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Abstract 

The increase of atmospheric CO2 concentration has significant climate impacts, with many 

countries worldwide (including Canada, the United States, China, and members of the European 

Union) having set a net-zero emission goal for the following decades, which makes accurate 

measurements of its spatial and temporal variability crucial. One of the outstanding challenges is 

to observe the vertical distribution and variation of CO2. Although the mean column CO2 is useful 

for many climate applications, CO2 is known to vary vertically depending on the season and time 

of the day, so reflecting this behavior would help reduce biases in column CO2 products due to the 

vertical distribution uncertainty. Having this information would also assist in identifying emission 

sources (e.g., local compared to emissions from another city) and atmospheric processes 

controlling the atmospheric CO2 distribution. This study examines the potential for measuring CO2 

vertical distribution and implementing innovative methods to perform profiling measurements of 

CO2 using a ground-based remote sensing infrared instrument, the Atmospheric Emitted Radiance 

Interferometer (AERI). To verify the feasibility of CO2 vertical profile retrieval, a simulation 

experiment-based assessment was conducted which replicates different instrument settings, using 

a Line-By-Line Radiative Transfer Model (LBLRTM) as the forward model and the Optimal 

Estimation as the inverse method. By evaluating key metrics of the retrieval technique, such as the 

Degrees of Freedom for Signal (DFS), it was verified that vertical profiling of CO2 using AERI is 

possible given the expected CO2 variability at city level and the noise level of the AERI instrument. 

It was also assessed that vertical levels closer to the surface are best sounded, with an accuracy of 

up to 5 ppmv on lower levels (from surface to around 800 m) assuming a 5% CO2 variability every 

1 km height and actual AERI’s noise level. Lastly, the retrieval algorithm was applied to the real 

measurements of AERI acquired together with independent atmospheric sounding data in a field 
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campaign in order to verify the CO2 sensing accuracies. Although issues with surface CO2 retrieved 

values were identified, the algorithm was capable of improving the CO2 vertical profile estimation 

from the prior information. 
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Résumé 

L'augmentation de la concentration de CO2 dans l'atmosphère a des répercussions importantes sur 

le climat. De nombreux pays (dont le Canada, les États-Unis, la Chine et les membres de l'Union 

européenne) ont fixé un objectif d'émissions nettes nulles pour les décennies à venir, ce qui rend 

cruciales les mesures précises de sa variabilité spatiale et temporelle. L'un des défis majeurs 

consiste à observer la distribution et la variation verticales du CO2. Bien que le CO2 moyen dans 

la colonne atmosphérique soit utile pour de nombreuses applications climatiques, on sait que le 

CO2 varie verticalement en fonction de la saison et de l'heure de la journée, de sorte que la prise 

en compte de ce comportement contribuerait à réduire les biais dans les produits de CO2 dans la 

colonne atmosphérique dus à l'incertitude de la distribution verticale. Cette information permettrait 

également d'identifier les sources d'émission (par exemple, les émissions locales comparées aux 

émissions d'une autre ville) et les processus atmosphériques qui contrôlent la distribution du CO2 

dans l'atmosphère. Cette étude examine le potentiel de mesure de la distribution verticale du CO2 

et met en œuvre des méthodes innovantes pour effectuer des mesures de profilage du CO2 à l'aide 

d'un instrument de télédétection infrarouge au sol, l'Interféromètre à Rayonnement Atmosphérique 

(AERI en anglais). Pour vérifier la faisabilité de l'extraction du profil vertical du CO2, une 

évaluation basée sur une expérience de simulation a été menée qui reproduit différents réglages de 

l'instrument, en utilisant un Modèle de Transfert Radiatif Ligne par Ligne (LBLRTM en anglais) 

comme modèle avant et l'Estimation Optimale comme méthode d'inversion. En évaluant les 

paramètres clés de la technique d'extraction, tels que les Degrés de Liberté du Signal (DLS), il a 

été vérifié qu'un profilage vertical du CO2 à l'aide de l'AERI est possible compte tenu de la 

variabilité attendue du CO2 au niveau de la ville et du niveau de bruit de l'instrument de l'AERI. Il 

a également été évalué que les niveaux verticaux plus proches de la surface sont les mieux sondés, 
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avec une précision allant jusqu'à 5 ppmv aux niveaux inférieurs (de la surface à environ 800 m) en 

supposant une variabilité du CO2 de 5 % tous les 1 km de hauteur et le niveau de bruit actuel de 

l'AERI. Enfin, l'algorithme de récupération a été appliqué aux mesures réelles de l'AERI acquises 

avec des données de sondage atmosphérique indépendantes lors d'une campagne sur le terrain afin 

de vérifier la précision de la détection du CO2. Bien que des problèmes aient été identifiés avec les 

valeurs de CO2 récupérées à la surface, l'algorithme a été capable d'améliorer l'estimation du profil 

vertical du CO2 à partir des informations préalables. 
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1. Introduction 

 Global warming is considered by many to be one of the main threats to modern civilization, 

as human activities undoubtedly influenced the warming of the atmosphere seen over the past 

couple of centuries (Arias et al., 2021). Among the consequences of this rapid climate change is 

an increase in frequency and intensity of extreme weather events, such as heavy precipitation and 

droughts, leading to a rise in climate related human and vegetation mortality (Pörtner et al., 2022). 

The changes caused by man-induced global warming also increases damages to key economic 

sectors, with these negative impacts being more noticeable for economically vulnerable groups 

(Pörtner et al., 2022).  

 Earth’s surface absorbs solar radiation, also called shortwave radiation due to its main 

composition being of smaller wavelengths, and then emits part of this energy back in the form of 

longwave radiation (Liou, 2002). In the atmosphere, a few trace gases, such as H2O, CO2, O3 and 

CH4, absorb part of the energy being emitted by Earth, causing the surface of the planet to be 30°C 

warmer than it would be otherwise (Houghton, 2001). This is called the greenhouse effect and is 

what allows our planet to have a hospitable average temperature for humans. The trace gases 

responsible for this phenomenon are known as greenhouse gases (GHG). 

 However, the increase in anthropogenic GHG emissions since the Industrial Revolution 

intensified the greenhouse effect (Mitchell, 1989). CO2 is considered to be the primary human 

emitted greenhouse gas, with a total of around 40 billion tonnes of CO2 have been released into 

the atmosphere as of 2019 (Canadell et al., 2021, pp. 773). This, alongside the already emitted 

other GHG and current emission trends, means that a global warming of at least 1.5 °C will likely 

occur in the 21st century (Allen et al., 2018, pp. 81). 
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 This widespread warming causes changes in other physical and chemical variables that also 

help regulate temperature on Earth, with these alterations themselves amplifying or diminishing 

global warming. These mechanisms are called “climate feedback”, with positive ones intensifying 

the warming effects of GHG emissions, and negative ones doing the opposite (Colman & Soden, 

2021). A great concern of CO2 emissions is its enhancement of the water vapor feedback, a positive 

climate feedback where the warming climate causes a greater release of water vapor in the 

atmosphere which, in return, increases the temperature even more (Colman & Soden, 2021), with 

its considerable strength making more difficult to slow down the warming process (Arias et al., 

2021). 

 Because of global warming multiple negative impacts, many countries, including Canada, 

the United States, China, and members of the European Union, made commitments to achieve net-

zero carbon emission by 2050 (United Nations, n.d.), in a collective effort to mitigate climate 

change. To achieve this goal, mapping of direct and indirect carbon emissions will play an essential 

role in monitoring progress and supporting carbon policies (Chen et al., 2022), as such, 

technologies to accurately measure atmospheric CO2 will be indispensable.  

 Moreover, a deep understanding of the carbon cycle is vital for climate model predictions, 

since uncertainties in this variable leads to uncertainties in how the models shape their responses 

(Arora et al., 2020). Accurate CO2 measurements, especially related to its daily and seasonal 

cycles, is essential to extend the necessary knowledge for trustworthy climate models. 

Improvements in satellite CO2 measurements over the past decade have greatly contributed to a 

global understanding of CO2 patterns (Imasu et al., 2023), but their performance for near-surface 

values is not sufficiently precise (Wunch et al., 2017). In-situ instruments also allowed for high 
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precision in CO2 quantification (Xia et al., 2022), but the altitude and frequency of these 

measurements may not be enough to fully capture the CO2 cycle in the lower troposphere. 

 Ground-based remote sensing instruments presents as a great tool to validate satellite-based 

instruments and to provide frequent CO2 measurements in the troposphere (Wunch et al., 2011). 

The main network of instruments being used for this purpose is the solar absorption spectrometers 

of The Total Carbon Column Observing Network, or TCCON (Wunch et al., 2011). However, these 

instruments can only measure CO2 when sunlight is available, which misses the night portion of 

CO2 daily cycle (Ghadikolaei, 2017). As such, there is a need for a ground-based instrument 

capable of capturing CO2 concentration during the whole day to fill this gap. 

 One potential option for this purpose is the Atmospheric Emitted Radiance Interferometer 

(AERI), a Fourier transform spectrometer that measures downwelling longwave radiance (DLR) 

(Demirgian & Dedecker, 2005). Because AERI measures the radiation emitted by Earth’s 

atmosphere in the mid and far-infrared range, this permits the use of CO2 absorption bands in this 

spectral region to estimate atmospheric CO2 throughout the whole day. Although some research 

has been done in analyzing AERI’s potential for CO2 retrieval (Ghadikolaei, 2017), there is still a 

lack of full understanding of its capabilities, especially in North America. 

