finite order, stationary Markov source. Therefore, such a topology may be constructed by the 

receiver in order to achieve a joint decoding scheme. The only quantities lacking for a complete 

specification of the graph would then be the conditional probability measures quantifying each 

link. Rowever, as previously discussed, the only source of randomness in the Bayesian network 

of the entire co ding chain is in the variables Xi with their inter-connections depending on the 

source transition probabilities; all other links are deterministicaIly dependant on the source coder 

and the channel coder. Rence, as long as the decoder assumes knowledge of the source transition 

probabilities, it will have access to a fully specified graph representing the dependencies between 

aIl variables of the coding chain. This is in addition to the knowledge of the source coder, the 

channel coder and the length of the received bit sequence K, all of which are usually assumed in 

any deterministic decoding rule. In the foIlowing, we will assume that the decoder has access to 

a fully specified graph like that of figure 3.6. 
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3.3.1 Incorporating knowledge of the received data stream 

The decoder, by definition, also has access to the received data stream. Here, we show how such 

knowledge may be incorporated into the graph available to the decoder. We assume that the 

observation on the transmitted data to be given by, 

(3.6) 

where ai, bi E IR;.. We further assume that Vi, Ui are uncorrelated gaussian random variables with, 

EVkVj = a~Okj where a~ E lR, k, j E Z+ 

EUkUj = a;Okj where a~ E lR, k, j E Z+ 

This captures the general case of the Rayleigh fading channel. Since observation Yi is statistically 

dependent on Ui alone and since observation Zi is also statistically dependent on Ri alone, we 

may simply include them as shown in figure 3.7. We note that we did not label the nodes Yi, 
Zi for simplicity. However they are depicted differently in order to emphasize the fact that their 

functionality, inherently different from that of remaining nodes, is as discussed in our derivation 

in section 2.3.3. In the case that the channel coder is not a systematic one, we may simply 

remove2 the pointwise observations Yi on the information bits. We included a constraint on symbol 

Fig. 3.7 Incorporating observation of the transmitted bit sequence. 

termination that essentially ensures that the last variable X K = (r K, V K) indeed corresponds to 

2from here on we will always show pointwise observations on Ui but the reader should keep in mind that they 
may be removed. 
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the end of a symbol. Thus the depicted node sends a constant message Àterm(XK) to X K 

{ 

1 VK = v(O) 
Àterm(XK) = o otherwise 

45 

This important constraint in the VLC case, allowing the synchronization of symbols both at the 

beginning and the end of the data stream may be removed in the CLC case. Interestingly enough, 

this synchronization cornes for free, so to speak, and does not have to be based on RVLC's. 

3.3.2 Incorporating knowledge of the transmitted symbol sequence length 

Another important information, which in the VLC case may assist the joint decoder, lies in the 

knowledge of the transmitted symbol sequence length N. This information may be incorporated 

by considering the process W = (X, C) that is to replace X. In the bit clock time realization 

of that pro cess W k = (Xk, Ck) = (fk , Vk, Ck), Ck represents the number of completed symbols 

at time k. The transition probabilities of (X, C) immediately follow so that including knowledge 

of N amounts to setting the constraint on symbol termination to deliver a constant message 

Àterm(WK) to WK 

À ( ) 
_ {1 VK = v(O), CK = N 

term WK - o otherwise 

Incorporating knowledge of N cornes at a dramatic increase of the state-space for the Markov 

source and source coder model. Indeed, IWI = N· IXI = N· ISII'Jl It does come with the added 

advantage of relaxing the earlier assumption that the source is stationary. Indeed assuming that 

the probabilities P(snlsn-d are varying, changing with the n th symbol, with Ck now available, the 

decoder may appropriately select the source transition probabilities and accordingly determine 

how to quant if y the links between W k and Wk+l' 

In the remainder of this text, we will denote W by X, in order to maintain a more uniform 

notation, and since the discussion to follow is applicable to both cases. When necessary, the 

context should make it clear to the reader which case is being treated. 

3.3.3 Applying Belief Propagation on the available graph 

To recapitulate, a fully specified Bayesian network is available at the decoder along with pointwise 

observations, that is the received data, on the redundant bit sequence Rand possibly on the 

information bit sequence U, in the case a systematic channel code is used. We have redrawn the 

graph in figure 3.8 for reference. Ideally, given observations Y = Y and Z = z and supposing Belief 
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Fig. 3.8 Belief propagation for decoding. 

Propagation were to converge to correct posterior marginaIs, we would have successfully designed 

a reduced complexity3, optimal joint decoder with the belief of node Uk yielding P(Uk Iy, z) for the 

kth information bit, whilst incorporating aU possible sources of redundancy: the source memory, 

the residual redundancy of the source coder and the redundancy introduced by the channel coder. 

Setting the estimate Ûk of Uk as, 

Ûk = argmax P(Uk = ukly,z) (3.7) 
Uk 

provides us with MAP estimates on the bits Uk. Estimating the symbols, would simply involve 

estimating the beliefs of the appropriate nodes X k . In the CLC case, with codewords of length 

l, X nl necessarily corresponds to Sn and hence its belief would yield P(snly, z). Whereas in the 

VLC case, one must interrogate the beliefs of aU of the nodes Xk and combine the information 

to yield P(snly, z). Note however that the situation is in fact mu ch simpler given that we seek a 

(hard) MAP estimate Sn of Sn, 

Sn = arg max P(Sn = snly, z) (3.8) 
Sn 

This quantity may be obtained by setting the value of each X k to the state Xk that exhibits the 

highest posterior probability, that is Xk = argmaxxk P(Xk = xkly, z). Since the states that cor

respond to a symbol termination are distinguishable in that Vk = v(O), an estimate S immediately 

follows. When knowledge of the symbol sequence length N is not incorporated, S may contain 

either more or less than N symbols. 

Unfortunately, the situation is somewhat more bleak. Indeed, the graph is not singly connected. 

3 when compared with the optimal joint decoding of [15] 
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In fact, it contains a great deal of loops (undirected cycles) and thus Belief Propagation is not 

guaranteed to converge to correct posterior marginaIs. One solution that would render the graph 

singly connected is given by the aforementioned method of node aggregation. If we were to com

bine each pair Xk-l and Xk with X~ into a single node, the result would be a graph that is a tree. 

Belief Propagation on such a graph would converge to correct quantities however this solution is 

equivalent to that proposed by [15] and suffers from the same intractable complexity issue. The 

other methods that allow Belief Propagation to converge on non-singly connected networks -

conditioning and stochastic relaxation - are equally if not more computationally expensive. It 

appears that the Bayesian networks framework reveals the same conclusion as the discussion of 

the first chapter, namely that suboptimal joint decoders are required. 

3.3.4 Turbo joint decoding scheme 

One possible solution for a suboptimal joint decoder is inspired by the principles of seriaI turbo 

codes. Indeed, it was noted that the simple introduction of an interleaver, between the Markov 

source and source coder model and the model of the channel coder, increases the average length 

of the loops making short undirected cycles become long. This is shown in figure 3.9. A graphical 

interleaver 

x~ 

Fig. 3.9 Introduction of an interleaver to increase the average length of the loops. 

model containing undirected cycles with a large average length may be locally approximated bya 

singly connected network. This takes into account the fact that the correlation between the nodes 

is likely to decay exponentially fast with distance. Rence, Belief Propagation may be applied on 

the graph to yield good approximations to the correct posterior marginaIs. In agreement with the 

traditional architecture of turbo algorithms, an iterative scheme is designed that alternates the 

use of the channel coder model and the joint Markov source and source coder model. Specifically 

the graph is divided into two subgraphs with the information bit sequence U reproduced as shown 

