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Abstract

Artificial intelligence (AI) research is centered around designing scalable learning systems

that can solve complex tasks in an efficient manner. The main tool that we analyze in this

thesis is deep reinforcement learning (deep RL), which provides a general learning framework

for AI systems to solve sequential decision making problems. Deep RL, however, can often

require millions of samples to attain near-human performance and is often highly sensitive

to both noise in the environment and hyperparameter choices. In this thesis, we argue

that these shortcomings can be addressed by decomposing the value estimation problem

into separate components that can be learned in parallel. To this end, we first consider

decomposing the reward function into many factors and learning a separate value function

for each separate component. Since each individual value function typically only depends

on a subset of all features, the value estimate can be approximated more easily by a low-

dimensional representation, enabling faster learning. Next, we suggest learning an estimator

for the expected reward in order to train the value function. We demonstrate that this simple

decomposition improves performance under stochastic rewards in many deep RL applications.

Furthermore, we extend this approach to value functions by using shorter horizon values as

a training signal for longer horizons. The separation of value functions into these shorter

horizon components has useful properties in scalability and performance. We then unify these

decompositions under one unifying theorem, which reveals the conditions under which we

may expect the decompositions to differ from traditional approaches. Crucially, we discover

that we can break the equivalence with non-decomposed approaches by using a different

learning rate for each decomposed value function. Thus, our final work analyzes the use

of Jacobi preconditioning in TD learning, which prescribes a principled approach for a per

parameter learning rate. We find that once the global learning rate has been tuned, Jacobi

preconditioning is competitive with state of the art adaptive optimizers.
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Abrégé

La recherche sur l’intelligence artificielle (IA) est centrée sur la conception de systèmes

d’apprentissage capables de résoudre des tâches complexes de manière efficace. Le principal

outil que nous analysons dans cette thèse est l’apprentissage par renforcement profond (deep

RL), qui fournit un cadre d’apprentissage général aux systèmes d’IA pour résoudre des

problèmes de prise de décision séquentielle. Cependant, Deep RL peut souvent nécessiter

des millions d’éxamples pour atteindre des performances quasi humaines et est souvent

très sensible au bruit dans l’environnement et aux choix d’hyperparamètres. Dans cette

thèse, nous soutenons que ces faults peuvent être surmontées en décomposant le problème

d’estimation de valeur en composantes distinctes qui peuvent être apprises en parallèle. À

cette fin, nous envisageons d’abord de décomposer la fonction de récompense en plusieurs

facteurs et d’apprendre une fonction de valeur distincte pour chaque composant. Étant

donné que chaque fonction de valeur individuelle ne dépend généralement que d’un sous-

ensemble de toutes les caractéristiques, l’estimation de la valeur peut être approchée plus

facilement par une représentation de faible dimension, permettant un apprentissage plus

rapide. Ensuite, nous suggérons d’apprendre un estimateur de la récompense attendue afin

d’entrâıner la fonction de valeur. Nous démontrons que cette simple décomposition améliore

les performances sous récompenses stochastiques dans de nombreuses applications deep RL. De

plus, nous étendons cette approche aux fonctions de valeur en utilisant des valeurs d’horizon

plus courtes comme signal d’apprentissage pour des horizons plus longs. La séparation des

fonctions de valeur en ces composants d’horizon plus courts a des propriétés utiles en termes

d’évolutivité et de performances. Nous unifions ensuite ces décompositions sous un théorème

unificateur, qui révèle les conditions dans lesquelles nous pouvons nous attendre à ce que les

décompositions diffèrent des approches traditionnelles. Fondamentalement, nous découvrons

que nous pouvons rompre l’équivalence avec des approches non décomposées en utilisant un

taux d’apprentissage différent pour chaque fonction de valeur décomposée. Ainsi, notre travail

final analyse l’utilisation du préconditionnement Jacobi dans l’apprentissage TD, qui prescrit

une approche de principe pour un taux d’apprentissage par paramètre. Nous constatons

qu’une fois que le taux d’apprentissage global a été réglé, le préconditionnement Jacobi est

compétitif avec les optimiseurs adaptatifs de l’état de l’art.

v
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Contribution to Original Knowledge

This thesis contributes to the field of deep reinforcement learning by proposing several

techniques to effectively solve the value estimation problem. Specifically, we propose to:

1. Decompose the reward function into several components based off the underlying state

space, this allows for:

• Regularized training of value functions, that can be trained independently using a

reduced state space.

2. Use an estimate of the reward function as a replacement for its empirically sampled

counterpart, which provides:

• Variance reduction and improved sample efficiency in certain tabular and deep RL

settings, particularly with stochastic reward functions.

3. Decompose the value function based off of the discount factor, leading to:

• A Bellman-like equation to learn the differences between value functions with

different discount factors.

• A principled approach for setting certain bias-variance hyperparameters.

4. Unify TD based decompositions via the Bellman decomposition theorem, which identifies

potential areas for improvement, including:

• Using a different n-step λ-return for each decomposed value function.

• Using a different learning rate for each decomposed value function.

5. Integrate Jacobi preconditioning with temporal difference methods leading to:

• The extension of Jacobi matrix splitting to the multi-step TD regime.

• An adaptive optimizer that tunes the learning rate on a per parameter basis.
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Chapter 1

Introduction

Artificial intelligence (AI) research is centered around designing scalable learning systems

that can solve complex tasks in an efficient manner. Ideally, these systems should be able to

interact with the world around them and generalize past experiences to novel, yet similar,

scenarios. The types of tasks that we would like to be solved by machines are varied; ranging

from classification tasks to sequential decision-making problems. While the former is fairly

well understood, the latter, specifically creating a general purpose sequential decision making

agent, remains an open problem.

The main tool that we analyze in this thesis is the deep reinforcement learning (deep

RL) framework, which combines the generalization power of deep learning (DL) (Goodfellow

et al., 2016) and the sequential decision making framework of reinforcement learning (RL)

(Sutton and Barto, 2018). Deep reinforcement learning has endless amount of applications,

which notably include both the Healthcare (Yu et al., 2019) and Finance (Jiang et al., 2017)

sectors. Recently, deep RL has led to tremendous research breakthroughs; including but not

limited to, playing Atari games at a near human level (Mnih et al., 2015) and defeating the

world’s best GO player (Silver et al., 2016a). However, deep RL can often be:

• Brittle: high sensitivity to noise and/or hyperparameters.

• Sample inefficient: needing millions of samples to attain near-human level performance.

Solving these deficiencies remains the main bottleneck preventing deep RL from entering

into mainstream products. To this end, in this thesis, we propose new methods to mitigate

the brittleness and sample inefficiency of deep RL systems by decomposing the problem into

simple components that can be solved in parallel.

1
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1.1 Reinforcement Learning

The notion of training through reinforcement is an old concept that began in behavioural

psychology. In the experiments of Thorndike (1898), cats were trained to escape mazes by

placing a visible morsel of food at the end of a puzzle. Similarly, RL in an AI context, aims

to train systems to perform tasks by providing positive or negative feedback. However, unlike

in behavioural psychology, reinforcement learning is rooted in the theory of Markov decision

processes (MDP) (Bellman, 1957), which allows for formal mathematical formulation and

analysis.

In an MDP, an agent interacts with a specific environment with the goal of learning a

policy to maximize the discounted sum of a predefined reward signal. The discount factor

plays the role of giving more importance to rewards that are closer in time to the agent. At

any point in time, the agent is in a given state of the world and has to take an action. Upon

taking an action, the agent transitions to another state and receives a reward based off of a

predefined transition probability distribution and reward function from the environment.

RL agents aim to solve MDPs under the constraint that the agent does not have access to

the underlying transition probability distribution or reward function. In other words, before

interacting with the environment, the agent does not know which state and action pairs are

good, or even how to go from one state of the world to another. All of this knowledge needs

to be acquired through interacting with the environment. To use RL, practitioners need

to ensure that their task fits into the MDP framework. One key assumption of the MDP

framework, is the Markov property, which assumes that future states are not dependant on

past states given the current state of the environment.

The two main types of RL methods that we will cover in this thesis are actor-critic methods

(Sutton et al., 2000) and value-based methods (Sutton, 1988; Watkins, 1989; Rummery and

Niranjan, 1994). Both of which rely on estimating the value function: the expected sum of

discounted rewards under the current policy. The agent then uses the value function directly

to take actions in value-based methods, or uses it to improve a policy in actor-critic methods.

The most commonly used method for training value functions is temporal-difference (TD)

learning (Sutton, 1988), which is rooted in the Bellman equation (Bellman, 1957). The

Bellman equation provides a recursive formulation for the value function in terms of the

value at the next time-step. Specifically, instead of using the sum of discounted rewards

sampled from a particular state in the environment, TD learning uses the immediate reward

and the discounted value at the next time-step as a training target. TD learning will be

central to this thesis, with a particular focus on its use in deep reinforcement learning, which

we motivate and describe in the next section.
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1.2 Deep Reinforcement Learning

In recent years, the combination of deep learning and reinforcement learning has been used

with great success in achieving super-human performance in complicated games (Mnih et al.,

2015; Silver et al., 2016a; Vinyals et al., 2019). However, it may not be immediately obvious

to the reader what the deep part contributes to in deep reinforcement learning. We shed

some light on this question with the following example.

Consider an agent tasked with solving Pong, which is a tennis like video game from

the Atari 2600 console, also available as a training simulator for AI systems via the arcade

learning environment (ALE) (Bellemare et al., 2013). The goal of the game is to prevent

the ball from getting past your own paddle while trying to hit the ball past the enemies

paddle on the other side of the screen. At a conceptual level, the problem is fairly simple,

move the paddle up if the ball appears to be going towards the top of the screen and vice

versa. Complications arise when trying to formulate the states of the world in the RL

framework. Since the game is viewed on a screen with many pixels, the number of states is

enormous. Even in the simplified black and white version, where colours have been removed,

the combination of pixels (being on or off) with a resolution of h× w would result in 2h×w

number of states. Accounting for the ball’s velocity, to ensure the Markov property, would

require a short history of images, further increasing the theoretical1 number of states.

The difficulty with a large number of states is that for an agent to learn how to act

optimally in a particular state, a certain amount of samples needs to be obtained from

that state. Therefore, if the total number of states grows, so does the overall amount of

samples needed. To alleviate this problem, termed sample efficiency, some form of perceptual

generalization needs to occur, where samples from a similar state are also incorporated.

One solution is for a programmer to design a feature extractor that extracts the required

information from the screen at each time-step; e.g, the position of both paddles as well

as the position and velocity of the ball. Such a technique would indeed reduce the state

space down significantly, perhaps to the point where a simple linear mapping, termed linear

function approximator, can be learned. Unfortunately, such an approach may not be general.

If presented with a similar game, say Ms. Pacman (also from the Atari 2600 console), the

programmer would have to reprogram a feature extractor for the new game. While there are

feature extraction methods that have been shown to perform well across many tasks (Liang

et al., 2015), in recent years, Deep RL solutions have greatly outperformed these algorithms.

Deep RL aims to solve the problem of feature extraction by providing an end to end

solution for learning both the agent’s policy and the feature extractor itself, through the

1Not all of these states would be visitable, since certain combinations of pixels never occur in the game.
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use of non-linear function approximators. For image based tasks, such as the video games

described above, deep RL is used with powerful neural network architectures such as modern

versions of the convolutional neural network (CNN) (LeCun et al., 1989). However, even

with the addition of deep learning, deep RL can still be sample inefficient, typically needing

hundreds of millions of interactions with the world to obtain near-human performance (Mnih

et al., 2015). Moreover, deep RL architectures can be brittle, in the sense that they may

fail to learn meaningful policies when presented with noise in the environment or when the

practitioner fails to set certain hyperparameters properly. We further motivate the issues of

sample efficiency and brittleness in the following sections.

1.3 Sample Efficiency

Sample efficiency is a metric used to evaluate reinforcement learning systems, which relates

the amount of reward the agent is receiving to the number of interactions the agent has had

with the environment. An agent that can achieve the same amount of reward as another with

less experience is termed more sample efficient. The importance of sample efficiency comes

from the assumption that samples from the environment are costly to obtain, where cost can

be defined in terms of the amount of time spent, computational cost, or opportunity cost.

Consider training a robot in the real world where the amount of samples the robot is able

to train with is bottle-necked by time itself. If the task is difficult, measured in terms of

human capability, then the amount of time needed could be immense. In practice, however,

we rarely train agents in the real world, but instead train them in simulators that can operate

at many times faster than real-time (e.g, 100x in the arcade learning environment (ALE)

(Bellemare et al., 2013)). Furthermore, we can also deploy several agents to collect samples

in parallel, thus greatly reducing the overall time complexity. Both of these solutions are

incredibly powerful and have led to the most advanced deep RL systems to date (Silver et al.,

2016a; Vinyals et al., 2019).

Even if a simulator can be used, there are still several reasons for wanting a sample

efficient system. First, as the models that deep RL agents use get larger and larger, the

carbon footprint and overall energy requirement of these systems may grow as well (Henderson

et al., 2020). The net savings, in terms of energy, could be enormous when considering

the total number of applications for deep RL. Second, sample efficiency can be crucial in

non-stationary environments, where agents are required to continuously adapt to changes to

the world around them. For example, in financial stock trading the dynamics of the market

are continuously changing (Lee et al., 2007); new players enter and exit the market at all

times and opposing strategies are constantly changing. For both of these reasons, having a
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system that can adapt with as few samples as possible is greatly desired.

1.4 Brittleness

In this section, we describe brittleness, one of the main obstacles to achieving a sample

efficient system. We use the term brittleness to describe a system’s weakness to external

or internal forces. Specifically, there are two forms of brittleness that we address in this

thesis: brittleness to noise from the external environment and brittleness to the agent’s

hyperparameters, i.e., the agent’s internal settings that can be tuned. While brittleness

to noise or hyperparameters is also an issue with standard RL, i.e., with linear function

approximation, the problems are typically enhanced in deep RL due to the complexity of

the applications and the overall complexity of the learning system. Both forms of brittleness

can result in poor sample efficiency and even a failure to learn policies that are better than

random (Henderson et al., 2018).

The main type of noise that we address in this thesis are noisy rewards. Noisy rewards

can be caused by several sources, including noisy sensors (Everitt et al., 2017) and variable

human feedback (Knox and Stone, 2012). For example, a robot that operates in the real world

based off of raw sensor data may encounter periodic disruptions to the sensors. Moreover, an

agent that is being trained off of human feedback, may receive noisy human feedback since

humans are prone to making mistakes. In either case, an ideal learning system should be

able to handle a moderate amount of noise in the reward signal and still successfully train an

accurate value function.

Brittleness to hyperparameters can result in extensive tuning which can be time consuming

for the programmer and computationally expensive to implement. Thus, part of the focus of

this thesis is to design learning systems that are less sensitive to hyperparameter choices. The

hyperparameters that we focus on in this thesis are the learning rate and the discount factor.

The learning rate dictates how much an agent learns from each sample in the environment.

Setting it too high can lead to divergence, whereas setting it too low can lead to poor sample

efficiency (Sutton and Barto, 2018). On the other hand, the discount factor is defined as

part of the MDP, thus, in classical MDP settings, is not meant to be treated as a tuneable

hyperparameter. However, in many scenarios tuning the discount factor can lead to improved

performance on the objective associated with the original discount factor (Bertsekas and

Tsitsiklis, 1995).
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1.5 Decomposing Reinforcement Learning

Motivated by the classical divide-and-conquer paradigm in computer science, we are interested

in dividing the original RL problem into simpler components. The main goal of decomposing

the reinforcement learning problem is to provide structure for the learning system to exploit.

While not always the case, as we will see in chapter 3, this added structure may come at the

expense of biasing the learning system towards potentially suboptimal solutions. Nevertheless,

this added bias may drastically improve sample efficiency and thus may still be desired. While

there are many ways to decompose the reinforcement learning problem, the two main types

of decomposition that we consider in this thesis are hierarchical methods (Sutton et al., 1999;

Bacon et al., 2017; Kulkarni et al., 2016), and model-based methods (Sutton, 1991; Feinberg

et al., 2018; Kaiser et al., 2019).

Hierarchical methods typically divide the problem into several layers of blocks that each

operate on top of one another (Sutton et al., 1999; Bacon et al., 2017; Kulkarni et al., 2016).

These types of methods can be thought of as dividing up the problem into shorter and longer

time-scales (Bacon, 2018). For example, in options (Sutton et al., 1999; Bacon et al., 2017),

low-level agents operate on the raw action space of the problem, whereas high level agents

select which low-level agent to use. We propose a simple hierarchical model in chapter 3, and

explore decompositions based off of the time-scale in chapter 5.

Another relevant approach for decomposition are model-based techniques for model-

free learning (Sutton, 1991; Feinberg et al., 2018). These methods train a model of the

environments dynamics, and then use it to perform updates to the agents value function

and/or policy (the model-free component). We can think of these methods as decomposing

the learning problem into two components, learning the transition dynamics and learning

the value function and/or policy. Such approaches typically offer variance reduction, since

the agent does not need to sample experiences from a potentially stochastic environment.

However, they come at the expense of added bias in the case where the model is imperfect

(Sutton and Barto, 2018). We explore learning a simple model of the reward function in

chapter 4 and of the transition dynamics in chapter 7.

1.6 Objectives and Outline

This thesis is organized as follows. Chapter 2 covers the necessary background for deep RL,

with a particular focus on value estimation. In the proceeding chapters, we propose and

analyze various methods that decompose the Bellman equation to efficiently solve the value

estimation problem. We will mainly asses the performance of our approaches using the arcade
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learning environment (Bellemare et al., 2013), which provides many complex pixel based

tasks from the Atari 2600.

In many complicated domains, the reward can be characterized by several different factors,

e.g., different objects that need to be collected. Thus, in chapter 3, we decompose the reward

function into various simple factors and learn a separate value function for each component.

Since each individual value function typically only depends on a subset of all features, they

can be approximated more easily by a low-dimensional representation. Consequently, we find

that the aggregated solution scales more efficiently than standard deep RL algorithms with

respect to problem complexity.

Next, in chapter 4, we consider the noisy reward problem, i.e., when the reward the agent

receives in some/all states is stochastic. To improve the stability of learning a long term

value function in the noisy reward regime, we propose to train the value function using a

learned estimate of the immediate reward in place of the traditional sampled reward. We

demonstrate that this simple decomposition drastically improves sample efficiency under

stochastic rewards in both the tabular and deep RL settings.

We then generalize reward estimation to value functions, in chapter 5, by using short-term

values as a training signal for longer-term values. Specifically, our method decomposes a

value function into a series of components based on the discount factor. The separation of

value functions provides enhanced interpretability by querying the value function at each

associated discount factor. It also improves scalability to longer-term value functions by

modularly increasing the effective horizon once enough data is available. Finally, since each

value function can be trained with its own respective hyperparameters (e.g, the learning rate),

the result is typically a more sample efficient system.

In chapter 6, we unify the methods from chapters 3 and 5, under one general framework.

Specifically, we prove under which conditions value based decompositions are equivalent

to baseline approaches. Crucially, we highlight that one of the possible ways to break the

equivalence is to use a different learning rate for each of the decomposed value functions.

To this end, in chapter 7, we propose a novel adaptive optimizer for deep RL that tunes

the learning rate, for each learnable parameter throughout training. In certain settings,

it can be interpreted as using a per state learning rate based on a partial model of the

transition dynamics. Our theoretical findings demonstrate that including this adaptive tuning

is comparable to normal TD learning if the optimal learning rate is found for both methods

via a hyperparameter search. Further, in deep RL experiments, our findings suggest that

TDprop is competitive with state of the art adaptive optimizers.



Chapter 2

Technical Background

Reinforcement learning can be analyzed through the use of Markov decision processes

(MDP) (Bellman, 1957). An MDP is defined as a 5-tuple (S,A, P, r, γ), with state space S,

action space A, transition probabilities P : S ×A → dist(S) mapping state-action pairs to

distributions over next states, reward function r : S ×A → R, and discount factor γ ∈ [0, 1).

In this thesis, we make the simplifying assumption that S and A are finite. At every

time-step t, an agent is in a state st, takes an action at, receives a reward r(st, at), and

transitions to the next state in the system st+1 ∼ P (· | st, at).
The goal of the agent is to learn a policy π : S → dist(A) that maximizes the expected sum

of discounted rewards from any given state. The main assumption of an MDP is the Markov

assumption, i.e., that given a sequence of states and actions (st, at, st+1, at+1, ..., st+n, at+n),

the probability of transitioning to st+n+1 is equal to p(st+n+1|st, at) and is not conditioned

on any previous states or actions.

2.1 Policy Evaluation

The following section is concerned with determining the value of a particular policy. Specif-

ically, we can define the value of a policy vπ : S → R as the expected discounted sum of

future rewards from a particular state:

vπ(s) = Eπ
[
∞∑
t=0

γtr(st, at)

∣∣∣∣s0 = s

]
. (2.1)

8
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Similarly, we can define the action-value function, i.e., q-function, qπ : S × A → R as the

discounted sum of future rewards from a particular state given an action:

qπ(s, a) = Eπ
[
∞∑
t=0

γtr(st, at)

∣∣∣∣s0 = s, a0 = a

]
. (2.2)

Thus, for any policy π we have the following connection between vπ and qπ :

vπ(s) =
∑
a

π(s, a)qπ(s, a). (2.3)

To solve for vπ or qπ, we can use the expected Bellman equations (Bellman, 1957) to make

use of the recursive nature of the value functions:

vπ(s) =
∑
a∈A

π(a|s)

(
r(s, a) + γ

∑
s′∈S

p(s′|s, a)vπ(s′)

)
, (2.4)

similarly for qπ we have:

qπ(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a)vπ(s′)

= r(s, a) + γ
∑
s′∈S

∑
a′∈A

π(a′|s′)p(s′|s, a)qπ(s′, a′), (2.5)

which can both be solved directly using matrix-inversion. To see how, we note that we can

rewrite the Bellman equations as a system of linear equations in matrix form:

vπ = rπ + γP πvπ, (2.6)

where rπ ∈ R|S| with rπ(s) =
∑

a∈A π(a|s)r(s, a) being the expected reward vector under π,

P π ∈ R|S|×|S| with P π(s, s′) =
∑

s′∈S
∑

a∈A π(a|s)p(s′|s, a) being the transition probability

matrix induced by the policy, and vπ ∈ R|S| being the value function vector. Alternatively,

by rearranging terms, we get:

vπ = (I − γP π)−1rπ, (2.7)

where I is the identity matrix. Analogously when solving for qπ we have:

qπ = r + γP
′πqπ

= (I − γP ′π)−1r, (2.8)
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where qπ ∈ R|S||A| is the action value function in vector form, r ∈ R|S||A| is the expected

reward vector for each state and action, and P
′π ∈ R(|S||A|)×(|S||A|) with P

′π(s, a, s′, a′) =∑
s′∈S

∑
a′∈A p(s

′|s, a)π(a′|s′) being the probability over next state and action values under

the current policy. We now focus solely on estimating vπ, since the results immediately

extend to qπ by replacing the stochastic matrix P π by P
′π. For convenience, we drop the

superscript π and assume that P = P π and r = rπ unless otherwise stated.