 The main objective of this work is to evaluate AERI’s capability of retrieving the vertical 

profile of CO2. The study starts with the use of synthetic DLR spectra simulating AERI’s 

measurements and idealized background atmospheric knowledge to understand the theoretical 

potential of CO2 profile retrieval by AERI. These synthetic experiments are designed to assess 

both the necessary instrument requirements and the different profile shapes that can be captured. 

Next, the retrieval is applied to real AERI radiance spectra and validated against CO2 

measurements made by in-situ instruments to test its capability under real atmospheric conditions.  



 4 

2. Literature review 

2.1 Atmospheric CO2 vertical distribution 

 Carbon does not have a singular sink, and instead flows between Earth’s subsystems in a 

process called the global carbon cycle (Prentice et al., 2001, pp. 191). When considering only the 

terrestrial carbon cycle, CO2 concentration is known to vary vertically both in daily and seasonal 

terms, due to its interactions with the biosphere, different anthropogenic source patterns throughout 

the year, and atmospheric physical processes (Biraud et al., 2013; Li et al., 2014; Park et al., 2021; 

Bezyk et al., 2023).  

 Photosynthetic activity influences CO2 vertical profile because it represents a sink of 

atmospheric CO2. During the summer months, average CO2 concentrations is typically lower near 

surface and increases with height due to higher plant activity and reduced anthropogenic emissions 

associated with heating, while the opposite is observed in the winter, where a smaller presence of 

plants combined with increased anthropogenic emissions creates CO2 profiles with greater 

concentrations near the ground (Biraud et al., 2013; Cheng et al., 2018; Xia et al., 2022). 

 Anthropogenic emissions not only influence the total column CO2 concentration, which is 

an already well-established knowledge when it comes to global warming discussions (Arias et al., 

2021), but also the vertical distribution of said concentrations. Many studies have attributed peaks 

in CO2 to different human emitted sources, such as heating during winter (Cheng et al., 2018; 

Mitchell et al., 2018; Venturi et al., 2020), and combustion of fossil fuels, especially during rush 

hours (Xia et al., 2022; Bezyk et al., 2023). 

 The anthropogenic contribution is even more pronounced in urban regions. While CO2 

concentrations in areas outside of urban zones can be more influenced by photosynthetic activity 

and respiration, the pronounced peaks in CO2 concentration often seen in urban environments is 
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attributed to anthropogenic emissions (Lu et al., 2018; Wu et al, 2023). Anthropogenic CO2 is seen 

in multiple environments, including rural (Hu et al, 2018), however, the higher levels of energy 

consumption, use of transport that utilizes fossil fuels, and presence of industries in urban regions 

significantly contribute to its higher CO2 emissions (Crippa et al, 2021). 

 The atmospheric conditions also greatly influence the vertical distribution of CO2. The 

height of the atmospheric boundary layer (ABL), which is defined as the lower portion of the 

troposphere that is strongly influenced by exchanges with the earth’s surface (Markowski & 

Richardson, 2010), has been associated with peaks and lows of CO2 concentration in its daily cycle 

(Park et al., 2022).  

At the beginning of the morning, before the sunrise, the ABL tends to be its shallowest due 

to temperature inversions caused by radiation cooling from the surface. As solar radiation warms 

the surface, this temperature inversion is broken, allowing for air to rise more easily, and extending 

the height of the ABL, which usually peaks in the afternoon (Chen et al., 2024). Because vertical 

air mixing is greater within the ABL, CO2 concentration tends to be more evenly distributed (thus 

overall lower) across different heights during the afternoon and beginning of evening hours, while 

stronger CO2 peaks near the surface often occur from late night to early morning (Li et al., 2014; 

Xia et al., 2022). 

 With these factors in mind, accurate measurements of CO2 vertical distribution are essential 

to capture such daily and seasonal variations at distinct locations. Multiple measuring techniques 

and instruments can be used for CO2 profiling, and understanding the benefits and limitations of 

the major techniques can help on properly applying them to improve new methods and achieve 

higher accuracy in CO2 estimation. 
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2.2 Atmospheric CO2 measuring instruments 

 The types of measurements used in CO2 vertical profiling can be divided in three groups: 

in-situ, satellite-based, and ground-based measurements, and each has its own set of advantages 

and drawbacks, which are presented over the next three subsections. 

 

2.2.1 In-situ measurements 

In-situ measurements includes instruments placed at surface level, allocated in towers, and 

mounted in aircrafts, which allows for local quantification of CO2 concentration. Tower 

measurements allow for long-term record of CO2 in multiple levels within the boundary layer, 

permitting insights into the daily and seasonal CO2 cycles with a reasonable time frequency (Cheng 

et al., 2018; Shan et al., 2022), as well as more long-term trends in CO2 concentration, such as the 

known CO2 keeling curve produced with data from the Mauna Loa observatory in Hawaii (Keeling 

et al., 1976). However, the vertical range in which CO2 measurements are possible is limited to the 

height of the tower, meaning that other techniques are required to measure higher altitudes directly. 

Gas analyzing instruments mounted in aircrafts are often used for this goal (Biraud et al., 

2013, Xia et al., 2022). Since aircrafts are able to reach greater heights, this allows for the 

investigation of CO2 profiles in relation to the ABL behavior throughout the day, as well as more 

in-depth insight into atmospheric CO2 cycles when it comes to factors less influenced by the 

surface, such as emissions from other locations (Xia et al., 2022). Because they directly measure 

the CO2 in the region of interest, they are applied as validation values for remote sensing estimation 

techniques (Yang et al., 2020). A drawback of this type of data acquisition is its low temporal 

resolution due to the frequency of flights being small when compared to other approaches. 
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2.2.2 Satellite-based instruments 

 Measurements from spaceborne instruments have been used for estimating different 

greenhouse gases for a few decades, such as the use of the Atmospheric Infrared Sounder (AIRS), 

an instrument on board of the National Aeronautics and Space Administration (NASA) Aqua 

satellite, for atmospheric CO2 retrieval (Engelen et al., 2004).  AIRS is an infrared spectrometer 

with 2378 channels covering the 650 – 2675 cm-1 spectral region (Engelen et al., 2004). Although 

the instrument was not designed for the purpose of CO2 estimations, the strong 15 µm CO2 

absorption band showed good potential for doing so (Crevoisier et al., 2003), which culminated in 

the retrieval of a global mid-troposphere monthly mean CO2 concentration with 15° x 15° spatial 

resolution (Crevoisier et al., 2004). 

 The first mission focused on measuring greenhouse gases from space came with the 

Greenhouse gases Observing SATellite (GOSAT, or IBUKI in Japanese), a collaborative effort 

from three Japanese institutions: the Japan Aerospace Exploration Agency (JAXA), the National 

Institute for Environmental Science, and the Ministry of the Environment, and it was launched in 

2009 (Kuze et al., 2009). 

The instrument responsible for capturing the data required to estimate column-averaged 

CO2 (XCO2) is the Thermal And Near infrared Sensor for carbon Observation – Fourier Transform 

Spectrometer (TANSO-FTS). TANSO-FTS measures reflected sunlight radiance during daytime 

in the infrared spectral region, which includes the strong 2.0 µm and weak 1.6 µm CO2 absorption 

bands. The instrument also collects observations using thermal infrared during both daytime and 

nighttime modes (JAXA, 2011). Ever since GOSAT’s launch, a few other satellite-based 

instruments for CO2 quantification have been instituted, such as the Orbiting Carbon Observatory-

2 (OCO-2) from NASA in 2014 (Crisp et al., 2017), and the Chinese Global Carbon Dioxide 
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Monitoring Scientific Experimental Satellite (TanSat) by the Ministry of Science and Technology 

of China in 2016 (Liu et al., 2018). 

The main advantage of spaceborne instruments is its spacial coverage, which allows for 

global analysis of CO2 emissions (Hu et al., 2024). Studies have used these products to show the 

correlation of anthropogenic CO2 in urban environments with other gases enhancements (Park et 

al., 2021), the impact of city’s subways implementation in CO2 emissions (Dasgupta et al., 2023), 

and overall trends in global CO2 emissions (Dou et al., 2023). 

A significant drawback of satellite-based devices is its difficulty with estimating lower 

troposphere and near surface CO2 values, which is also the region where we tend to see most of 

CO2 vertical variation (O’Dell et al., 2012, Wunch et al., 2017). Moreover, the direct product of 

most satellites dedicated to GHG measurements is total column CO2 (Yang et al., 2020), so 

techniques to retrieve the CO2 vertical profile continue to be developed, including methods that 

utilize machine learning (Xie et al., 2023). 

 

2.2.3 Ground-based instruments 

 A primary way to obtain a more detailed quantification of CO2 surface emissions when 

compared to satellite-based data, as well as validate satellite GHG products, is with the use of 

ground-based instruments. Their bottom-up view of the atmosphere and known fixed location, 

alongside a more frequent data acquisition than many in-situ measurements, allows for ground-

based devices to be a great validation mechanism for satellites GHG quantifications (Yang et al., 

2020; Karbasi et al., 2022; Imasu et al. 2023). 