in figure 3.10. Figure 3.10(a) shows the first step of the first iteration. U~ is used to denote the 
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interleaver ) 
~~~--~------~ 

.~ 
.. 

( interleaver ) 
-----------------. 

(a) channel coder subgraph. (b) Markov source and source coder subgraph. 

Fig. 3.10 Iterative scheme 

interleaved version of the information bits Uk. For this particular subgraph, a-prior distributions 

pO( Ui) are required. An i.i.d equiprobable distribution is assumed. Belief Propagation, on the 

channel coder subgraph, is carried out in two passes at the end of which an estimates pO(ukly, z) 

are obtained. Following standard extrinsic information computations, the following quantity is 

defined, 
E ° ( 1 ) _ pO(ukly,z) 

xtUk z y - P(ukIYk) (3.9) 

representing the remaining information, regarding Uk, carried by Z once Yk is known. At the 

second step of the first iteration, the Ext~k(zly) quantities are passed, to the Markov source and 

source coder subgraph (figure 3.10(b)), as pointwise measurements or observations on the Uk'S. 

They are depicted as gray squares. Once again, Belief Propagation is carried out in two passes 

yielding estimates pl(Ukly, z). This closes the loop of the first iteration. As for the new prior 

p2 (Uk) to be sent to the channel coder as the first step of the second iteration, the quantity used 

is, 

(3.10) 

The second iteration is carried out by repeating the same steps. 

We note that, in terms of the larger context of joint decoding, this solution represents a sub

optimal, limited complexity, joint decoding scheme taking into account three types of redundan

cies present in the coding chain: the source memory, the source coder's residual redundancy as 

weIl the redundancy introduced by the channel coder. 
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Chapter 4 

An Enhanced J oint Source Channel 

Decoder: Theory and Results 

In this chapter we present, analyze and discuss a new joint source channel decoding scheme. The 

proposed algorithm, which relies on the principles of iterative decoding, is largely inspired from the 

developments of the previous section and takes into account three types of information: the source 

memory, the residual redundancy of the source coder as weIl as the redundancy introduced by 

the channel coder. We begin this chapter by presenting our joint decoding scheme. Specifically, 

we derive an equivalent Bayesian network representation of the coding chain and demonstrate 

that iterative decoding may be carried out on the resulting graph via a specific ordering of node 

activation. Next, we show how the proposed equivalent graph has superior convergence properties, 

as it not only relaxes astringent statistical independence assumption imposed by the graph in [20] 

but it also contains far less undirected cycles. This is followed by an analysis which shows that our 

proposed scheme is in fact drastically reduced in computational complexity. Finally, computer 

simulations results are presented which substantiate our predicted performance gains. 

4.1 Proposed Algorithm 

Here, we present a new iterative joint source-channel decoding algorithm. The algorithm's nov

elty is based, on the one hand, on an equivalent Bayesian network representation of the coding 

chain and on the other hand, on a different approach with regards to to extrinsic information 

computations as weIl as the method of iteration. 

2005/05/12 
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4.1.1 An equivalent Bayesian network representation of the co ding chain 

In the following, we der ive an equivalent Bayesian network representation of the coding chain, a 

representation based on a simple yet potent observation. 

Recall the derivation in section 3.3.3 of the product Markov source and source coder model. 

The resulting state-space was originaUy given by X = S x V where S is the state-space of the 

source - in other words, the set of aU possible source symbols - and V is the set of the ver

tices of the binary tree T representing the source coder's mapping. The state variable X is then 

specified by the pair X = (f, V), where f, with instance ')'(i) , is a variable representing the last 

completed symbol and V, with instance v(j), is a variable representing the current vertex of T. 

Hence, the state-space representation provided states (')'(i) , v(j)) whose transitions, dictated by 

the source transition probabilities P(SnISn-l) and the topology of T, yield the information bits. 

It was further noted that when v(j) is a leaf node, ')'(i) must necessarily be the corresponding 

symbol. This essentially implies that when v(j) is a leaf vertex, it should be substituted with v(O) , 

which denotes the mot vertex of T. Hence the state-space of X was reduced to X = S x 'J where 

'J is the set of inner-vertices of T. 

The point of interest here is that the dependence of the information bits on the transitions 

of states (')'(i) , v(j)) is a mere formality. Indeed, since the transitions of states is dictated by the 

topology T of a binary tree, each state is aUowed only two possible transitions out. More to the 

point, aU of the transitions into astate (')'(i) , v(j)) pro duce the same output. This is immediately 

obvious for the case when v(c) is any inner vertex that is not the root vertex v(O), since in fact only 

one transition is aUowed to any state b(i),v(c)), namely, from the state b(i),v(c')), where v(c') is 

the inner-vertex connected to v(c). As for the case of the root vertex v(O), there are S transitions 

into astate b(i), v(O)), aU of which indicate the completion of the symbol corresponding to ')'(i). 

Hence they necessarily produce the same output, namely the last codeword bit of the source 

symbol corresponding to ')'(i). In figure 4.1, we show for the sake of clarity, aU of the aUowable 

transitions for our previous example of the Markov source of three symbols of section 1.3.2. 

It is clear that since aU possible transitions into a given state (')'(i) , v(j)) result in the same output 

bit, one can equivalently consider the output bit to be a function of that given state and not of 

the transition. In essence, we have a Markov process X entirely identical to that of Guyader et 

al.[20] with respect to its state-space, its state transition probabilities P(xklxk-l), but with the 

fundamental difference that the information bit Uk depends on Xk alone. 
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Fig. 4.1 Ail allowable transitions for the three symbol source in ter ms of the topology 
of the binary tree of symbols T. From the top to bottom, the first tree assumes the last 
completed symbol to be ,(1), the second assumes the last completed symbol to be ,(2), 

whilst the third assumes ,(3) to be the last completed symbol 
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The corresponding re-factored Bayesian network for the Markov source and source coder model 

is shown in figure 4.2. Note that this Bayesian graph, equivalent to the graph shown in figure 

Fig. 4.2 New Bayesian network representation for the Markov source and source coder 
model equivalent to the graph shown if figure 3.4. 

3.4, is as well valid in general for any order-one Markov source of symbols and any block length 

one binary source coder. Once again, as long as the total bit length K is known, the topology 

of the graph is entirely deterministic and includes both CLC's and VLC's. In fact aU of the 

previous developments of the previous chapter hold with the only difference that the conditional 

probabilities P(Uk!Xk-1,Xk) are now replaced with the conditional probabilities P(Uk!Xk) that 

are available through the set of corresponding probability mass functions. In terms of the joint 

distribution on the variables Xi and Ui, the graph represents the foUowing factorization, 

K 

P(xo, ... , XK, U1,···, UK) = P(xo) II P(Uk!Xk)P(Xk!Xk-1) 
k=l 

( 4.1) 

As for higher order Markov sources and source coders with larger block length, graphs with the 

same topology as that of figure 4.2 may be derived 1. 

It is convenient at this point to consider the larger context that enables one to move from a 

state-space representation with the output depending on the transition of states to one where the 

output depends solely on the given state. Indeed, it is generally always possible to move from 

one type of representation to the other. This may be done one state at a time, by considering aH 

the possible transitions into the state. Supposing there is a total number q of possible outputs 

resulting for those transitions, we split our state into q new states, one for each possible output. 

We can now consider each of the new q states to be associated with one of the outputs. This 

is shown in figure 4.3. The transitions into our original state are redirected to one of the new 

corresponding states. The transitions out of our original state are reproduced for each of the q 

states. This procedure is then repeated for aH remaining states. We note that in general such a 

Isee section 3.2.4 
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Fig. 4.3 Transforming a state-space representation with the output depending on the 
transition of states to one where the output depends on the given state. Letters a,b,c,d,e are 
used to generically denote probabilities, whereas the outputs, here ch os en to be binary, are 
denoted by /0 or /1. 
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transformation will result in an increase of the state-space by as much as a factor of q. lndeed, 

ISgivenl :::; qlStransl where Sgiven is the state-space of a representation with outputs depending 

on the given state and Sgiven is the state-space of the corresponding representation with outputs 

depending on the transition of states. However when aU of the transitions into astate yield the 

same output, as is the case for the Markov source and source coder model, such a transformation 

cornes with no cost: ISgivenl = IStransl. 

With a new bit-dock equivalent Bayesian network for the Markov source and source coder model, 

we may now derive an equivalent Bayesian network representing the entire coding chain. The 

channel coder is not changed so that the result is a seriaI concatenation of the two model as 

shown in figure 4.4. 

Fig. 4.4 New bit dock Bayesian network representation for entire coding chain equivalent 
to graph shown in figure 3.6. 
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The graph represents the following factoring of the joint distribution, 

K 

P(xo)P(x~) II P(rklxUP(x~lx~_l' Uk)P( Uk IXk)P(Xklxk-l) 
(4.2) 

k=l 

Again, given knowledge of the received bit length sequence K, the topology of the graph is 

deterministic for both CLC's and VLC's. Finally, such a graph may be built to represent any 

coding chain employing separate source and channel co ding on general finite-order Markov sources 

and comes with no cost with respect to the state-spaces of the variables involved. 

4.1.2 Towards a fully consistent solution for turbo joint decoding 

