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1. Preface 

1.1 Abbreviations 

BMI  Body Mass Index 

BP  Blood Pressure 

BRS   Baroreflex Sensitivity 

BSL  Baseline 

CO  Cardiac Input 

COi   Cardiac Output Index 

CVLM  Caudal Ventrolateral Medulla 

DBP  Diastolic Blood Pressure 

ECG   Electrocardiogram 

HF  High-Frequency 

HR  Heart Rate 

HRV  Heart Rate Variability 

LF   Low-Frequency 

MAP   Mean Arterial Pressure 

NN  Normal-To-Normal (Intervals) 

NTS   Nucleus Tractus Solitarius 

PNS   Parasympathetic Nervous System 

PP  Pulse Pressure 

RRI   R-R Interval 

RSA  Respiratory Sinus Arrythmia 

RVLM  Rostral Ventrolateral Medulla 

SB  Slow Breathing 

SBP  Systolic Blood Pressure  

SDNN   Standard Deviation of NN Intervals  

SNS   Sympathetic Nervous System 

SV  Stroke Volume 

SVi  Stroke Volume Index 

TPR  Total Peripheral Resistance 

RMSSD  Root-Mean Square Differences of Successive RRI   
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1.2 Abstract 1 

Slow breathing (SB) is recognized as a means of lowering blood pressure (BP) in hypertensive 2 

individuals. While studies in both clinical and healthy populations have demonstrated that SB 3 

decreases BP, not all studies have agreed, indicating high variability in SB-mediated BP 4 

responses. Thus, we examined autonomic, biological, and lifestyle factors as potential predictors 5 

of the BP response to SB. Young, healthy women (n=14) and men (n=16) underwent 15-min 6 

device-guided SB (RESPeRATE, Intercure Ltd.). Respiration (respiratory belt transducer, 7 

ADInstruments), heart rate (HR; 5-lead ECG), and beat-by-beat systolic BP (SBP; finger 8 

photoplethysmography, Finometer MIDI) were recorded continuously. Indices of autonomic 9 

function were spontaneous cardiovagal baroreflex sensitivity (BRS) and HR variability (HRV). 10 

Biological and lifestyle factors were established determinants of BRS and HRV (resting SBP, 11 

BMI, physical activity levels). No autonomic (up-BRS, R2<0.01, P=0.71; RMSSD, R2<0.01, 12 

P=0.73), biological (resting SBP, R2=0.02, P=0.43; BMI, R2=0.10, P=0.09) or lifestyle (physical 13 

activity, R2=0.09, P=0.19) variables predicted SBP response to SB. However, post hoc analyses 14 

grouping participants based on SBP response to SB demonstrated that participants who 15 

decreased SBP tended to have higher resting SBP than those who increased SBP during SB 16 

(117±7 vs 111±10 mmHg, respectively, P=0.09), as well as greater increases in abdominal tidal 17 

volume during SB (31.77±25.75 vs 13.67±3.58 Δ%max, P=0.09). These preliminary findings 18 

suggest that both resting SBP and the respiratory response to SB may whether an individual 19 

responds favourably to SB, although this requires further study.  20 
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1.3 Résumé 21 

La respiration lente est reconnue comme un bon moyen de réduire la tension artérielle chez les 22 

personnes atteintes d’hypertension. Bien que des études menées dans des populations cliniques et 23 

en bonne santé aient démontré que la respiration lente réduit la tension artérielle, une 24 

incohérence existe parmi les études. Celles-ci indiquent une grande variabilité de réponses à 25 

la tension artérielle vis-à-vis la respiration lente. Ainsi, la présente étude a pour objectif 26 

d’examiner des facteurs nerveux autonomes, biologiques, et de mode de vie en tant que facteurs 27 

prédictifs potentiels de la réponse de tension artérielle à la respiration 28 

lente. Les participants (n=30 dont 14 femmes et 16 hommes) etaient jeunes (âgés 18 à 34) et en 29 

bonne santé.  Ils ont suivi une session de la respiration lente de 15 minutes guidée par un appareil 30 

(RESPeRATE, Intercure Ltd.). La respiration (transducteur de ceinture respiratoire, 31 

ADInstruments), la fréquence cardiaque (HR ; ECG à 5 déonsitrés), et la tension artérielle pour 32 

chaque pulsation (photoplethysmography de doigt, finomètre MIDI), ont été enregistrées 33 

continuellement. La sensibilité cardiovagale spontanée de baroreflex et la variabilité de 34 

fréquence cardiaque étaient utilisées comme index de la fonction nerveuse autonome. Les 35 

facteurs biologiques et de mode de vie suggérés d’influencer la sensibilité baroréflexe et la 36 

variabilité de la fréquence cardiaque (tension artérielle systolique au repos, indice de masse 37 

corporelle et le niveau d’activité physique) ont aussi été évalués en tant que 38 

facteurs prédictifs potentiels. Ni les index de la fonction autonome (up-BRS, R2<0,01, P=0,71; 39 

RMSSD, R2<0,01, P=0,73), ni les variables biologiques (tension artérielle systolique au repos, 40 

R2=0,02, P=0,43; indice de masse corporelle, R2=0,10, P=0,09) n’ont prédit la réponse de 41 

la tension artérielle systolique à la respiration lente. En plus, le mode de vie (activité physique, 42 

R2=0,09, P=0,19) n’a pas prédit la réponse de la tension artérielle systolique à la respiration 43 
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lente. Cependant, des analyses post hoc regroupant les participants en fonction de la réponse de 44 

la tension artérielle systolique à la respiration lente ont démontré que les participants chez 45 

lesquels la tension artérielle systolique était réduite avaient tendance à avoir 46 

une tension artérielle systolique au repos plus élevée ainsi qu’une augmentation plus importante 47 

du volume courant abdominal (31,77±25,75 vs 13,67±3,58 Δ%max,  P=0,09) que ceux chez 48 

lesquelles la tension artérielle systolique avait augmentée pendant la respiration lente (117±7 vs 49 

111±10 mmHg, respectivement, P=0,09). Ces résultats préliminaires suggèrent que 50 

la tension artérielle systolique au repos et la réponse respiratoire à la respiration lente peuvent 51 

prédire si une personne répond favorablement à la respiration lente, bien que cela nécessite une 52 

étude plus approfondie.   53 
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2. Context 54 

Device-guided slow breathing (SB) has been recommended as a non-pharmacological, 55 

adjunct treatment to lower blood pressure in individuals affected by hypertension. However, 56 

while SB is effective in decreasing blood pressure (BP) in clinical populations (84, 119, 249) as 57 

well as in healthy individuals (2, 66, 199), researchers have also noted considerable inter-58 

individual variability in SB-mediated BP responses (39).  59 

The sources of this variability are difficult to pinpoint, as the mechanisms by which SB 60 

reduces BP are not well established and efforts to elucidate such mechanisms remain ongoing. 61 

However, baroreflex sensitivity (BRS) and heart rate variability (HRV) have emerged as strong 62 

contenders for mechanistic contributors to SB-mediated BP responses. Baroreflex sensitivity is a 63 

measure of the baroreflex’s ability to respond to acute changes in arterial blood pressure (272). 64 

The sequence method of BRS measurement involves the identification of three or more 65 

consecutive heart beats wherein systolic blood pressure (SBP) increases and R-R interval (RRI; 66 

i.e., the interval between successive heartbeats) simultaneously lengthens (i.e., up-BRS), or SBP 67 

decreases and RRI simultaneously shortens (i.e., down-BRS) (217). Heart rate variability is the 68 

measure of the variation between individual, successive heartbeats (258) and is widely reported 69 

via standard deviation of NN intervals (SDNN) and root-mean square differences of successive 70 

RRI (RMSSD) (258).  71 

During SB, both the amplitude of BP oscillations and HRV are increased (245). It has 72 

been hypothesized that it is the synchronization of these increased BP and heart rate oscillations 73 

which result in optimization of baroreflex function and increases in BRS, hence reducing BP 74 

during SB (172, 245). Indeed, both BRS (17, 20, 102, 118, 163, 215, 235, 239, 289) and HRV 75 

(17, 102, 215, 265, 276, 289) increase during SB. However, to the best of our knowledge, no 76 
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studies have evaluated the potential roles of baseline BRS and HRV as predictors of a 77 

subsequent SB-mediated BP response.  78 

While the specific effects of inter-individual differences in baseline BRS and HRV on BP 79 

responses to SB remain unclear, the general determinants of BRS and HRV (i.e., within non-SB 80 

contexts) have been studied extensively. Variability in BRS appears to be highly correlated to 81 

several biological factors, including SBP (62, 149, 152), and BMI (126, 148, 158, 266), and 82 

possibly influenced by physical activity levels (60, 61, 144, 197, 198, 282). Heart rate variability 83 

may be associated with SBP (271, 280), BMI (8, 124, 138), and physical activity levels (60, 61, 84 

96, 216, 240), among others. Thus, although not yet studied, the overarching hypothesis of this 85 

thesis is that, due to the purported importance of changes in BRS and HRV in the mediation of 86 

the blood pressure response to slow breathing (172, 245), the determinants of BRS and HRV (i.e. 87 

resting systolic BP, BMI, and physical activity levels) are the likeliest candidates for variables 88 

that may predict the effectiveness of slow breathing at reducing blood pressure within a given 89 

individual.  90 

Therefore, the primary purpose of this study was to determine whether baseline values of 91 

BRS (specifically, up-BRS) and HRV (specifically, RMSSD) are predictors of the magnitude of 92 

the change in SBP during an acute 15-minute bout of device-guided SB in young healthy 93 

individuals. We hypothesized that higher baseline values of BRS and HRV would result in 94 

greater magnitude of decrease in SBP during SB. The secondary purpose of this study was an 95 

exploratory arm, which sought to investigate whether biological and lifestyle characteristics 96 

(resting SBP, BMI, and physical activity levels) are predictors of the SBP response to SB. We 97 

hypothesized that higher resting SBP and BMI, and lower physical activity levels, would result 98 

in increased magnitude of decrease in SBP during SB. Our findings are positioned to provide 99 
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insight into which variables affect the degree to which BP is reduced during SB. Additionally, 100 

improving our understanding of the physiological variables that contribute to this variability 101 

could help optimize device-guided SB strategies to maximize their BP-lowering effects. 102 

Consequently, we anticipate that this knowledge will allow researchers and clinicians to identify 103 

specific sub-populations for whom SB would be most effective as an adjunct treatment for the 104 

management of hypertension.  105 
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3. CHAPTER I: LITERATURE REVIEW 106 

3.1. Clinical Relevance of Blood Pressure Regulation  107 

Arterial BP is the force of blood exerted on artery walls as it circulates throughout the 108 

body. It is most commonly expressed as two values: systolic blood pressure (SBP) and diastolic 109 

blood pressure (DBP). During systole, the contraction of the left and right ventricles of the heart, 110 

oxygen-rich blood from the lungs is pushed into the aorta and pulmonary artery, respectively. 111 

This relatively high pressure exerted on the arteries is termed SBP. In contrast, diastole refers to 112 

the period of time in which the heart relaxes, allowing blood to refill the ventricles prior to the 113 

next contraction. This relatively low pressure is termed DBP.  114 

In healthy individuals with a functioning baroreflex, these BP values are controlled 115 

within a tight range. The American Heart Association defines normal BP as SBP less than 120 116 

mmHg and DBP less than 80 mmHg (299). Systolic readings below 110 mmHg in men and 100 117 

mmHg in women are considered hypotensive (50). While extreme or unexpected drops in blood 118 

pressure can result in insufficient blood flow to vital organs (120), essential hypotension is not 119 

considered a disease state (53). As such, chronic moderately low BP is generally not a concern 120 

that requires clinical intervention (53). Conversely, chronic high blood pressure is a serious 121 

condition and one of the leading risk factors for mortality worldwide (113).  122 

Defined as a blood pressure higher than 130/80 mmHg (299), hypertension damages the 123 

body over time by continuously placing stress on the vasculature (35). Compared to 124 

normotensive individuals, even individuals with elevated BP (between 120-129 mmHg SBP 125 

(299)) are at an increased risk of a wide array of downstream health concerns (122, 132, 174, 126 

233, 270). Unfortunately, approximately one in three people worldwide (more than 1 billion 127 

people as of 2010) are hypertensive (194). In addition, 54% of those individuals are not aware of 128 
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their condition (194). Given that high BP is often asymptomatic (1, 194), elevated BP left 129 

unattended and untreated is a major risk factor for serious health conditions including but not 130 

limited to coronary heart disease (132, 174), stroke (157), heart attack (33), and organ failure 131 

