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A BSTRACT 

The integral equations governing the electrostatics of the excess charge 

distribution near various microstrip discontinuities are formulated. Discontinuities 

considered are: open-circuits, gaps, steps, right angle bends, T junctions and cross­

ings. The resulting equations are solved bya projective method, using polynomial 

approximants. Their solution hinges on the development of computationally efficient 

techniques for dealing with the singularities and pseudo-singularities that occur, by 

suitable coordinate transformations and special weighted quadrature formulae. The 

importance of the discontinuity capacitances in the design of distributed microwave 

integrated circuits is demonstrated. Also, the integral equation describing the electro­

statics of the microstrip is solved bya projective method, using trial functions that 

preserve the singularity in the charge distribution at the strip edges. The capacitance 

of rectangular plates on metal backed dielectric substrates is obtained by solving the 

Fredholm integral equation of the first kind governing the charge distribution on the 

plates. Extensive results are presented. 
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CLAIM OF ORIGINAl/TY 

The original contributions in this thesis are: 

(1) A unified theoretical treatment, leading to an efficient 

numerical method, capable of dealing with the capaci­

tive effect of microstrip discontinuities. 

(2) The evaluation of the capacitive effects of the following 

microstrip discontinuities: (i) open-circuits, Qi) gaps, 

(Iii) steps, Qv) right angle bends, (v) T junctions 

and (vi) crossings. 

(3) The solution of the electrostatic capacitance of rectangular 

plates on metal backed dielectric substrates by the Rayleigh-

Ritz method with biquadratic expansion and projection 

functions, made possible by the development of computa­

tionally efficient techniques capable of dealing with singularities 

and pseudo-singularities. 
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CHAPTER 1 

STATE OF THE ART AND OBJECTIVES 

At various stages in the development of the microwave industry, after 

the wave propagation characteristics of a new form of transmission line are determined 

and its advantages are recognized, the interest shifts onto modeling its discontinuities. 

The wave propagating characteristics of microstrip are as weil known, as are its 

numerous advantages. On the other hand, since there is little known about micro­

strip discontinuities, prototype design is mostly a cut~nd-try procedure. The 

availability of extensive discontinuity data could increase the market penetration of 

microstrip, by substantially reducing the high cost of design. In this thesis a unified 

the oreti ca 1 treatment, capable of dealing with the electrostatic capacitive effects of 

microstrip discontinuities will be presented. 

ln the mid - 1940·5 ; Whinnery and Jamieson published extensive results 

for paraI/el plane [70J and coaxial [71 J transmission lines. Their approach was one 

of IImatching of electromagnetic wave solutions, across discontinuities ll [70J. During 

World War Il, a great deal of work was done on waveguide discontinuities at the Radia­

tion Laboratory of Massachusetts Institute of Technology. As a result of this work, a 

comprehensive book was compiled by Marcuvitz [39]. 

Usually, a transmission line is designed so that, in the frequency band of 

operation, onlyone mode is propagated along it. At a discontinuity, however, to 

describe the field fully an infinite number of non-propagating modes is required. These 
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modes decay rapidly away from the discontinuity. Whinnery and Jamieson D'O] 
and Marcuvitz [39] showed that such local discontinuity fjelds can be represented 
by lumped equivalent circuits. 

ln the second half of the 195O's Oliner and Altschuler presented lumped 
models for discontinuities in balanced strip transmission lines [3,46J. They obtained 
their results using "a small aperture procedure or a Babinet equivalent procedure in 
conjunction with an approximate model of the line" [3] . 

Although the electrical properties of microstrip transmission lines have 
been studied for about twenty years, reliable theoretical data became available only 
a few years ago. Since then, the microstrip transmission line found extensive uses 
both in microwave devices and integrated circuits. 

The advantages of microstrip over conventional transmission lines are 
numerous [29] ; among the se are : 

0) easy integrability in both monolithic and hybrid circuits 

(with similar components, semiconductors, ferrites and 

lumped elements) , 

(ii) low volume and weight, 

(iii) broad bandwidth, 

Ov) high reliability, 

(v) low production cost. 
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As far as disadvantages are concemed, there are two main ones, namely: very 

high cost of engineering and relatively low power capability. (Although losses in 

microstrip are considerably higher than in traditional forms of transmission lines, the 

greatly re~uced size of the circuit makes this loss quite insignificant.) Circuit de­

signers go to great lengths to increase the power capability of microstrip circuits, by 

improved techniques of heat removal. However, even in low power applications, 

where heat removal is not a problem, there is a trade-off between the high develop­

ment cost of microstrip circuits, and their increased reliability and hence lower 

maintenance costs. For space and military applications, the increased reliability, 

in addition to the other" advantages, overrides cost. On the other hand, for more 

lJevery-daylJ types of microwave applications relatively few inroads have been made. 

As far back as 1937, Palmer [47J using the Schwartz-Christoffel 

transformation, rigorously calculated the capacitance of an infinitely long pair of 

para Ile 1 plates in air. In 1952, Assadourian and Rimai [5J used a simplified theory 

based on conformai mapping and estimated the characteristic impedance, power flow, 

together with conductor and dielectric losses. But it was only in 1965, that Wheeler 

[68, 69J also using an approximate conformai mapping, treated the case of two in­

finitely long para Ile 1 plates separated bya dielectric sheet and gave results accurate 

to within a few percent for very thin conductors. Cau Iton, Hughes and Sobol [11 J , 

in 1966, repeated Wheeler's calculations, and showed the results to be in goocl agree­

ment with experiment. 



ln 1967, Kaupp [33J presented extensive measurements for thick 

microstrip lines and used the se results to procluce some empirical formulae. 

4 

Silvester [53J , in early 1968, used the substrip methocl ta solve the integral equation, 

governing the electrostatics of the microstrip, obtained by partial image the ory . This 

was the first methocl capable of dealing equally weil with both narrow and wide, and 

thick and thin conductors, with considerable accuracy. 

At this point, the rate at which papers appeared on the subject increased 

rapidly. Still in 1968, Yamashita and Mittra [74J used a variational methocl in the 

Fourier transform domain, to obtain the capacitance of a microstrip structure. This 

was followed by Stinehelfer's [61 J paper using a finite difference technique for the 

microstrip in a box, and by Yamashita's [75J work, again in the Fourier transform 

domain, treating various microstriplike structures. 

losse l, Kochanov and Strunskiy [30 ] in 1969, published extensive data 

on capacitance calculations of n-conductor systems in vacuum. Among the problems 

solved, mostly by a method equivalent to the method of subareas, was that of two thin 

infinitely long parallel conductors. In 1970, Mittra and Itoh [44J obtained the 

charge distribution on and the potential near a sh ielded microstrip line, whi le in 1971, 

Yamashita and Atsuki [73] reported an integral equation formulation for the thick 

microstrip in a box, where the Greenls function was obtained bya Fourier series method. 

ln addition to the study of the e lectrostatics of the microstrip, extensive 

efforts have been conducted into measuring [4, 12, 41, 67J and theoretically pre­

dicting [13, 16, 27,28, 43, 76J its dispersive effects. losses in microstrip [23,49J 
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have also received careful consideration. Similarly, the electrostatics [10 J of and 

dispersion [34, 35J in a coupled pair of microstrip lines has been studied. 

From the survey so far presented, it is obvious that in recent years there 

has been a substantial amount of literature published"on microstripfike transmission fines. 

H owe ver , even with the increased use of integrated circuits, there appears to be little 

data for finite plates on metal-backed dielectric substrates. In 1959, Reitan [50J 

obtained the capacitance of two para Ile 1 square plates in vacuum, using the method of 

subareas. Harrington [25J, in 1968, solved the some problem by the point matching 

method. lossel, Kochanov and Strunskiy [30 J , in a work already mentioned in regard 

to infinitely long parallel plates ,also calculated the capacitance of two paraHel rec­

tangular plates in air, by Reitan's method. In 1969, Adams and Mautz [2J found the 

capacitance of a rectangular dielectric loaded capacitor, by introducing special matrix 

elements to account for the air-dielectric interface. Fuller and Chang [22], in 1970, 

showed that if only the total charge is desired, it is possible to reformulate the problem 

of the capacitance of a rectangular plate in vacuum in terms of a nonsingular quantity ; 

the resulting integral equation is solved by Harrington's moment method. 

It was 1971 before Farrar and Adams [20] obtained the capacitance of 

a rectangular section of a microstrip line by the point matching method. Later the 

some year, Pate 1 [48 ] solved the capacitance problem of a thin n-conductor system 

on a dielectric substrate, bya method similar to that used by Farrar and Adams. Still 

in 1971, Bostian and Wiley [9J claimed that Harrington's method of moments leads to 

an inherently ill-conditioned matrix. Their argument was that for a square plate, as the 
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number of subareas is increased, the matrix is no longer strictly diagonally dominant. 

This, however, is not one of the known criteria for ill-conditioned matrices. As a 

matter of fa ct Harrington and Mautz [26J have just published a rebuttal. 

Now, to proceed to survey the available literature on microstrip dis­

continuities, Lewin [38J was the first to consider the problem. His objective was 

limited to radiation from microstrip open and short circuits, bends and resonators. In­

terest in radiation from microstrip discontinuities was rekindled recently, when it was 

shown [15, 19, 58, 66] that a significant fraction of the power loss in a microstrip 

open circuited stub, is due to radiation at the open circuit. 