The solution, for v, is well defined if (I − γP )−1 is invertible. This can be shown using

corollary C.4 from Puterman (1994) that states that if the spectral radius, ρ(A) < 1 then

(I − A)−1 exists. Thus, we need to show that ρ(γP ) < 1. We follow a similar analysis to

section 2.1, from Bacon (2018).

To show that ρ(γP ) < 1, we first need to arm ourselves with the definition of the spectral

radius.

Definition 2.1.1. (spectral radius) The spectral radius of a matrix A ∈ Cn×n is defined as:

ρ(A) = max
{∣∣λA1 ∣∣ , ∣∣λA2 ∣∣ , ..., ∣∣λAm∣∣} , (2.9)

where λA are the eigenvalues of the matrix A. Equivalently, using Gelfand’s formula (Gelfand,

1941), using any matrix norm ‖·‖:

ρ(A) = lim
k→∞

∥∥Ak∥∥ 1
k . (2.10)

Throughout this thesis, when referencing matrix norms, we will be referring to the infinity

norm, which we now define.

Definition 2.1.2. (infinity norm) The infinity norm for matrices is defined as:

‖A‖ := max
x∈Rd,x 6=0

(
‖Ax‖
‖x‖

)
= max

i

∑
j

|Ai,j|, (2.11)

which is induced by the vector norm ‖x‖ := maxi|xi|.

The use of the infinity norm is due to its ease of computation, it is simply the maximum

absolute row sum of a matrix. Using the infinity norm and plugging γP into Gelfand’s

formula gives us:

ρ(γP ) = lim
k→∞

∥∥(γP )k
∥∥ 1
k = γ, (2.12)

where we used the fact that ‖P‖ = 1, since the sum of every row of a stochastic matrix is 1,

and the fact that the product of two stochastic matrices is a stochastic matrix. Therefore, by

corollary C.4 from Puterman (1994) we have that ρ(γP ) < 1 and (I − γP )−1 exists. Before
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we continue, we note a convenient property of the spectral radius, which will help us in later

proofs.

Lemma 2.1.1. (exercise 1.3.2 of Varga (1962)) For a matrix A ∈ Cn×n,

ρ(A) ≤ ‖A‖ . (2.13)

Thus, whenever confronted with the problem of determining whether the spectral radius

of some matrix is less than some constant, we can simply evaluate the infinity norm.

Instead of solving for the value function in closed form, which can be expensive due to the

matrix inversion, we can solve for the value function iteratively using dynamic programming

(Bellman, 1957) and repeatedly applying the expected Bellman equation:

vt+1 = r + γPvt, (2.14)

where t is the number of updates that have been performed. We define the solution to this

system as vπ, where for vπ we have (I − γP )vπ − r = 0. There are several ways to determine

whether this iterative scheme converges to vπ. It can be shown that equation (2.14) defines a

contraction mapping and that under Banach’s fixed point theorem (Banach, 1922), repeatedly

applying the contraction mapping results in convergence to the solution, i.e., the fixed point.

We opt for a different approach based off the theory of convergent matrices (Varga, 1962).

We begin by defining the error vector as et = vt − vπ and deriving the following recursion:

et = vt − vπ

= r + γPvt−1 − vπ + ((I − γP )vπ − r)︸ ︷︷ ︸
=0

= γP (vt−1 − vπ) = γP (et−1) = (γP )t e0. (2.15)

Thus, the error at time-step t depends on the initial error at time-step 0 and the matrix γP .

Specifically, to have asymptotic convergence to vπ we require that et goes to 0 as t → ∞,

which we now define formally.

Definition 2.1.3. (convergent matrix: definition 1.9 (Varga, 1962)) Let A ∈ Cn×n. Then A

is convergent (to zero) if the sequence of matrices A,A2, A3, ... converges to the null matrix 0,

and is divergent otherwise.

Conveniently, we have the following theorem that gives us the necessary and sufficient

conditions for a matrix to be convergent.
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Theorem 2.1.1. (convergent matrix requirement: theorem 1.10 (Varga, 1962)) If A ∈ Cn×n,

then A is convergent if and only if ρ(A) < 1.

Thus, to show that the iterative scheme in equation (2.14) converges asymptotically we

need that ρ(γP ) < 1. Conveniently, we already showed that by using Gelfand’s formula we

have that ρ(γP ) = γ < 1.

The spectral radius plays an important role in not only determining convergence but also

in determining the convergence speed. We now define the global asymptotic average rate of

convergence and show its connection to the spectral radius.

Definition 2.1.4. (global asymptotic average rate of convergence (Puterman, 1994)) Given

the recursion of error vectors et, the global asymptotic average convergence rate is defined as:

lim
t→∞

max
e0 6=0

(
‖et‖
‖e0‖

) 1
t

. (2.16)

The interpretation of the global asymptotic average rate of convergence is that it measures,

in the worst case, how fast the error reduces relative to the initial error. The closer the rate is

to 1 the slower the convergence (Puterman, 1994). Moreover, the connection to the spectral

radius can be seen with the following derivation from Schoknecht and Merke (2003), using

et = (γP )te0 from equation (2.15) we have:

lim
t→∞

max
e0 6=0

(
‖et‖
‖e0‖

) 1
t

= lim
t→∞

max
e0 6=0

(
‖(γP )te0‖
‖e0‖

) 1
t

(equation (2.15))

= lim
t→∞

(∥∥(γP )t
∥∥) 1

t (definition of induced matrix norm)

= ρ(γP ). (Gelfand’s formula) (2.17)

Since ρ(γP ) = γ, the convergence rate, in this case, is determined by the discount factor.

Values for γ close to one will converge slower than values close to zero. A large value for γ

implies that the value function incorporates very distant rewards and thus would need more

iterations for the information to propagate. We focus on the discount factor, and propose

methods to learn value functions efficiently for large γ in chapter 5.

2.2 Multi-Step Methods

Multi-step methods will be used frequently throughout this thesis for their potential gains in

sample efficiency (Sutton and Barto, 2018). We begin by rewriting the expected Bellman
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equation in operator form:

T1v = r + γPv, (2.18)

where we use operator notion T : R|S| → R|S|. We recall that at the solution, i.e., the fixed

point, T1v
π = r + γPvπ = vπ, plugging this in to the right hand side of the one-step Bellman

operator gives us multi-step methods:

T2v = r + γPT1v = r + γPr + γ2P 2v

Tnv =
n−1∑
k=0

(γkP k)r + γnP nv. (2.19)

Analogous to the one-step case, we have that at the fixed point Tnvπ =
∑n−1

k=0(γkP k)r +

γnP nvπ = vπ. Thus, after applying the n-step operator t times we have the following recursive

formulation for the error vector et = vt − vπ:

et = vt − vπ

=
n−1∑
k=0

(γkP k)r + γnP nvt−1 − vπ +

(
(I − γnP n)vπ −

n−1∑
k=0

(γnP n)r

)
︸ ︷︷ ︸

=0

= γnP n(vt−1 − vπ) = γnP n(et−1) =
(
γkP k

)t
e0. (2.20)

Therefore, ρ(γnP n) = γn < 1, and the iterative system is convergent by theorem 2.1.1.

Another multi-step method is to use a geometric (λ) weighting over n-step operators

(Watkins, 1989):

Tλv = (1− λ)
∞∑
n=1

λnTnv, (2.21)

or equivalently written as,

Tλv = v + (I − γλP )−1(r + γPv − v), (2.22)

where the full proof of the equivalency can be seen in proposition 2.8 of Bacon (2018). Similar

to before, we have that at the solution Tλvπ = vπ + (I − γλP )−1(r + γPvπ − vπ) = vπ and
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the following recursion for the error vector:

et = vt − vπ

= vt−1 + (I − γλP )−1(r + γPvt−1 − vt−1)− vπ − (I − γλP )−1(r + γPvπ − vπ)︸ ︷︷ ︸
=0

= (I − γλP )−1(γP − γλP )(vt−1 − vπ)

= (I − γλP )−1(γP − γλP )et−1 =
(
(I − γλP )−1(γP − γλP )

)t
e0 (2.23)

Moreover, for 0 ≤ γ < 1 and 0 ≤ λ ≤ 1 we have the following known result (Bertsekas and

Tsitsiklis, 1995; Bacon, 2018):

∥∥(I − γλP )−1(γP − γλP )
∥∥ ≤ ∥∥(I − γλP )−1

∥∥ ‖γP − γλP‖ (submultiplicativity)

= (γ − γλ)

∥∥∥∥∥
∞∑
n=0

(γλP )n

∥∥∥∥∥ (Neumann series expansion)

≤ (γ − γλ)
∞∑
n=0

(γλ)n ‖P n‖ (triangle inequality)

=
γ − γλ
1− γλ

≤ γ, (2.24)

which implies, from lemma 2.1.1, that ρ ((I − γλP )−1(γP − γλP )) < 1 and the iterative

scheme is convergent.

Interestingly, when compared to the one-step operator, the n-step operator has a faster

convergence rate since γn ≤ γ. Similar to the n-step case, the convergence rate decreases with

increasing λ. However, increasing n requires more computation, since the Bellman equation

needs to be unrolled n times. Similarly, with λ-returns either an infinite sum needs to be

computed using the Neumann series expansion (Puterman, 1994), or a matrix inverse needs

to be performed. Most importantly, however, the use of multi-step methods for our purposes

is for the reinforcement learning setting and not for directly solving MDPs. As we will see,

once noise is introduced in the reinforcement learning setting, the choice of n or λ plays a

crucial role in the overall sample efficiency of the system.

2.3 Control

In this section, we present two classical methods for learning an optimal policy in an MDP:

value iteration and policy iteration. As we will see, both methods rely on estimating a value

function. While the focus of this thesis will be to learn value functions as efficiently as
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possible, it will also be worth understanding how value functions are used to determine the

optimal policy.

To determine the value of the optimal policy, v∗, we instead use the Bellman-optimality

operator :

T ∗v(s) := max
a∈A

(
r(s, a) + γ

∑
s′∈S

p(s′|s, a)v(s′)

)
, (2.25)

where we define T ∗v(s) over each state individually and we use the notation T ∗v to refer to

applying the operator to every state.

In the value iteration algorithm, we repeatedly apply the Bellman optimality operator

over all states, until the change in value for all states is less than some predefined threshold.

The full details of value iteration can be seen in algorithm 1.

Algorithm 1 Value Iteration

Require: ε: Stopping Threshold
v0(s)← 0 ∀s
t← 0
while max |vt − vt−1| > ε or t = 0 do

for s ∈ S do
vt+1(s)← maxa∈A

(
r(s, a) + γ

∑
s′∈S p(s

′|s, a)vt(s
′)
)

end for
t← t+ 1

end while

Moreover, when the algorithm terminates we have the corresponding deterministic policy:

π(s) = arg max
a∈A

(
r(s, a) + γ

∑
s′∈S

p(s′|s, a)v∗(s′)

)
, (2.26)

which satisfies the Bellman optimality equations and is optimal (Puterman, 1994).

Since the above operator is non-linear (due to the max operation), to show convergence

we cannot rely on the theory of convergent matrices but instead use Banach’s fixed point

theorem (Banach, 1922) for contraction mappings over Banach spaces. For our purposes, it is

sufficient to consider the space over value functions, since Rn is a Banach space (Puterman,

1994).

Definition 2.3.1. (contraction mapping) An operator T : Rn → Rn is a contraction mapping

in ‖·‖ if for all u, v ∈ Rn there exists a γ, 0 ≤ γ < 1 such that:

‖T v − T u‖ ≤ γ ‖v − u‖ . (2.27)
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With the definition of contraction mappings we can now present Banach’s fixed point the-

orem, which gives us the theoretical tools to determine that iteratively applying a contraction

mapping is convergent.

Theorem 2.3.1. (Banach’s fixed point theorem (Banach, 1922)) Suppose T : Rn → Rn is a

contraction mapping. Then:

1. There exists a unique v∗ ∈ U such that T v∗ = v∗.

2. For arbitrary v0 ∈ U , the sequence defined by:

vt+1 = T vt = T t+1v0 (2.28)

converges to v∗.

The proof is provided in theorem 6.2.3 of Puterman (1994).

We now prove that T ∗ is a contraction mapping. For any two value functions v and v′

and using the infinity norm we have:

‖T ∗v − T ∗v′‖ = max
s
|T ∗v(s)− T ∗v′(s)|

= max
s

∣∣∣∣∣max
a

(
r(s, a) + γ

∑
s′∈S

p(s′|s, a)v(s′)

)
−max

a

(
r(s, a) + γ

∑
s′∈S

p(s′|s, a)v′(s′)

)∣∣∣∣∣
≤ max

s
max
a

∣∣∣∣∣γ∑
s′∈S

p(s′|s, a)v(s′)− γ
∑
s′∈S

p(s′|s, a)v′(s′)

∣∣∣∣∣
= max

s
max
a
γ
∑
s′∈S

p(s′|s, a)|v(s′)− v′(s′)|

≤ max
s
γ|v(s)− v′(s)|

= γ ‖v(s)− v′(s)‖ . (2.29)

Thus, by definition 2.3.1, T ∗ is a contraction mapping and theorem 2.3.1 applies.

In policy iteration (Howard, 1960), instead of only performing one iteration of policy

evaluation, at every step of the algorithm we find the exact value of the current policy.

Specifically, the policy iteration algorithm determines the next policy πt+1 by first fully

learning the value for the current policy vπ (either using the closed form or iterative solutions)

and then applying the following operation:

πt+1(s) = arg max
a

(
r(s, a) + γ

∑
s′∈S

p(s′|s, a)vπt(s′)

)
. (2.30)
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The full details of policy iteration can be seen in algorithm 2.

Algorithm 2 Policy Iteration

π0(s)← 0 ∀s
t← 0
while πt(s) 6= πt−1(s) ∀s or t = 0 do

vπt ← (I − γP πt)−1 rπt

for s ∈ S do
πt+1(s)← arg maxa

(
r(s, a) + γ

∑
s′∈S p(s

′|s, a)vπt(s′)
)

end for
t← t+ 1

end while

Convergence can be shown through the policy improvement theorem (Sutton and Barto,

2018), which relies on the fact that at each iteration the new policy is an improvement over

the previous policy, with equality at the optimal policy. Now that we have presented methods

for learning optimal value functions and policies, we move on to the RL setting where the

agent does not have access to the underlying reward function and transition dynamics.

2.4 Parameterization of the Value Function and Policy

We recall that in RL, instead of assuming that the reward function and transition dynamics

are known to the agent beforehand, the agent is tasked with finding the optimal policy

through interacting with an environment. A major choice that concerns an RL practitioner

is the type of parameterization that is used for the estimate of the value function (and/or

policy). The correct choice depends on the complexity of the problem at hand, as well as the

domain knowledge that is available beforehand.

2.4.1 Linear Parameterization

The linear representation of the value function, often called linear function approximation

(Sutton, 1996), takes the following form:

v̂(s; θ) := 〈θ, x(s)〉

where < ·, · > denotes the inner product, θ ∈ Rd are the trainable parameters and x : S → Rd

is a feature mapping that extracts the feature vector from a particular state. We say that x

is a tabular representation if it maps directly to the one-hot vector representing the state.

In this case, each element i of the parameter vector θ is the value of state i. In most high
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dimensional problems, however, a tabular representation is severely limiting as it lacks the

ability to generalize knowledge to similar states. Moreover, assuming a lack of domain

knowledge to hand craft a strong feature map, linear function approximation can also be

a fairly restrictive model choice as the solution is limited to the representable space of the

function approximator (Sutton and Barto, 2018).

2.4.2 Deep Representations

Using a deep neural network as a function approximator to effectively learn the feature

mapping from data has been shown to be a powerful tool for RL (Mnih et al., 2015). In this

section, we explore the two types of neural networks that will be used throughout this thesis;

feed forward neural networks and convolutional neural networks.

Feed Forward Neural Networks: Feed forward neural networks (Rosenblatt, 1958),

often referred to as multi-layer perceptrons (MLPs), learn weights for several layers of neurons

that are fully connected via non-linear activation functions. An MLP has multiple (k) layers,

where each layer j has mj units. In order to compute the output of layer j, given the input

hj, we simply iterate through the layers of our MLP sequentially by computing:

hj+1 = fj(W
>
j hj + bj), (2.31)

where Wj ∈ Rmj×mj+1 is the weight matrix for layer j and fj : Rmj+1 → Rmj+1 is the activation

function for that layer. The last layer produces the prediction ŷi = hk = fk−1(W>
k−1hk−1+bk−1).

Typically, the first layer of the network is referred to as the input layer and does not contain

any weights, i.e., h0 = x. The final layer of the network is termed the output layer. All other

intermediary layers are referred to as hidden layers.

Convolutional Neural Networks (CNNs) : CNNs (LeCun et al., 1989) are inspired

by the neurological experiments conducted by Hubel and Wiesel (1968), where cells were

discovered to be sensitive to spatial sub-regions of the visual input. CNNs learn spatially

connected features by decomposing the traditional hidden layer of MLPs into a set of k, two

dimensional filters that each get convolved with the input:

hij+1 = fj(w
i
j ∗ hj + bj), (2.32)

where wij is the ith filter of the jth layer, hij+1 the resulting feature map of the ith filter, and

∗ denotes the convolution operator.
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The convolution operator is defined as follows:

Om,n = W ∗H =
k∑

u=0

j∑
v=0

Wu,vHm−u,n−v, (2.33)

where W ∈ Rk×j is a single filter, H ∈ Rm×n is the input, and O ∈ Rm×n is the output of

the convolution.

CNNs are typically used on tasks where spatial information at the input level is important,

e.g., in image based tasks. As before with MLPs, convolutional layers can be stacked one on

top of the other and connected via non-linear activation functions. While many activation

functions exist in the deep learning literature, the rectified linear and softmax activations are

the two activations needed for the work that follows.

Rectified-linear (ReLU) activation: The ReLU activation function (Nair and Hinton,

2010) is a popular choice for intermediary layers of the network. It is very similar to a simple

linear activation f(x) = x, but forces the output to be positive:

f(x) = max(x, 0). (2.34)

Softmax activation: The softmax activation is generally used as the activation function

for the final layer of a neural network when a probabilistic mapping that sums to one is

desired, e.g., the output of the policy network in policy gradient methods (Mnih et al., 2016).

The softmax function is defined as:

f(x)i =
exi∑
j e

xj
, (2.35)

where xi and f(x)i is the ith value of the input x and output f(x) respectively.

2.5 Stochastic Policy Evaluation

Once the parameterization has been chosen, the problem of learning the parameters can be

addressed. In particular, this section examines how an RL agent can learn the value of a

particular policy in the RL setting. We start by defining the full discounted return starting

at time-step t, i.e., the Monte Carlo return, as:

Gt =
∞∑
k=0

γkrt+k, (2.36)
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where rt+k ∼ r(st+k, at+k) is the sampled reward at time-step t. Recall, that the value of

a policy for a particular state is defined as the expected discounted sum of rewards from

that state, i.e., the expectation of the Monte Carlo return. At first glance, it may seem that

the infinite sum in equation (2.36) cannot be fully evaluated, since we would need to sample

infinitely many times from the environment. However, we will be evaluating RL agents in

the episodic setting. In such settings, we assume that the agent enters a terminal state in a

finite number of steps and the episode is restarted thereafter.

One popular method for theoretically handling terminal states is to assume that they

are absorbing states, in which they permanently self-loop and receive a reward of zero in

perpetuity (Puterman, 1994). Conveniently, the expected return is maintained for every state.

However, as we mentioned, the agent does not remain in these absorbing states but rather is

transported back to one of the potential start states. From a theoretical perspective this is

problematic, as we will see, the convergence proofs that we use are based off of the existence of

a unique limiting stationary distribution, µ> = µ>P (that satisfies limN→∞
∑N−1

t=0 P t = Iµ>

(Cinlar, 2013)), induced by the policy and the underlying MDP. Moreover, in MDPs with

absorbing states, the stationary probability of a being in a particular state si is µi = 0 for

non absorbing states, which does not accurately represent the distribution of samples the

agent is experiencing.

Thankfully, there is an alternative interpretation based off of per-transition discounting

that fully preserves the value expectations as well as unifying the non-episodic (continuing)

and episodic scenarios. Specifically, in White (2017), transitions back to start states are added

and a discount factor of zero is used for those transitions. In this way, the agent transitions

back to a start state, the value function is preserved for every state, the contraction properties

previously presented with a constant discount factor in section 2.1 are also preserved, and

most importantly, the stationary distribution is appropriately defined. We do not make a

distinction in our notation for the use of transition based discounting, since it has no impact

on any of the experimental or theoretical details.

Thus, an estimate v̂ = (·; θ), parameterized by θ = (θ1, θ2, ..., θd), can be trained by

iteratively sampling the Monte Carlo return and regressing towards the sampled target via

stochastic approximation (Robbins and Monro, 1951; Benveniste et al., 2012). Specifically, in

stochastic approximation, updates can be performed via the following:

θt+1 = θt + αt+1g(θt), (2.37)

where θ ∈ Rd is the parameter vector, α is the learning rate, and g(θ) is the update function

that defines how the parameters are updated.
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When regressing towards the Monte Carlo return, the update function is defined as:

gMC(θt) := −∇θ ((Gt − v(st; θt))
2 . (2.38)

The convergence properties are typically analyzed based off the expected update ḡ under the

stationary distribution:

ḡMC(θt) := Eµ
[
−∇θ ((Gt − v(st; θt))

2] . (2.39)

We say that such an update function, one that is defined as sampling the negative gradient

of a function, is an instance of stochastic gradient descent (SGD) (Widrow and Hoff, 1960).

The Monte Carlo return may have large variance caused by sampling from the policy,

the environment dynamics, and the reward function. Fortunately, as previously alluded to,

we can use Bellman equations (Bellman, 1957) and exploit the recursive nature of the value

function. In practice, for a specific value of n, the agent will take n steps in the environment,

receive n rewards, and replace the remainder of the return with its current estimate of the

value function v̂:

Gt:t+n :=
n−1∑
k=0

γkrt+k + γnv̂(st+n; θt), (2.40)

In many cases, small values of n may have significantly less variance than larger values at

the expense of added bias introduced by v̂. We note, however, that small values of n may

actually have more variance than larger values due to the covariance between the random

rewards in the return (Konidaris et al., 2011). The optimal choice of n is typically problem

dependent (Sutton and Barto, 2018) and varies from one MDP to another. It can also vary

during training, since as v̂ approaches the solution, its bias is reduced (Kearns and Singh,

2000). Moreover, it can also be treated as a random variable, based off of the theory of

random stopping times (Wessels, 1977). Further, the optimal n can also be state dependent,

since states typically have different amounts of variance in their respective return (Xu et al.,

2018). We will examine methods for adapting multi-step methods based off of the discount

factor in chapter 5.