(220).  132 

Antihypertensive medication is a common treatment for hypertension (48, 106), as 92% 133 

of patients are prescribed antihypertensive drugs (294). Although pharmacologic treatments are 134 

effective in lowering BP (300), associations between antihypertensive medications and increased 135 

risk of developing various malignancies such as breast (153), renal (52), colorectal (256), and 136 

endometrial cancers (88) have been observed. Moreover, the pharmacologic management of 137 

hypertension places an enormous financial burden on the healthcare system (300). Recent 138 

estimates place the global financial burden of high BP at US $370 billion, or about 10% of the 139 

world’s overall health-care expenditure (195). Considering that medication adherence is less than 140 

50% (210), in combination with the high rising cost of medication (182), and the increased risk 141 

for adverse effects such as cancer (52, 88, 153) and myocardial infarction (232) (for drug-142 

specific considerations, see (45)), there has been an increase in interest regarding alternative and 143 

adjunct approaches to lowering BP. Of these non-pharmacological adjunct treatments, we are 144 

interested in slow breathing, which decreases BP through a series of complex mechanisms that 145 

continue to be elucidated (245). To better understand the impact of slow breathing on BP and the 146 

mechanisms by which it affects BP, it is necessary to first understand the basic mechanisms 147 

behind BP regulation.  148 

Briefly, BP is controlled via both chronic and acute pathways. The two most predominant 149 

mechanisms of chronic BP regulation are the renin-angiotensin-aldosterone system and 150 

antidiuretic hormone. These hormonal systems regulate BP by controlling blood volume and 151 
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peripheral resistance (for details, see (55, 260)). However, the focus of this literature review and 152 

research project is the acute regulation of BP. As such, the next section will explain the primary 153 

acute mechanism through which the body balances the dynamics of BP: the baroreflex.  154 
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3.2. Acute Regulation of Blood Pressure: The Baroreflex 155 

3.2.1 Anatomy of the Baroreflex 156 

The arterial baroreflex is responsible for acute changes in BP regulation. This 157 

homeostatic mechanism continuously monitors BP, keeping it tightly controlled within a small 158 

range (56). The arterial baroreflex is a negative feedback loop; it responds to any changes in the 159 

system by acting rapidly to restore BP levels to a given setpoint (explained in further detail 160 

below). These changes in BP are sensed by arterial baroreceptors, which are specialized 161 

mechanoreceptors located in the arterial walls of the carotid sinus and aortic arch. These 162 

receptors fire in response to changes in arterial pressure (69). In response to physical distention 163 

of arterial walls, baroreceptors increase afferent signalling to the nucleus tractus solitarius (NTS) 164 

located in the medulla oblongata of the brainstem (57, 58). Therefore, an increase in BP 165 

increases baroreceptor firing. Conversely, a decrease in BP elicits a reduction in baroreceptor 166 

firing, which is termed baroreceptor unloading. The NTS integrates afferent baroreceptor 167 

signalling and transmits the information to other medullary centers that control autonomic 168 

outflow. Through the two efferent arms of the baroreflex, parasympathetic and sympathetic, 169 

autonomic outflow influences cardiac output, blood volume, and peripheral vascular resistance to 170 

ultimately return BP to the setpoint (173). 171 

3.2.2 Baroreceptor Unloading 172 

The sympathetic and parasympathetic efferent arms of the baroreflex respond in tandem 173 

to BP changes by altering the function of target systems, thus restoring BP to its original 174 

setpoint. Broadly speaking, sympathetic nervous system (SNS) activation increases BP, and 175 

parasympathetic nervous system (PNS) activation decreases BP. While the SNS innervates both 176 
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the heart and peripheral vasculature, the PNS affects only the heart with respect to BP control. 177 

The SNS and PNS respond to fluctuations in BP by acting in an inverse and complementary 178 

fashion; that is, the activity of one system increases while the activity of the other decreases 179 

simultaneously. In the following example, we examine the response to an acute increase in BP.  180 

When arterial pressure increases, transmural pressure likewise increases, which activates 181 

the baroreceptors in the aortic arch and carotid sinus and increases the baroreceptor afferent 182 

activity converging at the NTS. Increased afferent input to the NTS excites distinct centres in the 183 

brainstem associated with the PNS and SNS (297). This results in a cascade of downstream 184 

interactions that simultaneously increase PNS outflow and decrease SNS outflow to decrease BP. 185 

Through the cardiovagal efferent arm of the baroreflex, activation of the PNS acts to 186 

decrease BP by decreasing heart rate (HR). Increased stimulation of the nucleus ambiguus by the 187 

NTS increases PNS vagal activity (297). The PNS innervates pacemaker cells in the heart 188 

through the release of the neurotransmitter acetylcholine. The binding of acetylcholine activates 189 

a downstream pathway that results in hyperpolarization of pacemaker cells, slowing their firing 190 

(200, 247). This decreases HR and lowers cardiac input (CO), thus leading to a decrease in BP.  191 

On the efferent sympathetic arm, activation of the NTS results in excitation of the caudal 192 

ventrolateral medulla (CVLM) (173). This inhibits the activity of the rostral ventrolateral 193 

medulla (RVLM), which is the primary site controlling SNS activity (173). Thus, when BP is 194 

high, the baroreflex mediates reduced sympathetic outflow to the sinoatrial and atrial-ventricular 195 

nodes in the heart, resulting in decreased HR. Simultaneously, reduced RVLM activation 196 

decreases sympathetic outflow to the myocardium, the contractile unit of the heart. Hence, the 197 

force of ventricular contraction is decreased, and thus stroke volume is also reduced. 198 

Additionally, the efferent sympathetic arm of the baroreflex reduces BP by targeting the smooth 199 
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muscle component of peripheral vascular beds. Reduced sympathetic outflow decreases 200 

contraction of vascular smooth muscle cells of the tunica media, the smooth muscle layer 201 

surrounding arteries and arterioles, in the splanchnic, muscle and renal vascular beds (173). This 202 

reduced contraction of smooth muscle cells results in reduced vasoconstriction (196), which 203 

results in reduced vascular resistance within the peripheral vasculature and thus a systemic 204 

reduction in TPR. Therefore, by Purcell’s equation (BP = CO x total peripheral resistance 205 

(TPR)), this reduction in TPR contributes to a reduction in BP.  206 

In summary, both branches of the autonomic nervous system act in tandem in response to 207 

an acute increase in BP in order to return BP to its setpoint. This same reflex loop occurs to 208 

maintain baseline BP in response to an acute decrease in BP (i.e. SNS activation increases while 209 

PNS activity decreases in order to increase CO and TPR). The autonomic nervous system 210 

innervates both the heart and peripheral vasculature to target the two components of Purcell’s 211 

equation (CO and TPR). While the PNS only targets CO through a decrease in HR, the SNS 212 

targets both the heart (and thus CO) and peripheral vasculature (and thus TPR). The differences 213 

in PNS and SNS modulation of HR will be explored in further detail in Section 3.4.1.  214 

3.2.3 Baroreflex Resetting 215 

There are cases in which the baroreflex is reset such that a new BP setpoint is achieved. 216 

This is termed “baroreflex resetting”, and the setpoint around which BP is regulated by the 217 

baroreflex mechanisms outlined above is shifted to account for the requirements of the situation. 218 

One common example of acute baroreflex resetting is during exercise (192, 230, 231). Exercise 219 

is associated with increased skeletal muscle activity, which increases the oxygen demand to 220 

active tissues (65, 114). Thus, there is a need to increase blood flow during exercise to regions of 221 

increased metabolic demand while still maintaining blood flow to vital organs. Without 222 
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baroreflex resetting, increased demands on CO in terms of blood flow to active muscles would 223 

result in hypotension. As such, there is a well-established upwards resetting of the baroreflex 224 

during exercise, which results in a new, higher BP setpoint that is graded to the level of exercise 225 

intensity (24, 192) and thus to the blood flow demands of the exercise through the delivery of 226 

sufficient oxygen to active tissues (82).  227 

While the baroreflex setpoint returns to its original state following the termination of 228 

exercise, this is untrue in disease states such as hypertension. Instead, in individuals with 229 

hypertension, the baroreflex is chronically reset as BP increases (70, 181, 189). Although the role 230 

of the baroreflex in the development of chronic hypertension continues to be debated (169), it is 231 

hypothesized that incomplete suppression of elevated sympathetic activity due to baroreflex 232 

dysfunction contributes to the high BP levels that characterize essential hypertension (142).  233 

Regardless of setpoint value, the baroreflex remains a rapid system of regulating BP. The 234 

speed of this reflex can be attributed to its control by the PNS and SNS. When functioning 235 

normally, the baroreflex monitors and maintains appropriate BP values for the situation. Within a 236 

research setting, in order to determine proper function of the two autonomic arms of the 237 

baroreflex, the activity of the baroreflex must be quantified. This is performed using techniques 238 

called baroreflex sensitivity analyses.  239 
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3.3. Measuring the Baroreflex: Baroreflex Sensitivity  240 

Baroreflex sensitivity (BRS), or baroreflex gain, is a measure of the baroreflex’s ability 241 

to respond to acute changes in arterial BP (272). The terms “cardiovagal BRS” and “sympathetic 242 

(vascular) BRS” refer to the two efferent branches of the baroreflex (297). Cardiovagal BRS is 243 

quantified as the change in interbeat interval (ms) per unit change in BP (mmHg) (272), whereas 244 

sympathetic vascular BRS is quantified as muscle sympathetic nerve activity (usually in number 245 

of bursts per minute) per unit change in BP (mmHg) (75). In general, researchers have observed 246 

low to no correlation between the cardiovagal and sympathetic vascular BRS (75, 150, 206, 244), 247 

indicating that cardiovagal and sympathetic vascular BRS should be studied separately. As the 248 

focus of this project is cardiovagal BRS, sympathetic vascular BRS will not be detailed in this 249 

review (for summary, see the following paper (207)).  250 

3.3.1 Cardiovagal Baroreflex Sensitivity 251 

Cardiovagal BRS is used as an index of autonomic control of heart rate (297). 252 

Specifically, it reflects autonomic activity on the sinus node (74). Even so, this index is almost 253 

universally used to quantify baroreflex “vigour” (272), and it is from this measure that we 254 

extrapolate and assess baroreflex function. Also termed the cardiac parasympathetic baroreflex, 255 

the cardiovagal arm is associated with the PNS and vagal nerve. It has been described primarily 256 

as the “sensitivity of baroreflex control of the heart” (43). The cardiovagal arm responds to SBP 257 

fluctuations by eliciting changes in HR to restore overall BP (136), as explained in Section 3.2. 258 

Parasympathetic efference from the baroreflex does not directly affect peripheral vasculature, 259 

and as such, it is possible to infer cardiovagal BRS activity solely from the observed fluctuations 260 

of HR and SBP (272). Researchers have developed diverse cardiovagal BRS measurement 261 

methods (272). As there is still debate regarding the reproducibility and limitations of the current 262 
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“gold standard” measure of cardiovagal BRS by the Oxford method (16, 59, 218, 275), the 263 

following sections will describe the most common methods.  264 

3.3.1 Methods of Assessing Cardiovagal Baroreflex Sensitivity 265 

Classic invasive methods of cardiovagal BRS assessment use pharmacological agents 266 

such as phenylephrine and sodium nitroprusside to artificially induce changes in SBP (29, 244, 267 

269). In 1969, Smyth et. al first described the ‘Oxford method’ (269) of assessing rising 268 

cardiovagal BRS. However, the original Oxford method was limited in that it was only able to 269 

assess baroreflex responses to rising arterial BP. The Oxford technique was later superseded by 270 

the improved ‘modified Oxford technique’ (86). The modified Oxford technique (244) is widely 271 

considered the gold standard method of BRS assessment in humans (147) and employs the 272 

infusion of vasoactive drugs, which induce increases and decreases in BP without affecting HR 273 

(86, 244). This “open loop” method allows for the assessment of BRS over a wide range of SBP 274 

values, well beyond the normal operating range of a human at rest. That is, lower SBP values 275 

achieved following sodium nitroprusside infusion and higher SBP values achieved following 276 

phenylephrine infusion together enable researchers to attain an expanded view of the sigmoid 277 

BRS curve (86, 89). However, there is debate regarding the validity of this method as a gold 278 

standard for BRS measurement (218). Indeed, some researchers argue that the forced increase in 279 