As discussed in the previous section, if we assume that the decoder has knowledge of the source 

transition probabilities P(snlsn-d that it has available to it a fully specified graph as the one in 

figure 4.4. We may incorporate knowledge of the received data stream and Belief Propagation 

may be applied in order to yield MAP estimates on the information bits Uk and on the sym

bols Sn. Unfortunately, once again, we are left with a non-singly connected graph, one that in 

facts contains a significant number of loops (undirected cycles). The turbo decoding solution, 

as proposed by Guyader et al. [20], presents itself as a viable alternative that would yield good 

approximations to the posterior marginal probabilities P(xkly,z) and P(ukly,z). lndeed, we may 

insert an interleaver, just as described earlier, between the Markov source and source coder model 

and the model of the channel coder. This again increases the average length of the undirected 

cycles, so that the graph may be better locally approximated by a singly connected network. This 

is shown in figure 4.5 where we have as weIl included the pointwise observations Yi on Ui and Zi 

on Ri as weIl as the constraint on symbol termination. 

interleaver 

x~ 

Fig. 4.5 Inserting an interleaver for the new Bayesian network available to the decoder. 
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Iterative decoding may then be applied by alternating the successive use of the channel coder 

model followed by the Markov source and source coder model as discussed in section 3.3.4. How

ever we propose a different approach for the iterative scheme. SpecificaIly, we do no separate 

the graph into two subgraphs and compute the extrinsic information quantities extemally to the 

belief propagation process. Rather we leave the graph connected yet interleaved and we achieve 

iterative decoding via a specifie ordering of llode activation. 

In particular, we start by assuming that the continuous observation nodes Yi and Zi are already 

activated so that they are readily providing the À.Yi (Ui) and À.zi h) messages to Ui and Ri. Note 

that we can also assume that aIl of the Ri nodes are already activated and will not be activated at 

any later time. This is done to simplify the iterative scheme and cornes with no loss in generality 

since the only useful information that node Ri provides to the rest of the graph is through the 

message À.Ri (x~), which is not affected by the incoming message to Ri. Hence the À.Ri (x~) are in 

fact always constant. AlI other messages are initialized with equal weight on every coordinate. 

In terms of the information bits, this results in equiprobable initial probabilities pO(Uk)' The 

iterative scheme then consists of activating nodes U1 to Uk, performing Belief Propagation in two 

passes on the X~ nodes, activating nodes Ul to Uk again and finally perform two passes on the 

X k nodes. This closes the loop of the first iteration and the process is repeated for the subsequent 

iterations. The pt iteration is shown in Table 4.1 below. We have used y} to denote the vector 

Yl, .. ·,Yk· 

Table 4.1 Iterative scheme as a particular ordering of node activation: 1 st iteration 

Node Activated BEL(·) Node Activated BEL(·) 
(Channel coder) (Markov source & source coder) 

U1 U1 

pO(ukIYk) PO(ukly, z) 
UK UK 

Xb X o 

pO(x~IY~, z~) pO ( X k 1 y~ , z~) 
X' K X K 

pO(x~ly, z) pO(XkIY, z) 
X' 
° 

X o 

As the second iteration begins, the activation of nodes U1 to UK yields pl(Ukly, z) and we con

tinue the process. Note that if we wish to read out the MAP estimate on the bit sequence U at 

the end of the first iteration, we must use pl(Ukly, z) and hence activate the nodes Uk one more 

time. The same applies to the subsequent iteratiollS. 
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A justification with respect to our iterative scheme is in order. First, we recall that since the 

graph is interleaved, node Uk is in general no longer connected to node X~ but to say node X{. 

This is shown in figure 4.6. Let us consider the first iteration as node Uk updates its belief in the 

x; 

Fig. 4.6 Extrinsic information as Belief Propagation messages. 

first set of node activations for the Markov source and source coder model. !ts belief is given by, 

BEL( Uk) = aÀX{ (Uk)ÀYk (Uk) L P( ukl xk) 1TUk (Xk) ( 4.3) 
Xk 

Rewriting the equation in terms of the quantities defined in table 4.1, we have, 

BEL(Uk) A pO(ukly, z) 

alÀX' (Uk)ÀYk (Uk)pO (Uk) 
1 

a2 ÀX' (Uk)pO (Uk IYk) 
1 

(4.4) 

where the first equality fûllows from the law of total probability and since message 1TUk(Xk) was 

initialized with equal weight on each coordinate. The second equality immediately follows from 

Bayes' law. Rence, the message ÀX{(Uk) which node Uk receives from XI, is in fact given by, after 

normalization, 

ÀX'(Uk) = pO(ukIY, z) 
1 PO(ukIYk) 

( 4.5) 

and is therefore equal to Ext&k (ZIY) defined in the previous chapter which represents the standard 

quantity used in iterative schemes: that is the remaining information, regarding Uk, carried by Z 

once Yk is known. As for the first step of the second iteration, when node Uk updates its belief it 

sends a message 1TX'(Uk) to Xl'. At this point message ÀX'(Uk) is unchanged and Uk has received 
1 1 
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all its additional information from Xk. Rence message 7fx' (Uk) is simply given by, 
l 
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( 4.6) 

Note that in [20], the quantity defined is in fact, P(Uk)7fX'(Uk), however it is clear that P(Uk) 
l 

is already contained in the additional information that X k sends to Uk and as such, it is part of 

pl(UkJy, z). 

The intuition behind our scheme reduces to the fact that the messages on the link Uk -+ X{ 
contain disjoint information and as such, should be used as the appropriate extrinsic information 

quanities. Our proposed scheme cornes with the added advantage of forgoing both the additional 

overhead of separating the graph into two subgraphs with the bit sequence U reproduced, as 

well as the overhead required in computing the extrinsic information quantities externally to the 

Belief Propagation process. Our proposed scheme also shows that a particular organization of 

node activation in Belief Propagation immediately results in a turbo joint source-channel decod

ing algorithm and is in agreement with the developments of McEliece [32]. Rence it represents 

a fully consistent solution to the iterative (turbo) joint source-channel decoding problem within 

the Bayesian networks framework. 

4.2 Theoretical Discussion on the Proposed Algorithm 

In this section, we discuss and analyze sorne of the properties of our proposed algorithm. We 

begin by giving exposing the improved convergence properties that essentially follow from the 

new graph itself. Next we present a complexity analysis that demonstrates that our algorithm 

has a significantly reduced computational complexity. 

4.2.1 Improved Convergence Properties 

Relaxing astringent assumption 

The new equivalent graph relaxes a relatively stringent assumption. Consider figure 4.7(a) repre

senting Guyader et al's Markov source and source coder model. Indeed, when node Uk updates 

its belief, it assumes that the information from Xk and X k- 1, in the form of messages 7fXk (Uk) 

and 7fXk+l (Uk), is statistically independent. This is clearly not the case since there exists a link 

between X k and Xk+l. The same may be said about no de X k which assumes the information 

from Uk-l and Uk to also be statistically independent. Thus, Belief Propagation on such a graph 

will generally result in incorrect posterior probabilities for aIl the nodes in the Markov source and 
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source coder model. Moreover, Belief Propagation in two passes will generally not result in graph 

equilibrium. Essentially the problem lies in the fact that the graph contains undirected cycles. 

~+I 

ï \ 
t" (x,) t, (x,) 

(a) Guyader et al.'s [20] graph (b) Our proposed graph 

Fig. 4.7 Messages in the Markov source and source coder model 

On the other hand, our equivalent graph is singly connected and is in fact a tree. Hence beHef 

propagation in two passes is guaranteed to converge to correct posterior probabilities and astate 

of equilibrium will be reached. In terms of iterative decoding, the aforementioned problem in 

Guyader et al's Markov source and source coder model is still present and the corresponding 

sub-graph will not yield correct posterior probabilities according to the observations Y = Y and 

pointwise extrinsic information measurements Ext~k (ZIY). However, our equivalent graph solves 

this problem with an nodes reaching their correct posterior probabilities according to the obser

vations Y = Y and the À x ; (Uk) = Ext~k (ZIY) messages representing the extrinsic information. 

Hence we expect a better performance for our algorithm in decoding. 

Reduction in the number of undirected cycles 

The proposed algorithm cornes with the added advantage that our equivalent representation of 

the entire coding chain contains significantly fewer undirected cycles (loops). This is immedi

ately apparent when one compares the two graphs as shown in figure 4.8 since an of the loops 

{Xk-l, X k, Uk, Xk-d have been effectively removed. However, a by-product of the removal of 

these loops is the elimination of many other loops in the overall graph. Such is the case of 

an the loops {Xk,Uk,X~,X~+l,U~+l,Xd for example. The number of loops for the graph in 

figure 4.8(a), assuming a bit sequence of length K, can be computed2 to be, 

2K+2 - 3K - 4 (4.7) 

2we do not show the derivation because they bare little pertinence to the overall understanding 
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x~ x; x; x~ 

R2 

(a) Guyader et al.'s [20] graph (b) Our proposed graph 

Fig. 4.8 Comparing the number of undirected cycles in the overall graphs 

This exponentially growing number of loops stands in sharp contrast with the number of loops 

for our proposed graph in figure 4.8(b), which was found3 to be, 

1 
-K(K - 1) 
2 

(4.8) 

Figure 4.9 shows the number of loops in our equivalent graph as a percentage of the number of 

undirected cycles in the graph of Guyader et al. [20]. This drastic reduction in the number of 
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Fig. 4.9 Number of loops in our equivalent graph as a percent age of the number of loops 
in the original graph [20] for different lengths, K, of source sequences in bits. 

loops necessarily implies that our graph may be better locally approximated by a singly connected 

graph. This is in turn implies a better approximation of the posterior probabilities of each node 

and thus a better performance in the context of decoding. 

3we do not show the derivation because they bare little pertinence to the overall understanding 
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4.2.2 Computational Complexity Reduction 