As previously mentioned in section 2.2, we are not limited to using a single n-step return,

but can also use a geometric weighting, i.e., the λ-return:

Gλ
t = v̂(st; θt) +

∞∑
k=0

(γλ)kδt+k, (2.41)

where δt = rt + γv̂(st+1; θt)− v̂(st; θt) is the one-step TD-error at time-step t and the hyper-
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parameter λ ∈ [0, 1] plays the role of controlling the bias-variance trade-off in the return.

Small values of λ put a significant weight on nearby rewards (TD(λ = 0) corresponding with

the 1-step return), whereas a large λ puts more weight on distant rewards (TD(λ = 1) being

the Monte Carlo return). Moreover, in practice, the return is typically truncated to n-steps:

Gλ
t:t+n = v̂(st; θt) +

n−1∑
k=0

(γλ)kδt+k, (2.42)

where n ∈ [1,∞) is the truncation length.

At each time-step t, the parameters of the value function estimate can be updated via TD

learning via the stochastic update from equation (2.37) and the following update function:

gTD(θt) := δλt:t+n∇θv̂(st; θt), (2.43)

where:

δλt:t+n = Gλ
t:t+n − v̂(st; θt), (2.44)

is the TD error. Unlike the MC update in equation (2.38), the TD update in equation (2.43)

is not an instance of gradient descent, but instead falls into the category of semi-gradient

methods (Sutton and Barto, 2018).

Nevertheless, both MC and TD can be analyzed from a stochastic approximation perspec-

tive, and convergence guarantees can be determined under certain assumptions (Tsitsiklis

and van Roy, 1997). We restate theorem 1 from Tsitsiklis and van Roy (1997), which proves

convergence with probability 1 for TD(λ) with linear function approximation by framing it

into the general convergence proof for stochastic approximation (theorem 17 of Benveniste

et al. (2012)).

Theorem 2.5.1. (convergence of TD(λ) with linear function approximation: theorem 1

of Tsitsiklis and van Roy (1997)) For any λ ∈ [0, 1], the TD(λ) algorithm with linear

function approximation converges with probability one to the fixed point, ΠTλvπ = vπ, where

Π = X(X>DX)−1X>D is the linear projection matrix, X is the matrix formed by placing the

feature vector x(s) in each row, and D is the diagonal matrix with the stationary probability

µ(·) as its entries, under the following main assumptions:

1. The Markov chain has a unique stationary distribution µ> = µ>P .

2. The feature vectors are linearly independent.

3. The learning rates are positive, non increasing, predetermined, as well they satisfy∑∞
t=0 αt =∞ and

∑∞
t=0 α

2
t <∞.
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Key to the convergence proof is the assumption that updates are performed based on the

induced Markov chain that has a unique stationary distribution. The existence of such a

distribution is guaranteed for ergodic Markov chains, i.e., when the agent can go from any one

state to any other state in a finite number of steps (Puterman, 1994). The assumption on the

learning rates is standard in the stochastic approximation literature and ensures convergence

under noisy updates (Benveniste et al., 2012). We also note that Tsitsiklis and van Roy

(1997) consider the backward-view of TD(λ) using eligibility traces (Sutton, 1988) which are

based on the same underlying operator as the forward-view presented here. Since eligibility

traces are not used in the deep RL literature, but solely in with linear function approximation,

we omit their exposition. Finally, the convergence of TD learning with non-linear function

approximation is still an open problem (Chen et al., 2019), with known counter examples

(Tsitsiklis and van Roy, 1997).

2.6 Stochastic Value-Based Control

In this section, we discuss methods for learning policies through the use of q-values. We recall

from section 2.3, that given the optimal q-values, the optimal policy is simply to act greedily

with respect to the q-values, i.e., arg maxa q ∗ (s, a). However, in the RL setting, agents do

not have access to the underlying dynamics and must, through trial and error, learn which

actions are good and which are bad in a given state. In other words, to determine which

action is best for a given state, many potential suboptimal actions need to be tried first.

Given q-values, the behavioral policy, i.e., the policy that is sampled to take actions in the

environment, is designed to ensure exploration of the state and action space. Arguably the

simplest behavioural policy is an ε-greedy policy (Sutton and Barto, 2018); with probability

ε, the agent takes a random action, and with probability (1− ε) the agent acts greedily with

respect to its q-values (i.e., arg maxa q̂(s, a)). In the deep RL literature, several other notable

exploration techniques have been proposed, including: pseudo-counts (Bellemare et al., 2016),

randomized value functions (Osband et al., 2019), and noisy networks (Fortunato et al., 2017).

While all of these methods tend to improve sample efficiency, we will mainly use ε-greedy

exploration due to its simplicity.

The first set of algorithms that we consider are on-policy algorithms. We say that an

algorithm is on-policy if the return, and thus the target, is generated directly from the policy

that is being estimated. One example of an on-policy algorithm is SARSA (Rummery and

Niranjan, 1994). In SARSA, the agent performs TD updates based off of the actions that

are sampled from the policy and taken in the environment. Specifically, SARSA(λ) uses the
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following update function:

gSARSA(θt) =

(
n−1∑
k=0

(γλ)kδt+k

)
∇θq̂(st, at; θt), (2.45)

where δt = rt + γq̂(st+1, at+1)− q̂(st, at; θt). Once the parameters are updated, the new policy

is immediately determined based on the new q-values. Thus, SARSA performs a policy

evaluation update and then implicitly performs a policy improvement step by using the new

q-values for its policy.

The convergence of SARSA to the optimal policy under a tabular representation relies

on the fact that the behavioural policy is greedy in the limit, i.e., that ε → 0, and that

every state and action pair is visited infinitely many times (Singh et al., 2000). Moreover,

convergence with linear function approximation can also be shown (Perkins and Precup,

2003).

Alternatively, in expected SARSA the sampling over next actions is removed and the

expectation is used instead:

gexp(θt) =

(
n−1∑
k=0

(γλ)kδt+k +
∑
a

π(a|st)q̂(st, a)− q̂(st, at)

)
∇θq̂(st, at; θt), (2.46)

The fundamental difference between on-policy and off-policy algorithms is that in off-policy

learning, the behavioural policy differs from the target policy. For example, in Q-learning

(Watkins, 1989), the agent follows a exploratory behavioural policy such as ε-greedy, however,

the learning update assumes that the best possible action is taken at the next time-step.

Specifically, the parameters are updated through the following update function:

gQ(θt) =
(
rt + γmax

a′
q̂(st+1, a

′)− q̂(st, at; θt)
)
∇θq̂(st, at; θt). (2.47)

The convergence of q-learning has been established in the tabular setting, however, with

function approximation there are known counter examples (Baird, 1995). Nevertheless,

off-policy algorithms can increase sample efficiency by using data generated from different

policies. One use case is that of experience replay (Lin, 1992) (used in DQN (Mnih et al.,

2015)), which stores previous experiences in a buffer and replays them for updates. Moreover,

while we only present the one-step version, multi-step versions, including λ-weighted versions,

exist in the literature (Harutyunyan et al., 2016). We also note that most of the methods that

we propose are rooted in on-policy algorithms due to their stronger theoretical guarantees

(Tsitsiklis and van Roy, 1997).
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2.7 Policy Gradients

In this section, we present an alternative approach to learning optimal policies using policy-

gradient methods. Instead of defining the behavioural policy as a function of q-values, policy

gradient methods (Sutton et al., 2000) directly optimize for, and sample actions from, a

parameterized policy π(a|s; θ). Specifically, policy gradient methods maximize the expected

return conditioned on the start state distribution and stationary distribution induced by the

current policy.

One implementation of the policy gradient theorem, is the REINFORCE algorithm

(Williams, 1992), which uses the full Monte Carlo return as its objective, resulting in the

following update function:

gRE(θt) = ∇θ log π(st, at; θt)Gt. (2.48)

However, using the full Monte Carlo return results in gradient estimates with high variance.

To reduce the variance, we can both use multi-step returns and subtract a state dependent

baseline b(st), where typically b(st) is the value function v̂(st):

gac(θt) = ∇θ log π(st, at; θt)(G
λ
t:t+n − v̂(st)), (2.49)

where v̂(st) can be separately learned as described in section 2.5 with its own set of parameters.

Methods that learn both a value function and a parameterized policy in this way are termed

actor-critic methods. We also note that Gλ
t:t+n − v̂(st) is simply the TD error for λ-returns.

In the context of policy gradient methods we will use Aλt:t+n = Gλ
t:t+n− v̂(st) and refer to it as

the advantage function. Recently, several actor-critic deep RL methods have been proposed

(Mnih et al., 2016; Schulman et al., 2017) to achieve state of the art results on several Deep

RL tasks.

One popular approach, called A2C, the synchronous version of A3C (Mnih et al., 2016),

will be used in several instances throughout this thesis. The main idea is to use multiple

parallel threads to collect samples from the current policy. Then, one synchronous update is

performed to both the policy and value function based off of the collected data. The new

policy is then rolled out to all threads. We will use both A2C and A3C as a baseline method

in the following chapters.

Another popular actor-critic approach is proximal policy optimization (PPO) (Schulman

et al., 2017). PPO is based off of trust region policy optimization (TRPO) (Schulman et al.,

2015) where the policy updates are constrained to a given optimization region (a trust region).

Unlike standard actor-critic algorithms, PPO collects data and computes the advantage
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under the current policy, but then performs multiple parameter updates based on a clipping

objective between the current and old policy, π and πold:

g(θπt ) = min

(
π(st, at; θ

π
t )

πold(at|st)
Aλt:t+n, clip

(
π(st, at; θ

π
t )

πold(at|st)
, 1− ε, 1 + ε

)
Aλt:t+n

)
, (2.50)

where ε < 1 is a hyperparameter that constrains the update and Aλt:t+n = Gλ
t:t+n − v̂(st; θ

v
t ) is

the advantage function.

2.8 Optimization

We recall that the standard stochastic approximation update takes the following form:

θt+1 = θt + αg(θt), (2.51)

where α is the global learning rate and g(θt) is the update function. It is also common to use

gradient averaging, also known as, momentum (Polyak and Juditsky, 1992), which uses an

exponential moving average of past gradients to perform updates:

ḡt+1 = β1 · ḡt + (1− β1) · g(θt) (2.52)

A detailed version of the algorithm can be seen in algorithm 3.

Algorithm 3 SGD

Require: α: Learning rate
Require: β1 ∈ [0, 1): Exponential decay rate
ḡ0 ← 0
function Update(g(θt) )

ḡt+1 ← β1 · ḡt + (1− β1) · g(θt)
θt+1 ← θt − α · ḡt+1

end function

In recent years, more advanced optimization techniques have been developed to optimize

deep neural networks. Specifically, most of the deep RL work that follows uses Adam (Kingma

and Ba, 2014), which is an adaptive optimization technique that maintains separate learning

rates for each parameter of the model. Adam, uses gradient averaging and also keeps a

moving average of the squared gradient for each parameter:

θt+1 = θt +
α

√
zt+1 + ε

ḡt+1 where zt+1 = (1− β2)g(θt)
2 + β2(zt), (2.53)
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where z represents the adaptive learning rate per parameter, β2 is a tracking hyperparamter,

and ε is a damping hyperparameter to avoid divisions by 0. A detailed description can be

found in algorithm 4.

Algorithm 4 Adam1

Require: α: Learning rate
Require: β1, β2 ∈ [0, 1]: Exponential decay rates
Require: ε ∈ [0, 1): Damping Hyperparameter
ḡ0 ← 0
z0 ← 0
function Update(g(θt))

ḡt+1 ← β1 · ḡt + (1− β1) · g(θt)
zt+1 ← β2 · zt + (1− β2) · g(θt)

2

θt+1 ← θt − α · ḡt+1/(
√
zt+1 + ε)

end function
1we omit bias corrections for conciseness.



Chapter 3

Reward Decomposition

In the following chapter, we focus on solving difficult RL problems by decomposing them

into a set of simpler tasks for the RL agent to solve separately. Specifically, we study tasks

where the reward function can be intuitively decomposed into several components. For

example, consider the task of collecting two distinct objects, A and B. In this scenario, the

decomposition of the reward function is fairly straightforward; we can split the total reward r

into rA and rB, the rewards for collecting objects A and B respectively. This simple example

of a decomposable reward function can be easily extended to more complicated settings, e.g.,

to different sub-goals within a single task.

If such a decomposition exists, and is given to the learner in advance, then strategies for

exploiting this domain knowledge can be used in order to speed up learning. For example, we

explore approximating each individual value function with only a subset of the state features,

i.e., the features that the respective reward function needs to accurately represent the value

function. Unfortunately, as we will explore in the following sections, state space reduction is

not always possible when trying to optimize for the optimal value function.

To this end, we propose regularized solutions for training and aggregating decomposed

reward functions. One of our key insights is that optimizing towards a regularized objective,

while suboptimal, can lead to significant gains in sample efficiency in complicated RL tasks.

We first formalize and provide theoretical properties of several strategies for decomposition.

Then, we use these decompositions to show empirical sample efficiency benefits on both a

simple grid world domain and Ms. Pac-Man from the ALE (Bellemare et al., 2013).

3.1 General Value Functions

HRA builds upon the horde architecture (Sutton et al., 2011). The horde architecture consists

of a large number of demons that learn in parallel via off-policy learning. Each demon trains

28
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a separate general value function (GVF) based on its own policy and pseudo-reward function.

A pseudo-reward can be any feature-based signal that encodes useful information.

GVFs are defined formally as value functions over rewards that are not necessarily related

to the rewards of the underlying MDP. Specifically, we have that:

vgvf (s) = Eπ
[
∞∑
t=0

γtrgvft |s0 = s

]
. (3.1)

Where we note that the original value function can be also be thought of as a GVF.

3.2 Proposed Approach

Our approach is based on the decomposition of the reward function. Specifically, we propose

to decompose the reward function r into Z + 1 components:

r(s, a) =
Z∑
z=0

rz(s, a), (3.2)

and to train a separate RL agent on each of these reward functions. Because each component

z has its own reward function, it also has its own q-value, qz parameterized by θz. We refer

to the combined network that represents all q-functions as the hybrid reward architecture

(HRA).

3.2.1 Aggregation

Action selection for HRA is based on the sum of the agent’s qz values, which we call qhra:

qhra(s, a) :=
Z∑
z=0

wz(s)qz(s, a; θz), (3.3)

where wz is the weight applied to qz. For the most direct comparison to the original objective,

we mainly consider setting wz = 1 ∀z, however, we will loosen this constraint in section 3.4

for more efficient solutions based on added domain knowledge. In the following sections,

we analyze the advantages and disadvantages of this aggregation by considering different

objectives for training each local q-function.
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3.2.2 Greedy Target

One possibility is to train each qz towards their own locally optimal value using the standard

q-learning update:

gq(θt) =
(
rzt + γmax

a′
q̂z(s

′, a′; θz)− q̂z(s, a; θz)
)
∇θz q̂z(s, a; θzt ). (3.4)

Summing the locally optimal q-values will not necessarily result in the q-values of the globally

optimal policy.

To see this, let us examine an object collection task where the agent starts in the middle

state, s0, with objects to be collected directly to the left and right of the agent. There are 3

actions: a0 = left, a1 = right, and a2 = stay. Finally, once one of the objects is collected, a

positive reward of either rA or rB is received and the episode terminates. Our locally optimal

q-function for the agent responsible for collecting object A is:

qA(s0, ·) = (rA, 0, γrA), (3.5)

where qB is symmetric to qA, with the q-values swapped for taking the left and right actions.

Thus, the q-values for the aggregated agent are:

qlocalHRA(s0, ·) = (rA, rB, γrA + γrB). (3.6)

On the other hand, the optimal q-values for the global problem are:

q∗(s0, ·) = (rA, rB, γmax(rA, rB)). (3.7)

As we can see, the action stay is being overestimated by the decomposed agent (qlocalHRA).

Specifically, following the greedy policy results in the agent always taking the stay action if

γ > rA

1+rB
and γ > rB

1+rA
. This undesirable behaviour is caused by the combination of q-values

that were trained with different target policies. Further analysis of this type of behaviour is

provided in Laroche et al. (2017), where the term attractor is used to describe states that

systems based on aggregated q-values are attracted towards.
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3.2.3 Optimal Target

Alternatively, each qz can be trained towards the same policy using expected SARSA (van

Seijen et al., 2009):

gexp(θt) =

(
rzt + γ

∑
a′∈A

π(a′|st+1)q̂z(st+1, a
′)− q̂z(st, at)

)
∇θz q̂z(s, a; θzt ). (3.8)

In fact, as long as we update each q̂z towards the same target policy, π, we can show that

when using a tabular representation there is a strict equivalence at every training step,

between standard expected SARSA and the summed q-values (Laroche et al., 2017). It

follows directly from this result that training towards the optimal action of the summed

objective, π(a′|s′) = maxa′
∑

z qz(s
′, a′), will result in learning the optimal policy of the

original (non-decomposed) MDP. For the rest of the chapter, we focus on a regularized

objective as we would like to show improvement over the baseline.

3.2.4 Random Target

A sub-optimal policy that each qz can be trained towards is the random policy:

grand(θt) =

(
rzt + γ

1

A
∑
a′∈A

q̂z(st+1, a
′)− q̂z(st, at)

)
∇θz q̂z(s, a; θzt ). (3.9)

The summed q-values, which we call qrandHRA, will represent the action-value function under

the random policy. By using this target, the agent will no longer be optimizing towards the

optimal policy, except in degenerate MDPs. We note, however, that the behavioural policy

can still act greedily with respect to the sum of the trained q-values, providing improvement

over the random policy.

The random policy target has convenient properties in terms of state space reduction. To

see this, let us reconsider our object collection example from section 3.2.2. Under the random

policy, the probability that the agent obtains an object at any point in time is independent of

whether or not other objects are available. This property allows us to reduce the state space

for each agent, by only using the agent’s position in the grid and whether the corresponding

object is available or not.

On the other hand, under the optimal policy, the expected time for collecting an object

depends on which other objects are still available in the world. Therefore, if we apply the

same state space reductions that we previously described for qrandHRA, each sub-task would

become partially observable, potentially causing convergence issues due to breaking the
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Markov property.

3.2.5 Extra Domain Knowledge

In its basic setting, the only domain knowledge applied to HRA is in the form of the

decomposed reward function. However, one of the strengths of HRA is that it can easily

exploit more domain knowledge. Domain knowledge can be exploited in one of the following

ways:

1. Removing irrelevant features: Features that do not affect the decomposed reward,

rz, add noise to the learning process and can be removed.

2. Identifying terminal states: Terminal states are states from which no further reward

can be received; they have by definition a value of 0. In our use case, this corresponds

to states after a particular object has been collected. The agent responsible for that

object will receive a reward of 0 until the episode is reset. Using this knowledge, HRA

can refrain from approximating this value by the value network, such that the weights

can be fully used to represent non-terminal states.

3. Using pseudo-reward functions: Instead of updating an HRA head using a compo-

nent of the environment reward, it can be updated using a pseudo-reward. For example,

instead of receiving the environmental reward for collecting a particular object, the

agent can receive rewards for navigating to the corresponding grid location. The main

benefit of this approach is that value functions can still be trained even after the object

has been collected. In this scenario, each value function trained using pseudo-rewards

is considered a general value function (GVF) (Sutton et al., 2011).

3.3 Related Work

The horde architecture (Sutton et al., 2011) is focused on building up general knowledge

about the world, encoded via a large number of GVFs. Unlike the horde architecture, HRA

focusses on training separate components of the environment-reward function in order to

more efficiently learn a control policy.

Similar to HRA, universal value function approximators (UVFA) (Schaul et al., 2015)

builds on horde as well, but extends it along a different direction. UVFA enables generalization

across different tasks/goals. It does not address how to solve a single, complex task, which is

the focus of HRA.



CHAPTER 3. REWARD DECOMPOSITION 33

UNREAL (Jaderberg et al., 2016) also shares similarities with HRA. Specifically, in

UNREAL several different auxiliary tasks are used to learn a shared representation to

improve the sample efficiency in the main task. In contrast, in HRA we decompose the

problem into simple components that when aggregated yield the final solution.

There have been several works that consider decomposing the reward function while still

maintaining optimality of the solution (Russell and Zimdars, 2003; Sprague and Ballard,

2003). As we mentioned in section 3.2.3, to achieve a benefit over standard approaches, these

methods typically need to make even stronger assumptions about the environment. For

example, if each component of the reward function is fully independent of one another, then

each subtask can be solved separately. Unlike these works, we consider the scenario where

the target policy is potentially sub-optimal, leading us to large reductions in the state space

under less strict assumptions.

Finally, HRA relates to options (Sutton et al., 1999; Bacon et al., 2017), and more

generally hierarchical learning (Barto and Mahadevan, 2003; Kulkarni et al., 2016). Options

are temporally-extended actions that, like HRA’s heads, can be trained in parallel based

on their own (intrinsic) reward functions. Once an option has been trained, a higher-level

agent that uses an option sees it as an action and evaluates it using its own reward function.

This can yield great speed-ups in learning, and help substantially with exploration. Unlike

options, HRA does not follow a single sub-agent for an extended period of time, but rather

aggregates all of the sub-agents q-values at every time-step.

3.4 Experiments

In the following section, we demonstrate how HRA can be used to improve sample efficiency

in both a toy object collection task as well as Ms. Pac-Man.

3.4.1 Object Collection Task

We first consider a task where an agent has to collect objects as quickly as possible in a

10 × 10 grid. There are 10 possible object locations spread out across the grid. For each

episode, an object is randomly placed on 5 of those 10 locations. The agent starts at a

random position and can take one of the 4 cardinal actions (left, right, up, down). It receives

a reward of +1 if an object is collected and 0 otherwise. An episode ends after all 5 objects

have been collected or after 300 steps, whichever comes first. The code for this experiment is

available at github.com/Maluuba/hra.

We use DQN (Mnih et al., 2015) as our baseline, and compare it to HRA using the same

https://github.com/Maluuba/hra
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network. The network consists of a binary input layer of size 110, encoding the agent’s

position and whether there is an object on each possible location. This is followed by a fully

connected hidden layer of size 250. For HRA, this layer is connected to 10 heads consisting

of 4 nodes each, corresponding to the action-value under each individual reward function.

For DQN, we use the same structure, but compute the sum over all 10 heads resulting in an

output size of 4 (corresponding to the number of actions). The architectures can be seen in

figure 3.1.

