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Abstract

The nonlinear Schrödinger equation can be solved by split-step methods, where in each

step, linear dispersion and nonlinear effects are treated separately in a sequential manner.

This thesis investigates the optimal design of an finite-impulse-response (FIR) filter as

the time-domain implementation for the linear part. The objective is to minimize the

integral of the squared error between the frequency response of the FIR filters and the

desired dispersion characteristics over the band of interest. This least square (LS) problem

is solved in two approaches: the normal equation approach gives an explicit solution and

its Toeplitz structure enables fast computation; the singular value decomposition (SVD)

approach provides geometrical, physical and numerical insights based on the theory of

discrete prolate spheroidal sequence (DPSS).

A major concern is that as revealed by the theory of DPSS, this problem could be

ill-conditioned, and henceforth its solution would be sensitive to small perturbations. Be-

sides, the frequency response might exhibit singular behaviors such as overshoots. Two

approaches are proposed to mitigate these shortcomings: the unconstrained LS approach

adds a regularization term to the objective function, whereas the constrained approach also

imposes a maximum magnitude constraint on the frequency response. The latter approach

is formulated into a standard quadratically constrained quadratic programming (QCQP)

problem that can be readily solved using state-of-the-art interior-point methods. Compared

with previously designed FIR filters, these filters are easier to extract and the QCQP-based

filter saves the filter length by at least 1/3. There is a complexity trade-off between these

two filters: the unconstrained regularized LS filter is much easier to extract with the help

of the modified Levinson-Durbin algorithm; the QCQP-based filter is shorter in length and

saves computational complexity of the linear convolutions. The choice depends on whether

the filter needs to be regenerated frequently or not. In addition, the required filter lengths

for these filters are approximately linear functions of several parameters, which simplifies

the task of choosing step size.

We verify the feasibility of the proposed filters in two categories of applications. Firstly,

they can be used in the time-domain simulation of pulse propagation in optical fiber.

For single channel and WDM channels, the proposed filters generate similar outputs as

previous time-domain and frequency-domain methods, even after propagating thousands

of kilometers. The proposed designs, together with overlap-add and overlap-save, can
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reduce the overall computational complexity significantly. Secondly, the proposed filters

can also be applied in time-domain digital backpropagation algorithms for fiber impairment

compensation. Numerical simulations of a polarization division multiplexed quadrature

phase-shift keying (PDM-QPSK) transmission system illustrate that the split-step methods

based on the proposed filters are able to effectively mitigate the signal distortions caused

by both dispersion and nonlinearities.
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Sommaire

L’quation de Schrödinger non linéaire peut être résolue par des méthodes split-étape, où

à chaque étape, la dispersion linéaire et les effets non linéaires sont traités séparément de

manière séquentielle. Cette thèse étudie la conception optimale d’un filtre finis à réponse

impulsionnelle (FIR) en tant que mise en uvre dans le domaine temporel pour la partie

linéaire. L’objectif est de minimiser l’intégrale de l’erreur quadratique entre la réponse

fréquentiel du FIR et les caractéristiques de dispersion souhaitées sur la bande d’intérêt.

Ce problème de moindres carrés (LS) est résolu en deux approches: l’approche équation

normale donne une solution explicite et sa structure de Toeplitz permet le calcul rapide; la

décomposition en valeurs singulires (SVD) fournit un point de vue géométrique, physique

et numérique basé sur la théorie de la séquence discrète sphéröıdale prolate (DPSS).

Une préoccupation majeure est que, comme révélé par la théorie de la DPSS, ce

problème pourrait être mal conditionné, et désormais sa solution serait sensible aux petites

perturbations. Par ailleurs, la réponse en fréquence peut manifester des comportements

singuliers tels que les dépassements. Deux approches sont proposées pour atténuer ces la-

cunes: l’approche LS contrainte ajoute un terme de régularisation de la fonction objectif,

alors que l’approche contrainte impose aussi une contrainte magnitude maximale sur la

réponse fréquentielle. Cette dernière approche est formulée dans une norme quadratique

contrainte quadratique de programmation QCQP problème qui peut être facilement résolu

en utilisant l’état de l’art méthodes de points intérieurs. Comparé à des filtres FIR qui

est déjà conu, ces filtres sont plus faciles à extraire et le filtre à base QCQP économise

la longueur du filtre par au moins 1/3. Il y a une complexité compromis entre ces deux

filtres: la contrainte régularisé LS filtre est beaucoup plus facile à extraire à l’aide de la

modification algorithme de Levinson-Durbin; le filtre basé QCQP est plus court dans la

longueur et la complexité des calculs sauve des circonvolutions linéaires. Le choix dépend

si le filtre doit être régénéré fréquemment ou pas. En outre, les longueurs requises du filtre

pour ces filtres sont des fonctions approximativement linéaires de plusieurs paramètres, ce

qui simplifie la tâche du choix de la longueur de létape.

Nous vérifions la faisabilité des filtres proposés dans deux catégories d’applications suiv-

antes. Premièrement, ils peuvent être utilisés dans la simulation dans le domaine temporel

de la propagation des impulsions dans les fibres optiques. Pour un seul canal et des canaux

WDM, les filtres proposés génèrent des sorties similaires à celles des méthodes précédentes
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dans le domaine temporel et le domaine fréquentiel, même après la propagation de mil-

liers de kilomètres. Les conceptions proposées, avec overlap-add et over-save peut réduire

la complexité globale du calcul de faon significative. Deuxièmement, les filtres proposés

peuvent également être appliqués dans le domaine temporel des algorithmes numériques

rétro propagation d’indemnisation dépréciation de la fibre. Les simulations numériques

d’une division polarisation en quadrature multiplexés déphasage système de transmission

de saisie (PDM-QPSK) montrent que les méthodes de partage des étapes basées sur les

filtres proposés sont en mesure d’atténuer efficacement les distorsions du signal causé par

la dispersion et les non-linéarités.
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Chapter 1

Introduction

1.1 Backgrounds and Motivations

The data transmission rate in optical fiber communications has been increasing tremen-

dously in an exponential manner since its introduction dating back to the 1970s, namely,

from several Mb/s for single channel to current 100 Gb/s per channel with channel counts

80-100 and will cross the Tera milestone in the near future [1]. The secrets behind this

spectacular achievement hide themselves in numerous advanced technologies such as third-

window distributed feedback laser, wavelength division multiplexing (WDM), dispersion

management, advanced modulation formats, effective coding schemes, electronic signal

processing, Raman amplification, code division multiple access (CDMA) and multicarrier

transmissions [2]. A good understanding, or more specifically, modeling of signal trans-

mission through fibers is indispensable to design sophisticated high data-rate systems. It

is well-known that the propagation of optical wave in fiber is described by the nonlinear

Schrödinger equation. However, an analytical solution is generally unavailable except for

some special cases (e.g. soliton) [3]

To this end, various numerical methods have been proposed to solve this partial differ-

ential equation [4, 5, 6, 7, 8, 9, 10]. Among these approaches, split-step Fourier method

(SSFM) is a favorite choice because of its mathematical simplicity, conceptual clarity and

numerical stability [11]. Although widely used in practice, it suffers from its high computa-

tional complexity and numerical inaccuracy due to discrete Fourier transform (DFT) and

inverse discrete Fourier transform (IDFT) used. To overcome these shortcomings, a time-

domain approach has been proposed and highlighted recently [6, 12, 13]. The time-domain

2011/09/29
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Optical 
Transmitter

Optical 
Receiver

Amplifier

×N 

Optical 
Fiber

Fig. 1.1 A simple model of a fiber communication system with N spans.

approach implements the numerical calculation solely in the time domain by replacing the

linear dispersion operation with a discrete-time infinite-impulse-response (IIR) or finite-

impulse-response (FIR) filter.

Although previous efforts have already led to several time-domain designs with rela-

tively low computational complexity and high accuracy, a systematic and comprehensive

treatment of this topic is still missing from an optimization perspective. It is true that

some ideas presented in this thesis were referred to in previous works; however, several

important issues were treated casually and cannot be overemphasized.

1.1.1 Fiber-Optic Communication Systems

A typical fiber-optic communication system consists of an optical transmitter with electrical

input, the fiber channel(s) and an optical receiver with electrical output, as shown in Fig 1.1.

The problem of designing a fiber-optic communication system can be tackled from a layered

approach — that is, to decompose the whole system into several layers as illustrated in

Fig. 1.2. Herein, the block “channel” represents the equivalent channel that includes all

the optical components in Fig 1.1. The combination of the pre-equalizer, pulse shaper,

optical channels, filter and sampler, and post-equalizer can be viewed as another layered

channel with the modulated pulses as the input signal. We denote the input signal before

pre-equalization as x(t) and the output signal after post-equalization as output y(t). The

purpose of fiber simulations is to obtain the output signal before post-equalization, based

on the input signal x(t) and the channel characteristics. The goal of digital backward

propagation is to compensate the distortions introduced by the fiber channel so that y(t)

is as close to x(t) as possible.
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Fig. 1.2 The layered model of a typical digital communication system
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Fig. 1.3 The detailed scheme of a typical fiber-optic communication system

The detailed scheme of the optical components and channels is shown in Fig 1.3. The

optical transmitter plays the role of converting electrical signal into optical signal that is

suitable for fiber transmission. It includes an optical source such as laser or LED, and

a modulator that can modulate the optical carrier with the electrical signal. The optical

signal then propagates through the optical fibers and is received at the optical receiver. The

photodetector converts the received optical signal into electrical signal and the demodulator

extracts the electrical pulse train. Depending on specific modulation formates, the optical

transmitter and receiver can be slightly different but with the same general structure [14].

To utilize the large bandwidth provided by optical waves, a practical fiber communica-

tion system always incorporates multiple transmission channels instead of a single channel
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Transmitter λ1 
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Receiver λ2 
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Fig. 1.4 A typical WDM system with four wavelengths

[15]. The rapid growth of information rate for optical fiber communication since 1994

was triggered by the invention of the wavelength division multiplexing (WDM) techniques,

whose underlying idea is to transmit multiple data streams over different optical wave-

lengths in a single mode fiber [1]. A typical WDM architecture with four wavelengths

is demonstrated in Fig. 1.4. Dense wavelength division multiplexing (DWDM) systems

upgrade the original WDM scheme by adopting denser channel spacing in a single mode

fiber [16]. The system throughput of WDM/DWDM is proportional to two factors —

wavelength counts and spectral efficiency of each subchannel. On the one hand, current

systems incorporate as many as 80-100 subchannels and even more. The degrees of freedom

achieved by multiple channels seem unlimited but are actually constrained by practical is-

sues such as the implementation costs in mounting multiple optical components and the

physical limitations on device sizes. On the other hand, the task of increasing spectral effi-

ciency are constantly challenging scientists and engineers to develop optoelectronic devices,

sophisticated modulation and coding schemes, and digital signal processing techniques.

To aim at higher spectral efficiency, most recent fiber systems are based on coherent de-

tection. Different from noncoherent detection methods which make decisions solely based

on the amplitudes of signals, coherent detection retains both the amplitude and phase

(complex envelop) of the optical field through the use of in-phase (I) and quadrature (Q)

demodulation [17]. The degree of freedom added in the Q channel allows for a two-fold spec-

tral efficiency boost by using advanced IQ-based modulation formats such as QPSK and M

ary-QAM instead of OOK. Besides of its advantage in spectral efficiency, coherent detec-



1.1 Backgrounds and Motivations 5

tion can increase the receiver sensitivity over non-coherent detection, thereby increasing the

maximum transmission distance. Moreover, coherent detection recovers full information of

the optical fields when transforming optical signals into electrical signals. The linear and

nonlinear impairments induced in the transmission process including chromatic dispersion

and Kerr nonlinearities can be compensated by powerful, versatile and inexpensive digital

signal processing (DSP) chips instead of restrictive and costly optical devices [18].

1.1.2 Nonlinear Schrödinger Equation

The propagation of optical pulses through a single mode fiber is governed by the nonlinear

Schrödinger equation (NLSE) [3]

∂A(z, t)

∂z
= −α

2
A(z, t)−β1

∂A(z, t)

∂t
− j

2
β2
∂2A(z, t)

∂t2

+
1

6
β3
∂3A(z, t)

∂t3
+ jγ|A(z, t)|2A(z, t) , (1.1)

where A(z, t) is the complex envelope of the slowly varying optical field and z is the prop-

agation distance. Parameters α is the propagation loss, β1 is the inverse of group velocity,

β2 is the group velocity dispersion (GVD) constant, β3 is the third-order dispersion, and

γ is the Kerr coefficient representing the Kerr nonlinearities in optical fiber. As usual,

higher-order dispersion terms are neglected in this equation. To better understand the

propagating behaviors of optical waves in fiber, we explain the physical meanings of the

above parameters in detail.

The propagation loss factor α measures the loss in power as the optical signal propagates

inside the fiber. The power of the output signal Pout can be expressed as a function of the

power of the input signal Pin and the propagation distance L by

Pout = Pin exp(−αL) , (1.2)

which means that the intensity of light is attenuated as a function of transmission distance.

This propagation loss primarily comes from the material absorption of silica and Rayleigh

scattering. Other factors that contribute to the fiber loss include the bending of fiber

and light scattering at the core-cladding interface. In early fiber transmission systems,

transmission distance is mostly limited by the fiber loss. However, technical achievements
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in this field has already reduced this loss from 2 dB/km near 850 nm wavelength for the

first generation fiber-optic transmission systems to 0.2 dB/km near 1500 nm wavelength for

modern fiber-optic transmission systems. Moreover, Erbium-doped fiber amplifiers (EDFA)

are inserted periodically to combat power attenuation in current transmission systems,

which enables transmission distances longer than 100 km and avoids the low-speed optical-

electrical-optical (OEO) conversion. The introduction of EDFA also enables the WDM

technology due its broadband property [19]. Therefore, propagation loss is no longer a

major issue for modern fiber-optic transmission systems.

The terms β1, β2 and β3 come from the Taylor series expansion of the mode-propagation

constant β at frequency ω0, that is,

β(ω) = n(ω)
ω

c
= β0 + β1(ω − ω0) +

1

2
β2(ω − ω0)2 +

1

6
β3(ω − ω0)3 + · · · , (1.3)

where c is speed of light in vacuum, n(ω) is frequency-dependent refractive index and

βm =

(
dmβ

dωm

)
ω=ω0

, m = 0, 1, 2, · · · . (1.4)

The first-order derivative term β1 is the inverse of group velocity measuring the moving

speed of the pulse envelop. The second-order derivative term β2, called group velocity

dispersion constant, produces a symmetrical broadening of the pulse. The third-order

derivation term β3 causes asymmetrical distortion of pulses and is refereed to as third-

order dispersion.

Dispersion, especially the group velocity dispersion that is also refereed to as chromatic

dispersion (CD), plays an important role in fiber-optic communication systems. CD causes

frequency-dependent group velocity which means that different spectral components travel

at different speeds and the optical signal becomes more spread in time. The time-domain

broadening of the pulses leads to the overlapping of neighboring symbols, namely, intersym-

bol interference (ISI). Although dispersion-shifted fibers (DCF) can nullify the dispersion at

1550 nm, zero dispersion is undesired because the fiber nonlinearities would be high. Later,

a nonzero dispersion-shifted fiber (NZDSF) was designed to maintain a small amount of

residual dispersion at 1550 nm, but its poor performance in nonlinearity tolerance gives

rise to standard single mode fibers (SMF) that is already widely used. Various compensa-

tion techniques, whether in the optical domain or electrical domain, can be used to further
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mitigate the distortions caused by dispersion. Initially, optical approaches such as disper-

sion compensation fibers (DCF) were popular; however, the emergence of coherent receiver

shifts the major interests from optical compensation to electrical compensation in which

chromatic dispersion and third-order dispersion can be simultaneously compensated using

cost-effective digital signal processing (DSP) algorithms [20].