 One of the main ground-based instruments networks currently used is The Total Carbon 

Column Observing Network (TCCON), which was established in 2004 (Wunch et al., 2011). 
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TCCON is composed of ground-based Fourier transform spectrometers that retrieves column-

averaged values of multiple greenhouse gases (including XCO2) from the near-infrared solar 

absorption spectra (Wunch et al., 2011). The main objectives of the network are to provide primary 

validation datasets of XCO2 (and XCH4) to spaceborne instruments, contribute to knowledge of 

the carbon cycle worldwide, and be a bridge between satellite-based and in-situ measurements 

(Wunch et al., 2011). TCCON spectrometers have two detectors that cover the spectral region from 

3900-15500 cm−1 with approximately 0.02 cm−1 spectral resolution, which includes the coverage 

of multiple satellites, and allows for a precision of less than 1 ppm in the XCO2 retrieval (Wunch 

et al., 2011). 

 Data from TCCON have been used to estimate CO2 fossil fuel city emissions 

(Babenhauserheide et al., 2020), overall emissions in metropolitan areas (Ohyama et al., 2023), 

and local and regional CO2 enhancements from different sources (Mottungan et al., 2024). 

Moreover, TCCON instruments shows potential to retrieve the vertical profile of CO2 (Roche et 

al., 2021), with distinct retrieval techniques being applied for this purpose (Parker et al., 2023).  

 However, because TCCON spectrometers use solar absorption spectra, only daytime CO2 

retrieval is possible (Babenhauserheide et al., 2020), which does not allow for the capture of the 

full daily cycle of CO2 (Ghadikolaei, 2017). As such, ground-based instruments that can be utilized 

to estimate CO2 concentration during both day and night hours are necessary to fill this gap. 

 Fourier-transform spectrometers with spectral coverage on the thermal-infrared are a great 

option for this purpose, since this spectral range is emitted by Earth’s atmosphere throughout the 

whole day (Liou, 2002). The Atmospheric Emitted Radiance Interferometer (AERI), which will 

be described in detail in section 3.4, presents as a potential complement for ground-based 

measurements of CO2, which is one of the motivations of this thesis. 
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 AERI has been used to retrieve temperature and water vapor profiles for many years (Feltz 

et al., 1998; Lewis et al., 2020; Smith et al., 2021; Huang et al., 2023) and have shown potential 

to retrieve other atmospheric variables, such as Aerosol Optical Depth (Seo et al., 2022). The 

ability of AERI retrieving CO2 also has been demonstrated (Ghadikolaei, 2017). However, 

research in more locations, with different characteristics and distinct climates, is still needed to 

fully understand its retrieval capacity. 
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3. Methodology 

3.1 The Retrieval Technique 

 The retrieval technique applied in this study can be divided into two sections: the 

application of a forward model, and the use of an inverse method. 

 A forward model describes the physics of the measurement process (Rodgers, 2000), 

meaning that given an atmospheric state to be retrieved (e.g., temperature profile, water vapor and 

trace gases concentration profiles, etc.), the forward model maps this state vector from state space 

to measurement space. However, the representation of the physical processes to obtain the 

measurement is often limited, requiring an approximation of reality and, thus, will have errors. As 

such, the relationship between measurement and atmospheric state can be represented as: 

𝒚 = 𝑭(𝒙, 𝒃) + 	𝜺	 (1) 

where y is the measurement vector, F is the forward model applied on state vector x alongside 

model parameter b, which represents other atmospheric variables that influences the measuring 

procedure but are considered to be known, and e encompasses the measurement error and the 

inherent imperfection of the forward model on its description of the physics for the measuring 

process. In this project, the x vector represents the CO2 vertical profiles to be retrieved. 

 Often in inverse problems, F(x) can be considered linear when it comes to its error analysis. 

Linearizing Equation 1 at a reference state x0, we have: 

𝒚 = 𝑭(𝒙𝟎) +
𝜹𝑭(𝒙)
𝜹𝒙

(𝒙 −	𝒙𝟎) + 	𝜺 = 𝑭(𝒙𝟎) + 𝑲(𝒙 − 𝒙𝟎) + 	𝜺	 (2) 

in which K is the Jacobian matrix and represents the sensitivity of the forward model to the 

atmospheric state. 
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The inverse method is the technique utilized to obtain an estimation of the atmospheric 

state based on the measurements made. The inverse method applied in this study is the Optimal 

Estimation (OE) method, as described in Rodgers (2000). 

 The OE method is based on the Bayes’ theorem, which defines the probability of an event 

while taking into account a prior knowledge that influences said event. For atmospheric retrieval, 

this prior information comes from the atmospheric state of interest (represented as xa), which can 

be the climatology of x. The probability density function (pdf) of the atmospheric state of interest 

x given a measurement y, the P(x|y), will be: 

𝑷(𝒙|𝒚) = 	
𝑷(𝒚|𝒙) ∙ 𝑷(𝒙)

𝑷(𝒚)
	 (3) 

where P(y|x) is the pdf of a measurement given a certain atmospheric state, P(x) is the pdf of the 

prior information of the atmospheric state, and P(y) is interpreted as the prior information of the 

measurement, although in practice it only works as a normalizing factor and can be omitted 

(Rodgers, 2000).  

 Due to its well representation of many physical processes and for being uncomplicated to 

manipulate algebraically, a Gaussian distribution can be applied to the pdf’s of Equation 3, 

resulting in: 

−𝟐	𝐥𝐧	𝑷(𝒙|𝒚) = (𝒚 − 𝑲𝒙)𝑻	𝑺𝜺$𝟏	(𝒚 − 𝑲𝒙) + (𝒙 −	𝒙𝒂)𝑻	𝑺𝒂$𝟏	(𝒙 −	𝒙𝒂) + 	𝒄	 (4) 

where Se and Sa represents the measurement error covariance matrix and the a priori covariance 

matrix, respectively, and K is the Jacobian. For the applications of this study, Se describes the 

covariance of measurement error on different channels of AERI, while Sa expresses the covariance 

of different atmospheric state vertical layers. The diagonal components of a covariance matrix 

represent the variance of each said component, while the off-diagonal elements are the covariance 
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between these elements. The Jacobian is defined as 𝑲 =	∇'𝐹, and represents the sensitivity of the 

forward model to the true state of the atmosphere x.  

 The most probable state of x will be, therefore, the one that optimizes the a posteriori error 

by approximating the derivative of Equation 4 to zero (Rodgers, 2000). By applying the Gauss-

Newton iteration method, we get that each time step will be: 

𝒙𝒊)𝟏 =	𝒙𝒊 + =𝑺𝒂$𝟏 +	𝑲𝒊
𝑻	𝑺𝝐$𝟏	𝑲𝒊>

$𝟏	𝑲𝒊
𝑻	𝑺𝝐$𝟏	[𝒚 − 𝑭(𝒙𝒊) + 𝑲(𝒙𝒊 −	𝒙𝒂)]	 (5) 

where i symbolizes each iteration step. 

 Since the calculation of the Jacobian matrix is the most computationally expensive part, 

and that its values tend to have a smaller variation after each iteration, K is calculated up until the 

third iteration step. The retrieval is considered to be converged once the radiance change in all 

channels from one iteration step compared to the previous one is less than 10-6 W/(m2×sr×cm-1), 

which is around 0.001% of the average radiance in the 15 µm CO2 absorption band. For all the 

experiments, this criterion was met within the first 5 iterations. 

  

3.2 Information Content and Error Analysis 

 When it comes to evaluating the retrieval, two variables stand out: the Averaging Kernel 

matrix and the Degrees of Freedom for Signal. 

 The Averaging Kernel (A) is defined as 𝑨 = 	 (𝑆+$, +	𝐾-. 	𝑆/$,	𝐾-)$,	𝐾-. 	𝑆/$,	𝐾 , and shows 

the sensitivity of the retrieval to the true atmospheric state. With this matrix A, we are able to see 

where most of the retrieval information for each atmospheric level comes from. An averaging 

kernel value of 1 for a certain atmospheric level means that all the retrieval information for that 

level comes from itself, being independent from all the other levels. However, this ideal situation 
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is not what happens, and adjacent atmospheric levels influence each other’s estimates, making the 

averaging kernel value less than 1.  

 The Degrees of Freedom for Signal (DFS) is defined as 𝐷𝐹𝑆 = 𝑡𝑟(𝑨) and equates to how 

many independent pieces of information we can get from the retrieval, meaning that the higher the 

DFS value, the higher is the information content of the retrieval. Ideally, each vertical level would 

be independent from the other ones (DFS = 1 for each level), but that is usually not the case. When 

getting the total DFS of the atmosphere, it is important for DFS > 1, so that we can have a vertical 

profile of the variable of interest (CO2). 

 To analyse the error of the retrieval, the Root Mean Squared Error (RMSE) between the 

true and retrieved CO2 profiles is determined. The RMSE at each level is calculated as:  

𝑹𝑴𝑺𝑬 =	KL
(𝒙M𝒊 	− 	𝒙𝒊)𝟐

𝒏

𝒏

𝒊2𝟏
		 (6) 

where 𝑥Q- is the retrieved value for simulation i, 𝑥- is the true value, and n is the number of 

simulations. 

