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Abstract

Drilling and blasting are two primary tasks in g mining. As the mining industry
moves toward automation and increasing productfbaiency, effective drill condition
monitoring is vital. Bit condition significantly #dcts drilling performance and
consequently the total operation cost; determining time to change the bit is a
challenging issue. Bit failure during the operatias a result of progressive wear will
impose subsequent costs on the mining company., Theipresent study develops a novel
approach to monitor the wear state and predicstragzhic failure of tricone bits, which

are preferred in most rotary drilling applicatidos blasthole drilling.

In the first phase of this project, the applicatairground penetrating radar (GPR)
in surface mining was investigated. The capabdliiad limitations of GPR are discussed

for mine subsurface identification based on fielals.

To develop an indirect wear monitoring approactdeap understanding of the
relationship between bit wear and drilling signslsrequired. Therefore, an extensive
measurement while drilling (MWD) was done on eqeipplrill rigs in two participating
mines in Canada to collect real-world, full-scakdlidg data in a variety of geological
conditions. The drill bit wear condition was vislyainspected during the entire field
measurement period to label the collected datardizagly. In addition, a new wear grading
method for tricone bits is proposed. The MWD dagsenanalyzed in time, frequency, and
time-frequency domains. The rotary motor currerd &artical vibration signals were

determined to be bit wear sensitive. Bit vibratfanlt frequencies were mathematically



and experimentally investigated. Signal featuresnfivavelet decomposed vibration and

statistical features from rotary motor current weekected for bit wear monitoring.

A sensor-fusion artificial neural network model wiesigned and trained based on
the selected signal features to classify bit wearddion into five classes and predict
failure. Finally, the performance of the developeddel was examined using empirical

drilling data collected from two mines.



Résumé

Le forage et le dynamitage sont deux taches pi@hespdans les mines a ciel ouvert.
A I'heure ou l'industrie miniére s'automatise ejraante I'efficacité de sa production, une
surveillance efficace de I'état des forages estrgigile. La condition du bit affecte de
maniere significative les performances de foragepa& conséquent le colt total
d'exploitation. Déterminer le temps nécessaire pbanger le bit est une question difficile.
Une panne de bit au cours de l'opération a la sliitee usure progressive entrainera des
colts ultérieurs pour la société miniere. Ainsiptasente étude développe une nouvelle
approche pour surveiller I'état d’'usure et prédies défaillances catastrophiques des
trépans tricones, qui sont préférés dans la pluesapplications de forage rotatif pour le

forage en trous de mine.

Au cours de la premiere phase de ce projet, Katilon du radar a pénétration de sol
(GPR) dans les mines a ciel ouvert a été étudiég chpacités et les limites du GPR sont

discutées pour I'identification du sous-sol de ia@rsur la base d’essais sur le terrain.

Pour développer une approche de surveillance sigréundirecte, une compréhension
approfondie de la relation entre l'usure des trégares signaux de forage est nécessaire.
Par conséquent, des mesures exhaustives en cdiarsge (MWD) ont été effectuées sur
des appareils de forage équipés dans deux mingsipeamntes au Canada afin de recueillir
des données de forage a grande échelle dans leemrért] dans diverses conditions
géologiques. La condition d'usure du foret a éspeaatée visuellement pendant toute la
période de mesure sur le terrain pour étiqueteddesmées collectées en conséquence. En

outre, une nouvelle méthode de classement de d'udes tricones est proposée. Les
Vv



données de la MWD ont été analysées a l'aide désodes de temps, de fréquence et
temps-fréquence. Le courant du moteur rotatif &slgnaux de vibration verticale ont été
déterminés comme étant sensibles a l'usure deansépes fréquences de défaut de
vibration des trépans ont été étudiées mathématigue et expérimentalement. Les
caractéristiques du signal provenant des vibratésomposées par ondelettes et les
caractéristiques statistiques du courant du motetatif ont été sélectionnées pour la

surveillance de l'usure des trépans.

Un modele de réseau de neurones artificiels ariuacapteurs a été concgu et entrainé
sur la base des caractéristiques de signal séleéis afin de classer I'état d'usure des
trépans en cing classes et de prévoir les défedmnEnfin, la performance du modele

développé a été examinée a l'aide de donnéesatgfempiriques recueillies sur le terrain.
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Contributions of the Author

A novel tricone bit wear monitoring and failure gietion approach is developed
using an extensiveneasurement while drillingdataset collected from instrumented drill
rigs at two participating mine sites in Canada.HHiggquency vibration signals at several
spots of each drill rig were collected along wtik torresponding bit wear grade, the latter
based on a novel qualitative method for triconentdar grading proposed as part of this
thesis research.

The effect of bit wear on vibration and electriaremt signals is investigated. Bit
wear-sensitive signal features and frequency commtsrare introduced and bit vibration
fault frequencies are experimentally and matherabijicinvestigated. In the time-
frequency domain, the vibration signal energy distion pattern in wavelet packets
during the bit life cycle is studied. A sensor-tusiartificial neural network model is
developed to classify bit wear condition and preditfailure in a variety of geological
conditions. Model performance is tested using eicgdifield drilling data.

The outcome of this research is being patented b@iNMUniversity (application

number PCT/CA2018/051236).
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Chapter 1 — Introduction

1.1 Surface Mining

Commercially important minerals are called oresg€&tores are usually surrounded

by other non-commercially important material knoamwaste (Fig.1.1).

Figure 1.1- Orebodies surrounded by waste mat@ktidsCopco 2012)

When an orebody is located at shallow depth, sanfaicing techniques are used for
rock extraction. More than 95% of non-metallic &% of metallic minerals, and more
than 60% of coal is excavated using surface mifiRegmani 2012). Most surface mines

are large and are mass producers of minerals (ldaramd Mutmansky 2002).

When a large amount of hard rock must be excaviasteéach ores, mechanical
cutting methods are not efficient and drilling asldsting must be used. Blasting releases

enough energy to fragment even the hardest rockdtons and is thus the most
1



economical preliminary rock fragmentation technigGekhale 2011). Fig. 1.2 compares
the energy required to achieve a given fragmeetlsg&tween blasting and other excavation

methods.
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Figure 1.2- Break energy requirement versus meggnfentation size (Gokhale
2011)

For most open-pit mining operations, the first stajcomminution involves drilling
and blasting the rock mass. For placement of ekm@esvertical or inclined blastholes are
created using large hydraulic or electric drillstid he blastholes have a specific diameter,
pattern, spacing, and depth. After fragmentatioth @aterial removal, mine benches are
formed. Fig. 1.3 illustrates the detailed termimgi@f an open pit mine bench containing

drilled blastholes.
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Figure 1.3- Blasthole terminology for an open pihenbench (Gokhale 2011)

1.2 Projected Surface Mining Extraction and Future Markets

The United Nations (2017) estimates the world papoh will reach 8.6 billion in
2030. Today, 10 tons of material are mined each feaevery person on Earth using
surface mining techniques (AtlasCopco 2012). Atghesent rate, the annual extraction
rate will be 86 billion tons/year in about 12 yearhis increase does not consider the

expected living standard improvements in develogmgntries.

By 2022, the market size and compound annual groatia for surface mining
equipment are projected to be US$28 billion and43.6espectively. The key growth
factors driving these increases are growing a@&wiin the mining sector and increasing
needs for advanced technologies, mainly in deva@ppountries (Global Market Insights

2016). Fig. 1.4 shows trends in surface mining gapeint in the U.S. by mining method.



USD Billion
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= Strip mining = Mountain removal mining % Open pit mining

Figure 1.4- Past and projected U.S. surface miaqgpment market size (Global
Market Insights 2016)

1.3  Dirilling Methods

Two main rock breakage methods are practiced ininginmechanical rock
excavation and rock fragmentation. Drilling andrtehboring are examples of mechanical
excavation; blasting is a traditional type of rotkgmentation used to break down
formations into practical particle sizes (Hartmaw &utmansky 2002). The applications
of drilling in the mining industry include blastlesl (as described above), raise boring,

coring, exploration, and support installations .(ergck bolts).

Mechanical drilling is divided into two primary nhetds: rotary drilling and
percussion drilling. In rotary drilling, the rotatial motion is supplied by an electric or
hydraulic driven gearbox known as the rotary héathther feed motor moves the rotary

head and drill string up and down. This motor gates the pulldown force to provide
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adequate weight on bit (WOB) (Fig. 1.5). Compressieds also conducted to the cutting
area through nozzles placed on the bit. The compdeair is used primarily to flush out
drilled rock cuttings from the hole and clean tluting area so that the bit can continue
penetrating the rock. The air also cools down titéng area and may contain particles to
lubricate the bit bearings (i.e., when using tredoits with open bearings). Percussion
drilling uses hammer energy in addition to rotatopenetrate the rock. In the top hammer
percussion method, the hammer energy is applietthaadrill string (see section 2.3),
whereas in the down the hole (DTH) method, the hanmemergy is applied directly on the

bit. Therefore, the DTH technique is more suitdbledeeper holes.

Figure 1.5- Rotary drilling (Left), DTH Drilling (Rht) (AtlasCopco 2012)

There is no solid boundary to determine the beslindr method for a given

operation. However, the top hammer is generallyepred for drilling holes less than 6



inches in diameter (Fig. 1.6). For hard formati@umsconfined compressive strength >100
MPa), DTH drilling usually provides a better ratiepenetration. DTH drilling is limited
by the volume of pressurized air supply. For exanah 8” DTH bit is designed to receive
25 bar air pressure to provide enough impact endiggrefore, rotary drilling with tricone
bits is the most cost-effective method for largeletdiameters and generally suits a wider

range of applications and hole sizes in terms aingiter and depth (AtlasCopco 2012).
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Figure 1.6- Drilling methods based on hole size fanchation type (AtlasCopco
2012)
1.4 Drill Bit

Drill bits are divided into two main categoriesxdd bits and roller bits. Fixed bits
include drag bits and button bits and are primauggd for percussion drilling. In rotary
blasthole drilling, the most preferred bit typethie tricone roller bit. Tricone bits penetrate
rock by crushing and spalling it (AtlasCopco 20IR)e bit comprises three cones, each
installed on a lug support structure (Fig. 1.7)e Tonnection between the lug and cone

contains roller and ball bearings.



Figure 1.7- A new tricone bit installed on a dpipe

While the drill bit is in operation, the interaatidoetween the rock and bit causes
wear of different parts of the bit including teetlones, lugs, and rolling elements. Over
time, the bit wear progresses and the bit musepkaced. Excessive bit wear will lead to
bit failure (Fig. 1.8). Rolling element failure catastrophic failure results in losing bit
parts down the hole. When the bit experiences astraphic failure, two scenarios are

possible:

1. The operator will try to recover the detached bitgfrom the hole. This procedure
is costly, time consuming and delays production.

2. If the bit parts cannot be recovered, they will aamin the hole, where they may
damage the rock crusher after blasting. This coeddlt in significant repair costs

and delay in production.



Figure 1.8- Failed tricone bit with one missing eon

With the potential for damage being a substantatern, the drill operator could be
conservative and not use the drill bit to its maxmmlifespan. Such a choice would result
in spending more on drill bits than is required.eTbost of drill bits varies from
approximately US$4,000-13,000, depending on qualitydesign. Thus, either removing
a bit before its useful life is reached or deaimt the issues related to removal of a failed

bit parts result in increased costs to the minimggany.

1.5 Objectives

The overall objective of this research is to depeda indirect condition monitoring
(CM) approach to identify tricone bit wear and tegtict and avoid catastrophic bit failure.

The results of this study at the basic level wsliat operators when making the decision



to change the bit. Furthermore, a bit CM systeamigitegral component of an autonomous

drilling operation. The objectives of this reseaach to:

* Investigate the application of ground penetratiagar (GPR) for geological
identification and for detection of subsurface layariations with the capability of
real-time implementation

» Design the data acquisition and sensor configuratieeded to collect blasthole
drilling field data at two Canadian surface mines

* Perform preliminary fieldwork and data analysis aurface mine

» Plan and implement blasthole drill instrumentatol a comprehensive field work
based on preliminary results

» Visually inspect and record bit wear state during éntire field tests in various
working conditions and geological formations fotalkbeling

» Assess the professional opinions of bit manufacsuead experienced operators
regarding drilling conditions, geology, bit weaatst and bit replacement strategy

» Establish a new qualitative wear grading techniiguéricone bits

* Analyze data in time, frequency, and time-frequedcynains to identify and
introduce signal signatures that are sensitivettedsar condition and carry related
information

* Mathematically calculate and experimentally invgstie tricone bit failure
frequencies

» Design, train, and evaluate sensor-fusion artificieelligence (Al) models based

on full-scale field data and identified signal faais



» Introduce the data vector for the purpose of tricase@ar monitoring
* Test Al model ability to classify bit condition ampadedict bit failure using unseen

field data

1.6 Methodology

This research develops a novel approach to matnibmne bit condition and predict
bit failure for blasthole drilling in surface mignhThe CM solution is established through
extensive field data collection and analysis, leawrelated signal signature identification,
and Al modeling. Signal analysis and modeling anedcicted using MATLAB software

(MathWorks), which is broadly used by academic iaddstrial engineers and scientists.

A Dblasthole drill was instrumented with several elecometers and two data
acquisition units for a comprehensive measurememtewdrilling, including drilling
vibration at various locations on the machine. @&t were collected during the life cycles
of tricone bits working in a variety of geologiaadnditions on different benches of the

surface mines.

Drilling vibration was first analyzed in the frequey domain to identify the
frequency component trends that carry bit wearrmédgion and are sensitive to bit wear
state with consideration of geological variatioMathematical equations were introduced

to calculate the failure frequencies of tricone lbhiased on the design parameters.