Attempts, however, to actually model microstrip discontinuities are even 

more recent. Stinehelfer [62J, in 1968, performed measurements on open circuit 

resonators, gaps and T junctions and crossings. The limited amount of remaining 

material on microstrip discontinuity models, appeared since the spring of 1971. The 

first of these was Troughton [65J who conducted experiments on microstrip open­

circuits and T junctions. He then proceeded to design successfully, by computer, 

a multistub filter using the various measured corrections. Then followed the numerical 

calculations of Farrar and Adams [20 J on end~ffects at open-circuits, and the 

measured results of Napoli and Hughes [45] with possible error limits due to dispersion, 

still on open-circuits. In mid - 1971, Sobol [57J in a review paper, made a one line 

mention of a simplified theory for the open-circuit effect, but failed to pursue the 

point. later in the some year Stephenson and Easter [60 ] presented preliminary mea­

surements of a resonant technique capable of dealing with microstrip right angle bends. 
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Still in 1971, Leighton and Milnes [37] in a study on 3 - db directional couplers 

utilized an approximate mode 1 of microstrip, similar to that used by Oliner and 

Altschuler [3, 46J for balanced stripline, for which the behaviour of a T-junction 

had been eval uated by Marcuvitz [39] • 

ln 1972, James and Tse [31 J , using the some approach as Farrar and 

Adams, presented results for microstrip open-circuits, while Farrar and Adams [21 J 
published a correction to their earlier calculations. Wolff, Kompa and Mehran [72J 

in a letter in April 1972, matched infinite series of higher order modes at planes of 

discontinuity in microstrip steps and T junctions, on a waveguide mode 1 of the micro­

strip line. They presented numerically obtained scattering coefficients. 

From this Iiterature survey it is readily seen that, although there are 

numerous papers treating microstrip discontinuities, they mostly deal with open circuits 

(and even there they show considerable disogreement). For other discontinuities the 

available data, with two exceptions [37, 72J, are ail of experimental origin ; and 

since no two experimentalists consider the some case, there exists no supporting evidence. 

The lack of data on microstrip discontinuities necessitates time-consuming 

and expensive cut-and-try methods in microwave design. Extensive discontinuity data 

cou Id reduce substantially one of the two main disadvantages of microstrip transmission 

lines, i.e. the very high cost of engineering. The answer to this problem is not some 

time-consuming experimental procedure, but rather a general theoretical approach. If 

large quantities of reliable data were to become available, it is not difficult to visualize 



the design of microwave circuits entirely by computer, without any subsequent 

IItuning Il being necessary. 
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The objective of this thesis is to present a unified theoretical treatment 

of the electrostatic behaviour of microstrip discontinuities, leading to an efficient 

numerical method capable of deal ing with the capacitive effect of a large number of 

discontinuities. In particular, microstrip open circuits, gaps, steps, right angle bends, 

T junctions and crossings will be consiclered. In the proœss, two supporting problems 

will be discussed and solved: the first is the electrostatics of microstrip lines, the 

second is the electrostatics of rectangular plates on metal backed dielectric substrates. 

First, the electrostatic capacitance of microstrip transmission Iines is 

solved, using trial functions which preserve the essentioi singularity in the charge distri­

bution. This approach provides an efficient means of obtaining electrostatic capacitances, 

without having to compromise on the accuracy of the charge distribution detail. Second, 

the problem of thin rectangular plates on metal backed substrates is solved. Instead of 

the method of subareas with zeroth order approximation on a large number of subareas, 

the use of a biquadratic trial set with a single subregion will be shown. 
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CHAPTER Il 

SOME THEORETICAL BACKGROUND 

2.1 Introduction 

As entire books have been written on the material in this chapter 1 it 

is neither possible nor desirable to go into much detail. Instead, sorne commonly 

used definitions are stated, the variational method is introduced and its relationship 

to the Rayleigh-Ritz and Galerkin-Petrov methods are presented. The fundamental 

solution for the Laplacian operator is given and used to develop the integral equation 

governing the charge distribution on a conducting surface. The resulting integral 

operator is shown to be positive definite, which in turn implies, if the Rayleigh-Ritz 

equations are used, that the capacitance thus obtained is a maximum on the Hilbert 

space spanned by the trial functions used. An attempt is made to present as much of 

a unified treatment as possible of this varied supporting subject matter. 

2.2 Definitions [59J 

Definition 2.2.1. An inner product,on a reallinear space, is a real valued func-

tional of a pair of elements x and y, with the properties 

[1) <x, y > = <YI x> 

[Ii) <a x, y> = a <x, y> (2.2.1) 

[Iii) <Xl + x2 1 y> = <x 1 y>+<x
2 

1 y> 
1 

[Iv) <x, x> ~ 0 with <x, x> .; 0 iff x = 0 
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Definition 2.2.2. A ~ on a real linear spa ce 1 is a real valued functional 

Il x Il 1 with the properties 

(1) Il x Il :=! 0 with Il x Il = 0 iff x = 0 

(Ii) Il a x Il = 1 a 1 Il x Il (2.2.2) 

(iii) \1 xl + x2 Il ~ Il xl Il + Il x2 Il 

Definition 2.2.3. The natural ~ of an inner product spa ce is defined by 

Il x Il = <x 1 X > l~ (2.2.3) 

Definition 2.2.4. Operator c9 is positive definite if 

< J x, x > > 0 (2.2.4) 

for ail x i 0 in the domain of the operator c9. 

Definition 2.2.5. Operator c9 is symmetric or self~dioint if 

< c9 x, y > = < x 1 c9 Y > (2.2.5) 

for ail x and y in the damain of the operator c9 • 
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Definition 2.2.6. A metric on a real linear space is a real valued functional 

of a pair of elements x and y 1 with the properties 

fi) d (x, y) = d (y 1 x) 

(ii) d (x, y) ~ 0 with d (x, y) = 0 iff X=y (2.2.6) 

(iii) d (x, z) ~ d (x, y) + d (YI z) 

Definition 2.2.7. (a) x
k 

converges to x, if to each e > 0 there exists N 

su ch that d (x, x
k

) ~ e whenever k > N ; (b) a sequence {x
k

} is a Cauchy 

sequence if to each e > 0 there exists N such that d (x 1 x) ~ e whenever m n 
m,n > N; (c) a metric space is complete if every Cauchy sequence is a convergent 

sequence. 

An inner product space complete in its natural metric is a Hilbert space. 

Definition 2.2.8. Let Sand T be two sets in a metric space with S contained 

in T. Then S is dense in T if for each f e T there exists an e e 5 such that 

d (e, f) < e • 

Definition 2.2.9. A subspace M of a linear space is called a linear manifold if 

whenever x and y are in M, so is a x + ~ y . 

Definition 2.2.10. A normed linear space which is complete in its natural metric 

is called a Banach spa ce . 
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Definition 2.2.11. [36] Let E be a Banach spa ce and E be a subspace of 
n 

E. The projection operator P From E to E satisfies the properties: n n 1 

(1) P E = E n n 

(2.2.7) 
(1 i) p 2 

= P n n 

2.3 Fundamental Solution for the Laplacian Operator and its Relationship 

to the Greenls Functions [59 ] 

Let i. denote a differential operator, then the fundamental solution of 

l with pole at pl is the solution of the equation, 

i. E ( P ; Pl) = 5 ( P - Pl) (2.3.1) 

where P and pl may be points in n-dimensional spa ce • Electrostatically speaking, 

E ( P ; Pl) is the potential at some point P due to a unit charge at Pl. Observe 

that no boundary conditions are imposed on E ( P ; Pl) in Equation (2.3.1), and 

two distinct fundamental solutions may differ by the solution of the homogeneous equa-

tion corresponding to (2.3.1). When the boundary conditions appropriate to the 

given problem are imposed on Equation (2.3.1), the solution is called a Green's func-

tion and is denoted by G (P ; pl ) . 
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Stakgold [59J and many others show that the fundamental solution 

corresponding to the negative Laplacian l. = - 'il 2 is 

ln in two dimensions 
2'11' 1 P - Pli 

E ( P ; Pl) = (2.3.2) 

in three dimensions 
4'11' 1 P - Pli 

2 A Charged Thin Metal Plate in an Unbounded Region 

The analysis of the charged thin plate in an unbounded region is essen-

tially that presented by Stakgold [59J. In what follows 011 operators operate with 

respect to coordinate point P unless otherwise stated. 

It is weil known that the governing differential equation, for the plate 

S shown in Figure 2 04.1, is 
p 

2 
0 for pis (204.1) -'il 0(P) = 

P 

o ( P ) = for P € S (204.2) 
P 

lim cp ( P ) = 0 (2.4.3) 

IPI -00 

The fundamental solution, as defined in Equation (2.3.1), is the solution to 
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R 

Figure 2.4.1 Thin conductor in vacuum 



15 

2 - 'iJ E ( P ; Pl) = 0 ( P - Pl) (2.4.4) 

which, in turn, is given in Equation (2.3.2). As shown in Figure 2.4.1, one side 

of the plate surface S is denoted by S , the other by S ,while the normal to S p + - + 
is denoted by n. The region R is that part of ail space, enclosed internally by 

Sand Sand externally by a sphere S • + - r 

Multiply Equation (2.4.1) by E ( P ; Pl) and integrate over R, 

- J E (P ; Pl) 'iJ2 ([) ( P) d R = 0 

R 

Similarly, multiply Equation (2.4.4) by Cf) ( P) and integrate over R, 

r" ~ ( P) 'iJ2 E ( P ; Pl) d R = Cf) ( pl ) ,1 

R 

Subtract Equation (2.4 .5) From Equation (2.4 .6) to obtain 

(2.4.5) 

(2.4.6) 

([) ( Pl) = r [E ( P ; Pl) 'iJ2 Cf) (P) - ([) (P) '] 2 E ( P ; Pl) ] d R ,j 

R (2.4.7) 

Apply Greenls theorem, noting that the positive normal is defined as pointing outward 

From region R, and is antiparallel to n along S + . 
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,. 0 rD (P) 0 E (P ,. Pl) ] 
ço (Pl) = j [E ( P ; Pl) -- - qJ (P) d S 

Son on 
r 

+ !' [_ E (P ; Pl) 0 ço (P) + qJ (P) 0 E (P ; Pl) ] d S 

on on 

+ 
j' 
1 [ E ( P ; Pl) 0 ~ (P) _ 0 (P) 0 E (P ; Pl) J d S (2 A .8) 