HRA with pseudo-rewardsHRADQN

Figure 3.1: The different network architectures used in the object collection task. Left: DQN
with several output heads used for DQN and DQN+1. Center: HRA architecture used for
HRA and HRA+1. Right: HRA architecture with pseudo-rewards used for HRA+2 and
HRA+3.
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Figure 3.2: Results on the object collection domain averaged over 5 seeds. Shaded regions
denote 95% confidence intervals. The agents have to collect 5 randomly placed objects. We
plot the number of environment steps that each method needs to collect all the objects (y-axis)
relative the number of training episodes (x-axis). We note that DQN, DQN+1, HRA, and
HRA+1 are Deep RL methods, whereas HRA+2 and HRA+3 use a tabular representation
that was enabled by the decomposition.
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Besides for the full network, we test using the following three levels of domain knowledge,

as outlined in section 3.2.5: 1) removing the irrelevant features for each head by providing

only the position of the agent and the corresponding object feature; 2) the knowledge from 1

and additionally identifying terminal states; 3) the knowledge from 1 and 2 and using pseudo

rewards for learning GVFs to go to each of the 10 locations. The head for a particular location

copies the q-values of the corresponding GVF if the location currently contains an object, or

outputs 0 otherwise. We refer to these as HRA+1, HRA+2 and HRA+3, respectively. For

DQN, we also tested a version that used the same state space reduction as HRA+1, we refer

to this version as DQN+1.

Training samples are generated by a random policy and experiences are replayed periodi-

cally using a replay buffer (Lin, 1992) for learning updates. The training process is tracked

by evaluating the greedy policy with respect to the learned value function after every episode.

For HRA, we tested qlocalHRA as the training target (using equation (3.4)), as well as qrandHRA (using

equation (3.8)). Similarly, for DQN, we used the default training target, q∗, as well as qrand.

We conducted a coarse grid search for the learning rate, α ∈ [0.0001, 0.0005, 0.001, 0.005], and

the discount factor, γ ∈ [0.8, 0.9, 0.95, 0.99], for each method separately and found that setting

the learning rate to 0.001 and the discount factor to 0.99 worked best for both methods.

The results are shown in figure 3.2 using the best settings of each method. For DQN,

using q∗ as the training target resulted in the best performance, while for HRA, using qrandHRA

resulted in the best performance. Overall, HRA shows a clear performance boost over DQN,

even though the network is identical. Reducing the state space improves the performance of

HRA (see HRA vs. HRA+1). However, using that same knowledge for DQN results in a

decrease in performance, which we hypothesize is from the added partial observability that

we discussed in section 3.2.3. The big boost in performance that occurs when the terminal

states are identified is due to the representation reducing to an exact tabular representation.

For the tabular methods, we used the same learning rate as the optimal learning rate for the

deep network version.

3.4.2 Ms. Pac-Man

Next, we test our approach on the Atari 2600 game, Ms. Pac-Man, using the ALE (Bellemare

et al., 2013). The main objective of the game is to collect different objects while avoiding

being caught by the ghosts. The standard deep RL approach to solving Ms. Pac-Man is

for the agent to learn a mapping from raw-pixels to actions. We implement one of the

state of the art deep RL methods, asynchronous advantage actor-critic (A3C) (Mnih et al.,

2016). It learns using a CNN as its representation, the policy gradient to learn the policy,
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object points

pellet 10
power pellet 50

1st blue ghost 200
2nd blue ghost 400
3rd blue ghost 800
4th blue ghost 1,600

cherry 100
strawberry 200

orange 500
pretzel 700
apple 1,000
pear 2,000

banana 5,000

Table 3.1: Point breakdown of objects in Ms. Pac-Man.

and multi-step returns with n = 5 to train both the policy and the value function. We

refer to this algorithm as A3C(pixels). We use the same hyperparameters and network

as the original paper (Mnih et al., 2016) with an additional search over the learning rate,

α ∈ [0.0001, 0.00025, 0.0005, 0.00075, 0.001].

In order to decompose the reward function, we first extract the position of the different

objects which are summarized in table 3.1. Moreover, the position and direction of Ms.

Pac-Man are also needed to construct a Markov state for our decomposition. To get this

information, we first remove the bottom and top of the 210×160 screen resulting in 160×160

pixels. From this, we extract the position of the different objects and create a separate input

channel by encoding its location with an accuracy of 4 pixels. This results in 11 binary

channels of size 40× 40. Specifically, there is a channel for Ms. Pac-Man, each of the 4 ghosts,

each of the 4 blue ghosts (these are treated as different objects), the fruits, plus one channel

with all the pellets (including power pellets that turn the ghosts blue).

Using this domain knowledge we also construct a new version of A3C, A3C(channels),

where we still train a CNN using the same objective but use the privileged features as input

(the output of our object detector). Specifically, for A3C(channels), we combine the 4 channels

of the ghosts into a single channel to allow it to generalise better across ghosts. We do the

same with the 4 channels of the blue ghosts. Finally, instead of giving the history of the last

4 frames as done in Mnih et al. (2016) to create a Markov state, we give the orientation of

Ms. Pac-Man as a 1-hot vector of length 4 (representing the 4 compass directions).

For HRA, we learn a GVF for reaching a particular point in the grid under the random
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policy. Specifically, once a particular position is reached, the associated GVF receives a

reward of +1. Moreover, since each qz only needs access to state features that directly

impact rz, each sub-agent only needs access to the current location of Ms. Pac-Man and its

current direction, resulting in approximately 950 states per GVF. Thus, due to the large

state reduction, each qz can be trained using a simple tabular representation. The GVFs are

trained online with expected SARSA with α = 1 and γ = 0.99.

For aggregation, we use the extracted positions of all the available collectable objects

and reweight the GVFs based on their true point values from table 3.1. Moreover, if an

object is not on the screen, we set its q-values to 0. Ghosts in Ms. Pac-Man do not have a

predefined point value but rather cause a loss of life if touched. To handle this, we normalize

the summed q-values of the collectable objects to be between [0, 1], and then use a negative

weight of −10 for the ghost’s GVFs. For the behavioural policy, we act greedily with respect

to the summed q-values with an added diversification head. Specifically, for the first 50

steps the diversification head adds qd ∼ U(0, 20) to the summed q-value to encourage diverse

trajectories.
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Figure 3.3: Per episode score (y-axis) plotted against number of training episodes (x-axis).
Our method, HRA (in blue), outperforms both deep RL baselines. A3C(pixels) in red uses
the standard ALE preprocessing. A3C(channels) uses the same privileged features (described
in the text) as our approach.

Figure 3.3 shows the training curves for our method as well as the baselines. We train
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both versions of A3C for 800 million frames. Because HRA learns quickly, we train it only for

5000 episodes, corresponding with about 150 million frames (note that better policies result

in more frames per episode). We can see that HRA clearly outperforms both A3C(pixels) and

A3C(channels). Comparing A3C(pixels) and A3C(channels) in figure 3.3 reveals a surprising

result. While we use advanced preprocessing for A3C(channels) by separating the screen

image into relevant object channels, this did not significantly change the final performance,

although it did help it learn more quickly.

3.5 Discussion

One of the strengths of HRA is that it can exploit domain knowledge to a much greater

extent than standard methods. This is clearly shown in the Ms. Pac-Man experiments, where

knowledge of the reward function and the state space allowed for the decomposition of the

main task into many simple (tabular) tasks. Further knowledge allowed for the use of GVFs

that can be trained efficiently and aggregated using the appropriate weighting.

Another potential benefit of the weighted decomposition could be to stabilize training

of neural networks. Many deep RL approaches, including A3C (Mnih et al., 2016), simply

clip the reward function to be within [−1, 1] to stabilize training. However, in many tasks

there exist rewards of varying magnitudes which can result in the clipping heuristic simply

maximizing the reward frequency (van Hasselt et al., 2016). Instead, training many deep RL

agents using a clipped reward component and then applying the appropriate weighting during

aggregation could result in accurately representing the value function while still maintaining

stability. Similarly motivated, van Hasselt et al. (2016) propose to learn how to normalize the

outputs to address varying reward magnitudes. Their approach has the benefit of potentially

requiring less domain knowledge (the reward decomposition and the magnitude), however, it

comes at the expense of added parameters to train.

On the other hand, the major caveats of HRA are that it requires domain knowledge and

potentially reaches a sub-optimal solution. More recent approaches, such as in Schrittwieser

et al. (2019), use model-based techniques for deep RL and outperformed the results presented

here for Ms. Pac-Man, without using the same amount of domain knowledge or a regularized

objective. In the following chapters, we explore methods that do not make use of additional

domain knowledge or that restrict the solution space.



Chapter 4

Reward Estimation

The rest of this thesis explores solution methods that decompose the value estimation problem

through the Bellman equation without additional domain knowledge. A crucial part of the

Bellman equation is the reward component. When doing classical dynamic programming,

the expected reward is assumed to be known (Bellman, 1957). However, in standard online

reinforcement learning, the reward is sampled from the environment at every time-step

(Sutton and Barto, 2018). This sampling procedure can result in high variance during training

and slow convergence to the optimal value function. More importantly, stochastic rewards

are prevalent in certain RL scenarios, especially those where the rewards are based on sensory

data (Everitt et al., 2017) or are human generated (Knox and Stone, 2012).

In this chapter, we propose a simple method for updating RL algorithms to compensate

for stochastic reward signals. We suggest learning an estimator for both the expected reward,

and the value function, i.e., using an estimate of the reward r̂ to update the value function v̂

and policy π, rather than the sampled rewards. We argue that the reward function is easy to

learn and a powerful variance reduction tool for training RL systems.

Crucial to the success of the approach is the fact that learning an estimate of the reward

is a much easier task than learning the entire value function. We recall that in section 2.1,

we discussed that the convergence rate of policy evaluation is determined by the discount

factor, with smaller values of γ having a faster convergence rate. Using this logic, and the

fact that reward estimation can be seen as learning a value function with γ = 0, it is not

surprising that a reward estimate would indeed converge faster than a value estimate with a

larger γ. We confirm the validity of the approach and show that it results in theoretical and

empirical performance gains in certain tabular and function approximation settings.

39
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4.1 Related Work

Estimating the reward function falls into the large array of work on model-based RL (Sutton,

1990; van Seijen and Sutton, 2013; Silver et al., 2016b; Racanière et al., 2017; Henaff et al.,

2017; Feinberg et al., 2018; François-Lavet et al., 2018; Talvitie, 2018). In model-based RL,

the agent learns both an estimate of the reward function and an estimate of the transition

dynamics. The joint model can then be used for performing expected updates (Sutton,

1990; van Seijen and Sutton, 2013; Feinberg et al., 2018). However, in our case we do not

require learning the potentially complex transition dynamics, as we explicitly aim to handle

stochastic rewards. Nevertheless, reward estimation can be interpreted as a single step case

of model-based for model-free RL, which uses a model to help the training of methods that

do not usually require a model.

Other branches of RL literature also sometimes use an estimate of the reward function,

such as inverse reinforcement learning (IRL) and transfer learning for RL. IRL (Ng and

Russell, 2000; Abbeel and Ng, 2004) involves inferring reward functions from demonstrations

given the assumption that the demonstrations were optimal under said reward function. In

transfer learning for RL (Taylor and Stone, 2009), the agent is trained in one environment and

then tested in another, with the underlying assumption that some components of the training

task can be transferred over to the test task. In some transfer learning scenarios, the reward

changes but the transition dynamics remain the same from training to testing (Laroche and

Barlier, 2017; Barreto et al., 2017). In these scenarios, learning a reward function for each

new task is combined with the previously learned model to generate the new value function

and policy.

4.2 Proposed Approach

Under a stochastic reward rt ∼ r(st, at), an additional source of variance is injected into the

value function update. To reduce this variance, we introduce an estimator for the reward at

a given state r̂(st, at; θ
r
t ). In the function approximation case, learning this reward estimator

becomes a simple regression problem that can be updated via gradient descent:

gr̂(θ
r
t ) = −∇θr (rt − r̂(st, at; θrt ))

2 . (4.1)

We can then define a new return that replaces the sampled reward with its expectation:

Ĝλ
t:t+n = v̂(st; θ

v
t ) +

n−1∑
k=0

(γλ)kδ̂t+k∇θv v̂(st; θ
v
t ), (4.2)
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where δ̂t =
∑

a∈A π(a|st)r̂(st, a; θrt ) + γv̂(st+1)− v̂(st; θ
v
t ) is the one-step TD error with the

expected reward replacing the sampled reward. The value function can then be updated

using this return:

g ˆTD(θvt ) =
(
Ĝλ
t:t+n − v̂(st; θ

v
t )
)
∇θv v̂(st; θ

v
t ). (4.3)

We recall that for actor-critic methods, the policy parameters are trained to maximize the

return with a baseline used to reduce variance, see section 2.7. Using our reward estimator

we have the following policy gradient update:

gÂC(θπt ) = ∇θπ log π(st, at; θ
π
t )(Ĝλ

t:t+n − v̂(st; θ
v
t )). (4.4)

An example of using the reward estimator in an actor-critic process can be seen in Figure 4.1.

Environment Value
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Reward
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State

Action

TD 
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Reward
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Reward
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Prediction

Error

Figure 4.1: The actor-critic update process with the reward estimator. It mostly follows the
standard actor-critic update paradigm, except for the important distinction that an estimate
of the reward is used to train the value function and the policy.

4.3 Theoretical Variance Reduction

To determine whether using a reward estimator reduces variance theoretically, we examine

the tabular case. In this setting, we use the sample mean for the reward: r̂(s, a) = 1
N

∑
i r
i

with ri ∼ r(s, a). That is, given N independently and identically distributed (i.i.d.) reward

samples at a given state s where action a was taken, we determine the mean of those rewards.

First, following a similar methodology to the variance analysis by van Seijen et al. (2009),

we determine the variance of the standard one-step Bellman target: Gt:t+1 = rt + γv̂(st+1).



CHAPTER 4. REWARD ESTIMATION 42

The variance of this Bellman target is:

var [Gt:t+1] = var [rt] + var [γv̂(st+1)] + 2 cov [rt, γv̂(st+1)] . (4.5)

If we instead use the sample mean of the reward, the target becomes: Ĝt:t+1 = r̂(st, at) +

γv̂(st+1). Similarly, the variance becomes:

var
[
Ĝt:t+1

]
= var [r̂(st, at)] + var [γv̂(st+1)] + 2 cov [r̂(st, at), γv̂(st+1)] . (4.6)

Moreover, since we are using the sample mean, we have that:

var [r̂(st, at)] =
1

N
var [rt] (4.7)

and,

cov [r̂(st, at), γv̂(st+1)] =
1

N
cov [rt, γv̂(st+1)] (4.8)

Thus, we arrive at the following equality:

var
[
Ĝt:t+1

]
− var [Gt:t+1] =

1−N
N

var [rt] + 2
1−N
N

cov [rt, γv̂(st+1)] . (4.9)

We note that with multi-step and λ-returns a similar analysis can be done, with the main

difference being that there will be added covariance terms that complicate the interpretation.

Analyzing equation (4.9), we see that if the covariance between the reward component and

the value function at the next state is ≥ 0 that var
[
Ĝt:t+n

]
≤ var [Gt:t+n] ,∀N ≥ 1. This may

not always be the case, for example, consider an object collection task where the agent is

tasked with collecting all of the objects on a particular grid. If we assume that the agent

receives a positive reward for collecting an object, then after collection, the value at the next

time step may be lower since there is one less object to collect. Thus, the reward and the

value at the next time-step may indeed have a negative covariance. In these instances, reward

estimation may not reduce the variance of the training target. Nevertheless, we may expect

to have success when the variance in the return is largely attributed to stochasticity in the

reward function and not in the covariance between the current reward the value at the next

state.

4.4 Experiments

To validate that using an estimate for the reward improves performance, we investigate several

settings with stochastic noise added to the reward function. First, we use a small toy MDP
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problem to empirically validate our theoretical variance reductions shown in section 4.3. We

then conduct experiments using several Atari games from the ALE (Bellemare et al., 2013)

and MuJoCo tasks from OpenAI Gym (Brockman et al., 2016). The code for all experiments

is provided at github.com/facebookresearch/reward-estimator-corl.

4.4.1 Tabular Experiments

We first empirically investigate the tabular case. We construct a 5-state MDP for policy

evaluation. The MDP contains deterministic transitions from left to right in all states, and

the episode terminates upon reaching the right-most state. At each state, the agent receives

a stochastic reward r with a probability of 0.5 and receives a 0 reward with equal probability.

The value function is updated via the one-step TD error for 100 episodes. We measure

the robustness to variance by evaluating the root mean squared error (RMSE) of the value

function over the 100 episodes. As seen in figure 4.2, when using the reward estimator

(trained using the sample mean), the agent is able to learn more accurate value functions

even at high learning rates.
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Figure 4.2: Tabular experiments with a 5 state MDP. In all cases, rewards are assigned with
probability 0.5 and, set to 0 otherwise (rewards of +1,+2,+5, from left to right). The x-axis
demonstrates various learning rates for the TD-update. We report the average RMSE over
the first 100 episodes of learning - lower is better.

4.4.2 Atari Experiments

Next, we experiment on 5 different tasks from the ALE (Bellemare et al., 2013): Beam

Rider, Breakout, Pong, Qbert, Seaquest, and Space Invaders. We build our code off of the

A2C implementation from Kostrikov (2018) which uses the exact same hyperparameters as

Dhariwal et al. (2017). For the reward estimator, we use an additional network with the

same architecture as the value network and use it to train our critic and policy as described

in section 4.2. We compare our approach to the standard A2C algorithm, as well as A2C

https://github.com/facebookresearch/reward-estimator-corl
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Environment σ = 0.0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4
(% Gain) (% Gain) (% Gain) (% Gain) (% Gain)

BeamRider 26.87 49.45 1350.95 876.43 485.13

Breakout -1.24 15.40 101.82 681.86 2152.73

Pong -0.22 21.66 -1.55 1882.6 32.05

Qbert -37.57 -10.18 78.55 456.57 646.32

Seaquest -29.53 -9.18 -8.68 74.66 115.86

SpaceInvaders -10.48 8.46 55.10 136.29 364.82

Average -8.69 12.6 262.7 684.73 632.82

Table 4.1: Comparison of the average episode reward over 10M steps of training between our
approach to the best of both baselines (A2C and A2C with the reward prediction auxiliary
task). The score represents the relative improvement over the best baseline normalized by
the performance of the random policy: Ours−Best Baseline

|Best Baseline−Random Policy| . Bold scores indicate an
improvement over both baselines. The results are the averaged over 3 runs using different
random seeds. Variance of the added Gaussian noise is denoted as σ2.

with reward prediction as an auxiliary task, which uses reward prediction as an additional

loss function to help regularize the network’s representation (Jaderberg et al., 2016).

We tuned the learning rate for the reward-predictor through a coarse grid-search (α ∈
[0.0001, 0.00025, 0.0005, 0.00075, 0.001]) on Pong, and then used the best one (0.0001) on all

other games. Additionally, we found that occasionally our algorithm diverged completely due

to poor initialization of the reward estimator. To alleviate this issue, we provided a convex

combination between the estimate and the stochastic environment reward, which we linearly

decayed over the first 25000 network updates (out of the total 125000 updates). Finally,

we model the reward estimate by simply providing the current state as input (and not the

action), which we find to be sufficient, since rewards in the games that were tested are often

delayed by several time-steps.

The noise which we add is 0-centered Gaussian noise. That is, the resulting reward

becomes rt = r(st, at) + ε where ε ∼ N (0, σ2). This noise is inspired by a reward signal

which is sensory based, but where sensors exhibit a Gaussian distribution as in Nguyen et al.

(2012). We note that since only 3 seeds were used for this set of experiment, small gains

may be attributed to noise in the learning process. However, as can be seen by the results

presented in table 4.1, once a certain noise threshold has been reached, reward estimation

provides a large boost in performance. We also see that in scenarios with a small amount of

noise that the best baseline often performs similarly or even outperforms our approach. We

hypothesize that this is caused by the small bias that may be added if the reward estimate is

incorrect with its estimate.
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4.4.3 MuJoCo Experiments

Next, we experiment on four different continuous control tasks in the MuJoCo simulator

provided by OpenAI Gym (Brockman et al., 2016): Reacher, Hopper, HalfCheetah, and

Walker2d. We use PPO (Schulman et al., 2017) instead of A2C as our core learning algorithm,

as it tends to outperform A2C on continuous control tasks. Our architecture and hyper-

parameters are identical to the standard PPO parameters used in Dhariwal et al. (2017), and

our implementation is directly taken from Kostrikov (2018).

Similar to the Atari experiments, we compare against two baselines: standard PPO and

PPO with the reward auxiliary task added to the value network. We also use a completely

separate network to train the reward estimate with the same structure and the same learning

rate as the value network. Moreover, we use a convex combination between our estimate r̂

and the stochastic environment reward which we linearly decay over the first 100 network

updates (out of the total ∼ 500 updates). Finally, unlike in the Atari experiments, we model

the reward estimate by including both the state and action as an input. We find that this

helps in certain tasks, since some provide a reward for the action itself (e.g., Reacher).

Gaussian noise experiment: Identical to section 4.4.2, the first type of reward noise

which we add is 0-centered Gaussian noise. The results of this experiment can be found in

table 4.4.3. As can be seen under a 0-centered Gaussian noise, reward estimation improves

results over the baseline in all cases except when no noise is added.

σ = 0.0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4

(% Gain) (% Gain) (% Gain) (% Gain) (% Gain)

Hopper -8.09 4.05 6.15 10.39 33.42

Walker -8.09 63.67 159.03 177.59 150.60

Reacher -1.79 10.41 16.60 30.72 24.73

HalfCheetah -12.55 38.70 115.21 139.52 493.61

Average -7.63 29.21 74.25 89.55 175.59

Table 4.2: Gaussian reward noise (σ = (0.0, 0.1, 0.2, 0.3, 0.4)) comparison between our

approach and the best of both baselines (PPO and PPO with the reward prediction auxiliary

task). The score represents the relative improvement over the best baseline normalized with

respect to the the average episode reward over the last 100 episodes after training for 1M

steps: Ours−Best Baseline
|Best Baseline−Random Policy| . Bold scores indicate an improvement over both baselines.

