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ABSTRACT

In this thesis, we investigate some foliations on the positive characteristic fibres of

certain Shimura varieties. First, we review the general theory of foliations in positive

characteristic, especially looking at torus-equivariant foliations on toric varieties. In

particular, we will provide an explicit description for the singular locus of a torus-

equivariant foliation on a toric variety. Secondly, we apply these observations to the

tautological foliations on Hilbert Modular Varieties in both characteristic zero and

positive characteristic, thus giving a description of the singular locus of these foliations

on a toroidal compactification of a Hilbert Modular Variety. We will also investigate the

behaviour of the V-foliation on unitary Shimura varieties of signature (n,m) and show

that certain high-dimensional Ekedahl–Oort strata are integral varieties with respect

to this foliation.
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Résumé

Dans cette thèse, on étudie certains feuilletages sur les fibres de caractéristique

positive de certaines variétés de Shimura. On commence par une introduction à la

théorie générale de les feuilletages en caractéristique positive, en particulier on considère

les feuilletages sur des variétés toriques. On donne une description explicite du lieu

singulier d’un feuilletage torique. Àpres, on applique ces observations aux feuilletages

tautologiques sur les variétés modulaires de Hilbert à la fois en caractéristique nulle

et en caractéristique positive, donnant ainsi une description du lieu singulier de ces

feuilletages sur une compactification toröıdale d’une variété modulaire de Hilbert. On

étudie également la V-feuilletage sur les variétés unitaires de Shimura de signature

(n,m), et on montre que certaines strates Ekedahl–Oort de haute dimension sont des

variétés intégrales par rapport à ce feuilletage.
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1. INTRODUCTION

Let X be a smooth variety over a field » with tangent bundle T X. A foliation on X

is defined as an involutive saturated subsheaf of T X, that is, a saturated subsheaf that

is closed under the Lie bracket. If » is a field such that char(») = p > 0, we have a

map · 7→ ·p on T X. If F is a foliation on X that is closed under this map, it is called

a p-foliation. In [Eke87], it was shown that p-foliations have a deep connection with

inseparable morphisms. In this thesis we will be examining two examples of p-foliations

on Shimura varieties, namely the tautological foliations on Hilbert modular varieties,

and the V -foliation on unitary Shimura varieties.

A Hilbert modular variety M can be viewed as a moduli space parameterizing

polarized abelian varieties with real multiplication by OL, where L is a totally real

field. The complex points of M can be described by the uniformization M(C) ∼= Γ\hg,
where Γ is an arithmetic subgroup of SL2(L) acting on g copies of the upper half-plane.

Let (z1, . . . , zg) be the coordinates of h
g, then for any subset J ¦ {1, . . . g}, we can de-

fine a foliation FJ on M(C) by considering the subbundle of T M spanned by { ∂
∂zj

}j∈J .
We call these the tautological foliations on M. In [GdS23], de Shalit and Goren gave

an algebraic description of the tautological foliations and studied them on the positive

characteristic fibres of M. We will build on their work by extending the tautological

foliations to toroidal compactifications of Hilbert modular varieties. These extensions

are generally not smooth foliations, and our main result about them is to explicitly

describe the singular locus such a foliation on a given toroidal compactification.

One of the main components in the construction of toroidal compactifications of

Hilbert modular varieties are toric varieties. In [Kly90], a correspondence between

torus-equivariant vector bundles on a toric variety and certain multi-filtrations of a
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vector space is given. In the case of toric foliations, this classification reduces to a

correspondence between toric foliations on a toric variety X with subspaces of certain

vector space. In characteristic zero, this theory has been developed and used in, for

example, [Per04], [Pan15] and [Wan23]. In this thesis we further extend this idea

to positive characteristic and prove the correspondence between toric p-foliations on

a toric variety X defined over a field » of positive characteristic and subspaces of a

vector space defined over ».

Using this correspondence, we can compute the singular locus of toric foliations,

and in particular, the singular locus of a tautological foliation on a toroidal compact-

ification of a Hilbert modular variety. This leads to some interesting results in the

positive characteristic case. For example, it is well-known that the singular locus of a

tautological foliation on any toroidal compactification of a Hilbert modular surface de-

fined over C is precisely the zero-dimensional toric strata. However, when working over

a field » with char(») = p > 0, we demonstrate that it is possible for the tautological

foliations to be smooth at some of the zero-dimensional strata. Indeed, in character-

istics 2 and 3, we prove it is always possible to choose a toroidal compactification of

a given Hilbert modular surface such that one of the tautological foliations is smooth

everywhere.

We will also be considering a p-foliation defined on unitary Shimura varieties. Given

a quadratic imaginary field E, the unitary Shimura variety M of signature (n,m)

can be viewed as a moduli space parameterizing polarized abelian varieties A with

an endomorphism structure OE ↪→ End(A) of signature (n,m). Let » be a field of

characteristic p. The Ekedahl–Oort stratification, first defined over Ag in [Oor01],

classifies the points in M(») by the isomorphism class of the p-torsion of the abelian

variety parameterized.

For m < n, de Shalit and Goren constructed a natural height 1 foliation of rank m2

over unitary Shimura varieties of signature (n,m) in [dSG18]. This foliation, known

as the V -foliation, was first defined over the open Ekedahl–Oort stratum, but was

shown to extend deeper to a particular stratum, denoted Sfol. Furthermore, they
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showed that Sfol is an integral variety for the V -foliation. In this thesis, we look

specifically at the Ekedahl–Oort strata that lie between the open stratum and Sfol.

Using Dieudonné theory, and Zink’s theory of displays, we give an explicit description

of the V -foliation and the tangent spaces of the individual Ekedahl–Oort strata, and

use this to demonstrate that each of these strata are invariant with respect to the

V -foliation.

1.1 Structure of the Thesis

We first examine the behavior of the tautological foliations on a Hilbert modular

variety M as they are extended to toroidal compactification of M. In chapter 2, we

will review some of the background material relevant to this topic, including results

on toric varieties, formal schemes and Hilbert modular varieties. These results are not

new, but they provide the foundation of the work in chapters 3 and 4.

Chapter 3 begins by reviewing the theory of foliations and p-foliations, with a

particular focus on toric foliations. The work done by Klyachko in [Kly90] regarding

the classification of toric vector bundles is extended to the case of positive characteristic.

A new criterion for explicitly calculating the singular locus of a toric foliation is proven.

Also, a description of the quotient of a toric variety by a toric p-foliation is given.

In chapter 4, we apply the results of chapter 3 to the case of the tautological

foliations of a Hilbert modular variety, both when working over C and when working

over a field » of positive characteristic. We explicitly compute some examples in

dimension 2, and describe when a tautological foliation on a Hilbert modular surface

is smooth at certain zero-dimensional toric strata.

Secondly, we will examine the interaction of the V -foliation on a unitary Shimura

variety with the Ekedahl–Oort stratification. In chapter 5, we will set up our notations,

and review some important results of Dieudonné theorey and the theory of displays

that will be used later on. Then, in chapter 6, we will look at the Ekedahl–Oort strat-

ification, using the elementary sequences defined by Oort, as in [Oor01] and [Moo01]
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to parameterized the EO-strata. While more general techniques exist for working with

the EO-stratification, (e.g. [VW13], [PWZ15], [Zha13]), we are choosing to use the

elementary sequences here as their explicit descriptions of the actions of the Frobe-

nius and Verscheibung operators make them well suited for computations involving

the V -foliation, which is defined explicitly in terms of the action of Verschiebung.

In chapter 7, the theory of displays is used to explicitly compute the universal

deformations over the individual EO-strata. Finally in chapter 8, we conclude by

discussing the V -foliation on a unitary Shimura variety. Using the results of chapter 7,

we demonstrate that every strata larger than Sfol is invariant with respect to this

foliation.

Note that chapters 5–8 are completely independent from chapters 2–4 and can be

read separately. As such, there may be some small overlap in the introductory material

introducted in these two sections of the thesis, particularly with regards to the basic

theory of foliations.



2. PRELIMINARIES

2.1 Algebraic Lemmas

Let R be a (commutative) ring. An R-module M is said to be free if there exists

some subset B ofM , such that every element ofM can be uniquely written in the form

m = r1b1 + · · · + rnbn for some b1, . . . , bn ∈ B, and r1, . . . , rn ∈ R. If B is finite, with

cardinality r, then M is called a free R-module of rank r. Such a subset B is called a

basis for M . If B′ ¢ M is such that B′ is a basis for some submodule of M , then B′ is

said to be R-linearly independent.

Lemma 2.1. Let R be an integral domain, with field of fractions F . If M is an R-

module containing an R-linearly-independent subset {b1, . . . , br}, then M ¹ F is an

F -vector space containing the F -linearly independent set {bi ¹ 1 : 1 f i f r}.

Proof. Let x ∈ M ¹ F be such that x is in the span of {bi ¹ 1 : 1 f i f r}. Then, if

x =
∑r

j=1 rj(bj ¹ 1) =
∑r

j=1 sj(bj ¹ 1), for some rj, sj ∈ F , let C ∈ R be chosen such

that Crj, Csj ∈ R for all 1 f j f r and C ̸= 0. Then Cx =
∑r

j=1Crjbj =
∑r

j=1Csjbj.

Then, since {b1, . . . , br} is R-linearly independent, it must be that Crj = Csj for all

1 f j f r. Thus rj = sj for all 1 f j f r.

Thus, {bi ¹ 1 : 1 f i f r} is F -linearly independent in M ¹ F .

Let N be a sub-R-module of an R-module M . Then N is said to be saturated

in M if for every m ∈ M such that there exists some nonzero r ∈ R with rm ∈ N ,

also m ∈ N .
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Lemma 2.2. Let R be an integral domain, and let M be a free R-module of rank r.

Let N be a saturated, free sub-R-module of M of rank r. Then N =M .

Proof. Let {a1, . . . , ar} be a basis for M and let {b1, . . . , br} be a basis for N . Then

there exists tij ∈ R such that bi =
∑r

j=1 tijai. Let F be the field of fractions of R. Then,

since {b1, . . . , br} is an R-linearly independent set in N , then the set {b1¹1, . . . , br¹1}
must be F -linearly independent in N ¹ F by Lemma 2.1. Thus, the columns of the

matrix T = [tij] must be F -linearly independent, and is thus and invertible matrix

over F . By the adjugate formula for the inverse, we know that:

adj(T )T = det(T )Ir.

However, since each tij ∈ R, it must be that each component of adj(T ) is also in R.

Hence if adj(T ) = [sij], then det(T )ai =
∑r

j=1 sijbj. Thus det(T )ai ∈ N , for all

1 f i f r. But since N is saturated in M , it must be that ai ∈ N for all 1 f i f n.

Thus M ¦ N . Hence N =M .

Lemma 2.3. Let A be a g×g invertible matrix over a field k. Let I, J ¦ {1, 2, . . . , g}.
Define AIJ as the submatrix of A given by the rows in I and columns in J . Then

nullity(AIJ) = nullity((A−1)
sJ sI), where sI(resp. sJ) refers to the complement of I (resp. J)

in {1, 2, . . . , g}.

Proof. Let EI be the matrix of size g×|I| with columns ei, the elementary basis vectors

for i ∈ I. Define EJ similarly. Then AIJ = tEIAEJ . Now, since A is invertible, and EJ

has full column rank, we see that ker(AEJ) = {0}. Thus

AEJ(ker(AIJ)) = ker(tEI) ∩ im(AEJ).
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Let UI be the subspace of kg generated by the elementary basis vectors ei for

i ∈ I, and define UJ similarly. So im(EJ) = UJ , and ker(tEI) = U
sI , where sI is the

complement of I in {1, 2, . . . , g}. Thus,

nullity(AIJ) = dim(ker(AIJ)) = dim(AEJ(ker(AIJ)) = dim(ker(tEI) ∩ im(AEJ))

= dim(U
sI ∩ A(UJ)).

By replacing I with sJ , J with sI, and A with A−1 the same argument shows that:

nullity((A−1)
sJ sI) = dim(UJ ∩ A−1(U

sI)).

However, since A is invertible, we see that:

dim(UJ ∩ A−1(U
sI)) = dim(A(UJ ∩ A−1(U

sI))) = dim(U
sI ∩ A(UJ)).

Thus nullity(AIJ) = nullity((A−1)
sJ sI).

We remark that this Lemma includes the cases where I, J or their complements are

empty. In such a case, we define the nullity of an m× 0 matrix to be 0, and the nullity

of a 0 × n matrix to be n. This convention is in line with viewing and m × n matrix

as a linear map kn → km with the nullity defined as the dimension of its kernel. Along

the same lines, the product of an m× 0 matrix by a 0× n matrix to defined to be the

zero matrix of size m× n.

After a previous version of this thesis was written, we discovered that this result

has previously appeared in [Gus84] and independently in [FM86].

Let A be a k-algebra, p be a prime ideal of A, and Ap the localization of A at p.

A k-derivation on A is a k-linear map ¶ : A → A such that for any f, g ∈ A, the

map ¶ satisfies the Leibniz property ¶(fg) = f¶(g) + g¶(f). Note that this implies

¶(12) = ¶(1) + ¶(1), we must have ¶(1) = 0, and thus for any c ∈ k, we have ¶(c) = 0.
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Lemma 2.4. Let A be a k-algebra, S a multiplicative subset of A, and ¶ a k-derivation

on A. Then ¶ extends to a unique k-derivation ¶S on S−1A by the formula

¶S

(
f

g

)
=
g¶(f)− f¶(g)

g2
.

Proof. We first show that ¶S is well-defined. Suppose f1
g1

= f2
g2

in S−1A. Then by the

definition of localization, there exists some s ∈ S such that s(g2f1 − f2g1) = 0. If we

apply ¶ to this equation, we obtain

s(g2¶(f1) + f1¶(g2)− f2¶(g1)− g1¶(f2)) = ¶(s)(f2g1 − g2f1).

Now, we will show that ¶S(
f1
g1
) = ¶S(

f2
g2
). Using the equations above, we get:

s2(g22g1¶(f1)− g22f1¶(g1)− g21g2¶(f2) + g21f2¶(g2))

= s2(g22g1¶(f1)− g2f2g1¶(g1)− g21g2¶(f2) + g1g2f1¶(g2))

= (sg1g2) · s(g2¶(f1)− f2¶(g1)− g1¶(f2) + f1¶(g2))

= sg1g2¶(s)(f2g1 − g2f1)

= 0.

Thus

¶S

(
f1
g1

)
=
g1¶(f1)− f1¶(g1)

g21
=
g2¶(f2)− f2¶(g2)

g22
= ¶S

(
f2
g2

)
.

So ¶S is well-defined. From this definition it is clear that ¶S is k-linear, and satisfies

the Leibniz property. Thus ¶S is a well-defined derivation on S−1A that extends the

derivation ¶ on A.

Finally, we can show that this is the unique such extension, as if ¶S is any extension

of ¶ to S−1A, we must have ¶S(f) = ¶S(g · f
g
), so

¶S(f) =
f

g
¶S(g) + g¶S

(
f

g

)
.
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By rearranging we have

¶S

(
f

g

)
=

1

g

(
¶S(f)−

f

g
¶S(g)

)
=
g¶S(f)− f¶S(g)

g2
.

The nth symbolic power of p, denoted p(n) is defined as pnAp ∩A, as in [Mat80].

It is clear that pn ¦ p(n), however equality may not always hold. For example, let A

be the ring k[X, Y, Z]/ïY Z − X2ð, and coosider the ideal p = ïX, Y ð. We see that

p(2) ̸= p2 as follows. Note that Z ̸∈ p, so Z−1 ∈ Ap. So Y = Z−1X2 ∈ p(2), since

Z−1X ∈ pAp, but Y ̸∈ p2.

Proposition 2.5. Let A be a k-algebra, and let p be a prime ideal of A. Let ¶ be a

k-derivation on A such that ¶(p) ¦ p. Then for any n ∈ N,we have ¶(p(n)) ¦ p(n).

Proof. First, we can show that ¶(pn) ¦ pn. We proceed by induction. It is given that

¶(p) ¦ p. So, suppose that ¶(p(n−1)) ¦ p(n−1). Then, if f ∈ pn, there exists such r ∈ N

and elements fi ∈ pn−1 and gi ∈ p for 1 f i f r such that f =
∑r

i=1 figi. Thus:

¶(f) =
r∑

i=1

¶(figi) =
r∑

i=1

(fi¶(gi) + gi¶(fi)) .

Since each gi ∈ p, ¶(gi) ∈ p, Thus fi¶(gi) ∈ pn. Similarly, since each fi ∈ pn−1 we have

¶(fi) ∈ pn−1 so gi¶(fi) ∈ pn. Thus ¶(f) ∈ pn as required.

It remains to show that ¶(pnAp) ¦ pnAp. So suppose that f ∈ pn, and g ̸∈ p. Then,

by Lemma 2.4:

¶

(
f

g

)
=
g¶(f)− f¶(g)

g2
.

Since ¶(f) ∈ pn and f ∈ pn it must be that g¶(f)−f¶(g)
g2

∈ pnAp.

Thus, ¶(p(n)) ¦ p(n).
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2.2 Toric Varieties

Let k be an algebraically closed field. A toric variety over k is defined to be a

normal variety X/k, along with a dense open subset T , such that T is an algebraic

torus, and there is an action of T on X that extends the natural action of T on itself.

We will review the basic construction and notations that will be used in the sequel.

See [Ful93,Oda88] for more details. Many of these results can be extended to define

toric schemes over any commutative ring. For more details, see [KKMSD73].

2.2.1 Strongly convex rational polyhedral cones

Let N be a lattice, isomorphic to Zr, and let M be the dual lattice, M :=

Hom(N,Z). Denote the natural pairing ï·, ·ð :M×N → Z. A subset Ã ¢ NR := N¹R

is called a strongly convex rational polyhedral cone if there exists a subset

{n1, . . . , ns} ¢ N such that

Ã = Rg0n1 + · · ·+ Rg0ns

and Ã∩(−Ã) = {0}. We will abbreviate this by calling Ã a scrp cone. If Ã is generated

by a single element of N , then it is called a ray.

Let Ã be an scrp cone in NR. Then the dual cone, denoted Ã( ¦ MR is the set of

vectors:

Ã( = {u ∈ MR : ïu, vð g 0, v ∈ Ã}.

A face of an scrp cone Ã is a subset Ä ¦ Ã such that Ä = Ã ∩ {m0}§ for some

m0 ∈ Ã(. Note that this implies Ä is itself an scrp cone [Oda88, Prop 1.3]. We define

the set Ã(1) to be the set of faces Ä of Ã such that Ä is a ray.

Lemma 2.6. Let Ã be an scrp cone in Rr. Then {0} is a face of Ã.

Proof. Choose some m1 ∈ Ã(. Consider the hyperplane Ä1 = {m1}§. If Ä1 ∩ Ã = {0},
we are done, since {0} = Ã ∩ {m1}(. Otherwise, choose some nonzero n2 ∈ Ã ∩ Ä1. If
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ïm,n2ð = 0 for all m ∈ Ã(, then ïm,−n2ð = 0 for all m ∈ Ã(, so −n2 ∈ Ã. But this

cannot be, since Ã is strongly convex. That is, Ã ∩ (−Ã) = {0}. So, choose m2 ∈ Ã(

such that ïm2, n2ð > 0. Then consider the hyperplane Ä2 = {m2}§. If Ã∩Ä1∩Ä2 = {0},
set m = m1 +m2. Otherwise, continue this process until Ã ∩ Ä1 ∩ Ä2 ∩ · · · ∩ Äs = {0}.
Note that this process will take at most r steps, since each Äj is chosen such that
⋂j−1
i=1 Äi ̸¢ Äj. So

⋂j
i=1 Äi has codimension j in Rr. Then, we set m = m1 + · · ·+ms.

Since Ã∩Ä1∩· · ·∩Äs = {0}, we see that for any nonzero n ∈ Ã, we must have some i

such that ïn,mið > 0. Also, since each mi was chosen in Ã(, we have ïn,mið g 0 for

all 1 f i f s. Thus ïn,mð > 0 for all nonzero n ∈ Ã, giving Ã ∩ {m}§ = {0}. So {0}
is a face of Ã.

Lemma 2.7. Let Ã be an scrp cone generated by {n1, . . . , ns}, where this set of gen-

erators is minimal. Then Ã(1) = {Äi}si=1 where Äi = Rg0ni.

Proof. First we will show that Äi is a face of Ã. Without loss of generality, suppose i = 1.

Since {n1, . . . , ns} is a minimal set of generators for Ã, the cone Ã′ = Rg0n2+· · ·+Rg0ns

is a proper subset of Ã. Thus Ã( ª (Ã′)(. So let m0 ∈ (Ã′)( but m0 ̸∈ Ã(. Thus

−³ := ïm0, n1ð < 0, but ïm0, nið g 0 for 2 f i f s.

Now, by the previous lemma, we know that there exists some m ∈ M such that

Ã ∩ {m}§ = {0}. So ïm,nið > 0 for 1 f i f s. Let ´ = ïm,n1ð. Note that:

ï³m+ ´m0, n1ð = ³´ − ´³ = 0.

ï³m+ ´m0, nið = ³ïm,nið+ ´ïm0, nið > 0, 2 f i f s.

Thus for any n ∈ Ã, we have ï³m + ´m0, nð = 0 if and only if n = Rg0n1 = Ä1.

Hence Ä1 = Ã ∩ {³m+ ´m0}§. Thus the ray Ä1 is a face of Ã, so Ä1 ∈ Ã(1). Since this

argument works for all Äi, we have {Äi}si=1 ¦ Ã(1).

Conversely, if Rg0n ∈ Ã(1), there exists some m0 ∈ Ã( such that ïm0, n
′ð = 0 if and

only if n′ is a multiple of n. Since Ã is generated by {n1, . . . , ns}, write n =
∑s

i=1 cini
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for ci g 0. Then

ïm0, nð =
s∑

i=1

ciïm0, nið.

Since m0 ∈ Ã(, we know that ïm0, nið g 0. So for each 1 f i f s, we must have either

ci = 0 or ïm0, nið = 0, that is ni is a multiple of n. Since n ̸= 0, it must be that

some ni is a multiple of n, so Rg0n = Rg0ni = Äi.

Thus Ã(1) = {Äi}si=1.

2.2.2 Toric varieties and fans

Given a cone Ã ∈ NR, let SÃ denote the semigroup Ã( ∩M .

Proposition 2.8. SÃ is a finitely generated additive subsemigroup of M that gener-

ates M as a group.

Proof. See [Oda88, Prop 1.1].

Define UÃ := Spec(k[SÃ]). Then UÃ is an affine toric variety. The inclusion of

the open dense torus in UÃ is induced by the natural map k[SÃ] → k[M ]. Indeed,

every affine toric variety X is of the form UÃ for some scrp cone Ã in N , where N is

the co-character lattice of the torus T in X. Given an affine toric variety X, we can

define S as the semigroup of characters on T that extend to regular functions on X.

Then X = Spec(k[S]), and S( is an scrp cone in N .

A fan Σ in NR is defined as a finite collection of scrp cones, such that if Ã ∈ Σ, then

every face of Ã is in Σ, and if Ã, Ä ∈ Σ, then Ã ∩ Ä is a face of Ã and Ä . Note that if Ä

is a face of Ã, then UÄ ¦ UÃ, since M ∩ Ã( ¦ M ∩ Ä(. Then we can construct the toric

variety X(Σ) by taking UÃ for each Ã ∈ Σ, and gluing UÃ and UÄ along UÃ∩Ä . Indeed,

given a toric variety X with torus T , there exists a unique choice of fan Σ in N such

that X is equivariantly isomorphic to X(Σ). [Oda88, Theorem 1.5].

Given a toric variety X(Σ), then we call the lattices M and N the character and

co-character lattices of X respectively. Indeed, the elements of M are precisely the

characters of T , and for any Ã ∈ Σ, the elements of SÃ are precisely the characters of T
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that extend as regular functions to UÃ. In order to clarify notations, for an element

m ∈ M , we will denote the regular function on UÃ by Çm. This reflects the fact that

the character corresponding to the sum m1 +m2 in the lattice M is the product of the

characters Çm1Çm2 as functions.

Similarly, the elements of N correspond precisely to the one-parameter subgroups

of T . For n ∈ N , we can define the one-parameter subgroup µn : Gm → T such that

m(µn(¼)) = ¼ïm,nð for any m ∈ M and ¼ ∈ k.

Example: Consider the projective plane P2
k, along with the embedding T → P2

k of

a rank 2 split torus given by (t1, t2) 7→ [t1 : t2 : 1]. Then the action of T on P2
k that

extends the translation action of T on itself is the action

(t1, t2) · [x : y : z] = [t1x : t2y : z].

The characters of T are precisely the maps of the form (t1, t2) 7→ ta1t
b
2 for a, b ∈ Z2. We

will denote such a character by the point (a, b) ∈ Z2. The character (a, b) thus extends

to the rational function [x : y : z] 7→ xayb

za+b on P2
k. To determine the fan associated with

this toric variety, we will consider which of these characters extend as regular functions

to the different T -invariant affine charts of P2
k.

First, consider the affine open U1 given by z ̸= 0. Then, the character (a, b) acts

on this open by [x : y : 1] 7→ xayb. This is a regular function if and only if a g 0 and

b g 0, that is if (a, b) is in the semigroup S1 generated by (1, 0) and (0, 1). Let N ,

the dual of the character lattice M , also be described as Z2 with the standard pairing.

Then the dual cone Ã1 to S1 is generated by (1, 0) and (0, 1) in N .

Next, consider the affine open U2 given by y ̸= 0. So the character given as the

pair (a, b) acts by [x : 1 : z] 7→ xa

za+b . This is a regular function if and only if a g 0 and

b f −a. That is, if (a, b) is in the semigroup S2 generated by (1,−1) and (0,−1). The

dual cone Ã2 to S2 is generated by (1, 0) and (−1,−1) in N .

Finally, consider the affine open U3 given by x ̸= 0. Then the character given as

the pair (a, b) acts by [1 : y : z] 7→ yb

za+b . This is a regular function if and only if b g 0
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and a f −b. That is, if (a, b) is in the semigroup S3 generated by (−1, 1) and (−1, 0).

The dual cone Ã3 to S3 is generated by (0, 1) and (−1,−1) in N .

So P2
k is equivariantly isomorphic to the toric variety X[Σ] where Σ is the fan

containing Ã1, Ã2, Ã3 and their faces.

Proposition 2.9. Let T be an algebraic torus with character latticeM and co-character

lattice N . Let Σ and Σ′ be fans in N such that there exists a (not-necessarily equiv-

ariant) isomorphism φ : X(Σ) → X(Σ′) such that φ(T ) = T . Then there exists some

g ∈ GL(N) such that gΣ = Σ′. Conversely, given any g ∈ GL(N), there exists an

isomorphism φ : X(Σ) → X(gΣ) such that φ(T ) = T and φ|T = g as an element of

Aut(T ).

Proof. Recall that Aut(T ) = GL(N). Since φ(T ) = T , let g = φ|T ∈ GL(N). Since

M = N(, for any g ∈ GL(N), it has an unique adjoint gT ∈ GL(M) such that

(gTÇ)(t) = Ç(g · t).
Let Ç ∈ M be a character of T . Then Ç(φ(t)) = Ç(g · t) = (gTÇ)(t). Thus, since

Ç(φ(t)) = (gTÇ)(t) for any t ∈ T , we must have Ç(φ(x)) = (gTÇ)(x) for any x ∈ X(Σ).

Let Ã be a cone in Σ, and let UÃ ∈ X be the corresponding affine open chart. Since

φ(UÃ) is also a T -invariant affine open of X(Σ), let Ã′ be the corresponding cone in Σ′.

Then, Ç ∈ M extends as a regular function to UÃ if and only if Ç ∈ M ∩ Ã(. Further,

since Ç(φ(x)) = (gTÇ)(x), we see that Ç extends as a regular function to U ′
Ã if and only

if gTÇ extends to UÃ. So Ç ∈ SÃ′ if and only if gTÇ ∈ SÃ. Thus:

Ã = {n ∈ N : ïÇ, nð g 0, ∀Ç ∈ SÃ}

= {n ∈ N : ïgTÇ, nð g 0, ∀Ç ∈ SÃ′}

= {n ∈ N : ïÇ, gnð g 0, ∀Ç ∈ SÃ′}

= {n ∈ N : gn ∈ Ã′.}

Thus gÃ = Ã′. As this holds for every Ã ∈ Σ, we must have gΣ = Σ′. Conversely,
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given any cone Ã, and g ∈ GL(N), we can define the cone

Ã′ = {gn : n ∈ Ã}.

Then, by the same calculation as above, we see that Ç ∈ SÃ′ if and only if gTÇ ∈ SÃ.

The map Ç 7→ gTÇ induces an isomorphism k[SÃ′ ] → k[SÃ], which after taking Spec

of both sides, induces an isomorphism g : UÃ → UÃ′ extending the automorphism

g : T → T .

Therefore by the functoriality of this construction, if gΣ = Σ′, the automorphism

g ∈ GL(N) induces an isomorphism X(Σ) → X(Σ′).

Example: Let X1 = P2
k be the toric variety with the torus action given as in the

previous example. Now define X2 = P2
k, but with the torus T ↪→ P2

k embedded as

(t1, t2) 7→ (t1 : t1t2 : 1). Then let φ : X1 → X2 be the identity map on P2
k. Note

that for both X1 and X2 the image of T is the open subset of P2
k given by x, y, z ̸= 0.

However, since the torus action is different on X1 and X2 this is not an equivariant

isomorphism. Indeed, if we restrict φ to the image of T in X1, we map the image of

(t1, t2) to the image of (t1, t
−1
1 t2) in X2. Thus, g is the automorphism that maps (t1, t2)

to (t1, t
−1
1 t2), and is given by the matrix


 1 0

−1 1


.

We can compute the fan corresponding to X2 just as we did for X1. Note that

if (a, b) is the character on T that maps (t1, t2) → ta1t
b
2, then (a, b) acts as a rational

function on X2 via (a, b) · [x : y : z] 7→ xa−byb

za
.

Consider first the open affine chart U1 given by z ̸= 0. Then (a, b) acts on U1 via

(a, b) · [x : y : 1] 7→ xa−byb. So this is a regular function if and only if a g b and b g 0.

This describes the semigroup S ′
1 ¦ M generated by (1, 0), (1, 1). This is dual to the

cone Ã′
1 generated by (0, 1) and (1,−1) in N .

Next consider the open affine chart U2 given by y ̸= 0. Then (a, b) acts on U2 via

(a, b) · [x : 1 : z] 7→ xa−b

za
. So this is a regular function if and only if a f 0 and b f a.

This describes the semigroup S ′
2 ¦ M generated by (0,−1), (−1,−1). This is dual to



2. Preliminaries 16

the cone Ã′
2 generated by (−1, 0) and (1,−1) in N .

Finally consider the open affine chart U3 given by x ̸= 0. Then (a, b) acts on U3

via (a, b) · [1 : y : z] 7→ yb

za
. So this is a regular function if and only if a f 0 and b g 0.

This describes the semigroup S ′
3 ¦ M generated by (−1, 0) and (0, 1). This is dual to

the cone Ã′
3 generated by (−1, 0) and (0, 1) in N .

Thus X2 is the toric variety given by the fan Σ′ consisting of the cones Ã1, Ã2 and Ã3.

Note that


 1 0

−1 1




1

0


 =


 1

−1


 ,


 1 0

−1 1




0

1


 =


0

1


 ,


 1 0

−1 1




−1

−1


 =


−1

0


 .

So if we consider the fan Σ with cones Ã′
1, Ã

′
2, Ã

′
3 as in the previous example, we see

that

g(Ã1) = Ã′
1, g(Ã2) = Ã′

2, g(Ã3) = Ã′
3.

Thus gΣ = Σ′, as described in the proposition above.

Corollary 2.10. Let U be a subgroup of Aut(T ), and let Σ be a fan in the cocharacter

lattice N such that uΣ = Σ for all u ∈ U . Then U is a subgroup of Aut(X(Σ)).

Proof. Let u ∈ U . Then by Proposition 2.9, the automorphism u induces an isomor-

phism X(Σ) → X(uΣ). But Σ = uΣ. Thus u induces an automorphism X(Σ) →
X(Σ). So U ¦ Aut(X(Σ)).

Proposition 2.11. The toric variety X(Σ) is nonsingular if and only if each cone Ã

is non-singular, in the sense that for each Ã, there exists a Z-basis {n1, . . . , nr} of N

such that for some s f r, the cone Ã = Rg0n1 + · · · + Rg0ns. Such a fan Σ is also

called non-singular.

Proof. See [Oda88, Theorem 1.10].

The support of a fan Σ, denoted Supp(Σ) is defined as the subset:

Supp(Σ) =
⋃

Ã∈Σ
Ã ¦ NR
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Proposition 2.12. The toric variety X(Σ) is compact if and only if Σ is a complete

fan, i.e., Supp(Σ) = N .

Proof. See [Oda88, Theorem 1.11].

Lemma 2.13. Let Σ be a non-singular fan in Z2 such that (1, 0) ∈ Supp(Σ), but

(0,±1) ̸∈ Supp(Σ). Then the ray generated by (1, 0) is in Σ.

Proof. Suppose (1, 0) does not generate a ray in Σ. Then, since (1, 0) ∈ Supp(Σ),

the point (1, 0) must be in some Ã ∈ Σ. Let (a, c) and (b, d) be the generators of Ã.

Since (1, 0) ∈ Ã, we must have either c < 0, d > 0 or c > 0, d < 0. Without loss of

generality, suppose the generators are ordered such that c < 0 < d. Further, since

(0,±1) ̸∈ Supp(Σ), it must be that (0,±1) ̸∈ Ã. Thus a, b > 0.

But then, ad − bc g 1 + 1 = 2. However, since Σ is a non-singular fan, Ã must

be generated by a basis of Z2. So ad − bc = 1. This cannot be, therefore for any

non-singular fan Σ containing (1, 0) in its support, but not (0,±1), the ray generated

by (1, 0) must be in Σ.

Let X(Σ) be a toric variety. As part of its defining data, X(Σ) is equipped with an

action by the torus T . We can classify the T -orbits on X(Σ) as follows:

Proposition 2.14. The orbits of the T -action on X(Σ) are in one-to-one correspon-

dence with the cones Ã ∈ Σ as follows. For Ã ∈ Σ, define

Ã§ = {u ∈ MR : ïu, vð = 0, v ∈ Ã}.

Then the closed subvariety ZÃ := Spec(k[M ∩Ã§]) of UÃ is a T -orbit in X. All T -orbits

are on this form. Further:

(i) If Ã = 0 is the zero cone, then Z0 = Spec(k[M ]) = T is the embedding of T into

X(Σ).

(ii) If Ã has codimension r in N , then ZÃ has dimension r.
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(iii) ZÃ is the unique closed T -orbit in UÃ, and we have UÃ =
⊔
Ä<Ã

ZÄ .

Proof. See [Oda88, Proposition 1.6].

Note that while ZÃ is closed in UÃ, it is not necessarily closed in X(Σ). Indeed, the

closure of ZÃ in X(Σ) is the union of all orbits Z ′
Ã for Ã′ ∈ Σ such that Ã f Ã′.

Note that the requirement that the fan Σ is finite is only required to ensure that

X(Σ) is an algebraic variety. We will need to also consider the case when Σ is an

infinite collection of cones. In this case, X(Σ) can still be constructed as a normal

scheme, separated and locally of finite type [Oda88]. X(Σ) is still covered by affine

toric varieties, however this cover may be infinite. All of the above results, with the

exception of Proposition 2.12, still hold true as they were proven locally at the level of

affine toric varieties.

2.2.3 Ideals of toric varieties

Let T be a split torus over a field k of arbitrary characteristic with character

lattice M and co-character lattice N . Recall that elements m ∈ M are notated as

functions Çm ∈ k[M ].

Let Ä be a ray in N generated by some nÄ ∈ N . Then we can define a Z-gradation

on k[M ]:

k[M ] =
⊕

³∈Z
k[SÄ,³].

where SÄ,³ is the k-module generated by {m ∈ M : ïm,nÄ ð = ³}. Note that for any

monomial m1 ∈ SÄ,³1 and m2 ∈ SÄ,³2 , we have Çm1Çm2 = Çm1+m2 , and

ïm1 +m2, nÄ ð = ïm1, nÄ ð+ ïm2, nÄ ð = ³1 + ³2.

Thus k[SÄ,³1 ] · k[SÄ,³2 ] = k[SÄ,³1+³2 ], so this is indeed a Z-gradation.
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Now, define a valuation ¿Ä on k[M ] by

¿Ä (f) = max{r : f ∈
⊕

³gr
k[SÄ,³]}.