S 
on on 

Stakgold [59] proves that the behaviour of ço and E far from the origin is such as 

to make the first integral in (204.8) zero. Imposing the boundary condition given in 

(204.2), and observing that both E (P ; Pl) and 
o E (P ; Pl) 

an are continuous across 

S 1 so long as pl fi S ,one obtains 
p p 

. 
o (Pl) = j 

S 
P 

00 (P ) 
E ( P ; Pl) [ -

on 

OrD(P+) 
---JdS 

on 
(2 A. 9) 

00 (P +) 
But - is just the negative of the gradient of the potential on the S side 

on + 

of the surface S ,which means that it is the electric field intensity at S . This, 
p + 

in turn multiplied by the permittivity €, is the flux density or the surface charge 
00 (P_) 

density C1 ( P +) on S +. Similarly, -'êl -n - is proportional to the surface charge 

density (J ( P _) on S _ . Therefore, denoting the total surface charge density on S 
p 

by cr (P), Equation (204.9) becomes 

(,0 (Pl) = 
E 

r 

S 
P 

E ( P ; Pl) (J (P) d S (2.4.10) 



Since E (P ; Pl) is symmetric, coordinates P and pl con be interchanged, 

ft)(P) = 
E 

r 

s 
p 

E (P ; Pl) 0' (Pl) d S 

where the integration is performed with respect to the primed variable over S • 
P 
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(2.4.11) 

An analogous procedure can be used to prove that, for the two dimen-
sional case of an infinitely long thin strip, the form of Equation (2.4.11) is still 
valid subject to the follOW'ing interpretation: (a) E ( P ; Pl) is the two dimensional 
fundamental solution, (b) integration is over a line segment, rather than a surface 
and (c) a (Pl) is charge density per unit length alon9 the line segment. 

ln order to determine the surface charge density 0' (Pl) on the plate, 
let P approach sorne point on S . Then using the continuity of simple layer p 
potential [59J together with the boundary condition in Equation (2.4.2), the result-
ing Fredholm integral equation of the first kind to be solved is 

l' 0' (Pl) 
dS = (2.4 .12) 

: 

4'11'E 
- 1 P - pl 1 5 
P 

and this is valid foraI! P E S . 
P 
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2.5 Variational Formulation 

Let J be a symmetric and positive definite operator defined on a linear 

manifold D J ' dense in a real Hilbert space • Consider the operator equation 

J u = f 

together with the associated functional 

J(v} = 2 <f, v> - <J v, v> 

where v e D J . Then the following theorems can be proved [59J 

Theorem 2.5.1. Equation (2.5.1) has at most one solution. 

Theorem 2.5.2. (a) If Equation (2.5.1) has a solution u, then 

;; (v) attains its maximum value for v = u . 

(b) If;; (v) attains its maximum value for sorne 

function u, then u is the solution of Equa-

tion (2.5.1) . 

(2.5.1) 

(2.5.2) 

Note that the maximum value of the functional ;; (v) is ;; (u) = <f, u> . 

8yTheorems 2.5.1 and 2.5.2, thereexists only one v € DJ,which 

maximizes ;;. Suppose that one is wi lIing to settle for an approximate solution in 

En' some n-dimensional subspace of D J' Then 



max 
v e E 

n 

J(v) s; max ~(v) = ~(u) 
V e 0 c9 

Hence, max ~ ( v) is a \ower bound to the true solution. let P be the 

veE n 

(symmetric) projection operator onto E. If v e E , then P v = v and 
n n n 

~(v) = 2 <f, v> - < c9 v,v> 

= 2 <f, P v> - <c9v, P v> 
n n 

= 2 <P f, v > - <p c9v, v> 
n n 

19 

(2.5.3) 

(2.5.4) 

By Theorem 2.5.2, the function u e E which maximizes ~ (v) is the solution 
n n 

of the equation 

p c9 u 
n n 

= P f 
n 

u e E 
n n 

(2.5.5) 

Observe that Equation (2.5.5) could also be obtained by simply projecting Equation 

(2.5.1) onto E . In the space E 
n n 

max ~(v) = < f, u > 
n 

veE 
n 

Let the set [ v } be a basis for E 
n n 

n 

u = a. v. 
n 1 1 

i =1 

since u 

max ~ (v) 

V e 0 c9 

e E 
n n 

(2.5.6) 

(2.5.7) 
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Perform the projection indicoted in Equation (2.5.5), in this case, taking inner 

products with the basis function set [v } 
n 

<c9u ,v.> = <f,v.> 
n 1 1 

= l, 2, ... , n 

and substitute (2.5.7) into (2.5.8) 

n 

a. < c9 v. , v. > = < f , v. > 
1 1 1 1 

i=l 

=1,2, ... ,n 

This equation may be written in matrix form 

[ 1 •• ] a. 
If - 1 

where 1.. = 
If 

T 
a • = 
-1 

f: = 
-1 

= f. 
-1 

< c9 v.,v. 
1 1 

> = 1.. 
fi 

[al ' a2 ' J .•• , a 
n 

[ <f , v
1 

>, <f , v
2 

>, ••• , 

(2.5.8) 

(2.5.9) 

(2.5.10) 

<f , v 
n 

>J 

This system of linear equations is called the Rayleigh-Ritz or Galerkin equations. 

It is appropriate to note that the form of Equation (2.5.10) is the some, 

irrespective of whether it was obtained variationally or by projections. While the 

variational approach, applicable only under special circumstances, guarantees the 
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maximality of some functional, projections, having considerably fewer restrictions 
on both the operator and the function space, have wider applicability. 

2.6 Advantage of the Variational Method 

The variational solution is particularly advantageous if one is interested, 
in the actual maximum of the related functional ;;, not just obtaining the solution of 
the operator equation. It will be shown that an error of order e in the solution yields 
only order E 

2 
error in the maximum value of the functional • 

Define the function 

F(e) = ;;(u+e17) 

where u is the exact solution, 

7'/ is sorne element in the domain D J ' 

e is sorne real parameter. 

Expand Equation (2.6.1) in a Taylor series about e = 0 

F ( €) = F (0) + € ~ 1 + / 
d € € = 0 

= J(u) + € dJ(U+€17) 
d € 

iF ~I + ... 
d € € = 0 

2 2 d J(u+eT]) + € 

€ =0 d l 

(2.6.1) 

+ ... 
€=o 

(2.6.2) 



ln the case of the variational method 

d~{U+ETI) 

d E 

implying that 

1 E = 0 = 0 

2 
= ~(u) + / d ~(U+E"') 

d e
2 
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+ ... (2.6.3) 
E=O 

Therefore, if the error in the solution of c9 u = f is of order E, then the error in F 

is of order e
2

• $0 that for small errors, F is likely to have twice as man y good 

significant figures as the approximate solution. 

2.7 Rayleigh-Ritz Method over many Subregions 

Consider the projected operator equation 

pc9u =Pf 
n n n 

(2.5.5) 

and let En' the subspace of DJ' be defined on a region of space denoted by S. 

$ubdivide $ into m non-overlapping subregions 51' 52' ... 1 5m 

$ = U 5., so that one ends up with corresponding subdivisions, E~ , 
i=1 1 

of E 
n 

such that 

E
2 m 
n ' .•. En 1 
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let {Vi } be basis functions with local support for E' on S., and n 
n 1 

E 
n 

m 
= U 

i=l 
El Hence, if u

l 
denotes the approximate solution in the ith sub-n n 

region, then 

1 
U = n 

u = 
n 

n 

j=l 

m 

I 
i=l 

1 1 a. v. 
1 1 

i 
u 

n 

let fi denote the forcing function with local support in the ith subregion, then 

m 
-;--. 

.ci f '. = / 1 
l....J 

i=l 

Substitute Equations (1..7.1) , (2.7 .2) and (2.7.3) into (2.5.5) 

m n m \' ,~ 

1 1 
~ 

fi P J \ 

P L a. v. = L 1 n 1 n 
i=l j=l i=1 

Perform the i ndi cated projecti ons, onto the set [/} for k = 1, 2, ... , m . n 

m n m t"""'" ~ 

1 i k ~ 

< fi k> L L a. <Jvj,vl 
> = , 

; , vI 1 '-' 

(2.7.1) 

(2.7 .2) 

(2.7.3) 

(2.7.4) 

(2.7.5) 
i=l j=l i=l 

k = l, 2, ; 1 = 1, 2, ••• ::1 ... n. 
Using the product integral definition of an inner product, <fi, v~ >= 0 when i '1 k ; 

. k whereas, for the integral ope rotor given in Equation (2.4.12), < J vi ,VI > '1 0 when 
i i k. Hence a fu Il matrix resu Its . 
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2.8 Galerkin - Petrov Method [36, 42 ] 

Although not variationally stationary, this generalization of the Rayleigh-
Ritz method is worth mentioning. Consider, again, Equation (2.5.1) 

J u = f 

where u E D J while fER J where D J and R J are Banach spaces. 

(2.5.1) 

let E be 
n 

a subspace of the domain D J ,while G
n is a subspace of the range R J. Also, let 

f v } be a basis set in E and f w } a basis set in G . n n n n 

Expand u E E on the subspace basis set [v } on n n 

n 
...., 

u = \ a. v. 1 

n L .. 1 1 (2.8.1) 
i=l 

Use the approximation given by (2.8.1) in Equation (2.5.1) 

n 

\' J = f 1 a. v. !...., 1 1 (2.8.2) 
i=l 

For the Galerkin-Petrov method project both sides of Equation (2.8.2) on the subspace 

P G c9 vi = P G f 
n n 

(2.8.3) 

where P G is the projection operator onto subspace G
n

. When inner product pro­n 
jections can be used, (2.8.3) becomes 



n 
\ 

L'O. < c9 v. ,w. > 
J J J' 

i=l 

<f, w. > , 
j=1,2, ... n 
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(2.8.4) 

If [w } = [v }, possible when the range space is contained in the 
n n 

domain space, the Bubnov-Galerkin method results. If, in addition, the operator c9 

is positive definite and symmetric, Equation (2.8.4) is equivalent to the Rayleigh-

Ritz equations. 