SBP inhibits SNS activity to such an extent that sympathetic vascular BRS at high BPs is 280 

difficult to quantify with this approach (75). Regardless, the modified Oxford technique has 281 

provided direct insights into baroreflex dysfunction in a variety of patient populations such as 282 

individuals with elevated BP (29, 98), myocardial infarction (211, 251), and mild to moderate 283 

heart failure (212), among others.  284 
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While pharmacological methods of BRS assessment have helped elucidate arterial 285 

baroreflex function (219), less invasive techniques have been applied by researchers for the 286 

assessment of spontaneous baroreflex function. Beginning in the 1980s, algorithmic, non-287 

invasive methods for quantifying BRS were first introduced (221). Spontaneous methods of BRS 288 

assessment differ from methods using pharmacological infusion in that spontaneous methods do 289 

not rely on external perturbations to the cardiovascular system (221). Instead of actively 290 

stimulating a change in SBP and measuring the resultant vagal response (i.e. known as an “open 291 

loop” method), these methods use a “closed loop” method to non-invasively determine 292 

spontaneous cardiovagal BRS from data extracted from naturally occurring fluctuations in BP 293 

and HR, typically under resting conditions. As such, spontaneous BRS measurement methods 294 

enable assessment of BRS over the range of BPs that occur naturally during daily life (125, 219). 295 

While these methods measure BRS over a narrower range of BPs compared to the modified 296 

Oxford method, their prevalence and use has risen significantly due to their increased technical 297 

feasibility in human participants (219) relative to pharmacological methods.  298 

Spontaneous BRS measurement methods can be separated into two categories: methods 299 

in the time domain and methods in the frequency domain (147, 225). In the time domain, most 300 

approaches to BRS measurement rely on the sequence method described by Parati and 301 

colleagues (155, 217). The sequence method requires the identification of three or more 302 

consecutive heart beats wherein SBP increases and R-R interval (RRI) simultaneously lengthens 303 

(i.e., up-BRS), or SBP decreases and RRI simultaneously shortens (i.e., down-BRS) (217). A 304 

linear regression is calculated from the relationship between change in RRI (ms) and change in 305 

SBP (mmHg), and BRS is taken as the slope of the fitted line (272). While the central idea 306 

among variant methods is the same, alternative methods in the time domain differ in the 307 
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threshold determining what constitutes a valid SBP-RRI sequence as well as the specific BP 308 

measurements used in place of or complementary to SBP (272).  309 

In the frequency domain, spectral methods are used to analyse HR and BP signals to 310 

obtain BRS measurements. The signals are mapped to the frequency domain via transfer 311 

function. As such, spectral methods can be used analyse specific frequency bands. The amplitude 312 

of the transfer function is taken as the measurement of BRS (272). This is analogous to the SBP-313 

RRI slope in time domain methods (272). Frequency domain methods are based on the premise 314 

that the arterial baroreflex instigates BP oscillations that elicit RRI oscillations at the same 315 

frequency due to their closed-loop relationship (183). For a detailed review of common methods 316 

of BRS measurement employing spectral techniques, see (221) and (297).  317 

Researchers have debated the limitations of using spectral (i.e. frequency domain) 318 

methods over non-spectral (i.e. time domain) methods (167, 297). While analyses in the 319 

frequency domain enable researchers to study specific frequency bands, which may provide 320 

additional insight into the influence of respiratory and autonomic components (214) on BRS, 321 

spectral methods generally require longer periods of data to be analysed than non-spectral 322 

methods (297). Researchers have observed high variability between spectral and non-spectral 323 

measurements of BRS (49, 175, 228). Additionally, some researchers have observed poor 324 

correlations between spectral methods and more invasive methods of BRS measurements such as 325 

those described above (13, 49, 167, 175, 227, 228, 234). However, some researchers have 326 

observed positive correlations between BRS measurements resulting from spectral methods and 327 

those resulting from the Oxford method (214, 242, 296), suggesting that spectral methods are 328 

indeed viable alternatives to pharmacological methods of BRS measurement. Nevertheless, it is 329 
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currently unclear if spectral methods of measuring BRS are valid for use across clinical 330 

populations (49, 167, 175, 228). 331 

While the validity of both spectral and non-spectral methods as substitutes for the 332 

modified Oxford method approach to BRS measurement has been debated (167, 175, 177, 222, 333 

228, 296) in part due to high observed systemic deviance (89) and inconsistent estimates across 334 

various methods of spontaneous BRS measurement (155), it nevertheless appears that 335 

researchers will continue to employ spontaneous methods of BRS measurement. Even now, new 336 

spontaneous methods of BRS measurement continue to be introduced (44, 165, 298). It has been 337 

suggested that spontaneous methods of BRS measurement provide insight into daily baroreflex 338 

function that is complementary to understanding generated by pharmacological methods of BRS 339 

measurement (221). Given the additional benefits of spontaneous methods of BRS measurement 340 

such as increased feasibility (219), reproducibility of results (125, 184), reduction of 341 

measurement variability (147), and ability to measure BRS in a “daily life” setting, spontaneous 342 

methods of BRS measurement can still provide important prognostic information in clinical 343 

practices. 344 

Through the use of both pharmacological and spontaneous methods of BRS 345 

measurement, researchers have determined that BRS can be a clinically useful tool in 346 

understanding the regulation of BP in health and disease (147). Low BRS is often a predictor of 347 

cardiovascular disease. Indeed, studies have demonstrated that reduced BRS is found in 348 

individuals with hypertension (29, 79, 223), coronary artery disease (79, 115, 130), and heart 349 

failure (79, 146). Additionally, low BRS is predictive of high risk of cardiac mortality following 350 

myocardial infarction (145). In individuals with diabetes and obesity, low BRS values have also 351 

been observed (79). Indeed, significant clinical evidence supports the prognostic use of BRS. 352 
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However, current methods of BRS assessment are often affected by the substantial and 353 

detrimental effect of signal noise (286), which can be reduced by improving our understanding 354 

of the underlying signals involved BRS measurement such as HR and BP.  355 
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3.4. Cardiorespiratory Phenomena Related to Blood Pressure 356 

The relationship between BP, HR, and respiration is termed cardiorespiratory coupling 357 

(66). Interactions between these variables result in physiological phenomena termed HRV and 358 

respiratory sinus arrythmia (RSA). These physiological phenomena and their effects are complex 359 

and bidirectional. Understanding the interactions between cardiorespiratory coupling, HRV, and 360 

RSA will be equally important for later sections of this literature review, as the premise of this 361 

research project relies heavily on insights from these physiological relationships. As such, these 362 

physiological relationships will be explained in the following sections.  363 

3.4.1 Heart Rate Variability 364 

While HR is defined as the average number of heart beats per minute, HRV is the 365 

measure of the variation between individual, successive heart beats. Specifically, HRV is 366 

calculated from the small differences (in milliseconds) between each RRI (188). By analysing 367 

these beat-by-beat changes, researchers can gain further insight into the underlying physiological 368 

mechanisms that govern HR and thus BP. 369 

In healthy individuals, HR is regulated by the sympathetic and parasympathetic branches 370 

of the autonomic nervous system (258). Without autonomic efferent input, the sinoatrial node 371 

generates an intrinsic HR of 90-100 bpm; however, the relative activity of the sympathetic and 372 

parasympathetic branches of the ANS modulates this intrinsic HR (209). At rest, autonomic 373 

regulation of HR is dominated by parasympathetic activity, which decreases the intrinsic rate of 374 

the sinoatrial node and results in an average HR of 75 bpm (258). Interestingly, parasympathetic 375 

modulation of HR is faster than that of the SNS (295). While the effects of SNS stimulation 376 

appear following >5s delay, the effects of a single parasympathetic vagal efference can be 377 

observed after only one or two heartbeats (103, 205). Therefore, rapid (i.e. within 1-2 seconds) 378 



 26 

decreases and increases in HR are caused primarily by elevations and withdrawals of 379 

parasympathetic activity, respectively. Parasympathetic and sympathetic efference are modulated 380 

by the nucleus ambiguus and RVLM medullary integration sites, respectively (173, 297). 381 

Sensory input from proprioceptors, chemoreceptors, baroreceptors, the cerebral cortex, and the 382 

limbic system is integrated at the NTS, and PNS and SNS outflow are subsequently adjusted by 383 

their respective systems to modulate HR (259) (previously explained in detail in Section 3.2.2). 384 

Consequently, researchers consider HRV a reflection of the net effect of PNS and SNS outflow 385 

and thus a measure of the relative activity of the PNS and SNS (258). Indeed, HRV has been 386 

used as a measure of cardiac autonomic regulation in both healthy and clinical populations, 387 

which will be discussed later in this section. The following section will summarize the common 388 

methods by which HRV is quantified. 389 

There are two categories of methods by which HRV is analysed: frequency domain 390 

analysis and time domain analysis (253). Methods in the frequency domain are analysed by 391 

power spectral density analysis, which is similar to the spectral methods of BRS measurement 392 

described previously (see Section 3.3).  Briefly, ECG signals are mapped to the frequency 393 

domain and separated into component waveforms (253).  The amplitude of each component 394 

waveform corresponds to the power of the associated frequency band. That is, a component 395 

waveform hidden in the variability of the ECG signal can be identified by the increased power of 396 

a frequency band (253). Two frequency ranges (also termed “bands” or “components”) are 397 

commonly analysed: low-frequency (LF) and high-frequency (HF) bands. The HF band ranges 398 

from 0.15-0.40 Hz and is often termed the “respiratory band” due to the significant influence of 399 

respiration on HF band power (258). Activity in the HF spectrum (i.e., the HF band) is also used 400 

as an index of vagal activity (283) due to the rapid influence of the PNS on HR regulation (258). 401 
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Additionally, vagal blockade eliminates HF activity (179, 229), indicating that HF activity is 402 

generated primarily by parasympathetic outflow. Parasympathetic association with the HF band 403 

is supported by evidence indicating that increased sympathetic innervation is correlated with 404 

decreased HF activity (31, 117, 203). Conversely, LF band activity ranges from 0.04-0.15 Hz 405 

and is believed to reflect baroreceptor activity at rest (178). However, there is still debate 406 

regarding the interpretation of the LF band (258). While some researchers suggest that LF 407 

activity represents solely cardiac SNS innervation (for review, see: (241)), many have challenged 408 

this claim and instead suggest that LF activity is associated with cardiac autonomic outflow 409 

modulated by the baroreflex (78, 97, 236, 278). Regardless, while the exact interpretation of the 410 

LF band is still being debated, the current literature generally accepts LF band activity as a 411 

marker of simultaneous activation of both the PNS and SNS (139). For an extensive review of 412 

LF band interpretation and further information on HRV analysis methods in frequency domain, 413 

see (258). 414 

The quantification of HRV via time domain methods involves the application of 415 

statistical or geometric approaches to continuous ECG recordings to generate indices of various 416 

HRV components (253). Compared to frequency domain methods, time domain markers are 417 

simpler to calculate and require less computing power (258). However, time domain analyses 418 

cannot provide insight into autonomic activity or the activity of other constituent oscillatory 419 

physiological control systems (258). Markers in the time domain are based on normal-to-normal 420 

intervals (NN intervals), which are defined as RRI with abnormal R-peaks corrected or removed 421 

(47). There are myriad variables used in time domain methods, but the two most widely reported 422 

and commonly assessed are the standard deviation of NN intervals (SDNN) and root-mean 423 

square differences of successive RRI (RMSSD)(258), both of which will be used in the data 424 
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analysis of this project. Total variability of HR from both periodic and random factors is 425 

quantified by SDNN (253). Meanwhile, RMSSD reflects short term variation (i.e. beat-to-beat 426 

HR variance) and is strongly associated with parasympathetic or HF variations in HR (253, 257). 427 

Additionally, RMSSD is the most commonly used time domain measure for estimating changes 428 

in HRV mediated by the PNS (258). For a comprehensive overview of the other metrics and 429 

norms of HRV see (253, 257)). 430 

At the intersection of heart, brain, and autonomic nervous system interactions, the many 431 

metrics of HRV are considered autonomic markers of clinical interest (253). Metrics of HRV are 432 

commonly used by researchers and clinicians as a tool for both diagnostic and prognostic 433 

applications. Indeed, researchers consider HRV a measure of the flexibility and adaptability of 434 

various regulatory systems. High HRV is believed to reflect an increased ability of the heart to 435 

adapt to both internal and external stressors (237). For example, HRV is higher in aerobically-436 

trained athletes compared to healthy controls (9, 291). Conversely, low HRV has serious health 437 

implications and is an independent risk factor for mortality in middle-aged men (64), the elderly 438 