Indicated by the Kerr coefficient γ, Kerr effect describes the dependence of the refraction

index on the instantaneous signal intensity (|A|2), which is the dominant nonlinearity in

optical fibers. More specifically, Kerr effect can be decomposed into three general nonlinear

effects: self-phase modulation (SPM), cross-phase modulation (XPM) and four wave mixing

(FWM). In SPM, the field intensity of the optical field affects its own phase, whereas XPM

arises when optical fields with different wavelengths or different polarizations influence the

each other’s phase. Moreover, three optical fields can interact with each other to generate

the fourth wavelength, which is called FWM. A single channel has only SPM effect, whereas

the multichannel or multiuser channels suffer from all these interferences due to multi-

wavelength multiplexing and co-propagation in the same optical fiber. As signal pulses

propagate through the fiber channel, the Kerr effect and optical dispersion interact with

each other all the way, causing distortion to the pulse shape and optical field spectrum.

These distortions, if casually treated at the receiver, can lead to significant interferences to

other wavelengths and successive symbols [21].

For fiber-optic communication systems, Kerr nonlinearities degrades the channel capac-

ity dramatically. As early as in the 1940s, Shannon established the mathematical foun-

dation for modern communication theory, opening a new area of scientific research called

information theory [22]. For a particular channel, there is a maximum transmission rate

named as capacity under which an arbitrarily low probability of error is obtainable. Shan-

non proved that the capacity of a discrete-time memoryless additive white Gaussian noise

(AWGN) channel is

C = W log2

(
1 +

S

N

)
, (1.5)

where W is the bandwidth, S is the transmitted power, N is the noise power and S/N

is denoted as signal-to-noise ratio (SNR). The channel capacity increases logarithmically

for the AWGN channel as its input power S increases. However, this is not true for the

nonlinear fiber channel as show in Fig. 1.5 reproduced from [23]. The capacity is plotted

based on the theoretical results derived in [23] (additive noise power In is set to 0.026504mW
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Fig. 1.5 Capacity of a WDM system

and nonlinear intensity scale I0 is set to 16mW). For fiber-optic communication systems,

nonlinear channel capacity has a maximum value at a certain power level instead of going

to infinity and beyond as power increases. Instead, large power under nonlinearity can

saturate the optical fiber channels and the channel capacity would degrade and even decay

to zero.

Apart from Kerr effect, higher order nonlinear effects like self-steepening and Raman

scattering also affect pulse propagation, but they are not considered in (1.1). Moreover,

amplified spontaneous emission (ASE) noise can affect the performance of fiber commu-

nication systems as well. To incorporate all these effects, a generalized NLSE should be

used [3]. Nevertheless, for simplicity, we restricted the discussions in this thesis to the most

important effects: dispersion and Kerr nonlinearities.

From the NLSE, an analytical solution is only possible under unrealistic assumptions

including zero dispersion or zero nonlinearity, or for special waves such as Soliton. Coupled

with all the above linear and nonlinear effects, practical fiber-optical communication chan-

nels cannot be expressed in closed forms, which sets formidable barriers to the modeling

of pulse propagation in optical fiber. However, we can solve the optical field at time t and
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distance point z due to an arbitrary optical input by virtue of numerical methods such as

SSFM and split-step time-domain method.

1.1.3 Split-Step Fourier Method

Let νg be the group velocity. By selecting T = t− z/νg as the retarded time that uses the

moving pulse as reference, (1.1) becomes

∂A(z, T )

∂z
= (D̂ + N̂)A(z, T ) , (1.6)

where the linear operator D̂ and the nonlinear operator N̂ are defined as

D̂ = −α
2
− j

2
β2

∂2

∂T 2
+

1

6
β3

∂3

∂T 3
, (1.7)

N̂ = jγ|A(z, T )|2 . (1.8)

Generally speaking, numerical approaches to solve NLSE fall in two categories: finite-

difference methods and pseudospectral methods. Pseudospectral methods are more effi-

cient and popular. SSFM, as one of the pseudospectral methods, is the most favorable one

due to its mathematical simplicity, conceptual clarity and numerical stability [11]. It ap-

proximately solves the NLSE based on the premise that within a small distance, the linear

operator and the nonlinear operator can be treated independently in a sequential manner,

yet with acceptable error. Denoting the small distance as ∆z, two implementation methods

are usually employed, namely, asymmetric split-step method (A-SSM)

A(z + ∆z, T ) ≈ exp(∆zD̂) exp(∆zN̂)A(z, T ) , (1.9)

and symmetric split-step method (S-SSM)

A(z + ∆z, T ) ≈ exp(∆zD̂/2) exp(∆zN̂) exp(∆zD̂/2)A(z, T ) . (1.10)

To compare the accuracy of these two methods, we introduce the Baker-Hausdorff formula

[24]

exp(â) exp(b̂) = exp

(
â+ b̂+

1

2
[â, b̂] +

1

12
[â− b̂, [â.b̂]] + · · ·

)
, (1.11)
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where [â, b̂] = âb̂ − b̂â is the commutator. If we expand the linear operator and nonlinear

operator in A-SSM and S-SSM, we can readily see

e∆zD̂e∆zN̂ = exp

(
∆z(D̂ + N̂) +

1

2
∆z2

[
D̂, N̂

]
+ · · ·

)
, (1.12)

e∆zD̂/2e∆zN̂e∆zD̂/2 = exp

(
∆z(D̂ + N̂) +

1

6
∆z3

[
N̂ +

D̂

2
,

[
N̂ ,

D̂

2

]]
+ · · ·

)
. (1.13)

It can be seen all other terms except the first one are error terms. Therefore, when the

computation requires high accuracy, S-SSM is more accurate than A-SSM since its major

error term is a third-order function of ∆z.

The accuracy of the SSFM can be further improved by using an iterative procedure

to calculate the nonlinear operator [3]. Hereafter, for simplicity, we restrict our discussion

to non-iterative S-SSM. Non-iterative symmetric SSFM takes a half step implementing

dispersion, and then takes a full step adding nonlinear effects, and finally takes another

half step implementing dispersion again [5]:

A(z + ∆z, T ) ≈ exp(∆zD̂/2) exp(∆zN̂(z + ∆z/2)) exp(∆zD̂/2)A(z, T ) . (1.14)

In non-iterative S-SSM, the linear and nonlinear operators are defined as

F
{

exp(∆z/2D̂)A(z, T )
}

= exp

[
−a∆z

4
+ j

(
β2ω

2

2
− β3ω

3

6

)
∆z

2

]
A(z, ω) , (1.15)

N̂(z + ∆z/2) = jγ|A(z + ∆z/2, T )|2 . (1.16)

Accordingly, there are one back-and-forth Fourier transforms during each step adapta-

tion [3].

Â(z + ∆z/2, ω) = e−α∆z/4HD(ω)F [A(z, T )] , (1.17a)

Â1(z + ∆z/2, T ) = F−1[Â(z + ∆z/2, ω)] , (1.17b)

Â2(z + ∆z/2, T ) = exp(j∆zγ|Â1(z + ∆z/2, T )|2)

× Â1(z + ∆z/2, T ) , (1.17c)

A(z + ∆z, ω) = e−α∆z/4HD(ω)F [Â2(z + ∆z/2, T )]. (1.17d)
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where F is the Fourier transform operator, F−1 is the inverse Fourier transform operator,

and HD(ω) is the frequency response including dispersion-related effects, that is,

HD(ω) = exp

[
j

(
β2ω

2

2
− β3ω

3

6

)
∆z

2

]
,

−ωs/2 ≤ ω < ωs/2 . (1.18)

where ωs is the sampling frequency. Although Fourier transform and inverse Fourier trans-

form can be implemented efficiently by virtue of FFT and IFFT, the computational cost is

still high when a large of number of input samples are processed. In the next section, we

will introduce the time-domain split-step approach, which avoids back-and-forth Fourier

transforms and therefore reduces computational complexity while maintaining high accu-

racy.

1.2 Time-Domain Split-Step Methods

Although SSFM is widely used in practice, it suffers from high computational overhead,

huge memory usage and time aliasing [12]. Time-domain split-step methods were proposed

to overcome these shortcomings.

Firstly, SSFM becomes computationally expensive when it incorporates many steps

and for each step, the discrete-time input signal consists of a large number of samples.

Even if fast Fourier transforms (FFT) and inverse fast Fourier transforms (IFFT) are used

to compute DFT and IDFT, they can still place much overhead on float-point units and

system memory. On the contrary, time-domain approaches are exclusively implemented in

the time domain instead of toing and froing between the two domains. Therefore, it saves

system memory and computer operations by replacing large-point FFT and IFFT with a

digital filter that is significantly shorter than the input signal.

Secondly, SSFM has the problem of time aliasing unless it takes large-point DFT’s

and IDFT’s, which also cause high computational complexity and memory usage. After

multiplying the DFT of the input sequence with the dispersion filter, the output sequence

from IDFT is essentially a circular convolution instead of a linear convolution. The output

signal of the latter is always longer than that of the former even if zero-padding is used(The

difference is actually equal to the length of the input signal minus one). Therefore, these

two convolutions are never identical to each other, implying that time aliasing is inevitable.
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It is true that increasing the point number of DFT (by zero-padding) and IDFT (by taking

more frequency samples) can overcome this weakness to some extent; however, this would in

turn generate more time samples in each step, and therefore causes higher computational

complexity and memory usage. In contrast, time-domain approaches work in the time

domain exclusively, avoiding the time-aliasing problem accompanied with frequency-domain

approaches.

Therefore, time-domain split-step methods are superior to SSFM in computational com-

plexity and numerical accuracy. Time-domain methods replace the dispersion operator with

an FIR filter, which means that (1.17a), (1.17b) and (1.17d) are respectively replaced by

Â1(z + ∆z/2, T ) = hD(T )⊗ A(z, T ) exp(−α∆z/4) , (1.19)

A(z + ∆z, T ) = hD(T )⊗ Â2(z + ∆z/2, T ) exp(−α∆z/4) . (1.20)

Here, the operator ⊗ represents convolution and hD(T ) is a time-domain filter which has

the same effects as the frequency response in (1.18). The back-and-forth Fourier transforms

and frequency-domain multiplications have been replaced by two time-domain convolutions.

In practice, this is implemented in the discrete-time domain, where convolution reduces to

convolution sum involving shifts and multiplications [12].

1.3 Contributions in This Thesis

Since all split-step methods for fiber simulations and digital backpropagation algorithms

use the same nonlinear models, the problem of designing a time-domain method is reduced

to that of finding an optimal or suboptimal discrete-time linear filter with low complexity

and yet small error.

An IIR filter takes a restricted form of rational fraction and therefore only allows for

either a very small step size or a narrow fitted bandwidth [6]. A “broad-band” FIR filter

proposed in [12] matches the desired response over a wider band in a least-square sense,

with the error measured at a discrete set of frequency points. Theoretically, the fitting error

can be made arbitrarily small by increasing the filter order, so that the step size only needs

to ensure that “split-step” itself is reliable. However, this approach measures the errors

at a discrete set of frequency points instead of a continuous interval, which introduces an

error floor itself. thereby placing a fundamental limit on error performance. The level of
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this error floor is determined by the number of points taken in the frequency domain, no

matter how large the order of the FIR filter grows. By taking more discrete frequency

points, one can lower this error floor but would also increase complexity. A recent method

based on Tukey windows applies a Tukey window in the frequency domain, transforms

back to the time domain and then multiplies another discrete-time Tukey window [13].

This controls the fitting error efficiently and reduces the filter order at the same time

Furthermore, the step size and the filter length can be optimized to minimize the overall

computational complexity. Nonetheless, this approach takes the restricted forms of double

Tukey windows, which limits the freedom of design to two parameters. Since the error

is a highly nonlinear function of these parameters, no closed-form solution exists and an

exhaustive search can be time-consuming.

In this thesis, we focus on the optimal design of an FIR filter used as the time-domain

implementation for the dispersion and dispersion slope characteristics. Our objective is to

minimize the integral of the squared error between the frequency response of the FIR filter

and the desired response over the band of interest. Unlike the work in [12], the sum of

errors taken at discrete points is replaced by a numerical integral, which can be computed

based on adaptive integration techniques such as Gauss-Kronrod quadrature formula [25].

This reduces the error floor to the order of 10−15. Moreover, since no structural constraint

is imposed on the FIR filter, this approach can explore all the degrees of freedom provided

by the FIR filter. This least-square problem can be solved in two different approaches.

In the first approach, this problem is reduced to that of solving a system of linear equa-

tions, i.e., the normal equation. Its Toeplitz structure enables fast computation based on a

recursive Levinsion-Durbin-like algorithm. This algorithm explicitly generates the optimal

filters of order 1, 2, . . . , n in an iterative manner, with a total computational complexity

of O(n2). Henceforth, an implicit search for optimal order is naturally included, whereas

searching from 1 to n based on the Gaussian elimination method requires O(n4). In the

second approach, the solution is derived based on the singular value decomposition (SVD)

of a quasi-matrix. This approach provides geometrical, physical and mathematical insights

into this problem and its solution. Geometrically, we find that the frequency response

of the optimal filter is the orthogonal projection from the desired dispersion filter to the

subspace spanned by a subset of discrete prolate spheroidal wave functions (DPSWF). In

parallel, the optimal filter is a linear combination of the time-domain counterparts of these

DPSWFs, namely, a set of index-limited discrete prolate spheroidal sequences (DPSS).
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Mathematically, the theory of DPSS and DPSWF reveals that in the previous normal

equation approach, the system of linear equations is usually ill-conditioned, which is not

recognized in previous works such as [12]. Under such circumstances, the solution could

be sensitive to numerical errors and could also generate overshoots outside the band of

interest, which can be transformed back in band by the nonlinear operations.

With this consideration in mind, we proposed two approaches to mitigate these short-

comings. Firstly, we add a regularization term to the objective function to provide ro-

bustness for the solution. The resulting filter can also suppress overshoots by increasing

its length; however, we improve it by imposing a maximum magnitude constraint on the

frequency response to control overshoots more efficiently. The resulting quadratically con-

strained quadratic programming (QCQP) problem can be readily solved by state-of-the-art

interior-point methods [26, 27]. The single channel and wavelength-division multiplexing

(WDM) simulations verify that the output signals generated by the proposed regularized

LS filter and QCQP-based filter are almost the same as those by SSFM, even after propa-

gating thousands of kilometers. Afterwards, the proposed filters are used in time-domain

digital backpropagation algorithms to mitigate the impairments caused by dispersion and

nonlinearities [28, 29, 30].

For a given error tolerance, we establish the relationship between the required filter

order and several parameters both theoretically and numerically. Based on the one-to-

one correspondence between group delay and instantaneous frequency, we derive a tight

lower bound of the filter order as a linear function of the step size, whose validity is also

verified by numerical experiments. This can simplify the task of choosing the step size

from the perspective of reducing computational complexity. As the step size increases,

the filter order also increases and the total number of split steps decreases. Consequently,

the total computational complexity of linear convolutions is approximately a constant or

more strictly, on the same order. Therefore, a constant step can be simply chosen as the

maximum value allowed by the “split-step” itself [3, 5].