2.9 The Integral Operator Corresponding to the Laplacian is Positive Definite 

The three dimensional electrostatic problem, to be solved in Chapter IV, 

is formulated in terms of Rayleigh-Ritz equations using product integral inner products. 

Therefore if the integral operator can be shown to be positive definite then the capaci-

tance obtained is guaranteed to be a lower bound to the exact value. The integral 

operator under consideration is given in Equation (2.4.12) to be 

c9 u· = J I! (P ') d S ( P') 
S 1 P-P' 1 

(2.9.1) 

P 

where d S (P') indicates integration with respect to the primed coordinate over the 

plate surface S . The inner product definition to be used is 
P 

<u , v> = 
j" 

i u (P) v(P) dS(P) 
.J 

s 
p 

(2.9.2) 
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Thus, consider the inner product 

< J u, u > = S u ( P) J U (Pl) d s (Pl) d S (P) 
S S 1 P _pr 1 

(2.9.3) 

p p 

Apply the mean value theorem for multiple integrals [51 J to the integration in the 

primed coordinate 

< J u, u > = j 
S 
P 

" u (P) u ( P) JI 
o 

S 
P 

d S (Pl) d S (P) (2.9.4) 
1 p - pl 1 

where P is some point in S . Change the order of integration, as permitted by 
o p 

Fubinirs theorem [24J, 

< J u, u > = u ( P ) 
o 

r 
J 
S 
p 

r 
J 
S 
p 

u (P) 

1 P-Pll 
d S (P) d S (Pl) (2.9.5) 

and, naN, apply the mean value theorem to the integration in the unprimed coordinate, 

which incidentally is identical in form to the earlier integration in the primed coordinate. 

Then 

< J u, u > = u
2 

( p ) 
o 

r' " 

j j 
S S 
P P 

d S (P) d S (Pl) (2.9.6) 
1 P _ pr 1 
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Therefore, . 

< J u, u > > 0 (2.9.7) 

for ail real u 1 O. Hence by Definition 2.2.4, the integral operator in question 

is positive definite. 

Incidentally, the fact that the operator is symmetric is obvious. There-

fore, if the Rayleigh-Ritz method is used, to solve the integral equation given in 

(2.4.12) , then the functional which is being maximized is 

max ~ (v) = < f, u > = l cr (P') d S (Pl) (2.9.8) 

S 
p 

i.e. the total charge on the plate. This in turn is proportional to the electrostatic 

capacitance. Hence the capacitance thus obtained is a lower bound and is variationally 

stationary . 
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CHAPTER III 

THE INFINITE MICROSTRIP PROBLEM [55J , 

3. 1 Introduction 

Numerous solutions have appeared in the literature for the electrostatic 

capacitance of microstrip transmission lines : a simplified the ory [5J, conformai 

mappings [47, 68, 69J, substrip approximations to the integral equation formulation 

of the problem [lO, 53J , polynomial trial functions in the Fourier transform domain 

[74] ,as weil as others. Ali these methoc:ls proc:luced quite gooc:l approximations to 

the capacitance values on the strip, since the electrostatic capacitance is variationally 

stationary. Hence even relatively large errors in the computed charge distributions, 

yield acceptably gooc:l values of C. To obtain local charge distributions of reason-

able accuracy, especially in the neighbourhooc:l of the strip edge, the existing matrix 

methods result in large systems of equations and therefore time-consuming computation. 

Since in the analysis of discontinuity effects an accurate knowledge of the 

charge distribution itself becomes important, it would be highly desirable to develop a 

methoc:l which has accuracy comparable to the substrip method, with a large number of 

subdivisions, yet possibly requiring shorter computing times. Therefore, it is not in-

appropriate to take time to discuss another, more economical, approach to obtain 

microstrip transmission line parameters. The method described below, which, incidentally, 

is equally weil suited to deal with the electrostatics of coupled strips, takes relatively 

little computing time, but yields good charge distribution accuracy, including preserving 

the aIl important singularity at the strip edge. 
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It is appropriate, at this time, to point out that dispersion in microstrip, 

especially at frequencies above 5 GHz, is a factor to be contended with. Various 

investigators published results in this area [4, 12, 13, 16, 27, 28, 41, 43, 67,76]. 

Typically, over the range of 5 - 12 GHz for a characteristic impedance Z = 5O.n. 
o 

on alumina substrate (E :::: 10) of 0.025 inch thickness, there is a 2.2 % disper­r 

sion in the phase velocity [67J. However, as the microstrip discontinuities are to be 

discussed from the electrostatic point of view, only the electrostatic solution is of 

immediate interest. 

3.2 Governing Integral Equation 

As in much previous work, the TEM formulation of the microstrip problem 

is used. The integral equation which governs the electrostatic charge distribution on 

the infinite strip is given in [53J to be 

f
1 

CD Q) (y ) = cr Q) (yi) G Q) (y ; yi) d yi (3.2.1) 
-1 

where cp (y) = cp for y E [-1, 1 J. cp ( y) is the electrostatic potential on Q) Q) Q) 

the line z = h while (0 denotes the constant potential on the line segment z = h . Q) 

and y E [ - 1, 1 ] . cr (y') is the charge distribution and G (y; yi) is the Q) Q) 

Greenls function for the problem (see Figure 3.2.1). y and y' are potential and 

charge coordinates, respectively. It can be shown, using extended image theory 1 that 



f 
h 
! 

-1 

Figure 3.2.1 
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z 

+1 

Vy' , 

Mi crostrip cross-secti on 
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the necessary Green's function is 

G CD (y ; y') = (3.2.2) 

n=l 

where K = (EO - El) / ( EO + El)' The potential due to a charged wire of radius r, 

near a metal backed dielectric substrate, was obtained by Kaden [32J in a form similar 

to that given in Equation (3.2.2). 

3.3. Treatment of Singularities and Solution of the Integral Equations 

It should be noted that the Green's function in Equation (3.2.2) contains 

a singularity of the form 1 n 1 y - y' 1. Also, it is weil known [1, 52J that the 

cha~ge distribution (J CD (y') on the strip in vacuum is continuous but singular at the 

edges, and it may be written in the form 

(J (y') = 
CD 

(3.3.1) 

where c (y') is a slowly varying continuous function. Assume, that even when a 

die lectric is present the charge density can still be written in the form given by Equa-

tion (3.3.1). According to the Weierstrass approximation theorem [59J, such 

functions are weil approximated by polynomials. Therefore 1 a good family of functions 



for approximating the charge distribution is [I/J. (yi)} given by 
1 

f. (yi) 
lb. (yi) = 1 
. 1 

)1 _y12 

j -1 
[( 1-) 2 n - yi J , 

f. (yi) = i=l 
j-1 

1 

Approximating the charge distribution by the k - term sum 

cr (yi) = 
(]) 

k 

L ai I/J i (yi) 

i=l 

the integral equation (3.2.1) assumes the form 

r,o(y) 

k 
,....., 

= L a. 
1 

.. 1 

J I/J. (yi) G (y j yi) d yi 
1 (]) 

i=l -1 

> 

= 
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(3.3.2) 

1 

(3.3.3) 

(3.3.4) 

(3.3.5) 

To solve for the coefficients a. 1 one variant of the Galerkin-Petrov 
1 

method [36,42J can he used. Projecting both sides of Equation (3.3.5) onto a 

finite set of even order Legendre polynomials P 2i (y) yields 

1 k 1 1 

f t,O (y ) P 2j (y) d y = l ai j" f I/Jj (yi) P 2i (y) G (]) (y j yi) d yi d y 

-1 i=l -1-1 
(3.3.6) 
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It might he noted, in passing, that the integral projection in Equation 

(3.3.6) cannot be regarded as a moment method [26] - not 011 memhers of the set 

[ I/J. } are square integrable and therefore do not belong to any normed spa ce on 
1 

which the product integral constitutes an inner product. (As a matter of fact the 

expansion and projection sets do not even span the some space.) This also implies 

that the result is not variationally stationary and the capacitance thus obtained is not 

a lower bound to the true solution. Nevertheless, Equation (3.3.6) may he regarded 

as a non-symmetric matrix equation which is solved readily for the coefficients a •. 
1 

No difficulty is encountered in evaluating the integral on the left side of 

Equation (3.3.6) ; for the microstrip of constant potential, ([) (y) = tp for 
CD CD 

Y € [ -1, 1], ail Legendre polynomials except the zeroth are orthogonal to the con-

stant potential function ~ . Therefore no actual calculations are required to obtain 
CD 

the forcing vector for the matrix equation corresponding to (3.3.6) . 

However, the double integral contains a singular kernel in addition to the 

singularity in I/J.. Its evaluation may, therefore, cause sorne concern. Fortunately, 
1 

the integral can he shown to be convergent, so it may readily he evaluated, provided 

suitable weighted quadrature formulae are available. Such formulae may he constructed 

in the manner indicated by Silvester and Hsieh [54] ; alternately, suitable product 

quadrature rules may be obtained as described in Appendix 1. The latter approach 

is to be followed here. 