That is, ¿Ä (f) is the minimum value of ïm,nÄ ð for monomials Çm in f .

Let f, g ∈ k[M ] so f = f³1 + · · ·+ f³r
and g = g´1 + · · ·+ g´s , where f³i

(resp. g´j)

is the ³i (resp. ´j) part of f (resp. g) with respect to the gradation given above. In

particular f³i
, g´j ̸= 0 Further suppose these are sorted such that ³1 < ³2 < · · · < ³r

and ´1 < ´2 < · · · < ´s. Then ¿Ä (f) = ³1 and ¿Ä (g) = ´1. Let µ = min{³1, ´1} then,

f + g ∈
⊕

³gµ
k[SÄ,³].

Thus ¿Ä (f + g) g min{¿Ä (f), ¿Ä (g)}. Also, for any 1 f i f r and 1 f j f s, we have

³i + ´j g ³1 + ´1 with equality only if i = j = 1. Since f³1g´1 ̸= 0, as k[M ] is an

integral domain, we see that

fg ∈
⊕

³g³1+´1

k[SÄ,³].

Thus, this is indeed a valuation.

Recall the semigroup SÄ ¢ M defined above as SÄ = {m ∈ M : ïm,nÄ ð g 0}. From
this definition it is clear that k[SÄ ] =

⊕
³g0 k[SÄ,³]. Let IÄ :=

⊕
³g1 k[SÄ,³]. Then IÄ is

a prime ideal of k[SÄ ].

Now, let Ã be an scrp cone in N generated by {n1, . . . , nr}. Then SÃ = {m ∈ M :

ïm,nð g 0, n ∈ Ã}. Note that ïm,nð g 0 for all n ∈ Ã if and only if ïm,nið g 0 for all

1 f i f r. Thus, for any 1 f i f r, if Äi is the ray generated by ni, we have:

k[SÃ] ¦ k[SÄi ].

Let IÃ be the ideal of k[SÃ] generated by {m ∈ SÃ : ïm,nð g 1, n ∈ Ã}. Then IÃ is the
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ideal corresponding to the complement of the torus T in UÃ. Let Ä ∈ Ã(1) be a ray

of Ã, and let nÄ ∈ N be the generator of Ä . Then define IÃ,Ä to be the ideal of k[SÃ]

generated by {m ∈ SÃ : ïm,nÄ ð g 1}. So IÃ,Ä = IÄ ∩ k[SÃ] and is thus a prime ideal of

k[SÃ].

Lemma 2.15. The minimal prime decomposition of IÃ is:

IÃ =
⋂

Ä∈Ã(1)
IÃ,Ä .

Proof. Suppose f ∈ IÃ. Then f = c1Ç
m1 + . . . crÇ

mr such thatïmi, nð g 1, for each

1 f i f r. In particular, for each generator nÄ for Ä ∈ Ã(1), we have ïmi, nÄ ð g 1.

Thus f ∈ ⋂Ä∈Ã(1) IÃ,Ä .

On the other hand, if f ∈ ⋂Ä∈Ã(1) IÃ,Ä , then for each monomial Çmi in f , it must

be that ïmi, nÄ ð g 1 for each Ä ∈ Ã(1). But if n ∈ Ã, then n is a positive linear

combination of the generators nÄ for the rays Ä ∈ Ã(1). Thus ïmi, nð > 0.

Therefore, since ïmi, nð ∈ Z, we must have ïmi, nð g 1, so Çmi ∈ IÃ. Thus f ∈ IÃ.

So

IÃ =
⋂

Ä∈Ã(1)
IÃ,Ä .

Since each IÃ,Ä is prime, this is a prime decomposition.

By Lemma 2.7, each Ä is a face of Ã, for there exists some mÄ ∈ Ã( such that

ïmÄ , nÄ ð = 0 but ïmÄ , nÄ ′ð > 0 for any Ä ′ ̸= Ä . So mÄ ∈ ⋂Ä ′∈Ã(1),Ä ′ ̸=Ä IÃ,Ä ′ but not in IÃ.

This thus is a minimal prime decomposition.

Lemma 2.16. The nth symbolic power of IÃ,Ä can be decomposed as:

I(n)Ã,Ä =
⊕

³gn
k[SÄ,³] ∩ k[SÃ].

That is, I
(n)
Ã,Ä is generated by {m ∈ SÃ : ïm,nÄ ð g n}.
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Proof. Suppose f ∈ I
(n)
Ã,Ä . So, by the definition of symbolic powers, we have f ∈

InÃ,Äk[SÃ]IÃ,Ä ∩ k[SÃ]. Thus, there exist g1, . . . , gn, h1, h2 ∈ k[SÃ] such that gi ∈ IÃ,Ä , and

h2 ̸∈ IÃ,Ä such that:

h2f = g1g2 . . . gnh1.

Since h2 ∈ SÃ but not in IÃ,Ä , we have ¿Ä (h2) = 0. Thus ¿Ä (h2f) = ¿Ä (f). Also, as

h1 ∈ SÃ, we have ¿Ä (h1) g 0. Further, since each gi ∈ IÃ,Ä , ¿Ä (gi) g 1. Thus:

¿Ä (f) =
n∑

i=1

¿Ä (gi) + ¿Ä (h1) g n.

Thus f ∈⊕³gn k[SÄ,³]. So

I(n)Ã,Ä ¦
⊕

³gn
k[SÄ,³] ∩ k[SÃ].

On the other hand, suppose f ∈ ⊕³gn k[SÄ , ³] ∩ k[SÃ]. Let {nÄ , n2, . . . nr} be the

generators of Ã. Note that nÄ is one of the generators as Ä ∈ Ã(1). Let Ä2, . . . , Är be the

rays corresponding to the generators n2, . . . nr respectively. Let m,m
′ ∈ SÃ be chosen

such that ïm,nÄ ð = 1 and ïm′, nÄ ð = 0 but ïm′, nið > 0 for 2 f i f r. So m ∈ IÃ,Ä ,

but m′ ̸∈ IÃ,Ä . Note that m
′ exists since Ä is a face, by Lemma 2.7, thus Ä = Ã∩{m′}§

for such an element m′ ∈ SÃ.

Let ´ ∈ Z be chosen such that ´ g max
2fifr

{n·¿Äi(m)−¿Äi(f)}. Since Çm is a monomial,

it is invertible in k[M ]. Thus the quotient f
mn ∈ k[M ]. Further:

¿Ä (Ç
´m′ f

Çnm
) = ´ · ¿Ä (m′) + ¿Ä (f)− n · ¿Ä (m) g 0

as f was chosen such that ¿Ä (f) g n, and ¿Ä (m) = 1, ¿Ä (m
′) = 0. Also, for 2 f i f r:

¿Äi(Ç
´m′ f

Çnm
) = ´ · ¿Äi(m′)− (¿Äi(f)− n · ¿Äi(m)) g 0
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by choice of ´. Thus (Ç´m
′ f
Çnm ) ∈ k[SÃ]. Therefore as

(Ç´m
′

f = (Çnm)(Ç´m
′ f

mn
),

we must have f ∈ InÃ,Äk[SÃ]IÃ,Ä . As we also have f ∈ k[SÃ], we must have f ∈ I
(n)
Ã,Ä . So

I(n)Ã,Ä =
⊕

³gn
k[SÄ,³] ∩ k[SÃ].

Lemma 2.17. Let Ã be an scrp cone in N , and letm ∈ SÃ. Then the ideal ïÇmð ¦ k[SÃ]

is

ïÇmð =
⋂

Ä∈Ã(1)
I(ïm,nÄ ð)
Ã,Ä .

where nÄ ∈ N is the generator of ray Ä .

Proof. Suppose f ∈ ïÇmð. Then f = Çmg for some g ∈ k[SÃ]. Thus for each Ä ∈ Ã(1),

we have

¿Ä (f) = ¿Ä (Ç
m) + ¿Ä (g) g ¿Ä (m) = ïm,nÄ ð.

Thus f ∈ ⋂
Ä∈Ã(1) k[SÄ,ïm,nÄ ð]. Since f ∈ k[SÃ] As well, by Lemma 2.16, we have

f ∈ ⋂Ä∈Ã(1) I
(ïm,nÄ ð)
Ã,Ä .

On the other hand, if f ∈ ⋂
Ä∈Ã(1) I

(ïm,nÄ ð)
Ã,Ä , then ¿Ä (f) − ¿Ä (Ç

m) g 0 for each

Ä ∈ Ã(1). Since Çm is a monomial, f
Çm ∈ k[M ]. Therefore, f

Çm ∈ k[SÃ]. Hence,

f ∈ ïÇmð.
Therefore ïÇmð = ⋂Ä∈Ã(1) I

(ïm,nÄ ð)
Ã,Ä .

2.3 Farey diagrams

There is a good exposition of Farey diagrams and their relationship with classical

problems in number theory involving binary quadratic forms in [Hat22]. Here we will
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be using a correspondence between the Farey diagram and the set of smooth rational

cones in Z2 in order to reason about classes of smooth toric surfaces. We review some

basic results about the Farey diagram, and its relationship to cones in Z2.

The Farey diagram is a graph for which each vertex is labeled by a pair of integers,

written as fractions a
b
. The edges are produced using the following inductive procedure.

Note that all edges are undirected in this construction.

In stage 0, we start with two edges (1
0
, 0
1
) and (0

1
, −1

0
). At stage 1, we then add four

edges (1
0
, 1
1
), (1

1
, 0
1
), (0

1
, −1

1
) and (−1

1
, −1

0
). Continuing inductively for i g 1, we look at

each edge (a
c
, b
d
) added in stage i, and in stage i+1 we add edges (a

c
, a+b
c+d

) and (a+b
c+d

, b
d
).

We then have the following facts about this diagram, proved in [Hat22].

Proposition 2.18. For each pair of fractions a
c
and b

c
, including ±1

0
, there exists an

edge in the Farey diagram between a
c
and b

d
if and only if ad− cb = ±1.

Proof. [Hat22, Theorem 1.1].

Corollary 2.19. The fraction a
b
appears as a label in the Farey diagram if and only if

a
b
= ±1

0
or a

b
is a rational number in lowest terms.

Proof. See Corollary 1.2 and Proposition 1.3 in [Hat22].

We can identify the vertices 1
0
and −1

0
together, and thus get a graph where the set

of vertices is identified with P1(Q). The first few iterations of this graph is shown in

the figure above.

As the set of vertices of the Farey diagram are identified with P1(Q), we can extend

of the action of SL2(Z) on P1(Q) via Mobius transformations to the Farey diagram. In

order for this action to be well-defined, we need to show that for any µ ∈ SL2(Z), and

edge (p, q) in the Farey diagram, then (µp, µq) is also an edge in the diagram. Indeed,

as (a
c
, b
d
) is an edge if and only if


a b

c d


 ∈ SL2(Z), and µ acts on the set of edges by

matrix multiplication, this group action is well-defined.
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Fig. 2.1: The Farey Diagram

Proposition 2.20. The action of PSL2(Z) on the set of edges of the Farey diagram is

free and transitive.

Proof. From the previous proposition, we know that every edge, (a
c
, b
d
) satisfies ad −

cb = ±1. If, ad − bc = −1, we can rewrite this edge as (a
c
, −b
−d). Then, we have

a(−d)− c(−b) = −(ad− cb) = 1. So every edge can be written such that ad− cb = 1.

But then: 
a b

c d


 ·
(
1

0
,
0

1

)
=

(
a

c
,
b

d

)
.

Thus, the action of PSL2(Z) is transitive on the edges of the Farey diagram.

Also, if


a b

c d


 · (1

0
, 0
1
) = (1

0
, 0
1
), then we must have b = c = 0, and ad = 1. So

we must have


a b

c d


 = ±I, which is the identity element in PSL2(Z). Thus PSL2(Z)

acts freely on the Farey diagram.
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The Farey height of a rational number is defined to be the stage in which the

number first appears as the endpoint of the edge.

Proposition 2.21. Let [a0; a1, a2, . . . , an] be the simple continued fraction expansion

of a rational number q, then the Farey height of q is the sum
∑n

i=0 ai.

Proof. Follows directly from [Hat22, Theorem 2.1].

As the vertices of the Farey diagram are elements of P1(Q), we can extend the

natural order on Q to P1(Q) by saying that a
b

f 1
0
for all a

b
∈ P1(Q). Given this

ordering, we say that a path (p1, p2, . . . , pr) is decreasing if p1 > p2 > · · · > pr with

respect to this ordering.

Proposition 2.22. Suppose P = {p1, p2, . . . , pr} is an decreasing path on the Farey

diagram. Then there exists some i ∈ {1, 2, . . . , r} such that the Farey height of pi is

less than the Farey height of any other rational number in the interval (pr, p1).

Proof. Note that for any a
c
> b

d
, we have a

c
> a+b

c+d
> b

d
. Thus, for each edge (³, ´) in

the Farey diagram added at stage i, there are no points strictly between ³ and ´ that

are already in the Farey diagram, that is, having height less than i. Therefore, for

each q ∈ (pi+1, pi) the height of q must be greater than the heights of both pi and pi+1.

Hence the point of lowest height in (pr, p1) must be one of the pi.

Now, suppose that pi and pj have the same height, and that this is the lowest height

in the interval (pr, p1). Then, as in the construction of the Farey diagram only 1 point

of height i is added between each consecutive pair of points of height less than i ,

there must be a point of lesser height between pi and pj. But this contradictions the

minimality of the height of pi and pj. Thus, there is a unique point pi of lowest height

on the path P , such that the height of pi is less than the height of any q ∈ (pr, p1) such

that q ̸= pi.

Proposition 2.23. There is a 2-1 correspondence between smooth rational cones in Z2

and the directed edges of the Farey diagram that is equivariant with respect to the action

of SL2(Z).
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Proof. Let C be a smooth cone on Z2 with generators (a, c) and (b, d) ordered such

that ad − bc = 1. We associate this cone to the edge of the Farey diagram from a
c

to b
d
. Note these are the inverse slopes of the faces of this cone. This edge exists by

Proposition 2.18, since ad− bc = 1. Let φ be this correspondence. So

φ{(a, c), (b, d)} = (
a

c
,
b

d
).

Further, again by Proposition 2.18, if there is an edge in the Farey diagram going

from a
c
to b

d
, we must have ad − bc = ±1. If ad − bc = 1, then it corresponds to the

cone generated by (a, c) and (b, d), and if ad − bc = −1, it corresponds to the cone

generated by (a, c) and (−b,−d). So φ is surjective.

Now, suppose that two cones C and C ′ correspond to the same edge. Then if C

has generators (a, c) and (b, d), the cone C ′ must have generators (¼a, ¼c) and (µb, µd)

such that ¼µad− ¼µbc = 1. Thus, ¼µ = 1. The only integer solutions to this equation

are ¼ = µ = ±1. Thus, precisely two distinct cones correspond to each edge. So this

is a 2− 1 correspondence.

Now, we can check the equivariance with respect to the natural actions of SL2(Z)

on Z2 and P1(Q) as follows. Suppose that µ =


w y

x z


 ∈ SL2(Z).

Then:

φ (µ · {(a, c), (b, d)}) = φ ({µ · (a, c), µ · (b, d)})

= φ ({(wa+ xc, ya+ zc), (wb+ xd, yb+ zd)})

=

{
wa+ xc

ya+ zc
,
wb+ xd

yb+ zd

}

=

{
w a
c
+ x

y a
c
+ z

,
w b
d
+ x

y b
d
+ z

}

=

{
µ · a

c
, µ · b

d

}

= µ · φ ({(a, c), (b, d)}) .
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Thus φ is SL2(Z)-equivariant.

Let (p1, p2, . . . , pr) be a path in the Farey diagram, so each pi ∈ P1(Q). We will

define an action of PGL2(Z) on these paths as follows.

µ(p1, p2, . . . , pr) =





(µp1, . . . , µpr) det(µ) = 1

(µpr, . . . , µp1) det(µ) = −1
.

Proposition 2.24. There is a 1-1 correspondence between non-equivariant isomor-

phism classes of smooth compact toric surfaces containing a given 2-dimensional torus T

and PGL2(Z) orbits of cycles (p1, p2, . . . , pr, p1) in the Farey diagram such that there

are precisely two indices i, j such that pi < pi+1 and pj < pj+1.

Proof. By Proposition 2.12, a compact toric surface X is given by a finite and complete

fan Σ in N ∼= Z2. Such a fan can be described by choosing a ray Ä1, and listing the

remaining rays in Σ in clockwise order {Ä1, Ä2, . . . , Är, Ä1}. Since Σ is finite, such a list

can be constructed, and since Σ is complete, for each 1 f i f r, the cone generated by

{Äi, Äi+1} ∈ Σ. Since X is smooth, we can use Proposition 2.23 to associate each cone to

an edge in the Farey diagram. Thus, this fan corresponds to a path {p1, p2, . . . , pr, p1},
where (pi, pi+1) = φ({Äi, Äi+1}).

Since the Äi were taken in clockwise order, and since pi corresponds to the reciprocal

of the slope of Äi, we see pi < pi+1 if and only if (±1, 0) is in the interior of the cone

generated by {Äi, Äi+1} or (±1, 0) = Äi+1. Since (1, 0) and (−1, 0) cannot be in the

same scrp cone, there are exactly two distinct cones {Äi, Äi+1} and {Äj, Äj+1} such that

pi < pi+1 and pj < pj+1.

Similarly, given a path (p1, p2, . . . , pr, p1) in the Farey diagram as in the statement,

we can produce a fan Σ in Z2 by adding a ray Ä1 with inverse slope p1 such that either

the second coordinate of Ä1 is positive, or Ä1 = (1, 0). Then, for each pi, add a ray Äi

of inverse slope pi in the clockwise direction from pi−1. Note that pi < pi+1 will thus

correspond precisely to including (1, 0) or (−1, 0) in the cone {Äi, Äi+1} and (±1, 0) ̸= Äi.

Thus, since there are precisely two edges such that pi < pi+1, this process will wrap
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around Z2 precisely one time. So Σ is a complete fan.

By Proposition 2.23, the correspondence φ is SL2(Z)-equivariant, so for any µ ∈
SL2(Z), the µ-translate of the fan Σ will correspond to the µ-translate of the corre-

sponding path as constructed above. Further, since det(µ) = 1, the clockwise cyclic

ordering of the rays is unchanged, so the µ-translate of this path corresponding to a

given fan Σ, will be the path given by the above construction using the fan µΣ and

beginning at the ray µ(p1).

If µ ∈ GL2(Z) has determinant −1, then the clockwise ordering of the rays in the

fan µΣ will be reversed from the ordering in Σ, and by the definition of the PGL2(Z)

action on cycles, the ordering of the cycle will also be reversed. This new cycle will again

correspond to the clockwise ordering of rays for a complete fan in Z2, and thus satisfy

the condition that precisely two indices satisfy pi < pi+1 and pj < pj+1. Therefore,

GL2(Z)-orbits of finite, complete fans in Z2 are in 1-1 correspondence with PGL2(Z)-

orbits of cycles in the Farey diagram satisfying this condition.

Thus, by Proposition 2.9, non-equivariant isomorphism classes of compact toric

surfaces containing T are in 1-1 correspondence with PGL2(Z) orbits of cycles in the

Farey diagram such that precisely two edges (pi, pi+1) and (pj, pj+1) satisfy pi < pi+1

and pj < pj+1.

2.4 Formal Schemes

Let X be a noetherian scheme with a closed reduced subscheme X ′. Let I be

the ideal sheaf defining X ′. The completion X̂ of X along X ′ is defined as the

locally ringed space with underlying topological space X ′ and sheaf of rings OX̂ :=

lim
←

OX/I n.

A locally noetherian formal scheme is a locally ringed space (X,OX) such that

there exists of cover (Ui), for which each pair (Ui,OX|Ui
) is the completion of some

noetherian scheme along a closed subscheme.

An ideal of definition for X is a sheaf of ideals I such that the support of OX/I
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is all of X, and the locally ringed space (OX/I ) is a locally noetherian scheme.

Lemma 2.25. Let X be a locally noetherian formal scheme, then a unique maximal

ideal of definition I exists, characterized by the fact that (X,OX/I ) is a reduced

scheme.

Proof. See [DG67, I.10.5.4].

Lemma 2.26. Let X̂ be the completion of X along a closed reduced subscheme X ′,

and let I be the ideal sheaf defining X ′. Then then image of I in OX̂ is the unique

maximal ideal of definition, and OX̂/I = OX′.

Proof. See [DG67, I.10.8.5].

Given a coherent OX-module H, the completion Ĥ of H along a subscheme X ′ is

defined to be the restriction to X ′ of the sheaf lim
←

(H ¹OX
OX/I n), where I is the

defining ideal sheaf of X ′ [DG67, I.10.8.4]. We recall some basic results about the

completions of coherent OX-modules.

Lemma 2.27. The function H → Ĥ is exact.

Proof. See [DG67, I.10.8.8].

Lemma 2.28. Let º : X̂ → X be the natural inclusion of locally ringed spaces. Then

º : X̂ → X is flat, and for any coherent OX module, º∗(H) → Ĥ is an isomorphism of

OX̂-modules. That is, H ¹OX
OX̂

∼= Ĥ.

Proof. See [DG67, I.10.8.8-9].

Lemma 2.29. Let H be a coherent OX-module, then Ĥ is a coherent OX̂-module.

Proof. See [DG67, I.10.10.5].

Lemma 2.30. Let X̂ and X be as above, then (̂OX)n ∼= (OX̂)
n.
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Proof.

(̂OX)n ∼= (OX)
n ¹OX

OX̂
∼= (OX ¹OX

OX̂)
n ∼= (OX̂)

n.

Lemma 2.31. Let X ′ be a closed subscheme of X, and X̂ the completion of X along X ′.

Let H be a coherent OX-module, and x ∈ X ′. Then Hx is a free OX,x-module if and

only if Ĥx is a free ÔX,x-module.

Proof. Since H is coherent, we know that Hx is finitely generated. Thus Hx is a free

OX,x-module if and only if Hx
∼= (OX,x)

n.

By Lemma 2.28, the morphism º : X̂ → X is flat. Thus, for each x ∈ X ′, the map

on stalks OX,x → OX̂,x is flat. Further, as we are considering only the local rings at

x ∈ X ′, the corresponding map on spectra, º|x : Spec(OX̂,x) → Spec(OX,x), is clearly

surjective. Therefore, OX̂,x is a faithfully flat OX,x module. So

Hx
∼= (OX,x)

n if and only if Hx ¹OX,x
OX̂,x

∼= (OX,x)
n ¹OX,x

OX̂,x.

By Lemma 2.28, we can reduce this statement to:

Hx
∼= (OX,x)

n if and only if Ĥx
∼= ̂(OX,x)n.

Using Lemma 2.30, we get ̂(OX,x)n = (OX̂,x)
n. Thus, we have:

Hx
∼= (OX,x)

n if and only if Ĥx
∼= (OX̂,x)

n.

Since H is coherent, then by Lemma 2.29, we know that Ĥ is a coherent ÔX-

module. Thus if Ĥx is free, it must be that Ĥx
∼= (OX̂,x)

n for some n ∈ N. Hence, via

the equivalences above, Hx is a free OX,x-module if and only if Ĥx is a free OX̂,x.

Proposition 2.32. Let X, Y be locally noetherian schemes with closed reduced sub-

schemes X ′, Y ′ respectively. Let X̂, Ŷ be the completions of X and Y with respect
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to X ′ and Y ′ respectively. Then, if φ : X̂ → Ŷ is an isomorphism, φ induces an

isomorphism X ′ → Y ′.

Proof. By the definition above, an isomorphism X̂ → Ŷ is a topological homeo-

morphism of the underlying spaces of X ′ → Y ′, along with a sheaf isomorphism

φ∗ : OŶ → OX̂ . Let J be the maximal ideal of definition for Ŷ . Then, by Lemma 2.26,

OY ′ = OŶ /J . Further, as φ∗ is an isomorphism, φ∗(J ) is the maximal ideal of defi-

nition for X̂. So OX̂/φ
∗(J ) = OX′ . Thus φ∗ induces a sheaf isomorphism O′

Y → O′
X .

Thus φ induces a scheme isomorphism X ′ → Y ′.

Proposition 2.33. Consider the setup in Proposition 2.32. Then T̂ X ∼= φ∗T̂ Y .

Proof. Since a map between sheaves that is locally an isomorphism is an isomorphism,

we can suppose that X is affine without loss of generality. So, suppose that X =

Spec(A), then for any ideal I ¦ A, we have the exact sequence:

I/I2 → Ω1
X/k ¹ A/I → Ω1

Spec(A/I)/k → 0.

In particular, if we let I be the reduced ideal defining the subscheme X ′, and consider

the system of ideals {In}n∈N, we get a system of exact sequences:

In/I2n → Ω1
X/k ¹ A/In → Ω1

Spec(A/In)/k → 0.

Further, note that the system {In/I2n} is Mittag-Leffler, since for any k ∈ N, and any

n g 2k, the map In/I2n → Ik/I2k is the zero map. Recall the proposition in [DG67,

0.13.2.2], which states that given a sequence

0 → An → Bn → Cn → 0

of projective systems such that An is Mittag-Leffler, the sequence

0 → lim
←
An → lim

←
Bn → lim

←
Cn → 0
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is also exact. Therefore, as the system {In/I2n} is Mittag-Leffler, we get:

lim
←
In/I2n → lim

←
(Ω1

X/k ¹ A/In) → lim
←

Ω1
Spec(A/In)/k → 0.

But lim
←
In/I2n is zero, since A is noetherian. Also,

lim
←

(Ω1
X/k ¹ A/In) = Ω̂1

X/k.

Finally, since I is reduced, its image in Â is precisely the unique reduced ideal of

definition I. Thus A/In = Â/In. So we get:

Ω̂1
X/k

∼= lim
←

Ω1
Â/In .

Recall that ĤomOX
(F ,G) ∼= HomOX

(F̂ , Ĝ), by [DG67, III.4.5.1].

Thus, we have:

T̂ X := ĤomOX
(Ω1

X/k,OX)

∼= HomO
X̂
(Ω̂1

X/k, ÔX)

∼= HomO
X̂
(lim

←
Ω1
X̂/I n ,OX̂)

∼= HomO
X̂
(lim

←
φ∗(Ω1

Ŷ /J n),OX̂)

∼= HomO
X̂
(φ∗(lim

←
Ω1
Ŷ /J n), φ

∗(OŶ ))

∼= φ∗HomO
Ŷ
(lim

←
Ω1
Ŷ /J n ,OŶ )

∼= φ∗HomO
Ŷ
(Ω̂1

Y/k, ÔY )

∼= φ∗ĤomOY
(Ω1

Y/k,OY ) =: φ∗T̂ Y .
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2.5 Hilbert Modular Varieties

We review the construction of Hilbert modular varieties along with the notations

that we will be using. This treatment is based on the constructions in [VdG88,Cha90]

and [Gor02]. See also the first chapter of [Kat78].

Let S be a scheme defined over a field k. Let L be a totally real number field of

degree g, with ring of integers OL. An abelian scheme with real multiplication

by OL over S is a couple (A, º), where A is an abelian scheme of dimension g over S,

along with a ring embedding º : OL → EndS(A). Further, we require that (A, º)

satisfies the Deligne–Pappas condition:

A¹OL
PA ∼= A(

where

PA := HomOL
(A,A()sym = {¼ : A → A( : ¼ = ¼(, ¼ ◦ º(³) = º(³)( ◦ ¼, ∀³ ∈ OL}.

The module PA is equipped with a notion of positivity, by declaring the positive

elements to be theOL-equivariant polarizations of A. Given a fractional ideal c of L, a c-

polarization of (A, º) is anOL-isomorphism ¼ : PA → c such that the positive elements

of PA correspond to the totally positive elements of c. Such a triple (A, º, ¼) is called a

c-polarized abelian scheme with real multiplication. Note that multiplying c by

some principal ideal with a totally positive generator will not change this construction,

so we can consider c as an element of Cl(L)+.

Lemma 2.34. Suppose (A, º) satisfies the Deligne–Pappas condition as above, and

suppose that k is either a field of characteristic 0, or a field of characteristic p where p

is unramified in L. Then, Lie(A) is a locally free OL ¹ OS module of rank 1, and PA

is a projective OL-module of rank 1.

Proof. See [Gor02, Ch 3, Lemma 5.5].
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There exists a coarse moduli space, which we will denote M(c), parameterizing

triples (A, º, ¼) as above. M(c) is called a Hilbert modular variety.

We now consider Hilbert modular varieties over C. Define the group:

Γc := SL(OL · c)+ =






a b

c d


 : a, d ∈ OL, b ∈ c−1, c ∈ c, ad− bc = 1



 .

Let {Ã1, . . . , Ãg} be the set of embeddings of L into R. If h is the upper half plane, the

group Γc acts on hg by:


a b

c d


 · (z1, . . . , zg) =

(
Ã1(a)z1 + Ã1(b)

Ã1(c)z1 + Ã1(d)
, . . . ,

Ãg(a)zg + Ãg(b)

Ãg(c)zg + Ãg(d)

)
.

Proposition 2.35. M(c)(C) ∼= Γc\hg.

Proof. See [Gor02, Theorem 2.2.17].

The cusps of M(c)(C) are parameterized by the Γc-orbits of P1(L). Note that

two points (³1 : ´1) and (³2 : ´2) are in the same Γc-orbit if and only if the ideals

³1OL+´1c
−1 and ³2OL+´2c

−1 are equivalent in the class group of L, as shown in the

proof of [Gor02, Prop 2.2.22]. So, we can identify the set of cusps of M(c)(C) with the

class group of L.

Consider the cusp at ∞. The isotropy group of this cusp is

Γ′ :=






ϵ µ

0 ϵ−1


 : ϵ ∈ O×

L , µ ∈ c−1



 .

As a transformation group, this is the same as the group:






ϵ

2 µ

0 1


 : ϵ ∈ O×

L , µ ∈ c−1





∼= c−1 ì (O×
L )

2.
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So, locally around the cusp at ∞, the variety M(c)(C) has a neighbourhood homeo-

morphic to a neighbourhood of (i∞, . . . , i∞) in Γ′\hg.
In general, let M be a Z-module in L of maximal rank, and let V be a finite index

subgroup of O×,+
L . Around a cusp of type (M,V ), that is, a cusp with isotropy group

M ì V , the variety M(C) thus looks like M ì V \hg, where the action is defined such

that M acts on hg as

µ · (z1, z2, . . . , zg) = (z1 + Ã1(µ), z2 + Ã2(µ), . . . , zg + Ãg(µ)),

and V will act on hg as

ϵ · (z1, z2, . . . , zg) = (Ã1(ϵ)z1, Ã2(ϵ)z2, . . . , Ãg(ϵ)zg).

As a moduli space, M(c) can be defined over any field k. Later on we will consider

the case where » is a field of characteristic p, for p unramified in L. As such, we will

need a different description of the cusps of M(c) that works over arbitrary fields. As

described, M(c) is only a course moduli space, and not a scheme. In order to get a

moduli space tThat is representable by a scheme, we must consider a level structre

as well. Let n be an integer such that (n, p) = 1. An OL-equivariant embedding

³ : µn¹Z d
−1
L → A[n] is then called a rigid Γ00(n)-level structure. We define Mn(c)

to be the moduli space parameterizing tuples (A, º, ¼, ³) as above. For n g 4, Mn(c)

is indeed a scheme.

There exists a universal c-polarized abelian scheme with real multiplication and

Γ00(n)-level structure over Mn(c), which we denote as (Auniv, ºuniv, ¼univ, ³univ).

The cusps of Mn(c) are defined as follows. (See for example [Cha90]). Let (a, b)

be two fractional ideals of L, such that b−1a = c, and let H be a projective OL-module

forming a short exact sequence of OL-modules:

0 → (ad)−1 → H → b → 0
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where d is the different ideal of L. Also, let consider an isomorphism

µ : a−1/na−1 → (OL/nOL).

Note that in the case that a is coprime to n, such an isomorphism can be given canon-

ically. A cusp of Mn(c) is then given by an isomorphism class of triples (a, b, µ). Note

that the isomorphism class of (a, b) is determined precisely by the ideal class of a, so

we can always choose a representative (a, b, µ) such that a is coprime to n. In the

following, we will generally supress the level structure in the notation, and describe

cusps by the pair (a, b).

The previous description of cusps as orbits of points in P1(L) can be connected to

this description as given in [VdG88]. To the cusp at ∞ we associate the exact sequence

0 → OL → OL · (cd)−1 → (cd)−1 → 0. This corresponds to the pair (d, (cd)−1) of

ideals. Any other cusp can be written in the form A ·∞ for some A ∈ Γc ¢ SL2(L). We

can also use A to transform our exact sequence and this will give us the exact sequence

corresponding to the cusp A · ∞.

2.6 Toroidal Compactification of Hilbert Modular Varieties

The main result of toroidal compactification of Hilbert modular varieties is given

below. It was originally proven by Rapoport in [Rap78]. See also [FC90,Cha90]. For

a statement for more general Shimura varieties, see [Lan13].

The principal tool we will use to construct the toroidal compactification is the

Mumford construction, as originally formulated in [Mum72]. Let A be an excellent

integrally closed noetherian ring, with an ideal I such that A is I-adically complete.

For our purposes, it is enough to let A be a complete discrete valuation ring, and is thus

integrally closed and noetherian. Let K be the fraction field of A. Let S = Spec(A),

with closed subscheme S0 = Spec(A/I), and generic point ¸. If G is a group scheme

over S, then we will denote the generic fibre of G by G¸, and the fibre over S0 by G0.
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Let G be a split torus of rank r over S. We say that an (abstract) subgroup

Y ¢ G(K) is a period subgroup, if Y ∼= Zr, and there exists a homomorphism

º : Y → X(G) into the character group of G, such that for all x, y ∈ Y , we have

º(x)(y) = º(y)(x) and º(y)(y) ∈ I, for all y ̸= 0. This homomorphism is called a

polarization of the period subgroup.

Theorem 2.36 (Mumford Construction). Let G be a split torus over S with period

subgroup Y . Then there exists a semi-abelian group scheme G/Y over S such that

(G/Y )0 ∼= G0 and (G/Y )¸ is an abelian variety.

Proof. See [Mum72].

The Mumford construction first embeds G as an open subset of what is called a

relatively complete model P of G with respect to Y , then defines G/Y as an open

subset of the quotient P/Y .

For example, consider the case where A = Z[[q]] and I = qA. Thus A is I-adically

complete with fraction field K = Z((q)). Let G be the one-dimensional torus Gm, with

period subgroup Y = qZ. Then the map which takes qm to the character (x 7→ xm) on

Gm(K) = K∗ is a polarization, since

º(qm)(qn) = (qn)m = qmn = º(qn)(qm).

and for n ̸= 0, we have

º(qn)qn = qn
2 ∈ I.

In this example, the relatively complete model P is a toric scheme containing the

torus G, such that the closed fibre of P is an infinite union of non-singular rational

curves, connected in a chain and crossing each other transversely.

The quotient P/Y in this example is known as the Tate curve. Note that is defined

over the ring of formal power series Z[[q]]. By changing the base to any complete field k,

the Tate curve describes a degenerating family of elliptic curves, where for any c ∈ k∗
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such that |c| < 1, the fibre over q = c is an elliptic curve over k, while the special fibre,

that is the fibre over q = 0, is a rational curve with an ordinary double point. Then

G/Y is the open subset formed by removing only the double point in the special fibre.

The generic fibre of G/Y is the same as the generic fibre of the Tate curve, while the

special fibre is a torus.

Let C be a cusp of Mn(c), given by ideals (a, b). Let MC = ab, and NC =

Hom(MC ,Z) = (abd)−1. Let M+
C and N+

C denote the totally positive elements of MC

and NC respectively.

A Γ(n)-admissible decomposition {ΣC} for Mn(c) is a collection of fans indexed

by cusps C of Mn(c). For each cusp C, it is required that ΣC be a fan on NC with

support (NC)
+
R . Furthermore, the fan ΣC should be invariant under the natural action

of U2
n, where Un = {x ∈ O×

L : x ≡ 1 mod nOL}. For simplicity, we will also assume

that for any Ã ∈ ΣC and u ∈ U2
n, the intersection Ã ∩ u · Ã = {0}. Moreover, the

collection of cones ΣC/U
2
n should be finite.