The proposed optimal filters reduce the total computational complexity, both when

extracting the filter and implementing linear convolutions. On the one hand, the un-

constrained regularized LS filter is the solution of a Toeplitz system. This enables a fast

modified Levinson-Durbin algorithm with the complexity of O(n2). The QCQP-based filter

can be computed with efficient interior-point methods. On the other hand, the computa-

tional complexity of linear convolutions depends exclusively on the filter length. Numerical
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simulations show that the QCQP-based filter saves at least 1/3 of the total filter order

when compared with most recent work [13]. Moreover, there is a complexity trade-off be-

tween the unconstrained regularized LS filter and QCQP-based filter if overshoot control

is required: the former is easier to extract but the latter is shorter. The choice depends on

whether the filter needs to be regenerated frequently or not. In addition, we also introduce

the overlap-add method that can reduce the computational complexity of the linear con-

volutions from O(PM ′) to O(P (logM ′)), where P is the length of input signal and M ′ is

the filter order.

The following notations are used throughout this thesis: an italic letter represents a

scalar; a boldface lowercase letter refers to a vector; a boldface uppercase letter denotes a

matrix. (·)T or (·)H represents transpose or conjugate transpose of a matrix. ‖ · ‖ means

the norm of a vector or matrix. I is an identity matrix of appropriate dimension. The

operator ⊗ represents convolution. The imaginary unit is denoted by j; <(·) and =(·) are

real and imaginary parts of a complex number; | · | and ∠(·) represents the magnitude and

phase.

1.4 Organization of Thesis

The thesis is organized as follows:

• Chapter 2: Optimal Design of the Dispersion FIR Filter

In this chapter, we formulate the optimization problem and develop two different

methods to solve this problem: one is the normal equation approach and the other

is based on the singular value decomposition (SVD). The former is more suitable for

implementation, whereas the latter provides geometrical and mathematical insights

into the solution of this problem based on the theory of DPSS and DPSWF.

• Chapter 3: Numerical Issues and Modified Filters

This chapter begins with theoretical and numerical experiments that reveal the ill-

conditioned property of the LS problem in certain instances. The LS filter could also

generate overshoots that lead to unreliable results after propagating through long

distances. Two modified filters are introduced to mitigate these numerical problems.

We first add a regularization term to the objective function to provide robustness and
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introduce the fast MLD algorithm. Then, to suppress overshoots more efficiently, a

maximum magnitude constraint is enforced on the frequency response, which can be

formulated into a standard QCQP problem. The issue of filter order is discussed at

the end of this chapter.

• Chapter 4: Time-Domain Simulations of Pulse Propagation in Optical

Fiber

The proposed filters are verified based on several simulations of single channel and

WDM systems. We also introduce the overlap-add and overlap-save method that can

reduce the computational complexity significantly.

• Chapter 5: Time-Domain Backpropagation for Fiber Impairment Com-

pensation

In this chapter, the proposed filters are used to design time-domain digital back-

propagation algorithms. The simulation results show that these algorithms can effec-

tively compensate dispersion and nonlinearities, thereby improve the performance of

fiber-optic communication systems.

• Chapter 6: Conclusions
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Chapter 2

Optimal Design of the Dispersion

FIR Filter

In this chapter, we consider the optimal design of the dispersion FIR filter in a least square

sense. We will consider two approaches to solve this problem, one is normal equation and

the other is based on the quasi-matrix SVD. The resulting optimal solution is discussed

and analyzed based on the theory of DPSS.

2.1 Problem Formulation

Since nonlinear processing does not vary from one to another approach in time-domain

split-step methods, the main problem is to design a discrete-time filter which mimics the

dispersion and dispersion slope characteristics in (1.18). In other words, here we want to

design an FIR filter with unit response h(n) whose frequency response is close to that of

desired response hD(n). For notational simplicity and discussion convenience, we assume

that the index n takes the integer values from −M to M and thus the number of order is

2M + 1. This is from the consideration that second-order dispersion often dominates over

third-order terms and therefore h(n) is close to being symmetric, that is, h(−n) ≈ h(n).

The discrete-time Fourier transform (DTFT) of h(n) is

H(ejω) =
M∑

n=−M

h(n)e−jnω , −π ≤ ω < π . (2.1)

2011/09/29
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This expression is with respect to the normalized frequency ranging from −π to π. To

be consistent with the literature, we rewrite it as a function of the physical frequency as

follows

H(ejωTs) =
M∑

n=−M

h(n)e−jnωTs = aH(ω) h ,−ωs
2
≤ ω <

ωs
2
, (2.2)

where Ts is the sampling period, and ωs is the sampling frequency satisfying ωsTs = 2π.

We define

h = [h(−M), h(−M + 1), · · · , h(M)]T , (2.3)

a(ω) = [e−jωMTs , e−jω(M−1)Ts , · · · , ejωMTs ]T , (2.4)

where (·)T represents transpose of a matrix. A good FIR filter should match the desired

dispersion and dispersion slope characteristics as much as possible. Herein, we are inter-

ested in a partial band, [−ωc, ωc], instead of the whole band [−ωs/2, ωs/2]. The effective

bandwidth ratio is defined as µ = 2ωc/ωs ≤ 1 and this versatile formulation includes the

whole band as a special case when µ = 1. The rationale of this “partial-band” approach

is to “squeeze” the ripples out of the band of interest by sacrificing the uninterested band,

which will become evident later.

In order to formulate a mathematically tractable problem, we use the squared error

as the measure of the difference between the frequency response in (2.2) and the desired

response Hd(ω) in (1.18). Our objective is to minimize the integral of this squared error

over the frequency range of interest, that is

ELS(h) =
1

2ωc

∫ ωc

−ωc

∣∣HD(ω)−H(ejωTs)
∣∣2 dω

= 1− bHh− hHb + hHAh , (2.5)

where b ∈ C(2M+1)×1 and A ∈ C(2M+1)×(2M+1) are defined as follows

b =
1

2ωc

∫ ωc

−ωc

HD(ω)a(ω)dω , (2.6)

A =
1

2ωc

∫ ωc

−ωc

a(ω)aH(ω)dω . (2.7)

Note that b is actually equal to 1/µ times the inverse DTFT of HD(ω), which implies that
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it is a truncation of the sequence whose spectrum is the desired response, except by a scale

factor of 1/µ. We also introduce an alternative notation for this problem based on the

concept of quasi-matrix from Stewart[31], Battles and Trefethen[32, 33]. Herein, we define

an “∞× (2M + 1)” matrix F whose “columns” are the continuous function, fk(ω), namely,

F = [f−M , f−M+1, · · · , fM ] , (2.8)

where fk is not a vector in the Euclidean space, but an infinite-dimensional “vector” whose

entries are all the function values of fk(ω) in the interval [−ωc, ωc]:

fk(ω) = e−jkωTs , −ωc ≤ ω ≤ ωc . (2.9)

These “vectors” satisfy

‖fk‖2
2 =

∫ ωc

−ωc

|fk(ω)|2 dω =

∫ ωc

−ωc

fk(ω)f ∗k (ω)dω <∞ , (2.10)

and form a subspace of the Hilbert space L2 (the space of complex signals with finite energy

on the interval [−ωc, ωc]), denoted as F2. The inner product of two infinite-dimensional

vectors, g1 and g2, is defined as

(g1,g2) = gH2 g1 =

∫ ωc

−ωc

g1(ω)g∗2(ω)dω . (2.11)

Similarly, HD is a “∞×1” quasi-vector whose “column” is the desired response HD(ejω),

where ω ∈ [−ωc, ωc]. Therefore, the problem of designing the FIR filter reduces to that of

finding an h such that

Fh = HD . (2.12)

This is an overdetermined equation, i.e., there are a finite number of unknowns but an

infinite number of equations. Two cases can arise for the solutions:

1. If HD ∈ F2, there exists an exact solution to this problem. However, this rarely holds

for overdetermined problems, especially infinite-dimensional ones.

2. If HD /∈ F2, no exact solution exists for this problem. In this case, we can only find

a h such that the two sides of this equation is as close as possible.
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If we use the 2-norm of the error vector to measure the difference, the error function

can be rewritten as

ELS(h) =
1

2ωc
‖HD − Fh‖2

2 , (2.13)

which is in essence the same as (2.5). The relationship between between A, b and F, HD

are

A =
1

2ωc
FHF , (2.14)

b =
1

2ωc
FHHD . (2.15)

Note that the above quasi-matrix descriptions are for notational convenience only, more

rigorous mathematical formulation can be built based on the SVD of bounded operators

on Hilbert spaces[34].

Therefore, the problem of FIR filter design reduces to an unconstrained optimization

problem, namely,

min
h
ELS(h) . (2.16)

It is worth mentioning that the “broad-band” FIR approach proposed in [12] solves a similar

problem. However, the objective function is taken as the sum of squared errors at a set

of uniformly sampled frequency points, which can introduce an error floor itself, thereby

placing a fundamental limit on the error performance. Our approach uses the integral over

the band of interest which is more accurate. More importantly, we realize the importance

of DPSWF and DPSS in this problem, explain the physical meanings behind its solution,

and discover the ill-conditioned nature of this problem, which is missing from previous

work. We also recognize the Toeplitz structure and provide a significantly faster recursive

implementation.

2.2 Optimal Solution of Unconstrained Filter Design

2.2.1 Normal Equation Approach

The unconstrained minimization problem in (2.16) is a convex optimization problem since A

is Hermitian positive definite (as shown later). Henceforth, its local minimizer (stationary
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point) is also the global minimizer, i.e., we can find the solution by taking the derivative of

(2.5) with respect to h∗ and setting it to zero[35]. From this, the optimal solution satisfies

the following normal equation,

Aho = b , (2.17)

and the error is

Emin = 1− bHA−1b . (2.18)

The equation in (2.17) has a unique solution because A is nonsingular. However, b can

only be calculated numerically and is thus subject to small perturbation. If A is well-

conditioned, the solution can be obtained as ho = A−1b, based on any standard method of

solving linear equations. Nonetheless, if A is ill-conditioned, the solution may deviate from

the exact solution dramatically. The entries of A can be derived from (2.7), expressed as

Amn =
1

2ωc

∫ ωc

−ωc

am(ω)a∗n(ω)dω =
sin[ωc(m− n)Ts]

ωc(m− n)Ts
,

m, n = 1, 2, · · · , 2M + 1 , (2.19)

where (·)mn represents the entry of a matrix in the mth row and nth column. Obviously, A

is a Hermitian (symmetric) Toeplitz matrix. As it will be shown later, this Toeplitz prop-

erty enables an implementation of solving (2.17) that is dramatically faster than Gaussian

elimination. From (2.6) and (2.4), each entry of the column vector b is given by

bk =
1

2ωc

∫ ωc

−ωc

exp

[(
j
β2ω

2

2
− j β3ω

3

6

)
∆z + jωkTs

]
dω ,

k = −M,−(M − 1), · · · ,M − 1,M . (2.20)

A broad family of algorithms are available for calculating the integral numerically[25]. We

use a high-order global adaptive quadrature method with a given (relative) error tolerance

as low as 10−15. Specifically, Gauss-Kronrod quadrature formulas are used, which is the

most efficient for oscillatory integrands. This approach reduces the numerical error, while at

the same time reduces computational complexity when compared to the discrete-frequency

approach in [12] which is actually a Riemann integral.
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2.2.2 Quasi-Matrix SVD Approach

The singular value decomposition (SVD) can be generalized to the quasi-matrix F, which

is in essence the SVD of the bounded operator F on a Hilbert space. Here, we explain this

concept in a leisure style. The quasi-matrix F can take the following form[33],

F = UΣVH , (2.21)

where U is an “∞ × (2M + 1)” quasi-matrix, V is a “(2M + 1) × (2M + 1)” unitary

matrix, and Σ is an “(2M + 1) × (2M + 1)” diagonal matrix with its diagonal entries,

i 6= j, and 〈Σ〉ii = σi ≥ 0, i = 1, 2, · · · , (2M + 1), sorted in a decreasing order. The column

“vectors” of the quasi-matrix U are a set of orthogonal basis functions U0(ω), · · · , U2M(ω)

(or interchangeably, U0, . . . ,U2M) for F2, i.e., the subspace spanned by the column vectors

of F. Then we define orthogonal complement of this subspace with respect to L2 as O2.

The columns of the matrix V, namely, v0, · · · ,v2M , are a set of orthonormal index-limited

sequences. The singular values σi are all positive and we postpone the explanation later.

The relationship between the sequence vk and the function Uk is

Fvk = UΣVHvk = σkUk . (2.22)

This means that Uk(ω) is the discrete-time Fourier transform of vk scaled by a factor of

1/σk.

It is well-known that the solution of the LS problem in (2.13) based on the SVD is[36, 33]

ho = VΣ−1UHHD . (2.23)

Here, we have used the fact that Σ is of full rank. Substituting this solution into (2.13),

the corresponding error becomes

ELS(ho) =
1

2ωc
‖(I−UUH)HD‖2

2 , (2.24)

where I is an “∞×∞” quasi-matrix. We define the residual vector as

r = HD − Fho = (I−UUH)HD . (2.25)
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Here, we have used the fact that Σ is of full rank. Based upon the quasi-matrix SVD of F,

we can obtain

A =
1

2ωc
FHF =

1

2ωc
VΣHΣVH , (2.26)

b =
1

2ωc
FHHD =

1

2ωc
VΣUHHD . (2.27)

Substituting (2.26) and (2.27) into the solution of the normal equation ho = A−1b, we

can observe that these two approaches lead to exactly the same solution. Actually, these

two methods are related to each other. The merit of this SVD approach will not become

evident until we introduce the concept of DPSS and DPSWF.

2.3 DPSS’s and DPSWF’s

Although the optimal solution has been derived based on the SVD of the quasi-matrix F,

the matrices U, V and Σ remain unknown. Interestingly, these matrices are expressed by

the famous discrete prolate spheroidal sequences (DPSS’s) and discrete prolate spheroidal

wave functions (DPSWF’s). Fourier theory establishes a fact that, except for the all-

zero sequence, a sequence can not be both index-limited and band-limited. However, this

property is often desirable in many applications. As early as in 1978, Slepian investigated

the extent to which a time-domain sequence can be concentrated both in a finite index

set and in a subinterval of the fundamental period of the spectrum[37]. This leads to the

theory of DPSS and DPSWF, which explains the fundamental aspects of our problem.

The theoretical framework of DPSS starts from solving an optimization problem. In a

strict sense, a time-domain sequence is band-limited with a bandwidth of 2ωc if its spectrum

vanishes for ωc < |ω| < ωs/2. Since the sequence h(n) is index-limited in the interval

−M ≤ n ≤ M , it is impossible for its frequency spectrum (response) H(ejωTs) as defined

by (2.2) to satisfy this condition. A parameter λ can be introduced to describe the extent

to which H(ejωTs) is concentrated within the frequency interval [−ωc, ωc]. It is defined as

the ratio of the energy in this band and the total energy in the band [−ωs/2, ωs/2], that is,

λ =

∫ ωc

−ωc
|H(ejωTs)|2dω∫ ωs/2

−ωs/2
|H(ejωTs)|2dω

. (2.28)
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The objective is to find an index-limited sequence h(n), so as to maximize this spectral

concentration factor λ.