The double integral on the right hand si de of Equation (3.3.6) con he 

designated by 1 and rewritten as 



1 1 f. (yI) 

= l l j P2" (y) 
2 1 

-1 -1 1 - yi 

1 n [ 1 y - yi 1 J 

1 y -yll + 1 
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G Cl) (y ; yi) 
d yi d y 

1 n [ 1 y - yi 1 J 
1 y - yi 1 + 1 

(3.3.7) 

by simply substituting the expression in Equation (3.3.2) for I/J. (yI) and multiplying 
1 

and dividing G (y; yi) by 1 n [1 y -yll / (1 Y _yi 1 + I)J. Note, that the 
Cl) 

ratio 

r (y , yi) = 
G Cl) (y ; yi) 

1 n 1 y -yll 

1 y - yi 1 + 1 

(3.3.8) 

is no longer singular when y = yi. Also, observe that simply dividing by 1 n 1 y - yi 1 

would not be acceptable as r (y , yi) would be singular when 1 y - yll = 1 • 

The integral in Equation (3.3.7) can be rearranged to read 

= 
,.1 1 
1 
~ j 2 
-1 1 - yi 

f . (yi) 
1 

il 1 n 1 y - yi 1 P2' (y) r (y, yi) d y d yi 
v 1 
-1 1 y-yll+1 (3.3.9) 

To perform the integration in the yi direction, Gaussian quadrature formulae with 

.weight (1 _yi) -1t1 are easily obtained from Stroud and Secrest [63J , so that 1 

in Equation (3.3.9) becomes 

N 

=I A f. (yi) 
n 1 n 

1

,1 

n=l -1 

ln 

1 Y _yi 1 
n 

--- P2j (y) r (y, yin) d y 

1 Y _yi 1 + 1 
n 

(3.3.10) 
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where A and yi are quadrature weights and points, respectively. To evaluate 
n n 

the integral in the y-direction, Gaussian quadrature formulae with weight 

ln [1 y - yi 1/ (1 y - yi 1 + 1) ] for each quadrature point yi , can be obtained 
n n n 

so that 

(3.3.11) 

where B and y are quadrature weights and points corresponding to the indicated 
mn mn 

logarithmic weight, for each of the N quadrature points in the y' -direction. Note 

that this weight function does not change sign within the interval of integration, a 

property required to be able to obtain Gaussian quadrature formulae by the method des-

cribed in Appendix 1. Ten point quadratures in both directions have been found 

adequate to give good accuracy where the width to height ratio of the strip does not 

exceed three. For wider strips, the formulation appears to be entirely adequate, but 

ten point quadratures no longer suffice for accurate integrations, i.e. this is a program 

limitation rather than a limitation in the method and may be removed, if desired, by 

using quadrature formulae of higher precision. (For the few instances in which very 

wide strip capacitances were required, rather than increase the number of quadrature 

points, good success was obtained by projecting the results from the substrip approxima-

tion onto the set [I/;.} given in Equation (3.3.2).) 
1 

It is worth noting that the approximation involved in Equations (3.3.2) 

and (3.3.3) is in fact in polynomial with a Chebyshev weight. Since any polyno-

mials of a given degree span exactly the some function space, they may readily be 
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converted to another family of polynomials of the same degree. It is appreciated, 

that this approximation is in fact equivalent to an approximation in Chebyshev 

polynomials, with the equal ripple properties of the latter. 

A note regarding the evaluation and convergence of the infinite series 

in Equation (3.2.2) is appropriate. In vacuum El = EO and K = 0 and the series 

becomes finite, in fact only the n = l term exists. When the dielectric is other than 

vacuum - l < K < 0, Silvester [53J noted that Ifeach term in the series is smaller 

than Kn
-
1 

by the logarithmic factor, so that the series must not only converge, but 

must converge more quickly than a geometric series. If He also observed, that since this 

is an alternating series, an overestimate of the number of terms required for convergence 

within an error limit E is 

M = ln E 
ln 1 KI 

(3.3.12) 

This is a consequence of the fact that truncating an alternating geometric series at the 

Mth term results in an error of at most 1 KIM. .. 

3.4 Results and Comparison with Existing Data 

Unfortunately, no exact results - that is to say results of known superior 

accuracy - are available for strips on substrates of high permittivity. On the other 

hand, for paraI/el strips in free space," Palmer [47] presents a detailed analysis, by 



means of conformai mapping, which permits computation of the capacitance to ar­

bitrary accuracy. The analysis given by Palmer is sufficiently complicated to 

preclude finding analytic expressions for the charge density. On the other hand, the 

positions of successive flux lines on the strips themselves may be determined from his 

analysis. Since these positions are known to high accuracy, it is possible to perform 

numerical differentiation so os to-plot the charge density on the strip surfaces. 

Figure 3.4.1 shows comparative results obtained by conformai mapping 

and the present method, for a strip five times as wide as its height above ground plane, 

in vacuum. The charge distribution, it is noted, is very similar for both the conformai 

mapping solution and the numerical approximation; however the average charge densi­

ties differ sufficiently to lead to a capacitance error under 2 %. Similar comments 

apply to the width-to-height ratio of about 0.1 ,a quite narrow strip, shown in Figure 

3.4.2. The essential feature to note is that the small matrix size (the two cases 

illustrated were obtained using 2 x 2 matrices) results in short computing times. In 

this case 8/60 seconds are required, as opposed to 56 /60 seconds for the substrip 

method using a 50 x 50 matrix required to model accurately the local charge distribu­

tion. The singularity near the edges is still mode led accura!'ely. In actual fact the 

saving in computation time is not quite as great as it appears. In the substrip method a 

large fraction of the time is consumed by matrix solving, while in this method virtually 

the whole time is taken up by integrating the Greenls function. Requiring an error in 

the infinite series of not more than 10-
7 

puts the break even point at about 45 x 45 

matrix for El = 10.0. However, if fewer terms are taken in the series the computa-
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tion time for this method falls considerably. Table 3.1 shows comparative values 

of microstrip capacitance obtained by this method, as opposed to the results obtained 

by Silvester [53J by the substrip approximation. This program, with N substrips 

specifjed, also recalculates with N /2 substrips and using quadratic Aitken extra­

polation produces a capacitance equivalent to about 2 N substrip approximation. It 

should also be mentioned here that since the new method is not variationally stationary, 

the fact that the capacitances are higher than those obtained by the substrip method is 

not necessarily an indication of better accuracy. 

Therefore the task of obtaining an economical means of solving the 

microstrip capacitance problem, while still preserving the singularity in the charge 

density at the strip edge has been accomplished. A further improvement in the solu­

tion of this problem would be the use of linear or quadratic expansion functions near 

the center of the strip, while still maintaining singular functions near the edge. 



41 

TABLE 3. 1. 

Microstrip capacitance in p F / meter 

Substrip [37] This Method 

w /h E 30 x 30 Matrix 2 x 2 Matrix r 

0.2 2.5 28.2 28.6 

2.667 2.5 92.2 92.5 

0.2 4.2 42.9 43.5 

2.667 4.2 145.9 146.0 

0.2 9.0 84.1 85.4 

2.667 9.0 296.8 296.5 

0.2 16.0 144.2 146.4 

2.667 16.0 516.5 515.7 

0.2 51.0 444.6 451.3 

2.667 51.0 1614.6 1611.0 



CHAPTER IV 

CAPACITANCE OF RECTANGULAR PLATES 

ON METAl-BACKED DIELECTRICS [sJ 

4.1 Introduction 

42 

ln recent years a substantial amount of Iiterature has become available 

for microstriplike and related structures. But even with the increased use of inte­

grated circuits there appears to be very Iittle data for finite plates on dielectric 

substrates. Reitan [50] and Harrington [26J obtained the capacitance of two 

parallel square plates in vacuum. Adams and Mautz [2J found the capacitance of 

a rectangular dielectric loaded capacitor, while Farrar and Adams [20 J obtained 

the capacitance of a rectangular section of a microstrip line. 

Initially, the rectangular plate problem was tackled with the intention of 

obtaining the discontinuity capacitance at an open circuited microstrip by the seme 

method as used by Farrar and Adams [20 J. This involves successively increasing the 

length of a rectangular section of a microstrip line until the difference, between the 

capacitance of the rectangular section and capacitance of an equal length of infinite 

microstrip li ne , converges. Ideally this difference represents twice the open circuit 

capacitance. This approach, however, entails serious numerical problems, to be dis­

cussed in Section 5.3, and was abandoned. Nevertheless, the problem of rectangular 

plates on metal backed dielectrics is worthwhi le in its own right, particularly in the 

design of lumped element integrated circuitry. Also, the method used to solve the 
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governing integral equation for the rectangular plate, will be used to directly obtain 

the excess charges at various microstrip discontinuities. 

For a charged rectangular plate in vacuum, the governing differential 

equation and the appropriate boundary conditions are given in Equations (2.4.1) , 

(2.4.2) and (2.4.3). Normally, one wou Id proceed to solve the differential equa­

tion directly ; however, this being a three dimensional exterior problem, it is not weil 

suited to be approached from this point of view • Instead the equivalent integral 

equation was obtained in Equation (2.4. 12). 

4.2 Governing Integral Equation 

The rectangular conducting plate on metal backed dielectric substrate is 

shown in Figure 4.2.1 a. To facilitate the analysis, the equivalent problem, shown 

in Figure 4.2.1 b is considered. 

ln Chapter Il, it was pointed out that a fundamental solution becomes a 

Greenls function when boundary conditions are satisfied. The boundary condition im­

posed by the ground plane was satisfied by using an image plate as given in Figure 4.2.1 b. 

