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A B S T R AC T

For this thesis, the emissivity of axions from interactions of nucleons, such as neutrons

and protons, is investigated. The rate of axions emitted from nucleon-nucleon-axion

bremsstrahlung is calculated assuming nuclear matter under extreme conditions, similar

to the medium in neutron star mergers, where the density and temperature can be larger

than in a single neutron star. The density and temperature play a role in the emissivity of

axions from the medium, and the emission rates for the axion are varied using a nuclear

equation of state typically used for highly dense nuclear matter. The axion emission can be

a mechanism for neutron star cooling, similar to the Urca processes. The axion emission

rates are compared to those of the modified Urca process, where neutrinos are emitted from

the medium also through nucleon-nucleon pair bremsstrahlung.
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A B S T R A I T

Pour cette thèse, l’émissivité des axions résultant des interactions entre les nucléons, tels que

les neutrons et les protons, est étudiée. La quantité d’axions émise à partir du bremsstrahlung

nucléon-nucléon-axion est calculée en supposant une matière nucléaire dans des conditions

extrêmes, similaires à celles lors d’une fusion d’étoiles à neutrons, où la densité et la

température peuvent être bien supérieures à celles de simples étoiles à neutrons. La densité

et la température jouent un rôle dans l’émissivité des axions, donc les taux d’émission pour

l’axion sont variés en utilisant une équation d’état nucléaire typiquement utilisée pour la

matière nucléaire très dense. L’émission d’axions peut être un mécanisme de refroidissement

des étoiles à neutrons, semblable aux processus Urca. Les taux d’émission d’axions sont

comparés à ceux du processus d’Urca modifié, où des neutrinos sont également émis du

milieu par le bremsstrahlung de paires nucléon-nucléon.
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Part I

T H E O R E T I C A L BAC K G RO U N D





1
I N T RO D U C T I O N

Quantum field theories (QFTs) are the language particle physicists use to describe particle

interactions involving the extensive list of known particles. Particles are conceptualized not

as isolated entities but as excitations of underlying fields that permeate spacetime. Each

type of particle is associated with its specific field. QFTs are also used to develop theories

with hypothetical particles. The fundamental fields are the building blocks for more exotic

particles, and as far as our modern understanding goes, they are listed in what is called the

Standard Model of particle physics. So far, the Standard Model consists of six quarks and

six leptons, both making up the fermionic matter in our universe. The Standard Model also

includes bosons, which are known to be the force carriers; there is the scalar Higgs boson,

the photon, the gluon, and the vector Z and W bosons. The particles seen in Fig. 1.1 are a

part of our luminous universe, but there are still sectors, possibly unknown, which make up

our dark universe.

Even though the Standard Model has been successful in explaining the properties and

interactions of known particles, such as the electron’s inherent coupling to photons (known

as the fine structure constant α = 1/137)[2], the Standard Model does not account for the

parts of the universe known as dark matter and dark energy. The concept of dark matter

began in the early 20th century when astronomers noticed problems with astronomical

observations. Galaxies were rotating at velocities that implied the presence of much more

mass than what could be accounted for by visible matter alone [3][4]. Fig. 1.2 shows this

effect by superimposing rotation curve data on top of an image of M33, which is a dwarf

spiral galaxy. In the 21st century, the search for dark matter has become one of the most

active areas of physics research. Numerous experiments have been designed to detect dark

3



4 introduction

Figure 1.1: The particles of the Standard Model, divided in fermions (quarks and leptons) and bosons
(gauge bosons and scalar boson). The different masses, charge (in terms of electron
charge e), and spin are labelled, and the different fermion generations are distinguished,
where higher generations possess larger masses [1].

matter particles directly, such as weakly interacting massive particles (WIMPs) [6], or to

observe their effects indirectly through astrophysical observations [7]. The Large Hadron

Collider (LHC) and other particle accelerators have also sought signs of dark matter particles

in high-energy collisions [8]. Despite these efforts, dark matter remains one of the most

elusive components of the universe. Its presence is inferred from gravitational effects on

visible matter, radiation, and the universe’s large-scale structure, but its true nature and

composition remain unknown.

The purpose of this study is to calculate the emissivity of the Quantum Chromodynamics

(QCD) axion, which may be a dark matter candidate, from hot nuclear matter. Emissivity,

in the context of axions, refers to the rate at which energy is lost from a medium, such as

nuclear matter, as axions are emitted. The search for the axion has significantly contributed

to the exploration of viable dark matter. The concept of the axion, alongside axion-like
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Figure 1.2: Observed rotational velocity compared to the expected rotational velocity of M33, a
dwarf spiral galaxy, where the rotational velocity is in kilometres per second (km/s) vs
the distance in kiloparsecs (kpc) from the center of the galaxy [5].

particles (ALPs), emerged as a compelling solution to the Strong CP Problem in QCD

[9][10][11]. The Strong CP Problem is a theoretical conundrum that questions why CP

violation, which is theoretically permissible in the strong force, is not observed in nature.

Axions, which are discussed in more detail in section 2, interact very weakly with ordinary

matter and radiation, which is a characteristic feature expected of dark matter particles. This

weak interaction makes them difficult to detect, similar to other dark matter candidates.

The next section will introduce QCD and the QCD phase diagram, which will go over the

concepts needed in order to discuss axion interactions and the motivation for why this study

will be investigating extreme nuclear conditions.

1.1 quantum chromodynamics

Gluons are the mediators of the strong nuclear force, binding quarks together through quark-

gluon interactions. Without the strong force, the Coulomb repulsion of nuclei in the nucleus
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would not allow matter to exist in a stable state. QCD is the field theory that is used to

describe the strong nuclear force. The QCD Lagrangian involving quarks and gluons is [12]

LQCD = ψ (i/∂ −M − g/AaGa)ψ − 1
4 Fµν

a Fa
µν . (1.1)

where Aa
µ are the gluon fields, a is the colour charge index that is equal to a = 1, 2, . . . 8 for

S U(3), which is the colour gauge group. ψ is the quark field for any of the six quark flavours

(u, d, s, c, t, or b quark flavours), M is the quark mass, and g is the coupling constant. The

gluon field strength tensor, labelled Fµν
a , that governs the dynamics of the gluon is defined as

Fµν
a = ∂µAνa − ∂

νAµa + g f abcAµbAνc . (1.2)

where f abc is a constant that depends on the colour indices a, b, and c, and is antisymmetric

between permutations fabc = − fbac:

f123 = 1, (1.3)

f147 = − f156 = f246 = f257 = f345 = − f367 = 1
2 , (1.4)

f458 = f678 =
√

3
2 . (1.5)

Like for quantum electrodynamics (QED), the Lagrangian has a kinetic and mass term for

describing a non-interacting massive quark. Then, a minimal coupling term for the quarks

to the gluons is similar to fermions coupling to photons in QED. Lastly, the invariant term

Fµν
a Fa

µν describes the kinetic energy of the gluons, which has a similar term in the QED

Lagrangian for photons. The difference between the two theories is that QED is an abelian

theory that uses the U(1) gauge symmetry, which governs the dynamics of the photon, while

QCD is a non-abelian gauge theory with S U(3) symmetry, which affects the strong force

coupling in a non-trivial way. QED is an abelian theory because the group transformations

commute [13], and QCD has Lie-group generators from eq. 1.1 that have the cyclic property

[Ga, Gb] = i fabcGc.
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The third term in Eq. 1.2 is not seen in QED, and this gluon self-interacting term causes

the non-abelian nature of QCD. The strong coupling, labelled g, is the strength of interaction

between quarks and gluons. Though it is called a constant, it is energy-dependent, where it

decays at high energies and is large at low energies. To see the behaviour of g at different

energies, the renormalization of g up to one loop interactions gives the following beta

function [14],

∂g
∂ ln µ

= β(g) = −
(

11
3 Nc −

2
3n f

) g3

(4π)2 + O(g5) . (1.6)

Here Nc is the number of colours, and n f is the number of active quark flavours at the scale

µ. Due to the negative beta function, the QCD field theory experiences a phenomenon

known as asymptotic freedom. Asymptotic freedom is a unique feature of QCD, whereby

the strong force weakens as the energy scale increases or the distance scale decreases. This

behaviour is opposite to the electromagnetic force and is the main behaviour of non-abelian

gauge theories like QCD, where gluon self-interactions contribute a negative term to the

beta function, contrasting with abelian theories where such self-interactions are absent. It

can be convenient to represent the strong coupling in terms of the fine structure constant for

the strong interaction, labelled αs,

αs ≡
g2

4π
(1.7)

∂αs

∂ ln µ
= β(αs) = −

(
11
3 Nc −

2
3n f

) α2
s

2π
+ O(α4

s) (1.8)

Therefore, the renormalized strong coupling can be expressed as

αs
(
Q2

)
=

4πNc

(11Nc − 2n f ) ln
(
Q2/Λ2

QCD

) , (1.9)

which varies depending on an arbitrary energy scale Q, as seen in Fig. 1.3. In the logarithm

for αs in Eq. 1.9, there is a ΛQCD, which is the scale of the strong interaction and appears as
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Figure 1.3: Strong Coupling αs(Q2) data at discrete energy scales Q, with Nc = 3 in Eq. 1.9, taken
from ref. [2]. The data for αs(Q2) are taken up to next-to-next-to-leading order (NNLO),
while Eq. 1.9 is only up to leading order (LO). NNLO corresponds to the three-loop
correction to αs, whereas LO uses only one-loop Feynman diagram corrections.

an arbitrary energy scale from the renormalization process. However, the value of ΛQCD is

typically chosen to be ΛQCD ∼ 200 MeV [12].