In this section we show that our proposed algorithm is significantly reduced in computational 

complexity. First we consider the case when a black box4 belief propagation is applied on the 

graph available to the decoder. In such a case, it is clear from our previous discussion in section 

2.4.2, that both algorithms have an order of complexity O(IXI 2)+O(IX'1 2 ). For this reason we must 

consider instead the number of required operations - multiplications and additions. However, 

as was noted earlier, this case is not very realistic since the conditional probability matrices that 

quant if y the links in the graph are very sparse. To this end, we also evaluate the reduction in 

complexity of our proposed algorithm when an efficient implementation of Belief Propagation 

is applied. The number of operations per no de activation in both these cases is examined and 

derived in detail in Appendix A, which also contains an analysis with respect to the sparse nature 

of the conditional probability matrices. The reader is encouraged to refer to Appendix A for a 

more lucid reading of this section. 

Black box implementation 

The number of operations for the different nodes in our graph is shown in table 4.2 and were 

determined from equation A.lO. We note that only the second order terms were kept for each 

node. We also note that we did not consider the operations necessary in the activation of nodes 

Yk , Zk and Rk since they need only be activated once and more importantly, these operations are 

negligible with respect to the overall complexity. All of these assumptions can be shown to yield 

approximations, in the comparison of complexities, accurate to 1 percent age point. 

Table 4.2 Comparison of operations - multiplications and additions - per node activa
tion of the proposed algorithm and Guyader et al.'s [20]. Black box case. 

Proposed scheme Guyader et al. 's scheme 

N odeActivated Multiplications Additions Multiplications Additions 

Xk 21XI 2 21XI 2 21XI 2 21XI 2 

Uk 81XI 2 61XI 2 

X~ lOlX'I 2 61X'I 2 1OIX'I 2 61X'I 2 

The reduction in computational complexity comes mainly from the fact that since node Uk is no 

longer connected to Xk-l and X k but rather to X k alone, the operations it performs are now 

proportional to IXI instead of the IXI 2 exhibited by Guyader et al. 's [20] algorithm. If we were 

to compare the complexities of the Markov source and source coder models, we note that Belief 

4here, we mean that al! messages are to be computed as in equations 2.16, 2.17 and 2.18, regardless of any 
particular structure of the underlying pmf's (see Appendix Al. 
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Propagation in two passes results in two activations of node X k and two activations of no de Uk. 

Rence we have that the number of multiplications performed by our algorithm as a fraction of 

the number of multiplications performed by [20] is, 

21Jel2 21Jel 2 

21Jel2 + 81Jel2 = 10lJel2 = 20% 
(4.9) 

whereas the fraction of additions performed by our algorithm is, 

21Jel2 21 Je l2 

21Jel2 + 61Jel2 = 81Jel2 = 25% (4.10) 

Thus, our equivalent Markov source and source coder model co mes with the added advantage 

of reducing by 80% the performed multiplications and 75% the performed additions. As for the 

overall decoder, its complexity is dictated by IJe'I and by IJeI. In figure 4.10, we consider the 

case where the joint decoder has no knowledge of the length of the transmitted symbol sequence 

N, hence IJeI = ISII'J1- We assumed further that l'JI ~ ISI, a very good approximation for all 

binary source coders5 , and hence we have IJeI ~ ISI 2. Finally, in figure 4.10, we assumed that the 

channel coder has 5 bits of memory so that IJe'I = 25 and IJeI was varied by varying the source 

alphabet cardinality ISI. The decrease in the curves is due to the fact that the channel coders's 
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Fig. 4.10 Number of computations in our equivalent graph as a percentage of the number 
of computations in the original graph [20] versus the source alphabet cardinality. The joint 
decoder has no knowledge of N. 

complexity is becoming negligible with respect to the complexity of the Markov source and source 

coder so that the asymptotic reduction in operations is that reduction of the Markov source and 

source coder model. Note that a 16-symbol source already yields the asymptotic reduction. When 

5generally, one will find one inner-vertex for one leaf vertex 
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knowledge of N is incorporated, we have IXI ~ NISI 2 . In such a scenario, for any value of N 2: 20, 

the channel coder's complexity becomes negligible at a source alphabet cardinality of 4. Renee 

we can consider that the asymptotic reduction in computations is always obtained. 

Efficient implementation 

The matrices involved in the Bayesian network representation of the co ding chain are very sparse. 

Therefore, a black box comparison of complexity is not very realistic and we should instead 

consider an efficient implementation comparison of complexities. In Appendix A, we show the 

detailed derivations of the number of operations required per node activation assuming the con di

tional probability matrix quantifying the node's links to its parents contains ( non-zero elements. 

Appendix A also establishes upper bounds on the number of non-zero elements for aU the matrices 

involved in the co ding chain, shown here for reference. 

(P(UkIXk) = IXI 

(P(UkIXk-l,Xk) = 21XI 

(P(Xklxk,uk) = 21X'I 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

where (A denotes the number of non-zero entries in matrix A. Using these upper bounds and 

equation A.20, we can determine upper bounds on the operations that each node needs to perform 

for both the proposed algorithm and the algorithm in [20]. These are shown in table 4.3. Note that 

Table 4.3 Comparison of operations per node activation of the proposed algorithm and 
[20]. Upper bounds on operations for an efficient implementation 

Proposed scheme Guyader et al.'s scheme 

N odeActivated Multiplications Additions M ulti pli cations Additions 

Xk 121XI SIXI lSIXI 10lXI 
Uk 31XI 31XI 141XI SI XI 
X~ 161X'I 91 X'I 161X'I 91X'I 

we did not include the operations for nodes Yk , Rk and Zk because they need only be activated 

once and therefore the contribution of their operations to the overaU complexity is negligible. Note 

also, sorne approximations were made with respect to equation A.20 with sorne terms ignored. 

Rowever these approximations can aU be shown to yield comparisons in complexities accurate 
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to 1 percent age point. The efficient Implementation brings the order of complexity down to 

O(IXI) + O(IX'I)· If we were to compare the complexities of the Markov source and source coder 

models, we note that Belief Propagation in two passes results in two activations of node X k and 

two activations of node Uk . Rence we have that the fraction of multiplications performed is, 

121XI + 31XI 151XI 
181XI + 141XI = 321XI = 47% 

(4.15) 

whereas the fraction of performed additions is given by, 

81XI + 31XI 11IXI 
10IXI + 81XI = 181XI = 61% 

(4.16) 

Rence when using an efficient Implementation, our Markov source and source coder model is 

still significantly less complex with a reduction of 53% for the multiplication operations and a 

reduction of 39% in the addition operations. Figure 4.11 shows the percent age operations that our 

overall decoder performs with respect to the overall decoder in [20] for the case that the decoder 

has no knowledge of N. Again, it was assumed that the channel coder has 5 bits of memory so 

that IX'I = 25 and IXI ~ ISI 2 was varied by varying ISI. We note that in the case of the efficient 
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Fig. 4.11 Number of computations in our equivalent graph as a percent age of the number 
of computations in the original graph [20] versus the source alphabet cardinality. 

Implementation, the channel coder's complexity becomes negligible at a 32-symbol source and the 

overall decoder then yields the reduction in complexity of the Markov source and source coder 

model. As for the case where knowledge of N is included so that IXI = NISI 2 
, we have the same 

situation as in the black box case. In particular, for any value of N 2: 20, the channel coder's 

complexity is negligible for a 4-symbol source and hence we can consider that the asymptotic 

reduction in complexity is always achieved. 
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4.3 Comparative Study: Results and Discussion 

In this section, we evaluate and compare the performance of the proposed iterative scheme with 

the existing one in [20]. In order to do so computer simulations were carried out, implement

ing both these schemes. On the transmission end, the system consists of a Markov, order one, 

source of symbols, followed by a block length one Huffman source coder, followed by a recursive 

systematic convolutional channel code: the last two components were separated by a variable 

length interleaver. Specifically, the source used is of the Gauss-Markov variety with zero-mean 

and unit-variance and a correlation factor of 0.9. The source was quantized using a 3-bit uniform 

quantizer on the interval in order to generate discrete finite alphabet symbols. The Huffman 

encoder was designed according to the source statistics and yields an expected length of 2.54 bits 

per source symbol. The recursive systematic channel code is derived from a mother code of rate 

1/2 defined by the polynomials F(D) = 1 + D + D2 + D4 and G(D) = 1 + D3 + D4 . The code 

was augmented to a rate 3/4 by an appropriate puncturing of the redundant bit stream Rk. The 

variable length interleaver was based on a mother interleaver which was randomly generated by 

ordering a sequence of uniform random numbers. The channel was assumed to be AWGN and a 

binary phase shift keying (BPSK) modulation was employed. 

In aIl of the figures to follow, we plotted bit error rate (BER) and symbol error rate (SER) 

for different Eb/ No with Eb representing the coded bit energy. The first curve in aIl of the figures 

corresponds to the case where no channel coding is employed: the received bit stream is there

fore hard decoded assuming independent bits, to obtain the BER, followed by a hard Huffman 

decoding to obtain the SER. The second curve represents the commonly used tandem decoding, 

namely MAP channel decoding assuming an input of independent bits, followed by hard Huffman 

decoding. The subsequent curves show the first to fourth iterations of either the proposed iterative 

scheme or that in [20] which was implemented verbatim. We have organized the results into two 

sections for clarity. The first to follow shows the case where blocks of 50 symbols were decoded 

at a time and the second is the case where blocks of 200 symbols were decoded at a time. 

4.3.1 Blocks of 50 symbols 