The results are the average over 10 runs using different random seeds.
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Sparsity experiment: Next, we consider artificially making the reward sparser by replacing

the true environmental reward with the 0 reward with varying levels of probability. Specifically,

the reward at time t is defined as:

rt =

0, with probability ε

r(st, at), with probability (1− ε).
(4.10)

This may reflect a scenario where there is a signal dropout either in a sensory-based reward

signal as in Potter et al. (2010) or in communication of the reward signal from a human

to an agent. This type of noise in particular provides insight into the the effectiveness of

r̂ in the estimation of sparse rewards. We note that sparsity noise can be seen as simply

multiplying the reward signal by a constant positive factor between [0, 1] at every time step,

which preserves the optimal ordering of policies. Specifically, if Q(s, a) > Q(s, a) under r(s, a)

then Q′(s, a) > Q′(s, a) under r′(s, a) ∗ c where c > 0. Due to the potential learning problems

with sparse rewards (Bellemare et al., 2016), we can see that in table 4.3 that the results are

no longer monotonic and that small gains may be attributed to noise in the learning process.

However, consistent with previous results, once a certain noise threshold has been reached,

reward estimation improves performance in all cases.

ε = 0.6 ε = 0.7 ε = 0.8 ε = 0.9 ε = 0.95

(% Gain) (% Gain) (% Gain) (% Gain) (% Gain)

Hopper 16.31 -8.0 2.00 72.54 81.93

Walker 6.19 17.54 32.18 205.12 130.63

Reacher -9.98 -16.35 -18.32 -34.69 83.29

HalfCheetah -12.4 14.5 -0.67 -6.01 124.15

Average 0.03 1.92 3.81 59.24 105

Table 4.3: Sparse reward noise (ε = (0.6, 0.7, 0.8, 0.9, 0.95)) comparison between our approach

to the best of both baselines (PPO and PPO with the reward prediction auxiliary task). The

score represents the relative improvement as in Figure 4.4.3. The results are the averaged

over 10 different experiment random seeds.

4.5 Discussion

In this chapter, we presented a simple method for effectively decomposing the Bellman

equation by learning an estimate of the reward function to aid the training of an RL system.

Theoretically, we showed that in certain tabular settings this results in variance reduction in
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the training target for the value function. Empirically, we demonstrated that once a certain

noise threshold was reached, reward estimation provided a large boost of performance over

standard actor-critic methods.

An early version of the work presented in this chapter (Romoff et al., 2018b), used a

shared network to train the value function and the reward function, with the final linear

layer mapping to both the value function and the estimated reward. In later work, we found

that the performance was further improved once the reward was estimated via its own neural

network (Romoff et al., 2018a). We hypothesize that once the reward estimation problem

was fully separated from value estimation, the network was able to fit to the large amount of

noise that was being injected into the problem.

We recall that in the introduction of this chapter we mentioned that value functions with

a smaller γ converge faster asymptotically than those with a larger γ, see section 2.1 for more

details. However, there are two caveats to that analysis, 1) it assumes that the value function

is updated deterministically and 2) that the learning rate is set to 1. Empirically, we showed

that even with both of these assumptions lifted, the reward estimate can still aid the training

of value functions. One explanation could be the fact that unlike the value function, the

reward function trained with both the state and action as an input, is mostly invariant 1 to

changes in the policy. Thus, even as the policy was improving during training, the reward

estimate was still useful, providing variance reduction to the TD target.

In the following chapter, we extend this approach by using the estimate of a value function

based on a small γ to aid the learning of value functions with larger γ. While this extension

does remove the policy invariance previously discussed, we highlight additional theoretical

and empirical benefits that makes this new approach a strong tool for value estimation.

1The distribution of states may change when the policy changes.



Chapter 5

Time-Scale Decomposition

The following chapter introduces a method for decomposing the Bellman equation based

on the discount factor. In the iterative setting, the discount factor is part of the problem

formulation and is not treated as a hyperparameter to be tuned. However, in the RL setting,

discounting is often used as a biased proxy for optimizing the cumulative reward to make

learning more efficient and stable (Bertsekas and Tsitsiklis, 1995; Prokhorov and Wunsch,

1997; Even-Dar and Mansour, 2003). The optimal discount factor, which balances asymptotic

policy performance with learning ability, is often difficult to choose, and solutions have ranged

from scheduled curricula (Prokhorov and Wunsch, 1997; François-Lavet et al., 2015; OpenAI,

2018) to meta-gradient learning of the discount factor (Xu et al., 2018).

OpenAI (2018) and François-Lavet et al. (2015), for example, start with a small discount

factor and gradually increase it to bootstrap the learning process. Rather than explicitly

tackling the problem of discount selection, we make the observation that for any discount

factor, the discounted value function already encompasses all smaller time-scales. This simple

observation allows us to derive a novel method of generating separable value functions. We

can separate the value function into a number of partial estimators, which we call delta

estimators, that approximate the difference between value functions at different discount

factors. More importantly, each delta estimator satisfies a Bellman-like equation based on

the value functions of shorter horizons. Thus, these delta estimators can then be summed

to yield the same discounted value function, and any subset of estimators from the series of

smaller γz values. Learning the difference (delta) between value functions leads us to call our

method TD(∆).

The separable nature of the TD(∆) estimator allows for each component to be learned

in a way that is optimal for that part of the overall value function. This means that, for

example, the learning rate and the n-step or λ-return can be adjusted for each component,

yielding overall faster convergence. Additionally, we provide an intuitive method for setting

48
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intermediary γz values which yields performance gains, in most cases, without additional

tuning. We demonstrate these benefits theoretically using a similar bias-variance analysis as

Kearns and Singh (2000), by adjusting the n-step returns to update each delta estimator. We

also show how this method can be combined with TD(λ) (Sutton, 1988) and PPO (Schulman

et al., 2017) leading to empirical gains in dense reward Atari games.

5.1 Related work

There are several RL works that learn an ensemble of value functions at different time-scales.

Specifically, Feinberg and Shwartz (1994) examine learning an optimal policy for the mixture

of two value functions with different discount factors. Similarly, Reinke et al. (2017) learn

q-values for multiple discount factors in order to approximate the average return. Sherstan

et al. (2018) train a value function such that it can be queried for a given set of time-scales.

Finally, concurrent to this work, Fedus et al. (2019) re-weight multiple value functions across

different discount factors to form a hyperbolic value function. However, we note that none of

the aforementioned works utilize short term estimates to train the longer term value functions.

While our method can similarly be used to query smaller time-scales, this is a side-benefit to

the performance increases yielded by separating value functions into different time-scales via

TD(∆).

Some recent work has investigated how to precisely select the discount factor (François-

Lavet et al., 2015; Xu et al., 2018). François-Lavet et al. (2015) suggest a particular scheduling

mechanism, seen similarly in OpenAI (2018) and Prokhorov and Wunsch (1997). Xu et al.

(2018) propose a meta-gradient approach which learns the discount factor (and λ value) over

time. All of these methods can be applied to our own as we do not necessarily prescribe a

final overall γ value to be used.

Finally, hierarchical reinforcement learning methods often decompose value functions or

reward functions into a number of smaller systems which can be optimized separately (Diet-

terich, 2000; Hengst, 2002; Menache et al., 2002; Russell and Zimdars, 2003; van Seijen et al.,

2017). These works learn hierarchical policies, paired with the decomposed value functions,

which reflect the structure of the goals. Notably, some hierarchical methods, often also require

some form of domain knowledge. For example, in our reward decomposition from chapter 3,

we require that the reward function be decomposed into a meaningful way before training,

which then can be efficiently learned by separate value functions. The approach presented in

this chapter, on the other hand, can be applied to any MDP, without any additional prior

knowledge, making it a more general solution.
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5.2 Proposed Approach

In this section, we introduce TD(∆), along with several variations, including: multi-step TD

and TD(λ). We also show how TD(∆) can be used for control in policy gradient methods.

5.2.1 Single-step TD(∆)

Consider learning with Z + 1 different discount factors ∆ := γ0, γ1, . . . , γZ . Each of these

define a corresponding value function vz. We define the delta functions wz by

wz := vz − vz−1, w0 := v0. (5.1)

This results in Z + 1 delta functions such that the desired vz is simply the sum of the delta

functions:

vz(s) =
z∑
i=0

wi(s). (5.2)

We can derive a Bellman-like equation for the delta functions. Indeed, w0 = v0 satisfies

the Bellman equation:

w0(st) = Eπ [rt + γ0w0(st+1)] , (5.3)

while the delta functions at larger time-scales satisfy:

wz(st) = vz(st)− vz−1(st)

= Eπ [(rt + γzvz(st+1))− (rt + γz−1vz−1(st+1))]

= Eπ [γz (wz(st+1) + vz−1(st+1))− γz−1vz−1(st+1)]

= Eπ [(γz − γz−1)vz−1(st+1) + γzwz(st+1)] . (5.4)

This is a Bellman-like equation for wz, with decay factor γz and rewards (γz−γz−1)vz−1(st+1).

Thus, we can use it to define the expected TD update for wz. Note that in this expression,

vz−1(st+1) can be expanded as the sum of wi(st+1) for i ≤ z− 1, so that the Bellman equation

for wz depends on the values of all delta functions wi for i ≤ z − 1. Specifically, we use the

following one-step return:

Gz
t:t+1 := (γz − γz−1)

z−1∑
u=0

ŵu(st+1) + γzŵz(st+1) (5.5)

Therefore, the delta value function at a given time-scale appears as an autonomous reinforce-

ment learning problem with rewards coming from the value function of the immediately lower
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time-scale. Moreover, we can train all the delta components in parallel according to this TD

update, bootstrapping off of the old value of all the estimators. This requires that a sequence

of γz values is defined beforehand, including a largest and smallest discount γ0 and γZ . We

will see in section 5.4.1 that these settings can affect results. However, to avoid the addition

of a number of hyperparameters, we assume a simple sequence where we double the effective

planning horizon (Kearns and Singh, 2002) of the γz values, i.e.,

1

1− γz
= 2 ∗ 1

1− γz−1

, (5.6)

until the final γZ value is reached. This simple sequence of discount factors, without tuning,

yields performance gains in many settings as seen in section 5.4.

5.2.2 Multi-step TD(∆)

In many scenarios, it has been shown that multi-step TD is more efficient than single-step

TD (Sutton and Barto, 2018). We can easily extend TD(∆) to the multi-step case as follows.

To begin, since w0 := v0, the multi-step target for w0 is identical to the standard multi-step

target with γ = γ0:

w0(st) = Eπ
[
n0−1∑
k=0

γi0rt+k + γn0
0 w0(st+n0)

]
. (5.7)

For all other w functions, we can unroll both the bootstrap term and the rewards from the

previous value function:

wz(st) = Eπ [(γz − γz−1)vz−1(st+1) + γzwz(st+1)]

= Eπ
[
(γz − γz−1)rt+1 + γz−1(γz − γz−1)vz−1(st+2) + γz(γz − γz−1)vz−1(st+2) + γ2

zwz(st+2)
]

= Eπ
[
(γz − γz−1)rt+1 + (γ2

z − γ2
z−1)vz−1(st+2) + γ2

zwz(st+2)
]

= Eπ
[
nz−1∑
k=1

(γkz − γkz−1)rt+k + (γnzz − γnzz−1)vz−1(st+nz) + γnzz wz(st+nz)

]
. (5.8)

Finally, sampling from this expectation and using the sum of the delta estimators in place of

the value function gives us the following return:

Gz
t:t+nz :=

nz−1∑
k=1

(γkz − γkz−1)rt+k + (γnzz − γnzz−1)
z−1∑
u=0

ŵu(st+nz) + γnzz ŵz(st+nz).

Each wz receives a fraction of the rewards from the environment up to time-step nz − 1.

Additionally, each wz bootstraps off of its own value function as well as the value at the
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previous time-scale.

We recall that truncated TD(λ) uses the following λ-return as a target for its update

rules:

Gγ,λ
t:t+n = v̂γ(st) +

n−1∑
k=0

(λγ)kδγt+k, (5.9)

where we add the superscript γ to highlight the dependence on the discount factor.

Similarly, for each wz we can define the truncated λ-return as:

Gz,λz
t:t+nz := ŵz(st) +

nz−1∑
k=0

(λzγz)
kδzt+k, (5.10)

where δ0
t := δγ0t and δzt := (γz − γz−1)

∑z−1
u=0 ŵu(st+1) + γzŵz(st+1)− ŵz(st) are the one-step

TD errors.

5.2.3 TD(λ,∆) with Policy Gradient Methods

Since TD(λ) is used in powerful policy gradient baselines (Schulman et al., 2017), we propose

to train the policy and the value function using the following advantage function:

A∆,λ
t:t+n(st) :=

n−1∑
k=0

(λγ)kδ∆
t+k, (5.11)

where δ∆
t+k := rt + γZ

∑Z
z=0 ŵz(st+1)−

∑Z
z=0 ŵz(st). Thus, the sum of all our w estimators

are used as a replacement for v. This objective can easily be applied to PPO by using the

policy update from equation (2.50) and replacing Aλt:t+n with A∆,λ
t:t+n. Similarly, to train each

wz, we use the truncated λ-return defined in equation (5.10).

5.3 Theoretical Analysis

We now analyze our estimators more formally. The goal is that our estimator will provide

favorable bias-variance trade-offs under some circumstances. To shed light on this, we start

by illustrating when our estimator is identical to the single estimator (theorem 5.3.1). Then

motivated by these results and prior work by Kearns and Singh (2000), we bound the error

of our estimator in terms of a bias and variance term (theorem 5.3.4).
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5.3.1 Equivalence settings and improvement

In some cases, we can show that our TD(∆) update and its variations are equivalent to the

non-delta estimator vγ when recomposed into a value function. In particular, we focus here

on linear function approximation of the form:

v̂γ(s) := 〈θγ, x(s)〉 and ŵz(s) := 〈θz, x(s)〉,∀z

where θγ and {θz}z are weight vectors in Rd and x : S → Rd is a feature map from a state to

a given d-dimensional feature space. Let θγ be updated using TD(λ) as follows:

θγt+1 = θγt + α
(
Gγ,λ
t:t+n − v̂γ(st)

)
x(st), (5.12)

where Gγ,λ
t:t+n is the TD(λ) return defined in equation (5.9).

Similarly, each ŵz is updated using TD(λz, ∆) as follows:

θzt+1 = θzt + αz

(
Gz,λz
t+nz − ŵz(st)

)
x(st), (5.13)

where Gz,λz
t:t+nz is the TD(∆) return defined in equation (5.10). Here, α and {αz}z are positive

learning rates. The following theorem establishes the equivalence of the two algorithms.

Theorem 5.3.1. If αz = α, λzγz = λγ, nz = n,∀z and if we pick the initial conditions such

that
∑Z

z=0 θ
z
0 = θγ0 , then the iterates produced by TD(λ) from equation (5.12) and TD(λ, ∆)

from equation (5.13) with linear function approximation satisfy:

Z∑
z=0

θzt = θγt ,∀t, (5.14)

Proof. The proof is by induction. We first need to show that the base case holds at t = 0.

This is true given the assumption on initialization. We also note that the base case holds

with zero-initialization.

Next, we assume that the statement holds for a given time-step t, i.e.,
∑Z

z=0 θ
z
t = θγt and

show that it holds at next time-step t+ 1.
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Z∑
z=0

θzt+1 =
Z∑
z=0

(
θzt + αz

(
Gz,λz
t:t+nz − ŵz(st)

)
x(st)

)
(5.15)

= θγt +
Z∑
z=0

αz

(
nz−1∑
k=0

(λzγz)
kδzt+k

)
x(st) (by induction) (5.16)

= θγt + α

n−1∑
k=0

(λγ)k

(
Z∑
z=0

δzt+k

)
︸ ︷︷ ︸

(?)

x(st) (since αz = α, λzγz = λγ, nz = n,∀z)

(5.17)

Thus, if (?) =
∑Z

z=0 δ
z
t = δγt for any t, then we will have an identical update and

∑Z
z=0 θ

z
t+1 =

θγt+1.

Z∑
z=0

δzt = rt + γ0ŵ0(st+1)− ŵ0(st) +
Z∑
z=1

(
(γz − γz−1)

z−1∑
u=0

ŵu(st+1) + γzwz(st+1)− ŵz(st)

)

= rt +
Z∑
u=0

Z∑
z=u+1

(γz − γz−1)ŵu(st+1) +
Z∑
z=0

γzŵz(st+1)−
Z∑
z=0

ŵz(st)

= rt +
Z∑
u=0

(γZ − γu)ŵu(st+1) +
Z∑
z=0

γzŵz(st+1)−
Z∑
z=0

ŵz(st)

= rt + γZ

Z∑
z=0

ŵz(st+1)−
Z∑
z=0

ŵz(st) = rt + γv̂γ(st+1)− v̂γ(st) = δγt (5.18)

Similarly, we can consider learning each wz using n-step TD(∆) instead of TD(λ, ∆).

In this case, the analysis of theorem 5.3.1 immediately applies since with λ = 1 the n-step

truncated λ return is equivalent to the n-step return. Note that the equivalence is achieved

when λzγz = λγ, ∀z. When λ is close to 1 and γz < γ, the latter condition implies that

λz = λγ
γz

could potentially be larger than one. One would conclude that the TD(λz) could

diverge. Fortunately, we show in the next theorem that the TD(λ) operator defined in

equation (2.22) is a contraction mapping for 1 ≤ λ < 1+γ
2γ

which implies that λγ < 1.

Theorem 5.3.2. ∀λ ∈ [0, 1+γ
2γ

[, the operator Tλv defined as Tλv = v+(I−λγP )−1(r+γPv−
v), ∀v ∈ R|S| is well defined. Moreover, Tλv is a contraction with respect to the max norm

and its contraction coefficient is equal to γ|1−λ|
1−λγ
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Proof. We recall that from equation (2.24) that the contraction properties of Tλ are determined

by:

‖Tλv1 − Tλv2‖ ≤
γ|1− λ|
1− λγ

‖v1 − v2‖ (5.19)

We know that 0 ≤ λ ≤ 1 is a contraction, for λ > 1 we need:

γ(λ− 1)

1− λγ
< 1⇒ γλ− γ < 1− λγ

⇒ 2γλ < 1 + γ ⇒ λ <
1 + γ

2γ
(5.20)

Therefore, Tλ is a contraction mapping if 0 ≤ λ < 1+γ
2γ

.

However, we note that the equivalence with unmodified TD learning is the exception

rather than the rule. For one, in order to achieve equivalence we require the same learning

rate across every time-scale. This is a strong restriction as intuitively the shorter time-scales

can be learned faster than the longer ones. Further, adaptive optimizers are typically used in

the nonlinear approximation setting (Henderson et al., 2018; Schulman et al., 2017). Thus,

the effective rate of learning can differ depending on the properties of each delta estimator

and its target. In principle, the optimizer can automatically adapt the learning to be different

for the shorter and longer time-scales.

Besides for the learning rate, such a decomposition allows for some particularly helpful

properties not afforded to the non-delta estimator. In particular, every wz delta component

need not use the same n-step return (or λ-return) as the non-delta estimator (or the higher

wz components). Specifically, if nz < nz+1, ∀z (or γzλz < γz+1λz+1,∀z), then there is the

possibility for variance reduction at the risk of some bias introduction.

5.3.2 Analysis for reducing n-step values

To see how our method differs from the single estimator case, let us consider the tabular

phased version of n-step TD studied by Kearns and Singh (2000). In this setting, starting

from each state s ∈ S, we generate m trajectories:{
s

(j)
0 = s, a0, r0, . . . , s

(j)
n , a(j)

n , r(j)
n , s

(j)
n+1, . . .

}
1≤j≤m

,
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following policy π. For each iteration t, called also phase t, the value function estimate for s

is defined as follows:

v̂γ,t(s) =
1

m

m∑
j=1

(
n−1∑
k=0

γkr
(j)
k + γnv̂γ,t−1(s(j)

n )

)
(5.21)

The following theorem from Kearns and Singh (2000) provides an upper bound on the error

in the value function estimates defined by ∆γ
t := maxs{|v̂γ,t(s)− vγ(s)|}.

Theorem 5.3.3. (Kearns and Singh, 2000) for any 0 < δ < 1, let ε =
√

2 log(2n/δ)
m

. with

probability 1− δ,

∆γ
t ≤ ε

(
1− γn

1− γ

)
︸ ︷︷ ︸
variance term

+ γn∆γ
t−1︸ ︷︷ ︸

bias term

, (5.22)

Proof. Hoeffding’s inequality guarantees for a variable that is bounded between [−1,+1],

that:

P

(∣∣∣∣∣ 1

m

m∑
j=1

r
(j)
k − E[rk]

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−2m2ε2

m22

)
(5.23)

If we assume that the probability is fixed to be no more than δ, we can solve for the resulting

value of ε:

2 exp

(
−m2ε2

2m

)
= δ =⇒ −mε

2

2
= log(δ/2) =⇒ ε =

√
2 log (2/δ)

m
(5.24)

So by Hoeffding’s inequality, if we have m samples, with probability at least 1− δ,∣∣∣∣∣ 1

m

∑
j

r
(j)
k − E[rk]

∣∣∣∣∣ ≤ ε =

√
2 log (2/δ)

m
. (5.25)

We want each of the E[rk] reward terms in the n-step return to all be estimated up to ε

accuracy with high probability. To do so, we can use a union bound and assume that the

probability that we fail to estimate any of these n expected reward terms is at most δ/n.

Substituting this into the above equation for ε, we obtain that with probability at least 1− δ,
each of the E[rk] terms are estimated to within ε =

√
2 log 2n

δ

m
accuracy.
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Substituting this bound back into the definition of the n-step TD update we get:

v̂t+1(s)− v(s) =
1

m

m∑
j=1

(
r

(j)
0 + γr

(j)
1 + . . . γn−1r

(j)
n−1 + γnvt(s

(j)
n )
)
− v(s)

=
n−1∑
k=0

γk

(
1

m

m∑
j=1

r
(j)
k − E[rk]

)
+ γn

(
1

m

m∑
j=1

vt(s
(j)
n )− E[v(sn)]

)

≤
n−1∑
k=0

γkε+ γn

(
1

m

m∑
j=1

vt(s
(j)
n )− E[v(sn)]

)

≤ ε
(1− γn)

1− γ
+ γn

(
1

m

m∑
j=1

vt(s
(j)
n )− E[v(sn)]

)
, (5.26)

where the second term is bounded by ∆γ
t−1 by assumption. Finally, we obtain:

∆γ
t ≤ ε

(1− γn)

1− γ
+ γn∆γ

t−1 (5.27)

The first term ε(1−γn
1−γ ) in the bound is a variance term arising from sampling transitions.

In particular, ε bounds the deviation of the empirical average of rewards from the true

expected reward. The second term is a bias term due to bootstrapping off of the current

value estimate.