The answer turns out to be elegant and insightful. It not only solves this single problem,

but also provides the framework to tackle a variety of problems. Specifically, it generates

the SVD of the quasi-matrix F and gives some insights into the behaviors of the singular

values of F and the eigenvalues of A, which would otherwise not be obvious. The key

to understanding this problem is finally stated in terms of 2M + 1 nonzero concentra-

tion factors, λk, their associated index-limited DPSS’s, vk(n), and DPSWF’s, ψk(ω), for

k = 0, 1, · · · , 2M . These values, sequences and functions satisfy the following attractive

properties:

1. There are totally 2M +1 distinct, real and positive concentration factors, all between

0 and 1, expressed in order as

1 > λ0 > λ1 > · · · � · · · > λ2M > 0 . (2.29)

More importantly, a majority of them are distributed in two clusters, approximately

d(2M + 1)µe of them stay near 1 and the others near 0, where dxe is the smallest

integer not less than x. A very small number of λ’s are intermediate values.

2. The DPSS’s vk(n) for k = 0, 1, · · · , 2M , are a set of orthonormal real basis sequences

for the (2M + 1)-dimensional sequence space, that is,

vHp vq =
M∑

n=−M

vp(n)vq(n) = δpq , (2.30)

for any two integers p, q = 0, 1, · · · , 2M , and vk = [vk(−M), vk(−M+1), · · · , vk(M)]T .

The function δpq is the Kronecker delta whose value is 1 if p = q and zero otherwise.

The concentration factor associated with the band [−ωc, ωc] for the sequence vk(n)

is equal to λk. This implies a surprising but simple fact: the space of index-limited

sequences who are almost band-limited, i.e., constrained in the time-frequency box

[−MTs,MTs] × [−ωc, ωc], is not a trivial subspace (zero subspace), but has an ap-

proximate dimension of d(2M + 1)µe. The first d(2M + 1)µe DPSS’s whose λ values

are close to 1 serve as a set of basis sequences for this subspace.



2.3 DPSS’s and DPSWF’s 25

3. The DPSWF ψk(ω) is the DTFT of the corresponding DPSS vk(n), up to a complex

scalar, namely,

ψk(ω) = εk

M∑
n=−M

vk(n)ejnωTs , (2.31)

where εk = j (imaginary unit) for k odd, and εk = 1 for k even and this plays the

role in making both vk and ψk(ω) real. The IDTFT expression is

vk(n) =
1

εkωs

∫ ωs/2

−ωs/2

ψk(ω)e−jnωTsdω . (2.32)

Since the DPSS’s are orthonormal to each other, the DPSWF’s satisfy the similar

property because Fourier transform preserves orthogonality, that is

1

ωs

∫ ωs/2

−ωs/2

ψp(ω)ψq(ω)dω = δpq . (2.33)

Moreover, the DPSWF’s are also orthogonal in the interval of [−ωc, ωc], which implies

1

ωs

∫ ωc

−ωc

ψp(ω)ψq(ω)dω = λpδpq . (2.34)

4. The DPSS’s and DPSWF’s satisfy the following sum and integral equations:

M∑
m=−M

sin[ωc(n−m)Ts]
ωs

2
(n−m)Ts

vk(m) = λkvk(n) , (2.35)

1

ωs

∫ ωc

−ωc

sin
[
Ts(ω − ω′)2M+1

2

]
sin
[
Ts(ω − ω′)1

2

] ψk(ω
′)dω′ = λkψk(ω) . (2.36)

More specifically, the DPSS’s are the eigenvectors of a matrix (actually, a scaled

version of A) and the DPSWF’s are the eigenfunctions of the integral equation.

From (2.34), we know that the DPSWF’s form a set of orthogonal basis functions for

the subspace F2. They can be normalized to a set of orthonormal basis functions Uk(ω) in
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the following form

Uk(ω) =
1

εk
√
ωs

ψk(ω)√
λk

, −ωc ≤ ω ≤ ωc . (2.37)

This functional subspace is the frequency-domain counterpart of the (2M + 1)-dimensional

space of index-limited sequences. The Fourier-pair relationship in (2.31) can be written in

a compact form

F[v0, . . . ,v2M ] =
√
ωs[U0, · · · ,U2M ]Λ1/2 , (2.38)

where Λ = diag {λo, . . . , λ2M} is a diagonal matrix with λk as its diagonal entries, and Uk

is the quasi-vector containing all the function values of Uk(ω) in [−ωc, ωc]. The square root

of a diagonal matrix is defined by taking the squared root of its diagonal entries. Define

V = [v0, . . . ,v2M ] and U = [U0, . . . ,U2M ], and right multiply VH to both sides of (2.38),

we can obtain the final expression for the SVD of F as

F =
√
ωs UΛ1/2VH . (2.39)

The singular matrix Σ defined in (2.21) is equal to
√
ωsΛ

1/2. Hence, we have already

derived the explicit expression for the SVD of the quasi-matrix F, based on the properties

of DPSS’s and DPSWF’s.1 From either (2.19) and (2.35), or the above SVD form and

(2.26), we also have

Avk =
λk
µ

vk , (2.40)

which means that vk’s are the eigenvectors of matrix A in (2.7), and λk/µ are the corre-

sponding eigenvalues. This means that A is Hermitian positive definite.

2.4 Geometrical Explanation of the Optimal Solution

Thus far, we can rewrite the optimal solution in (2.23) as

ho =
2M∑
k=0

(
UH
k HD

)
× vk√

ωsλk
=

2M∑
k=0

h′k ×
vk√
ωsλk

. (2.41)

1However, the DPSS’s and DPSWF’s themselves do not have closed-form expressions except for em-
pirical formulas. Therefore, the SVD approach can only provides geometrical and mathematical insights.
Computing the optimal filter still requires solving the normal equation.
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...

Fig. 2.1 Schematic block diagram of the least square filter design with
HD(ω) as input and Ho(e

jωTs) as output, which is the frequency response
of the optimal filter.

The quantity h′k = UH
k HD represents the kth coordinate of HD along the direction of

Uk, which is obtained by computing the inner product of the desired vector HD and the

unit vector Uk(ω). The vector vk/
√
ωsλk is the time-domain corresponding vector of the

frequency response Uk. Its geometrical meaning becomes more evident when considering

the frequency response of ho, which is

Ho(e
jωTs) = Fho = UΣVHVΣ−1UHHD(ω)

= UUHHD(ω) =
2M∑
k=0

(
UH
k HD

)
×Uk , (2.42)

where the sum expression is the frequency domain counterpart of (2.41). We recognize that

the matrix UUH is the projection matrix onto the subspace F2 = span{f−M , f−M+1, · · · , fM}.
In essence, the frequency response of the least-square solution is the orthogonal projection

of desired frequency response HD onto the set of orthonormal basis frequency responses, i.e,

the normalized DPSWFs U0(ω), · · · , U2M(ω) of the subspace F2[−ωc, ωc]; and the optimal

filter is the corresponding linear combination of the corresponding sequences. This process

is illustrated by the block diagram in Fig. 2.1. The DPSSs can be viewed as a basis and

the coordinates serve as the weights to construct the optimal ho. Substituting (2.14) and

(2.15) into the normal equation (2.17), we have

FH(HD(ω)− Fho) = FHr = 0 , (2.43)
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Fig. 2.2 Geometrical interpretation of optimal solution. L2 is the complete
space of frequency responses, and F2 is a subspace of L2 spanned by the
DPSWFs whose energy in the interval of [−ωc, ωc] have been normalized.

where r = HD(ω)− Fho is defined as the residue error quasi-vector (or response) between

the desired frequency response and the optimal response. This expression in (2.43) means

that the residue error is orthogonal to the subspace F2, which is geometrically illustrated in

Fig. 2.2. The error vector r is perpendicular to the hyperplane representing F2 and therefore

the optimal frequency response has the shortest distance from the desired response among

all candidates in F2.

2.5 Performance Comparison with Windowing Methods

Windowing methods construct the filter response h by multiplying the desired response with

a frequency-domain window in the interval of [−ωs/2, ωs/2], transforming back to a time

domain sequence using IDTFT, and then applying a time-domain window in the interval

of [−M,M ] to this sequence. In matrix notations, this is equivalent to multiplying three

matrices to the desired response sequentially, a diagonal quasi-matrix, the IDTFT quasi-

matrix, and a diagonal (2M + 1)× (2M + 1) matrix. Owing to this structural constraint,

this approach cannot outperform the optimal method proposed in this paper, especially if

the windows are chosen as being determined by only a few parameters.

For example, the simplest windowing method is to truncate the desired response using

the rectangular frequency windows [−ωc, ωc], transform back to a time domain sequence us-

ing IDTFT, and truncate this sequence with the rectangular time-domain window [−M,M ].
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The resulting filter can be expressed as

hrec =
1

ωs
FHHD . (2.44)

The frequency response of this filter is given by

Hrec(e
jωTs) =

1

ωs
FFHHD = UΛUHHD(ω) , (2.45)

which is a projection of HD, but not an orthogonal projection onto the subspace F2. Herein,

the coordinates obtained from UHHD are not immediately used to construct the optimal

filter, but are scaled linearly. To quantify the difference between the IDTFT approach and

the least square approach, we write their errors as follows:

Erec =
1

2ωc
‖(I−UΛUH)HD(ω)‖2

2 , (2.46)

ELS =
1

2ωc
‖(I−UUH)HD(ωc)‖2

2 . (2.47)

Note that UHU = I but UUH 6= I. The difference between these two errors ∆E =

Erec − ELS is given as follows:

∆E =
1

2ωc
HH
D(ω)U(I−Λ)2UHHD(ω)

=
1

2ωc

2M∑
k=0

|H ′k|2(1− λk)2 > 0 . (2.48)

Therefore, the optimal filter is always better than the IDTFT method. The relative error

difference is highly dependent on the form of HH
D(ω), and it happens that for the desired

dispersion and dispersion slop frequency response studied in this paper, Erec is much larger

than ELS.

2.6 Summary

We have considered the optimal design of an FIR filter as the time-domain implementation

for the dispersion and dispersion slope characteristics. The objective was to minimize

the integral of the squared error between the FIR response and the desired response over
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the band of interest, which can be computed based on adaptive integration techniques

such as Gauss-Kronrod quadrature. This reduces the error floor to the order of 10−15

without adding computational complexity. This least square (LS) problem was solved in

two approaches: the normal equation approach gives an explicit solution; the singular value

decomposition (SVD) approach provides geometrical insights, based on the theory of DPSS.

The introduction of DPSS also reveals several numerical problems that will be discussed in

the next chapter.
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Chapter 3

Numerical Issues and Modified

Filters

The optimal filter has been derived based on the normal equation approach and the SVD ap-

proach; however, the theory of DPSS reveals that in certain instances, the normal equation

could be ill-conditioned. Hereafter, several techniques are introduced to mitigate various

numerical problems. We first add a regularization term to the objective function to provide

robustness and introduce the fast MLD algorithm. Then, to suppress singular behaviors in

the frequency domain such as overshoots, a maximum magnitude constraint is enforced on

the frequency response, which can be formulated into a standard QCQP problem.

3.1 The Condition Number of A

The normal equation (2.17) is well-suited to solve the optimal filter response ho. The-

oretically, this equation can be solved trivially by matrix inverse; computationally, how-

ever, there can be numerical problems. This system of linear equations is said to be

ill-conditioned if a small perturbation in A and (or) b can lead to a large change in the

solution ho. Since b is estimated using numerical integration, it cannot avoid the errors

caused by the adaptive quadrature methods. Although A has an explicit expression, com-

puting its entries is still subject to roundoff errors. These small errors could be amplified

significantly in the solution if the problem is ill-conditioned.

This depends on the properties of A, or more specifically, its condition number. which

is defined as the ratio of the maximal to minimal singular value. In this special case, since
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Fig. 3.1 The eigenvalues of µA: λk, k = 0, 1, · · · , 42. The time length is
65.625ps and effective bandwidth ratio µ = 0.2, 0.4, 0.6, 0.8, 0.99.

A is Hermitian positive definite, its singular values are the same as its eigenvalues and its

condition number is given by

κ(A) =
λmax(A)

λmin(A)
=

λ0

λ2M

, (3.1)

where µ has been canceled in this ratio. If κ(A) is very large, the problem in (2.17) is

ill-conditioned. Under this scenario, the small numerical error in b can be amplified by

inversion of matrix A, leading to large error in the solution.

The theory of DPSSs and DPSWFs states that λk are all distinct, real and positive,

with some of them clustered near 1, and the others near 0, except very few of them takes

intermediate values. This is illustrated in Fig. 3.1 for 2M + 1 = 43. The results for

different effective bandwidth ratios µ = 0.2, 0.4, 0.6, 0.8, 0.99 are included. The number of

eigenvalues near 1 is around (2M + 1)µ. Except when µ is in close proximity with 1, the

condition number tends to be significantly large, rending the problem ill-conditioned.

The contours of the logarithmic value of the condition number, i.e., ε = log10 κ(A),
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Fig. 3.2 Contours of the logarithmic value of the condition number,
log10 κ(A), with filter order 2M + 1 and effective bandwidth ratio µ.

versus log10(1− µ) and log10(2M + 1), is shown in Fig. 3.2. The effective bandwidth ratio

µ ranges from 0.2 to 0.99 and the filter order increases from 3 to 201. The logarithmic

scale is used such that these contours are close to straight lines. In this context, the whole

region is divided into two parts, namely, the well-conditioned region and ill-conditioned

region. For instance, if a matrix whose condition number is higher than 10ε is regarded as

ill-conditioned, then all µ and 2M + 1 satisfying

(2M + 1)(1− µ) ≥ 0.51ε+ 0.72 (3.2)

would approximately enclose an ill-conditioned region, i.e., the upper right triangular re-

gion. The borderline between these two regions is dependent on the numerical precision

used: a double-precision machine can tolerate higher condition numbers than a single-

precision machine, hence the ill-conditioned region would retreat towards the upper right

corner. Unfortunately, our problem does not usually fall in the well-conditioned area and

the algorithm needs to be modified in this scenario.
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Next, we analyze the effect of an ill-conditioned A on the squared error. For simplicity,

we assume that the exact A is used, and define the error of b as ∆b. The optimal solution

is h′o = A−1(b + ∆b) and the error function based on (2.5) is given by:

ELS(h′o) = 1− bHA−1b + ∆bHA−1∆b . (3.3)

In this expression, the first two terms represent the error due to the accurate ho, and the

last term is due to the error term ∆b. The eigenvalue decomposition of A leads to

∆bHA−1∆b = µ∆bHVΛ−1VH∆b =
2M∑
k=0

µ|vHk ∆b|2

λk
. (3.4)

Herein, we model the error vector as a zero mean circularly symmetric complex Gaussian

random vector with covariance matrix E
{

∆b∆bH
}

= 10−ζI. It is easy to verify that

E{|vHk ∆b|2} = 10−ζ . Because the eigenvalues can be close to 0, the summands could

be large. For example, the error of the vector b obtained from IFFT or Riemann sums

employing 106 points is typically on the order of 10−6. In this case, a small eigenvalue,

assuming 10−12, could induce an error term of order 1. Furthermore, this error might be

easily overlooked if one does not realize the inherent ill-conditioned property of A and uses

(2.18) to compute the error instead of (2.5).

From the above analysis, we conclude that the ill-conditioned property of A is critical

to this problem and we introduce a regularization-based approach to solve this issue.

3.2 Regularization

The problem that comes with the ill-conditioned A is that it can over-amplify the solution

A−1b. To mitigate this effect, we add a regularization term to the original LS error function:

E ′LS = ELS + ν‖h‖2 . (3.5)

This term lowers the norm of ho to some extent as controlled by the weighting parameter

ν. Taking the derivative with respect to h∗, the regularized optimal solution satisfies

(A + νI)ho = b . (3.6)
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The regularization coefficient is chosen such that the condition number is smaller than 10ε,

which is approximately equivalent to ν = 10−ε.