1.2 qcd phase diagram

The QCD phase diagram describes the different possible states of strongly interacting matter,

depending on the temperature and density. Fig. 1.4 shows the mostly conjectured QCD

phase diagram and the different states of matter. Hadronic matter consists of baryons and

mesons, where a baryon has three constituent quarks, and a meson has a constituent quark

and anti-quark, which are all held together by gluons. The hadronic matter comprises the

diagram’s low temperature and low-density region. As the energy is increased, the quarks

inside of the hadrons reach a deconfinement transition, resulting in a state of matter called

the quark-gluon plasma (QGP), which is thought to exist in the early universe just after

the Big Bang. A critical point is theorized to occur which would represent that location
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Figure 1.4: 3-Dimensional QCD phase diagram at high densities and with an isospin asymmetry
(refer to Eq. 3.18 for isospin asymmetry term). The phase diagram shows different
structures for nuclear matter and the experiments used to probe such structures, with the
critical points and phase transitions included [15].

in the phase space where hadrons and the QGP both exist. Different laboratories currently

probe the nuclear medium in different regions to describe the properties of the strong

interaction at these conditions. For the QGP, heavy-ion collision experiments done at LHC

and RHIC are done to compare to theory, such as perturbative calculations and lattice QCD.

The theorized quarkyonic phase is expected at high density but below the deconfinement

temperatures seen in QCD conditions. The quarkyonic phase still contains confined quarks

but is past the chiral transition where the quarks are approximated to be massless [16][17].

Past this point at extremely high densities, quarks are hypothesized to experience colour

superconductivity: a state in which quarks pair up into Cooper pairs (the attractive force

between quarks is mediated by gluons), moving beyond their usual confinement within

hadrons [18][19]. Along the low-temperature, high-density axis, astrophysical laboratories
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are used since these conditions are produced within the medium of a neutron star. A neutron

star experiences a high isospin asymmetry, meaning there are more neutrons compared to

protons. The underlying physics within the asymmetry alongside highly dense matter, like

within a neutron star, is of interest within this thesis since it can help uncover more meaning

to the QCD phase diagram at an isospin density imbalance. This isospin asymmetry will be

discussed more in section 3.0.3. Finally, understanding how nucleons interact with particles

like the axion is of interest for this study at high densities and at isospin asymmetries. The

axion will be introduced in the next chapter.



2
T H E S T RO N G C P P RO B L E M A N D U ( 1 ) P Q S Y M M E T RY

For any field, we can translate the field in the spatial direction x⃗ and perform rotations

around an axis. A parity transformation geometrically shifts the position by x⃗ → −x⃗.

Charge conjugate flips the electric charge of the field, and does not affect neutral charges.

Charge conjugation (C) and parity (P) together is so far known to not be violated for strong

interactions, meaning observations in experiments have not found a process that violates CP

symmetry [20].

In QCD, the consequence of the gluon topology allows the infinite number of degenerate

vacuum states known as the θ-vacua [21]. These vacuum states emerge due to solutions to the

Yang-Mills equations called instantons [22]. Instantons can be described as pseudoparticles

that are characterized by a quantized topological charge known as the winding number.

Each instanton solution contributes to the tunnelling between different θ-vacuum states

characterized by different winding numbers, |n⟩ [23]. These vacuum states take the form

|θ⟩ =
1
√

2π

∞∑
n

e−inθ|n⟩, (2.1)

where n is the winding number, which is an integer, and θ can take any value between [−π, π].

These states introduce a term in the QCD Lagrangian that is CP-violating,

Lθ = θ̄
g2

32π2 Fµν
a F̃aµν, with θ̄ = θ+ argdet(M). (2.2)

This term includes the gluon tensor Fµν
a , the dual gluon tensor F̃aµν =

1
2ϵµναβFαβ

a , the strong

coupling g, and θ̄. The argdet(M) term is the complex polar angle of det(M), where M is the

mass matrix for quarks. The CP-violation occurs since the Levi-Civita tensor ϵµναβ changes

11
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sign after a parity transformation due to the odd number of spacial components, while Fµν
a is

invariant under CP. Therefore, after a CP transformation F̃aµν → −F̃aµν, resulting in the Lθ

term in the QCD Lagrangian to violate CP symmetry. Even though it is theoretically allowed

to violate CP, there is no evidence of CP violation for strong interactions. To investigate

experimentally, theLθ term can be shown to contribute to the quark’s electric dipole moment

(EDM), and in turn the neutron’s EDM, dn [13]. From deriving the theoretical estimate for

dn, the expression is [24]

dn ∼ eθ̄
mq

m2
n
≈ 2.4 × 10−16θ̄ e · cm. (2.3)

Experimental bounds on dn are about |dn| ≤ 2.9 × 10−26e · cm [25], which gives upper limit

to the magnitude of θ̄ to equal |θ̄| ≤ 10−10. The magnitude of θ̄ can range from [0, π), making

it notable that its observed value is close to zero. Given that θ̄ ≈ 0, no CP-violation has yet

been detected in strong interactions. This situation, where theoretical expectations allow for

a potentially larger value but observations suggest a near-zero value, is known as the Strong

CP Problem, and is suggestive of an underlying symmetry.

Several solutions have been proposed to resolve the Strong CP Problem. In 1977, Roberto

Peccei and Helen Quinn added a correction term to the theory to cancel Lθ which introduces

the Peccei-Quinn symmetry U(1)PQ to conserve CP in the QCD Lagrangian [9][26].

La =
a
fa

g2

32π2 Fµν
a F̃aµν (2.4)

The new U(1)PQ symmetry is a global symmetry, and under transformations, the transform-

ing parameters (seen in Eq. 2.5) do not require spacetime coordinates and, therefore, do not

require fields to be mediated by a gauge field. The U(1)PQ symmetry is an approximate

symmetry that can be spontaneously broken, leading to the emergence of a pseudo-Nambu-
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Goldstone boson called the axion. Under a symmetry transformation, the axion field, which

is labelled as a, will transform linearly in the following way:

a→ a + α fa (2.5)

where α is the global transformation parameter of the U(1)PQ symmetry, and fa is the

axion decay constant, which sets the energy scale of PQ symmetry breaking. The axion

dynamically relaxes the θ̄ parameter to zero, potentially resolving the Strong CP Problem.

The total QCD Lagrangian would then look like

LQCD+a = LQCD +

(
a
fa
− θ̄

)
g2

32π2 Fµν
b F̃bµν +

1
2
∂µa∂µa +Lint (2.6)

The term a/ fa functions has a phase (same as θ̄), which can take any value between [−π, π].

The value is chosen based on the axion’s effective potential and thermal effects. Above a

critical temperature of T ∼ fa, the axion is massless and does not feel an effective potential.

As the universe cools below fa, the PQ symmetry spontaneously breaks, inducing a non-zero

mass for the axion and a corresponding effective potential [27],

V(a) = m2
a f 2

PQ (1 − cos [a/ fPQ]) (2.7)

Initially, the phase a/ fa can start from any value within [−π, π] and will oscillate around

the minimum of this potential. These oscillations contribute to the axion behaving as cold

dark matter [27]. The axion is a pseudo-Nambu-Goldstone boson, from the spontaneous

breaking of the PQ symmetry, which would render it nearly massless if not for the additional

interactions with the QCD vacuum because of the topological charge induced by instantons,

the axion field gains a small effective mass through interactions with the QCD vacuum’s
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topological susceptibility (χtop), which quantifies how the energy of the vacuum responds to

changes in the topological charge density E(θ̄, T ) [28] [29].

m2
a(T ) f 2

a =
∂2E(θ̄, T )

∂θ̄2

∣∣∣∣∣∣
θ̄=0

= χtop(T ) (2.8)

Because the mass is generated dynamically, there is no explicit mass term for the axion in

the PQ-extended QCD Lagrangian from Eq. 2.6. From lattice QCD, at low temperature, the

effective mass term is derived to be [30][31]

m2
a =

mumd

(mu + md)2

m2
π f 2
π

f 2
a

, (2.9)

where mu and md are the up and down quark masses, respectively, mπ is the neutral pion

mass, and fπ = 190 MeV [10]. The axion’s mass is inversely proportional to the axion

decay constant fa, as seen in Fig. 2.1. Also in Fig. 2.1, astrophysical and cosmological

arguments (coloured blue) indicate the ranges of axion masses based on observations such

as those related to hot dark matter constraints from the cosmic microwave background

(CMB) [32][6] and the Big Bang Nucleosynthesis (BBN)[33], the supernova burst duration

from SN1987A, and the behaviour of objects like globular clusters and white dwarfs.