Wavelet packet decomposition was applied as a tieggiency analysis approach to

focus on desired frequency bands and finally fatistical feature extraction. Features were
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analyzed to introduce a signal feature vector ficohe bit wear monitoring and failure

prediction.

Based on experience gained during the fieldworkcuBisions with operators, and
inspections of bit scrap yards at the mines, a gaalitative tricone bit wear grading

method was defined to describe tricone bit weatsifife cycle.

Al models were developed using artificial neuratwerks (ANN) for bit wear
pattern recognition and classification. The modedse trained and their performance was
evaluated using real field data. Finally, the sigeature vector and model architecture

were suggested for tricone bit wear monitoring tldre prediction in surface mining.

1.7 Thesis Overview

Chapter 2 reviews published literature on drillewgd attempts to conduct drilling
monitoring. Chapter 3 investigates the applicabbiPR for surface mining. Chapter 4
discusses experimental work including drill rigthasnentation, data collection, and data
labeling. Data analysis is detailed in chapterrigluding time, frequency, and time-
frequency approaches and identification of the veeasitive signal information. Chapter
6 presents the developed sensor-fusion ANN modelassify bit wear state. Finally,

concluding remarks and suggested future works ttatesChapter 7.
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Chapter 2 — Literature Review

2.1 Condition Monitoring

Automation and unmanned production are growingdsem many industries,
including mining. Thus, condition monitoring (CMj system components is required to
understand the status of devices, machines, andhatdly the overall operation.
Monitoring is also necessary to identify systemraales. An anomaly could be removed
by stopping the process or by adjusting operatiagameters (Wang and Gao 2006).
Understanding the system status in real-time pesvitie ability to predict faults and avoid
further consequences of failure during the opemnaflitnis approach is known as predictive

maintenance.

Sensors, data acquisition, signal processing, anidn-making units are essential
components of a CM system (Fig. 2.1). The type mmaber of sensors depend on the
nature of the process and the target of the CMerysBensors include a wide range of

instruments (e.g., thermometers, accelerometersi@mastic emission transducers).

Data

Signal acquisition Signal Decision
Process sensors & pre- processing making
processing

Figure 2.1- Condition monitoring diagram
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In a direct CM system, sensors directly measure désired parameter (e.g.,
processing images taken from a cutting tool to addtee amount of wear). However, in
many industrial applications, it is not feasibledicectly measure the desired parameter.
Instead, the effects of variations in the desirachmeter on the behavior of the system or
on other parameters are measured. Using this oid@& approach, variations in the
desired parameter are estimated indirectly (e.gasuring the cutting forces to estimate
the cutting tool wear state) (Zhu, San Wong, anddgi2009). CM approaches are being
widely developed in different sectors of the minindustry, from the earliest stages of

excavation rigs to structures and processing egempm

Stenstrom, Carlson, and Lundberg (2012) investijatear monitoring of a rotary
mining mill by using a waterjet ultrasound scannsygtem. Due to the nature of the
milling process, these mills are always subjeatéar, fatigue, and crack progress in the
mill steel shell. The authors performed laboratecgie experiments on a mill with a shell
thickness of 15 mm. They used an ultrasound trasesduith 5 MHz of central frequency

and reported the detection of artificially creatkdects in the mill internal wall.

Pang, Zhang, Fu, and Zhu (2011) developed a re@itapproach for coal mine
fan system based on the ethernet. Monitoring ofikaion fans is crucial to ensure mine
air quality and worker safety. Their CM system edlion analysis of vibration and
temperature signals from the fans. It was ablesteat a fault in the fan running state and

produce an early warning of the issue.
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2.2 Geological Recognition

The interaction between the drill bit and rock e=ubit wear; therefore, identifying
the geological formation is an important issue agkr and tool interaction analysis. A
serious challenge with automating mining machingedetecting and measuring geological
layers at the mine site. A non-destructive and ineasive approach for subsurface
recognition is GPR. This technique uses electrom@grwvave reflections to collect
information from underground or from within strucs such as buried pipes, underground
cavities, subsurface cracks, voids, and stratibost GPR has a wide range of
applications; the appropriate wavelength is setectepending on the application. For
example, the GPR systems used in security apgitatio search for small items at a
shallow depth use high-frequency (3—6 GHz) anteifdés 2017). GPR is also effective
in quality control and CM of infrastructure, inciag railways, buildings, roads, and
bridges. Depending on the desired depth of pematrdDOP), mid- to high-frequency
antennas (400-500 MHz) are often used (Utsi 20L@)ver frequencies provide an

overview of the subsurface, while high frequengiee a detailed local representation.

In mining applications, geological materials cancbhesidered as semiconductors.
And their electromagnetic properties can be difingddielectric permittivity £€), electrical
conductivity ©), and magnetic permeability. The capability of enal to transmit a direct
current is known as electrical conductivity. Relatdielectric permittivity is a geological
medium resistance degree to the flow of an eledticbarge divided by the resistance
degree of vacuum space to that amount of charge;ctmracteristic is an essential

parameter for GPR application (Francke and UtsB200
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Ground formations are usually a combination of mal® with different dielectric
properties. When the electrical conductivity inses the GPR signal penetration
decreases. Other than the electrical conductivity @dielectric permittivity, the DOP is

affected by the complexity of subsurface interfabed scatter the signal.

Patterson (2003) and Kampf, Gochenour, and Cla2003) applied GPR at the
Cryo-Genie pegmatite mine in San Diego County, U®Adiscover a major gem
tourmaline pocket. They were able to map a pocket zone at a depth of 5 m. In the coal
mining field, Strange, Ralston, and Chandran (2@Qiplied high-frequency GPR at the
laboratory scale reaching depths of less than 8(Reiston and Hainsworth (2000) studied
the capability of GPR to identify the coal-rockarface and they were able to detect the
coal-tuff boundary. Other research works have itigated the application of GPR to map
the barrier thickness and also to assess the péinatof polyurethane grout into the mine

roof in underground coal mining (Jha et al. 2004nslghan and Trevits 2004).

2.3 Electric Blasthole Drills and Drill Bits

As mentioned in Chapter 1, drilling methods incluttavn the hole (DTH), top
hammer, and rotary approaches; drill rigs are aesig@@nd constructed accordingly. When
drills are used to make holes in the ground inaa&fmining to be filled with explosive

material, they are called blasthole drills.

Several companies manufacture rotary blastholésditlas Copco, Caterpillar,
Sandvik, and P&H are among the major manufactutar016, Atlas Copco was the

industry leader, followed by Caterpillar, with 3%8d 36% of worldwide drill market,
15



respectively (ParkerBay 2016). In this researcltyBus model 49 HR drill rigs were used.
Bucyrus was purchased by Caterpillar in 2010 aedd®hHR rig is now recognized under
the name CAT MD6640 (Fig. 2.2). In the surface mgniindustry, the two main
competitors on the market are the PV351 by Atlaga8@nd the 120A by P&H. The CAT
MD6640 is an electric drill rig. The rotational amdrtical movements are generated by
electric motors. It can provide up to 64,000 kgolidown bit load and covers a range of
blasthole diameters from 9.6 in (244 mm) to 16466 mm). This rig is capable of angle
hole drilling up to 25° in increments of 5°. In blhole drilling, however, vertical hole
drilling is more common. The rig unit can drill &odepth of 21.3 m in single-pass and up
to 85.3 m in multiple passes (Caterpillar 2016)g. 2.3 presents a comprehensive

introduction to the main components of the dri. ri
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Figure 2.2- CAT MD6640 dimensions (Caterpillar 2P16
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Figure 2.3- CAT MD6640 main components (Caterpiai 6)
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When drilling is completed by a unit piece of dmiipe, it is called single-pass
drilling. Large drills are capable of accommodataugitional drill pipes to increase the
depth of drilling; this is called multi-pass dnilj. One or more connected drill pipes are
known as a drill string. Note that the single pdsi depth mast in the rest position

increases the overall length of the CAT MD6640l digl from 14.73 to 31.24 m (Fig. 2.2).

2.4 Rock Drilling Tools

The type of bit used depends on the drilling metaod application specifications.
In surface mining, fixed and rotary bits are udéded bits include drag bits and button
bits. Drag bits (also known as cross bits) hawdatively simple design, usually consisting
of four straight cutting edges mounted on the bdyb(Fig. 2.4 right), but the number of
cutting edges can be less than four (Fig. 2.4.1&ftplication of drag bits is limited to soft
formation drilling (AtlasCopco 2012). By comparisdiutton bits are designed to suit the
geological formation and operating conditions. Qegparameters include the number of
carbon buttons (also known as inserts) and thébé profile (concave, convex, or flat;
Fig. 2.5). A concave surface improves drilling dtabto achieve a straighter hole; a
convex surface is designed for hard and abrasisle gonditions; and a flat face is meant
for general purpose drilling. A flat face is alsosheffective for softer formations that tend

to over drill (Mincon 2016).
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Figure 2.4- Drag bits with three (left) and fougft) cutting edges

Figure 2.5- Button bits, from left to right: coneaconvex and flat face design
(Mincon 2016)

Rotary drilling with drag bits in large diameterlé® is not efficient. The answer to
large diameter holes drilling in rocks is to crdbkh rock while rotation and this is where
tricone roller bits are used. The history of roltene bits dates back to 1909, when Hughes
and Sharp patented the dual roller cone for trst fime (Fig. 2.6). This first-generation
roller cone bit had two wheels with steel teethtloem. It was designed to penetrate the
rock by crushing and chipping it. In 1933, engiseieom the Hughes Company invented

a bit with three roller cones: the tricone bit @sCopco 2012).
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Patent: 930,759
August 1909

Figure 2.6- Two-cone roller bit patented in 190966 et al. 2014)

As noted in Chapter 1, top hammer and DTH methoglpamarily limited to small
hole diameter drilling (Fig. 1.6). Rotary drillingsing tricone bits improves the rate of
penetration (ROP) in larger diameter holes and fardations. Therefore, tricone bits are
mostly used for blasthole drilling. In exploratiahiling as well, roller cone bits are
preferred to fixed bits that turn the rock intodfidust. The rock cutting created by roller

cone bits is useful to analyze site formation (Roland Miranda 2004).

2.5 Tricone Bits

A rotary tricone bit is made of several elementduding three cones and three lugs
(Fig. 2.7). The cones consist of the cutting stritest which can be milled steel teeth or
tungsten carbide inserts. The former are limiteshtiter formations and are not commonly
used in blasthole drilling. In the insert tricorype, the insert row close to the lug edge is
the heel row, the next row is the gauge row, aradther insert rows towards the bit center
are inner rows (Fig. 2.8). The shape and numbgrsefts on each cone are designed based

on the formation hardness. In general, relatively fall inserts are more suitable for softer
21



formations. For harder formations, relatively meh®rt inserts are used. The connection
between the cone and lugs consists of inner rbbarings, ball bearings, and outer roller
bearings (Fig. 2.9). The lug design is illustratedrig. 2.10. Every lug consists of one
nozzle to conduct the pressurized fluid to theiegtarea. There are three bearing surfaces:
1. holds the outer roller bearing
2. holds the middle ball bearings

3. holds the inner roller bearings

Table 2.1 summarizes the insert types manufactuyeitlas Copco (Epiroc).

Air Water Separator
or Back Flow Valve

Pin Shoulder

Nozzle Nail Lock

Air Passage

to Bearing
Shirttail Inserts

Ball Retaining
Pin

Ball Retaining
Pin Weld

Shirttail
Hardfacing

Cone (L) and  Inner Roller
Journal (R} Bearing
Thrust Buttons

Figure 2.7- Tricone bit components (AtlasCopco 3012
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Inner rows

Gauge l’O\N/_ J! ‘

Heel row

Figure 2.9- Roller and ball bearings in a tricontg8andvik 2015)

Shirttail
Air b
Exhaust

Bearing
Surfaces  Nozzle

Nozzle
Boss

Figure 2.10- Tricone bit lug design (AtlasCopco 201
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Table 2.1- Insert designs (AtlasCopco 2012)

Conical

The conical insert is used primar-
ily in medium/medium-hard rock.
It is designated in the bit nomen-
clature with a C.

90° Chisel or trimmer

The trimmer is used specifi-
cally in the MAGNT product
line. It enhances the gage rows
ability to cut the bore hole wall.
The MAGNT feature is used

in soft to medium brittle rock
formations.

Chisel

The chisel insert is used in soft/
medium-soft rock. It is the stan-
dard insert in soft bits (40's &
50's) and is designated with an
F in the bit nomenclature.

Wedge crested chisel
Wedge crested chisel inserts
are used exclusively on the
gage rows of very soft to hard
bits (40’s through 60's). This
shape gives a fracture resistant
insert that is much tougher
than concial or regular chisel
inserts on gage.

Ogive

The ogive insert is used in areas
where the aggressiveness of the
conical insert is required with
additional toughess. The ogive is
designated as an O in

the bit nomenclature.

Serrated flat top

Serrated flat top inserts are
used on shirttail lips and along
the lug as “armor” to protect
against shirttail and lug wear.

Super Scoop

The super scoop is used in very
soft rock. With the patented offset
tip, digging and gouging help
penetrate in sticky materials. The
super scoop is designated with
an S in the bit nomenclature.

S0 o®

Double Angle Conical
Double angle concial inserts
with hardmetal retard erosion
and provides for increased
ROP.

Round top

The ovoid or round top insert is used in the hardest formations. Its blunt geometry gives
it the most fracture resistant design. The round top is the standard insert in hard bits

(60's 70's & 80's) and is designated with an N in the bit nomenclature.