 The posterior uncertainty covariance matrix of the retrieval is calculated as shown in 

Equation 7 and should represent a smaller quantity than the prior uncertainty (Sa matrix) in order 

for the retrieval to be considered effective (Rodgers, 2000).  

𝑺 = 	 =𝑲𝒊
𝑻	𝑺𝝐$𝟏	𝑲𝒊 +	𝑺𝒂$𝟏>

$𝟏	 (7) 

 

3.3 Radiative Transfer and LBLRTM Algorithm 

 The principal that makes the retrieval of CO2 from infrared radiation measurements 

possible is the Radiative Transfer theory, which can explain how electromagnetic radiation 
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interacts with atmospheric gases. The explanation of the theory, as well as how to get the Radiative 

Transfer Equation was mainly based on the work of Liou (2002). 

 The radiation intensity may change due to absorption or scattering by different matter on a 

medium. This interaction is characterized by the mass extinction cross section, which is defined 

as: 

𝒌𝒆 = 𝒌𝒔 +	𝒌𝒂	 (8) 

where ks is the mass scattering cross section and ka is the mass absorption cross section, and they 

depend on the wavelength l being evaluated. For a non-scattering atmosphere, which is a good 

approximation for clear-sky in the thermal infrared region (Ghadikolaei, 2017)20172017 and the 

case for this study, ks is negligible, meaning that ke » ka. 

 As such, when light of a specific wavelength l and intensity Il passes through a medium, 

its attenuation along a path ds can be described as: 

𝒅𝑰𝝀 =	−𝒌𝒂	𝝆	𝑰𝝀	𝒅𝒔	 (9) 

where r represents the density of each trace gas in the medium.  

 Integrating Equation 9 between a start point s1 and end point s2, and assuming that the path 

is homogeneous, we get: 

𝑰𝝀(𝒔𝟐) = 	 𝑰𝝀(𝒔𝟏) 𝐞𝐱𝐩 ]−	^ 𝝆(𝒔)	𝒌𝒂	𝒅𝒔
𝒔𝟐

𝒔𝟏
_	 (10) 

 The term in brackets (without the minus sign) is called optical path, and when s1 and s2 are 

vertical coordinates, is also called optical depth or optical thickness t. From t, we can derive the 

transmittance, which is defined as:  

𝒕 = 	𝒆$𝝉	 (11) 
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 From Kirchhoff’s Law, we know that at thermal equilibrium, the radiation absorption by a 

medium equals its emission. As such, we can write: 

𝒅𝑰𝒂𝒃𝒔 =	−𝒌𝒂	𝝆	𝑰𝝀	𝒅𝒔 = 	−𝒅𝑰𝒆𝒎 =	−𝒌𝒂	𝝆	𝑩𝝀(𝑻)	𝒅𝒔	 (12) 

where Bl(T) represents the Planck function for wavelength l and temperature T.  

 With this, we can write the basic form of the Radiative Transfer Equation as: 

𝒅𝑰𝝀 = 𝒅𝑰𝒂𝒃𝒔,𝝀 + 𝒅𝑰𝒆𝒎,𝝀 →
𝒅𝑰𝝀
𝒅𝒔

= 𝒌𝒂	𝝆	(𝑩𝝀(𝑻) −	𝑰𝝀)	 (13) 

 From Equation 13, it is possible to derive the upward and downward portions of 

atmospheric radiation, with the downward component being: 

𝑰𝝀↓(𝝉, −𝝁) = ^ 𝑩𝝀=𝑻(𝝉;)>
𝝉

𝟎
𝒆$

<𝝉$𝝉#=
𝝁

𝒅𝝉;

𝝁
	 (14) 

where µ = cos(q), with q being the zenith angle. Note that the optical depth t is used as the vertical 

coordinate. 

 Another important factor in radiative transfer is the weighting function, which represents 

how much absorption occurs at a given point in relation to the total absorption, and can be written 

as: 

𝑾(𝒛) = 	
𝒌𝒂	𝝆	(𝒛)

𝝁 	𝒕(𝒛)	 (15) 

 For downwelling radiation, the weighting function is largest at the surface. We can now 

write Equation 14 in terms of the weighting function (and wavenumber n): 

𝑰𝝂↓ =	^ 𝑩𝝂=𝑻(𝒛;)>	𝑾𝝂(𝒛;, 𝒛)	𝒅𝒛
@

𝟎
(16) 

 Equation 16 is the main form of the Radiative Transfer Equation for downwelling radiation, 

and for it to be as close to “exact” as possible, the transmittance t(z) needs to account for the 

absorption of all known gases for wavenumber n at altitude z, meaning: 
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𝒌𝒂,𝝂 ∙ 𝝆(𝒛) = 	L 𝒌𝒂,𝒊(𝒛)𝝆𝒊(𝒛)
𝑵

𝒊2𝟏
	 (17) 

where N is the number of gases. This is the called line-by-line calculation. 

 In this project, the Line-By-Line Radiative Transfer Model (LBLRTM) was used (Clough 

et al., 1992). The LBLRTM calculates the monochromatic radiative transfer with high accuracy 

and is capable of simulating both upwelling and downwelling radiance (Clough et al., 2014). The 

input of the model is an atmospheric profile that includes temperature, humidity, and concentration 

of many trace gases, such as CO2, O3, and CH4. In order to calculate the mass absorption cross 

section (ka) of each gas, LBLRTM mainly uses the shape, width and position information of the 

absorption lines (and absorption continuums) provided by the HIgh-resolution TRANsmission 

molecular absorption (HITRAN) database. LBLRTM then calculates the optical depth and uses it 

to compute the radiance spectra by applying a discrete version of the radiative transfer equation.  

 

3.4 AERI Instrument 

 The Atmospheric Emitted Radiance Interferometer, or AERI (Figure 1), is a ground-based 

Fourier transform spectrometer that measures downwelling longwave radiance emitted by Earth’s 

atmosphere (Demirgian & Dedecker, 2005). It was developed by the University of Wisconsin 

Space Science and Engineering Center in 1992, supported by the Atmospheric Radiation 

Measurements (ARM) program of the United States Department of Energy (Knuteson et al., 

2004a), with the first operational AERI being deployed in 1995. The following information, which 

explains the instrument specifications and operation, was taken from Knuteson et al. (2004a) and 

Knuteson et al. (2004b), unless stated otherwise. 
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Figure 1. AERI instrument located at the top of Burnside Hall building, McGill University downtown campus. 

 AERI measures downwelling atmospheric emitted radiance from 3.3 µm (3020 cm-1) to 19 

µm (520 cm-1), encompassing both middle and far-infrared regions. AERI is a zenith viewing 

instrument, with a field-of-view (FOV) of 2.6 degrees, a (unapodized) spectral resolution of 0.5 

cm-1, and a temporal resolution of 20 seconds in rapid sampling mode and 8 minutes in normal 

sampling mode.  

 AERI can be divided in to two major sets: the optics bench assembly and the electronics 

support equipment. The main components of the optics bench assembly are an interferometer, two 

blackbodies and two detectors, one that is responsible for the longwave infrared measurements, 

and one for the shortwave infrared region, with the longwave cut-off being at about 1800 cm-1. 

Regarding the blackbodies, they are used to calibrate the measured spectra, with one operating at 

near outdoor ambient temperature (called Ambient Blackbody, or ABB), and one that functions at 

a fixed controlled temperature around 60°C (called Hot Blackbody, or HBB). 

 The major parts of the electronics support equipment are the housekeeping system, the 

scene mirror controller, the blackbody controller, and the control computer. The housekeeping 

system collects temperature and voltage data across multiple components of AERI every 5 seconds 
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to ensure good instrument performance. The scene mirror controller applies employing 

microstepping positioning to achieve an accuracy of ± 5 arc s, and ensure that the scene mirrors 

are in a safe position in case of precipitation or overtemperature. The blackbody temperature 

controller regulates the HBB temperature, maintaining at a narrow range around the reference 

temperature. The control computer is used to regulate multiple systems inside AERI, including 

obtaining interferometer and housekeeping data, evaluating its performance, and transferring raw 

data to the front-end processor. 

 The radiance data is acquired through the use of an interferometer. The atmospheric 

radiance that will reach the interferometer is initially divided in two light beams by a beam-splitter, 

with one going to a fixed mirror and the other to a moving mirror. The beams are reflected by the 

mirrors and, when combined, the difference in their paths cause a wave interference pattern, called 

interferogram (Ghadikolaei, 2017). A Fourier transform algorithm is then applied to convert the 

interferogram signal into calibrated radiance spectra. AERI’s calibration includes correction for 

nonlinearities in the longwave band, radiometric calibration using the reference hot and ambient 

blackbodies, and spectral line shape effects correction. 

 

3.5 Synthetic Experiment Setting 

 First, the retrieval algorithm is tested using synthetic radiance data obtained from 

LBLRTM. For this (and later for the retrieval), we first need to define a prior atmospheric profile, 

as well as the content of the matrices Sa and Se.  

 The prior profile is obtained from the fifth generation European Centre for Medium-Range 

Weather Forecasts atmospheric reanalysis dataset, ERA5 (Hersbach et al., 2020). A 6-hourly mean 

ERA5 dataset from 2012 to 2022 within a grid-box encompassing the city of Montréal is used. The 
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ERA5 atmospheric variables utilized (geopotential, pressure, temperature, specific humidity, and 

ozone mass mixing ratio) all come from the “hourly data on pressure levels from 1940 to present” 

dataset. The CO2 profile shape and concentration values are determined according to the intention 

of each experiment.  