We will then use this data to construct the quotient X(ΣC)/U
2
n. Note that by

Corollary 2.10, U2
n does have a well-defined action on X(ΣC), since ΣC is invariant

under U2
n. If we are working over C, this will be the quotient as a complex analytic

manifold, well-defined since the definition of Γ(n)-admissible decomposition ensures

that the action of U2
n is free and discontinuous. On the other hand, if we are working

in mixed or positive characteristic, we will need to use the rigid analytic quotient, as

described in [Rap78]. This quotient can still be covered by the affine charts UÃ as Ã

ranges over the orbits of cones in ΣC/U
2
n. While the interior of UÃ in the quotient

X(ΣC)/U
2
n is now the quotient of a torus by U2

n, the boundary remains the same, since

u · Ã ∩ Ã = {0} for any u ∈ U2
n.

We would like to use the Mumford construction to produce a semi-abelian scheme

over the quotient X(ΣC)/U
2
n of the toric scheme built from this fan, however the affine

charts of this fan are not complete with respect to the ideal defining the boundary. As

such, we make the following modifications.
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Let R0
C = Z[qm : m ∈ MC ], so we have the torus S0

C = Spec(R0
C). Let Ã ∈ ΣC

be a rational cone. So we can define RC(Ã) = Z[qm : m ∈ Ã( ∩MC ], with the toric

scheme SC(Ã) = Spec(RC)(Ã). Let SC(Ã)
∞ := SC(Ã)\S0

C be the boundary of this toric

scheme. Then we can define the formal completion ŜC(Ã) as the completion of SC(Ã)

along SC(Ã)
∞.

This is a formal scheme with coordinate ring

R̂C(Ã) := R0
C [[q

m : ïm,nð > 0, n ∈ Ã,m ∈ MC ]].

Now we can define ŜC(Ã) := Spec(R̂C(Ã)). The ring R̂C(Ã) is complete over the ideal

that defines the subscheme SC(Ã)
∞, so we can perform the Mumford construction

over R̂C(Ã).

We have a tautological homomorphism q : MC = ab → Gm(R̂C(Ã)), given by

m 7→ qm. Note the isomorphisms:

Hom(ab,Gm(R̂C(Ã))) ∼= HomOL
(b,Hom(a,Gm(R̂C(Ã))))

∼= HomOL
(b, (Gm ¹ Hom(a,Z))(R̂C(Ã)))

∼= HomOL
(b, (Gm ¹ a()(R̂C(Ã)))

where a( = (ad)−1 is the dual of a with respect to the trace pairing. Thus the map q

induces an OL-module homomorphism:

q : b → (Gm ¹ a()(R̂C(Ã)).

If {u1, . . . , ur} is any Z-basis of a, and {v1, . . . , vr} is the dual basis of a( with

respect to the trace, then we can explicitly describe q as the map:

q(b) =
r∑

i=1

quib ¹ vi.
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Note that the character group ofGm¹a( is a, so even without a basis, we can realize q(b)

as the element of Gm ¹ a( such that for any character a ∈ a, we have Ça(q(b)) = qab.

Furthermore, the homomorphism q realizes b as a period subgroup of this split torus.

To see this, let d ∈ Z be such that db ¦ a, and let º : b → a be the multiplication

by d map. Then for b1, b2 ∈ b:

º(b1)q(b2) = qdb1b2 = º(b2)q(b1).

Also, since º(b1)q(b1) = qdb
2
and Ã is a subset of the totally positive cone, for any n ∈ Ã,

we must have

ïdb2, nð = Tr(db2n) > 0.

Thus º(b1)q(b1) is in the ideal defining SC(Ã)
∞, so q is indeed a period map.

Let G̃Ã := (Gm¹a()/qb be the quotient built via the Mumford construction. Then,

by the functoriality of Mumford’s construction we can glue together each of the G̃Ã for

Ã ∈ Σ to produce a scheme Gmum over the completion X̂(Σ) along all the boundary

components, which is then considered over the quotient X̂(Σ)/U2
n.

The polarization, endomorphism structure and level structure all pass through this

construction, providing the Mumford family (Gmum, ¼mum, ºmum, ³mum) over the quo-

tient (X̂(ΣC)/U
2
n). Indeed, we have the following theorem.

Theorem 2.37. Let n g 4, and let {ΣC} be a Γ(n)-admissible decomposition for Mn(c).

There exists a scheme MTC
n (c), called the toroidal compactification given by {ΣC}, such

that there exists an open immersion j : Mn(c) → MTC
n (c), and an isomorphism:

φ :
⊔

cusps C

(X̂(ΣC)/U
2
n)× Spec(Z[1/n]) → M̂TC

n (c)

where M̂TC
n (c) is the completion of MTC

n (c) along the complement of j(Mn(c)). Fur-

thermore, there exists a semi-abelian scheme (G, ¼, º, ³) with real multiplication over

MTC
n (c) extending the universal abelian scheme with real multiplication over Mn(c),
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such that the pullback of (G, ¼, º, ³) over φ is the Mumford family descibed above

over X̂(ΣC).

Proof. See [Rap78, Theorem 5.1]. See also [Lan13, Theorem 6.4.1.1] for a more general

statement.

We will also need the following corollary regarding the Lie algebra of Gmum.

Corollary 2.38. Notation as above, for any cone Ã³ in ΣC, there is a canonical iso-

morphism

Lie(G̃Ã) ∼= a( ¹ O
ŜC(Ã)

.

such that the action induced by ºmum is given by the natural action of O on a(.

Proof. [Rap78, Corollary 4.4]

2.7 Hilbert Modular Varieties with Iwahori Level Structure

We may also want to consider level structures that are not prime to p. Let

A := (A, º, ¼, ³) be a polarized abelian variety with real multiplication, and thus pa-

rameterized by a point in MN(c). Then we can use this to produce a perfect pairing

A[p]¹A[p] → µp. We begin with the standard Weil pairing ï , ðw : A[p]¹A([p] → µp.

By the Deligne–Pappas condition, we have an isomorphism A( ∼= A¹OL
PA. So passing

the Weil pairing through this isomorphism produces a map A[p]¹A[p]¹OL
PA → µp.

The polarization ¼ is defined as an OL-isomorphism PA → c, so we can use this

isomorphism to produce a map A[p]¹A[p]¹OL
c → µp. But since c is prime to p, there

exists a canonical isomorphism A[p]¹OL
c → A[p] given by (u¹ ³) 7→ º(³)u. So after

passing the second coordinate of the Weil pairing through each of these isomorphisms,

we have a pairing ï , ð¼ : A[p]¹ A[p] → µp.

Let P be a product of prime ideals p1 . . . pr over p. The Hilbert modular variety

with Iwahori level structure byP, denoted MnP(c) parameterizes pairs (A,H) where A
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is a point of Mn(c), and H is a finite flat OL-invariant subgroup scheme of A[P] of

order pf , where f is
∑r

i=1 f(pi/p), and H is isotropic with respect to the pairing ï , ð¼.
Alternatively, MnP(c) can be thought of as parameterizing pairs (A1, A2), of points

in Mn(c), and Mn(cP) respectively, equipped with a P-isogeny A1 → A2, respecting

the polarization and endomorphism structures.

The cusps of MnP(c) can be parameterized by isomorphism classes of maps ³

between exact sequences:

0 a(1 H1 b1 0

0 a(2 H2 b2 0

such that H2/³(H1) ∼= OL/POL (cf. [Dia22, §3.2]). Under the forgetful morphism

(A,H) → A : MnP(c) → Mn(c), such a cusp will map to the cusp given by the pair

(a1, b1). The isomorphism classes of cusps lying over (a1, b1) are precisely determined by

the ideal q such that b2/³(b1) ∼= OL/qOL, which can be any ideal of OL containing P.

As such, we will denote the cusps of Mnp(c) by triples (a, b, q).

We can construct the toroidal compactification of MnP(c) just as we did for Mn(c).

Over the cusp C = (a, b, q), we will need to build our admissible polyhedral decomposi-

tion using the latticesMC = abq−1, and NC = (abd)−1q. Here the semi-abelian scheme

built over the cusp C will still be (Gm ¹ a()/qb, but now equipped with a subgroup

scheme H of the P-torsion, for which the choice of q will describe the multiplicative

and étale parts of H.

Now consider the case where P = p is prime. Then the ordinary locus of Mnp(c)

can be decomposed into two disjoint smooth varieties. The first is denoted Mnp(c)
ord,m,

paramterizing pairs (A,H) whereH is multiplicative. The second is denotedMnp(c)
ord,ét,

parameterizing pairs (A,H) where H is étale.

Similarly, when classifying the cusps of Mnp(c) the only options for q are p or OL.
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Over the cusp C = (a, b, p), we have the semi-abelian scheme (a( ¹ Gm)/q
b where H

will be the étale part of the p-torsion, whereas, over the cusp (a, b,OL), we will have the

semi-abelian scheme (a( ¹Gm)/q
b where H is the multiplicative part of the p-torsion.

Thus the cusps of Mnp(c)
ord,m are of parameterized by tuples (a, b,OL), and the cusps

of Mnp(c)
ord,ét are parameterized by tuples (a, b, p).
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3.1 Vector Bundles

Let Y be a scheme. A pre-vector bundle on Y is a Y -scheme X, such that for

all Y -schemes T , the set X(T ) := HomY (T,X) has an OT (T )-module structure, such

that for all Y -morphisms T → T ′, the induced map X(T ′) → X(T ) is OT (T )-linear.

Let X,X ′ be pre-vector bundles. A morphism of pre-vector bundles is a Y -scheme

morphism X → X ′ such that for all Y -schemes T , the induced map on the T -points

X(T ) → X ′(T ) is OT (T )-linear.

For example, An
Y is a pre-vector bundle. This is called the trivial bundle. A vector

bundle on Y is pre-vector bundle on Y that is locally trivial of constant finite rank n.

That is, a pre-vector bundle X, such that there exists an open cover {Ui} of Y , and

isomorphisms Èi : XUi
→ An

Ui
, such that the transition maps Èi◦È−1

j are linear on An
Uij

.

A subbundle X ′ of a vector bundle X is a vector bundle such that there exists

a closed immersion X ′ ↪→ X of Y -schemes that is also a morphism of (pre-)vector

bundles.

Proposition 3.1. Let X and X ′ be vector bundles over Y , of ranks n and m respec-

tively, such that there exists a closed immersion of Y -schemes ϕ : X ′ → X. Then X ′

is a subbundle of X if and only if there exists a cover {Ui} of Y and isomorphisms

Èi, Ài satisfying the following relation:

XUi
An
Ui

X ′
Ui

Am
Ui

Èi

Ài

ϕUi
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where the inclusion Am
Ui

into An
Ui

is the standard inclusion of the first m coordinates.

Proof. Let X ′ be a subbundle of X. Choose an affine cover {Ui} of Y that trivializes

both X and X ′, and let Ui = Spec(Ai). Then we have isomorphisms È̃i : XUi
→ An

Ui

and Ài : X
′
Ui

→ Am
Ui
. Let ³i := È̃i ◦ ϕUi

◦ À−1
i . Then, if ºi is the standard inclusion of

the first m coordinates into An
Ui
, we are looking for a linear isomorphism µ that makes

the following diagram commute:

XUi
An
Ui

An
Ui

X ′
Ui

Am
Ui

È̃i µ

Ài

ϕUi ³i ºi

Let T = Ui, then by the definition of morphism of pre-vector bundles, we know

that the map X ′(T ) → X(T ) is linear, but this is just the map ϕUi
. Since È̃i and Ài

are isomorphisms of modules, they are linear. Thus ³i is a linear map. Furthermore,

since ϕ is a closed immersion, we see that ³i is a closed immersion. Thus, when passing

from affine schemes to commutative rings, we see that ³i is induced by a surjective,

linear map

³∗
i : Ai[x1, . . . , xn] → Ai[x1, . . . , xm].

Note that º∗i : Ai[x1, . . . , xn] → Ai[x1, . . . , xm] is the map such that º∗i (xi) = xi for

1 f i f m, and º∗i (xi) = 0 for m < i f n. Thus ker(º∗i ) = ïxm+1, . . . , xnð.
Recall that Ai[x1, . . . , xn] is just the symmetric algebra of the free Ai-module Ani ,

and that the linear maps on Ai[x1, . . . , xn] are precisely those induced by module maps

on Ani . So, let ³̃
∗
i be the surjective module map Ani → Ami that induces ³∗

i . Note that

the kernel of ³̃∗
i need not be free. However, since ³̃∗

i is a surjective morphism of free

modules, the kernel is projective, and hence locally free. So, let {Vi} be a refinement

of {Ui} such that the kernel of ³̃∗
i is free over each Vi. Let Vi = Spec(Bi). So over Vi,

we have ker(³̃∗
i )

∼= Bn−m
i . Then, we have a comparison of exact sequences:
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0 Bn−m
i Bn

i Bm
i 0

0 ker(³̃∗
i ) Bn

i Bm
i 0

º̃∗i

µ̃∗

³̃∗
i

Since Ext(Bn−m
i , Bm

i ) = 0, we know that there must exist such an isomorphism µ̃∗.

Then, we can define µ : An
Ui

→ An
Ui

as the map induced by Sym(µ̃∗), so µ ◦ ³i = ºi, as

required.

Now, suppose that X ′ ↪→ X is a closed immersion of Y -schemes, such that there

exists a cover {Ui} and isomorphisms Èi, Ài such that the diagram in the statement

commutes. In order to show thatX ′ is a subbundle ofX is suffices to show that for each

Y -scheme T , the map HomY (T,X
′) → HomY (T,X) is linear. Note that for each Ui,

XUi
∼= An

Ui
, and X ′

Ui

∼= Am
Ui
, and the induced map HomY (TUi

,Am
Ui
) → HomY (TUi

,An
Ui
)

is defined by post-composing with ºi. This is clearly linear. Since the support of the

image of any Y -morphism TUi
→ X must lie over Ui, we then see that this map is

isomorphic to HomY (TUi
, X ′) → HomY (TUi

, X), which is thus linear.

By the definition of pre-vector bundle, the map HomY (T,Am
Ui
) → HomY (TUi

,Am
Ui
)

given by the precomposition by the inclusion TUi
↪→ T is also linear. Therefore, for

each pair Ui, Uj we have the following commuting square of linear maps:

HomY (T,X
′) HomY (TUi

, X ′) HomY (TUi
, X)

HomY (TUj
, X ′) HomY (TUj

, X) HomY (TUi∩Uj
, X)

Thus, by the universal property of sheaves of modules, we must have a unique linear

map HomY (T,X
′) → HomY (T,X), such that the maps HomY (T,X

′) → HomY (TUi
, X)

factor through it. But this is precisely the condition that X ′ → X is a morphism of

pre-vector bundles. Therefore X ′ is a subbundle of X.

Recall that there is a correspondence between vector bundles and locally free sheaves

over a scheme Y (cf. [Har77, Exercise II.5.18]). In particular, if E is a locally free
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sheaf on Y , then Spec(Sym(E ()) is the vector bundle with sheaf of sections E . This

construction is functorial, giving a categorical equivalence between locally free sheaves

on Y and vector bundles over Y . However, this equivalence need not preserve sub-

objects.

Let V (E ) := Spec(Sym(E ()).

Proposition 3.2. Let F be a locally free subsheaf of some locally free sheaf E on Y .

Then V (F ) is a subbundle of V (E ) if and only if E /F is locally free.

Proof. Define G := E /F . We then have an exact sequence:

0 → F → E → G → 0.

Recall that the dual of a coherent sheaf E is defined as E ( := H om(E ,OY ). Thus,

by applying the dual, we get a long exact sequence:

0 → G ( → E ( → F( → E xt1(G ,OY ) → E xt1(E ,OY ).

Note that if G is locally free, then E xt1(G ,OY ) = 0. Thus E ( → F( is surjec-

tive. Since forming the symmetric algebra is an exact functor, the map Sym(E () →
Sym(F() is surjective. Thus V (F ) → V (E ) is a closed immersion. Since it is induced

by a map of locally free sheaves, it must be a morphism of vector-bundles. Therefore

V (F ) is a subbundle of V (E ),

On the other hand, if V (F ) is a subbundle of V (E ), then Sym(E () → Sym(F() is

surjective. Thus E ( → F( is surjective, since is this is just the degree 1-summand of

the graded symmetric algebra. Therefore E xt1(G ,OY ) injects into E xt1(E ,OY ). But

since E is locally free, we know that E xt1(E ,OY ) = 0. So E xt1(G ,OY ) = 0.

Therefore, since F is locally free, we see that E xt1(G ,F ) is trivial. Hence, the

exact sequence

0 → F → E → G → 0
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splits. Hence, G is a local direct summand of E , and thus locally free.

3.2 Foliations

Let E be a coherent sheaf on a noetherian scheme X, and let ¸ be the generic point

of X. Then E is said to be a torsion sheaf if E¸ = {0}. Recall that the support of

a sheaf E , denote Supp(E ) is defined as the set of points x ∈ X on which the stalk Ex

is non-zero While the Supp(E ) may not be closed, the codimension of Supp(E ) can be

defined as the codimension of the smallest subscheme of X containing Supp(E ).

Lemma 3.3. Let E be a coherent sheaf on a noetherian scheme X such that the support

of E is nonzero. Then E is a torsion sheaf.

Proof. This follows directly from the definition. If · ∈ E¸ is non-zero, then ¸ is in the

support of E , so the codimension of E would have to be 0. Thus, E¸ = {0}, so E is

torsion.

Let E be a coherent sheaf. The torsion subsheaf T of E is the maximal subsheaf

of E that is torsion. E is said to be torsion-free if the torsion subsheaf of E is zero.

Note that E /T is torsion-free.

Let F be a subsheaf of some coherent sheaf E on a scheme X. Then F is said

to be saturated if the quotient E /F is torsion-free. Equivalently, F is saturated if

for any section ¶ of E over an open subset U of X and f ∈ OX(U) such that f¶ is a

section of F , then ¶ is also a section of F over U .

Let T ¦ E /F be the torsion subsheaf of E /F . Then the saturation of F ,

denoted F sat is defined to be kernel of the map E → (E /F )/T . Note that F ¦ F sat,

and that F sat is the minimal saturated subsheaf of E containing F .

Let X be a variety over k. The tangent bundle of X, denoted T X is defined as

Hom(Ω1
X/k,OX). For any affine open U = Spec(A) of X, the Γ(U, T X) = Derk(A)

[DG67, IV.16.5.7], that is the k-derivations on A. This gives Γ(U, T X) the structure
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of a Lie algebra, with Lie bracket given by [¶, ·] = ¶ ◦ · − · ◦ ¶ for k-derivations ¶, ·

on A [DG67, IV.16.5.9].

If X is smooth, then T X is locally free, and is thus a vector bundle. A subbundle

F ¦ T X is said to be involutive if F is closed under the Lie bracket. An involutive

subbundle of T X is called a smooth foliation. That is, F is a smooth foliation on X

if it is a locally free subsheaf of T X such that F is closed under the Lie bracket, and

T X/F is locally free.

Lemma 3.4. Let F be an involutive subsheaf of T X, then F sat is also involutive.

Proof. Suppose that ¶, · are sections of F sat. Then there exists f, g ∈ OX such that

f¶, g· are sections of F . So [f¶, g·] is a section of F , and in particular a section

of F sat. But:

[f¶, g·] = (f¶) ◦ (g·)− (g·) ◦ (f¶) = fg(¶ ◦ ·) + f(¶(g))· − fg(· ◦ ¶)− g(·(f))¶

= fg([¶, ·]) + f(¶(g))· − g(·(f))¶.

Since ¶, · are sections of F sat, it must be that fg([¶, ·]) is a section of F sat. Thus

[¶, ·] is a section of F sat, as F sat is a saturated subsheaf of T X. Thus F sat is involutive.

A foliation F is defined as an involutive saturated subsheaf of T X such that there

exists some open dense subset U of X such that F is a smooth foliation on U . If F

is a foliation, then we denote by S(F ) the singular set of F , which is defined as

S(F ) := {x ∈ X : (T X/F )x is not free}.

In particular, consider a smooth variety X with dense subvariety X. If F is a

foliation on X, then (º∗F )sat is a saturated subsheaf of X. By Lemma 3.4, it is also an

involutive subsheaf. Further, since any dense open subvariety U ¦ X is also a dense

open subvariety of X, and F |U = (º∗F )∗|U , we see that (º∗F )sat is a foliation on X.
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When working over a field k of positive characteristic p, we have also the notion

of a p-foliation. [Eke87,Miy87]. In this context, the p-fold composition of a derivation

with itself is again a derivation. A foliation that is closed under p-fold composition is

said to be p-closed, and is called a p-foliation.

In [Eke87], Ekedahl describes both the involutivity and p-closed conditions on a

subsheaf E of the T X in terms ofOX-linear morphisms. This provides a useful criterion

for determining when a subsheaf of T X is a p-foliation.

Lemma 3.5. Let E be a subsheaf of T X.

(i) The Lie bracket on T X induces an OX-linear morphism

Λ2E → T X/E .

(ii) Suppose E is involutive. Then the p-th power morphism induces an OX-linear

morphism

F ∗E → T X/F ,

where F : X → X is the absolute Frobenius morphism.

In particular, if T X/E is torsion-free and

HomOX
(Λ2E , T X/E ) = HomOX

(F ∗E , T X/E ) = 0,

then E is a p-foliation on X.

Proof. See [Eke87, Lemma 4.2].

Unlike in characteristic zero, we have the notion of the quotient by a p-foliation.

Let F be a p-foliation on X, and define the annihilator of F to be

Ann(F ) := {f ∈ OX : ¶(f) = 0, ∀¶ ∈ F}.

It is shown in [Miy87] that Ann(F ) is an integrally closed Op
X-subalgebra of OX
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containing OX , and as such Spec(Ann(F )) gives rise to a normal variety, which we

will denote X/F , such that there exists a factorization X → X/F → X(p) of the

Frobenius morphism on X.

Proposition 3.6. Let F be a p-foliation on a smooth variety X.

(i) If F has rank r, then [k(X) : k(X/F )] = pr.

(ii) There is a one-to-one correspondence between p-foliations on X and normal

varieties between X and X(p), by the association F with X/F .

(iii) The variety X/F is smooth if and only if F is a smooth foliation.

Proof. See [Miy87, Proposition 1.9].

3.3 Examples

Let k be a field and consider the affine plane over k, defined as A2
k = Spec(k[x, y]).

Then the tangent bundle T A2
k is generated by the derivations ï ∂

∂x
, ∂
∂y
ð.

Example 1: Let F1 = ï ∂
∂x

ð. Since F1 is rank 1, it is trivally involutive. Fur-

ther, F1 is a saturated subbundle of T A2
k since T A2

k/F1 = ï ∂
∂y
ð is torsion-free. Indeed,

the stalks of T A2
k/F1 are free at every point of A2

k, thus F1 is a smooth foliation.

Example 2: Consider the subsheaf F2 = ïx ∂
∂x

ð ¢ T A2
k. Let p be a point of A2

k

such that x = 0. Then, we note that ∂
∂x

̸∈ F2,p, since if ax ∂
∂x

= ∂
∂x
, we must have

a = x−1 ̸∈ OA2
k
,p. However, x ∂

∂x
∈ F2,p, by definition. Thus F2 is not saturated

everywhere, so F2 is not a foliation on A2
k. However, the saturation of F2 in T A2

k is

just F1, which is a smooth foliation.

Example 3: Consider F3 = ïx ∂
∂x
+y ∂

∂y
ð ¢ T A2

k. We can show that F3 is saturated.

Let f ∂
∂x

+g ∂
∂y

∈ T A2
k and suppose there exists a ∈ k[x, y] such that af ∂

∂x
+ag ∂

∂y
∈ F3.

Then there must be some h ∈ k[x, y] such that

af
∂

∂x
+ ag

∂

∂y
= xh

∂

∂x
+ yh

∂

∂y
.
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For p ∈ k[x, y], let |p|x be the highest power of x dividing p. Since af = xh, we have

|a|x + |f |x = 1 + |h|x. Similarly, ag = yh. So |a|x + |g|x = |h|x. Thus |f |x = 1 + |g|x.
In particular, |f |x g 1. Thus x|f .

Similarly, y|g. But af
x
= h = ag

y
. In particular h

a
∈ k[x, y]. Thus

f
∂

∂x
+ g

∂

∂y
=
h

a

(
x
∂

∂x
+ y

∂

∂y

)
.

Thus F3 is saturated. So F3 is a foliation. However, it is not a smooth foliation, as

the quotient T A2
k/F3 is not locally free. In particular the stalk of this quotient at

the origin is not free. This will be proven for a somewhat more general version of this

foliation in Theorem 3.21.

So F3 is a singular foliation, with singular locus equal to the origin.

Example 4: Consider now the case that k is a field of characteristic p. Then we

can calculate:

∂

∂x

(p)

(xayb) = a(a− 1)(a− 2) . . . (a− p+ 1)xa−pyb.

Note that since a ∈ Z, at least one of a, (a − 1), (a − 2), . . . , (a − p + 1) must vanish

modulo p, thus ∂
∂x

(p)
= 0. Also, we can calculate:

(
x
∂

∂x

)(p)

(xayb) = apxayb

But, as a ∈ Z, and ap ≡ a modulo p, we have (x ∂
∂x
)(p) = x ∂

∂x
.

These calculations show us that each of the foliations in the previous examples are

p-closed, and are thus p-foliations, when considered over a field k of characteristic p.

As such, we can compute the quotients A2
k/F1 and A2

k/F3. In the case of the smooth

foliation F1 = ï ∂
∂x

ð, it is easy to see that

Ann(F1) = k[xp, y].
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Thus, A2
k/F1 = Spec(k[xp, y]), which is just another affine plane. On the other hand,

when we consider a foliation with a singularity, such as F3 = ïx ∂
∂x

+ y ∂
∂y
ð, we compute

that

Ann(F3) = k[xp, xp−1y, . . . , xyp−1, yp].

Thus A2
k/F3 = Spec(k[xp, xp−1y, . . . , xyp−1, yp]), a surface with a cyclic quotient sin-

gularity at the origin.

However, not all foliations are p-closed. For example, let ³ ∈ k such that ³ ̸∈ Fp,

and consider the foliation F4 = ïx ∂
∂x

+ ³y ∂
∂y
ð. We can see that F4 is not p-closed by

computing (x ∂
∂x

+ ³y ∂
∂y
)(p) = x ∂

∂x
+ ³py ∂

∂y
̸∈ F4. So F4 is not a p-foliation.

3.4 Foliations on Toric Varieties

Let X be a toric variety over a field k of arbitrary characteristic, containing an

open dense torus T . A torus-equivariant vector bundle E on X is a vector bundle

along with a map T × E → E , such that the following diagram commutes:

T × E E

T ×X X

.

We further require that for any x ∈ X and t ∈ T (k), the map Ex → Et·x is a linear

isomorphism.

Proposition 3.7. A bundle E on a toric variety X can be endowed with a toric struc-

ture if and only if E ∼= t∗E for every t ∈ T (k).

Proof. [Kly90, Proposition 1.2.1].

Note that this does not imply that the given isomorphisms E ∼= t∗E are the toric

structure, merely that if such a family of isomorphisms exists, then a toric structure

also exists.
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3.4.1 Klyachko Filtrations

In [Kly90], Klyachko classified vector bundles on a toric variety X(Σ) in terms of

a collection of filtrations indexed by the rays Ä ∈ Σ(1). We review the relevant results

here.

Let T be a split torus over k, and let Ã be a cone in the cocharacter lattice N

of T . Then X = X(Ã) := Spec(k[SÃ]) is an affine toric variety. X has a unique closed

T -orbit. Let T |Ã ¦ T be the stabilizer of a point in the closed orbit.

Proposition 3.8. Let X = X(Ã) be an affine toric variety. Then all toric bundles E

on X take the form E = E × X, where E is a representation of T , with toric action

on E given by t · (e, x) = (t · e, tx).

Proof. [Kly90, Proposition 2.1.1(i)] The Quillen–Suslin Theorem states that every

projective module over a polynomial ring is free. Equivalently, every vector bundle

over affine space is trivial. This was extended by Gubeladze in [Gub87] to affine toric

varieties. Thus E is a trivial vector bundle over X, that is E = E ′×X for some vector

space E ′. We would like to show that there is a T -action on E ′ that extends to the

toric action on E . We will do this by defining a vector space E with torus action, and

showing that it is isomorphic to E ′, in such a way that the T -action on E induces the

toric action on E .

Let xÃ be a point in the closed orbit of X. Then, consider the map p : Γ(X,E ) →
E (xÃ) ∼= E ′, such that p(s) = s(xÃ). This is a surjective map, since E is a trivial

bundle.

First, we claim that there is a T -invariant subspace E ¦ Γ(X,E ) on which p is an

isomorphism. Let E be a maximal T -invariant subspace on which p is injective. By

the diagonalizability of torus representations [Mil17, Theorem 12.12], the representa-

tion Γ(X,E ) of the torus T decomposes into character spaces Γ(X,E ) =
⊕

ÇEÇ. So
⊕

Ç p(EÇ) = E (xÃ), since p is surjective. If p(E) ̸= E (xÃ), there must be some Ç and

µ ∈ EÇ such that p(µ) ̸∈ p(E). Then µ ̸∈ E. Thus p is injective on E + ïµð. Also,

for any t ∈ T we have t · µ = Ç(t)µ. thus E + ïµð is T -invariant. But this contradicts
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the maximality of E. Thus p(E) = E (xÃ). In other words, p : E → E (xÃ) is an

isomorphism.

Now, let si ∈ E be such a basis of T -eigenvectors. Clearly, they are linearly

independent over xÃ. Suppose there exists some point x0 over which the si are not

linearly independent. Then, since the si are T -eigenvectors, we see that they are not

linearly independent over any point tx0. Thus, they are not linearly independent over

the orbit containing x0. However, since such a linear dependency is a closed condition,

we know that the si must not be linearly independent over the closure of this orbit.

But the unique closed orbit (containing xÃ) is in the closure of every T -orbit on X,

by Proposition 2.14. So this contradicts the fact that the si are linearly independent

over xÃ. Therefore, they are linearly independent over all x ∈ X. Thus E = E ×X as

a toric bundle. That is, E extends the T -action on E.

Proposition 3.9. Let E = E×X and F = F ×X be toric bundles on an affine toric

variety X = X(Ã). For each ray Ä ∈ Ã(1), let ³Ä be the generator of Ä and define a

decreasing Z-filtration on E, (similarly on F ), as follows:

EÄ (i) =
⊕

ïÇ,³Ä ðgi
EÇ

where, for Ç ∈ M , the vector space EÇ is the Ç-isotypical component of E. Then,

HomT (E ,F ) is canonically isomorphic to:

{φ ∈ Hom(E,F ) : φ(EÄ (i)) ¢ F Ä (i), Ä ∈ Ã(1), i ∈ Z}.

Proof. [Kly90, Proposition 2.1.1(iii)] Consider the case dim(E) = dim(F ) = 1. Let ÇmE

and ÇmF be the characters by which T acts on E and F respectively. Then, we see

that a bundle morphism f : E → F , is a family of maps φx : E → F , parameterized

by x ∈ X. For such a morphism to be T -equivariant, it must satisfy:

φtx(te) = t · φx(e).
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That is:

ÇmE(t)φtx(e) = ÇmF (t)φx(e).

Thus, if we fix x0 in the open T -orbit of X, and denote φ := φx0 . Then for any

point x1 = tx0 in the open orbit, we must have:

f(e, tx0) = (φtx0(e), tx0) =

(
ÇmF

ÇmE
(t)φ(e), tx0

)
.

Note that this formula determines f uniquely, as it gives the value of f on an open

dense subset of X. Furthermore, since f is regular, we know that either φ = 0 or the

character ÇmF

ÇmE
= ÇmF−mE is a regular function on X. Since X = Spec(k[SÃ]), we see

that ÇmF−mE is a regular function if and only if it is in SÃ, i.e. ïmF −mE, ³Ä ð g 0 for

all Ä ∈ Ã(1). Equivalently, that ïmF , ³Ä ð g ïmE, ³Ä ð for all Ä ∈ Ã(1). However, this is

equivalent to saying that φ(EÄ (i)) ¦ F Ä (i) for all Ä ∈ Ã(1) and i ∈ Z, as required.

On the other hand, suppose there exists some non-zero φ ∈ Hom(E,F ), such that

φ(EÄ (i)) ¦ F Ä (i) for all Ä ∈ Ã(1), and i ∈ Z, we must have F Ä (i) = 0 only if EÄ (i) = 0.

Thus, ïmE, ³Ä ð f ïmF , ³Ä ð for all Ä ∈ Ã(1). So the character ÇmF−mE ∈ SÃ and thus

extends as a regular function to X. Thus, the map

f(e, tx0) =

(
ÇmF

ÇmE
(t)φ(e), tx0

)

extends to a regular map on E ×X.

Thus we get a canonical isomorphism HomT (E ,F ) with the subset of Hom(E,F )

that respects the filtrations.

Now, if dim(E) or dim(F ) is greater than 1, we see from the proof of the previous

proposition, that E and F are generated by T -eigenvectors. Thus E and F are sums

of T -invariant line bundles, and these sums respect the filtrations given. Thus, this

result generalizes to E and F of arbitrary dimension.
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3.4.2 Classifying Toric Foliations

We will now specialize to looking specifically at the tangent bundle, in order to

classify the toric foliations. Let X be a toric variety of dimension n with open dense

torus T . Let Σ be the fan defining X, and let Ã ∈ Σ. Let Ä ∈ Ã(1) be a ray of Ã.

Then Ä determines a closed codimension-1 subvariety of UÃ, corresponding to the prime

ideal:

IÃ,Ä := ïÇm;m ∈ SÃ, ïm,nð > 0, n ∈ Äð ¦ k[SÃ].

This subvariety is precisely the closure of the T -orbit of the point induced by the map:

SÃ → k : m 7→





1 m ∈ Ä§

0 m ̸∈ Ä§

This is the codimension-1 T -orbit ZÄ . Call this subvariety V (Ä).

Let D be the T -invariant Weil divisor
∑

Ä∈Σ(1) V (Ä), where Σ(1) is the set of rays

in the fan Σ. Let I be the sheaf of ideals of OX determining D. In particular, for

Ã ∈ Σ, we see that

I (UÃ) = IÃ =
⋂

Ä∈Ã(1)
IÃ,Ä ,

as described in Lemma 2.15.

Now, we define T X(− log(D)) to be the subsheaf of T X consisting of derivations ¶

such that ¶(I ) ¦ I .

Proposition 3.10. Let X be a toric variety, corresponding to the fan Σ. Then there is

a T -equivariant isomorphism T X(− log(D)) ∼= N ¹Z OX , where N is the cocharacter

lattice of T .

Proof. [Oda88, Proposition 3.1] Suppose that for each cone Ã ∈ Σ we have such an

isomorphism T UÃ(− log(D)) ∼= N ¹Z OUÃ
, that respects the inclusions Ä ¢ Ã for any

face Ä of Ã. Then we can glue these isomorphisms together to get an isomorphism of

sheaves T X(− log(D)) ∼= N ¹Z OX . We will show that such an isomorphism exists for
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each cone Ã ∈ Σ. Note that after restriction to the affine open UÃ, the ideal sheaf I

is just the coherent sheaf associated to the ideal IÃ ¦ k[SÃ].

For each Ã ∈ Σ, define a homomorphism ∆Ã : N ¹ OUÃ
→ T X(− log(D)) by:

n¹ f 7→ f¶n.

where ¶n is defined to be the k-derivation such that

¶n(Ç
m) = ïm,nðÇm.

Since Çm1Çm2 = Çm1+m2 we need to check that ¶n is a well-defined derivation. We see

that:

¶n(Ç
m1Çm2) = Çm1ïm2, nðÇm2 + Çm2ïm1, nðÇm1

= ïm1 +m2, nðÇm1Çm2 = ¶n(Ç
m1+m2).

Thus ¶n is a well-defined k-derivation.

Further, if φ =
∑n

i=1 ciÇ
mi ∈ IÃ, then each Çmi ∈ IÃ, as each monomial in φ

must be a product of a monomial in Çmi1 ∈ k[SÃ], and a generator Çmi2 of IÃ. So

ïmi1, nð g 0 for all n ∈ Ã and ïmi2, nð > 0 for all n ∈ Ã. Therefore, we see that

ïmi, nð = ïmi1 +mi2, nð > 0, which implies Çmi ∈ IÃ.

Then, since ¶n(Ç
mi) is a multiple of Çmi , we must have ¶n(Ç

mi) ∈ IÃ. Therefore

¶n(IÃ) ¦ IÃ. So the image of ∆Ã is contained in T X(− log(D)). Thus ∆Ã is a well-

defined map N ¹ OUÃ
→ T X(− log(D)).

