TAMING MATLAB

by
Anton Dubrau

School of Computer Science
McGill University, Montréal

Friday, April 13th 2012

A THESIS SUBMITTED TO THEFACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OFSCIENCE

Copyright © 2012 Anton Dubrau

Abstract

MATLAB is a dynamic scientific language used by scientists, engiremsd students
worldwide. Although MATLAB is very suitable for rapid prototyping and development,
MATLAB users often want to convert their finalAVLAB programs to a static language
such as FORTRAN, to integrate them into already existingygms of that language,
to leverage the performance of powerful static compilerstooease the distribution of
executables.

This thesis presents an extensible object-oriented taolkielp facilitate the generation
of static programs from dynamic MLAB programs. Our open source toolkit, called the
MATLAB Tamer, targets a large subset ofaM AB. Given information about the entry
point of the program, the MrLAB Tamer builds a complete callgraph, transforms every
function into a reduced intermediate representation, aodges typing information to aid
the generation of static code.

In order to provide this functionality, we need to handle r@déanumber of MTLAB
builtin functions. Part of the Tamer framework is the builframework, an extensible
toolkit which provides a principled approach to handle gdanumber of builtin func-
tions. To build the callgraph, we provide an interprocetarslysis framework, which
can be used to implement full-program analyses. Using titésprocedural framework, we
have developed value analysis, an extensible interproakduoalysis to estimate MLAB
types, which helps discover the call edges needed to bwgldah graph.

In order to make the static analyses even possible, weaisalsmall number of MT-
LAB constructs and features, but attempt to support as largesesaf MATLAB as possi-
ble. Thus, by both slightly restricting MLAB, and by providing a framework with pow-
erful analyses and simplifying transformations, we canfi@avIATLAB”.

Résumeé

MATLAB est un langage scientifique utilisé par des ingénieursnsfidgies, et étudi-
ants a travers le monde. Bien queaM AB soit trés approprié pour les prototypages et les
développements rapides, les usagers veulent souventrtiolaugs programmes MrLAB
finaux vers un langage statique tedRTRAN, dans le but de les intégrer a des programmes
existants dans ce langage, de tirer avantage des perfoesdes compilateurs statiques
plus puissants, ou de faciliter la distribution des fichexécutables.

Cette thése présente un toolkit extensible orienté objet failiter la production de
programmes statiques a partir de programmesMB dynamiques. Notre toolkit a code
source libre, appelé MrLAB Tamer («dompteur MTLAB »), vise un large sous-ensemble
de MATLAB. A partir d’informations sur le point d’entrée du programnie MATLAB
Tamer construit un graphe d’appels complet, transformguh#onction en une représen-
tation réduite intermédiaire et fournit 'information dartypage pour faciliter la production
du code statique.

Pour fournir cette fonctionnalité, nous devons maniputer grand nombre de fonctions
MATLAB intégrées. Une partie du cadre du Tamer est le cadre intégit®olkit extensi-
ble fournissant une approche de principe pour manipulerrandgnombre de fonctions
intégrées. Pour construire le graphe d’appels, nous fsswns un cadre d’analyse inter-
procédural pouvant étre utilisé pour implanter des analggeprogrammes complets. En
utilisant ce cadre inter-procédural, nous avons déveltippalyse des valeurs, une anal-
yse inter-procédurale extensible pour estimer les typeslB , pour aider a découvrir les
arrétes d’appels nécessaires pour construire le grapppala

Pour pouvoir rendre faisable une analyse statique, noesdisbns un petit nombre de
concepts et caractéristiqgues deAB , mais nous tentons de supporter un sous-ensemble

de MATLAB aussi grand que possible. Conséquemment, en restreigganéhéent NAT-
LAB, en fournissant un puissant cadre d’analyse et en simglli&artransformations, nous
pouvons «dompter MrLAB ».

Acknowledgements

| would like to thank my supervisor Laurie Hendren, for hepgort and direction. She
also helped greatly to finish the paper that constitutesahe af this thesis.

| would also like to thank the entir&cL AB team. In particular | would like to ac-
knowledge contributions by colleagues Jesse Doherty (M#wose MCSAF framework
is the starting point for the Tamer framework presented is tihesis, as well as Soroush
Radpour (M.Sc.), who provided the kind analysis (with Jeas€é)help with the lookup se-
mantics and implementation. His &BENCH framework provided insights into the usage
of MATLAB.

Finally, I would like to thank my friends and family for theiontinued support in light
of delays, in particular my mother Dorothee and my girlfdelC.

Vi

Table of Contents

Abstract i
Résumé iii
Acknowledgements v
Table of Contents Vil
List of Figures Xiii
List of Tables XV
1 Introduction 1

1.1 Contributions.
1.2 Thesis Outline

2 MATLAB- a Dynamic Language 5
2.1 BaSICS. . . . i e
2.2 MATLAB Operators. v o v e e e e e e e

2.21 Arrayvs MatrixOperators

2.2.2 TheColonOperator.

2.2.3 Indexing Operators

2.2.4 Operators vs Builtin Functions. 10
2.3 MATLAB Type System. e 10
2.4 MATLAB Functions and Overloading. 12

Vil

2.5 MATLAB ClasSes. v o i e e, 14

2.6 FunctionHandles 14
27 Compound TYpes o i e 15
271 CellArrays. e e 15
2.7.2 Structures e e 16
2.8 Function Parametersand Arguments 18
2.9 MATLAB User-DefinedClasses. 19
29.1 Constructors. e 19
2.9.2 Methods, Attributesand Operators 20
2.9.3 New Syntax afterversion7.6. 21
2.10 MATLAB Lookup Semantics. o 21
2.11 WildDynamic Features e 24
2.12 SUMMANY . . . e e s e e e e e e e e 24
Framework for MATLAB Builtin Functions 27
3.1 LearningaboutBuiltins oo 27
3.1.1 Identifying Builtins. 28
3.1.2 Finding Builtin Behaviors. 28
3.2 SpecifyingBuiltins. e 30
3.21 BuiltinVisitorClass 32
3.3 Builtin Function Categories. e 35
3.4 Specifying Builtin attributes. 0oL 38
3.5 The Class and MatlabClass attribute. 40
3.6 Summary e e e 41
Tame IR 43
41 TheTamelR 44
4.1.1 AssignmentStatements 45
4.1.2 Control Flow Statements. 48
41.3 OtherStatements. 49
4.1.4 Non-StatementNodes 49

viii

4.2 Tame IR Transformations.
4.2.1 Reduction of OperationstoCalls
4.3 Lambda Simplification. oo
4.4 Switch simplification.
45 SUMMANY o e e e e e e e e

Interprocedural Analysis Framework and Call Graph Framework

5.1 The Function CollectionObject.

5.2 The Interprocedural Analysis Framework.
521 Contexts. e
5,22 CallStrings.
523 Callsite.
5.24 ReCUrSION e e

53 Summary. e e e

Interprocedural Value Analysis and Call Graph Construction

6.1 Introducingthe Value Analysis
6.1.1 Mclasses, Valuesand Value Sets:.
6.1.2 FlowSets:
6.1.3 ArgumentandReturnsets..,
6.1.4 Builtin Propagators:.

6.2 Flow Equations. e

6.3 Structures, Cell Arrays and FunctionHandles
6.3.1 struct ,cell :
6.3.2 function_handle e e e e e e e

6.4 The Simple Matrix Abstraction

6.5 Applyingthe Value Analysis.

Related Work

7.1 MCFOR . . . o
7.2 Other Static MTLAB compilers

7.3 Other MhTLAB-likesystems.

55

56

57
58
59
60
61
63

65
66
66

67
68
69

69

70

70
71
72
72

7.4 Static Approaches to other Dynamic Languages. 78

741 Python 78
742 Ruby 79
8 Conclusions and Future Work 81
8.1 FutureWork. 81
Appendices
A List of MATLAB Builtin Functions 85
B Class Propagation Tables foiM ATLAB Builtin Functions 89
B.1 Binary Arithmetic Operations. 90
B.2 Unary Arithmetic/Numeric Functions. 91
B.3 Operations ResultinginlLogicals. 91
B.4 Matrix Constructors fromShape 93
B.5 Query Functions Resulting in NumericValues 94
B.6 Dimension-Collapsing Operations. 94
B.7 GeneralOperators. e e e 95
B.8 BitOperations e 96
B.9 Floating PointOperations. 98
B.10 Fourier Transform Functions 99
B.11 Other Functions e 100
C Mclass Propagation Language 103
C.1 Introduction e 103
C.2 ClassSpecification 104
C.2.1 BaSICS . . v v v e e e 104
C.2.2 LanguageFeatures. 104
C.3 ExtraNotesonSemantics 109
C.3.1 RHS Can Have LHS Sub-expressions, and Vice Versa. 109
C.3.2 Overall Evaluation of Class Attribute Expressions. 109

C.3.3 GreedyMatching, 110

C.4 Examples. 110
C41l Grammar. i e e e e 112

D Tame IR Grammar 113
D.1 Compound Structures. i e 114
D.2 Non-Assignment Statements. 114
D.3 Assignment Statements. Lo 115
D.4 OtherTamelRNodes. 116
Bibliography 117

Xi

Xii

1.1

2.1

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5

List of Figures

Overview of the MTLAB Tamer. oo ..
Superior/inferior class relationships folWLAB

Example mclass results for groups of builtin binaryepars.
Subtree of the builtin tree, showing defined float funddio.
Excerpt of builtin specification
Excerpt of the generated builtin visitorclass
A group of builtins, all ancestors and their siblingshe builtin tree
Example use the Class and MatlabClass attributes

Specializations of an assignment statement
Transforming operationstocalls.
Transformindambda expressions
Transformingwitch statements.

A small program whergaincallsfcallsg.
A small program showing two callstoa function.
Multiple possible callsites from one statement
Arecursive example.
Example program showing an infinite chain of calls..

Xiii

Xiv

4.1

5.1

6.1

Al

List of Tables

MATLAB operators and their corresponding builtin functions.. 52

The different kinds of Function Collection objects.. 57
Results of Running Value Analysis. 73
List of builtins and their frequency of occurrence. 85

XV

XVi

Chapter 1
Introduction

MATLAB is a popular numeric programming language, used by millafrecientists,
engineers and students worldwitiefla]. MATLAB programmers appreciate the high-level
matrix operators, the fact that variables and types do netl te be declared, the large
number of library and builtin functions available, and theeractive style of program de-
velopment available through the IDE and the interpret@estad-eval-print loop. How-
ever, even though WrLAB programmers appreciate all of the features that enabld rapi
prototyping, they often have other ultimate goals. Frejyeheir computations are quite
computationally intensive and they really want an efficiemplementation. Programmers
also often want to integrate theirMtLAB program into existing static systems. As just one
example, one of our users wanted to generate FORTRAN cotleah&e plugged into a
weather simulation environment.

This thesis addresses the problem of how to provide the éiidgween the dynamic
realities of MATLAB and the ultimate goal of wanting efficient and static proggamlan-
guages like FORTRAN. Itis not realistic to support all theAB features, but our goal
is to define and provide support for a very large subset afMB which includes dynamic
typing, support of the MTLAB function lookup semantics, variable numbers of input and
output arguments, support for a variety oARM.AB data types including arrays, cell arrays
and structs, and support for function handles and lambdeesgjons.

Providing this bridge presents two main challenges. Theigithat MATLAB is actually
quite a complex language which has evolved over many yearsvaith has non-standard

1

Introduction

type rules and function lookup semantics. The second maglienge is properly dealing
with the large number of builtin and library functions, whilsave also been developed over
time and which sometimes have unexpected or irregular behav

owea [T N

I
l I Refactor

McLAB Front-end

l McAST
McSAF Taming
Kind Analysis Transformations ad
Function Lookup (Chapter 4)
Tame IR
Built=in Interprocedural
Framework Analysis Framework
(Chapter 3) (Chapter 5)
A 4
Interprocedural
Value Analysis
(Chapter 6)

v
Tame IR + classes + types + call graph

I
| FORTRAN I | X10 I
1 Generator I I Generator I

Figure 1.1 Overview of our MATLAB Tamer. The shaded boxes indicate the components pre-
sented in this thesis. The other solid boxes correspond to existing McL AB tools
we use, and the dashed boxes correspond to ongoing projects which are using the
results of this thesis.

Our solution is an open-source extensible objected-ateinamework, implemented in
Java, as presentedHigure 1.1. The overall goal of the system is to takeAM.AB programs
as input and produce output which is suitable for static atatipn, a process that we call
Taming MATLAB. Given a.m file as input, which is the entry point, the AWILAB Tamer
produces as output: (1) a Tame IR (intermediate represemydor all functions (both user
and library) which are reachable from the entry point, (2p@plete call graph, and (3) an
estimation of classes/types for all variables.

There are some features inAVLAB that are simply too wild to handle, and so our

1.1. Contributions

system will reject programs using those features, and teewsl need to refactor their
program to eliminate that feature. Thus, another impowgaat in our work is to define as
large as possible subset ofAVLAB that can be tamed without user intervention.

1.1 Contributions

The main contributions of this thesis are as follows.

— We present an overall design and implementation for thk@lMB Tamer, an ex-
tensible object-oriented framework which provides thelgpe between the dynamic
MATLAB language and a static back-end compiler.

— We describe the key features ofAVLAB necessary for compiler developers and for
tool writers to understand MLAB and the analyses in this thesis. We hope that
by carefully explaining these ideas, we can enable othexarebers to also work
on static tools for MTLAB . Our discussion of MTLAB features also motivates our
choice of the subset of MLAB that we aim to tame.

— We provide a principled approach to understanding, graypand analyzing the
large number of MTLAB builtin functions.

— We developed extensions to thecBAF [Doh11] framework to support a lower-level
and more specialized Tame IR, suitable for back-end statie generation.

— We present an interprocedural flow analysis framework #tlatvs extending in-
traprocedural analysis written for thed®AF framework to analyze whole programs.

— We present an interprocedural flow analysis frameworkdbatputes both abstract
values and the complete call graph. This flow analysis pesvi@ah object-oriented
approach which allows for extension and refinement of th&rattsvalue represen-
tations.

1.2 Thesis Outline

This thesis is divided int8 chapters, including this one, which are structured asvalo
Chapter 2 introduces key MTLAB features, showing some of the challenges of static
compilation.Chapter 3 describes our approach to dealing witla AB builtin functions,

3

Introduction

starting with some examination of which builtin function® aelevant, and how they be-
have.Chapter 4 presents the Tame IR and transformations, including howaetheere in-
tegrated with the existing analysis framewohapter 5 describes our interprocedural
analysis frameworkChapter 6 explains our extensible and modular interprocedural value
analysis and how it constructs complete callgraphs. Wesilsar some results of running
this analysis on a set of benchmarihapter 7 provides an overview of related work and
Chapter 8 concludes.

Chapter 2
MATLAB - a Dynamic Language

In this chapter we describe keyMLAB semantics and features to provide necessary
background for compiler writers and tool developers to ustd&d MATLAB and its chal-
lenges, and to motivate our approach of constructing a “tantermediate representation
and MATLAB callgraph. In each section we give a description followedabgotated ex-
amples using the MrLAB read-eval-print loop. In the examples>* indicates a line of
user input, and the following line(s) give the printed outpu

2.1 Basics

MATLAB was originally designed in the 1970s to give access to featnff FORTRAN
(like LINPACK, EISPACK) without having to learn FORTRAN{olb]. As the name MT-
LAB (MATrix LABoratory) suggests, MTLAB is centered around numerical computation.
Floating point matrices are the core of the language. How#we language has evolved be-
yond just simple matrices and now has a type system includaugices of different types,
compound types including cell arrays and structs, and fonceferences.

Given its origins, MATLAB is a language that is built around matrices. Every value is
a Matrix with some number of dimensions, so every value has an agso@eaay shape.
Even scalar values arexl1 matrices. Vectors are eithewdn or n x 1 matrices and strings
are just vectors of characters.

MATLAB - a Dynamic Language

MATLAB supports imaginary components for all numerical valued,amost all op-
erators and library functions support complex inputs.

>> a =11, 2, 3; 4, 5, 6] % defining a matrix ...
a =

123
456

>> size(a) % ... which is a 2x3 matrix
23

>> size(3) % the scalar 3 is a 1x1 matrix
11

>> size([1 2 3)) % a 1x3 vector — note how the MATLAB syntax does not require a comma
13

>> size([5; 6; 7; 8; 9] % a 5x1 vector
51

>> size(‘hello world") % a string, which is a 1x11 vector
111

>> [a' 'b; 'e' 'f] % a 2—dimensional matrix of characters
ab
ef

>> 3 + 2i % the imaginary part of a complex number is defined using i or |
3.0000 + 2.0000i

2.2 MATLAB Operators

MATLAB includes a set of builtin operators. Besides the usual casgal=, >, -,
etc.) and logical &, &&, etc.) operators, MTLAB includes a set of numerical operations,
most of which are defined for matrices.

>> true | false % a scalar logical operation — the result 'true' is shown as '1'
1

>> 2 3 5] >][3 4 2] % comparison operators operate on matrices
001

2.2. MATLAB Operators

>> 1 2; 03] &[2 3; 40] % logical operators operate on matrices
11
00

MATLAB’s operators work on matrices, but are overloaded to opevdltescalar ar-
guments as well. In that case, operations are performedeelewise. This means that
although MATLAB treats scalars just asxl1 matrices, their semantics with respect to op-
erations are actually different from non-scalar matrices.

2.2.1 Array vs Matrix Operators

MATLAB has two kinds of numerical operators, matrix operators aray/aperators.
Matrix operators operate on whole matrices at once (uniessgument is a scalar). These
include the matrix multiplication«(), and matrix division\(, /).

Array operators always operate on matrices in an elemesg-way. For example the
array multiply operator = will multiply two matrices element by element. Generally, i
there exists an matrix and an array version of an operatem, e array version will have
a. -prefix (e.g~ vs. *).

An exception to this is the conjugate transpose operatdtere, the corresponding
. -operator will compute the non-conjugate transpose.

> [11;,22] =+ [10;0 2] % the multiplication operator performs matrix multiplication
12
4
>> 1 1; 2 2] * 2 9% with a scalar argument, it will perform an element—wise multiplication
22
4 4
>> 1 1; 2 2] == % comparison/logical operators also support mixing of matrices and scalars
0
11
>>[11;,22]. =+ 10,02 % the same matrices as above, but using array multiply
10
04

>> [3 i; 0 1+i]' % conjugate transpose

MATLAB - a Dynamic Language

30
-1 1-1i
>> [3 i; 0 1+i]. % non—conjugate transpose
30
1i 1+1i

2.2.2 The Colon Operator

A special operator is the colon-operator. It allows the tosaof vectors containing
numeric ranges:

>> 2:10 % the colon operator creates numerical ranges
2345678910

>> 2:3:10 % an optional middle operand defines a stepsize
258

>> 5:-1:0 % the stepsize can also be negative
543210

The colon operator is most often used in for loops to iteratr mumerical ranges.
This means that a WMrLAB for loop is actually a for-each loop, using a colon operatiir w
semantically create the range as an array:

>> for i 1:3; disp(i); end % iterate over a range—vector

V
\Y%
—
o
=
1

'foo’; disp(i); end % iterate over the characters of a string

2.2. MATLAB Operators

2.2.3 Indexing Operators

MATLAB includes three indexing operatorg) ”, '{} * and ". ’. The () -operator is
used for array indexing of variables, and for calling fuons. Some of the implications
of this ambiguity is further discussed in section S2d.Q The{} indexing operator is
used to index into cell arrays, which are discussed in 38cl The dot operator is used
to reference structures (see SB@..2 and user-defined classes using the new syntax (see
Sec.2.9.3

The MATLAB indexing operators are versatile. They support indeximgguscalars, and
indexing using arrays. Multi-dimensional arrays can beekadl using fewer dimensions
than the array actually has, in which case the last dimensithrtombine all remaining
dimensions. Itis also possible to index using logical valudsing a colon:() will expand
the whole dimension. The special keywanad is an expression that returns the last index
of a dimension.

> a=1[123;45 6] % creating a matrix
>> a(2,2) % indexing using scalar indices
5
>> a(4) % indexing using fewer dimensions — the dimensions get collapsed
5
>> a(1:2,1) % indexing using an array — created using the colon—operator
1
4
>> a(2,[3 2 1)) % indexing using an explicit array
654
>> a(l,) % a colon will expand the whole dimension
123
>> a(a > 2) % indexing using a logical array — created by the expression a > 2
4
5
3
6
>> a(2, end-1) % using end to refer to the last but one element of a dimension
5

MATLAB - a Dynamic Language

2.2.4 Operators vs Builtin Functions

MATLAB’s operators are naturally builtin to the language. Besideperators, M-
LAB provides additional builtin operations as functions. Ehare a large number of builtin
functions, going into the hundreds, that are intrinsic ta™/aB . For scientists and engi-
neers these are part of the appeal ofaB as a language.