(281), diabetics (129), and post-myocardial infarction patients (137). Additionally, HRV is low 439 

in patients with heart failure (26, 248), brain death (134), following myocardial infarction (38) 440 

and heart transplantation (252), as well as in individuals who smoke (180), diabetic individuals 441 

(81, 243), and obese individuals (266). For an extensive review of the applications and findings 442 

of HRV in clinical populations, see (253) and (237). 443 

While HRV can be a useful tool for investigating autonomic control of HR, the 444 

interpretation of any index of HRV is complicated by other external influences that must also be 445 

taken into consideration. Most notably, it is necessary to discuss the influence of respiration on 446 

HRV, which occurs in the form of RSA. 447 
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3.4.2 Respiratory Sinus Arrythmia 448 

 Respiratory sinus arrythmia is a non-pathological, physiological phenomenon 449 

characterized by phasic HR fluctuations that occur synchronously with respiration. Specifically, 450 

RSA refers to the shortening of RRI during inhalation and the prolonging of RRI during 451 

exhalation (302). These oscillations are directly associated with HRV fluctuations and reflect 452 

direct interactions between the respiratory and circulatory systems (277, 302). Indeed, RSA 453 

becomes pronounced at lower respiration frequencies and is associated with HF HRV spectrum 454 

power (258). This relationship between RSA and HF HRV parasympathetic activity has 455 

generated interest in the quantification of RSA among cardiovascular researchers (302). That is, 456 

by examining measures of RSA, it is possible to evaluate cardiorespiratory autonomic control 457 

mechanisms through non-invasive means (100). Indeed, RSA is generally accepted as a non-458 

invasive index of cardiac vagal activity in physiological, psychological, and clinical research, 459 

and it is interpreted as a measure of the influence of respiration on the sinoatrial node of the heart 460 

(21, 302). Its prevalent use in research stems in part from the benefits of the non-invasive 461 

methodological approach for quantifying RSA. Interestingly, RSA is commonly used in the field 462 

of psychophysiology as a measure of parasympathetic-related behaviour such as “emotional 463 

reactivity” (36). In general, high RSA is taken as an index of good general health. In fact, 464 

athletes and frequent practitioners of yoga have higher RSA than age-matched controls (68, 110). 465 

Moreover, RSA is blunted in individuals with diabetes (168) and coronary artery disease (3). 466 

However, while the use of RSA in research is quite common, the mechanisms generating RSA 467 

and its physiological role have yet to be fully established (15, 154). 468 

A consensus has not been reached on the precise physiological mechanisms governing 469 

RSA, but RSA is likely influenced by both neural and physiological mechanisms (245). The 470 
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individual components of RSA are difficult to study due to the complicated cyclic and 471 

interdependent nature of cardiorespiratory mechanisms (154). Nevertheless, researchers have 472 

attained a fundamental understanding of RSA mechanisms governed by the respiratory, central 473 

nervous, and cardiovascular systems (156, 226, 245). The following sections will summarize the 474 

most prevalent theories of the mechanisms of RSA. 475 

The central theory is a prominent and well-accepted autonomic theory of RSA generation 476 

(154). The central theory involves the influence of respiration on autonomic modulation of HR, 477 

which has been termed “respiratory gating” (171). Specifically, the “gate” refers to the 478 

modulation of cardiac vagal neuron responsiveness to external input. That is, during inspiration, 479 

activation of the chemoreflex results in activation of the respiratory center in the medulla (76). 480 

This results in the hyperpolarization of cardiac vagal neurons, which subsequently become 481 

unresponsive to baroreflex stimuli, hence “closing” the gate (94). This prevents completion of 482 

the baroreflex negative feedback loop, which contributes to increased HR during inhalation. 483 

Conversely, the gate “opens” during exhalation, and HR is decreased through reduced SNS and 484 

increased PNS innervation of the heart. The central theory supports the position that RSA 485 

generation is primary modulated autonomically.  486 

Additionally, RSA may also be modulated by afferent feedback from pulmonary stretch 487 

receptors (7). During inhalation, mechanoreceptors in the lungs slowly activate and initiate 488 

afferent autonomic feedback to the nucleus ambiguus (21, 245), resulting in reduced cardiac 489 

vagal stimulation and decreased HR (133). Interestingly, the degree of vagal withdrawal is 490 

proportional to the volume of the breath (123). Indeed, studies have demonstrated a 53% 491 

decrease in RSA of double-lung transplant patients following vagal denervation compared to 492 
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healthy controls, supporting the notion that afferent feedback from pulmonary stretch receptors 493 

contributes to generation of RSA (273). 494 

Lastly, RSA may be mechanically mediated by intrathoracic pressure changes driven by 495 

diaphragm muscle activity (7, 19). During inspiration, the diaphragm contracts downwards to 496 

expand the lungs, thus generating a negative pressure in the thoracic cavity (19). Briefly, these 497 

changes in intrathoracic pressure can subsequently affect venous return, stroke volume, and 498 

cardiac output (10, 245). During inspiration, negative intrathoracic pressure stretches the 499 

sinoatrial node and increases HR (154). This contributes to a decrease in BP, which is detected 500 

by baroreceptors and results in a cascade of signals that further increase HR (as described in 501 

Section 3.2). However, research supporting the contribution of intrathoracic pressure changes on 502 

the mechanisms of RSA is inconclusive, and this theory continues to be fiercely debated (77, 503 

127, 128). 504 

In summary, the mechanisms contributing to the generation of RSA are complex and 505 

incompletely understood. There is significant evidence for both autonomic and respiratory 506 

influences on the mechanisms governing RSA (19, 21, 40, 41, 76, 245, 268, 273, 305). However, 507 

individual variability in RSA from respiration-based studies confounds researchers (99, 100), 508 

some of whom have observed that control of RSA amplitude and control of absolute vagal tone 509 

are distinct (104, 154). In addition, researchers are currently divided regarding the contribution 510 

of the baroreflex to RSA due to the speed of the response (76, 154, 302). Given the complexity 511 

of the processes surrounding RSA, researchers speculate that the baroreflex exerts an effect on 512 

the underlying mechanisms of RSA regulation (154), although the extent remains to be 513 

determined. Unfortunately, due to the complexity of the linked interactions, it is difficult to 514 

separate and study the effects of these influences independently. Nevertheless, there remains 515 
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considerable scientific interest in the mechanisms of RSA, and increasing our understanding of 516 

RSA will significantly aid in elucidating the mechanisms of slow breathing.  517 
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3.5. Slow Breathing  518 

Slow breathing (SB) is defined as a respiration rate between 4-10 breaths per minute 519 

(bpm) (245). This is considerably lower than the rate of spontaneous breathing, which is between 520 

12-18 bpm (14). Respiration at this reduced rate is associated with a variety of increased 521 

physiological and psychological health benefits, most notably a reduction in BP (191, 245). 522 

Decreased BP mediated by SB has been observed in healthy individuals (2, 66, 199) as well as 523 

clinical populations such as individuals with hypertension (118), type 1 and 2 diabetes (18, 249), 524 

and post-traumatic stress disorder (84). However, SB is by no means a new phenomenon. While 525 

the research and clinical interest in SB has increased relatively recently, reported benefits of SB 526 

have been observed throughout history (245). 527 

3.5.1 Brief History of Slow Breathing 528 

Indeed, SB has been practiced for thousands of years as a component of meditation and 529 

yoga (255). In eastern cultures, one of the first mentioned instances of SB is pranayama 530 

breathing and its derivatives, which refer to breath control in a yogic context (245). However, 531 

research interest in SB developed only in the mid-20th century, shortly after its introduction in 532 

western countries in the late 1800s (245). While respiration-based treatments for diseases such as 533 

asthma already existed in western cultures, these treatments have been primarily characterised as 534 

methodological relaxation exercises as their reported efficacy has been largely anecdotal. The 535 

most notable respiration-based treatments include the Buteyko and Papworth methods (coined by 536 

physiologist Konstantin Pavlovich Buteyko and doctors at the Papworth Hospital respectfully 537 

(111, 131)). Unfortunately, there is a dearth of published clinical trials investigating these early 538 

methods (34, 111). Nevertheless, following the introduction of SB in western medical 539 

communities, scientific research interest in SB has increased considerably. 540 



 34 

As research interest in SB grew, devices were designed to facilitate SB practices. 541 

Researchers developed device-guided breathing and biofeedback devices specifically for clinical 542 

use (for review, see: (90)). As well, a subfield of tools focussed on “cardiorespiratory 543 

biofeedback” was pioneered by researchers Lehrer and Vaschillo (reviewed in: (159)). In the 544 

consumer market, the most prominent commercially available SB device is currently the 545 

RESPeRATE (Intercure Ltd., Israel) (39, 151), which induces SB by monitoring respiration in 546 

real-time and slowly reducing respiration rate via auditory cues to an individualized frequency. 547 

The RESPeRATE device has been recommended by the Food and Drug Administration and is 548 

the only commercially available SB device recommended by the American Health Association as 549 

an adjuvant treatment for hypertension (30). A systematic review and meta-analysis of the 550 

efficacy of the RESPeRATE device in lowering BP found that the RESPeRATE acutely 551 

decreases SBP by 3.67 mmHg and DBP by 2.51 mmHg (176). The effect of device-guided SB on 552 

BP has been also analysed recently by several other review papers (39, 151), indicating a 553 

growing interest in device-guided SB. 554 

Indeed, the first decade of the 21st century has seen an emergence of literature regarding 555 

device-guided SB, SB mechanisms, and the clinical benefits of SB in both clinical populations 556 

and healthy individuals (245). Studies investigating acute BP reductions mediated by SB have 557 

observed BP reductions in populations with type 1 and 2 diabetes (18, 249), hypertension (118), 558 

post-traumatic stress disorder (84), and even healthy normotensive individuals (2, 66, 199). A 559 

recent meta-analysis of 608 participants with hypertension reported an average decrease of 4 560 

mmHg SBP and 3 mmHg DBP by chronic practice of device-guided SB (30). However, a 2014 561 

meta-analysis with inclusion criteria excluding studies without randomized controls observed no 562 
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significant effect of device-guided SB in patients with hypertension (287). These conflicting 563 

results indicate a need for further research regarding the long-term effects of SB.  564 

Research investigating the mechanisms of SB is still being conducted. It has been 565 

suggested that the positive health effects of SB stem from a wide range of physiological factors. 566 

These include a shift in autonomic balance towards parasympathetic dominance (204), increased 567 

BRS (17), and increased ventilation gas exchange efficiency (245, 262). However, there 568 

currently exist multiple theories regarding the mechanisms through which SB reduces BP. The 569 

following section will summarize the most prevalent theories. 570 

3.5.2 Proposed Mechanisms of Slow Breathing  571 

 In part due to our incomplete understanding of cardiorespiratory phenomena including 572 

RSA (previously described in Section 3.4.2), there currently exist multiple, possibly co-573 

dependent theories regarding the mechanisms surrounding SB (245).  574 

Firstly, SB may cause a shift in autonomic balance from sympathetic regulation toward 575 

parasympathetic regulation, thus contributing to a reduction in BP by pathways described in 576 

Section 3.2 and Section 3.4.2. It has been suggested that decreases in SNS activity are mediated 577 

by lung stretch receptor activation. As respiration rate decreases, the accompanying 578 

compensatory increase in tidal volume results in increased activation of cardiopulmonary stretch 579 

receptors, thus reducing sympathetic activity (245). Indeed, decreases in sympathetic activity 580 

following lung inflation have been observed in artificially ventilated anesthetized cats (91). 581 

However, feasible methods for quantifying human cardiopulmonary stretch receptor activity are 582 

limited (285). Therefore, lung inflation-mediated decreases in SNS are difficult to 583 

experimentally validate in humans. Nevertheless, there is evidence to support the contribution of 584 

autonomic factors to SB-mediated decreases in BP. Studies have demonstrated acute decreases in 585 
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sympathetic outflow following SB in normotensive populations (2, 208, 254), patients with 586 

hypertension (63, 108, 202, 261), and patients with COPD (239). Therefore, it is proposed that 587 

lung inflation-mediated decreases in SNS leads to vasodilation of peripheral vasculature, thereby 588 

reducing peripheral resistance and BP (116). 589 

It has also been suggested that the coherence of BP and HR oscillations contributes to the 590 

reduction of BP during SB (245). Specifically, researchers theorize that the synchronization of 591 

BP oscillations and respiration-mediated HR oscillations around 0.1 Hz (6 bpm) lead to the 592 

amplification of both of these oscillations (187), which lead to enhanced baroreflex efficiency 593 