Next, we will verify that ∆Ã is indeed a homomorphism. Given n1, n2 ∈ N , we

have:

¶n1+n2(Ç
m) = ïn1 + n2,mðÇm = ïn1,mðÇm + ïn2,mðÇm

= ¶n1(Ç
m) + ¶n2(Ç

m).

Thus the map N → T UÃ(− log(D)) given by n 7→ ¶n is a homomorphism of Z-modules.
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Thus ∆Ã, as defined above, is a homomorphism of OUÃ
-modules. We would like to show

that it is an isomorphism.

The injectivity is clear, since if n1, n2 ∈ N such that ïm,n1ð = ïm,n2ð for all

m ∈ SÃ, then ïm,n1ð = ïm,n2ð for all m ∈ M , as SÃ generates M as a group, by

Proposition 2.8. Thus n1 = n2, as M is the dual lattice to N . It remains to show

surjectivity.

Suppose ¶ ∈ T UÃ(− log(D)). Then ¶(IÃ) ¦ IÃ. Recall IÃ =
⋂
Ä∈Ã(1) IÃ,Ä is a minimal

prime decomposition, by Lemma 2.15. We will then show that ¶(IÃ,Ä ) ¦ IÃ,Ä for each

Ä ∈ Ã(1).

Let Ä0 ∈ Ã(1). Then, since IÃ =
⋂
Ä∈Ã(1) IÃ,Ä is a minimal prime decomposition, for

any x ∈ IÃ,Ä0 we can find some y ̸∈ IÃ,Ä0 such that xy ∈ IÃ. Since ¶(IÃ) ¦ IÃ, we know

that ¶(xy) ∈ IÃ ¦ IÃ,Ä0 . But:

¶(xy) = x¶(y) + y¶(x).

Thus, since ¶(xy) and x¶(y) are in IÃ,Ä0 , it must be that y¶(x) is in IÃ,Ä0 . Further, as

y ̸∈ IÃ,Ä0 , and IÃ,Ä0 is prime, it must be that ¶(x) ∈ IÃ,Ä0 . Thus ¶(IÃ,Ä0) ¦ IÃ,Ä0 .

By Lemma 2.17, we also know that for any m ∈ SÃ, the ideal ïÇmð ¦ k[SÃ] has

primary ideal decomposition:

ïÇmð =
⋂

Ä∈Ã(1)
I(ïm,nÄ ð)
Ã,Ä .

where nÄ is a generator of the ray Ä ¦ N . Since ¶ preserves IÃ,Ä , it also preserves

its symbolic powers, by Lemma 2.5. Hence ¶(ïÇmð) ¦ ïÇmð. In particular, for any

m ∈ SÃ, there exists À(m) ∈ k[SÃ] such that ¶(Çm) = À(m)Çm.

So À : SÃ → k[SÃ]. Note that this is an additive map, since for any m1,m2 ∈ SÃ:

¶(Çm1Çm2) = ¶(Çm1+m2) = À(m1 +m2)Ç
m1+m2 = À(m1 +m2)Ç

m1Çm2 .
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Also

¶(Çm1Çm2) = Çm1¶(Çm2) + Çm2¶(Çm1) = Çm1À(m1)Ç
m2 + Çm2À(m2)Ç

m1

= (À(m1) + À(m2))Ç
m1Çm2 .

Therefore, since SÃ generatesM as a group, À extends to a homomorphismM → k[SÃ].

Further, as N is the dual of M . Any homomorphism M → k[SÃ] can be viewed as an

element of k[SÃ]¹Z N .

Thus, there exists
∑n

i=1 aini such that À(m) =
∑n

i=1 aiïm,nið. Thus

n∑

i=1

ai¶ni
(Çm) =

n∑

i=1

aiïm,niðÇm = À(m)Çm = ¶(Çm).

So ¶ =
∑n

i=1 ai¶ni
. Thus, ∆Ã is surjective.

Further, from the definition of ∆Ã, it is clear that for any face Ä ¢ Ã the following

square commutes:

k[SÃ]¹N T UÃ(− log(D))

k[SÄ ]¹N T UÄ (− log(D))

∆Ã

∆Ä

where the vertical arrows are restrictions from UÃ to UÄ . Therefore, this we can glue

the isomorphisms ∆Ã to get an isomorphism ∆ : OX ¹N → T X(− log(D)).

Finally, recall that the action of T on T X is such that for any derivation ¶, we

have:

(t · ¶)(f)(x) = ¶(f ◦ t−1)(t · x).

So, for any n ∈ N , we can calculate for any m ∈ M and x0 ∈ X:
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(t · ¶n)(Çm)(x0) = ¶n(Ç
m ◦ t−1)(t · x0)

= ¶n(Ç
m(t−1) · Çm)(t · x0)

= Çm(t−1)¶n(Ç
m)(t · x0)

= Çm(t−1)ïm,nðÇm(t · x0)

= Çm(t−1)Çm(t)ïm,nðÇm(x0)

= ïm,nðÇm(x0)

= ¶n(Ç
m)(x0).

Thus t · ¶n = ¶n for any n ∈ N . Further, for any f ∈ OX and ¶ ∈ T X, we have:

t · (f¶)(g)(x0) = (f¶)(g ◦ t−1)(t · x0) = f(t · x0)¶(g ◦ t−1)(t · x0)

= (t · f)(t · ¶)(g)(x0).

Thus the isomorphism ∆ is equivariant with respect to the action of T on T X(− log(D))

derived from the action of T on X, and the action of T on N ¹OX given by the trivial

action on N , and the action on OX derived from the action of T on X.

Lemma 3.11. For any n1, n2 ∈ N , we have [¶n1 , ¶n2 ] = 0. Thus, any subsheaf of

T X(− log(D)) generated by {¶ni
} for some subset {ni} ¦ N is involutive.

Proof. For any m ∈ M , we have:

[¶n1 , ¶n2 ](Ç
m) = ¶n1(¶n2(Ç

m))− ¶n2(¶n1(Ç
m))

= ¶n1(ïn2,mðÇm)− ¶n2(ïn1,mðÇm)

= ïn1,mðïn2,mðÇm − ïn2,mðïn1,mðÇm

= 0.
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Thus, since k[SÃ] ¦ k[M ] is generated by the Çm as a k-vector space,

[¶n1 , ¶n2 ] = 0.

Example: Consider the affine toric variety UÃ over k given by the cone Ã generated

by n1 = (1, 0) in N = Z2. So SÃ = {(a, b) ∈ Z2 : a g 0}. Thus, naming the first

coordinate X and the second Y , we have UÃ = Spec(k[SÃ]) = Spec(k[X, Y ±1]). This is

just the product of the rank 1 torus with the affine line.

Now, ¶n1 is the derivation on k[X, Y ±1] defined such that ¶n1(X
aY b) = aXaY b. So

¶n1 = X ∂
∂X

. Similarly, if n2 = (0, 1) ∈ N , then ¶n2 is the derivation on k[X, Y ±1]

defined such that ¶n2(X
aY b) = bXaY b. So ¶n2 = Y ∂

∂Y
.

We know that the tangent space T UÃ of UÃ = Spec(k[X, Y ±1]) is generated by ∂
∂X

and Y ∂
∂Y

, that is 1
X
¶n1 and ¶n2 . Then T UÃ(− log(D)), where D is given by the divisor

of X = 0 is generated by X ∂
∂X

= ¶n1 and Y ∂
∂Y

= ¶n2 . So the map n1 7→ ¶n1 , n2 7→ ¶n2

is indeed an isomorphism N ¹ OX → T UÃ(− log(D)) in this example.

Example: This construction works in general to find the tangent space T UÃ for

some smooth Ã in N , the co-character lattice of a rank g split torus. Let {uq+1, . . . , ug}
be a basis for Ã as a semigroup that extends to a basis {u1, . . . , ug} forN as a group. Let

{m1, . . . ,mg} ¢ M be a dual basis to {u1, . . . , ug}. Then SÃ = k[m±1
1 , . . . ,m±1

q ,mq+1, . . . ,mg].

So UÃ = k[SÃ].

So ZÃ is the closed subvariety given by Çmj = 0 for q+1 f j f g. As in Proposition

3.8, we want to construct the tangent space T UÃ as a product E × UÃ where E is a

representation of T . Consider the point xÃ ∈ ZÃ where Çmj(xÃ) = 1 or 1 f j f q.

Also, since xÃ ∈ ZÃ, we must have Çmj = 0 for q + 1 f j f g.

Then the fibre T UÃ(xÃ) = spank{ ∂
∂Çmi

}gi=1. Following a similar computation as in

the previous example, we can deduce that for each ui, we have ¶ui = Çmi ∂
∂Çmi

. Note

that since each ¶ui is T -invariant, each of the ¶ui are T -eigenvectors, with respect to the

trivial character. So, we can begin constructing our E using the ¶ui . Since Ç
mi(xÃ) = 1
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for 1 f i f q, the image of ¶ui in the fibre T UÃ(xÃ) is just ∂
∂Çmi

. However, Çmj(xÃ) for

q + 1 f j f g is 0. So the image of ¶uj in this fibre is zero.

Consider instead the derivations 1
Çmj ¶uj for q + 1 f j f g. Then for t ∈ T we have

t · ( 1

Çmj
¶uj) =

Çmj(t)

Çmj
(t · ¶uj) = Çmj(t)

1

Çmj
¶uj .

Thus 1
Çmj ¶uj is a T -eigenvector with character Çmj . Further, the image of 1

Çmj ¶uj on

the fibre over xÃ is just ∂
∂Çmj .

So, by Proposition 3.8, we have T UÃ = E × UÃ where E is

E = spank{¶u1 , . . . , ¶uq ,
1

Çmq+1
¶uq+1 , . . . ,

1

Çmg
¶ug}.

So we get the following corollary:

Corollary 3.12. Let UÃ be an affine toric variety, with notation as above. Then

T UÃ = spanOUÃ

{
¶u1 , . . . , ¶uq ,

1

Çmq+1
¶uq+1 , . . . ,

1

Çmg
¶ug

}
.

Further, since we have clearly defined the T -action on E, we can explicitly describe

the filtrations from Proposition 3.9 for T UÃ here. Note that the eigenspace decompo-

sition of E is

E1 = ï¶u1 , . . . , ¶uqð, EÇmj =

〈
1

Çmj
¶uj , q + 1 f j f g

〉
.

For each Äj = ïujð ∈ Ã(1), that is, for q + 1 f j f g, we have:

EÄj(i) =





E i f 0〈
1

Çmj ¶uj

〉
i = 1

0 i g 2

.
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Proposition 3.13. There is a 1-1 correspondence between the following sets:

{Foliations of X} ô {Involutive saturated subsheaves of T X(− log(D)) }.

Proof. First, note that T X(− log(D)) is involutive. If I is the ideal sheaf defining D,

and f is a section of I . Then for any ¶, À ∈ T X(− log(D), we have

[¶, À](f) = ¶(À(f))− À(¶(f)).

But since À and ¶ are in T X(− log(D)), they map sections of I to sections of I .

Thus [¶, À](f) is a section of I . Thus [¶, À] ∈ T X(− log(D)). So T X(− log(D)) is

involutive.

Let F be a foliation on X. So F is an involutive saturated subsheaf of T X. As

such, we can associate it with its restriction to T X(− log(D)), which remains involutive

and saturated in T X(− log(D)).

On the other hand, let G be an involutive saturated subsheaf of T X(− log(D)).

Consider the saturation G sat of G in T X. Then G sat remains involutive by Lemma 3.4,

and is a saturated subsheaf of T X. That is, G sat is a foliation.

Finally, note that these are inverse operations. Let I be the ideal sheaf defining D,

and let F be a foliation on X. Then if ¶ is a section of F , and f ∈ I , we see that

f¶ ∈ T X(− log(D)). Thus, f¶ is a section of the restriction of F to T X(− log(D)).

Thus, ¶ is in the saturation in T X of this restriction.

On the other hand, suppose ¶ is in the saturation in T X of the restriction of F to

T X(− log(D)). Then there is some f ∈ OX such that f¶ ∈ F (− log(D)). So f¶ ∈ F ,

which implies ¶ ∈ F , since F is saturated in T X.

Proposition 3.14. Let X be a toric variety with torus T defined over a field k. Let D

be the divisor as described previously. There is a 1-1 correspondence between the fol-
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lowing sets:





T -equivariant saturated

subsheaves of T X(− log(D))



ô {subspaces of N ¹Z k}

where N is the cocharacter lattice of T .

Proof. By Proposition 3.10, we know that

T X(− log(D)) ∼= N ¹Z OX .

Let V be a subspace of N ¹Z k. So V ¹k OX is a subsheaf of T X(− log(D)). Let F

be the saturation of V ¹k OX in T X(− log(D)). Note that F is T -invariant, as the

action of T on N ¹Z OX is defined by acting on the OX part over k. Thus restricting

to a subspace V of N ¹Z k remains T -invariant.

On the other hand, let F be a T -equivariant saturated subsheaf of T X(− log(D)).

Let K be the function field of X. Then, if ¸ is the generic point of X, the stalk F¸ is a

K-subspace of T X(− log(D))¸. So let {v1, . . . , vr} be a basis of F¸ that extends to a

K-basis {v1, . . . , vr, . . . , vg} of T X(− log(D))¸. Then, since T X(− log(D)) ∼= N¹ZOX ,

we must have T X(− log(D))¸ ∼= N ¹Z K. Let {n1, . . . , ng} be a basis of N . Then we

can find aij, bij ∈ OX such that:

vi =

g∑

j=1

aij
bij
¶nj
.

Thus T X(− log(D))/F is free away from the codimension 1 subscheme defined by

{bij = 0}1fi,jfg.
But, since F is T -equivariant, the stalks (T X(− log(D))/F )x must be isomorphic

along T -orbits. Since (T X(− log(D))/F )x is free for all x away from a codimension 1

subscheme, it is free for all x on the open T -orbit U0
∼= T of X. So, after restricting

to U0, the subsheaf F is a subbundle of T X(− log(D)).
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So by Proposition 3.9, the inclusion F ↪→ T X(− log(D)) corresponds to a vector

space morphism V ↪→ N¹k. Over the open orbit, this is the inverse of the construction

above. It remains to show that if two T -equivariant, involutive, saturated subsheaves

of T X(− log(D)) coincide on U0, then they are equal.

Suppose F1,F2 are T -equivariant, saturated subsheaves of T X(− log(D)) such

that F1 and F2 coincide on U0. Then let F3 = F1 + F2. Since F1,F2 coincide

on U0, the quotients F3/F1 and F3/F2 must be supported away from U0, and thus by

Lemma 3.3, they are torsion subsheaves of T X/(− log(D))/F1 and T X(− log(D))/F2

respectively. But F1 and F2 are saturated in T X(− log(D)). So F3/F1 = 0 and

F2/F1 = 0. Thus F1 = F3 = F2 on X.

Thus we have a 1-1 correspondence between T -equivariant involutive saturated

subsheaves of T X(− log(D)) and subspaces of N ¹Z k.

Note that the subsheaf corresponding to V ¹Z OX is involutive, since [¶v1 , ¶v2 ] = 0

for any v1, v2 ∈ N by Lemma 3.11. Thus:

[∑
fi¶vi ,

∑
gj¶vj

]
=
∑

i,j

[fi¶vi , gi¶vj ]

=
∑

i,j

(
figj[¶vi , ¶vj ] + fi¶vi(gj)¶vj − gj¶vj(fi)¶vi

)
∈ V ¹Z OX .

Thus combining the above two propositions gives us a 1-1 correspondence between

subspaces of N ¹Z k and T -equivariant foliations of X, which we will call toric foli-

ations. Given a subspace V of N ¹Z k, we will denote the associated toric foliation

by FV , that is

FV := ï¶n : n ∈ V ðsat ¦ T X.

Since FV is generated by the derivations ¶n for n ∈ V , we see that the rank of FV as

an OX-module is equal to the k-dimension of V .

Lemma 3.15. Let u ∈ Aut(T ), and let ¶n ∈ T X be defined as above. Then, the

differential du : T Xp → T Xu(p) maps ¶n|p to ¶un|u(p).
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Proof. Recall that a map u : T → T induces a map u∗ on the character lattice M of T ,

such that for any p ∈ T , the character (u∗Çm)(p) := Çm(u(p)). The map u∗ then has a

dual map (u∗)( : N → N on the cocharacter lattice N of T , such that for any m ∈ M

and n ∈ N , we have ïm, (u∗)(nð = ïu∗m,nð. For ease of notation, we will denote (u∗)(

as u.

Then we can calculate:

¶un(Ç
m)(u(p)) = ïm,unðÇm(u(p)) = ïu∗m,nðÇm(u(p)).

Also

du(¶n)(Ç
m)(p) = ¶n(u

∗Çm)(p) = ïu∗m,nð(u∗Çm)(p) = ïu∗m,nðÇm(u(p)).

Thus, for any p ∈ T , the differential du maps ¶n|p to ¶un|u(p), as required.

Corollary 3.16. Let U be a subgroup of Aut(T ), and let Σ be a U-invariant fan in the

cocharacter lattice N of T . Then there is a 1-1 correspondence between the following

sets

{Toric foliations of X(Σ)/U} ô {U-invariant subspaces of N ¹ k} .

Proof. Let V be a U -invariant subspace of N ¹ k, then the projection of FV on X(Σ)

to X(Σ)/U is well defined, since ¶n ∈ FV if and only if ¶un ∈ F for u ∈ U , by the

U -invariance of V . So V corresponds to a toric foliation of X(Σ)/U .

Similarly, let F is a toric foliation on X(Σ)/U . Then F pulls back to a toric

foliation on X(Σ). Thus, F = FV for some subspace V of N ¹k. By the construction

in Proposition 3.14, we know that F = FV where V = {n : ¶n ∈ F}. Further, since F

is defined on X(Σ)/U , it must be that ¶n ∈ F if and only if ¶un ∈ F for any u ∈ U ,

by Lemma 3.15. Thus V is U -invariant.

Therefore, there is a 1-1 correspondence between toric foliations of X(Σ)/U and

U -invariant subspaces of N ¹ k.
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3.4.3 Classifying Toric p-Foliations

Let k be a perfect field of characteristic p. We will now provide an extension of the

above results to p-foliations. Let N be the cocharacter lattice of a split torus T over

k. Consider the action of Frobenius on N ¹ k, given by the trivial action on N , and

Frobenius on k. Then a subspace V of N ¹ k is called p-closed if it is closed under

this action of Frobenius.

Lemma 3.17. Let k be an finite extension of Fp, and let N be a Fp-vector space. Let

Ã ∈ Gal(k,Fp) denote the Frobenius automorphism. Suppose V is a k-subspace of N¹k
such that Ã(V ) ¦ V . Then there exists an Fp-subspace V0 ¦ N such that V = V0 ¹ k.

Proof. This is exactly Galois descent for vector spaces (cf. [Bou81, V.10.4]).

Proposition 3.18. There is a 1-1 correspondence between the following sets:

{Toric p-foliations on X} ô {p-closed subspaces of N ¹Z k}.

Proof. To prove this proposition, we will start with the following Lemma:

Lemma 3.19. Let X be a variety defined over a field of characteristic p. Let F be

a foliation on OX that is generated by {D1, . . . , Ds} as an OX-module. Then F is a

p-foliation if and only if Dp
i ∈ F for 1 f i f s.

Proof. If F is a p-foliation, then Dp
i ∈ F for any Di ∈ F by the definition of p-closed.

On the other hand, let {D1, . . . , Ds} be a generating set for F , and suppose that

Dp
i ∈ F for each generator Di. By Deligne’s identity [Kat70, Prop 5.3], we know that

for any g ∈ OX , we have (gDi)
p = gpDp

i − gDp−1
i (gp−1)Di. Therefore, since Di and D

p
i

are both in F . we see that (gDi)
p ∈ F .

By Jacobson’s identity [Jac62, p. 187], we have

(D +D′)p = Dp +D′p +
p−1∑

i−1

si(D,D
′),
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where each si(D,D
′) is in the Lie subalgebra of T X, generated byD andD′. Therefore,

if D,D′ ∈ F , then si(D,D
′) ∈ F , since F is involutive.

Thus, (D +D′)p ∈ F , as Dp, D′p, si(D,D′) ∈ F .

Thus, if {D1, . . . , Dk} is a generating set of F and Dp
i ∈ F for each 1 f i f s,

then F is p-closed and thus is a p-foliation.

We now continue with the proof of Proposition 3.18. Let F be some toric foliation

on X, and let V be the subspace of N¹Zk corresponding to F , via the correspondence

in Proposition 3.14. Let {v1, v2, . . . , vs} be a basis of V . Then, given any Z-basis

{n1, . . . , nd} of N , we can write vj =
∑d

i=1 ni ¹ aij for some aij ∈ k, since V ¦ N ¹ k.

Since F is the foliation associated to V , it must be generated by derivations ¶vj

where ¶vj :=
∑d

i=1 aij¶ni
. Note that for any m ∈ M , we have

¶pni
(Çm) = ïm,niðpÇm.

Note that ïm,nið ∈ Z, since the ni ∈ N . Since we are working over a field with

characteristic p, and as ïm,nið ≡ ïm,niðp mod p, we must have ¶pni
= ¶ni

.

Since ¶pni
= ¶ni

and [¶m, ¶n] = 0 by Lemma 3.11, we see that ¶pvj =
∑n

i=1 a
p
ij¶ni

. Note

that the p-action on N ¹ k is such that v
(p)
j :=

∑d
i=1 ni ¹ apij. Thus ¶

p
vj
= ¶

v
(p)
j

.

Therefore F is p-closed if and only if V is p-closed, as required.

Corollary 3.20. Let U be a closed subgroup of Aut(T ), and let Σ be a U-invariant

fan in the cocharacter lattice N of T . Then there is a 1-1 correspondence between the

following sets:

{Toric p-foliations on X(Σ)/U} ô {p-closed U-invariant subspaces of N ¹Z k}.

Proof. Follows from Proposition 3.18 and Corollary 3.16.
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3.5 Singular Locus of Toric Foliations

Let k be a field of arbitrary characteristic, and let T be a split torus of rank g over

k, with character lattice M and co-character lattice N .

Let Ã ∈ Σ be a smooth scrp cone in N¹k with codimension q. Since Ã is smooth, we

know by Lemma 2.11 that Ã is generated by part of a Z-basis of N . Let {uq+1, . . . , ug}
be a basis of Ã that extends to {u1, . . . , ug} a basis of N ¹ k. Note that we are placing

the basis of Ã at the end of this basis, and not the beginning.

Let {m1, . . . ,mg} be the basis of M that is dual to {u1, . . . , ug}. That is,

ïui,mjð =





1 i = j

0 i ̸= j
.

The affine open chart UÃ ¦ X is given by:

UÃ = Spec(k[(Çm1)±1, . . . , (Çmq)±1, Çmq+1 , . . . , Çmg ]) = Spec(k[SÃ]).

Thus, as computed in Corollary 3.12, the tangent space of UÃ is generated over k[SÃ]

by:

T UÃ = spank[SÃ ]

{
¶u1 , . . . , ¶uq ,

1

Çmq+1
¶uq+1 , . . . ,

1

Çmg
¶ug

}
.

Let ZÃ be the stratum inX corresponding to the cone Ã. That is, ZÃ is the unique closed

stratum in UÃ. Note that dim(ZÃ) = q, and is isomorphic to a torus of dimension q. By

construction, given any point x ∈ ZÃ, the function Çmi for q < i f g, is not invertible

in OX,x, as ZÃ is defined by the equations Çmi = 0 for q < i f g. On the other hand,

for 1 f i f q, the function Çmi is invertible over all of UÃ, so we could also have written

the generating set of T UÃ as

T UÃ = spank[SÃ ]

{
1

Çm1
¶u1 , . . . ,

1

Çmg
¶ug

}
.

Let V be the subspace of N ¹ k corresponding to some toric foliation F of rank p
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on a toric variety X = X(Σ). Let {v1, . . . , vp} be a k-basis of V . Note that the basis

elements vi ∈ N ¹ k need not be of the form ni ¹ 1 for elements ni of N . F is thus

generated over k[SÃ] by {¶v1 , . . . , ¶vp}. Now define cij := ïvi,mjð. Then we have

vi =

g∑

j=1

cijuj

, for constants cij ∈ k. Note that this implies that ¶vi =
∑g

j=1 cij¶uj .

So C = [cij] is a p× g matrix with coefficients in k. Let us break C into two blocks

C = [C ′
t C ′

a]

where C ′
t is size p× q and C ′

a is size p× g − q.

After possibly re-ordering the basis {uq+1, . . . , ug}, let 0 f s f g − q be such that

the ith column of C ′
a is in the column space of C ′

t if and only if i f s. Let q′ = q + s

and consider the block decomposition

C = [Ct Ca]

where Ct is p× q′ and Ca is p× g − q′. Note that Ct has the same rank as C ′
t, and no

column of Ca is in the column space of Ct.

Theorem 3.21. With notation as above, the foliation FV extends smoothly to ZÃ if

and only if rank(Ct) = p+ q′ − g.

Before proceeding with the proof, we will look at a couple small examples. Let Ã

be a codimension q cone in Σ, so ZÃ is a q-dimensional toric stratum in X. Consider

the case that F is the full tangent space. V = N ¹ k, so C is a g × g invertible

matrix. Thus all of the columns of C are independent, and hence q′ = q. Also, the

rank of Ct will be q, as it is a g × q matrix, with q independent columns. Since p = g

and q′ = q, the condition rank(Ct) = p + q′ − g is indeed satisfied. As F is the full

tangent space, and X is smooth, F extends smoothly to all of X, and in particular, it
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extends smoothly to ZÃ.

As another example, let X be the affine plane A2
k. This is the affine toric variety

corresponding to a smooth cone with generators {u1, u2} in N = Z2. If we let {x, y}
be the corresponding dual basis of M , we have ¶u1 = x ∂

∂x
and ¶u2 = y ∂

∂y
.

Let G be the rank 1-foliation generated by x ∂
∂x

+ y ∂
∂y

on A2
k, and let ZÃ be the

0-dimensional boundary stratum, that is the origin of A2
k. So C =

[
1 1

]
. Since we

are considering the 0-dimensional boundary stratum, Ct is the first 0 columns of C,

and as such has rank 0. Since neither column of C is the zero column, q′ = q = 0. So

we can calculate p + q′ − g = 1 + 0− 2 = −1, which is not equal to rank(Ct) = 0. So

the condition in the theorem is not satisfied, and indeed G does not extend smoothly

to ZÃ.

Proof. Let X = X(Σ) be a toric variety with cocharacter lattice N , and let Ã ∈ Σ be

a codimension q cone with basis {uq+1, . . . , ug}. So we have a basis {u1, . . . , ug} of N .

We will be looking at a point x ∈ ZÃ, which is a q-dimensional toric stratum in X.

Let V ¦ N ¹ k be generated by k-basis {v1, . . . , vp}, and let FV be the foliation

associated to V . Recall that by construction we have




¶v1
...

¶vp


 = C




¶u1
...

¶ug


 .

Thus, the stalk FV,x is defined as the saturation in T Xx of the OX,x row span of:

C




¶u1
...

¶ug


 .

As above, we have the block decomposition C =
[
Ct Ca

]
into a p×q′ block Ct and

a p×(g−q′) block Ca. Since elementary row operations will not change the rowspace of
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the matrix, we can reduce the k-matrix C to the row reduced echelon form R, and FV,x

will still be the saturation of the rowspace of:

R




¶u1
...

¶ug


 .

Let r :=rank(Ct). Since R is in row reduced echelon form, we can write it as

R =


S ∗
0 T


 ,

where S and T are in row reduced echelon form, where S is size r × q′, and T is size

p− r× g− q′. Furthermore, since no column in Ca is in the column space of Ct, every

column of T must be nonzero. Also, as C consists of p linearly-independent rows, it

must have full row rank. Thus T has full row rank as well.

Now, rename the elements of {ui}gi=1 to {ai}pi=1 and {bi}g−pi=1 , where the ai corre-

spond to columns in R with leading ones, and the bi correspond to columns without

leading ones. Similarly rename the dual basis elements {mi}gi=1 to {âi}pi=1 and {b̂i}g−pi=1

respectively.

Since S has rank r, this implies that ai ∈ {uj}qj=1 for 1 f i f r, and ai ∈ {uj}gj=q′+1

for r < i f p. In particular, there cannot be a leading one in the columns corresponding

to uj for q < j f q′, as these columns are in the columns space of the first q columns, by

the construction of Ct. Thus, if dij ∈ k are the entries ofR in the columns corresponding

to the bj, we get:

rowspOX,x
R




¶u1
...

¶ug


 = spanOX,x

{
¶ai +

g−p∑

j=1

dij¶bj

}
.

Suppose x ∈ ZÃ, we wish to determine if FV,x is a direct summand of T Xx. We
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have two cases. Either T is square, or it is not square.

Suppose that T is square. Then, since T is in row reduced echelon form, and has

full row rank, it must be the identity matrix of size g − q′ = p− r. Thus we have:

FV,x =


spanOX,x



{
¶ai +

g−p∑

j=1

dij¶bj

}

1fifr

∪ {¶ai}r<ifp






sat

.

Even though Çmi is not invertible in OX,x for q < i f g, we have the derivations

1
Çmi

¶ui ∈ T Xx. Thus for r < i f p, we have 1
Çâi
¶ai ∈ FV,x by saturation. So:

FV,x =


spanOX ,x



{
¶ai +

g−p∑

j=1

dij¶bj

}

1fifr

∪
{

1

Çâi
¶ai

}

r<ifp






sat

.

Recall that over x ∈ ZÃ, we have

T Xx = spanOX,x

{
¶u1 , . . . , ¶uq ,

1

Çmq+1
¶uq+1 , . . . ,

1

Çmg
¶ug

}
.

Let us define the map ϕ : T Xx → spanOX,x

{
1

Çb̂j
¶bj

}
, by:

¶ai 7→
g−p∑

j=1

−dij¶bj 1 f i f r

1

Çâi
¶ai 7→ 0 r < i f p

¶bj 7→ ¶bj 1 f j f q − r

1

Çb̂j
¶bj 7→ 1

Çb̂j
¶bj q − r < j f g − p.

Let · =
∑r

i=1 fi¶ai +
∑p

i=r+1 fi
1
Çâi
¶ai +

∑g−p
j=1 hj

1

Çb̂j
¶bj . Since Ç

b̂j is invertible in OX,x

for 1 f j f q − r, this is indeed a generic element of T Xx. Then, we can compute:

ϕ(·) =

(
r∑

i=1

g−p∑

j=1

−dijfi¶bj

)
+

(
g−p∑

j=1

hj
1

Çb̂j
¶bj

)
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=

g−p∑

j=1

hj

Çb̂j
−

r∑

i=1

(dijfi)¶bj .

So · ∈ker(ϕ) if and only if
hj

Çb̂j
=
∑r

i=1 dijfi. That is, if

· =
r∑

i=1

fi¶ai +

p∑

i=r+1

fi
Çâi

¶ai +

g−p∑

j=1

r∑

i=1

dijfi¶bj

=
r∑

i=1

fi

(
¶ai +

g−p∑

j=1

dij¶bj

)
+

p∑

i=r+1

fi
Çâi

¶ai .

So ker(ϕ) = FV,x. Thus we get a split exact sequence:

0 → FV,x → T Xx → spanOX,x

{
1

Çb̂j
¶bj

}
→ 0.

As spanOX,x

{
1

Çb̂j
¶bj

}
is clearly free, we see that FV,x is a direct summand of T Xx for

all x ∈ ZÃ, and thus FV extends smoothly to ZÃ.

On the other hand, suppose that T is not square. Since it has full row rank, this

implies that it must have more columns than rows. That is, it implies that g−q′ > p−r.
In particular, since g− q′ > 0, it implies that not all the columns of C are in Ct. Thus

rank(Ct) < rank(C). So r < p, and T has at least one row. Also, since T has no zero

columns, and more columns than rows, that implies there is a row in T with at least 2

non-zero components.

We then can describe FV,x as:

FV,x =

(
spanOX,x

{
¶ai +

g−p∑

j=1

dij¶bj

})sat

.

Since some row in T has at least 2 non-zero components, there exists some i > r

and 1 f j f g− p such that dij ̸= 0. We now prove that FV,x is not a direct summand

of T Xx as follows. First, note that if FV,x were a direct summand of T Xx, then by the

additivity of rank we would know that T Xx/FV,x would be free of rank g−p. Secondly,
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note that the classes ï 1

Çb̂j
¶bjð modulo FV,x provide a saturated, free submodule of

T Xx/FV,x of rank g − p, as it is generated by a sub-basis of T Xx and does not

intersect FV,x in T Xx. Therefore, by Lemma 2.2, we must have T Xx/FV,x = ï 1

Çb̂j
¶bjð.

It remains to show that T Xx/FV,x ̸= ï 1

Çb̂j
¶bjð. We will do this by demonstrating that

the class of 1
Çâi
¶ai modulo FV,x is not in ï 1

Çb̂j
¶bjð. This will prove that FV,x is not a

direct summand of T Xx.

Suppose that 1
Çâi
¶ai ≡

∑g−p
j=1 fj

1

Çb̂j
¶bj modulo FV,x. for some fj ∈ OX,x. Then, there

exists some g ∈ OX,x, À ∈ FV,x, and tk ∈ OX,x such that:

1

Çâi
¶ai + À =

g−p∑

j=1

fj
1

Çb̂j
¶bj

gÀ =

p∑

ℓ=1

tℓ

(
¶aℓ +

g−p∑

j=1

dℓj¶bj

)
.

Thus:

g
1

Çâi
¶ai +

g−p∑

j=1

−gfj
1

Çb̂j
¶bj =

p∑

ℓ=1

tℓ

(
¶aℓ +

g−p∑

j=1

dℓj¶bj

)
.

Now, since the ¶ai and ¶bj are all OX,x-independent, we see that for all ℓ ̸= i we

must have tℓ = 0, since there is no ¶aℓ term on the left hand side. So this equation

reduces to:

g
1

Çâi
¶ai +

g−p∑

j=1

−gfj
1

Çb̂j
¶bj = ti¶ai +

g−p∑

j=1

dijti¶bj .

This gives us a system of equations in OX,x:

g = tiÇ
âi 1 f i f p

−gfj = dijtiÇ
b̂j 1 f j f g − p.

Now, since i > r, we know that ÇâiOX,x is a prime ideal in OX,x, thus we have a

valuation on OX,x given by Çâi Let us call this valuation ¿. So, taking valuations, we
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see that

¿(g) = ¿(ti) + ¿(Çâi) = ¿(ti) + 1.

Choose j such that dij ̸= 0. Recall that by choice of i there is such a j. Then:

¿(gfj) = ¿(dijtiÇ
b̂j)

¿(g) = ¿(ti) + ¿(Çb̂j)− ¿(fj) = ¿(ti)− ¿(fj).

Thus ¿(ti) g ¿(g) = ¿(ti) + 1. Since g ̸= 0 this is a contradiction. Hence,

1

Çâi
¶ai ̸∈

〈
1

Çb̂j
¶bj

〉
modulo FV,x.

Putting this altogether gives us the statement that for x ∈ ZÃ, the stalk FV,x is

a direct summand of T Xx if and only if T is square, that is to say, if g − q′ = p − r.

Thus FV extends smoothly to ZÃ if and only if r = p+ g − q′.

Corollary 3.22. Suppose V ̸= N ¹ k and suppose further that there exists a basis

{v1, v2, . . . , vg} of N , extending the given basis of V , such that there exists aij ∈ k all

non-zero, such that ui =
∑g

j=1 aijvj. Then FV extends smoothly to ZÃ if and only if

rank (Ct) = p.

Proof. Let A be the matrix of aij as in the corollary statement. Thus




u1
...

ug


 = A




v1
...

vg


 .

As such, by the construction of C above, we have the following block matrix for A−1:

A−1 =


 Ct Ca

∗ ∗


 ,
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where Ct and Ca are as above, so Ct is a block of size p × q′. Then, we can let A′ be

the bottom right g − q′ × g − p block of A. So Lemma 2.3 tells us that nullity(Ct) =

nullity(A′).

Now, note that:

rank(Ct) = q′ − nullity(Ct)

= q′ − nullity(A′)

= q′ − (g − p− rank(A′))

= p+ q′ − g + rank(A′).

Thus, rank(Ct) = p+ q′ − g if and only if rank(A′) = 0. But, since all of the aij are

non-zero, the only way for rank(A′) = 0 to occur is if it is an empty matrix. Since A′

is g − q′ × g − p block, we must have either g = p or g = q′. Since V ̸= N ¹ k, we

know that p < g. Also, from the construction of q′ we know that g = q′ if and only if

rank(Ct) = p. Hence, FV extends smoothly to ZÃ if and only if rank(Ct) = p.