Besides the syntax, there is little difference between apes@nd builtin functions. In
fact, operators are just syntactic sugar for functions desiote the same operation, every
operator has a corresponding function. For example, usiegperator is equivalent to
calling the functiomplus .

Even the indexing operations are represented by builtiotfons. All three indexing
operators() ,{} and.)are represented by the functisabsref andsubsasgn , where
the former one is used to represent indexing operationseletihhand side, and the latter
is used to represent indexing operations on the right-h&ael 8ecause each function
can represent different kinds of indexing operationsysTMAB will internally add more
arguments to the indexing functions to represent the exfiamation required. This is
transparent to the user, unless one wishes to overloadingleperations. Overloading is
introduced in Se.4.

2.3 MATLAB Type System

MATLAB is dynamically typed - variables need not be declared, théyake on any
value that is assigned to them. EveryAMAB value has an associatedAVLAB class
(henceforth we will use the nammclass when referring to a MTLAB class, in order to
avoid confusion with the usual notion of a class). The mctgszerally denotes the type
of the elements of a value. For example, the mclass of an afrdpubles isdouble .
The default numeric mclass double . While MATLAB also includes integer types, all
numeric literals are doubles.

>> n = 1 % the input literal and the output look like an integer
1

10

2.3. MATLAB Type System

>> cl ass(n) % however the mclass is is really double, the default
double

>> cl ass(1:100) % the mclass of the vector [1, 2, ..., 100] is double
double

MATLAB has a set of builtin mclasses, which can be summarized asvill
— double , single : floating point values
uint8 ,uintlé ,uint32 ,uint64 ,int8 ,intl6 ,in32 ,int64 :integervalues

logical : boolean values

char : character values (strings)

cell :inhomogeneous arrays
struct : structures

function handle : references to functions

Given that by default any numerical value inAVLAB is adouble , all values that are
intended to be of a different numeric type have to be spetiificanverted. This also means
that when combining a value of some non-double mclass withwgethat is aouble |, the
result will be of the non-double mclass. This leads to th@sing semantics that adding
aninteger and adouble results in annteger , because that is the more specialized

type.

>> x = 3; y = int8(5); % assign to x and y, y is explicitly an integer
>> cl ass(x) % the class of x is double
double
>> cl ass(y) % theclass ofyis int8
int8
>> cl ass(x+y) % the result of x+y is int8, not double
int8

11

MATLAB - a Dynamic Language

2.4 MATLAB Functions and Overloading

A MATLAB function is defined in am file which has the same name as the functfon.
So, for example, a function namédo would be defined in a fildoo.m , and that file
needs to be placed either in the current directory, or in ectliry on the MTLAB path.

A function thus defined is called@imary function . A .m file can also definsubfunc-
tions following the main (primary) function definition in a file, bthose subfunctions are
only visible to the functions within the file. Inside funati® it is possible to defineested
functions, which are visible only to the parent function. Functiong/rakso be defined in a
private/ directory. Thesg@rivate functions are visible only to functions defined in the
parent directory.

MATLAB allows overriding operations and functions to operate atsic mclasses.
This is accomplished by defining the function in a file insidgpacially named directory
which starts with the charactgfollowed by the name of the mclass. For example, one
could create a specialized functidinstWord defined for Strings, by creating a file
@char/firstWord.m somewhere on the MLAB path. Functions that are specialized
in such a way are calleoverloaded functions

Overloaded functions have precedence over non-overloaeetions, but they do not
have precedence over nested functions, subfunctions édefinthe same file) or pri-
vate functions (defined in thprivate directory). So, in our example, if there ex-
isted two definitions ofirstWord.m , one general implementation somewhere on the
MATLAB path, and one overloaded implementation in a direct@ghar on the MAT-
LAB path, then a call tdirstWord with a char argument will result in a call to
@char/firstWord.m , Whereas a call with an argument with any other mclass, ell r
sultin a call to the generéirstWord.m definition. The lookup semantics are discussed
in detail in Sec2.10

When calling a function that has overloaded versions withtiplelarguments of differ-
ent mclasses, MrLAB has to resolve which version of the function to call. Theresiot
exist a standard inheritance relationship between thdirburiclasses. Rather, MLAB

1. In the case where the name of the file and the function do atthmthe name of the file takes prece-
dence.

12

2.4. MATLAB Functions and Overloading

has the notion of auperior or inferior class. We were unable to find a succinct summary
of these relationships, so we generated arMAB program which exercised all cases and
which produced adot file describing all relationships, with all transitive retaships
removed.Figure 2.1 shows the relationships between different builtin mclassbowing
superior classes above inferior classes. Note that somessad have no defined relation-
ship. For example, there are no defined inferior/superiatiomships between the different
integer mclasses. Further, note tdauble , being the default mclass, is inferior to inte-
ger mclasses. Also, the compound mclassesc{ andcell), are superior to all matrix
mclasses.

function_handle

Gy G

Figure 2.1 Superior/inferior class relationships for MATLAB

When resolving a call with multiple arguments,AWVLAB finds the most superior ar-
gument, and uses its mclass to resolve the call. If multipje@ents have no defined su-
perior/inferior relationships, MTLAB uses the leftmost superior argument. The argument
which is used to resolve an overloaded function is calleddibminant argument. For
example, if a function is called with three arguments witl thclassesdpuble , int8
uint32), in that order, then the second argument is the dominaninaegt, and MT-

13

MATLAB - a Dynamic Language

LAB attempts to find an overloaded version for mcled8 . If none is found, M\TLAB
attempts to find a non-overloaded version.

As previously mentioned, using an operator (lies equivalent to calling the corre-
sponding functiongus in this case). So if the function corresponding to an operato
overloaded, it also means that the operator will be oveddadhis allows overloading of
MATLAB operators.

The overloading semantics for MLAB means that if one intends to build a complete
callgraph, i.e. resolve all possible call edges, one hasntbdil possible MTLAB classes
for all arguments, and one must safely approximate the lpdamantics of functions,
including the correct lookup of overloaded functions ugimg mclass and the superior/in-
ferior mclass relationships froffigure 2.1.

2.5 MATLAB Classes

It is important to note that the mclass of a value does not ¢etely define its type.
For example, numeric MrLAB values may be real or complex, and all values have an
array shape. Both of these properties are defined orthogaoathe notion of its mclass.
Although a computation can ask whether a value is complexair and can ask for the
shape of an array, the lookup semantics solely depend ondlassn which is effectively
just a name. Within the MrLAB language, there is no dedicated class of values to rep-
resent mclasses. Usually, strings (char vectors) are asgenote mclasses. For example,
ones(3,2,'single’) , will call the builtin function 'ones’ and create ax32 array of unit
values of mclassingle

2.6 Function Handles

MATLAB values with mclasgunction_handle store a reference to a function.
This allows passing functions as arguments to other funstiBunction handles can either
be created to refer to an existing function, or an anonymuoaostion created by a lambda
expression. Lambda expressions may also encapsulatéretatéhe current workspace via
free variables in the lambda expression.

14

2.7. Compound Types

>> f = @sin % a function handle to a named function

f = @sin

>> g = @(x) exp(a *x) % alambda with a free variable "a"
g = @(X)exp(a *Xx)

Function handles, and especially lambdas, are useful irenaal computing, for ex-
ample when calling numerical solvers, as illustrated below

f=@(ty) D *t + c; % setup derivative function

span = [0 1]; % set interval
y0 = [0:0.1:10]'; % set initial value
result = ode23s(f,span,y0); % use MATLAB library function t o0 solve ODE

When building a callgraph of a program that includes functi@mdles, one needs
to propagate function handles through the program integatorally in order to find out
which variables may refer to function handles, and to findeissed call edges.

2.7 Compound Types

MATLAB has two builtin compound types. These are of mctasst andcell |, re-
spectively.

2.7.1 Cell Arrays

In MATLAB, every value of an array needs to have the same mclass. Argflia an
array of values that do not necessarily need to have the sarassnallowing inhomoge-
neous arrays. Also note that for a numerical array, evemef is necessarily a scalar. So
cell arrays allows creating arrays of matrices with différsizes.

>> {1, 'hello world} % cell arrays allows bundling values with different types
[1] 'hello world'
>> {[1 2 3], [3; 4; 5]} % ...or values with just different shapes

15

MATLAB - a Dynamic Language

[1x3 double] [3x1 double]

>> {[1 2 3], 3, [3 4; 3 5]} % cell arrays may contain any value,
[1x3 double] [3] [2x2 double]
>> {[1 2 3], 3, {1, 'hello world}} % ...including other cell arrays

[1x3 double] [3] {1x2 cell}

A cell array is semantically an array of cells (everythingusarray). A cell is a scalar
value of classgell that contains some MLAB value. Array indexing (usin@) will give
back cells, cell indexing (using), will return the values contained in the cells.

>> ¢ = {1, [1 2 3], 'hello world} % when creating a cell array
CcC =

[1] [21x3 double] ‘hello world'
>> ¢(1) % array indexing will return the cell

[1]

>> c{1} % whereas cell indexing will return the contained value

1

>> [c; {0}, {2, 'foo'}] % cells and cell arrays can be combined with array operators
[1] [1x3 double] 'hello world'
[0] [2] ‘'foo'

2.7.2 Structures

Structures are MTLAB values of mclasstruct , and allow bundling of different
MATLAB values. But unlike cell arrays, which are indexed by numbsrsctures are in-
dexed by field names (i.e. Strings). Structures can be areseply by accessing them
using the dot-operator. elements can be read or writterg ing@rdot-operator. Nested struc-
tures are allowed. MrLAB also allows accessing structs using strings - so the fieldesam
of a struct may not be know statically.

>> s.a = 4 % structs are created by assigning into them
S =
a: 4

16

2.7. Compound Types

>> s.b = 'hello world' % new fields are created on the fly
s =
a 4
b: 'hello world'
>> s.a % elements are read and written using the dot—operator
4
>> sitv = 4 % structs may contain any value, including other structs
s =
a: 4
b: 'hello world'
t: [1x1 struct]
>> st
v: 4
>> s.(foo") = true % it is possible to use strings as fieldnames
s =
a: 4
b: 'hello world'
t: [1x1 struct]
foo: 1

If one wants to build a complete callgraph, which requiresrdsolution of overloaded
functions, one needs to know any possible mclass for allegllihis means that for struc-
tures and cell arrays, we need to know what possible valieesarained in them. Since
both structures and cell arrays can be accessed with inaleres/(numbers of cell arrays,
strings for structures) that are not statically known, aimdes both of them may contain
values of different mclasses, we may not be able to estinregeract mclass when a pro-
gram retrieves a value out of a structure or cell array. Aicsampiler has to either be
able to deal with incompletely typed programs (i.e. uniqumes), or restrict the semantics
of MATLAB to disallow such cases.

17

MATLAB - a Dynamic Language

2.8 Function Parameters and Arguments

MATLAB uses call-by-value semantics, so that each parameteredeadresh copy
of a variable? This simplifies interprocedural analyses for static coatjwh as calling a
function cannot directly modify local variables in the eall

In MATLAB, function arguments are optional. That is, when calling recfion one
may provide fewer arguments than the function is declar¢k. wiowever, NhATLAB does
not have a declarative way of specifying default values,doms it automatically provide
default values. That is, a parameter corresponding to amaegt that was not provided
will simply be unassigned and a runtime error will be throdvan unassigned variable is
read.

MATLAB does provide the functionargin to query how many arguments have been
provided to the currently executing function. This allowe programmer to use the value
of nargin to explicitly assign values to the missing pararsetas illustrated below.

function [resultl, result2] = myFunction(argl,arg2)
i f (nargin < 1)

argl = 0;
end
i f (nargin < 2)
arg2 = 1,
end;
end

As shown above, MTLAB also supports assigning multiple return variables. A fiomct
call may request any number of return values simply by assigite call into a vector of
Ivalues. Just like the function arguments, the return \&hlen’t all need to be assigned,
and a runtime error is thrown if a requested return value isasigned. MTLAB provides
thenargout function to query how many results need to be returned.

2. Actual MATLAB implementations only make copies where actually necesssing either lazy copy-
ing when writing to an array with reference count greatenthaor by using static analyses to determine
where to insert copiesH11].

18

2.9. MATLAB User-Defined Classes

Clearly a static compiler for MTLAB must deal with optional arguments in a sound
fashion.

2.9 MATLAB User-Defined Classes

A combination of the notion of overloaded functions and aites directly leads to
MATLAB’s user-defined mclasses. User defined mclasses are sésietbich have a user-
defined mclass attribute defining the class name. Overloaohetions for that class name
act as methods. Members are accessed like a structure.

Using the function overloading semantics, mclasses areetefn a directory whose
name is the class name, with a prefixed @-symbol. For examglepay want to define a
mclasspolynom to represent polynomials. We would define it in a direct@golynom/
somewhere on the path.

2.9.1 Constructors

Similar to other object-oriented languages, a construster function that returns an
object of some class. In MLAB, constructors are defined in the directory where the class
resides and have the same name as the class. So in our eximaenstructor would be
defined in some fil&@polynom/polynom.m . Note that in order to lookup this function,
MATLAB does not use overloading semantipeklynom can be called with arbitrary argu-
ments, and will refer to the constructor (unless some otiestfon has higher precedence),
even though the arguments may not be of cfaggnom .

The constructor itself has to call the functicltass on some structure and some
mclass name (String), which will turn the structure into &jeot of that mclass; this name
has to match the name of the constructor. For the polynom gbeatie constructor might
look like this:

functi on p = polynom(coefficients)

s.c = coefficients; % set up structure with coefficients
p = cl ass(s,'polynom?; % create object with mclass 'polynom’
end

19

MATLAB - a Dynamic Language

2.9.2 Methods, Attributes and Operators

The attributes of the user-defined mclass correspond toelus fof the structure that
was used to create the object of the class. It is not possilaldd new attributes to an object
once it is created, unlike structures, which allow adding fields.

The methods of the user-defined mclass are the functionswteaiverloaded for that
mclass. Being an overloaded method, the first argument iskijeetahe function operates
on. For example, for the polynom example, one could have aluatton function that may
look like this:

function y = eval(this,x)
y = x=*0; % setup result

for i = 1:numel(this.c) % iterate through terms
y =y + this.c(i) * XN(numel(this.c) - i); % add term for ith component
end
end

This method could be used like this:

>> p = polynom([1 -1 Q]) % create polynom object
p =

polynom object: 1-by-1
>> eval(p,2) % call eval method

2

It is possible to define private methods, by placing thempnivate directory inside
the class directory. To create a private method for the otyexample, it would have to
be in the directory@polynom/private/

Note that MATLAB values are copied when assigning, and parameters are gassed
value. So in order to modify an object, a mutator method wbalee to return the modified
object.

As mentioned in Sec2.2.4 MATLAB operators (likex, +) are just syntactic sugar
for calling corresponding functionsntimes , plus). So overloading the functions that

20

2.10. MATLAB Lookup Semantics

correspond to operators will also overload the operat@mselves. Thus it is possible to
override operations for user-defined mclasses; includinm@ex referencing operations

@, 0 ,.) by overriding the functiorsubsref , and index assignment operations by
overriding the functiorsubsasgn .

2.9.3 New Syntax after version 7.6

With version 7.6, MATLAB introduced a new syntax for defining mclasses within one
.m-file. Besides this new syntax, there were several objeented features added, for
example the usage of the dot-operator to access methodse Was also a new kind of
MATLAB class introduced, calledrendle class It allows the creation of objects that are
call-by-reference.

The basic ideas regardingMILAB classes, introduced in the previous sections, remain
largely the same; and this ’old’ way of defining mclassesiikfatly supported.

2.10 MATLAB Lookup Semantics

When MATLAB encounters a name, it has to decide whether this name is ableri
or a function, and if it is a function, which exact functiorréfers to. Note that MTLAB
evolved as an interpreted language, so variables are niarddcAdditionally, MATLAB
uses the same syntax for function calls and indexing - phaeses - so just finding out
whether a name refers to a function is non-trivial. Take tlleWing example:

x = a(ij)

Here,a may refer to a variable, making this an indexing operationt may refer to
a function, making it a function call. Depending on the msla&i andj, it may refer to
some overloaded function. But alspandj may possibly refer to functions as well - and
in fact they are MTLAB builtin functions, which both refer to the imaginary unit.

When a name is identified as a function, it has to be found out exect function it
refers to. As introduced in Se2.4, there exist different kind of functions (primary func-

21

MATLAB - a Dynamic Language

tions, subfunctions, nested functions, private functieverloaded functions, builtin func-
tions). It is possible to have multiple such functions, athwhe same name. The following
shows the lookup order of M LAB, together with the required information to perform the
lookup. To implement the MTLAB lookup semantics statically, we need estimates of this
information.

1. Variables
First MATLAB will check whether an encountered name is the same as a defined
variable. If it is, the name will be interpreted as that vialga Otherwise, MTLAB
assumes the name refers to a function, and performs thepanlaieps 2 through 8.

2. Nested Functions
Functions contained inside the currently executing fumctiave the highest prece-
dence among the functions.

3. Subfunctions
If there is no nested function with the correct namey™aB will search among the
other functions contained in the same .m-file. Note thatitichides the currently
executing function, i.e. recursive calls.

4. Private Functions
If the function is not found among the nested and subfunstibaTLAB will attempt
to find it among the private functions, i.e. in a directdpyivate relative to the
directory where the .m-file is located.

5. Class Constructors

Class constructors, i.e. a function whose name is the santgefakler plus a prefixed
@, are found either relative to the current execution dogeor the MATLAB path.

For example, a functiopolynom in a file @polynom/polynom is a constructor.
6. Overloaded Methods

Overloaded functions are found relative to the path or theeot execution direc-
tory, and are in a directory whose name equals the mclasstimhwt is defined,
plus a prefixed @. Note that the check for overloaded mettodsade only for the
dominant argument of a call.

22

2.10. MATLAB Lookup Semantics

The path itself is just a set of directories containingfiles or overloading directo-
ries.

7. Functions in the current execution directory

Functions can be found in the current execution folder. Nude this may be differ-
ent than the folder in which the curremh-file resides, because the curremt-file
may have been found somewhere on the path or in a privatetaliyed he current
execution directory does not change unless the programtbalifunctiorcd.

8. Functions on the path

If M ATLAB has not found the function so far, it will search the compjetth for an
.m-file with the desired name.

We see that in order to do a complete function lookup, we ne&ddw
— in which function and in which file the call was made

all nested functions and subfunctions that are visibleftioe executing function

the private directory relative to the directory of the emtlty executing function

— the complete path (the list of all directories of the pathiremment) and its contents

— the current execution directory

— the mclass of the dominant argument, in order to resolveaaged calls

To do the lookup statically, we may assume that the the cuenegtution directory is
just the directory where the entry point is, so we will use #ean approximation. M-
LAB allows changing the current execution directory, just lkber scripting languages,
using thecd (change directory) function. We have to restrigt for example to not change
the current lookup directory, in order to be able to provitedorrect lookup semantics stat-
ically. MATLAB also allows changing of the path environment usingaifipath method.
This function may have to be restricted as well.

In order to build a complete callgraph, we need to corredtingate the function lookup
semantics. We may simplify this by restricting functiorielcd andaddpath , but we
cannot restrict overloading semantics, especially if weelthe goal to eventually support
MATLAB classes. Thus we need estimates for all mclasses, whichsaesaneed an inter-
procedural flow analysis to propagate mclass estimatesgasmted irChapter 6.

23

MATLAB - a Dynamic Language

2.11 Wild Dynamic Features

Whereas features like dynamic typing, function handles,\andble numbers of in-
put arguments are both widely used and possible to tames #irerother truly wild dy-
namic features in MTLAB that are not as heavily used, are sometimes abused, andtare no
amenable for static compilation.

These features include the use of scripts (instead of fom€}j arbitrary dynamic eval-
uation gval), dynamic calls to functions usirfgval , deletion of workspace variables
(clear), assigning variables at runtime in the caller scope of &tfon (assignin),
changing the function lookup directories during runtiroe (addpath) and certain intro-
spective features. Some of these can destroy all availtddie sformation, even informa-
tion associated with different function scopes.

Our approach to these features is to detect them and helpgonagers to remove them
via refactorings. Some refactorings can be automated.¥&mple,McL AB already sup-
ports refactorings to convert scripts to functions and soafls tofeval to direct function
calls[Rad13. Other refactorings may need to be done by the programmeexample, the
programmer may used to change directory to access some data file, not being ainvaire t
this also changes the function lookup order. The solutiothis case is to use a path to
access the data file, and not to perform a dynamic caltitoVe have also observed many
cases where dynamigval or feval calls are used because the programmer was not
aware of the correct direct syntax or programming featuteste® For examplefeval is
often used to evaluate a function name passed as a Stringg &hmeore correct program-
ming idiom would be to use a function handle.