 When it comes to the variability of CO2 concentration, literature shows that CO2 can vary 

more than 45 ppm near the surface and then decreases with height, reaching less than 5 ppm at 

around 200 hPa (O’Dell et al., 2012). The resolution of the vertical profile is set to be 100 m for 

the first 5 km altitude, and then the layer thickness increases by 10% for higher levels. For 

simplicity, Sa is set to have a 5% CO2 concentration variability for every 1 km layer thickness. 

This variability is proportionally adjusted to account for the changing vertical resolution under the 

assumption that a square root relation characterizes the random errors. Is also important to note 

that more in-situ measurements would be required in future work to understand better the 

variability of CO2 with altitude, especially when it comes to differences between urban and rural 

environments. All off-diagonal elements of Sa are set to zero.  

For the Se matrix, its diagonal values are set to be the average noise of AERI for each of its 

channels, and the off-diagonal values are set to zero (meaning no correlation between channels). 

For the synthetic experiments, all other atmospheric variables (e.g., temperature, water vapor, etc.) 

are assumed to be perfectly known and there is no assigned correlation between variables. 

 To test different components of the retrieval, we set 8 distinct cases to simulate possible 

scenarios, all using a constant CO2 vertical profile of 420 ppmv for the prior and random profiles 

with concentrations varying between 350 ppmv to 470 ppmv for the true state. These random 

profiles are normally distributed around the prior 420 ppmv as to make most profiles to fall within 

the assigned CO2 variability. The summary of the cases is shown in Table 1. 
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 Case 1 is the ideal scenario, where the channel resolution (CR) is set to 0.1 cm-1 

wavenumber (finer than the actual AERI), and the noise is reduced by half. Case 2 represents an 

improved instrument, where the CR is also set to 0.1 cm-1, but the noise stays the same as AERI’s 

actual noise. Case 3 exemplifies a faulty instrument, where the CR is the real AERI resolution of 

0.5 cm-1, but its noise is triple of the average real noise. Case 4 is an optimal real instrument, where 

CR = 0.5 cm-1, but the noise is half of AERI’s actual noise.  

Case 5 is the real scenario, so CR = 0.5 cm-1 and the noise is AERI’s real noise. Case 6 uses 

only channels around the 15 µm CO2 absorption band (between 624 and 712 cm-1) for the retrieval. 

Case 7 uses a summer prior profile (average ERA5 10 years climatology for July, August, and 

September months), and Case 8 uses a winter prior profile (average ERA5 10 years climatology 

for January, February, and March months). 

Table 1. Distinct real and hypothetical instrument simulations description. 

Case Number Channel Resolution Number of Channels Noise Level Background 
1 0.1 cm-1 12792 0.5x Se ERA5 – all year 
2 0.1 cm-1 12792 1x Se ERA5 – all year 
3 0.5 cm-1 2650 3x Se ERA5 – all year 
4 0.5 cm-1 2650 0.5x Se ERA5 – all year 
5 0.5 cm-1 2650 1x Se ERA5 – all year 
6 0.5 cm-1 179 1x Se ERA5 – all year 
7 0.5 cm-1 2650 1x Se ERA5 – Summer 
8 0.5 cm-1 2650 1x Se ERA5 – Winter 

Moreover, to see if the retrieval is capable of distinguishing distinct vertical CO2 profiles, 

we test different combinations of prior and true CO2 profile shapes, including a vertically constant 

profile, a decreasing and increasing CO2 concentration with height profiles to simulate possible 

conditions typically seen in winter and summer, and bell-shaped profiles to simulate plumes of 

CO2.  
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For the increasing and decreasing shapes, the CO2 profile follow the equation described by 

Ghadikolaei (2017), which is also exhibited below.  

𝑪𝑶𝟐(𝒛) = 	𝒂𝟐 ∙ 𝐞𝐱𝐩(𝒂𝟏 ∙ 𝒛) +	𝒂𝟎	 (18) 

where CO2(z) represents the CO2 concentration at altitude z, a0 equates to the CO2 value at high 

enough altitudes, a1 controls the curvature of the profile, and a2 specifies the concentration of CO2 

at z = 0. A positive a2 value means that the CO2 concentration will decrease with height. As 

recommended by Ghadikolaei (2017), a1 ranges between -0.5 and -7 in order to have realistic CO2 

values in the profile. 

 As for the bell-shaped profile, the CO2 vertical distribution follows the gaussian function 

described in Equation 19. 

𝑪𝑶𝟐(𝒛) = 𝒅 + 𝒂 ∙ 𝐞𝐱𝐩 ]−m
(𝒛 − 𝒃)𝟐

𝟐 ∙ 𝒄𝟐 n_	 (19) 

where a represents the magnitude of the CO2 peak, b specifies the altitude of the peak, c controls 

how spread is the peak (from a slow increase and decrease across multiple layers to an acute peak 

in few levels), and d shows the CO2 concentration far enough from the peak. In this study, d always 

equals to the prior CO2 knowledge value of 420 ppmv. 

 The bell-shaped profiles were divided in two categories: the profiles in which the CO2 peak 

occurs below the atmospheric boundary layer, which is defined to be at 2 km, called B-ABL, and 

the profiles where the peak is above the ABL, called A-ABL. The choice of ABL height was based 

on the upper most height that the ABL usually is (National Oceanic and Atmospheric 

Administration, n.d.), since the objective of this separation is to see if the retrieval is capable of 

differentiating the two cases and AERI is most sensitive near the ground, so a higher ABL can be 

considered a more difficult situation to resolve.  
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3.6 Radiance Closure 

Although the focus of this study is on the synthetic spectral data CO2 retrieval, the 

developed algorithm was applied to real AERI data to attest its applicability. For this, a clear-sky 

field campaign that utilized both a radiosonde balloon launch and CO2 measurements using a 

Picarro instrument mounted on the Twin Otter research aircraft from the National Research 

Council of Canada (NRC) is the main validation method. The site of the campaign is Gault Nature 

Reserve of McGill University (45.53° N, 73.15° W), which is located right outside of Montreal, 

Canada. The aircraft started its spiral up trajectory over Gault’s site at 08:32 AM Eastern Standard 

Time (EST) on February 21st, 2024, lasting 15 minutes and covering an altitude range of 0.335 km 

to 3.078 km. The time of the balloon launch was the same as the start of the spiral.  

A radiance closure test was first conducted to assess the agreement between the forward 

model (LBLRTM) and AERI’s spectral measurements, followed by the retrieval. Radiance closure 

refers to when measurements of a radiometer is compared to a synthetic simulated spectra 

produced by a radiative transfer model using as close to real atmospheric inputs as possible, in 

order to verify its accuracy and the consistency between the two (Liu et al, 2024). This is an 

essential verification step for the retrieval, because if the radiative transfer model is not able to 

simulate measured spectra with good agreement, then this inconsistency will make the retrieval 

not possible due to a lack of conversion between estimated and “true” radiance, the F(xi) and y 

terms in Equation 5. 

 The radiosonde used in the balloon launch was an iMet-4 from InterMet. The total error of 

the instrument was incorporated on the radiative closure tests, they consist of 0.5 K above and 0.95 

K below 100 hPa for temperature, and 5% of measured relative humidity, both at 95 % confidence 

level (InterMet, n.d.). Because the radiosonde drifts, covering areas that are different from that of 
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the launch, a spatial variability uncertainty must also be incorporated on the radiance closure. For 

this purpose, an ERA5 hourly-mean profile within the 3 × 6 grid boxes rectangular region that 

includs the balloon trajectory was used to represent the spatial variability of the radiosonde 

temperature and relative humidity. 

Ozone and methane concentrations were obtained from the ERA5 reanalysis dataset and 

the Copernicus Atmosphere Monitoring Service (CAMS) multi-level global atmospheric 

composition forecast dataset (Inness et al., 2019), respectively. The instrument used to measure 

CO2 was the Picarro G2201i cavity ring-down spectrometer in the CO2 – CH4 simultaneous 

measuring mode, which has an uncertainty of 200 ppb + 0.05% of reading for 12C isotope with 

95% confidence (Picarro, n.d.). This CO2 profile is considered to be the “true” atmospheric state, 

and (alongside the other atmospheric variables described in this section) is the input for the 

radiative closure test.  

The input profile has a higher vertical resolution in the lower troposphere when compared 

to upper layers, since this is the region where the ground-based AERI instrument is most sensitive 

to (Turner & Blumberg, 2018). For CO2 specifically, a Jacobian calculation using LBLRTM also 

shows a higher sensitivity at lower levels, which further contributes for the vertical resolution 

choice. 

Regarding AERI’s measurements, first the data was treated to avoid erroneous data, such 

as checking for hatch status and evaluating the sky view noise equivalent radiance. Then, following 

the method applied by Liu et al. (2024), the 20 s AERI spectra from rapid sampling mode is 

averaged for a period of 2 minutes before and 8 minutes after the balloon launch, as to provide 

consistency with the measuring time of the radiosonde and to capture the atmospheric 

characteristics within the boundary layer. 
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The AERI spectra collected during the flight time of the field campaign was filtered in 

order to have only clear-sky cases. The criteria used for the selection was that the brightness 

temperature difference between the simulated spectra and the AERI measurements at 898 cm-1 

should be equal or less than 15 K. The 898 cm-1 channel was chosen due to it being a very clean 

channel on the window band (Cox et al., 2015), allowing for it to be used in detecting presence of 

clouds. The relatively large value of 15 K difference was chosen because, in clear-sky conditions, 

the window band has low brightness temperature values, meaning that even a small radiance 

difference can lead to large brightness temperature differences (Liu et al., 2024). 