(239). That is, SB entrains cardiovascular oscillations, resulting in increased BRS (20). Some 594 

researchers speculate that BP decreases during SB may result from this cardiovascular oscillation 595 

entrainment (17, 302). Indeed, SB increases both cardiovagal BRS (20, 118, 163, 235, 239) and 596 

HRV (6, 17, 102, 215, 265, 276, 289). In 1964, Angelone and Coulter first observed the 597 

maximization of HRV amplitude (i.e. maximum HR fluctuation amplitude change in BPM) in 598 

healthy men at approximately 0.1 Hz (6). Since then, investigation of HRV maximization as a 599 

mechanism of SB has been extensively explored by researchers Vaschillo and Lehrer, who 600 

coined the terms resonance or resonant frequency (162). Resonance frequency is defined as the 601 

respiration frequency at which resonance of the cardiovascular system is optimized, which is 602 

approximately 0.1 Hz in humans (162, 258). They additionally propose that resonance frequency 603 

is personalised and likely dependent on an individual’s baseline anthropometric measurements, 604 

such as height, as well as biological sex (288). They have demonstrated that breathing at this 605 

personalized resonance frequency, which varies in adult humans from 4.5 to 6.5 breaths per 606 

minute, results in cardiorespiratory resonance, maximization of HRV, and increased BRS (290). 607 

Recent studies investigating the effect of SB at an individualized respiration frequency have 608 
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demonstrated promising but inconclusive results with respect to BP decreases (160, 213, 292). 609 

Therefore, it is currently unclear to what degree resonance frequency affects BP responses to SB. 610 

Further research is required investigating how synchronization of cardiorespiratory oscillations 611 

associated with the vascular baroreflex control loop affects BP decreases during SB.  612 

Lastly, it is hypothesized that RSA plays a central role in BP reductions during SB, but its 613 

exact mechanistic contributions are currently unclear. Slow breathing at 0.1 Hz (6 bpm) 614 

maximizes RSA (6, 110, 163). It is thought that maximization of RSA (i.e. the phasic respiratory 615 

modulation of the aforementioned HR and BP oscillations) contributes to the coherence of these 616 

oscillations and thus increased BRS (83). Additionally, increases in RSA are postulated to 617 

increase the efficiency of pulmonary gas exchange (105). It is hypothesized that RSA conserves 618 

energy at rest by enabling synchrony of alveolar ventilation and capillary perfusion, thus 619 

increasing gas exchange efficiency (104). A large body of evidence directly supporting this 620 

theory is derived from invasive studies in dogs (100, 301, 303), but recent human studies have 621 

similarly concluded that RSA is associated with increased gas exchange efficiency (92, 93). 622 

While promising, further investigation is required to validate the role of RSA in the mechanisms 623 

of SB as understanding in the mechanisms of RSA is likewise incomplete.    624 
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 625 

Figure 1: Many cardiorespiratory pathways are proposed to be relevant to SB-induced reductions 626 
in BP. τ: circulatory delay; ILV: instantaneous lung volume; HR: heart rate; CNS: central nervous 627 

system; SAP: systolic arterial pressure; DAP: diastolic arterial pressure (245). 628 

 629 

In conclusion, the mechanisms governing SB are incompletely understood and clearly 630 

complex (see Figure 1). Whether the changes that occur to BRS and HRV during SB are a cause, 631 

consequence, or simply a correlate of SB remain to be determined. Regardless, it is clear that 632 

further research into all facets outlined in Figure 1 is required to understand the mechanisms 633 

governing SB. Through this research study, by examining the effect of biological variables and 634 

autonomic measures on the BP responses to SB, we aim to increase current understanding in this 635 

field. 636 
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3.6. The Effect of Biological Determinants of Autonomic Measures Governing Blood 637 

Pressure Responses to Slow Breathing 638 

 While the precise pathways by which SB reduces BP continues to be elucidated, it has 639 

been speculated that BRS and HRV contribute mechanistically to SB-mediated BP reductions 640 

(245). As summarized in Section 3.5.2, the amplitude of BP oscillations and HRV are increased 641 

during SB (245). It has been hypothesized that the synchronization of these BP and HR 642 

waveforms increases BRS and contributes to the reduction in BP during SB (245). However, 643 

there has been little research examining baseline BRS and HRV as determinants of BP response 644 

during SB. Conversely, researchers have extensively investigated the determinants of BRS and 645 

HRV. Although this has yet to be studied, we hypothesize that the determinants of BRS and 646 

HRV may affect the degree to which BP is reduced during SB. That is, we propose that the 647 

biological determinants of BRS and HRV may contribute to the effectiveness of SB at reducing 648 

BP. As such, the following sections will summarize key findings regarding the biological 649 

determinants of BRS and HRV as well as the potential influence of these determinants on SB-650 

mediated reductions in BP. 651 

3.6.1 Biological Determinants of Cardiovagal Baroreflex Sensitivity 652 

As previously discussed in Section 3.5.2, increased cardiovagal BRS is a probable 653 

mechanism by which BP is reduced by SB (245), as demonstrated by cardiovagal BRS increases 654 

from baseline during acute bouts of SB (18, 20, 118, 119, 163, 235, 239, 241). However, in the 655 

bulk of SB literature, BRS has been examined as a dependent outcome of SB. Consequently, 656 

there is a lack of research examining the effect of baseline cardiovagal BRS as a determinant of 657 

SB-mediated BP response. Nevertheless, researchers have investigated potential determinants of 658 

cardiovagal BRS, and we speculate that these determinants may play a role in the degree to 659 
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which SB reduces BP. As such, the following section will summarize the current literature 660 

investigating the biological determinants of cardiovagal BRS. 661 

Biological variability in spontaneous cardiovagal BRS has been attributed to age, HR, 662 

SBP, DBP, body mass index (BMI), and sex (126). A study of 1100 individuals reported that 663 

decreased cardiovagal BRS is associated with increased age, HR, SBP, DBP, and BMI (126). 664 

Other studies have likewise demonstrated that cardiovagal BRS decreases as participants age 665 

(54, 71, 98, 238, 263), HR (42, 62, 98, 152), BMI (126, 148, 158, 266), and SBP and DBP (62, 666 

149, 152). While these determinants of cardiovagal BRS have been investigated and are 667 

relatively well established, the effect of sex as a determinant of cardiovagal BRS is still being 668 

debated. While some researchers have reported no impact of sex on cardiovagal BRS (62, 75, 669 

126, 274, 275), other studies demonstrate that females present with lower cardiovagal BRS than 670 

males (23, 46, 149). These varying results on the effect of sex on cardiovagal BRS may be due to 671 

underlying sex differences in baroreflex control (87, 121, 135, 264). Specifically, sex differences 672 

in vascular mechanics within the aortic arch and carotid sinus may contribute to sex differences 673 

in cardiovagal BRS. Indeed, Klassen and colleagues examined the difference in cardiovagal BRS 674 

between females and males and demonstrated that sex differences in cardiovagal BRS were 675 

eliminated after controlling for vascular mechanisms of sex differences (136). That is, no sex 676 

differences in cardiovagal BRS remained once the impacts of these mechanics were eliminated. 677 

Nevertheless, further research is required to validate their findings. Additionally, a positive 678 

relationship between physical activity and cardiovagal BRS has been demonstrated in both males 679 

(144, 197, 198, 282) and females (60, 61) compared to sedentary peers. However, a few studies 680 

(164, 170) as well as the aforementioned meta-analysis (126) observed no statistically significant 681 

effect of physical activity levels on cardiovagal BRS when analysed in the context of a 682 
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multivariate model. In summary, variability in cardiovagal BRS appears to be highly correlated 683 

to age, resting HR, BMI, SBP, and DBP, and is possibly affected by sex differences and physical 684 

activity levels. Interestingly, researchers have observed a positive association between 685 

spontaneous cardiovagal BRS and HRV (60, 61, 115, 140, 161, 163, 282). Indeed, BRS and 686 

HRV appear to share many common determinants. As such, the following section will 687 

summarize the biological determinants of HRV.  688 

3.6.2 Biological Determinants of Heart Rate Variability 689 

As outlined above, SB may reduce BP by achieving an optimal balance between the 690 

sympathetic and parasympathetic nervous systems (i.e. higher PNS activity and/or lower SNS 691 

activity (245)). As summarized in Section 3.4.1, HRV is used as both an indirect index of 692 

autonomic outflow and an indication of overall cardiac health. As such, the determinants of HRV 693 

have been well-described. However, research examining the biological determinants of HRV in 694 

the context of SB remains in its infancy. Therefore, examining the determinants of HRV may 695 

increase our current understanding of which variables affect SB-mediated BP responses. 696 

The most well-established determinants of HRV are age and resting HR (280). Most 697 

notably, a study by Tsuji and colleagues of 2722 human subjects demonstrated that age and HR 698 

are strong independent determinants of HRV (280). Other studies have likewise demonstrated a 699 

strong negative association between age and HRV (8, 60, 141, 143, 166, 267, 284, 304), 700 

including a study examining 1208 individuals from four European countries (271), which 701 

suggests that the association between age and HRV is independent of ethnic differences within 702 

this region. The same study found that HR and HRV were independently similarly associated 703 

with biological and lifestyle determinants (271). The role of HR as an independent predictor of 704 

HRV is also supported by other studies (8, 143). In conclusion, HRV shows a strong negative 705 
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association with age and HR, indicating that those with higher HR and older age have lower 706 

HRV. 707 

 While age and HR continue to be the strongest observed determinants of HRV (304), 708 

researchers have also observed sex differences in HRV (8, 139, 166, 267, 280, 284, 304). The 709 

independent effects of sex and age on HRV were investigated by Umetani and colleagues, who 710 

observed lower HRV measures in females under 30 years of age compared to males of similar 711 

age (284). Sex differences in HRV may be due to sex differences in autonomic control (12, 46, 712 

51). Indeed, researchers observed in a 2016 meta-analysis that, despite having higher HRs on 713 

average, females display a relative dominance of parasympathetic activity in HRV compared to 714 

males (139). However, Umetani and colleagues observed a decrease in sex differences in HRV 715 

between 30 years and 50 years of age, and there were no observed sex differences in HRV after 716 

age 50 (284). The authors suggest that higher levels of sympathetic activity in young males and 717 

the decrease in sympathetic activity with age may contribute to sex differences in HRV after age 718 

50; however, physical activity levels were not controlled in their analyses, which may have 719 

affected observed sex differences in HRV in young populations (284). Further research 720 

investigating sex differences in HRV in populations aged 50 and over is required. In summary, it 721 

currently appears that HRV is higher in males compared to females until approximately 50 years 722 

of age, after which sex differences in HRV disappear.  723 

Notably, the authors of the same 2016 meta-analysis investigating sex differences in 724 

HRV also observed a strong correlation between HRV and physical activity (139). However, 725 

many studies failed to report physical activity levels, thus rendering the authors unable to control 726 

for physical activity in their meta-analyses (139). Nonetheless, several other studies have 727 

observed a positive relationship between physical activity levels and HRV (60, 61, 96, 216, 240). 728 
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The mechanism behind this association is currently unclear. While it has been suggested that 729 

high physical activity levels lead to increased vagal tone (101), as demonstrated by resting 730 

bradycardia in athletes (25), some researchers have challenged this hypothesis and instead 731 

suggest that other mechanisms result in the bradycardia responsible for increased HRV in 732 

athletes (28). In the aforementioned study including 1208 individuals, weak associations were 733 

observed between HRV and lifestyle factors such as physical activity levels (271). However, the 734 

discrepancy between these results and studies observing a positive relationship between physical 735 

activity levels and HRV may be due to the presence of other confounding variables as well as 736 

non-standardized methods of quantifying physical activity levels (216). As such, further research 737 

is needed to understand the direct effect of physical activity on HRV. 738 

Studies have demonstrated weak or unclear results regarding the associations between 739 

HRV and BMI (8, 124, 138, 279), DBP and SBP (271, 280), and ethnicity (109, 216, 271). While 740 

reduced HRV has been observed in obese subjects (124) and non-obese individuals with higher 741 