Laboratory Searches (coloured gray) and experimental prospects (coloured green) cover

regions probed by experiments like ADMX, HAYSTAC, IAXO, CAST, Super-Kamiokande

(SK) observations, and solar neutrino flux observations, each targeting different mass ranges.

Cavity Experiments, such as the Axion Dark Matter Experiment (ADMX) [34] and the

Haloscope at Yale Sensitive to Axion CDM (HAYSTAC) [35], use resonant microwave

cavities to detect axions. Additionally, telescope experiments like the CAST experiment

[36] use helioscopes, and projects like the International Axion Observatory (IAXO)[37]

are part of these advanced searches. Lastly, lattice calculations on the axion field depend

on when the PQ symmetry breaking occurs during cosmic inflation. If the PQ symmetry

breaks during the pre-inflation era, it happens when the universe is still very small. This

early breaking homogenizes the axion field across the observable universe. If PQ symmetry
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breaks during the post-inflation era, it occurs when the universe is already large and not

uniformly dense, which could result in a non-uniform distribution of the axion field.

Figure 2.1: Axion mass and decay constant, based on different astronomical observations and experi-
mental efforts, with preinflation and postinflation PQ breaking scenarios calculated using
Lattice topology [29].

2.0.1 Axion Interactions

The axion is a pseudoscalar that is now a part of the QCD Lagrangian. Therefore, it should

be able to couple to other particles like the photon, electron, and other QCD fermions such

as quarks and nucleons. Many papers go through the different possible interactions the

axion can have with other particles. Eq. 2.10 below showcases the axion-fermion couplings

[38][39][40] and Eq. 2.11 showcases the axion-photon coupling [41][42].

LaNN =
CN

fa
∂µaΨ̄Nγ

µγ5ΨN (2.10)

Laγγ = −
gaγγ

4
aFµνF̄µν (2.11)
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QCD axions can also couple to fermions, including quarks and leptons, through derivative

couplings, while the axions couple directly to photons. For this thesis, the most important

coupling will be the effective coupling to nucleons, with a coupling constant gai, where i is

either a proton or a neutron. The coupling to nucleons is important here because this study is

only concerned with axions coming from a nuclear medium at extreme conditions (discussed

in section 4). The nucleon-nucleon-axion coupling constant is equal to [43]:

gai =
mi

2( fa/NPQ)
(2.12)

The coupling contains the nucleon mass (mi) and fa/NPQ, where NPQ is the colour anomaly

of the PQ symmetry, which represents the degree to which the PQ symmetry is violated

due to QCD effects such as from the gluon self-interactions. The values of fa/NPQ have a

lower limit of fa/NPQ ≥ 8× 109 GeV [43]. This coupling appears in nucleon-nucleon-axion

bremsstrahlung.

Bremsstrahlung occurs when an initial state of two particles interacts, and then one of the

particles radiates energy. The radiation can be a photon, a pair of leptons, or, in the case of

this study, the hypothetical axion:

Neutrino Bremsstrahlung N + N → N + N + ν+ ν (2.13)

Axion Bremsstrahlung N + N → N + N + a (2.14)

For the nucleon-nucleon-axion bremsstrahlung process, the nucleon interaction can be

modelled through one pion exchange. These interactions between nucleons to axions and

nucleons to pions come from effective theories [44][45][46],

Pion-Nucleon Vertex (2mi/mπ) fi jγ5 , (2.15)

Axion-Nucleon Vertex (gai/mi) γ5/a, (2.16)
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where Eq. 2.15 and Eq. 2.16 are the vertices when calculating the Feynman diagrams in

Fig. 2.2. In the interactions, the indices i and j are for the two nucleon flavours, which are

either a proton (p) or a neutron (n), and fi j are the nucleon pion coupling constant. The

constant fi j depends on the incoming and outgoing nucleons. If the vertex in the Feynman

diagram is two neutrons coupling to the pion, then fnn ≈ 1.05, if two protons couple to

the pion then fpp ≈ −1.05, and if a neutron and proton couple to the pion then fnp ≈
√

2,

which would correspond to the initial nucleon changing flavours in the final state. These

values for fi j are required to conserve the isospin invariance in the matrix element and are

determined from fitting nucleon-nucleon scattering data to the one pion exchange between

two nucleons [47]. Additionally, gai is the axion-nucleon coupling constant. Even though

the axion is considered a Goldstone boson, the interaction includes its slashed momentum

/a = γµaµ, exactly like the treatment of fermion momentum in a propagator. This is due to

the partial derivative in Eq. 2.10. To go from the Lagrangian density in Eq. 2.10 to Eq. 2.16,

the Fourier transform must be taken to go to momentum space. The Feynman rule for the

nucleon-nucleon-axion vertex yields,

−i
CN

fa
γµaµγ5, (2.17)

where aµ is the axion momentum, 1/ fa ∝ gai/mi (refer to Eq. 2.12), and CN is a constant that

changes depending on the axion theory used. For this thesis, the QCD axion is investigated,

where the axion couples to nucleons.

To study nucleon-nucleon-axion bremsstrahlung, the eight different Feynman diagrams

seen in Fig. 2.2 need to be included when calculating the matrix element. The Feynman

diagrams are for different permutations of the one-pion exchange between nucleons with
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Figure 2.2: Feynman diagrams for nucleon-nucleon-axion bremsstrahlung. There are eight different
diagrams to consider, where the couplings to the pion and axion are effective field theory
couplings shown in Eq. 2.15 and Eq. 2.16.

an emitting axion, where the long distance interaction between nucleons involves the pion

exchanging energy and momentum. After careful calculation, the matrix element is,

∑
spin

|M|2 =
256

3
g2

ai f 4m2
i

m4
π

 |⃗k|4

(|⃗k|2 + m2
π)2

+
|⃗l|4

(|⃗l|2 + m2
π)2

+
|⃗k|2 |⃗l|2

(|⃗k|2 + m2
π)(|⃗l|2 + m2

π)

 ,

(2.18)

which is in agreement with the calculation performed by Brinkmann and Turner (1988) [44]

and Iwamoto [48]. Here k = p1 − p3 and l = p2 − p4. In the limit where |⃗k|2|, |⃗l|2| >> m2
π,
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then the terms in the brackets are approximately equal to 3 and the whole matrix element

can be approximated to 256g2
ai f 4m2

i /m4
π. This condition of |⃗k|2|, |⃗l|2| >> m2

π occurs when

temperatures exceed T ≥ 6 MeV [44].

The nucleon-nucleon-axion bremsstrahlung process can occur in a thermal medium of

nucleons, such as in a neutron star and neutron star mergers. The next chapter will describe

neutron stars and the conditions within them.





3
N E U T RO N S TA R P H Y S I C S

When a massive star with a mass of about 8 < M/M⊙ < 15 (where M⊙ is the mass of the

sun) runs out of fuel so that the pressure generated by the fusion reaction fails to balance the

gravitational force, its gravity causes the star to collapse in on itself and a type II supernova

occurs, leaving behind an extremely dense stellar object known as a neutron star [49]. Unlike

normal stars, which burn nuclear fuel to create thermal pressure, neutron stars mostly use

neutron degeneracy pressure to oppose gravity [50]. It is the current understanding that the

neutron star has an atmosphere, a solid outer and inner crust, and a neutron-dense outer and

inner core (layers of the neutron star can be seen in Fig. 3.1). The outer crust of a neutron

star is theorized to be primarily composed of atomic nuclei and electrons, forming a lattice

of nuclei immersed in a sea of degenerate electrons [51]. These conditions of high electron

degeneracy allow beta capture to occur, where a proton and an electron react to produce a

neutron and a neutrino.

Deeper within the neutron star, in the inner crust, the composition includes an increasing

number of free neutrons alongside nuclei and electrons. This region comprises nuclei and a

neutron fluid, where the isospin asymmetry is high enough for neutrons to begin dripping

out of nuclei (the neutrons start to unbind from the nuclei). The drip density, which is

approximately the start of the inner crust, is about ndrip ≈ 2× 10−3n0, where n0 ≈ 0.15 fm−3

is the nuclear saturation density [51]. When the medium consists of infinite nuclear matter,

saturation density occurs at the point where protons and neutrons reach their minimum

energy per nucleon [52]. At these high densities, the phenomenon of "nuclear pasta" occurs,

primarily in the inner crust. This unique structure arises from the balance between the strong

nuclear force binding protons and neutrons and the Coulomb repulsion between protons. As

21
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Figure 3.1: The layers of a typical neutron star [53].

a result, nuclei start to deform, no longer resembling their spherical shapes but stretching

and connecting with neighbours. This deformation leads to various pasta-like phases such as

blob-like "gnocchi" shapes, elongated rod-like "spaghetti," flattened "lasagna" sheets, and

void-filled "Swiss cheese" structures [53].