The radiance bias for the radiative closure evaluation for each wavenumber ν is defined as 

the measured radiance by the AERI instrument minus the calculated radiance by the radiative 

transfer model LBLRTM, as represented in Equation 20. 

𝚫𝑹𝝂 =	𝑹𝑨𝑬𝑹𝑰,𝝂 −	𝑹𝑳𝑩𝑳𝑹𝑻𝑴,𝝂	 (20) 

 The bias uncertainty is defined as the root sum square of both the AERI uncertainty, and 

the uncertainties related to the LBLRTM simulation, as seen in Equation 21: 

𝝈𝚫𝑹𝝂 =	q𝝈𝑹𝑨𝑬𝑹𝑰,𝝂𝟐 +	𝝈𝑹𝑳𝑩𝑳𝑹𝑻𝑴,𝝂𝟐	 (21) 

 According to Knuteson et al. (2004a), AERI’s 3-s uncertainty (meaning a 99.7% 

confidence) is calculated as 1% of its ambient blackbody radiance. The model uncertainty is 

calculated based on the atmospheric inputs uncertainty previously discussed, both from the 

measuring instruments themselves and the spatial variability from the radiosonde drift for 

temperature and relative humidity. 

 In total, 1000 atmospheric profiles were created using randomly generated noise that 

accounts for all the errors on the model input. By applying radiative Jacobians of CO2, temperature, 

and water vapor, the radiance difference between the original and the randomly generated 
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atmospheric profiles was calculated. The standard deviation of these values was used to represent 

the model 1-s uncertainty. As to be consistent with AERI’s uncertainty, this quantity was converted 

to 3-s uncertainty. 

 

3.7 Real Data Retrieval 

 The AERI radiance spectrum used for the retrieval is the same as the one described in 

section 3.6, so a spectrum that represents the beginning of the spiral-up flight and also with no 

clouds in the field-of-view of the instrument. 

 Different sets of channels for the retrieval were tested. CO2 has a strong absorption band 

at 667 cm-1, and two weaker bands centered at 961.0 and 1064 cm-1 (Liou, 2002). When evaluating 

the spectral signature of CO2 (Figure 2), we see the channels that respond to concentration changes, 

in particular, the wings of the 667 cm-1 absorption band have the highest response.  

 
Figure 2. Spectral signature of CO2 from a 21 ppm perturbation. The main three absorption bands of CO2 in the mid-

infrared region are clearly visible. 

Although using all of these wavenumbers would be ideal, the value uncertainty of other 

variables (such as temperature and water vapor) limits the channel selection. A CO2 only retrieval 

means that just CO2 values are updated at each iteration step, so using wavenumbers that are also 
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sensitive to other atmospheric parameters requires these values to be extremely precise, which 

sometimes is not possible.  

With this in mind, the channel selection avoided bands that are known to be influenced by 

other gases (e.g., the 9.6 µm absorption band of O3), and took into account the required precision 

for channels that are impacted by other atmospheric variables, such as the wavenumbers around 

the center of the 667 cm-1 band that are influenced by surface temperature. The final selection 

shown in this study comprises the wings of the 667 cm-1 band, from 626.3 to 631.6 cm-1 and 

between 707.8 and 721.3 cm-1.  
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4. Results and Discussion 

4.1 Analysis of Different Instrument Settings 

 Table 2 displays the Cumulative Degrees of Freedom for Signal (CDFS) and the mean 

RMSE between 0 and 11 km since the troposphere is the region of most interest for the retrieval. 

The mean RMSE for the prior profile (which is used as first guess in the retrieval) is 17 ppmv. 

Table 2. Distinct real and hypothetical instrument simulations results. 

Case Number CDFS RMSE (ppmv) 
1 4.34 2.4587 
2 3.91 3.5075 
3 2.54 6.5796 
4 3.41 4.7763 
5 3.05 5.5692 
6 2.10 9.3614 
7 3.18 5.5826 
8 2.81 5.4903 

As seen in Table 2, the ideal conditions of Case 1 significantly improve the retrieval, both 

in terms of information acquired (one degree of information more than the real AERI simulation 

from Case 5) and in reduction of uncertainty for the CO2 profile, which is represented by the lower 

RMSE. By comparing the difference between the RMSE of Cases 3 and 5 with the difference 

between Cases 2 and 5, it is safe to conclude that the wavenumber resolution has a higher impact 

on the performance improvement than the noise level. However, instrument noise is still a 

significant variable for retrieval capacity, as observed by the poorer performance of Case 3 

contrasted with the other cases. 

We also see the importance of spectral coverage for the retrieval, demonstrated by the 

significant drop in gained information and uncertainty reduction in Case 6 when compared with 

the other simulations. This is an important factor to take into consideration when performing the 
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retrieval with real data, because although channels strongly influenced by other atmospheric 

variables should ideally be avoided, this comes at the cost of retrieval precision and information 

gained. 

Cases 7 and 8 exhibits that summer conditions may favor the retrieval, represented by more 

information gained (CDFS) of Case 7 when compared to Case 8 and Case 5. The difference in 

CDFS, however, does not directly translate to a better retrieval performance, as seen by the similar 

RMSE values in the three cases. This suggests that, although atmospheric conditions influence the 

retrieval, it does not play a significant role in the accuracy of the retrieved profile when such 

variables are perfectly represented in the model.  

Figure 3 illustrates how the first six cases retrieve a true constant CO2 profile of 430 ppmv. 

We can see that Case 1 performs the best, with levels up to 6 km staying within around 1 ppmv 

from the truth, and Case 6 performs is the most limited, with improvements in the CO2 profile 

being limited only in the lower troposphere. The somewhat similar behaviour of Cases 1 to 5 when 

compared to Case 6 suggests that, if the background atmospheric conditions are perfectly known, 

using a larger number of channels will have the greatest effect in the retrieval. 

 
Figure 3. Retrieval of Cases 1 to 6 for a CO2 constant profile of 430 ppmv. 
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Since we are mostly interested on the simulation of real AERI specifications, is worth 

analyzing Case 5 in more detail. The retrieval achieves its first degree of freedom (Figure 4) very 

close to the surface, at around 100 m height, showing that the first two levels (0 and 0.1 km) can 

be considered one independent piece of information. The second degree of freedom is reached at 

around 1 km, and the third one at 7 km. This indicates a potential of the retrieval being able to 

differentiate distinct CO2 values below and above the Atmospheric Boundary Layer (ABL), which 

usually has a height between 1 to 2 km (National Oceanic and Atmospheric Administration, n.d.). 

The capability of the retrieval in distinguishing CO2 profiles below and above the ABL is further 

investigated in section 4.2. 

 
Figure 4. Cumulative Degrees of Freedom for Signal (CDFS) for the real AERI specifications simulation. 

 The rows of the averaging kernel (Figure 5) show how lower levels have a higher 

information content that comes from the level itself, with some having more than 40% of the 

information coming from the appropriate level. This is expected due to AERI being a ground-based 

instrument and, therefore, is able to see better levels near the surface. However, Figure 5 also 

demonstrates how the second assigned level (100 m) has a greater averaging kernel value than the 
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surface (0 m). As it will be further discussed in section 4.2, this is likely due to the Jacobian having 

a lower than presumed sensitivity for the very first retrieval level. 

 
Figure 5. Averaging kernel for the real AERI specifications simulation. 

 

4.2 Analysis of Different CO2 Profiles 

 For all the experiments, the prior CO2 profile is set to be a constant concentration of 420 

ppmv for all vertical levels. This choice is based on the knowledge that CO2 tends, on a yearly 

average, to have similar concentrations in different heights (Biraud et al., 2013), and that the 

average CO2 concentration of Canada in 2022 was around 420 ppmv (Environment and Climate 

Change Canada, 2023). Moreover, these experiments use the same settings that simulate the real 

AERI configuration. 

 The first case evaluated is when the true CO2 concentration profile is a constant value, like 

the prior. The concentrations range from 360 ppmv to 480 ppmv, meaning a ± 70 ppmv from the 

prior, which is greater than the set CO2 variability of 5% of the total concentration on each layer. 

This was done to cover most of the possible cases when it comes to this profile shape. The 
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concentrations were randomly generated in a normal distribution around the 420 ppmv value. The 

true and the retrieved profiles can be seen in Figure 6, and the bias results are shown in Figure 7. 

 
Figure 6. Constant shape case a) true CO2 profiles, and b) retrieved CO2 profiles. 

 
Figure 7. RMSE of mean constant CO2 profiles. 