BMI (138), other studies have observed no effect of BMI on HRV (8) or no difference in HRV 742 

between underweight and overweight in healthy individuals (279). Independent analyses of DBP 743 

and SBP in a meta-analysis observed that DBP values ≥ 90 mm Hg and SBP values ≥160 mm Hg 744 

were associated with lower and higher HRV, respectively (280). However, the effects were not 745 

significant following stepwise regression analysis (280), indicating that variability in HRV was 746 

attributable to age and heart rate. Similarly, another study observed a very low independent 747 

effect of SBP on HRV (271). In regard to ethnicity, a systematic review and meta-analysis found 748 

that HRV was greater in African Americans relative to European Americans even after 749 

controlling for covariates (109). However, no difference in HRV were observed between 750 

participants from separate European countries (216, 271). Together, these data indicate that the 751 
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degree to which BMI, DBP, SBP, and ethnicity influence HRV is unclear, and further research is 752 

required to separate and identify their effects.  753 

 In summary, HRV is influenced by a multitude of factors. The association between age, 754 

HR, and sex on measures of HRV has been explored extensively, but the relationship between 755 

HRV and variables such as physical activity levels, BMI, DBP, SBP, and ethnicity require 756 

further research. While inter-individual variability in HRV may influence the degree to which BP 757 

decreases during SB, some studies suggest that SB may be an effective tool to lower BP across a 758 

variety of patient characteristics (67, 95).  759 

Therefore, we aim to gain further insight into the mechanisms of SB-mediated BP 760 

reductions by investigating the degree to which determinants of BRS and HRV affect BP 761 

responses to SB. Given the proposed contributions of BRS and HRV in BP response to SB, 762 

investigation of these common determinants may improve our understanding of which factors 763 

influence SB-mediated BP response.  764 
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4. CHAPTER II: MANUSCRIPT 765 

4.1. Introduction 766 

More than one in three individuals are affected by hypertension worldwide (194). 767 

Defined as blood pressure (BP) higher than 130/80 mmHg (299), hypertension places chronic 768 

stress on the vasculature (35) leading to myriad downstream cardiovascular consequences. As 769 

such, hypertension is acknowledged as a major risk factor for serious adverse cardiovascular 770 

events including but not limited to coronary heart disease (132, 174), stroke (157), heart attack 771 

(33), and end-organ failure (220). As such, reduction of cardiovascular disease risk through the 772 

management of hypertension is a crucial public health priority.  773 

Hypertension is frequently treated using pharmacological agents (48, 106, 294), but there 774 

are limits to this approach. While at least 92% of patients worldwide are prescribed 775 

antihypertensive medications (294), predicted medication adherence is as low as 50% within one 776 

year of treatment (22, 37, 73, 250). Moreover, an expected 19.7% of patients are resistant to 777 

antihypertensive medication (37). Recent estimates place the global financial burden of high BP 778 

at US $370 billion, or about 10% of the world’s overall health-care expenditure (195). 779 

Consequently, pharmacologic management of hypertension places an enormous financial burden 780 

on the healthcare system (300). Additionally, there is some data suggesting that the most 781 

commonly prescribed classes of antihypertensive medications are associated with increased 782 

blood glucose levels (45) and risk of adverse metabolic effects (45), myocardial infarction (72, 783 

232), cardiovascular events (32), and cancers (52, 88, 153). Together, these data support the need 784 

for non-pharmacological means of managing hypertension. As such, it is imperative to explore 785 

alternative treatment options that may be effective in lowering BP. 786 
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A promising adjunct treatment to lower BP in hypertensive individuals is device-guided 787 

slow breathing (SB; defined as a respiration rate <10 breaths/min) (245). Indeed, SB has been 788 

demonstrated to acutely decrease BP in individuals with hypertension (119), diabetes (249), and 789 

post-traumatic stress disorder, (84), as well as in healthy populations (2). Additionally, a recent 790 

2019 meta-analysis of randomized controlled trials in patients with hypertension or 791 

prehypertension reported significant reduction in systolic blood pressure (SBP) and diastolic 792 

blood pressure (DBP) following SB interventions of at least 5 minutes per day for 3 days per 793 

week for at least 4 weeks (39). However, while many studies have validated the use of SB as an 794 

effective technique to lower BP, other studies have concluded that SB is not always effective in 795 

lowering BP (5, 151, 176). Given these conflicting findings, it may be that SB-mediated 796 

decreases in BP are not universal, and that BP responses to SB differ between individuals. 797 

Indeed, a meta-analysis of device-guided SB in populations with hypertension reported high 798 

variability in SB-mediated reductions in BP (287). However, our understanding of the potential 799 

drivers of this variability remains poor.  800 

To understand the potential sources of variability in BP responses to SB, one can 801 

consider the physiological pathways through which SB acutely lowers BP. Prevalent theories 802 

span multiple physiological systems and include the contributions of both autonomic and 803 

cardiorespiratory pathways (245). While the mechanisms through which SB decreases BP 804 

continue to be elucidated, baroreflex sensitivity (BRS) and heart rate variability (HRV) have 805 

emerged as two strong contenders for mediators of SB-mediated BP responses. Baroreflex 806 

sensitivity is a measure of the baroreflex’s ability to respond to acute changes in arterial BP 807 

(272). The sequence method of BRS measurement involves the identification of three or more 808 

consecutive heart beats wherein SBP increases and R-R interval (RRI; i.e., the interval between 809 
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successive heartbeats) simultaneously lengthens (i.e., up-BRS), or SBP decreases and RRI 810 

simultaneously shortens (i.e., down-BRS) (217). On the other hand, HRV is the measure of the 811 

variation between individual, successive heartbeats (258), a measure which is often quantified as 812 

the root-mean square differences of successive RRI (RMSSD) (258). During slow breathing, the 813 

amplitude of both blood pressure oscillations and HRV are increased (187, 239). It has been 814 

hypothesized that the synchronization of these oscillations serves to increase BRS and thereby 815 

contributes to the reduction in blood pressure (245). Indeed, slow breathing increases both BRS 816 

(17, 20, 102, 118, 163, 215, 235, 239, 289) and HRV (17, 102, 215, 265, 276, 289). However, no 817 

studies have examined the impacts of baseline BRS and HRV as determinants of a subsequent 818 

SB-mediated blood pressure response. 819 

Given the importance of BRS and HRV in mediating SB-induced reductions in blood 820 

pressure, the determinants of BRS and HRV emerge as candidates for variables that may affect 821 

blood pressure responsiveness to SB. Indeed, the determinants of HRV and BRS have been 822 

thoroughly investigated within non-SB-related contexts. Variability in resting levels of BRS have 823 

been attributed to a number of biological and lifestyle factors, including SBP (62, 149, 152), 824 

body mass index (BMI) (126, 148, 158, 266), and, to a lesser extent, physical activity levels (60, 825 

61, 144, 197, 198, 282). Similarly, there is evidence to suggest that variability in resting HRV is 826 

associated with measures of resting SBP (271, 280), BMI (8, 124, 138), and with physical 827 

activity levels (60, 61, 96, 216, 240). Given the proposed mechanistic contributions of BRS and 828 

HRV to the blood pressure response to SB, it is possible that the determinants of these variables 829 

may also contribute to inter-individual variability of blood pressure responses to SB.  830 

Therefore, the primary purpose of this study was to determine whether baseline values of 831 

BRS (specifically, up-BRS) and HRV (specifically, RMSSD) are predictors of the magnitude of 832 
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the change in SBP during an acute 15-minute bout of device-guided SB in young healthy 833 

individuals. We hypothesized that higher baseline values of BRS and HRV would be associated 834 

with increased magnitude of decrease in SBP during SB. The secondary purpose of this study 835 

was an exploratory arm, which sought to investigate whether biological and lifestyle 836 

characteristics (resting SBP, BMI, and physical activity levels) are predictors of the SBP 837 

response to SB. We hypothesized that higher resting SBP and BMI, and lower physical activity 838 

levels, would be associated with greater SB-induced decreases in SBP. We anticipate that the 839 

results from this study are positioned to provide insight into which variables predict an 840 

individual’s SB-mediated blood pressure response. This information could ultimately allow for 841 

the identification of sub-populations for which SB is likely to be most effective as an adjunct 842 

treatment for the management of hypertension.  843 
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4.2. Methods 844 

 Participants: We recruited non-smoking men (n=19) and women (n=18) who were free 845 

from cardiovascular, neurological, respiratory, and endocrinological diseases. Women were 846 

either eumenorrheic (cycle length: 22-30 days) or regular users of hormonal contraceptives (n=4; 847 

levonorgestrel and ethinyl estradiol) and were tested during the early follicular phase of the 848 

menstrual cycle or during the placebo phase of hormonal contraceptive use. All participants 849 

provided written, informed consent for the study. This study was conducted in accordance with 850 

the Declaration of Helsinki and was approved by the Faculty of Medicine Institutional Review 851 

Board at McGill University (IRB Study Number: A05-M14-181). 852 

Experimental Design: Each participant attended a familiarization visit prior to their 853 

testing day during which they practiced the SB protocol and experienced all instrumentation. 854 

Participants also completed the International Physical Activity Questionnaire (85) and a health 855 

history questionnaire to assess physical activity levels and to confirm the presence of inclusion 856 

criteria, respectively. 857 

On the test day, participants arrived in the laboratory following a 3-hr fast and 12-hr 858 

abstention from caffeine, strenuous exercise, and alcohol. Testing occurred in a dimly lit room at 859 

an ambient air temperature of 22-25°C. All participants were tested at the same time of day 860 

(08:00 ± 1 hr) to minimize any cardiovascular effects of diurnal hormonal variations, as occurs in 861 

men (11). Participant height and weight were assessed prior to instrumentation. Participants were 862 

instrumented on a padded table and tested in the supine position.  863 

Following instrumentation, participants rested for 10 minutes or until BP values were 864 

stable. Resting BP was reported as the mean of three separate assessments at the brachial artery 865 

via manual sphygmomanometry performed by a trained research assistant. Each assessment was 866 
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separated by 2 minutes of rest. Baseline (BSL) data was then recorded for 15 minutes. Following 867 

BSL, participants underwent the 15-minute device-guided SB protocol using the RESPeRATE 868 

device (Intercure Ltd., Israel). Briefly, the RESPeRATE device induced SB by monitoring 869 

baseline respiration rate during an initial calibration period, and then gradually reducing 870 

respiration rate via auditory musical tones that instruct the user when to inhale and exhale. 871 

Participants were instructed to inhale through the nose and exhale through the mouth. In 872 

addition, participants were informed that they should not hold their breath at any point in time, 873 

and that their eyes should remain open for the duration of the protocol. 874 

 Instrumentation: Participants were instrumented for heart rate (HR; 5-lead ECG), and 875 

beat-by-beat BP was obtained by finger photoplethysmography (Finometer Midi, Finapres, 876 

Amsterdam, The Netherlands), calibrated to the mean of 3 manual BP values.  877 

Respiratory activity was measured by two respiration belts (respiratory belt transducer, 878 

ADInstruments, Dunedin, New Zealand), one placed around the chest at the xiphoid process to 879 

monitor chest respiratory patterns, and the other placed around the abdomen at the umbilicus to 880 

monitor abdominal respiratory patterns. 881 

 Data Analyses: Mean arterial BP (MAP), SBP, and DBP were obtained from the 882 

calibrated beat-to-beat finger BP waveform, and pulse pressure (PP) was calculated as SBP –883 

DBP. Cardiac output (CO) was assessed using the beat-to-beat finger BP signal via the Non-884 

Invasive Cardiac Output algorithm (three-element Windkessel model; ADInstruments). Stroke 885 

volume (SV) was calculated as CO/HR*1000. To account for inter-individual differences in 886 

heart size, CO and SV were normalized to body surface area. That is, CO and SV were divided 887 

by body surface area to calculate cardiac output index (COi) and stroke volume index (SVi), 888 
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respectively. An estimation of body surface area using the height and weight of the participants 889 

was calculated via the Mosteller formula (201): 890 

Body surface area (m2) = √
𝐻𝑒𝑖𝑔ℎ𝑡(𝑐𝑚)×𝑊𝑒𝑖𝑔ℎ𝑡(𝑘𝑔)

3600
   891 

Breathing mechanics were assessed via chest tidal volume index and abdominal tidal 892 

volume index. Tidal volume indices were calibrated by a maximal inspiratory capacity 893 

maneuver, in which two maximum inhalations and exhalations were performed prior to the SB 894 

protocol. The maximum value for each of the chest and abdominal signals across both 895 

inhalations was assigned a value of 100% and the minimum value across both exhalations was 896 

assigned a value of 0%. Then, two-point calibrations were applied to each of the chest and 897 

abdominal signals wherein the absolute maximum inspiratory capacity was 100% and the 898 

absolute maximum expiratory capacity was 0%.  899 

 Spontaneous cardiovagal BRS was assessed via the sequence method using Ensemble 900 

software (Elucimed, Wellington, New Zealand), which identified sequences of three or more 901 

consecutive heartbeats in which R-R interval (RRI) and SBP simultaneously increased (up 902 

sequences). A minimal coefficient of correlation between changes in SBP and RRI was required 903 

to validate a sequence (r2 > 0.8). BRS was quantified as the mean slope between SBP and RRI.   904 