Further inward, the outer core of the neutron star is primarily composed of free neutrons,

with a smaller proportion of protons and electrons. The density in this region reaches past

saturation density, n ≥ n0 [53]. The inner core’s composition remains uncertain, with

theories suggesting exotic forms of matter. Hyperons (which are baryons that contain a

strange quark) [54], or the neutrons reaching a superfluid state (when neutrons form Cooper

pairs) [55], or quark-matter [56], may occur within the core.

3.0.1 Neutron Star Cooling

Lowering the temperature of a neutron star requires energy to be carried out, and only

particles with a long enough mean free path (labelled λ) are able to escape. To be emitted by
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the neutron star, a neutrino’s mean free path is likely larger than the radius of a neutron star,

which can range from R ∼ (10 − 15) km. When neutrinos are the thermal energy carriers

that cool the neutron star, this is commonly known as the Urca process (named after a casino

in Rio de Janeiro, called Casino da Urca, because the "... Urca Process results in a rapid

disappearance of thermal energy from the interior of a star, similar to the rapid disappearance

of money from the pockets of the gamblers on the Casino da Urca", as stated by George

Gamow in 1970 [57]). The Urca process involves the emission of neutrinos and antineutrinos

through decays within the star [57].

Beta Decay n→ p + e− + νe (3.1)

Beta Capture p + e− → n + νe (3.2)

Eqs. (3.1)-(3.2) are known as direct Urca (dUrca) processes since there is only one nucleon

involved at the initial and final states.

For beta decay to occur, there must be enough available final unoccupied Fermi states for

the electrons and protons. Therefore, the energy and momentum on the Fermi surface of the

particles must satisfy ppF + peF ≥ pnF for the reaction to occur [58]. The Fermi momentum

is related to the number density (ni) in the low-temperature limit:

ni =

∫
g

d3 pi

(2π)3 Θ(piF − pi) (3.3)

Here, i is the species of the fermion (either i = n, p, or e), g = 2s + 1 is the degeneracy

factor and s = 1/2 is the spin of the particle, resulting in g = 2, and Θ(piF − pi) is the

step-function which represents the distribution of particles at T → 0:

→ =

∫ piF

0
(2)

4πp2
i dpi

(2π)3 (3.4)

=
p3

iF

3π2 (3.5)
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Therefore, the relation between density and Fermi momentum is piF = (3π2ni)1/3. The

abundance of electrons is high in the neutron star, making there enough final electron states

for beta decay to occur. The neutron star is charge-neutral, so the number density of electrons

must equal the number density of protons. Therefore, the inequality ppF + peF ≥ pnF then

becomes,

ppF + peF ≥ pnF (3.6)

(3π2np)
1/3 + (3π2ne)

1/3 ≥ (3π2nn)
1/3 np = ne (3.7)

8np ≥ nn let n = np + ne (3.8)

9np/n ≥ 1 (3.9)

∴ np/n ≥ 1/9 (3.10)

where nn is the number density for neutrons, np is the number density for protons, ne is the

number density for electrons, and n is the nucleon density. Therefore, there must be enough

protons (more than 1/9 = 11% of the total density) in the neutron star for dUrca, or else

the Pauli exclusion principle will stop the reaction from moving forward. However, at high

temperatures, degenerate fermions have lots of energy and, therefore, have lots of states

available, so the Pauli exclusion principle is of little concern. In the modified Urca (mUrca)

process, the presence of an additional nucleon alleviates the constraints imposed by density

since the spectator nucleon facilitates the conservation of momentum without needing the

high proton densities [57].

Beta Decay n + N → p + N + e− + νe (3.11)

Beta Capture p + N + e− → n + N + νe (3.12)

Bremsstrahlung N1 + N2 → N1 + N2 + ν+ ν (3.13)

For mUrca, the additional nucleon can act as a momentum source or sink in order to conserve

the momentum. When N = n, there is no threshold density, and when N = p, the spectator
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proton adds two additional Fermi momenta in the equality, 3ppF + peF > pnF , which

requires much less protons in the neutron star compared to dUrca (np/n ≥ 1/65 or 1.5% of

the total density must be protons) [59][57].

3.0.2 Conditions during Neutron Star Mergers

At high temperatures of about T ≈ 5 MeV, even neutrinos become trapped in the medium.

Therefore, investigating the axion, which couples more weakly to nucleons, may become an

important process in the neutron star’s luminosity [60]. Neutrinos may become trapped in

the neutron star because the mean free path of neutrinos may be smaller than the radius at

these high temperatures. In general, the mean free path can be expressed as [50]

λ =
1

nσ
, (3.14)

where σ is the neutrino-nucleon cross-section. The effective mean free path is calculated

based on inelastic and elastic scattering reactions at saturation density [50]

λe f f ∼ 2.5 × 105 km
(
0.1 MeV

Eν

)5/2

. (3.15)

If the neutrino’s energy is approximately Eν ∼ kT , (in natural units k = 1), then at

around T = 10 MeV, λe f f ≈ 2.5 km. Since the typical radius of a neutron star is around

R ∼ (10 − 15) km, the neutrinos can be trapped at these higher temperatures. Certain

reactions can cause the neutrino to be absorbed in the medium, and these reactions are

used to calculate the mean free path of the neutrino. However, these absorptions may only

occur if the conditions, such as temperature and density, satisfy the reaction. The higher the

temperature, the more frequently these reactions can occur [61]. In neutron star mergers, the

temperature can reach extreme conditions, around T = 5 − 50 MeV[62] [63]. Therefore,

studying the axions and neutrinos may help reveal the neutron star merger dynamics.
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In section 5, the calculations of nucleon-nucleon-axion bremsstrahlung emissivities at

T = 6 MeV, 10 MeV, and 50 MeV will be strategically chosen to probe the efficiency of

axion emissions. At 10 MeV, the environment is optimal for significant neutrino trapping,

which suggests a high-density scenario where axion bremsstrahlung could also be notably

effective. Temperatures of 6 MeV provide insight into less extreme conditions and are

the threshold where our approximations for the matrix element (|M|2) from Eq. 2.18 hold.

Lastly, 50 MeV is chosen because the extreme conditions of some neutron star mergers can

reach this temperature, and the axion emissivity might drastically change at this increased

energy and density.

3.0.3 Neutron Star Equation of State

A simple model for the nuclear matter inside of a nucleus or neutron star is made of an

SU(2) isospin doublet

ψ =

p

n

 (3.16)

where the particles in the doublet are either isospin Iz =
1
2 for the proton, or Iz = −

1
2 for

the neutron. It will be shown that the number density ni of each nucleon will affect the

energies in the system, especially if the number densities of the two nucleons are unequal.

Considering A = N + Z nucleons, where N is the number of neutrons and Z is the number

of protons, all interacting together from the strong nuclear force which affected the energy

of the system, ie. the mass of the nucleus or the energy of the nucleons in infinite nuclear

matter [64],

E(Z, A) = −aV A + asA2/3 + aCZ2A−1/3 − aA
(N − Z)2

A
+

(−1)Z + (−1)N

2
aPA−1/2.

(3.17)
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In this expression, aV is the volume term that accounts for the interactions between interior

nucleons, as is the surface term that accounts for the nucleons on the surface of the medium

that don’t have the same amount of nearest neighbours as interior nucleons, ac is the Coulomb

term for the protons interacting with each other, aP is the pairing term which accounts for

nucleons being alone in an energy level or with a pair in an energy level, and aA is the

asymmetry term which accounts for the isospin asymmetry. For infinite nuclear matter, we

can study the energy of the system by letting N, Z, and A go to infinity, ignoring the surface

term and Coulomb term since there is no boundary in this approximation and because of the

charge neutrality of our medium. Let us define δ as the term that quantifies the energy cost

related to the difference in neutron number densities (nn) to proton number densities (np):

δ =
N − Z

A
=

nn − np

n
, where n =

A
V

=
N + Z

V
= nn + np. (3.18)

When δ = 0 we have symmetric nuclear matter, and when δ = 1 the medium is purely

made of neutrons. By expressing the energy in terms of E(n, δ)/A and Taylor expanding

the expression around δ = 0 [65],

E(n, δ)/A = E(n, 0)/A +

(
∂E(n, δ)/A

∂δ

)
δ=0

δ+
1
2

(
∂2E(n, δ)/A

∂δ2

)
δ=0

δ2 + . . . (3.19)

The first partial derivative of E(n, δ)/A is zero when δ = 0 due to the isospin symmetry

of the nuclear force. Therefore, the strong interaction energy between two neutrons is

essentially the same as that between two protons. The second derivative in this expansion is

defined as

S (n) =
1
2

(
∂2E(n, δ)/A

∂δ2

)
δ=0

(3.20)
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which is called the symmetry energy: the difference in energy per nucleon between pure

neutron matter and symmetric nuclear matter. It quantifies the energy cost associated with

deviating from the condition of equal numbers of protons and neutrons.