To satisfy the air dielectric boundary condition, Silvester [53J used partial image theory 

in the case of the microstrip problem. He showed that for a line charge at a distance. a 

from a dielectric sheet of thickness 2 h, the image representation valid in the dielectric 

region is as shown in Figure 4.2.2. This representationisequally valid in the case of 

a point charge, required for three dimensional problems. Therefore, the potential at a 
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point (x, y, z) where - h ::; z ::; h , due to a unit point charge at (Xl, yi, h + a), 
by superposition of the partial images, is 

CD (x, y, z) == 
1 - K 

1 

/ 2 2 
2 

J (x - Xl) + (y - yi) + [z - ( 4 n + 1) h - a ] 

(4.2.1) 
1 

41f El n=O / 2 2 
2 

J (x - Xl) + (y - yi) + [ z + ( 4 n + 3) h + a ] 

where K == ( EO - El ) / (E
O + El) is the image coefficient. For a thin plate a == 0 , 

50 that the potential in the z == h plane is given by 

~ (x, y) == 
1 - K 

/22 2 J ( 4 n h) + (x - x') + (y - yi) 

(4.2.2) K (1 -K) 
1 

n=O 
'- J2 2 2 

JL4 (n + 1) h + (x -Xl) + (y -y') 
Equation (4.2.2) represents the potential at a point (x, y, h) due to a point charge 
located at point (x', yi, h) on top of an infinitely extending dielectric slab of thick-
ness 2 h. This was obtained bya superposition of fundamental solutions to sotisfy the 

air dielectric boundary condition. Therefore Equation (4.2.2) represents the Green's 
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function for the problem. To simplify the computations to fo Il ow , the 8 - way 

symmetry inherent in the configuration shown in Figure 4.2.3, is included in the 

Greenls function, which becomes 

CD 

G (x, y ; Xl, yi) = [ f (O) - (1- K) )' Kn -1 f (n) ] ...... 
n=1 (4.2.3) 

where 

f (n) = [( 2 n)2 + (x h'x
l
)2 + (y:)2r1;2+ [(2n)2 + (~)2 + (y "yl)2]-1!.2 

(4.2.4) 

+ [(2n)2 + (x h'x
l
)2 + (Yh" yl)2]-1;2 + [(2n)2 + (~)2 + (qi)2 r 1/.2 

Using the Greenls function given in Equation (4.2.3), with ail the image 

points built into it, only the positive quadrant of the top plate 1 shown in Figure 4.2.4, 

needs to be considered. A simi lar Greenls function, containing only ha If the terms of 

Equation (4.2.3), has recently been obtained by Patel [48 ] for the case when the 

ground plane is at infinity. 

Therefore, referring to Figure 4.2.4, the integral equation to be solved is 

b 
t' 
1 
J 

a 

J G (x, y ; Xl, yi) cr ( Xl, yi) d Xl d yi = CD (x, y) 
y=Ox={) 

(4.2.5) 
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8 - way symmetry for the rectangular plate on metal 

backed dielectric substrate 
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Region of integration for Equation (4.2.5) 
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Even prior to proceeding to solve this equation, the matter of evalua-

tion ~nd convergence of the infinite series should be disposed of. On examining 

f (n), given by Equation (4.2.4), it is readily noted that f (n) < 2.. Therefore, 
n 

subiect to the change that each term in the alternating geometric series is smaller 

n-1 2 
than K by the factor -, the rest of the argument, regarding convergence and 

n 

the number of terms required for convergence to within a specified error limit for the 

infinite microstrip problem, is also applicable here. 

4.3 Solution of Integral Equation by Rayleigh-Ritz Method 

over Many Subregions 

Observe that the three~imensional boundary value problem has been re-

duced to a two~imensional integral equation. The question asked in Equation (4.2.5) 

is: 'What charge distribution (] (x~ y') is required on the plate to produce sorne given 

potential ~ (x, y) on it ?" To solve Equation (4.2.5) the Rayleigh-Ritz method over 

many subregions, described in Section 2.5, is used. In the present context Equation 

(2.7.5) can be written as 

m n 

l \ i La. 
J 

c9 i (' ') k) k k ( ) < Vi x,y ,vl(x,y >=<ct> (x, y), vI x,y> (4.3.1 ) 

i=l j=l 

= l, 2, ... n ; k = l, ... , m 

This is an m n x m n matrix equation which can be solved for the unknown 
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J i coefficeints a. by any standard technique. Once the a. are known,the total l , 
charge on the plate is readily calculated as 

b a 

= 4 r J CT ( Xl, yi) d Xl d yi J 
yl=O x 1=0 

b a m n 

4 J J \' '\" i i 
d Xl d yi L 't a. v. (Xl, yi) 

l ... 1 1 
(4.3.2) 

= 

yl=O xl=O i=1 j=l 

Since the charge distribution was calculated for the case when cp (x, y) = 1 v on the 

plate with respect to the ground plane, the capacitance of the rectangular plate is 

c = farads (4.3.3) 
1 v 

4.4 Evaluation of Inner Products - Special Treatment of Singularities 

and Pseudo-singularities 

The typical matrix element in Equation (4.3.1) is an inner product of 

the form 

i k < JV
j 

(Xl, yi), vI (x, y) > 

(4.4.1) 

= l .... Î .J' [' G ( 1 1) i (1 1) k ( ) d 1 d 1 d d j x, Y ; x ,y vj x, Y vI x, Y x Y x Y 
k-th i-th 
region region 
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where G (x, y ; Xl, yi) is given in Equation (4.2.3). Three distinct cases need 

to be examined in some detail. 

To perform the integration in (4.4.1), when the integrand contains no 

singularities, a foun:limensional Cartesian product rule is used. This involves con-

sidering the integration as an iterated integral and applying a Gaussian quadrature 

formula in each coordinate direction [14]. The use of a three point Gaussian quad-

rature formula in each direction, yields 81 quadrature points for the four~imensional 

region. Although, in principle, fewer points may be sufficient to integrate four­

dimensional complete polynomials of 5th degree (t.e. ail polynomials x; x1 x~ x~ 

such that i + i + k + 1 s 5) the extra points are not wasted as these permit the exact 

integration of ail polynomials x; x1 x; x~ such that i, j, k and 1 s 5 . 

The second case, which is necessary to consider, arises when i = k in 

Equation (4.4.1). In this case the Greenls function contains a singularity ; the in-

tegral, with the singular kernel, is of the form 

d b d b (1 1) ( ) 
Il = III J vi x, y vI x, Y 

y=c x=a y~ x~ I( 1)2 ( 1)2 JjX-x + y-y 

d Xl d yi d x d y (4.4.2) 

This integration is once again over a hypercube, but here there is a 

singularity at x = Xl and y = yi. However, performing two coordinate transformations 

the singularity sheet can be shown to have a point projection on the sheet formed by the 

remaining two coordinates. First, let the order of integration in (4.4.2) be changed to 
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d d b b 
vi (Xl, y') vI (x, y) 

!' .' Î l '1 
1 [ d Xl d xJ d yi d y (4.4.3) = 1 1 J 

y=c yJ=e x=a x'=a ~ 2 2 (x - x') + (y _yi) 

Now perform the transformation x - x' = p and x + x' = q as suggested for the 

logarithmie singularity [54J. Referring to Figures 4.4.1 a and b 1 and using the 

symmetry about the q - axis in Figure 4.4.1 b, Il may be written as 

d d 

'1 = J Î 
J 

y=e y'=e p=O q=2a;.p 

(4.4.4) 

A similar procedure can now be repeated in the y yi - plane, setting y - yi = rand 

y + yi = 5 1 to yield 

b-a d-c 2b-p 2 d-r 
1 j" l' .. r '1 =""7" J J ! F (P, r, q, 5) d s d q d r d p 
'fo /2 2 J ~ 

p=O r=O J p + r q=2a+p s=2c+r 

(4.4.5) 

where 

The integration indicated by Equation (4.4.5) can be performed if the following in-

tegrals can be evaluated : 
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Region of integration in the x Xl - plane and in the 

transformed p q - plane 
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b~ d-c 

'1 = r- H (P, r) 
d r d p (4.4.6) J2 2 p=O r=O p +r 

where 

2b-p 2d-r 
l' 

, 
1 

H (P, r) = J J F(p/r/q/s) d s d q (4.4.7) 

q=2a+p s=2c+r 

The integral in (4.4.6) can be evaluated by performing the transformation p = R cos 9 

and r = R sin 9. Referring to Figure 4.4.2 

o (b~)sec 9 
J H (R, 9) 

R 
R=O 

= f 
G=O 

11'/2 (d-c) cosec 9 

R d R d 9 + J J H (R, 9) R d R d 9 
R 9=0 R=O (4.4.8) 

Note that in the integrotions in Equation (4.4.8) the singularity is no longer present. 

Each integral in (4.4.8) can be evaluated using a Cartesian product of Gaussian 

quadrature formulae in the R - 9 plane. Once the quadrature nodes for the inte-

grations in Equation (4.4.8) are known , the integrations indicated by (4.4.7) become 

a definite integral, which can be evaluated by a Cartesian product rule in the s q -

plane. 

form 

d 
r 

'2 = J 
y=c 

The third case to be considered is a pseudo-singularity which takes the 

b 

r 
J .. 

I,~ Jb vj(xl,/)vl(x,y) 

YI=C Xl=a /k2 ( 1)2 ( 1)2 J~ + x - x + y-y 

d Xl d yi d x d y (4.4.9) 
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Figure 4.4.2 Region of integration for Equation (4.4.8) 
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The integrand here is in fact continuous throughout the region of integration, but has 

very large derivatives as weil as values if k is small ; straightforward use of Gauss-

Legendre quadratures, therefore, leads to bounded but very large error. From the 

numerical point of view 1 this integral is difficult and requires special treatment similar 

to true singular integrands. In this case the equation equivalent to (4.4.6) is of the 

form 

b-a d-c 
r­
I 

.J 

p=O 

r 
: 

oJ 

H (p, r) 
(4.4.10) 

Perform the sa me polar transformation as before, i.e. p = R cos Gand r = R sin G . 

Now referring to Figure 4.4.3 1
2 

can be rewritten as 

1r/2 3k 
r' 

r- R 
'2 = 1 H (R, G) d R dG 

" " 
!k

2 
+ R

2 G=O R=O 
(4.4.11) 

a (b-a)secG 1r/2 (d-c)cosecG 

:' R H (R, G) d Rd G + I J R H (R, G) d R dG • /2 2 /2 2 

Î + ,i 
9<=0 R=3k Jk + R G=a R=3k Jk + R 

To evaluate the first integral in Equation (4.4.11) a Gaussian quadrature formula is 

developed with weight R / /k
2 + R2 

for the R-direction, while a Gauss-Legendre 

quadrature is used in the G direction. This ensures that the pseudo-singular part of the 

integral is evaluated rather accurately. The second and third integrals in Equation 

(4.4.11) do not have pseudo-singular integrands and straightforward Cartesian products 

of Gauss-legendre formulae may be taken. 
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The inner product on the right of Equation (4.3.1) is, simply, a fwo-

dimensional integral with nonsingular integrand, so that its evaluation is done very 

simply using a Cartesian product of Gauss-Legendre formulae. 