3.6 Quotients by Toric p-foliations

Let T be a split torus over k, where k is a perfect field of characteristic p. Recall

that the Frobenius map is defined on k as x 7→ xp. Let T (p) be the base change of T by

Frobenius. That is, define T (p) := T ¹Spec(k),F Spec(k). Then T (p) is also a split torus

over k, since T ∼= T (p).

Let g be the rank of T , so T = Spec(k[X±1
1 , . . . X±1

g ]). Similarly, let Y1, . . . , Yg be

such that T (p) = Spec(k[Y ±1
1 , . . . , Y ±1

g ]). Then the canonical map T → T (p) is induced

by the ring map Yi 7→ Xp
i .

LetM := X(T ) be the character group of T , and letM ′ := X(T (p)) be the character

group of T (p). Recall that X(T ) := Hom(T,Gm). So X(T ) ∼= Zg, where the vector

(m1, . . . ,mg) corresponds to the character inducted by X 7→ ∏g
i=1X

mi

i . The map
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T → T (p) induces a map of character groups X(T (p)) → X(T ). After passing over the

isomorphism with Zg, we see that the image of this map is pZg.

Thus, ifM = X(T ), we can naturally identify X(T (p)) with the lattice pM . Consid-

ering the dual lattices, we see that if N is the co-character group of T , we can naturally

identify the co-character group of T (p) with the lattice p−1N .

Now, let us consider an affine toric variety XÃ, where Ã is a scrp cone in N . Then

XÃ := Spec(k[SÃ]). Again, as k is a perfect field, we know that XÃ
∼= X

(p)
Ã , and we have

a natural map XÃ → X
(p)
Ã , such that when we restrict to T , we get the map T → T (p).

By definition, the characters of XÃ are the semigroup SÃ = Ã( ∩M . Then, by the

same argument as for T , we see that the characters of X
(p)
Ã are naturally identified

with Ã( ∩ pM . Note that Ã( is a cone, thus for any m ∈ M, pm ∈ Ã( if and only if

m ∈ Ã(. Hence, X(p)
Ã is the toric variety given by the cone Ã in the lattice p−1N . Note

that since Ã ¦ NR, and NR = p−1NR, we could equally view Ã as a cone in the space

generated by the cocharacter lattice of T (p). Thus X
(p)
Ã is the toric variety containing

torus T (p) given by the cone Ã. Furthermore, if {n1, . . . nr} are generators of Ã in N ,

then {p−1n1, . . . , p
−1nr} are generators of Ã in p−1N . Thus Ã( ∩M ∼= Ã( ∩ pM , so

XÃ
∼= X

(p)
Ã as required.

Finally, since the functor X → X(p) commutes with colimits, if XΣ is the toric

variety with torus T corresponding to a fan Σ in NR, we must have X
(p)
Σ as the toric

variety with torus T (p) corresponding to the same fan Σ in NR.

Now, let us consider a toric p-foliation F over a torus T . By Proposition 3.18 there

exists a vector space V ¦ N ¹ Fp such that F = FV . Note that since N is a lattice,

we have N/pN ∼= N ¹ Fp. Thus, we have a surjection: Ã : N → N ¹ Fp.

Proposition 3.23. Define V §p := {m ∈ M : ïm,nð ≡p 0, ∀n ∈ Ã−1(V )}. Then

pM ¦ V §p ¦ M and T/F is a torus such that the projection map T → T/F induces

an injective map X(T/F ) → X(T ) with image V §p.

Proof. Recall that F is the foliation defined by spanOT
{¶n}n∈V . Then, by the definition

of quotient by a p-foliation, T/F will be the torus such that the character group of
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T/F is the subgroup of X(T ) annihilated by every derivation in F . Since ¶n(Ç
m) :=

ïm,nðÇm, we see that ¶n(Ç
m) = 0 for all n ∈ V if and only if ïm,nð ≡ 0 mod p for all

n ∈ V . Thus the inclusion X(T/F ) → X(T ) is just the inclusion of V §p in M . Note

that since ïpm, nð = pïm,nð, we have pM ¦ V §p .

Proposition 3.24. Let Σ be a fan in NR, and let N ′ = (V §p)( be the viewed as a

lattice in NR containing N . So let Σ′ be the fan Σ, now considered over the lattice N ′.

Then X/F is the toric variety corresponding to the fan Σ′.

Proof. Let Ã ∈ Σ. The characters ofXÃ/F are precisely the characters of T/F that are

also in Ã(. Since the characters of T/F are precisely V §p = N ′( by Proposition 3.23,

the space (Ã ∩ N ′)( describes the characters of XÃ/F . So XÃ/F is the affine toric

variety constructed from lattice N ′ and cone Ã.

Taking the colimit of this construction gives us the same result for any fan Σ.

Thus, XΣ/F is the toric variety with lattice N ′ and fan Σ, with the canonical map

XΣ → XΣ/F given by the inclusion of N into N ′.



4. TAUTOLOGICAL FOLIATIONS OF HILBERT MODULAR

VARIETIES

We will now give a definition of the tautological foliations on Hilbert modular

varieties following [GdS23]. Then we will then compute the singular locus of the

tautological foliations on toroidal compactifications of Hilbert modular varieties with

some examples both over C and in characteristic p. In the case of Hilbert modular

surfaces in characteristic 2, 3, we will show that for any tautological foliations, there is

a toroidal compactification on which the foliation is smooth. We will also briefly look

at behavior of the toroidal compactification when taking the quotient by a tautological

p-foliation.

4.1 Tautological Foliations and Toric Foliations

First, consider the case k = C. Then M(c)(C) is isomorphic to a quotient Γc\hg,
by Proposition 2.35. Recall that Γc acts on each h by way of the natural embeddings

SL2(L) into SL2(R) induced by the g embeddings L ↪→ R.

Let {zi} be the coordinates of M(c)(C) given by the natural coordinates on hg.

Then the tangent space T M(c)(C) is canonically generated by the derivations ∂
∂zi

. For

any subset J ¦ {1, . . . , g} we define the foliation FJ of M(c)(C) as the subbundle of

T M(c)(C) generated by { ∂
∂zi

}i∈J . The foliations of the form FJ are called tautolog-

ical foliations.

In the case g = 2, these foliations play a role in McQuillen’s classification of foliated

surfaces. In particular, the rank 1 tautological foliations on a Hilbert modular surface,

extended to the minimal compactification, are canonical models of foliations with nu-
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merical Kodaira dimension 1, and foliated Kodaira dimension −∞, see [McQ08, The-

orem IV.5.11]. Allowing g g 2, the tautological foliations on Hilbert modular varieties

have been used to prove geometric results, such as a Green-Griffiths-Lang principle for

Hilbert modular varieties, [RT18].

We can construct a generalization of these tautological foliations to Hilbert modular

varieties defined in positive characteristic. Let » be a field of positive characteristic p,

and let L be a totally real field such that p is unramified in L. Suppose » is sufficiently

large as to contain the residue fields OL/pOL for each prime p containing p. Let

Mn(c)(W (»)) be the Hilbert modular scheme over W (») with Γ00(n)-level structure.

We will care especially about the special fibreMn(c)(»). Recall that we have a universal

c-polarized abelian scheme Auniv over Mn(c)(W (»)). Also recall that we defined our

moduli problem such that by Lemma 2.34, the action of OL makes Lie(Auniv) a locally

free OL ¹ OMn(c) module of rank 1.

Let B be the set of embeddings of L into W (»)[1/p]. Since p does not divide the

discriminant of OL, the action of OL decomposes Lie(Auniv) into a direct sum

Lie(Auniv) =
⊕

Ã∈B
L−1
Ã ,

where the line bundle L−1
Ã is defined by the piece of Lie(Auniv) on which the action of

OL corresponds with the natural W (»)-action under the embedding Ã.

Now, as shown in [Kat78], there is a Kodaira–Spencer isomorphism

Lie(Auniv)
¹2 ¹OL

dc → T Mn(c).

Note that Lie(Auniv)¹OL
dc ∼= Lie(Auniv), thus we have a natural decomposition:

T Mn(c) =
⊕

Ã∈B
L−2
Ã .



4. Tautological Foliations of Hilbert Modular Varieties 83

For any subset J ¦ B, we define a foliation FJ on MN(c)(W (»)) by:

FJ :=
⊕

Ã∈J
L−2
Ã .

This is clearly a direct summand of T Mn(c)(W (»)) and by [GdS23, Lemma 3.1]

is indeed a smooth foliation. The foliations FJ as described here are also called tau-

tological foliations. When we restrict to the special fiber, each of the tautological

foliations FJ can now be viewed as foliations on Mn(c)(»). Since we are now working

over a field of positive characteristic, we would like to know when FJ is a p-foliation.

This is given as part of Theorem 3.2 in [GdS23], reproduced here.

Theorem 4.1. [GdS23, Theorem 3.2 (i)] The smooth foliation FJ is p-closed if and

only if J is invariant under the action of Frobenius on B.

By Theorem 2.37, we have MTC
n , a toroidal compactification of Mn(c), as well as

a toric scheme X(ΣC)/U
2
n, and an isomorphism

φ : X̂(ΣC)/U
2
n × Spec(Z[1/n]) → M̂TC

n ,

where the completion of MTC
n is performed over the cusp C. For ease of notation, let

X = X(ΣC)/U
2
n×Spec(Z[1/n]), and M = MTC

n , with X̂, and M̂ the completions over

the boundary, and the cusp C respectively.

Proposition 4.2. Let F be a tautological foliation on M, and let G be some foliation

on X, smooth away from the boundary, such that φ∗F̂ = Ĝ . Then S(F ) = φ(S(G )).

Proof. Recall that completion is an exact functor. Therefore, we have the exact se-

quence:

0 → F̂ → T̂ M → ̂T M/F → 0.

Since φ is an isomorphism, it is flat. Thus, we can pullback the above sequence by φ

to get:

0 → φ∗F̂ → φ∗T̂ M → φ∗ ̂T M/F → 0.
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Recall that by hypothesis, we have φ∗F̂ = Ĝ . Also, by Proposition 2.33, we have

φ∗T̂M = T̂ X, we must have φ∗( ̂T M/F ) = T̂ X/G .

Note that T M/F is a coherent OM-module, so we will apply Lemma 2.31. We

then see that for any x ∈ X lying over the boundary, x ̸∈ S(G ) if and only if Gx

and (T X/G )x are free, which holds if and only if Ĝx and (T̂ X/G )x are free. But, since

φ∗(F̂ ) = Ĝ and φ∗( ̂T M/F ) = T̂ X/G , this holds if and only if F̂φ(x) and ( ̂T M/F )φ(x)

are free, which, by Lemma 2.31 again, is true if and only if Fφ(x) and (T M/F )φ(x)

are free. That is, if and only if φ(x) ̸∈ S(F ). Thus S(F ) = φ(S(G )).

So, we would like to find some foliation on X(ΣC), invariant under U
2
n, such that

after completion over the boundary, it is isomorphic to the pullback of a given tauto-

logical foliation on MTC
n , completed at the cusp C.

If we are working over C, then we know by Proposition 3.14, that foliations over

X(ΣC) correspond to subspaces of NC ¹C ∼= Cg. So let J ¦ {1, . . . , g}, and define the

foliation GJ as the foliation corresponding to the subspace VJ defined as the span of

elementary basis vectors ïejðj∈J ¦ Cg. Note that for any u ∈ U2
n, and indeed for any

u ∈ OL, the action of u on NC is given by u · ej = Ãj(u)ej. Thus VJ is U2
n invariant,

and thus by Corollary 3.16, induces a foliation on X(ΣC)/U
2
n.

On the other hand, if we are working over a field » with positive characteristic p, we

can choose a and b such that the fractional ideal NC = (abd)−1 is prime to p. Thus, for

each Ã ∈ B, we have Ã(NC) ¦ W (»). Thus we have an embedding NC ↪→ W (»)g, given

by the maps Ãi ∈ B. These maps can be reduced modulo p to get Ãi : (abd)
−1 → »

So we have can reduce the above embedding to a map NC → »g. Note that this is

no longer an embedding, however after tensoring with » we do get an isomorphism

NC ¹ » = »g.

Again using Proposition 3.14, the foliations (not necessarily p-closed) are given by

subspaces of NC ¹ » ∼= »g. We would like to know when GJ is p-closed in this context.

Note that we have an action of Frobenius on B, given by Ã 7→ Fr ◦Ã, where Fr is

the Frobenius on W (»). This gives an action on N ¹ » where Fr(n¹ a) = n¹ ap.
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We would like to explicitly understand the action thus induced on »g via the iso-

morphism N ¹ » ∼= »g. Let B = {Ã1, . . . , Ãg}. Recall that by this isomorphism, any

element of »g can be written in the form:




x1
...

xg


 =

r∑

i=1







Ã1(³i)
...

Ãg(³i)


¹ ai


 =

r∑

i=1




aiÃ1(³i)
...

aiÃg(³i)




for some ai ∈ » and ³i ∈ NC = (abd)−1. Let Ä denote the permutation on {1, . . . , g}
such that Fr(Ãi) = ÃÄ(i). Then, we see that:

Fr







x1
...

xg





 = Fr




r∑

i=1




aiÃ1(³i)
...

aiÃg(³i)







=
r∑

i=1




apiÃ1(³i)
...

apiÃg(³i)




=
r∑

i=1




(aiÃÄ−1(1)(³i))
p

...

(aiÃÄ−1(g)(³i))
p




=




xpÄ−1(1)
...

xpÄ−1(g)


 .

Using this action, we can now use Proposition 3.18 to determine which subsets

J ¦ B induce a p-foliation GJ . Since GJ is induced by the subspace ïejðj∈J , and

since the action above maps ej 7→ eÄ−1(j), we see that this subspace is preserved under

Frobenius exactly when J is stable under Ä . So GJ is a p-foliation if and only if J is

stable under the action of Frobenius on B.
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Lemma 4.3. Let p be an ideal of OL containing p, and let p′ be the conjugate ideal

such that pp′ = (p). Also let Jp ¦ B consist of the mappings Ãj ∈ B such that

Ã−1
j (pW (»)) ∩ OL = p. Let VJp = ïejðj∈Jp as a subspace of NC ¹ ». Then ³ ¹ 1 ∈ VJp

if and only if ³ ∈ p′NC.

Proof. Let ³ ∈ NC . Then, by the isomorphism NC ¹ » → »g described above, ³¹ 1 =
∑g

i=1 Ãi(³)ei. So ³¹1 ∈ VJp if and only if Ãi(³) = 0 for i ̸∈ Jp. That is Ãi(³) ∈ pW (»)

for each i ̸∈ Jp. Since (Ãi)
−1(pW (»))∩OL ¦ p′ for i ̸∈ Jp, it must be that ³ ∈ p′ ∩NC .

Since NC is relatively prime with p, this is ³ ∈ p′NC .

Proposition 4.4. For any J ¦ {1, 2, . . . , g}, we have ĜJ = φ∗F̂J .

Proof. Recall from Theorem 2.37 that the pullback of the universal semi-abelian variety

over MTC
n is precisely the semi-abelian variety from the Mumford construction.

(Gmum, ¼mum, ºmum) (Auniv, ¼univ, ºuniv)

̂(X(ΣC)/U
2
n MTC

n (c)
φ

and this pullback commutes with the Kodaira–Spencer isomorphisms:

Lie(Gmum)
¹2 ¹OL

dc Lie(Auniv)
¹2 ¹OL

dc

T (X̂(ΣC)/U
2
n) T MTC

N (c).

KS KS

Recall that we had a decomposition Lie(Auniv) =
⊕

Ã∈B L−1
Ã which was defined by

the OL-action as induced by ºuniv. Since ºmum is the pullback of ºuniv in the above

diagram, we see that if Lie(Gmum) =
⊕

Ã∈B L′
Ã
−1 is the decomposition defined by the

action of OL on Lie(Gmum) induced by ºmum, the pullback of each L−2
Ã ¹ dc is precisely

L′
Ã
−2 ¹ dc.

Now, note that Lie(Gmum) ∼= a( ¹O
X̂(ΣC)

, where the action induced by ºmum is the



4. Tautological Foliations of Hilbert Modular Varieties 87

natural action of OL on a( by Corollary 2.38. But then

Lie(Gmum)
¹2 ¹OL

dc = a(a(dc¹ O
X̂(ΣC)

= (abd)−1 ¹ OS
∼= N ¹ O

X̂(Σc)
.

So let {e1, . . . , eg} be the natural basis for N ¹ » such that the OL action on N

is given by a · ej = Ãj(a)ej for any j ∈ {1, . . . , g}. Then, for any J ¦ {1, . . . , g} the

foliation GJ , given by ïejðj∈J is the pullback φ∗FJ , as it was defined using the pullback

of the OL action that defined FJ in the same construction.

4.2 Computing the Singular Locus of Tautological Foliations

To determine the singular locus of GJ , we will consider each boundary piece in-

dividually. We will work in the positive characteristic context here, although the

construction over C is similar. Let C be a cusp of Mn(c)(») associated with the ideal

pair (a, b). So a toroidal compactification at the cusp C is given by an admissible

Γ(n)-admissible polyhedral decomposition of NC := (abd)−1. Let Ã be a cone in Σ

generated by {µq+1, . . . , µg} in NC . Since Ã is smooth, we can extend this to a basis

{µ1, . . . , µg} of NC .

Recall that we B is the set of embeddings Ãi : L ↪→ W (»)[1/p]. We denote by

Ãi : NC → » the reduction of Ãi modulo p, after restriction to NC . Thus, the element

µj ∈ NC corresponds to the vector [Ãi(µj)] ∈ »n, under the map NC → NC ¹ » ∼= »n.

Without loss of generality, we suppose that J = {Ã1, . . . , Ãr} ¦ B. That is, let J be

such that {e1, . . . , er} is the basis for the vector space V that induces GJ . Note that

in section 3.5, we used p to denote the rank of the foliation, but here we are using r

to denote the rank of the foliation GJ to avoid confusion, as p already denotes the

characteristic of ».

Since NC → NC ¹ » ∼= »g is given by the map µ → [Ãi(µ)], we have the equations

µ =
∑g

i=1 Ãi(µ)ei for any µ ∈ NC . Thus, if {µ1, . . . , µg} is the basis of NC including
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the generating set of Ã, we have the equations:




µ1

...

µg


 = [Ãi(µj)]




e1
...

eg


 .

Note that this is the reverse of the equation that defined C in section 3.5, so we

can invert this matrix to get:




e1
...

eg


 = [Ãi(µj)]

−1




µ1

...

µg


 .

So let C := [Ãi(µj)]
−1. Then, as before, we can divide C into blocks C =


 Ct Ca

∗ ∗


,

where Ct is size r × q. After possibly reordering {µq+1, . . . , µg}, choose 0 f s f g − q

such that the ith column of Ca is in the column space of Ct if and only if i f s. Then

let q′ = q + s, so the upper r × q′ block of C has the same rank as Ct. Thus, by

Theorem 3.21, we see that the toric stratum corresponding to the cone Ã is in S(GJ) if

and only if rank(Ct) = r + q′ − g.

Note that if we do this construction over C, rather than working in characteristic p,

we can get a cleaner result. The only difference in the construction is that we now

consider Ãi(µj) ∈ C to be the image of µj ∈ (abd)−1 under the ith embedding of L

into C. Note that this implies that Ãi(µj) ̸= 0, since µj ̸= 0. Note that this may fail in

the characteristic p case, since we had reduced modulo p rather than working directly

in W (»)[1/p]. Thus it is possible for Ãi(µj) = 0 ∈ », even though µj ̸= 0 ∈ L.

This gives us precisely the extra condition required to apply Corollary 3.22. So

over C we can say that the toric stratum corresponding to the cone Ã is in S(GJ) if

and only if rank(Ct) = r.
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Proposition 4.5. Consider a cusp C of the Hilbert modular variety Mn(c)(C) asso-

ciated with the ideal pair (a, b). So NC = (abd)−1. Let V be the subspace of N ¹ C

defining a tautogical foliation FJ of rank r, and let ZÃ be a boundary piece of the

toroidal compactification of M corresponding to the cone Ã, where the dimension of

ZÃ = q < r. Then FJ is singular on ZÃ.

Proof. Note that if µ is a generator of Ã, then Ãi(µ) ̸= 0 for all embeddings Ãi ∈ B.

Thus, the hypothesis of Corollary 3.22 holds. So, by this Corollary, we see that FJ is

singular on ZÃ if and only if the rank of C ′
t = r. But C ′

t is a r× q matrix, thus if q < r,

it is impossible for it to be rank r.

Recall that a square matrix A is said to be totally invertible if every square

submatrix of A is invertible.

Proposition 4.6. Using the same notation as above, if there exists a maximal cone

having a face Ã with a generating set that extends to a basis {µj} of NC, such that the

matrix [Ãi(µj)] is totally invertible, then FJ extends smoothly to ZÃ if and only if the

rank of FJ f dim(ZÃ).

Proof. Note that by Lemma 2.3, the inverse of a totally invertible matrix is also totally

invertible. Hence, since [Ãi(µj)] is totally invertible, so is the matrix C. As above, since

the hypotheses of Corollary 3.22 always hold in characteristic zero, we know that FJ

is smooth if and only if the rank of C ′
t is p. So, suppose that p f q. Then since C ′

t is a

submatrix of a totally invertible matrix, we know that any p× p submatrix of C ′
t has

rank p. Thus the rank of C ′
t is also p. Thus FJ is extends smoothly to ZÃ.

Conversely, in the case that [Ãi(µj)] is not totally invertible, it is possible for the

singular locus of FJ to have components with dimension greater than or equal to the

rank of FJ .

Example: Consider the totally real field L = Q[
√
2,

√
3], and consider the cusp

corresponding to the fractional ideal OL = ï1,
√
2,

√
3,

√
2+

√
6

2
ð. Take a Γ(n)-admissible
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decomposition of the totally positive cone of OL that contains the cone generated by

{1, 2 +
√
2, 3 +

√
3, 4 +

√
6}.

Consider the rank 2 foliation FJ , where J ¦ B is the embeddings
√
2 7→ −

√
2, and

√
3 7→ −

√
3. We will show that the dimension 2 boundary stratum corresponding to

the cone Ã generated by {1, 4 +
√
6} is in the singular locus of FJ .

First, we extend the generators of Ã to a basis of NC ,

{2 +
√
2, 3 +

√
3, 1, 4 +

√
6}

as given by the maximal cone. Let {u1, u2, u3, u4} be the dual basis in the character

lattice MC to this basis. These are thus the coordinates of the affine chart given by

UÃ ∼= (C×)2 × C2. So the generators of T UÃ are ïu1 ∂
∂u1
, u2

∂
∂u2
, ∂
∂u3
, ∂
∂u4

ð. Also, the

tautological foliations are given by ï ∂
∂zi

ði∈J , where J is this set of embeddings L ↪→ C,

and ui
∂
∂ui

=
∑r

j=1 Ãi(µj)
∂
∂zj

.

Now, let us look at [Ãi(µj)]
−1. We can compute that:




2−
√
2 3 +

√
3 1 4−

√
6

2 +
√
2 3−

√
3 1 4−

√
6

2 +
√
2 3 +

√
3 1 4 +

√
6

2−
√
2 3−

√
3 1 4 +

√
6




−1

=
1

24




−3
√
2 3

√
2 3

√
2 −3

√
2

2
√
3 −2

√
3 2

√
3 −2

√
3

−
√
6 −

√
6

√
6

√
6

³1 ³2 ³3 ³4



.

For some ³i ∈ Q[
√
2,

√
3]. Note that the ³i are all conjugates in Q[

√
2,

√
3], but

the exact value is not needed for this compuation.

Since 


∂
∂z1

∂
∂z2

∂
∂z3

∂
∂z4



= [Ãi(µj)]

−1




u1
∂
∂u1

u2
∂
∂u2

u3
∂
∂u3

u4
∂
∂u4



,
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we see that the matrix C used in Theorem 3.21 is just the first two rows of [Ãi(µj)]
−1,

broken into 2 × 2 blocks. Thus we get C ′
t =

1
24


−3

√
2 3

√
2

2
√
3 −2

√
3


, which has rank 1.

Further, note that neither of the columns of C ′
a are in the column space of C ′

t. Thus

this is also Ct, and q
′ = 2. Note also that rank(Ct) = 1, but r+ q′ − g = 2+ 2− 4 = 0.

So by Theorem 3.21, the boundary piece given by u1, u2 ̸= 0 and u3, u4 = 0 is part of

the singular locus of FJ . Indeed, we can explicitly compute that:

FJ =

〈
−3

√
2u1

∂

∂u1
+ 3

√
2u2

∂

∂u2
+ 3

√
2u3

∂

∂u3
− 3

√
2u4

∂

∂u4
,

2
√
3u1

∂

∂u1
− 2

√
3u2

∂

∂u2
+ 2

√
3u3

∂

∂u3
− 2

√
3u4

∂

∂u4

〉

=

〈
u1

∂

∂u1
− u2

∂

∂u2
, u3

∂

∂u3
− u4

∂

∂u4

〉
.

From this, we see by the singularity of u3
∂
∂u3

− u4
∂
∂u4

at u3 = u4 = 0, that FJ is

singular on the piece of the boundary given by u3 = u4 = 0, which is exactly the toric

stratum ZÃ.

4.2.1 Examples in Characteristic p

In this section, to keep the computations simple, we will be working at the level

N = 1, thus the our cone decompositions of the totally positive cone will be Γ(1)-

admissible. Thus, they will need to be stable under translations by the group

(O×
L )

2 := {u2|u ∈ O×
L}.

Note that any cone decomposition that is (O×
L )

2-invariant, will also be U2
n invariant,

but the resulting toroidal compactification will be a finite cover of order [U2
n : (O×

L )
2]

over the examples we are giving here. This will not affect the calcuations regarding

singularity and smoothness as the calculations are done locally, and the tautological

foliations are (O×
L )

2-invariant regardless of the chosen level.
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Let L = Q(
√
13), and let p = 3. Since p is split in L, we can set » = F3, as

OL/pOL
∼= F3 for each prime ideal p containing 3. Indeed, if we let É = 1+

√
13

2
, these

ideals are p1 = ïÉð and p2 = ï1− Éð.
Consider M(c)(»), the Hilbert modular surface parameterizing c-polarized abelian

varieties with real multiplication by L. Since the class number of L is 1, there is only

one cusp C on M , so let us choose a and b such that NC = OL = Z[É]. Further, note

that the fundamental unit of Z[É] is 1+É. Also, note that (1+É)2 = (4+3É). So the

squared unit group (O×
L )

2 is generated by 4 + 3É. In order to construct the toroidal

compactification of M around C, we need to find an admissible cone decomposition of

the totally positive cone that is invariant under the action of (O×
L )

2.

Let us consider the cone decomposition Σ given by translating the 3 cones

Ã1 = ï1, 2 + Éð, Ã2 = ï2 + É, 3 + 2Éð, Ã3 = ï3 + 2É, 4 + 3Éð

by (O×
L )

2. Let us call the faces

Ä1 = ï1ð, Ä2 = ï2 + Éð, Ä3 = ï3 + 2Éð.

Since Σ is (OL)
2-invariant, we can take the quotient X(Σ)/(OL)

2. This quotient is then

covered by the affine toric varieties corresponding to cones in Σ/(OL)
2. As such, we

need only look at the cones Ã1, Ã2 and Ã3, while identifying the ray generated by 1 with

the ray generated by 4 + 3É. Thus the cone Ã3 will have faces Ä3 and Ä1. So the fibre

of the cusp C in the toroidal compactification will be 3 rational nonsingular curves XÄi

that intersect each other once in the intersection points XÃi , as in the diagram below:
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XÃ1 XÃ3

XÃ2

XÄ1

XÄ2 XÄ3

Recall that since p = 3 is split in OL, it decomposes as (3) = p1p2, where p1 = ïÉð
and p2 = ï1− Éð. Thus B consists of the two embeddings L ↪→ W (F3)[1/3]. Since we

are working over » = F3, we will restrict these maps to OL and project them to F3,

become the quotient maps onto OL/p1 and OL/p2. Since Fr is the identity on F3, the

rank 1 tautological foliations on M(c)(F3) corresponding to each of these maps are

indeed p-foliations. Under the map NC → NC ¹ F3
∼= F2

3, we see that

1 7→


1

1


 2 + É 7→


2

0




3 + 2É 7→


0

2


 4 + 3É 7→


1

1


 .

Further, by the definition of the tautological foliations, we know that F1 corre-

sponds to the subspace V =

〈
1

0



〉

in NC ¹ F3. Using this, we can now explicitly

compute the singular locus of F1. We will consider the 6 boundary pieces individ-

ually. Let ZÄi be toric stratum corresponding to the ray Äi. In particular ZÄi is the

curve XÄi with the intersection points removed. Also, let ZÃi = XÃi , as these are the

zero-dimensional toric strata.
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For ZÄ1 , we get






1

1





 as a basis for Ä1. We can extend this to a basis of NC

as






2

0


 ,


1

1





. Note that this is the affine chart for the toroidal compactification

pictured above, with the origin at ZÃ1 , and the u1 axis being XÄ2 and the u2 axis

being XÄ1 . In these coordinates, ZÄ1 is the u1 axis excluding the origin.

Since V is generated by v1 =


1

0


, we see that v1 = 2u1. So the matrix C in

Theorem 3.21 is
[
2 0

]
. Thus rank(Ct) = 1. Since the second column is in the

column space of Ct, we must have q′ = 2. But r + q′ − g = 1 + 2 − 2 = 1. Thus F1

extends smoothly to ZÄ1 . Indeed, in coordinates u1 and u2, we can explicitly write

F1 = ï2u1 ∂
∂u1

ðsat = ï ∂
∂u1

ð, which is indeed non-singular along ZÄ1 .

Similarly, for ZÄ2 , note that Ä2 generated by






2

0





, so if we extend the basis to






0

2


 ,


2

0





, we get the affine chart with origin at ZÃ2 , where the u1 axis is XÄ3

and the u2 axis is XÄ2 . In these coordinates we have v1 = 2u2. So C =
[
0 2

]
. Thus

rank(Ct) = 0. Since the second column is not in the column space of Ct, we have q
′ = 1,

so we compute: r+ q′ − g = 1+1− 2 = 0. which equals the rank of Ct. So F1 extends

smoothly to ZÄ2 . Indeed, F1 = ï2u2 ∂
∂u2

ðsat = ï ∂
∂u2

ð which is non-singular everywhere,

in particular along ZÄ2 .

Now, for XÄ3 , note that Ä3 is generated by






0

2





, so we can extend the basis to






1

1


 ,


0

2





. This now corresponds to the affine chart with origin at XÄ1 , with u1

axis given by XÄ1 and u2 axis given by XÄ3 . So v1 = u1 + u2. Thus C =
[
1 1

]
.

Once again, we have rank(Ct) = 1, so the second column is in the column space of Ct.

Thus q′ = 2. So in this case we have r + q′ − g = 1 + 2 − 2 = 1 =rank(Ct). So F1

does extend smoothly to ZÄ3 . Indeed, F1 = ïu1 ∂
∂u1

+u2
∂
∂u2

ð. Note that this foliation is
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indeed non-singular along ZÄ3 , that is, the strata defined by equations u1 = 0, u2 ̸= 0.

These calculations also describe at which intersection points F1 is smooth. From

the above descriptions, it is clear that F is smooth at ZÃ1 and ZÃ2 , but not at ZÃ3 .

We can verify this using Theorem 3.21. Consider the affine chart corresponding to the

cone Ã1. In this case, we care about the zero-dimensional stratum. So, the matrix C

is still
[
2 0

]
, but now Ct consists of the first zero columns. Thus the column

space of Ct is just {0}. Since the second column is in this space, we get q′ = 1. So

r + q′ − g = 1 + 1− 2 = 0, which equals the rank of Ct. Thus Theorem 3.21 confirms

that F1 is smooth at ZÃ1 .

The calculation for ZÃ2 is very similar. However, for ZÃ3 , we see that the matrix C

formed using the cone Ã3 is
[
1 1

]
. Since Ct is empty, its column space is still {0}, so

none of the columns are in that space. Thus q′ = 0. So r+q′−g = 1+0−2 = −1 which

is not equal to the rank of Ct. Therefore, the theorem confirms that F1 is singular

at ZÃ3 . This matches are earlier calculuation, giving F1 = ïu1 ∂
∂u1

+u2
∂
∂u2

ð on the affine

chart corresponding to Ã3.

Thus the singular locus for F1 is just the point XÃ3 . Similar calculations show that

the singular locus for F2 is just the point XÃ1 .

Example: Let L = Q(
√
17). The narrow class number of L is 1, so there is only

one possible choice for the fractional ideal c that determines the polarization module.

Also, there is only one cusp C on M(c). We will represent that cusp with ideals (a, b)

such that NC = (abd)−1 = OL = Z[É] where É = 1+
√
17

2
.

The fundamental unit of Z[É] is 3 + 2É. Since (3 + 2É)2 = 25 + 16É, this is the

generator of (O×
L )

2. Thus, we would like to find an admissible polyhedral decomposition

of the totally positive cone in NC = Z[É] that is preserved under the action of (O×
L )

2 =

(25 + 16É)Z. A fundamental domain for this action is the cone ï1, 25 + 16Éð, so any

decomposition of this cone can be extended to the totally positive cone in a way that

preserves the action of the units.
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The minimal smooth polyhedral decomposition of ï1, 25 + 16Éð is:

ï1, 2 + Éð, ï2 + É, 5 + 3Éð, ï5 + 3É, 8 + 5Éð,

ï8 + 5É, 11 + 7Éð, ï11 + 7É, 25 + 16Éð.

Then the fibre of the point at the cusp C of the toroidal compactification given by

this decomposition over the minimal compactification consists of 5 rational nonsingular

curves intersecting each other in a cycle, thus 5 intersection points, each given by one

of the cones listed above.

We will compute this example in characteristic 2. Note that the ideal ï2ð decom-

poses in OL as ï2ð = ï2 + Éðï3 − Éð. Since 2 is split, we see that » = F2, and thus

both of the rank 1 tautological foliations are p-foliations.

Consider the tautological foliation F1 on M(c)(F2) defined by the ideal ï2 + Éð.
Then F1 is smooth away from the intersection points. Also, via the same type of

calculuations as in the previous example, F1 is smooth at the intersection point given

by the cone ï³, ´ð if and only if either ³ or ´ are elements of the conjugate ideal ï3−Éð.
Since 5+ 3É and 11+7É, are elements of ï3−Éð, we see that F1 is smooth at 4 of

the intersection points, but singular at the point corresponding to the cone ï1, 2 + Éð.
However, if we blowup the surface at this point, we now have 6 rational curves over

the cusp intersecting in a cycle, with intersection points corresponding to the cones:

ï1, 3 + Éð, ï3 + É, 2 + Éð, ï2 + É, 5 + 3Éð, ï5 + 3É, 8 + 5Éð,

ï8 + 5É, 11 + 7Éð, ï11 + 7É, 25 + 16Éð.

Since 3+É ∈ ï3−Éð, we see that F1 is smooth at all 6 of these intersection points.

On the other hand, if we want F2, defined by the ideal ï3 − Éð to be smooth

everywhere, we must instead blow up the point corresponding to the cone generated



4. Tautological Foliations of Hilbert Modular Varieties 97

by ï11 + 7É, 25 + 16Éð. We will then have the toroidal compactification defined by:

ï1, 2 + Éð, ï2 + É, 5 + 3Éð, ï5 + 3É, 8 + 5Éð, ï8 + 5É, 11 + 7Éð,

ï11 + 7É, 36 + 23Éð, ï36 + 23É, 25 + 16Éð.

Since F2 is smooth at any intersection point given by a cone with a generator in

ï2+Éð, and since 2+É, 8+5É, and 36+23É are all elements of this ideal, we see that

with this blowup, F2 is smooth.

In the next section, we will see that in characteristic 2 or 3, blowups can always be

done to make either F1 or F2 smooth, but they cannot be made smooth simultaneously.

4.3 Smoothness of Tautological Foliations on Hilbert Modular

Surfaces

In this section we will show that for characteristic p = 2 or p = 3, it is possible to

refine any admissible polyhedral decomposition such that the tautological foliations on

a Hilbert modular surface are smooth everywhere. However, for p g 5, blowing-up the

singular points will not generally be able to remove the singularities of the tautological

foliations.

Let Ä be the reduction map P1(Q) → F2
p, for which given some q ∈ P1(Q) that can

be written in lowest terms q = m
n
with n g 0, then Ä(q) = (m,n).

Let ℓ be a linear functional ℓ : F2
p → Fp, then we can define

ℓ̃ = ℓ ◦ Ä : P1(Q) → F2
p.