O 0 ¢ ¢

In addition to the material, shape, and quantitthefcutting structures, other design
parameters influence bit performance in hard arfidfgonations. In application-specific
design, cone offset and journal angle are key paramrelated to formation hardness. The
bit cone offset is the distance between the bisaxel a vertical plane through the journal
axis (Fig. 2.11 left). The angle formed between #xs of the journal and a line
perpendicular to the bit rotation axis is the jalrangle (Fig. 2.11 right). Table 2.2
summarizes the bit design parameter relative vahased on the intended geological
formation condition. Journal angles range betwe@ghahd 39°. Higher angles (34-39°)

and lower offset boost the crushing mechanism. &tbeg, the bit will have an enhanced
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ROP in harder formations; the opposite appliehéolits designed for softer formations

(Cobb et al. 2014).

120°

\each cone)

X-Sec. of
Leg & Journal

(=]
&
L1
-
Q
T 310HS

Journal Axis
&

Journal Angle

Figure 2.11- The cone offset (left) and Journaleu@gght) (Cobb et al. 2014)

Table 2.2 - Bit design parameters based on thadet formation (Gokhale 2011)

Bit Typg —» Medium Hard Extra Hard

Soft
|| |

Basic Offset
Design
Journal
Angle

Cutting Scraping
Structure | Action
Design

Crushing
Action

Tooth
Depth

Tooth
Spacing

Included
Tooth Angle

Strength Bearing
Strength
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The International Association of Drilling ContracddIADC) classifies the tricone
bits with tungsten carbide inserts into five clasaecording to the rock hardness, measured

as unconfined compressive strength (UCS) (Fig.)2.12

Tricone carbide insert rock bit series vs. rock hardness
"n::(sli.']cs Tungsten carbide insert Tricone bit series Rock type
0 o Claystone, Mudstone
series Chalky Limestone
4000 Tol Soft Shale
fw] Loose Sandstones
8,000 Limestone, Siltstone
Solid Sandstones
12,000 50 Medium Shales
series Tuff, Soft Schist
16,000 E{; Andesite, Rhyolite
54 Quartzite {Sand, Silt)
20,000 Limestone, Marble
Monzonite, Granite
24,000 Gneiss
Diorite, Diabase
28,000 = Hard Shale, Slate
series Limestone, Dolomite
32,000 5[-‘ Basalt
0
64 Tactite, Skamn
36,000 Granodiorite
Taconite
40,000 Quartzite
Syenite
44 000 Gabbro
48,000 Banded Iron Formation
Taconite
52,000 Chert
56,000 Quartzite
60,000 Amphibolite
64,000 Hornfels
66,000 Hematite Ore
" “Lava", Basalt, Biwabic,
Higher Quartzite

Figure 2.12- IADC bit classification based on radkS (AtlasCopco 2012)
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The Tricone IADC code consists of four characténsee numbers followed by a
letter (Thomas 2008). For the first character:

1-3. Steel tooth bits for soft (1) to hard (3)nf@tions
4-8. Tungsten carbide insert bits for soft (4haod (8) formations

For the second character:

1-4. Further distinguishing softer (1) to hardBrformations

Third character:
1. Open bearing

2. Standard air-cooled open bearing

3. Standard open bearing with heel row inserts

4. Standard sealed roller bearing

5. Standard sealed roller bearing bit with heel noserts
6. Journal sealed bearing

7. Journal sealed bearing with heel row inserts

The fourth character indicates additional spediiices and includes:

A. Air application

C. Center jet

E. Extended jet

G. Extra gauge protection
R. Reinforced welds

S. Steel tooth

X. Chisel insert

Y

. Conical Insert
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2.6 Bit-Rock Interaction

To better illustrate the events at the bit-rocleiface, it is helpful to simplify the
interaction to that of a single insert acting anek; this represents the interactions between
a tricone rotary bit consisting of many inserts andock formation.Maurer (1962)
introduced a model to show the basis of interadbetween rock and bit in rotary drilling
for a single bit insert. Fig. 2.13a shows a singkert (wedge in the diagram) impacting
the rock and causing the elastic deformation ok.rdhe process continues until the
crushing strength of the rock is exceeded, andhedisock is created below the insert
(Hartman 1959). More applied force causes the edishaterial to compress and exert
high lateral forces on the solid. As the lateratés exceed the UCS of the rock mass,
fractures propagate at the free surface of the (Bak 2.13c) (Clausing 1959; Maurer
1959). Eventually, rock cuttings (chips) are formetiich separate (Fig. 2.13e) and must
be removed from the cutting area. Because of moposgition of the insert and resulting

rock fragmentation described, high amounts of terge required to rotate tricone bits.

28



Feed Force

Feed Force
Wedge

Feed Force
Wedge Wedge-
Tooth Height

‘
Crushed Inizial Tooth Penetration Propogating
Zone Cracks Cracks

Rock

Feed Force
Wedge Vvedge

Separated
Chi
d = F

Figure 2.13- The interaction between a singlersiert and rock in rotary drilling

(Gokhale 2011)

In the literature, the ROP of a tricone bit at thdl side is considered a function of

four factors that can be expressed as (Gokhale)2011

ROP = f(WOB, N, C, Q) 2.1)

Where

ROP: Rate of penetration
WOB: Weight on bit (feed force)

N: Bit rotation speed
C: Bit toothheight
Q: Volume of compressed air

Increasing the WOB at a fixed rotational speeddases the ROP, but this effect is

lessened at high WOB values due to overload (Fig})2Gokhale 2011). Based on the
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crushing mechanism of the bit tooth (Fig. 2.13g, bit ROP is limited by the tooth length.
In addition, bearings are other important limitiiagtors in tricone drilling. An excessive

amount of force can damage the bearing elements.

B N = 79|RPM

Penetration Rate ft/min

0 20 40 60 80
Weight on the Bit in Ib/1000

Figure 2.14- ROP vs. WOB at 79 rpm rotational spéaukhale 2011)

“Q” does not participate in rock fracturing, butngpressed air is necessary to flush
the cuttings from the hole. As noted in Chaptef dyttings remain in the hole, the bit will
be eroded by abrasive rock chips, and the teetlguiitkly wear. In blasthole drilling, the
compressed air usually lifts cuttings between tha# of the hole and the drill rods. To let
the cuttings pass, there must be enough cleararameitar space—between drill string
and the hole wall. Field studies have shown thatagbproximate annular space should be

17% of the cross-sectional area of the drilledthiale (AtlasCopco 2012).

30



2.7 Rock Specific Energy

Drilling is an excavation act and in rotary tricom@ling, this task is accomplished
by applying the energy in forms of feed force (WGHBId rotation. The work needed to
excavate a unit volume of rock is known as roclkcgmeenergy. Teale’s equation sums

two parts to calculate the energy transfer by aryatricone bit (Teale 1965):

— (WoB T\ (N
€= ( A ) + (2 * A) (ROP) (2.2)
Where
e Specific energy (Ib/if)
WOB: Dirill bit feed force (Ib)
A: Blasthole cross-section areajin
N: Rotational speed (rpm)
T Drill bit torque (Ib-in)

ROP: Rate of penetration (in/min)

The first part of the equation mostly contribute#ite creation of cracks and crushing

the rock and the second term contributes to loogeand moving cracked fragments.

Because the hole cross section area is fixedetme(ﬁ * %) is a constant (Gokhale 2011).

2.8 Drillability and Rate of Penetration

Rock drillability is the projected ROP in a rockrimation. Many aspects of a drilling

operation influence rock drillability, including (Bhale 2011):
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Rock uniaxial compressive (i.e., UCS at rock falunder uniaxial compression
conditions), tensile, and shear strength

Rock abrasiveness

Rock density

Joint spacing and orientation in the rock mass

WOB

Rotatory speed and torque

Air flush pressure and volume

Vibration

Bit tooth height, quantity and type

Bit lug and cone design

Scientists have attempted to correlate the ROP wvatk properties. In 1926,

Protodyakonov introduced the empirical “Protodyakomumber” to represent the

dynamic strength of rock against impacts. A moneaaded equation to calculate the ROP

was later developed by Paone and Bruce (1969) tquating for more parameters. The

specific energy approach is also reported in tieeadiure to calculate the projected ROP.

In 1971, Bauer modified an earlier empirical equatio predict the ROP of blasthole

tricone drilling in hard iron ores (Eq. 2.3). In94Q Calder introduced a modified version

of the equation that was applicable to blasthoiirdy in low-UCS formations (Gokhale

2011).

ROP = (61 — 28 Log UCS)(%)(BNR) (2.3)
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Where

ROP.  Rate of penetration (ft/hr)

UCS:  Unconfined compressive strength (1000 B)/in
WOB: Weight on bit (1000 Ib)

N: Rotational speed (rpm)
@: Bit diameter (in)

Li et al. (2016) studied the effect of rock mecltahproperties on drillability. They
measured elastic modulus, unconfined compressreagih, as well as Poisson's ratio

under uniaxial confined pressure conditions of 20 @0 MPa.

Other researchers have assessed the effect obrt&ness on drillability (Yarali
and Kahraman 2011). In a more recent study, Cafiilkjaz, and Yasar (2017)—using
experimental laboratory data and in situ studiesrvdd correlations between rock
properties and a drilling rate index. UCS had amgmegative correlation and porosity had
a strong positive correlation with drilling rateafdle 2.3). The bit wear condition however,

is not considered as a parameter.

Table 2.3- Correlation between rock properties @uilting rate index (Capik,
Yilmaz, and Yasar 2017)

Physicomechanical Property Correlation Coefficient
UCs -0.91
Point load streng -0.92
Brazilian tensile streng -0.87
Apparent porosit 0.8t
Void ratic 0.8
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2.9 Bit Wear

During the drilling process, generating rock cuginas a result of the contact
between the tool and rock causes changes to tterna and internal components. These

changes are known as bit wear.

The IADC tooth wear grading system is the indudtgndard to measure the
insert/tooth wear of tricone bits (Fig. 2.15).dtalso applied to carbide inserts and steel
teeth. Based on this system, tooth wear is gradiedeighths or increments &f of the
insert missing height (from 0O to 8). Therefore eavrbit tooth would have a grade of zero,
a bit with half worn insert would have a grade ofif, and a worn-out bit with no teeth
would have a grade of eight. Bearing wear is gradedsimilar manner, and shirttail (see

Figs. 2.7 and 2.10) and cone wear is also exananddoted.

Figure 2.15- IADC bit tooth wear grading (Hallibont 2009)

In the eight-factor assessment for drill bit grapfRig. 2.16), the first four characters

describe the amount and location of the wear onbtheutting structure, and the fifth
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represents the bearing wear condition and applidg @ the tricone bits. The sixth
character describes the gauge measurement. Thatlseygace is reserved for adding
additional information from the bit inspection afabt space describes the reason for

pulling the bit (Cobb et al. 2014).
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C - CONE
N - NOSE (ROW)
T - TAPER
S - SHOULDER 1 - IN GAUGE
G- GAUGE 1/16 - 1/16" UNDERGAUGE
A - ALL AREAS/ROWS 2/16 - 1/8" UNDERGAUGE
M- MIDDLE ROW .
H - HEEL ROW
CUTTING STRUCTURE B G / REMARKS
INNER | OUTER | DULL LOCA- | BRNG/ | GAUGE 4 OTHER |REASON
ROWS | ROWS | CHAR |( TION | SEALS | 1/16° / CHAR. | PULLED
7 N
0 - NO WEAR
; NONSEALED BEARINGS
8 - NO USABLE .
CUTTING STRUCTURE 0 NO LIFE USED

8 - ALL LIFE USED
SEALED BEARINGS

E - SEALS EFFECTIVE

F - SEALS FAILED

X - FIXED CUTTER BITS

*BC - BROKEN CONE
BC - BOND FAILURE
BT - BROKEN TEETH/CUTTERS
BU - BALLED UP

*CC - CRACKED CONE
*CD - CONE DRAGGED
Cl - CONE INTERFERENCE
CR - CORED
CT - CHIPPED TEETH/CUTTERS
ER - EROSION
FC - FLAT CRESTED WEAR
HC - HEAT CHECKING
JD - JUNK DAMAGE
*LC - LOST CONE
LN - LOST NOZZLE
LT - LOST TEETH/CUTTERS
NR - NOT RERUNNABLE
OC - OFF-CENTER WEAR
PB - PINCHED BIT
PN - PLUGGED NOZZLE/FLOW PASSAGE
RG - ROUNDED GAUGE
RO - RING OUT
RR - RERUNNABLE
SD - SHIRTTAIL DAMAGE

NO - NO MAJOR/OTHER DULL
CHARACTERISTICS

*Show Cone Number(s) Under Location

BHA - CHANGE BOTTOMHOLE ASSEMBLY
DMF- DOWNHOLE MOTOR FAILURE
DSF - DRILL STRING FAILURE

DST - DRILL STEM TEST

DTF - DOWNHOLE TOOL FAILURE
LOG- RUN LOGS

RIG - RIG REPAIR

CM - CONDITION MUD

CP - CORE POINT

DP -DRILL PLUG

FC -FORMATION CHANGE

HP - HOLE PROBLEMS

HR - HOURS

PP -PUMP PRESSURE

PR - PENETRATION RATE

TD -TOTAL DEPTH/CSG. DEPTH
TQ -TORQUE

TW - TWIST-OFF

WC - WEATHER CONDITIONS

WO - WASHOUT - DRILL STRING

Figure 2.16- Eight factor bit wear recording (Cadtlal. 2014)

Among several possible wear mechanisms for tridniseare (Gokhale 2011):
* Wear on the gauge row inserts that exceeds weé#neomner inserts, which can

occur when drilling in soft-medium but very abrasfermations.
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» Uniform wear on all teeth of the cones

» Heavy wear on the bit shirttail, which can occudiiiling with a bent pipe that
results in very high side thrust on the bit andsemuent wear.