4.5 Results and Comparison with Existing [)ota 

Since Equation (4.3.1) is the Rayleigh-Ritz equation over many sub-

regions and the integral operator in it is obtained by the superposition of a number of 

positive definite operators, the method is variationally stationary. The corresponding 

functional, which is in effect maximized, was shown in Equation (2.9.8) to be the 

capacitance of the rectangular plate. 

/n ail the present calculations the basis functions used are 

[ v. (x, y) } = [1, x, y, /, / }. Although it is weil known that the charge dis-1 

tribution on a rectangular plate contains singularities at the plate edge, so that the 

polynomial basis set used is not weil suited to reproduce these singularities, nevertheless 

relatively high accuracy is expected for the total charge and hence the capacitance of 

the plate for the reason described in Section 2.6. Aiso in Chapter Il, it was pointed 

out that the capacitance thus obtained is a lower bound to the exact value. 

As a result of the variational nature of the solution, increasing the number 

of basis functions or using more subregions, the capacitance value obtained should increase 

or stay unchanged. 

and w /1 = 1.0 . 

This type of behaviour is readily seen in Table 4.5.1 for e = 2.5 
r 



58 

TABLE 4.5.1 

C d / e A, where C is the parallel plate capacitance normalized 

w. r. t. capacitance of infinite plates 

~~ d / ubregions 1 2 3 5 

1.0 6.17 6.20 6.25 6.30 

0.2 3.26 3.26 3.33 3.34 

It is appropriate at this point to compare the results obtained by the 

present method with those in [20 , 26, 50 J. Reitan [50 J calculated the parallel 

square plate capacitance in vacuum using constant basis functions over 36 subregions 

on the plate, which is equivalent to using 9 subregions on one quarter of the plate. 

A comparison of his results with those obtained by the present method, using the bi-

quadratic basis set over one subregion, is shown in Table 4.5.2. Harrington [26J 

solved the same problem by the point matching method. His results together with those 

obtained by this method are shown in Figure 4.5.1. Farrar and Adams [20J calcu-

lated the electrostatic capacitance of square and rectangular plates on a metal backed 

dielectric substrate. They also use a number of subregions with constant basis functions 

however they do not indicate how many subregions were used. Figure 4.5.2 a and b 
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TABLE 4.5.2 

Para Ile 1 Square Plate (w = 1 ) Capacitance in Vacuum 

C /w (pf/cm) 

Reitan - 9 const This Method 

d /w Subregions One Subregion 

0.005 17.74 18.8 

0.025 3.7892 3.93 

0.05 2.0295 2.07 

0.10 1.1324 1.14 

0.20 0.6629 0.671 

0.50 0.3750 0.385 

1.0 0.2801 0.289 

show their results together with those obtained by this method. Note that the results 

obtained by the present method are equal to or higher than the others. Since this 

method produces a lower bound to the true capacitance, the higher values thus obtained 

are doser to the exact solution. 

A sufficiently large number of computations has been carried out using 

the above method to permit determining, within a small percentage errer, the electro­

static capacitance of virtually any rectangular plate separated bya dielectric sheet 
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from an infinite conducting sheet (or, what is equivalent, any rectangular plate pair 

separated byan infinite dielectric sheet). The results of these calculations are given 

in Figures 4.5.3 and 4.5.4. 

ln Figure 4.5.3 extensive results are shown for a thin rectangular plate 

of width w and length 1 a distance h from an infinite conducting sheet in vacuum. 

(The some curves apply for fwo parallel rectangular plates spaced d = 2 h apart with 

the ordinate relabeled Cd / EO A). The capacitance values as given have been 

normalized to the capacitance of a similar configuration, calculated on the assumption 

that there is no fringing. It will be noted that the range w /1 shown covers ail 

possible cases: w /1 = 0 corresponds to infinitely long strip, while w /1 = 1 re-

presents a square plate over a ground plane. The parameter of Figure 4.5.3, d / w, 

has been used in preference to d /1 for two reasons. First, this choice makes the 

left-hand endpoints (w /1 = 0) of ail curves represent strips with specified ratio of 

width-to-height above ground plane, directly comparable with the microstrip results 

given in Chapter IIJ. Secondly, it has been found that Figures 4.5.4 a -e- are ren-

dered most easi Iy legible by this choice. 

If a dielectric sheet of relative permittivity E is inserted between the r 

ground plane and the rectangular plate, the capacitance rises From its original free-

spa ce value C to sorne higher value C. This value, however, is always lower than o 

the value C that would be achieved by filling ail space with dielectric of permittivity r .. 
E • One may define effective filling factor TI as the ratio of capacitance with di-r 

electric sheet in place, to capacitance obtained in a space of homogeneous relative 

permittivity E • 
r 
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11 = c/c 
r (4.5.1 ) 

Since C = E C ,the actual capacitance C can be found from r r 0 

C = 11 E C r 0 (4.5.2) 

provided 11 is known. 

Values of effective filling factor " are given in Figures 4.5.4 a - e 

for E = 2.5, 4.2, 9, 16, 51 ; these choices are appropriate to sorne of the r 

commonly employed dielectric materials. While 11 is obviously dependent on E as 
r 

weil as on the geometric parameters, its variation with E is not very rapid. There­r 

fore very little accuracy is lost by, for example, using Figure 4.5.4 d for aIl 

14 s; E s; 18 without modification or correction. r 

If capacitance values are required for relative permittivities not close to 

one of the tabulated values, linear interpolation has been found quite effective. As an 

extreme example, suppose w /1 = 0.4, d /w = 0.5 and E = 4.2. Using r 

Figure 4.5.4 b, 11 = 0.772 is obtained. Were this curve not available, it would be 

necessary to interpolate between Figure 4.5.4 a (from which 11 = 0.822) and 

Figure 4.5.4 c (where .,., = 0.731). The interpolation yields '1"1 = 0.798, in error 

by less than four percent, despite the very large range of relative permittivities spanned 

by the interpolation. Various numerical tests have shown that interpolation between 

adjacent pairs of computed curves, ordinarily yields errors of about one percent, and 

occasionally two percent. It is believed that this accuracy level is entirely adequate 
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for practical work, where neither permittivities, nor geometric parameters are likely 

to be known much more accurately. 

ln conclusion, the use of the Rayleigh-Ritz method with biquadratic 

basis functions, as opposed to a large number of zeroth order subregions, indicates 

that electrostatic capacitance values accurate to within a few percent can be achieved 

using one subregion. The computing times required by this method have been found 

sufficiently short to permit presentation of a set of universal curves, from which the 

capacitance of a rectangular plate on a conductively backed substrate, or of a pair of 

rectangular plates separated bya dielectric sheet, may be found. Typical computa­

tion times are given in Table 4.5.3. The computation time, as a consequence of 

3 

5 

TABLE 4.5.3 

1.0 

4.2 sec 

15.9 sec 

29.3 sec 

9.9 

46 Terms 

5.4 sec 

22.1 sec 

47.6 sec 

Computation tÎmes for rectangular plate capacitance calculations 
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Equation (3.3.12), which is also applicable here, increases with increasing El 

(decreasing K) for a specified value of the truncation error in the infinite series. 

An important advance on this problem, would be the development of 

efficient quadrature formulae required for the evaluation of the four-dimensional 

singular integrals generated by the Cartesian product of triangular, rather than rec­

tangular, subregions. The use of high-order triangular subregions would not only 

reduce the number of subregions required for a Manhattan type rectangular geometry, 

and hence permit the solution of larger systems of conductors, but would also allow 

the treatment of conductors of virtually any shape. 
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CHAPTER V 

MICROSTRI P DISCONT INU rTY CAPACITANCES 

5.1 Introduction 

Although numerous papers have been published on microstrip discon­

tinuities, mostly during the past year and almost exclusively treating microstrip open 

circuits, the results show a great deal of disagreement. 

Many discontinuities are weil represented by capacitive models. In 

other discontinuities, the capacitive compone nt is dominant, though it forms an in­

complete model. rn this chapter a method is presented capable of dealing with the 

capacitive effects of the discontinuity of any junction of microstrip transmission lines. 

Its simplicity and inherently high accuracy, in addition to its versatility will be 

demonstrated. 

5.2 Definitions and Methodology 

The approaches 50 far utilized in obtaining discontinuity capacitance 

values, both numerically and experimentally, run into considerable difficulties with 

numerous errors. The most important of these errors is invariably due to the subtraction 

of two numbers of almost equal magnitude. 

The method presented here, determines excess capacitance directly. 

Subtraction of almost equal numbers is avoided, so that the overall accuracy realized 
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is that of the resulting excess capacitance. The best way to introduce the methodo-
logy utilized is by actually obtaining the governing integral equations for the excess 
charges, and hence excess capacitances, at various discontinuities. But prior to 
that, a number of commonly used symbols are defined and a key artifice is described. 
As in Equation (3.2.1), let cp (1) (P) denote the potential, in the plane of the CD x 
microstrip, corresponding to an infinite microstriplike charge distribution a (1) (Pl) . 