 As seen in Figure 6, the lower portion of the troposphere (from surface to around 5 km) are 

the levels best sounded by the retrieval. This makes sense because AERI is a ground-based remote 

sensor and, as such, levels closer to the surface are best seen by the instrument. Moreover, we see 

a slight singularity at around 5 km where the retrieval does not follow the pattern seen in other 

levels. This is likely a numerical issue due to the assigned thickness of each layer starting to 

increase at 5 km. 
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 Figure 7 shows that, for all evaluated levels, the retrieval reduces the uncertainty in the 

CO2 profile, with a greater reduction at levels below 4 km. As indicated by the values of the 

averaging kernel, the vertical resolution is not high enough to resolve quantities on smaller layers, 

leading to more extreme estimations on certain levels, most notably right below 2 km. This 

illustrated by the “wiggle” shape of the retrieval error, and an example retrieval for this shape is 

exhibited in Figure 8. 

 
Figure 8. Example of retrieval for constant. 

The decreasing (Figure 9) and increasing (Figure 10) profiles display similar patterns to 

each other, which is expected due to their similar characteristics. The retrieval accurately 

differentiates the two shape types, and this can be useful when estimating the CO2 profile in the 

winter and the summer, as they tend to have a similar pattern to the decreasing and increasing 

shapes, respectively (Biraud et al., 2013). We see that both cases slightly underestimate the CO2 

value on the very first layer, which could be due to the Jacobian sensitivity being slightly lower at 

this level compared to the ones right above it (Figure 11). Note that the Jacobian in Figure 11 

represents the radiance change in response to the CO2 perturbation according to the specific 

vertical layer’s resolution used in the retrieval. 
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For the calculation of the analytical Jacobian using LBLRTM, a level atmospheric input 

was used. This means that when the radiative transfer model calculates the molecular density and 

optical depth at each layer, it can underestimate these values on the very first one because of lack 

of information in two adjacent levels. To minimize this effect, two possible solutions are to increase 

the vertical resolution at the bottom (so a smaller vertical layer is affected by this issue), or to 

attempt a layer wise atmospheric description on the LBLRTM.  

 
Figure 9. Decreasing shape case a) true CO2 profiles, and b) retrieved CO2 profiles. 

 
Figure 10. Increasing shape case a) true CO2 profiles, and b) retrieved CO2 profiles. 
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Figure 11. Jacobian of CO2. 

 We see that the uncertainty reduction for the decreasing and increasing profiles (Figure 12) 

is greater than the constant shape, with multiple lower tropospheric levels having close to zero 

error. This is likely due to the description of the profiles being overall closer to the prior 

information since, as described by Ghadikolaei (2017), Equation 18 is designed to give realistic 

changes of atmospheric CO2, and its values usually does not differ greatly from the mean column 

concentration at higher altitudes (O’Dell et al., 2012). We also see that the error on the first layer 

is significantly higher than the ones right above it, which reflects the issue previously discussed 

about the level calculation on the radiative transfer model. 

 
Figure 12. RMSE of mean a) decreasing and b) increasing CO2 profiles. 



 36 

 The final case is the bell-shaped profiles. From Figure 13, we see that the average peak 

height for the A-ABL cases was 2.8 km, while for the B-ABL profiles was 1.1 km. We also see 

that the retrieval can differentiate the two cases by providing distinct profiles, but it tends to 

underestimate the altitude of the peak (more pronounced for the A-ABL profiles). This can still be 

useful in determining emission sources, as the knowledge of a CO2 plume above the ABL 

combined with wind speed and direction data can indicate the direction where CO2 emission 

outside of the measuring location mostly occurs (Xia et al., 2022). 

Moreover, we see a pattern of the higher altitude the CO2 peak occurs, the more the retrieval 

underestimates the magnitude of the peak, as well as “spreading” the greater CO2 concentrations 

across multiple altitudes (the bell-shape is larger). This makes sense considering that the retrieval 

is most sensitive at the lower layers, and since the retrieval has a lower vertical resolution than the 

assigned layers, it can interpret a high sharp CO2 peak as a blunt, lower CO2 peak.  

 
Figure 13. Bell-shaped cases a) true CO2 profiles, and b) retrieved CO2 profiles. 

 The CO2 profile uncertainty (Figure 14) for both cases is reduced on the lowermost 

atmospheric layers (up to 4 km for the B-ABL cases and up to 6 km for A-ABL), which shows the 

usefulness of the retrieval in estimating CO2 concentrations. However, it also demonstrates that, 

after a certain point, the retrieval increases the error of the profile. This occurs because, as 
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previously discussed, the retrieval tends to spread the larger CO2 concentrations over more levels 

due to its lower vertical resolution than the assigned layers in the retrieval and indicates that the 

retrieval should be mainly used for estimations in the lower troposphere. 

 
Figure 14. RMSE of mean bell-shaped a) above ABL and b) below ABL CO2 profiles. 

 This is not to be confused with the retrieval increasing the uncertainty when compared to 

the prior information. To evaluate this aspect of the retrieval, a comparison between the prior (Sa) 

and posterior (S) uncertainties needs to be made. The retrieval error depicted in Figure 14 having 

a higher error than the first guess at higher levels is due to the retrieval having a lower vertical 

resolution than the implemented on the model and does not invalidate the benefits of the retrieval 

seen in lower levels. 

 For the bell-shaped case, which is also true for all the other experiments tested, the posterior 

uncertainty is either equal to or smaller than the prior uncertainty (Figure 15). We see that the 

greatest reduction occurs near the surface, where the retrieval is most sensitive to, and then 

decreases until around 5 km, where it becomes the same value as the prior. This corroborates with 

the discussed implication that the retrieval should be applied for the lower troposphere CO2 profile. 



 38 

 
Figure 15. Prior and posterior uncertainties of the retrieval, using Jacobian of bell-shaped case. 

 

4.3 Real Data Radiance Closure 

 Figure 16 exhibits AERI’s radiance closure test results. We see that the model uncertainty 

is overall about the same or higher than AERI’s uncertainty, with the highest values coming from 

the water vapor channels below 600 cm-1, while the lowest are located on channels above 1400 

cm-1. 

 
Figure 16. AERI’s radiative closure results for the field campaign. 
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 We also observe high uncertainty values on the wings of the CO2 667 cm-1 absorption band 

which, as expected, is mainly caused by errors in the Picarro measurements of CO2. The channels 

of interest for the retrieval due to their sensitivity to CO2 (between 600 to 800 cm-1) mostly stay 

within the uncertainty range, especially those on the 620 – 720 cm-1 range, indicating that no 

systematic biases will need to be taken into consideration when making use of these channels. 

 Channels belonging to the absorption bands of greenhouse gases that were not measured 

on site exhibits a higher radiance bias than the uncertainty, which makes sense, as the concentration 

of these gases either were included representing an average over a large area (O3 and CH4) or were 

not included in the LBLRTM simulation (e.g., CFCs and N2O). We see this primarily for the O3 

1042 cm-1 and the 1306 cm-1 CH4 absorption bands. 

 A systematic positive bias in the window band (800 to 1250 cm-1) is also seen. Other studies 

have noticed this systemic warm bias in AERI’s measurements under clear-sky conditions (Liu et 

al., 2024; Liu et al., 2022; Delamere et al., 2010). There are a few hypotheses that could explain 

this positive bias, such as the presence of optically thin clouds and the partial obstruction of AERI’s 

field-of-view (Liu et al., 2024), but no definitive answer to explains this phenomenon has been 

established. Because the CO2 retrieval does not utilize channels in the window band, no correction 

to this warm bias was necessary. 

 

4.4 Real Data Retrieval 

 The clear-sky conditions of the field campaign were verified through AERI’s radiance 

spectra. Because the forward model (LBLRTM) is set to have no clouds, it is extremely important 

that AERI’s measurements also have this characteristic. Because cloudy and clear-sky radiances 
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have very distinct values in multiple channels, especially in the window band (Figure 17), the 

conversion of the retrieval is dependent on the cloud conditions of the taken measurement. 

 
Figure 17. Example of clear-sky and cloudy sky measurements of AERI. 

Applying the criteria described in section 3.6, we get 10 minutes averaged spectra shown 

in Figure 18. As seen by the low radiance values in the window band, the radiance used in the 

retrieval represents clear-sky conditions. 

 
Figure 18. AERI radiance used for CO2 retrieval. Note that the full spectrum is being showcased, but the retrieval 

uses a few selected channels. 

As with the synthetic experiments, the first guess of the retrieval is the prior knowledge, a 

constant CO2 profile of 420 ppmv, and the true CO2 profile was considered to be a combination of 
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the measurements made by the Picarro on the ground and on the research aircraft (Figure 19). 

Multiple sets of channels which CO2 is sensitive to (Figure 2) were tested, and the retrieval that 

arrived closest to the true profile used the wings of the 667 cm-1 CO2 absorption band (626 – 632 

cm-1 and 708 – 721 cm-1), with this retrieval being shown in Figure 20. 

 
Figure 19. Prior and true CO2 profiles for retrieval and validation. 

 
Figure 20. CO2 retrieval using real AERI measurements. 

 It is immediately noticeable the unphysical concentration values near the surface up to 

around 500 m height. This is likely caused by the uncertainty on the temperature profile, which 

will be discussed in depth later on. If these first layers are not considered (Figure 21), we do see 
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some improvements from the prior profile, in particular between 800 m and 2.5 km. This supports 

the potential of the retrieval in estimating the CO2 profile along the lower troposphere, as long as 

the issues with surface unphysical values is solved. It is also worth remembering that CO2 

measurements for validation are limited to the first 3 km of the atmosphere, so there is a possibility 

that the retrieval captures CO2 values above this level better than is shown in Figure 21. 