We define an ℓ-path on the Farey diagram to be a path on the Farey diagram such

that at least one endpoint q of each edge on the path satisfies ℓ̃(q) = 0.

Lemma 4.7. Suppose ℓ is non-trivial. Then for each edge on the Farey diagram, at

most one end satisfies ℓ̃(q) = 0.
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Proof. Suppose
{
a
c
, b
d

}
is an edge on the Farey diagram. Then ad − bc = ±1. Let

ℓ(x, y) = mx + ny, and suppose that both endpoints of the edge satisfy ℓ̃(q) = 0.

Then, we have p|(ma + nc) and p|(mb + nd), where m and n are considered here as

integers. Since ℓ is non-trivial, we must have either p ∤ m or p ∤ n. If p ∤ m, then:

p|(ma+ nc)d− (mb+ nd)c = m(ad− bc).

But since p ∤ m and p ∤ (ad− bc), this cannot happen. Similarly, if p ∤ n, then:

p|(mb+ nd)a− (ma+ nc)b = n(ad− bc).

But since p ∤ n and p ∤ (ad− bc), this cannot occur. So we have a contradiction.

This argument is essentially saying that the product over Fp of the rank 1 matrix

representing ℓ, namely
[
m n

]
and the rank 2 matrix


a b

c d


 representing the edge

on the Farey diagram cannot be zero.

Therefore, given any edge on the Farey diagram, at most one endpoint q satisfies

ℓ̃(q) = 0.

Corollary 4.8. If ℓ is non-trivial, then an ℓ-path is one such that every other vertex q

satisfies ℓ̃(q) = 0.

Proof. Since every edge in the path must have exactly one endpoint that satisfies

ℓ̃(q) = 0, this guarantees that every other vertex on the path satisfies this condition.

Proposition 4.9. Suppose that p = 2 or p = 3. Then every path in the Farey diagram

has a refinement that is an ℓ-path.

Proof. First, we will consider the case p = 2. Let (p, q) be an edge on the Farey

diagram. By the lemma, we know that we cannot have both ℓ̃(p) = ℓ̃(q) = 0. So, we

have 3 possibilities. If ℓ̃(p) = 0 and ℓ̃(q) = 1, then this edge can be part of an ℓ-path.

Similarly, if ℓ̃(p) = 1 and ℓ̃(q) = 0.
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Suppose that ℓ̃(p) = 1 and ℓ̃(q) = 1. Let p = a
c
and q = b

d
. If (p, q) was produced

in stage i of building the Farey diagram, then in stage i + 1, then we construct the

mediant mpq =
a+b
c+d

between p and q and build the edges (p,mpq) and (mpq, q). Note

however, that

ℓ̃(mpq) = ℓ((a, c) + (b, d)) = ℓ(a, c) + ℓ(b, d) = 1 + 1 = 0.

Thus, if we replace every edge (p, q) of a path in the Farey diagram such that

ℓ̃(p) = ℓ̃(q) = 1, with the two edges (p,mpq) and (mpq, q), the refinement is an ℓ-path.

In the case p = 3, the construction is similar.

Consider a path in the Farey diagram. Then, there are four ways that an edge (p, q)

can fail to have an endpoint that vanishes under ℓ̃. Suppose first that ℓ̃(p) = 1 and

ℓ̃(q) = 2. Then, as above, ℓ̃(mpq) = 1 + 2 = 0. Similarly if ℓ̃(p) = 2 and ℓ̃(q) = 1. So

we can refine the edge (p, q) to the two edges (p,mpq) and (mpq, q).

Now, if ℓ̃(p) = ℓ̃(q) = 1. Then we have ℓ̃(mpq) = 2, so when we refine (p, q) to the

two edges (p,mpq) and (mpq, q), both of these edges are in one of the first two cases.

Similarly, if ℓ̃(p) = ℓ̃(q) = 2, we compute ℓ̃(mpq) = 1, which also reduces the problem

to the earlier cases.

Thus for p = 2, 3, every path in a Farey diagram can be refined to an ℓ-path.

Let L be a real quadratic field, and letNC be a fractional ideal in L with generators ³

and ´. Further, suppose that ³ is totally positive, but neither of±´ are totally positive.

We can view NC as the lattice Z2 ¦ R2 through the correspondence a³ + b´ 7→ (a, b).

Consider the totally postive cone in NC , denoted N
+
C . When viewed in R2, the cone

N+
C contains (1, 0), but not (0,±1). Thus, the totally positive cone is bounded below

by a ray of negative slope ¼, and above by a ray of positive slope µ.

Since every non-zero element µ of NC satisfies Ã1(µ) ̸= 0 and Ã2(µ) ̸= 0, the

bounding rays of the totally positive cone, defined by the equations Ã1(a³ + b´) = 0

and Ã2(a³ + b´) = 0, must not intersect NC away from the origin. Thus ¼ and µ are

irrational.
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Note that U2
n acts onNC by multiplication, so we can view U2

n ¢ Aut(NC) = SL2(Z).

Further, since every element of U2
n is totally positive, this action preserves the totally

positive cone.

Let a < 0 < b be irrational numbers. We will say that an infinite path

(. . . , p−2, p−1, p0, p1, p2, . . . )

in the Farey diagram is decreasing from a to b or Da,b if the following conditions

hold:

(i) p0 =
1
0
,

(ii) lim
n→−∞

pn = a,

(iii) lim
n→∞

pn = b,

(iv) pi > pi+1 for all i ̸= −1.

With this notation, we now have the following correspondence.

Lemma 4.10. There is a 1-1 correspondence between:





Smooth Γ(n)− admissible cone

decompositions of the totally positive cone





´
{
U2
n − invariant D¼−1,µ−1-paths.

}

´





Finite decreasing paths in the Farey diagram from

1
0
to a

b
where µ³ = a³ + b´

and µ is the generator of U2
n such that n > 0.




.

Proof. Suppose Σ is a smooth Γ(n)−admissible decomposition of the totally positive

cone. Since we are working over a rank 2 lattice, this decomposition is a collection of

rays with slopes between ¼ and µ. Note that (1, 0) is a ray in Σ, by Lemma 2.13, so

let Ä0 = (1, 0). By the definition of Γ(n)−admissible, we know that the quotient Σ/U2
n

is finite. Since U2
n is an infinite cyclic group, it has only two generators inverse to each

other. Let µ be the generator of U2
n, such that µÄ0 has positive slope. Then there
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is a finite collection, ordered by increasing slope {Ä1, . . . , Äs} of rays in Σ with slopes

between Ä0 and µÄ0. Thus, the rays in Σ can be listed in order of increasing slope:

{. . . , µ−2Äs, µ
−1Ä0, µ

−1Ä1, . . . , µ
−1Äs, Ä0, Ä1, . . . , Äs, µÄ0, µÄ1, . . . , µÄs, µ

2Ä0, . . . }.

Relabel these such that Än = µqÄr for n = q(s+ 1) + r, 0 f r < s+ 1. So, the rays

in Σ form an infinite sequence of increasing slope:

{. . . , Ä−2, Ä−1, Ä0, Ä1, Ä2, . . . }

such that lim
n→−∞

(slope of Än) = ¼ and lim
n→∞

(slope of Än) = µ.

By the correspondence of Proposition 2.23, each maximal cone in Σ corresponds

to an edge in the Farey diagram with endpoints equal to the inverse slopes of the faces of

the cone. Thus we can associate to Σ the path in the Farey diagram {. . . , p−2, p−1, p0, p1, p2, . . . }
where pi is the inverse slope of Äi. This is then a path in the Farey diagram with limit-

ing values ¼−1 and µ−1. Since Ä0 has a slope of zero, we have p0 =
1
0
. Finally, since the

slopes are increasing, the inverse slopes are decreasing, except for the edge (p−1, p0).

So this is a D¼−1,µ−1 path. Also, since Σ is invariant under the action of U2
n, and as

the action of SL2(Z) on N carries through the correspondence of Proposition 2.23, this

path is also U2
n-invariant.

On the other hand, given any decreasing U2
n-invariant path on the Farey diagram

from ¼−1 to µ−1, we can build a smooth Γ(n)-admissible cone decomposition of the

totally positive cone in NC , by taking the cones that correspond to each edge in the

path. Note that while the correspondence from Proposition 2.23 is a 2-1 correspon-

dence, each edge on this path corresponds to a cone with slopes between ¼ and µ, and

thus correspond to one totally positive cone and one totally negative cone. We choose

the totally positive one for each edge. By the U2
n-invariance of the path, the cone

decomposition is also U2
n-invariant, as the correspondence between edges on the Farey

diagram and smooth rational cones is equivariant with respect to U2
n. Furthermore,
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the quotient by U2
n is finite, since there are only finitely many edges in a path between

any vertex a0 and its µ-translate µa0.

Thus, we have a 1 − 1 correspondence between smooth Γ(n)-admissible decompo-

sitions of the totally positive cone in N , and U2
n-invariant D¼−1,µ−1 paths.

By definition, 1
0
is on any D¼−1,µ−1 path. So let µ = a³ + b´ be the generator

of U2
n such that µ · 1

0
is positive, where this is the induced action on P1(Q), by the

correspondence ï³, ´ð ∼= Z2. In particular, µ · 1
0
= a

b
.

Then, since 1
0
and µ · 1

0
= a

b
are on the decreasing path, we can look at the sub-path

from 1
0
to a

b
. On the other hand, given any decreasing path on the Farey diagram from 1

0

to a
b
, labeled (1

0
, a1, a2, . . . , as,

a
b
), we can extend it via the U2

n-action to an infinite path

from ¼−1 to µ−1 on the Farey diagram:

(. . . , µ−2as, µ
−10, µ−1a1, . . . , µ

−1as, 0, a1, . . . , as, µ0, µa1, . . . , µas, µ
20, . . . ).

Indeed, if we define the sequences (ar, br) such that µr = ar³ + br´, we know that

lim
r→−∞

ar
br

= ¼−1 and lim
r→∞

ar
br

= µ−1. So this is a D¼−1,µ−1-path.

Thus, we have a 1-1 correspondence between U2
n-invariant decreasing paths from ¼−1

to µ−1, and finite decreasing paths from 1
0
to a

b
.

Let L be a real quadratic field in which the rational prime p is split into p = p1p2.

Define the linear relation ℓi(a, b) = a+ bÉ mod pi.

Consider the corresponding Hilbert modular surfaceMn(c)(»), where » = Fp. Then

there is a toroidal compactification of Mn(c)(») given by a Γ(n)-admissible decompo-

sition ΣC for each cusp C. We want to determine when the tautological foliation F1,

corresponding to the ideal p1 is smooth on the toroidal compactifcation. Since the

singular locus of a foliation must always have codimension 2, we only need to examine

the 0-dimensional boundary strata.
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Proposition 4.11. The tautological foliation F1 is smooth at a zero-dimensional

boundary stratum if and only if one of the faces of the cone Ã corresponding to this

stratum is in p2. That is, if ℓ2(µ1, µ2) = 0 for one of the generators (µ1, µ2) of the

cone Ã.

Proof. Let Ã be a cone in the Γ(n)-admissible decomposition Σ, and let µ1, µ2 be the

generators of Ã. Suppose that µ1 ∈ p2. So, if we reduce µ1 mod p to a vector in F2
p, we

will get µ1 =


a
0


 for some a ̸= 0. Since Fp1 corresponds to the vector space generated

by v1 =


1
0


, we have v1 = a−1µ1 + 0µ2, regardless of what µ2 is. Thus, over the

Fp-fibre, Fp1 = ïa−1u1
∂
∂u1

ðsat = ïa−1 ∂
∂u1

ð, which is smooth at u1 = u2 = 0.

Alternatively, we can use Theorem 3.21. Using this approach, we have matrix

C =
[
a−1 0

]
. Since we are looking at a zero-dimensional stratum, C ′

t is the first

zero columns of C so rank Ct = 0. However, as there is a zero column, we have q′ = 1.

So r + q′ − g = 1 + 1 − 2 = 0 =rank(Ct), thus F1 is smooth at this zero-dimensional

boundary piece.

Similarly, F1 is smooth when µ2 ∈ p2.

Now, suppose that neither µ1 nor µ2 are in p2. Then, for v1 =


1
0


, we must

have v1 = aµ1 + bµ2 with a, b ̸= 0. So, using Theorem 3.21, we have the matrix

C =
[
a b

]
, so rank Ct = 0, but as there are no zero columns, we also have q′ = 0.

So r + q′ − g = 1 + 0 − 2 = −1 ̸=rank(Ct). Thus F1 extends smoothly to the zero

dimensional boundary piece corresponding to cone ïµ1, µ2ð if and only if either µ1 or µ2

are elements of p2.

Corollary 4.12. F1 is smooth everywhere if and only if the admissible polyhedral

decomposition defining the toroidal compactification corresponds to an ℓ2-path.

Proof. By Proposition 4.11, F1 is smooth everywhere if and only if every cone in the

defining Γ(n)-admissible decomposition has one of the faces satisfying ℓ2(a, b) = 0. But,
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by the correspondence in Lemma 4.10, these cone decompositions correspond precisely

to that paths such that every other vertex q satisfies ℓ2(q) = 0. In other words, it

corresponds to an ℓ2-path.

Corollary 4.13. If p = 2 or 3, then for every Hilbert modular surface and tauto-

logical foliation thereon, there exists a smooth toroidal compactification such that the

tautological foliation is smooth.

Proof. This is a direct result of Propostion 4.9 and Corollary 4.12.

Corollary 4.14. For p g 5, given a Hilbert modular surface Mn(c)(») and tautological

foliation F , then either F can be made smooth on the Fp- fibre of the minimal smooth

toroidal compactification after blowing up each singularity once, or there is no toroidal

compactification for which F is smooth.

Proof. Consider the minimal smooth toroidal compactification of Mn(c)(»). This is

the toroidal compactification formed by the Hirzebruch resolution of the cusp singu-

larities of the minimal compactification, as in [VdG88]. In the case of surfaces, every

smooth toroidal compactification is a blowup of the minimal one. Let Σ be the cone

decomposition corresponding to the minimal smooth compactification. Note that the

rays in Σ are precisely the rays generated by points on the convex hull of the totally

positive cone in NC . Let P be the path on the Farey diagram corresponding to Σ.

Let p1 be the ideal defining F , and let p2 = p/p1. Let ³, ´ be the generators of NC ,

giving the isomorphism NC
∼= Z2, and define ℓ(a, b) := a³+ b´ mod p2. For each edge

(p, q) in P there are 3 possibilities.

Case 1: Either ℓ̃(p) = 0 or ℓ̃(q) = 0. In this case, F is already smooth at

the zero-dimensional boundary point corresponding to the cone corresponding to the

edge (p, q).

Case 2: ℓ̃(p) + ℓ̃(q) = 0. Recall that if mpq is the mediant of p, q then ℓ̃(mpq) =

ℓ̃(p) + ℓ̃(q) = 0. Also, if we perform a single blowup at the point corresponding to this

edge, we get the path with edges (p,mpq) and (mpq, q). Since ℓ̃(mpq) = 0, we must
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have F smooth at both of the zero-dimensional strata over the original point after the

blowup.

Case 3: ℓ̃(p), ℓ̃(q), ℓ̃(p) + ℓ̃(q) ̸= 0. Since ℓ̃(mpq) = ℓ̃(p) + ℓ̃(q) ̸= 0, it must be that

the edges (p,mpq) and (mpq, q) are in either cases 2 or 3. Suppose that both (p,mpq)

and (mpq, q) are in Case 2. That is, suppose that ℓ̃(p) + ℓ̃(mpq) = 0 = ℓ̃(mpq) + ℓ̃(q).

Then, we must have ℓ̃(p) = ℓ̃(q). Thus ℓ̃(mpq) = 2ℓ̃(p). So 3ℓ̃(p) = 0. But p g 5, so 3 is

invertible in Fp. Thus ℓ̃(p) = 0. But this contradicts our initial hypothesis for Case 3.

Thus, at least one of the edges (p,mpq), (mpq, q) is in Case 3. Therefore, no matter how

many blow-ups are performed, there will always be an edge in P that is in Case 3.

Thus, if one of the edges in the path corresponding to the minimal smooth toroidal

compactification is in Case 3, F will not be smooth for any toroidal compactification.

4.4 Quotients by the Tautological Foliations

Let L be a totally real field containing a fractional ideal c, and let n g 4. Then

we have the Hilbert modular variety Mn(c) as constructed in section 2.5. Let p be a

rational prime unramified in L, and let » be a field of characteristic p large enough to

contain the residue fields OL/pi for prime ideals pi of OL containing p.

As noted previously, we have a collection B of embeddings Ãi : L ↪→ W (»)[1/p].

Let p be a prime ideal of OL containing p, and as before let Bp be the collection of

elements Ãj in B such that Ã−1
j (pW (»)) ∩ OL = p.

Let p′ be the complement ideal to p, that is the ideal p′ such that pp′ = (p). Define

the subset J =
⊔

q ̸=p Bq ¦ B. We will consider the foliation FJ as constructed in

section 4.1

Consider the cusp C of Mn(c) given by the pair (a, b) of fractional ideals. Then,

we have defined the foliation GJ on X(Σ) where Σ is an admissible polyhedral cone

decomposition of N+
C = (abd)−1,+.



4. Tautological Foliations of Hilbert Modular Varieties 106

By Lemma 4.3, the foliation GJ is induced by the subspace V = pNC¹» of NC¹».

So V §p = p′MC ¦ MC = ab. By Proposition 3.24, the quotient X(Σ)/GJ is X(Σ′)

where Σ′ is the fan Σ, now considered on the lattice N ′
C = (abdp′)−1. Note that even

if Σ was a smooth fan on NC , the fan Σ′ will generally not be smooth on N ′
C .

The quotient of Mn(c) by FJ is described in [GdS23]. There it is shown that

Mn(c)/FJ
∼= Mnp(c)

ét.

Over the ordinary locus, the quotient map ¹ : Mn(c) → Mnp(c)
ét is defined as the

composition ¹ = ¹′ ◦ É ◦ Ã where ¹′, É and Ã have the following moduli definitions:

Ã : Mn(c) → Mnp(c)
m, A 7→ (A,A[Fr] ∩ A[p])

É : Mnp(c)
m → Mnp(cp)

ét, (A,H) 7→ (A/H,A[p]/H)

¹′ : Mnp(cp)
ét→Mnp(c)

ét, (A,H) 7→ (A/A[Fr]∩A[p′], H mod A[Fr]∩A[p′]).

We can examine the behaviour of this map on the toroidal compactification by

applying these maps to the semi-abelian schemes over the cusps.

Theorem 4.15. Let C be the cusp of Mn(c) given by (a, b), where the representative

ideals a and b are chosen to be prime to p. Let MTC
n (c) be the toroidal compactifi-

cation of Mn(c) using the Γ(n)-admissible decomposition Σ of N = (abd)−1. Then

the quotient of MTC
n (c) by FJ is MTC

np (c)
ét, where the toroidal compactification at the

cusp C ′, corresponding to (a, b, p), is given by the Γ(n)-admissible decomposition Σ′ of

N ′ = (abdp′)−1 induced from Σ by the natural inclusion N ↪→ N ′.

Proof. Let C be the cusp given by (a, b), we can look at the semi-abelian scheme G

over C, given by the Mumford construction G = (Gm ¹ a()/º(b).

Note that the p-torsion of G has a multiplicative and an étale part. The multiplica-

tive part corresponds to the p-torsion of Gm ¹ a(, and the étale part corresponds to
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the lattice º(bp−1). So, the map Ã, as described above, takes G to the tuple consisting

of G and the multiplicative part of the p-torsion. This is the semi-abelian scheme over

the cusp C1 = (a, b,OL) of Mnp(c).

In order to apply the map É, we need to take the quotient of (Gm ¹ a()/º(b) by

the multiplicative part of its p-torsion. This will just be the p-torsion of (Gm ¹ a().

First, note that the p-torsion of (Gm¹ a() is µp¹ a( = µp¹ a(/pa(. Further, for a

simple tensor q ¹ ³ ∈ µp ¹ a( to be in the p-torsion, we require c³ ∈ pa( for all c ∈ p.

Thus, we will need ³ ∈ p′a(. So the p-torsion of (Gm ¹ a() is µp ¹ p′a(.

Consider the map É̃ : (Gm ¹ a() → (Gm ¹ p−1a() induced by a( ↪→ p−1a(. The

kernel of this map will be generated by the simple tensors of the form q ¹ ³ where

q ∈ µp and ³/p ∈ p−1a(. But ³/p ∈ p−1a( if and only if ³ ∈ p′a(. So µp ¹ p′a(

is indeed the kernel of this map. Thus we have an isomorphism from the quotient of

(Gm ¹ a() by its p-torsion to (Gm ¹ p−1a().

Recall from section 2.6 that q : b → (Gm ¹ a() sends any element b ∈ b to the

unique element qb of the torus Gm ¹ a( such that for any character Ça ∈ a, we have

Ça(qb)) = qab. After applying É̃, the lattice qb still satisfies Ça(qb) = qab for any Ça,

with the Ça now ranging over pa. Thus we can extend this map to the quotient

É : (Gm ¹ a()/qb → (Gm ¹ p−1a()/qb,

the image is the semi-abelian scheme over a cusp of Mn(cp) given by the ideals (pa, b).

The quotient of the p-torsion ofG by its multiplicative part will be precisely the étale

part of the p-torsion of our new semi-abelian scheme. So É(Ã(G)) = (Gm ¹ p−1a()/qb

along with the étale part of its p-torsion. This is the tuple over the cusp C2 of Mnp(cp)

given by (pa, b, p).

Finally, we will apply the map ¹′, in which we do much the same quotient as we

did for É, but this time with the multiplicative part of p′-torsion. Thus, we will get

the semi-abelian scheme over the cusp C ′ = (pa, b, p) of Mnp(cp) = Mnp(c).

Note that over the cusps C1 and C2, the toroidal compactification is defined using
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an admissible polyhedral decomposition of N1 = (abd)−1, and N2 = (abdp)−1p, both

of which are equal to NC . So we can set these decompositions to be Σ1 = Σ2 = Σ.

For the cusp, C ′ we must have an admissible polyhedral decomposition of (pabd)−1p =

(abdp′)−1 = N ′
C . This will just be the decomposition Σ′ given in the statement. Thus,

we have the following diagram:

X(Σ)/U2
n X(Σ1)/U

2
n X(Σ2)/U

2
n X(Σ′)/U2

n

̂X(Σ)/U2
n

̂X(Σ1)/U2
n

̂X(Σ2)/U2
n

̂X(Σ′)/U2
n

CM̂TC
n (c) C1M̂TC

np (c)
m C2 ̂MTC

np (cp)
ét C′M̂TC

np (c)
ét

MTC
n (c) MTC

np (c)
m MTC

np (cp)
ét MTC

np (c)
ét

Mn(c) Mnp(c)
m Mnp(cp)

ét Mnp(c)
ét

Here CM̂TC
n (c) denotes the completion of MTC

n (c) along the fibre over the cusp C

of Mn(c), and ̂X(Σ)/U2
n denotes the completion of X(Σ)/U2

n along its boundary, as

in Theorem 2.37. The bottom arrows are the quotient by FJ and the top arrows are

the quotient by GJ . The vertical arrows correspond the toroidal compactification, and

the third row is induced by the maps we just described on the semi-abelian schemes

defined over the cusps.

This gives us a full description of the quotient of the toroidal compactification of

Mn(c) by the tautological foliations FJ . In particular, we see that this quotient gives

us a toroidal compactification, not necessarily smooth, of Mnp(c)
et.



5. DIEUDONNÉ MODULES AND DISPLAYS

5.1 Unitary Shimura varieties

Fix a prime p > 2, an imaginary quadratic field E in which p is inert, and let

m,n ∈ Z with 0 < m f n. Let ∗ be the non-trivial automorphism of E/Q. Let

Λ = Om+n
E , and V = Λ¹ E, along with the Hermitian pairing:

ïu, vð = uT




1m

1n−m

1m


 v.

Let G denote the group of E-linear symplectic similitudes of (E, ï., .ð). Note that GR

is isomorphic to GU(n,m), since
(

1m
1n−m

1m

)
is similar to

(
1n

−1m

)
. That is, G is

the subgroup of GLm+n such that for each g ∈ G there exist some µ(g), satisfying

ïgu, gvð = µ(g)ïu, vð.
Let S be the algebraic group given by the restriction of scalars from C to R. Thus

SR = C×. Now, let h : S → G be the homomorphism defined on R-points, by taking

z 7→
(
z·1n 0
0 z·1m

)
. So h is a Hodge structure of type (−1, 0), (0,−1) on V ¹Q R.

Let Cp be an open compact subgroup of G(Ap
f ), where A

p
f denotes the finite adeles,

trivial at p.

The data (G, h) is a Shimura datum, from which a unitary Shimura variety can be

constructed. This variety can be viewed as a moduli space, as described by Kottwitz

[Kot92].

Fix an embedding Σ : E ↪→ C ↪→ Cp, and let Σ be the conjugate embedding. Let S

be a locally noetherian scheme over OE ¹Z Zp, and let A be an abelian scheme of
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dimension g over S.

Given an injection º :OE ↪→ End(A), we say that º has signature (n,m) if, for all

b ∈ OE, the characteristic polynomial of º(b), when viewed as acting on Lie(A) is:

(X − Σ(b))n(X − Σ(b))m ∈ OS[X]

Note that as A has dimension g over S, we must have n +m = g. From here on we

will also assume that 0 < m f n.

We can now formulate the moduli problem. Consider the set-valued contravariant

functor from the category of locally noetherian schemes S over OE¹ZZp that associates

to S, the set of isomorphism classes of quadruples (A, º, ϕ, ¸), where:

— A is an abelian scheme of dimension g = m+ n over S;

— º :OE ↪→ End(A) has signature (n,m);

— · :A → A∗ is a principal polarization whose Rosati involution induces º(a) 7→
º(a) on the image of º;

— ¸ is a rigid Cp level structure as in [Kot92].

Then, we know that this functor is representable by a quasi-projective scheme M
over OE ¹Z Zp.

Our object of study is the special fibre Mp of M at p, which is a smooth variety

over », the residue field of p. As we will not need M itself in the following, we will

denote Mp by M from here on.

5.2 Dieudonné modules

Let k be a perfect field of characteristic p, and let W (k) be the ring of Witt vectors

over k, with Frobenius Ã :W (k) → W (k). Then a Dieudonné module is defined

as a finitely-generated W (k)-module along with a Ã-linear operator F , and Ã−1-linear

operator V such that FV = V F = p.

Proposition 5.1 (Dieudonné). There is an equivalence G 7→ D(G) of categories be-
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tween the category of p-divisible groups over k and the category of Dieudonné modules

that are free and finite rank as W (k)-modules.

There is also a contravariant version of this equivalence, which is precisely dual to

the covariant theory. The construction of the contravariant equivalence can be found

in the literature, for example [Dem72]. We can use this equivalence to study p-divisible

groups by considering their associated Dieudonné modules

Note that if G is a p-divisible group over k, F :G → G(p) is the Frobenius morphism

and V :G(p) → G is the Verschiebung morphism, then if we denote D(G) = N , then

D(F :G → G(p)) = V :N → N (p)

and

D(V :G(p) → G) = F :N (p) → N.

This equivalence continues modulo p.

Proposition 5.2. There is an equivalence of categories between the category of fi-

nite commutative k-group schemes that are killed by p with the category of Dieudonné

modules N killed by p such that N is finite-dimensional as a k-vector space.

If a finite commutative k-group scheme G that is annihilated by p also satisfies

the condition that the sequence G F→G(p) V→G is exact, then G is called a truncated

Barsotti–Tate group of level 1, which we abbreviate as BT1. When carried across

the Dieudonné equivalence, this condition becomes im(V ) = ker(F ) and ker(V ) =

im(F ). A Dieudonné module that is finite-dimensional as a k-vector space, annihilated

by p, and satisfies the condition that im(V ) = ker(F ) and ker(F ) = im(V ) is called

a regular Dieudonné space [Wed01]. Thus, we have an equivalence between the

category of BT1, and the category of regular Dieudonné spaces.

Note also that if A is an abelian variety, then A[p] is a BT1. As we care about

groups of the form A[p], we will be looking primarily at the theory of BT1’s and

regular Dieudonné spaces from here on.
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We now wish to consider what happens when we consider the polarization on A.

First, a polarized BT1 is defined to be a BT1 group G, along with a non-degenerate

alternating pairing ï, ð :D(G)×D(G) → k such that ïFx, yð = ïx, V yðp, for x, y ∈ D(G).
A Dieudonné module with such a pairing is said to be symmetric. Note that if A

is a principally polarized abelian scheme, then A[p] is a polarized BT1, where ï, ð is

induced by the polarization on A [Oor01, 9.2,12.2].

Now let k be algebraically closed. We wish to consider what happens when we

incorporate an endomorphism structure on A along with a principal polarization. Let

E be a quadratic imaginary field, such that p is inert in E, and let » be the residue field

of p. As above, let S be a locally noetherian OE¹ZZp scheme, and let A be an abelian

scheme over S. Suppose there exists an action º :OE ↪→ A with signature (n,m).

Furthermore, suppose that this action is compatible with the principal polarization,

that is, the Rosati involution induced by the polarization must act as º(a) 7→ º(a) on

the image of º in End(A).

Now let N be the regular Dieudonné space associated with A[p]. Due to the en-

domorphism structure º on A, we see that N can be seen not only as k-vector space,

but as an »¹ k-vector space. Recall that we have two embeddings Σ,Σ:E ↪→ Cp. By

taking quotients by (p), these embeddings induce

Σ,Σ:» ↪→ Fp ↪→ k.

Thus, we have » ¹ k ∼= k · k, and a decomposition of N as N(Σ) · N(Σ), where Σ

and Σ are the two embeddings of » into k [Moo01, 4.3].

5.3 Displays

In order to study the geometry of M, we will need to understand deformations of

abelian varieties with polarizations and endomorphism structures. By a theorem of

Serre–Tate, it is known that deformations of abelian varieties over a field of charac-
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teristic p are equivalent to the deformations of their p-divisible groups. Furthermore,

by the Dieudonné equivalence, we can study the deformations of A[p∞] by looking at

the deformations of the related Dieudonné modules. These deformations have been

explicitly described in the work of Norman and Oort [Nor75,NO80]. These methods

have since been generalized and extended via Zink’s theory of displays in [Zin02].

Let (A, º, ·, ¸) be as in the previous section, and let N be the Dieudonné module

of A[p∞]. Then a displayed basis of N is defined as a set of generators {e1, . . . , e2g}
for N as a W (k)-modules such that there exists {aij} ∈ W (k) that satisfy:

F (ei) =

2g∑

j=1

aijej 1 f i f g

ei = V

(
2g∑

j=1

aijej

)
g + 1 f i f 2g.

The matrix (aij) = ( A B
C D ) is called the display matrix for N . In particular, note that

since FV = p, we have

F (ei) =

2g∑

j=1

paijej g + 1 f i f 2g

Thus, the action of F on N in the displayed basis is given by the matrix
(
A pB
C pD

)
. When

working with this matrix representation it is important to remember that this is not a

linear operator on N , but a Ã-linear operator.

Such objects can be defined over more general rings than just perfect fields. We

follow the construction of displays as introduced by Zink in [Zin02]. Let R be a com-

mutative unitary ring, such that p is nilpotent in R. Then W (R) is the ring of Witt

vectors over R. Let Ã : W (R) → W (R) be the Frobenius map, and let IR ¢ W (R) be

the Witt vectors (x0, x1, . . . ) ∈ W (R) such that x0 = 0. Let V : W (R) → W (R) be the

Verschiebung map, that is V (x0, x1, . . . ) = (0, x0, x1, . . . ).

A display over R is defined to be a quadruple (P,Q, F, V −1), where P is a finitely
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generated W (R)-module, Q ¢ P is a submodule, and F and V −1 are Ã-linear maps

F :P → P and V −1 : :Q → P that satisfy the following properties:

— IRP ¢ Q ¢ P , and P/Q is a direct summand of the W (R) module P/IRP .

— V −1 : Q → P is a Ã-linear epimorphism.

— For x ∈ P and w ∈ W (R) we have V −1(Vwx) = wFx.

Proposition 5.3. [Zin02] Over a perfect field k, there is an equivalence between the

category of displays over k and the category of Dieudonné modules over k.

We wish to study the deformations of N through these displays. In this context,

we define a deformation of N to be a display over a local Artinian W (k)-algebra R

with residue field k, such that it specializes to N after base change to k.

Proposition 5.4. [Nor75] Let R be a local Artinian W (k)-algebra with residue field k.

Every deformation of N over R is isomorphic to a deformation with display matrix:


A+ TC B + TD

C D




where tij ∈ R are uniquely determined, and T = (t̂ij), for t̂ij := (tij, 0, . . . ) ∈ W (R).

From this result, we see that the universal deformation of N is over the local

Artinian W (k)-algebra R = k[[tij]], with the displayed basis {e1, . . . , e2g} and matrix


A+ TC B + TD

C D




where T = (t̂ij) and t̂ij = (tij, 0, . . . ) ∈ W (k[[tij]]).

If we wish to take the polarization structure into account, we must insist that the

displayed basis be a symplectic basis with respect to the polarization. That is, we must

have ïei, eg+jð = ¶ij for 1 f i, j f g. In this case, the deformations of N over R that

preserve the polarization are given precisely by the condition that tij = tji [NO80].
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Furthermore, we will need to preserve the action of OE. As such, we cite the

following Lemma, which gives the deformation of N that is universal for deformations

that respect the polarization and endomorphism structure on N .

Lemma 5.5. [Woo16, Lemma 2.2.8] There exists a displayed basis for the Dieudonné

module N of A[p∞] of the form {e1, . . . , eg; f1, . . . , fg} such that

— B1 = {e1, . . . , em, fm+1, . . . fg} is a basis for N [Σ]

— B2 = {em+1, . . . , eg, f1, . . . , fm} is a basis for N [Σ]

— V (N) = span{f1, . . . , fg}
— ïei, fjð = ¶ij = −ïfj, eið

and the displayed matrix for N has the form


A B

C D


 =




0 A1 B1 0

A2 0 0 B2

C2 0 0 D2

0 C1 D1 0




with respect to the basis {e1, . . . , eg; f1, . . . , fg}. Also,it satisfies the relation


A pB

C pD




−pDt pBT

Ct −At


 = pI2g.

Furthermore, the universal display of N preserving OE-action and prime-to-p po-

larization has the form 
A+ TC B + TD

C D




where

T =


0m T ′

T ′t 0n


 .
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Here T ′ refers to the matrix




t̂1(n+1) . . . t̂1g
...

. . .
...

t̂n(n+1) . . . t̂ng


 .

5.4 Permutations and Shuffles

In the sequel, we will be using the permutation group Sg, along with a quotient of

that group. The purpose of this section is to set down notation for discussing these

groups.

Elements of Sg will be notated using one-line notation. For example, the identity

element of Sg is [1 2 3 . . . g]. When giving particular examples, the brackets may be

suppressed, for example, the identity element of S6 is 123456.

Every element of Sg can be written as a product of transpositions of neighbouring

elements. Define the length of É ∈ Sg to be the smallest k such that É can be written

as a product of k transpositions of neighbouring elements. We denote the length of É

as ℓ(É). Note that ℓ(É) can be computed as

ℓ(É) = #{(i, j) : 1 f i < j f g;É(j) > É(i), } (5.1)

Let n + m = g as above. View Sg as acting on the set {1, 2, 3, . . . , g}. Consider

the subgroup Sn × Sm ¢ Sg, where Sn acts on the subset {1, 2, 3, . . . , n}, and Sm acts

on the subset {n+ 1, . . . , g − 1, g}. Define Shfn,m = Sn × Sm\Sg. Each coset of Shfn,m

has a unique minimal length representative. These minimal length representatives are

characterized by the property that É ∈ Sg is a minimal length representative of its

coset in Shfn,m if and only if:

É(1) < É(2) < · · · < É(n) and É(n+ 1) < · · · < É(g − 1) < É(g).

Such a permutation is called an (n,m)-shuffle. Elements of Shfn,m will be denoted by

their minimal length representative.



6. THE EKEDAHL–OORT STRATIFICATION

In this chapter we will describe the Ekedahl–Oort stratification of M. This stratifi-

cation was first defined for Ag [Oor01]. It has since been extended to (good reductions

of) Shimura varieties of PEL-type [Moo01,Wed01] and more generally to (good reduc-

tions of) Shimura varieties of Hodge-type [Zha18]. Further, the abelian case has been

treated in [She20].