2.12 Summary

In this section we have outlined keyAILAB features and semantics, especially con-
centrating on the definition of mclass and function lookupr @pproach is to tame as
much of MATLAB as possible, including support for function handles andbl@dandefini-

3. This is at least partly due to the fact that older versidngl aTLAB did not support all of the modern
features.

24

2.12. Summary

tions. User-defined classes are not supported as part ofdss, but the whole framework
is explicitly designed with classes in mind, starting witlpport of the notion of mclasses
and correct semantics for overloading, as well as suppostfactures.

Capturing as much as possible of the evolved language is statgeful to allow access
to a wider set of MTLAB features for user code. Also, a significant portion ofTMAB's
extensive libraries are written in MLAB itself, and make extensive use of some of the
features discussed above. Since we implement theLB lookup semantics, and allow
the inclusion of the MTLAB path, our callgraph will automatically include availablexM
LAB library functions. Thus, implementing more features walabenefit users who do not
make direct use of advanced features.

25

MATLAB - a Dynamic Language

26

Chapter 3
Framework for MATLAB Builtin Functions

One of the strengths of MLAB is in its large library, which doesn’t only provide ac-
cess to a large number of matrix computation functions, lwkages for other scientific
fields. Even relatively simple programs tend to use a fairloemof library functions. Many
library functions are actually implemented inAVLAB code. Thus, to provide their func-
tionality, the callgraph construction needs to include &WrLAB function on the MT-
LAB path, if it is available. In this way we can provide access karge number of library
functions as long as we can support the language featurgsuiee However, hundreds
of MATLAB functions are actually implemented in native code. We daké functions
builtins or builtin functions.

Every MATLAB operator (such as-, x) is also a builtin function; the operations are
merely syntactic sugar for calling the functions that repre the operations (likgus for
+, mtimes for *).

For an accurate static analysis ofAM.AB programs one requires an accurate model
of the builtins. In this section we describe how we have medehe builtins and how we
integrate the analysis into the static interproceduralyamaframework.

3.1 Learning about Builtins

As a first step to build a framework of builtin functions, weedeto identify builtins,
and need to find out about their behavior, especially witpbeesto mclasses.

27

Framework for MaTLAB Builtin Functions

3.1.1 Identifying Builtins

To make the task of building a framework for builtins mandieawe wanted to iden-
tify the most commonly used builtin functions and organtzese into a framework. Other
builtins can be added incrementally, but this initial seswaeful to find a good structure.

To identify commonly used builtins we used thecBENCH frameworkRad13 to find
all references to functions that occur in a large corpus @i dhiree thousand MLAB
programs! We recorded the frequency of use for every function and thging the MaT-

LAB functionexist , which returns whether a name is a variable, user-definectibmor
builtin, we identified which of these functions is a builtifhis provided us with a list of
builtin functions used in real MrLAB programs, with their associated frequency of use.
The complete list can be found Appendix A.

We selected approximately three hundred of the most fragueictions, excluding
dynamic functions likeeval and graphical user interface functions as our initial set of
builtin functions. We also included all the functions thatrespond to MTLAB operators,
as well as some functions that are closely related to funstio the list.

3.1.2 Finding Builtin Behaviors

In order to build a call graph it is very important to be ablepproximate the behavior
of builtins. More precisely, given the mclass of the inpguanents, one needs to know a
safe approximation of the mclass of the output arguments. Géhavior is actually quite
complex, and since the behavior ofAVLAB 7 is the defacto specification of the behavior
we decided to take a programmatic approach to determinmthtéhbehaviors.

We developed a set of scripts that generate randomus values of all combinations
of builtin mclasses, and called selected builtins usingeterguments. If different random
values of the same mclass result in consistent resultingssek over many trials, the scripts
record the associated mclass propagation for builtins abkef and collect functions with
the same mclass propagation tables together. Exampleseaf sluch tables are given in

1. This is the same set of projects that are use®iiR11]. The benchmarks come from a wide variety
of application areas including Computational Physicsti§tas, Computational Biology, Geometry, Linear
Algebra, Signal Processing and Image Processing.

28

3.1. Learning about Builtins

Figure 3.1. The complete list of result tables can be found\ppendix B

[efi6 B2 64 |2 ffed]c [b | [[i8[i16 i3z [64 [B2 ;64 [c [b |
i8 |i8 |- \- - - i8 |i8 |- i8 [|i81|- |- |- |- | i8 |-
i16 |- [i16 |- |- |- i16 |il6 |- i16 (|- |i16 |- |- |- |- i16 |-
i32 ||- |- i32 |- - i32 |i32 |- i32 |- |- i32 |- - - i32 |-
i64 |- |- - i64 |- i64 |i64 |- i64 (- |- - i64 |- - i64 |-
f32 ||- |- - - f32 |f32 |f32 |f32 f32 ||- |- - - 132 |- f32 |f32

f64 ||i8 |il6 |i32 |i64 |f32 |f64 |f64 |f64 f64 ||i8 |il6 |i32 |i64 |f32 |f64 |f64 |f64

c |li8 [il6 [i32 |i64 |f32 |f64 |f64 |f64 c |li8 |il6 [i32 |i64 |f32 |f64 |f64 |f64
b |- |- |- |- |f32 |f64 |f64 |f64 b |- |- |- |- [f32 |f64 |f64 |-
(@) plus , minus , mtimes , times , kron (b) mpower, power

[[ieii6 32 [i64 [B2 [fed [c [b |

i8 |li8|- |- |- |- [i8 |8 |-
i16 |- |i16 |- |- |-]il6 |i16 |-
i32 |- |- [i32 |- |-]i32 |i32 |-
i64 |- |- |- |i64 |- |i64 |i64 |-
f32 |- |- |- |- |f32 |f32 |f32 |32

f64 ||i8 |il6 |i32 |i64 |f32 |f64 |f64 |f64
c i8 |i16 [i32 |i64 |f32 |f64 |f64 (f64
b |- |- |- |- [f32 |f64 |f64 |-
(c) midivide , mrdivide ,Idivide ,rdivide , mod, rem, mod

Figure 3.1 Example mclass results for groups of builtin binary operators. Rows correspond
to the mclass of the left operand, columns correspond to the mclass of the right
operand, and the table entries give the mclass of the result. The labels i8 through
i64 represent the mclasses int8 through int64 , f32 is single , f64 s
double , ¢ is char , and b is logical . Entries of the form “-* indicate that this
combination is not allowed and will result in a runtime error.

To save space we have not included the complete generated table, we have left out
the columns and rows for unsigned integer mclasses and for handles.

As compared with type rules in other languages, these sesidy seem a bit strange.
For example, the “-" entry foplus(int16,int32) in Figure 3.1(a) shows that it is
an error to add amtl6 to andint32 . However adding amt64 to adouble is
allowed and results in amt64 . Also, note that although the three tablegigure 3.1
are similar, they are not identical. For exampleFigure 3.1(a), multiplying alogical
with alogical results in adouble , but using the power operator with tvimgical

29

Framework for MaTLAB Builtin Functions

arguments throws an error. Finally, note that the tablesnatealways symmetrical. In
particular, the64 column and row irFigure 3.1(b) are not the same.

The reader may have noticed how the superior/inferior rasctalationships as shown
in figureFigure 2.1 seem to resemble the implicit type conversion rules farMAB builtin
functions. For example, when adding an integer and a dotii¢eresult will be double.
However, it is not sufficient to model the implicit MLAB class conversion semantics by
just using class-specialized functions and their relstigos. Many MATLAB builtins per-
form explicit checks on the actual runtime types and shaptdwearguments and perform
different computations or raise errors based on those sheck

Through the collection of a large number of tables we fourad thany builtins have
similar high-level behavior. We found that some functiorskwon any matrix, some work
on numeric data, some only work on floats, and some work orrarpibuiltin values,
including cell arrays or function handles.

3.2 Specifying Builtins

To capture the regularities in the builtin behavior, we aged all of the builtins in a
hierarchy - a part of the hierarchy is givenkigure 3.2. Leaves of the hierarchy correspond
to actual builtins and internal nodes correspond to alidraltins or a grouping of builtins
which share some similar behavior.

To specify the builtins and their tree-structure, we depetba simple domain-specific
language. A builtin is specified by values on one line. Valuesvery line are separated by
semicolons. To specify a builtin, the first value has to benidunme of the builtin.

If the builtin is abstract, i.e. it refers to a group of buiki the parent group has to
be specified as a second value. If no parent is specified, gwfiggol builtin is a concrete
builtin, belonging to the group of the most recently spedifistract builtin. This leads to
a very compact representation, a snippet of which is shoviangure 3.3.

Values after the second are used to specify propertiesrdoaés of builtins. Attributes
can be specified for abstract builtins, meaning that altci nodes will have that attribute.
This motivates structuring all builtins in a tree - if similauiltin functions have the same
attributes, then we may only have to specify properties once

30

3.2. Specifying Builtins

EIementaIBinaryFIoatF

/

BinaryFloatFn—————— ArrayBinaryFloatFn hypot
/
ProperFloatFn
— T
eps cumprod
FloatFn P mode

prod

ImproperFIoatFn—» DimensionSensitiveFloatFr— DimensionCollapsingFloatFr— sum

\ - mean
eig
norm
MatrixLibaryFn rank
T cond
det
rcond
linsolve
FacotorizationFn schur
ordschur
lu sin
chol cos
svd tan
r
: o
reilrsfqrt RadianTrigonometricFn csc
erfinv -
erfc sind
erfcinv cosd
gamma tand
gammaln / cotd
exp . - secd
log DegreeTrigonometricFn cscd
log2 -
log10 sinh
cosh
. . R . tanh
ForwardTrigonometricFn— HyperbolicTrigonometricFn—- coth
" sech
EIementaIUnaryFIoatFn csch
asin
acos
UnaryFIoatFn RadianinverseTrigonmetricFa—s g::ir:
InverseTngonmetrlan\b)) asec
\FegreelnverseTrlgonmetrlan acsc
ArrayUnaryFIoatFn

g HyperbolicinverseTrigonmetricFn | asind
SquareArrayUnaryFloatFn acosd

\ logm atand
sqrtm acotd
expm asecd

inv acscd

asinh
acosh
atanh
acoth
asech
acsch

Figure 3.2 Subtree of the builtin tree, showing all defined floating point builtins of MAT-
LAB. All internal nodes are abstract builtins, the names inside the boxes re-
fer to actual functions. The full tree showing all defined builtins is available at
http://www.sable.mcgill.ca/mclab/tamer.html

31

http://www.sable.mcgill.ca/mclab/tamer.html

Framework for MaTLAB Builtin Functions

operates on floating point matrizes
floatFunction; matrixFunction

proper float functions have a fixed arity, and all operands are floats
properFloatFunction; floatFunction

unary functions operating on floating point matrizes
unaryFloatFunction; properFloatFunction

elemental unary functions operating on floating point matrizes
elementalUnaryFloatFunction; unaryFloatFunction

sqrt

realsqrt

erf

float functions with optional arguments or variable number of arguments
improperFloatFunction; floatFunction

Figure 3.3 Excerpt of the builtin specification, showing definitions for some of the floating point
functions shown in Figure 3.2. The lines starting with a #-symbol are comments.

The builtin framework takes a specification like showrrigure 3.3 as input, and gen-
erates a set of Java classes, one for each builtin functibosevinheritance relationship
reflects the specified tree. For an abstract builtin, the ggéee@ Java class is abstract as
well. The builtin framework (the code that generates Jaes filom the builtin specifica-
tion) is written in Python.

3.2.1 Builtin Visitor Class

Besides the builtin classes, the builtin framework also gees a visitor class in Java.
It allows adding methods to builtins and thus to define flowatigms for them using
the visitor pattern - a pattern that is already extensivedgduin the MCSAF analysis
frameworkpPoh11]. In fact, flow analyses themselves are written using thigoripattern.

32

3.2. Specifying Builtins

The generated visitor class (segure 3.4) can be used to make flow analyses imple-
ment flow equations for all builtins. In order to do so, one twderive from the visitor
class and fill in the class variables used as argument anuh nelues for the case methods.
Overriding case methods allows specifying desired flow ggna for the corresponding
builtin.

Note that the default case for every builtin is to call thegmarcase - this means that
to specify behavior for similar builtins, one only needs peafy the abstract behavior
of a group, and the flow analysis framework will automatigapply the correct (most
specialized) behavior for a specific builtin. This furthestimates the structuring of builtin
functions into a tree.

For example, we may find that for some flow analysis, all the #8qwations for all func-
tions that are in the group ‘UnaryFloatFunction’ are the sa8o we just need to override
the caseAbstractUnaryFloatFunction() method, shown irFFigure 3.4. When
executing any case-method of a builtin in that group, itedkimplementation will call the
parent’s implementation until reachiegseAbstractUnaryFloatFunction()

The analysis framework allows specification of flow equatitor all AST-nodes. Since
all the MATLAB operators have associated AST-nodes, one can specify flaatieqs for
operators using the analysis framework. Our set of builtimcfions includes all the kr-
LAB operators, so analysis writer may alternatively define flquwegions for operators us-
ing the builtin framework, rather than the analysis framewéor the analyses presented
in this thesis we have opted to do so, to have fewer flow eguafmr AST-nodes, and have
all the behavior of builtin functions in one place.

Using this approach, an intraprocedural analysis that sr@wf builtins will consist
of a flow analysis class defining flow equations for AST-nodes] a class defining flow
equations for builtin functions. Both are defined as extersf visitor classes - the flow
analysis is a visitor class for the AST-node hierarchy, &eduiltin visitor for the hierarchy
of builtins.

33

Framework for MATLAB

Builtin Functions

public abstract class BuiltinVisitor<AR> {
public abstract R caseBuiltin(Builtin builtin,A arg);

/loperates on floating point matrizes
publ i c R caseAbstractFloatFunction(Builtin builtin,A arg){
ret ur n caseAbstractMatrixFunction(builtin,arg);

}

/Iproper float functions have a fixed arity, and all operands are floats

publ i c R caseAbstractProperFloatFunction(Builtin builtin,A ar o)X
ret urn caseAbstractFloatFunction(builtin,arg);

}

/lunary functions operating on floating point matrizes

publ i c R caseAbstractUnaryFloatFunction(Builtin builtin,A arg)i
ret urn caseAbstractProperFloatFunction(builtin,arg);

}

/lelemental unary functions operating on floating point matrizes

publ i c R caseAbstractElementalUnaryFloatFunction(Builtin bui Itin,A arg){
ret urn caseAbstractUnaryFloatFunction(builtin,arg); }

public R caseSqrt(Builtin builtin,A arg){
ret urn caseAbstractElementalUnaryFloatFunction(builtin,arg); }

publ i c R caseRealsqrt(Builtin builtin,A arg){
ret ur n caseAbstractElementalUnaryFloatFunction(builtin,arg); }

publ i c R caseErf(Builtin builtin,A arg){
ret urn caseAbstractElementalUnaryFloatFunction(builtin,arg); }

/[float function with optional arguments or variable number of arguments

publ i c R caseAbstractimproperFloatFunction(Builtin builtin,A arg){
ret urn caseAbstractFloatFunction(builtin,arg); }

}
Figure 3.4 Excerpt of the visitor class BuiltinVisitor that is generated by the builtin frame-

work using the specification shown in Figure 3.3. The comments are copied from the

specification file by the builtin framework.

34

3.3. Builtin Function Categories

3.3 Builtin Function Categories

We categorize the MTLAB builtin functions according to many properties, such as
mclass, arity, shape, semantics. To minimize the numbeowfélquations that need to be
specified for analyses and properties, they may requirerdiiit kinds of groupings for the
builtins, based on the semantics of the analyses or propeeily, for every analysis there
should be categories grouping builtins, so that the fewessiple flow equations have to
be specified.

In general this is not possible, because we are using a tiesgdgorize builtins. Never-
theless we attempted to find as many useful categories ablegsehich are partly inspired
by potential needs for analysis, and partly by the simiksitf existing builtin functions,
and the categories we found.

Another motivation for the heavy use of categories is thatfmmework does not yet
implement all MATLAB builtin functions, and we want to minimize the amount of work
required to add a builtin. When adding builtins that fit in ablg existing categories, one
can reuse the attributes and flow equations specified foe ttegggories.

Effectively, we have made a survey of all the builtins, Iéagrabout their semantics,
interfaces and mclass-behavior, and have retrofitted th@émam object-hierarchy. This
approach seems natural because we do generate objededrdava code for the builtins,
which uses that same hierarchy.

In the following we list the categories we have used to graupcfions. We present
every category along with their alternatives; the altémeatare mutually exclusive. We use
naming conventions that attempt to followAVLAB terminology, but some may only be
valid for the builtin framework.

pure, impure
Pure functions have no side effects, change no state, alt@erntherwise, and always
return the same result when called with the same arguments.

matrix, cell, struct, object, versatile
Matrix functions operate on WMrLAB values that are numericédgical orchar .
all arguments, operands and results should have thesesesl&or example, numer-

35

Framework for MaTLAB Builtin Functions

ical functions are matrix functions.

Cell functions operate on cell arrays, struct functions afgepn structures, object
functions operate on objects.

Versatile functions operate on multiple kinds of the abcstegories. Some may op-
erate on any MTLAB value. For example, query functions likemel only depend
on the shape of the argument - since everyTMAB value has a shape, the function
works on all arguments.

anyMatrix, numeric, float
These categories are sub-categories of the matrix category
A function belonging to the anyMatrix category operates omarical,logical or
char arrays. Numeric Functions operate on numbers. They mayaalseptchar
or logical values, but these values will be coercedltuble , so the actual op-
eration and the result will be numerical.
Float functions only operate on floats, istngle or double values. Some of the
functions in this category may also accept different arguiiand coerce them to
double .

proper/improper
Proper functions have strict arity, and the arguments aegamgls. As can be seen
in Figure 3.5, a lot of numeric functions are proper. Almost all operatanes proper
functions (an exception is the colon operator).
Improper functions may operate on a variable number of oyks;eor allow optional
parameters. Some may accept (optional) parameters sipgodtions for the com-
putation to be performed - these option parameters are moan@ds and may be of a
type that functions within its category do not accept as apes.
For example, the float functioaps (machine epsilon) is improper: it allows zero
arguments or one floating point argument, but it also suppthe char values
'single’ and'double’ as a sole argument. The function will always return
a float value.

unary, binary
A unary function requires exactly one argument, a binancfiom requires exactly

36

3.3. Builtin Function Categories

two.

elemental, array
The elemental category refers to element-wise functioasfunctions which operate
on every element in an array independently. The result aileithe same shape as the
inputs. The array functions operate on the whole array ag¢.dfcr example matrix
multiplication belongs to the array category.
The notion of elemental and array functions corresponds rgLMB’s notion of

array vs matrix operators, introduced in SB@.1 Note the different terminology to
avoid re-using the term ‘matrix’.

dimensionSensitive Dimension-sensitive functions are

of the form f (M, [dim]), i.e. they take some array as the first argument, and allow a

second optional argumedim . This argument specifies the dimension along which

to operate. By default the dimension will be the first non-&tan dimension.
dimensionCollapsing

A dimension-collapsing function is a dimension-sensifwection which will col-

lapse every value along the operated dimension into onesyald return a new

matrix with a corresponding shape. For examplegbhm function sums all values

along the dimension it operates, turning them into singleesa Other examples are
the functiongrod , mean, mode, min andmax.

query
A query is a function that given some arguments, will returscalar or a vector
containing information about the argument(s). The contputssummarizes the in-
formation contained in the arguments in some fashion.

toLogical, toDouble
These categories refer to the mclass of the result of the atatipn. We use these

as sub-categories of query. functions in the toDouble cayewill always return a
double result, functions in the toLogical category will retdogical results.

Besides the above general categories, we use ad hoc onetehgitato group builtin
functions according to their semantics, i.e. functionggrening similar computation should

37

Framework for MaTLAB Builtin Functions

be grouped together. For examplekigure 3.5, there are categories like ‘trigonometric
function’ or ‘factorization function’.

Within the tree-structure, categories are combined, icrgatore and more refined cat-
egories. For example, going down the tree one can reach théigation of categories
termedElementalBinaryTolLogicalMatrixQuery . Functions in this combined
category refer to query functions operating on matriceg,avihich take exactly two argu-
ments, operate element-wise and will return values of rsdlagical. The proliferation of
these long names may explain some of our naming conventidmish are largely moti-
vated by the desire for brevity, to keep combined categon@sageable.

An example of a complete path along the builtin tree, shoviimther and further re-
finement of categories, is shown kigure 3.5. It also shows alternative categories along
the path.

3.4 Specifying Builtin attributes

It is not sufficient to just specify the existence of builtitiseir behavior needs to be
specified as well. In particular, we need flow equations fer ghopagation of mclasses.
Thus the builtin specification language allows the additbattributes.

In the builtin specification language, an attribute is jusaae, with a set of arguments
that follow it. In the specification language the attribuaes defined on the same line as the
builtin itself. Starting with the third value, every valupexifies an attribute. Internally we
call attributes to builtins 'tags’.

