
Musical Mapping of Two-Dimensional
Touch-Based Control Layouts

Thor Kell

Music Technology Area
Schulich School of Music

McGill University
Montreal, Canada

September 2014

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Master of Arts in Music Technology.

� 2014 Thor Kell

2014/09/30

i

Abstract

This thesis presents an in-depth examination of musical mapping in two dimensions. Music

has existed in two dimensions, in various forms of notation, for hundreds of years. Somewhat

more recently, as the touchscreen has reached consumer levels of affordability, music has

become controllable via interactive two-dimensional surfaces. This work examines how

musical parameters are mapped to and controlled by these surfaces, including interactive

touchscreens and static scores.

Three reviews of mapping choices in two dimensions are presented. The first provides a

detailed review of mappings used in music applications that run on Apple’s iOS operating

system, focusing on the most popular applications. The second again reviews iOS music

applications, but casts a much wider net, reviewing all music applications at a much higher

level. The third review examines notation practices with a focus on the graphic scores of

the 20th century. Each of these reviews enumerates the mappings used, summarizes major

mapping trends, and discusses unique mappings choices.

From the data obtained by these reviews, several abstracted control layouts are defined,

in terms of the location of controls, the type of controls, and the mapping that follows from

the layout. These abstractions are based on common, recurring control layouts that appear

in many musical applications and in many notation techniques.

Finally, this thesis discusses the engineering process of building a machine learning

model to recognize these layouts so as to be able to classify an arbitrary layout of buttons

accordingly. An open, web-based API to access this algorithm is also created, as is a sample

application, Pattern Recognition, that uses this API to classify and map layouts created by

end users.

ii

Résumé

La musique a été retranscrite de façons diverses sur des media à deux dimensions depuis des

siècles. Avec la popularisation récente des écrans tactiles il est dorénavant possible d’utiliser

des surfaces bi-dimensionnelles pour le contrôle interactif de la musique. Ce travail de thèse

livre une analyse en profondeur des stratégie de contrôle (ou mapping) mises en oeuvre pour

agir sur la musique grâce à des dispositifs à écrans tactiles.

Ce travail débute par trois revues bibliographiques détaillées, chacune se concentrant

sur les stratégies de mapping musical en deux dimensions. Chaque revue livre une synthèse

des tendances les plus répandues ainsi qu’une analyse des stratégies plus insolites. Tout

d’abord, les applications musicales les plus populaires conçues pour l’iOS d’Apple sont

examinées. Ensuite, l’étude est élargie aux autres applications musicales pour iOS, en

utilisant une approche plus haut niveau. Enfin, les méthodes de notation graphiques du

XXe siècles sont considérées.

Grâce à ces revues, cette thèse élabore plusieurs archétypes d’interfaces bi-dimensionnelles.

Ces modèles généraux prennent en compte l’arrangement des éléments de l’interface dans le

plan, les types de contrôles offerts, et les mises en correspondances résultant de la structure

de l’interface.

Finalement, ce mémoire s’achève par une description de la mise au point d’un système

de reconnaissance automatique de la structure d’une interface de contrôle. Une interface de

programmation libre et offerte par un service web a été créée à cet effet. Une application

de démonstration, “Pattern Recognition”, a aussi été réalisée. Elle utilise des éléments

de l’interface de programmation pour pour classer les structures spatiales d’interfaces et

générer des stratégies de contrôle.

iii

Acknowledgments

To my family, for being smarter than me.

Big love to The Echo Nest family: Brian Whitman, Tristan Jehan, Kurt Jacobson, Joe

Gester, and many others. Special/magic thanks to Amanda Bulger and Elissa Barrett.

Thanks, of course, to my supervisor, Marcelo Wanderley, for infinite wisdom, citation/schol-

arship black magic, and a never-ending smile. Special thanks to Bob Hasegawa for the same

for Chapter 4.

Montréal, toujours. Especially Nadia Pona & Cassandra Miller; also Teagan Schultz, Erin

Gee, Mason Koenig.

Hugs to my comrades-in-arms at Music Tech, without whom I would have never sur-

vived: Vanessa Yaremchuk, Alastair Porter, Carolina Medeiros, Avrum Hollinger, Mahtab

Ghamsari-Esfahani, Ben Bacon, Julian Vogels, Marcello Giordano, Mike Winters, Aaron

Krajeski, Joe Malloch, Ian Hattwick, Bertrand Scherrer, Deborah Egloff, H̊ackon Knutzen,

Emma Frid, and everyone else. Special thanks to Darryl Cameron for making it all work.

Thanks to Boston, for fine lodgings and fine companionship and the best bar in the world:

Laurel Pardew, Charlie Van Kirk, Pran Bandi, Melinda Cross, Liv Gold, Blake Brasher,

Michelle Qi, Nick Joliat, Paula Te, Emilo Jasso, Rich Whalley, Colin McSwiggen, Bayard

Wenzel.

Bonus thanks to UVic: George Tzanetakis, Kirk McNally, Peggy Storey, Christopher But-

terfield. Extra bonus thanks to SoundCloud 2010: Hannes Tydén, Eric Wahlforss, Robert

Bönhke.

iv

Contribution of Authors

Thesis regulations require that contributions by others in the collection of materials and

data, the design and construction of apparatus, the performance of experiments, the anal-

ysis of data, and the preparation of the thesis be acknowledged.

The content of Chapter 2 was originally published in the Proceedings of Sound &

Music Computing Coference 2013 [1]. My supervisor, Marcelo M. Wanderley, co-authored

the paper. It has been re-edited to fit the structure of this thesis. Likewise, the content

of Chapter 3 was originally published in the Proceedings of Sound & Music Computing

Conference 2014 [2]. Marcelo M. Wanderley was again my co-author, and it has also been

re-edited for this thesis.

The screenshots of iOS applications in Chapter 2, Chapter 3, and Chapter 5 are publi-

cally available on the iTunes store, and are reproduced here under fair dealing / fair use.

The images of scores in Chapter 4 are likewise reproduced here under fair dealing / fair

use. Permission from the composers or current rightsholders was obtained for images that

excerpt a large amount of the score: these permissions are listed inline with each image.

Vanessa Yaremchuk provided machine learning wisdom for both the review methodology

in Chapter 3 and the engineering in Chapter 6. The various engineering services and APIs

used in Chapter 6 are footnoted or cited accordingly, as they are mentioned.

v

Contents

1 Introduction 1

1.1 Thesis Overview . 3

1.2 Contributions . 3

2 Musical iOS Applications: In-Depth Review 5

2.1 Introduction . 5

2.2 Method . 6

2.3 Metaphors . 7

2.3.1 Piano . 9

2.3.2 DJ . 10

2.3.3 Digital Audio Workstation . 11

2.3.4 MPC . 12

2.3.5 Guitar . 13

2.3.6 Drum Kit . 14

2.3.7 Synthesizer . 15

2.3.8 Sequencer . 16

2.3.9 Karaoke . 17

2.3.10 Amp Sim . 18

2.3.11 Other . 19

2.4 Mappings . 20

2.4.1 Standard Categories . 20

2.4.2 Standard Categories: Results . 21

2.4.3 Other Category . 21

2.4.4 Other Category: Results . 22

Contents vi

2.5 Discussion . 23

2.6 Conclusion . 24

3 Musical iOS Applications: High-Level Review 26

3.1 Introduction . 26

3.2 Method . 27

3.2.1 Verification . 34

3.3 Results . 35

3.3.1 Music-Making Applications . 35

3.3.2 Non-Music-Making Applications . 37

3.4 Mappings . 39

3.4.1 Pitch . 40

3.4.2 Trigger . 40

3.4.3 Time . 41

3.4.4 Volume . 41

3.4.5 Timbre . 41

3.4.6 Summary . 41

3.5 Dataset . 42

3.6 Conclusion . 42

4 Contemporary Graphic Scores: In-Depth Review 44

4.1 Introduction . 44

4.2 Traditional Notation . 45

4.2.1 Pitch . 46

4.2.2 Rhythm & Time . 46

4.2.3 Volume . 47

4.2.4 Timbre . 47

4.2.5 Articulation . 47

4.2.6 Summary . 47

4.3 Twentieth Century Notation . 47

4.3.1 Pitch . 48

4.3.2 Rhythm & Time . 48

4.3.3 Volume . 49

Contents vii

4.3.4 Timbre . 49

4.3.5 Articulation . 50

4.3.6 Summary . 50

4.4 Graphic Score Review . 50

4.4.1 Morton Feldman - Projection #1 53

4.4.2 John Cage - Williams Mix . 54

4.4.3 John Cage - 59 1/2 Seconds For A String Player 56

4.4.4 Karlheinz Stockhausen - Studie II 57

4.4.5 Gyorgy Ligeti - Piece Electronique No. 3 58

4.4.6 Karlheinz Stockhausen - Kontakte 60

4.4.7 Christian Wolff - For Pianist . 62

4.4.8 Sylvano Bussotti - Siciliano . 64

4.4.9 James Tenney - Beast . 66

4.4.10 Anthony Braxton - Composition #76 67

4.4.11 Wendy Reid - Tree Piece #8 . 69

4.4.12 Hans-Christoph Steiner - Solitude 71

4.4.13 Steve Roden - Pavilion Scores . 73

4.4.14 Andrea Valle - 16 Nodi . 75

4.4.15 Halim El-Dabh - Canine Wisdom 77

4.4.16 Douglas Wadle - Drift . 79

4.5 Results . 81

4.5.1 Summary of Mappings . 81

4.5.2 Mapping Outliers . 82

4.6 Conclusion . 83

5 Two-Dimensional Mapping Abstractions 85

5.1 Introduction . 85

5.2 Diatonic Row / Pentatonic Row . 88

5.3 Diatonic Row / Size . 90

5.4 Multiple Rows . 92

5.5 Column / Size / Shape . 94

5.6 Small Grid . 96

5.7 Centered Row . 98

Contents viii

5.8 Diatonic Column . 100

5.9 Diatonic Column / Pentatonic Column . 102

5.10 Hexagonal / Triangular Grid . 104

5.11 Circle . 106

5.12 Orthogonal Grid . 108

5.13 Rotary Encoder . 110

5.14 Timbral / Radial . 112

5.15 Multiple Column . 114

5.16 Conclusion . 116

6 Software Tools for Two-Dimensional Mapping 117

6.1 Introduction . 117

6.2 Related Work . 118

6.3 Classification & Machine Learning . 119

6.4 API & Server . 121

6.5 Front End & Client . 124

6.6 Conclusion . 127

7 Conclusion 128

7.1 Contributions . 130

7.2 Limitations & Future Work . 130

References 132

ix

List of Figures

2.1 Cat Piano Concerto, a typical Piano app. 9

2.2 djay, a typical DJ app. 10

2.3 Auria, a typical DAW app. 11

2.4 iMPC, a typical MPC app. 12

2.5 Pocket Guitar, a typical Guitar app. 13

2.6 Ratatap Drums, a typical Drum app. 14

2.7 Animoog, a typical Synthesizer app. 15

2.8 Molten Drum Machine, a typical Sequencer app. 16

2.9 StarMaker: Karaoke+, a typical Karaoke app. 17

2.10 AmpliTube, a typical Amp Sim app. 18

2.11 Borderlands, an app from the Other category. 19

3.1 K-Means & PCA results. 32

4.1 Example of traditional music notation . 46

4.2 Example of twentieth century music notation 48

4.3 Earle Brown - December ’52 . 51

4.4 Cornelius Cardew - Treatise (Sketch) . 52

4.5 Morton Feldman - Projection #1 (Excerpt) 53

4.6 John Cage - Williams Mix (Excerpt) . 54

4.7 John Cage - 59 1/2 Seconds For A String Player (Excerpt) 56

4.8 Karlheinz Stockhausen - Studie II (Excerpt) 57

4.9 Gyorgy Ligeti - Piece Electronique No. 3 (Excerpt) 58

4.10 Karlheinz Stockhausen - Kontakte (Excerpt) 60

4.11 Christian Wolff - For Pianist (Excerpt) . 62

List of Figures x

4.12 Sylvano Bussotti - Siciliano (Excerpt) . 64

4.13 James Tenney - Beast . 66

4.14 Anthony Braxton - Composition #76 (Excerpt) 67

4.15 Wendy Reid - Tree Piece #8 . 69

4.16 Hans-Christoph Steiner - Solitude (Excerpt) 71

4.17 Steve Roden - Pavilion Scores (Excerpt) 73

4.18 Andrea Valle - 16 Nodi (Excerpt) . 75

4.19 Halim El-Dabh - Canine Wisdom . 77

4.20 Douglas Wadle - Drift (Excerpt) . 79

5.1 A typical example of a Diatonic / Pentatonic Row layout (Bell Piano). . . 88

5.2 Three atypical Diatonic Row / Pentatonic Row layouts. 89

5.3 The Diatonic Row / Pentatonic Row abstraction. 89

5.4 A typical example of a Diatonic / Size layout (Xylophone.). 90

5.5 Three atypical Diatonic Row / Size layouts. 91

5.6 The Diatonic Row / Size abstraction. 91

5.7 A typical example of a Multiple Row layout (App name not available). . . 92

5.8 Two atypical Multiple Row layouts. 93

5.9 The Multiple Rows abstraction. 93

5.10 A typical example of a Column / Size / Shape layout (Santoor). 94

5.11 Two atypical Column / Size / Shape layouts. 95

5.12 The Column / Size / Shape abstraction. 95

5.13 A typical example of a Small Grid layout (Ocarina). 96

5.14 Two atypical Small Grid layouts. 97

5.15 The Small Grid abstraction. 97

5.16 A typical example of a Centered Row layout (Sansula). 98

5.17 Two atypical Centered Row layouts. 99

5.18 The Centered Row abstraction. 99

5.19 A typical example of a Diatonic Column layout (QuaverPad). 100

5.20 The Diatonic Column abstraction. 101

5.21 A typical example of a Diatonic Column / Pentatonic Column layout (Cubasis).102

5.22 Two atypical Diatonic Column / Pentatonic Column layouts. 103

5.23 The Diatonic Column / Pentatonic Column abstraction. 103

List of Figures xi

5.24 A typical example of a Hexagonal / Triangular Grid layout (App name not

available). 104

5.25 Two atypical Hexagonal / Triangular Grid layouts. 105

5.26 The Hexagonal / Triangular Grid abstraction. 105

5.27 A typical example of a Circle layout (Major Circle of Fifths). 106

5.28 Two atypical Circle layouts. 107

5.29 The Circle abstraction. 107

5.30 A typical example of a Orthogonal Grid layout (App name not available). . 108

5.31 Three use cases for the Orthogonal Grid layout. 109

5.32 The Orthogonal Grid abstraction. 109

5.33 A typical example of multiple Rotary Encoders (76 Synthesizer). 110

5.34 Two atypical Rotary Encoder layouts. 111

5.35 The Rotary Encoder ‘abstraction’. 111

5.36 A typical example of a Timbral / Radial layout (Cool Drums). 112

5.37 Two atypical Timbral / Radial layouts. 113

5.38 The Timbral / Radial abstraction. 113

5.39 A typical example of a Multiple Column layout (AC-7 Core HD). 114

5.40 Varying number of faders / columns (Allen & Heath iLive Tweak). 115

5.41 The Multiple Column abstraction. 115

6.1 The interface for Pattern Recognition. 124

6.2 A user-defined Small Grid mapping. 125

6.3 A user-defined Diatonic Row / Size mapping. 125

6.4 An incorrect classification of Column / Size / Shape. 126

6.5 An incorrect mapping of a Small Grid layout. 126

xii

List of Tables

2.1 Number of Apps per Metaphor, iPhone and iPad 7

2.2 Number of Mappings for Standard Categories 21

2.3 Number of Mappings for Other Category 22

3.1 Accuray of Various Classification Methods 28

3.2 Whitelisted Words per Category . 29

3.3 SVM Number of Apps per Category vs. Actual Number of Apps per Category 29

3.4 Clustering Results . 31

3.5 Clustering Breakdown . 31

3.6 Number of Applications per Category, Musical Applications 36

3.7 Number of Applications per Category, Non-Musical Applications 38

3.8 Mappings for Musical Applications . 39

4.1 List of Composers and Scores . 45

4.2 Mappings . 81

xiii

List of Acronyms

API Application Programming Interface

DAW Digital Audio Workstation

DJ Disc Jockey

HTTP Hyper Text Transfer Protocol

iOS iPhone Operating System

MIDI Musical Instrument Digital Interface

MPC Music Production Center

OSC Open Sound Control

REST REpresentational State Transfer

SVM Support Vector Machine

1

Chapter 1

Introduction

Electronics in general and computers in particular have a long and noble history of making

music [3], from the first playback of Daisy to the current explosion of electronic music.

Computers themselves are now highly mobile: an average ‘phone’ has dozens of times the

processing power of yesterday’s desktop machines. Furthermore, the mobile computing

market is growing, whereas the desktop market remains constant [4].

It is thus no surprise that tens of thousands of music applications exist for mobile

phones, most concentrated on the iOS platform [5]. Nor is it a surprise that more and

more musicians are using these applications to perform, produce, and practice their music.

The iOS store has recorded over 60,000,000,000 downloads of over 1,000,000 apps [6]. As

will be seen in Chapter 3, about 40,000 of those apps are music applications. A very

rough first approximation would suggest that 24,000,000 of those downloads are music

applications.

Touchscreen devices like the iPhone and iPad (along with Android devices such as

the Nexus 7, the Microsoft Surface, and other devices) present a particular challenge when

designing music applications. The potential hardware inputs are limited: a capacitive multi-

touch surface, potentially with an accelerometer, a microphone and one or more gyroscopes.

Yet the software that can be applied to these inputs is variable and limitless. Does the

application capture individual touches, complex gestures, or something in between? Does

it use the additional sensors, singularly or combined, to provide deeper information about

the state of device?

To make things yet more complex, the sonic output generated by the application soft-

2014/09/30

1 Introduction 2

ware is also essentially limitless. Anything from sample playback to detailed synthesis

techniques can be used to create sound, limited only by the computational power of the

device. Defining the relationships between these layers is known as mapping, and it is the

primary focus of this thesis.

Hunt et al define mapping as “The art of connecting these two, traditionally inseparable,

components of a real-time musical system” [7], referring to the control mechanism and sound

generator, respectively. They further discusses the importance of this process in terms of

how the player responds to the instrument. Hunt et al have also written about mappings in

terms of live performance, and with regards to expert musical interaction. Other authors

who have discussed mapping include Rovan et al [8], in terms of detailed mapping of

gestures; and Bowler et al [9], in terms of interpolating between N input parameters and

M synthesis parameters.

Mapping is a key component in the creation of touchscreen music applications. Indeed,

a distinct subset of these music applications allow users to design and map their own layouts

of controls. This flexibility allows for unique control systems, which in turn lead to unique

music. However, these interfaces often include dozens upon dozens of buttons, and the

process of mapping each button to a musical event is often painstaking at best.

This thesis researches the mapping process across a variety of two-dimensional media,

with a final goal of automating the mapping of arbitrary layouts of controls to musical

parameters. It must be noted that mapping is a very difficult problem [7]: this thesis does

not propose to solve it, or even provide the ‘best’ mapping for a given layout of controls.

It will, however, strive to provide a not-unreasonable, well-grounded automatic mapping

process, while also providing deep insight into how musical mappings are currently designed

and represented on touch devices.

In order to achieve this, two disparate sources are examined and reviewed, in order to

cover a wide range of potential mappings: music applications on iOS, and twentieth century

graphic scoring techniques. From these two sources, a set of abstracted control layouts are

defined, with associated mappings. Finally, this thesis discusses the creation of software

that uses machine learning to detect these layouts, and return an appropriate mapping for

them.

1 Introduction 3

1.1 Thesis Overview

This thesis is structured in five parts. The first two chapters form a review of mapping

trends in iOS music applications. Chapter 2 presents a detailed review of the most popular

1,200 iOS applications, in terms of both the metaphor displayed to the user and the exact

mapping of musical parameters used. Novel applications are also examined in detail in

this review. Chapter 3 expands this review to all 38,750 (at the time of writing) music

applications, albeit at a much higher level. Whereas Chapter 2 defines ten categories,

Chapter 3 defines a further fifty-six classes, and reviews their mappings.

Chapter 4 presents a contrasting and complementary view to the mappings of music

in two dimensions, examining the graphic score as a source of interface mappings. Six-

teen scores, from acknowledged classics to bleeding-edge new works, are reviewed and their

mappings discussed. As will be seen, some key mappings persist across both iOS applica-

tions and graphic scores. Chapter 5 takes these most persistent and popular mappings and

abstracts them into their topological forms: the piano becomes two offset rows of buttons,

the musical staff becomes a column of alternating buttons, and so on. These abstractions

then provide the source material for the final, example software.

Chapter 6 provides academic context and engineering details for the example software.

Machine learning methods are used to recognize the abstracted control layouts defined in the

previous chapter, and then provide automatic mappings for them. This chapter discusses

the classification algorithm itself, the process of building a web-facing classification API

to access the algorithm, and Pattern Recognition, the user-facing application itself. This

sample software will fulfill the goal, stated above, of automating the mapping process.

1.2 Contributions

The engineering efforts of the final chapter form the most practical contribution: a func-

tional algorithm for applying automatic mapping of musical parameters to any layout of

buttons, and an open classification API allowing other developers to access it. The Pattern

Recognition software provides a practical example of the classification algorithm and the

classification API.

The two reviews of iOS trends that provided the data for this algorithm also stand

as major contributions. The high-level review in Chapter 3 provides an overview of the

1 Introduction 4

entire ‘Music’ application space, and how the various applications therein are mapped.

Furthermore, the classified text data and screenshots have been made publicly available

as an aid to future research around music applications, the iOS ecosystem, and text-based

classification. The detailed iOS review in Chapter 2 gives more in-depth descriptions of

the mappings used in the most popular iOS music applications, and lists summaries of

mappings trends.

Finally, Chapter 4 ties the two-dimensional aspects of mapping back to that most two-

dimensional of music media: the score, written or printed on paper. Chapter 4 considers

the graphic score as input interface, and lists and summarizes the mappings used in sixteen

important scores. This novel review provides a balance to the iOS focus of the rest of the

thesis.

5

Chapter 2

Musical iOS Applications: In-Depth

Review

2.1 Introduction

This chapter presents a first, in-depth review of mappings and metaphors presented in

musical iOS applications (apps). These apps are split into ten categories, based on the visual

metaphor presented to the end user, and the mappings for each category are described.