* More broken inserts on the gauge row than the inows; this type of wear is
observed when a bit designed for soft geologicaldiaen is applied in hard
formations.

* A broken bit lug, which results when the bit isplped and hits a ledge in the hole

* Worn out teeth on the surface of cone(s) that ted¢he bottom of the drilled hole
often due to locked cone(s)

* Broken and lost inner part of cone(s) from beafailyre

* Loss of one or more cones in the blasthole due#oibg failure

The IADC recognizes bearing failure as the domirfaifiire mode for tricone bits.
The bit must be pulled when there is a good reas@uspect bearing failure. Premature
bearing failure (before the anticipated bit endHef} can occur due to unsuitable operation
setpoints, incorrect cutting structure selectiorg axcessive axial or torsional vibrations
(Cobb et al. 2014). If the bearing failure is netetted in time, the chance of cone
detachment is high. Risks associated with leavatgached bit cones in the hole are serious
and will lead to the costly “fishing” efforts.

The lifetimes and wear mechanisms of tricone bftsrddepending on bit design and
working conditions. For example, a tricone withlsddearings will last much longer than
the open bearing type in hard formations. The deak not allow dust and rock particles

to enter the rotational structure, which exten@siidaring life significantly. In soft ground
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conditions, however, bearing type does not makesétme significant difference. Sealed
bearing tricone bits usually experience cone weherwworking in hard formations.
Continued drilling with a bit with worn cones exemrxcessive forces on the bearing

elements and ultimately results in bearing failure.

2.10 Total Drilling Cost

The ROP increases with increasing WOB and rotaltigpeed until it overloads the
bit (Fig. 2.14). Maximizing WOB and rotational spealso have negative consequences
for the operation: it will increase machine viboati machine wear and consequent
maintenance costs and reducing bit life. Vibrationthe rig also create an unpleasant and
unsafe working environment for the operator. Basedthese considerations, the total
drilling cost (TDC) is calculated using the bit tésot drilled and the rig cost/hour of
operation. Rig costs include labor, power, mainmeeaconsumables, and possibly capital
costs. Atlas Copco (2012) has published a diageawistialize the TDC versus bit life and
production (Fig. 2.17). Increasing the producti@ter decreases the bit life. At the
minimum overall drilling cost per foot, increasiong decreasing the production rate will

increase the overall costs. The following formwlahe general representation of TDC:

TDC = Drilling cost per hour (2.4)

Rate of penetration

Assuming rate of penetration%s theTDC will be stated arsi- :
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Figure 2.17- TDC versus bit life and productiorerghtlasCopco 2012)

2.11 Drilling Vibration

Vibration always exists in drilling operations. Higvibration levels can be
detrimental to the operation, causing prematurefdiitire, early failure of drill string
components, additional wear and tear to the rdtapd and hoist motor, and reduction in
the ROP. There are various sources of vibratiatilling operations. The overall vibration
on the drill string depends on the frequency, alagé, distance of the excitation source,
and the system damping (Macpherson, Mason, andnkang1993). If the excitation
frequency is close to the drill string natural fneqcy, drill string resonance will occur,
and fatigue loading will result in damage to thetsyn and catastrophic failure (Reid and

Rabia 1995). Drill string vibration comprises tansal, lateral, and axial vibration.
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2.11.1 Torsional vibration

Torsional vibration is excited by the frictionatdoie applied on the bit and possibly
drill string inside the hole. It will manifest asaelerations and decelerations in string rotary
motion, resulting in a non-uniform rotation of thé down the hole. The stick-slip
phenomenon is an extreme case of torsional vibranal is usually a concern in long drill

strings used in the oil and gas industry.

Early models to investigate the torsional behawibdrill strings used a torsional
pendulum and assumed the pipe inertia to be nbifliLin and Wang 1991). Later studies
investigated the effect of the bit-rock interactamthe stick-slip phenomenon—a jerking
motion when two objects slide against each othes$Blink, van de Wouw, and Nijmeijer
2011), but are limited by simplifications and asgtions (Ghasemloonia, Rideout, and
Butt 2015). Stick-slip vibration frequency in thelldstring is usually between 0.05 to 0.5

Hz (Aadnoy et al. 2009).

2.11.2 Lateral vibration

Lateral vibration will cause the bit and drill sigito rotate around an axis other than
the string geometrical center, causing the biepeatedly strike the hole wall. The extreme
case of lateral vibration is bit whirling or walk the bit around the hole. Whirling mostly
occurs with polycrystalline diamond compact (PD@) #its, which are broadly applied

in the oil and gas drilling industry. Lateral vibioa is usually damped along the drill pipe
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and would not be seen on the surface. Howeveriaimeractions with the hole wall, high
amounts of whirling will cause surface detectabtesibnal and axial vibration
(Christoforou and Yigit 2001). Depending on thengfirotational speed and the number of

cutters on the PDC bit, whirling ranges betweend 50 Hz (Aadnoy et al. 2009).

2.11.3 Axial vibration

Axial vibration occurs as a result of bit-rock irgetions. Bit bouncing occurs when
the WOB lifts the bit off the hole bottom and théme bit drops repeatedly. This
phenomenon is usually is associated with tricohdridling. Bit bouncing can generate an
excitation three times the tricone bit rotationa¢ed. The frequency of axial vibration is
usually 1-10 Hz. Bit bouncing can be sensed astinkace when drilling at shallow depths
(Aadnoy et al. 2009). This interaction adds a dyicgpart to the axial load and causes

fluctuations in the actual WOB (Dunayevsky, Abbassiand Judzis 1993).

Indentions formed in the rock by bit teeth are adssource of axial vibration.
Laboratory tests by Ma and Azar (1985) to deterntir@econtact condition on roller cone
bit teeth down the hole and tooth velocity and tasi showed that the relationship
between DOP and bit rotation exhibits a repeateyl shape (Fig. 2.18). A series of craters
are formed under the bit after a given number tdtrons, then the bit suddenly drops and

begins creating a new series of indentions.
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Figure 2.18- DOP versus revolutions of bit (Ma @&xar 1985)

The step heightd) is the mean depth of the craters down the halesnalculated

as (Ma and Azar 1985):

D, = ROP X n,/N (2.5)

Where

ROP:  Rate of penetration in m/min
Ny Number of rotations

N: Bit rotational speed in rpm

In a simplified model of tricone bit-rock interamtis, Sheppard and Lesage (1988)
assumed that at an instant, only one tooth frorh eaw of a cone is in contact with the
rock and the bit load is equally distributed amatigows of the cone. Their laboratory
tests measuring the torque and forces on everyofam instrumented tricone bit showed
that the rotational speed of the cones aroundeheryg axis is 1.25-1.31 times that of the

bit. Hardage (1992) used these results to defimeriadic behavior for tricone bits.
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The axial forces on the tooth rows on a triconechaim be approximated by the

following equation (Poletto and Miranda 2004):

F(t) = E, + Fy Sin Wyoy t (2.6)
Where

sz(Fmax+ Fin) / 2 (2-7)
F0=(Fmax_ Fmin)/2 (28)

wrow 1S the cone angular velocity, afthax and Frin represent the maximum and

minimum amounts of force applied on a row of the t@spectively.

In 2012, Naganawa derived an equation of motion tfizone bit vertical
displacement during the drilling from the equiliom of forces (WOB and tooth forces
interacting with rock K, ;j)) exerted on the bit rigid body. The suffjk represents thie
tooth on the row of bit conei. Assuming the bit as an elastic model with onerele@f
freedom and a spring constant K§ the WOB consists of a static weighh] and a
dynamic component (Fig. 2.19). Settifigas the equilibrium position when the dynamic

force is not applied, the equation of motion idexdaas:

Nr,i

_ Ngij
Wo— Ks(zp — 2p) — ?:121-:1 k;i Frije = 0 (2.9)

Since the tooth forces change with bit penetraiioi, realistic representation of bit

dynamics, the force needs to be formulated as @ibmof time (Naganawa 2012).
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Figure 2.19- Dynamic model of a tricone bit (Nagaa®012)

2.11.4 Other sources of vibration

Another potential source of vibration excitatiorbischattering than can occur with
drag bits and PDC tools. This phenomenon is geeetay rapid impacts of a single bit
insert on rock; therefore, it is usually low ampiie and high frequency (50-300 Hz
depending on the rotational speed and total numbigserts involved). Mass imbalance
and misalignment of the drill string are two otkeurces of vibration; they excite vibration
in the lateral direction at a frequency equal ® ibtation speed (Aadnoy et al. 2009). A
bent drill pipe will act similarly to a string witimass imbalance (Besaisow and Payne

1988).

2.12 Tricone Bit Wear Detection

Although assessing tricone bit wear condition usmgasurement while drilling

(MWD) data can benefit the mining industry, reshahas been constrained by the
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complexities of conducting a comprehensive fieltdgt One approach to study bit wear
relies on measuring energy consumption duringingiliBit wear will affect the amount of
energy required: a dull tool tooth requires monegteation force. The intention coefficient
of a dull bit is at most twice that of the new @talconer, Burgess, and Sheppard 1988),
which means the energy required is also almostlddub provide the same ROP. In this

research, the WOB, rotational speed, and bit dienveére assumed to be constant.

A second approach uses a correlation betweenlgikidbration spectra data and bit
tooth wear (Naganawa 2012). In Fig. 2.20, TO regmmessno wear, whereas T8 corresponds
to completely worn inserts. As the inserts beconeenwthe circumference of the cone
decreases. Therefore, at a constant drill strit@fiomal speed, the cone will rotate faster
to cover the same path. Hence, in the bit vibrasipectrum the frequency, peaks around

20 Hz move to around 30 Hz as the new bit teetloinedotally worn.

10 20 30 40
Normalized Frequency

Figure 2.20- Axial vibration spectra for triconedéfferent tooth wear grades in a
constant rock type (Naganawa 2012)
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Drilling vibration has also been offered as an infou the control system of a drill
rig to keep the vibration levels in an acceptaleieel by adjusting drilling parameters

(Aboujaoude 1997).

Cooper (2002) proposed detecting bit tooth weacdayparing measured drilling
performance with theoretical bit performance. lis tpproach, which requires knowledge
of geological information, a model estimates a teBcal ROP from drilling parameters
and rock strength data. The theoretical valuesdheme compared with the ROP measured

in the laboratory; any difference between the tadidates the bit wear state.

Cooper (2002) proposed a similar approach for shangth measurement, assuming
the driller has an access to rock strength data free drill log. As shown in Fig. 2.21, the
drill log estimation follows an incremental trenadnepared to the geological log
estimations. The rock strength estimated from dod)s erroneously increases due to
increasing wear on the bit teeth. Cooper’s resefnmin 1987 is based on laboratory
experiments, whereas his more recent work is basedal lithological data and synthetic
drilling data. The author emphasizes that precssienation of ROP based on rock type—
or vice versa—is very challenging in practice beseaaf the large number of parameters

involved (Cooper 1987; Cooper 2002).
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Figure 2.21- Rock strength from geological logs dritl logs versus depth
(Cooper 2002)

Sheppard and Lesage (1988) measured the loaddistn between the rows of new
and half-worn bits (TO and T3 states) in controledgbratory tests and concluded that the
load distribution is sensitive to tooth wear. Aaldibrce of 8 kN was distributed between
the outer and inner rows as 6 and 2 kN, respegtidel the TO bit and 5 and 3 kN,
respectively, for the T3 bit (i.e. for TO: outerigr = 3 and for T3: outer/inner = 1.66).
Therefore, the outer/inner row force distributiatio decreased as the bit wear increased
to the T3 level. Applying these results to actyagmtions is limited by the fact that tooth

wear is not uniform within the same row or amonffedent rows.

Other research has suggested a method for triagbperformance evaluation using
MWD data. For example, the degradation of producaod the initial and final ROP

(before the bit change) was studied in an operatimge in Sweden by (Ghosh,
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Schunnesson, and Kumar 2016). Production degradatas assumed to be caused by
wear progress on the bit. The rock strength vamatiin the mine were assumed to be
negligible.

Researchers have also implemented image procdssimgques for tricone bit wear
detection. Images of the bit taken at specific timbervals are processed and image features
are extracted for analysis (Saeidi et al. 2014)adwvantage to this approach is that it is not
influenced by geological conditions or working paeters. Drawbacks related to vision-

based wear monitoring methods based on image ahaigtude:

e aportion of each cone is invisible in each image
» frequent bit cleaning is required before each imagaptured
e most importantly,

0 bit bearings cannot be assessed

o real-time monitoring while drilling is not feasible

2.13 Atrtificial Intelligence in Mining

Application of artificial intelligence (Al) approhes has become beneficial to
address real-world problems including regressidmstering, and classification. In the
mining industry, researchers are working to implemAl models in a variety of
applications to increase the safety and efficieatyperations. Putting an effective Al
model into practice plays a crucial role in autanraproblems. For example, Dadhich et

al. (2019) presented a supervised machine leamgmyithm for automation of loaders
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bucket filling. They used an artificial neural netlk (ANN) model that was trained by

data generated from an expert operator and testedaified the model in field trials.

Siami-Irdemoosa and Dindarloo (2015) constructéekdforward backpropagation
neural network to predict fuel consumption by mihenp trucks, in an attempt to assess
energy costs and greenhouse gas generation. Deserfigatures in the model included
payload, loading time, travel time, and idle tinfdhe model was able to predict fuel

efficiency with only 10% error.

In the context of drilling, Fattahi and Bazdar (ZD®valuated the performance of
ANN models to determine the rock drilling rate ind®ock properties were the model
inputs, and data from the literature were useddio and test the models. The performance
of different ANN architectures in predicting theilldbility rate index was evaluated.
However, the dataset presented in this work dodsimdude controllable drilling

parameters (e.qg., thrust force, rotational speed)ét condition was not analyzed.