In section 6.1, we will look at Oort’s construction of this stratification for Ag. In

section 6.2, we will consider some results pertaining to Moonen’s extension of this

stratification to Shimura varieties of PEL-type. Then in section 6.3, we will look a

little more explicitly at these results for unitary Shimura varieties.

6.1 The Ekedahl–Oort Stratification of Ag

In this section we review the construction of the Ekedahl–Oort stratification of Ag,

the moduli space of principally polarized abelian varieties of dimension g. The con-

struction provided here is based on the work of Oort [Oor01], and much of the extension

to unitary Shimura varieties will be based on it.

Let k be a perfect field of characteristic p, and let A be a principally polarized

abelian variety over k of dimension g. Then A[p] is a BT1, and as such there is a

regular symmetric Dieudonné space N corresponding to A[p]. Note that since we are

using the covariant Dieudonné theory, F corresponds to the Verschiebung map on A[p],

and V corresponds to the Frobenius map on A[p].
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There is a minimal filtration

0 = N0 ¢ N1 ¢ . . . N [V ] = Nr = F (N) ¢ · · · ¢ Nd−1 ¢ Nd = N

that is stable under F and V −1 [Oor01]. This is called the canonical filtration of N .

Given such a filtration, we define a canonical type Ä = {Ä, f, v} as a triple of

functions

Ä : {0, . . . , d} → Zg0

f : {0, . . . , d} → {0, . . . , r}

v : {0, . . . , d} → {r, . . . , d}

are defined such that:

rk(Ni) = pÄ(i)

F (Ni) = Nf(i)

V −1(Ni) = Nv(i).

Furthermore, we define a permutation Ã : {1, . . . , d} → {1, . . . , d} by

Ã(i) =




f(i) f(i) > f(i− 1)

v(i) v(i) > v(i− 1).

Conversely, consider any such functions {Ä, f, v}, with induced permutation Ã, that

satisfy the properties:

— Ä : {0, . . . , d} → Zg0 is strict monotone with Ä(0) = 0.

— v and f are monotone and surjective, with

v(i+ 1) > v(i) ô f(i+ 1) = f(i).
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— Ä(i+ 1)− Ä(i) = Ä(Ã(i+ 1))− Ä(Ã(i)) for every i ∈ {0, . . . , d}.

Then, there exists a BT1 group G with covariant Dieudonné module having canon-

ical type {Ä, f, v} [Oor01, 2.8].

In our case, as N is the Dieudonné module of a polarized BT1 we have some

additional structure on this filtration. In particular, there exists a non-degenerate

alternating pairing ï, ð :N × N → k such that ïFx, yð = ïx, V yðp, for x, y ∈ N .

Suppose that T is a subspace of N with inclusion map º : T → N . We write §(T ) :=

{y ∈ N : ïx, yð = 0, x ∈ T}.

Proposition 6.1. [Oor01, 5.2] Let T ¢ N be as above. Then

(1) §(§(T )) = T ;

(2) §(F (N)) = F (N);

(3) The set {w(N)}, where w ranges over finite words in the symbols F and §, is

a finite filtration on N ;

(4) §(F (T )) = V −1(§(T )) for every submodule T ¢ N ;

(5) The filtration in part (3) of the above is the canonical filtration.

In particular, this proposition tells us that for any regular symmetric Dieudonné

module, the minimal filtration that is stable under F and V −1 is the same as the

minimal filtration that is stable under F and §.

We will call any filtration that is stable under F and V −1 an admissible filtration.

So, as the canonical filtration is the unique minimal filtration stabilizing F and V −1,

we note that any admissible filtration of N is a refinement of the canonical filtration.

If 0 = T0 ª T1 ª T2 ª · · · ª Tg = N is an admissible filtration such that dim(Ti) = i

for each step in the filtration, we say that T• is a maximal admissible filtration for N .

Let (Ä, f, v) be the canonical type for some symmetric regular Dieudonné space N .
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Then d = 2r and for all 0 f j < r we must have:

v(j) = 2r − f(2r − j)

Ä(j + 1)− Ä(j) = Ä(2r − j)− Ä(2r − j − 1).

We call such a canonical type symmetric.

An elementary sequence is a map φ : {0, . . . , g} → Zg0, such that φ(0) = 0, and

φ(i) f φ(i+ 1) f φ(i) + 1, 0 f i < g.

Given N as above, we can produce an elementary sequence as follows. Consider a

maximal admissible filtration of N

N• : 0 = N0 ¢ N1 ¢ · · · ¢ N2g−1 ¢ N2g = N.

Note that each Ni is a subspace of dimension i. Then, define φ : {1, . . . g} → Zg0 such

that V (Ni) = Nφ(i).

Proposition 6.2. [Oor01, 5.7] There is a natural bijection of sets between symmetric

canonical types with Ä(d) = 2g and elementary sequences of length g.

Given N , a regular symmetric Dieudonné space, we denote the elementary sequence

corresponding to the symmetric canonical type of its canonical filtration as ES(N).

Theorem 6.3. [Oor01, 9.4] Suppose k is an algebraically closed field of characteristic

p, and let φ be an elementary sequence. Then there exists a polarized BT1 (G, ·) of

rank p2g defined over k, such that φ = ES(D(G)). Furthermore, (G, ·) is unique up to

non-unique isomorphism.

This theorem tells us that elementary sequences classify isomorphism classes of BT1

over k.
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Consider Ag, the moduli space of principally polarized abelian varieties over k. The

Ekedahl–Oort stratification is given by

{Sφ : φ is an elementary sequence on {0, . . . , g}},

where Sφ is the locally closed subset of Ag such that for all geometric points x, the

abelian variety Ag,x belongs to Sφ if and only if Ax[p] has elementary sequence φ. It

is known that each Sφ is regular, quasi-affine and equidimensional. The dimension of

each stratum is given by the following formula.

Proposition 6.4. [Oor01, 11.2] dim(Sφ) =
∑g

i=0 φ(i).

6.2 The Ekedahl–Oort Stratification of Shimura varieties of PEL-type

We now consider an extension of this stratification to Shimura varieties of PEL-

type. This construction was done by Moonen in [Moo01,Moo04]. Here, we do not

need the results in their original generality, so we will consider the following moduli

problem. Let B be a number field of degree n such that p is inert in OB, along with a

positive involution x 7→ x. Thus » = OB/(p) is a field of characteristic p. Let S be a

locally noetherian OB ¹Z Zp scheme, let N g 3, and consider the following data.

— A, an abelian scheme up to prime-to-p isogeny over S;

— ·, a prime-to-p polarization, considered modulo Z×
p ;

— º : OB → End(A), such that if  is the Rosati involution on End(A) correspond-

ing to ·, then º(b) = º(b) .

— ¸, a level-N structure on A

LetMB,p be the moduli space parameterizing this data. Note that theM we defined

earlier further specializes this problem to the case that B is an imaginary quadratic

field. To study the Ekedahl–Oort stratification of MB,p, we will need to classify the

p-torsion of such abelian schemes. So let G be A[p] for some (A, ·, º, ¸) as above. So G
is a polarized BT1, and º :» → End(G). In this section, we will look at classifying such
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tuples (G, ·, º).

By the Dieudonné equivalence, we know that there exists a regular Dieudonné

space N corresponding to G. We also see that the action º : » → End(G) induces a

K := »¹Fp
k-module structure onN that commutes with F and V . Let I := Hom(», k).

This gives a canonical decomposition N = ·i∈INi, where

Ni = {n ∈ N : i(b)n = b(n), ∀b ∈ »}

where we write b(n) for º(b)(n).

Note that we have a canonical involution on I, given by i 7→ i, where

i(b) := i(b) = i(b) .

Let d ∈ Z>0 be given by d = dim(Ni). Note that since N is a regular Dieudonné

space, dim(Ni) = dim(Nj) for any i, j ∈ I. Consider L := ker(F ) ¢ N . Since F

commutes with the K-module structure, we see that L decomposes as ·i∈ILi, with

Li ¢ Ni. Define f : I → Zg0 by f(i) = dim(Li). We say that (d, f) is themultiplication

type of (G, ·, º); it determines (N,L) up to isomorphism [Moo01, Ch. 4].

LetG := U»¹k(N), the group of automorphisms ofN that preserves the pairing ï., .ð.
[Moo04, 1.3]. Then P := Stab(L) is a parabolic subgroup of the reductive group G.

Define X to be the conjugacy class of parabolic subgroups containing P . Thus, if WG

denotes the Weyl group of G, there is a subgroup WX ¢ WG that corresponds to X.

Note that X depends only on the multiplication type (d, f), and not on the particular

subspace L ¦ N . Thus, any two regular Dieudonné spaces with the same multiplication

type will produce the same subgroup WX ¢ WG under this construction. So once a

multiplication type (d, f) is fixed, WX is well-defined, without regard for which (G, ·, º)
of that type is used to construct it.

To any tuple (G, ·, º) of type (d, f), we can associate an element of WX\WG, as

follows. Let N be the regular Dieudonné space corresponding to G, and consider the
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canonical filtration N• of N , as in the previous section. Furthermore, note that since F

and V commute with the K-module structure, this is not only a filtration of k-vector

spaces, but of K-modules. In other words, the endomorphism structure is preserved in

the canonical filtration.

Let Q be the parabolic subgroup that fixes this filtration, and let the Weyl group

of Q be WQ ¢ WG. Then the relative position of L and N• is given by an element

É(G, ·, º) ∈ WX\WG/WQ. Moonen proves that the canonical filtration is in optimal

position with respect to L [Moo01, Ch. 4]. That is, for any Borel subgroup B of Q,

the relative position of L and the complete flag fixed by B does not depend on the

choice of B. In particular, this means that we can consider the relative position to be

an element of WX\WG.

Theorem 6.5. [Moo01, 5.5,6.7] The map (G, ·, º) → É(G, ·, º) is a bijection





isomorphism classes of tuples

(G, ·, º), of multiplication type (d, f)



→ WX\WG.

Also, note that this construction decomposes across I. Given a tuple (G, º) of

type (d, f), where N is the Dieudonné space associated with G, we can decompose

N = ·i∈IN [i]. Furthermore, since F and V commute with the K-module structure

on N , each piece of the canonical filtration is a K-module. Therefore, each N [i] has

a filtration 0 = N [i]0 ª N [i]1 ª · · · ª N [i]ri = N [i] [Moo01, 4.3]. For 1 f j f ri let

Bi,j := N [i]j/N [i]j−1. Then, since the canonical filtration is stable under F and V −1,

we see that for each Bi,j we either have an isomorphism F :Bi,j → Bi+1,j′ for some 1 f
j′ f ri+1, or F (Bi,j) = 0. Similarly, we either have an isomorphism V :Bi,j → Bi−1,j′

for some 1 f j′ f ri−1 or V (Bi,j) = 0.

Note that this produces an equivalence relation on the blocks. Following [Moo01],

we say that Bi1,j1 and Bi2,j2 are in the same orbit, if there is a sequence of isomor-

phisms F and V −1 taking Bi1,j1
∼−→ Bi2,j2 . These orbits respect duality. That is, if Bi1,j1

and Bi2,j2 are in the same orbit, then Bi1,ri1−j1 is in the same orbit as Bi2,ri2−j2 . In the
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case that Bi,j and Bi,ri−j are in the same orbit, we say that this orbit is self-dual. On

the other hand if Bi,j and Bi,ri−j are in different orbits, we say that these two orbits

are dual to each other.

Proposition 6.6. [Moo01, see 4.11] For every pair i ∈ I, j ∈ {1, . . . , ri} we can

simultaneously choose ordered bases ´i,j for each Bi,j such that every isomorphism

F :Bi,j → Bi+1,j′ maps ´i,j
∼−→ ´i+1,j′, and every isomorphism V :Bi,j → Bi−1,j′ maps

´i,j
∼−→ ´i−1,j′.

This proposition implies that we can refine the filtrations N [i] to maximal filtra-

tions:

0 = N [i]0 ª N [i]1 ª · · · ª N [i]d = N [i]

with the property that for each i ∈ I, 0 f j f d, there exists j′ and j′′ such that

F (N [i]j) = N [i+1]j′ and V
−1(N [i]j) = N [i+1]j′′ . We will call a collection of filtrations

of the N [i] that satisfies this property, I-admissible. The actions of F and V can be

made explicit as follows.

Proposition 6.7. [Moo01, see 4.9,4.17] Let É be the minimal length representative

of É(G, º) ∈ WX\WG. Then the ´i,j can be lifted to ordered bases {ei,1, . . . , ei,d} of Ni,

such that

F (ei,j) =




0 É(j) f f(i)

ei+1,m É(j) = f(i) +m

and

V (ei+1,j) =




0 j f d− f(i)

ei,n j = d− f(i) + É(n).

Note that if we start with some É ∈ WX\WG, define a Dieudonné space N by

endowing the k-span of {ei,j : i ∈ I, 1 f j f d} with a »-action by b(ei,j) = i(b)ei,j, for

all b ∈ », and maps F and V as in the above proposition, then É is indeed the relative

position of L = F−1(0) and the canonical filtration of this space. Furthermore, we can

define a polarization on this space following [Moo01]:
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Recall that the Bi,j were divided into orbits. Denote the set of orbits by A. Parti-

tion A into 3 (possibly empty) pieces, A = A1 ∪ A2 ∪ Asd, such that Asd consists of

all self dual orbits, and for every orbit O ∈ A1, the dual orbit O ∈ A2.

For each (i, j) we define ci,j to be a root of unity as follows. Recall that the basis

{ei,j} of N was lifted from the collection ´i,j of bases for the Bi,j. So suppose for some

(i, j), ei,j was lifted from the basis ´i,j′ and is in an orbit O. If O ∈ A1, let ci,j = 1.

If O ∈ A2, let ci,j = −1. If O ∈ Asd, and O has length 2s, choose ci,j to be a root of

unity in k such that cp
s

i,j = −c. Furthermore, consider the unique j0 such that either

F (ei,j) = ei+1,j0 or V (ei+1,j0) = ei,j. We require that ci+1,j0 = cpi,j. Now we can define

the polarization on N by:

ïei1,j1 , ei2,d+1−j2ð = ci1,j1¶i1,i2¶j1,j2

One can check that this definition satisfies the relations ïx, yð = −ïy, xð and

ïFx, yð = ïx, V yðp.

Proposition 6.8. [Moo01, see 5.8,6.9] The polarized Dieudonné space constructed

above corresponds to É under the bijection in Theorem 6.5.

Consider again the moduli space MB,p. For each É ∈ WX\WG, we can define SÉ to

be the locally closed subset of MB,p such that for all geometric points x, MB,p,x belongs

to SÉ if and only if Ax[p] maps to É under the bijection in Theorem 6.5. This produces

a stratification of MB,p, that generalizes the Ekedahl–Oort stratification defined on Ag

[Wed01, 6.7]. This stratification is also called the Ekedahl–Oort stratification.

Recall that if we fix a generating set of reflections S ¢ WG, every coset É ∈ WX\WG

has a unique minimal length representative É̇ ∈ WG. While the choice of É̇ depends

on S, its length, denoted ℓ(É̇) does not.

Proposition 6.9. [Moo04] Let É ∈ WX\WG, and let É̇ be the minimal length rep-

resentative of É ∈ WG, with respect to some generating set of reflections. If AÉ ̸= ∅,
then the dimension of AÉ is ℓ(É̇).
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6.3 The Ekedahl–Oort Stratification of Unitary Shimura varieties

Now we will specialize these results to the case of unitary Shimura varieties. That

is, we will specialize the results from the previous section by requiring that B = E

is an imaginary quadratic field, in which p is inert. Recall that we are considering

the moduli space of quadruples (A, º, ·, ¸), where A is an abelian scheme of dimension

m+n, º :OE ↪→ End(A) with signature (n,m), · is a principal polarization compatible

with complex conjugation on OE, and ¸ is an appropriate level structure.

We will consider the p-torsion of A. Since the action of pOE on A[p] is zero, we can

let » = OE/pOE
∼= Fp2 . Thus I = Hom(»,Fp) = {Σ,Σ}, as described earlier.

Let N be the regular Dieudonné space corresponding to some such A[p]. There

is a decomposition N = N [Σ] · N [Σ]. Note that dim(N) = 2g, and dim(N [Σ]) =

dim(N [Σ]) = g. If we consider L = ker(F ) ¢ N , then the fact that the action of OE on

End(A) has signature (n,m) implies that dim(L[Σ]) = n and dim(L[Σ]) = m. Thus,

the multiplication type of (A[p], º) is (d, f) where d = g, f(Σ) = n and f(Σ) = m.

We continue with the notation as above. Consider the canonical filtration of N .

0 = N0 ¢ N1 ¢ . . . N [V ] = Nr = F (N) ¢ · · · ¢ N2r = N

Furthermore, we note that the action of F and V directly maps N [Σ] → N [Σ] and vice

versa. Thus, each piece of this filtration has a decomposition Ni = Ni[Σ] ·Ni[Σ]. So

we have two filtrations:

0 = N [Σ]0 ª N [Σ]1 ª · · · ª N [Σ]r = N [Σ]

0 = N [Σ]0 ª N [Σ]1 ª · · · ª N [Σ]r = N [Σ]

such that for all 0 f i f 2r, there exist 0 f j, k f r such that Ni[Σ] = N [Σ]j and

Ni[Σ] = N [Σ]k.

Refine these two filtrations to a maximal I-admissible pair of filtrations for N (c.f.
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Propositions 6.6 and 6.7). For ease of notation, we will denote these two filtrations as

follows:

A• : 0 = A0 ¢ A1 ¢ · · · ¢ Ag = N [Σ]

B• : 0 = B0 ¢ B1 ¢ · · · ¢ Bg = N [Σ]
(6.1)

Furthermore, Proposition 6.7 provides more than just filtrations, but bases for the

maximal I-admissible pair of filtrations A• and B•. Let {a1, . . . , ag} be this basis

of N [Σ], and {b1, . . . , bg} be this basis for N [Σ]. So:

Ai = spank{a1, . . . , ai}
Bi = spank{b1, . . . , bi}

(6.2)

Furthermore, we have a polarization on N given by:

ïai, bg+1−jð = ci¶ij (6.3)

where ci is defined as cΣ,i from the discussion following Proposition 6.7.

We can now directly compute WX\WG.

Proposition 6.10. [Woo16, Corollary 3.4.2] The set WX\WG can be presented as the

set

{(É1, É2) : É2 = É0É1É0} ¢ Shfn,m × Shfm,n

where É0 = [g g − 1 . . . 1].

Note that since É2 can be directly computed from É1, there is an isomorphism given

by projection to the first coordinate WX\WG → Shfn,m.

As before, we set L := F−1(0). The bijection between EO-strata and elements of

WX\WG is given by setting É1 to be the relative position of the filtration A• with L[Σ],

and É2 to be the relative position of the filtration B• with L[Σ].

Thus as projection to the first coordinate is an isomorphism, we need only look at

the Σ part of the filtration. Then É1 can be seen as an element of Shfn,m directly by
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considering the relative positions of the flag A• with L[Σ] as follows:

Set

¸(j) := dim(Aj ∩ L[Σ]).

So ¸ describes the relative positions of the flags A• and 0 ¢ L[Σ] ¢ N [Σ]. Note

that for all 1 f j f g, we have either ¸(j) = ¸(j − 1) or ¸(j) = ¸(j − 1) + 1. Let

1 f j1 < j2 < · · · < jn be the indices j such that ¸(j) = ¸(j − 1) + 1, and let

1 f i1 < i2 < · · · < im be the indices such that ¸(i) = ¸(i − 1). Then É1 is given by

É1(j³) = ³ and É1(i³) = n+ ³.

This can also be done in reverse. Let É be an (n,m)-shuffle. Now, define a function

¸É : {1, . . . , g} → {1, . . . , n} by

¸É(j) := #{i ∈ {1, . . . , j}|É(i) f n}. (6.4)

Note that if É is constructed by the function ¸ given above, then ¸É = ¸. For ease

of notation we will suppress the É and simply write ¸, when the shuffle being used is

clear.

Thus, using Theorem 6.5, we see that the EO-strata of the unitary Shimura variety

of signature (n,m) are classified by Shfn,m.

This provides a nice specialization of the classification of EO-strata for PEL-type

Shimura varieties, to the case of unitary Shimura varieties. Another useful approach

is to generalize the elementary sequences used to classify the EO-strata of Ag.

Define a function φ : {0, . . . , g} → {0, . . . ,m} such that

F (Ai) = Bφ(i).

Note that φ is an elementary sequence, as defined earlier. However, when this was

defined for the Ag case, the elementary sequence was defined by the low-dimension

half of the canonical filtration, whereas here it is defined by the Σ part of the whole

canonical filtration. Furthermore, requiring that the action of OE has signature (n,m)
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enforces the condition that φ(g) = dim(F (N [Σ])) = m.

Proposition 6.11. The EO-stratification of M is classified by elementary sequences

φ : {0, . . . , g} → {0, . . . ,m} such that φ(g) = m.

Proof. Let É ∈ WX\WG be an (n,m)-shuffle corresponding to some BT1 group N ,

with polarization and endomorphism structures as above. Continuing the notation

from above, we know that ¸(i) = dim(L[Σ]∩Ai). But L[Σ]∩Ai = ker(F |Ai
). Since Ai

is the i-dimensional piece of A•, we can compute:

dim(F (Ai)) = dim(Ai)− ¸(i) = i− ¸(i)

As such, the elementary sequence corresponding to any point in SÉ is:

φ(i) = i− ¸(i) (6.5)

Therefore, the elementary sequence of some (A, º, ·, ¸) is determined completely by the

EO-strata it is in.

Now, let φ be some elementary sequence such that φ(g) = m. Define a shuffle É by

É(i) =




i− φ(i) φ(i) = φ(i− 1)

φ(i) + n φ(i) = φ(i− 1) + 1.

(6.6)

This is an inverse to the map from shuffles to elementary sequences given above.

To see this, we take É to be the shuffle defined by some φ. and compute ¸É(i). We see

that

¸(i) = #{j ∈ {1, . . . , i}|É(j) f n}

= #{j ∈ {1, . . . , i}|φ(j) = φ(j − 1)}

= i−#{j ∈ {1, . . . , i}|φ(j) = φ(j − 1) + 1}.
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But since φ increases by either 1 or 0 at each step, and φ(0) = 0, we know that

#{j ∈ {1, . . . , i}|φ(j) = φ(j−1)+1} = φ(i). So ¸(i) = i−φ(i). That is φ(i) = i−¸(i).
Thus, setting φ(i) = i − ¸(i) from this shuffle will return the elementary sequence we

started with.

Note that this besides giving us another way of classifying the EO-strata of a

unitary Shimura variety, it provides an explicit formula for converting between the two

classification schemes. Given an (n,m)-shuffle, (6.4) and (6.5) describe an elementary

sequence, and (6.6) provides the inverse operation. As such, we will also denote SÉ

by Sφ, where φ is the elementary sequence parameterizing SÉ.

We now wish to have a formula for the dimension of Sφ is terms of φ directly.

We already know the dimension of Sφ in terms of É, by Proposition 6.9, thus it is a

straightforward computation to write this in terms of φ.

Lemma 6.12. For an (n,m)-shuffle É, we have

g∑

i=1

¸(i) =
n(n+ 1)

2
+mn− ℓ(É).

Proof. We will compute
∑g

i=1 ¸(i) by splitting into two cases. First, we note that if

É(i) f n, then ¸(i) = É(i). Thus

∑

i,É(i)fn
¸(i) =

∑

i,É(i)fn
É(i) =

n∑

k=1

k =
n(n+ 1)

2
.
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On the other hand, if É(i) > n, we see that:

∑

i,É(i)>n

¸(i) =
∑

i,É(i)>n

#{j f i|É(j) f n}

=
∑

i,É(i)>n

#{j < i|É(j) f n}

=
∑

i,É(i)>n

n−#{i < j|É(j) f n}

= mn−
g∑

i=1

#{j|i < j, É(i) > É(j)}.

Note that for an (n,m)-shuffle, the only way for i < j and É(i) > É(j) to occur is

if É(j) f n < É(i). Thus the equality above is justified. Now using (5.1), we have:

∑

i,É(i)>n

¸(i) = mn−
g∑

i=1

#{j|i < j, É(i) > É(j)}

= mn−#{(i, j)|i < j, É(i) > É(j)}

= mn− ℓ(É).

Thus,
g∑

i=1

¸(i) =
∑

i,É(i)fn
¸(i) +

∑

i,É(i)>n

¸(i) =
n(n+ 1)

2
+mn− ℓ(É).
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Proposition 6.13. Let Sφ be the EO-stratum corresponding to the elementary se-

quence φ. Then

dim(Sφ) =

(
g∑

i=1

φ(i)

)
− m(m+ 1)

2
.

Proof. Given Lemma 6.12, we see that if É is the shuffle corresponding to Sφ, we have

dim(Sφ) = ℓ(É)

=
n(n+ 1)

2
+mn−

g∑

i=1

¸(i)

=
n(n+ 1)

2
+mn−

g∑

i=1

(i− φ(i))

=

g∑

i=1

φ(i)− m(m+ 1)

2
.



7. UNIVERSAL DEFORMATIONS OF EKEDAHL–OORT STRATA

7.1 Combinatorics of Elementary Sequences

Let E be an imaginary quadratic field, where p is an inert prime in E. Choose

any 0 f m f n, and let g = m + n. Consider the moduli space M parameterizing

quadruples (A, º, ·, ¸) as described above. That is, where A is a g-dimensional abelian

variety, with principal polarization ·, and º is an action of OE on A with signature

(n,m) compatible with ·.

Now, let φ be any elementary sequence. So φ can be seen as a function from

{0, . . . , g} → {0, . . . ,m} such that φ(0) = 0, φ(g) = m, and φ(i) f φ(i+1) f φ(i)+1.

Define:

Iφ := {i : φ(i) = φ(i− 1) + 1}, Jφ := {i : φ(i) = φ(i− 1)} (7.1)

Thus |Iφ| = m and |Jφ| = n. Denote the elements of Iφ in ascending order as

{i1, i2, . . . , im}. Similarly, Jφ = {j1, j2, . . . , jn}, Also set i0 = j0 = 0.

For example, suppose we have signature (n,m) = (4, 3). We can consider the (4, 3)-

shuffle 5126374 (written in one-line notation). By (6.4) and (6.5), this corresponds

to the elementary sequence φ = (0, 1, 1, 1, 2, 2, 3, 3). So here we would have Jφ =

{2, 3, 5, 7} and Iφ = {1, 4, 6}.
Note that Iφ and Jφ can be easily read off of the graph of φ. In this example, the

graph of φ becomes:
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m = 3

2

1

i1 j1 j2 i2 j3 i3 j4

Note that Iφ enumerates the “jumps” of φ, while Jφ gives the locations where φ

remains constant.

Lemma 7.1. Given φ, I and J as above, the following hold:

(a) φ(i³) = ³

(b) φ(j´) = max(0,max{³|i³ < j´})
(c) φ(j´) = j´ − ´

Proof. (a) and (b) are trivial, and can be seen from the graph of φ.

For (c), first consider the case that j´ < i1. So φ(j´) = 0. But then the whole set

{1, 2, . . . , j´} ¦ J . Thus j´ = ´. So φ(j´) = 0 = j´ − ´. Now, if j´ > i1, we see that

#{i³|i³ < j´} = max{³|i³ < j´}, since {i1, . . . , in} is increasing. Thus {1, 2, . . . , j´}∩I
contains precisely φ(j´) elements. Thus, as I and J partition the set {1, 2, . . . , g}, we
see that {1, 2, . . . , j´} contains precisely j´ −φ(j´) elements from J . Since {j1, . . . , j´}
are increasing, this implies there are exactly ´ elements from J . Hence j´−φ(j´) = ´.

That is, φ(j´) = j´ − ´ thus proving (c).

We can use this lemma to produce an explicit description of the action of F and V

on the Dieudonné module N associated to A[p] for some A ∈ M.

Lemma 7.2. Let N be as above, and let {a1, . . . , ag, b1, . . . , bg} be a basis for N as

in (6.2). Let φ be the elementary sequence for N , and Iφ and Jφ as defined in (7.1).
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Then:

F (ai³) = b³ i³ ∈ Iφ F (aj´) = 0 j´ ∈ Jφ

F (bg+1−i³) = 0 i³ ∈ Iφ F (bg+1−j´) = an+1−´ j´ ∈ Jφ

V (ai) = 0 1 f i f n V (ag+1−³) = bg+1−i³ 1 f ³ f m

V (bi) = 0 1 f i f m V (bm+´) = aj´ 1 f ´ f n

Proof. This is just the specialization of Proposition 6.7. We know that

F (aj) =




0 É(j) f n

b³ É(j) = n+ ³.

Now, recall that for any index j´ ∈ J , we know that φ(j) = φ(j − 1). Thus, by the

construction in Proposition 6.11, we know that

É(j´) = j´ − φ(j´) = j´ − j´ + ´ = ´ f n.

So F (aj´) = 0.

On the other hand, for any index i³ ∈ I, we know that φ(i³) = φ(i³−1)+1. Thus:

É(i³) = φ(i³) + n = ³ + n.

Thus, F (ai³) = b³.

In order to compute F (bj), we must look at É2, which is the conjugate of the shuffle

produced in Proposition 6.11 by É0, where É0(i) = (g + 1)− i. Thus:

É2(j) =




(g + 1)− ((g + 1− j)− φ(g + 1− j)) φ(g + 1− j) = φ(g − j)

g + 1− (φ(g + 1− j) + n) φ(g + 1− j) = φ(g − j) + 1
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=




j + φ(g − j + 1) φ(g − j + 1) = φ(g − j)

m+ 1− φ(g − j + 1) φ(g − j + 1) = φ(g − j) + 1.

By Proposition 6.7, we have

F (bj) =




0 É2(j) f m

a´ É2(j) = m+ ´.

Now, note that for any i³ ∈ I, so φ(i³) = φ(i³ − 1) + 1, thus É2(g + 1 − i³) =

m+ 1− φ(i³) f m. So F (bg+1−i³) = 0.

On the other hand, for j´ ∈ J , we have φ(j´) = φ(j´ − 1). Thus

É2(g + 1− j´) = g + 1− j´ + φ(j´) = g + 1− j´ + j´ − ´ = m+ (n+ 1− ´).

So F (bg+1−j´) = an+1−´.

Now, to compute V , we know that:

V (aj) =




0 j f n

b³ j = n+ É2(³)

and

V (bj) =




0 j f m

a´ j = m+ É(´).

Thus V (ai) = 0 for 1 f i f n and V (bi) = 0 for 1 f i f m.
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Now, let 1 f ³ f n. Then

n+ É2(g + 1− i³)

= n+ (g + 1− É(i³))

= n+ (g + 1− (φ(i³) + n))

= g + 1− ³.

So V (ag+1−³) = bg+1−i³ .

Also, if 1 f ´ f m, then

m+ É(j´) = m+ j´ − φ(j´) = m+ j´ − j´ + ´ = m+ ´.

Thus V (bm+´) = aj´ .

Given an elementary sequence φ, consider the Dieudonné space N ′ formed by

starting with the basis {a1, . . . , ag, b1, . . . , bg} where OE acts by Σ on the ai and

by Σ on the bi, with F and V defined as in the statement of the Lemma. Let

Ai = span{a1, . . . , ai}, and Bi = span{b1, . . . , bi}. Then, one can compute that

0 ¢ A1 ¢ A2 ¢ · · · ¢ Ag = N ′[Σ]

0 ¢ B1 ¢ B2 ¢ · · · ¢ Bg = N ′[Σ]

will be a maximal I-admissible pair of filtrations for N . Furthermore, the elementary

sequence corresponding to N ′ can be seen to be φ.

7.2 Computing the Universal Display

Next, we would like to directly compute the universal display N for N , as discussed

in section 5.3. In particular, we need to know the action of F on N , as we will need

that to determine the deformations that preserve the elementary sequence of N .
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Lemma 7.3. Let N be the universal display of N as in Lemma 5.5. Then the action

of F on N is:

F (ai³) =




b³ g + 1− ³ ∈ J

b³ +
∑n

´=1 cg+1−³t´,n+xbg+1−jn+1−´
g + 1− ³ = ix ∈ I

F (bg+1−j´) =




an+1−´ n+ 1− ´ ∈ I

an+1−´ −∑m
³=1 cn+1−´tn+1−y,n+³ai³ n+ 1− ´ = jy ∈ J.

Proof. We first wish to construct a displayed basis for D. Recall that this is a symplec-

tic basis such that the second half is a basis for the kernel of F . Using the information

from the previous lemma, and the ci as in polarization formula in Equation 6.3, we

compute that

{ai1 , ai2 , . . . , aim , bg+1−jn , . . . , bg+1−j1 ;

c−1
i1
bg+1−i1 , c

−1
i2
bg+1−i2 , . . . , c

−1
im
bg+1−im ,−c−1

jn
ajn , . . . ,−c−1

j1
aj1}

is a displayed basis such that the display matrix is of the form:




A1 B1

A2 B2

C2 D2

C1 D1




.

Now, as in Lemma 5.5, we consider the quotient of the universal deformation ring

that preserves the polarization and endomorphism structure on N . This quotient is
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the ring R = k[[tij : 1 f i f n < j f g]]. Set

T =




t1,n+1 . . . t1,g

...
. . .

...

tn,n+1 . . . tn,g

t1,n+1 . . . tn,n+1

...
. . .

...

t1,g . . . tn,g




=




T ′

T ′t


 .

We then see by Lemma 5.5 that the display matrix for N is:




A1 + T ′C1 B1 + T ′D1

A2 + T ′tC2 B2 + T ′tD2

C2 D2

C1 D1




.

The Lemma follows by explicitly computing the above matrix.

For the results we have regarding canonical filtrations and elementary sequences

of Dieudonné modules and regular Dieudonné spaces, we need to be working over a

perfect field. Thus let:

Rφ = R/ït³´ : jn+1−³ < i´−nð. 1 f ³ f n < ´ f g

Furthermore, define Fφ := Frac(Rφ) and let Fperf
φ denote the perfect closure of Frac(Rφ).

Note that a display over Rφ, is also a display over Fperf
φ .
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Lemma 7.4. Let N ′ be the Dieudonné module over Rφ given by restricting the uni-

versal deformation N to Rφ. Then the elementary sequence for N ′, viewed as a regular

Dieudonné space over Fperf
φ is φ.

Proof. Recall that by Proposition 6.7 and (6.1), the canonical filtration for D can be

refined to a maximal admissible filtration that decomposes into its Σ and Σ parts.

Thus we have the filtrations:

0 = A0 ¢ A1 ¢ · · · ¢ Ag = D[Σ]

0 = B0 ¢ B1 ¢ · · · ¢ Bg = D[Σ].

We have a basis {a1, . . . ag, b1, . . . , bg} for N such that Ak = ïa1, . . . , akð and Bk =

ïb1, . . . bkð. Let A′
k := Ak ¹ Fperf

φ , and B′
k := Bk ¹ Fperf

φ . We will demonstrate that

after base change, these filtrations are stable under F and §. That is, we have A§
i =

D[Σ] ∪ Bg−i, and B§
i = D[Σ] ∪ Ag−i. Thus by Proposition 6.1, they form an I-

admissible pair of filtrations for N ′. Furthermore, this computation will demonstrate

that the elementary sequence of N ′ is φ.

To avoid confusion in this proof, we will denote the map F in the Dieudonné spaceN

as FN , and the map F in the Dieudonné space N ′ as FN ′ .

Note that the displayed basis used in the proof of Lemma 7.3 is a symplectic basis

over k for N , and remains a symplectic basis over Fperf
φ for N ′. Thus, the pair of

filtrations above is stable under duality, even after base change. It remains to show

that it is stable under F . This is non-trivial, as FN ′ ̸= FN ¹ idFperf
φ

on N ′, despite

N ′ ∼= N ¹ Fperf
φ as vector spaces.

First we will show that FN ′(A′
k) = B′

φ(k). Clearly this is true for k = 0, as A′
0 =

B′
0 = {0}. Now, we proceed by induction. Assume FN ′(Ak−1)

′ = B′
φ(k−1). We now

split into cases.

Case 1: Suppose k ∈ J = Jφ. Then, by definition of J , we know that φ(k) =

φ(k−1). Also, as ker(FN ′) = ker(FN)¹Fperf
φ , we know that FN(ak) = 0, so FN ′(ak) = 0
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as well. Thus FN ′(A′
k) = FN ′(A′

k−1) = B′
φ(k−1) = B′

φ(k).