HRV was assessed by the root mean square of successive R-R intervals (RMSSD) as 905 

determined via Ensemble (Elucimed, Wellington, New Zealand).  906 

Physical activity levels were quantified as total weekly metabolic expenditure (MET-907 

mins/week) of all low, moderate, and vigorous activities.  908 

Data from the last 10 minutes of BSL were used to determine resting BRS and HRV, as 909 

large time bins (e.g. 3 mins or greater) have been recommended to maximize the accuracy of 910 

these quantifications of BRS and HRV (147).  To quantify responses to SB, the last 5 minutes of 911 
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SB were extracted within each participant, in line with data published from our laboratory which 912 

indicated that the final 5-mins of RESPeRATE-guided SB were associated with the achievement 913 

of steady state respiratory patterns (2). To calculate relative responses to SB, data from the final 914 

5-mins of BSL measures were extracted to enable the calculation of delta values (i.e., mean of 915 

the last 5-mins of SB – last 5-mins of BSL). Responses to SB were defined in terms of 916 

cardiorespiratory responses, that is, changes in COi, HR, SVi, PP, respiration rate, and chest and 917 

abdominal tidal volume indices.  918 

 Statistical Analyses: The effects of resting BRS and HRV on the magnitude of change in 919 

BP during SB were analyzed via simple linear regressions (P-value to reject = 0.05; P-values 920 

<0.15 were considered trending; R-value to reject = 0.8; GraphPad Prism 8 (La Jolla, 921 

California)). Effects of biological and lifestyle variables of interest (i.e., resting SBP, BMI, 922 

physical activity levels) on BP responses to SB were also assessed via simple linear regressions 923 

(P-value to reject = 0.05; P-values <0.15 were considered trends; R-value to reject = 0.8; 924 

GraphPad Prism 8 (La Jolla, California)). Cardiorespiratory responses to SB were analyzed via 925 

2-tailed paired t-tests (alpha set to 0.05; P-values <0.15 were considered trending). 926 

Post hoc analyses of key cardiorespiratory variables (i.e., COi, PP, and chest tidal volume 927 

index) were performed to investigate whether the change in work performed by the heart (i.e., 928 

COi), the relationship between the change in SBP and DBP (i.e., PP) or change in respiratory 929 

mechanics (i.e., chest tidal volume index, a non-invasive technique which offers similar 930 

sensitivity towards changes in tidal volume as spirometry (186)) predict the change in SBP 931 

during SB. The relationships between the changes in these cardiorespiratory variables and the 932 

change in SBP were analyzed via simple linear regressions (P-value to reject = 0.05; P-values 933 
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<0.15 were considered trending; R-value to reject = 0.8; GraphPad Prism 8 (La Jolla, 934 

California)).   935 

Finally, post hoc analyses were conducted to categorize participants as responders or 936 

non-responders to the SB stimulus. Based on data demonstrating that a change in SBP as low as 937 

2 mmHg has been shown to be clinical meaningful (224), “responders” were defined as 938 

participants whose decrease in SBP from baseline to SB was greater than 2 mmHg, and “non-939 

responders” were defined as participants whose increase in SBP from baseline to SB was greater 940 

than 2 mmHg. A 2-way ANOVA was used to analyse how the SBP response differs between 941 

responders and non-responders. Further analyses on responder groups were performed via 2-942 

tailed unpaired t-tests to determine whether autonomic (i.e., resting up-BRS and RMSSD), 943 

biological (i.e., resting SBP and BMI), lifestyle (i.e., physical activity), and cardiorespiratory 944 

responses (i.e. COi, HR, SVi, PP, respiration rate, and chest and abdominal tidal volume indices) 945 

to SB differed between groups. The cardiorespiratory variables investigated were expanded to 946 

evaluate if additional determinants thought to affect SBP, such as the components of COi (HR 947 

and SVi) (190, 246), and additional determinant of breathing mechanics (abdominal tidal volume 948 

index and respiration rate) (2, 293) differ between responders and non-responders. All data are 949 

reported as mean ± standard deviation (SD) with an alpha value set to 0.05. Given our small 950 

sample size (due to restrictions on human data collection resulting from the COVID-19 951 

pandemic during the execution of this master’s thesis), we considered P-values < 0.15 as 952 

statistical “trends”.  953 
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4.3. Results 954 

Baseline characteristics: The participants were young (22 ± 2 years of age; range: 20-29) 955 

with a lean mean BMI (23 ± 3 kg/m2; 17-28). Seven participants (n = 3 men and n = 4 women)  956 

were excluded from data analyses due to the onset of adverse symptoms during the SB protocol 957 

(light headedness, general malaise) (n=3), failure to stay awake during the SB protocol (n=2), or 958 

hypertensive baseline BP (n=2). On average, participants performed physical activity at least 3 959 

times a week and had a weekly metabolic expenditure of 4410 ± 2321 MET-mins/week (1106-960 

12558). The participants were normotensive (resting SBP of 112 ± 9 mmHg (91-127); resting 961 

DBP of 70 ± 7 mmHg (57-81)).    962 

Baseline data and responses to SB: Participants’ resting up-BRS and RMSSD were 59 ± 963 

26 ms (21-122) and 29 ± 12 ms/mmHg (8-68), respectively. Cardiorespiratory measures at BSL 964 

(i.e., during the last 5-mins of BSL) and during SB are reported in Table 1 and the magnitude of 965 

the change in SBP is reported in Figure 1A. When all participants were considered together, 966 

SBP, DBP, PP and HR remained unchanged from baseline (Table 1). In contrast, MAP, COi and 967 

SVi tended to be increased during SB (Table 1). Respiration rate was reduced and both chest and 968 

abdomen tidal volume indices were increased with SB (all P<0.01; Table 1). 969 

Autonomic, biological, and lifestyle variables as predictors of the SBP response to SB: 970 

Neither autonomic (i.e., resting up-BRS or RMSSD), resting SBP, or lifestyle (i.e., physical 971 

activity levels as quantified by MET-mins/week) variables predicted the magnitude of the SBP 972 

response to SB (Table 2). A trend towards a weak positive correlation (R2 = 0.10, P = 0.09) was 973 

observed between BMI and the magnitude of the SBP response to SB (Table 2).  974 

Cardiorespiratory responses to SB as predictors of the SBP response to SB: Because 975 

autonomic, biological, and lifestyle variables failed to account for the change in SBP during SB, 976 
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we sought to determine whether cardiorespiratory responses to SB predicted the magnitude of 977 

SB-induced SBP change. The SB-induced change in chest tidal volume index (21 ± 18 Δ%max 978 

(2.4 - 67 Δ%max) was not correlated with the change in SBP (R2 = 0.01; P = 0.70). However, we 979 

observed a weak but significant positive correlation between the change in COi and the SB-980 

induced change in SBP, as well as a strong positive relationship between the change in PP and 981 

the change in magnitude of SBP during SB (Figure 2). 982 

SB responders versus non-responders: As a result of the high degree of variability in both 983 

the magnitude of the SBP response and the time course of changes in SBP during SB (Figure 1A 984 

and 1B, respectively), a categorical analysis comparing responders and non-responders was 985 

performed to investigate whether autonomic, biological, or lifestyle variables or 986 

cardiorespiratory responses to SB varied between SB responders and non-responders. By design, 987 

the responders and non-responders differ in their SBP response to SB. No main effect of group 988 

(responders vs non-responders) or condition (BSL vs SB) was observed. However, we observed a 989 

trending interaction between the effect of group and the condition on SBP (Figure 3). As 990 

expected, responders exhibited a decrease in SBP from BSL while non-responders exhibited an 991 

increase in SBP from BSL (Figure 3). In addition, responders tended to have greater resting SBP 992 

than non-responders (Figure 3).  993 

Resting up-BRS was similar between responders and non-responders (28 ± 8 ms/mmHg 994 

vs 29 ± 18 ms/mmHg, respectively, P = 0.94), as was resting RMSSD (67 ± 28 ms vs 55 ± 20 995 

ms, P = 0.28). In addition, both BMI (22 ± 3 kg/m2 vs 24 ± 2 kg/m2, P = 0.99) and physical 996 

activity levels (4276 ± 1151 MET-mins/week vs 3579 ± 1513 MET-mins/week, P = 0.46) were 997 

similar between responders and non-responders.  998 



 56 

SB-induced changes in HR, chest tidal volume index, and respiration rate were similar 999 

between groups (Table 3). However, we observed a trend towards greater increases in abdominal 1000 

tidal volume index in responders relative to non-responders (Figure 4). Also, SB-mediated 1001 

increases in COi and SVi tended to be smaller in responders than non-responders (Figure 4), and  1002 

the PP response to SB differed between groups in that a net negative change in PP was observed 1003 

in responders while a net positive change was observed in non-responders (Figure 4).  1004 
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4.4. Discussion  1005 

The aim of this study was to investigate potential contributors to inter-subject variability 1006 

in BP responses to device-guided SB across a cohort of healthy normotensive 1007 

individuals. Resting values of autonomic function, which have been proposed to be strong 1008 

mediators of the BP response to SB, did not appear to predict SBP responses to SB. Similarly, 1009 

the biological and lifestyle variables which determine BRS and HRV did not predict the SBP 1010 

response to SB. Rather, cardiovascular responses to SB (i.e., COi and PP) appeared to predict the 1011 

extent to which an individual would demonstrate a favourable reduction in SBP during a bout of 1012 

SB. Further supporting this finding was a subgroup analysis of SB responders versus non-1013 

responders which demonstrated that responders were characterized by higher resting levels of 1014 

SBP than non-responders. This analysis also demonstrated that unfavourable SBP responses to 1015 

SB may result from smaller increases in abdominal respiration than SB responders, which leads 1016 

to relatively high SB-induced increases in COi, SVi, and PP. We speculate that SB responders 1017 

may be characterized by a preponderance towards abdominal versus chest breathing during SB, 1018 

which limits cardiac loading, and thus enables SB-induced reductions in SBP in these 1019 

individuals. Together, these data suggest that cardiorespiratory responses to SB (i.e. abdominal 1020 

breathing, COi, SVi, PP) may play an important and poorly recognized role in mediating 1021 

favorable SBP responses to SB. 1022 

Contrary to our hypothesis, resting autonomic factors (i.e., up-BRS and RMSSD), and the 1023 

related biological (i.e., resting SBP and BMI) and lifestyle (i.e., physical activity) determinants 1024 

of these outcomes, did not predict the magnitude of the SBP response to SB. While we observed 1025 

a trending positive relationship between participants’ BMI and the magnitude of the SBP 1026 

response to SB, the correlation was weak (R2 = 0.14) (107). That is, despite trending statistical 1027 
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significance (P = 0.09), the low Pearson coefficient (R2 = 0.14) indicates a highly variable 1028 

relationship between BMI and SBP response to SB. As such, BMI is not predictive of the SBP 1029 

response to SB. To the best of our knowledge, no studies have looked at autonomic factors as 1030 

predictors of the SB-mediated SBP response. Previous investigations have suggested that 1031 

autonomic factors are contributors to SB-mediated decreases in BP (17, 302), in that SB has been 1032 

shown to increase both BRS (17, 20, 102, 118, 163, 215, 235, 239, 289) and HRV (17, 102, 215, 1033 

265, 276, 289). However, our findings indicate that neither resting indices of cardiovagal BRS or 1034 

HRV are viable predictors of an individual’s SBP response to SB. In other words, despite the 1035 

established role of changes in cardiovagal BRS and HRV as mediators of BP responses to SB 1036 

(17, 302), our data suggest that inter-individual differences in resting indices of autonomic 1037 

function cannot account for the variability in the SBP responses to SB.  1038 

Conversely, we observed that magnitude of SBP response to SB may instead be 1039 

dependent on resting SBP values. That is, we observed that SB responders tended to present 1040 

higher resting SBP than non-responders. Indeed, it is possible that inter-individual variability in 1041 

SBP at rest may contribute to producing the variability in SBP responses to SB (Figure 1A) in a 1042 

normotensive and healthy population. A previous study within our laboratory observed 1043 

consistent decreases in SBP during the last five minutes of SB in a similar young and healthy 1044 

population (2). However, the discrepancy in our laboratory may be attributed to elevated resting 1045 