A specific attribute can be defined for any builtin, and it wilgger the addition of
more methods in the generated Java code as well as the orchisnterfaces. In this way,
any property defined for an abstract builtin group is defiredhy builtin inside that group
as well, unless it gets overridden.

It is possible to add new kinds of attributes to the builtiegfication language. One
merely has to provide a functidrwith a specific function interface that provides informa-
tion about the specified builtin and the argument string ier attribute. The function has

2. attribute functions are defined in processTags.py in tilarbframework

38

3.4. Specifying Builtin attributes

PureFn ImpureFn

NS

ObjectFn MatrixFn CellFn StructFn VersatileFn

s T

Constant AnyMatrixFn NumericFn FloatFn BitFn MatrixQuery MatrixCreation MatrixConstructor

b

ProperNumericFn ImproperNumericFn

—

UnaryNumericFn BinaryNumericFn

b

ElementalBinaryNumericFn ArrayBinaryNumericFn

l

complex ElementalBinaryArithmetic

=

plus
minus DividingElementalArithmetic
times
power l
Idivide
rdivide
mod
rem

Figure 3.5 An example showing all ancestors of a group of builtins, and all siblings for all these
ancestors. This shows the refinement of categories from the top category of 'builtin’
going to a specific builtin, and what the alternative categories are along the way.

39

Framework for MaTLAB Builtin Functions

to return Java code that will be inserted in the generatediBuwilass. The function may
also update a list of interfaces that the generated builisscimplements. The name of
that function is the name of the attribute as used in theibwgftecification language. The
argument to the attribute is an arbitrary string. It may, Beer, not contain a semicolon,
because it is used to match the end of the attribute.

3.5 The Class and MatlabClass attribute

In order to build a complete callgraph, we need to know of whatass a variable
may be during runtime, due to the overloading lookup sermamiroduced in Se.4. To
have complete knowledge of all possible mclasses for alhlas at all times, we need to
know how they behave with respect to mclasses. We opted toedaffithis information as
attributes to builtins, defined in the builtin specificat@ong with builtins themselves.

We defined an attribute calledlass . When specified for a builtin, it forces the in-
clusion of the Java interfac@lassPropagationDefined in the generated Java code,
and will add a method that returns an mclass flow equatiorcabje

The mclass flow equation object itself is defined in the buspecification as an argu-
ment to theClass attribute, using a small domain specific language that allmatching
argument mclasses. It returns result mclasses based ohesate have decided to build
this little domain specific language because of the complexti some builtins, and our
desire to define mclass flow equations in a compact way.

We have noticed some irregularities in the pur@maB semantics, and our specifi-
cation sometimes removes those. In order to keep a recoftedifferences, we added
the MatlabClass attribute. It allows us to specify the exactAvL.AB semantics - and
thus provides an exact definition and documentation af MB class semantics. Refer to
Figure 3.6 for an example usage of botiCiass attribute and MatlabClass attribute
showing slightly different behavior.

A detailed description of the domain-specific language usa@present mclass flow
equations is presented Appendix C.

40

3.6. Summary

unaryNumericFunction; properNumericFunction; Class(nu meric>0,
charllogical>double)

elementalUnaryNumericFunction; unaryNumericFunction; abstract
real

imag

abs

conj;; MatlabClass(logical>error,natlab)

sign;; MatlabClass(logical>error,natlab)

Figure 3.6 Excerpt of the builtin specification with the Class and MatlabClass attributes added

in. The Class attribute for unaryNumericFunction defines the mclass flow
equations for unary functions taking numeric arguments, and applies for all builtins
in the group. It specifies that given a numeric argument, the result will have the same
mclass (numeric>0). For char and double the result will be a double.
Note the MatlabClass attribute defined for conj and sign . These functions
have exact MATLAB semantics that differ from the default used by the builtin frame-
work: they disallow logical arguments (but not char arguments), using them will
result in an error.

3.6 Summary

We have performed an extensive analysis of the behavioraafls builtin functions.
Based on that we developed a framework that allows to speciylB builtin functions,
their relationships and properties such as flow equatiomsdompact way. We have used
our analysis of the builtins to organize builtin functiomga a tree structure, making it
easier to work with builtin functions.

This builtin framework is extensible both by allowing theéduaddition of more builtin
functions; and by allowing to specify more information arehbvior for builtin functions.
This can be done either adding new properties to the franteitgmif; or by implementing
visitor classes.

The compact representation of builtins also allows chamtfie organization of builtins.

41

Framework for MaTLAB Builtin Functions

This means that the whole framework may evolve as our uratetstg of builtin functions
and our requirements for analyses evofve.

3. The complete specification of builtins, documentatiothefspecification and diagrams of all builtins
is available at www.sable.mcgill.ca/mclab/tamer.html.

42

Chapter 4
Tame IR

As indicated inFigure 1.1, we build upon the MSAF framework by adding taming
transformations and by producing a more specialized Tamd . McSAF framework
provides us with a three-address form of the AST, reducingyneamplicated MTLAB
constructs. We further reduce the AST to build the Tame IR.fBk& contributions of the
Tame IR, beyond the three address form previously provided b$AF are:

— Rather than providing a reduced form of the AST, as providetMicSAF, we im-
plement the Tame IR as a complete set of new nodes. The icgsrid these nodes
enforce the constraints of the IR.

— The Tame IR reduces the total number of possible AST nodepatticular, we
remove all expression nodes, and express their operatidasns of statements and
function calls.

— The Tame IR reduces some complexity okMAB . Some of these reductions would
not have been possible to be provided by the34r framework, because it is com-
pletely semantics preserving. Because the tamer framevaa ichpose constraints
on MATLAB to make it amenable to static compilation, it is possibleuttifer reduce
the AST in ways that is not possible with semantics-presgriiansformations. In
particular, we simplify lambda expressions and removecwstatements; we also
place all comments into empty statements, rather than have annotated to state-
ment nodes.

— The Tame IR specialize nodes according to their semaaticsprovides nodes that

43

Tame IR

signify the operation performed.

— The Tame IR provides information that is not available i@ &ST. In particular, it

separates functions and variables, utilizing the kindysis[DHR11].

Rather than implementing completely new nodes, all Tame liRega@re extensions of
existing AST nodes. This means that any Tame IR program $raevalid AST as well. A
program in the Tame IR is also a validAviLAB program, with one exception, which is
discussed in Sed.1.1 This difference is removed when the Tame is pretty printgdch
will produce valid MATLAB again.

The intention of the Tame IR is to make it easier to implemeiatyses, by reducing the
number of nodes, by specializing nodes to signify their apen, and by providing some
static information. By keeping the Tame IR an almost valid A&y analysis written for
the AST should work for the Tame IR as well; by keeping it vdldTLAB (at least when
pretty printed), it should be easier to debug analyses amdfiormations. One goal for our
overall Taming framework is to produce an IR whose operatae low-level enough to
map fairly naturally to static languages like FORTRAN.

Besides providing the IR nodes and the transformations id the Tame IR, we have
also extended the visitor classes and flow analyses of th8A¥ framework so that it can
be used to implement flow analyses that explicitly use the IR.

In the following sections we first introduce the Tame IR asdibdes, and then provide
an overview of some of the transformations used to arriveeaiame IR.

4.1 The Tame IR

The Tame IR consists of nodes that extend existing AST nd&@se of these nodes
extend the AST and merely enforce constraints that correspmthe three-address form
semantics of the Tame IR. Some nodes are extensions of the @& that do not change
the interface at all, they merely exist to complete the TaResb that a program may
consist only of IR Statements.

For assignment nodes, however, we provide several speatialis that correspond to
many different operations that can be performed by an assghstatement. The AST
only provides a single assignment statement with an exipress the Ihs and rhs. This

44

4.1. The Tame IR

is what the three-address form ofd8AF provides as well, even when the three-address
transformations will have reduced the actual structurenadssignment.

In the following sections, we present all the Nodes of the @ A complete grammar
is given in appendidppendix D.

4.1.1 Assignment Statements

For the Tame IR, we have extended the AST’s assignment statente several spe-
cialized versions, as seen kigure 4.1. These all represent different operations in terms
of assignment statements. Note in particular that we haereint nodes for the syntac-
tically identical array accesses and calls, given that @€l IR differentiates between
them, unlike the AST. In the following we describe all thefeliént kinds of extensions of
the assignment statement that are part of the Tame IR.

A

TIRAbstractAssignStmt

‘ TIRAbstractAssignFromVarStmt ‘ ‘ TIRAsbtractAssignToListStmt ‘ ‘TIRAbstractAssignToVarStmt ‘

TIRArraySetStmt H TIRCellArraySetStmt H TIRDotSetStm/ ‘ TIRAssignLiteralStmt H TIRCopyStmt H TIRAbstractCreateFunctionHandleStmt ‘

‘ TIRArrayGetStmt H TIRCellArrayGetStmt H TIRDotGetStmt H TIRCallStmt ‘ ‘ TIRCreateFunctionReferenceStmt H TIRCreateLambdaStmt ‘

Figure 4.1 Specializations of an assignment statement

TIRAbstractAssignStmt
An abstract class representing all assignment nodes ofaimee TR. This class ex-
tends the AST nodAssignStmt . The analysis framework allows specifying flow
equations for every node, including all the abstract nodes.

TIRADbstractAssignFromVarStmt

Assignments from variables are of the form

.= X

45

Tame IR

i.e. they have a rhs which is a name referring to a variablés iBran abstract node
class representing the following nodes:

TIRArraySetStmt, TIRDotSetStmt, TIRCellArraySetStmt
The ‘set’-assignments represent AssignFromVarStmts /ltsare indexing
operations, i.e. they represent assignment indexing tipesathat correspond
to the MATLAB builtin function subsasgn . For example, they represent the
following operations:

a(i,j)= x, as = x, afi,j} = x

TIRAbstractAssignToListStmt
Assignments to lists are assignments with multiple posg#oiget variables. I.e. they
are assignments of the form
[v1, v2, v3, ... , vn] = ...
Within the Tame IR, it is allowed that the list of result vadedis empty, which is
not valid in MATLAB. This is the only deviation of the Tame IR from being valid
MATLAB (the AST does not enforce this restriction). Empty Ihs lste used to
represent expression statements. For example, withinagine TR, a statement like
foo(3);
is represented as
[l = foo(3);
This allows us to represent all expressions in terms of states, while having IR
nodes that are merely extended AST nodes (in this BasggnmentStmt), while
also not having multiple versions for statements, eitheasssgnment or expression
statements.
When pretty-printed, an assignment with an empty lhs list ietiurn an expression
statement.

TIRArrayGetStmt, TIRCellArrayGetStmt, TIRDotGetStmt
The ‘get’-assignments are assignments to lists that aresepted by the kr-
LAB builtin functionsubsref , i.e. they have indexing operations on the rhs.

46

4.1. The Tame IR

Note that structure-referencing and cell-indexing mayltea multiple return
values that can be assigned, while array-indexing prodoogs one value.
However, array-indexing is also used when calling a valua@asgunction_handle
In that case, the referenced function gets called, poss#siyiting in multiple
return values. When any of the above operations is overlgaecperation
may also result in multiple return values.

TIRCallStmt
Calls are assignments of the form
[r1, r2, ... ,] = f(al, a2, ..., an);
Wherer; anda; are variables. Note the similarity to the array-get stataimhe
difference is thaf is a name that has to refer to a function.

TIRAbstractAssignToVarStmt
These represent assignments of the form,
X = ..
There is a name on the |hs representing a single variables€eTdre used for assign-
ments where there always is exactly one variable on the His.fmiakes them simpler
to analyze than the assignments to lists, because therertged to be any checks
for the existence of enough target variables, etc.

TIRAssignLiteralStmt
Literal assignments are used to assign numerical and $itengls to a variable,
i.e. they may be used to represent the following statements:

x = 3, x = 'hi’

In MATLAB, true andfalse are not literals, but builtin functions. These
functions actually allow arguments specifying matrix dims®ns to produce
logical matrices.
The assign-literal statements are the only place in the Ti&nehere literals
may occur; other statements usually operate on just vasabl

47

Tame IR

TIRCreateFunctionHandleStmt

These assign-to-var statements allow the creation of fmmdtandles, either
creating function pointers, or by creating an anonymoustfan using lambda.
They are thus of the form

t = @f;
or

t = @(x1,x2,...)f(al,a2,..,.an,x1,x2,...);
wheref is a name referring to a function. The variab&shrougha, encap-
sulate workspace variables within the anonymous functiogre may be 0 or
more of such variables. The transformation from arbitramlbda expressions
to statements of the above form is discussed in detail in&8c.

TIRCopyStmt
Copies are assignments of the form
X =Y,
wherex andy are names referring to variables.

4.1.2 Control Flow Statements

TIRIfStmt, TIRWhileStmt
The if and while statements in the Tame IR are almost the sartteaorresponding
statements in the AST. The only constraint, being a threesd form, is that the
condition-expressions have to be names referring to asab

TIRForStmt
The for statement in the Tame IR is of the form
for i = low:inc:hi
end

wherei, low, inc andhi are names referring to variablesc is optional.

TIRReturnStmt, TIRBreakStmt, TIRContinueStmt
These control flow statements are the same as their AST apante

48

4.1. The Tame IR

4.1.3 Other Statements

TIRGlobalStmt, TIRPersistentSmt
These statements allow declaring variables to be globakmigient. The Tame IR
imposes the constraint on MLAB that no variable may be used before a global
definition. MATLAB merely issues a warning in this caseAMAB does not allow
using a persistent variable before the declaration.

TIRCommentStmt
In the AST, comments are annotated to AST-nodes. When regl&$T nodes with
other AST nodes, one would thus have to ensure that comnrentspied as well. In
order to make transformations of the tree easier, we hawsldptplace all comments
into empty statements, so that no other statement may havdadaed comments.

4.1.4 Non-Statement Nodes

Besides all the above statement nodes, the Tame IR includéslliitwing nodes which
are not statements.

TIRNode, TIRStmt
These are interfaces. Any Tame IR node implemdii&Node . Any Statement of
the Tame IR implemenfEIRStmt .

TIRFunction
TIRFunction is an extension of the function node of the AST. It ensuretaha
statements inside the body aFéRStmt nodes. The functions also include infor-
mation that is not readily available to AST function nodemnely a simple symbol
table separating names into functions and variables (thétref the kind analysis).
It also provides the list of global and persistent variableslared inside the function
body.

TIRStatementList
A simple extension of th&tatementList that is part of the AST, to ensure that
all elements ar@dIRStmt nodes.

49

Tame IR

TIRCommaSeparatedList
Used as a list of names for arguments to calls, and for inaditeglexing operations,
and targets in list-assignments. Besides names, indexiagatipns may include a
colon (:), for example as used in the indexing operation
a(:,3)
Here,:;,3 would be represented as a comma-separated list.

As more of the MATLAB language is supported, more possible elements may get
added, for example MrLAB’s tilde expression ‘~’, which allows discarding results
of calls.

4.2 Tame IR Transformations

The Tame IR of an AST is built by transforming the three-addr®rm produced by
the McSAF framework. Given this three-address form, most of the faansations pro-
duce equivalent nodes of the IR, merely checking constraiimtgransform an incoming
assignment statement, the transformations have to cheakkivid of assignment it is, and
produce the appropriate IR assignment. All these transfttams do not actually transform
the underlying MATLAB code, they merely change the representation of it.

Besides these node-representation transformations, the TR transformations also
include some transformations that actually change theryndg MATLAB code. These
are presented below. Note how some of these transformatigese slight constraints on
the MATLAB code, which are thus part of the Tame\M AB language subset.

50

4.2. Tame IR Transformations

4.2.1 Reduction of Operations to Calls

The Tame IR has no operators. In order to transform to the TRa&l operators have
to be transformed into calls to equivalent builtin funcgohlote that users may already be
using builtin functions rather than operators, so aftertthesformation, all operations are
expressed in the same way. The list of operators thus tnansetbin presented imable 4.1.

The missing short circuit logical operation&& and||) are already reduced by the
McSAF framework into equivalent if-then-else statements.

The transformation does not reduce the indexing operafpors”{} 'and’. '. They do
correspond to the builtin functiorsubsref andsubsasgn , for indexing operations on
the rhs and Ihs, respectively. Note, however, thatrMAB uses the same indexing operator
for all indexing operations. Consequently,AMLAB internally has to add arguments to
specify the exact indexing operation used. This infornmatestored in a structure. For
example, an indexing operation like

x = a(i);
May look like the following, ifsubsref was used explicitly:

s.type = ()}
s.subs = {i,j};
X = subsref(a,s);

Note the structure that contains the type of indexing (asiagdt and the indices, which
are themselves stored as a cell array. If the Tame IR reduckexing operators, it would
actually generate more complex code, which may be harderalyze.

X=a+b x = plus(a,b)

(a) operation (b) equivalent call

Figure 4.2 Transforming operations to calls

51

Tame IR

With this in mind, analyses have to be aware that it is posgiloit only to overload
calls to functions, but also indexing operations. An actauaaalysis thus has to check for
overloaded functions for calls, as well as all ‘get’-assigmts and all ‘set’-assignments.

After the operator reduction, analyses written for the TéiRiehould utilize the builtin
framework. That is, analysis writers should provide a flowlgsis of the AST nodes using
the McSAF analysis framework, and flow equations for builtins using Builtin frame-
work. This simplifies the flow analysis of the AST nodes thenese because there are
fewer nodes, and helps separating the definition of the flawagons of the AST-nodes
from the definition of flow equations for builtin operationsdsfunctions.

binary numerical operators
unary operators

+ plus other binary operators .
: - uminus
- minus & and
. + uplus
. mtimes | or ' transpose
7| mrdivide < | Tt , Ctransp =
\ midivide > gt P
~ not
A mpower <= le
. * times >= ge
— colon
N rdivide == eq
— colon
. Idivide = ne
colon
N power

Table 4.1 MATLAB operators and their corresponding builtin functions.

52

4.3. Lambda Simplification

4.3 Lambda Simplification

MATLAB supports lambda expressions. In order to be compatible twvghrame IR,
their bodies need to be converted to a three address forrme s@y. MATLAB lambda
expressions are single expression (rather than, sayysatdists), that the MSAF frame-
work leaves intact in their original form, due to the diffigubf reducing a lambda ex-
pression while still maintaining the full MrLAB semantics. For the Tame IR we extract
the body of the lambda expression into an external funciidm lambda expression still
remains, but will encapsulate only a single call, all whosguments are variables. For
example, the lambda simplification will transform the exgsien inFigure 4.3(a) to the
code inFigure 4.3(b). The new lambda expression encapsulates a call to théumaton
lambdal . Note that the first two arguments are variables from the gmake, the remain-
ing ones are the parameters of the lambda expression. Im#igsas, we can thus model
the lambda expression using partial evaluation of the fandambdal . To make this
transformation work, the generated function must retuacty one value, and thus Tame
MATLAB makes the restriction that lambda expressions return ésmtye (of course that
value may be an array, struct or cell array).

functi on outer functi on outer
f=@@ty) D *t +c f = @(y) lambdal(D,c,ty)
end end

function r = lambdal(D,c,t,y)
r=>Dxt +c
end

(a) lambda (b) transformed lambda

Figure 4.3 Transforming lambda expressions

53

Tame IR

4.4 Switch simplification

As illustrated inFigure 4.4(a), MATLAB has support for very flexible switch statements.
Unlike in other languages, all case blocks have impliciakezat the end. In order to specify
multiple case comparisons for the same case blockTiMB allows using cell arrays of
case expressions, for exampl 3} in Figure4.4(a). Indeed, MTLAB allows arbitrary
case expressions, sucha the example. It refers to a cell array, then the case will
match if any element of the cell array matches. Without kmguthe static type and size
of the case expressions, a simplification transformatioigossible. Thus, to enable the
static simplification shown ifrigure 4.4(b) we add the constraint for the TameaAM.AB
that case-expressions are only allowed to be syntactiaoalys.

switch n t=n
case 1 i f (isequal(t,1))
ca';e {2, 3} el s;if (isequal(t,2) ||
isequal(t,3))
case c
el sei f (isequal(t,c))
otherwise
el se
end
end
(a) switch (b) transformed switch
Figure 4.4 Transforming switch statements
4.5 Summary

We have provided a simplified IR that can be used to represemt M3, which enables
implementing more simplified flow analyses, working togethigh the builtin framework,
and which should help facilitate static compilation oAM.AB programs.

54

Chapter 5
Interprocedural Analysis Framework and Call

Graph Framework

This chapter introduces the interprocedural analysis éxaonk. \WWe have previously
introduced the builtin framework and the Tame IR. In the nddpater we will introduce
the value analysis, an interprocedural analysis that ust#seae tools to build a callgraph
with annotated type information. In order to implement tinterprocedural analysis, we
have developed the interprocedural analysis framework.