Joint Decoder has no knowledge of N 

Here we considered the case where the joint decoder does not have access to the knowledge of the 

transmitted symbol sequence length N = 50. Figure 4.12 shows the obtained result. The first two 

graphs on top show the BER and SER, from left to right, of our proposed iterative scheme whilst 

the two bottom graphs show the BER and SER, from left to right, for the iterative scheme in [20]. 
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Fig. 4.12 BER and SER for different Eb/NO (coded) and for both the proposed iterative 
scheme and the one in [20]. The joint decoder has no knowledge of N = 50. 
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We can immediately note that the scheme proposed by Guyader et al. [20] suffers from a lack of 

convergence, with respect to the iteration. Indeed it can be seen that around 3.5 dB iterations 

2 through 4 actually yield a worse performance than the first iteration. On the other hand, the 

proposed algorithm suffers from no such issue and exhibits either a gain or no gain at aIl from 

one iteration to the next. In calI cases, it seems that little gains can be achieved by subsequent 

iterations (after the fourth that is). It is relatively easy to see that the proposed algorithm signif

icantly outperforms that of [20] and has far greater synchronization power. Figure 4.13 compares 

the fourth iterations of both schemes in terms of BER and SER. 

10-5 L-_---'~ _ ___' __ ---' __ ---' 

o 3 4 

(a) BER VS.Eb/NO (coded). (b) SER VS.Eb/NO (coded). 

Fig. 4.13 Comparing the fourth iteration of the proposed scheme with that in [20]. BER 
and SER for different Eb/NO (coded). The joint decoder has no knowledge of N = 50. 

We note that, at the fourth iteration, our algorithm cornes with a gain of 1.5 dB in BER and 

more importantly a gain of 2 dB in SER when compared with the fourth iteration of [20]. We 

recall that this gain is in fact obtained whilst at the same time reducing the number of performed 

computations. In the case of our simulations, where an efficient implemention of Belief Propaga

tion was employed and an 8-symbols source used, the gain was obtained with a reduction of 45% 

in the number of multiplications and 30% in the number of additions. 

Joint Decoder incorporates knowledge of N 

Here we considered the case where the joint decoder has access to the knowledge of the transmitted 

symbol sequence length N = 50. Figure 4.14 shows the obtained result. The first two graphs on 
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Fig. 4.14 BER and SER for different Eb/NO (coded) and for both the proposed iterative 
scheme and the one in [20] . The joint decoder has knowledge of N = 50. 
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top show the BER and SER, from left to right, of our proposed iterative scheme whilst the two 

graphs on bot tom show the BER and SER, for the iterative scheme in [20]. Interestingly, it seems 

that incorporating knowledge of N has a significant effect on Guyader et al. 's [20] algorithm. 

Indeed, it do es seem that this added constraint has rectified the earlier observed problem of 

convergence. Recalling the discussion in section 4.2.1, the algorithm in [20] imposed an assumption 

with respect to the independence of messages which is violated in actuality and yields to incorrect 

posterior probabilities for the bits Uk and variables Xk. It is likely that the added knowledge 

of N compensates for this problem yielding better approximation of the posterior probabilities 

in question. Again we can note that in aH cases, very litt le gains are incurred after the second 

iteration. This being said, we can note that under the additional knowledge of N = 50, our 

algorithm still outperforms that in [20] as shown in figure 4.15. At the fourth iteration, we note 

(a) BER VS.Eb/NO (coded). (b) SER VS.Eb/NO (coded). 

Fig. 4.15 Comparing the fourth iteration of the proposed scheme with that in [20]. BER 
and SER for different Eb/NO (coded). The joint decoder has knowledge of N = 50. 

a gain of approximately 0.5 dB for both BER and SER with respect to the fourth iteration 

of [20]. When using an efficient implementation of Belief Propagation this gain is obtained with 

a reduction of 53% in the multiplications and 39% in the addition operations performed by an 

efficient implementation of [20]. 
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With respect with the previous results, the algorithm in [20] shows very significant gains (relatively 

to itself), whereas our proposed algorithm shows more modest gains. Figure 4.16 compares the 

fourth iterations of aIl cases for reference. Note the interesting phenomena that the BER for the 

o 

..... no channel coding 

...... MAP tandem decoding 

....,. 4th iter. : [20] without knowledge of N 
-O' 4th iter. : proposed without knowledge of N 
...... 4th iter. :[20] with knowledge of N 
-e- 4th iter. : proposed with knowledge of N 

2 
Eb/No 

3 

(a) BER VS.Eb/NO (coded). 

4 o 

..... no channel coding 

...... MAP tandem decoding 

....,. 4th iter. : [20] without knowledge of N 
-O. 4th iter. : proposed without knowledge of N ... 
...... 4th iter. :[20] with knowledge of N . 
-e- 4th iter. : proposed with knowledge of N 

2 
Eb/NO 

3 

(b) SER VS.Eb/No (coded). 

Fig. 4.16 Comparing the fourth iteration, ail cases, of the proposed scheme and that 
in [20]. BER and SER for different Eb/NO (coded).Blocks of N = 50 symbols. 

4 

proposed without knowledge of N is slightly improved when compared with [20] that includes 

knowledge of N. Whereas the corresponding SER curves are reversed. This is attributed to 

the fact that the algorithm in [20] with knowledge of N has greater synchronization than our 

own with no knowledge of N. This phenomena also shows more generally that BER is not as 

appropriate a measure as SER when dealing with VLC's: indeed only one bit error may result in 

de-synchronization and lead to multiple symbol errors. 

4.3.2 Blocks of 200 symbols 

The same simulation were also carried out with blocks of N = 200 symbols decoded at a time, in 

order to evidence the gains obtained with lm'ger decoding block length. The results are shown in 

Appendix B. In general aIl graphs show gains with respect to their N = 50 counterparts. This is 

expected and is the case for any decoding scheme, namely that decoding performance improves 

with larger blocks of data decoded at a time. The same general trends as for the corresponding 
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case for N = 50 may be observed. Figure 4.17 succinctIy shows the fourth iterations of an cases . 

o 

....... no channel coding 
-+- MAP tandem decoding 
"V. 4th iter. : [20J without knowledge of N 
-O' 4th iter. : proposed without knowledge of N ... 
-T- 4th iter. : [20J with knowledge of N . 
-&- 4th iter. : proposed with knowledge of N 

2 
Eb/No 

3 

(a) BER VS.Eb/NO (coded). 

4 o 

...... no channel coding 
-+- MAP tandem decoding 
"V. 4th iter. : [20J without knowledge of N 
-O. 4th iter. : proposed without knowledge of N 
-T- 4th iter. : [20J with knowledge of N . 
-&- 4th iter. : proposed with knowledge of N 

2 
Eb/NO 

3 

(b) SER VS.Eb/NO (coded). 

Fig. 4.17 Comparing the fourth iteration, al! cases, of the proposed scheme and that 
in [20]. BER and SER for different Eb/NO (coded). Blocks of N = 200 symbols. 
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Looking at the case where the joint decoder has no knowledge of N = 200, we note that our 

algorithm provides with an additional gain of 1.5 dB for the BER and 3 dB for the SER when 

compared with [20]. Note that this gain was obtained while performing with a reduction of 45% in 

the number of multiplications and 30% in the number of additions (for efficient implementations). 

Looking at the case where knowledge of N is incorporated, our algorithm provides with a gain 

of 0.5 dB in the BER and 1 dB in the SER. This with the asymptotic reduction of 53% in the 

multiplications and 39% in the addition operations (for efficient implementations). 

Note also that the aforementioned phenomena - with respect to the reversaI of the SER curves 

when comparing the proposed algorithm with no knowledge of N and the algorithm in [20] with 

knowledge of N - is still observed. 
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4.4 In Retrospect 

The proposed algorithm has been shown to yield significantly better results along with a drastic 

reduction in computational complexity when compared to the existing one [20J. The synchroniza

tion power of our algorithm when the joint decoder do es not incorporate knowledge of N is great 

enough to consider the possibility of using it in that case alone. Since incorporating knowledge 

of N, results in an N-fold increase in operations for the case that an efficient implementation is 

employed, this would represent a tremendous advantage in terms of complexity. 

Consider figure 4.16(b) which shows the SER's for the fourth iterations of both algorithms and 

in aH cases for N = 50. We note that when compared with the algorithm in [20J that includes 

knowledge of N, the proposed algorithm with no knowledge of N shows a performance loss of ap

proximately 1 dB at high Eb/NO and less then 0.25 dB at low Eb/NO. However, this minimalloss 

cornes with the benefit that the proposed algorithm is performing as litt le as 1% of the operations 

when an efficient implementation is used in both cases. On the other hand, comparing with the 

proposed algorithm that includes knowledge of N, we note a performance loss of 0.75 dB at low 

Eb/ No and 1.5 dB at high Eb/ No: in this scenario, the proposed algorithm with no knowledge of 

N is performing as little as 2% of the operations when an efficient implementation is used in both 

cases. 

An even stronger case can be made by considering figure 4.17(b) for N = 200. If we opt to 

use the proposed algorithm with no knowledge of N, there is no loss at low Eb/ No and a loss of 

1 dB at high Eb/NO when compared with [20J with knowledge of N. However in this scenario, 

the proposed algorithm is performing approximately as little as 0.25% of the operations when an 

efficient implementation is used in both cases .. 



72 

Chapter 5 

Other Improvements and Preliminary 

Results 

In this chapter, we briefly present some preliminary ideas and resul ts with respect to the pro

posed algorithm of the previous chapter. Many of the suggestions are not inter-related and it was 

therefore difficult to impose a structure upon them that would permit a natural flow of thought. 

For this reason, each of the following sections should be viewed as much as possible independently 

from one another. We begin with a brief section on the possibility of further reduction in compu

tational complexity with no loss in performance, particulary in the case where the joint decoder 

has knowledge of N. Next, we show, more generaIly, how significant computational savings may 

be obtained with negligible losses in performance: this involves mainly, performing early hard 