Similarly, we consider a phased version of multi-step TD(∆). For each phase t, we update

each w as follows:

ŵz,t(s) =
1

m

m∑
j=1

( nz−1∑
k=1

(γkz − γkz−1)r
(j)
k + (γnzz − γnzz−1)vz−1(s(j)

nz ) + γnzz ŵz(s
(j)
nz )

)
. (5.28)

We now establish an upper bound on the error of phased TD(∆) defined as the sum of error

incurred by each w component,
∑Z

z=0 ∆z
t , where ∆z

t = maxs{|ŵz(s)− wz(s)|}

Theorem 5.3.4. Assume that γ0 ≤ γ1 ≤ . . . γZ = γ and n0 ≤ n1 . . . ≤ nZ = n, for any

0 < δ < 1, let ε =
√

2 log(2n/δ)
m

, with probability 1− δ,

Z∑
z=0

∆z
t ≤ ε

1− γn

1− γ
+ ε

Z−1∑
z=0

γnz+1
z − γnzz

1− γz︸ ︷︷ ︸
variance reduction

+
Z−1∑
z=0

(γnzz − γnz+1
z )

z∑
u=0

∆u
t−1︸ ︷︷ ︸

bias introduction

+γn
Z∑
z=0

∆z
t−1, (5.29)
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Proof. Phased TD(∆) update rules for z ≥ 1:

ŵz,t(s) =
1

m

m∑
j=1

(
nz−1∑
k=1

(γkz − γkz−1)r
(j)
k + (γnzz − γnzz−1)v̂γz−1(s

(j)
nz ) + γnzz ŵz(s

(j)
nz )

)
(5.30)

We know that according to the multi-step Bellman expectation from equation (5.8) for z ≥ 1:

wz(s) = E

[
nz−1∑
k=1

(γkz − γkz−1)rk + (γnzz − γnzz−1)vγz−1(snz) + γnzz wz(snz)

]
(5.31)

Then, subtracting the two expressions gives for z ≥ 1:

ŵz,t(s)− wz(s) =
nz−1∑
k=1

(γkz − γkz−1)

(
1

m

m∑
j=1

r
(j)
k − E[rk]

)

+ (γnzz − γnzz−1)

(
z−1∑
u=0

ŵu(s
(j)
k )− E[wz(sn)]

)
+ γnzz

(
wz(s

(j)
k )− E[wz(sn)]

)
(5.32)

Assuming that n0 ≤ n1 ≤ . . . nZ = n, the w estimates have at most nZ = n reward terms
1
m

∑m
j=1 r

(j)
k . Thus, using Hoeffding’s inequality and the union bound, we obtain that with

probability 1 − δ, each of the n empirical average rewards, 1
m

∑m
j=1 r

(j)
k , deviates from the

true expected reward E[ri] by at most ε =
√

2 log(2n/δ)
m

. Hence, with probability 1− δ, ∀z ≥ 1,

we have:

∆z
t ≤ ε

nz−1∑
k=1

(γkz − γkz−1) + (γnzz − γnzz−1)
z−1∑
u=0

∆u
t−1 + γnzz ∆z

t−1

= ε

(
1− γnzz
1− γz

−
1− γnzz−1

1− γz−1

)
+ (γnzz − γnzz−1)

z−1∑
u=0

∆u
t−1 + γnzz ∆z

t−1 (5.33)

and

∆0
t ≤ ε

1− γn0
0

1− γ0

+ γn0
0 ∆0

t−1 (5.34)

Summing the two previous inequalities gives:

Z∑
z=0

∆z
t ≤ ε

1− γn0
0

1− γ0

+ ε

Z∑
z=1

(
1− γnzz
1− γz

−
1− γnzz−1

1− γz−1

)
+

Z∑
z=1

(γnzz − γnzz−1)
z−1∑
u=0

∆u
t−1 + γnzz ∆z

t−1

= ε
1− γnZZ
1− γZ

+ ε

Z−1∑
z=0

γnz+1
z − γnzz

1− γz︸ ︷︷ ︸
(?)variance term

+
Z∑
z=1

(γnzz − γnzz−1)
z−1∑
u=0

∆u
t−1 + γnzz ∆z

t−1︸ ︷︷ ︸
(??)bias term

(5.35)



CHAPTER 5. TIME-SCALE DECOMPOSITION 59

Let’s focus now further on the bias term (??):

Z∑
z=1

(γnzz − γnzz−1)
z−1∑
u=0

∆u
t−1 + γnzz ∆z

t−1 =
Z−1∑
u=0

Z∑
z=u+1

(γnzz − γnzz−1)∆u
t−1 +

Z∑
z=1

γnzz ∆z
t−1

=
Z−1∑
u=0

∆u
t−1

(
Z∑

z=u+1

γnzz −
Z−1∑
z=u

γnz+1
z

)
+

Z∑
z=1

γnzz ∆z
t−1

=
Z−1∑
u=0

∆u
t−1

(
Z−1∑
z=u+1

(γnzz − γnz+1
z ) + γnZZ − γ

nu+1
u

)
+

Z∑
z=1

γnzz ∆z
t−1

=
Z−1∑
u=0

Z−1∑
z=u+1

(γnzz − γnz+1
z )∆u

t−1 + γnZZ

Z∑
z=0

∆z
t−1 +

Z−1∑
z=0

(γnzz − γnz+1
z )∆z

t−1

=
Z−1∑
u=0

Z−1∑
z=u

(γnzz − γnz+1
z )∆u

t−1 + γnZZ

Z∑
z=0

∆z
t−1

=
Z−1∑
z=0

(γnzz − γnz+1
z )

z∑
u=0

∆u
t−1 + γnZZ

Z∑
z=0

∆z
t−1 (5.36)

Finally, we obtain:

Z∑
z=0

∆z
t ≤ ε

1− γn

1− γ
+ ε

Z−1∑
z=0

γnz+1
z − γnzz

1− γz︸ ︷︷ ︸
variance reduction

+
Z−1∑
z=0

(γnzz − γnz+1
z )

z∑
u=0

∆u
t−1︸ ︷︷ ︸

bias introduction

+γn
Z∑
z=0

∆z
t−1. (5.37)

Comparing the bound for phased n-step TD in theorem 5.3.3 with the one for phased

TD(∆) in theorem 5.3.4, we see that the latter allows for a variance reduction equal

to ε
∑Z−1

z=0
γ
nz+1
z −γnzz

1−γz ≤ 0 but it suffers from a potential bias introduction equal to
∑Z−1

z=0 (γnzz −
γnz+1
z )

∑z
u=0 ∆u

t−1 ≥ 0. This is due to the compounding bias from all shorter-horizon estimates.

We note that in the case that nz are all equal we obtain the same upper bound for both

algorithms.

It is a well known and an often used result that the expected discounted return over T

steps is close to the infinite-horizon discounted expected return after T ≈ 1
1−γ (Kearns and

Singh, 2002). Thus, we can conveniently reduce nz for any γz such that nz ≈ 1
1−γz so that

we follow this rule. If we have T samples, we can have an excellent bias-variance trade-off

on all time-scales << T by choosing nz = 1
(1−γz)

, so that γnzz is bound by a constant (since

γ
1

1−γz
z ≤ 1

e
) for all z. This provides intuitive ways to set both γz and nz values (as well as all
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other parameters) without necessarily searching. We can double the effective horizon at each

increasing wz (to keep a logarithmic number of value functions with respect to the horizon)

and similarly adjust all other parameters for estimation.

5.4 Deep RL Experiments

Figure 5.1: The wz estimators versus the reward over a single episode in Ms. Pac-Man - the
drops in value align with a lost life. This is done on a single rollout trajectory of the trained
PPO-TD(λ̂,∆) agent.

In the following section, we demonstrate performance gains in Atari using the PPO-based

version of TD(∆). We directly update PPO with TD(λ,∆), using the code of Kostrikov

(2018). We compare against PPO as a baseline with standard hyperparameters (Schulman

et al., 2017; Kostrikov, 2018). Our architecture differs slightly from the PPO baseline as

the value function now outputs Z + 1 outputs (1 for each w). We also compare against

another neural network architecture which replicates the parameters of TD(∆). That is,

we compare against a value function that outputs Z + 1 values which are summed together

before computing the value loss (we call this PPO+).

We run two versions of TD(∆). The first version sets γz such that γZ = γ and γz−1 =
1
2
( 1

(1−γz)
) while γz ≥ .5. We then set λz for each γz such that γzλz = γZλZ as per theorem 5.3.1.

However, we note that due to the use of an adaptive optimizer (Kingma and Ba, 2014),

performance may improve as parameters are automatically adapted for each delta estimator.
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Moreover, parity with the baseline model is not necessary and λ can effectively be reduced.

To this end, we introduce a second version of our method, labelled PPO-TD(λ̂,∆), where we

limit λz ≤ 1. We hypothesize that values greater than 1 add unnecessary variance to the

value estimation problem since λ = 1 corresponds with the Monte Carlo return.

We run experiments on the 9 games defined in Bellemare et al. (2016) as hard with dense

rewards. We chose hard games as they are most likely to need algorithmic improvements to

solve. We omitted sparse reward tasks since we do not address the problem of exploration

needed for tackling sparse reward settings. Instead, we focus on dense reward tasks that may

result in complex value functions. As seen in table 5.1, PPO-TD(λ,∆) performs (statistically)

significantly better in a certain class of games roughly related to the frequency of non-zero

rewards (the density). Both versions of TD(∆) perform worse asymptotically than the

baselines in two games, Zaxxon and Wizard of Wor, which belong to a class of games with

lower density. Though PPO-TD(λ̂,∆) performs better in both cases, as we will see in

section 5.4.1, it is still possible to improve performance further in these games by tuning the

number and scale of γZ factors.

One may wonder why performance improves in increasingly dense reward settings. As

seen in figure 5.1, it may be due to the separated estimators being able to model fine-grained

phenomena. Our hypothesis is that TD(∆) allows for quick learning of short-term phenomena,

followed by slower learning of long-term dependencies. Notice how the long-term wZ value

declines early according to a consistent gradient towards a lost life in the game, while

short-term phenomena continue to be captured in the smaller components like w0.

5.4.1 Tuning and Ablation

In the previous section, we demonstrated how using a fixed set of γ, λ could yield performance

gains in a number of environments over the single estimator case. However, a performance

drop was seen in the case of Zaxxon and Wizard Of Wor. Due to our bias-variance trade-off

in bootstrapping from smaller delta estimators, a curriculum based on smaller horizons may

effectively slow learning in some cases. However, the benefit of separating value functions in

a flexible way is that they can be tuned. In figure 5.2, we show how different γ values can be

used to improve asymptotic performance to match the baseline. For example, by increasing

the lowest effective horizon (γ0) of w0, we bias the algorithm less toward myopic settings

and increase the learning speed to be comparable to the baselines. We note that further

tuning of the number of components and their parameters (γz, λz, α) may further improve

performance.
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Game PPO-TD(λ,∆) PPO-TD
(
λ̂,∆

)
PPO+ PPO Reward Density

Zaxxon 396 ± 210 3291 ± 812 7006 ± 211 † 7366 ± 223 † 1.15
WizardOfWor 2118 ± 138 2440 ± 89 2870 ± 218 † 3408 ± 193 † 1.07

Qbert 13428 ± 333 † 13092 ± 430 † 10594 ± 335 11735 ± 387 12.26
MsPacman 2273 ± 67 † 2241 ± 78 † 1876 ± 89 1888 ± 111 13.27

Hero 29074 ± 512 † 29014 ± 764 † 23511 ± 843 21038 ± 972 13.46
Frostbite 292 ± 7 304 ± 21 299 ± 2 294 ± 5 5.04

BankHeist 1183 ± 13 1166 ± 5 1199 ± 5 1190 ± 3 6.3
Amidar 731 ± 30 † 672 ± 45 611 ± 34 575 ± 54 4.63
Alien 1606 ± 112∗ 1663 ± 113∗ 1374 ± 85 1315 ± 70 11.3

Table 5.1: Asymptotic Atari performance (across last 100 episodes) with the mean across
10 seeds and the standard error. † denotes significantly better results over our algorithm
in the case of baselines or over the best baseline in the case of our algorithm using Welch’s
t-test with a significance level of .05 and bootstrap confidence intervals (Colas et al., 2018;
Henderson et al., 2017). ∗ indicates significant using bootstrap CI, but not t-test. Bold games
are where we perform as well as or significantly better than the baselines. Reward Density
is the frequency of rewards per 100 time-steps averaged over 10k time-steps under learned
policy using baseline (PPO). Notice how the task Zaxxon has a much lower frequency than
the largest frequency task Hero.

Figure 5.2: Performance of TD(∆) variations vs. the baselines on Zaxxon and Wizard Of Wor.
ppo+ refers to ppo with an augmented architecture. ppoDelta refers to setting γzλz = γλ ∀z.
ppoDelta3 and ppoDelta12 only use two value functions with horizons (3, 100) and (12, 100)
respectively. Shaded regions represent the standard error across 10 random seeds.
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5.5 Discussion

In this chapter, we proposed a novel way for decomposing the Bellman equation based on the

difference between two value functions with different discount factors. This has convenient

theoretical and practical properties which help improve performance in certain settings.

These properties have additional benefits: they allow for a natural way to distribute and

parallelize training, easy inspection of performance at different discount factors, and the

possibility of lifelong learning by adding or removing components. Moreover, we have also

highlighted the limitations of this method (introduced bias toward myopic returns) when

using the simple parameter settings we proposed. However, these limitations can be overcome

with the additional ability to tune parameters at different time-scales. We briefly discuss the

added benefits of TD(∆) below.

While we have not pursued it experimentally here, another benefit of separating value

functions in this way is that this reflects a natural way of distributing updates across systems

for large scale problems. In fact, prior work has sought different ways to scale RL algorithms

through partitioning methods (though typically through other means like dividing the state

space) (Wingate and Seppi, 2003; Wingate, 2004). Our work provides another such method

for scaling RL systems in a different way. A TD(∆) update can be spread across many

machines, such that each wz is updated separately (as long as weights are synced across

machines after a parallel update).

Many of the performance improvements seen here come not necessarily from the decom-

position method itself, but from the ability to set certain parameters differently for each

component. The decomposition of the value function allows for further improvement by

tuning the number of delta estimators and the γz values which correlate with them. In the

future, a meta-gradient method as Xu et al. (2018) proposed could be used to automatically

scale delta estimators to time-scales which require more computational complexity. However,

we note that the default method for tailoring γz and nz and λz values as described above

(doubling effective horizons until the maximum horizon is reached), still yields improvements

without additional tuning.

As we mention in section 5.1, another benefit of TD(∆) is the ability to examine the value

function at different time-scales after a single pass through the network. That is, we can

compose value functions from γ0, ..., γZ and understand the differences between different time-

scales. This has implications for real-world uses with similar motivations as Sherstan et al.

(2018) described. Take for example an MDP where the bulk of rewards are in some central

region, requiring a policy π for some number of time-steps before reaching the dense reward

region. By examining each wz component in figure 5.1, a practitioner could understand how
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far into a trajectory π must be followed before the dense reward region is reached. This adds

some layer of interpretability to the value function which is missing in the single estimator

case.

Throughout this work, we emphasize this algorithm as a complement to the selection of

a final γZ . The longest horizon discount factor can be chosen according to other methods

(hyperparameter optimization or meta-gradient methods). However, an added benefit of our

method that is not explored in this work is its functionality as an almost anytime algorithm.

While longer time horizons will take longer to converge, at any point in time, the sum of all

horizons which have converged are a suitable approximation for the value function at that

intermediary point. Therefore, with enough resources, TD(∆) could potentially, at anytime,

add one further time-scale Z ← Z + 1 (initialized to wZ+1 = 0 which preserves the current v

estimate).

We have described the uses, theoretical properties, and empirical performance of TD(∆).

While we focus on PPO, our method could be dropped into many other algorithmic settings

as a black-box, making it easy to use with clear performance benefits. We believe that TD(∆)

is an important drop-in addition to any TD-based training methods that can be applied

to a number of existing model-free RL algorithms. We especially highlight the value of

this method for performance tuning. We show that a simple sequence of γz values based

on doubling horizon values can yield performance gains especially in dense settings, but

this performance can be enhanced further with tuning. As the complexity of modeling and

training long-horizon problems increases, TD(∆) may be another tool for scaling and honing

production systems for optimal performance.



Chapter 6

Bellman Decomposition Theorem

The works that have been presented up to this point have decomposed the Bellman equation

in several ways. In this chapter, we present a unified equivalence theorem, that provides an

equivalence between Bellman decompositions and standard TD learning. The key insight

of the theorem is that if the sum of the decomposed TD errors equals the standard TD

error, then there is a strict equivalence between TD and their decomposed counterparts. The

equivalence is strict in the sense that they will produce identical parameters at every step

of the learning process under certain assumptions. Interestingly, the equivalence extends

to linear function approximation. Furthermore, the equivalence theorem is applicable to

decompositions presented in chapter 3 (HRA) and chapter 5 (TD(∆)).

6.1 Setup and Assumptions

We first restate the update function for temporal difference methods. Specifically, temporal-

difference methods use a semi-gradient update function with the following structure:

θt+1 = θt + αδλt:t+n∇θq(st, at; θt) (6.1)

where δλt:t+n is the n-step truncated λ weighted TD error defined in equation 2.44. We note

that any value function, v, can be cast as a q-function by assuming that there is only 1

action to be taken in the environment. Therefore, due to the increased generality, we will use

q-functions in this section for the proof.

We consider decomposed methods that when summed together result in the original value

65
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function. Formally, we use the following decomposition:

q(s, a) =
Z∑
z=0

wz(s, a). (6.2)

Furthermore, updates to the decomposed value function are performed as follows:

θzt+1 = θzt + αzδ
λ,z
t:t+n∇θw(st, at; θ

z
t ), (6.3)

where we purposely do not define δz, since this will be unique for each decomposition. We do

note, however, that this encompasses methods from chapter 3 and chapter 5.

For example, we note that when training the decomposed value functions in HRA towards

the optimal target from section 3.2.3 we have the following TD error using SARSA:

δzt:t+1 = rzt + γq̂z(st+1, at+1)− q̂z(st, at), (6.4)

where we recall that
∑

z r
z
t = rt is the decomposed reward function.

Similarly, the decomposition found in TD(∆) will also be analyzed in this chapter. In

TD(∆), we simply considered the value estimation problem and therefore the TD error was

defined in terms of value functions. For consistency with this chapter, we define the TD error

using SARSA:

δzt+1 = (γz − γz−1)
z−1∑
u=0

ŵu(st+1, at+1) + γzŵz(st+1, at+1)− ŵz(st, at). (6.5)

Our main assumption is that the value function is modelled with linear function approxi-

mation.

Assumption 6.1.1.

q(s, ·) = 〈θ, x(s)〉 . (6.6)

Similarly, the decomposed value functions also use a linear parameterization.

Assumption 6.1.2.

wz(s, ·) = 〈θz, x(s)〉 . (6.7)

The next assumption that is needed is that all of the decomposed value functions use the

same learning rate as the non-decomposed variant.

Assumption 6.1.3.

αz = α, ∀z. (6.8)
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Our final assumption will be crucial to the induction step of the proof. It also will be

the key to identifying whether a decomposition falls under the equivalence proof or not.

Specifically, assuming that the sum of the decomposed value function is equal to some

arbitrary reference value function, the sum of the decomposed TD errors has to be equal to

the TD error of said reference value function.

Assumption 6.1.4. Let q(s, a; θt) =
∑Z

z=0wz(s, a; θzt ) then:

δt:t+1 =
Z∑
z=0

δzt:t+1 ∀t, (6.9)

where δt:t+1 is the one-step TD error defined by q(s, a; θt) and δzt:t+1 is the one-step TD error

for wz(s, a; θzt ).

Crucially, the above assumption can be easily verified for reward decompositions such as

HRA, assuming that the agents update towards the optimal target (Russell and Zimdars,

2003; Laroche et al., 2017). Moreover, we already showed that this assumption can be satisfied

for TD(∆) in theorem 5.3.1. For completeness we provide the following lemma for HRA.

Lemma 6.1.1. Given updates according to equations 6.3 and 6.4, we have that assump-

tion 6.1.4 holds, i.e., that:

δt:t+1 =
Z∑
z=0

δzt:t+1 ∀t (6.10)

Proof.

Z∑
z=0

δzt =
Z∑
z=0

rzt + γwz(st+1, at+1; θzt )− ŵz(st, at; θzt )

= rt +
Z∑
z=0

γwz(st+1, at+1; θzt )− ŵz(st, at; θzt ) (by decomposition)

= rt + γq(st+1, at+1; θt)− q(st, at; θt) = δt (by assumption) (6.11)

Thus, if the parameters of the decomposed value functions using HRA produce the same

value function as the non-decomposed counterpart, than the summed TD error for HRA is

identical to the standard TD error.
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6.2 Bellman Decomposition Theorem

With all the assumptions outlined in section 6.1, we state and prove the Bellman decomposition

theorem.

Theorem 6.2.1. If assumptions 6.1.1, 6.1.2, 6.1.3, and 6.1.4 hold, and if we pick the initial

conditions such that
∑Z

z=0 θ
z
0 = θ0, then the iterates produced by equation 6.1 and equation 6.3

satisfy:
Z∑
z=0

θzt = θt,∀t, (6.12)

Proof. The proof is by induction. We first need to show that the base case holds at t = 0.

This is true given the assumption on initialization. We also note that the base case holds by

using zero-initialization

Next, we assume that the statement holds for a given time-step t and show that it holds

at next time-step t+ 1.

Z∑
z=0

θzt+1 =
Z∑
z=0

(
θzt + αzδ

λ,z
t:t+n∇θzwz(st, at; θ

z)
)

=
Z∑
z=0

(
θzt + αzδ

λ,z
t:t+nx(st)

)
(by assumption 6.1.2)

= θt +

(
Z∑
z=0

αzδ
λ,z
t:t+n

)
x(st) (by induction)

= θt + α

(
Z∑
z=0

δλ,zt:t+n

)
x(st) (by assumption 6.1.3)

= θt + αδλt:t+nx(st) (by assumption 6.1.4)

= θt+1. (by assumption 6.1.1) (6.13)

Notably, using the same assumptions, the equivalence theorem is immediately applicable

to both HRA and TD(∆) using SARSA. This can be shown using lemma 6.1.1 for HRA and

theorem 5.3.1 for TD(∆). Moreover, the theorem immediately extends to the pure policy

evaluation case as well as expected SARSA.
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6.3 Discussion

The equivalence theorem provides insight into the conditions needed to have an equivalence

between standard TD methods and methods that decompose the Bellman equation as

described. While we have discussed two potential decompositions in this thesis, it is important

to note that there are many other potential applications of this theorem. For example, in

terms of the reward function, instead of the reward being decomposed based off of collectable

objects, it can instead be decomposed based off of the sign, i.e., one value function for positive

rewards and one for negative rewards. Another possibility is to use the magnitude, i.e., a

value function for each differing reward magnitude. Moreover, instead of using the discount

factor, the value function can be discretely decomposed based on distance in time, i.e., one

value function that represents the sum of rewards over the next k time-steps, another for

the next k steps, and so on. In any case, the importance of the equivalence theorem is not

simply to identify the equivalence, but also to understand how to break the equivalence to

potentially improve the sample efficiency over standard TD methods.