ANN models have also been developed to predicdtiieng ROP in the oilfield
environment. For example, Ashrafi et al. (2019)exmikd 1,000 data points from the field
as input features, including the operational patarseof WOB and bit rotational speed.
Although the researchers acknowledged the effectibftype on the results, bit
characteristics were not among the input vectdeatures. It needs to be emphasized that
bit wear condition is a significant parameter iillicig performance and needs to be taken

into account for an accurate and practical anabyfsise ROP.
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Chapter 3 — Ground Penetrating Radar

3.1 Ground Penetrating Radar Concept

A ground penetrating radar (GPR) system consistatdkast one transmission
antenna that generates high-frequency electromagmates into the subsurface. Changes
in the electrical properties of ground materialiiem partial reflection of the signal. The
reflected signal is captured by the GPR receivégrara; these reflection data are stored
for post-processing. Wave propagation is largelscdbed by velocity and attenuation,
which correspond to the material dielectric pernwitit and electrical conductivity,

respectively (Davis and Annan 1989; Utsi 2017).

3.2 Ground Penetration Radar Tests

In the initial phases of the current bit wear monitg project, the need for geological
data led to investigating the applicability of GR& extract subsurface geological
information. This chapter presents the resultseoeml GPR surveys conducted to map
stratification and fractures at a Lafarge limestquarry in Quebec and to detect coal seams
at the Teck Fording River coal mine in southeadBzitish Columbia, which produces coal
for steel making. The annual production capacigtieut 8.5 million tonnes of clean coal

(TeckResources 2018).

The motivation behind this study is to support tih@vement of the surface mining
industry towards automation and to optimize exglora mine planning, and reducing

extraction costs by investigating the applicatibG&R for geological mapping. Since the
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commercialization of GPR in the 1970s, significdetelopments in radar antenna and
component technology, analysis software, and coatiouial power have extended the
application of GPR as an exploration method in seveelds, ranging from archaeology
to structural condition monitoring. In the curreptoject, four antennas ranging in
frequency from 25 to 600 MHz were tested to ingzge the tradeoff between depth of
penetration (DOP) and image resolution in the mengironment (Rafezi, Novo, and

Hassani 2015).

3.3 Framework and Instruments

Several antenna configurations and frequencies iwglemented in the fieldwork.

The radar equipment was provided by IDS North Aogeri

3.3.1 Low-frequency systems: 25 and 80 MHz

The low-frequency GPR systems consist of unshiedaieinnas that are theoretically
capable of achieving the greatest DOP (Figs. 3dlL3aR). Data acquisition methodology
involved collection of two-dimensional (2D) profd@n the bench surface and a handheld

GPS was synchronized with the GPR systems fortzd#dioning.
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Figure 3.2- The 80 MHz GPR antenna

3.3.2 Dual frequency system: Hi-MOD system (200 and 600 Niz)

During the evolution of the concept of GPR, theaidd# multi-frequency, multi-
channel systems was introduced by the GPR manuéasiuThe system used for this

project is a dual-frequency (200-600 MHz) GPR (Bi8). Collection of subsurface data
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at two frequencies simultaneously saves time duield acquisition and provides a good
compromise between DOP and resolution. Both 2Dthrek-dimensional (3D) data are
acquired. The 3D GPR data acquisition was baseda wery dense grid of parallel lines

spaced 10 cm apart on a 20x10 m area of the bench.

Figure 3.3- The dual-frequency antenna

3.3.3  Multi-channel array system

The multi-antenna system was equipped with a 1éwolaarray configuration at a
frequency of 200 MHz (Fig. 3.4). The advantagearo&rray of antennas include:

High Quality: the close spacing of the antennas enable an &ecaral

homogeneous 3D reconstruction of the subsurfacgema

High Productivity: using an array of multiple antennas combined with

precise positioning system allows accurate andkggubsurface mapping over

large areas.
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Safety: the array can be towed by vehicles, reducing hiszduring field

surveys.

Figure 3.4- The multi-channel array system

3.4 Data Analysis

The data from all the GPR systems collected dutegsurveys were transferred to
the laboratory for post-processing. GRED HD sofeMdDS GeoRadar) was used for 2D
analysis, and GPR-SLICE® software (Hunter Geoplsysiwas employed for image

processing and reconstruction of 3D volumes.
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3.5 Survey Results

3.5.1 Limestone quarry

The limestone quarry was selected to perform preiny surveys to examine the
performance of GPR equipment for mining applicatiohimestone is an appropriate
medium for GPR signal penetration. For the singlannel GPR system, the variation in

layers was recognized, but the DOP did not excemad Big. 3.5).

Figure 3.5- Left: 3D subsurface map generated 20 MHz antenna, Right: 3D
subsurface image with layer boundaries

The multi-channel array system was also testedamtarry at 200 MHz. The array
system provided similar data quality in a shorteguasition time. The same DOP

(approximately 5 m) was achieved (Fig. 3.6).
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Figure 3.6- 3D subsurface map generated with 20@ Eittenna array

3.5.2 Coal mine

The main objective of GPR application in the coaenwas to determine and map
the location and orientation of major coal seames tive benches. Among the GPR systems
tested, the 200 MHz antenna provided the bestugsolpenetration tradeoff. Because of
different physical properties of the coal mediuhe DOP was limited to 4 m, about 1 m
less than the depth achieved in the limestone guafter analysis of several GPR profiles,
the three major coal seems in the mine bench wlergified and the width and orientation

of each coal seam were determined (Fig. 3.7).

56



Figure 3.7- 3D representation of three main coalrse(in blue) using the single
channel antenna at 200 MHz frequency

3.6 Conclusions

This preliminary study investigated the applicat@inGPR systems for geological
identification in the mine environment. In survay@ng four antennas with frequencies
ranging from 25 to 600 MHz at a limestone quarrg eoal mine in Canada, the 200 MHz
antenna provided the best tradeoff between imag@uton and DOP. In addition, the
small size of this antenna makes it maneuveralchwfacilitates data collection in the
mine environment. The 25 and 80 MHz antennas dicpravide sufficient resolution to
map limestone strata and coal seams. GPR is a girgniechnology for real-time
geological investigation and 3D near-surface mappinmining environments. Possible
limitations are soil/rock physical properties andter saturation levels and salinity that
negatively affect the DOP. GPR surveys also requglly trained personnel for fieldwork

and data post-processing.
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Chapter 4 — Drilling Fieldwork

4.1 Bit Condition Monitoring System

The drill bit condition monitoring (CM) system casis of accelerometers placed on
the drill mast, a data acquisition unit to pre-msxand digitize the analog signal, a signal
processing unit to do signal analysis and featyiaetion, and an artificial neural network

(ANN) model for bit condition classification (Fig.1).

Vibration Data Signal

»‘ Acquisition »‘ Processing»' ANN Model

Motor electric current

Figure 4.1- Bit CM block diagram

The project was supported by several companieshenit CM approach was aimed
to be practical and beneficial for industry implentaion. Field data analysis was
necessary to understand the effect of bit weahemteasurement while drilling (MWD)
signals, including vibration excitations. The readfld, full-scale data were also essential
to design, train, and test the ANN model for bitaweondition classification in a variety

of geological formations.

4.2 Preliminary fieldwork

An initial feasibility study was conducted at theo8m Lake iron ore mine, located

approximately 10 km north of the Mont Wright ironreomine in Quebec, operated by
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ArcelorMittal Mines Canada. The bench dedicatethtofeasibility field tests at Bloom

Lake Mine had relatively uniform geology.

4.2.1 Drill rig

A Bucyrus 49 HR rig (Fig. 4.2) was equipped witbATAQ Model DI-718Bx-S
unit installed inside the control cabinet (Fig. }4.Bhis unit has 16 signal conditioned

analog inputs and a sampling frequency up to 14H0® record the digitized signal on a

USB memory card.

Figure 4.2- The Bucyrus 49 HR drill rig at BloomKeaMine, Quebec
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Figure 4.3- DATAQ Model DI-718Bx-S unit installedside the control cabinet of
a Bucyrus 49 HR rig

The following eight signals were recorded using@D#erAQ unit:

Horizontal vibration

Vertical vibration

Hoist motor current

Rotary motor current

Pipe head encoder

Bailing air pressure (set-point)

Hoist voltage (set-point)

© N o o0k~ wDdh PR

Rotary voltage (set-point)

The first two signals are vibration signals frore tiriginal equipment manufacturer
(OEM) biaxial accelerometer installed at approxeha®/3 the drill mast height. The last
three signals are drilling set-points that are lgwmntrolled by the operator. The hoist
voltage request and rotary voltage request deterntie weight on bit (WOB) and

rotational speed, respectively.
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4.2.2 Standalone sensors

In addition to the OEM rig accelerometer, threendtdone sensor packages from
MIDE Engineering Solutions were used to cover aables frequency range at different
spots on the rig (Fig. 4.4). The sensors were glacethe drill pipe, drill mast, and rig
chassis. Each unit contains a triaxial piezoelectccelerometer, embedded data
acquisition, a battery, and memory. The embeddé&datauisition can sample the analog
signal between 100 Hz and 20 kHz per channel. Aavadythe vibration signals from
several spots facilitates comparing the resultsfemlihg the most suitable spots to collect

signals for bit CM.

Figure 4.4- Standalone Sensor package

A sensor with an aluminum enclosure was used toigeoa wider range of flat
frequency responses compared to the polycarbogpte The sensor frequency range

covers up to 2,000 Hz in the X, Y, and Z axes (Bi$). Computer Numerical Control
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machined mountings were designed in SolidWorksaso# to accommodate sensors on
the desired spots on the rig (Fig. 4.6). Anothersee package was installed on the drill

mast. The vibration on the rig chassis was alscsored (Fig 4.7).

60 T T ==Y T —T—TTTTT41d8
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Figure 4.5- Frequency responses of the piezoetes#nisor on three axes (Mide
2017)

Figure 4.6- Sensor mounting for the drill pipe. t.&olidWorks design. Right: After
installation on the pipe
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Figure 4.7- Left: Mast sensor, Right: Chassis senso

4.2.3 X-ray imaging

To examine bit X-ray images, a portable, batteryyged XR200 X-ray generator
was dedicated (Fig. 4.8). This unit is suitableligiht industrial applications. A cart was
designed to carry the X-ray system (Fig. 4.9). Mbezontal angle of the X-ray setup was

equal to the bit journal angle, yielding an imagegendicular to the bit cone.
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Figure 4.9- X-ray cart design

Each image covered approximately 50% of the gaageteeth of the target cone
(Fig. 4.10). Two 120° rotations were required twarothe three cones. The heights of the
captured teeth are measurable and any missing bodtie covered range is detectable.

Because of the nature of X-ray imaging, the preserianud or dirt on the bit does not
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affect the results. However, this method covery ¢hé gauge row teeth and does not

provide any information about bearing condition.

Figure 4.10- X-ray image of milled tooth tricone bi

4.2.4 Bits

MWD was conducted while drilling with tricone bis three wear states: no wear
(new), half-worn, and worn (close to the failuréjvo new, one half-worn, and one worn

bit were provided by Rotacan. One worn bit fromé&favas also tested (Fig. 4.11).

Figure 4.11- Tricone bits used for the field test
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4.2.5 Experimental design

Two WOBs and rotational speeds were considereddoh of the three wear grades
(Table 4.1). Five blastholes were drilled for eadmnfiguration and bit to a depth of

approximately 6 m or until bit failure in the casfethe worn bits (Table 4.2).

Table 4.1- Drilling configurations for each of ttieee wear grades at the Bloom
Lake Mine McGill test bench

Table 4.2- Number of drill holes for each drillingnfiguration tested with three bit
wear states

Half-worn

10 5 10
10 5 10
10 5 10
10 5 10
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Bit wear grade was assessed after each hole witsddiThe MWD data were
collected and post-processed to find trends anenpiat correlations with bit wear state.
Based on promising results from the feasibilitydstwill be discussed in Chapter 5), a

comprehensive field study at an operating minevgés planned.

4.3 Comprehensive Fieldwork

Some MWD signals during the preliminary field datelysis were determined to be
sensitive to bit wear. Certain statistical featuned frequency bands followed a meaningful
trend as wear increased and approached the pdaitwk. Therefore, comprehensive full-
scale fieldwork was planned to further analyze Md#da at an operational mine site, with
all accompanying challenges, including geologicaiation. The test was designed to not
impose significant interruption or downtime to thygerational mine. The study site was
the Teck Highland Valley Copper operations—thedatgpen-pit copper mine in Canada

located in south-central British Columbia, approaiety 17 km west of Logan Lake.

4.3.1 Equipment and instrumentation

A Bucyrus 49 HR drill rig (see section 4.21) at thenex pit was dedicated to the
project (Fig. 4.12). The rig was equipped with tBATAQ Model DI-718Bx-S data

acquisition units (Fig. 4.13) to collect the follmg MWD signals:

. Rotary motor voltage
. Rotary motor current
. Hoist motor voltage
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. Hoist motor current

. Pipe head encoder

. Bailing air pressure

. Rig vertical accelerometer

. Rig horizontal accelerometer
. Lower mast accelerometer X
. Lower mast accelerometer Y
. Lower mast accelerometer Z
. Higher mast accelerometer X
. Higher mast accelerometer Y
. Higher mast accelerometer Z

The last six signals were acquired using two hedwty-triaxial accelerometers; X and Y
are the lateral vibration and Z is the axial vilmat Sensor model 604B31 from PCB
Piezotronics was used for the tests, which covémscquency range of 0.5-5,000 Hz with
a sensitivity of 100 mV/g. One sensor was mountethe base of the drill mast (Fig. 4.14)
and the other one was mounted at 2/3 of the maghth&ertified shielded cables were
used to ensure signal quality during transfer alingmast height. Sensors were covered

with a metal case for impact protection (Fig. 4.14)
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Figure 4.14- Left: Accelerometer on the drill mhase, Right: Accelerometer on
the mast base with the protection
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Dill bits were provided by Rotacan and Sandvik. @ameters included ' for
trimming and buffering (T and B) holes and 12Y4"fbitproduction patterns. Rotacan bits
were of the open air-cooled bearing type, wherkasSandvik bits were premium rotary
bits equipped with sealed bearings. As noted iti@e2.9, the latter last much longer when
drilling in hard formations, but bearing type makétle difference in soft ground
conditions. Also, sealed bearing tricone bits uguatperience cone wear when working
in hard formations. Continuing the operation withiawith worn cones exerts excessive

forces to the bearing elements and results in hgaailure eventually.