decisions on those information bits deemed reliable. Next, we present preliminary results on the 

effects of the joint decoder possessing either no knowledge of the symbol transitions probabilities 

P(snlsn-l) or incomplete knowledge. This section is followed by a brief discussion, along with 

preliminary results, on the effects of the recursive convolutional channel code and the interleaver. 

FinaIly, we show how an equivalent graph representing the coding chain may be built. 

5.1 Further Reductions in Computational Complexity 

We have already mentioned that when knowledge of the received symbol sequence length, N, 

is included in the joint decoder, we have IXI = NISII'JI which results in an N-fold increase in 

computations for the case that en efficient implementation of belief propagation is used. Indeed, 

the probability rnatrix P(XkIXk-d, shown in Appendix A, then contains 2NISII'J1 and the ma

trix P(UkIXk) contains NISII'JI non-zero entries. Hence when node Xk activates, in an efficient 

implementation, it will perform its operations on aIl of those non-zero entries and hence assumes 

2005/05/12 
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that any state X k = h, v, c) is possible. The same applies for node Uk which will consider aH 

possibilities of Xk. However it is clear for example that if the minimum codeword length of the 

source coder is lmin = 10, then node X 5 need not verify against states h, v, c) with c i- O. In 

general, given a minimum codeword length lmin and a maximum codeword length lmax, node X k 

need only verify against states h, v, c) with, 

-- <c< --
r k l r k l lmax - - lm in 

(5.1 ) 

with k = 1, ... ,K. The same applies for no de Uk. In essence, in terms of the matrix P(XkIXk- 1 ) 

shown in appendix A, each node Xk should perform its operations on only those non-zero entries 

found in column rk/lmax 1 to column rk/lmin 1 +1. Again the same applies to Uk with its P(UkIXk) 

matrix. In other words, X k need only perform operations on 2( rk/lmin 1- rk/lmax 1 +1) ISIITI entries 

as opposed to 2NISIITI and Uk need only perform operations on Uk/lmin 1 - rk/lmax 1 + l)ISIITI 
entries as opposed to NIS IITI entries. This represents a tremendous reduction in computational 

complexity for the Markov source and source coder model. This would represent a decrease in 

operations, with respect to the efficient implementation, by a factor of 

I_k l - I_k l + 1 
Ilmin Iimax 

N 
(5.2) 

per level k, that is for X k and Uk. Note that this is not hard to implement and requires only 

that each link Xk-l --7 X k be quantified not with P(XkIXk-l) but rather with the appropriate 

sub-matrix. And the same holds for the X k --7 Uk link. The sub-matrices may aH be determined 

once offiine and come with the added benefit of decreasing the overall storage space. It is difficult 

to exactly determine overall reduction in complexity of Markov source and source coder. Note 

however, that the percent age computations equation above is more or less linearly increasing with 

k, hence a rough approximation of the overall average percentage computations, 

, N / 2 l_, N / 2 l+1 
Ilm'tn Ilmax 

N/2 
(5.3) 

For the simulated 8-symbol source that exhibited lmin = 2, lmax = 6 and with N = 200 results in 

a decrease in computations by 65% from the efficient implementation at no cost in performance. 

Yet another possibility is to consider the possible values for q from the end of the data stream, 

which knowledge of N, here assumed, allows. In general, with this consideration we will have, 

lK - kJ lK - kJ N- --.- ::;q::;N- --
lmm lmax 

(5.4) 
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with k = 1, .. , ,K. Combining equations 5.4 and 5.1, we have, 

rnax {r-z k l, N -lK -kJ} ~ Ck ~ min {r~l, N -lK -kJ} 
max Zrmn Zmm Zmax 

(5.5) 

with an of the previous developments holding. The only difference is that the possible values for 

Ck are then also a function of the received bit sequence length K, which in turn implies that we 

must compute a set of sub-matrices for each possible value of K. Although this may be done 

offiine, it would unfortunately represent a high increase in storage space. On the other hand, the 

computational savings that such an implementation affords are in the neighborhood of 95%. 

5.2 Bit Simplification 

Another interesting idea for decreasing complexity, cornes from the fact that sorne of the loops 

in the equivalent graphs may be broken 1 if an information bit were to be declared known and 

accordingly set, via a hard decision, to a specifie value of 0 or 1. This is shown is figure 5.1. In 

interleaver 

x~ 
(}----o 

Fig. 5.1 Bit Simplification 

effect those information bits that are so to speak simplified would now deliver constant messages to 

their neighbors and need not be activated any further. The question of when to simplify these bits 

arises. The most natural choices, given the observed performance of the proposed algorithm, is 

either before the first iteration or before the second iteration. Formally, we let e E [0, 1] represent 

a threshold. Simplifying the information bits before the first iteration entails that we perform, 

(5.6) 

lrecall the graphical separation criterion of section 2.2.2 which states that if the linking node is instantiated in 
a Head-to-Tail configuration X k --7 Uk --7 X~, then P(XkIXO = P(Xk ). 
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if maxpO('lLkIYk) > e 
Uk 

otherwise 

and the same hold with pl ('lLk Iy, z) if we were to simplify before the second iteration begins. 

Letting TJ represent the total nurnber of bits simplified, such a scheme would result in a percent age 

operations (for an efficient implementation), 

15KIXI - 7TJIXI + 16KIX'I- 8TJIX'I ( x) 
15KIXI + 16KIX'I 

llKIXI- 5TJIXI + 9KIX'I- 2TJIX'I ( ) ( ) 
llKIXI + 9KIX'I + 5.7 

where (x) denotes multiplication and (+) denotes addition operations. Clearly the performance 

will depend on the chosen threshold e. Sorne preliminary results are shown in figure 5.2. We have 

Bi 10-2 
::: 

Cf) 

- • 2nd iter. 8=0.999 
- 2nd iter. no simplification 

o 3 4 

(a) Performance with thresholds e = 
0.9 and e = 0.999. 
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tion of the Eb/No points, 

Fig. 5.2 Bit simplification before the second iteration with Thresholds e = 0,9 and e = 

0.999 compared with no bit simplification. 

considered the case of the previously simulated 8-symbol Gauss-Markov source, and the joint 

decoder was assumed not to have knowledge of N = 50. Further, we considered effecting the bit 

simplification before the second iteration. Interestingly, we have the surprising result that with 

e = 0.999, a negligible loss in performance (approximately 0.05 dB) is obtained with a significant 

reduction in computations. This behavior is expected the carry through more generally and may 

essentially be explained by the fact that the belief's of most information bits converge quickly 

and with high confidence to either the value of 1 or O. However more simulations are needed in 
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order ta substantiate such a method as well as to verify the behavior of the joint decoder if we 

were to effect the bit simplifications prior to the first iteration. 

5.3 The Effects of Inexact Knowledge of P(snlsn-d 

Recall that our joint decoder, in order to have a fully specified Bayesian network representation 

of the co ding chain, must have access to P(snlsn-d. Such an assumption represents a severe 

constraint in practice since this information is generally not available at the receiver. An in

vestigation with respect to the sensitivity of the proposed joint decoding algorithm to inexact 

knowledge of P(SnISn-1) presents a natural extension. Figure 5.3 shows some preliminary re

sults, again 8-symbol source in the case that the joint decoder has no knowledge of N = 50. 

When a memoryless source is assumed ( modeling the case where the receiver has no knowledge 

of P(SnISn-1) whatsoever), the decrease in performance is severe, underlining the importance of 

inter-symbol correlation in the performance of our algorithm. However, we also simulated the 

case where the p( Sn 1 Sn-1) available at the receiver is given by, 

P(SnISn-1) > 0 

P(snlsn-d = 0 

where CYn is such that L: CYn = 1. In words, the receiver is aware of which symbols Sn are impossible 
Sn 

given Sn-1 and those symbols that are possible are simply assumed to be equally likely. Therefore, 

the only t'rUe information that the receiver has access to is the impossible symbol transitions. In 

0: 
W 
Cf) 

-+- no channel codmg 
.......... MAP tandem decodlng 
...... 4th Iter. memoryless source 
- • 4th 11er. knowladge of impossible transItions 
- 4th iter, knowledge of ail transitions 

3 

Fig. 5.3 The effects of inexact Knowledge of P(SnISn-l). 

this case, the performance decrease is less severe. It is the belief of this author that adapting Belief 
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Propagation so that it maximizes the posterior probability on the sequence of information bits 

(as in Viterbi Algorithm) would result in an improved performance for these simulated cases of a 

source code of the VLC variety. Indeed, the algorithm will then likely have more synchronization 

power. More analysis is needed with respect to this idea. 

5.4 The Effects of the Interleaver and Recursive Convolutional Code 

Studying the effects of the interleaver and the recursive convolutional code may very weIl lead 

to significant insight with respect to turbo-decoding in general. Recall that we have originally 

defined joint decoding as a problem that may treated separately from the problem of joint coding. 

The idea was that joint decoding may be performed on systems that employ tandem de co ding in 

or der to take into account the residual redundancy of the source coder and the source memory. 

However, in our search for such a joint decoder from the Bayesian network setting, it became 

apparent that the insertion of an interleaver between the source coder and the channel coder 

would result in a better performance. If the combination of an interleaver and recursive channel 

coder is necessary in order to obtain gains with respect to the tandem decoding strategy, this would 

imply that we have actually designed a joint source channel codingjdecoding scheme rather than 

a joint decoder. Preliminary results in figure 5.4, where the 8-symbol source is simulated for the 

case that the joint decoder has no knowledge of N = 50, indicate otherwise. Indeed, the use of 

-t- no channel coding 
....... MAP tandem decoding (non-recursive code) ..... 
- 4th iter. : non recursive channel code 
- . 4ith iter. : recursive channel code 

o 4 

(a) Placing a non-recursive systematic 
convolutional channel coder. 

(b) Removing the interleaver. 

Fig. 5.4 The effects of the interleaver and recursive convolutional code. 
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a non-recursive convolutional still yields significant gain with respect to the corresponding MAP 