These two factors impact the relationship between the control layer and the sound creation

layer: the mapping layer defines these relationships explicitly, but the visual metaphor

presented drives the selection of mapping. Hunt et al. have written about the value

of mappings in mediating between these two layers [10]. Fels et al. have discussed the

value of metaphor in human-machine interactions, and how it can improve a performer’s

understanding of the mapping and the instrument [11]. On iOS devices, as will be seen,

the metaphors tend to be exceedingly obvious: pianos and guitars abound.

Some applications, however, have non-obvious mappings (timbre control based on where

a piano key is touched, for example) that a metaphorical piano does not have. Furthermore,

the wide range of abstract applications make the question of metaphor (or lack thereof) a

key one. Wessel and Wright have presented more abstract control metaphors, with a focus

on the relationship of gesture and metaphor to the acoustic results [12]. Likewise, McGlynn

et al. have written about the expressive possibilities of interfaces that are not modeled on

existing metaphors [13]. Their paper does not explicitly mention mapping, but mapping

2014/09/30

2 Musical iOS Applications: In-Depth Review 6

choices are inherent in each interface they discuss.

This chapter provides real-world insight into how metaphors and mappings are used for

music making on iOS devices. It also offers suggestions as to how to best use this data to

create effective iOS music apps, in terms of both standard and non-standard mappings.

2.2 Method

From the approximately 800,000 apps on the iOS app store [14], 1,200 music apps were

chosen for review. These were selected by examining the ‘Top Paid’,‘Top Free’, and ‘Top

Grossing’ subsections of the iOS music app page. Each of those subsections lists 200 apps

and differs across iPhone and iPad, giving 1,200 applications, with some small overlap. Of

these music apps, 337 deal with music creation in some way. These 337 apps were looked at

in detail. “Music creation” is given a broad scope here: any application that allows creative

interaction with music, in real time or not, is counted. This includes karaoke applications,

but does not include radio applications, simple sound recorders, fingerprinting apps, or

artist themed apps.

A cursory overview of the apps indicated that they could be organized into categories

based on overarching metaphor - the most obvious being piano apps. Each app was assigned

a metaphor, and then the total number of apps for each metaphor were added up. The goal

of this classification was to delimit categories that would have broadly similar mappings.

As the numbers for each app were counted, it became clear that there were ten main

categories, and then a large number of varied, heterogeneous apps. Indeed, outside of the

ten categories (all of which had at least thirteen apps), the metaphor with the most apps

was the violin, with two.

The final list of categories was as follows: Piano, DJ, Digital Audio Workstation

(DAW), Music Production Controller (MPC) [15], Guitar, Drum Kit, Synthesizer, Se-

quencer, Karaoke, Amplifier Simulator (Amp Sim), and Other. For each category, the

metaphor and the general mappings for the metaphor were examined. A number of apps

from each category were looked at in detail in order to discover novel or additional map-

pings. All apps in the Other category were looked at in detail. Regardless of category, each

app was analyzed in terms of the direction and layout of its mappings, giving an overview

of how musical parameters are mapped in general.

Note that only a subsection of the applications with standard metaphors were down-

2 Musical iOS Applications: In-Depth Review 7

loaded and tested; their mappings are assumed to be consistent across the category. A

larger subset of these applications were examined via their websites. However, every app

in the Other category was looked at in detail. When an application could not be down-

loaded and tested by hand (due to hardware limitations or a cost above �25.00 CDN), it was

examined via screenshots and video. Specifically, those applications are: Korg iKaosillator,

Rockmate, Ocarina 2, and Live FX.

2.3 Metaphors

Table 2.1 contains an overview of the number of applications in each category. Note that

the Other category has been split into apps that represent known acoustic instruments (a

trumpet, for example), and apps that have no acoustic referent. It must also be noted that

apps that appeared on both the iPhone and iPad are counted twice.

Table 2.1: Number of Apps per Metaphor, iPhone and iPad

Metaphor iPhone iPad Total

Piano 25 43 68
DJ 17 15 32
DAW 14 16 30
MPC 14 14 28
Guitar 12 13 25
Drum Kit 7 14 21
Synthesizer 4 16 20
Sequencer 6 13 19
Karaoke 9 9 18
Amp Sim 5 8 13
Other 21 34 55
Other (Acoustic Instruments) 4 4 8
Total 138 199 337

2 Musical iOS Applications: In-Depth Review 8

As can be seen, piano apps are the standout category, followed somewhat surprisingly

by DJ apps. The other two acoustic instruments, Guitar and Drum Kit, are below DAWs

and MPC apps. This primacy of the electronic is perhaps not surprising given that iOS

is an electronic platform, but it is belied by the massive popularity of piano applications.

The piano may simply be such a well-known metaphor that it transcends the limitations

of the iOS platform (lack of easy volume and timbre control, etc).

Continuing down the list are Synthesizers, Sequencers, Karaoke apps, and then Amp

Sims - applications that mimic guitar amplifiers and effects pedals. In the Other category,

a small subsection of apps mimics other acoustic instruments, again suggesting that non-

acoustic metaphors are more dominant. The rest of the Other apps present no consistent

metaphor.

The following sub-sections detail each category in terms of its metaphor and mappings,

and discuss some of the variations within each category.

2 Musical iOS Applications: In-Depth Review 9

2.3.1 Piano

Piano apps display a traditional keyboard that plays discrete pitches. Pitches are mapped

from left to right, low to high, in steps of one semitone. The vast majority of apps display a

keyboard, though some simply display abstract circles (Smule Magic Piano). Playback of

multiple pitches is possible. Volume control is generally not possible, nor is timbre control,

though some apps offer a ‘pedal’ button, for sustained notes (Piano Infinity), or give control

over the amount of reverberation added (Piano Complete). Some apps provide a toggle

to switch between sounds - piano, grand piano, harpsichord, cat, dog, and so on (Real

Piano HD, Piano Infinity, Cat Piano Concerto). Exact tuning control (A440 vs. A442,

for example) is also sometimes available (Real Piano HD), and some apps give access to

a synthesizer-esq pitch bend wheel and a mod wheel for real-time volume control (Pianist

Pro). Solutions for volume control include a ‘force based’ volume control (Real Piano HD),

and a volume control based on where the user strikes each key - higher up the key is softer,

near the bottom of the key is louder (Pianist Pro). Some programs include teaching modes

where notes fall from the top of the screen to the bottom, and must be played as they hit

the bottom (Smule Magic Piano, Piano Infinity).

Fig. 2.1: Cat Piano Concerto, a typical Piano app.

2 Musical iOS Applications: In-Depth Review 10

2.3.2 DJ

These apps provide two virtual turntables, with a virtual mixer. The volume of each

turntable is controlled by a vertical fader, with louder being higher. The mix between

turntables is controlled by a horizontal fader. Play, stop, and pause commands are con-

trolled by buttons. The speed of each turntable is controlled by a pitch fader; faster is

towards the user for some apps (djay), matching a traditional turntable, and away from

the user for other apps (DJ Rig Free). This fader is generally in percent. ‘Pitch bends’,

small corrections to the speed of each turntable, are controlled by buttons. The user can

touch the virtual turntable to scratch or backspin, but not to change the speed of the

turntable (DJ Rig Free).

Fig. 2.2: djay, a typical DJ app.

2 Musical iOS Applications: In-Depth Review 11

2.3.3 Digital Audio Workstation

DAW apps provide a complete solution for producing music and working with audio. They

often include synthesizers, sequencers, and MPCs, as well as effect sections and mixers.

Some go so far as to include auxiliary sends (Auria). The key distinction between a DAW

app and a full-featured sequencer is that DAWs work with recorded audio: audio is recorded

with a traditional red ‘Record’ button, and represented in clips wherein time moves from

left to right, and amplitude is represented vertically (FL Studio Mobile HD, Music Studio

Lite).

Fig. 2.3: Auria, a typical DAW app.

2 Musical iOS Applications: In-Depth Review 12

2.3.4 MPC

These apps are based on the Akai Music Production Center [15] line, a classic of hip-hop

production. They have some number of trigger buttons in a grid - traditionally 16 buttons

in a 4 x 4 grid. These buttons play a user-configurable sample when triggered. The user

typically records one line, then loops it and records another line. Tempo can be tapped in

(iMPC) or set with a slider (BeatPad Lite). The app may have a dedicated mixer (iMPC),

or set volume via a slider on each pad (Rhythm Pad). There may be a separate FX section

(DJ Soundbox Pro), or deep synthesis control of each drum sound (Impaktor). Finally,

instead of the traditional 4x4 grid, some MPC apps have fewer buttons (Rhythm Pad has

8).

Fig. 2.4: iMPC, a typical MPC app.

2 Musical iOS Applications: In-Depth Review 13

2.3.5 Guitar

Guitar apps display ‘strummable’ strings, and a fretboard. Frets are selected by holding

down the appropriate area, and lower notes are placed to the left, as when holding a

guitar. The lowest string is likewise placed closest to the user, and the strings are mapped

vertically, again as when holding a guitar. Some apps provide direct access to complex

chords via buttons (Guitar!, Real Guitar Free). Some apps provide vibrato by shaking the

device (Smule Magic Guitar), and others allow effects via virtual pedals, with the timbre

controlled by rotary knobs (PocketGuitar). Most apps do not provide timbral control or

volume control.

Fig. 2.5: Pocket Guitar, a typical Guitar app.

2 Musical iOS Applications: In-Depth Review 14

2.3.6 Drum Kit

These apps represent a traditional drum kit, with some number of drums. Tapping each

drum plays an appropriate sample, or one of a set of appropriate samples for that drum.

Rolls can sometimes be performed by sliding a finger on a drum head; a faster slide leads

to faster rolls (Ratatap Drums Free). As with the piano apps, volume and exact timbre

control are generally not available. However, some applications provide force-based volume

control (Ratatap Drums Free), and some play differing samples based on the exact location

of the tap - playing the bell vs. the edge of a cymbal, for example (Drums!). Finally, the

user can often switch between drum kits or drum kit layouts (Drum Kit Pro, Drums!)

Fig. 2.6: Ratatap Drums, a typical Drum app.

2 Musical iOS Applications: In-Depth Review 15

2.3.7 Synthesizer

A synthesizer app exposes a selection of controls to a synthesis engine, and provides a piano-

style keyboard for triggering the synthesized sounds. Control of the synthesis parameters is

typically done with rotary knobs, but horizontal (Alchemy) or vertical (Minisynth) sliders,

or XY pads (Alchemy) are also often used. Common parameters include:

Wave type - sawtooth, sine, square, etc (Magellan)

Filters - cutoff, type, resonance (Alchemy)

Frequency modulation (iMS20)

ADSR envelope control (iMS20)

In addition to triggering sounds with a piano keyboard, sequencers are included in some

synthesizers (Magellan, iMS20), as are grids with volume mapped vertically (Magellan),

and XY pads (iMS20). Indeed, some synthesizers can set the scale used by the keyboard

or XY pad (Animoog, iMS20). In the case of the Animoog, this changes the layout of black

and white keys. Finally, some synthesizers apps include extra effects, which are controlled

with rotary knobs (Magellan) or with virtual patching environments (iMS20, Audulus).

Fig. 2.7: Animoog, a typical Synthesizer app.

2 Musical iOS Applications: In-Depth Review 16

2.3.8 Sequencer

This category is inclusive of both drum machines and step sequencers. Time is divided

into some number of discrete steps (16, 32, or 64), and time then advances step-by-step

from left to right, according to a set tempo. One or more sounds or drums can be triggered

on each step. Some sequencers model traditional drum machines (Korg iElectribe), and

only allow access to a single track at a time, whereas others offer a grid with multiple

tracks (EasyBeats 2 Pro). Some include DAW-style mixers with vertical sliders (KeyZ),

some add effects sections with rotary control (Molten Drum Machine), and some have an

MPC-style interface for adding events to the grid (FunkBox Drum Machine). The mapping

of time also varies: some only display a single bar of time, whereas others allow a bar to be

sequenced, and then allow the bar itself to be sequenced with other bars (Genome MIDI

Sequencer, DM1). Zooming in time is occasionally provided by a rotary knob that controls

the subdivision of a beat (Molten Drum Machine). Finally, volume per sound is sometimes

controlled by the vertical position of the sound in the grid (Looptastic Producer).

Fig. 2.8: Molten Drum Machine, a typical Sequencer app.

2 Musical iOS Applications: In-Depth Review 17

2.3.9 Karaoke

Karaoke apps allow the user to sing along to the instrumental track of a known song. At

the very least, they present and somehow highlight the lyrics to be sung. Some provide

visible pitch mapping, usually with pitch mapped vertically (higher notes are higher in

pitch, lower notes are lower) and time moving from left to right (StarMaker: Karaoke+).

Other options include additional reverb or echo (Soulo Karaoke), automating tuning effects

that can be toggled on and off (Sing! Karaoke, StarMaker: Karaoke+), and toggles and

level sliders for guide vocals (StarMaker: Karaoke+).

Fig. 2.9: StarMaker: Karaoke+, a typical Karaoke app.

2 Musical iOS Applications: In-Depth Review 18

2.3.10 Amp Sim

These apps provide some sort of model of a hardware FX box, usually a guitar pedal or

guitar amplifier. Control of the effect is provided by rotary knobs (AmpliTube), horizontal

faders (AmpKit), and on/off switches (AmpliTube, AmpKit). Some examples of the effects

and parameters under control, from AmpliTube, are:

� Octave Pedal: direct level, octave level.

� Delay: Delay time, feedback, delay level.

� Phaser: speed.

Some apps additionally allow the user to position a virtual microphone in front of the

virtual amplifier, providing nonlinear, two dimensional control of timbre (Ultimate Guitar

Amps and Effects).

Fig. 2.10: AmpliTube, a typical Amp Sim app.

2 Musical iOS Applications: In-Depth Review 19

2.3.11 Other

The Other category ranges from touch-based implementations of acoustic instruments to

wildly abstracted music applications. Violin, harmonica, and trumpet applications were

examined, along with gravity-based sequencers, isomorphic pitch-space controllers, and

granular synthesizer experiments. In general, the most atypical mappings appeared in this

category. For example, Rework maps pitch radially out from the centre, and ThumbJam

allows the user to add vibrato and tremolo by shaking the device. Another interesting

example is the ReacTable app - here, the layout of control objects can be defined by the

user, and their relative location controls how signal flows between them. This patching

paradigm is used in many desktop applications, but in relatively few mobile applications.

Fig. 2.11: Borderlands, an app from the Other category.

2 Musical iOS Applications: In-Depth Review 20

2.4 Mappings

2.4.1 Standard Categories

Beyond the metaphors listed above, the raw mappings behind each app were examined.

For example, a standard piano application maps pitch horizontally from left to right (all

directions given imply an increase), with discrete buttons. Likewise, a standard DAW

application has a mixer that maps volume vertically, from bottom to top, continuously.

Table 2.2 breaks down mappings in terms of pitch, trigger, time, volume, and timbre, across

the ten metaphors listed above: Piano, DJ, DAW, MPC, Guitar, Drum Kit, Synthesizer,

Sequencer, Karaoke, and Amp Sim.

It is important to note that some apps contain multiple mappings for a given param-

eter. Thus, the numbers in Table 2.2 will not add up to the total number of apps listed

in Table 2.1. Secondly, despite the fact that many applications present rotary knobs or

dials to control parameters (especially for timbral controls), these are not controlled in a

rotary manner. They are in fact controlled as a vertical slider, and are notated here as

such. Finally, some apps do not rotate when the device rotates. If the app presented a

known metaphor (such as with guitar apps), the device was oriented to match the way the

metaphorical instrument would be held. If the app presented no known metaphor, a best

guess was taken, based on orientation of text, icons, and other visual cues.

In Tables 2.2 and 2.3, each column refers to the parameter to be mapped. Pitch, Trigger,

Volume, and Timbre are self-explanatory. The Time column applies to applications like

sequencers and DAWs that allow a user to queue or schedule events in time, and to tempo

controls in DJ apps and sequencer apps.

Each row refers to the mapping used. Most are self-explanatory. The Known Layout

mapping is less clear. It refers to controlling a parameter through some visual layout that

does not fit in a simple horizontal or vertical mapping, but is nevertheless clear to the user.

For example, a drum kit app would control timbre via a Known Layout - that of a drum

kit. Likewise, a trumpet app that mimics the valves of a trumpet would control pitch via

a Known Layout.

2 Musical iOS Applications: In-Depth Review 21

Table 2.2: Number of Mappings for Standard Categories

Mapping Pitch Trigger Time Volume Timbre

Horizontal: Left-to-Right 143 0 67 32 0
Horizontal: Right-to-Left 0 0 0 32 0
Vertical: Top-to-Bottom 32 0 0 0 0
Vertical: Bottom-to-Top 73 0 0 142 114
Continuous 50 0 48 174 114
Discrete 178 0 19 174 114
Known Layout 0 0 0 0 49
Toggle 0 45 0 0 50
Touch 0 243 0 0 0
Gesture 0 43 0 0 0
Microphone 0 18 0 18 0

2.4.2 Standard Categories: Results

As can be seen from Table 2.2, the mappings for those standard categories do not cover a

wide range of the possibilities. The runaway winner for pitch input, for example, is discrete

pitches mapped left to right - almost certainly on a piano keyboard. It is important to

note that mappings based on the keyboard are so common because users understand them

instantly, without having to build up their own model for how an app maps pitch. Mapping

pitch using a system of gestures would be interesting and novel, but would not be easy to

use.

2.4.3 Other Category

In order to get a clearer view of potentially novel mappings, the raw mappings for each of

the apps in the Other category (from Table 2.1) are listed in Table 2.3.

Most mappings listed in Table 2.3 are self-explanatory. The Touch Area mapping refers

to the width-times-height area touched, in terms of the size: a tap with a pinky finger covers

a smaller area than a thumb, for example. The Physics mapping refers to some model of

the physical world: virtual balls bouncing with pitch matched to their speed, for example.

Finally, the Location mapping refers to placing a virtual object at a certain XY location

in the app: Moving a virtual loudspeaker closer to a virtual microphone, for example.

2 Musical iOS Applications: In-Depth Review 22

Table 2.3: Number of Mappings for Other Category

Mapping Pitch Trigger Time Volume Timbre

Horizontal: Left-to-Right 22 0 15 4 11
Horizontal: Right-to-Left 0 0 0 0 1
Horizontal: Edge-to-Center 0 0 0 1 0
Vertical: Top-to-Bottom 2 0 1 0 1
Vertical: Bottom-to-Top 16 0 6 12 16
Rotation: Clockwise 2 0 5 0 0
Rotation: Counter-Clockwise 1 0 0 0 0
Radial: Center-to-Edge 2 0 1 1 1
Radial: Edge-to-Center 0 0 0 0 0
Diagonal: Bottom-Left-to-Top-Right 1 0 0 0 0
Continuous 9 0 18 17 28
Discrete 40 0 9 2 2
Known Layout 3 0 0 0 4
Toggle 1 7 0 0 16
Touch 0 26 0 0 0
Touch Area 0 0 0 1 0
Gesture 0 1 0 0 0
Microphone 0 9 0 3 0
Shake 1 2 0 1 0
Tilt 4 2 0 1 2
Physics 2 2 0 0 0
Location 0 4 1 0 1
Colour 3 0 0 0 2

2.4.4 Other Category: Results

As can be seen from Table 2.3, these mappings are substantially more creative than the

mappings for known metaphors. Indeed, many new mappings appear, and some of them are

used for only single apps. Standard horizontal and vertical mappings remain very popular,

but in general, these apps are more interesting - though they may also be correspondingly

more difficult for an end user to grasp.

2 Musical iOS Applications: In-Depth Review 23

2.5 Discussion

This categorization of applications has shown that the majority of iOS music applications

are based on known metaphors, and that piano applications are by far the most popular,

followed by emulation of electronic music interfaces: DJ rigs, DAWs, and MPCs. Taken

as a single class, the Other category would be the second most popular category, just

behind piano apps. However, as these apps vary from simple percussion apps (iMaracas)

to sophisticated isomorphic pitch controllers (SoundPrism), it would be disingenuous to

group them together and point to their high number as evidence of the power of novel

metaphors. Further investigation of this category would be needed in order to draw more

accurate conclusions.

To the contrary, this research indicates that simple or known mappings and metaphors,

such as the all-powerful piano keyboard, are the most popular. Even complex synthesis

applications emulate physical synthesizers, with sundry dials and faders for timbral control.

In the Other category, where apps lack a common metaphor, standard horizontal or vertical

mappings still appear. However, numerous apps present novel mappings and novel inputs,

indicating that there is more design space to be explored outside of keyboards and drum

kits. Indeed, regardless of their lack of known metaphor, apps like Figure, Borderlands and

Samplr show that successful applications can be made with novel mappings.

The importance of metaphor cannot be overstated. The massive popularity of piano

apps, DJ apps, and so on, can be explained by Fels et al. [11] and their discussion of how a

metaphor provides the user with a “iterature” of common knowledge about the interface.

This leads to transparency between the mappings and the user, which makes the mappings

more effective for beginners. Wessel and Wright [12] discuss the value of metaphors in

terms of organizing musical material. They also discuss the value of using abstract and

creative metaphors to control parameters like pitch and timbre. As has been shown above,

most iOS applications lack such a creative metaphor: only 55 apps out of 337 do not fit

into known categories. It may be possible to bring new categories to life, however. The

lack of success of, say, iPhone violins could be because no app has made the correct set of

mappings with which to emulate a violin.

In terms of mappings, Tables 2.2 and 2.3 could be used to aid the design of new iOS

applications. While it seems premature to relate these mappings directly to profitability

and financial success (especially as the App Store does not provide sales numbers for each

2 Musical iOS Applications: In-Depth Review 24

app), the fact that the vast majority of applications map pitch from left to right indicates

that an app aimed at widespread success should at least include such a mapping as an

option. The same can be said for the mapping of volume vertically, and of time from left

to right. Tables 2.2 and 2.3, however, could also be used to create spectacularly atypical

iOS apps, simply by utilizing mappings that are under-represented. Such an app might

map pitch from right to left, continuously, while controlling timbre via the microphone,

and selecting rhythms via certain gestures. Or, the app might run time counter-clockwise,

control pitch via the area of each touch, and map volume radially. These examples highlight

the possibilities for deeply creative mapping solutions that exist on the iOS platform.

The most successful use of these tables, however, is probably in a combination of these

two approaches. A scattershot, unfocused collection of novel mappings will probably result

in a scattershot, unfocused app. However, an app with some traditional mappings and some

novel mappings may be both more of a research success and more of a popular success.

This would especially apply when using under-utilized controls such shaking and tilting, or

when controlling underutilized parameters such as timbre.