4.3.2 Drilling operations

Normal operation of the Bucyrus 49 HR drill on se¥gatterns during a period of
over two months yielded more than 16,600 m of hlaslss and drilling signals
corresponding to the entire life cycle of five tme bits (see Table 4.2). Working at various
patterns on different benches provided drillinggdata wide variety of working conditions
and geology formations. Bit wear conditions cormesping to the MWD signals were

visually assessed and recorded for data labeling.

The first bit in operation was a 12v4" Sandvik sdddearing tricone bit (Fig. 4.15).
It drilled a total length of 7,158 m and failedeafl57.9 hours of operation. In the last few
shifts of operation before the failure, the heed agauge inserts were missing and

eventually bearing failure occurred on all threaes
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Figure 4.15- Sandvik sealed-bearing tricone bitaitesd on drill pipe

The second Sandvik bit was a T and B bit with angiter of 1%". It drilled a total
of 3,435 m in 76.6 hours of operation. It begannigsnserts from the center row of the
cones (Fig. 4.16). During the subsequent two shiftsbit bearings failed catastrophically,

losing the three cones (Fig. 4.17).

Figure 4.16- Sandvik T and B it with missing centexs
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Figure 4.17- Failed tricone bit with three missounes

Three 10%" Rotacan bits were tested. The first drilled 1,8#during a total working
time of 56 hours. It experienced failure of thdeolbnd ball bearings in one cone (Fig.
4.18). The second drilled 1,726 m during a totatkiveg time of 47.7 hours. It ultimately
ended up with loose bearings on all three conesvascpulled (Fig. 4.19). The third drilled
2,805 m during 68 hours of operation. It maintaimeldealthy condition until two shifts
before failure, when it started losing inserts ba gauge row. After more than 80% of

gauge row inserts were gone, bearing failures eedwn two cones (Fig. 4.20).
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Figure 4.19- Loose bearings with worn rolling elerse
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Figure 4.20- Tricone bit with two failed bearingedamissing gauge row inserts

Overall, the dominant failure mode was bearingufaj even when other wear
mechanisms were happening, the bit will usually epdvith bearing failure if it was not
pulled by the operator. Over-usage of a bit wilule in direct production losses including
lower rates of penetration, decreased hole fingslpirecision, and long-term costs for the
operation (i.e., maintenance and downtimes). Furibee, catastrophic failure during the
operation resulted in detachment of one or moresdrom the bit body at the hole. The
detached parts needed to be fished from the halerttnue operations, otherwise it would
have damaged the new bit drilling in the same hadeyell as the rock crusher equipment

in the next stages of production.

4.4 Proposed Tricone Bit Wear Grading Method

Based on the extensive fieldwork, studying the atmes experiences and inspection
of worn tricone bits in scrap yards at several nsites, a novel qualitative grading method

for tricone bit wear with a focus on bit rollingeghents is introduced as an alternative to
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the TO to T8 method. The classification methoddbgi the bit lifespan into five stages as

follows:

Class 1: New bit

Class 2: Appearance of slight wear on tooth tips and catges

Class 3: Bearing(s) beginning to loosen because of damageéet roller bearing;

progressive tooth wear and missing teeth

Class4: Deterioration stage: Loose bearings because afah®eged outer roller and

ball bearing; accelerated bearing and tooth wear

Class 5: Failure stage: Excessive bearing looseness beodgsgere damage to the

ball bearing; bit change is required to avoid datgic failure

The field data are labeled according to this grgdimategy. These labels are also used as

output of the artificial intelligence classifier ahel.
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Chapter 5 — Drilling Signal Analysis and Results

5.1 MWD Analysis

The goal of this study component was to deternfiagelationship existed between
drilling signal behavior and bit wear by analyzitige vast measurement while drilling
(MWD) dataset from two mines. Labeled data obtaiinech frequent visual inspection of
bit wear grade during the operation (Chapter 4) wgsl to correlate signal trends with bit
changes over the time. To achieve a deeper unddmstpof the signals and obtain signal
features to support the development of the ardlficitelligence model (Chapter 6), time
domain statistical analysis, frequency spectruntyaiga and the time-frequency approach
were applied to the signals (e.g., Fig. 5.1). Sgmeere exported to MATLAB software

for analysis.

Figure 5.1- Time domain sample of MWD signals reearusing a DATAQ unit in
WinDagq software
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5.2 Statistical Analysis of Signals

MWD signals were preliminarily studied in the tidemain. To analyze MWD data
as random signals statistically, moments of theloamvariable were extracted, and their

trends were assessed during the bit lifespan.

5.2.1 Probability distributions for random discrete variables

The probability distribution of X as a random deger signal is characterized by
determining the probabilities that random varialle x; for everyx;. The probability
distribution of a random discrete variable X isaésed byP[X = x;] and satisfies equation

5.1 (Shin and Hammond 2008):

LiPX=x]=1 (5.1)

By definingF(x) = P [X < x], the probability density functiop(x) is defined by

Equation 5.2:

s P[x<X=sx+6x] _ dF(x)
p(x) - élglcr—r>10 S5x T dx

(5.2)

5.2.2 Moments of a random signal

To extract numerical parameters from the probatilénsity function of the random

signal, a set of datas( X, . . ., xn ) are collected frolN measurements of signal X. These
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numerical features, known as moments of a randamble, are introduced in equations

5.3 to 5.7 (Shin and Hammond 2008).

The first moment or the mean value is:

%= 3 Inean (5.3)

The second moment about the mean measures thencara the dispersion and is

calculated using:

1 _
St = 77 Ln=1(n — %)? (5.4)

The third moment about the mean is to quantifyathyenmetry of a probability distribution,

and is called the skewness. It is calculated by:

Skew = % N (xy—%)3/s3 (5.5)

The fourth moment about the mean measures the @lefiftattening known as Kurtosis

and is calculated using:

Kurt = (% N (e — 9?)4/5,‘?) -3 (5.6)

The root mean square (RMS) value of a set of datéprs calculated as the square root of

the arithmetic mean of the squares of the origiiash, given in equation 5.7.
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1 1/2
RMS = (5 Zh-1x2)) (5.7)

5.3 Rate of Penetration Analysis

The effect of weight on bit (WOB) and rotationaksp on the rate of penetration
(ROP) was evaluated based on the test configusatimed and data collected in the
preliminary field program (section 4.2). The ROBnuis presented correspond to a new
12%4" Rotacan tricone bit drilling on a relativelgrhogeneous bench. Therefore, the ROP
variation is assumed to wholly result from WOB aatition speed. By having healthy bit
nozzles and enough air bailing pressure and voluhe perfect cleaning condition is

assumed to be valid.

As expected, increasing the WOB and rotation speaeased the ROP (Fig. 5.2).
Increasing the WOB from 310 to 410 kN at 60 rpmréased the mean ROP by 32%. By
comparison, increasing the rotational speed fronto680 rpm at 310 kN increased the

mean ROP by < 15%.
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Figure 5.2- ROP at different setpoints

Equation (5.8) is derived to calculate the ROP (im)rbased on the WOB (kN) and
rotational speed (N, rpm). The relationship is tgldtin Fig. 5.3 and fits the data with a
Sum of Squared Error equal to 0.00394 and R-squagedl to 0.9618. It illustrates the
stronger influence of WOB on the ROP compared t@tianal speed. It must be
emphasized that, due to the physical limitationghef drilling operation, the proposed
model is valid only in the given operating condise including the setpoint ranges,

geology, and bit condition.

ROP =-0.1299 + 0.0022xWOB + 0.0008127xN (5.8)
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Figure 5.3- ROP as a function of WOB and rotatispeded

Preliminary field program data under controlled king conditions showed that the
mean ROP differed little (< 4%) between drillinghvhew versus half-worn bits; however,

the mean ROP was 22% lower for the worn bit thamiw bit (Fig. 5.4).
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Figure 5.4- Measured ROP at maximum setpoint vaM&3B = 420 kN, N = 80
rpm) for new (Class 1), half-worn (Class 3), andnlass 5) bits assuming
homogeneous geology in the bench
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In a routine mining operation, ROP monitoring i ao effective way to monitor bit
wear in practice. Figs. 5.5 — 5.7 illustrate exaspif the ROP trends corresponding to the
lifecycles of three tricone bits in the compreheadieldwork. The ROP is dominated by

the geological condition variation and bit weargress is barely recognizable by assessing

the ROP drop.
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Figure 5.5- The ROP trend during the lifecycleiftfRotacan bit
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Figure 5.7- The ROP trend during the lifecyclelofd Rotacan bit
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5.4 Motor Electric Current Analysis

Analysis of the preliminary field data on electagrrent signals of rotary and hoist
motors found that the rotary motor current was is@sg0 bit wear in homogeneous rock
conditions. As bit wear increased, the currentaigoattered and fluctuated compared to

the signal generated when drilling with a healthy(fBig. 5.8).
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Figure 5.8- Time domain signal of the rotary matorrent signal for a new (A)
and a half-worn bit (B)

A similar pattern with a higher intensity was oh&at for the progressively wearing
bit. To quantify this behavior, the trend in sigstdtistical features was analyzed. Among
these features, the RMS and variance of the ratasior current signal demonstrated

meaningful trends during the bit lifespan (Fig® and 5.10, respectively). The RMS
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showed an incremental trend in the initial weagea(Classes 1-3) and in the bearing
wear failure zone (Class 5), a significant jumpRNS was observed (Fig. 5.9). The
defective bearings affected by the progressive weguire more torque to maintain a
stationary rotational speeBrogressive wear in the rolling elements (Classasdl 5)
resulted in an incremental trend in the signalaraze (Fig. 5.10). These trends in rotary
motor current signal features are potential tootsirhplementation in a tricone bit wear

monitoring system.
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Figure 5.9- Rotary motor current RMS for new (Classhalf-worn (Class 3), and
worn (Class 5) bits
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Figure 5.10- Rotary motor current variance forttimee bit classes

Equation 5.9 explains the relationship betweentetecurrent and torque in the
electric rotary motor: more current is requiredraintain a constant rotational speed at a

higher torque.

T = 30IVE;/mN (5.9
Where

T: Torque in Newton meters (N.m)

I: Current in amperes (A)

V. Applied voltage in volts (V)

Ef: Motor efficiency

N: Rotational speed (rpm)
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5.5 Vibration Analysis

Vibration data collected from all the acceleromet®ere analyzed in the frequency
spectrum to assess the effects of bit conditionfrequency components in different
working conditions. Fast Fourier transform (FFTsviast applied to transform the signals
from the time to frequency domain to provide inssgtegarding the signs of bit wear and
failure. In the next phase, wavelet packet decomtipodWPD) was applied to generate a
time-frequency representation of the vibration aiggnd focus on the desired frequency

bands for feature extraction.

Two accelerometers were placed at the base antie?gBt of the mast to record
vibrations (section 4.3). The correlation betwedoration statistical features extracted
from these sensors was examined with Pearson aborebnalysis. All statistical moments
from both sensors were positively correlated (Big.1). However, only the RMS and

standard deviation (STD) were strongly correlated 0.76,p < 0.02).
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Peak 0.07002 0.01286

RMS .76 0.76] 0.04629 -0.001216 <0.06002

STD 0.7 0.76 0.04629 0.001218 0.06002

Skewness 0.006905 0.02669 0.02669 0.03481 0.02292 002202

Upper mast sensor

Kurtosis 0.07746 52 A 0.3109

Crest Factor -0.1029

Peak RMS STD Skewness Kurtosis Crest Factor
Lower mast sensor

Figure 5.11- Pearson correlation coefficients fbration statistical features

5.5.1 Dirill pipe natural frequency

The drill string—including the pipe(s) and the tme bit 3D model—was created in
SolidWorks software. The model was imported to ANSSdr modal analysis (Fig. 5.12).
In the study, the drill strings consisted of twpgs. However, shorter and longer strings
were also analyzed to determine their natural ®eqy. Wachel, Morton, and Atkins
(1990) proposed equation 5.10 to calculate thedmehtal frequencies of pipes assuming

different boundary conditions.
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Figure 5.12- Drill string 3D model imported to ANSY

A gEI
f;1 T oom mgL*
Where
fo: Vibration frequency mode, Hz
A Frequency factor, dimensionless
g: Acceleration of gravity, 9.8 ni/s
E Modulus of elasticity, Pa
I: Polar moment of inertia, ‘m
Mo: Weight per unit length, kg/m

Length, m

(5.10)

The first and second frequency modes of axial tidanain three types of boundary

89

conditions for a string consisting of one, two, dhdke pipes are presented in Tables 5.1

and 5.2, respectively. As expected from equatid®,5drill string length significantly



influenced the string fundamental frequencies.a&drilling depth of approximately 15 m,
two drill pipes are required. The rotational spesthe is 60 rpm to 120 rpm which is equal
to 1-2 Hz. Therefore, the axial vibration fundana¢fitequencies of the drill string in all

the three boundary conditions are well above the potation frequency.