The interprocedural analysis framework builds on top offame IR and the MSAF
intraprocedural analysis framework. It allows the congion of interprocedural analyses
by extending an intraprocedural analysis built using theSWrF framework. This frame-
work works together with a callgraph object implementing tdorrect NATLAB look up
semantics. An analysis can be run on an existing callgrapcthlor it can be used to build
new callgraph objects, discovering new functions as théyaisaruns.

In the following sections we will introduce the interprocedl analysis framework as
an extension of the intraprocedural analysis frameword,lw it works in tandem with
callgraph objects and the lookup objects, as well as howrdmadwork deals with recur-
sion. To help potential analysis writers, we have indicatednames of Java classes that
correspond to the contexts in bold.

55

Interprocedural Analysis Framework and Call Graph Framkwor

5.1 The Function Collection Object

In order to represent callgraphs we use an object which we~cactionCollection.

It is, as the name suggests, a collection of nodes repragefinctions, indexed by so
function reference objects. Objects of typanctionReferenceact as unique identifiers
for functions. They store a function’s name, in which filesittiontained if applicable, and
what kind of function it is (primary function, subfunctiomested function, builtin function,
constructor). For nested functions, it stores in which fiomcit is contained. Function
reference objects give enough information to load a fundtiom a file.

Nodes in the function collection not only store the code effimction and a function
reference; they also provide information about its enviment. The node provides aAl-
LAB function lookup object which is able to completely resolwy éunction call coming
from the function. It includes information about theAWLAB path environment and other
functions contained in the same file. The lookup informatsprovided given a function
name, and optionally an mclass name (to find overloadedoressiand will return a func-
tion reference allowing the loading of functions.

The lookup information allows us to build a callgraph knogvomly an entry point and
a path environment, and using semantics for finding funstibat correspond to the way
MATLAB finds functions at runtime. This is bridging the gap betweedgraamic language
and static compilers, which usually require specifying ind@urce code files are required
for compilation.

The simple function collection uses only the lookup infotimia contained in its nodes
to built an approximation of a callgraph, which is naturalgomplete. We have used it
for the development of the Tamer framework, as it providegygle way to generate a
callgraph which excludes discovering overloaded calls proghagation of function han-
dles. We have implemented slightly different versions effilmction collection, which are
described in the table below.

56

5.2. The Interprocedural Analysis Framework

SimpleFunctionCollection A simple callgraph object built using MLAB
lookup semantics excluding overloading. Functjon

Handles are loaded only in the functions where the
handle is created. Obviously this an incomplete call-
graph, but may be used by software tools that dojnot
need a complete callgraph, and where the simplicity
can be useful.
IncrementalFunctionCollection | callgraph that does the same lookup as the Func-
tionCollection, but does not actually load functions

until they are requested. This is used to build the

callgraph
CompleteFunctionCollection callgraph that includes call sites for every functipn
node and correctly represents overloading can call-
ing function handles. This is produced by the Tamer
using interprocedural analyses. This callgraph can
be used to build further interprocedural analysis that
are not extensions of the value analysis. It can also
be used as a starting point for static backends.

Table 5.1 The different kinds of Function Collection objects.

5.2 The Interprocedural Analysis Framework

The interprocedural analysis framework is an extensionhefintraprocedural flow
analyses provided by the &&AF framework. It is context-sensitive to aid code generation
targeting static languages like FORTRAN. FORTRAN's polyptosm features are quite
limited; every generated variable needs to have one spégifec The backend may thus
require that every MTLAB variable has a specific known mclass at every program point.
Functions may need to be specialized for different kindsrgtiments, which a context-
sensitive analysis provides at the analysis level.

An interprocedural analysis is a collection of interprased analysis nodes, callénd-
terproceduralAnalysisNode which represent a specific intraprocedural analysis foreso
function and some context. The context is usually a flow regamtation of the passed argu-
ments. Every such interprocedural analysis node produoesudt set using the contained
intraprocedural analysis. An InterproceduralAnalysidbls generic in the intraprocedural

57

Interprocedural Analysis Framework and Call Graph Framkwor

analysis, the context and the result - these have to be ddfjnad actual implementation
of an interprocedural analysis.

Every interprocedural analysis has an associated Fur@itection object, which may
initially contain only one function acting as the entry pofar the program (i.e. when
building a callgraph using an IncrementalFunctionColtatti The interprocedural analysis
requires a context (argument flow set) for the entry poinh&grogram.

Algorithm

The analysis starts by creating an interprocedural arsatysie for the entry point func-
tion and the associated context, which triggers the agsatiatraprocedural flow analysis.
As the intraprocedural flow analysis encounters calls t@mfanctions, it has to create
context objects for those calls, and ask the interprocédunaysis to analyze the called
functions using the given context. The call also gets addelé set of call edges associ-
ated with the interprocedural analysis node.

As the interprocedural has to analyze newly encounterdsl tla¢ associated functions
are resolved, and loaded into the callgraph if necessas/r@sult is a complete callgraph,
and an interprocedural analysis.

5.2.1 Contexts

In order to implement an interprocedural analysis, one bakefine a context object.
These may be the flow information of the arguments of a catlitimould be any informa-
tion. The analysis itself is context-sensitive, meanirgg ththere are multiple calls to one
function with different contexts, they are all represertgdiifferent interprocedural anal-
ysis nodes. The interprocedural analysis framework newerges contexts, which would
have to be done by the specific analysis if desired.

Interprocedural analysis nodes are cached. Thus if a fumcntext pair is called a
second time, the information will be readily available.

Note that in order to completely resolve calls, the flow infation and the contexts
have to include mclass information for variables and argusién order to resolve calls to
function handles, the contexts have to store which argusmaay refer to function handles

58

5.2. The Interprocedural Analysis Framework

(and which functions they refer to).

Once the complete callgraph is built, further analysestdoged to flow mclass infor-
mation, because all possible calls are resolved. But thisnmdition may still be useful to
obtain more accurate analysis result, by knowing whichrmgtion to flow into which
calls for ambiguous call sites (see SB2.3 - that is why the value analysis presented in
Chapter 6 allows extending the flow-sets, to allow flowing informati@n different analy-
ses together in one analysis, and get a more precise owesalt.r

5.2.2 Call Strings

When analyzing a functior for a given contexts, and encountering a call to some
other functiong, the interprocedural analysis framework suspends thgsisalf f in order
to analyze the encountered call. The flow analysis has tage@/contexty for the call to
g, and an intraprocedural analysis will be created that widllgzeg with cg.

Figure 5.1 A small program where main calls f calls g. The call string for g(cgy) in this example
may be main(Cmain) : f(Ct) : g(Cg).

The set of currently suspended functionsKigure 5.3 main and f), which are await-
ing results of encountered calls that need to be analyze@symnd to the callstack of
these functions at runtime, at least for non-recursive anog. We call the chain of these
functions, together with their contexts @allString. Every function/context pair, i.e. the
associated interprocedural analysis node, has an assibcait string, which corresponds
to one possible stack trace during runtime. Note that integdural analysis nodes are
cached, and may be reused. Thus in the above example, if timefumation also callgy

59

Interprocedural Analysis Framework and Call Graph Framkwor

with contextcg, the results of the interprocedural analysis node createtthé call encoun-
tered in functionf will be reused.

Figure 5.2 Here, main also calls g, also with context cy. Since the interprocedural analysis node
for g(cq) is reused, the call string will be reused as well.

Since the interprocedural analysis node is reused, it \afelthe same call string. So
the call string is not an exact representation of a call stackvery call, it is merely the
exact representation of one possible call stack that valtihea given function/context pair.
Note that for purposes of error reporting, the call string ba presented to the user as a
stack trace.

5.2.3 Callsite

Any statement representing a call may actually represettipteupossible calls. For
example a call to a functiog may be overloaded, so if arguments may have different
possible mclasses, different functions nangechay be called. Also, because it is up to
an actual analysis to define its notion of what a context is gossible that an analysis
may decide to produce multiple contexts for one call to a fiencf. This would create
specialized versions of a function from a single call (tsisctually possible in the value
analysis presented @hapter 6). A third way in which a statement may represent multiple
possible calls is via function handles. An TIRArrayGet stadat may trigger a call if the
represented array is actually found to be a function hamedecéll the variable accessed in a
TIRArrayGet statement an "array’ simply because it is useghiarray-indexing operation,
but it could be any variable). If that function handle mayeréb multiple possible functions

60

5.2. The Interprocedural Analysis Framework

at runtime, then the function handle access may refer topheilpossible calls.

Figure 5.3 This figure shows examples how it is possible for one single call site to refer to
multiple possible calls. This may be due to overloading, creation of multiple contexts
for a single call, or function handles.

In order to be able to represent multiple possible call edgesing out of a statement,
we associate any statement that includes any calls wthlisite object. This callsite can
store multiple possible call edges as function/contexspaihich we call a “call” in the in-
terprocedural analysis framework. An intraproceduralysis, in order to request the result
of a call, has to request a callsite object for a calling statet. It may then request arbitrary
calls from that callsite object, which will all get assoeidiwith the calling statement.

5.2.4 Recursion

The interprocedural analysis framework supports simpterantual recursion by per-
forming a fixed point iteration within the first recursive enprocedural analysis node. In
order to identify recursive and mutually recursive callswge the call strings introduced
in Sec.5.2.2 While we established that there is no guarantee which stack the call
string represents, we know that it will always represent posgsible stack trace. Since the
call stacks of all recursive and mutual recursive calls rmgtde the function, we merely
need to check, for any call, whether it already exists inaitring.

If it does, we have identified a recursive call, and must perfa fixed point iteration.
To do so, we label the intraprocedural analysis node agedoigith the recursive call (i.e.
the call to f(cs) in Figure 5.4) as recursive. This will trigger the fixed point iteration.
Because we need a result for the recursive call to continulyzng, an actual analysis
implementation has to provide a default value as a first qimation, which may be just
bottom. Once the intraprocedural contained in the intexgdaral analysis node associated

61

Interprocedural Analysis Framework and Call Graph Framkwor

Figure 5.4 Example of a recursive program. The call in s(Cs) to f(ct) triggers the fixed point
iteration of f(c¢). f(cr) is the first recursive interprocedural analysis node.

with the recursive call is completed, the result is stored msw partial result. The analysis
is then recomputed, using this new partial result for theirgee call. When a new patrtial

result is the same as a previous partial result, we have a&tatpthe fixed point iteration.

Note that the computation resulting in the new partial ressigs the previous partial result
for its recursive call - but since they are the same, we havderaacomplete analysis using
the final result for the recursive call.

Note that the while the fixed point iteration is being compytl calls below the re-
cursive call (i.e. the callg(cg) ands(cs) in Figure 5.4) always return partial results. Thus
we cannot cache the nodes and their results, and have tagously invalidate all the
corresponding interprocedural analysis nodes.

Note that the analysis treats calls to the same function dviterent contexts as differ-
ent functions. No fixed point iteration is performed to resalecursive calls with different
contexts, because they represent different underlyingpnbcedural analyses. Thus it is
possible to create infinite call strings, as showfiigure 5.5. It is up to the actual analysis
implementation to ensure this does not happen. A simpléglyavould be to ensure that
there are only a finite number of possible contexts for evengtion. Another strategy is
for the intraprocedural analysis to check the current dalhg before requesting a call,
to ensure that the function to be called does not already ixtke call string. If it does,

62

5.3. Summary

Cremtemam > Cintemein >
Cen
<
G <Y
<>

Figure 5.5 Example of a recursive program, showing how recursive calls with different contexts
can create infinite chains of calls on the left. An interprocedural analysis implemen-
tation has to catch such cases and create a finite number of contexts, as shown on
the right, where the contexts ¢, and onward are replaced with c’. In this case the
interprocedural analysis framework will perform a fixed point iteration on f(c’).

the intraprocedural analysis should push up the contexfitota representation (shown in
Figure5.5).

5.3 Summary

We have presented an interprocedural analysis framewatkwie hope is flexible
enough to allow different kinds of full-program analysesile powerful enough to deal
with issues such as recursion and ambiguous call sites.aRailysis framework is a key
component of our value analysis (presented in the next ehgaind the overall callgraph
construction of the Tamer.

63

Interprocedural Analysis Framework and Call Graph Framkwor

64

Chapter 6
Interprocedural Value Analysis and Call Graph

Construction

The core of the MTLAB Tamer is thevalue analysis. It's an extensible monolithic
context-sensitive inter-procedural forward propagatdrabstract MTLAB values. For
every program point, it estimates what possible valuesyevariable can take on. Most
notably it finds the possible set of mclasses. It also prajgadanction handle values. This
allows resolution of all possible call edges, and the cowsitsn of a complete call graph
of a tame MATLAB program.

The value analysis is part of an extensible interprocecamalysis framework. It con-
tains a set of modules, one building on top of the other. Athein can be used by users of
the framework to build analyses.

— Theabstract value analysis(section6.1), built using the interprocedural analysis
framework, is a generic analysis of abstrach™MAB values. The implementation
is agnostic to the actual representation of abstract valudds aware of MTLAB
mclasses. It can thus build a callgraph using the correddtifmm lookup semantics
including function specialization.

— We provide an implementation ebmposite valuedike cell arrays, structures and
function handles, which is generic in the implementatioralo$tract matrix values
(section6.3). This makes composite values completely transparentyaify users to
implement very fine-grained abstract value analyses bymalyiding an abstraction

65

Interprocedural Value Analysis and Call Graph Construction

for MATLAB values which are matrices.

— Building on top of all the above modules and putting evenghogether, we provide
an abstraction for all MTLAB values, which we call simple values (secti6m).
Since it includes the function handle abstractions, thislkmused by users to build
a complete tame MrLAB callgraph. This is theoncrete value analysiswhose
results are presented in secti®b.

6.1 Introducing the Value Analysis

The abstract value analysis is a forward propagation of eabstract MTLAB val-
ues. The mclass of any abstract value is always known.

A specific instance of a value analysis may use differentasgtations for values of
different mclasses. For example, function handle valueglmarepresented in a different
way than numeric values. This in turn means that values tdréifit Matlab classes can not
be merged (joined).

6.1.1 Moclasses, Values and Value Sets:

To define the value analysis independently of a specific sgmtation of values, We
first define the set of all mclasses:

C = {double ,single ,logical ,cell ,...}

For each mclass, we need some lattice of values that represtmations of MTLAB
values of that class:

Vinclass = {V: Vrepresents a MrLAB value with mclassnclass}, mclasse C

We require that merge operations are defined/\sovo> € Vindass, V1 A V2 € Vindlass-

We can not join values of different mclasses, because tloaiabrepresentation may
be incompatible. In order to allow union values for varighiee. to allow variables to have
more than one possible mclass, we estimate the value ofeLM3 variable as a set of

66

6.1. Introducing the Value Analysis

pairs of abstract values and their mclasses, where the seglase disjoint. We call this a
value set. More formally, we define a value set as:

ValueSet = {(mclassy, 1), (mclassy, va), ..., (mclassy, vp) :
class # classj,class € C,Vi € Vgass

Or the set of all possible value sets given a\éeff lattices for every mclass.
Sy = {{(mclass,) : melass # melass, Vi € Vingass, k€ 0..n}:0<n<|C|}}

This is a lattice, with the join operation which is the simptt union of all the pairs, but
for any two pairs with matching mclasses, their values gaej, resulting in only one pair
in the result set.

While the notion of a value set allows the analysis to deal aitibiguous variables,
still building a complete callgraph and giving a valid estimon of types, having ambiguous
variables is not conducive to code generation for a langlikg&ORTRAN. So

if (.); t =4 else; t = ’hi’; end
results int having the abstract valugdouble ,4),(char ,’hi”)}. This example is not
tame MATLAB.

6.1.2 Flow Sets:

We define a flow set as a set of pairs of variables and valuei gets,
flow= {(vary,s1), (vary,s),...,(vary, sn) : s € Sy, varj # varj}
and we define an associated look-up operation
flow(var) = sif (var,s) € flow

This is a lattice whose merge operation resembles that ofalue sets.
Flow sets may baonviable, representing non-reachable code (for statements after er

67

Interprocedural Value Analysis and Call Graph Construction

rors, or non-viable branches). Joining any ramttom flow set with thenonviabl e set results
in the viable flow set, joinindpottom andnonviabl e results innonviabl e.

6.1.3 Argument and Return sets:

The context or argument set for the interprocedural aralgsa vector of values rep-
resenting argument values. Arguments are not value sdtsjrbple valuess € \V with a
single known mclass. When encountering a call, the analysis has to construcoalbe¢
nations of possible argument sets, construct a context fihatrand analyze the call for all
such contexts. For example, if we reach a ca#t foo(a,b) , with a flow set

{(a,{(double ,v1),(char ,v2)}),(b,{(logical ,v3)})},

the value analysis constructs two contexts, fi@mvs) and(vz,v3), and analyzes function
foo with each context. Note how the dominant argument for thédoatext isdouble
whereas it ichar for the second. If there exist mclass specialized versionfb , then
this results in call edges to, and analysis of, two diffefanttions.

More formally, for a callfunc(ay, a2, --- , an) at program poinp, with the input flow
set fp, we have the set of all possible contexts

allargs=fp(ar) x fp(az) x --- x fp(an) = fo(a)
1<i<n
the interprocedural analysis needs to analfaec with all these contexts and merge
the result,

R= /\ analyze(func,arg)

argeallargs
To construct a context, the value analysis may simplify fpup) values to a more
general representation. For example, if the value abgiragicludes constants, the push
up operation may turn constants inttgp. Otherwise, the number of contexts for any given
function may grow unnecessarily large.
The result of analyzing a function with an argument set isaoreof value sets, where

68

6.2. Flow Equations

every component represents a returned variable. They iaedjby component-wise join-
ing of the value sets. In the value analysis we require thead foarticular call, the number
of returned variables is the same for all possible contexts.

6.1.4 Builtin Propagators:

Every implementation of the value abstractions needs teigeca builtin propagator,
which provides flow equations for builtins. B is the set of all defined builtin functions
{plus ,minus ,sin ,...}, then the builtin propagatd, for some representation of values
\c is a function mapping a builtin and argument set to a restlt se

R:Bx [JV'— ()"
neN neN
The builtin framework provides tools to help implement baipropagators by providing
builtin visitor classes. The framework also provides htttes for builtin functions, for ex-
ample the class propagation information attributes.

6.2 Flow Equations

In the following subsection we will show a sample of flow edomas to illustrate the
flow analysis. We assume a statement to be at program poivith incoming flow setfp,.
The flow equation for program poimtresults in the new flow se‘l{)

—vary = vars: fy= fp\ {(var, fp(vart)) } U{(var, fp(vars)) }

— var = |, wherel is a literal with mclasg; and value representation

fo = o\ {(var, fp(var))} U{(var, {(c;,v)})}

—[t1, to, ..., ty] = func(ay, a, ..., a,), a function call to some functiofunc:
with

69

Interprocedural Value Analysis and Call Graph Construction

R/ (b,args) if func with argsrefers to a builtirb

call =
funcarg { analyze(f,args) if func with argsrefers to a functiorf

we set

R= /\ call func,args

argse fp(ag)x fp(ag) x--x fp(an)

then

m

fo = o\ UL, fpt) U {6, R)}
i=1

i=1

Note that when analyzing a call to a function in an m-file, thguanent values will

be pushed up. For calls to builtins, the actual argumentegalill be used, effectively
in-lining the behavior of builtin functions.

6.3 Structures, Cell Arrays and Function Handles

We implemented a value abstraction for structs, cell aremg function handles (in-
ternally calledAggrValue). This abstraction is again modular, this one with respect t
the representation of matrix values (i.e. values with nxlsuble , single , char ,
logical or one of the integer mclasses). Structures, cell arraysuaradion handles act
as containers for other values, making them effectivelygparent. A user may provide a
fine-grained abstraction for just matrix values and combiimath the abstraction of com-
posite values to implement a concrete value analysis.

6.3.1 struct |, cell

For structures and cell arrays, there are two possibleadt&ins:
— tuple: The exact index set of th&truct /cell is known and every indexing op-
eration can be completely resolved statically. Then thaesaéd represented as a set

70

6.3. Structures, Cell Arrays and Function Handles

of pairs{(i1,s1), (i2,%), .., (in,S) 1 ik € I,51 € Sy }, where | is an index set - integer
vectors for cell arrays, and names for structs.
— collection: Not all indexing operations can be statically resolvedherset of indices

is unknown. In this case, all value sets contained in thecstu cell are merged

together, and the representation is a single valus s&, .
The usual representation for a structure is a tuple, beceusgly all accesses (dot-expressions)
are explicit in the code and known. Cell arrays are usuallyllecion, because the index
expressions are usually not constant. But cell arrays tehdwe homogeneous mclass val-
ues, so there is some expectation that any accesswéiet or cell results in some
unambiguous mclass and thus allows static compilation.

6.3.2 function_handle

As explained in sectiog.6, function handles can be created either by referring to an
existing function, or by using a lambda expression to ggaemnaanonymous function using
a lambda expression. The lambda simplification (presentsdation4.3) reduces lambda
expressions to single calls.