Since the equivalence only holds with linear function approximation, the most obvious way

to break the equivalence is through the use of neural networks as a function approximator.

The network structure that we used in chapter 5, with a shared lower representation and

a linear mapping to the decomposed value functions, is only one possible architecture, and

others could be considered. For example, one possibility, is to use smaller networks to

estimate the value functions of simpler decompositions (if this is known to the practitioner

beforehand). In the case of the decomposition based on the discount factor in chapter 5, value

functions based on a smaller γ could have been trained with smaller networks due to their

simplicity, and vice versa. However, for other decompositions this may not be immediately

obvious to the practitioner beforehand. For example, in the reward decomposition presented

in chapter 3, it is unclear which of the rewards in Ms. Pacman could benefit from a larger or

smaller network.

As previously discussed in chapter 5, another way to break the equivalence is to use

different n-step or λ-returns for each decomposed value function. While we were able to

theoretically analyze reducing the n-step hyperparameter for value functions with a smaller

value of γ in thereom 5.3.4, this may not be obvious for other decompositions. Finally, we

can also break the equivalence by using different learning rates for each decomposed value

function. Unfortunately, it may also be difficult to know in advance what learning rate to set

for each value function. However, as previously discussed in chapter 5, adaptive optimization

techniques use a per parameter learning rate and will automatically break the equivalence.

We further explore adaptive optimization techniques for TD learning in the following chapter.



Chapter 7

Jacobi Preconditioning for TD

One of the core elements of the Bellman decomposition theorem (theorem 6.2.1), is the

assumption that the same learning rate is used for every decomposed value function. As

alluded to, one way to break the equivalence is to use an adaptive per-parameter learning rate,

as existing adaptive optimizers do (Tieleman and Hinton, 2012; Kingma and Ba, 2014). Most

adaptive optimizers, however, are built with supervised learning in mind and do not explicitly

account for the TD case. Previous work has investigated whether adaptive optimizers can be

constructed that are better suited for TD learning (Henderson et al., 2018; Sun et al., 2020).

We propose to use the Jacobi preconditioner (Greenbaum, 1997), a diagonal approximation

of the optimal gain matrix, which results in an efficient and principled adaptive method for TD,

which we call TDprop. We theoretically compare the approach in the tabular setting against

standard TD methods. We also show how this method can be easily adapted to the deep RL

setting and compare and contrast it with other deep learning optimizers. Surprisingly, we

find that both theoretically and empirically, after a hyperparameter search, TDprop behaves

similarly to other optimizers, both TDProp and SGD meet or exceed the performance of

Adam (Kingma and Ba, 2014). This result suggests that while Jacobi preconditioning may be

an improved approach to adaptive optimization in deep TD learning, further work is needed

for adaptive optimization methods to yield a strict improvement over SGD.

7.1 Related Work

Devraj and Meyn (2017) derived and studied using the optimal gain matrix from stochastic

approximation (Benveniste et al., 2012) for linear TD learning. They found that in the linear

case, the optimal gain matrix directly corresponds with the least squares temporal-difference

(LSTD) method (Boyan, 1999). Recently, the approach was extended to the non-linear

function approximation setting (Chen et al., 2019). Unlike those methods, we propose to use

70



CHAPTER 7. JACOBI PRECONDITIONING FOR TD 71

a diagonal approximation of the gain matrix. This change provides us with a computationally

tractable approach that can scale to millions of parameters, as is common in the deep RL

setting.

A wide range of work has examined adaptive optimization and preconditioners in su-

pervised learning. For example, LeCun et al. (2012) describe the benefits of the Jacobi

preconditioner as well as efficient implementations. Schaul et al. (2013) propose a method for

adaptively tuning both the global learning rate, as well as the per parameter learning rates

based off both the Jacobi preconditoner and local variance of the gradient. Dauphin et al.

(2015) discuss trade-offs between the Jacobi preconditioner and the equilibriated precondi-

tioner (which has similar properties to popular methods such as RMSprop (Tieleman and

Hinton, 2012) and Adam (Kingma and Ba, 2014)). Finally, Martens (2014) presents a unified

view of methods such as RMSprop and Adam for approximating the empirical Fisher matrix.

Recently, Sun et al. (2020) extended the adaptive update rule from Duchi et al. (2011) to

the TD setting and studied its convergence properties. Their theoretical results validate the

use of standard adaptive optimizers from the deep learning literature in the TD setting. We

compare and contrast our method to state of the art deep learning optimizers in section 7.8.

There has been a vast array of work that explored adaptive optimizers and preconditioners

for linear TD learning. For example, scalar incremental delta-bar-delta (SID) (Dabney, 2014)

extend incremental delta-bar-delta (IDBD) (Sutton, 1992) to linear TD and adaptively tune

a single global learning rate. Similarly, (Dabney and Barto, 2012) derive and examine an

optimal global (not per parameter) learning rate for linear TD. Recently, TD incremental

delta-bar-delta (TIDBD) (Kearney et al., 2019), adaptively learn a per parameter learning

rate based on the correlation between state features and TD errors. To our knowledge,

however, TIDBD has not been extended to the non-linear setting with TD learning. In terms

of preconditioners, Yao and Liu (2008) present a generalized framework for using varying

preconditioners in TD learning and subsequently Yao et al. (2009) propose to use the full

matrix H−1 as a preconditioner for linear TD learning. Perhaps the closest works to our own

are approaches based on approximating H, as in Givchi and Palhang (2015); Pan et al. (2017).

Both works examine the use of the diagonal approximation (among other approximations),

however, in both cases the design of the algorithm, and the empirical analysis is restricted to

the linear setting. We expand on the theoretical linear analysis proposed in these works and

provide empirical evidence in deep RL settings.

Finally, in the tabular case, Jacobi preconditioning can be interpreted as a per state

learning rate based on a partial model of the world dynamics. Similarly, performing expected

TD updates using a learned model of the transition dynamics has been shown to improve

sample efficiency in both the tabular (Sutton, 1991) and the deep RL setting (Feinberg et al.,
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2018). Unlike those methods, Jacobi preconditioning does not plan with the learned model

and only requires the tracking of a partial model of the dynamics, i.e., the probability of

remaining in the same state.

7.2 Optimal Gain Matrix

We recall that in stochastic approximation, updates are iteratively performed to a parameter

vector:

θt+1 = θt + αt+1g(θt), (7.1)

where α is the learning rate and g(θt) is the update function.

The optimal gain matrix (learning rate), in terms of asymptotic convergence properties, is

the negative of the inverse gradient of the expected update function (Benveniste et al., 2012):

H−1 = −(∇θEµ [g(θt)])
−1, (7.2)

where µ is the stationary distribution and H−1 ∈ Rd×d is the resulting matrix gain.

The update to the parameters then becomes:

θt+1 = θt + αt+1H
−1g(θt), (7.3)

where H−1 is considered to be a preconditioner (Greenbaum, 1997). Moreover, the choice of

notation for H is intentional, as in gradient descent H corresponds with the Hessian of the

loss function. In the following sections we explore the use of approximations of the optimal

gain matrix for both regression and TD learning.

7.3 Jacobi Preconditioning for Regression

In the following sections, we compare and contrast Jacobi preconditioning for TD learning

and supervised regression. To this end, we first present the common sum of squares error

function:

L(θ) = Eµ
[

1

2
(ŷt − yt)2

]
, (7.4)

where ŷt = f(xt; θt) is the estimate given the input xt and parameters θt, and yt is the target

at time t.

The expected update direction is the negative gradient of L(θ):

Eµ [g(θ)] = −∇θL(θ) = −Eµ [δt∇θŷt] , (7.5)
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where δt = ŷt − yt is the error at time t.

The corresponding negative gradient of the update direction (i.e., the Hessian of the loss

function) is then:

H = −∇θ(−∇θL(θ)) = ∇2
θL(θ)

= Eµ
[
∇θŷt∇θŷ

>
t + δt∇2

θŷt
]
, (7.6)

where ∇2 corresponds to applying the gradient operator twice. Estimating the full Hessian can

be computationally intractable due to the second order terms from equation (7.6). Instead,

the outer product approximation, also known as the Gauss Newton approximation (Bishop,

2006), drops the second order terms from equation (7.6):

H = ∇2
θL(θ) ≈ Eµ

[
∇θŷt∇θŷ

>
t

]
. (7.7)

Finally, to obtain a per-parameter learning rate, we can approximate the Hessian matrix by

its diagonal:

H̄ ≈ Eµ
[
diag(∇θŷt∇θŷ

>
t )
]
, (7.8)

which is known as the Jacobi preconditioner (Greenbaum, 1997). Specifically, updates to the

parameter vector are performed via the following:

θt+1 = θt + αt+1H̄
−1g(θt). (7.9)

The main benefit of the diagonal approximation is that estimating and inverting the gain

matrix is significantly cheaper computationally. The approximation accuracy will depend

greatly on the problem at hand; nevertheless, both its low space and computational complexity

has led to its usage (LeCun et al., 2012).

7.4 Jacobi Preconditioning for TD

We first recall that given the semi-gradient update function defined in equation (2.43), we

have the following:

g(θt) = δλt:t+n∇θv̂
π(st; θt), (7.10)

where δλt:t+n = Gλ
t:t+n − v̂π(st; θt) is the TD error at time t.

For a direct comparison to supervised regression, we set ŷt = v̂π(st; θt) and arrive at the
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following calculation for the negative gradient of the update function, H:

H = −∇θEµ
[
δλt:t+n∇θŷt

]
= −Eµ

[
∇θδ

λ
t:t+n∇θŷ

>
t + δλt:t+n∇2

θŷt
]
. (7.11)

To obtain an efficient adaptive optimizer we propose to use the diagonal approximation (the

Jacobi preconditioner) as described in equation (7.8):

H̄ ≈ −Eµ
[
diag(∇θδ

λ
t:t+n∇θŷ

>
t )
]
. (7.12)

To compare this expression to what was obtained for supervised regression in equation (7.8),

we can expand the outer product:

H̄ = Eµ
[

diag

(
∇θŷt∇θŷ

>
t − λn−1γn∇θŷt+n∇θŷ

>
t +

n−1∑
k=1

(γλ)k−1 (γλ− γ)∇θŷt+k∇θŷ
>
t

)]
,

(7.13)

where we note that the left most term ∇θŷt∇θŷ
>
t is the same as the diagonal outer product

approximation that arises from the sum of squares loss function in equation (7.8). The

remaining terms are unique to temporal-difference learning. Moreover, the terms inside the

summation disappear when λ = 1 (i.e., when not using λ-returns).

7.5 Interesting Cases

The following section discusses some interesting sub-cases of the Jacobi preconditioner.

TD(0): For the special case where λ = 0 we have:

∇θδ
λ=0
t:t+1 = γ∇θŷt+1 −∇θŷt, (7.14)

plugging this back into equation (7.11) and using the diagonal outer product approximation:

H̄ = Eµ
[
diag

(
∇θŷt∇θŷ

>
t − γ∇θŷt+1∇θŷ

>
t

)]
, (7.15)

which resembles the standard outer product approximation of the sum of squares loss functions

in equation (7.7) with an additional correction term that depends on the product of gradients

of successive value functions.
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Tabular TD(0) Case: In the tabular case with TD(0) we have:

H̄i,i =

[
Eµ
[
diag

(
∇θŷt∇θŷ

>
t − γ∇θŷt+1∇θŷ

>
t

)] ]
i,i

= µ(si)

[
∇θi v̂(si; θi)∇θi v̂(si; θi)−

∑
s′

p(s′|si, π)γ∇θi v̂(s′; θi)∇θi v̂(si; θi)

]
, (7.16)

which can be simplified by noticing that in the tabular case ∇θi v̂(si; θi) = 1 and that

∇θi v̂(s′; θi) is 0 when s′ 6= s and 1 when s = s′. In terms of H̄−1 this gives us:

H̄−1
i,i =

1

µ(si)(1− γp(s′ = s|s = si, π))
. (7.17)

This can be interpreted as a per state learning rate that is reweighted by both the stationary

distribution and the probability of self-looping, i.e., the probability of remaining in the current

state.

TD(1) / Target Network: Another interesting case is when λ = 1 and n = ∞ (i.e.,

TD(1) or Monte-Carlo) or when using a target network, we get the following outer product

approximation:

H̄ = Eµ
[
diag

(
∇θŷt∇θŷ

>
t

)]
, (7.18)

which is the same H as the sum of squares loss function. We can interpret this similarity

as suggesting that as n → ∞, or when using a target network, TD learning approaches

supervised learning. Intuitively, when doing policy evaluation with a fixed policy, regressing

towards the Monte-Carlo return is very similar to standard supervised learning. Moreover,

when using a target network, if we presume that the network is updated slowly enough, then

the targets appear to be fixed for the agent, making it also very similar to supervised learning.

7.6 Theoretical Analysis

In this section, we prove certain convergence properties of applying the Jacobi preconditioner to

TD learning, following a similar analysis to that of Schoknecht and Merke (2003). Specifically,

we aim to solve the following linear equation:

r + (γP − I)v = 0, (7.19)

where r ∈ R|S| is the expected reward vector, P ∈ R|S|×|S| is the transition matrix and

v ∈ R|S| is the estimated value function. We note that r + (γP − I)v = 0 at the solution, i.e.,
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when v = v∗.

Moreover, the iterative update procedure, using a constant learning rate, can be described

by the following equation:

vt+1 = vt − α (Hvt − r) , (7.20)

where H = diag(I − γP ).

Next, we determine the asymptotic convergence rate of this iterative update, similar to

the analysis provided in section 2.1, except with a constant learning rate. Specifically, by

defining the error vector as et = vt − v∗, where for v∗ we have that Hv∗ − r = 0, we can

derive the following recursion:

et+1 = vt+1 − v∗

= (I − αH)vt + αr − v∗ + α(Hv∗ − r)︸ ︷︷ ︸
=0

= (I − αH)(vt − v∗) = (I − αH)t+1e0, (7.21)

thus the asymptotic convergence rate is ρ(I − αH).

Applying the Jacobi preconditioner to the original system we get the following iterative

formula:

vt+1 = vt − αH̄−1 (Hvt − r) (7.22)

where following equation 7.12, we have H̄ = diag(H) = diag(I − γP ). We also note that

the asymptotic convergence rate of the preconditioned system is ρ(I − αH̄−1H). In the

following subsection, we introduce the theory of regular splittings to further analyze the

Jacobi preconditioner.

7.6.1 Comparing Regular Splittings

Using the theory of regular splittings (Varga, 1962) we can frame both the Jacobi precondi-

tioner and the original system as regular splittings and thereby prove that it has a better

convergence rate.

Definition 7.6.1. (regular splitting: definition 3.28 from Varga (1962)) If H = B − C,

B−1 ≥ 0, and C ≥ 0 for all components, then B − C is said to be a regular splitting of H.

Moreover, we have the following proposition that allows us to compare the asymptotic

convergence rates of different regular splittings.

Proposition 7.6.1. (comparing regular splittings: theorem 3.32 from Varga (1962) and

corollary 10.3.1 from Greenbaum (1997)): Let (B1, C1), and (B2, C2) be regular splittings of
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H. Then if H−1 ≥ 0 and 0 ≤ C2 ≤ C1 for all components, then:

0 ≤ ρ(B−1
2 C2) ≤ ρ(B−1

1 C1) < 1. (7.23)

Moreover, if H−1 > 0 and 0 ≤ C2 ≤ C1 for all components and C1 6= 0, C2 6= 0, and

C2 − C1 6= 0, then

0 < ρ(B−1
2 C2) < ρ(B−1

1 C1) < 1. (7.24)

Following definition 7.6.1, and using H = I − γP , the Jacobi preconditioner can be seen

as a regular splitting H = B̄ − C̄ where B̄ = H̄ and C̄ = B̄ −H. Similarly, for standard TD

we have that H = B−C where B = I and C = γP forms a valid regular splitting of H. With

both methods framed in terms of regular splittings, we can now compare their convergence

rates by using proposition 7.6.1 and setting the learning rate to 1, i.e., the standard iterative

setting from section 2.1.

Theorem 7.6.1. Let H = I − γP and H̄ = diag(H), then we have that:

ρ(I − H̄−1H) ≤ ρ(I −H) < 1. (7.25)

Proof. We can rewrite ρ(I − H̄−1H) = ρ(H̄−1C̄) and ρ(I −H) = ρ(C). The rest of the proof

follows directly from the properties of regular splittings from proposition 7.6.1.

The previous theorem omitted the use of learning rates, in fact, it explicitly assumed a

learning rate of 1. In the following section, we reintroduce the learning rate to our analysis,

to account for the fact that in practice the learning rate is typically tuned to provide optimal

results.

7.6.2 Reintroducing the Learning Rate

Our analysis for tuning the learning rate will be limited to symmetric transition matrices,

due to the fact that they are guaranteed to have real eigenvalues (Greenbaum, 1997). While

this is indeed a limiting assumption that does not apply to every MDP, we still find that the

results are interesting. Specifically, we find that once the learning rate has been tuned, that

we cannot guarantee that for every symmetric MDP that Jacobi preconditioning provides an

improvement in terms of the convergence rate.

To determine which method has the best convergence rate after the learning rate has

been tuned, we define the optimal spectral radius as the minimum over all feasible α.
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Definition 7.6.2. Given a matrix H with only positive real eigenvalues eig(H) ∈ R>0 we

define the optimal learning rate as:

α∗ := arg min
α

ρ(I − αH) (7.26)

and the resulting optimal spectral radius ρ∗(I − αH):

ρ(I − α∗H) := min
α
ρ(I − αH) (7.27)

We now focus on finding α∗ and the resulting ρ given H. First, by standard eigenvalue

properties we have the following fact.

Fact 7.6.1. The eigenvalues of (I − αH) can be rewritten as:

eig(I − αH) = 1− αeig(H). (7.28)

Next, we rewrite ρ(I − αH) in terms of just the eigenvalues of H.

Lemma 7.6.1. For a fixed α > 0 and a matrix H we have that:

ρ(I − αH) = max
λH

∣∣1− αλH∣∣ . (7.29)

Proof. The proof comes directly from fact 7.6.1 and the definition of the spectral radius in

definition 2.1.1.

Next, we rewrite ρ(I − αH) in terms of just the maximum and minimum eigenvalues of

H.

Lemma 7.6.2. For a fixed α > 0 and a matrix H with only positive real eigenvalues

eig(H) = {λ1, λ2, ...} ∈ R>0 we have that:

ρ(I − αH) = max
{∣∣1− αλHmax∣∣ , ∣∣1− αλHmin∣∣} . (7.30)
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Proof. The proof follows directly from proposition 7.6.1 and the assumption that all of the

eigenvalues of H are positive.

In words, we have that the spectral radius of I − αH is either a function of the minimum

or the maximum eigenvalue of H. Finally, the optimal learning rate α∗, for the simple case

where eig(H) ∈ R, is derived in the following proposition.

Proposition 7.6.2. (corollary 1 from Schoknecht and Merke (2003)) For a matrix H with

only positive real eigenvalues eig(H) = {λ1, λ2, ...} ∈ R>0 we have that the α that corresponds

to minα ρ(I − αH) is:

α∗ =
2

λHmax + λHmin
(7.31)

and the resulting spectral radius:

ρ(I − α∗H) =
λHmax − λHmin
λHmax + λHmin

=
κ(H)− 1

κ(H) + 1
. (7.32)

where κ = λHmax
λHmin

is the condition number.

Proof. We recall that from lemma 7.6.2, we have that:

ρ(I − αH) = max
{∣∣1− αλHmax∣∣ , ∣∣1− αλHmin∣∣} .

The α that minimizes this will have the minimal and maximal eigenvalues symmetrically

around zero. Therefore −(1 + α∗λHmax) = (1 + α∗λHmin) which implies that:

α∗ =
2

λHmax + λHmin
.

Moreover, plugging α∗ into the ρ(I − α∗H) gives us the desired spectral radius.

We highlight that from proposition 7.6.2, the optimal spectral radius is a monotonically

increasing function of the condition number, which means that poorly conditioned matrices

will induce a slow convergence. As a result, we seek to reduce the condition number of H with

the Jacobi preconditioner. By comparing the condition numbers of the Jacobi preconditioned

TD and standard TD, we can determine which method has better convergence properties

and performs best under their respective optimal learning rates.

To do so, we first have the following theorem that tells us about the spectral radius of

positive matrices.
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Theorem 7.6.2. (Theorem 10.2.4 from Greenbaum (1997)) If A ∈ Rn×n and A ≥ 0 for all

components, then ρ(A) is an eigenvalue of A and there is a nonnegative vector v ≥ 0 with

‖v‖ = 1, such that Av = ρ(A)v.

Thus, for positive matrices we have that the spectral radius corresponds to a simple

eigenvalue. We now compare the condition number between two regular splittings with the

following two theorems from Greenbaum (1997), which should be read consecutively.

Theorem 7.6.3. (theorem 10.4.1 from Greenbaum (1997)) Let H, B1, and B2 be symmetric

positive-definite matrices satisfying the assumptions of proposition 7.6.1 and suppose that

the largest eigenvalue of B−1
2 H ≥ 1. Then the ratios of the largest to smallest eigenvalues of

B−1
1 H and B−1

2 H satisfy:

λ
B−1

1 H
max

λ
B−1

1 H
min

≤ 2
λ
B−1

2 H
max

λ
B−1

2 H
min

. (7.33)

Proof. Since the elements of B−1
2 C2 are nonnegative (from definition 7.6.1), it follows from

theorem 7.6.2 that its spectral radius corresponds to its largest eigenvalue (which is also

simple):

ρ(B−1
2 C2) = ρ(I −B−1

2 H) = 1− λB
−1
2 H

min .

The result ρ(B−1
1 C1) ≤ ρ(B−1

2 C2) from proposition 7.6.1 implies that:

1− λB
−1
1 H

min ≤ 1− λB
−1
2 H

min and λB
−1
1 H

max − 1 ≤ 1− λB
−1
2 H

min

or equivalently,

λ
B−1

1 H
min ≥ λ

B−1
2 H

min and λB
−1
1 H

max ≤ 2− λB
−1
2 H

min

Dividing the second inequality by the first gives:

λ
B−1

1 H
max

λ
B−1

1 H
min

≤ λ
B−1

2 H
max

λ
B−1

2 H
min

(
2− λB

−1
2 H

min

λ
B−1

2 H
max

)
. (7.34)

Since by assumption λ
B−1

1 H
max ≥ 1 and since ρ(B−1

2 C2) < 1 implies that λ
B−1

2 H
min > 0, the second

factor on the right-hand side is less than 2.