tandem decoding. Removing the interleaver has an interesting effect: with a loss at low Eb/NO 

and a small gain at high Eb/ No. This most likely indicates a poor design choice for our interleaver. 

Interesting work lies in the effect of an improved interleaver design. 

5.5 Anti-Causal Graph 

Finally, note that the Bayesian network representation of the coding chain was in all cases derived 

assuming the natural ordering of the random variables imposed by causal time. An interesting 

idea is then to consider other possible orderings with their resulting graphs. One such ordering is 

to assume (note that this is extremely counter-intuitive) the channel co ding operation to happen 

before the source co ding operation. The ordering on the random variables is then X',R,U,X. 

The resulting graph is shown in figure 5.5. Interestingly this graph has the same advantageous 

R'i . R'f 
RK 

x;) x; X~ Xl 

Ul U2 UK 

Xo XI X2 XK 

Fig. 5.5 Anti-causal graph. 

properties as the proposed one: it holds the same state-space, exhibits the same number of loops 

and is as weIl reduced in computational complexity when used for decoding. It is expected that 

the same gains will be achieved. 
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Chapter 6 

Conclusion 

We began this text by defining the problem of joint source-channel decoding separately from the 

joint coding problem. This was based on the simple premise that any pmctical system that utilizes 

tandem encoding must necessarily use finite block lengths for the source coder and the channel 

coder. This in turn implies that the received data stream possesses additional redundancies, 

namely the source memory and the residual redundancy of the source coder, that are ignored by 

a tandem decoding strategy. A natural consideration therefore is to consider the design of a joint 

decoder, specifically for such systems, that would take these additional sources of redundancies 

into account. In this context, the optimal joint decoding solution was exposed. Unfortunately 

such a solution, suffering from a state-space explosion, remains intractable, leading to the need 

for less complex and therefore sub-optimal joint decoders. 

Second, we defined Bayesian networks and saw that they essentially provide an intuitive graph

ical framework for the analysis of statistical problems. The algorithm of Belief Propagation, de

rived from first principles, was seen to represent an efficient solution to the inference problem; a 

solution that is guaranteed to converge in linear time as long as it is applied to singly connected 

graphs. Moreover, we saw that Belief Propagation is a generalization of the forward-backward 

algorithm and can be used to provide maximum a-posteriori estimates in the context of decod

ing. Finally, we mentioned the still misunderstood phenomenon of applying Belief Propagation 

to non-singly connected graphs and obtaining approximate posterior probabilities. 

Next, we saw how the joint decoding problem may be approached and analyzed from the 

context of Bayesian networks as previously done in [20]. Specifically, the Bayesian network rep

resentation of the co ding chain - namely the source, the source coder and the channel coder -

was first derived. Subsequently, we saw that the resulting graph along with the corresponding 

conditional probability measures may be made available to the receiver as long as the latter has 

access to the source statistics. With a fully specified graph of the coding chain available, the 

2005/05/12 
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receiver may then implement a joint decoding scheme, by incorporating the received data and 

possibly the length of the received symbol sequence, and applying the algorithm of Belief Propa

gation. Unfortunately it was noted that the graph is non-singly connected and in fact contains a 

significant number of undirected cycles. The iterative solution proposed by [20] was then exposed. 

This entailed inserting an interleaver and splitting the graphs into two sub-graphs - one for the 

Markov source and source coder model and another for the channel coder model. The iterative 

scheme consisted of performing Belief Propagation on the channel coder model, passing exter

nally computed extrinsic information quantities, performing Belief Propagation on the Markov 

source and source coder model and finally passing extrinsic information quantities back to the 

channel coder model and so on. In tenus of the larger context of joint decoding, this solution 

was seen to be a sub-optimal, limited complexity, joint decoding scheme taking into account three 

types of redundancies present in the co ding chain: the source memory, the source coder's residual 

redundancy as well the redundancy introduced by the channel coder. 

Finally, we presented a new joint source-channel decoder that is largely inspired from the 

previously outlined developments. The algorithm's novelty was first based on deriving an equiv

aIent Bayesian network representation of the co ding chain. This new representation relied on the 

simple yet potent observation that the information bits depend on the given state of the Markov 

source and source coder model and not on the transitions of states. Second, we derived a new 

methodology for effecting the iterations. Specifically, we showed that the iterative scheme may be 

implemented simply as a specifie ordering of node activation. This has the advantage of forgoing 

the additional overhead of separating the graph and computing the extrinsic information quanti

ties externally to the Belief Propagation process. The theoretical analysis that followed showed 

that the proposed equivalent graph possesses improved convergence properties when compared 

with [20] as it not only relaxes astringent assumption but it also contains a mere fraction of the 

loops. It was also seen that the proposed algorithm has a significantly reduced computational 

complexity. Finally, computer simulations substantiated our analysis as gains of up to several 

decibels in the symbol error rate were observed along with a drastic reduction in computational 

complexity when compared with [20]. 

Additional possibilities for improvement were also outlined and sorne preliminary results pre

sented. Most interesting was the possibility of further reductions in computational complexities 

for the specifie case where the joint decoder incorporates knowledge of the received symbol se

quence length. It was se en that in such a case the state-variable of the Markov source and source 

coder model need only verify its probabilities against a subset of states as opposed to all states. 

This would represent a tremendous decrease in complexity at no cost in performance. Another 

interesting idea for decreasing complexity, this time with a negligible cost to performance, came 

from performing early hard decisions on those information bits deemed reliable with respect to a 



6 Conclusion 81 

simple criterion. Next, we saw that adapting Belief Propagation so that it maximizes the proba

bility on the sequence of information bits, may lead to a better performance in the VLC case. We 

also saw that a better design of the interleaver will most likely result in a superior performance 

of the proposed algorithm in general, particularly at high Eb/NO. 

Seen in a larger context, the proposed algorithm may be used on any system that employs 

tandem encoding and would provide very substantial gains in performance with respect to the 

commonly used tandem decoding strategy. Although this improvement in performance does 

come at the cost of an increased decoding complexity, the proposed algorithm remains tractable. 

Further, as suggested in Chapter 5, there is still much room for improvements in terms ofreducing 

the computational complexity of the proposed algorithm. With these suggestions implemented, 

the proposed algorithm presents a viable alternative to tandem decoding. 

On a final note, since the proposed algorithm requires knowledge of the source statistics, a 

convenient application may be found in systems designed for the transmission of natural data 

such as speech and images. lndeed, these types of data posses a great deal of correlation and 

they are therefore amenable to probabilistic modeling. With such models available, the proposed 

algorithm is immediately implementable. 
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Appendix A 

Computational Complexity Analysis 

This appendix is intended to support the computational complexity analyses found in the text. 

In the first section we consider the number of multiplication and addition operations required by 

a single node activation with respect to the Belief Propagation algorithm. In the second section, 

we consider the number of operations required assuming the transition probability matrix of that 

node is sparse. Finally, we show the sparse nature of the matrices involved in the Bayesian network 

representation of the coding chain. 

A.l Black Box Implementation of Belief Propagation 

Let node X represents a random variable taking values on the set X. Further, let node X be 

connected to n parent nodes UI , ... , Un and m child nodes YI, ... , Ym. Let the n parents of 

X represent random variables taking values on the set U. Finally, let the m children of X 

represent random variables taking values on the set 21. The steps describing a node activation 

are found in section 2.3.1. Here, we compute the number of operations required for such anode 

activation. Certain assumption were made that violate in principle the supposition of a black box 

implementation. First, we assume that normalization of aIl quantities must be carried out. This 

is mainly because it was noted that without normalization Belief Propagation can quickly result 

in instability. Note also that the quantities 7f(x) and À(x) computed in the first step are naturally 

not to be recomputed when needed later. 
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A Computational Complexity Analysis 83 

STEP I-Belief updating 

Node X must compute its belief according to, 

BEL(x) etÀ(x)7r(x) 

et [ft À Yj (X)] [L P (x 1 u) fI 7r X ( ud ] 
)=1 li 2=1 

(A.l) 

with et such that '2:. BEL (x) = 1. We note that the present form of the equation is an efficient 
x 

factorization and as such we assume the equation to be implemented as written. The number of 

multiplication required is given by, 

nllilnlXI + (m - l)IXI + 21XI (A.2) 

where the first tenu corresponds the multiplications required for the computation of 7r(x) or the 

second bracketed term in A.l. The second term corresponds to the neeessary multiplications to 

compute À(x) or the first bracketed tenu in A.l, while the last term corresponds to the multipli

cations neeessary for normalization. Now, the number of required additions is, 

(Ililn - l)IXI + (IXI- 1) (A.3) 

where the first term corresponds to the additions required in the computation of 7r(x) and the 