Next, we analyze the error of the solution ho due to the numerical error ∆b. When

using a perturbed b + ∆b, the error expression becomes

ELS(ho) = 1− bH(A + νI)−2(A + 2νI)b

− 2<{ν∆bH(A + νI)−2b}

+ ∆bH(A + νI)−1A(A + νI)−1∆b . (3.7)

where the first two terms are the error terms due to the limited filter order and the regu-

larization parameter ν, and the last two terms represent the effects of ∆b. The third term

is a zero-mean random variable whose variance satisfies

E
{(

2<(ν∆bH(A + νI)−2b
)2} ≤ E{|2ν∆bH(A + νI)−2b|2}

≤ 4ν2‖b‖2
2‖(A + νI)−2‖2

2E{‖∆b‖2
2}

≤ 4ν2

µ
(
λmin

µ
+ ν)−4(2M + 1)10−ζ , (3.8)

where we have used <(x) ≤ |x|, the Cauchy-Schwarz inequality |xHy|2 ≤ ‖x‖2
2‖y‖2

2,

‖Gx‖2 ≤ ‖G‖2‖x‖2, and the Parseval’s theorem ‖b‖2
2 ≤ 1/µ. In general, we let the

regularization coefficient ν satisfy ν � λmin, then the above expression is approximately

equal to 4ν−2(2M + 1)10−ζ/µ. The numerical error introduced by numerical integration

techniques can be as low as 10−14 (ζ = 28). In this case, if we let ν = 10−8, the variance

of the third term in (3.7) is still upper bounded by a term on the order of 10−12. In addi-

tion, the above inequalities will typically provide very loose upper bounds and even if ζ is

smaller, the third term is still controllable. Similarly, the fourth term satisfies

E{2ωc∆bHV(Σ2 + 2νωcI)−1Σ2(Σ2 + 2νωcI)−1VH∆b}

=
2M∑
k=0

E{|vHk ∆b|2}
λk
µ

+ 2ν + µν2

λk

≤ 1

4ν

2M∑
k=0

E{|vHk ∆b|2}

=
(2M + 1)10−ζ

4ν
. (3.9)

The above inequality is not tight because the equality only holds for λk = ν. If ν = 10−6,
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ζ = 28 and 2M + 1 = 101, this second-order error can still be controllable (on the order

of 10−20). In summary, the effect of ∆b has been efficiently suppressed by adding the

regularization term and therefore will not be considered in later discussions.

3.3 Fast Implementation: Modified Levinson-Durbin (MLD)

So far, by introducing the regularization term, we have successfully turned the original least

square problem into the problem of solving a well-conditioned system of linear equations,

i.e., (3.6). Matrix (A+νI) is a symmetric positive matrix of dimension (2M+1)×(2M+1).

More importantly, it is also a Toeplitz matrix where each descending diagonal from left to

right is constant, that is, ()m,n only depends on m − n. Henceforth, (A + νI) is uniquely

determined by the 2M + 1 entries in the first column (or row). This nice Toeplitz structure

enables a recursive approach of solving the linear equation in (3.6), which is significantly

faster than Gaussian elimination.

The general Levinson-Durbin algorithm was proposed by N. Levinson in 1947, and im-

proved by J. Durbin in 1960[38]. Its underlying principle is to start from solving a trivial

one-dimensional matrix equation and to obtain the solution of a (k + 1)-order Toeplitz

matrix equation recursively based on the solution of a k-order system. Therefore, this algo-

rithm can generate all the lower-order FIR filters when solving an n-dimensional equation,

with a total computational complexity of O(n2).

Our model has additional structural characteristics: the filter order is constrained to be

an odd number. Based on the same principle, we propose a modified version which explicitly

uses these additional structures. This algorithm increases the filter order by two per update,

one from above and the other from below, until it finds the lowest order needed to satisfy

the requirement on the fitting error, with a total complexity of O
(
(2M + 1)2

)
. In contrast,

the searching process for Gaussian elimination requires a total complexity of O((2M+1)4),

with the kth order alone consuming O(k3) operations [12]. The underlying principle of

Levinson-Durbin algorithm is compute a higher-order Toeplitz problem recursively, based

on the solution of a lower-order problem. It explicitly solves a set of problems from a

trivial one-order one, until up to the original order. The normal equation in (3.6) has

this nice Toeplitiz structure but ho has only an odd number of entries, which necessitates

our derivation of the following modified algorithm. We first introduce a few matrices and
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vectors before we derive the algorithm. The permutation matrix is

P =


0 0 1

0 . .
.

0

1 0 0

 .

The (2k + 1)-order reduced form of A is

A2k =


r(0) r(1) · · · r(2k)

r(1)
. . .

. . . r(2k − 1)
...

. . .
. . .

...

r(2k) · · · r(1) r(0)

 .

We also define the following column vectors:

r2k = [r(1), r(2), · · · , r(2k + 1)]T ,

h2k = [h−k, h−k+1, · · · , hk−1, hk]
T ,

b2k = [b−k, b−k+1, · · · , bk−1, bk]
T ,

and the Yule-Walker equation is

A2ky2k = −r2k (3.10)

where y2k ∈ C(2k+1)×1 will plays an important role in this iterative updating algorithm.

Our goal is to solve the linear equation A2Mh2M = b2M recursively. The zero order

equation A0h0 = b0 is a scalar equation and can be trivially solved. Next, we show how to

obtain the solution of A2k+2h2k+2 = b2k+2 from that of a lower-order system A2kh2k = b2k

and that of its accompanied Yule-Walker equation in (3.10). In each update, the filter

order increases from 2k + 1 to 2k + 3 and two coefficients b−k−1 and bk+1 are added to

the right-hand side, one from above and the other from below. At the same time, A2k is

augmented in four directions to form A2k+1, upward, leftward, downward, and rightward.

Our derivation follows two steps. Firstly, we apply an one-order update to A2k from

the left and the above, leading to a new equation A2k+1h2k+1 = b2k+1. It can be written
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in a block form as [
r(0) rT2k
r2k A2k

][
ξ1

Γ1

]
=

[
b−k−1

b2k

]
.

The second row, ξ1r2k + A2kΓ1 = b2k, leads to

Γ1 = A−1
2k (b2k − ξ1r2k) = h2k + ξ1y2k . (3.11)

Here we have used A2ky2k = −r2k and A2kh2k = b2k. Substituting back into the first row,

we have

b−k−1 = r(0)ξ1 + rT2kΓ1 = ξ1

(
r(0) + rT2ky2k

)
+ rT2kh2k ,

which results in

ξ1 = (b−k−1 − rT2kh2k)/(r(0) + rT2ky2k) , (3.12)

Therefore, this (2k+ 2)-order system of linear equations can be solved iteratively based on

the solutions of the (2k + 1)-order equations, A2ky2k = −r2k and A2ky2k = −r2k.

After obtaining h2k+1, the second step is to solve the equation A2k+2h2k+2 = b2k+2

using a similar block form [
A2k+1 Pr2k+1

rT2k+1P r(0)

][
Γ2

ξ2

]
=

[
b2k+1

bk+1

]
.

Similarly, it follows that

Γ2 = h2k+1 + ξ2Py2k+1 , (3.13)

ξ2 = (bk+1 − rT2k+1Ph2k+1)/(r(0) + rT2k+1y2k+1) . (3.14)

where we have used A2k+1y2k+1 = −r2k+1, A2k+1h2k+1 = b2k+1 and A−1
2k+1P = PA−1

2k+1

(Toeplitz).

Therefore, following the above two steps, the solution is updated using only matrix-

vector multiplications and scalar operations, without computing inverse matrices and ma-

trix products. Note that the Yuler-Walker equation can be solved using the standard

Levinson-Durbin algorithm. The total complexity of this algorithm iterating from k = 1

to k = M , is only on the order of O(M2).
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3.4 QCQP-based Optimal Design

Although the regularized least square approach fixes the ill-conditioned issue and benefits

from the highly efficient MLD algorithm, it considers only the error in [−ωc, ωc] without

paying attention to its behaviors outside this frequency range. However, the overshooting

phenomenon of the frequency response, if exists in the uninterested band, may deteriorate

fiber simulations in an intricate manner. Despite the spectrum of the input signals, even

WDM signals, cannot fully occupy the band [−ωc, ωc], the nonlinearity operations can

cause energy leakage outside this range, usually in a very small portion. This energy can

be amplified by the overshoots of the frequency response and then moved back to the

interested band by nonlinearity again. For short distance, this is not a severe issue; but

when the simulated fiber link is hundreds or thousands of kilometers long, the linear FIR

filter and nonlinear operation are repeated for hundreds or thousands of times, which would

renders the simulation results unreliable.

Here, we analyze whether the least square solution without (or with) regularization is

affected by this problem. The frequency response Ho(e
jωTs) in (2.42) is a linear combination

of basis responses, Uk(ω), each one of which has been normalized within [−ωc, ωc]. Based

on the property of DPSWF, the portion of energy within the band of interest relative to the

total energy is λk for Uk(ω). Therefore, the out-of-band energy of Uk(ω) for small λk is large,

which would contribute to overshoots unless the coefficient UH
k HD is negligibly small. In

parallel, the impulse response of ho in (2.41) is a linear combination of vectors, vk/
√
ωsλk.

If λk is very small, the kth term would contribute much to a very large ‖ho‖2 unless the

corresponding h′k is also very small. Based on Parseval’s theorem, this large energy can only

be squeezed into the uninterested band because the spectrum is already well-fitted in the

band of interest. Admittedly, the regularization term can mitigate the overshooting effect

to some extent if a higher order filter is employed, but sacrificing more filter order is far

from a satisfactory solution because this would instead increase computational complexity

of time-domain convolution.

To suppress overshoot efficiently without over-sacrificing filter order, we impose ad-

ditional constraints on the amplitudes of the frequency response. The constrained least
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square problem with regularization is given by

minimize 1− bHh− hHb + hHAh + ν‖h‖2 , (3.15a)

subject to |H(ejω)| ≤ 1 + ε, ωc ≤ |ω| ≤ ωs/2 , . (3.15b)

where ε ≥ 0 is a very small number such as 10−5. To simplify this problem a little bit, we

replace the constraints imposed in the continuous frequency intervals with m constraints at

m discrete frequency points in [−ωs/2,−ωc] and [ωc, ωs/2]. This problem can be formulated

into a standard quadratically constrained quadratic programing (QCQP) problem [39], that

is,

minimize hHP0h + 2<(qH0 h) + r0 , (3.16a)

subject to hHPkh + 2<(qHk h) + rk ≤ 0 ,

∀ k = 1, · · · ,m . (3.16b)

The parametric matrices and vectors are defined as

P0 = A + νI , (3.17a)

q0 = −b , (3.17b)

r0 = 1 , (3.17c)

Pk = a(ωk)a
H(ωk) , (3.17d)

qk = 0 , (3.17e)

rk = −(1 + ε)2,∀ k = 1, · · · ,m . (3.17f)

Since Pk is positive semidefinite for all k, this optimization problem is convex and can be

readily solved using state-of-the-art interior point methods[26].

The frequency responses of the unconstrained regularized optimal filter in (3.6) and

the QCQP-based filter are compared in Fig. 3.3. The single mode fiber (SMF) with D =

17ps/(nm·km) and S = 0.08ps/(nm2·km) is used for simulation. The split-step method

takes a step length of ∆z = 2km. The sampling frequency is ωs = 3.75 × 1012 rad/s and

the effective bandwidth ratio is taken as µ = 0.8. The regularization parameter is set to

ν = 10−6. One can observe that all these three filters match the desired response in the band
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Fig. 3.3 Comparison of frequency responses for three different filters: un-
constrained optimization with filter order 2M + 1 = 77, unconstrained opti-
mization with 2M + 1 = 57 and QCQP-based filter with 2M + 1 = 57.

of interest, with their squared error in [−ωc, ωc] satisfying ELS < 10−6. However, the 57-

order unconstrained filter produces a 2.5dB overshoot in the outer band. By increasing the

number of order to 77, this overshoot is sufficient suppressed. In contrast, the QCQP-based

optimal filter successfully controls the overshooting behavior. In summary, both regularized

LS and QCQP-based filter “squeeze” the strong ripples out of [−ωc, ωc] by sacrificing the

uninterested band: the regularized LS filter does not control singular behaviors, whereas

QCQP-based filter reshapes the frequency response outside [−ωc, ωc] by “pressing” its head

below the sea level of 0dB. The reason for this “partial-band” formulation is that if µ ≈ 1,

the squared error can be reduced by increasing the filter order, but the ripples due to

Gibbs effect cannot be suppressed. In fact, when µ = 1, the column vectors of F are

already orthogonal, therefore its SVD satisfies V = I, Σ =
√
ωsI. In this scenario, the LS

filter is actually the IDTFT of the desired response.

Note that there is a trade-off in complexity between the unconstrained regularized LS

and the QCQP formulation if overshoot control is required. Thanks to the MLD algorithm,
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the former filter is easier to extract but has a larger filter order; the latter filter is shorter

but harder to extract. Therefore, the former design is more appropriate when the linear

effects are changing constantly so that the filter needs to be regenerated every few steps,

such as in the time-domain implementation of both chromatic dispersion and polarization

mode dispersion (PMD)[40]. In addition, this also enables numerical simulations which use

variable step size[5]. The latter design is more suitable if the filter does not change and

only need to be computed once or infrequently.

To see the influence of overshot in numerical accuracy, we employ three different filters

in time-domain approach. SMF described above is used for simulation. The propagation

distance is 450km, thus involved 450 time-domain convolutions. The results for three

different filters, 57-order unconstrained filter, 77-order unconstrained filter and 57-order

QCQP-based filter are presented in Fig. 3.4. In accordance with previous analysis, because

the strong overshot existing in 57-order unconstrained filter, the corresponding simulation

results are unreliable: the stable pulse shape becomes several rambling points. Adding

the filter order up to 77 and using 57-order QCQP-based filter can both overcome this

shortcoming and obtain the stable pulse shape, which is consistent with the results from

SSFM(FFT).

Note that there is a trade-off in complexity between the unconstrained regularized LS

and the QCQP formulation if overshoot control is required. Thanks to the MLD algorithm,

the former filter is easier to extract but has a larger filter order; the latter filter is shorter but

harder to extract. Therefore, the former design is more appropriate when the linear effects

are changing constantly so that the filter needs to be frequenntly regenerated every step,

such as in the time-domain implementation of both chromatic dispersion and polarization

mode dispersion (PMD)[40]. In addition, this also enables variable step size, which is

preferable in numerical simulations[5]. The latter design is more suitable if the filter does

not change and only need to be computed once.

3.5 The Order of Optimal Filter

In a nutshell, the purpose of designing the FIR filter is to fit the desired frequency response

to a given precision, with a small filter order. This can significantly reduce the compu-

tational overhead in computing the convolution of the input sequence and the FIR filter.

Hereafter, we investigate the relationship between the required filter order and system
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Fig. 3.4 Time-domain split-step simulation of Gaussian pulse propagation
based on: (a) 57-order unconstrained filter; (b) 77-order unconstrained filter;
(c) 57-order QCQP-based filter.

parameters both theoretically and numerically.