Table 5.1- First fundamental frequency (Hz) folldtiring consisting of one, two, and
three pipes

104.09 29.57 13.74

71.56 20.33 9.44

16.36 4.65 2.16

Table 5.2- Second fundamental frequency (Hz) fdr string consisting of one, two, and
three pipes

286.72 81.44 37.84
232.35 66.00 30.66
104.09 29.57 13.74

5.5.2  Dirilling vibration frequency spectrum analysis

Analysis of vibration signals collected during tifespans of bits in the frequency
domain using FFT showed that the amplitudes of setgriency bands were affected by

bit wear condition changes. These vibration exoitet occurred as bit wear approached
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the worn condition (or potential catastrophic fegl) regardless of changes in geology and
working conditions. In addition, low-frequency vébion was sensitive to geology and
working condition.

Vibration signals in the X, Y (lateral), and Z (abi directions from all
accelerometers in different spots were analyz#udifrequency domain to locate the signal
frequency bands sensitive to bit wear. Results fifmerpreliminary fieldwork (section 4.2)
showed that tooth wear, which is geometrical chamgethe teeth and tooth breakage result
in a non-uniform distribution of cutting forces etezl on each cone. This phenomenon
unbalances the rotation and excites the 1x rprharakial vibration frequency spectrum.
Therefore, the wear progresses to Class 2 andasesethis frequency component. This
conclusion, however, is based on a uniform corfacte distribution, which cannot be
generalized to geological conditions in blasthaldinlg. Therefore, application of this
frequency component to wear detection is not prakti

Based on the comprehensive field data collectealvariety of geology conditions
(section 4.3), the axial vibration 3x rpm frequemp@ak or tricone bit bouncing frequency
was determined to be the formation drillability icator. At a constant bit wear level and
the same drilling setpoints (WOB and rpm), a desgaa the ROP resulted from hitting
harder rock formations. It was observed that agllin harder formations would excite the

3x rpm component in the axial vibration spectrum.

A series of harmonics of the cone rotational spg&S) was found in the axial
vibration frequency as the bit reached Class 3 wHagse peaks start from 2x CRS and
were detectable up to approximately 70 Hz. In aoldjtthe frequency band ranging from

40 to 60 Hz was strongly excited by a worn bittgtgrat Class 3 (Fig. 5.13 top). This
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frequency range followed an incremental trend a&s kit reached Class 4 wear and

increased up to 300% when the bit reached Classab (#ig. 5.13 bottom).

0 R “ o 20 ) 3() ) 40 50 60 70
Frequency (Hz)

0 10 20 30 40 50 60 70
Frequency (Hz)

Figure 5.13- Top: Bit with worn bearings (Class 3),
Bottom: Worn bearings before failure (Class 5)

5.5.3 Tricone bit vibration frequencies

As discussed in section 2.5, bearings comprisectim@ection between cones and
lugs in tricone bits (Fig. 5.14). Each bearing hagjue fundamental frequencies based on
its design, geometry, and speed of operation. THespiencies are calculated using

equations 5.11 to 5.14 (Graney and Starry 2012):
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NBR (

BPFI = “2% X F x 1+ixcose)

Pg

BPFO = YR « F x (1—ix cose)
2 P

d

FTF =

TR

X (1—P%>< cos@)

— Pa _(5B 2
BSF = 2B><F>< (1 (decose) )

Where

BPFI = Ball/roller pass frequency of inner race YHz

NBR = Number of balls / roller

F = Rotational speed difference between outer andrirace (Hz)

B = Ball diameter (mm)
Pq = Pitch diameter (mm)

6 = Bearing contact angle

BPFO = Ball/roller pass frequency of outer race)(Hz
FTF = Fundamental train frequency (Hz)

BSF = Ball / roller spin frequency (Hz)
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. Inner roller bearing
Outer roller bearing

Ball bearing

Figure 5.14- Bit 3D model, one third section shayihe outer and roller bearing
and ball bearing

During the drilling operation, as a bit reachessSI& wear, damage occurs to the
cone and lug edges. Therefore, the outer racewtheajuter roller bearings on each cone
is initially prone to damage. Field data analysievgs that in a Class 3 bit, due to damage
to the outer race on the outer roller bearing,themonics of BPFO of the outer roller
bearing are excited and the 5x harmonic can bealgleansed on the drill mast. This

frequency component is the named outer roller hgdsilure frequency (ORBF).

As the operation continues, the loose bearings mgher clearance allow dust and
tiny rock chips to penetrate the bearings mechartsman tricone bits with sealed bearings
experience sealing breakage and are not safe femmng deterioration. As the fault
reaches the middle ball bearing in a Class 4li@tharmonics of BPFO of the ball bearing
are excited and the 5x harmonic is detectable emthst; this frequency is named the

middle ball bearing failure frequency (MBBF). Exse® wear on a ball bearing leads to
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Class 5 wear. Failure of the middle ball bearinj kesult in bit catastrophic failure and

possibly detachment of the cone.

Equations 5.15 and 5.16 are proposed to calcuiatne bit failure frequencies.

ORBF = 32 x N x CRSR x (1— = x cosf ) (5.15)
24 PRB

MBBF = >2 x N x CRSR x (1— = x cosf ) (5.16)
24 PBB

Where

ORBF: Outer roller bearing failure frequency (Hz)
NR: Number of rollers

N: Bit rotational speed (rpm)

CRSR: Cone to bit rotational speed ratio

R: Roller diameter (mm)

PRB: Roller bearing pitch diameter (mm)

o Bearing contact angle

MBBF: Middle ball bearing failure frequency (Hz)
NB: Number of balls

B: Ball diameter (mm)

PBB: Ball bearing pitch diameter (mm)

Failure frequencies of a class 5 bit at rotatiepaled of 60 rpm are illustrated in Fig.

5.15.
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2x CRS harmonics

10 20 30 40 50 60 70
Frequency (Hz)

Figure 5.15- Class 5 bit vibration frequency spgatiat 60 rpm. MBBF is the
middle ball bearing failure frequency and ORBFis ball/roller pass frequency of the
outer race

on

According to equations 5.15 and 5.16, bit desigapaters have a minor effect on
the fault frequencies; scaling the size of thebimponents (e.g., balls or rollers) and pitch

diameter does not shift the failure frequencies.

As discussed in Chapter 2, depending on the bingéacal design, the CRSR is
1.25-1.31, which is equivalent to a maximum po&ri®o growth in the frequency value.
The most influential parameter on bit fault fregcies is bit rotational speed, which can
range from 50 to 150 rpm in soft formations likkéssone and 40 to 80 rpm for extremely
hard formations like hematite and quartzite. Ircpce, the most commonly used rotational
speed range is 60-90 rpm (AtlasCopco 2012). Takioth rpm and CRSR ranges into
consideration, tricone failure frequencies rangemfr4d5 to 77 Hz. Fig. 5.16 shows the
growing trend of the bit failure frequencies basadhe bit rotational speed at two extreme

values of CRSR based on the bit design at a fieathct angle equal to 30°.
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Figure 5.16- Failure frequencies trend based orobational speed and CRSR

Because of complex loading conditions in bearirrgsurate measurement of the
contact angle is not feasible. However, some theateapproaches have been developed
to study the contact mechanism. The relationshtpvdsen contact angle and parameters
including axial force, rotational speed, and foaticoefficient in the bearing for various

applications has been a topic of interest for nesess (Wang et al. 2017).

To address the uncertainty related to contact atigdeentire range of 5° to 45° was
considered in the tricone bit bearing failure asalyFig. 5.17 shows the effects of contact
angle variation at its extreme limits on bit fadurequencies. The ORBF and MBBF are
affected by less than 7% and 2%, respectively, equently, the failure frequency range

does not exceed 54 and 60 Hz, respectively.
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Figure 5.17- Effect of bearing contact angle on GR#d MBBF at 70 rpm
rotational speed and a CRSR of 1.3

5.5.4 Wavelet packet decomposition (time-frequency analys)

Although FFT is a powerful tool to investigate frequency spectrum of stationary
signals, non-stationary real-world signals reqaitene-frequency approach, especially for
real-time assessment. Wavelets can provide a tiegesency representation of the signal.
These waveforms have limited duration and have@aeerage value. In comparison with
sine waves that are smooth, wavelets are moreuiae@nd asymmetric. Therefore,

wavelet analysis is able to present aspects oftatather signal analysis methods miss.

Wavelet transform has proven to be a powerful aggrdor signal processing in the
short history of wavelets in the field of signabpessing (Addison 2002; Rafezi, Akbari,
and Behzad 2012; Rafezi and Hassani 2018). Watvatetform provides a time-frequency

representation of the input signal. The waveletcfiom is defined in equation 5.17.

98



Discrete wavelet transform splits the siggt) into an approximationSj and a detailT),
which are the lower and higher frequency rangdésesignal, respectively (equations 5.18
and 5.19). The wavelet dilation and translation eoatrolled by variablesn and n,
respectively.¢,, ») is known as the father wavelet or the father sgalimction and is

defined by equation 5.20 (Daubechies 1992; AddXuiP).

Ynn(® = = ¥ (F) (5.17)
Ton = [ () Yrn(O) dt (5.18)
Smn = [, x() P (O)dt (5.19)
Gmn(®) = 2= ¢ —1) (5.20)

In non-stationary random signals, the distributbbsignal energy is frequency- and
time-dependent. As a time-frequency mapping ofsigeal, WPD is able to represent the
energy distribution. The generalization of waveletcomposition leads to wavelet packet
method that provides a wider range of capabilfiiesignal analysis. In wavelet analysis,
the signal in the first level is split into an appimation and a detail (described above).
Then only the approximation is split into a secdentl detail and approximation, and the
procedure continues. Therefore, forlevel decomposition, there am+1 ways to
decompose the signal. In WPD, however, the appratams and details are split. This
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results in 2" ways to decompose the original signal. The decaitipa mechanisms of
signals using wavelet transform and WPD are present Figs. 5.18 and 5.19,
respectively. By generating a complete set of pacR&/PD provides a comprehensive

analysis capability in both high- and low-frequemagges.

Figure 5.18- Three level wavelet transform
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Figure 5.19- Three level WPD

Wavelet packet energy provides a valuable sigredlife to represent the trends of
fault frequencies in target packets. Fig. 5.20 shtve vertical vibration wavelet packets
decomposed in three levels using Daubechies wawgleten vanishing moments. Based
on the frequency spectrum analysis, wavelet padketse third level were selected to

focus on the bit fault frequency band and very totational speed harmonics affected by

geology and working condition.
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Figure 5.20- Three level WPD of the vibration signa

5.5.4.1Wavelet energy

In WPD, the energy of wavelets at every level otaieposition related to
approximation and detail coefficients are calcuatesing equations 5.21 and 5.22,

respectively.

2
ES(m) = Zn'sm(n)| (5.21)

2
ET(m) = anTm(n)l (5.22)

Therefore, the total wavelet energy at lewak equal to:
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Em = Esim) + Ermy (5.23)

At each level, the ratio of every packet energghtototal energy of the level defines
the wavelet packet relative energy. The relativergy of approximation packetat level

m s calculated as:

E, = Zmm (5.24)

Based on the bit fault frequency calculations, p&k3,2) and (3,3) correspond to
the bit fault frequency and packet (3,1) contaies@RS components. Application of WPD
provides the flexibility to analyze higher or lowBequency bands when changes in
working condition are significant. For example, ingreasing the bit rotational speed
jumps to 110 rpm in a rare situation, the bit faliifts to the packet (3,4). At the third
level, packet (3,0) consist of the low-frequencyg®, including the tricone bit bouncing
frequency (3x rpm) component. Therefore, it is ad@®ed as the drillability representative
in the bit classification model. With wear progréssn Classes 1 to 5, the relative wavelet
energy distribution transits from the low-frequermacket (3,0) to the higher frequency
packets. Eventually, in a Class 5 bit conditiom, lighest relative energy value is related

to the packet (3,2), which is the bit fault freqogipacket (Fig. 5.21).
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Figure 5.21- Distribution of wavelet packet relatienergy at the third level of
decomposition for bit wear Classes 1 to 5

A graphical view of the relative energy distributicat the third level of

decomposition is summarized as a heatmap (Fig) Si&#ving the transition of relative

energy from the packet (3,0) to higher frequenaskpts and finally the concentration of

the energy at the packet (3,2) before the failG@sequently, the wavelet packet energy
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in addition to the statistical moments createsfdaure vector to describe the vibration

signal to be used in the artificial neural networ&del for bit state classification.

%
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40
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20
Class 1 10

(3,0) (3.1) (3.2) (3.3) (3.4) (3.5 (3.6) (3.7
Figure 5.22- Wavelet packet energy distributiothatat different wear classes
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Chapter 6 — Atrtificial Intelligence Model for Drill Bit Wear
Pattern Recognition

6.1 Bit Wear Pattern Recognition

In this research, the classification of bit weatesis considered a pattern recognition
problem. By the means of artificial intelligencelfAhe bit wear condition is determined
based on drilling signals, and bit catastrophidufai is predicted. Feedforward neural
network (FNN) models are designed and examinedbgsify the drill bit wear state as a
supervised learning approach. The final sensopfusnodel is trained, validated, and
tested using full-scale real-world drilling datagased in the field. The model input is a
vector of signal features based on the analysmidged in Chapter 5 and the outputs are

the bit wear classes introduced in Chapter 4.