Finally, it is also important to note the limitations of the iPhone and iPad hardware,

and how those limitations impact mappings. Though capable of exceptional capacitive

multi-touch input, iOS devices lack the ability to easily tell how hard a user is tapping

them, or any way of giving the user tactile feedback on their input. In some cases, this

leads to creative mappings to work around these limitations. For instance, Smule Magic

Piano maps the timbre of each note vertically: touching higher up a key plays a darker

sound. Likewise, Ratatap Drums uses data from the accelerometer to detect the force of a

tap, and adjusts the volume accordingly.

2.6 Conclusion

This chapter has summarized the most popular categories, mappings, and metaphors for

musical iOS apps. Data for this chapter was gathered in February 2013. It must be noted

that the iOS App Store is an ever-changing world: the top 200 apps of February 2013 are

almost certainly not the top 200 apps of July 2013 - and without question will not be the

top 200 apps of 2015.

As of February 2013, however, there were a massive prevalence of piano apps, and of

apps that show known metaphors to the user. There is also a subset of apps with no known

2 Musical iOS Applications: In-Depth Review 25

metaphor, which were, as a rule, the applications with the most creative mappings. Across

all apps, the majority used simple mappings: pitch from left to right, volume from top to

bottom, and so on. Even within the Other subset of apps, these simple mappings were the

most popular. However, this subset also included deeply creative mappings, making use of

tilting, physics models, radial lines, and more. These lists of mappings could be used to

explore underutilized designed spaces on iOS and similar platforms.

Touch applications for music, on iOS and on other platforms, will only become more

popular as such technology becomes more and more available. This chapter has helped

expose how mappings and metaphors are currently used by the most popular apps on these

devices. The next chapter expands this review to all music apps, though at a much higher

level.

26

Chapter 3

Musical iOS Applications: High-Level

Review

3.1 Introduction

This chapter details a high-level review of all iOS apps in the Music category. Each app

is classified, and a summary of mappings across all such classifications is presented. The

previous chapter reviewed the top 1,200 best-selling iOS apps, in terms of the interaction

metaphor they presented to the user and the exact mappings that they use. Ten main

categories were defined, and their mappings were delineated. This chapter continues that

effort by providing basic classification for all 38,750 (as of January 28th, 2014) music apps,

and a summary of mappings across all such classifications. This rather large scope was

determined by the lack of access to smaller subsets of the data. The iTunes store lists the

top 1,200 best-selling music apps, which was the data set used for the prior chapter. The

only other data source is the iTunes website, which provided the data for all 38,750 apps.

Arner has examined a small subset of iOS apps, with a focus on their gestural interaction

and uses of multitouch [16]. Approaching the problem from the other direction, Tanaka et

al [17] have provided a survey-based analysis of how mobile devices of all sorts are used

musically. In terms of classification, Zhu et al [18] have examined text and context-based

machine learning methods for automatically classifying apps, and Chen & Liu [19] have

used similar techniques to attempt to model how popular various types of applications are.

This overview will provide large-scale data on how musical mappings and metaphors are

2014/09/30

3 Musical iOS Applications: High-Level Review 27

defined on iOS. In addition to the ten categories defined in the previous chapter, this chapter

defines forty new categories of musical apps and delineate their mappings. Moreover, in

order to understand the iOS music ecosystem as a whole, this overview supplies broad

classifications for ‘music’ applications that do not allow the user to create music, such

as radio and artist apps. Summaries of the total number of apps for each category are

provided, along with the total number of mappings across all apps, and thoughts on how

to make use of this data when designing musical mappings and interfaces. A dataset for

future use is also created, consisting of the title, URL, and descriptive text for each of

the 38,750 apps, both with and without classification. This publicly available dataset will

assist future studies of iOS applications, and of text-based classification techniques.

3.2 Method

Data was downloaded from the web-facing iTunes website1, using a webcrawler built in

Python with the Beautiful Soup2 framework. In total, 38,750 apps were crawled. The app

name, URL, and descriptive text were saved.

The analysis of this data had two goals. First, to find all apps that matched the ten

categories listed in the previous chapter. These categories are: Piano, DJ, Digital Audio

Workstation (DAW), MPC (A pad-based sampler/sequencer, based on the Akai MPC [15]),

Guitar, Drum Kit, Synthesizer, Sequencer, Karaoke, and Amplifier Simulator (Amp Sim).

‘Radio’ and ‘Artist’ apps were added to this list, due to the large numbers seen during

cursory examinations of the data. The hope was to train a classifier to recognize these

twelve known categories. Once apps that matched these categories were found, the second

goal would be attempted: to discovered and count new categories, ideally using K-Means

or similar processes.

In order to achieve the first goal, several supervised machine learning methods were

attempted, using both the TextBlob3 and SciKit-Learn4 [20] Python libraries. Training

data was selected by examining apps that included the title of the category in their name

or descriptive text, and then selecting apps that fit into the category in question. Twenty-

five to fifty apps were selected for each category. Both Bayesian classification and Support

1https://itunes.apple.com/us/genre/ios-music/id6011?mt=8
2http://www.crummy.com/software/BeautifulSoup/
3http://textblob.readthedocs.org/
4http://scikit-learn.org/

3 Musical iOS Applications: High-Level Review 28

Vector Machines (SVM) were trained on this data. Using only the name of each application

as a feature proved ineffective, as did using the entire descriptive text. Table 3.1 shows

these poor results for both Bayes and SVM.

In terms of the Bayesian classifier, this poor performance is probably due to both the

very high number of features and a high level of inconsistent dependencies among the

dataset [21]. SVM, on the other hand, performs poorly when the number of features is

much larger than the number of training samples [20]. In this case, each class had only

twenty-five to fifty samples, with 8,882 features.

A whitelist of words important to each category was thus constructed. The whitelist

can be seen in Table 3.2. This reduced the number of features to 114. As Table 3.1 again

shows, this whitelist improved both the Bayesian and SVM classifications, using both the

app name and descriptive text to 90% accuracy, on the test dataset.

As the SVM model using both the app name and the descriptive text was producing

good results on the test data, the next step was to run the trained model on the entire

dataset. This was done category by category, in order to remove classified apps with each

iteration. The results from this, as seen in the first column of Table 3.3, seemed reasonable

at first blush. However, a manual examination of the remaining apps showed that many

apps, especially Radio apps, were missed, suggesting that the models were overfitting to

the test data. In hindsight, comparing the results between the columns of Table 3.3 show

that some of the tested categories worked very well (Piano), while others did very, very

badly (Radio).

Table 3.1: Accuray of Various Classification Methods

Method Training Data Whitelist Accuracy

Bayes App Name False 0.55
SVM App Description False 0.31

Bayes App Name True 0.77
Bayes App Description True 0.88
Bayes Both True 0.90

SVM App Name True 0.57
SVM App Description True 0.83
SVM Both True 0.90

3 Musical iOS Applications: High-Level Review 29

Table 3.2: Whitelisted Words per Category

Category Whitelisted Words

Radio Radio, Station, FM
Artist Upcoming, Latest, Bio, Connected, Official, Exclusive, Fan, News,

Band, Musician, Composer
Piano Piano, Keyboard, Chord, Scale, Key, Note, Theme, Hand, Harpsi-

chord, MIDI
Drum Drum, Drumming, Kit, Drummer, Snare, Kick, Crash, Ride, Cym-

bal, Percussion, Percussionist, Beat, Roll, Hihat, Hi-hat, Brush,
Stick, Bongo, Conga, Taiko

Guitar Guitar, String, Strum, Strumming, Vibrato, Tremolo, Electric,
Tab, Twang, Mandolin, Steel, Pedal

Karaoke Sing, Song, Karaoke, Star, Catalog, Share, Recording, Stage
DJ Turntable, Deck, Scratch, Mix, Mixer, Mixing, Cue, Crossfader,

Sync, Beatmatch
MPC MPC, Pad, Sample, Production, Akai
Sequencer Sequence, Sequencer, Groovebox, Beatbox, Step, MIDI, Pattern,

Tempo, BPM, Machine
DAW Loop, Record, Recording, Audio, Band, Mixer, Aux, Produce
Synth Analog, Analogue, Engine, Filter, Fat, Envelop, Synth, LFO, Poly-

phonic, Monophonic, Sine, Square, Triangle
Amp Sim Rig, Cabinet, Mic, Stomp, Amp, Tube

Table 3.3: SVM Number of Apps per Category vs. Actual Number of Apps per Category

Category Estimated Actual

Radio 5288 10057
Piano 798 752
Drums 644 741
Karaoke 740 246
DAW 226 138

MPC / Sampler 220 136

3 Musical iOS Applications: High-Level Review 30

These results were probably due to insufficiently trained models. Each category only

had twenty-five to fifty apps to train on, and they were selected iteratively through the

dataset, not at random. Radio apps, it would appear, are much more heterogeneous than

the training data that was used.

In addition to attempting to classify known categories of applications, the second goal

was to define new categories - ideally by clustering unclassified apps together. This was first

attempted on test data, and did not give good results. Using SciKit-Learn’s K-Means algo-

rithm on the twelve categories of test data was ineffective, even when using the whitelisted

name and the whitelisted description. The apps both failed to cluster in groups around

their categories, and failed to give correct numbers of apps per cluster. Table 3.4 shows the

number of apps per cluster, and Table 3.5 shows the categories per cluster. Figures 3.1a

and 3.1b shows the results of this clustering, with its dimensionality reduced via principle

component analysis (PCA). As can be seen, each cluster does not contain only a single cat-

egory. It was also hoped that PCA might allow for manual segmentation of each category.

However, as can be seen by the PCA of the data in Figure 3.1c, this was not possible: the

categories are too intermingled to be able to draw useful segment boundaries.

Given the difficulty clustering known data, perhaps due to K-Means’ difficulty with

clusters of varying shapes and densities (as seen in Figure 3.1a), clustering the entire

dataset was even less viable, especially as the total number of categories was not known

and the whitelist would be ineffective on these unknown categories. This left the analysis

process with a somewhat effective method of classifying known categories, and an ineffective

method of finding new categories.

3 Musical iOS Applications: High-Level Review 31

Table 3.4: Clustering Results

Cluster Number of Apps Number of Categories

1 6 1
2 94 9
3 29 3
4 191 12
5 3 1
6 14 1
7 27 6
8 57 7
9 24 2
10 63 5
11 19 6
12 2 1

Table 3.5: Clustering Breakdown

Cluster Category Breakdown

1 Radio: 6.

2
Guitar: 29, Piano: 21, Karaoke: 14, DAW: 9, DJ: 8, Amp: 6,
Synth: 3, Artist: 2, Sequencer: 2.

3 Drum: 15, MPC: 9, Sequencer: 5.

4
Artist: 67, Synth: 34, Piano: 25, DJ: 22, Guitar: 15, Sequencer:
13, Radio: 5, Amp: 3, MPC: 3, Drum: 2, DAW: 1, Karaoke: 1.

5 Drum: 3.
6 Radio: 14.
7 Karaoke 9, Amp: 8, Guitar: 5, Piano: 2, DAW: 2, Sequencer: 1.
8 Sequencer: 16, DJ 14, Synth: 10, MPC: 10, Drum: 4, DAW: 3.
9 Radio: 23, Artist: 1.
10 Drum: 26, MPC: 19, Sequencer: 13, Synth: 3, DAW: 2.
11 Amp: 9, DAW: 5, Piano: 2, DJ: 1, Guitar: 1, Karaoke 1.
12 Radio: 2.

3 Musical iOS Applications: High-Level Review 32

(a) Labeled K-Means clusters. (b) Labeled K-Means clusters, zoomed in.

(c) PCA data, zoomed in.

Fig. 3.1: K-Means & PCA results.

3 Musical iOS Applications: High-Level Review 33

During this process it was discovered that, for a human, classifying each application

based on the whitelisted name, the shortened app name in the URL, and the whitelisted

descriptive text was simple to the point of being trivial.

For example, the below three strings strongly suggests an Artist application:

� “ ”, “amon-amarth-mobile-backstage”, “official fan exclusive fan”

Likewise, these strings suggest a Amp Sim application:

� “ ”, “ampkit”, “amp guitar amp electric guitar amp guitar amp mic pedal guitar

recording share guitar fan”

In contrast, the below descriptive text suggests a Synth, but the name suggests a novel

application.

� “ ”, “anckorage-spring”, “audio connected keyboard midi engine midi midi midi midi”

In this case, the entire descriptive text was checked in a second step, and the application

was then correctly classified as a Synth. The descriptive text is excerpted below:

“Anckorage Spring is a physical modelling audio synthesiser based on the simulation

of a set of connected mass- spring, integrating non-linearities, fluid and static friction,

mechanical limits, gravity and bouncing. It is designed to be controlled by a continuous

controller (like the Haken Continuum www.hakenaudio.com)...”

Using this method it was found that 500 apps, with the use of a Python script to

skip through them, could be shunted into the initial twelve categories in as little as fifteen

minutes, giving a ‘mere’ thirty-nine hours to complete the task of manual classification.

This is, of course, not to say that text-based machine learning is ineffective. Zhu et al [18]

have made use of text data to successfully classify apps (though only 680 of them) of them,

and Whitman et al [22] have used natural language processing and text-based machine

learning on community metadata as a key component of their work in classifying music. The

present paper, however, was simply looking to classify a large number applications with a

high degree of accuracy, not investigate machine learning techniques. Manual classification

also had the advantage of being completable in a known, though long, amount of time,

whereas automatic classification presented a very open-ended problem. Furthermore, good,

manually classified data could also be used as ground truth data for future investigations

of text-based classifications and of the iOS app store.

3 Musical iOS Applications: High-Level Review 34

It was thus decided to brute-force the problem. After the first 10,000 apps had been

classified by hand, two heuristics were added to speed the process: apps that had ‘radio’ in

the name were immediately defined as Radio applications, and apps that had whitelisted

descriptive text of ‘official update new connect’ were immediately defined as Artist appli-

cations.

During this process, many applications could not be fit into the twelve known categories.

Those were logged separately, and then examined with the full text of their names and

descriptive text. Out of those apps, new categories (accordion apps, for example) were

defined, based on the descriptive text. Totally novel apps were again logged separately.

Due to time constraints, the 481 novel applications have not been examined in detail.

Once this two-tiered process was complete, each category was counted. In order to

define the mappings for each category, the screenshots for each app in each category were

downloaded and examined, again using a web crawler. In some few cases, (the Karinding,

for example) videos of apps were examined in order to define the mappings. Only the

general mappings for each category were defined. For example, if all but one Xylophone

app maps pitch to the colours of the rainbow, the Xylophone category as a whole will be

assigned this mapping of pitch to colour.

3.2.1 Verification

This classification process is not a perfect one. Even ignoring typos, this sort of fast

human classification is prone to errors. In order to verify the quality of this method, 100

randomly selected apps were examined using their full name and full descriptive text: 94

were correctly classified, and 6 were incorrect. Then, 100 more randomly selected apps

were tested, ignoring apps from the Radio, Artist, Media, and Non-English categories.

Once again, 94 were classified correctly, and 6 were in error. It must also be noted that the

Media, Educational, and Tool categories contain many interesting apps that are outside

the scope of this thesis. More in-depth app reviews would be well served to begin with

these categorizations - to say nothing of the various applications in languages other than

English.

3 Musical iOS Applications: High-Level Review 35

3.3 Results

3.3.1 Music-Making Applications

Applications that allow the user to produce music are, of course, the focus of this the-

sis. Table 3.6 shows the number of applications per category. Each of these categories

also include applications with similar layouts. The ‘Guitar’ category, for example, also

includes lute, banjos, mandolins, ukeleles, and so on. Categories that may require further

explanation are listed below:

� Ball Sim - Apps that trigger sounds via a physics simulation of balls or other objects

moving around.

� Chord Sequencer - Apps that allow the user to sequence symbolic representations of

chords, either in guitar tablature or text / numeric format.

� Dulcimer - Western dulcimers, hammered dulcimers, and so on.

� Gamelan - Indonesian Gamelan instruments, include bells, gongs, and metallophones.

� Guqin - The guqin is an ancient Chinese zither, with angled strings.

� Hang - The hang is a modern pitched percussion instrument, similar to the steelpan.

� Kalimba - The kalimba, or thumb piano, is an African plucked percussion instrument.

� Karinding - The karinding is an Indonesian mouth harp.

� Looper - Apps that loop audio recorded by the user, rather than sequencing samples.

� Melodica - A reed-based wind instrument, with a small keyboard for selecting pitches.

� MIDI / OSC - Apps that output MIDI or OSC, to control other devices. As these

apps vary wildly, their mappings are not included in the final count.

� Ocarina - The ocarina, a simple wind instrument, occurs in many cultures, but is

perhaps most famous for its role in the ‘Ocarina of Time’ video game.

� Ondes Martenot - An early 20th century electronic instrument, featuring both ribbon

and keyboard control of pitch.

3 Musical iOS Applications: High-Level Review 36

� Steelpan - A pitched percussion instrument, originally from Trinidad & Tobago.

� Vuvuzela - A trombone-like South African instrument instrument, with a single pitch.

� Zither - Eastern zithers, including the guzheng, jentreng, qanun and gayageum.

Table 3.6: Number of Applications per Category, Musical Applications

Rank Category Number of Apps Rank Category Number of Apps

1 Piano 752 26 Organ 25
2 Drum 741 27 Gamelan 24
3 Sequencer 606 28 Trumpet 23
4 Novel 481 29 Ball Sim 23
5 Guitar 385 30 Zither 17
6 Synth 277 31 Harmonica 16
7 Karaoke 246 32 Kalimba 15
8 Effect 149 33 Clarinet 13
9 DAW 138 34 Water Glasses 11
10 MPC / Sampler 136 35 Trombone 9
11 Xylophone 132 36 Dulcimer 9
12 DJ 119 37 Singing Bowl 9
13 Accordion 74 38 Cello 9
14 Band 67 39 Saxophone 8
15 Flute 67 40 Horn 7
16 MIDI / OSC 65 41 Melodica 6
17 Harp 47 42 Vuvuzela 5
18 Amp Sim 45 43 Ocarina 4
19 Bells 40 44 Washboard 4
20 Looper 36 45 Conductor 3
21 Chord Sequencer 36 46 Hang 3
22 Bagpipes 33 47 Pan Pipes 2
23 Notation 33 48 Ondes Martenot 2
24 Steelpan 33 49 Guqin 1
25 Violin 31 50 Karinding 1

3 Musical iOS Applications: High-Level Review 37

As can be seen, this process discovered forty new app categories, for a total of fifty

music-making categories in general. The mappings listed below represent a summary of

the mappings for each category: a highly detailed discussion of each category is outside the

scope of this thesis. Screenshots of examples of each category are also outside the page count

for this thesis: they are available on the IDMIL website at idmil.org/projects/ios mappings.

3.3.2 Non-Music-Making Applications

Broad categories were defined for apps that do not make music. These make up the majority

of the music section of the app store. Table 3.7 shows the numbers of apps per category,

and each category is defined below. This section also includes ‘Junk’ apps that are not

music apps at all, and apps that were unclassifiable due to their descriptive text not being

in English.

� Radio - Apps for a particular radio station, that assemble many radio stations, and

so on.

� Media - Apps that deliver non-auditory media, allow for the playback of auditory

media in a non-musical way, including soundboards, ‘best songs’ for a genre, and so

on.

� Artist - Apps for promoting a particular artist, a group of artists, a festival, a record-

ing studio, and so on.

� Non-English - Apps with descriptive text not in English, and thus not reviewable in

this thesis.

� Educational - Apps for teaching an instrument, a theoretical concept, and so on.

� Tool - Apps for accomplishing music related tasks, including tuners, spectrum ana-

lyzers, and so on.

� Games - Apps for playing games about music or musicians

� Junk - Apps that have been mislabeled and are not music apps.

3 Musical iOS Applications: High-Level Review 38

� Remote - Apps for remote control of non-musical audio systems, such as home theatre

systems.

� Discovery - Apps for finding new music, new playlists, and so on.

� Christmas - Apps about Christmas.

� Print - Apps for a particular print magazine, or emulating a print magazine.

� Recorder - Apps for recording sound.

� Social - Apps for communicating about music on Twitter or other social media plat-

forms.

� Fitness - Apps for controlling music while working out.

� Fingerprint - Apps for fingerprinting audio.

Table 3.7: Number of Applications per Category, Non-Musical Applications

Rank Category Number of Apps

1 Radio 10057
2 Media 7416
3 Artist 7161
4 Non-English 2806
5 Educational 2052
6 Tool 1406
7 Games 905
8 Junk 354
9 Remote 334
10 Discovery 272
11 Christmas 268
12 Print 249
13 Social 220
14 Recorder 154
15 Fitness 50
16 Fingerprinter 20

3 Musical iOS Applications: High-Level Review 39

3.4 Mappings

Table 3.8 shows the total mappings, across all categories.

Table 3.8: Mappings for Musical Applications

Mapping Pitch Trigger Time Volume Timbre

Horizontal: Left-to-Right 2142 0 1559 138 141
Horizontal: Right-to-Left 11 0 0 128 0
Horizontal: Center-to-Edge 15 0 0 0 0
Vertical: Top-to-Bottom 35 0 152 0 0
Vertical: Bottom-to-Top 1307 0 0 1483 1358
Diagonal: Bottom-Left-to-Top-Right 38 0 0 0 0
Rotational: Clockwise 0 0 9 0 0
Circular 33 0 0 0 0
Radial: Edge-to-Center 33 0 0 0 0
Grid 43 0 0 0 0
Vertical Size 105 0 0 0 0
Overall Size 33 0 0 0 0
Colour 78 0 0 0 12
Symbolic / Text 69 0 33 33 33
Continuous 190 0 612 1630 1498
Discrete 3931 0 1042 33 33
Playback 0 1104 0 0 0
Toggle 8 272 0 9 1207
Touch 0 3096 0 24 25
Gesture 0 86 0 10 2
Shake / Swing 0 20 0 20 0
Known Layout 167 0 0 0 746
Microphone Input 0 282 0 36 0
Audio Input 0 194 0 0 0
Force 0 0 0 81 0
Physics 12 23 0 23 18

Most mapping definitions used are self-explanatory. In terms of those that are less clear,

a ‘Known Layout’ refers to an app that matches the visual layout of a real instrument, and

maps some parameter based on this in a way that does not fit into any other category.

For example, a drum application maps timbre based on a Known Layout - that of a drum

kit. ‘Force’ here means methods of determining how hard the user is tapping the device,

3 Musical iOS Applications: High-Level Review 40

often by polling the accelerometer or the microphone. A ‘Gesture’ indicates any motion

more complex than a touch, typically a dragging or circular movement. When applied

to the Volume parameter, this indicates that the speed of the gesture directly varies the

volume of the sound. Finally, vertical mappings refer to the gesture used, not the metaphor

presented: many apps present the user with rotary knobs which are actually controlled by

vertical motion. This chapter has used the mapping throughout, rather than the metaphor.