Theorem 7.6.4. (theorem 10.4.2 from Greenbaum (1997)) Let H, B1, and B2 be symmetric

positive-definite matrices satisfying the assumptions of proposition 7.6.1, then the assumption

in theorem 7.6.3 that the largest eigenvalue of B−1
2 H ≥ 1 is satisfied if H and B2 have at

least one diagonal element in common.
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Proof. If H and B2 have a diagonal element in common , then the matrix C2 has a zero

diagonal element (since H = B2−C2). This implies that B−1
2 C2 has a nonpositive eigenvalue

since the smallest eigenvalue of this matrix satisfies:

λ
B−1

2 C1

min = inf
v 6=0

v>C2v

v>B2v
≤ u>C2u

u>B2u
= 0

where u is the vector with a 1 in the position of the zero diagonal element and zeros

elsewhere. Therefore B−1
2 H = I −B−1

2 C2 has an eigenvalue greater than or equal to 1 since:

λB
−1
2 H

max = sup
v 6=0

{
1− v>C2v

v>B2v

}
= 1− inf

v 6=0

{
v>C2v

v>B2v

}
= 1− λB

−1
2 C1

min︸ ︷︷ ︸
≤0

≥ 1

Theorems 7.6.3 and 7.6.4 show that once a pair of regular splittings have been scaled

such that C2 has been multiplied by a constant (which does not affect the condition number)

that makes C2 have a diagonal element in common with H, then the splitting with better

convergence rate (in terms of proposition 7.6.1) has a condition number at worst two times

the other. We now apply these results to compare the Jacobi preconditioned system to the

original.

Theorem 7.6.5. Let H = (I − γP ) and H̄ = diag (I − γP ), then assuming that H is

symmetric we have that:

κ
(
H̄−1H

)
≤ 2κ (H) . (7.35)

Proof. The result follows directly from theorems 7.6.3 and 7.6.4, and setting A = H, B1 = H̄,

B2 = I.

In words, when H is symmetric, which is notably not all MDPs, the condition number of

the Jacobi preconditioned system is at most a constant factor of 2 worse than the original

system. The symmetric assumption is indeed limiting and only applies to MDPs with

symmetric transition matrices. In practice, even though the theory does not extend to every

MDP, we hypothesize that once a hyperparameter search has been conducted over the learning

rate, the Jacobi preconditioner will have similar performance to the original system. Next,

we provide extensions to both n-step and λ-returns.
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7.6.3 Extension to n-step and λ returns

In the case of n-step and λ-returns we can derive analogous results to the single step case.

This can be done by framing both the n-step and λ Jacobi preconditioning as regular splittings

of their respective linear systems.

For n-step returns we have the following iterative update:

vt+1 = vt − α

(
Hnvt −

n−1∑
k=0

(γP )kr

)
, (7.36)

where α is the learning rate, Hn = (I − γnP n), and vt is the estimated value function at time

t. By defining the error vector as before, et = vt − v∗, we have that et+1 = (I − αHn)t+1e0.

By applying the Jacobi preconditioner to the n-step system we get the following iterative

formula:

vt+1 = vt − αH̄−1
n

(
Hnvt −

n−1∑
k=0

(γP )kr

)
(7.37)

where following equation 7.12, we have H̄n = diag(Hn) = diag (I − γnP n). We also note that

the asymptotic convergence rate of the preconditioned system is ρ(I − αH̄−1
n Hn).

Following definition 7.6.1, and using Hn = (I − γnP n), the Jacobi preconditioner can be

seen as a regular splitting Hn = B̄n − C̄n where B̄n = H̄n and C̄n = B̄n −Hn. Similarly, for

standard n-step TD we have that Hn = Bn − Cn where Bn = I and Cn = I −Hn forms a

valid regular splitting of Hn. Since the requirements for proposition 7.6.1 apply (H−1
n ≥ 0 and

0 ≤ C̄n ≤ Cn), under the same symmetric assumption required for theorem 7.6.3, analogous

results for theorems 7.6.1 and 7.6.5 for the n-step preconditioned system also hold.

For λ-returns we have the following iterative update:

vt+1 = vt − α
(
Hλvt − (I − γλP )−1 r

)
, (7.38)

where α is the learning rate, Hλ = (I − γλP )−1 (I − γP ), and vt is the estimated value

function at time t. By defining the error vector as before, et = vt − v∗, we have that

et+1 = (I − αHλ)
t+1e0.

By applying the Jacobi preconditioner to the λ linear system we get the iterative formula:

vt+1 = vt − αH̄−1
λ

(
Hλvt − (I − γλP )−1 r

)
, (7.39)

where following equation 7.12, we have H̄λ = diag(Hλ) = diag
(
(I − γλP )−1 (I − γP )

)
. We

also note that the asymptotic convergence rate of the preconditioned system is ρ(I−αH̄−1
λ Hλ).

Following definition 7.6.1, and using Hλ = (I − γλP )−1 (I − γP ), the Jacobi precondi-
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tioner can be seen as a regular splitting Hλ = B̄λ − C̄λ where B̄λ = H̄λ and C̄λ = B̄λ −Hλ.

Similarly, for standard TD(λ) we have that Hλ = Bλ − Cλ where Bλ = I and Cλ = I −Hλ

forms a valid regular splitting of Hλ. Since the requirements for proposition 7.6.1 apply

(H−1
λ ≥ 0 and 0 ≤ C̄λ ≤ Cλ), under the same symmetric assumption required for theorem 7.6.3,

analogous results for theorems 7.6.1 and 7.6.5 for the λ system also hold.

7.7 Practical Implementation

In this section, we provide details for our practical algorithm, called TDprop, that tracks a

per parameter learning rate based on the diagonal outer product approximation. Specifically,

for each parameter i we have:

H̄ i,i = zi = −Eµθ
[
∇θiδ

λ
t:t+n∇θi ŷt

]
. (7.40)

In practice, we use |H̄| because in non-convex optimization H might be indefinite, see

Dauphin et al. (2015). Moreover, we found in initial testing that tracking H̄ and then

computing |H̄|, led to poor performance due to the cancellation of positive and negative

samples. Instead, to track z we compute an exponential moving average of the squared

sampled statistic:

zt+1 = βzt + (1− β)(−∇θδ
λ
t:t+n �∇θŷt)

2, (7.41)

where � is the element-wise product and β ∈ [0, 1) is the tracking hyperparameter.

We then update the parameter vector θ using the square root of z:

θt+1 = θt + α
(
Z

1
2
t+1 + εI

)−1

δλt:t+n∇θŷt, (7.42)

where Zt+1 is the diagonal matrix formed from the elements of the vector zt+1, α is the global

learning rate, and ε is a damping hyperparameter.

In the mini-batch setting, TDprop needs to compute the required statistic (−∇θδ
λ
t:t+n �

∇θŷt) for each sample. Naively, this would increase the computation time by the size of the

mini-batch. To alleviate this cost, we parallelize the computation with backpack (Dangel

et al., 2019), a package for pytorch (Paszke et al., 2019). We provide pseudo-code for TDprop

in algorithm 5.
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Algorithm 5 TDprop

Require: α: Learning rate

Require: β1, β2 ∈ [0, 1): Exponential decay rates

Require: ε ∈ (0, 1]: Damping Hyperparameter

ḡ0 ← 0

z0 ← 1

function Update(δt, vt, θt) (TD error δt, value function vt, and parameters θt)

ḡt+1 ← β1 · ḡt + (1− β1) · δt∇θvt

zt+1 ← β2 · zt + (1− β2) · (∇θδt �∇θvt)
2

θt+1 ← θt − α · ḡt+1/(
√
zt+1 + ε)

end function

7.8 Experiments

We perform a random hyperparameter search for TDprop, Adam (Kingma and Ba, 2014), as

well as vanilla stochastic gradient descent (SGD), on four deep RL tasks selected from the

ALE (Bellemare et al., 2013) (we use NoFrameSkip-v4 from OpenAI Gym (Brockman et al.,

2016)): Beam Rider, Breakout, Qbert, and Space Invaders. Pseudocode is provided for the

different optimizers that were used: TDprop in algorithm 5 (chapter 7), Adam in algorithm 4

(chapter 2), and SGD in algorithm 3 (chapter 2). We select these four games based on a

random sampling from the original DQN benchmark paper (Mnih et al., 2013). We use n-step

expected SARSA (van Seijen et al., 2009), modifying the A2C implementation of Kostrikov

(2018), to train each agent. Specifically, in 16 parallel threads we sample 5 transitions using

the current policy. We then perform multi-step expected SARSA updates based on the

acquired batch of transitions and repeat the sampling process. For the hyperparameter

search we sample 50 random hyperparameter sets from the ranges that are summarized in

table 7.1. The network architecture is similar to the A2C implementation (Kostrikov, 2018)

without the layer for the policy. Finally, the code repository is located at the following url:

github.com/joshromoff/tdprop.

Figure 7.1 shows the results of randomly sampling 50 hyperparameter configurations. For

the top 25th percentile of hyperparameters TDprop performs as well as, or significantly better

than Adam in all four games. However, confirming the theory of theorem 7.6.5, we find that

vanilla SGD, under optimal learning rates, performs as well as, or better than Adam, in all

games tested while also coming close to TDprop’s performance. Our results suggest that

while TDProp improves performance by a small, but statistically significant amount under a

hyperparameter search in some settings, SGD can as well in other settings.

https://github.com/joshromoff/tdprop
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Figure 7.2 shows a scatter plot of the performance of the algorithms with respect to the

learning rate. We find that in certain tasks SGD prefers a considerably larger learning rate

than both Adam and TDprop, roughly two orders of magnitude larger at approximately

> 10−0.5 for Qbert, Breakout, and Beam Rider. However, the optimal learning rate for SGD

on Space Invaders was drastically smaller at approximately 10−2.5. This discrepancy is not

seen for both TDprop and Adam, which both tend to have values close to 10−3 as the optimal

choice across tasks.

We compare the effect of each hyperparameter for TDprop and Adam in Figure 7.3.

Specifically, we measure the difference in performance between TDprop and Adam (TDprop -

Adam) across tasks and hyperparameters. We find that in most tasks (except for Qbert),

TDprop has a better overall coverage of the hyperparameter space, suggesting it improves

stability in the non-convex regime.

Hyperparameter Range Distribution

(α) Learning rate (TDprop and Adam) [10e-8, 10e-3] uniform

(α) Learning rate (SGD) [10e-4, 10e-0] uniform

(β2) tracking parameter [0, 1] uniform

(ε) damping parameter [10e-8, 10e-1] uniform

Table 7.1: The ranges used in sampling hyperparameters
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Figure 7.1: The normalized average returns of all hyperparameter configurations within (left)

and top 25th percentile (right). Normalization is performed by taking the maximum value for

the game and dividing all results by this value. Significance tests are done using Welch’s t-test,

per recommendations from Colas et al. (2019); Henderson et al. (2017). P-value annotation

legend is as follows. ns: 0.05 < p <= 1; *: 0.01 < p <= 0.05; **: 0.001 < p <= 0.01; ***:

0.0001 < p <= 0.001; ****: p <= 0.0001.

All Hyperparameter Samples

Game SGD Adam TDprop

BeamRider 778.6 (686.4, 867.7) † 673.9 (584.4, 760.4) † 907.7 (815.3, 995.3)

Breakout 12.2 (7.9, 16.0) 16.9 (11.7, 21.7) 20.2 (13.3, 26.5)

SpaceInvaders 330.6 (314.3, 347.5) † 302.3 (278.3, 325.1) 362.3 (343.1, 381.3)

Qbert 654.3 (519.5, 781.7) 599.2 (483.4, 703.9) 552.3 (444.0, 651.0)

Top 25%

BeamRider 1226.2 (1192.4, 1259.7) † 1131.8 (1069.3, 1192.5) 1336.2 (1282.2, 1377.5)

Breakout 33.0 (26.5, 38.9) 42.1 (32.5, 50.0) 53.9 (41.1, 65.1) ∗

SpaceInvaders 404.9 (394.3, 415.5) 425.0 (407.1, 442.3)† 451.4 (435.7, 467.0)

Qbert 1366.8 (1243.9, 1483.3)∗ 1157.8 (956.8, 1351.3) 1048.5 (860.6, 1199.5)

Table 7.2: For up to 10M timesteps. Average return with bootstrap confidence intervals in

parentheses. Bolded text indicates best based on bootstrap significance test. † indicates

runner up by significance testing. If multiple values fall into a tier, denote them by the same

marker. For the top 25% of TDprop vs SGD on QBert, the only significant comparison is

against SGD (TDProp is significantly worse than SGD, but Adam is not significantly better

(or worse) than TDprop or SGD. Conversely for SGD and TDprop on Breakout. This is

indicated by ∗.
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Figure 7.2: Scatter plots of the hyperparameter search on Qbert, Breakout, Space Invaders,
and Beam Rider. The y-axis represents the average undiscounted return per episode over 10
million training steps. The x-axis is the learning rate.
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Figure 7.3: Heat-maps of the hyperparameter search on Qbert, Breakout, Space Invaders, and
Beam Rider. We measure the performance difference between algorithms (TDprop - Adam),
where performance is measured in terms of the average undiscounted return per episode over
10 million training steps. Red areas indicate where TDprop > Adam and blue areas indicate
where Adam > TDprop.
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7.9 Discussion

In this chapter, we proposed using Jacobi preconditioning for TD learning to adapt a per-

parameter learning rate throughout training. We highlighted that in the iterative policy

evaluation setting, Jacobi preconditioning, known in this setting as Jacobi matrix splitting

(Puterman, 1994), has a faster convergence rate than the non-preconditioned system. While

this result was already known in the literature, we extended these results to both the n-step

and λ-return settings, proving analogous convergence rate improvements. We note that

since both n-step and λ-returns can also be seen as matrix splittings (Bacon, 2018), our

corresponding Jacobi splitting can be interpreted as a splitting of a splitting.

Theoretically, we showed that the convergence rate improvement for Jacobi splitting does

not necessarily extend to cases where a constant learning rate can be tuned. Empirically,

we derived a practical algorithm based off of Jacobi preconditioning that is competitive

with state of the art adaptive optimizers in the deep RL literature. However, we note that

consistent with the theory, once the global learning rate has been tuned, all of the optimizers

that were tested performed similarly. Finally, due to the similar optimal performance of

TDprop, SGD, and Adam, we did not perform additional experiments with decompositions

such as TD(∆).

An interesting avenue of future work would be to explore the different interpretations

of Jacobi matrix splitting, which notably can also be understood as prescribing a per state

learning rate or a per state n-step return. As we mentioned in section 7.5, in the tabular case,

Jacobi preconditioning can be interpreted as a per state learning rate based on the probability

of self-looping. The extension to function approximation is not trivial, as self-looping in

the function approximation setting is ill-defined, since the agent almost never revisits the

exact same state. Notably, this was our initial approach for the project, however, once we

discovered the use of Jacobi preconditioning in the stochastic approximation literature, the

project switched from learning a per-state learning to tracking a per-parameter learning

rate. While similar in the tabular case, importantly, the latter is much better defined in

the function approximation setting. Nevertheless, a model-based approach that learns an

estimate for the probability of self-looping and uses this directly as a per-state learning rate

would be an interesting research direction. However, we would expect to at best achieve

similar results to TDprop, since the theory presented in this chapter implies that once the

learning rate has been tuned, a per state learning rate based on Jacobi preconditioning is not

guaranteed to have better performance.

Alternatively, another potential research direction could be to explore implementing Jacobi

matrix splitting in terms of random stopping times (Wessels, 1977; Bacon, 2018). Instead of
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a per-state learning rate, in this case, Jacobi splitting can be interpreted as a per-state n-step

return based on self-looping. Specifically, n varies from state to state and from trajectory

to trajectory. As long as the agent remains in the same state as the reference state st, the

current n is increased, and another sample is used in the current return. Recently, there have

been some works that vary the amount of bootstrapping on a state by state basis based on

meta-gradients (Xu et al., 2018). The random stopping times prescribed by Jacobi splitting

could be an interesting alternative to such approaches.



Chapter 8

Conclusion

We have presented several different methods for improving the sample efficiency and brit-

tleness of deep RL methods through decomposing the value estimation problem into simple

components. The improvement of the proposed methods can be understood as breaking

the equivalence theorem from chapter 6. Specifically, from this theorem we were able to

understand exactly what makes these decompositions similar to non-decomposed systems

and more importantly, what makes them different.

8.1 Summary of Contributions

Our first method, that we presented in chapter 3, decomposed the reward function into

components to be solved by separate value functions that were subsequently aggregated

together. Notably, we highlighted that optimizing each individual value function to be locally

optimal may result in undesirable behaviour. For example, if training two value functions

to collect two separate objects, the aggregation may result in neither object being collected.

Moreover, as predicted by the Bellman equivalence theorem, optimizing towards the globally

optimal policy will lead to equivalent performance to non-decomposed approaches. Instead,

we propose to optimize each of the decomposed value functions towards the random policy.

By using this objective we were able to use a smaller state representation to train each

decomposed value function. Specifically, we were able to train value functions using tabular

methods, which greatly increased sample efficiency by removing the instabilities associated

with function approximation.

In chapters 4 and 5, we explored decompositions based on the discount factor. The

discount factor, which controls the weighting of future rewards, is a sensitive hyperparameter

in deep RL. Value functions based on small discount factors have faster convergence rates,

however, in most deep RL settings we use larger discount factors to capture long term

91
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dependencies. Thus, we designed a novel Bellman-like equation that bootstraps the learning

of value functions based on large discount factors with value functions with smaller discounts.

We showed that improved sample efficiency can be achieved by breaking the equivalence with

standard TD methods by optimizing hyperparameters, such as the n-step λ-return or the

learning rate for each time scale.

Moreover, in chapter 4, we further explored this discount-based decomposition, where the

initial value function uses a discount factor of 0. In this scenario, the decomposition can be

interpreted as using a reward estimator as a replacement for the empirically sampled reward

in the TD update rule. We found that under extremely noisy reward functions, the reward

predictor greatly improved training stability which lead to improved sample efficiency.

Finally, in chapter 7, we proposed a method that can break the equivalence between

decomposed and non-decomposed methods by adapting the learning rate. Specifically, we

proposed to use Jacobi preconditioning as an adaptive optimizer for TD learning, which

effectively tracks a per-parameter learning rate. Notably, Jacobi preconditioning has the

interesting interpretation in the tabular case as using a per state learning rate that is propor-

tional to the probability of remaining in the same state. We extended Jacobi preconditioning

to both the multi-step TD case, as well as with function approximation. Ultimately, we found

that both theoretically and empirically, it performs similarly to a well tuned SGD.

8.2 Perspective

There are several theoretical and empirical limitations to the results found in this thesis.

Theoretically, most of the theory we presented is limited to the case of linear function

approximation, with a large amount further limited to the tabular setting. With every year

that passes, however, our ability analyze more complex function approximators increases,

with their recently being some notable theoretical results of RL with non-linear function

approximation (Chen et al., 2019). That being said, developing methods that are rooted

in theoretically sound principles in the linear case, and then extending them to the most

powerful deep RL technique available, will most likely remain the popular approach for most

deep RL researchers going forward.

Empirically, we limited the scope of the projects presented in this thesis to relatively

simple tasks. While pixel-based experiments in the ALE are certainly a more realistic setting

than the simple toy experiments than comprised RL research a decade or two ago (e.g.,

Cartpole or Mountain car (Sutton and Barto, 2018)), there is still a large gap between our

simulations and real life applications. Recently, several more realistic 3D environments have

been proposed using modern day video game engines (Juliani et al., 2018), they present
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an interesting challenge for deep RL by adding more visually realistic scenarios as well as

typically adding some layer of partial observability.

Despite the limitations, we have seen that hyperparameters including the learning rate,

discount factor, and model structure, play a critical role in both the brittleness and sample

efficiency of deep RL systems. By decomposing TD methods, each of the individual com-

ponents can be trained with hyperparameters that are more optimal for their respective

decomposition. We hope that our works will help inspire further decompositions that could

potentially enable deep RL to have the proper scaling to enter into mainstream products.
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Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Mike Rabbat,

and Joelle Pineau. Tarmac: Targeted multi-agent communication. In Proceedings of the

Thirty Sixth International Conference on Machine Learning, 2019.



BIBLIOGRAPHY 96

Yann Dauphin, Harm De Vries, and Yoshua Bengio. Equilibrated adaptive learning rates for

non-convex optimization. In Advances in Neural Information Processing Systems, 2015.

Adithya M Devraj and Sean Meyn. Zap q-learning. In Advances in Neural Information

Processing Systems, 2017.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec

Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. OpenAI Baselines. https:

//github.com/openai/baselines, 2017.

Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value function

decomposition. Journal of Artificial Intelligence Research, 13:227–303, 2000.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online

learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul):

2121–2159, 2011.

Eyal Even-Dar and Yishay Mansour. Learning rates for q-learning. Journal of Machine

Learning Research, 5(Dec):1–25, 2003.

Tom Everitt, Victoria Krakovna, Laurent Orseau, Marcus Hutter, and Shane Legg. Rein-

forcement learning with a corrupted reward channel. arXiv preprint arXiv:1705.08417,

2017.

William Fedus, Mehdi Fatemi, Yoshua Bengio, Marc G. Bellemare, and Hugo Larochelle. Hy-

perbolic discounting and learning over multiple horizons. arXiv preprint arXiv:1902.06865,

2019.

Eugene A. Feinberg and Adam Shwartz. Markov decision models with weighted discounted

criteria. Mathematics of Operations Research, 19(1):152–168, 1994.

Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I. Jordan, Joseph E. Gonzalez, and Sergey

Levine. Model-based value estimation for efficient model-free reinforcement learning. arXiv

preprint arXiv:1803.00101, 2018.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex

Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, and

Shane Legg. Noisy networks for exploration. arXiv preprint arXiv:1706.10295, 2017.

Vincent François-Lavet, Raphael Fonteneau, and Damien Ernst. How to discount deep

reinforcement learning: Towards new dynamic strategies. arXiv preprint arXiv:1512.02011,

2015.

https://github.com/openai/baselines
https://github.com/openai/baselines


BIBLIOGRAPHY 97

Vincent François-Lavet, Yoshua Bengio, Doina Precup, and Joelle Pineau. Combined

reinforcement learning via abstract representations. arXiv preprint arXiv:1809.04506,

2018.

Izrail Gelfand. Normierte ringe. Rec. Math. [Mat. Sbornik] N.S., 9(1):3–24, 1941.

Arash Givchi and Maziar Palhang. Quasi newton temporal difference learning. In Asian

Conference on Machine Learning, 2015.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Anne Greenbaum. Iterative methods for solving linear systems, volume 17. Siam, 1997.

Anna Harutyunyan, Marc G. Bellemare, Tom Stepleton, and Rémi Munos. Q(λ) with
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