6.2 Neural Network Model

The developed FNN model consists of three layerse Ridden layer connects the
input and ouput layers. The input layer contairdascequivalent to the number of elements
in the signal feature vector and the output layermtains one neuron for each class of bit
wear state. At every neuron, the sum of weightgultifeatures ) and the biask)
provides the input to the neuron transfer func{f®and the transfer function generates the

neuron output (Fig. 6.1).
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Figure 6.1- A single neuron architecture (Demuttt Beale 2010)

Thus:

n = Y¥wp; +b (6.1)
a; = f (Zfwip; +b) (6.2)
Where

ni: Transfer function input

R Number of inputs to the neuron

Wi: Weight

pi: Input feature

a. Neuron output

When applying neural networks to regression probleéhe model output layer might
use a linear transfer function to generate the wutp the desired range. For bit wear
multiclassification in this study, the Softmax tséer function was used, which determines
the probability of each output cladg (sing equation 6.2. The probabilities for eadssl
will range between 0 and 1, and the summationlafias$s probabilities is equal to 1. The
class with the highest probability determines thgot class. The hidden layer transfer

function was a logistic sigmoid in the form of ejaa 6.3 with an output range of (0,1).
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en

fsoftmax(n) = Yeen (6.2)

1
flogsig(n) = 1rem (6.3)

6.2.1 Feedforward neural network classifier

The neuron connections in FFNs go from input tgooutvith no cycles and the
network may contain several layers. The networlFig 6.2 comprises two layers of
neurons with full interconnection. Passive nodethainput layer distribute their single
input corresponding to a signal feature to multiplgputs to feed neurons in the hidden
layer. The number of the nodes and neurons in idhdeh layer are discussed in section
6.3.1. Outputs of neurons in hidden layer gendfratanputs to the output layer neurons.

In the output layer, there is one neuron corresipgni each bit wear class (i.e., total of 5

neurons).
fsoftmax — Class 1
Z flogsig \ fsoftmax —— Class 2
Py o
Z flogsig )
P4 ll fsoftmax — Class 3
: Z — ﬁogsig
Pr :
. ‘1 fsoftmax —> Class 4
Z flogsig
%
fsoftmax [—> Class 5

Figure 6.2- Simplified illustration of the bit westate classifier neural network
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6.2.2 The loss function and learning algorithm

In neural networks, learning is the minimizatiortted global error function. The loss
or error function is defined over the network wegand biases. In this work, cross-entropy
was selected as the loss function (Eq. 6.4). Becatithe logarithmic derivation of cross-
entropy, it strongly penalizes highly inaccuratede@lamutputsy) in the training procedure,

where the target value label tg.(
H(t,y) = Litilog- (6.4)

A variety of learning algorithms for FFN trainingve been developed (e.g., (Hinton

1989; Rumelhart, Hinton, and Williams 1986)). Aretard method of minimizing the error

is the gradient descent algorithm, where the gradié the error functionG = Z—:) is
l

calculated by the partial derivatives of error wiélspect to each model parameter vector
Z (i.e., weights and biases). The model parametersigdated in a short distance in the
direction of -6 to decrease the error (Bishop 1995) and minimiwee drror function.

Therefore:
OH
Liyn= 1~ pop (6.5)

Wherey is the learning rate and determines the amouahafge in the weights at

every step, anlis the iteration number in the training procedditee algorithm converges
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and ends the training process when the error fomés at the minimum an@ = 0. The
drawback of gradient descent is associated withdfiand user-dependent selectionuof
with no theoretical basis for the selection. Thasild result in an inefficient learning

process in terms of processing time and robustness.

In this research, the scaled conjugate gradierdrithgn was selected, which is
similar to the gradient descent method but useslaa step size. Mgller (1993) introduced
the scaled conjugate gradient algorithm and distise mathematics behind it in detail.
The approach has been an algorithm of interestefegarch on supervised classification
problems in a variety of applications (Rostami, Hesti-Sarapardeh, and Shamshirband

2018; Nematinia and Mehdizadeh 2018; Karmakar.&C8; Sodhi and Chandra 2014).

6.3 Bit Wear Classification Models

The performance of neural network models on théshafsnetwork shown in Fig.
6.2 was evaluated based on the feature vectorgroations and the number of neurons in
the hidden layer. In the following section, the reémetwork data vectors derived from the

signal analysis results in Chapter 5 are presented.

6.3.1 Model configuration

The data vector configurations comprise signaluiest from wavelet packets and
time domain features. Table 6.1 presents the cdmepsive set of the signal features
achieved from the lower mast and upper mast aarekgers, rotary motor current as well
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as the control parameters, bit depth and the rdtepemetration. Therefore, the
comprehensive input vector consists of 59 elemants the output vector contains 5

elements corresponding to the 5 classes of bit.wear

Table 6.1- Comprehensive model data vector elenfemtsthe lower and upper
mast accelerometers, rotary motor current as \gdhe control parameters, bit depth,
and rate of penetration

Signal Model Input Vector Elements
Lower Mast Wavelet Packets (3,0) (3,1) (3,2) (3,3) (3,4Energy
Vibration Peak
Variance
Skewness
Kurtosis
Upper Mast Wavelet Packets (3,0) (3,1) (3,2) (3,3) (3,4Energy
Vibration Peak
Variance
Skewness
Kurtosis
Rotary Motor Time Domain Peak
Current RMS
Variance
Skewness
Kurtosis
Control Signals Time Domain wWOB
Rotational speed
Bit positior
Bit Penetration Time Domain Rate of penetration

The model was initially designed for the compreendata vector. Examination of
the performance of classifiers containing 25-40olsishowed that the classifier with 30
neurons in the hidden layer performed the beststtn performance in classification of
bit condition (Fig. 6.3 and Appendix). The trendoobss entropy errors for the network
with thirty neurons in the hidden layer during thening is plotted in figure 6.4. The best

validation performance was achieved at iteratiominer 84 with a cross-entropy equal to
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0.1185 (Fig. 6.4). The training procedure was stopgfter 6 validation checks at iteration
number 90.
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VALIDATION CROSS-ENTROPY

0.105

NUMBER OF NEURONS IN THE HIDDEN LAYER

Figure 6.3- Validation error trend and the numlfereurons in the in the hidden
layer

100 —Train
Validation

Cross-entropy

Iteration

Figure 6.4- Cross-entropy error trends for the oekwith 30 neurons in the
hidden layer and comprehensive input vector
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As discussed in section 5.5.2, wavelet packet9 (8,(8,4) contain cone rotational
speed harmonics. However, in routine blastholdimilconditions, the bearing fault
frequencies are not lower than the frequency raogeesponding to the packet (3,2) and
not higher than the packet (3,3). Therefore, ireotd reduce the dimension of the model
data vector, packets (3,1) and (3,4) were elimoh&tam the data vector elements listed in
Table 6.1. The reduced data vector configurat®oddfined as given in table 6.2. The
performance of the model based on the new reduega wector was assessed and

compared to the earlier model.

Table 6.2- Reduced packet model data vector elament

Signal Model input vector elements

Lower Mast Vibration Wavelet Packet (3,0) (3,283)3 Energy

Peak

Variance
Skewness
Kurtosis

Upper Mast Vibration Wavelet Packet (3,0) (3,2B)3 Energy

Peak

Variance
Skewness
Kurtosis

Rotary Motor Current Time Domain Peak

RMS

Variance
Skewness
Kurtosis

Control Signals Time Domain WOB

Rotational speed
Bit positior

Bit Penetration Time Domain Rate of penetration

Reducing the number of vibration wavelet packetsroed model performance by

focusing on the data with richer wear informatidhe best validation performance was a
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cross-entr

iteration n

opy equal to 0.0982 for the network wéhneurons in the hidden layer at

umber 284 (Fig. 6.5). After this itecatj the validation error increased and the

network training process was stopped. Thereforapeawed to the comprehensive network,

reducing network size resulted in a 54% reductiothe total number of connections in

the model

Crossentropy

, Which corresponds to lower computatipaaVer requirement.
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Figure 6.5- Cross-entropy error trends for the oekwith 20 neurons in the

hidden layer using the reduced dataset

The potential benefits gained by fusion of multisknsors, including the current

signal an

d the upper mast vibration signals wese aksessed. Elimination of the current
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signal or upper mast vibration signals reduced dlassifier model performance and
increased the validation cross-entropy to 0.123P2@h256, respectively. Therefore, the
final selected model was trained based on the eztlsuite of feature vectors (i.e.,

excluding wavelet packets (3,1) and (3,4)).

6.4 Model Performance Evaluation

The receiver operating characteristics (ROC) cig\eemeasurement of performance
for classifier models. It plots the network truespiwe output rate versus the false positive
output rate (Fig. 6.6). Simply stated, it shows iedel capability to classify the input to
the true category for every class. The area unuemROC curves is the probability of
successful classification. Therefore, a perfectsifeer with 100% accuracy would show a

right angle on the upper-left corner of the ROCveur
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Figure 6.6- ROC curve of the developed classifier

Accuracy (Eqg. 6.6) and sensitivity (Eq. 6.7) ardnns to assess the performance of
the classifier corresponding to each class. Acguigithe ability of the model to predict
the correct class among all provided inputs. F@ass 5 bit, the accuracy would be the
ability of the network to predict failure. By compson, sensitivity is the capability to

successfully classify the data that all belongh®dlass (true positive rate).

Accuracy = (TP + TN) / (PP + NP) (6.6)

Sensitivity = TP / (TP + FN) (6.7)
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Where

TP: True positive

TN: True negative
FN: False negative
PP: Positive population

NP: Negative population

To test the network performance, a batch of rangioselected real-world field
drilling data from two mines was separated fromdataset. These test data were not used
in training and remained unseen to the networl timti test stage. The confusion matrix
of the model test results shows the model sensitiai bit wear Class 5 equal to 84.3%

(Fig. 6.7).

Output Class

Target Class

Figure 6.7- Classifier confusion matrix
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Table 6.3 summarizes the model sensitivity to lear classes.

Table 6.3- Model sensitivity results
Class 1 Class 2 Class 3 Class 4 Class 5

95.4% 66.3% 92.9% 66.7% 84.3%

Model performance in classification of class Sbirucial. To calculate the accuracy
of the model in failure prediction (i.e., Class )¢ problem was considered as a binary
classification of class 5 and the rest of clas$éerefore, Classes 1-4 were assumed as
one class and TP and TN were calculated accordif@gged on equation 6.6, model
accuracy in prediction of bit failure was 96.2%.dA83.8% of the test samples belonging

to the five wear classes were classified correctly.
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Chapter 7 — Conclusions and Recommendations

7.1 Conclusions

The primary goal of this thesis was to developazpecal condition monitoring (CM)

approach to monitor the wear and predict the failof tricone bits for industrial

applications. The analysis and developed artificitdlligence model were based on real-

world drilling data. The accomplishments of thigjpct are the following:

A comprehensive literature review of drilling waaonitoring was presented.
Application of Ground penetrating radar (GPR) fanensubsurface identification
was investigated. A variety of antennas were tegtddnestone and coal mine
environments. The 200 MHz antenna provided thepmsttration depth/resolution
tradeoff. GPR is a practical method for subsurfaepping. However, the depth of
penetration is limited, and the results are sesesiid the rock physical properties
and water saturation.

In the preliminary fieldwork, a drill rig in an iroore mine was equipped with a
data acquisition unit and accelerometers on segp@s of the machine. Special
sensor mountings were designed. Drilling signalsewaeasured during drilling
with tricone bits at three levels of wear condition

Based on promising preliminary results, comprehangeldwork was designed to
be conducted in a copper mine. Two heavy-duty fiighuency accelerometers
were installed on the drill rig mast to measurewtifeation in line with the motor

signals, air pressure, and drill string head encsigmal in over 16 km of blasthole
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drilling. Bit wear condition over the complete lifgcle of tricone bits was visually
inspected and documented during the entire measmtenhile drilling.

A novel qualitative wear grading method for tricobiégs was introduced. The
method focuses on bit catastrophic failure causebitinternal bearing failure.
This method classifies a new bit as Class 1 andra Wit as Class 5.

From the two fieldworks, an extensive bit wear-lededrilling dataset was
generated, including multi-spot high-frequency ation.

Rotary motor current signal statistical featureseMdund to be sensitive to bit
wear. Rotary motor current root mean square foltbase incremental trend as the
bit moved from Class 1 to Class 5 wear. The vagawas sensitive to bearing
deterioration.

In vertical vibration, frequency bands sensitivebibwear and drillability were
identified. Mathematical equations were proposed cticulate bit failure
frequencies based on bit design parameters.

Applying wavelet packet decomposition, bit faultkets were introduced and the
signal features were extracted from correspondingvelet packets. The
distribution pattern of vibration relative wavedgtergy during the bit life cycle was
presented.

A sensor-fusion neural network classifier model @esigned and trained using the
defined data vector configuration for classificatwf bit wear state and prediction
of failure.

Model performance was tested using real field idglldata from two mines in

Canada.
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Figure 7.1 summarizes the developed bit wear mongatructure.
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Figure 7.1- The developed bit monitoring framework

The developed bit CM approach could be implemeimedlasthole drill rigs by
mining operations or rig manufacturers. This sysiemltimately meant for autonomous
drilling. However, in manual operations, it couldsst operators in determining the

appropriate time to change the bit and avoid catpkic failure.

7.2 Recommendations

In order to support mining automation and fullyadmous drilling, comprehensive
drill CM is required, as is the development of lieahonitoring approaches for other
critical components. Eventually, a central drill Gystem could be developed based on a

network of sensors to achieve a complete understgrd the machine working status.
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Figure 1- Cross-entropy error trends for the nekwath 29 neurons in the hidden layer and
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Figure 2- ROC curve of the classifier with 29 newgin the hidden layer and comprehensive
input vector
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Figure 3- Cross-entropy error trends for the neltwaith 31 neurons in the hidden layer and
comprehensive input vector
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Figure 4- ROC curve of the classifier with 31 newgin the hidden layer and comprehensive
input vector
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