3.4.1 Pitch

Pitch is dominated by keyboard-like, left-to-right or bottom-to-top mappings. Discrete

pitches are likewise much more prevalent than continuous pitch. Some few apps increase

pitch from top to bottom (zithers, for example), and even fewer increase pitch from right

to left (trombones and pan pipes, in particular). Outside of these linear mappings, the

next most popular mapping for pitch is the ‘Known Layout’ of wind instruments, which is

usually abstracted to a set of 3-6 buttons that additively modify the pitch: pressing two

buttons together gives a new pitch, rather than two pitches.

Mappings of pitch to colour are not uncommon, but a single dominant mapping of colour

to pitch was not found. Likewise, mappings of pitch to size exist, but are always secondary

to some other mapping (horizontal in the case of xylophones, and circular in the case of

steelpans). Symbolic and text mappings are entirely based on various Western systems,

including the sharps / flats of traditional staff notation, and various representations of

chords (e.g. V6, Dm7).

3.4.2 Trigger

Unsurprisingly, given that the primary interaction method on iOS devices is a touchscreen,

mapping one touch to one sonic event is by far the most popular method for triggering

sounds. Toggles are also popular, along with events or states that are often controlled by

toggles, such as the playback of a sequencer or audio input from another device. Gestural

mappings are not common, and mostly use simple movements: a circular motion to trigger

a drum roll instead of a single drum hit, for instance. Making use of the device’s other

sensors, via a swing or a shake of the device, is not common. No applications were found

that triggered sounds via a gesture made by moving the device itself - such mappings may,

however, exist in one of the unexamined Novel apps.

3 Musical iOS Applications: High-Level Review 41

3.4.3 Time

Time moves from left to right, and from top to bottom. Discrete time is slightly more

prevalent than continuous time. Some very few apps map time rotationally, clockwise.

Even in Notation apps, where time & rhythm are represented symbolically, the flow of time

is from left to right.

3.4.4 Volume

Volume is dominated by vertical mappings, usually presented continuously. Some apps

make use of force-based or shake / swing methods for determining volume. These, along

with wind instrument apps that base volume on the input from the microphone, are the

closest to ‘real’ acoustic instruments. An even smaller but more interesting mapping is

that of touch / gesture to volume. For instance, some Gamelan apps allow for virtual bars

to be muted by touching them in particular locations, and some Singing Bowl and Water

Glass apps play louder sounds based on the speed of the triggering circular gesture.

3.4.5 Timbre

Like volume, timbre is mostly controlled vertically and continuously. Many apps use toggles

to change between preset timbres (in piano apps, for instance), and many use Known

Layouts to control the timbre of the sound played - drum kits are a prime example of this.

Other timbral controls are much more rare. Surprisingly, colour is only used rarely for

timbral control. However, like Volume, a very small number of apps use additional touches

to control timbre. To continue the Gamelan example, some apps also allow for a muted

timbre to be played if a virtual bar is touched before triggering it.

3.4.6 Summary

From Table 3.8 and the above paragraphs, it is clear that most apps use typical mappings:

pitch from left to right, sounds triggered by touch, and volume / timbre controlled by

vertical faders. Most of these mappings do not take advantage of sensors outside of simple

touch and location. Complex gestures, microphone input, and shaking/swinging the device

are used to control parameters from pitch to volume to timbre for a small number of

applications, but are in general ignored. Likewise, most apps separate the control of each

3 Musical iOS Applications: High-Level Review 42

parameter, mapping them to different controls and in different ways. Integral mappings

are almost entirely ignored. The 481 apps in the Novel category have not been examined,

however. They would almost certainly contribute to making Table 3.8 more varied.

3.5 Dataset

In order to further research around iOS music apps, the dataset and the Python scripts

used to examine the dataset are publicly available The dataset (consisting of the name,

URL, and descriptive text for each app) is provided, classified and unclassified, in order to

allow for a wide variety of machine learning approaches and / or brute-force approaches.

The complete collection of data and code can be found at idmil.org/projects/ios mappings.

3.6 Conclusion

This chapter has provided a high-level review of all music apps on the iOS app store as of

January 2014. This builds upon the prior chapter which provided an in-depth look at the

most popular iOS music apps. This section has also provided the raw text data, classified

and unclassified, for future research around text-based machine learning, app classification

and more.

In the review itself, many new iOS instruments were discovered, representing extant

acoustic instruments from bagpipes to zithers. A smaller number of new, purely electronic

instrument categories, including loopers, chord sequencers, and bouncing-ball apps, were

also discovered. The review also provided a high-level overview of mappings for each of

these categories. This data can be used to understand how musical parameters are mapped

on touchscreen devices, and thus influence how new musical applications are designed.

To be specific, the dominance of simple mappings is clear: pitch generally moving

horizontally and discretely, volume and timbre moving vertically and continuously, and

time moving from left to right. Although many applications make use of more complex

mappings and more complex inputs, they are in a minority. This is a potentially rich area

for innovation: one can easily imagine apps that use the microphone, accelerometer, and

gyroscopes of iOS devices in new and interesting ways. Likewise, integral mappings for

timbre and volume or non-traditional representations of pitch and time could both lead to

interesting and innovative apps for making music.

3 Musical iOS Applications: High-Level Review 43

Further work after such a high-level review is legion. A detailed examination of the

Media, Educational, and Tool categories should be done, and would no doubt reveal sundry

new ways to map musical parameters in tuning apps, how-to-play apps, and so on. Indeed,

a deep dive into each of the main categories described above could provided further detail

about how each category maps parameters. Likewise, the 481 Novel applications should be

examined in detail, in the style of the previous chapter.

Touchscreen devices, and iOS in particular, are here to stay, and the ability of these

platforms to create music at all levels of sophistication is only going to grow. Music ap-

plications, however, are not the only source of two-dimensional mappings of music. The

next chapter examines music notation in general and the contemporary graphic score in

particular, with an focus on how musical parameters are represented, layed out, and pa-

rameterized.

44

Chapter 4

Contemporary Graphic Scores:

In-Depth Review

4.1 Introduction

The graphic score is an under-represented resource with regards to mapping. Although au-

thors have collected examples of interesting graphic scores (Cage & Knowles’Notations [23])

and discussed notation as a practice in exacting detail (Read’s Music Notation [24]), none

of them have approached the material from an interaction design or music technology per-

spective.

This chapter will present a review of graphic scores viewed as mappings for musical

control systems. Sixteen scores are examined, as seen in Table 4.1, ranging from 1950 to the

present day, and including works by Morton Feldman, John Cage, and Anthony Braxton.

Highly improvisational scores such as Earle Brown’s December ’52 are also discussed. The

parameters under discussion are pitch, time/rhythm, volume, timbre, and articulation.

This chapter also provides a summary of the mappings used in traditional and twentieth

century music notation as a baseline.

These scores fit into two main categories. Some, such as Projection #1 and Drift, are

for performers to play, whereas others, such as Williams Mix and Solitude, are scores to be

realized by electronics, tape edits, or other means. These two classes, on the one hand, are

very different forms (some realization scores are only created after the original piece has

been performed), and often look very different.

2014/09/30

4 Contemporary Graphic Scores: In-Depth Review 45

Table 4.1: List of Composers and Scores

Composer Piece Year of Composition

Morton Feldman Projection #1 1950
John Cage Williams Mix 1953
John Cage 59 1/2 Seconds For A String Player 1953

Karlheinz Stockhausen Studie II 1954
Karlheinz Stockhausen Kontakte 1958

Gyorgy Ligeti Piece Electronique No. 3 1959
Christian Wolff For Pianist 1959
Sylvano Bussoti Siciliano 1962
James Tenney Beast 1971

Anthony Braxton Composition #76 1977
Wendy Reid Tree Piece #8 1985

Hans-Christoph Steiner Solitude 2001
Steven Roden Pavilion Scores 2005
Andrea Valle 16 Nodi 2006
Halim El-Dabh Canine Wisdom 2007
Douglas Wadle Drift 2010

On the other hand, as this chapter will show, both types of score use similar mapping

techniques. In addition to the analysis of each score, this chapter provides summaries of

mapping trends in graphic scores (pitch mapped vertically vs. pitch mapped horizontally,

for example), and list notable or important exceptions to these trends.

4.2 Traditional Notation

Calling the current system of notation used in western classical music ‘traditional’ is, of

course, a misnomer. Western notation has been evolving since before the first neumes were

written down for sacred chants in the ninth and tenth centuries. Indeed, it would take

until the twelfth century for Guido of Arezzo to systemize a four-line staff, and until the

seventeenth century for a five-line staff with modern noteheads to become standard [24].

The five-line staff notation has sustained itself for several hundred years, however, and

has remained the dominant notational paradigm, despite the drastically new world of twen-

tieth century music. This section discusses how this vitally important paradigm maps pitch,

time / rhythm, volume, articulation, and timbre.

4 Contemporary Graphic Scores: In-Depth Review 46

Fig. 4.1: A trivial example of traditional music notation, by the author.

4.2.1 Pitch

Pitch is delineated vertically: each line and space of the staff represents a note: G, A, B,

C, D, E, F, G, A in the bass clef; and E, F, G, A, B, C, D, E, F in the treble. Interestingly,

access to sharps and flats is done by adding symbols in front of the note in question [24].

Thus, taking key signature into account, notes are only mapped vertically within a diatonic

scale: a chromatic scale, or any chromatic additions to a diatonic scale requires the addition

of a symbolic mapping.

4.2.2 Rhythm & Time

Rhythm is delineated horizontally, but does not move at a steady rate. Instead, the style of

each notehead indicates the duration of each note in time, and thus the rate of the passage

of time. To generalize, the more ink used on the notehead, the shorter the duration: a filled

notehead with a stem and many flags happens very fast, whereas an unfilled notehead lasts

very long. (A more complimentary comparison may be that the more detailed the note,

the more detailed the rhythm and the timespan). Additionally, tuplets subdivisions are

indicated with Arabic numerals on top or below groups of notes [24]. Thus, even though

time moves from left to right, it is represented in an entirely symbolic manner.

4 Contemporary Graphic Scores: In-Depth Review 47

4.2.3 Volume

Volume is notated by text or abbreviated text: p, f, sfz, crescendo, decrescendo, and hairpin

symbols indicated short, exact crescendi and decrescendi [24]. Although the abbreviations

are textual or symbolic (ppppp, for example, has no real translation), the hairpin symbols

suggest a size-based mapping of volume: wider is louder, thinner is softer.

4.2.4 Timbre

Timbre is a notorious problem in western music. While contemporary music has various

and myriad extended techniques, traditional notation must rest largely on text descriptions:

‘darkly’,‘brightly’. These descriptions invariably include parameters that are not timbral,

and thus are very difficult to pin down.

4.2.5 Articulation

Articulations, such as stacatto, tenuto, marcato, and so on, are indicated by symbols placed

above or below noteheads. These symbols are suggestive of the desired envelope: stacatto

is indicated by a dot, the smallest possible sign, whereas the drawn-out tenuto is a line,

and marcato is a triangle pointing towards the notehead [24]. Despite this connection,

these and other articulations are symbolic representations, not an x/y representation of

the envelope.

4.2.6 Summary

Traditional notation offers clear directionality only for pitch, which it maps vertically. All

other parameters are mapped symbolically, though time does proceed from left to right and

from top to bottom. Articulation, volume, and timbre are notated via symbolic or textual

means.

4.3 Twentieth Century Notation

Over the course of the last century, music has changed dramatically, from the rhythmic

innovations of Stravinsky and the atonal works of Schönberg, through the electronic works

of Cage and Henry, and to the contemporary spectral works of Murail. The notation for

4 Contemporary Graphic Scores: In-Depth Review 48

this music has remained, with the exception of graphic scores, remarkably similar to that

of previous centuries. This section will enumerate some of the changes and additions, and

classify the mapping strategies used by them.

Fig. 4.2: A trivial example of twentieth century music notation, by the author.

4.3.1 Pitch

A key aspect of pitch notation in the twentieth century is the concern with finer gradations

of pitch than traditional staff notation can easily deal with. An example of this is the various

notation symbols used for microtonality. Quarter tones and sixth tones are represented by

variations on traditional sharp, flat, and natural signs [24].

Other commonly used symbolic notations includes arrows indicating highest-possible or

lowest-possible pitch. Similarly inexact vertical representations of pitch include describing

heavy vibrato, or entire melodic lines with curved lines drawn over the staff [25].

Finally, cluster notation replaced literal clusters of noteheads with heavy black lines in-

dicating the pitches to be played. This is an exact, vertical mapping of pitch, like traditional

staff notation, simply using a single line rather than multiple noteheads [25].

4.3.2 Rhythm & Time

Many aspects of rhythmic notation in the twentieth century are simply the extrapolation of

traditional notation to its logical extreme: 128th-note rhythms, constantly changing time

signatures, and nested tuplets, to name a few.

An important change in the notation of time and rhythm, however, was actually a

simplification. Proportional notation replaces the symbolic horizontal motion of time with

an exact mapping of horizontal space to time passed. Each bar thus takes up the same

4 Contemporary Graphic Scores: In-Depth Review 49

amount of space on the page, regardless of the notes contained within [25]. A variation on

this is a method used by Earle Brown: extending each notehead horizontally to indicate

how long to hold the note [24].

Other twentieth century temporal innovations include fermatas of varying length - the

size of the symbol relates to its length, but the shape of the fermata varies well. Vertical

arrows are also used for ritardandos and accelerandos, though the vertical axis is clearly

still used for pitch. Another potential vertical mapping is that of feathering beams: slowly

moving from one beam to many, on a diagonal. Although the vertical height increases with

speed, this is simply a by-product of beaming conventions, and not a mapping of rhythm

to a vertical axis [25].

Lastly, many twentieth century scores, Stravinsky’s among them, begin to replace bars

of rest with white space, erasing the staff entirely when an instrument is not playing. This

furthers the idea that the amount of detail / ink directly relates to the speed and complexity

of the music: pure silence is notated by no ink at all [24].

4.3.3 Volume

As with pitch and rhythm, dynamics in the twentieth century are concerned with extreme

ranges and extreme detail. On the detail side of things, scores have been written with exact

decibel markings, as well as with ‘+’ or ‘-’ signs beside traditional p or f markings. These

symbolic / textual mappings are similar in method to traditional notation. The twentieth

century also features many, many ppppp and fffff markings, though these extreme ranges

were pioneered in the late 19th century [25].

More interestingly, a trend of mapping the size of the notehead to the volume becomes

apparent in the middle of the century, across works by Berio, Browne, and Stockhausen [24].

In these cases, the stem and flag are removed from the notehead, and the size of the ellipse

or circle is used to determine volume. These are not exact notations: a 5 mm circle does

not equal mezzopiano, but two different 5 mm circles should represent the same volume

during a performance of the piece.

4.3.4 Timbre

The majority of timbral indications are symbolic, and are applied either to the notehead or

to the stem of the note. While the symbols attached to the stem are essentially arbitrary,

4 Contemporary Graphic Scores: In-Depth Review 50

the modification of the notehead has some overall level of consistency to it. Specifically, as

the notehead moves away from being circular, the timbre produced moves away from pure

pitch and towards noise [25]. Some examples include the removal of noteheads to indicate

sprechstimme, ‘X’ noteheads in percussion scores, triangle noteheads to indicate more air

and less pitch in flute scores and so on [24]. This is clearly a high level view, rather than an

exact mapping, but it suggests a relation between the ’perfection’ of the circular notehead

and the ‘imperfect’ triangular or square notehead.

4.3.5 Articulation

Assorted articulations and techniques of the twentieth century are too varied to list here -

string techniques alone could fill a document ten times this size. However, as in traditional

notation, articulations are indicated by a series of symbols and text abbreviations, with no

strong trends to speak of [24].

4.3.6 Summary

Notation in the twentieth century has moved much less dramatically than the music that it

notates. Despite many attempts at reworking the notation system entirely, the traditional

staff-and-note model, and the mappings associated with it, have mostly remained the same.

Even innovations like cluster notation and microtonal accidentals maintain the same map-

pings. Key differences, however, include note size notation for dynamics and proportional

notation for time and rhythm. These represent new mappings, rather than variations on

old themes - only time will tell if they will become part of the ever-evolving “standard”

world of music notation.

4.4 Graphic Score Review

This section will examine the sixteen scores listed at the start of the chapter. Each composer

and score is briefly introduced, and the score is analyzed in terms of how it notates and

maps pitch, time/rhythm, volume, timbre, and articulation.

It will be noted that tablature-style scores, such as Lachenmann’s Gran Torso and

Aaron Cassiday’s Second String Quartet have not been included. These scores are wonderful

examples of the detail and precision of contemporary music, but their notation is of the

4 Contemporary Graphic Scores: In-Depth Review 51

performer’s actions, rather than of the music that the performer is to produce. As such,

they are not pertinent to the discussion at hand.

Indeed, the lack of exactness in graphic notation needs to be discussed. The twentieth

century also brought a trend for less and less control of performers. Nowhere is this more

evident than in Earle Brown’s December ’52.

Fig. 4.3: The score for December ’52, by Earle Brown. Used by permission of the Earle
Brown Foundation, � 2006 Associated Music Publishers

December ’52 (Figure 4.3) is a landmark piece for both contemporary music and graphic

scores. It lacks almost any prescription by the composer for how the stark geometric figures

are to be interpreted.

In the score [26], Brown states that line thickness “indicates the relative intensity and/or

(where applicable instrumentally) cluster”. No other prescriptions are given. When David

Tudor later performed the piece, he worked out the exact pitches of each rectangle, accord-

ing to a mapping of his own devising. Brown mentions, in a speech about December ’52

in 1970, that when he conducted the piece at Darmstadt in 1964, he defined the vertical

height of the page as the entire range of each performer’s instrument, and defined time as

4 Contemporary Graphic Scores: In-Depth Review 52

moving from left to right...but adds that “continuity can be from any point to any other

point”. Line thickness again represented intensity. [27]

As the majority of mappings of December ’52 are mutable with the performance, it is

not germane to the topic at hand. Rather, it is included here for the sake of historical

completeness, and the recognition that many graphic scores are made to avoid the strict

mapping of parameters.

Other such scores include John Cage’s Cartridge Music, Cornelius Cardew’s Treatise,

Will Redman’s Book, Joe Pignato’s Paprika King, Anthony Braxton’s Composition #108B,

and many others [28] [29] [30]. Treatise (Figure 4.4) in particular is interesting, as Cardew,

while eschewing any parameterization himself, exhorted the performer to work out their

own self-consistent system, and perform the piece strictly to that system, rather than

performing a totally free improvisation [31].

Although the above scores do not relate to the topic of this thesis, their influence cannot

be overstated. Many of the below scores include inexactness in their graphic notation, and

many of them ignore some parameters entirely.

Fig. 4.4: A sketch for Treatise. Reprinted in Cage 1969 [23]

4 Contemporary Graphic Scores: In-Depth Review 53

4.4.1 Morton Feldman - Projection #1

Fig. 4.5: An excerpt from Projection #1, by Morton Feldman (New York: C.F Peters
Corp, 1962).

Feldman’s Projection pieces, written in the 1950s, were some of the first experiments

with graphic scores in contemporary composition. Feldman wrote the first of them, Pro-

jection #1 (Figure 4.5), for solo ’cello, in 1950, at John Cage’s apartment.

Pitch: Exact pitch is left to the performer, but relative pitch is indicated by the vertical

position of the square in each box.

Time: Time moves proportionally from left to right. Each box is specified as being “po-

tentially” four pulses at a tempo of “72 or thereabouts”. Empty space in each box is

silent.

Volume: Not specified by the notation.

Timbre: Each row of boxes indicates a different timbral technique: the top is harmonics,

the middle, pizzicato, and the bottom, arco. This is both a symbolic mapping and a

vertical one: the timbre moves away from a “pure” string tone, on the vertical axis.

Articulation: Not specified by the notation.

4 Contemporary Graphic Scores: In-Depth Review 54

4.4.2 John Cage - Williams Mix

Fig. 4.6: An part from Williams Mix, by John Cage. � 1953 by Henmar Press, Inc. Used
by permission of C.F. Peters Corporation. All rights reserved.

4 Contemporary Graphic Scores: In-Depth Review 55

Cage’s Williams Mix (Figure 4.6) is a short tape piece for eight tracks of tapes. Com-

pleted in 1953, the score is a pattern - it details where each tape should be spliced together.

The source material was organized into six categories, and then spliced according to chance

operations.

Pitch: Not specified by the notation. Although each section of each tape is detailed in the

score, the pitch of the sounds on them are not.

Time: Horizontal and proportional, as each part of the tape is displayed at full size in the

score.

Volume: Absolute volume is not specified, but the relative volume of each tape segment

is shown by the vertical size of the segment at any given moment.

Timbre: Not specified by the notation. Although each section of each tape is detailed in

the score, the nature of the sounds on them are not.

Articulation: Horizontal and proportional; as relative volume is defined by the total

vertical size of each tape part, the attack and decay are defined by the change in

vertical size over the horizontal axis.

4 Contemporary Graphic Scores: In-Depth Review 56

4.4.3 John Cage - 59 1/2 Seconds For A String Player

Fig. 4.7: An excerpt from 59 1/2 Seconds For A String Player, by John Cage (New York:
Henmar Press, 1960). Reprinted in Karkoschka 1972 [29]

One of Cage’s earlier chance works, 59 1/2 Seconds (Figure 4.7) was written in 1953. It

was followed by 34’46.776” For a Pianist, which was also composed using chance operations.

Pitch: Each of the four rows represents a string, with the small row under each indicat-

ing “other noises”. Pitches are given as a gamut across one or more strings, with

some relative pitch-lines also being indicated. Pitch is thus mapped vertically and

proportionally, with “other noises” being treated below pitch.

Time: Horizontal, from left to right, proportional, but with traditional numeric tempo

markings - the proportionality thus changes throughout the piece.

Volume: Not specified by the notation.

Timbre: Symbolic, with various letters indicating where on the instrument the performer

is to play, and vertical, with a line indicating the amount of bow pressure.

Articulation: Indicated with traditional up/down bow symbols.

4 Contemporary Graphic Scores: In-Depth Review 57

4.4.4 Karlheinz Stockhausen - Studie II

Fig. 4.8: An excerpt from Studie II, by Karlheinz Stockhausen (London: Universal Edition,
1956). Reprinted in Karkoschka 1972 [29]

Studie II (Figure 4.8) was realized by Stockhausen in 1954, in the West Germany Radio

Electronic Music Studio in Cologne. It was one of two studies in using only pure sine waves

as the compositional material - what would now be called additive synthesis.

Pitch: Vertical, but in proportional frequency rather than pitch. Each rectangle on the

upper system represents the given range of frequency.

Time: Horizontal and proportional, with added numerals. The middle system displays

exact timings for each rectangle on the upper system.