Case 2a: Suppose k = i³ ∈ I = Iφ, and suppose that g + 1− ³ ∈ J . Since k ∈ I,

we know that φ(k) = φ(k − 1) + 1. Also, as g + 1 − ³ ∈ J , we see by Lemma 7.3

that FN ′(ak) = b³. By Proposition 7.1, we know that φ(k) = φ(i³) = ³. Thus

FN ′(A′
k) = FN ′(ïakð)· FN ′(A′

k−1) = ïb³ð · B′
φ(k−1) = B′

φ(k).

Case 2b: Suppose k = i³ ∈ I, and suppose that g + 1 − ³ = ix ∈ I. Then, by

Lemma 7.3 we know that FN ′(ak) = b³+
∑n

´=1 t´,n+xbg+1−jn+1−´
. However, if t´,n+x ̸= 0

in Rφ, then by definition of Rφ, we must have ix < jn+1−´. But ix = g + 1− ³. Thus

g + 1− jn+1−´ < ³ = φ(k). Therefore the term
∑n

´=1 t´,n+xbg+1−jn+1−´
∈ Bφ(k−1)′ . So

we still get the formula FN ′(A′
k) = B′

φ(k).

Thus, we see that FN ′(A′
k) = B′

φ(k) for all k.

Next, we will demonstrate that FN ′(B′
k) = A′

È(k) where È is the unique function

such that FN(Bk) = AÈ(k) Again, this is clearly true for k = 0, as A′
0 = B′

0 = {0}. Here
we have È(0) = 0. Again, we proceed by induction. Assume that FN ′(B′

k−1) = A′
È(k−1).

Again, we split into cases:

Case 1: Suppose g + 1− k ∈ I. Then by Lemma 7.2, FN(bk) = 0, so FN ′(bk) = 0

also. Thus FN ′(B′
k) = FN ′(B′

k−1) = AÈ(k−1)′ . Since FN(bk) = 0 we have È(k) =

È(k − 1), and thus FN ′(B′
k) = A′

È(k).

Case 2a: Suppose that g + 1 − k = j´ ∈ J , and suppose that n + 1 − ´ ∈ I.

Then, by Lemma 7.3, we know that FN ′(bk) = an+1−´. By Lemma 7.2, we see that

FN(bk) = an+1−´ as well, so È(k) = n + 1 − ´, as the filtrations in (6.1) are stable

under FN . ThusFN ′(Bk) = FN ′(ïbkð)· FN ′(B′
k−1) = ïan+1−´ð · A′

È(k−1) = A′
È(k).

Case 2b: Suppose g + 1 − k = j´ ∈ J , and suppose that n + 1 − ´ = jy ∈ J .

Then by Lemma 7.3, we have FN ′(bk) = an+1−´ +
∑m

³=1 tn+1−y,n+³ai³ . By Lemma 7.2,

we know that FN(bk) = an+1−´, thus È(k) = n + 1− ´. So it remains to show that if

tn+1−y,n+³ ̸= 0 in Rφ, then i³ < n + 1 − ´. But, by the definition of Rφ,we see that

tn+1−y,n+³ ̸= 0 implies that i³ f jy = n + 1 − ´. Thus i³ < n + 1 − ´, as required.

Thus FN ′(B′
k) = A′

È(k) in this case as well.

Therefore FN ′(B′
k) = A′

È(k) for all k.
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Hence the pair of filtrations in (6.1) is stable under FN ′ and duality. As such it is

a maximal admissible pair of filtrations of N ′. Also, since FN ′(A′
k) = B′

φ(k) for all k,

the elementary sequence corresponding to N ′ must be φ.

7.3 The Universal Deformation of Sφ

We will now show that for any x ∈ Sφ, the module Rφ is naturally isomorphic to

ÔSφ,x. This will tell us that Rφ parameterizes all deformations of x along Sφ.

Proposition 7.5. dim(Rφ) = (
∑g

i=1 φ(i))− n(n+1)
2

.

Proof. To compute the dimension of Rφ, we just need to count the pairs (³, ´) that

satisfy the conditions 1 f ³ f n < ´ f g, and jn+1−³ > i´−n. Or, equivalently,

the pairs jb > ia for 1 f a f n, 1 f b f m. Recall from Lemma 7.1 that φ(j´) =

max(0,max{³|i³ < j´}). So φ(j´) is equal to the number of i³ such that i³ < j´.

Thus, the number of pairs jb > ia is precisely,
∑m

b=1 φ(jb).

Also from Lemma 7.1, we know that φ(i³) = ³. Thus

n∑

a=1

φ(ia) =
n∑

a=1

a =
n(n+ 1)

2
.

Therefore, since each integer between 1 and g is either of the form ia or jb, we see that:

m∑

b=1

φ(jb) =

g∑

i=1

φ(i)−
n∑

a=1

φ(ia) =

(
g∑

i=1

φ(i)

)
− n(n+ 1)

2
.

Theorem 7.6. Let k be an algebraically closed field, and let x ∈ Sφ(k). Then there

exists a natural isomorphism Rφ
∼= ÔSφ,x.

Proof. Let A = (A, º, ·, ¸) be the object corresponding to x ∈ Sφ. Now let A be the

universal deformation of A, which is a formal principally polarized abelian variety over

Spf(R).
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Since Rφ is a quotient of R, there is a closed immersion Spf(Rφ) ↪→ Spf(R). By

pulling back the universal deformation A → Spf(R) over this map, we get a defor-

mation of A over Spf(Rφ). By Grothendieck’s existence theorem ([EGA] III.5), this

deformation is uniquely algebrizable to a principally polarized abelian variety, which

by a slight abuse of notation, we will also denote A → Spec(Rφ).

This gives us a map Spec(Rφ) → M. We would like to show that this map factors

through Sφ. By Lemma 7.4, we know that if we base change up to Fperf
φ , N is associated

to a point in Sφ(Fperf
φ ), thus, we get a commutative diagram as below.

Spec(Fperf
φ ) Sφ

Spec(Fφ)

Spec(Rφ) M.

Since Fperf
φ is a field, the image of Spec(Fperf

φ ) in M will be a single point, which we

have just shown to be in Sφ. However, Fφ is also a field, thus the image of Spec(Fφ) is

also a single point in M. By the above diagram, we know that the image of Spec(Fφ)

must contain the image of Spec(Fperf
φ ). So it must be the same point, which is in Sφ.

Thus, we have can factor the map Spec(Fφ) → M through Sφ.

Consider the map Spec(Rφ) → M. We wish to prove that this map also fac-

tors through Sφ. We know that the generic point of Spec(Rϕ) corresponds to the

map Spec(Fφ) → Spec(Rϕ), as Fφ is the fraction field of Rφ. Therefore, as the map

Fφ → M factors through Sφ ¢ M, we know that the generic point of Spec(Rφ) maps

into Sφ. Thus, as Spec(Rφ) is the closure of its generic point, Spec(Rφ) → M factors

through Sφ, the closure of Sφ.

Furthermore, the special point corresponding to the ideal tij = 0 maps to x ∈ Sφ.

Since the special point is contained in the closure of any point in Spec(Rφ), the closure

of any point in the image of Spec(Rφ) must intersect Sφ non-trivially. As Sφ is a stratum
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in the EO-stratification, it is relatively open in Sφ, thus the image of Spec(Rφ) must

be in Sφ itself. Therefore, the map Spec(Rφ) → M factors through Sφ. As such, we

have a diagram

Spec(Fperf
φ ) Sφ

Spec(Fφ)

Spec(Rφ) M.

Now, let us consider the induced map on the completed local ring at x. As

Spf(Rφ) ↪→ Spf(R) is a closed immersion, and R ∼= ÔM,x, we have a surjective map

ÔM,x → Rφ. Furthermore, as this immersion factors through Ŝφ,x, we see that this

map factors as

ÔM,x → ÔSφ,x → Rφ.

Thus, there is a surjective morphism ÔSφ,x → Rφ. But ÔSφ,x is a power ring of the

form k[[t1, . . . , tdim(Sφ)]], and Rφ is a power ring of the form k[[t1, . . . , tdim(Rφ)]]

Furthermore, by Lemma 7.5 and Proposition 6.12, we know that

dim(Rφ) =

(
g∑

i=1

φ(i)

)
− n(n+ 1)

2
= dim(Sφ).

Therefore, this map is a surjective map of noetherian rings of the same dimension, and

is hence an isomorphism.

7.4 Examples

Example 1: U(n, 1): The Ekedahl–Oort stratification in the case of U(n, 1) is very

straightforward. For each 0 f k f n, there exists a unique k-dimensional EO-stratum.

It is given by the elementary sequence where φ(i) = 0 for i f n− k, and φ(i) = 1 for
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i > n− k. By the computation in Proposition 6.11, we have:

É(i) =




1 2 . . . n− k n− k + 1 n− k + 2 . . . n+ 1

1 2 . . . n− k n+ 1 n− k + 1 . . . n




Note that Proposition 6.13 does indeed recover the dimension, as:

n+1∑

i=1

φ(i)− 1(1 + 1)

2
=

n−k∑

i=1

0 +
n+1∑

i=n−k+1

1− 1 = (n+ 1)− (n− k)− 1 = k.

Now, let (A, º, ·, ¸) be parameterized by a point in the k-dimensional stratum, and

let N be the Dieudonné module of A[p]. From these representations, we compute:

I = {n− k + 1}, J = {1, 2, . . . , ̂n− k + 1, . . . , n+ 1}.

By Proposition 6.7, there exists a basis {a1, . . . , an+1, b1, . . . , bn+1} of N such that

{a1, . . . , an+1} generates N [Σ] and {b1, . . . , bn+1} generates N [Σ]. Furthermore, we

know that F and V act as:

F (ai) =




b1 i = n− k + 1

0 i ̸= n− k + 1,

V (ai) =




0 i < n+ 1

bk+1 i = n+ 1,

F (bi) =





ai i < k + 1

0 i = k + 1

ai−1 i > k + 1,

V (bi) =





0 i = 1

ai−1 2 f i f n− k + 1

ai i > n− k + 1.

Using I and J we can find a displayed basis for N . This gives us:

{an−k+1, b1, . . . , bk, bk+2, . . . , bn+1;

c−1
n−k+1bk+1,−c−1

n+1an+1, . . . ,−c−1
n−k+2an−k+2,−c−1

n−kan−k, . . . ,−c−1
1 a1}.
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The above data can be used to give us the display matrix. We will look at the

case where n = 5 and k = 2. We compute that there are two orbits given by

{a1, b2, a2, b3, a6, b6, a5, b5, a4, b1} and {a3, b4} Note that these are both self-dual. So

let · ∈ k be a such that ·p
5
= −·, and let ¸ ∈ k such that ¸p = −¸. Then we get a

display basis of:

{a4, b1, b2, b4, b5, b6; ·−p
3

b3,−·−p
4

a6,−·−pa5,−¸−1a3,−·−p
2

a2,−·−1a1}

and the display matrix is:




0 0 0 1 0 0

1 0 0 0 0 0

0 0 0 0 0 −·−p

0 0 0 ¸−1 0 0

0 0 −·−p2 0 0 0

0 ·−1 0 0 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

0 0 0 0 −·p 0

0 0 −¸ 0 0 0

0 −·p2 0 0 0 0

−· 0 0 0 0 0




.

The universal deformation N of N over M, as described in Lemma 7.4, is defined

over R = k[[ti,(n+1) : 1 f i f n]]. In particular, for the 2-dimensional stratum in the
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case n = 5, the display of N is:




−·t56 −·p2t46 −¸t36 1 −·pt26 −t16

1 0 0 0 −t16 0

0 0 0 0 −t26 −·−p

0 0 0 ¸−1 −t36 0

0 0 −·−p2 0 −t46 0

0 ·−1 0 0 −t56 0

0 0 0 0 −1 0

0 0 0 0 0 −1

0 0 0 0 −·p 0

0 0 −¸ 0 0 0

0 −·p2 0 0 0 0

−· 0 0 0 0 0




.

We can compute the action of F on N directly from such a display. When doing

this for a general stratum in the case of U(n, 1), this computation gives us 3 cases:

Case 1: k = 0

F (ai) =




b1 +

∑n
´=2 cn+1t´−1,n+1b´ i = n+ 1

0 i ̸= n− k + 1

F (bi) =




0 i = 1

ai−1 − ci−1ti−1,n+1an+1 i > 1.
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Case 2: 0 < k < n− k + 1

F (ai) =




b1 i = n− k + 1

0 i ̸= n− k + 1

F (bi) =





ai − citn−i+1,n+1an−k+1 i < k + 1

0 i = k + 1

ai−1 − ci−1tn−i+2,n+1an+k−1 k + 1 < i < n− k + 2

an−k+1 i = n− k + 2

ai−1 − ci−1tn−i+3,n+1an−k+1 i > n− k + 2.

Case 3: n− k + 1 f k f n

F (ai) =




b1 i = n− k + 1

0 i ̸= n− k + 1

F (bi) =





ai − citn−i+1,n+1an−k+1 i < n− k + 1

an+k−1 i = n− k + 1

ai − citn−i+2,n+1an−k+1 n− k + 1 < i f k

0 i = k + 1

ai−1 − ci−1tn−i+3,n+1an−k+1 i > k + 1.

Now, consider working over Rφ. The deformations given above are universal over

the whole of M. If we restrict to working over Rφ, we will get the universal deformation

over each individual stratum. We know by the definition of Rφ that if ´ > k + 1 then

t1,´ = 0 in Rφ. Note that this gives us Rφ = k[[t1,n+1, t2,n+1, . . . , tk,n+1]] which is

precisely k-dimensional, as expected. We can reduce the above formulae to get the

universal deformations over each EO-stratum in U(n, 1). Again, we consider the 3

cases:
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Case 1: k = 0

F (ai) =




b1 i = n+ 1

0 i ̸= n− k + 1

F (bi) =




0 i = 1

ai−1 i > 1.

Case 2: 0 < k < n− k + 1

F (ai) =




b1 i = n− k + 1

0 i ̸= n− k + 1

F (bi) =





ai i < k + 1

0 i = k + 1

ai−1 k + 1 < i < n− k + 2

an−k+1 i = n− k + 2

ai−1 − ci−1tn−i+3,n+1an−k+1 i > n− k + 2.

Case 3: n− k + 1 f k f n

F (ai) =




b1 i = n− k + 1

0 i ̸= n− k + 1

F (bi) =





ai i < n− k + 1

an+k−1 i = n− k + 1

ai − citn−i+2,n+1an+k−1 n− k + 1 < i f k

0 i = k + 1

ai−1 − ci−1tn−i+3,n+1an−k+1 i > k + 1.
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Example 2: A higher-dimensional example: Let M be as above, with signature

(n,m) = (4, 3). Let φ be the elementary sequence (0, 1, 1, 1, 2, 2, 3, 3), and consider the

Ekedahl–Oort stratum Sφ. By the computation in Proposition 6.11, we have:

É(i) =




i− φ(i) φ(i) = φ(i− 1)

φ(i) + 4 φ(i) = φ(i− 1) + 1.

This gives us É = 5126374.

By Proposition 6.13, we have:

dim(Sφ) =
7∑

i=1

φ(i)− 3(3 + 1)

2
= (1 + 1 + 1 + 2 + 2 + 3 + 3)− 6 = 7.

So Sφ is a 7-dimensional stratum.

Now, let (A, º, ·, ¸) ∈ Sφ, and let N be the Dieudonné module of A[p]. Then by

Proposition 6.7, there exists a basis {a1, . . . , a7, b1, . . . , b7} of N , such that {a1, . . . , a7}
generates N [Σ], and {b1, . . . , b7} generates N [Σ]. Also, F and V act as:

F (a1) = b1 V (a1) = 0 F (b1) = a1 V (b1) = 0

F (a2) = 0 V (a2) = 0 F (b2) = 0 V (b2) = 0

F (a3) = 0 V (a3) = 0 F (b3) = a2 V (b3) = 0

F (a4) = b2 V (a4) = 0 F (b4) = 0 V (b4) = a2

F (a5) = 0 V (a5) = b2 F (b5) = a3 V (b5) = a3

F (a6) = b3 V (a6) = b4 F (b6) = a4 V (b6) = a5

F (a7) = 0 V (a7) = b7 F (b7) = 0 V (b7) = b7.

By looking at φ, we see that I = {1, 4, 6} and J = {2, 3, 5, 7}. The only self-dual

orbit here is computed to contain only {a3, b5}. So let ¸ ∈ k be such that ¸p = −¸.
The other orbits can be divided into A1 = {{a1, b1}, {a2, b4, a6, b3}} and their duals
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A2 = {{a7, b7}, {a4, b2, a5, b6}}. Thus, the displayed basis for N is

{a1, a4, a6, b1, b3, b5, b6; b7,−b4, b2, a7, a5,−¸−1a3,−a2}.

The display matrix of N is:




1 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 −1 0

1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 ¸−1 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1

0 1 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 0 −¸ 0 0 0 0

0 −1 0 0 0 0 0




.

The universal deformation N of N over M, as described in Lemma 7.4, is defined
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over R = k[[tij : 1 f i f 4 < j f 7]]. The display of N is:




1 −t45 −¸t35 0 t15 0 t25

0 −t46 −¸t36 1 t16 0 t26

0 −t47 −¸t37 0 t17 1 t27

1 t17 0 t15 0 0 t16

0 t27 1 t25 0 0 t26

0 t37 0 t35 0 ¸−1 t36

0 t47 0 t45 −1 0 t46

0 0 0 1 0 0 0

0 0 0 0 0 0 1

0 1 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 0 −¸ 0 0 0 0

0 −1 0 0 0 0 0




.

We would now like restrict to working over Rφ. We produce this by setting all t³´

such that j5−³ < i´−4 to zero. This occurs precisely for t³´ ∈ {t27, t36, t37, t46, t47}. So

consider N to now be the Dieudonné space over Fperf
φ given by base change from the

universal deformation described above. Then, this display tells us that the action of F
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on N is given by:

F (a1) = b1 F (b1) = a1

F (a2) = 0 F (b2) = 0

F (a3) = 0 F (b3) = a2 − t45a1

F (a4) = b2 + t17b1 F (b4) = 0

F (a5) = 0 F (b5) = a3 − ¸t35a1

F (a6) = b3 F (b6) = a4

F (a7) = 0 F (b7) = 0.

Note that this shows that the pair of flags

0 ¦ A1 ¦ A2 ¦ · · · ¦ A7

and

0 ¦ B1 ¦ B2 ¦ · · · ¦ B7

is stable under F . Also, as per the reasoning in Lemma 3.4, the elementary sequence

of this Dieudonné space is (0, 1, 1, 1, 2, 2, 3, 3) = φ. So N is a deformation of N that

lies within Sφ. Furthermore, as Rφ = k[[t17, t16, t26, t15, t25, t35, t45]], we see that Rφ is

7-dimensional, as is Sφ. Thus N is the universal deformation for N that preserves the

elementary sequence φ.



8. THE V -FOLIATION

8.1 Foliations

We now wish to study a particular foliation onM . First, we will state some general

facts about foliations in characteristic p. See [Eke87] for more details.

Let k be an algebraically closed field of characteristic p, and let X be a non-singular

variety over k of dimension n. Let T X be the tangent sheaf of X. Note that T X can

be seen as a p-Lie algbera over k, with operations given by

[À, ¸] = À ◦ ¸ − ¸ ◦ À, À(p) = À ◦ À ◦ · · · ◦ À

where À, ¸ ∈ T X are viewed as vector fields defined in some open U ¢ X, and regarded

as operators on OX(U).

A foliation of height 1 on X is a sub-bundle E ¢ T X, which is a p-Lie sub-

algebra. That is, E is closed under the Lie bracket and À 7→ À(p). As we only work with

foliations of height 1 here, we will simply refer to them as foliations from here on.

Given a subvariety Y ¢ X, we say that Y is a integral subvariety for the folia-

tion E if E|Y = T Y .

One of the main reasons we care about height 1 foliations is their connection with

height 1 morphisms, as given in the following proposition.

Proposition 8.1. [Eke87, 2.4] Let X be a non-singular k-variety. There is a natural

one-to-one correspondence, between finite flat height 1 morphisms f : X → Y and

height 1 foliations E ¢ T X . One has deg(f) = prk(E).
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8.2 The V -foliation Over Sq

Let A be the universal abelian scheme of M, with structure map Ã :A → M,

equipped with º, ·, ¸ as above, and let At be its dual scheme. Then we can construct

the Hodge filtration:

0 → ÉA/M → H1
dR(A/M) → É(

At/M → 0

where ÉA/M = R0Ã∗Ω1
A/M, and É(

At/M = R1Ã∗OA.

Recall that at a geometric point x ∈ M, there is a canonical identification of

H1
dR(Ax/k) with the contravariant Dieudonné module D of Ax[p]. In particular, under

this correspondence, ÉAx/k
∼= D[F ].

Note that since p is unramified in E, the Hodge bundle ÉA/M decomposes into its Σ

and Σ parts. Define the vector bundles

P := ÉA/M[Σ], Q := ÉA/M[Σ].

Note that P is a bundle of rank n,and Q is a bundle of rank m.

Consider the Gauss–Manin connection

∇ :H1
dR(A/M) → Ω1

M ¹OM
H1
dR(A/M).

If we restrict this map to ÉA/M ¢ H1
dR(A/M), and project the second component

of the result to É(
At/M, we obtain the Kodaira–Spencer map:

ÉA/M → Ω1
M ¹ É(

At/M .

Since the polarization · induces an isomorphism Q( := É(
A/M[Σ] ∼= É(

At/M [Σ], we

see that restricting the Kodaira–Spencer map to the Σ part, we get a morphism

P → Ω1
M ¹Q(.
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This induces an isomorphism

KS :P ¹Q → Ω1
M.

Recall that we have isogenies F :A → A(p), and V :A(p) → A. These induce maps

on cohomology, which by a slight abuse of notation, we will also denote as

F :H1
dR(A(p)/M) → H1

dR(A/M)

and

V :H1
dR(A/M) → H1

dR(A(p)/M).

Consider P0 := P [V ] = ker(V :P → Q(p)). We would like to say that P0 is a sub-

bundle of P , however its rank may increase when specializing from one EO-stratum to

a smaller one. As such, we will first consider P0 over only the open stratum, denoted

Sord. Over Sord, the sheaf P0 is a sub-bundle of P , for which the fibers have constant

rank n −m. Thus, after restriction to Sord, KS(P0 ¹ Q) is a sub-bundle of Ω1
M with

rank (n−m)m. Accordingly the V - foliation T + ¢ T Sord is defined

T + = KS(P0 ¹Q)§.

Proposition 8.2. T + is a foliation of height 1.

Proof. [dSG18, Proposition 3].

The following will be a useful lemma in explicitly computing T +.

Lemma 8.3. À ∈ T + if and only of ∇À(P0) ¢ P0.

Proof. [dSG18, Corollary 5].

We would like to extend T + to all of M, but it becomes singular over some of the

deeper EO-stratum. As such, it can only be properly extended to a certain union of
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EO-stratum. The details of this extension can be found in [dSG18]. We will state some

useful notation and results here.

Consider the EO-stratum corresponding to the shuffle

Éfol = [1 2 . . . n−m n+ 1 . . . g n−m+ 1 . . . n]

or equivalently, the elementary sequence

φfol(i) =





0 0 f i < n−m

i− (n−m) n−m f i f n

m n < i f g.

This stratum will be denoted as Sfol, and has dimension m2. Let Sq :=
⋃

Sfol¦Sφ

Sφ. This

is a locally closed subset of M. Also, T + extends to Sq with the same definitions

for Sord.

Note that Lemma 8.3 characterizes T + over all of Sq,

Theorem 8.4. The EO stratum Sfol is an integral subvariety of the foliation T + i.e.

T +|Sfol
= T Sfol.

Proof: [dSG18, Theorem 25].

8.3 The V -foliation Over Sφ

We would like to directly compute T +|Sφ
for any stratum Sφ ¢ Sq. In order to

use Lemma 8.3, we need to evaluate ∇À(P0) for À in the tangent space of M at x.

As such, it would be beneficial to have a basis for T M over some neighbourhood

of x that is horizontal with respect to the Gauss–Manin connection. In particular, as

Spf(R) ∼= Spf(ÔM,x) (c.f. Theorem 7.6), we would like to find a horizontal basis for P0

over Spec(R) from here on out.
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Unfortunately, computing such a basis for P0(Spec(R)) can be difficult. However,

if we only consider first-order deformations, and define R′ := R/m2
R, we will be able to

find a basis for P0(Spec(R
′)) that is horizontal with respect to ∇; this will be sufficient

for our purposes.

Note that since the Gauss–Manin connection respects isogenies, such as F and V ,

and as the basis given in Proposition 6.7 was chosen to respect F and V , we know that

this is a horizontal basis for H1
dR(Ax/k).

Now, we need a horizontal basis for the universal first-order deformation, that is

the universal deformation over R′. When we computed the universal deformation, we

seemed to be using the same basis for both N and N . However, this may be a little

misleading. While the basis remained the same, the action of F was deformed. This

will not produce a horizontal basis for N . In order for the basis to be horizontal, we

must instead deform the basis elements in such a way the the action of F is preserved.

For more details on this process, see [AG04, §5].

Recall that the action of F was given in block matrix form as:



A pB

C pD




such that the universal display was



A+ TC p(B + TD)

C pD


 .

We can consider the automorphism of the universal display given by:



I −T

0 I






A+ TC p(B + TD)

C pD






I T Ã

0 I


 =



A AT Ã + pB

C CT Ã + pD


 .
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Note that if we consider this equation over R′ = R/m2, then T Ã vanishes, so this

produces the original equations for F . Note that this automorphism corresponds to

the change of basis corresponding to



I −T

0 I


. So, if we reduce modulo p, we see

that the the basis elements not in the kernel of F remain the same, where as the basis

elements in the kernel of F have become

{c−1
i³
bg+1−i³ −

n∑

k=1

ti,n+³bg+1−jn+1−k
}1f³fm ∪ {−c−1

j´
aj´ −

m∑

k=1

tn+1−´,n+kaik}1f´fn.

Thus, by the work in [AG04, §5], this provides us with a horizontal basis with

respect to ∇ for ÉA/M(Spec(R′)).

Lemma 8.5. An EO-stratum Sφ ¢ Sq, that is Sfol ¢ Sφ, if and only if φ(n) = m.

Proof. Recall that Sq is a union of the EO-strata such that P [V ] has rank n−m on Sφ.

Let x ∈ Sφ, and let N be the covariant Dieudonné module corresponding to Ax[p], and

let D be the contravariant Dieudonné module of the same. Given that ÉAx/k
∼= D[F ],

we can view P ∼= D[F ][Σ] ∼= N [V ][Σ]. So let

0 = A0 ¢ A1 ¢ · · · ¢ Ag = N [Σ]

be the Σ part of the canonical filtration of N , as in (6.1). We know that N [V ][Σ] has

dimension n, and the canonical fitration is stable under V −1. Thus N [V ][Σ] = An.

Also note that when we pass through the isomorphism ÉAx/k
∼= N [V ], the map V

on P becomes the map F on N [V ][Σ]. Thus Sφ ¢ Sq if and only if the kernel of F |An

has dimension n −m. As dim(An) = n, we see that this is equivalent to stating that

dim(F (An)) = m. But by the definition of the canonical filtration, this means that

φ(n) = m.

Lemma 8.6. Let 1 f ³ f m f n < ´ f g. If φ(n) = m, then t³´ ̸= 0 in Rφ.
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Proof. Recall that t³´ ̸= 0 in Rφ if and only if i´−n < jn+1−³. Also, by the definition

of elementary sequences, we know that φ(g) = m. Thus, as φ is monotonic, we know

that φ(x) = m for n f x f g. Thus x ∈ J for n < x f g.

Therefore im f n, and for 1 f ³ f m, we have jn+1−³ = g + 1 − ³. Thus, if

1 f ³ f m f n < ´ f g, we have:

i´−n f ig−n = im f n = g −m < g + 1− ³ = jn+1−³.

Note that by Theorem 7.6, we have an explicit description of ÔSφ,x. Thus, using

the coordinates of Rφ, we see that at a point x ∈ Sφ, we have

T Sφ|x =
〈

∂

∂t³´
: t³´ ̸= 0 ∈ Rφ

〉
.

We can now also view T +|x in these same coordinates.

Theorem 8.7. Let Sφ ¢ Sq be an EO-stratum, and let x ∈ Sφ. Then

T +|x =
〈

∂

∂t³´
: 1 f ³ f m f n < ´ f g

〉
.

Therefore T +|Sφ
¢ T Sφ.

Proof. Let x ∈ Sφ, and let N be the covariant Dieudonné module of Ax[p], and let D

be the contravariant Dieudonné module. Note that these are dual as vector spaces.

Furthermore, the dual of F on N is V on D, and the dual of V on N is F on D.

In order to compute T +|x, we want to use Lemma 8.3. As such, we will need to

compute P0 at x.

Note that P is the Σ part of ÉA/M = D[F ]. Since the covariant Dieudonné module

is dual to the contravariant Dieudonné module, we see that this is naturally isomorphic

to N [V ]. So, if we let {a1, . . . , ag, b1, . . . , bg} be the basis for N as in Proposition 6.6,
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we see by Lemma 7.2 that N [V ] = ïa1, . . . , an, b1, . . . , bmð. Thus, if we let a′i ∈ D be

the dual vector to ai ∈ N , we see that P = ïa′1, . . . , a′nð.
Also, if we have I and J as in chapter 7, we see that P0 = P [V ]. Thus, we can

compute it by finding the kernel of F on span{a1, . . . , an}, which is {aj1 , . . . , ajr},
where jr is the maximal element of J such that jr f n. However, by Lemma 8.5, we

know that φ(n) = m. Thus φ(k) = φ(k − 1) for all k > n. Thus jn−m+1, . . . , jn g n.

So r = n−m. Thus

P0 = span{a′j1 , . . . , a′jn−m
}.

Now, if we consider the general deformations of P and P0 around x, we get:

P (Spec(R)) = SpanR{−c−1
j´
a′j´ −

m∑

k=1

tn+1−´,n+ka
′
ik
}n´=1

and

P0(Spec(R)) = SpanR{−c−1
j´
a′j´ −

m∑

k=1

tn+1−´,n+ka
′
ik
}n−m´=1 .

Thus, we see that ∇ ∂
∂t³´

(P0) ¢ P0 if and only if ³ f m, in which case ∇ ∂
∂t³´

(P0) = 0.

Thus

T +|x =
〈

∂

∂t³´
: 1 f ³ f m f n < ´ f g

〉
.

Therefore, by Lemma 8.6 we can conclude that T +|Sφ
¢ T Sφ.

Corollary 8.8. T + induces a height 1 surjective morphism f :M → M′ of degree pm
2
,

where M′ is a non-singular scheme. The restriction of f to any Sφ ¦ Sq is likewise a

height 1 morphism of degree pm
2
onto its image in M′.

Proof. This follows directly from Proposition 8.1 and Theorem 8.7.

8.4 Example

Consider the example of U(n, 1) described in the previous section. Since m = 1

this tells us that Sfol is the unique 1-dimensional stratum, and T + has rank 1.
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So, if x is in the k-dimensional stratum for k > 0, we have:

Px = Spank{a′1, a′2, . . . , â′n−k+1, . . . , a
′
n+1},

Qx = Spank{b′k+1},

and

(P0)x = Spank{a′1, a′2, . . . , â′n−k+1, . . . , a
′
n}.

Using the formula from Theorem 8.7, we see that a basis for P0(Spec(R)) is:

{−c−1
i a′i − tn+1−i,n+1a

′
n−1+k}n−ki=1 ∪ {−c−1

i a′i − tn+2−i,n+1a
′
n−1+k}ni=n−k+2

Note that for i f n−k, we know that n+1−i g k+1 > 1, and for n−k+2 f i f n,

we have n + 2 − i g 2 > 1. Thus t1,n+1 does not appear in any of these generating

elements for P0(Spec(R)). Thus

∇ ∂
∂t1,n+1

(P0(Spec(R))) = {0} ¢ P0(Spec(R)).

Therefore ∂
∂t1,n+1

∈ T +.

On the other hand, for 1 < j f k, we see that −c−1
n+2−ja

′
n+2−j − tj,n+1a

′
n−1+k ∈

P0(Spec(R)). But:

∇ ∂
∂tj,n+1

(−c−1
n+2−ja

′
n+2−j − tj,n+1a

′
n−1+k)) = a′n−1+k ̸∈ P0(Spec(R)).

Also, for k < j f n, we see that −c−1
n+1−ja

′
n+1−j − tj,n+1a

′
n−1+k ∈ P0(Spec(R))). But

∇ ∂
∂tj,n+1

(−c−1
n+1−ja

′
n+1−j − tj,n+1a

′
n−1+k)) = a′n−1+k ̸∈ P0(Spec(R)).

Thus ∂
∂tj,n+1

̸∈ T +. This makes sense, as T + is known to be one-dimensional in this

case.
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Now, recall that if φ is the elementary sequence parameterizing the unique k-

dimensional stratum, we found that Rφ = k[[ti,n+1]]
k
i=1. Thus t1,n+1 ̸= 0 ∈ Rφ for

all strata with dimension at least 1. But this is precisely the strata that have the

unique 1-dimensional stratum in their boundary, i.e. the strata in Sq. Thus for any

x ∈ Sφ ¢ Sq, we have T +|x ¢ T Sφ|x.
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In this thesis, we examined two classes of p-foliations on Shimura varieties. We first

examined the tautological foliations on toroidal compactifications a Hilbert modular

variety Mn(c). Using Klyachko’s classification of toric vector bundles by multifiltra-

tions, and in particular the correspondence between toric foliations FV on a toric

variety X and subspaces V of a certain vector space, we described the singular locus of

FV in terms of the relationship between V and the cone decomposition defining X. By

relating the tautological foliations on Mn(c) to certain toric foliations on the toric va-

rieties defining a toroidal compactification of Mn(c), we used these results to describe

the singular loci of the tautological foliations.

Generically, we saw that the tautological foliations tend to extend smoothly to the

toric strata of dimension at least the rank of the foliation, but become singular at

lower dimension strata. However, there are exceptions to this characterization. In

Proposition 4.6, we saw that this characterization holds when the matrices describing

the relation between V and cones Ã ∈ Σ are totally invertible. While total invertibility

is an open condition, and thus holds generically, it is not hard to find examples where

this hypothesis fails.

This leads to some questions for further investigation. Let L be a totally real field

with embeddings {Ã1, . . . , Ãg} into R (orW (»)[1/p]) and let N be a fractional ideal of L

with basis {µ1, . . . , µg}. We could ask when the matrix [Ãi(µj)] is totally invertible.

One way in which total invertibility could fail is if some subset of {µ1, . . . , µg} lie within

a proper subfield of L, as happens in the example given in section 4.2. A solution to

this question could lead to a characterization of the toric strata with dimension at least

that of the rank of a tautological foliations F , on which F does not extend smoothly.
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In positive characteristic, we have even more interesting behavior. When working

over C, we saw that the tautological foliations never extend smoothly to toric strata

of dimension less than the rank of the foliation. On the other hand, it can be possible

to have these smooth extensions in positive characteristic. In the case of a Hilbert

modular surface, we found that in characteristic 2 and 3, there always exists a toroidal

compactification on which a given tautological foliation extends smoothly. In Corol-

lary 4.14, we gave a further characterization of when a Hilbert modular surface over

a field of positive characteristic at least 5 has a toroidal compactification on which

a tautological foliation extends smoothly. Moving forward, I would like to examine

whether the case in which F can be made smooth can be removed from Corollary

4.14. Preliminary calculations have failed to find a case in which such an F can be

made smooth everywhere in characteristic at least 5, but proving it never happens may

require methods beyond those found in this thesis.

We also considered the V -foliation T + on a unitary Shimura variety M of signa-

ture (n,m). In order to study the geometry of the Ekedahl–Oort strata on M, we used

Zink’s theory of displays to compute the universal display for the Dieudonné module

associated with a point in a given Ekedahl–Oort stratum. This provided a useful de-

scription of the tangent space of the stratum and how it lies within the full tangent

space of the M. By combining this description with an explicit description of T + in

these same coordinates, we were able to show that the T + lies within the tangent space

for each stratum lying between Sfol and the open stratum. That is, each of these strata

are invariant with respect to T +.

This still leaves room for further investigations. The Ekedahl–Oort stratum Sfol is

but one of the integral subvarieties of T +. In the recent work of Goren and de Shalit

in [GdS23], it is shown that there are a multitude of integral subvarieties for any p-

foliation. As such, we may ask if one can define a ”stronger” version of integrality, for

which only certain integral subvarieties, such as Sfol, that have arithmetic significance

to the underlying moduli problem remain integral under this stronger definition.
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display, 113
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Tate curve, 37
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toric variety, 10, 57
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toroidal compactification, 40
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