S (n) ≈ E(n, δ = 1)/A − E(δ = 0)/A ≈ EPNM − ES NM (3.21)

Mathematically, the symmetry energy S (n) as a function of nuclear matter density n =

nn + np can be expressed and expanded around the saturation density n0 as follows [66],

S (n) = J + L
(
n − n0

3n0

)
+

1
2

Ksym

(
n − n0

3n0

)2

+ . . . (3.22)

Here, J represents the symmetry energy at the saturation density n0, and L is the slope

parameter that indicates how the symmetry energy changes with the density of the nuclear

matter. Saturation density is when nuclear matter reaches a balance between attractive and

repulsive forces, resulting in a stable, minimal energy configuration. At this density, the

symmetry energy J is the additional energy per nucleon required to convert symmetric

nuclear matter into pure neutron matter. The parameter L is known as the density slope of

the symmetry energy and is defined as

L = 3n0
∂S (n)
∂n

∣∣∣∣∣∣
n=n0

. (3.23)

This parameter quantifies the first-order change in the symmetry energy with respect to

changes in the nuclear matter density around the saturation point. The slope is directly

proportional to the pressure of pure neutron matter (PNM), which corresponds to δ = 1.

This relation is [67]

P0 ≈
1
3n0L . (3.24)
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A higher value of L indicates a more rapid increase in symmetry energy with density, leading

to a stiffer equation of state. This has profound implications for the properties of neutron

stars, including their maximum mass and radius [68]. Another important constant is Ksym,

which represents the curvature of the symmetry energy at saturation density. It is defined as

Ksym = 9n2
0
∂2S (n)
∂n2

∣∣∣∣∣∣
n=n0

. (3.25)

The curvature Ksym provides insight into the second-order change in the symmetry energy

with respect to the nuclear matter density around the saturation point.

The equation of state used in this thesis is a popular nucleonic equation of state: FSUGold2.

It has been calibrated to the properties of infinite nuclear matter and the ground state

properties of finite nuclei [69]. The equation of state lists the Landau effective masses m∗

(defined in Eq. 3.30) of neutrons and protons at different particle densities in a tabular form.

The Lagrangian density for this equation of state is L = L0 +Lint, where

L0 = ψ̄ (iγµ∂µ −M)ψ+
1
2

(
∂µϕ∂

µϕ −m2
sϕ

2
)
+

1
2

m2
vVµVµ −

1
4

FµνFµν

+
1
2

m2
ρbµ · b

µ −
1
4

VµνVµν −
1
4

bµν · bµν.
(3.26)

The interaction terms for the Lagrangian are,

Lint = ψ̄
[
gsϕ −

(
gvVµ +

gρ
2
τ · bµ +

e
2
(1 + τ3) Aµ

)
γµ

]
ψ

−
κ

3!
(gsϕ)

3
−
λ

4!
(gsϕ)

4 +
ζ

4!

(
g2

vVµVµ
)2
+ Λv

(
g2
ρbµ · b

µ
) (

g2
vVµVµ

)
.

(3.27)

In Eq. 3.26 and Eq. 3.27, ψ is the isospin double field for the nucleons from Eq. 3.16,

ϕ is the isoscalar-scalar σ-meson field, Vµ is the scalar-vector ω-meson field, bµ is the

isovector-vector ρ-meson field, and Aµ is the photon field. τ are the Pauli matrices and γµ are

the gamma matrices. The mass terms ms, mv and mρ are for the σ-meson mass, the ω-meson

mass and ρ-meson mass, respectively. The Yukawa coupling constants are gs, gv, gρ and e

which are to couple the σ-meson, the ω-meson, the ρ-meson, and the photon to nucleons,
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respectively. The coefficients κ, λ, ζ, and Λv are associated with the meson interactions,

which affect the equation of state. To reduce Ksym, the κ, λ coefficients were introduced

into the Lagrangian, ζ is used to tune neutron star observables such as the mass, and Λv is

sensitive to the slope L [69].

Fig. 3.2 is taken from ref. [65] and shows the energy per nucleon from Eq. 3.19 in terms

of the Fermi momentum of the nucleons, where kF = (3
2π

2n)1/3 (the factor of 1/2 comes

from the fact that both proton and neutron densities are considered). What is analyzed is

how the difference between neutron and proton fractions,

Yi = ni/(nn + np) and 1 = Yn + Yp, (3.28)

changes the energy per nucleon and showcases the minimum energy at saturation density

using the FSUGold2 equation of state [65]. The proton fraction is related to δ by,

δ = Yn − Yp = 1 − 2Yp. (3.29)

The Landau effective mass is modified by interactions with other particles in the Lagrangian.

The Landau effective mass, which is denoted as m∗i (i =neutron or proton), is defined as

m∗i =
√

k2
iF + m2

Dirac,i, (3.30)

where kiF = (3πni)1/3 (refer back to Eq. 3.5), and mDirac,i is the effective mass taken from

the Dirac equation, which is derived from finding the equation of motion for the nucleon

field from the Lagrangian:

∂

∂xµ

(
∂L

∂(∂µψ)

)
−
∂L

∂ψ
= 0 (3.31)
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Figure 3.2: The energy per nucleon calculated using the FSUGold2 equation of state at different
densities and different proton factions, where kF = ( 3

2π
2n)1/3 and is the nucleon density

n = nn + np [65].
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The result from the Euler-Lagrange equation is,

[
γµ

(
i∂µ − gvVµ −

gρ
2
τ · bµ

)
− (M − gsϕ)

]
ψ = 0. (3.32)

This is the Dirac equation, with the effective mass equalling mDirac = M − gsϕ. The

interaction with theσ-meson reduces the Dirac mass from the bare mass, and then the Landau

effective mass increases as the density is increased, with the proportionality m∗i ∝ n1/3
i . For

the rest of this thesis, the Landau effective mass will just be referred to as the effective mass.



Part II

C A L C U L AT I N G T H E A X I O N E M I S S I V I T Y





4
E M I S S I V I T Y T H RO U G H B R E M S S T R A H L U N G

For a system of many particles, there can be many different interactions occurring at the

same time. Therefore, all possible interactions must be considered, and all their possible

outgoing momentum and energy must be integrated. This section will go over the process of

calculating particle interactions by calculating the phase space integrals for relativistic binary

collisions. The phase space integrals will then be used to calculate the rate of reactions and

emissivities for bremsstrahlung processes.

4.0.1 Kinematics

We will use the Minkowski metric commonly used for high-energy particle physics. This

metric is the mostly negative metric convention, where the scalar term is positive, and the

vector terms are negative:

gµν = diag (1,−1,−1,−1) . (4.1)

With this convention, the four-momentum pµ = (E, p) has a squared magnitude equal to

the positive invariant mass squared for the particle,

pµpµ = E2 − |p|2 = M2. (4.2)

35
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The Lorentz invariant phase space differential element for n particles used to integrate over

all possible degrees of freedom is

dΦn (p1, . . . pn) =
n∏

i=1

d3 pi

(2π)32Ei
δ3

 n∑
i=1

pi

 δ
 n∑

i=1

Ei

 (4.3)

The rate of interactions between an initial state and a final state of particles will then be

given by the integral of the matrix element squared. The matrix element squared |M|2 and

the phase space element together then make up the rate equation,

R =

∫
|Mn|2dΦn (4.4)

=

∫
|Mn|2(2π)4δ3

 n∑
i=1

pi

 δ
 n∑

i=1

Ei

 n∏
i=1

d3 pi

(2π)32Ei
(4.5)

The delta functions are in place to conserve energy and momentum in the collision, which

can be used to integrate out some dimensions in the phase space integral. For processes that

involve 2→ 2 collisions, an analytic solution can be determined because of the simplicity of

the spin-average matrix element, while any collision process that involves more particles in

the system, a numerical calculation will be needed [70].