last corresponds for the additions neeessary for normalization. 

STEP 2-Bottom-up propagation 

Node X must compute n messages ÀX(Ui) to be sent to each parent Ui according to 

(A.4) 

where (3 is such that '2:. À x (Ui) = 1. Again the equation's form represents an efficient factoriza-
Ui 

tion. Rere we assume the equation is to be implemented as written and we assume further that 

À(x) is already available sinee it was computed in the first step. Renee the number of required 

multiplications is given by, 

n(n - l)llilnlXI + nlXlllil + nllil (A.5) 

where the first term corresponds to the number of multiplications required in the second sum

mation tenu of A.4: this taking into account that those multiplications must be carried out for 

every value of x, every value of 'u and further for the n parents. The second term represents 
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the multiplications neeessary for the first summation term of A.4 taking into account that they 

must be performed for every value of u and the n parents. FinaUy the last term represents the 

multiplications necessary to normalize aU n messages. Similarly, the number of additions is found 

to be, 

n(IUln
-

1 
- l)IXIIUI + n(IXI- l)IUI + n(IUI- 1) 

where each tenu corresponds back to A.4 as discussed. 

STEP 3-Top-down propagation 

Node X must finally compute m messages 7rYj (x) to be sent to each child Yj 

1TYj ( X ) = Œ1T ( x) rr À Yk (x) 
k~j 

(A.6) 

(A.7) 

with Œ such that L1TYj (X)x = 1. Here we assume that 1T(X) is already available sinee it was 

computed in the first step. Assuming m of these messages need to be computed, the number of 

multiplications is then simply given by, 

(A.8) 

And the number of additions is given by, 

m(IXI- 1) (A.9) 

Total Computations 

The total computations, for the activation of node X is given by summing the appropriate equa

tions and yields, 

{ 

n21UlniXI + nlUI (IXI + 1) + IXI(m + 1) + m2
1XI 

(n + l)IUln iXI + mlXI- (m + n + 1) 

multiplications 

additions 

(A.lO) 



A Computational Complexity Analysis 85 

A.2 Efficient Implementation of Belief Propgation for Sparse Matrices 

It is often the case that the conditional probability matrix quantifying a a node's links to its par

ent is sparse. In such a scenario, the most efficient implementation of Belief Propagation would 

simply consider summing those elements for which P(XIUl, ... , un) are non-zero. In this section, 

we consider the number of computations that would be required assuming that the conditional 

probability matrix has a total of ( non-zero entries. We assume further that those non-zero 

entries are symmetrically distributed in the sense that any one-dimensional row or column of 

P(XIUl,' .. , un) contains the same number of non-zero elements. We assume the operations nec

essary for normalization are to be included. Note again that the 1T(X) and À(x) quantities are 

computed only once, say for the first step. The number of operations required for each step is 

given below. 

STEP I-Belief updating 

BEL (x) ŒÀ(X)1T(X) 

a[D Àyj(xl] [~P(XIUl D KX(Uil] (A.11) 

The number of multiplications needed is, 

n( + (m - l)IXI + 21XI (A.12) 

where the first term corresponds to the multiplications required in 1T(X), the second term corre

sponds to the required multiplications of À(x) and the last term corresponds to the normalization 

operation. The number of additions required is given by, 

(( - 1) + (IXI- 1) (A.13) 

where the first term again corresponds to 1T(X) and the second term corresponds to the additions 

required in the normalization operation. 

STEP 2-Bottom-up propagation 

(A.14) 
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We recall that there are n such messages to be sent, one for each parent Ui . The number of 

required multiplications, recalling our symmetry assumption, is given by, 

(A.15) 

where the first tenu corresponds to the two summations and the last term corresponds to nor

malization. The required additions on the other hand are given by, 

and the terms correspond as before. 

STEP 3-Top-down propagation 

n( + n(llil - 1) 

onr(x) II Àyk(x) 
ki-j 

Clearly, here the operations required are the same as in the black box case. Namely 

multiplications and, 

m(IXI - 1) 

additions. 

Total Computations 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

The total computations, for the activation of no de X assuming ( non-zero entries for the condi

tional probability matrix are then, 

{ 

n(n + 1)( + nllil + (m 2 + m + l)IXI 

(n + 1)( + nllil + (m + l)IXI- (m + n + 1) 

multi pli cations 

(A.20) 

additions 

It is important note that such an implementation would require a storage space for 2( entries, 

that is one entry for the actual value of the non-zero entry in P(XIUl, ... , un) and one entry to 

indicate the location of that non-zero entry in the matrix. 



A Computational Complexity Analysis 

A.3 The Sparse Matrices in the Bayesian network representation of the 

coding chain 
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In this section, we examine the sparse nature of the matrices involved in the Bayesian network 

representation of the coding chain. We draw the reader's attention ta the fact that, here, we break 

from the notation assumed in the previous sections and utilize instead the notation introduced in 

chapter 3. We begin by treating the case where the joint decoder do es not assume knowledge of 

the received symbol sequence sequence length N, and study the corresponding matrices. Next, 

we show the case where knowledge of N is included. Bath the proposed algorithm and the existing 

one [20] are treated. 

A.3.1 Without knowledge of N 

This case is relatively straight forward. Recall that X represents the state-space variable of the 

Markov source and source coder mode. Recall further that it was determined that IXI = ISII'JI, 
where S is the state-space of the source symbols and 'J is the set of aIl inner-vertices of the binary 

tree r representing the source coder mapping. Finally the states of X are given by b(i), v(j)), 

where b(i) represents the last completed symbol and v(j) represents the current vertex of tau 

with the exception that when v(j) is a leaf vertex, it is replaced by the root vertex v(O) . 

It should be immediately clear that each state of X is allowed at ma st two possible transitions, 

one for the next vertex upwards - representing an information bit of 1 -- and one for the next 

vertex downwards - representing an information bit of O. It is indeed possible that the topology 

of r allows less then 2 transitions for a given state or that the conditional probability matrix 

P(snlsn-d has zero entries in which case a transition out of astate may carry zero probability. 

Rowever we assume here that in fact 2 transitions may occur for every state as this will provide 

us with an upper bound on the number of possible non-zero entries of the matrices. Rence, we 

have the immediate result that P(XkIXk- 1 ) contains 21XI non-zero entries: 

(A.21) 

As for the probability matrix, P(UkIXk- 1 , X k), that is ta quantify node Uk'S link ta its parents, 

X k - 1 and Xk, in the scheme of Guyader et al. [20], we note from the previous discussion that 

there are only 21XI possible pairs. Each one of those pairs deterministically yields an information 

bit of either 1 or 0 and hence only one non-zero entry, per pair, is found in the matrix. This gives 

us therefore, 

(A.22) 
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As for the probability matrix P(Uk[Xk) that is to quantify the Xk -7 Uk link of our proposed 

scheme, we note that each of the states of X is deterministically associated with an information 

bit, hence we have, 

(A.23) 

Finally, the channel coder is assumed to possess a sate-space X'. Once again, we have the inter

esting result that sinee each state of the channel coder is aIlowed two transitions out depending 

on the current information input bit. Renee, 

(A.24) 

A.3.2 With knowledge of N 

RecaIl that in this case, the state variable X is to be replaeed with the new state variable W = 

(X, C) where C is a variable representing the total number of completed symbols. Rowever, the 

topology of T imposes yet again the same constraint, namely that each state is allowed at most 

two possible transitions. Renee the previously determined upper-bounds aIl ho Id and we have 

now, 

(P(WkIWk-l) = 2[W[ (A.25) 

(P(UkI Wk-l>Wk) = 2[W[ (A.26) 

(P(UkIWk) = [W[ (A.27) 

(P(X~+lluk,XU = 2[X'[ (A.28) 

In order to somehow clarify the situation,figure A.l shows the relationship between P(Xk[Xk-l) 

and its corresponding P(Wk[Wk-l). The latter is formed by placing the matrix P(Xk[Xk-l) 

along the diagonal of P(Wk[Wk-d and moving those non-zero entries that correspond to a symbol 

termination to the same state X but with an incremented counter C. 
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Hence, using our simplified notation with W denoted by X and the distinction with respect to the 

two is clarified by context, we have that the upper bounds to the non-zero entries of aIl matrices 

involved are given by, 

(P(XkIXk-l) = 21XI 

(P(UkIXk-l,Xk ) = 21XI 

(P(UkIXk) = IXI 

(A.29) 

(A.30) 

(A.31) 

(A.32) 

where X = ISII'JI when no knowledge of N is incorporated and X = NISII'JI when knowledge of N 

is incorporated. And where IX'I is the state-space of the channel coder. On a final note, we point 

out that the non-zero entries in the matrices used in the Bayesian network representation of the 

coding chain are symmetricaIly distributed so that equation A.20 holds. 

2005/05/12 
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Appendix B 

Additional Results 

In this appendix, we present the complete l'esults of 4.3.2 for the case that N = 200 blocks of data 

are decoded at a time. In all of the figures to follow, we plotted bit error rate (BER) and symbol 

error rate (SER) for different Eb/ No with Eb representing the coded bit energy. The first curve 

in all of the figures corresponds to the case where no channel coding is employed: the l'eceived 

bit stream is therefore hard decoded assuming independent bits, to obtain the BER, followed by 

a hard Huffman decoding to obtain the SER. The second curve represents the commonly used 

tandem decoding, namely MAP channel decoding assuming an input of independent bits, followed 

by hard Huffman decoding. The subsequent curves show the first to fourth iterations of either 

the proposed iterative scheme or that in [20] which was implemented verbatim. 
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Fig. B.l BER and SER for different Eb/NO (coded) and for both the proposed iterative 
scheme and the one in [20] The joint decoder has no knowledge of N = 200. 
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Fig. B.2 BER and SER for different Eb/No (coded) and for both the proposed iterative 
scheme and the one in [20] . The joint decoder has knowledge of N = 200. 
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