Volume: Vertical also, on the lower system. Each envelope maps directly to a pitch-

rectangle on the upper system.

Timbre: Timbre is here entirely created by the layering of sine tones, and timbral density

can roughly be mapped to saturation: darker sections on the upper system, caused

by overlapping rectangles, will be more timbrally dense.

Articulation: Horizontal, and concomitant with the representation of volume. The map-

ping of volume to the vertical dimension allows the proportional, horizontal dimension

to show how the volume envelope changes with time.

4 Contemporary Graphic Scores: In-Depth Review 58

4.4.5 Gyorgy Ligeti - Piece Electronique No. 3

Fig. 4.9: An excerpt from Piece Electronique No. 3, by Gyorgy Ligeti (Berlin: Ahn &
Simrock, 1959). Reprinted in Karkoschka 1972 [29]

4 Contemporary Graphic Scores: In-Depth Review 59

Composed by Ligeti while at the West Germany Radio Electronic Music Studio in

Cologne, Piece Electronique (Figure 4.9) was originally titled “Atmospheres”, and was not

technically possible with the equipment available. Kees Tazelaar and Johan van Kreij

finally realized it in 1996 - long after Ligeti’s 1961 Atmospheres, for traditional orchestra,

had been completed. The work is for 4-track tape, two tracks of which are shown here.

Pitch: Vertical and proportional: the frequency numbers are visible on the left side of the

score.

Time: Proportional and horizotnal, from left to right: one millimeter of the original score

was equal to two centimeters of tape.

Volume: Not specified by the notation.

Timbre: Timbre is not specified by the notation, but it is implicity defined by stacking sine

waves, thus suggesting a vertical mapping. Some effects are also written in (“Echo”,

for example).

Articulation: In contrast to Stockhausen’s Studie II, the envelopes for each wave are not

specified by the notation.

4 Contemporary Graphic Scores: In-Depth Review 60

4.4.6 Karlheinz Stockhausen - Kontakte

Fig. 4.10: An excerpt from Kontakte, by Karlheinz Stockhausen (London: Universal
Edition, 1966). Reprinted in Karkoschka 1972 [29]

4 Contemporary Graphic Scores: In-Depth Review 61

Stockhausen’s Kontakte (Figure 4.10) is one of the early masterpieces of academic elec-

tronic music. It was created at the West Germany Radio Electronic Music Studio in Cologne

between 1958 and 1960. Two versions of Kontakte exist. One is a tape piece purely for elec-

tronic sounds and the other adds piano and percussion to the tape part. This review uses

the score for the piano / percussion version. The score is in two parts: the electronic score

runs along the top of the page, with the piano and percussion parts below it in traditional

notation.

Pitch: Pitch is mapped vertically and proportionally on the electronic score, and is inte-

grated with timbre: due to the small size of the electronic score, pitch is not exact.

The lines thus represent the approxmiate pitch and the approximate timbral charac-

ter.

Time: Horizontal, proportional, with lengths in seconds. Stockhausen also adds the tape

lengths (38.1 cm / 15” per second), though these are as an aid to rehearsal.

Volume: Traditional abbreviations, vertical size, and decibal numbers. Panning is in-

dicated by treating each speaker as its own subsystem (numbered I to IV) of the

electronic part. Panning can thus also be mapped to the vertical axis, with added.

text descriptors, such as “Alternierend”.

Timbre: As with pitch, timbre is inexactly notated on the electronic score. Stockhausen’s

figures attempt to show the approximate spectral envelope of the electronic part in

time.

Articulation: As in Studie II, the horizontal axis of the electronic score shows the envelope

of each sound.

4 Contemporary Graphic Scores: In-Depth Review 62

4.4.7 Christian Wolff - For Pianist

Fig. 4.11: An excerpt from For Pianist, by Christian Wolff. (New York: C.F Peters Corp,
1965)

4 Contemporary Graphic Scores: In-Depth Review 63

Christian Wolff is an American composer, and is associated with Cage, Feldman, and

the New York experimental scene of the 1950s and 1960s. Born in 1934 in France, he

is largely self-taught. He was a professor at Dartmouth from 1971 to 1999. For Pianist

(Figure 4.11) is a strictly organized improvisation, written in 1959.

Pitch: Wolff uses two systems to describe pitch. In each box, after the duration and the

number of events, there is a letter. This letter indicates which of several gamuts of

notes, defined in traditional notation in the preface, are to be used by the performer.

This is a symbolic and vertical mapping. Wolff also uses minor variations on tradi-

tional 8va notation to move the notes up or down, and to vary them by semitones.

The second system of pitch notation refers to the location of the performer’s hands

on the piano. Circles indicate when notes should be played, the vertical axis indicates

broad, proportional pitch, and the horizontal axis indicates moving inside the piano.

Thus, this quasi-tablature notation also makes strong suggestions of timbre, as the

performer’s hands tap the body of the piano and strike the strings inside the piano.

Time: Each box / bounded area includes a number of seconds in which the events within

it are to be performed, and a number indicating the number of events (though the

rhythm within each box is left to the performer). They are roughly proportional,

but by no means exactly so. Wolff also specifies that if multiple systems need to

be played at once, time may be frozen at “tempo 0” in order to perform them all.

More interestingly, many paths through the score are defined by waiting for musical

events to occur: “when inaudible”, or “when starts to produce harmonics”. More

interestingly still, other paths are defined by the performer’s actions themselves. For

example, an instruction to play a sound “as soft as possible” is given. If the performer

makes the sound inaudible, she follows it with system A. If she plays it as desired,

system B. If the sound is louder than as soft as possible, she moves to system C. In

terms of mapping, this overrides the usual left-to-right nature of time!

Volume: The piece is generally “Free unless specified”, with occasional traditional abbre-

viations.

Timbre: Traditional abbreviations / symbols, and horizontal/tablature notation.

Articulation: Traditional abbreviations / symbols, and horizontal/tablature notation.

4 Contemporary Graphic Scores: In-Depth Review 64

4.4.8 Sylvano Bussotti - Siciliano

Fig. 4.12: An excerpt from Siciliano, Sylvano Bussotti (Florence: Aldo Bruzzichelli, 1962).
Reprinted in Karkoschka 1972 [29]

4 Contemporary Graphic Scores: In-Depth Review 65

Bussotti is an Italian avant-garde composer, painter, and graphic artist. Born in 1931,

and influenced by Cage and Webern, he was a contemporary of Luciano Berio and studied

with Lugi Dallapiccola at the Florence Conservatory. He taught at Fiesole in the 1980s,

and has also been a director, actor, and singer. Siciliano (Figure 4.12), written in 1962, is

indicative of his fusion of graphic and traditional notation.

Pitch: Traditional, vertical symbolic notation - except that the staves themselves are an-

gled. Pitch is always ‘vertical’, relative to the angle of the staff.

Time: The score as a whole runs from left to right, with dotted vertical lines indicating

points of synchronization. However, the angle of each staff indicates the rate of accel-

eration of the material on each staff. Tempo and rhythm are thus mapped vertically,

even though time is horizontal: angles above 0 radians are accelerating, while an-

gles below are deccelerating. Each staff also contains music written in traditional,

symbolic rhythmic notation.

Volume: Traditional abbreviations.

Timbre: Traditional symbolic notation.

Articulation: Traditional symbolic notation.

4 Contemporary Graphic Scores: In-Depth Review 66

4.4.9 James Tenney - Beast

Fig. 4.13: The score for Beast from POSTAL PIECES, by James Tenney. Copyright Sonic
Art Editions, 1984. Used by permission of Smith Publications, 54 Lent Road, Sharon,
Vermont 05065. Reprinted in Sauer 2009 [28]

Beast (Figure 4.13) is a work for solo string bass, written by Tenney in 1971. It was

dedicated to Buell Neidlinger. One of his Postal Pieces, the entire work fits on a single

postcard.

Pitch/ Timbre: The piece is one long double stop on the string bass. The vertical line

indicates the number of beats per second produced by the two strings sounding to-

gether. On the one hand, this clearly requires changing the pitch of one of the strings

(Tenney specifies the lower string). On the other hand, as the beat frequency in-

creases to a high point of 15, the beats become a timbral characteristic. Thus, both

pitch and timbre can be said to be mapped vertically and proportionally. Specifically,

timbral ‘roughness’ increases vertically.

Time: Time is mapped from left to right, in proportional chunks of twenty seconds each.

The piece runs for a total of seven minutes.

Volume: Not specified by the notation. The text indicates that the piece should be “very

resonant, thought not necessarily loud”.

Articulation: Not detailed in the notation - Tenney’s text say that the sound should be

“continuous”, suggesting a single attack over the entire piece.

4 Contemporary Graphic Scores: In-Depth Review 67

4.4.10 Anthony Braxton - Composition #76

Fig. 4.14: An excerpt from Composition #76, by Anthony Braxton. Reprinted in Lock
2008 [30]

4 Contemporary Graphic Scores: In-Depth Review 68

Anthony Braxton is a legendary post-everything composer - enumerating his various

compositional trends and practices would take more pages than this thesis has. An Amer-

ican, Braxton recently retired from teaching at Wesleyan. He studied philosophy at Roo-

sevelt University. Compostion #76 (Figure 4.14), an “extended structure for three multi-

instrumentalists” [32] was written in 1977, when Braxton was exploring colour and cultural

dynamics - each colour is associated with an astrological sign, and music assigned to a given

colour is to be played in that character.

Pitch: Traditional vertical, symbolic notation, with some indeterminate, clef-less vertical

notation.

Time: Traditional left-to-right, symbolic notation, but with considerable freedom.

Volume: Traditional notation + colour notation - the more intense each colour, the louder

it is played.

Timbre: Colour. Braxton maps colours on to various astrological signs and their respective

cultural qualities: “Taurus, for example, is linked with green, and with feelings of calm

and restraint”. This is one of few colour mappings that attempts to be culturally

general.

Articulation: Traditional symbolic notation, with added influence from the colour nota-

tion.

4 Contemporary Graphic Scores: In-Depth Review 69

4.4.11 Wendy Reid - Tree Piece #8

Fig. 4.15: The score for Tree Piece # 8, by Wendy Reid. Reprinted in Sauer 2009 [28]

4 Contemporary Graphic Scores: In-Depth Review 70

Wendy Reid’s Tree Pieces (Figure 4.15) are a continuing set of works “that attempt to

reflect nature’s manner of operations”. An American, Reid herself studied at Mills, USC,

and CCRMA at Stanford, and now teaches at Mills. Her teaches include Terry Riley and

Robert Ashley.

Pitch: Not specified by the notation.

Time: The piece uses traditional symbolic noteheads, with time moving from left to right.

The score, however, is read from bottom to top, rather than from top to bottom.

Volume: Not specified by the notation.

Timbre: By colour, with one colour for each instrument. There is, however, no strong

mapping of hue to instrument (red being lower instruments, blue being higher, etc).

Articulation: Traditional symbols.

4 Contemporary Graphic Scores: In-Depth Review 71

4.4.12 Hans-Christoph Steiner - Solitude

Fig. 4.16: An excerpt from Solitude, by Hans-Christoph Steiner. Reprinted in Sauer
2009 [28]

4 Contemporary Graphic Scores: In-Depth Review 72

The German Hans-Christoph Steiner is a composer, programmer, and teacher, who

studied at NYU. Steiner is self-taught in composition, and is currently based in New York

City. His Solitude (Figure 4.16) was created entirely with Pure Data1, the free and open

source patching language. The patch follows the score, which was also created in Pure

Data.

Like Studie II, there are two systems in the score. Each instance of a sound has a bright

polygon, and then a darker polygon below it. The upper, bright polygon controls how the

patch moves through the sound, whereas the lower polygon controls the amplitude and

panning of the sound.

Pitch: Not specified by the notation. While many sounds have a pitch, their pitch is not

notated.

Time: Time moves from left to right, proportionally.

Volume: Size. The height of the lower polygon, at any point in time, represents the

volume of the sample at that point. This is not a mapping of vertical height, as

stereo panning is mapped to the vertical centerpoint of the polygon. Rather, the

vertical breadth of the polygon is indicative of the volume.

Timbre: Each color of the score represents a different sound, but there is no strong corre-

lation between the timbre of each sound and a representation of color space. Rather,

each shape controls the timbre: motion through each sound is controlled vertically,

in a granular fashion. To quote Steiner: “The lowest point of the sample array is the

beginning of the sample, the highest is the end, and the height of the array is how

much and what part of the sample to play starting at that point in time”. One can

picture each sound, as originally recorded, as a diagonal line from lower-left to to top

right.

Articulation: Like Stockhausen’s Studie II, the horizontal mapping of the envelope of

each sound is part and parcel of the volume mapping.

1http://puredata.info/

4 Contemporary Graphic Scores: In-Depth Review 73

4.4.13 Steve Roden - Pavilion Scores

Fig. 4.17: A part from Pavillion Scores, by Steve Roden. Used by permission of Steve
Roden, � 2005. Reprinted in Sauer 2009 [28]

4 Contemporary Graphic Scores: In-Depth Review 74

Steven Roden is an American sound and visual artist who lives in Pasadena. He has

taughed at many California institutions, including UCLA and UC Santa Cruz. He studied

at the Art Center College of Design and the Otis College of Art & Design. Pavillion Scores

(Figure 4.17) are part of a larger sonic work for the Serpentine Gallery2, which included field

recordings, found objects, contact mics, and glockenspiel performances by non-musicians.

These scores, based on the structure of the building itself, were used by the glockenspiel

players. Exact timing and repetition are up to the performer.

Pitch: Colour, matching the frequency of light. A low C is red, up to purple being a B,

and a pale pink being a high C. This also suggests a brightness mapping: a pale

orange could, in theory, be a high D, and so on.

Time: Generally left to right, but some score may also be played from top to bottom.

Rosen also defines some squares of color as a single note and some as two note

clusters. Time is thus mostly proportional, but occasionally symbolic.

Volume: Not specified by the notation.

Timbre: Not specified by the notation.

Articulation: Not specified by the notation.

2http://www.serpentinegalleries.org/

4 Contemporary Graphic Scores: In-Depth Review 75

4.4.14 Andrea Valle - 16 Nodi

Fig. 4.18: An excerpt from 16 Nodi, by Andrea Valle. Reprinted in Sauer 2009 [28]

4 Contemporary Graphic Scores: In-Depth Review 76

An Italian, Andrea Valle is a researcher and musician at the University of Turin, and

has studied composition with Azio Corghi. 16 Nodi (Figure 4.18) was written in 2005/2006,

and is for any (limited, as defined by the performer) set of sound objects.

The performer begins by selecting a node at the edge of the graph, and then moves to

subsequent nodes. The performer may define their own plan for ending the piece, or stop

when a dead end is reached.

Pitch: Pitch is defined by the Site, Calibre, and Variation parameters, all of which increase

proportionally from left to right. Site indicates the register of the sound. Calibre

indicates the bandwith of the sound - a sinewave has the lowest possible calibre and

white noise the highest. Variation indicates how much these two parameters can be

changed in any given node.

Time: Time moves omnidirectionally: the score is a directed graph, and the performer

moves from node to node. Time spent on each node is described relative to a met-

rical pulse, in text, in both fractional and decimal values. It is interesting to note

that the colour of the arrows changes with the direction and directionality of each

arrow. Rhythm within each node is controlled by the Sustain (Su) and Profile (P)

parameters. The Sustain parameter is defined symbolically: a long line indicates

“energy is supplied continuously”, a set of thin lines indicates “iterative” energy, and

a single, short line indicates “impulsive”. The Profile parameter defines “the way

sound evolves in time”, on a continuum between sounds that are pure impulses, on

the left, and sounds that are infinite, on the right. This is thus a left-to-right mapping

of both rhythmic length and articulative character.

Volume: Defined by the Dynamic parameter, increasing from left to right.

Timbre: Not specified by the notation.

Articulation: The Profile parameter defines “the way sound evolves in time”, on a contin-

uum between sounds that are pure impulses, on the left, and sounds that are infinite,

on the right. This covers both local and medium-term articulation.

4 Contemporary Graphic Scores: In-Depth Review 77

4.4.15 Halim El-Dabh - Canine Wisdom

Fig. 4.19: The score for Canine Wisdom, by Halim El-Dabh. Used by permission of Halim
El-Dabh Music LLC. Copyright by Halim El-Dabh Music LLC. May not be reproduced in
any manner. Reprinted in Sauer 2009 [28]

4 Contemporary Graphic Scores: In-Depth Review 78

Halim El-Dabh is an Egyptian-American composer and piano player, who is currently

a professor emeritus at Kent State University. Born in 1921, El-Dabh studied with John

Robb and Ernst Krenek at the University of New Mexico, among many others. Canine

Wisdom (Figure 4.19) is a structured, meditative improvisation for baritone saxophone,

violin, oud, double bass, piano, percussion, and vocals. It is a movement of the larger

work, The Dog Done Gone Deaf, which was written for the Suoni per il Popolo festival in

Montreal, Quebec, in 2007.

Pitch: Pitch is the only clearly defined parameter. In the top-left of the score, a piano

keyboard of coloured circles is shown, with the piano keyboard displayed vertically.

C is a bright orange, C# is black, D is magenta, and so on up to B, which is a light

green. In the attached text in Notations 21, El-Dabh talks about his synesthesia and

about ancient Egyptian notation, which also used a mapping of colour to pitch. This

indicates that the colour, rather than the verticality of the ‘keys’ of the piano is the

important mapping. The score also indicates that each pitch-circle covers the entire

range of the instrument. However, the mapping of colour to pitched sound is not

linear through hue space.

Time: Time is not specifically defined in the score, which consists of columns and rows

of coloured circles. Given that El-Dabh displays the piano ’keys’ vertically, it is

reasonable to consider time moving horizontally and proportionally, and the stacks of

circles to suggest harmony, but this is not specified. Rhythm, although not specifically

detailed, is mapped to the size of each circle - a larger circle indicates a longer note

than a smaller circle. Both this and the colour mappings are the same as in ancient

Egyptian notation, which strongly inspired El-Dabh’s notational method.

Volume: Not specified by the notation.

Timbre: Not specified by the notation.

Articulation: Not specified by the notation.

4 Contemporary Graphic Scores: In-Depth Review 79

4.4.16 Douglas Wadle - Drift

Fig. 4.20: One of the parts from Drift, by Douglas Wadle. Used by permission of Douglas
Wadle, � 2010.

4 Contemporary Graphic Scores: In-Depth Review 80

Douglas Wadle is a Los Angeles based composer and trombonist, who has studied at

Cal Arts and UCLA. An American, his teachers include James Tenney and Marc Sabat.

Drift (Figure 4.20) is a partially improvised, microtonal piece for two tubas, written in

2010.

Each performer selects one of the lines, and then draws a horizontal line through it.

This line represents the pitch of the other performer. To quote Wadle:

“Attempt, via step-wise motion along the micro-interval scales provided below, to follow

the contour of your curve in relation to the sounding pitch of the other player, represented

by the horizontal line, even as it shifts”

Pitch: Pitch is mapped vertically and proportionally, from bottom to top, but not with

with any exact specification. Furthermore, the microtonality of the piece means that

the total ambit of pitch will be very small. Although compositionally interesting,

Wadle’s use of a horizontal line to represent the other performer’s pitch is not a

repudiation of the vertical mapping of pitch. Indeed, Wadle uses a traditional staff

to demonstrate the desired microtonality, again using a vertical mapping.

Time: Time moves proportionally from left to right on each page, though the total duration

of the piece is up to the performers, and the piece may loop if the performers run out

of material before the agreed-upon duration is reached.

Volume: Not specified by the notation.

Timbre: Not specified by the notation.

Articulation: Not specified by the notation.

4 Contemporary Graphic Scores: In-Depth Review 81

4.5 Results

4.5.1 Summary of Mappings

A summary of the mappings across all pieces can be see in Table 4.2. It is first worth

noting that many scores leave various parameters to the player’s discretion. Volume, for

example, is ignored by almost half of the scores. It also must be noted that some pieces

include multiple mappings for a given parameter: thus, the numbers in each column will

not add up to the sixteen scores reviewed.

Table 4.2: Mappings

Mapping Pitch Time Volume Timbre Articulation

Left to Right - Symbolic 1 4 1 1 2
Left to Right - Proportional 0 11 0 0 4
Omnidirectional 0 1 0 0 0
Bottom to Top - Symbolic 3 1 0 1 0
Bottom to Top - Proportional 7 1 1 6 0
Top to Bottom - Proportional 0 1 0 0 0
Colour - Cultural 0 0 0 1 0
Colour - Rainbow 1 0 0 0 0
Colour - Synesthetic 1 0 0 3 0
Saturation - Other 0 0 0 1 0
Symbolic 1 0 0 1 2
Text / Abbreviations 0 1 4 1 3
Vertical Size - Other 0 0 3 0 0
Circular Size - Other 0 1 0 0 0

With that said, the dominant paradigms of vertical pitch and horizontal time remain.

Many graphic scores move away from the symbolic nature of time and set time up in

a constant, proportional way. Likewise, many scores treat pitch as a pure, ungraduated

continuum, increasing from bottom to top. Furthermore, many scores, especially electronic

ones, treat timbre vertically, in some cases combining pitch/timbre into one display. Timbre

is also frequently described by colour or brightness, in keeping with the traditional idea of

“tone-color”

Volume remains generally mapped using traditional abbreviations, though many scores

also map volume to the vertical size of the graphical object in question. Finally, the graph-

4 Contemporary Graphic Scores: In-Depth Review 82

ical, horizontal display of articulations is also very common: a modern user of synthe-

sizers would recognize these descriptions of articulations as attack/decay/sustain/release

envelopes.

4.5.2 Mapping Outliers

Graphic scores, however, display a wide range of creative mappings outside of the above

trends. El-Dabh’s Canine Wisdom, for example, uses a mapping of colour to pitch that

is highly personal, as opposed to Roden’s rainbow mapping of colour to pitch. Colour,

in general, is used for pitch / timbre in differing ways between composers. Braxton’s

Composition #76 applies colour to articulation and timbre based on cultural ideas such

as green being “calm”. This mapping, like Roden’s rainbow of pitch, is probably more

generalizable than El-Dabh’s personal mapping. On the other, green is, in Western cultures,

also the colour of envy and of money. Care must be taken when using colour in order to

not point the user, performer, or listener in the wrong direction.

Colour is often used as a descriptor of timbre, whereas Stockhausen’s Studie II darkens

sections of overlapping sine waves, thus mapping darkness to timbral density. This is belied

by the typical use of “bright” and “dark” by audio engineers to indicate the frequency

content of a sound. Stockhausen’s mapping is, rather, closer to Tenney’s vertical mapping

of beat frequency in Beast. Both mappings place timbral roughness on a sonic contiuum,

as opposed to the typical performative continuum of, for example, Cage’s 59 1/2 Seconds.