When integrating the square of the matrix element, the rate shows the probability (P) of

an event per volume (V) per time (t), and in natural units has a dimension of E4, where E is

energy,

R =
dP

dVdt
=

dP
d4x

(4.6)

The simple two-body scattering case can be derived using the thermal averaged cross-section

to calculate the reaction rate in gases and thermal mediums. To derive the rate of reaction,

the effective area of the target particle is first needed:

niσV (4.7)
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where ni is the number density of the target, σ is the cross-section, and V is the volume. By

multiplying by the flux of incoming particles n jv, then the reaction rate will be equal to:

nivn jσV (4.8)

To get the rate reaction seen from Eq. 4.6, we divide by volume, making the rate of reaction,

r, to equal:

r = nivn jσ (4.9)

Thus, the thermal averaged cross-section can be calculated using the velocity distribution,

∫ ∞

0
dvϕ(v) = 1. (4.10)

Therefore, the thermal averaged cross-section, which is related to the reaction rate, is equal

to,

⟨σv⟩ =
∫ ∞

0
dvϕ(v)σv, (4.11)

and the reaction rate similar to Eq. 4.6 is equal to

R =
1

1 + δi j
nin j ⟨σv⟩ , (4.12)

where the δi j is either 0 or 1 based on whether the target particle and incoming particle

are identical or not, to account for double counting. Eq. 4.12 is the classical reaction rate

for particle collisions. To account for quantum interactions, the distribution of particles in

the thermal medium will be the phase space distribution functions. Either the Fermi-Dirac



38 emissivity through bremsstrahlung

distribution or the Bose-Einstein distribution will be used for fermions or bosons in the

thermal medium, respectively.

f =
1

exp [(E − µ) /T ] ± 1
Fermions (+) Bosons (−) (4.13)

The distribution function represents the probability that the initial particle occupies a quantum

state [71]. The thermal distribution depends on the energy, temperature, and chemical

potential µ of the medium. At absolute zero, the chemical potential of a Fermi gas is equal to

the Fermi energy, µ = EF . In the integral from Eq. 4.5, the terms for the incident particles

are just f (Ei, µi), while the outgoing particles are [1 ∓ f (Ei, µi)], for fermions (−) and

bosons (+), respectively. The (1 − f ) factor for final fermions represents the number of

empty states in the final phase space since they must obey the Pauli exclusion principle,

while the (1 + f ) factor for final bosons represents the Bose-Einstein enhancement for

the final states, which is the attraction between bosons to fill the same quantum state [71].

Therefore, the reaction rate for a system of particles is

R =

∫
|Mn|2(2π)4δ3

 n∑
i=1

pi

 δ
 n∑

i=1

Ei

 n∏
i=1

d3 pi

(2π)32Ei

n∏
i=1

fi
m∏

i= j

(1 ∓ f j) (4.14)

However, to calculate emissivities, this process involves finding the amount of energy that

is carried out of the system. Therefore, the energy of the particle of interest will also be

included in the integral, and the emissivities show the number of energy-carrying events per

volume per time;

ϵ̇ =
dE

dVdt
=

dE
d4x

(4.15)

with dimensions equal to E5.
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4.0.2 Neutrino Bremsstrahlung Rates

In this thesis, the neutrino rates for nucleon-nucleon-neutrino bremsstrahlung will be com-

pared to nucleon-nucleon-axion bremsstrahlung. The Lorentz invariant emissivity of neutri-

nos from a N1 + N2 → N3 + N + 4 + ν+ ν reaction in a medium of nucleons is then

ϵ̇(NN) =

∫  4∏
j=1

d3 p j

(2π)3

 d3 pν
(2π)3

d3 p′ν
(2π)3ων(2π)

4δ (E f − Ei) δ
3 (p f − pi)

× f1 f2 (1 − f3) (1 − f4)S
∣∣∣M f i

∣∣∣2
(4.16)

where f1 and f2 correspond to the incoming nucleons N1 and N2, and 1 − f3 and (1 − f4)

correspond to the final nucleons N3 and N4. The difference between Eq. 4.16 and Eq.

4.14 is the included neutrino energy ων = Eν + Eν. The final expressions for the neutrino

emissivities is [57]:

ϵ̇(nn) =
41

14175

G2
Fg2

Am∗4n

2πh̄10c8

(
fnn

mπ

)4

pnFαnnβnn (kT )8
Nν

≈ 2.35 × 10−28
(
m∗n
mn

)4 (
nn

n0

)1/3

T 8
9 MeV5

(4.17)

ϵ̇(pp) =
41

14175

G2
Fg2

Am∗4p

2πh̄10c8

(
fpp

mπ

)4

ppFαppβpp (kT )8
Nν

≈ 5.47 × 10−29
(m∗p
mp

)4 (
np

n0

)1/3

T 8
9 MeV5

(4.18)

The nucleon-nucleon-neutrino bremsstrahlung rates are in units of E5 and depend on the

effective mass m∗i and number density ni of the nucleons. Eq. 4.17 is for n + n → n +

n + ν+ ν, while Eq. 4.18 is for p + p → p + p + ν+ ν. In these expressions, GF =

1.17 × 10−11MeV−2 is the Fermi constant which comes from the weak interactions to

neutrinos, gA = 1.26 is the nucleon axial-vector constant [72], fnn and fpp are defined the

same as from the discussion below Eq. 2.15, mπ = 135 MeV is the pion mass, mn = 940

MeV is the neutron bare mass, and mp = 938 MeV is the proton bare mass. The terms αii

and βii are correction factors to account for effects not included in the square matrix element,
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such as repulsive nucleon-nucleon corrections, etc [57]. Note that Nν = 3 is the number of

neutrino flavours that we are considering, and the term T9 = T /
(
109K

)
is the temperature.

Lastly, piF is the nucleon’s Fermi momentum, which is related to the number density by the

proportionality is piF ∝ n1/3
i (refer back to Eq. 3.5), which can be seen in Eqs. 4.17 and

4.18.

4.0.3 Axion Bremsstrahlung Rates

This section shows the derivation for nucleon-nucleon-axion bremsstrahlung emissivity. The

emission rate of axions in an environment full of nucleons needs to take into account the

effective masses, as well as the many-body and multiple-scattering effect. The axion is a

boson, so one uses the Bose-Einstein distribution from Eq. 4.13. However, since we will

assume the axion is freely escaping the medium without interacting, the term (1 + fa) can

be ignored since the axion is "free-streaming". The nucleon-nucleon-axion bremsstrahlung

emission rates are

ϵ̇ =

∫
dΠ1dΠ2dΠ3dΠ4dΠa(2π)4S|M|2δ4(p1 + p2 − p3 − p4 − pa)Ea f1 f2(1 − f3)(1 − f4),

(4.19)

where the differential element for each particle is

dΠi =
d3 pi

(2π)32Ei
. (4.20)

The Fermi-Dirac distribution for the particles in a thermal medium is

fi =
1

eEi/T−µi/T + 1
, (4.21)

where the energy is integrated and the chemical potential is inserted into the integral from

the density of the particles, shown in Eq. 4.43 and Eq. 4.50.
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The constant S is the symmetry term, which can be included when calculating the matrix

element |M|2, but is left kept outside for this expression. To account for identical particles

in the final state, the symmetry factor is S = 1
N! =

1
2! for two identical nucleons (for this

calculation, we will not be considering the n + p→ n + p + a reaction, and leave it up for

future works). Using the following change of variables,

p⃗± =
p⃗1 ± p⃗2

2
, p⃗3c/4c = p⃗3/4 − p⃗+ (4.22)

at these densities, the non-relativistic limit for all the particles is a good approximation, and

we can assume some of the energies to be approximately

Ei = m∗i +
p2

i

2m∗i
≈ m∗i . (4.23)

Additionally, the momentum of the axion compared to the heavier nucleons can be approxi-

mated to equal p⃗a ≈ 0, making the other terms in the expression equal

p⃗3c = −p⃗4c (4.24)

Ea = |pa| (4.25)

∴ d3 pa = 4πE2
adEa (4.26)

To simplify the expression, the following part can be simplified through the following steps,

S

∫
d3 p1

(2π)32E1

d3 p2

(2π)32E2

d3 p3

(2π)32E3

d3 p4

(2π)32E4

d3 pa

(2π)32Ea
Ea

× (2π)4δ4(p1 + p2 − p3 − p4 − pa)

(4.27)

=
1

32(2π)11

∫
d3 p1

m∗i

d3 p2

m∗i

d3 p3

m∗i

d3 p4

m∗i
d3 paδ

3( p⃗1 + p⃗2 − p⃗3 − p⃗4)

× δ(E1 + E2 − E3 − E4 − Ea)

(4.28)
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The d3 p4 term can be evaluated with the momentum delta function, which would make the

momentum and energy of p4 equal

p⃗4 = p⃗1 + p⃗2 − p⃗3, and E4 = m∗i +
( p⃗1 + p⃗2 − p⃗3)2

2m∗i
. (4.29)

Therefore, the expression then is currently

=
1

32(2π)11
1

(m∗i )
4

∫
d3 p1d3 p2d3 p3d3 paδ(E1 + E2 − E3 − E4 − Ea) . (4.30)

With d3 pa = 4πE2
adEa, we can evaluate dEa with the energy delta function as well,

=
4π

32(2π)11(m∗i )
4

∫
d3 p1d3 p2d3 p3E2

a , (4.31)

and when p⃗a = 0,

Ea =
p2
− − p2

3c

m∗i
(4.32)

The following steps are to change the differential elements in the integral to our new variables

from Eq. 4.22,

Jd3 p1d3 p2d3 p3 = d3 p+d3 p−d3 p3c = (2πp2
+dp+dγ)(4πp2

−dp−)(2πp2
3cdp3cdγc)