3.5.1 Theoretical Analysis Based on Group Delay

Since the optimal filter ho = (A + νI)−1b is a linear transformation of the vector b, the

ability of ho to resemble the desired response HD(jω) in the band of interest [−ωc, ωc] is

limited by how much information is preserved in the (2M + 1)-dimensional vector b. A

careful examination shows that bk is actually equal to the IDTFT of a windowed version
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of the desired frequency response, except by a scale factor of 1/µ. That is to say,

bk =
1

µ

1

ωs

∫ ωs
2

−ωs
2

HD(jω)W (jω)ejkωTsdω , (3.18)

for all k ∈ Z, where the frequency-domain window is defined as

W (jω) =

1, if |ω| ≤ ωc ;

0, if |ωc| < |ω| ≤ ωs/2 .
(3.19)

Henceforth, b = [b−M , · · · , bM ]T is actually a truncated version of the time-domain sequence

corresponding to the desired response truncated by the frequency-domain rectangular win-

dow W (jω). Some information in the infinitely long sequence {bk} is lost due to this

truncation, and the smaller the filter order, the more information loss is incurred.

Therefore, the required filter order is closely related to the effective time duration of

the sequence {bk}, which can be viewed as the range of indexes for which the value of

|bk| is not trivially small. In general, the time-bandwidth product of a simple sequence,

such as a rectangular frequency window, is a constant or on the same order, say 1. As the

bandwidth becomes smaller, the pulse sequence becomes wider. However, this is not true

for the truncated response

HD(jω)W (jω) =

exp
[
j
(
β2ω2

2
− β3ω3

6

)
∆z
2

]
if |ω| ≤ ωc,

0 otherwise.

The phase response is a nonlinear function of the frequency ω and this nonlinear modulation

implies that the time-bandwidth product might not be a constant. Indeed, as we show later,

when the bandwidth ωc increases, the sequence {bk} does not becomes narrower, but wider

instead.

The concept of group delay plays the most important role in the following analysis,

which is defined as

τg = − d

dω
∠HD(jω) = −β2ω∆z

2
+
β3ω

2

4
∆z . (3.20)

For simplicity, we considers the most practical scenario when |β2| � |β3| and the second
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term in (3.20) is dominated by the first term[3]. We hence drop the second term and the

extension of the resulting conclusions to other cases is straightforward. The lower bound

for the required filter order can be established by the following arguments on HD(jω):

1) We extend the desired response to the whole frequency range, that is,

Hext(jω) = exp

(
j
β2ω

2∆z

4

)
. (3.21)

This is the Fourier transform of the following continuous-time unit impulse response[41]

hext(t) =

√
j

πβ2∆z
exp

(
− jt2

β2∆z

)
. (3.22)

The group delay at the frequency ω0 is

τg(ω0) = −ω0β2∆z

2
. (3.23)

The instantaneous frequency of hext(t) at t = τg(ω0), defined as the derivative of the phase

with respect to time t, is equal to

ω′0 =
d∠hext(t)

dt
|t=τg(ω0) = −2τg(ω0)

β2∆z
= ω0 . (3.24)

The instantaneous frequency at the group delay of ω0 is ω0 itself, which means that there

is a one-to-one correspondence between the time domain and the frequency domain.

2) Although the desired response is merely a truncated version of the extended response,

it still inherits this one-to-one correspondence, though in an imperfect manner. In essence,

{bk} is obtained by sampling the convolution between the sinc pulse corresponding to the

rectangular frequency window (3.19), and the extended continuous-time response hext(t) in

(3.22). This implies that the frequency component of ω0 is somewhat expanded around its

group delay, according to the pattern defined by the sinc pulse. Normally, we hope to fit the

desired response within a wide bandwidth 2ωc, and thereby the sinc pulse is pretty narrow.

Therefore, the range of group delay for frequencies between −ωc and ωc approximately

spans almost all the nontrivial samples of {bk}. From (3.23), with ω ranging from −ωc to

ωc, τg is constrained in the time interval of [−|β2|ωc∆z/2,−|β2|ωc∆z/2]. With a sampling
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period of Ts, to preserve most energy of {bk}, the filter order 2M + 1 have to satisfy

2M + 1 ≥ |β2|ωc∆z
Ts

=
|β2|ω2

c∆z

πµ
=

4φmax

πµ
= Lmin , (3.25)

where we define φmax = |β2|ω2
c∆z/4 as the maximum phase shift due to second-order

dispersion.

3) The lower bound for the filter order, Lmin, is proportional to the maximum phase

shift φmax, and inversely proportional to µ. The dependence of Lmin on the four parameters,

namely, ωc, ωs, β2 and ∆z, boils down to a linear relationship involving only two indepen-

dent quantities. On the one hand, φmax is related to the number of oscillations experienced

by the real and imaginary parts of the desired response; on the other hand, µ represents

the degree to which this oscillatory response is expanded in the fundamental period of the

spectrum [−ωs/2, ωs/2].

3.5.2 Numerical Experiments

In the following, we study the required filter order for a given error tolerance numerically.

Since the theoretical lower bound Lmin was derived based on an approximate time-frequency

mapping, the required filter order would be different from but highly related to Lmin. In

fact, it is approximately a linear function of the theoretical lower bound. Since Lmin depends

on both the maximum phase shift φmax and the effective bandwidth ratio µ, we fix one of

them and change the other one in the following numerical experiments.

Firstly, we fix µ = 0.75 and then study the relation between the required filter order

and φmax. There are two ways to adjust φmax, by altering either ∆z or ωc. Here, we first

let ωc = 1.5 × 1012 rad/s and change ∆z between 0.2km and 16.2km. Independently, we

let ∆z = 1.8km and change ωc between ωc = 0.5 × 1012 rad/s and ωc = 4.5 × 1012 rad/s.

The simulation is also based on the same SMF used in Fig. 3.3. The minimum filter order

required to achieve the error level of 10−4, 10−6 or 10−8 is plotted versus φmax in Fig. 3.5,

respectively. We can observe that when µ is fixed, the filter order required for a specific

fitting error is uniquely determined by the single parameter φmax. Once it is fixed, the

filter order would not vary even if ωs, ωc, ∆z may change, which is consistent to our

previous analysis.1 More importantly, for a specified error tolerance, the required filter

1In fact, even if β2 changes, the filter order does not change as long as φmax and µ are fixed.
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Fig. 3.5 The required minimum filter order versus maximum phase shift
φmax for different error tolerances. φmax can be changed by either adjusting
ωc or ∆z (with the other one fixed). Straight lines are used to fit the numerical
results. Parameter settings: µ = 0.75, D = 17ps/(nm·km) and S = 0.

order (2M + 1) can be fitted by a corresponding linear function of φmax and thus also Lmin.

Because our derivation of (3.25) takes a conceptual approach, (2M + 1) is not equal to

Lmin, and the slope of the straight lines are not necessarily one and the y-intercepts are not

necessarily zero. Secondly, we fix φmax = 21.87rads and investigate the relation between

2M + 1 and the effective bandwidth ratio µ for the same SMF. As illustrated by Fig. 3.6,

(2M + 1) increases almost linearly with 1/µ, which can also be fitted by linear functions of

Lmin. We emphasize that β3 = 0 in the above simulations and even if β3 6= 0, our numerical

experiments verified that the required filter order hardly changes because the second-order

dispersion usually dominates over third-order terms[3].

So far, we have verified that the minimum filter order for a given error tolerance is

independently determined by φmax and µ. Their linear relationship as seen from numerical

experiments is consistent with the conclusion in (3.25) drawn from our theoretical analysis.

These expressions have both theoretical and practical meanings. To begin with, they

provide theoretical insights into the desired response and its time-domain counterpart by
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Fig. 3.6 The required minimum filter order versus the reciprocal of effective
bandwidth 1/µ for different error tolerances. Here, µ is changed by either
adjusting ωs, or ωc (but with φmax fixed). Straight lines are used to fit the
numerical results. Parameter settings: µ = 0.2 ∼ 0.9, D = 17ps/(nm·km),
S = 0, ωc = 1.5× 1012 rad/s, ∆z = 1.8 km.

establishing a one-to-one correspondence between group delay and instantaneous frequency.

Another important role is that they provide an initial guess of the minimum filter order

needed for a given error tolerance. Henceforth, one may start searching from this initial

filter order instead of all the way from order 1. Lastly but not the least, since the filter

order is almost proportional to the step size ∆z (via φmax), the computational complexity

of the convolution increases linearly as ∆z increases. At the same time, the number of

steps decreases in an inversely proportional manner. Consequently, the overall complexity

to implement the direct convolutions does not change considerably. This saves the task of

choosing step size because it only has to satisfy the requirement due to the “split-step”

itself.

To better understand the error behaviors, we plot the squared error versus 2M + 1 in

Fig. 3.7. Three curves are for the LS solutions with the regularization parameter ν = 10−4,

10−6, 10−8, respectively. The fourth curve is for the LS filter without regularization and the
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Fig. 3.7 The error behaviors of different filters as the filter order in-
creases. The parameter used for simulation are: D = 17ps/(nm·km),
S = 0.08ps/(nm2·km), ωc = 1.5× 1012 rad/s; and ∆z is fixed as 1.8 km.

fifth curve is for the QCQP-based filter with ν = 10−8. The following parameters are used:

D = 17ps/(nm·km), S = 0.08ps/(nm2 · km), ωc = 1.5× 1012 rad/s, and ∆z = 1.8km. The

following conclusions can be made: firstly, the original LS solution without regularization,

i.e., Aho = b, suffers appreciably from the ill-conditioned A. After the filter order exceeds

a threshold, the error becomes uncontrollable. Secondly, this ill-conditioned problem is

successfully mitigated by regularization; however, this introduces an error floor to the

resulting solution and the larger ν is, the higher this error floor rises up. Thirdly, the QCQP-

based filter wastes some degrees of freedom in suppressing overshoots, and hence requires

4 to 8 orders more than the regularized LS filter to achieve the same error performance.

In addition, the oscillatory behaviors of these curves can be explained by the oscillatory

property of the desired response. Lastly, the fitting error due to small perturbations in

b which comes from the Gaussian quadrature algorithm is not included in this figure

because we have no knowledge of the exact b. As analyzed before, this error becomes

more unpredictable when ν approaches zero. Therefore, there is a fundamental trade-off in

selecting ν to balance these two errors. In general, ν from 10−6 to 10−10 is a good candidate.
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The filter orders of the proposed design are also compared with those in recent works.

The following parameters are used: 2ωc = 3 × 1012rad/s and ωs = 4 × 1012rad/s, β2 =

−21.6ps2/km, β3 = 0.117ps3/km. For the step size of [0.5, 0.7, 1, 2, 3, 4] (km), the corre-

sponding smallest filter orders to satisfy ELS ≤ 10−6 are 2M + 1 = [23, 27, 35, 57, 79, 101]

based on the QCQP approach. This reduces the filter order by 1/3 to 1/2 when compared

with the recent work in [13] (2M + 1 = [47, 57, 69, 83, 111, 147]). Because the optimiza-

tion approach imposes no structural constraint, it is capable of exploiting more degrees of

freedom.

3.6 Summary

Based on the theory of DPSS, we have revealed that in certain instances, the normal equa-

tion could be ill-conditioned. Henceforth, the solution might be sensitive to numerical errors

and could also generate overshoots outside the band of interest, which would be amplified

and transformed back into the band of interest by the nonlinear operations. This will gen-

erate unreliable results after propagating long distances. If the problem is ill-conditioned,

we added a regularization term to the objective function to provide robustness. The result-

ing filter can also suppress overshoots by increasing its length; however, we improved it by

imposing a maximum magnitude constraint on the frequency response to control overshoots

more efficiently. The resulting quadratically constrained quadratic programming (QCQP)

problem can be readily solved by state-of-the-art interior-point methods.

For a given error tolerance, we established the relationship between the required filter

order and several parameters both theoretically and numerically. Based on the one-to-one

correspondence between group delay and instantaneous frequency, we derived a tight lower

bound of the filter order as a linear function of the step size, whose validity is also verified

by numerical experiments. This can simplify the task of choosing the step size from the

perspective of reducing computational complexity.

The proposed optimal filters reduce the total computational complexity, both when

extracting the filter and implementing linear convolutions. On the one hand, the un-

constrained regularized LS filter is the solution of a Toeplitz system. This enables a fast

modified Levinson-Durbin algorithm with the complexity of O(n2). The QCQP-based filter

can be computed with efficient interior-point methods. On the other hand, the computa-

tional complexity of linear convolutions depends exclusively on the filter length. Numerical
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simulations show that the QCQP-based filter saves at least 1/3 of the total filter order

when compared with most recent work. Moreover, there is a complexity trade-off between

the unconstrained regularized LS filter and QCQP-based filter if the overshoot control is

required: the former is easier to extract but the latter is shorter. The choice depends on

whether the filter needs to be regenerated frequently or not.
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Chapter 4

Time-Domain Simulation of Pulse

Propagation in Optical Fiber

The proposed filters can easily fit the desired response with a square error lower than 10−8.

It remains unverified whether this filter outputs a signal similar to that produced by the

standard SSFM, which is the main purpose of this chapter. Besides, we also quantify

the computation complexity of the time-domain approaches and compare it with previous

methods. To reduce both flops and memory usage, we suggest an overlap-type scheme that

further improves the computational efficiency.

4.1 Choosing the Step Size

To begin with, we discuss the issue of choosing the step size for numerical simulations

of signal propagation in optical fiber, which is in essence a comprise between accuracy

and complexity. Different methods for choosing step size have been proposed. Nonlinear

Phase-Rotation Method chooses the step size so as to keep the phase rotation caused by

nonlinearities within a pre-given level. This method is effective for soliton systems rather

than WDM systems. Logarithmic Step-size Distribution chooses the step size according

to a logarithm distribution in order to suppress the spurious FWM[42]. Walk-Off Method

automatically adjusts step sizes so that they are inversely proportional to the largest group

velocity difference between channels. Local-error Method selects the step size by evaluating

the relative local error of each single step, thus the error level is bounded and under

control[5]. Constant Step Method keeps the step size constant along the transmission. The

2011/09/29
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smaller the step size is, the more accurate the simulation results become. However, a

small step size will introduce high computational complexity. For simplicity, we confine

our discussions in this chapter to the scenario of constant step size.

For single-channel simulations, the constant step size is determined by dispersion length

and nonlinear length. Assuming the width of a pulse is T0 and its power is P , the second-

order dispersion length, third-order dispersion length and nonlinear length are defined as

[3]

LD2 =
T 2

0

|β2|
, (4.1)

LD3 =
T 3

0

|β3|
, (4.2)

Lnl =
1

γP
. (4.3)

To maintain sufficient accuracy, the step size should be chosen to be smaller than any of the

above three values. For WDM simulations, the step size should be smaller than nonlinear

length, walk-off length and FWM length that are defined as follows [29],

LNL =
1

γPT
2N−1
N

, (4.4)

LWO =
1

2π(N − 1)|β2|∆fR
, (4.5)

LFWM =
1

π2|β2|(N − 1)2∆f
, (4.6)

where PT is the total transmission power, N is the number of channels, ∆f is the channel

spacing and R is the symbol rate.

The computational complexity of a time-domain split-step method depends on the

length of the FIR filter and the total number of steps. For our proposed filters, the filter

length is a linear function of the step size. As the step size increases, the filter length in-

creases but the total number of steps decreases. Henceforth, the computational complexity

does not change very much and then the step size can be simply chosen to be smaller than

above three lengths.
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Fig. 4.1 The impact of the squared error on the pulse propagation.

4.2 Numerical Validations

4.2.1 The Impact of the Squared Error

In order to illustrate the impact of the squared error on pulse propagation, we compare

the output signals of the time-domain split-step methods based on two QCQP-based filters

with different lengths, 29 and 41. The squared error for these two filters is on the level of

10−5 and 10−8, respectively. The step size ∆z is chosen as 1km. The frequency responses

of these filters match the desired dispersion characteristics within a guaranteed bandwidth

of 2ωc = 3×1012rad/s with the effective bandwidth ratio µ = 0.8. An input Gaussian pulse

with FWHM 30ps and peak power 1mW is passed through a single channel (at 1550nm).