Cage indicates what the performer should do, using a vertical mapping for bow pressure,

where Stockhausen and Tenney indicate what sound should occur.

Time is in general an unexciting parameter: it moves from left to right, usually propor-

tionally, and rhythm moves with it. Valle’s 16 Nodi, however, presents a omnidirectional

view of time: the performer moves through each node of the circuit-diagram-like score in all

directions, accordingly to the arrows leaving each node. This is reminiscent of Wolff’s For

Pianist. Although Wolff moves through time in a typical left-to-right manner, For Pianist

contains optional leaps between sections that often move “backwards” in time.

Other creative mappings in time include the vertical mappings of Roden and Reid, and

El-Dabh’s mapping of the size of each note to time. El-Dabh’s mapping would fit in well

with general trends if the notes were flat, as in Brown’s December ’52, but El-Dabh uses

circles. Thus, time takes on both a vertical and horizontal component, even as it moves

4 Contemporary Graphic Scores: In-Depth Review 83

from left to right.

Bussotti’s Siciliano also maps time in both directions. While absolute time moves from

left to right, with synchronous events marked by dashed vertical lines, the angle at which a

given system is displayed at changes the rate of acceleration while performing it. Bussotti’s

systems thus display a form of integral mapping: the vertical and horizontal aspects of each

bar of music are connected.

This connection is by no means a standard event: much of the work of the early elec-

tronic pioneers in particular was about the separation of and exact control over every

individual parameter of every sound. Steiner’s Solitude, on the other hand, is a modern,

electronic example of integrality. Each coloured shape represents a different sound, and the

score moves, horizontally, through each sound based on the vertical position of the shape

that represents each sound. Steiner’s score also exists as a Pure Data patch, in which the

user can change the shape of each patch of colour: this changes both the sound made, and

the position of the sound in time.

4.6 Conclusion

This chapter has presented a review of mapping methods in graphic scores, as well as

reviews of traditional and twentieth-century scoring techniques, and the mappings used by

them.

Traditional notation, broadly speaking, moves time from left to right (and from top to

bottom), in a symbolic manner. Pitch moves vertically, increasing from bottom to top.

All other parameters are dealt with using various symbols and text abbreviations. As

this notation moved into the twentieth century, time begins to move proportionally, pitch

becomes both more exact (via painstaking microtonal notation) and less exact (via semi-

graphical representation of clusters and vibrato). Notation for timbre and articulation

likewise exploded into a complex morass of signs, symbols, and sketches, as composers

worked to exactly specify each sound [24].

Graphic notation borrowed some of these ideas, most obviously the proportional rep-

resentation of time. Pitch, in general, remained in a vertical mapping, though often in

frequency instead of pitch, and often in an exactly proportional manner, rather than with

symbolic sharps and flats.

New representations of volume, timbre, and articulation appeared, however. Volume is

4 Contemporary Graphic Scores: In-Depth Review 84

often mapped to the vertical size or height of an object, with articulation of that volume

defined horizontally. Timbre is often integrated with vertical mappings of pitch, or is

mapped to the colour of an object. This makes perfect sense in electronic scores, but can

be tricky in interpreted scores: one performer’s idea of a “red note” may not be another

performers (and neither of them might do what the composer had in mind).

Indeed, many graphic scores avoid specifying details for one or more parameters, and

many are entirely improvisational. In the case of these scores, the more interesting discus-

sion is of how they are interpreted, rather than how they are defined. This chapter has

touched on this issue in its discussion of Brown’s December ’52 and Cardew’s Treatise

Some of the innovations of the last 100 years, such as proportional use of time, have

become common notational practice. Other methods, such as the use of colour to repre-

sent timbre, have not. Read’s overview of various historical notation systems [33] shows

that composers have always attempted to improve and update how music is written and

mapped. This chapter has shown that, in addition to wildly creative mappings and nota-

tional methods, some mappings of graphical space to musical sound remain constant.

85

Chapter 5

Two-Dimensional Mapping

Abstractions

5.1 Introduction

The previous chapters have given an overview of mapping strategies across touchscreen

applications and graphic scores. This chapter will take the mappings and metaphors de-

scribed previously, and abstract the mapping choices away from their associated metaphors.

It will then establish the underlying layout of controls that leads to the mapping choices

in question.

For example, rather than considering the piano keyboard, consider a row of five buttons

atop a row of seven buttons. This is the chromatic piano keyboard, abstracted from its

geometry to its topology, as a particular triangle abstracts to a generalized triangle. These

abstractions seek to reach their simplest visual form. For example, most piano metaphors

use white and black keys, but it is not the color of the keys that indicate the mapping

choice used. As will be seen below, it is the position of the buttons relative to each other,

rather than their shape or colour, that indicate that a set of buttons is mapped as a piano

would be.

This process is influenced by Tufte’s infographic theories about the simplest possible

representation of information [34]. Tufte claims that as more and more extraneous visuals

are stripped out of a graph or infographic, it becomes easier and easier to understand the

actual information being displayed. This often includes removing legends, ticks, and even

2014/09/30

5 Two-Dimensional Mapping Abstractions 86

axis lines. Van Nort et al and Tymockzo have also examined mapping and geometry as

applied to music. Van Nort et al focus on the use of geometry in controlling continuous

synthesis variables [35], whereas Tymockzo discusses the discrete world of harmony and

pitch space [36].

These abstractions are, of course, not the only way to map musical parameters to visual

parameters. Ashley [37] has investigated non-Western mappings of pitch space, which

are not well represented on the iOS app store or in this thesis. Indeed, the multitude of

mapping methods, as reviewed by Hunt et al [10], belie the concept of finding the ‘best’

mapping for a given interface or control abstraction. These are, however, the abstractions

that are most common on the iOS app store and in graphic scores. As will be seen, many

of these layouts present only pitch as their variable, projecting pitch space on to some sort

of two-dimensional geometry. Given the Western focus on pitch over rhythm [38], and the

high number of Western metaphors (piano, guitar, etc) presented in the iOS app store, this

is not surprising. It is, however, also related to a technical limitation of most touchscreen

devices: the inability to detect changes in force with capacitive sensing [39]. Most acoustic

instruments translate input force into output volume, and typically to a brighter output

timbre. As sensing that force is impossible, most abstractions simply ignore volume and

timbre, rather than attempting a clever mapping solution.

This chapter enumerates fourteen abstractions1. Each is described in terms of its layout

and its relation to real-world instruments. Its defining characteristics and variable charac-

teristics are listed, with examples. Finally, potential variations or under-utilized parameters

are conjectured. The abstractions are listed below:

� Diatonic Row / Pentatonic Row - The canonical equal-tempered piano keyboard.

� Diatonic Row / Size - A diatonic scale, with varying size for each note, like a xylo-

phone.

� Multiple Rows - One or more rows of buttons, of the same length: like the fingerboard

of a violin or the fretboard of a guitar.

� Column / Size / Shape - A column of buttons of varying lengths, like a zither or

dulcimer.

1Example screenshots for this section were sourced from the automatic review in Chapter 3. As the
screenshots were downloaded independently, the names of some apps are not available

5 Two-Dimensional Mapping Abstractions 87

� Small Grid - A rectangular grid of buttons, typically smaller than 3x3. An ocarina

or flute app would be a good example.

� Centered Row - A row of buttons that increases in pitch from the center, like a

kalimba

� Diatonic Column - The canonical musical staff.

� Diatonic Column / Pentatonic Column - The canonical piano roll.

� Hexagonal / Triangular Grid - One of many varieties of Tonnetzen.

� Circle - A circle of buttons, like the circle of fifths or a steelpan.

� Orthogonal Grid - A rectangular grid of buttons, typically larger than 3x3. An MPC

or a Tenori-On sequencer would be a good example.

� Rotary Encoder - A single rotating button.

� Timbral / Radial - A rough semi-circle of buttons, like a drum kit.

� Multiple Columns - One or more columns of buttons, like the faders on a mixer

5 Two-Dimensional Mapping Abstractions 88

5.2 Diatonic Row / Pentatonic Row

This is an abstraction of the traditional chromatic keyboard, used on pianos, harpsichords,

synthesizers, organs, and on hundreds of touchscreen apps of various sorts. The canonical

keyboard is two horizontal lines of buttons: seven below five, as in Figure 5.1. On iOS

devices, keyboards simply play back various pitches: no timbre or volume controls are

provided. The white keys are mapped, from left to right, to a diatonic scale,and the black

keys to a pentatonic scale, filling out the chromatic scale across an octave. iOS apps that

use this layout include pianos, organs, bells, and melodicas.

Fig. 5.1: A typical example of a Diatonic / Pentatonic Row layout (Bell Piano).

This layout is not defined by the shape of the buttons: two rows composed of almost

any shapes will indicate the same mapping of pitch (Figure 5.2a). Nor does the rotation

of the buttons (or the rows) matter: half-circle and spirals are also used (Figure 5.2b).

Colour is often used to indicate ‘black keys’ vs. ‘white keys’, though the exact colour is not

important (Figure 5.2c). The number of buttons and the relative location of the buttons

matter: two rows of seven buttons are not a keyboard, nor is a row of five directly above

a row of seven a keyboard. An abstracted keyboard can be seen in Figure 5.3.

Further variations based on this paradigm might include two rows of equal length in-

dicating two opposing whole-tone scales. In general, two rows of X and Y buttons could

indicate a equal-tempered (and possibly microtonal) scale with X+Y notes.

5 Two-Dimensional Mapping Abstractions 89

(a) Unique button shapes (Racing Piano -
Motorcycle Sound).

(b) Curved rows (Brass instrumentSS).

(c) Unique colours (Animal Piano).

Fig. 5.2: Three atypical Diatonic Row / Pentatonic Row layouts.

Fig. 5.3: The Diatonic Row / Pentatonic Row abstraction.

5 Two-Dimensional Mapping Abstractions 90

5.3 Diatonic Row / Size

This is an abstraction of a diatonic xylophone or diatonic keyboard. Like a xylophone, it

consists of a single row of buttons, typically seven or eight, and typically decreasing in size

from left to right. Figure 5.4 shows an example. On iOS devices, xylophones provide no

timbre or volume control, and simply play back the appropriate pitch. The buttons are

mapped to a diatonic scale, from left to right. If the buttons decrease in size, the decrease

in size is not a precise mapping - a 2:1 increase in pitch does not equal at 2:1 decrease in

visual size. iOS apps that use this layout include xylophones, harps, harmonicas, water

glasses, and gamelans.

Fig. 5.4: A typical example of a Diatonic / Size layout (Xylophone.).

As with the Diatonic Row / Pentatonic Row, this layout is not defined by the colour of

the buttons (Figure 5.5a), nor by the shape of the buttons (Figure 5.5b). The number of

buttons matters, as does their layout into some sort of row or line, though that line does

not have to be orthogonal to the frame (Figure 5.5c). The size of buttons, when present,

also matters: larger buttons are never higher pitches. An abstracted xylophone can be seen

in Figure 5.6.

Continuations of this paradigm might change the number of buttons: five buttons

indicating a pentatonic scale, eight indicating an octatonic,and so on. A row of X buttons

could indicate an equal-tempered (though possibly microtonal scale) with X notes.

5 Two-Dimensional Mapping Abstractions 91

(a) Monochrome buttons (Infinite
Marimba).

(b) Unique button shapes (Bottle Music
Free).

(c) Angled row (Let’s Xylophone).

Fig. 5.5: Three atypical Diatonic Row / Size layouts.

Fig. 5.6: The Diatonic Row / Size abstraction.

5 Two-Dimensional Mapping Abstractions 92

5.4 Multiple Rows

This abstraction covers both single-string and multiple string instruments, such as guitars

and violins. Each row of buttons represents a string on, for example, a guitar fretboard.

Each button in a row increases in pitch, chromatically, from left to right. Consecutive

strings increase in pitch from bottom to top, usually by large intervals such as perfect

fourths or perfect fifths. Figure 5.7 provides an example. On iOS, these layouts offer no

control over timbre or volume - they simply play back the appropriate pitch (though some

use these buttons to select pitch, triggering it with a separate touch). Other iOS apps that

use this layout include ‘cellos, ukeleles, lutes, and other stringed instruments.

Fig. 5.7: A typical example of a Multiple Row layout (App name not available).

The defining characteristic is not the number of buttons per row, or the number of

rows (Figure 5.8a). Indeed, the buttons are usually not visible under the visual metaphor

of the guitar or violin (Figure 5.8b). Each button, however, is of uniform size. The

main characteristics of this abstraction are that the number of buttons per row must be

sufficiently large (four or more, in general), and the rows must be parallel to each other.

An abstraction of a guitar can be seen in Figure 5.9.

As with the prior two abstractions, the number of buttons per row and the number of

rows - the total number of pitches - is the main variable parameter. However, multiple rows

allows pitch to be mapped with either steps per-row and leaps per column, or vice-versa.

Multiple rows also suggest a difference in timbre with each row, which further impacts the

choice of pitch mapping: some pitches may not be playable with certain timbres.

5 Two-Dimensional Mapping Abstractions 93

(a) Varying numbers of rows / buttons
(Banjo Legend).

(b) Hidden buttons (App name not available).

Fig. 5.8: Two atypical Multiple Row layouts.

Fig. 5.9: The Multiple Rows abstraction.

5 Two-Dimensional Mapping Abstractions 94

5.5 Column / Size / Shape

This abstraction is similar to the Diatonic Row / Size abstraction turned ninety degrees. It

includes both dulcimers and zithers, as well as similar vertical delineations of pitch. Each

button in the column represents a string on dulcimer or zither, increasing in pitch in some

sort of tuning, typically diatonically or chromatically. Figure 5.10 is an example, as seen

on a dulcimer app. These layouts offer no control over timbre or volume, on iOS.

Fig. 5.10: A typical example of a Column / Size / Shape layout (Santoor).

Interestingly, this abstraction can map pitch from bottom to top (Figure 5.10) or from

top to bottom (Figure 5.11a), though the number of buttons is not a defining feature

(compare Figure 5.11b and Figure 5.11a). The button shape is elongated horizontally, and

the size of the buttons indicates the direction of the mapping of pitch. The colour of the

buttons is extraneous to the abstraction (Figure 5.11b), as is the left-right alignment of the

buttons (compare Figure 5.10 and Figure 5.11b). An abstraction can be seen in Figure 5.12.

Variations on this abstraction again rest primarily on different scales and mappings of

pitch - either an equal temperament with a number of notes equal to the number of buttons,

or a more specific scale, such as octatonic or hexatonic.

5 Two-Dimensional Mapping Abstractions 95

(a) Pitch increasing from top to bottom
(Kacapi).

(b) Varying colours (Magic Zither).

Fig. 5.11: Two atypical Column / Size / Shape layouts.

Fig. 5.12: The Column / Size / Shape abstraction.

5 Two-Dimensional Mapping Abstractions 96

5.6 Small Grid

Representing various wind instruments (ocarina, flute, clarinet, etc) as displayed on touch-

screens, a ‘small grid’ is defined as having fewer than ten buttons, and may have unequal

dimensions: 1x6, 2x4, and 3x3 are all valid small grids. Unlike all other abstractions, pitch

is often mapped additively: if pressing Button 1 plays a D and pressing Button 2 plays an

F, pressing them both will play a G. The relationship between button location and increase

in pitch is not consistent. This abstraction can also map pitch subtractively: the lowest

pitch is triggered by pressing all the buttons. On iOS, these layouts offer no control over

timbre or volume. Figure 5.13 is an example, from an ocarina app. Other iOS apps that

use this layout include bagpipes, trumpets, and french horns.

Fig. 5.13: A typical example of a Small Grid layout (Ocarina).

The main characteristic of this layout is the small number of buttons, and their ar-

rangement into a grid, or something very close to a grid (Figure 5.14a). The colour of

the buttons do not matter (Figure 5.14b), although the size and shape of the buttons are

typically similar. An abstraction can be seen in Figure 5.15.

Potential variations to this abstraction could focus on different scales and mappings of

pitch for different numbers and layouts of buttons. A higher number of buttons implies

either a larger range of pitches or more detailed gradations of pitch.

5 Two-Dimensional Mapping Abstractions 97

(a) Informal grid (Bagpipes).
(b) Unique button colours (Magic Flute for
Little Composers).

Fig. 5.14: Two atypical Small Grid layouts.

Fig. 5.15: The Small Grid abstraction.

5 Two-Dimensional Mapping Abstractions 98

5.7 Centered Row

This is an abstraction of a kalimba, mbira, or thumb piano. Much like the Diatonic Row

/ Size abstraction, this layout is a row of buttons of varying sizes, but with the largest

buttons (representing the lowest pitches) in the center of the row, as seen in Figure 5.16.

On iOS devices, kalimba apps simply play back pitches, without timbre or volume controls.

Although tunings vary, the buttons increase in pitch out from the center, usually alternating

intervals: a major second on the right, a major third on the left, a perfect fourth on the right,

and so on. iOS apps that use this layout include kalimbas, sansas, and other variations.

Fig. 5.16: A typical example of a Centered Row layout (Sansula).

The two defining characteristics of this abstraction are the arrangement of buttons by

size, with the largest/lowest buttons in the center and the long, thin shape of the buttons.

The number of buttons can vary wildly, as can their colour (Figure 5.17a). Indeed, multiple

rows of buttons are also possible (Figure 5.17b), with the higher row having smaller buttons,

and thus a higher pitch. An abstraction can be seen in Figure 5.18.

Variations and expansions to this abstraction largely include varying tunings and vary-

ing numbers of buttons. A mapping that applies different timbres or volume envelopes to

different rows would also be intriguing.

5 Two-Dimensional Mapping Abstractions 99

(a) Varying number of buttons and colours
(PercussionSS IA Vol.2).

(b) Multiple rows (S4-Kalimba).

Fig. 5.17: Two atypical Centered Row layouts.

Fig. 5.18: The Centered Row abstraction.

5 Two-Dimensional Mapping Abstractions 100

5.8 Diatonic Column

Based on the five-line staff that dominates Western music, this abstraction maps pitch

vertically, increasing by one note of a diatonic scale with each additional line or space. In

iOS notation apps, timbre and volume are controlled using text or symbols, not the staff

itself. Indeed, although notation apps give access to a chromatic scale through the use of

accidentals, the staff (and this abstraction) do not: they are entirely diatonic. Time would

move from left to right, were it to be involved. One can imagine a grid-like variation on

this abstraction, as per the Orthogonal Grid, below. An example of a Diatonic Column

can be seen in Figure 5.19

Fig. 5.19: A typical example of a Diatonic Column layout (QuaverPad).

The two defining characteristics of this abstraction are the vertical nature of the buttons,

their alternating nature, and the five line / four space convention. The Diatonic Column

also has the dubious honour of being the least varied of all abstractions. Despite the

fact that, in theory, additional lines and spaces can be added ad infinitum, no examples

of such an ‘innovation’ could be found. Likewise, buttons of any sort could be used, as

long as they alternate between ‘line’ and ‘space’ button, but no such examples could be

found. Figure 5.20 thus simply presents an abstracted staff. The obvious variation on this

mapping is to change the tuning system used: either moving to a chromatic scale with

twelve buttons, moving to a microtonal, equal-tempered scale, or moving to an hexatonic

/ octatonic scale, with an appropriate number of buttons.

5 Two-Dimensional Mapping Abstractions 101

Fig. 5.20: The Diatonic Column abstraction.

5 Two-Dimensional Mapping Abstractions 102

5.9 Diatonic Column / Pentatonic Column

This abstraction is simply a vertical piano, based on the piano roll used in many sequencers.

Pitch increases from bottom to top. On iOS, this layout is generally used for sequencing,

rather than performance, as can be seen in Figure 5.21. Timbre and volume are generally

controlled by other aspects of the app. As with the Diatonic Column, this could be tiled

to include time, moving from left to right. Apps that use this layout include DAWs,

sequencers, and synths.

Fig. 5.21: A typical example of a Diatonic Column / Pentatonic Column layout (Cubasis).

Unlike the Diatonic Row / Pentatonic Row abstraction, this abstraction does not often

change the shape, size, and colour of the buttons that represent each note. On the other

hand, the two rows of buttons can sometimes become a single column, with only colour

to disambiguate them (Figure 5.22a). Like Diatonic Row / Pentatonic Row, however,

the exact number of buttons displayed varies (Figure 5.22b). An abstracted piano roll is

displayed in Figure 5.23. Variations on this are similar to those of a horizontal piano:

varying the number of buttons per octave, and thus varying the tuning of the mapping.

5 Two-Dimensional Mapping Abstractions 103

(a) A single column (LivKontrol).
(b) Varying number of buttons (Music Stu-
dio).

Fig. 5.22: Two atypical Diatonic Column / Pentatonic Column layouts.

Fig. 5.23: The Diatonic Column / Pentatonic Column abstraction.

5 Two-Dimensional Mapping Abstractions 104

5.10 Hexagonal / Triangular Grid

This is an abstraction of a Tonnetz. The Tonnetz, is, of course, already an abstraction

from music theory. A grid of buttons at 60-degree angles, it provides a mapping of pitch

space that is suitable for describing Romantic harmonies [40]. Grids similar to a Tonnetz

are also seen on accordions and on various isometric keyboards. The typical mapping is for

one line to increase in minor thirds, one in major thirds, and one in perfect fifths, as seen

in Figure 5.24. Other tunings are more than possible: Park and Gerhard have examined

various tunings and the math behind them [41]. On iOS, this layout only handles changes in

pitch (though sometimes playing chords rather than pitches), ignoring volume and timbre.

Fig. 5.24: A typical example of a Hexagonal / Triangular Grid layout (App name not
available).

The grid nature of this layout is paramount. Buttons colour, size, and shape can vary

(Figure 5.25a), and the rotation of the overall grid is also not set (Figure 5.25b), though

the grid itself cannot be changed signifigantly. An abstraction can be seen in Figure 5.26.

The sundry tunings discussed by Park and Gerhard [41] point to many possible methods

for controling pitch space with a Hexagonal / Triangular Grid. Variations between melody

and harmony are also interesting. One can imagine a Tonnetz where each button plays a

chord rather than a note, and chord complexity varies with some dimension (out from the

center, radially, etc). Timbral mappings of this sort are also possible.

5 Two-Dimensional Mapping Abstractions 105

(a) Varying button colour (Accordio).
(b) Varying grid rotation (Concertina XL).

Fig. 5.25: Two atypical Hexagonal / Triangular Grid layouts.

Fig. 5.26: The Hexagonal / Triangular Grid abstraction.