(4.33)

with J =
1
8

(4.34)

Here, γ and γc are defined as

γ =
p⃗+ · p⃗−
| p⃗+||p⃗−|

γc =
p⃗+ · p⃗3c

| p⃗+||p⃗3c|
(4.35)
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Changing the momentum terms to dimensionless energy terms,

ui =
p2

i

2m∗i T
Jdp+dp−dp3c = du+du−du3c, (4.36)

the Jacobian matrix simplifies the integral to

J =
p+p−p3c

(m∗i )
3T 3 (4.37)

=
(m∗i )

1/2T 13/2

27/2π7

∫
du+du−du3cdγdγ3c

√
u=u−u3c(u− − u3c)

2 (4.38)

Using the center of mass momentum and simplifying the f1 f2(1 − f3)(1 − f4) terms, the

expression for the total rate integral becomes

ϵ̇ =
S|M|2(m∗i )

0.5T 6.5

23.5π7

∫ ∞

0
du+

∫ ∞

0
du−

∫ u−

0
du3c

∫ 1

−1
dγ

∫ 1

−1
dγ3c
√

u=u−u3c

× (u− − u3c)
2 f1(u1, y) f2(u2, y) [1 − f3(u3, y)] [1 − f4(u4, y)]

(4.39)

In Eq. 4.39, we define a new dimensional variable

y =
µ −m∗

T
. (4.40)

This y-value included the chemical potential and effective mass of the particles in the

medium. This can simplify the distribution such that

f = (e(E−µ)/T + 1)−1 (4.41)

= (e(p2/2m∗+m∗−µ)/T + 1)−1 (4.42)

= (eu−y + 1)−1 (4.43)
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The last variable substitution to simplify the integral (to reduce the computational com-

plexity of the numerical integration) is to define

3 =
u3c

u−
and q± = e−u± , (4.44)

With some effort to simplify the f1 f2(1 − f3)(1 − f4) terms, the final expression becomes a

three dimension rate integral,

ϵ̇ =
S|M|2(m∗i )

0.5T 6.5

23.5π7

∫ 1

0
dq+

∫ 1

0
dq−

∫ 1

0
d3q+q−[(e−2y − q2

+q2
−)(1 − e2y−23u−−2u+)]−1

u−1/2
+ u3

−(1 − 3)
2 ln

cosh[(u1/2
+ + u1/2

− )2/2 − y/2]

cosh[(u1/2
+ − u1/2

− )2/2 − y/2]

 ln

cosh[((3u−)1/2 + u1/2
+ )2/2 − y/2]

cosh[((3u−)1/2 − u1/2
+ )2/2 − y/2]


(4.45)

which matches the solution obtained by Brinkmann and Turner in ref. [44]. The matrix

element from Eq. 2.18 can be approximated above T ≥ 6 MeV to be [44]

|M|2 = 256g2
ai f 4m2

i /m4
π. (4.46)

There is no analytical solution to the emission rate integral, so numerical methods must be

used. To relate the bremsstrahlung rate to the nucleon number density and temperature of

the system, we must integrate the distribution function for the nucleons:

ni = 2
∫ ∞

0

d3 pi

(2π)3 fi with fi =
1

eui−yi + 1
(4.47)

= (
√

2/π2)(m∗i T )3/2
∫ ∞

0

√
uidui

eui−yi + 1
let x = e−ui (4.48)

= (
√

2/π2)(m∗i T )3/2
∫ 1

0

dx
x

√
−ln(x)

e−yi/x + 1
(4.49)

= (
√

2/π2)(m∗i T )3/2I(yi) (4.50)

The density ni is for either neutron density nn or proton density np. A root solver can be

used to get the y-value for either a medium full of neutrons yn or protons yp. Therefore,
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the emission rate can be calculated at specific temperatures, varying densities, and effective

masses.





Part III

R E S U LT S





5
A X I O N B R E M S S T R A H L U N G E M I S S I T I V I T I E S

Axion emission rates inside a neutron star are primarily calculated through the nucleon-

nucleon-axion bremsstrahlung mechanism, which can hypothetically be used to cool the

neutron star. The following results show the axion emissivities in a homogeneous nuclear

medium without gravitational effects. By changing the thermodynamic conditions of the

medium, the axion emissivity is affected due to its dependence on temperature and density.

The neutrino bremsstrahlung emissivities are also highly dependent on the temperature and

density of the nuclear medium. This section is used to see the equation of state dependence

of axion and neutrino emissivities and to compare axion and neutrino emissivities.

Testing the numerical calculations used (see Appendix A) to calculate Eq. 4.45 and

compare to analytical approximations is done in Fig. 5.1. For this thesis, for the sake of

estimation, we will only consider a nuclear medium of the same species: either all neutrons

or all protons. Analytical approximations for the nondegenerate (ND) axion emission rates

come from [43] [73]. From refs. [43] [73], the ND approximations are for the regions where

y << −1, and assuming there is no Pauli blocking, so that the (1 − f3) and (1 − f4) terms

are ignored, and also assuming the Fermi-Dirac distributions can be approximated to the

Maxwell-Boltzmann distribution,

f ≈ e[(E−µ)/T ] ≈ eu−y. (5.1)

49
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Then, the simplification of the rate integral from Eq. 4.39 is

ϵ̇a(ND) =
1

140π6.5 S |M|2m0.5T 6.5e2y (5.2)

= 2.68 × 10−4e2ym2.5T 6.5m−4
π g2

ai f 4 (5.3)

where the y-value behaviour is exponential because of the two Maxwell-Boltzmann distribu-

tions for the two initial nucleons. Additionally, for the degenerate (D) approximation taken

from ref. [48], the emission rate for the region y >> 1 takes the form,

ϵ̇a(D) =
31
√

2
241920π

S |M|2m0.5T 6.5y1/2 (5.4)

= 3.69 × 10−3y1/2m2.5T 6.5m−4
π g2

ai f 4 (5.5)

where step functions for the Fermi-Dirac distributions are used to simplify the integral from

Eq. 4.39 for the degenerate case. The dimensions of the emissivities will be in E5 from the

m2.5T 6.5m−4
π g2

ai f 4 term. Fig. 5.1 shows that the numerical results agree with the analytical

approximations taken from refs. [43] [73] when y << −1 for the ND case, and also agree

with ref. [48] when y << 4 for the D case.

Fig. 5.1 shows the analytical calculations hold well in the ND and D approximations

by manually plugging in y-values into the analytical equations and the numerical equation

(the other terms such as the gai and mass are neglected for now). Between 0 ≤ y ≤ 4, the

analytical approximations to the axion emissivity seem to overshoot the numerical emissivity.

However, for the rest of the results, we will be working with an equation of state that is

highly degenerate, with the y-value ranging between 0 and 100, which is far in the degenerate

regime. Therefore, our numerical axion emissivity agrees with the analytical approximation

made by ref. [48].

From the equation of state used, FSUGold2 [65], the slope of symmetry energy from Eq.

3.23, is equal to L = 47 MeV, L = 60 MeV, and L = 80 MeV. This affects the difference

in masses for protons and neutrons in the system at certain densities. The values of L are
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Figure 5.1: Analytical nucleon-nucleon-axion bremsstrahlung emission rates compared to numerical
nucleon-nucleon-axion bremsstrahlung emission rates, within −4 ≤ y ≤ 10 range. The
results here are made dimensionless by only plotting the y dependent terms e2y and y1/2,
and ignoring the f 2g2

aim
2.5m−4

π T 6.5 portion of the equations for the emissivities.

also chosen to span a range that is admissible to current neutron star studies [68]. For the

FSUGold2 equation of state and for the results in this thesis, the nuclear saturation density is

set to n0 = 0.1504 fm−3.
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Figure 5.2: Ratio between effective mass and bare mass, which is mp = 938MeV and mn =
939 MeV, for proton and neutrons. The equation of state is FSUGold2 [65].

Fig. 5.2 shows the effective mass with L = 47 MeV, L = 60 MeV, and L = 80 MeV at

densities between 0 < n/n0 ≤ 10. This density range is chosen since neutron star mergers

can reach extreme densities several times larger than n0. Therefore, in this study, the analysis

will be up to 10n0 to cover the density range for extreme nuclear conditions. We see that at

all densities, the neutron effective mass is larger than the protons. At higher values of L, the

neutron’s effective mass is smaller in magnitude. For protons, the opposite effect is seen.