 
Figure 21. CO2 retrieval using real AERI measurements from 0.5 to 10 km. 

The channels around the main CO2 absorption band are also strongly influenced by 

temperature, as seen in Figure 22, which shows the sensitivity of each wavenumber to temperature. 

Because the retrieval only adjusts values of CO2, even small errors in the temperature profile can 

lead to great discrepancies in CO2 value, as the model tries to adjust the radiance value difference 

that is being caused by temperature with extreme CO2 concentrations.  
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Figure 22. Jacobian of temperature for first 10 km, which represents the channels sensitivity to temperature. 

Uncertainties in temperature comes not only in a measuring instrument itself (e.g., the 0.5 

K uncertainty for the radiosonde measurements above 100 hPa), but also between instruments and 

measuring techniques, as illustrated in Figure 23. The temperatures used for Figure 23 are 

described in Table 3, and all of them were collected at the closest available time of the balloon 

launch on the field campaign for each dataset. 

 
Figure 23. Surface temperature measurements of different instruments and reanalysis techniques for the time of the 

field campaign. 
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Table 3. Description of temperature values used in Figure 23. 

Variable Name Data Origin Description 

Radiosonde iMet-4 Radiosonde reading on field campaign 

Skin Temp. ERA5 Skin temperature from ERA5 single levels 

ERA5 Levels ERA5 
Surface temperature obtained from extrapolation of 

ERA5 pressure levels temperature profile 

Temp. 2 m ERA5 2 m temperature from ERA5 single levels 

BT Center 667 cm-1 Band AERI Brightness temperature of AERI’S 667 cm-1 channel 

AERI Ambient Temp. AERI AERI ambient thermometer reading 

Gault Tower EOS 
Temperature from meteorological tower of the 

Earth Observation System (EOS) at Gault 

A synthetic spectra experiment was designed to test this hypothesis. In this experiment, the 

background atmospheric values of the retrieval first guess and the truth are the same, with the 

exception of the surface temperature, where its value in the true profile was 0.1 K more than in the 

first guess. The results of this test are shown in Figure 24. 

 
Figure 24. Synthetic spectra retrieval with 0.1 K difference at surface. 

The behavior of the retrieval at Figure 24 is very similar to the real data retrieval shown in 

Figure 20, with near-surface extreme CO2 values being used to compensate for the radiance 
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difference caused by temperature. As such, an initial joint retrieval of temperature and CO2 was 

performed to assess if it improves estimations at lower levels. 

The covariance matrix for the a priori knowledge of temperature (Sa of temperature), which 

is necessary for the retrieval, was obtained from the 10 years climatology of ERA5 for the month 

of February in the grid boxes containing Gault’s site. In order to prevent the inversion of this matrix 

to be close to singular, the off-diagonal elements were set to be 99% of their original value. 

Because temperature is mostly sensitive to lower atmospheric levels (Figure 22), two sets 

of experiments were tested. In the first one, the retrieved temperatures for only the lowermost level 

is used, while the rest of the profile remains the same as used for CO2 only retrieval. This is to 

check if a correction at just the surface is sufficient to improve the CO2 estimation. For the second 

experiment, the retrieved temperatures for the first five levels (surface to 0.4 km) were applied, 

while the remaining levels kept their original values. This is to account for the layers that show 

most sensitivity to temperature, represented by the red color in Figure 22. 

Figure 25 depicts the CO2 retrieval when using the retrieved temperature only for the 

surface. When comparing to Figure 20, we see some improvement in the retrieved CO2 profile. 

Although the extreme values in the lowermost layers persist, the retrieval overall got closer to the 

truth, as illustrated in Figure 26, with the main exceptions being the very first level and around 1 

km, where the true CO2 profile show a small peak of 430 ppmv that is underestimated by the new 

retrieval. 
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Figure 25. CO2 retrieval using retrieved temperature for surface level. 

 
Figure 26. Difference between retrieved and true CO2 profiles. 

 

Figure 27 presents the CO2 retrieval when using the retrieved temperature between 0 and 

0.4 km. We can see that the retrieval performs worse than the two real data cases presented before, 

as it greatly underestimates the CO2 concentration in multiple levels. These results, alongside the 

one depicted in Figure 25, indicates that either the joint retrieval technique needs to be refined for 

a more accurate profile, or that other factors might also be influencing the results. 
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Figure 27. CO2 retrieval using retrieved temperature between 0 and 0.4 km. 

 Other works have found similar issues with retrieving CO2 from ground-based remote 

sensing instruments when temperature is considered an unknown variable (Ghadikolaei, 2017; 

Roche et al., 2021). Suggestions to improve the retrieval capabilities include using a fixed CO2 

surface value collected from an in-situ instrument, which would give the algorithm a starting point 

to adjust the CO2 profile with the measured radiance, and to utilize principal component analysis 

for noise reduction in AERI’s measurements (Turner et al., 2006; Ghadikolaei, 2017). 

One aspect that could also be explored in future research is how to assign the Sa matrix for 

the CO2 retrieval. Maahn et al. (2020) analyzed how the lack of off-diagonal elements in the Sa 

matrix for humidity led to the retrieval staying closer to the prior H2O values and a lesser reduction 

of the uncertainty when compared to using a Sa with off-diagonal values, which could be the case 

for CO2 as well. Moreover, CO2 variability at the lower atmospheric levels can be much higher 

than the 5% that was prescribed, as seen in the work of O’Dell et al. (2012), which can also 

contribute for a greater weight being put in the prior input when compared to the information from 

the measurements. As such, different (and more realistic) Sa settings should be tested. 
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5. Conclusion 

 The negative impacts that global warming already had around the globe, alongside the 

potential of it causing even worst societal issues calls for efforts in better understanding the 

behaviour of its main culprit, CO2 emissions (Arias et al., 2021). Although considerable progress 

has been made in this area, especially regarding measurements from remote sensing instruments, 

there is still a lack of estimations of CO2 whole-day vertical profiles for the lower troposphere, 

which is a knowledge that would help not only in improving CO2 daily and seasonal cycles 

implementation in climate models, but also aid in tracking CO2 emissions and progress of net-zero 

efforts. 

 This project aimed to assess the capability of AERI, a Fourier transform spectrometer that 

measures DLR, in retrieval the vertical profile of CO2. Synthetic idealized experiments showed 

that the AERI instrument, with its current specifications, is capable of retrieving CO2 with an 

average accuracy of 5.5 ppmv, which is smaller than the natural CO2 variability in the lower 

troposphere and supports the conclusion that the retrieval improves the profile estimation when 

compared to CO2 prior knowledge. 

 The synthetic experiments also demonstrated that the retrieval is capable of differentiating 

distinct profile shapes, including when CO2 peaks occur above or below the ABL. This means that 

AERI has great potential to improve the understanding of CO2 daily cycle by identifying patterns 

in its concentration distribution depending on the time of the day. This knowledge can also help in 

determining emission sources since the information of the profiles combined with wind speed and 

direction data can present clues of the direction where emission mostly occurs (Xia et al., 2022). 

 When applied to real atmospheric conditions, the algorithm showed potential in retrieving 

the CO2 profile when validated against in-situ measurements, especially in the range of 800 m and 
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2.5 km. Issues with the retrieval at very near surface levels are thought to be caused by not enough 

accurate temperature readings, which could possibly be solved through the use of a joint 

temperature and CO2 retrieval and should be further explored in future work, since the results 

presented here represent an initial assessment of this influence. Other aspects of the retrieval, such 

as the prior covariance matrix, should also be analyzed in order to fully understand the potential 

of using AERI for CO2 estimations in a North American setting. 

 Overall, the synthetic experiments present a promising application of AERI in CO2 vertical 

profile retrieval, and future work should explore possible influencing factors, such as other 

atmospheric variables and the setting of the retrieval itself, to overcome current issues in the real 

data retrieval in order to increase its accuracy. 
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Appendix A. Data and Codes 

 The data used for both synthetic experiments and retrieval utilizing real measurements, as 

well as the programs necessary to run the retrieval are located in the following link: 

https://github.com/bghirardi/Codes_Manuscript  

 In the "Analytical Jacobian Inputs" folder, you will find the necessary input files for 

LBLRTM to run the Analytical Jacobian calculation. 

In the "Data" folder, you will find a file with the data used for the synthetic experiments 

("era5_climatology") and one for the real measurements ("combined_profile"). 

In the "Main Functions" folder, you will find the MATLAB functions that are necessary to 

run the following codes. 

In the "Noise AERI" folder, you will find the code to get the necessary AERI noise. This 

step needs to be taken before the retrieval is attempted, since the noise obtained from this code is 

necessary for the retrieval. 

In the "Synthetic Experiments" folder, you will find the codes for the retrieval of the 

different cases presented in sections 4.1 and 4.2 of the synthetic experiment results. 

In the "Real Measurements" folder, you will find the code for the retrieval using real AERI 

and atmospheric measurement data. 

Finally, in the "Pos-retrieval" folder, you will find the codes to do the analysis of the 

retrieval results. These codes can be used for both synthetic and real experiments, the only 

difference being the input provided. These codes also generate the figures shown in the work. 

 

https://github.com/bghirardi/Codes_Manuscript