5 Two-Dimensional Mapping Abstractions 106

5.11 Circle

An abstraction of the theoretical circle of fifths, and the real-world steelpan, the Circle

abstraction increases in pitch clockwise, though the exact tuning and starting point vary.

Figure 5.27 shows an example. These layouts offer no control over timbre or volume, on

iOS.

Fig. 5.27: A typical example of a Circle layout (Major Circle of Fifths).

Unsurprisingly, it is the circular nature of this layout that is key: button sizes, shapes,

and colours can vary (Figure 5.28b), though steelpan apps generally use button size to

represent register. The number of buttons also varies (Figure 5.28b]). An abstraction can

be seen in Figure 5.29. Various tunings are possible, depending on the number of buttons

(the traditional circle of fifths requires twelve buttons). Concentric circles are also possible

(and are a feature of steelpans), and suggest the mapping of other parameters, such as

timbre or volume.

5 Two-Dimensional Mapping Abstractions 107

(a) Varying button shape, size, and colour
(Dancing Steel Drum).

(b) Varying numbers of buttons (Double
Tenor - Steel Pan Orchestra).

Fig. 5.28: Two atypical Circle layouts.

Fig. 5.29: The Circle abstraction.

5 Two-Dimensional Mapping Abstractions 108

5.12 Orthogonal Grid

A grid of buttons, larger than 3x3, arranged in perpendicular rows and columns. Similar to

the Multiple Rows and Multiple Columns abstractions, this layout is unique in that it does

not lead to a single mapping. Like the Monome [42], the Tenori-On [43], or the MPC [15],

there are many potential ways to map this layout. An example can be seen in Figure 5.30.

Fig. 5.30: A typical example of a Orthogonal Grid layout (App name not available).

Three common uses for this abstraction are as a sequencer, as an MPC / Percussion

Input, and as an X-Y Pad. The Sequencer (Figure 5.31a) maps time from left to right,

quantized to the columns, and pitch, quantized to the rows, from bottom to top. The exact

tuning and time resolution vary with the number of buttons, which is typically higher:

8x8 or more. The MPC / Percussion Input (Figure 5.31a), classically a 4x4 grid, maps

various samples, typically percussion, to each button on the grid. Like most iOS apps,

this precludes any control of volume or timbre. More ‘core’ drum sounds (kick, snare, etc)

are typically mapped to the bottom left, but the mappings vary widely. The X-Y Pad

(Figure 5.31c) provides control over two parameters, one on each axis. A typical mapping

for note input is of pitch from left to right, and of filter or volume envelope from bottom

to top. Alternatively, a typical mapping for an effect might be delay time from left to

right and delay feedback from bottom to top. Although most X-Y Pads appear to offer

continuous control, this is often not the case, especially for pitch input. An abstraction of

the Orthogonal Grid can be seen in Figure 5.32.

5 Two-Dimensional Mapping Abstractions 109

(a) Sequencer (Beat Beat Play).

(b) MPC / Percussion Input
(Beat-Machine).

(c) X-Y Pads (76 Synthesizer).

Fig. 5.31: Three use cases for the Orthogonal Grid layout.

Fig. 5.32: The Orthogonal Grid abstraction.

5 Two-Dimensional Mapping Abstractions 110

5.13 Rotary Encoder

This is a peculiar abstraction. The use of rotational knobs to modify timbre is almost

universal in both the world of iOS and in countless real-world synthesizers and mixers, as

can be seen in Figure 5.33. These controls typically deal with a single aspect of the synthesis

or processing of sound. Most of the layouts discussed here focus on pitch, but many apps

that use them also provide timbral controls, in the form of these rotary encoders.

Fig. 5.33: A typical example of multiple Rotary Encoders (76 Synthesizer).

Button size and colour can vary (Figure 5.34a), though the shape is almost always cir-

cular. There is no connection between the layout of multiple Rotary Encoders and what

parameters they control (Contrast Figure 5.34a and Figure 5.34b). A perhaps extraneous

abstraction can be seen in Figure 5.35. Two potential variations on this venerable design

would be to first assign an encoder to more than one parameter, thus increasing the inte-

grality of the mapping, and, second, to vary the change of the parameter with the extremity

or speed of the rotation.

5 Two-Dimensional Mapping Abstractions 111

(a) Varying button size and colour (Auria
iSEM).

(b) Varying layout of multiple rotary en-
coders (Auria).

Fig. 5.34: Two atypical Rotary Encoder layouts.

Fig. 5.35: The Rotary Encoder ‘abstraction’.

5 Two-Dimensional Mapping Abstractions 112

5.14 Timbral / Radial

This abstraction, based on the drum kit, is unique in that it deals only in unpitched sounds.

A rough semi-circle, with a varying number of buttons, drum sounds are not mapped to it

in any geometric way (though one could argue that low sounds move out from the center),

but rather by cultural context. An example can be seen in Figure 5.36. On iOS, each

button / drum produces a single and unique sound, with no controls for volume and no

way of altering the timbre of each button.

Fig. 5.36: A typical example of a Timbral / Radial layout (Cool Drums).

This layout depends on its lack of geometric cohesion: it is not a strict semi-circle, but

does tend to follow certain standards, with buttons representing hi-hats, cymbals, and so

on in the positions that would be expected of them. Button size, shape, and colour are

not standardized (Figure 5.37a), and nor is the number of buttons (Figure 5.37b). An

abstraction of a drum kit can be seen in Figure 5.38

Potential expansions to this mapping might include radically increasing the number of

buttons, in order to differentiate between, for example, the bell or the rim of a cymbal.

The iOS app store also has many drum apps that deal with percussion outside of the drum

kit, such as tabla, cajón, and congas - a detailed review of their layouts is, however, beyond

the scope of this thesis.

5 Two-Dimensional Mapping Abstractions 113

(a) Varying button size, shape, and colour
(80s Drumr). (b) Varying number of buttons (BaDaBing).

Fig. 5.37: Two atypical Timbral / Radial layouts.

Fig. 5.38: The Timbral / Radial abstraction.

5 Two-Dimensional Mapping Abstractions 114

5.15 Multiple Column

This abstraction represents the faders on a mixer, quantized to individual buttons. As with

the Rotary Encoder discussed above, mixers are very common in both iOS apps of varying

sorts, and in real-world music making. An example can be seen in Figure 5.39. As most

touchscreen applications lack a sensor for determining the force of a user’s touch, the use of

one or more faders is typical to control the output level. Although this layout uses faders

rather than buttons, it is prevalent enough to be mentioned.

Fig. 5.39: A typical example of a Multiple Column layout (AC-7 Core HD).

The number of faders varies with the number of inputs or outputs under control - some-

times in extreme ways (Figure 5.40). An abstraction can be see in Figure 5.41. Potential

variations might involve changing colours to indicate higher or lower volumes, or adding

integral timbral mappings to match the amplitude mapping: a ‘presence’ fader, rather than

a volume fader.

5 Two-Dimensional Mapping Abstractions 115

Fig. 5.40: Varying number of faders / columns (Allen & Heath iLive Tweak).

Fig. 5.41: The Multiple Column abstraction.

5 Two-Dimensional Mapping Abstractions 116

5.16 Conclusion

This chapter has listed and discussed the most prominent abstractions of control layouts, on

iOS devices and in graphic scores. Each abstraction has been defined in terms of its positive

and negative attributes, ranging from the topological button layout to the colour, shape,

and size of the buttons. Despite the distance from acoustic instruments, some vestiges of

the physical world still remain: larger buttons tend to play back lower pitches. Likewise,

many abstractions take their inspiration from physical, electronic synthesizers, including

mixers for volume and rotary encoders for timbre. Many conventions from the theoretical

world, such as the Tonnetz and circle of fifths, appear as abstractions. Other abstractions,

such as the piano roll or piano keyboard are based on real-world instruments.

Regardless of the source of a given abstraction, pitch is by far the most prominent

parameter mapped, and it is usually mapped in a linear fashion. Abstractions that deal

with timbre or volume, such as the Rotary Encoder or the Multiple Column abstraction

exist apart from pitch control. This reflects the separability of parameters used in both

modern music theory [38] and in current music applications. Much variation is possible

here: the concentric circles that are typical of Steelpan apps could include variations in

timbre and volume as well as in register. X-Y Pads could also control multiple parameters,

rather than the typical pitch and envelope control. Interestingly, the shape of the buttons

is unimportant, despite the results of research around the use of shape in synesthesia [44].

These abstractions attempt to reach the simplest, most topological versions of them-

selves: the layouts that express the most information about their musical mappings in the

least amount of data. These examples can be used as both the basis of sundry application

designs, or as jumping-off points for new and varied touchscreen applications. As with

the data enumerated in previous chapters, this chapter can drive incredibly typical music

applications or, with a few graceful twists and variations, deeply novel applications and

interfaces.

117

Chapter 6

Software Tools for Two-Dimensional

Mapping

6.1 Introduction

This chapter describes three pieces of related software, all built with the goal of automating

the mapping process for two-dimensional interfaces. Automatic mapping of this sort is a

pertinent problem. Real-world iOS applications like BeatSurfing [45], TouchOSC [46], and

Lemur [47] allow end users to construct their own control layouts. As these control layouts

scale up, mapping them becomes non-trivial, requiring the user to point and click dozens

upon dozens of times. The software discussed in this chapter will provide an algorithm for

automating this process, returning mapping data to the end user based on the nature of

the control layout.

The first piece of software is an algorithm for classifying layouts of buttons as one of the

abstractions defined in the previous chapter. Once a layout has been classified, pitches can

be mapped to each button, based on the nature of the abstraction (a circle of buttons maps

pitch clockwise, as the circle of fifths, for example). This classification is achieved using

machine learning, with some heuristic adjustments to the task at hand. The second piece

of software is an open, web-based classification API that provides access to the algorithm.

Built in Python as a RESTful web service, this API takes data about the control layout,

modifies it, and passes it to the classification algorithm, and then returns the resulting

classification and mapping. The third is Pattern Recognition, a sample application. Pattern

2014/09/30

6 Software Tools for Two-Dimensional Mapping 118

Recognition allows users to create their own control layouts and send their data to the

classification API. It then applies the returned mapping to the control layout.

Pattern Recognition and the underlying classifier do not seek to provide an iconically

perfect answer to what the ‘best’ possible mapping for a given layout is. Rather, they act as

an implementation of the principles described in the previous chapters. As the abstractions

defined in Chapter 5 mostly deal with pitch, the classification algorithm likewise mostly

deals with pitch. It was hoped that mappings for parameters such as timbre and volume

would be encoded in the layout of buttons, as mapping for pitch is. As this was not the

case, the engineering in this chapter has limited itself accordingly.

6.2 Related Work

Tools to aid the mapping process include McGill’s own LibMapper [48] and Digital Orches-

tra Toolboox [49]. The Digital Orchestra Toolbox is a collection of Max / MSP objects that

simplify the mapping process. Examples include simple type conversion tools; maximum,

minimum, and peak detection tools; MIDI and OSC wrappers; and various filters and inte-

grators. LibMapper allows for arbitrary connections to be made over OSC, with arbitrary

processing of the data being sent over OSC. Those signals can then be easily remapped,

transformed, and modified, using one of several user interfaces.

MnM [50] provides Max/MSP-based tools for mapping and machine learning around

mapping, including functionality for implicit mapping via machine learning. Along these

lines, the Wekinator [51] provides implicit mapping via human input of almost any sort,

from audio input to webcam data. These tools are primarily focused on interfaces and

instruments that include more than two dimensions. urMus [52], in contrast, offers a patch-

based mapping environment specifically for mobile devices, inclusive of touches, inputs from

gyroscope and accelerometer inputs, etc. urMus also allows users to define two-dimensional

control layouts using the Lua1 scripting language.

The above tools allow users to construct complex, sophisticated mapping processes, but

are agnostic in terms of the controls presented to them. Many touchscreen apps allow

users to design their own control systems, and then map them to MIDI or OSC messages.

Apps of this sort include BeatSurfing [45], TouchOSC [46], Lemur [47], and Control [53].

The Lemur application grew out of the original hardware Lemur [54], which provided

1http://www.lua.org/

6 Software Tools for Two-Dimensional Mapping 119

the same level of customization in bespoke hardware (and with a resistive, force sensitive

touchscreen). The Lemur app allows the user to populate their screen with various buttons,

faders, and other controls, and then map them accordingly. TouchOSC and Beatsurfing

provide similar functionality, though with a slightly more limited set of objects. Control

allow users to create both their own control layouts and define their own control objects,

from complex radial arrays to particle-based controls. Control, like Lemur and TouchOSC,

can send MIDI or OSC, whereas BeatSurfing sends only MIDI data.

These applications provide the user with a high level of control both in terms of creating

the controls and mapping the controls. Mira [55], on the other hand, creates touchscreen

controls ‘for free’, based on already extant controls in Max/MSP. Any object inside a

particular frame in Max/MSP will automatically be sent to the touchscreen, and will be

controllable from there. The speed and transparency of this process was an influence on

the design of the classification API. The user interface and concept of BeatSurfing also

influenced the design of Pattern Recognition.

6.3 Classification & Machine Learning

The first step was to classify any given layout of buttons as one of the abstractions listed

in Chapter 5. As close matches for a given abstraction need to be assigned correctly,

machine learning was an obvious choice. This classification algorithm did not have to be

tightly coupled to the demonstration software, so the Python programming language, with

its exceptional data-processing abilities, was a good choice. Python also has many fine

libraries for scientific computing, including the SciKit-Learn [20] library. SciKit-Learn was

selected for this task due to its open source nature, and the large number of supervised

and unsupervised learning algorithms that it implements.

A key issue was selecting what features to use to train the machine learning model.

As the model had to be invariant with regards to absolute position, an array of features

containing the difference between each button was constructed, in terms of the location,

size, shape, rotation, and colour. This data was used to train a Support Vector Machine

(SVM), which performed well on initial tests. Specifically, five of the abstractions (Diatonic

Row / Pentatonic Row, Diatonic Row / Size, Small Grid, Diatonic Column / Pentatonic

Column, Column / Size / Shape) were included in the model, which performed with 100%

accuracy on 20 instances of test data.

6 Software Tools for Two-Dimensional Mapping 120

An examination of the data from Chapter 5 suggested that many of the features used

were, in fact, extraneous. Because many of the abstractions listed rely only on the relative

locations of the buttons, all features except the normalized X distance and normalized Y

distance between each button were removed from the model. This again performed at 100%

accuracy on the twenty instances of test data.

When adding the Orthogonal Grid abstraction, however, things went wrong. The test

data fell to 20% accuracy, and validations against the data that trained the model began

to fail. It was discovered that this was caused by the large increase in dimensions. A

test Diatonic Row / Pentatonic Row has 264 dimensions, as it has twelve buttons. A 5x5

Orthogonal Grid, however, has 1200 dimensions. As the number of dimensions must be

constant, smaller instances were padded with zeros. These zeros lead to all instances with

a relatively small dimensionality being classified as the same.

In order to fix this, new features were tried: the number of buttons, the mean distance

between buttons, and the standard deviation between buttons. It was hoped that encoding

the number of buttons while keeping the dimension constant would lead to better results.

This did not significantly improve on the 20% accuracy. The normalized mean distance

was tried, with similar results. Different algorithms within SciKit-Learn were also tried,

with Nearest Neighbours2 giving the best results.

After some soul-searching, it was decided to dodge the issue. Rather than making a one-

size-fits-all model, several different models would be built, depending on the dimensonality

of the input. This may raise the hackles of machine learning experts, but it has several

benefits. As several abstractions, such as the Diatonic Row / Pentatonic Row can vary in

size (typically at the octave), it is reasonable to build different models for them. Layouts

with under twenty buttons were passed to the first model, and buttons with twenty or more

buttons were passed to the second model. This solved the problem: adding a model for

a twenty-four-button Diatonic Row / Pentatonic Row and twenty-five-button Orthogonal

Grid led to 100% accuracy across both models, encompasing twenty-eight instances of test

data. These two models covered seven abstractions, using the Nearest Neighbours algorithm

mentioned above. The next step was to create an easy way for other applications to access

the models.

2http://scikit-learn.org/stable/modules/neighbors.html

6 Software Tools for Two-Dimensional Mapping 121

6.4 API & Server

An Application Programming Interface (API) provides a set of formalized ways to access an

algorithm or data source. In this case, the classification algorithm itself is being accessed:

the API layer sends data to the algorithm, and returns the result to the user. In order to

make the classification algorithim accessible to the internet at large, the classification API

was built as a web service, using the Flask3 web framework, and hosted on the Heroku4

cloud platform. The end user sends JSON-formatted5 data to the server in the body of

an HTTP POST request. The server then passes the data to the algorithm defined above,

and returns the resulting classification from the algorithm to the API to the end user.

While a web-based API suggests a Representational State Transfer [56] (REST) model,

the classification API is more REST-ish than RESTful. It does not define the typical

Create/Read/Update/Delete verbs, and indeed misuses POST to return data, rather than

to create or update data. With that said, it fits many of the other criteria for a REST API:

it has a client / server model, it is stateless, and it presents a consistent interface. This

consistent interface was one primary reason for building an API, rather than implementing

the machine learning within the example Pattern Recognition application itself. In addition

to allowing public access to the algorithm, building a separate API allowed for loose coupling

between the front and back end of the software: the machine learning code could be totally

re-written without touching the front end, and vice-versa.

This goal led to a change in the structure of the data sent to the classification API. The

model uses the normalized distance between buttons to select a classification. However,

this requires large amounts of heavy lifting on the client side. It was decided to simply

send the raw button data to the API, and allow the API to work out the button distances,

or whatever features are required by the model. This made the API easier to use, and

increased the separation between the client and server side software. It also lowered the

amount of data to be sent, as can be seen in the comparison of example data on the next

page.

3http://flask.pocoo.org/
4https://www.heroku.com/
5http://www.json.org/

6 Software Tools for Two-Dimensional Mapping 122

Old Data Format

{0 : {1 : { ‘ ‘ l o ca t i on ’ ’ : { ‘ ‘ y ’ ’ : 0 . 0 , ‘ ‘ x ’ ’ : −0.166}} ,
2 : { ‘ ‘ l o ca t i on ’ ’ : { ‘ ‘ y ’ ’ : 0 . 0 , ‘ ‘ x ’ ’ : −0.333}} ,
3 : { ‘ ‘ l o ca t i on ’ ’ : { ‘ ‘ y ’ ’ : 0 . 0 , ‘ ‘ x ’ ’ : −0.5}} ,
4 : { ‘ ‘ l o ca t i on ’ ’ : { ‘ ‘ y ’ ’ : 0 . 0 , ‘ ‘ x ’ ’ : −0.666}} ,
1 : {0 : { ‘ ‘ l o ca t i on ’ ’ : { ‘ ‘ y ’ ’ : 0 . 0 , ‘ ‘ x ’ ’ : −0.166}} ,
2 : { ‘ ‘ l o ca t i on ’ ’ : { ‘ ‘ y ’ ’ : 0 . 0 , ‘ ‘ x ’ ’ : −0.833}} ,
3 : { ‘ ‘ l o ca t i on ’ ’ : { ‘ ‘ y ’ ’ : 0 . 0 , ‘ ‘ x ’ ’ : −0.5}} ,
4 : { ‘ ‘ l o ca t i on ’ ’ : { ‘ ‘ y ’ ’ : 0 . 0 , ‘ ‘ x ’ ’ : −0.833}} ,
2 : {0 : { ‘ ‘ l o ca t i on ’ ’ : { ‘ ‘ y ’ ’ : 0 . 0 , ‘ ‘ x ’ ’ : −0.333}} ,
1 : { ‘ ‘ l o ca t i on ’ ’ : { ‘ ‘ y ’ ’ : 0 . 0 , ‘ ‘ x ’ ’ : −0.833}} ,
3 : { ‘ ‘ l o ca t i on ’ ’ : { ‘ ‘ y ’ ’ : 0 . 138 , ‘ ‘ x ’ ’ : −0.75}} ,
4 : { ‘ ‘ l o ca t i on ’ ’ : { ’ ’ y ’ ’ : 0 . 0 , ‘ ‘ x ’ ’ : −0.833}} , e t c }

New Data Format

[{ ‘ ‘ l o ca t i on ’ ’ : { ‘ ‘ x ’ ’ : 75 , ‘ ‘ y ’ ’ : 200}} ,
{ ‘ ‘ l o ca t i on ’ ’ : { ‘ ‘ x ’ ’ : 195 , ‘ ‘ y ’ ’ : 200}} ,
{ ‘ ‘ l o ca t i on ’ ’ : { ‘ ‘ x ’ ’ : 315 , ‘ ‘ y ’ ’ : 200}} ,
{ ‘ ‘ l o ca t i on ’ ’ : { ‘ ‘ x ’ ’ : 435 , ‘ ‘ y ’ ’ : 200}} ,
{ ‘ ‘ l o ca t i on ’ ’ : { ‘ ‘ x ’ ’ : 555 , ‘ ‘ y ’ ’ : 200}}]

The API functions as a wrapper around the primary classification algorithm. The initial

design of the API left the mapping choices to the client side, based on the classification re-

turned. While this is desirable functionality in cases where the sound production technique

used by the client is very particular, in many cases the client is using a sound production

technique that can use MIDI numbers or raw frequency as an indication of pitch. The API

was thus updated to return both the classification, as a string, and an array of mappings.

The array of mappings provides a MIDI number and a frequency for each button. These

are returned in the same array that the user sent in, in order to make applying them easier

on the client side. These mappings were defined based on the abstractions in Chapter 5.

A classification of Diatonic Row / Pentatonic Row would simply map a chromatic scale

6 Software Tools for Two-Dimensional Mapping 123

to the buttons, increasing from left to right, with some corrections for range based on the

number of buttons. An example of the returned data is below. Note that the mapping

string returned is simply ‘piano’: this was done in order to make the API usable by those

who have not read this thesis.