We model all function handles as sets of function handlespairfunction handle pair
consists of a reference to a function and a vector of pantiplraent value sets. A function
handle value may thus refer to multiple possible functiartipl argument pairs.

Given some flow sef,, defined at the program poipt

g = @sin resultsin

fo=fo\ (9, fp(9)) U{(g, {(function_handle ., {(sin ,())})})}
g = @(ty) lambdal(D,c,t,y) results in
fh= 1\ (g, fp(@) U{(g, {(function_handle ,{(lambdal , (fs(D), fu(c)))})})}

Note that function handles get invoked at array get statésneather than calls. That is
because the tame IR is constructed without mclass infoomatind will correctly interpret
a function handle as a variable. When the target of an arragtgegment is a function
handle, the analysis inserts one or more call edges at tbhgtgm point, referring to the
functions contained in the function handle.

71

Interprocedural Value Analysis and Call Graph Construction

6.4 The Simple Matrix Abstraction

Using the value abstraction for structures, cell arrays fandtion, we implemented
a concrete value abstraction by adding an abstraction farbmaalues, which we call
simple matrix values. On top of the required mclass, thisrabBon merely adds constant
propagation for scalar doubles, strings (char vectors) saalar logicals.

This allows the analysis of MrLAB code utilizing optional function arguments us-
ing the builtin functionnargin , and some limited dynamic features utilizing strings. For
example, a call likenes(n,m,’int8’) can be considered tame.

This implementation represents the concrete value amsatiiat is used to construct
complete callgraphs.

6.5 Applying the Value Analysis

In order to exercise the framework, we applied it to the seberichmarks we have
previously used for evaluating McVM/McJITH11], a dynamic system. The benchmarks
and results are given ifable 6.1. About half of the benchmarks come from the FALCON
projectRP99 and are purely array-based computations. The other haftfeobenchmarks
were collected by thé/cL AB team and cover a broader set of applications and use more
language features such as lambda expressions, cell ardygeursion. The columns la-
beled #Fn correspond to the number of user functions, anddiuenn labeled #BFn cor-
responds to the number of builtin functions used by the bexack. Note the high number
of builtins. The column labeled “Wild" indicates if our sgsh rejected the program as too
wild. Only the sdku benchmark was rejected because it usetbétd library function
which loads arbitrary variables from a stored file. For fumus likeload , which can re-
turn arbitrary values, we may have to provide alternativereritame” versions in order to
produce a tamed program. The column labeled “Mclass" inggcainique” if the interpro-
cedural value propagation found a unique mclass for evetghla in the program. Only
three benchmarks had one or more variables with multipferdiit mclasses. We verified
that it was really the case that a variable had two differesisfple classes in those three
cases.

72

6.5. Applying the Value Analysis

Name | Description Source #Fn | #BFn Features Wild | Mclass
adpt Adaptive quadrature Numerical Methods| 1 17 no unique
beul Backward Euler McLAB 11 30 lambda no unique
capr Capacitance Chalmers EEK 170| 4 12 no unique
clos Transitive Closure Otter 1 10 no unique
crni Tridiagonal Solver Numerical Methods| 2 14 no unique
dich Dirichlet Solver Numerical Methods| 1 14 no unique
diff Light Diffraction Appelbaum (MUC) 1 13 no unique
edit Edit Distance Castro (MUC) 1 6 no unique
fdtd Finite Distance Time Domain | Chalmers EEK 170| 1 8 no unique
fft Fast Fourier Transform Numerical Recipes | 1 13 no multi
fiff Finite Difference Numerical Methods| 1 8 no unique
mbrt Mandelbrot Set McLAB 2 12 no unique
mils Mixed Integer Least Squares | Chang and Zhou 6 35 no unique
nbld | 1-D Nbody Otter 2 9 no unique
nb3d | 3-D Nbody Otter 2 12 no unique
nfrc Newton Fractal McLAB 4 16 no unique
nne Neural Net McLAB 3 16 cell no unique
play Minimax Search McLAB 5 26 recursive, cell| no multi
rayt Raytracer Aalborg (Jensen) 2 28 no unique
sch2 Fparse Schroed. Egn Solver McLAB 8 32 cell, lambda no unique
schr Schroedinger Eqn Solver McLAB 8 31 cell, lambda no unique
sdku Sodoku Puzze Solver McLAB 8 load yes

sga \ectorized Genetic Algorithm | Burjorjee 4 30 no multi
svd SVD Factorization McLAB 11 26 no unique

Table 6.1 Results of Running Value Analysis

Although the main point of this experiment was just to exs¥dhe framework, we
were very encouraged by the number of benchmarks that werevittband the overall
accuracy of the basic interprocedural value analysis. Vge&xmany other analyses to
be built using the framework, with different abstractioBy.implementing them all in a
common framework we will be be able to compare the differ@praaches.

73

Interprocedural Value Analysis and Call Graph Construction

74

Chapter 7
Related Work

There are several categories of related work. First, we ttev@nmediate work upon
which we are building. Thé&/cL AB project already provided the front-end and the 8AF
[Doh11] analysis framework, which provided an important basiser Tamer. Then there
is MCFOR, a previous attempt to build a static compiler targeting HRRN95, that
is part of theMcL AB project. There are also other compilers fomMAB, both static
ones and dynamic ones. There is also related work on stataralyzing and compiling
other dynamic languages, with some similar problems we fesed, and some similar
approaches. Some of this work is presented in section7S&c.

7.1 MCFOR

We learned a lot fromMcL AB’s previous MCFOR project[Li09] which was a first pro-
totype MATLAB to FORTRAN95 compiler. MFOR supported a smaller subset of the
language, and simply ignored unsupported features - Igddipossibly undefined behav-
ior. McFoR did also not have a comprehensive approach to the builtiatioms, did not
support the MTLAB function lookup semantics, and had a much more ad hoc agptoac
the analyses. However, it really showed that conversion sfIMB to FORTRAN95 was
possible, and that FORTRAN95 is an excellent target langubgparticular it showed
that the numerical and matrix features of FORTRAN95 are adguatch for compiled

75

Related Work

MATLAB, and that the static nature of the language, together wittedal FORTRAN95
compilers provide the potential for high performance.

We have developed the Tamer with targeting FORTRAN95 in mimarder to pro-
vide some extra flexibility for other potential backends vewdnrestricted MTLAB less
than may be necessary for aavLAB to FORTRAN compiler, i.e. it may have to restrict
the MATLAB language further. For example, FORTRANO95 has very limitetymor-
phism support, meaning that any polymorphic code can noabigydranslated to compact
and readable FORTRAN. BFOR does observe these limitations, but does have an inter-
esting way to deal with one polymorphic case: If an if-statatiresults in incompatible
types for a variable along both branches, the code followlag if-statement gets copied
into both branches, so that there won'’t be a confluence ofiipedible types. For example,

if (..)

x =3
el se

X = 'Hi'
end
foo(x)

may be converted to

if (..)
X =3
foo(x)
el se
X = 'Hi'
foo(x)
end

This transformation is not possible in general for confl@gpaints around loop statements,

and does also not work if values with ambiguous types arerretufrom a function.
Despite being a full compiler with many interesting ideas;iR is a prototype, with

limited feature set and limited extensibility. For this sieewe have gone back to the ba-

76

7.2. Other Static MTLAB compilers

sics and defined a much larger subset gfiaB, taken a more structured and extensible
approach to building a general toolkit, tackled the probtdra principled approach to the
builtins, and defined the interprocedural analyses in a mgoeous and extensible fashion.
The next generation of ®IFOR can now be built upon these new foundations.

7.2 Other Static MATLAB compilers

Although we were not able to find publicly available versicimgre have been several
excellent previous research projects on static compiatfdMATLAB which focused par-
ticularly on the array-based subset oAM AB and developed advanced static analyses for
determining shapes and sizes of arrays. For example, FALGOMN{ is a MATLAB to
FORTRANO9O translator with sophisticated type inferenagodathms. Our Tamer is tar-
geting a larger and more modern set ok AB that includes other types of data structures
such as cell arrays and structs, function handles and laesqutassions, and which obeys
the modern semantics of MLAB 7. We should note that FALCON handled interproce-
dural issues by fully in-lining all of the the code. MaJKE{ 02, a MATLAB Just-In-Time
compiler, is patterned after FALCON. It uses similar typeenehce techniques to FAL-
CON, but are simplified to fit the JIT context. MAGICARBO3 JB0] is a type inference
engine developed by Joisha and Banerjee of Northwesternetsity, and is written in
Mathematica and is designed as an add-on module used by Méd&iler Joi03. We
hope to learn from the advanced type inference approachbsse projects and to imple-
ment similar approximations using our interproceduraliganalysis.

There are also commercial compilers, which are not pubhaehilable, and for which
there are no research articles. One such product i$#AE_LABCoder recently released
by MathWorksMat]. This product produces C code for a subset ofTyaB . According
to our preliminary tests, this product does not appear tpsuell arrays except in very
specific circumstances, nor does it support a general forlanabda expressions, and was
therefore unable to handle quite a few of our benchmarks.edew the key differences
with our work is that we are designing and providing an extdasand open source toolkit
for compiler and tool researchers. This is clearly not thergaal of proprietary compilers.

77

Related Work

7.3 Other MATLAB -like systems

There are other projects providing open source implemientabf MATLAB -like lan-
guages, such as Octaa]ff] and Scilab[NR09]. Although these add valuable contributions
to the open source community, their focus is on providingripteters and open library
support and they have not tackled the problems of static datigm. Thus, we believe that
our contributions are complementary. In particular Octaag present opportunities to im-
prove the usefulness of our static compiler framework withrequiring an actual MTLAB
installation. Octave, being an interpreter system, maypnotide very high performance,
but it does include a large library similar toAILAB s library. Enabling our framework to
support Octave’s specific NrLAB flavor may help bring together Octave’s completeness
with the potential performance gains of a static compilatramework.

7.4 Static Approaches to other Dynamic Languages

Other dynamic languages have had very successful effodsfining static subsets in
order to provide static analysis.

7.4.1 Python

Reduced Python (RPytho®)PCMO7] provided inspiration for our approach at deal-
ing with a dynamic language in a static way. Rather than atti@gpo support dynamic
features that are not amenable to static compilation, fangte by providing interpreter-
like features as a fallback, RPython restricts (“reducesg)det of allowable features such
that programs are statically typable. At the same time ténapts to stay as expressive as
possible.

RPython was originally developed for PyPy, a Python integsreritten in Python, but
has evolved into be a general purpose language. It was neloged to compile programs
completely statically, but rather with the goal to speed xgcation times in virtual ma-
chines like VM or CLI, which are themselves developed foristanguages (Java and C#,
respectively).

78

7.4. Static Approaches to other Dynamic Languages

Besides disallowing dynamic features, RPython disallowssécldaature of many dy-
namic programing languages: at a confluence point, a varrabl not be defined with two
incompatible types. This notion that a variable should hawe specific type at every pro-
gramming point is something that we expect for static badkef our framework as well,
in particular for FORTRAN, even if the Tamer Framework itsattually supports union
types. Both RPython, as well as our own research have inditdad¢this restriction is not
a serious limitation in practice.

RPython restricts Python’s container types. In particulafprces that dictionaries
(hash-tables) and arrays are homogeneous, i.e. all elsrhemé the same type. Tuples
are allowed to be inhomogeneous. For the Tamer, we représemivo builtin container
types (structs, cells) in both possible ways: as a tuple er@slection, which correspond
to inhomogeneous and homogeneous representations, tiesjyec

RPython does not directly support generic functions, i.a.fiinction is used multiple
times with incompatible arguments, the program gets regecthe Tamer uses a context-
sensitive interprocedural analysis that creates copigswotions when they are called with
incompatible arguments.

7.4.2 Ruby

DiamondbackRuby (DRuby) is a static type inference toolkit Ruby [FAFHOY,
mostly with the goal to gain the advantage of static langsdgeeport potential errors
ahead of time. Ruby, like MTLAB, is a dynamic, interpreted language, but is used more in
web development. Some of the approaches of DRuby are simithetTamer framework.

Similar to MATLAB, the core library of Ruby is written in native code (i.e. in Gther
than Ruby itself - which may also have different behaviorseseling on the incoming
argument types. Thus DRuby has to provide type informatiobddtin functions. In order
to that, DRuby includes a type annotation language, whichatem be used to specify
types for functions with difficult behavior. Note that atgtpoint, the focus of our builtin
framework is to organize the large number of builtins, butwark may lead to a proper
type annotation language as well.

DRuby also provides a type inference, but it is based on a @nsbased analysis.

79

Related Work

DRuby constrains the set of supported language featuresatdeethe static analysis, but
allows some of them by inserting runtime checks to still ble &b support them. These are
included in such a way as to help users identify where ex#o#yerror occurred.

Using the results of the static analyses provided by thgIMB Tamer to provide in-
formation about potential runtime errors is one of the guegjoals of continued research.

80

Chapter 8
Conclusions and Future Work

This thesis has introduced theAVLAB Tamer, an extensible object-oriented frame-
work for supporting the translation from dynamicavLAB programs to a Tame IR, call
graph and class/type information suitable for generatiaticscode. We provided an intro-
duction to the features of MLAB in a form that we believe helps expose the semantics of
mclasses and function lookup for compiler and tool writars] should help motivate some
of the restrictions we impose on the language. We tackleddheewhat daunting problem
of handling the large number of builtin functions InAVLAB by defining an extensible
hierarchy of builtins and a small domain-specific languageetfine their behavior. We de-
fined a Tame IR and added functionality tocdAF to produce the IR and to extend the
analysis framework to handle the new IR nodes introducedpieided an interprocedu-
ral analysis framework that allows creation of full-progranalyses of MTLAB programs.
Finally, we developed an extensible value estimation amatyat we use to provide a call-
graph constructor for MITLAB programs, using the proper lookup semantics, starting with
some entry point.

8.1 Future Work

Our initial experiments with the framework are very encoumg and there are several
possible projects to continue the development of statiqulens for MATLAB as part of the

81

Conclusions and Future Work

McL AB project. We also hope that others will also use Tamer thedveork for a variety
of static MATLAB tools.

In the following we will present some ideas for the contindestelopment of the static
portion of theMcL AB framework.

The major goal of the Tamer Framework is to provide a starmpat for compiler
backends targeting static programming languages. Incpdat; we have developed our
toolkit with compilation targeting FORTRAN95 in mind. Inaer to actually be able to
compile, the abstract value representations need to beefurfined, and the value analysis
extended. In particular, shape information for arrays edeel, which may be dealt with in
a similar way as the mclass information. Further refinemétiteovalue representations can
improve the supported feature set and performance. Formgamaving exact knowledge
whether numerical values may be real, complex or imaginoyva using complex data
types only when necessary, rather than using complex naiiyedefault for all values.
Advanced analyses could be used to the relationships of-alvapes and values of vari-
ables, enabling the removal of run-time array bounds chd&dks may provide significant
performance benefits.

Further work may focus around expanding the set of suppdftet_AB features. Inter-
esting may be the extension of the Tamer framework to fulppsut MATLAB user-defined
classes, including the “old” semantics, the “new” semandiace version 7.6, and possibly
handle-classes. The AtLAB Tamer already supports the notions of mclasses, and the over
loading semantics necessary to implement class semargiesraady supported. Note that
in order to support handle-classes, it is not sufficient tiemo the value representations
- the machinery of the analysis also has to be extended toreaphanges of arguments
that use the reference semantics of handle-classes. Talsoisrue if the Tame MTLAB
language subset was extended to support global and petsiateables.

The Tamer framework could work together witicL AB’s refactoring tools in two
ways. For one it would be possible to use the refactoringsods transformations in a
pre-processing step, to be able to reduce/refactor somgpoded dynamic feature of
MATLAB. For example, the refactoring toolkit allows transformiMghTLAB scripts into
MATLAB functions. Another way the refactoring tools could worketger with the Tamer
framework is in an interactive fashion. A user wishing to @ilna program may find that

82

8.1. Future Work

the Tamer rejects it; the refactoring toolkit could therpsie and suggest to refactor the
program in certain ways to make it possible to compile.

Future work may advance the static compilation frameworkthe notion of bridging
the gap between dynamic languages and static analysesmpdation. The builtin frame-
work with its approach to allow the explicit and compact diéfin of flow information for
functions may lead to a general type annotation languag®lfan.AB types, which could
be used both to type builtin functions, or to type user andhiypfunctions with complex
behavior. Static information provided by full-program bs&s using these frameworks
could be used to find potential runtime errors, and aid prognars build better and more
correct programs.

83

Conclusions and Future Work

84

Appendix A

List of MATLAB Builtin Functions

In the following we provide a list of MTLAB builtin functions. The corresponding

numbers show how many callsites there are for the functitmmihe large set of MTLAB

programs that can be analyzed by the BENCH framework.

When selecting the initial set of builtin functions for theilbo framework, we use

most of the below functions, excluding dynamic and GUI fimts. We added functions

corresponding to MTLAB operators, as well as some functions that are very closkiiece

to functions in the list.

recycle
schur

gt
mislocked
acotd
more

acot
uminus
uitoolbar
dbclear
isjava
ordschur
munlock
superiorto
unicode2native
methods

RPRRRRPRRRPRRRPRRRERRR

NNMNNNNNNNNRRRRERRRR

dmperm
fileattrib
delaunay
isequalwithequalnans
javaMethod
functions
structfun
subsasgn
rehash

ne

linsolve
regexptranslate
memory

uitable
matlabpath

exit

WWWWWWWWNNNDNNDNNDN

ge
uint64

atanh
ishghandle
cotd
isdeployed

le

prefdir
isstrprop
dragrect
uitoggletool
ferror
javaArray
javaObiject
sec
hgconvertunits

Table A.1 List of builtins and their frequency of occurrence (continued on the following pages)

85

List of MATLAB Builtin Functions

COWOWOWWOWOMWMWMMMAONNNNNNODODODO0OO0OOoOOUTUTUNTUIUITUITUNNUITUITUOARABRMBRMBDMBIAMBIAMDRAMDRMDMNOWWW®W

10
11
11
11

pack
sortrowsc
It
echo
validatestring
tand
dbstop
int64
csc
hardcopy
uipushtool
asinh
asind
native2unicode
erf
who
hggroup
rbbox
bitor
erfinv
lu
colstyle
im2frame
frame2im
ifftn
hgtransform
diary
subsref
erfcinv
rcond
home
uicontextmenu
cot
reset
€q
sech
builtin
type
setstr
validateattributes
what
atand
issorted
acosh
int8
light
betainc
keyboard
rethrow
fftn
feof

11
11
11
11
11
11
12
12
12
12
12
13
13
13
13
13
13
14
14
14
14
15
15
15
15
16
16
17
17
17
17
17
18
19
19
19
19
19
20
20
23
23
24
24
25
25
26
26
26
26
27

rmdir
libisloaded
isletter
cast
unloadlibrary
evalc
waitfor
power
isvarname
loglog
pow?2
convhull
mexext
speye
vertcat
int16
getenv
func2str
acosd
lasterror
movefile
isspace
isinteger
randi
horzcat
gammainc
regexpi
accumarray
dbstack
hypot
isappdata
or

whos

unix

tril
inputname
copyfile

qr
cell2struct
isobject
ancestor
handle
issparse
bitset

and
lastwarn
bitand
nonzeros
matlabroot
chol
typecast

86

27
27
27
28
29
29
29
29
29
30
31
31
31
33
33
34
34
34
34
35
35
35
36
36
36
36
36
38
40
41
43
44
45
45
47
49
49
51
51
55
55
55
56
60
60
61
62
66
67
68
69

rmappdata
cumprod
struct2cell
isfloat
nnz
bitget
uint32
ftell

cosh
surface
waitforbuttonpress
fgets
realsqrt
rectangle
arrayfun
tanh
bitshift
semilogy
nargoutchk
asin
mkdir
int32
textscan
svd

sinh
lasterr
computer
version
cosd

Xor

sind
beep

triu
gammaln
copyobj
fill3
islogical
semilogx
histc
uint16
gamma
system
uipanel
dos
transpose
complex
format
acos
erfc
calllib
strncmpi

70
74
76
76
82
82
85
86
90
91
92
93
93
94
95
96
97
101
103
105
105
105
106
109
114
117
119
124
125
131
131
131
137
137
142
146
154
157
158
164
166
170
171
173
174
176
180
183
183
193
199
204
204

strtrim

det

atan

import

isstruct

sscanf

isstr

not

full

strncmp

eig

log2

regexprep

permute

which

class

tan
isinf
bitxor
upper
ifft
isvector
fieldnames
fill
filter
cputime
fseek
assert
image
bsxfun
regexp
conv2
evalin
assignin
sparse
dir
clc
logical
isscalar
cat
patch
isfinite
deblank
plot3
atan2
cellfun
feval
fscanf
inv
save
strfind
fwrite
ndims

210
213
213
214
222
228
228
235
240
245
256
260
265
272
276
281
284
286
294
303
314
321
325
335
337
344
346
349
349
352
352
354
356
356
365
376
378
397
406
409
410
419
428
445
457
510
524
547
555
559
563
564
583

cumsum
ishandle
rem
nargchk
fft
sign
cd
i
str2func
input
prod
isreal
clock
randn
getappdata
uint8
iscell
eye
setappdata
uimenu
line
strrep
display
load
diag
log10
drawnow
fix
findstr
lower
nan
isnumeric
eps
pause
cell
struct
isfield
strempi
fopen
imag
all
conj
norm
tic
fclose
delete
isnan
mfilename
isa
inf
text
exist
diff

87

590
607
623
633
682
683
685
696
703
707
757
766
768
777
812
863
933
949
983
1101
1109
1214
1235
1240
1265
1332
1471
1618
1682
1760
1761
1945
2117
2237
2337
2405
2630
2797
3304
3378
3539
3866
4059
4131
4555
4965
6731
7031
7768
8379

real
fread
toc
warning
cell
axes
char
sort
clear
eval
ischar
mod
log
double
true
reshape
any
false
gca
numel
floor
exp
figure
nargout
round
uicontrol
isequal
sprintf
ones
sin
cos
stremp
find
plot
sqrt
min
abs
sum
pi
max
fprintf
isempty
zeros
nargin
single
error
size
disp
length
get

11460 set
13880 rand

List of MATLAB Builtin Functions

88

Appendix B
Class Propagation Tables for MATLAB Builtin

Functions

In this appendix we show the generated mclass propagatesttor builtins. We cate-
gorized the functions into sections grouping similar fimes together. This categorization
helped us organize the builtin functions into a tree stmectu

Rows in the tables correspond to the mclass of the first argye@omns correspond to
the mclass of the second argument, and the table entrieshgivaclass of the result. The
labelsi8 throughi64 represent the mclassed#8 throughint64 , f32 is single ,
f64 is double , c is char , andb is logical . h refers to function handles. Values
labelled{} refer to the empty cell array - we use this argument to cheaktfdr functions
support cell arrays at all. Some functions allow arbitrael} arrays, others only operate on
cell arrays of strings (e.g. the string functions).