The simulation is based on SMF with the following parameters: D = 17ps/(nm·km),

S = 0.08ps/(nm2·km), α = 0.2dB/km and γ = 2W−1/km.

Fig. 4.1 compares the output signals generated by the time-domain split-step methods

based on these two FIR filters. The 41-order filter generates a output pulse whose shape is

almost the same as that produced by SSFM, whereas the 29-order filter leads to noticeable

difference as seen in the right-sided plot. Therefore, higher squared error between the FIR

response and the desired response can induce higher level of output mismatch. This is even

worsened as the propagation distance increases. Henceforth, a squared error low enough is
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Fig. 4.2 The output signal of SMF with the Gaussian pulse of peak power
1mW as input (with both second-order and third-order dispersion).

indispensable to guarantee the reliability of the simulation results.

4.2.2 Single Channel

We pass an input Gaussian pulse through a single mode fiber (SMF) and compare the

output pulses generated by split-step methods based on the FFT and the proposed QCQP-

based filter. The parameters are set as follows: the input pulse has a full width at half

maximum (FWHM) of 30ps, and a peak power of 1mW; we use a standard SMF (1550nm)

with D = 17ps/(nm·km), S = 0.08ps/(nm2·km), α = 0.2dB/km and γ = 2W−1/km; the

step size ∆z = 1km, ωc = 1.5 × 1012rad/s, and the optimal FIR filter has an order of 47

with a square error of ELS ≤ 10−8; the effective bandwidth µ = 0.8 and the regularization

parameter ν = 10−6. The comparisons between the SSFM (implemented using FFT) and

the time-domain approach based on the proposed FIR filter are shown in Fig. 4.2. The

pulse shapes are almost identical for both methods after propagating in the fiber of length

either 20km or 80km.

In order to observe stronger nonlinear effects, we increase the power to 100mW for
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Fig. 4.3 The output signal of SMF with the Gaussian pulse as input (with
both second-order and third-order dispersion) with peak power 100mW.

the input pulse and pass it through the same SMF. The output pulses after 20km of

propagation, generated by the SSFM and the time-domain approach, are illustrated in

Fig. 4.3. In this scenario of high input power, the pulse is not only broadened in time, but

also experiences changes in its shape. This is because when the input power increases to

100mW, nonlinearities become the dominating effects during the pulse propagation. The

output signals generated by the SSFM and the time-domain method are consistent with

each other. In summary, the input power in fiber-optic communication systems cannot be

too high so as to reduce the signal shape distortion during the transmission; it cannot be

too low, either, to ensure a high enough SNR at the receiver after one span of propagation

(usually 80km).

Although second-order dispersion usually dominates over third-order dispersion in most

cases of practical interests, the third-order dispersion plays an important role at the zero-

dispersion wavelength. Hence, we also verify the case when the pulse propagates at zero-

dispersion wavelength and thereby only the third-order dispersion is considered. The pa-

rameters are set as follows: we choose two different fibers with S = 0.08ps/(nm2·km) and

S = −0.08ps/(nm2·km); the step size is chosen as ∆z = 200km; the filter order is still 47
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Fig. 4.4 The output signal of fiber after propagating 100000km based on
SSFM and split-step FIR filtering approach: (a) with negative third-order
dispersion only and (b) with positive third-order dispersion only.

with ELS ≤ 10−8 over the bandwidth of interest; other parameters remain the same. As

observed in Fig. 4.4, the results based on the SSFM and the time-domain approach are still

almost identical, which verifies the validity of the proposed filters for third-order disper-

sion. Moreover, third-order dispersion causes asymmetrical distortion of the signals, i.e.,

oscillations appear at the leading edge of the pulse when S is negative and at the trailing
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Fig. 4.5 Eye-diagrams of the output signals after propagating 1500km.

edge of the pulse when S is positive. The oscillations are deep and the pulse amplitude

approaches zero between successive oscillations.

Up to here, single-channel experiments have shown that the time-domain split-step

methods based on our proposed filters can be used in practice. In the next section, we will

extend our discussion to WDM channels.

4.2.3 WDM Systems

When simulating a WDM system, different channels can be treated together as a single

electrical field that incorporates all the nonlinear effects. Let N be the total number of

channels and the envelop of the input signal at the mth channel be Am, m = 1, 2, · · · , N .

Thus, the total field can be represented as A =
∑N

m=1 Am exp(jm∆ωt), where ∆ω is the

channel spacing in rad/s. This total field is viewed as the electrical field at the input of

the fiber channel and its propagation in the fiber channel is still described by the NLSE.

This is called “total-field” simulation of a WDM system. Although a variety of other

algorithms have also been proposed, we restrict our discussion to the most popular “total-

field” approach.
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Table 4.1 Specifications of a 16× 10Gb/s WDM System

Parameters for the WDM system

Channel numbers 16

Reference wavelength 1550nm

Bit rate 10Gbps

Chanel spacing 50GHz

Pulse shape Gaussian with FWMH 20ps

Sampling frequency 8.0425×1012rad/s

Number of bit 27

Number of span 15

Fiber parameters SMF DCF

Second-order dispersion (D) 17ps/(nm·km) −68ps/(nm·km)

Third-order dispersion (S) 0.08ps/(nm2·km) −0.08ps/(nm2·km)

Loss 0.2dB/km 0.6dB/km

Nonlinear coefficient 2 W−1·km−1 2 W−1·km−1

Length per span 80km 20km

The WDM system under simulation is summarized in Table 4.1. The input signal is

an OOK-modulated Gaussian pulse train. The system consists of 15 transmission spans

and each span has two stages. The first stage is an 80km standard SMF with the same

parameters as those in the single-channel simulation. The second stage is a 20km dispersion-

compensation fiber (DCF). After each stage, the signal is amplified by EDFA with a gain of

G = 14dB to compensate for the transmission loss. For simplicity, the effects of amplified

spontaneous emission noise are not taken into consideration. The reference wavelength is

1550nm, the operating wavelength ranges from 1547.2nm to 1553.2nm, and the wavelength

spacing is 0.4nm. In the simulation, we set ωs = 8.0425×1012rad/s, µ = 0.8, and ν = 10−10.

The step size is chosen as 0.2km. The extracted QCQP-based FIR filters for SMF and DCF

links are respectively of length 55 and 119, with their errors satisfying ELS ≤ 10−12. For

the input power of 1mW, Fig. 4.5 shows the eye-diagrams of the output signals. Again, the

outputs from the SSFM and the time-domain method are almost the same. As long as the

squared error is low enough, the accuracy of split-step time-domain method will maintain
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after thousands of kilometers transmission. It is worth mentioning that the unconstrained

regularized LS filter with a higher filter order also generates similar outputs as verified by

simulations not shown here.

4.3 Computational Complexity

Computational complexity of different split-step methods are compared in this subsection.

For simplicity, we only consider the maximum order and do not differentiate terms like 3n3

and 5n3. Detailed analysis with the coefficients depends on specific algorithms and hard-

ware architecture, which varies on a case-by-case basis. Before analyzing the computational

complexity, we first introduce the overlap-add and overlap-save method that can compute

the linear convolution more efficiently[43]. The introduction of overlap-type convolution

techniques further reduces the overall complexity of the time-domain split-step approaches.

4.3.1 Overlap-Add and Overlap-Save Method

Overlap-add and overlap-save are efficient ways to calculate the linear convolution between

a long signal sequence A(z, n) and a short FIR filter hD(n). For the signal of length P

and FIR filter of length M ′, the circular convolution and linear convolution are identical if

the length of circular convolution is P +M ′ − 1. Therefore, if we augment both the signal

and the FIR filter to length P + M ′ − 1 with zero samples, the linear convolution can be

computed using DFT. If the P is very large, using DFT for a large number of points is

computationally expensive.

Block convolution can be used to solve this problem. It segments the long input sequence

into small sections, and then each section is filtered by the FIR filter, and finally the filtered

sections are combined together in an appropriate way. The filtering processes are computed

based on DFT. For the overlap-add method, the signal sequence A(z, n) is segmented into

N sections of length L

A(z, n) =
N−1∑
i=0

Ai(z, n− iL) , (4.7)
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y(n)

Add Together

Fig. 4.6 Overlap-add method.

where

Ai(z, n) =

{
A(z, n+ iL), if 0 ≤ n ≤ L− 1,

0, otherwise

Fig. 4.6 shows the diagram of the overlap-add method. The filtered output signal is given

by

y(n) =
N−1∑
i=0

yi(z, n− iL) , (4.8)

where

yi(z, n) = Ai(z, n)⊗ hD(n) , (4.9)



62 Time-Domain Simulation of Pulse Propagation in Optical Fiber

L L L

Input Signal 
(N Sections)

A0(z,n)

M -1 
zeros

A1(z,n)

M -1 
zeros

AN-1(z,n)

M -1 
zerosOutput Signal y0(z,n)

y1(z,n)

y(n)

Add Together

YN-1(z,n)

Fig. 4.7 Overlap-save method.

By zero padding the sequences Ai(z, n) and hD(n) to be length K, where K ≥ P +M ′− 1,

the linear convolution is equivalent to circular convolution. Thus the linear convolution

can be computed using K-point DFT’s. According to the filtering processing described in

Fig. 4.6, the filtered sections will overlap by M ′−1 points, thus are combined appropriately

in the final step.

Another efficient convolution procedure is overlap-save method. The input signal is

divided still into N sections. Each section of length L and FIR filter of length M ′ are

convoluted circularly. In the resulting sequences, the first M ′ − 1 are incorrect while the

remaining L points are the same as those obtained from linear convolution. We define the
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Table 4.2 Comparison of Computation Complexity

Frequency-domain O(P logP )

Time-domain: direct convolution O(PM ′)

Time-domain: overlap-add O(P logM ′)

sections as

Ai(z, n) = A(z, n+ i(L−M ′ + 1)−M ′ + 1), 0 ≤ n ≤ L− 1 .

Then after filtering based on L-point DFT’s, each segment yi(z, n) are combined to realize

the final output

yi(n) =
N−1∑
i=0

yio(z, n− i(L−M ′ + 1) +M ′ − 1) ,

where

yio(z, n) =

{
yi(z, n), if M ′ − 1 ≤ n ≤ L− 1,

0, otherwise

This process is shown in Fig. 4.7.

In overlap-add and overlap-save methods, DFT is computed using FFT. Therefore, the

linear convolution can be more efficiently implemented.

4.3.2 Linear Convolution with Low Complexity

The major difference between different split-step methods is how the linear parts are im-

plemented. Herein, we consider both the frequency domain approach using FFT and the

time-domain approach based on FIR filter. Specifically, for the latter approach, the con-

volution of a long input sequence and the FIR filter can either be computed directly, or

obtained using FFT-based block convolution techniques such as overlap-add and overlap-

save. These overlap-based techniques are different from SSFM and the block processing

in [6] even though they all use FFT. The overlap-type methods divide the input signal

into small blocks, compute the convolution of each block and the FIR filter using FFT,

and then combine all blocks together. The standard SSFM computes FFT for the input

sequence itself which is significantly longer. The block processing techniques mentioned in

[6] also divide the input signal into small blocks, but then apply SSFM to each block before
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recombining these blocks, and therefore still suffer from the time-aliasing problem.

The parameters are set as follows: the number of split steps is R, the length of the input

signal sequence is P , and the filter order is M ′ = 2M+1. In typical optical fiber simulations,

especially for WDM systems, P � M ′R. The frequency-domain approach first applies a

P -point FFT to the input sequence which requires O(P logP ) operations. Multiplication

in the frequency domain needs O(P ) operations (negligible) and the complexity of the

IFFT is also O(P logP ). The total complexity is still on the order of O(P logP ). For the

time-domain FIR filter approach, direct convolution requires O(PM ′) flops. If overlap-add

is used, we assume that the length of each block is M ′ and hence the total number of blocks

is P/M ′. Each FFT or IFFT requires approximately (2M ′ − 1) log(2M ′ − 1) operations

so that the circular convolution is equal to the linear convolution. The cost of adding the

samples from neighboring blocks is at most O(P ). It is easy to check that the total number

of operations is on the order of O(P logM ′). As summarized in Table 4.2, the FIR filter

approach with direct convolution is more efficient than SSFM only if M ′ < logP , whereas

overlap-based convolution prove to be much more efficient than SSFM: O(P logM ′) versus

O(P logP ). At the same time, all these time-domain methods require less memory than

SSFM because they avoid large-point FFT’s and IFFT’s.

4.4 Summary

The single channel and wavelength-division multiplexing (WDM) simulations verified that

the output signals generated by the proposed regularized LS filter and QCQP-based filter

are almost the same as those by SSFM, even after propagating thousands of kilometers. In

addition, we also introduced the overlap-add method that can reduce the computational

complexity of the linear convolutions from O(PM ′) to O(P (logM ′)), where P is the length

of input signal and M ′ is the filter order.

2011/09/29
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Chapter 5

Time-Domain Backpropagation for

Fiber Impairment Compensation

In this chapter, we will apply our proposed filter to the inverse process of pulse propagation,

namely, digital backpropagation for fiber impairment compensation. We will first introduce

the theory of digital backpropagation, then apply the algorithm based on the proposed filter

to long-haul transmission systems. The simulation results and discussions are followed

thereafter.

5.1 Theory of Digital Backpropagation

To achieve high transmission capacity, fiber impairment compensation plays an impor-

tant role as dispersion and nonlinear related effects causes the degradation of performance

[44, 45]. Recently, electrical dispersion compensation and electrical nonlinear compensation

have gained great attentions, due to the maturity of coherent receiver which simultaneously

enables the conversion of optical signals into electrical signals and preservation of the am-

plitude and phase information [46, 47, 48]. Electrical compensation and coherent receiver

not only increase the fiber capacity limits significantly, but also are more reliable and cost-

effective than previous all-optical signal processing [49]. Electrical dispersion compensation

has been already well studied, however, nonlinear compensation remains a big challenge.

The ultimate solution comes from digital backward propagation (backpropagation), which

is the inverse process of pulse forward propagation in optical fiber. It takes a unified

approach of treating linear and nonlinear effects, and thus electrical compensations for
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Backpropagation 
in receiver-side

Backpropagation 
in transmitter-side

Fig. 5.1 Backpropagation implementation at the receiver-side and
transmitter-side.

dispersions and nonlinearities are simultaneously realized.

In the absence of noise, the backpropagation compensation scheme recovers the trans-

mitted signal from the received signal by virtue of inverse NLSE

∂A(z, T )

∂z
= (−D̂ − N̂)A(z, T ) , (5.1)

where D̂ and N̂ are defined in (1.7). Comparing this equation with (1.6), it is evident

that the idea of backpropagation is the operation of channel inverse. The channel inversion

can be implemented at the transmitter side or the receiver side, or both, as illustrated in

Fig. 5.1. Because NLSE is invertible, in the absence of noise, backpropagation successively

compensates the distortion on the output signals caused by the fiber channel. However, im-

plementing backpropagation at the transmitter-side is usually undesirable since it requires

channel feedback.