SBP values compared to our similar young and healthy population (117.5 ± 9.5 vs 113.0 ± 10.0 1046 

mmHg, respectively) (2). In alignment with this observation, another study in a young and 1047 

healthy population observed variability in BP responses to SB (66). Although the BP response to 1048 

SB was reported as MAP, a large range in the percent change in MAP during SB from baseline (-1049 

9.1–1.2%) was observed, indicating considerable variability in BP response to SB (66). Notably, 1050 
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the individual with the greatest BP increase had the lowest resting BP (66). Overall, these data 1051 

suggest that SB may lower BP more effectively in individuals with slightly higher resting SBP 1052 

and variability in resting SBP may attribute to variable SBP response to SB.   1053 

The present study also demonstrated that those individuals who increased their abdominal 1054 

breathing during SB also exhibited the greatest SB-induced reductions in SBP. Previous studies 1055 

have demonstrated that the interactions between abdominal vs chest breathing (i.e. breathing 1056 

type) and inspiration vs expiration (i.e. breathing phase) affect venous return, a determinant of 1057 

SV (193) and ultimately SBP (185). Inspiration leads to an increase in venous return to the right 1058 

atrium, which subsequently decreases SV of the left ventricle and therefore SBP (193). 1059 

Moreover, chest breathing throughout inspiration has also been demonstrated to increase venous 1060 

return (193). The reverse occurs during expiration, during which venous return to the right 1061 

atrium decreases, leading to increases in SV of the left ventricle and thus SBP (245). In contrast, 1062 

abdominal breathing during expiration leads to larger increases in venous return (193). Notably, 1063 

in our study we observed that responders to the bout of SB tended to have larger increases in 1064 

abdominal breathing compared to non-responders, whereas chest breathing was similar between 1065 

groups. Additionally, the breathing pattern of the RESPeRATE involves doubling the expiration 1066 

to inspiration time (80). As such, abdominal breathing will be a greater determinant of changes 1067 

in hemodynamic outcomes than chest during device-guided SB. In line with these findings, 1068 

responders tended to maintain COi and SVi throughout SB, while non-responders tended to 1069 

increase COi and SVi. Cardiac output, the product of SV and HR, is a determinant of SBP (185). 1070 

Therefore, the increases in SBP observed in non-responders during SB may result from increases 1071 

in SVi via increased venous return.  Overall, the larger increases in abdominal breathing 1072 

observed in responders may be responsible for the decreased SV, and therefore SBP via 1073 
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increased venous return during expiration. The reverse is true for non-responders as the smaller 1074 

increase in abdominal breathing observed may be responsible for the increased SV, and therefore 1075 

SBP via decreased venous return during expiration.  1076 

Additionally, changes in SV may account for the changes in PP during SB. Indeed, 1077 

responders experienced narrowing of PP while non-responders experienced widening of PP and 1078 

larger increases in SVi, which may attribute to the differing SBP response to SB. That is, despite 1079 

similar baseline measures of DBP between groups, responders decreased SBP, and non-1080 

responders increased SBP during SB. Interestingly, SV is directly correlated with PP, in that the 1081 

widening of PP in young, and healthy participants is suggested to be associated with increases in 1082 

SV (4). Through this association, elevated PP has emerged as an important risk factor for the 1083 

development of cardiovascular disease (27). More specifically, the widening of PP due to 1084 

increased SBP while DBP remains within the normal range, has been associated with increased 1085 

risk of heart disease (112). As such, SB is a promising adjunct treatment because of its effects on 1086 

narrowing PP via the decrease in SBP and maintenance of DBP, a reliable indicator of 1087 

cardiovascular health. Together, these findings suggest that variability in the SBP and PP 1088 

response to SB may be mediated by changes in SV, which arise from respiratory mechanisms. 1089 

4.4.1. Methodological Considerations 1090 

The findings presented in our study should be taken in the context of the following 1091 

limitations. First, the number of variables we were able to include in our regression analysis was 1092 

limited by our small sample size (n=30), which was the product of an unforeseen and drastic 1093 

limitation to the data collection period for this thesis due to restrictions related to the global 1094 

COVID-19 pandemic. While previous studies have established other variables including age (8, 1095 

54, 60, 71, 98, 141, 143, 166, 238, 263, 267, 271, 280, 284, 304), resting HR(8, 42, 62, 98, 143, 1096 
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152, 271, 280), diastolic BP (62, 149, 152, 271, 280), ethnicity (109, 216, 271) are determinants 1097 

of the autonomic outcomes explored in this study, additional regressions would have been 1098 

underpowered due to the small sample size. Thus, a larger sample size is necessary to adequately 1099 

evaluate additional related biological factors. Additionally, the initial pandemic restrictions 1100 

required that we restrict ourselves to assessing individuals at low risk for the adverse effects of 1101 

COVID-19. Given our resultant population of young, healthy, lean, and normotensive 1102 

individuals, the variability in age, BMI, physical activity and resting SBP was limited. However, 1103 

we would still assert that this data set allows for meaningful conclusions, as it is helpful to first 1104 

evaluate potential predictors of the SBP response to SB in the absence of cardiovascular 1105 

dysfunction, as is often observed in clinical populations including individuals with hypertension. 1106 

That is, we believe that it is important to understand “normal” physiology before attempting to 1107 

elucidate the effects of the pathophysiology (i.e., hypertension), which introduces even further 1108 

variability. That being said, further research is clearly necessary to test the validity of our 1109 

findings in a hypertensive population. 1110 

4.5. Conclusions 1111 

Our study provided insight on the efficacy of SB in a young, healthy, and normotensive 1112 

population. That is, the SBP response to SB may be determined by cardiorespiratory 1113 

mechanisms, as opposed to measures of resting autonomic function. In addition to the lower 1114 

respiration rate induced during device-guided SB, the type of breathing performed appears to 1115 

play an important role on the effectiveness of the SB-mediated SBP response. As SB has been 1116 

recommended as an adjunct treatment for hypertension, it may be that maximizing abdominal 1117 

rather than chest breathing would be preferable to optimize the benefits of SB (i.e. SBP 1118 

reduction). Given that SB appears to be most effective in young, healthy, and normotensive 1119 
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individuals with higher resting SBP, SB is likely to be a promising therapy for the prevention 1120 

and treatment of hypertension.   1121 
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4.6. Tables and Figures 1122 

Table 1: Cardiorespiratory responses to slow breathing (SB).  1123 

 Baseline SB P value 

SBP (mmHg) 113 ± 10 (91 –130) 114 ± 10 (90 – 129) 0.36 

DBP (mmHg) 70 ± 8 (50 – 81) 70 ± 8 (50 – 81) 0.19 

MAP (mmHg) 87 ± 7 (68 – 100) 89 ± 7 (71 – 101) 0.14 

PP (mmHg) 44 ± 8 (26 – 68) 44 ± 9 (27 – 71) 0.61 

HR (bpm) 63 ± 7 (51 – 84) 64 ± 8 (52 – 82) 0.37 

SVi (mL/m2) 49 ± 8 (36 – 66) 51 ± 7 (35 – 61) 0.12 

COi (L/min/m2) 3.1 ± 1.2 (2.0 - 4.8) 3.2 ± 0.6 (2.0 – 4.3) 0.07 

Respiration Rate 

(breaths/min) 
11 ± 4 (5 – 19) 5.1 ± 0.9 (4.2 – 9.4) <0.01 

Tidal volume index – 

Chest (%max) 
14 ± 9 (5 – 48) 37 ± 21 (13 – 89) <0.01 

Tidal volume index – 

Abdomen (% max) 
24 ± 17 (5 – 76) 46 ± 20 (7 – 82) <0.01 

*, p<0.05. Data are mean ± standard deviation (range). COi, cardiac index; DBP, diastolic blood 1124 

pressure; HR, heart rate; MAP, mean arterial pressure; PP, pulse pressure SBP, systolic blood 1125 

pressure; SVi, stroke volume index.  1126 
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Table 2: Baseline autonomic and biological variables as predictors of the magnitude of the 1127 

systolic blood pressure response to slow breathing.  1128 

  1129 

 R2 P value 

RMSSD <0.01 0.73 

Up-BRS <0.01 0.71 

SBP 0.02 0.43 

BMI 0.10 0.09 

Physical Activity 0.09 0.19 

BMI, body mass index; RMSSD, root mean squared of successive RR interval differences; SBP, 1130 

systolic blood pressure; up-BRS, baroreflex sensitivity up sequences.  1131 



 65 

Table 3: Slow breathing induced changes in cardiorespiratory measures in responders and 1132 

non-responders.  1133 

 1134 

 Responders Non-responders P value 

HR (Δbpm) 1.29 ± 5.41 (-9.69 – 8.59) 1.59 ± 4.41 (-4.54 – 8.00) 0.89 

Respiration rate 

(Δbreaths/min) 
-5.78 ± 3.77 (-11.48 – 0.11) -7.21 ± 4.44 (-14.16 – (-1.22)) 

0.45 

Chest tidal volume 

index (Δ%max) 
36.25 ± 23.50 (2.42 – 67.23) 16.25 ± 10.13 (4.82 – 38.87) 

0.21 

Data are mean ± standard deviation (range). HR, heart rate.    1135 
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Figure 1: Systolic blood pressure (SBP) response (A) and time course (B) during slow 1137 

breathing varied across participants. A. We observed a large degree of variability in the SBP 1138 

response to SB (0.8 ± 4.7 ΔmmHg (-8.9 - 12.2 ΔmmHg)).  B. Four participants were selected to 1139 

represent four distinct sub-groups of SBP time course throughout the 15-minute bout of SB. 1140 

Participant 93 represents a classic responder, while participant 106 represents a classic non-1141 

responder. Participant 115 represents the sub-group of participants in whom SBP did not change 1142 

markedly throughout SB. Participant 81 represents a sub-group of participants who initially 1143 

responded to SB (i.e., experienced a reduction in SBP), but this response was no longer observed 1144 

towards the end of the SB intervention.   1145 
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   1146 

 1147 
 1148 

Figure 2: Change in pulse pressure (PP) and cardiac index (COi) are strongly and weakly 

correlated, respectively, with the magnitude of systolic blood pressure (SBP) change during 

slow breathing.  A positive relationship between the change in pulse pressure (0.27 ± 2.88 

ΔmmHg (-4.59-7.00 ΔmmHg)) and the change in SBP during SB (0.8 ± 4.7 ΔmmHg (-8.9 – 2.2 

ΔmmHg) was demonstrated (R2=0.87; P<0.01). A weak but significant positive correlation 

between the change in COi (0.10 ± 0.27 ΔL/min/m2 (-0.49 – 0.66 ΔL/min/m2) and the SB-

induced change in SBP was demonstrated (R2 = 0.14; P = 0.04). 
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Figure 3: Systolic blood pressure (SBP) differed between responders and non-responders. 1149 

*, P < 0.05; #, P <0.10. No main effect of group (responders vs non-responders; P=0.43) or 1150 

condition (BSL vs SB; P=0.80) was observed. However, we observed a trending interaction 1151 

between the effect of group and the condition on SBP (P=0.11). As expected, in responders SBP 1152 

was decreased during SB relative to baseline (114 ± 10 mmHg vs 117 ± 7 mmHg, respectively; 1153 

P<0.01), while in non-responders SBP was increased relative to baseline (116 ± 10 mmHg vs 1154 

111 ± 10 mmHg; P<0.01). Responders tended to demonstrate greater resting SBP than non-1155 

responders (117 ± 7 mmHg vs 111 ± 10 mmHg, respectively, P=0.09). 1156 

 

R NR

90

100

110

120

130

140

S
B

P
 (

m
m

H
g
)

Baseline

Slow Beathing

??

#

* * 



 69 

   

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 4: Changes in cardiorespiratory variables differed between responders and non-1157 

responders. The change in pulse pressure (PP) response differed between responders and non-1158 

responders (-2.35 ± 1.56 vs 2.21 ± 1.67 mmHg, respectively; P<0.01). The change in cardiac 1159 

index (COi) tended to differ between responders and non-responders (0.02 ± 0.31 vs 0.22 ± 0.22 1160 

ΔL/min/m2; P=0.12), respectively. The change in stroke volume index (SVi) response tended to 1161 

differ between responders and non-responders (0.69 ± 1.80 vs 2.61 ± 3.15 ΔmL/m2; p=0.14), 1162 

respectively. The change in abdominal tidal volume index response tended to smaller increase in 1163 

responders compared to non-responders (31.77 + 25.75 Δ%max vs 13.67 ± 3.58 Δ%max; 1164 

P=0.09), respectively.  1165 
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