Higher effective masses occur with higher values of L. By varying the L parameter, the EOS

creates a bigger difference in effective masses between protons and neutrons.
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Recall that the y-value is equal to,

y =
µ −m∗

T
. (5.6)

We can find the y-value by solving the expression from Eq. 4.50, by rearranging I(yi) which

is equal to,

I(yi) =

∫ 1

0

dx
x

√
−ln(x)

e−yi/x + 1
, (5.7)

and using a root solver to find the value of yi at certain densities and effective masses since

I(yi) =
n

(
√

2/π2)(m∗T )3/2
. (5.8)

From Fig. 5.2, we see the effective masses decrease between 0 < n/n0 ≤ 5, then increase,

while in Fig. 5.3 the y-value behaviour is inverse; between 0 < n/n0 ≤ 5 the y-value

increases, then decreases. This decrease in effective mass at lower densities is due to the

large attractive contribution to the energy per nucleon, since there is a large condensed

isoscalar-scalar σ-meson field [65]. As mass decreases within this region, the y-value

increases, which is the respected behaviour since I(yi) ∝ ey ∝ (m∗)−3/2. In Fig. 5.3, the

temperature is set to T = 6 MeV because our approximation for the matrix element used in

Eq. 2.18 is valid for temperatures T ≥ 6 MeV [44].

For the axions emissivity, the results at T = 6 MeV are shown in Fig. 5.4 and Fig.

5.5. These plots show a comparison with neutrino bremsstrahlung emissivities at the same

temperature. The previous results from Fig. 5.1, Fig. 5.2, and Fig. 5.3 were not dependent

on the coupling constant between nucleons and axions. For the rest of the results shown, we

will be using the coupling constant given from [43],

gai =
m∗i

2( fa/N)
(5.9)
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Figure 5.3: Shown is the y-value for neutrons and protons at increasing densities up to 10n0, where
the temperature is set to T = 6 MeV.

The coupling is proportional to the nucleon mass, adding an extra power of mass dependence

to Eq. 4.45, giving the rates have the mass term have a power of m∗1.5. The following plots

are taken for values of fa/N = 8 × 109 GeV but from ref. [43], this can take values of

fa/N ≥ 8 × 109 GeV,
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Figure 5.4: Neutron-neutron bremsstrahlung emission rates for axions and neutrinos at T = 6 MeV.

Figure 5.5: Proton-proton bremsstrahlung emission rates for axions and neutrinos at T = 6 MeV.

Figs. 5.4 and 5.5 show the emission rates for neutron-neutron and proton-proton in-

teractions, respectively, for the two types of bremsstrahlung processes. The difference in

magnitude can explained through the dependency on temperatures for the two different rates.
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Seen from Eq. 4.45, Eq. 5.3, and Eq. 5.5, the power of temperature is T 6.5, which arises

from the delta functions and Jacobian matrix when changing variables from momentum p to

the dimensionless energy u = p2/2mT for five particles. For neutrino rates, the power for

temperature in Eq. 4.17 and Eq. 4.18 is T 8, which arises from the same process of changing

variables from momentum p to the dimensionless energy x = p/T [57], but now for six

particles in the interaction (four nucleons and two neutrinos) instead of five (four nucleons

and one axion). Even though there are the same amount of nucleons in each process, the

number of momentum terms accounts for the difference in the power of T . Therefore, the

difference of one particle adds three more momentum terms in the phase space integral.

The emission rates for neutron-neutron-axion bremsstrahlung and neutron-neutron-neutrino

bremsstrahlung are about 10 times higher in magnitude compared to the proton-proton-axion

bremsstrahlung and proton-proton-neutrino bremsstrahlung, respectively.

An interesting observation shown in Figs. 5.4 and 5.5 is that the L parameter does not affect

the nucleon-nucleon-neutrino bremsstrahlung emission rates as much as nucleon-nucleon-

axion bremsstrahlung. The different L parameters cause a larger difference in the proton-

proton-axion bremsstrahlung compared with the neutron-neutron-axion bremsstrahlung. The

higher the L parameter, the higher the proton-proton-axion bremsstrahlung emissivity. This

difference is also seen in the proton effective mass in Fig. 5.2, where higher energy L causes

the proton to gain more effective mass, which can impact the emissivities.

Increasing the temperature affects the overall rates due to the factor T 6.5 for axion emission

rates and T 8 for neutrino emission rates. However, the axion rates are also affected by

temperature when it comes to the y-value’s dependence on temperature, which is proportional

to T−1.5. So, when temperature increases, the y-value magnitude decreases. This means the

nuclear medium is getting less degenerate as temperature increases.

Fig. 5.6 shows the y-values at T = 10 MeV, which is chosen to be used as a comparison

to T = 6 MeV. Compared to Fig. 5.3, which was as T = 6 MeV, the y-values here are

slightly less in magnitude. This trend continues at higher temperatures and is shown in Fig.

5.9.
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Figure 5.6: Shown is the y-value for neutrons and protons at increasing densities, with the temperature
set to T = 10 MeV.

By slightly increasing the temperature, the approximations for nucleon-nucleon-axion

bremsstrahlung’s emission rates become more accurate, as the approximation made for the

matrix element |M|2 was accurate for T ≥ 6 MeV [44].

Figure 5.7: Neutron-neutron bremsstrahlung emission rates for axions and neutrinos at T = 10 MeV.
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Figure 5.8: Proton-proton bremsstrahlung emission rates for axions and neutrinos at T = 10 MeV.

Figs. 5.7 and 5.8 show the emission rates at T = 10 MeV. At this temperature, the

emission rates are higher compared to T = 6 MeV. For temperatures well above this, the

same temperatures seen in mergers (refer to section 3.0.2), the temperatures can reach up to

T = 50 MeV. For temperatures this high, the following results show the emissivities.

Fig. 5.9 shows the y-values at T = 50 MeV for nuclear media.
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Figure 5.9: Shown is the y-value for neutrons and protons at increasing densities, for T = 50 MeV.

Figure 5.10: Neutron-neutron bremsstrahlung emission rates for axions and neutrinos at T =
50 MeV.

Figs. 5.10 and 5.11 show the emission rates at T = 50 MeV. It is interesting to note

that the emission rates for the axion bremsstrahlung at this temperature match the same
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Figure 5.11: Proton-proton bremsstrahlung emission rates for axions and neutrinos at T = 50 MeV.

magnitude that the neutrino bremsstrahlung reached at T = 6 MeV, seen in Figs. 5.4 and

5.5.
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C O N C L U S I O N

In this thesis, the dynamics of axion emissions in extreme conditions in different regions

of the QCD phase space are studied. These regions include nuclear matter at temperatures

of T = 6 MeV, T = 10 MeV, and T = 50 MeV for densities between 0 < n/n0 ≤ 10.

These temperatures were chosen since above T ≥ 6 MeV the approximations made for

our axion bremsstrahlung matrix element hold, T = 10 MeV is a still low temperature

that can be used to compare the results for T = 6 MeV, and T = 50 MeV is chosen to

see the effect of extremely high temperatures which are conditions that can be seen within

neutron star mergers. The motivation for this work was to explore axion emissions under

extreme conditions. The axion emissivities are compared to neutrino emissivity rates to

quantify the magnitude difference between the two species. This included using equations

of states that are highly baryon-dense. While Urca cooling processes have traditionally

been considered the dominant cooling mechanism, exploring the circumstances under

which axion emissions may equal or even surpass modified Urca cooling is interesting.

In section 5, it is seen that neutron-neutron-neutrino bremsstrahlung and proton-proton-

neutrino bremsstrahlung have a much higher emissivities compared to neutron-neutron-axion

bremsstrahlung and proton-proton-axion bremsstrahlung. When the emissivities for neutron-

neutron-axion bremsstrahlung and proton-proton-axion bremsstrahlung are compared, it is

seen that neutron-neutron-axion bremsstrahlung is higher in magnitude. Lastly, it was shown

that neutron-neutron-axion bremsstrahlung is not affected by the symmetry energy slope L as

much as proton-proton-axion bremsstrahlung emission rates, where the difference between

L = 47 MeV, L = 60 MeV, and L = 80 MeV creates a notable change in the proton-

proton-axion bremsstrahlung emissivities, where higher energy L increase the emissivities.
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64 conclusion

In all the results, there were no conditions found where axion bremsstrahlung emissivities

surpassed neutrino bremsstrahlung emissivities.

This approach, mainly focusing on the impact of the symmetry energy slope L on axion

emissivities under high-density conditions, extends the current understanding, especially

given the increasing relevance of axion studies [74][75][76][77]. Further analysis of axion

luminosity under extreme conditions may offer more insight. These studies could reveal

distinct signatures of axion parameters, such as axion mass and nucleon-axion coupling. The

inclusion of the axion may differ notably from neutrino-only models used to describe neutron

star cooling [78], allowing phenomenological analysis utilizing temperature measurements

obtained from satellite data. Future efforts will use the developed framework to study the

equations of states near and at phase transitions in the QCD phase diagram and explore

the different hypothetical crusts of neutron stars [79]. In future studies, solutions to the

Tolman-Oppenheimer-Volkov (TOV) equations [80] in the neutron star models will also be

considered.



Part V

A P P E N D I X



A
C++ C O D E

For the complete code used in this study, please refer to the GitHub repository at

https://github.com/noahkakeka/axion_brem_rates/tree/main
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