Return Data Format

{ ‘ ‘ mapping ’ ’ : ‘ ‘ piano ’ ’ ,

buttonData : [

{ ‘ ‘ l o ca t i on ’ ’ : { ‘ ‘ x ’ ’ : 7 5 , ‘ ‘ y ’ ’ : 2 0 0 } ,
‘ ‘ noteFreq ’ ’ : 2 6 1 . 6 3 , ‘ ‘ noteMIDI ’ ’ : 6 0 } ,
{ ‘ ‘ l o ca t i on ’ ’ : { ‘ ‘ x ’ ’ : 1 9 5 , ‘ ‘ y ’ ’ : 2 0 0} ,
‘ ‘ noteFreq ’ ’ : 2 9 3 . 6 7 , ‘ ‘ noteMIDI ’ ’ : 6 2 } ,
{ ‘ ‘ l o ca t i on ’ ’ : { ‘ ‘ x ’ ’ : 3 1 5 , ‘ ‘ y ’ ’ : 2 0 0} ,
‘ ‘ noteFreq ’ ’ : 3 2 9 . 6 3 , ‘ ‘ noteMIDI ’ ’ : 6 4 } ,
{ ‘ ‘ l o ca t i on ’ ’ : { ‘ ‘ x ’ ’ : 4 3 5 , ‘ ‘ y ’ ’ : 2 0 0} ,
‘ ‘ noteFreq ’ ’ : 3 4 9 . 2 3 , ‘ ‘ noteMIDI ’ ’ : 6 5 } ,
{ ‘ ‘ l o ca t i on ’ ’ : { ‘ ‘ x ’ ’ : 5 5 5 , ‘ ‘ y ’ ’ : 2 0 0} ,
‘ ‘ noteFreq ’ ’ : 3 9 2 . 0 0 , ‘ ‘ noteMIDI ’ ’ : 6 7 } ,
]}

The API also recognizes an optional ‘adventure’ parameter. As many of the mapping

choices defined in Chapter 5 are rather straight-laced, a higher adventure value returns

more interesting mappings: hexatonic scales, microtonal pitches, and so on. Further exten-

sions to the API could include passing in the synthesis parameters to be mapped, within

reason. Likewise, returning a list potential mappings is also a possibility, especially if the

input data does not clearly match one abstraction. The interface to the classification API

itself, however, is well-defined and flexible, allowing for the underlying algorithm to be

changed without impacting the client application. The next section discusses a sample

client application, Pattern Recognition.

6 Software Tools for Two-Dimensional Mapping 124

6.5 Front End & Client

Pattern Recognition is a simple browser application, designed to offer an example of how

to use the classification API. It allows users to create their own layout of buttons, and then

obtain a mapping for those buttons from the API. It is built in JavaScript and HTML5, for

portability and ease of distribution, and can be found at tide-pool.ca/pattern-recognition.

Synthesis is provided by the WebAudio API, and is based on Stuart Memo’s Sympathetic

Synthesizer project [57].

Figure 6.1 shows the starting interface. As with similar applications like BeatSurfing,

the user can add buttons to the main layout area by left-clicking on it. The radius and

shape of the button are selected via the sliders in the upper left, and the button colour

is selected via the text box just under the sliders. The current setting is displayed below,

in the appropriate colour. Example layouts for each of the currently working abstractions

can be displayed using the buttons in the bottom left. At the time of writing, working

abstractions include Piano, Xylophone, Zither, Piano Roll, Small Grid, Large Grid, and

Big Piano (a two-octave piano).

Fig. 6.1: The interface for Pattern Recognition.

Once a layout has been created, the ‘recognize’ button is pressed, and the client sends

the collected button data to the server. Figure 6.2 shows an example layout created by

a user, with annotations added from the mapping process. The layout has been correctly

classified as a Small Grid. Figures 6.3 shows another example.

6 Software Tools for Two-Dimensional Mapping 125

Fig. 6.2: A user-defined Small Grid mapping.

Fig. 6.3: A user-defined Diatonic Row / Size mapping.

The above images offer examples of the tool working correctly. Some inputs, however,

cause problems. Figure 6.4 shows an incorrect classification, and the poor mapping that

results from it. This is an example of the classification algorithm failing: a Diatonic Row

/ Size (or ‘xylophone’) would be more correct here. This is probably a result of the single

very low button. Figure 6.5 shows a correct classification, with a flaw in the mapping

algorithm. The bottom-right button is lower than the bottom-left button, which, as Small

Grids are mapped from bottom-left to top-right, results in an incorrect mapping.

6 Software Tools for Two-Dimensional Mapping 126

Fig. 6.4: An incorrect classification of Column / Size / Shape.

Fig. 6.5: An incorrect mapping of a Small Grid layout.

Pattern Recognition is thus not perfect - though the mistakes can be as interesting as

the correct results. As a tool for making music, it is somewhat lackluster, largely due to

the static nature of the synthesis. A similar program with better synthesis, and multitouch

capabilities would be a far more interesting interface. Pattern Recognition does, however,

provide a working prototype of automatic mapping, and acts as an example of how to make

use of the classification API.

6 Software Tools for Two-Dimensional Mapping 127

6.6 Conclusion

This chapter has presented the engineering results of the thesis. A machine learning based

classification algorithm was created, capable of discriminating between the various abstrac-

tions discussed in Chapter 5. That algorithm was then wrapped in an open HTTP API, in

order to make the classification algorithm widely available. In the course of building the

classification API, the exact nature of the interface changed, moving more processing away

from the client and to the server-side API. Likewise, it was decided to alter the API so that

it could return the mapping, in terms of both MIDI note number and absolute frequency,

as well as the classification. The Pattern Recognition sample application was built on top

of this API. It provides simple tools to allow a user to construct her or his own layout of

buttons. It then maps those buttons based on the response of the classification API.

These tools, and Pattern Recognition in particular, serve as a proof of concept for the

data and abstractions discussed in this thesis. As has been mentioned, mapping is difficult.

Pattern Recognition does not provide a foolproof ‘best’ mapping for a layout, but it does

provide a layout that expresses the trends and mappings discussed in this thesis.

Indeed, Pattern Recognition would benefit from a more robust input method, and a

higher fidelity synthesizer. The classification API could increase the detail of its mappings

to include various synthesis parameters in both input and output, or to return a list of

possible mappings. The underlying classification algorithm should be made more robust

while also including more abstractions. A wholesale rework of the classification algorithm

is also possible: removing the heuristic around dimensionality in favour of a pure machine

learning approach would result in much simpler code, while also being more satisfying in

principle.

The code discussed herein has met the primary technical goal of the thesis: automat-

ically mapping two dimensional layouts of buttons. The classification API makes this

possible - it simply needs to be used by developers.

128

Chapter 7

Conclusion

This thesis has researched musical mapping techniques in two dimensions, with the un-

derlying goal of attempting to automate the process of mapping two-dimensional layouts

of controls. Software for creating such control layouts already exists; however, assigning

each of many controls to a musical event is often a slow and unwieldy process. The final

engineering aspect of this thesis is a first step to solving this problem, providing an open

API for automatic classification and mapping. Data for the API’s underlying algorithm

was gathered from Chapter 2, 3 and 4, comprising several reviews of mapping trends and

techniques.

Chapter 2 presented an in-depth review of the most popular music apps in the iOS

App Store, investigating their metaphors and mappings. A majority of the applications

examined presented the user with metaphors based on real-world instruments or devices:

pianos, drum kits, mixers, synthesizers, and so on. In these applications, a preponderance

of simple, one-to-one mappings was found, with pitch generally increasing from left to

right, and volume / timbre increasing vertically, from bottom to top. Time, when it was a

parameter, moved from left to right. This chapter also examined several novel applications

that did not present a real-world metaphor to the user. These applications had the most

creative mappings, with generally fewer left-right and up-down mappings. Some highlights

included diagonal / Tonnetz-based mappings of pitch and radial mappings of volume. The

use of additional sensors on the device also became prevalent here: tilting mapped to

timbre, shaking mapped to pitch vibrato, and so on.

In contrast to this detailed review, Chapter 3 performed a high-level overview of every

2014/09/30

7 Conclusion 129

music app in the iOS App Store, classifying them based on their descriptive text. Though

machine learning techniques were attempted, the underlying text data was simply too

noisy for automatic techniques to give good results. Thus, all 38,750 apps were classified

by hand. This had the happy result of creating a human-classified dataset that can be

used for further investigations into the iOS app store ecosystem, or for investigations into

automatic classification of text. More pertinently, this process found fifty-six new types

of music apps, here organized by mapping rather than by metaphor. As in the previous

chapter, mappings were enumerated, and, as in the previous chapter, simple, one-to-one

mappings dominate. Some interesting mapping techniques were discovered, however: the

use of two touches in rapid succession as a timbral modifier is a good example.

Chapter 4 takes the examination of mappings into new territory, moving to the graphic

scores of the twentieth century. Sixteen scores were examined, ranging from the stark

blocks of Earle Brown and Karlheinz Stockhausen to the subtle colours of Halim El-Dabh

and Wendy Reid. Pitch here is often mapped vertically, as time generally moves from

left to right. Many scores show the same focus on the separation of parameters that is the

norm in iOS applications. A large number of scores, however, leave one or more parameters

undefined, trusting to the discretion of the player. Likewise, many scores combine pitch,

timbre and articulation into a single, almost spectral graph. Wildly creative mappings are

more common here, as is more of a focus on timbre. Tenney’s BEAST, with its combined

mapping of pitch and roughness, provides a creative solution, as does Hans-Christoph

Steiner’s Solitude, which relates shape to the granular synthesis parameters used.

Chapter 5 summarized the research of Chapters 2, 3, and 4 by boiling down the most

common and iconic layouts of controls into their topological abstractions: the minimum

set of constraints for a given layout of buttons to use a certain mapping. Fourteen of these

abstractions were listed, ranging from the canonical piano keyboard to the simply rotary

knob. Examples were provided for each, along with potential expansions of the typical

mappings.

Finally, Chapter 6 discussed the engineering aspects of the thesis: developing a machine

learning based classification algorithm to recognize the abstractions discussed in Chapter

5; developing an open classification API to the classification algorithm; and building an

example application that makes use of that API to classify and map pitch to a user-designed

layout of controls. This chapter acts as a proof of concept for the stated goal of the thesis

- that the automation of mapping is both possible and useful.

7 Conclusion 130

7.1 Contributions

The largest contribution is the reviews of Chapters 2 and 3, which focus specifically on

iOS applications, and the various mappings used by them. Chapter 3 provided a high-level

overview of all apps in the music category, and crucially provided the raw, human-classified

text data for each app. This data will aid future investigations of the app store and provide

ground truth for future work around automatic text classification techniques. Chapter 2

provided an in-depth examination of the most popular music apps, including novel and

unique applications. Both of these chapters listed numerical demarcations of mapping

trends, in order to point interface designers and future researchers to the most or least

common ways of mapping a given parameter.

The two technical contributions, described in Chapter 6, are the algorithm for classi-

fying and mapping layouts of buttons based on the location of the button, and the open

classification API that provides access to this algorithm. While the Pattern Recognition

example application is not unimportant, and provides a hands-on example of how auto-

matic mapping might be used, the classification API and the backing algorithm are much

more important. The API provides access to automatic mapping / layout classification

from a simple HTTP POST request, allowing the classification algorithm to be accessed

by anyone, for any project.

The code created in Chapter 6 was based on the fourteen abstractions defined in Chapter

5, which will prove useful as theoretical constructs in terms of both interface design and

pitch space research. They were based on the raw data collected in the previous chapters,

including the graphic score review in Chapter 4. While less directly applicable to music

technology, this review holds value for composers and interface designers alike. It provides

a compendium of graphic techniques for composing, and relates those to the mapping of

input parameters in a novel way.

7.2 Limitations & Future Work

The key limitation of the work presented here is scope. Though the detailed iOS review

in Chapter 2 and the graphic score review in Chapter 4 covered a large number of items,

each of them would have been improved by including more apps or scores. Likewise, the

high-level iOS review would benefit from a much more detailed examination of each type

7 Conclusion 131

of application. These improvements would, in turn, lead to more abstractions in Chapter

5, and make the resulting software deeper and more powerful.

Even more so, limiting the review to smartphone / tablet applications instills a massive

bias towards the mappings and media used in Western music. As Ashley [37] has alluded

to, there are many other ways of projecting music into two dimensions. Though this thesis

has touched upon this by mentioning the Kalimba, this in no way ameliorates the implicit

bias in the data. An additional limitation of using the iOS App Store as a source for data

is that new applications are constantly being added. The data that Chapter 2 is based on

was gathered in early 2013, and Chapter 3 is based on data from early 2014. Much water

has passed under the bridge in the world of music technology since then.

In addition to expanding the scope of the data used, a major step would be to perform

psychological studies on the various mappings presented here. Showing an abstracted

layout to a large number of users and asking them for the ‘best’ mapping for it would

provide an important counterpoint to the empirical, review-based methods of this thesis.

Investigations of more specific parameters would also be useful, examining the impact of

visual parameters such as button size, shape, colour, and rotation on how users define

mappings. This may also turn up useful data on how musical parameters other than pitch

are mapped.

The improved data from widening the review or from grounding the review with user

studies could be used to improve the machine learning algorithm that the classification API

uses. The space for improvement here is large: training the model on more abstractions,

delivering more robust results, or dealing with parameters other than button location.

Along these lines, many of the objects that can be created in applications such as TouchOSC

and Lemur are not buttons: faders, knobs, and X/Y pads abound. Including these in the

classification API would be a key step. The classification API could also be broadened to

deal with multiple sets of buttons, rather than assuming that every button is part of the

same control layout. Likewise, if more research on musical parameters other than pitch is

done, the results could be incorporated into the output of the classification API.

Despite the limitations and technical improvement discussed above, the underlying goal

of automatic mapping of control layouts has been achieved. Even if the use of the algorithm

discussed here does not become common practice, mapping remains a key step in the

creation of any interface. The various ideas and tools discussed in this thesis will hopefully

shine a light on the subtle process of mapping for designers, engineers, and end users.

132

References

[1] T. Kell and M. M. Wanderley, “A quantitative review of mappings in musical ios
applications,” in Proceedings of the Sound and Music Computer Conference 2013,
pp. 473–480, 2013.

[2] T. Kell and M. M. Wanderley, “A high-level review of mappings in musical ios applica-
tions,” in Proceedings of the Sound and Music Computer Conference 2014, pp. 565–572,
2014.

[3] J. Chadabe, “Electric sound:{The} past and promise of electronic music,” 1997.

[4] B. Reed, “2014 looks like the year when smartphones finally crush PCs.” http://

bgr.com/2013/12/10/pc-versus-smartphone-install-base/, 12 2013. Accessed:
06/05/2014.

[5] E. van Buskirk, “Developer Explains Why Android Sucks
for Some Audio App.” http://evolver.fm/2012/05/23/

developer-explains-why-android-sucks-for-some-audio-apps/, 05 2012.
Accessed: 24/02/2013.

[6] N. Ingram, “Apple announces 1 million apps in the App Store, more than 1
billion songs played on iTunes radio.” http://www.theverge.com/2013/10/22/

4866302/apple-announces-1-million-apps-in-the-app-store/, 10 2013. Ac-
cessed: 06/05/2014.

[7] A. Hunt, M. M. Wanderley, and M. Paradis, “The importance of parameter mapping in
electronic instrument design,” Journal of New Music Research, vol. 32, no. 4, pp. 429–
440, 2003.

[8] J. B. Rovan, M. M. Wanderley, S. Dubnov, and P. Depalle, “Instrumental gestural
mapping strategies as expressivity determinants in computer music performance,” in
Proceedings of Kansei-The Technology of Emotion Workshop, pp. 3–4, Citeseer, 1997.

[9] I. Bowler, A. Purvis, P. Manning, and N. Bailey, “On mapping n articulation onto m
synthesiser-control parameters,” in Proceedings of the International. Computer Music
Conference, pp. 181–184, 1990.

References 133

[10] A. Hunt, M. Wanderley, and R. Kirk, “Towards a model for instrumental mapping in
expert musical interaction,” in Proceedings of the 2000 International Computer Music
Conference, pp. 209–212, 2000.

[11] S. Fels, A. Gadd, and A. Mulder, “Mapping transparency through metaphor: towards
more expressive musical instruments,” Organised Sound, vol. 7, no. 2, pp. 109–126,
2002.

[12] D. Wessel and M. Wright, “Problems and prospects for intimate musical control of
computers,” Computer Music Journal, vol. 26, no. 3, pp. 11–22, 2002.

[13] P. McGlynn, V. Lazzarini, G. Delap, and X. Chen, “Recontextualizing the multi-touch
surface,”

[14] Apple, “Apple Updates iOS to 6.1.” http://www.apple.com/pr/library/2013/01/

28Apple-Updates-iOS-to-6-1.html, 01 2013. Accessed: 24/02/2013.

[15] A. Professional, “Akai MPC Series.” http://www.akaipro.com/category/

mpc-series, 01 2014. Accessed: 21/07/2014.

[16] N. F. Arner, “Investigation of the use of Multi-Touch Gestures in Music Interaction,”
Master’s thesis, University of York, 2013.

[17] A. Tanaka, A. Parkinson, Z. Settel, and K. Tahiroglu, “Survey and thematic analysis
approach as input to the design of mobile music guis,” Proceedings of the International
Conference on New Interfaces for Musical Expression, 2012.

[18] H. Zhu, H. Cao, E. Chen, H. Xiong, and J. Tian, “Exploiting enriched contextual in-
formation for mobile app classification,” in Proceedings of the 21st ACM international
conference on Information and knowledge management, pp. 1617–1621, ACM, 2012.

[19] M. Chen and X. Liu, “Predicting popularity of online distributed applications: itunes
app store case analysis,” in Proceedings of the 2011 iConference, pp. 661–663, ACM,
2011.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[21] H. Zhang, “The optimality of naive bayes,” in Proceedings of the FLAIRS Conference,
vol. 1, pp. 3–9, 2004.

References 134

[22] B. Whitman and S. Lawrence, “Inferring descriptions and similarity for music from
community metadata,” in Proceedings of the 2002 International Computer Music Con-
ference, pp. 591–598, Citeseer, 2002.

[23] J. Cage, Notations. Something Else Press New York, NY, 1969.

[24] G. Read, Music notation: a manual of modern practice. Taplinger Publishing Com-
pany, 1979.

[25] K. Stone, Music notation in the twentieth century: a practical guidebook. WW Norton
New York; London, 1980.

[26] E. Brown, Folio and Four Systems. Associated Music Publishers, 1961.

[27] E. Brown, “On december 1952,” American Music, pp. 1–12, 2008.

[28] T. Sauer, Notations 21. Mark Batty Pub, 2009.

[29] E. Karkoschka and R. Koenig, Notation in new music: A critical guide to interpretation
and realisation. Universal Edition London, 1972.

[30] G. Lock, ““what i call a sound”: Anthony braxton’s synaesthetic ideal and notations
for improvisers,” Critical Studies in Improvisation/Études critiques en improvisation,
vol. 4, no. 1, 2008.

[31] V. Anderson, ““well, it’s a vertebrate. . . ”: Performer choice in cardew’s treatise,”
Journal of Musicological Research, vol. 25, no. 3-4, pp. 291–317, 2006.

[32] A. Braxton, Composition notes, vol. 4. Synthesis Music, 1988.

[33] G. Read, Source book of proposed music notation reforms. Greenwood Press New York,
NY, 1987.

[34] E. R. Tufte and P. Graves-Morris, The visual display of quantitative information, vol. 2.
Graphics press Cheshire, CT, 1983.

[35] D. Van Nort, M. M. Wanderley, and P. Depalle, “On the choice of mappings based
on geometric properties,” in Proceedings of the 2004 conference on New interfaces for
musical expression, Shizuoka University of Art and Culture, 2004.

[36] D. Tymoczko, A geometry of music: harmony and counterpoint in the extended com-
mon practice. Oxford University Press, 2011.

[37] R. Ashley, “Musical pitch space across modalities: Spatial and other mappings through
language and culture,” in Proceedings of the 8th International Conference on Music
Perception and Cognition, pp. 64–71, Causal Productions Adelaide, Australia, 2004.

References 135

[38] C. Dahlhaus et al., “Harmony,” in The New Grove Dictionary of Music and Musicians
(S. Sadie, ed.), vol. 29, London: Macmillian, 2001.

[39] L. Baxter, Capacitive sensors design and applications. IEEE Press, 1997.

[40] R. Cohn, “Neo-riemannian operations, parsimonious trichords, and their tonnetz rep-
resentations,” Journal of Music Theory, pp. 1–66, 1997.

[41] B. Park and D. Gerhard, “Rainboard and musix: Building dynamic isomorphic in-
terfaces,” in Proceedings of the 13th international conference on New interfaces for
musical expression, Daejeon, Korea Republic, 2013.

[42] B. Crabtree and K. Cain, “Monome.” http://monome.org, 01 2014. Accessed:
21/07/2014.

[43] Y. Nishibori and T. Iwai, “Tenori-on,” in Proceedings of the 2006 conference on New
interfaces for musical expression, pp. 172–175, IRCAM—Centre Pompidou, 2006.

[44] V. S. Ramachandran and E. M. Hubbard, “Synaesthesia–a window into perception,
thought and language,” Journal of consciousness studies, vol. 8, no. 12, pp. 3–34, 2001.

[45] H. Lobby and Y. De Ridder, “Beatsurfing - An iPad Organic MIDI Controller
Builder..” http://beatsurfing.net/about/, 03 2013. Accessed: 22/07/2013.

[46] Hexler, “TouchOSC - Modular OSC and MIDI control surface for iPhone / iPod Touch
/ iPad.” http://hexler.net/software/touchosc, 03 2013. Accessed: 21/07/2013.

[47] Liine, “Lemur overview.” https://liine.net/en/products/lemur/, 03 2014. Ac-
cessed: 12/05/2014.

[48] J. Malloch, S. Sinclair, and M. M. Wanderley, “Libmapper: A library for connecting
things,” in Extended Abstracts on Human Factors in Computing Systems, pp. 3087–
3090, 2013.

[49] J. Malloch, S. Sinclair, and M. Schumacher, “Digital orchestra toolbox.” http://

idmil.org/software/digital_orchestra_toolbox, 07 2013. Accessed: 12/05/2014.

[50] F. Bevilacqua, R. Müller, and N. Schnell, “Mnm: a max/msp mapping toolbox,” in
Proceedings of the 2005 conference on New interfaces for musical expression, pp. 85–88,
University of British Columbia, 2005.

[51] R. Fiebrink, Real-time Human Interaction with Supervised Learning Algorithms for
Music Composition and Performance. PhD thesis, Princeton University, Princeton,
NJ, USA, January 2011.

References 136

[52] G. Essl, UrMus-an environment for mobile instrument design and performance. Ann
Arbor, MI: MPublishing, University of Michigan Library, 2010.

[53] C. Roberts, Control: Software for end-user interface programming and interactive
performance. Ann Arbor, MI: MPublishing, University of Michigan Library, 2011.

[54] P. Joguet and G. Largillier, “Controller involving manipulation of virtual objects on
a multi-contact touch screen,” Sept. 30 2005. WO Patent 2,005,091,104.

[55] Cycling ’74, “Mira.” http://cycling74.com/products/mira/, 09 2013. Accessed:
12/05/2014.

[56] R. T. Fielding, Architectural styles and the design of network-based software architec-
tures. PhD thesis, University of California, 2000.

[57] S. Memo, “Sympathetic synthesizer.” https://github.com/stuartmemo/

sympathetic-synth, 04 2014. Accessed: 12/05/2014.