Various numerical algorithms for solving the NLSE numerical such as S-SSM and A-

SSM can be employed in digital backpropagation. As before, we restrict our discussion to

S-SSM due to its high accuracy. Each step relies on one back-and-forth Fourier transform
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and is given by

Â(z + ∆z/2, ω) = H−D(ω)F [A(z, T )] exp(α∆z/4) , (5.2)

Â1(z + ∆z/2, T ) = F−1[Â(z + ∆z/2, ω)] , (5.3)

Â2(z + ∆z/2, T ) = exp(−j∆zγ|Â1(z + ∆z/2, T )|2)

× Â1(z + ∆z/2, T ) , (5.4)

A(z + ∆z, ω) = H−D(ω)F [Â2(z + ∆z/2, T )] exp(α∆z/4) , (5.5)

where H−D(ω) is the frequency response including dispersion related effects in fiber but

with opposite parameters, read,

H−D(ω) = exp

[
j

(
−β2ω

2

2
+
β3ω

3

6

)
∆z

2

]
,

−ωs/2 ≤ ω < ωs/2 . (5.6)

Different from fiber simulation which computes how the input signal propagates forward

in the optical fiber and then predicts the signal at the output, digital backpropagation is

used in real-time high data-rate systems to compensate for the distortions caused by dis-

persions and nonlinearities. Therefore, the algorithms should requires lower computational

complexity and lower processing latency. Taking FFT/IFFT in the backpropagation al-

gorithm is only suitable for off-line processing, and the back-and-forth Fourier transforms

cause heavy computational load if the number of input samples is large. Therefore, unlike

fiber simulations that can use both frequency-domain and time-domain methods, practical

backpropagation algorithms can only be implemented in the time domain based on IIR or

FIR digital filters. The FIR filter is superior to IIR for real-time implementations because

there is no need to consider the stability issues that always accompany with the IIR filters,

and FIR filters can be implemented efficiently by parallel processors such as FPGA and

DSP chips.

The time-domain digital backpropagation is similar to the time-domain simulation of

signal propagation in fibers. The general algorithm is given by replacing (5.2), (5.3) and
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Fig. 5.2 Block diagram of a long-haul transmission system with inline am-
plification.

(5.5) with

Â1(z + ∆z/2, T ) = h−D(T )⊗ A(z, T ) exp(α∆z/4) , (5.7)

A(z + ∆z, T ) = h−D(T )⊗ Â2(z + ∆z/2, T ) exp(α∆z/4) , (5.8)

where h−D(T ) is a time-domain filter which has the same role as the frequency response

in (5.6). Herein, the back-and-forth Fourier transform is avoided by introducing the time-

domain digital filter that is well-fitted to the inverse of dispersion-related effects, which

saves computational complexity and memory usage.

5.2 Performance of Time-Domain Backpropagation

5.2.1 Simulation Setup

In this section, we will apply the QCQP-based optimal filter to the time-domain digital

backpropagation algorithm. The system under simulations is a polarization division mul-

tiplexed quadrature phase-shift keying (PDM-QPSK) system. It consists of DP-QPSK

transmitter, transmission link, coherent receiver and DSP, according to Fig. 5.2. All pro-

cessings except DSP are simulated using Optisystem 9.0 from Optiwave Systems Inc.. The

simulation includes dispersion-related effects, SPM and polarization cross phase modula-

tion. The PDM-QPSK signal is generated using the Mach-Zehnder modulators (MZM).

After the signal propagates through the fiber channel, a coherent receiver is used to demod-

ulate and decode. Specifically, the received signal is amplified, passed through a low-pass

Gaussian filter and sampled by the ADC. The discrete-time signal is further processed by
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Fig. 5.3 DSP block.

the DSP module.

The detailed structure of the DSP module is illustrated in Fig. 5.3. The signal is firstly

resampled to 2 samples per symbol, then the channel inverse for fiber impairment compen-

sation is performed. The block of channel inverse filters the signal with the approximation

of the inverse of the optical channel. In the simulation, when only dispersion is com-

pensated, the dispersion operator D functions; when both dispersion and nonlinearity are

compensated, we apply time-domain digital backpropagation algorithm in which dispersion

filter is implemented based on an FIR filter. For the sake of low computational complexity,

the FIR filter is extracted based on the QCQP algorithm. The time-domain digital back-

propagation is performed with 1km per step and the resulting filter length is 45. In the

beginning of each span, the effect of power gain in EDFA is removed, then followed by the

channel inverse, whether compensates only dispersion or both dispersion and nonlinearity.

The effect of propagation loss in fiber is also reversed. Afterwards, the Viterbi and Viterbi

phase estimation algorithm compensates the phase and frequency mismatch, followed by

symbol estimation. The DSP block is all processed in Matlab.

Various parameters are chosen as follows. The wavelength is 1550nm and the linewidth

is 0.1MHz for the transmit laser. The baud rate of the DP-QPSK is 25Gbaud/s, giving a

total throughput of 100 Gb/s. The transmission link includes a total of 15 spans. Each
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span includes an 80km SMF and then an EDFA with the gain of 16dB. The transmission

link is thus 15 × 80 = 1200km with dispersion D = 17ps/(nm·km), dispersion slop S =

0.08ps/(nm2·km), attenuation α = 0.2dB/km and nonlinear coefficient γ = 1.3W−1/km.

The noise figure of the EDFA is set as 5dB. At the coherent receiver, the wavelength of the

local oscillator (LO) is 1549.99nm and the linedwidth is 1MHz, which means the frequency

mismatch and laser phase noise are both taken into account.

5.2.2 Results and Discussions

We consider two processing methods used for the channel inverse part in DSP block: one

compensates dispersion only and the other mitigates the effects of both dispersion and

nonlinearities using backpropagation algorithm. Both X polarization and Y polarization

are considered. Fig. 5.4 shows the eyediagrams of the output signals after being processed

by these algorithms. The corresponding constellations are plotted in Fig. 5.5. When the

backpropagation algorithm is used, the eyediagrams of the output signals generated by

the digital backpropagation algorithm exhibit wider eye openings than the case when only

dispersion is compensated. In turn, the constellation points are more concentrated for the

digital backpropagation algorithm. They can be quantified in Q-factor later. The differ-

ence between the X polarization and the Y polarization is possibly due to the effect of

polarization cross phase modulation. In a nutshell, the nonlinearities can degrade system

performance and compensation techniques are necessary, especially for long-distance trans-

mission systems. The digital backpropagation algorithm based on the proposed filters can

compensate both dispersion and nonlinearities, and thus outperforms the algorithms that

mitigate dispersion only.

The Q-factor is a quantitative performance measure of signal processing algorithms at

receiver and is extracted from constellation[50]. We assume that the x and y axes are the

decision thresholds for QPSK. The Q-factor is defined as

Q(dB) = 10 log10

µ2
x

σ2
x

= 10 log10

µ2
y

σ2
y

(5.9)

where (µx, µy) is one arbitrary point of the four nominal constellation points of QPSK,

and σ2
x or σ2

y is the variance of the points corresponding to the received signals (after

processed by DSP) in the x or y direction. Geometrically, the Q-factor describes how
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Fig. 5.4 Eye diagrams of signals before and after the DSP block.

the actually signals concentrate around the nominal constellation point. The scatterplots

in Fig. 5.5 can be used to estimate the Q-factors. Only with dispersion compensation,

the Q-factor is 11.7dB for the X polarization and 11.9dB for the Y polarization. With

digital backpropagation, the Q-factor is 13dB for the X polarization and 12.9dB for the Y

polarization. By employing the digital backpropagation algorithm to mitigate the effects

of nonlinearities, we can obtain a Q-factor gain of 1dB.

The input power is an important factor in analyzing the Q-factor of the output sig-
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Fig. 5.5 Constellations of the signals after being processed by different DSP
algorithms.

nals from the DSP module. Fig. 5.6 plots the Q-factor as a function of the input power

ranging from −2dBm to 10dBm for both dispersion compensation and backpropagation.

The Q-factors here are the average values of the X polarization and the Y polarization.

The transmission distance is 1200km. As the input power increases, the Q-factor initially

increases and then decreases after reaching a maximum value. When the input power is

low, the nonlinearities are not strong and hence whether they are compensated or not does

not affect system performance. The performances of the two algorithms are very close to

each other. When the input power is high, the nonlinearities dominate over other effects

and it becomes more necessary to compensate the nonlinearities. This can be seen from the
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Fig. 5.6 The Q-factor versus the input power.

fact that the performance gap between digital backpropagation and dispersion compensa-

tion increases significantly as the input power increases. The maximum performance gain

brought forth by compensating the nonlinearities can be as large as 2dBm. The optimal

input power is 5dBm when the Q-factor attains the maximum value.

The transmission distance also plays an important role in the performance evaluation of

long-haul transmission systems. As the transmission distance increase, the dispersion and

nonlinearities accumulate and distort the signal waveform gradually. Furthermore, each

additional span adds more ASE noise to the signal. In our simulation, the input power is

6dBm and Fig. 5.7 shows the Q-factor as a function of the propagation distance. Again,

the Q-factors are the average values of the X polarization and the Y polarization. The Q-

factor after dispersion compensation or digital backpropagation decreases approximately in

a linear manner as the propagation distance increases. The performance gap between the

two algorithms is becoming larger and larger as the propagation distance increases. Their

performance are almost the same at the 160km because the nonlinearities are not evident

for short distance of propagation. The gap between these two curves will also become

larger if we increase the input power, which actually increases the nonlinearities. Lastly,
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Fig. 5.8 The Q-factor as a function of the FIR filter length.



5.3 Implementation and Computational Complexity 75

we plot the relationship between the Q-factor and the filter length for the back propagation

algorithm. The step size is chosen as 1km and the input power is 6dBm. The Q-factor is

plotted against different filter lengths from 5 to 81 in Fig. 5.8. An insufficient filter length

can result in worse performance because the frequency response of the FIR filter deviates

from the desired dispersion characteristics. The optimal filter length is around 41 and

increasing the filter order any further does not increase the Q-factor. The optimal Q-factor

for the X polarization are higher than that for the Y polarization, which is consistent with

previous discussions.

So far, we have investigated the application of the proposed filters to time-domain

digital backproagation, which successfully improves the performance of DP-QPSK systems.

It should be noted that here we didn’t consider random polarization state fluctuations.

If these effects are included in the simulations, the polarization demultiplexing can be

performed using constant modulus algorithms.

5.3 Implementation and Computational Complexity

For digital backpropagation algorithms, the implementation and computational complexity

are of crucial importance. Time-domain methods are superior to the frequency-domain

approach when the number of samples to be processed are huge. The key to choosing

a time-domain method is to select the right digital filter. The IIR filters have low filter

orders but are subject to stability issues due to its feedback components. The FIR filters

that we used in this chapter do not have the stability problem and are good for real-time

implementations in parallel processors.

Now, we analyze the computational complexity and processing latency of the time-

domain digital backpropagation algorithm. The analysis is similar to that in [51]. Let Npb

be the number of the parallelization branches, Nstep be the number of steps, and M ′ be the

FIR filter length. Each FIR filter requires 4M ′ multiplications and 4M ′ − 2 summations.

Taking into consideration 16 multiplications and 7 summations needed by the nonlinear

operator, the number of multiply-accumulate (MAC) units is Nstep × Npb(8M
′ + 16) for

non-iterative S-SSM. Assuming each multiplication or summation requires half a clock

cycle T/2, each FIR filter requires (dlog2M
′e+ 2)× T/2 computational time whereas each

nonlinear operator requires 7 × T/2. Thus, the latency is Nstep(dlog2M
′e + 11) × T/2.

Moreover, the FIR filters can be implemented using overlap-add and overlap-save methods
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as discussed before, which can further reduce the complexity of linear convolution.

5.4 Summary

We have verified our proposed filter for time-domain digital backpropagation. The algo-

rithm compensates for both dispersion and nonlinearities. Compared with the algorithm

that only compensates dispersion, the Q-factor is improved for DP-QPSK long-haul trans-

mission systems. The proposed FIR filters are suitable for real-time implementation of the

digital backpropagation algorithm.

2011/09/29
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Chapter 6

Conclusions

6.1 Summary

In this thesis, we proposed the least square filters used for time-domain implementation

of the linear dispersion operator in split-step methods. Our work presents a systematic

and comprehensive study of this problem that provides theoretical and practical insights.

The proposed filters can be used in both time-domain simulations of pulse propagation in

optical fiber and time-domain digital backpropagation for fiber impairment compensation.

Chapter 2 formulated the least square problem which minimizes the integral of squared

error between the FIR frequency response and desired dispersion characteristics. This

least square problem has been solved using two approaches: one is normal equation and

the other is based on SVD. The normal equation gives an explicit solution whereas SVD

approach provides geometrical and mathematical insights. Geometrically, the frequency

response of the optimal filter is the orthogonal projection of the desired dispersion filter

into the subspace spanned by a set of DPSWF’s. In parallel, the optimal filter is a linear

combination of the time-domain counterparts of these DPSWF’s, namely, a set of index-

limited DPSS’s.

Chapter 3 investigated the numerical issues of the problem. The theory of DPSS reveals

that the least square problem could be ill-conditioned. Adding a regularization term to the

objective function and using adaptive quadrature techniques to compute the integral both

contribute to overcoming the ill-conditioned property of this problem. We also analyzed

the negative effects of overshooting and successfully controlled it either by increasing the

length of the regularized LS filter, or imposing a maximum magnitude constraint. The
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latter results in a QCQP problem that can be solved by state-of-the-art interior point

methods. These filters are easy to extract and the QCQP-based filter saves the filter length

by at least 1/3. Theoretical investigation of the filter order based on the concept of group

delay and instantaneous frequency, was successfully verified by numerical experiments.

The established linear relationship simplifies the task of choosing the step size and the

filter length.

In Chapter 4, we applied the proposed filters to simulations of pulse propagation in

optical fiber. We discussed the effects of the squared error on the reliability of the simula-

tions. Numerical experiments of single channel and WDM channels verified the validity of

the proposed filters. They can generate reliable outputs even after thousands of kilometers

of propagation. Finally, we introduce the overlap-add and overlap-save methods that can

reduce the computational complexity of linear convolution significantly.

In Chapter 5, we extended the applicability of the proposed filters by employing them

in digital backpropagation algorithms. These algorithms are used to compensate fiber

impairments, which is the inverse process of pulse simulation. The time-domain split-

step methods based on FIR filters are preferable for real-time implementation. Simulation

results show that the digital backpropagation algorithms based on the proposed filters are

able to successfully compensate for both dispersion and nonlinearities, and thereby improve

system performance. This is especially necessary in the case of large input power and long-

haul transmission system. Other implementation and complexity issues are addressed at

the end of this chapter.

6.2 Future Works

We have proposed two filters: the unconstrained LS filter and the QCQP-based filter.

Firstly, our work can be extended to the scenarios of variable step size. Variable step-

size technique is advantageous in accuracy and complexity. As step size changes from one

step to another, the FIR filter needs to be updated frequently. Thus, the computational

complexity of extracting the filter is a major concern. The unconstrained LS filter can be

obtained based on the fast MLD algorithm, and are therefore suitable for variable step-size

simulations. However, the overall computational complexity should be further quantified

and investigated.

Secondly, PMD can be implemented in the time-domain, along with fiber dispersion.
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PMD is typically emulated by random concatenations of birefringent fiber sections. There-

fore, in each section, frequency-domain transfer matrices can only be implemented in the

time-domain based on FIR filters, which also requires an efficient design of the FIR fil-

ters. The unconstrained LS filter may be a good candidate, but more work is needed in

complexity analysis, reliability verification, and other practical issues.

The QCQP-based filter is suitable for time-domain digital backpropagation due to its

short length. However, the computational complexity of backpropagation is still high, and

more improvements and fine-tuning are needed for real-time implementation.
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