Entries of the form “-" indicate that this combination is ratowed and will result
in a runtime errorN/A signifies that the results were inconsistent across diftetréls,
meaning that there was no exact result found.

89

Class Propagation Tables forAviLaB Builtin Functions

B.1 Binary Arithmetic Operations

plus, minus, mtimes, times, kron, @(X,y)cross([X,x,X],ly.Y]):
] lis Jus [ite [uie [i32 [us2 [ie4a [ues [132 64 [c [b [n [g |

i8 i8 - - - - - - - - i8 i8 - - -
u8 - u8 - - - - - - - ud u - - -
i16 - - i16 |- - - - - - i16 |il6 |- - -
ulé - - - ulé |- - - - - ulé |ul6e |- - -
i32 - - - - i32 |- - - - 32 |i32 |- - -
u32 |- - - - - u32 |- - - u32 |u32 |- - -
64 - - - - - - i64 |- - i64 |i64 |- - -
u64 || - - - - - - - ue4 | - u64 |u64 |- - -
f32 - - - - - - - - f32 |f32 |[f32 |[f32 |- -
f64 i8 u8 i16 |ul6é |i32 |u32 |i64 |u64 |f32 |fe4 |fe4 |f64 |- -
c i8 u8 i16 |ul6é |i32 |u32 |i64 |u64 |f32 |fe4 |fe4 |fe4 |- -

- - - - - - - f32 |fe4 |f64 |[f64 |- -

mldivide, mrdivide, Idivide, rdivide, mod, rem, mod:
] lis Jus [ite [uie [i32 [us2 [ie4a [uea [132 64 [c [b [n [g |

i8 i8 - - - - - - - - i8 i8 - - -
u8 - u8d - - - - - - - u8 u8 - - -
i16 - - i16 |- - - - - - i16 |il6 |- - -
ulé - - - ulé |- - - - - ulé |ulé |- - -
i32 - - - - i32 |- - - - 32 |i32 |- - -
u32 - - - - - u32 |- - - u32 |u32 |- - -
64 - - - - - - i64 |- - i64 |64 |- - -
u64 - - - - - - - u64 | - u64 |ué4 |- - -
32 - - - - - - - - f32 |32 |f32 |f32 |- -
f64 i8 u8 i16 |ul6é |i32 |u32 |i64 |u64 [f32 |f64 |f64 |f64 |- -
c i8 u8 i16 |ul6é |i32 |u32 |i64 |u64 [f32 |f64 |f64 |f64 |- -

- - - - - - - f32 |fe4 |f64 |- - -

90

B.2. Unary Arithmetic/Numeric Functions

mpower, power:

] lis Jus [ite [ute [is2 [us2 [ie4 [ues [132 [64 [c [b [nh [p
i8 ||i8 i8 |- - -
u8 u8 u8
i16 i16 i16
ulé ulé ulé
i32 i32 i32
u32 u32 u32
i64 i64 i64
u64 ubd |- - ubd |-
32 |- 32 [f32 |f32 |f32
f64 ||i8 |us8 |il6 |ulé |i32 |u32 |i6a |uea |f32 |fea |fe4 |fed
c i8 |us |i16 |ul6 |i32 |u32 |i6a |uea |f32 |[fea |fe4 |fea
b] 32 |fe4 | f64
{}
B.2 Unary Arithmetic/Numeric Functions
uplus, uminus, real, imag, abs, fix:
| [lis Jus [ite [uie [i32 [us2 [ie4a [ues [132 64 [c [b [n [g
] lis Jus [ite [uie [i32 [us2 [iea [ues [132 [te4 [te4 [te4 |- |-
conj, round, floor, ceil, sign:
] lis' Jus [ite [uie [i32 [us2 [ie4a [uea [132 64 [c [b [n [g
] lis Jus [ize [uie [i32 [us2 [iea [uea [132 [1e4 [1e4 |- |- |-
B.3 Operations Resulting in Logicals
not, any, all, isinf:
] lis Jus [ize [uie [i32 [us2 [iea [ues [132 [t64 [c [b [n [g
[[l o Jo o Jo Jo Jo Jo Jo [o [o [o [[
isempty, isobject, isfloat, isinteger, islogical, isstrugiscell:
] lis Jus [ite [uie [i32 [us2 [ie4a [ues [132 64 [c [b [n [g
[[l o o o [o Jo [b [b [b [b [b [b [b [b

91

Class Propagation Tables forAviLaB Builtin Functions

eq, ne, It, gt, le, ge, and, or, xor:

i8

u8
i16

ulé
i32

u32
i64

ub4
32

f64

i

@ (X, y)X&&y:

N/A

i8

u8

i16

ulé
i32

u32
i64

ub4
f32

f64

i

92

B.4. Matrix Constructors from Shape

D|le|lao|la|la|la|laja|la|la|a Dl|lae|le|lo|la|la|laojaja|lala e
<
clle|lo|jao|la|la|la|a|la|la|a z cllojo|o|lo|lao|ja|lala|la|a o
olla|laja|lao|la|la|la|la|lala el aoflajlajao|lao|laja|alalala e}
olle|lajla|la|la|ja|a|a|la|a o ol|le|lae|la|lao|la|ja|a|la|a|a o)
< <
CLlalajla|lajla|la|lalalala o Cllala|la|lajla|lalalalala o
[N N
Pllajaja|la|la|la|la|a|alea el Plla|leja|la|la|la|la|la|ala o
3 3
Slle|lajla|la|la|ja|a|a|la|a o S|le|lejla|le|la|ja|a|la|a|a o
< <
Ollo|lo|jao|a|lao|a|a|la|la|a o Ollojo|o|o|la|ja|a|la|a|a o
& &
Sllelajla|lae|laja|a|a|la|a el S|laejlajla|la|laja|a|la|a|a o
[MZ
Vilo|laoa|jla|a|la|a|a|a|la|a o QBbbbbbbbbbb o
(]
= R2] R
Slle|lejla|la|laja|a|a|la|a o 1o|lle|lo|le|laojla|la|laja|ala o
= | I
c
© ©| ©
dlle|lajlao|lao|la|la|la|la|lala el cl2||le|le|a|le|a|lo|a|la|ala e}
©
© Sl o
S|lelejla|lajla|la|la|la|lal|a o O S||le|le|leja|ojla|jla|la|ja|a o
O
c
=
M.olobbbbbbbbbb o W.olobbbbbbbbbb o
VJI ‘©f |
A © o < o © IV <
olOlalN|®|t|S|N| ooV oSN
x X5 25| |5(e|5(2|L o Gw |5 (d|5|Q5|e|5(2|L]
® %)

B.4 Matrix Constructors from Shape

ones, zeros, eye, inf, nan:

EE

164 [1e4 [re4 [1e4 [1e4 [re4 [1e4 [1e4 [1e4 [1e4 |-

true, false:

93

Class Propagation Tables forAviLaB Builtin Functions

B.5 Query Functions Resulting in Numeric Values

find, find, nnz:
] lis Jus [ite [uie [i32 [us2 [iea [uea [132 64 [c [b [n [g |
] |64 [tea [fe4 [t64 [tea [fe4 |64 [fea [fe4 |64 [fea [fe4 |- |- |

length, ndims, numel:
] lis Jus [ite [uie [i32 [us2 [iea [ues [132 64 [c [b [n [g |
| [[1e4 [re4 [re4 [rea [1e4 [re4 [te4 [te4 [re4 [te4 [te4 164 [te4 [te4 |

] lis Jus [ize [uie [i32 [us2 [ie4 [uea [132 64 [c [b [n [g |

I S N S N S N S N 700 7 E E E B

B.6 Dimension-Collapsing Operations

Functions of the fornf (M, [dim]). cumprod , mode among the unary float functions,
andmedian in the in the general operators are also dimension-cohgpsi
sum, mean:
| [lie Jus [ite [uie [i32 [us2 [ie4a [uea [132 64 [c [b [n [g |
] 164 [1e4 [re4 [te4 [1e4 [1e4 [te4 [1e4 [132 [te4 [te4 64 |- |- |

min, max:
] lis Jus [ite ute [is2 [us2 [ie4 [uea [f32 [t64 [c [b [n [p |
] lis Jus [ite [uie [i32 [us2 [iea [ues [132 [te4 [e4 |b |- [- |

cumsum:
] lis Jus [ize [uie [i32 [us2 [ie4 [uea [132 64 [c [b [n [g |
o 2 res |- Jres |- |- |

var, std:
] lis' Jus [ite [uie [i32 [us2 [ie4a [uea [132 64 [c [b [n [g |
Lo [2 res rea Jres |- |- |

94

B.7. General Operators

B.7 General Operators

transpose, ctranspose, sort, sort:

] lis Jus [ite uie [i32 [us2 [ie4a [ues [132 64 [c [b [n [g

] lis Jus [ize [uie [i32 [us2 [ie4a [ues [132 64 [c [b |- [c

unique, squeeze, unique, squeeze:

] lis us [ize [uie [i32 [us2 [iea [ues [132 |64 [c [b [n [g

] lis Jus [ize [uie [i32 [us2 [iea [uea [132 |64 [c [b |h [c

tril, triu, diag, diag, median:

] lis' Jus [ite [uie [is2 [us2 [ie4 [ues [132 [64 [c [b [nh [p

] lis Jus [ize [ute [i32 [us2 [iea [ues [132 64 [c [b |- |-

horzcat, vertcat:

] lis Jus [ize [uie [i32 [us2 [iea [ued [132 |64 [c [b [n [g

i8 i8 i8 i8 i8 i8 i8 i8 i8 i8 i8 c i8 - Ci8
us u8 u8 us u8 u8 u8 u8 u8 us u8 ¢ u8 - Cu8
i16 i16 |il6 |[il16 |i16 |i16 |i16 |i16 |i16 |il6 |i16 |c i16 |- Cil6
ulé ul6é |ul6 |ul6 |ul6é |ul6é |ul6 |ul6 |ul6é |ul6é |ul6e |c ule |- Cul6
i32 i32 |i32 |i32 |i32 |i32 [|i32 [i32 |i32 |i32 |i32 |c i32 |- Ci32
u32 u32 |u32 |u32 |u32 |u32 |u32 |u32 |u32 |u32 |u32 |c u32 |- Cu32
64 i64 |64 |i64 |64 |64 |64 |64 |64 |64 |64 |C 64 |- Ci64
u64 u64 |u64 |[ubd4 |u64 |u64 |u64 |ub4 |ubd |u64 |ubd |c ubsd |- Cu64
32 i8 u8 i16 |ule |i32 |u32 |i64 |u64 [f32 |f32 |c f32 |- Cf32
f64 i8 u8 i16 |ul6é |i32 |u32 |i64 |u64 [f32 |f64 |cC f64 |- Cf64
c c c c c c c c c c c c Cc
i8 u8 i16 |ul6é |i32 |u32 |i64 |u64 |f32 |f64 |- b - Cb
{ Ci8 |Cu8 |Cil6 | Cul6|Ci32 | Cu32|Ci64 | Cub4 | Cf32 | Cfe4 | Cc Cb h C-

95

Class Propagation Tables forAviLaB Builtin Functions

B.8 Bit Operations

bitand, bitor, bitxor:
] lis Jus [ite [uie [i32 [us2 [iea [uea [132 64 [c [b [n [g |

u8 - u8 - - - - - - - u8
i16
ulé || - - - ule |- - - - - ul6é
i32
u32 || - - - - - u32 |- - - u32
i64
ue4 | - - - - - - - ue4 | - u64
32
f64 - ug - ulé |- u32 |- u64

] lis Jus [ite [uie [i32 [us2 [ie4a [uea [132 64 [c [b [n [g |

ug |- - - - N/A |- - - - - - us

ulé || - - - - N/A | - N/A | N/A |- - - ul6
i32
u32 || - - N/A |- - - - - - - - u32
64
ue4 | - N/A |N/A [N/A |N/A |- N/A |- - - - u64
f32 - f32 |- f32 |- f32 |- f32
f64

i

96

B.8. Bit Operations

bitset:

IE

lus [it6 [uie

[i32 [us2 [iea [usa

(132 [164 [c

b

i8

u8

i16

ulé

N/A

i32

u32

N/A

N/A

N/A

64

ub4

N/A

N/A

N/A

N/A

N/A

f32

f64

i

bitget:

IE

lus [it6 [uie

[i32 [u32 [iea [us4

(132 [164 [c

b

i8

u8

N/A

i16

ul6

N/A

N/A

i32

u32

N/A

N/A

64

ubs

N/A

N/A

N/A

N/A

N/A

N/A

32

f64

¢

97

Class Propagation Tables forAviLaB Builtin Functions

bitshift:

] lis' Jus [ite [uie [i32 [us2 [ie4a [uea [132 64 [c [b [n [g |
i8
u8 u8 u8 u8 u8 u8 u8 u8 u8
i16
ulé ulé |ul6 |ul6 |ul6é |ul6é |ul6 |ul6é |ul6
i32
u32 u32 |u32 |u32 |u32 |u32 |u32 |u32 |u32
i64
ub4 u64 |u64 |u6d4 |u64 |ubd4 |ubd |u64 |ub4d
32
f64

&

B.9 Floating Point Operations

expm, sgrtm, logm, sqrt, realsqrt, erf, erfinv, erfcinv, gamma, gammaln, exp, log,
log2, log10, sin, cos, tan, cot, sec, csc, sind, cosd, tamutd; secd, cscd, sinh, cosh, tanh,
coth, sech, csch, atan, acot, atand, acotd, asinh, acschy,igig, norm, det, rcond, eps,
prod, inv, eig, norm, det, rcond, eps, schur, lu, chol, gr, s&, cumprod, mode:
] lis Jus [ize [uie [i32 [us2 [ie4 [uea [132 64 [c [b [n [g |
N N O S S E E [0 Y O O O
asin, acos, asind, acosd, asecd, acscd, atanh, acoth, asech
] lis Jus [ite [uie [i32 [us2 [ie4 [uea [132 64 [c [b [n [g |

| O N E O B L2 2 E O B B
asec:

] lis Jus [ite [uie [i32 [us2 [iea [uea [132 64 [c [b [n [g |
| O O O O B L2 2 O O B B
acsc, acosh:

| [lie Jus [ite [uie [i2 [us2 [ie4a [uea [132 64 [c [b [n [g |
o e e [[- []

98

B.10. Fourier Transform Functions

hypot, atan2, linsolve:

[[is Jus [ite [uie [iz2 [u3s2 [ie4 [ues [f32

| 164

i8

u8

i16

ulé -

i32

u32 -

64

ub4 -

32 |- - - - - - - - f32

f32 |-

f64 || - - - - - - - - f32

f64 |-

c

b

h

i

schar, ordschur:

[[l Jus [ize [ute [im2 [us2 [iea |ue4 [f32

|64

I | N O EN N O ER E E

B.10 Fourier Transform Functions

ifftn, fftn, fft:

] [is Jus [i6 [uie [is2 [us2 [ie4a |ue4 |12

|64

- s [- Jea [- - |- - w2

|64

99

Class Propagation Tables forAviLaB Builtin Functions

B.11 Other Functions

@(x,y)colon(x,y), @(x,y)colon(x,y,x), @(x,y)colon(y,x), @(x,y)colon(x,x,y):

] lis Jus [ite [uie [i32 [us2 [ie4a [ues [132 64 [c [b [n [g |

i8 i8

u8 - u8

i16 |- - i16

ule |- - - ul6é

i32 |- - - - i32

u32 || - - - - - u32

i64 |- - - - - - i64

ued || - - - - - - - u64

f32 |- - - - - - - - f32 |32

f64 |- - - - - - - - 32 |f64 |- f64

Cc C
f64

{

complex:

| lie Jus [ite [uie [i32 [us2 [ie4a [uea [32 64 [c [b [n [g |

i8 i8 |- - - - - - - - i8

u8 - us8 - - - - - - - u8

i16 || - - i16 |- - - - - - i16

ulé - - - ulé |- - - - - ulé

i32 |- - - - i32 |- - - - i32

u32 |- - - - - u32 |- - - u32

i64 |- - - - - - i64 |- - i64

ued || - - - - - - - ue4 |- u64

f32 |- - - - - - - - f32 |32

fe4 ||i8 ug |il6 |ule |i32 |u32 |i64 |u64 |f32 |f64

Cc

b

{

100

B.11. Other Functions

dot:
] lis' Jus [ite [uie [i32 [us2 [ie4a [uea [132 64 [c [b |[n [g |
i8 |[fe4 |- - - ; - - ; - f64 |fe4 |- ; -
s ||- f64 |- - ; - - ; - f64 |fe4 |- ; -
i16 |- ; fo4 |- ; - - ; - fe4 |fo4 |- ; -
u1e |- ; - fo4 |- - - ; - f64 |fo4 |- - -
i32 |- - - - f64 |- - ; - f64 |fe4 |- - -
us2 ||- - - - ; f64 |- - - f64 |64 |- - ;
i64 || - -] ; -] f64 |- - f64 |f64 |- - ;
ue4 |- - - -] - - f64 |- f64 |64 |- - -
32 |- ; - - ; - - ; 32 [f32 |32 [f32 |- -
fo4 ||fo4 |f64 |fo4 |fe4 |fo4 |fea |fe4 |fe4 |f32 |fe4 |f64 |fed |- ;
c fe4 |fe4 |fo4 |fo4 |f64 |fo4 |fe4 |f64 |f32 |fe4 |fed |f64 |- ;

@(x,y)min(x,y), @(x,y)max(x,y):

] lis Jus [ite [uie [i32 [us2 [iea [uea [132 64 [c [b [n [g |

i8 i8 - - - - - - - - i8 i8 - - -
u8 - ud - - - - - - - u8 u8 - - -
i16 - - i16 |- - - - - - i16 |il6 |- - -
ulé - - - ule |- - - - - ulé |ul6e |- - -
i32 - - - - i32 |- - - - 32 |i32 |- - -
u32 - - - - - u32 |- - - u32 |u32 |- - -
64 - - - - - - i64 |- - i64 |64 |- - -
ue4 | - - - - - - - u6s4 |- u64 |uéd |- - -
f32 - - - - - - - - f32 |f32 |[f32 |[f32 |- -
f64 i8 u8 i16 |ul6e |i32 |u32 |i64 |u64 [f32 |f64 |f64 |f64 |- -
c i8 u8 i16 |ul6e |i32 |u32 |i64 |u64 [f32 |f64 |f64 |f64 |- -

- - - - - - - - f32 |f64 |f64 |b - -

Note thatmin , max, using only one argument, are listed as dimension-coltggsinctions.

101

Class Propagation Tables forAviLaB Builtin Functions

102

Appendix C
Mclass Propagation Language

C.1 Introduction

In the following, we define the tiny language used to define huvlasses propagate
through builtins. This is used in the builtin specificatiangpecify mclass propagation,
using theClass attribute. To specify the mclass propagation for a builbinan abstract
builtin, it is specified as an attribute in the builtin spezation, using the syntax

Class(< expr >)

or
Class(< expri >, < expra >, < exprz >,..., < exprp >)

where the expressions follow the syntax of the mclass ptpay language. It is also

possible to separate the cases using [tbperator:

Class(< expri > || < expra > || < exprz > ||...|| < exprn>)

The language itself is somewhat similar to regular expoessin that it matches incoming
mclasses. But rather than having a match as a result, thedgagulows to explicitly state
what the result is.

103

Mclass Propagation Language

C.2 Class Specification

C.2.1 Basics

Every expression is interpreted either in LHS (left-hardk¥ior in RHS (right-hand
side) mode. In LHS mode it matches the mclasses of argumetite expression, in RHS
it emits the mclasses as output. For example

double-> char

will attempt to match aouble argument, and if one is found, it will emitchar result. For
any expressioiff all input arguments have been consumed by matching, it@slilit in an
overall match, and the emitted results will be returned.

At any point there will be a partial match, which consists loé hext input argument
index to be read, and the result mclasses emitted so far.Xfaonme, after the above ex-
pression, if one attempts to match the input argumgtdsbl e, doubl e], the partial result
will refer to the 2nd argument, and will haghar as an output.

C.2.2 Language Features

In the following, we present the syntax and semantics ofdhguliage, showing the LHS
(matching) and RHS (emitting) semantics for every featumelhat for some expressions,
the LHS and RHS semantics are the same, i.e. some expressaynigmore the current
mode.

Operators

expri-> expra
LHS, RHS: will attempt to matclexpr; as a LHS, and if it is a match, will execute
expro as a RHS expression and emit the results.

expri expra
LHS: will attempt to matclexpr, as a LHS, and if it is a match, will attempt to match

104

C.2. Class Specification

expro.
RHS: will emit the results oéxpr; in RHS mode, then will emit the results efpr;
in RHS mode.

expri|expra

LHS: will attempt to match botlexpr; and expro independently, then will return
whichever successful match consumed the most arguments.

RHS: will emit the union of the emitted results etpr; and expry, run as RHS
expressions. Bothxpr,; andexpr, must have the same number of emitted result. If
not, it will throw a runtime error.

expr?
expr? is equivalent tmone|expr
LHS: will attempt to match the expression. If does not ma®hwill still return a
match successfully, but it does so by matchnoge.
RHS: This will likely cause an error, because the union of twatah results must
both result in the same number of emitted outputs.

expr

exprx Is equivalent taxpr? expr? expr?...

The operators and ? have the same, highest precedehbas a lower precedence,
putting no symbol (i.eexpri expry) has a lower precedence than that. has the lowest
precedence.

105

Mclass Propagation Language

Non-parametric Expressions

Builtin MClasses
The mclass propagation language supports the followinguoclasses and groups

of mclasses:
double logical
float function_handle
char int8
uint8 int16
uint16 int32
uint32 int64
uint64

LHS: will attempt to match the builtin mclass
RHS: will emit the builtin mclass

Groups of Builtin Mclasses

Certain mclasses are grouped together using union:
float isthe same as single|double

uint is the same asint8|uint16/uint32|uint64
sint isthe same as int8|int16|int32int64
int isthe same as uint|sint
numeric is the same as float|int
matrix is the same as numeric|char|logical
Non-parametric Language Features

none
LHS, RHS: matches without consuming inputs or emitting ressul

begin
LHS, RHS: will match if the next argument is the first argumera &rguments
have been matched)

end
LHS, RHS: will match if all arguments have been matched

any

106

C.2. Class Specification

LHS: will match the next argument, no matter what it is, ifréhées an argument

left to match
RHS: error

parent
LHS, RHS: will substitute the expression that is defined ferabstract parent

builtin. If the parent builtin does not define mclass propimgainformation,

will substitutenone.

error
LHS, RHS: same as none, except that the result is flagged aseeus. During
matchingerror is ignored (partial matching will continue), but if a residt
erroneous overall, it will result in not a match overall.

natlab
LHS, RHS: Besides th€lass attribute for builtins, one can define an alterna-

tive attributeMatlabClass which more closely resemblesAVILAB seman-
tics, including some of the irregularities of the languag#hen defining such a
MatlabClass attribute, the keywordhatlab will refer to the expression de-
fined by theClass attribute. Note that one cannot defind/atlabClass
without defining aClass attribute, sanatlab should always be defined.

matlab
equivalent tonatlab, but this can be used insidélass attribute to refer to
whatever is defined for thlatlabClass attribute.
This does not verify whether thidatlabClass attribute has been defined;
therefore, undefined behavior may result if the attributeoisdefined.

scalar
LHS: If there is another argument to consume, matches ifgtaar, or if its

shape is unknown, without consuming the argument. This earsbd to check
if the next argument is scalar. This should only be used isttaar requirement
Is directly related to mclass behavior. If shapes and typegwdependent, they
should be specified independently.

RHS: runtime error

107

Mclass Propagation Language

Functions

coerce(replaceExpr, expr)
will take every single argument, and execueplaceExpr on it individually and
independently. The replace expression must either nothmatca match and emit
a single result. If it does, this result gets replaced as andve argumentcoerce
will then take the new set of arguments, and exeexpe with it, either as LHS or
RHS depending on whether theerce itself was executed in LHS or RHS mode, and
return the result of that.
This allows operand coercion. For example, a function mawed all incoming
char orlogical arguments taouble, which would be done using

coerce(char|logical -> doubl e, expr)

typeString(expr)
LHS, RHS: if the next element is ehar, typeSring will consume it. If its actual
runtime value is known, it will check whether the value of #teng is the name of
a mclass which is emitted bskpr (runningexpr in RHS mode). If it istypeString
will emit that mclass.
If the char has another known valugypeString will return an error.
If the value is not known, will emit all results produceddxpr. expr should produce
one (union) result.
This can be used to match a last optional argument denotiresiaed mclass for
the return value. This used, for example, by the functiomss andzeros , which
allow a last optional argument specifying that the resutiutth have a numerical
mclass other than the defadlbubl e.

Number

< number >
LHS, RHS: Equivalent to the input argument with the same iralethe given num-
ber. For example, 0 will match (LHS) or emit (RHS) the mclastheffirst argument.
Negative numbers will match from the back, so -1 is the mabdigise last argument.

108

C.3. Extra Notes on Semantics

C.3 Extra Notes on Semantics

C.3.1 RHS Can Have LHS Sub-expressions, and Vice Versa

An expression may emit results even if it is run as a LHS exgioes and an expression
run as RHS may match more elements. For example for

double-> (char-> logical int16)
thechar expression will get matched, due to the secendperation. Similarly,
(double char-> logical)-> int16

being an equivalent expression, will emit tfogical because of the secord .

C.3.2 Overall Evaluation of Class Attribute Expressions
Overall, expressions are evaluated as LHS expressionseduiiltin attribute
Class(double)

will attempt to match a incomingouble argument, and have no returns. Multiple argu-
ments to theClass attribute get transformed internally to their union, so

Class(expri, expra, .., expry)

is equivalent to
Class(expry|expra|..|exprn)

This only applies for arguments to thkass attribute , comma is not an operator equiva-
lentto| in general.

109

Mclass Propagation Language

C.3.3 Greedy Matching

While the language looks similar to regular expressionsi,iit fact different: all match-
ing is done greedily. So the expression

(double/none) (double)

When run on a singldoubl e input, will not match. This is because the union will gregdil
match the longest expression, which will consume the inmuraent.

C.4 Examples

Class(doubl e|single doubl e|single-> doubl e)
will match two floats, and result in@oubl e.

Class(coerce(char|logical-> double, numeric-> 0))
will convert anychar andlogical arguments taouble, then will match any single
numeric argument, and emit the type of that argument.

Class(char char-> char,numeric O|double-> O, double|1 numeric-> 1)
Either twochars will result in achar, or, if two arguments areumeric, they should
either have the same mclass or at least one argument has tddubla, in which
case it will return the mclass of the other argument.

Class(none-> double)
If there are no inputs, will result in doubl e (i.e. this models a double constant).

Class(parent any?)
Matches whatever the parent builtin matches, but will alfowone extra argument
with any mclass.

Mat!abClass(char |l ogical 1-> error, natlab)
This will define separate semantics foraWML.AB, compared to natlab. The example
specifies that MTLAB will reject any input that is either twahars or two logical s,
but use the original natlab definition other than that.

110

C.4. Examples

Class(numericx (typeString(numeric)|(none-> double)))
Will match any number ohumeric arguments. If the last argument isclaar, will
attempt to interpret it as a string denoting a numeric tyjaeis, return that numeric
type. if it is a string of unknown value, return allimeric. if it's another string, return
an error. if the last argument is not a string, returdaable. This can be used for
function calls likeones(3,3) orones(2,2,4,4,'int8")

111

Mclass Propagation Language

C.4.1 Grammar
Below is the complete grammar of the class propagation lageyuehe overall goal is
to produce a node 'cases’.
%terminals NUMBER, LPAREN, RPAREN, OROR, OR, COMMA, MULT, QESTION, ARROW, ID;
%terminals COERCE, TYPESTRING;

%left RPAREN;

%left MULT, QUESTION;
%left OR;

%left CHAIN;

%left ARROW,;

%left COMMA,;

%left OROR;

cases
list

list

= expr

| expr COMMA list
expr
clause ARROW clause
expr OROR expr
clause

1

clause

clause QUESTION

clause MULT

clause clause @ CHAIN

clause OR clause

NUMBER

ID

LPAREN expr RPAREN

COERCE LPAREN expr COMMA expr RPAREN
TYPESTRING LPAREN expr RPAREN

112

Appendix D

Tame IR Grammar

In this appendix we present a grammar for the Tame IR. We hatedliall Tame IR
nodes, together with the parent class and the nodes thegicoAn informal, but more
detailed, discussion can be found @iapter 4. All Tame IR nodes either extend AST
nodes, or other IR Nodes.

Note that all Tame IR nodes are effectively AST subtreesabse they are subclasses
of AST nodes. Users of the Tame IR should not modify IR Nodgesept the TIRState-
mentList. They should also only use the accessor methodsdeby the Tame IR inter-
faces. The constructors of the Tame IR nodes enforce théraonts of the Tame IR.

All Tame IR nodes implement the interfadéRNode . Additionally, all the statement
nodes of the Tame IR implement the interfad®Stmt .

113

Tame IR Grammar

D.1 Compound Structures

’node

‘ extends ‘ contains

TIRFunction

Function

List<Name> outputParams,

String name,

List<Name> inputParams,
List<HelpCommer# helpComments,
TIRStmtList stmts,
List<TIRFunctior» nestedFunctions

TIRStmtList

List<Stmt

List<TIRStmt> statements

TIRIfStmt

IfStmt

Name ConditionVar,
TIRStmtList IfStmts,
TIRStmtList ElseStmts

TIRWhileStmt| WhileStmt

Name condition, TIRStmtList body

TIRForStmt

ForStmt

Name var, Name lower, (Name inc),
Name upper, TIRStmtList stmts

D.2 Non-Assignment Statements

’ node ‘ extends ‘ contains
TIRReturnStmt | ReturnStmt -
TIRBreakStmt BreakStmt -

TIRContinueStmt

ContinueStmt

TIRGIlobalStmt | GlobalStmt List<Name> names
TIRPersistentStmtPersistentStmt List<Name> names
TIRCommentStmtEmptyStmt -

114

D.3. Assignment Statements

D.3 Assignment Statements

’ node ‘ extends ‘ contains ‘
’ TIRAbstractAssignStmt ‘ AssignStmt ‘ - ‘
TIRAbstractAssignFromVarStmt TIRAbstractAssignStmt Name rhs

TIRArraySetStmt

TIRAbstractAssignFromVarStn

Name arrayVar,

tTIRCommaSeparatedList indices

Name rhs

TIRCellArraySetStmt

TIRAbstractAssignFromVarStn

Name arrayVar,

tTIRCommaSeparatedList indices

Name rhs

TIRDotSetStmt

TIRAbstractAssignFromVarStn

ntName dotVar, Name field, Name

rhs

TIRAbstractAssignToListStmt

TIRAbstractAssignStmt

IRCommaSeparatedList targets

TIRArrayGetStmt

TIRAbstractAssignToListStmt

Name |Ihs, Name rhs,

TIRCommaSeparatedList indices

TIRCellArrayGetStmt

TIRAbstractAssignToListStmt

Name cellVar,

TIRCommaSeparatedList targetg
TIRCommaSeparatedList indices

TIRDotGetStmt

TIRAbstractAssignToListStmt

TIRCommaSeparatedList |hs,
Name dotVar, Name field

TIRCallStmt

TIRAbstractAssignToListStmt

Name function,

TIRCommaSeparatedList targetg

TIRCommaSeparatedList args

TIRAbstractAssignToVarStmt

TIRAbstractAssignStmt

Name lhs

TIRAssignLiteralStmt

TIRAbstractAssignToVarStmt

Name lhs, LiteralExpr rhs

TIRCopyStmt

TIRAbstractAssignToVarStmt

Name |Ihs, Name rhs

TIRADbstract-
CreateFunctionHandleStmt

TIRAbstractAssignToVarStmt

Name lhs, Name function

TIRCreateFunctionReferenceSt

m1t—| RAbstract-
CreateFunctionHandleStmt

Name lhs, Name function

TIRCreateLambdaStmt

TIRAbstract-
CreateFunctionHandleStmt

Name Ihs, Name function
List<Name> lambdaParameters,
List<Name> enclosedVariables

115

Tame IR Grammar

D.4 Other Tame IR Nodes

’ node ‘ extends ‘ contains ‘

’ TIRCommaSeparatedListist<Expr> ‘ List<Expr> elements ‘

116

Bibliography

[AACMOQ7] Davide Ancona, Massimo Ancona, Antonio Cuni, and INtas D. Matsakis.

[APO2]

[DHR11]

[Doh11]

[FAFHOO]

[INROO]
[JBO1]

RPython: a Step Towards Reconciling Dynamically and Stdyidgiped OO
languagesin DLS’ 07: Proceedings of the 2007 symposium on Dynamic lan-
guages, Montreal, Quebec, Canada, 2007, pages 53—-64. ACM, New Yofk, N
USA.

George Almasi and David PadueaJIC: compiling MATLAB for speed and
responsivenes#n PLDI ' 02: Proceedings of the ACM S GPLAN 2002 Confer-
ence on Programming language design and implementation, Berlin, Germany,
2002, pages 294-303. ACM, New York, NY, USA.

Jesse Doherty, Laurie Hendren, and Soroush Radpoudt.dfalysis for MAT-
LAB. In In Proceedings of OOPSLA 2011, 2011, pages 99-118.

Jesse Doherty. McSAF: An Extensible Static AnaySramework for the
MATLAB Language. Master’s thesis, McGill University, Denber 2011.

Michael Furr, Jong-hoon (David) An, Jeffrey S. Fys and Michael Hicks.
Static type inference for Rubyin Proceedings of the 2009 ACM symposium

on Applied Computing, Honolulu, Hawaii, 2009, SAC '09, pages 1859-1866.
ACM, New York, NY, USA.

INRIA. Scilab, 2009.http://www.scilab.org/platform/
Pramod G. Joisha and Prithviraj Banerjé®rrectly detecting intrinsic type

errors in typeless languages such as MATLA®BAPL ' 01: Proceedings of the

117

http://portal.acm.org/citation.cfm?id=1297081.1297091
http://doi.acm.org/10.1145/512529.512564
http://doi.acm.org/10.1145/1529282.1529700
http://www.scilab.org/platform/
http://doi.acm.org/10.1145/570407.570408

Bibliography

[JBO3]

[J0i03]

[LH11]

[Li09]

[Mat]

[Mola]

[Molb]

[Oct]

[Rad12]

[RP99]

2001 conference on APL, New Haven, Connecticut, 2001, pages 7-21. ACM,
New York, NY, USA.

Pramod G. Joisha and Prithviraj Banerjédatic array storage optimization
in MATLAB . In PLDI *03: Proceedings of the ACM SIGPLAN 2003 con-
ference on Programming Language Design and Implementation, San Diego,
California, USA, 2003, pages 258—-268. ACM, New York, NY, USA.

Pramod G. Joisha MATLAB-to-C translatoy 2003.
<http://www.ece.northwestern.edu/cpdc/pjoisha/mat2c/

Nurudeen Lameed and Laurie J. Hendren. Staged s&tliniques to ef-
ficiently implement array copy semantics in a MATLAB JIT coilep In
Proceedings of the International Compiler Conference (CC11), 2011, pages
22-41.

Jun Li. McFor: A MATLAB to FORTRAN 95 Compiler Master’s thesis,
McGill University, August 20009.

MathWorks. MATLAB Coder.
http://www.mathworks.com/products/matlab-coder/

Cleve Moler. The Growth of MATLAB and The MathWorks av@wo
Decadeshttp://www.mathworks.com/company/newsletters/
news_notes/clevescorner/jan06.pdf

Cleve Moler. The Origins of MATLAB.
http://www.mathworks.com/company/newsletters/
news_notes/clevescorner/dec04.html

GNU Octave.
http://www.gnu.org/software/octave/index.html

Soroush Radpour. Understanding and Refactoring MAT.LMaster’s thesis,
McGill University, April 2012.

Luiz De Rose and David Padu@chniques for the translation of MATLAB
programs into Fortran 90ACM Trans. Program. Lang. Syst., 21(2):286—-323,
1999.

118

http://doi.acm.org/10.1145/781131.781160
http://www.ece.northwestern.edu/cpdc/pjoisha/mat2c/
http://www.ece.northwestern.edu/cpdc/pjoisha/mat2c/
http://www.sable.mcgill.ca/mclab/matlab_fortran.html
http://www.mathworks.com/products/matlab-coder/
http://www.mathworks.com/company/newsletters/
news_notes/clevescorner/jan06.pdf
 http://www.mathworks.com/company/newsletters/
news_notes/clevescorner/dec04.html
http://www.gnu.org/software/octave/index.html
http://doi.acm.org/10.1145/316686.316693

	Abstract
	Résumé
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Contributions
	Thesis Outline

	Matlab- a Dynamic Language
	Basics
	Matlab Operators
	Array vs Matrix Operators
	The Colon Operator
	Indexing Operators
	Operators vs Builtin Functions

	Matlab Type System
	Matlab Functions and Overloading
	Matlab Classes
	Function Handles
	Compound Types
	Cell Arrays
	Structures

	Function Parameters and Arguments
	Matlab User-Defined Classes
	Constructors
	Methods, Attributes and Operators
	New Syntax after version 7.6

	Matlab Lookup Semantics
	Wild Dynamic Features
	Summary

	Framework for Matlab Builtin Functions
	Learning about Builtins
	Identifying Builtins
	Finding Builtin Behaviors

	Specifying Builtins
	Builtin Visitor Class

	Builtin Function Categories
	Specifying Builtin attributes
	The Class and MatlabClass attribute
	Summary

	Tame IR
	The Tame IR
	Assignment Statements
	Control Flow Statements
	Other Statements
	Non-Statement Nodes

	Tame IR Transformations
	Reduction of Operations to Calls

	Lambda Simplification
	Switch simplification
	Summary

	Interprocedural Analysis Framework and Call Graph Framework
	The Function Collection Object
	The Interprocedural Analysis Framework
	Contexts
	Call Strings
	Callsite
	Recursion

	Summary

	Interprocedural Value Analysis and Call Graph Construction
	Introducing the Value Analysis
	Mclasses, Values and Value Sets:
	Flow Sets:
	Argument and Return sets:
	Builtin Propagators:

	Flow Equations
	Structures, Cell Arrays and Function Handles
	struct, cell:
	function_handle:

	The Simple Matrix Abstraction
	Applying the Value Analysis

	Related Work
	McFor
	Other Static Matlab compilers
	Other Matlab-like systems
	Static Approaches to other Dynamic Languages
	Python
	Ruby

	Conclusions and Future Work
	Future Work

	List of Matlab Builtin Functions
	Class Propagation Tables for Matlab Builtin Functions
	Binary Arithmetic Operations
	Unary Arithmetic/Numeric Functions
	Operations Resulting in Logicals
	Matrix Constructors from Shape
	Query Functions Resulting in Numeric Values
	Dimension-Collapsing Operations
	General Operators
	Bit Operations
	Floating Point Operations
	Fourier Transform Functions
	Other Functions

	Mclass Propagation Language
	 Introduction
	 Class Specification
	Basics
	Language Features

	Extra Notes on Semantics
	RHS Can Have LHS Sub-expressions, and Vice Versa
	Overall Evaluation of Class Attribute Expressions
	Greedy Matching

	 Examples
	Grammar

	Tame IR Grammar
	Compound Structures
	Non-Assignment Statements
	Assignment Statements
	Other Tame IR Nodes

	Bibliography