CD X The subscript x on the charge and potential coordinates, pl and P , indicates that x x 
the axis of the microstrip is parallel to the x - axis; while the superscript 1 in-
dicates a microstrip of width-to-height ratio (w / h)l' When the meaning is 
obvious both of these will be omitted. Therefore as in Equation (3.2.1) 

cp (1) (P ) = J a (1 ) (Pl) G (P ; pl ) d pl CD X CD X CD X X X 
(5.2.1) 

ln the case when P is on the microstrip, cp (1) (P) = cp (1) = constant. x CD x CD 

Now, let (f)J1) (P) representthe potential, in the plane of the micro­
strip, associated with a microstriplike charge density distribution a (1) (Pl) with a 

CD x 
sudden polarity reversaI in the charge at x = ~. It is shown in Appendix Il that 

cp(1)(P) 
~ x 

= r a (1) (Pl) G (P • pl ) d pl J CD x ~ x' x x (5.2.2) 

The Greenls function required in Equation (5.2.1) is given by Equation 
(3.2.2) while thatrequired in (5.2.2), with reference to Figure 3.2.1, is 
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CD 

= 1 - K [f (0) - (1 - K) l Kn- 1 f (n) ] 

4 'If fO n=1 

(5.2.3) 

where 

f (n) = log 
/ 2 2 2 2 J ( x -~) + (y - yi) + 4 n h 

1 2 2 2 2 J (x -~) + (y - yi) + 4 n h 

+(x-~) 
(5.2.4)* 

and K is the image coefficient defined in Section 4.2. 

The charge distribution that causes (f) 2) is exactly the same as 

over the interval x f ( ~ , CD) and equal to - a (1) (Pl ) over the in-
CD x . 

terval (- CDi n. White this situation may be physically difficult to realize, there 

is no mathematical objection to it. This simple artifice holds the key to the useful 

formulation of the excess charge problem, as will be shown in the following sections. 

To evaluate the integral in Equation (5.2.2), recall that the charge dis-

tribution resulting from (5.2.1) is of the form given by 

k 

(j ( yi) 1 ',' f. (yi) = L a. 
CD Jl _ yl2 1 1 

i=1 

(3.3.4) 

Note that the Greenls function in (5.2.3) has a singularity at y = yi, while the 

ratio 

Ge (x 1 Y ; yi) 
r ~ (y ; yi) = (5.2.5) 

log 
1 y _yi 1 

1 Y _yi 1 + 

is no longer singular. Substituting into the integration to be performed in (5.2.2), 

then 

* The notations 1C?9 and ln are used interchangeably in the thesis, both implying 
natural logarithm. 
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fi (y') r ~ (y ; yi) d yi (5.2.6) 

ln this integrand fi (yi) r ~ (y ; yi) is nonsingular over the interval 

yi e C -l, 1 ] , ail the singularities are packed in the weight 

J 2 
logCly-y'I/(ly-y'l+l)J/ 1-y' . Gaussian quadrature formulae, with 

this weight, can be developed for each y, by the procedure described in Appendix 1 • 

The work in this chapter, as in the previou:i ones, is confined to microstrips assumed to 

be of zero thickness. 

5.3 Microstrip Open Circuits [56J 

5.3.1 Circuit Model and Existing Data 

A fact generally true for almost ail wave-guiding structures is that, unlike 

for short circuits, physical terminations which c10sely correspond to mathematical open 

circuits are almost impossible to realize. For a microstrip open circuit, i.e. a micro-

strip line terminated by simply cutting it off square, a number of phenomena may occur. 

At the end region a charge accumulation is expected ; corresponding to this charge, 

there may be sorne local currents ; and, finally, there may be some energy loss due to 

radiation at the open circuit. Each of these can, respectively, be accounted for in 

terms of capacitive, inductive and resistive components. Consequently the physical 

open circuit may be modeled byan R-L-C termination. 
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ln practical work, judging by published experimental data for alumina 

substrates, the radiative and inductive components are almost wholly negligible up 

to 1 GHz. In the 1 to 20 GHz range the inductive and in particular the radia­

tive compone nt is measurable, but the capacitive aspect is still the dominant 

compone nt . To date, therefore, two models have been proposed as practically usable 

for the open termination : a pure equivalent capacitance and a length of transmission 

line electrostatically equivalent to that capacitance (see Figure 5.3.1.1). 

Attempts have been made to determine the termination parameters ex­

perimentally. Stinehe Ifer [62 J performed sorne measurements as far back as 1969. 

Troughton [65J has, recently published results for two width to height ratios which 

appear to have been very carefully conducted. Napoli and Hughes [45J have given 

a much more extensive set of data, most laudably together with an indication of possible 

error limits due to dispersion. Concurrently, some theoretical attempts have been 

made. Farrar and Adams [20 J have published computed results for the open circuit 

pair formed bya rectangular finite piece of strip. Sobol [57J in a review paper 

alludes to a "simple ll theory for wide strips, but surprisingly omits to indicate where 

it has been published or what its basic assumptions may be. And finally James and 

Tse [31] using a method similar to that of Farrar and Adams present considerably more 

extensive results. 

Experimental work in this area is made particularly difficult by the 

existence of dispersion on the line. On the theoretical si de , even in the electro­

static assumption, great difficulties arise since analytic solution is impossible and ail 
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numerical approoches lead to two dimensional integral equations with singular 

kernels. The approoches tried so far encountered numerous errors, since they have 

involved the subtraction of two numbers of almost equal size ; this ho Ids true for 

both analytic and numerical approaches. As already mentioned, the method pro-

posed here determines the excess charge directly so that the above problem is not 

encountered. 

5.3.2 . Excess Charge Formulation 

To formulate the excess charge problem usefully, consider an infinite 

microstriplike charge distribution, as given in Equation (5.2.1), of ~ (J (P') with 
~ aJ x 

its associated potential 2
1 

cp (P). Also, consider a charge distribution co x 

~ (J (P') withapolarityreversalat x=O, as givenby Equation (5.2.2), with ~ CD x 

its corresponding potential -!. ([J (P). By the superposition of these two charge ~ 0 x 

distributions, there results the hypothetical distribution exactly equal to the charge on 

an infinite strip for x E [0, CD] and zero for x E [ - CD, 0]. The potential corres-

ponding to such a distribution is 
1 
." [ CO (P) + t,OO (P ) ] • 
~ CD X X 

It is readily seen that this potential distribution cannot satisfy the re-

quirement of constant potential everywhere on the half-strip. Indeed, were it to 

satisfy this condition, the desired end capacitance would be zero! To raise the 

potential everywhere on the half-strip to the constant value CO , a certain amount of 
CD 

extra charge (Jx = (Jt - CT
CD 

must be placed on it. Here c; denotes the total charge 
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density on the actual open circuited semi-infinite microstrip. Therefore, the 

potential residual annihilated by the extra charge CT on the half-strip is 
x 

1 
CO -.;- [ ft) + CD 0 (P ) ] 1 or 

CD "CD X 

oc l [ ] 
cp x (P) = "2 <D CD - <D 0 (P) (5.3.2.1) 

Since both cp and CPo (P) are known (CD is chosen as unity 1 while 
CD CD 

ft)O (P) can be calculated from Equation (5.2.2) ), <O:c can be obtained. In 

order to find the unknown excess charge CT; corresponding to <D:
c 

1 a three dimen- . 

sional problem, analogous to the rectangular plate of Chapter IV, must be solved. 

Therefore 1 as in Equation (4.2.5) , 

oc 
CD (P) = 

x J CT oc 
x 

half-strip 

( Pl) G oc (P ; Pl) d pl (5.3.2.2) 

where G
Oc 

(P; Pl) is the three-dimensional Greenls function given in Equation 

(4.2.4) except, now there is no symmetry about the y -axis. 

Although this equation requires integration over the semi -infinite strip, 

computationally effective ways can be devised for its solution since both the potential 

and the excess charge approach zero asymptotically (and rather rapidly) for points at 

increasing distances from the strip end. 
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5.3.3 Solution for Excess Charge and C 
oc 

It should be observed, that Equation (5.3.2.2) permits the solution 

for excess charge directly, without further arithmetic manipulation or approximation. 

The only subtraction in the entire formulation is that required for the potential resi­

dual ~oc in Equation (5.3.2.1) ; these numbers are numerically very different near 
x 

the strip end, where the excess charge resides ; their difference, therefore, is deter-

minable to high accuracy. The region in which the potential residual is known only 

with poor accuracy, i.e. far away from the termination is an area of no interest in 

any case, since it contains Iittle if any of the excess charge • 

To solve Equation (5.3.2.2) the following steps need to be taken : 

(1) 

(Ji) 

assume ([) = 1 and evaluate a (Pl) as in 
CD CD 

Chapter III , 

use a (Pl) in Equation (5.2.2) to solve for 
CD 

°0 (P) , 

oc 
[Iii) evaluate the potential residual ([) , 

x 

[Iv) use the Greenls function as given in Equation 

(4.2.3) with 

fOC (n) == [( 2n)2 + (x h Xl) 2 + Cr,;:-L)2 J-1;1 + [(2n)2 + (T') 2 + (y h yi )2J -1;1 

(5.3.3.1) 
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(v) solve Equation (5.3.2.2) using the Rayleigh-Ritz 

method over many subregions, in a manner similar to . 

that employed in Chapter IV for the rectangular plates, 

(vi) evaluate the total ex cess charge and hence the open 

circuit capacitance • 

C = r (Toc (Pl) d pl 
oc "x (5.3.3.2) 

For E = 9.6 and two relatively extreme strip widths the potential r 

residual appears plotted in Figure 5.3.3.1. This figure also shows the typical sub-

regions used in the excess charge calculations. As may be seen from Figure 5.3.3.1 

the potential residual does not extend far bock from the open circuited end, so that 

integration over the semi -infinite strip is in fact not required ; carrying integrations 

bock about two substrate thicknesses for alumina substrates, appears to be adequate for 

most width-to-height ratios. While it is possible to develop quadrature formulae to 

integrate over the semi -infinite strip, this has not appeared worthwhile since the po-

tential residual dies off very rapidly. The exact distance how far bock from the strip 

end the integration is carried is not critical. This geometric truncation has been tested 

by repeated recomputation using larger and larger regions of integration. 
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5.3,4 Results and Comparison with Existing Data 

There have appeared in the Iiterature, both experimental and theore­

tical, results for the open circuit capacitance of a microstrip line. The results 

given by Napoli and Hughes [45J are of considerable importance in this regard as 

are th ose of Farrar and Adams [20 J. 80th were concerned with alumina substrates, 

results being presented for relative permittivities of 9.6 and 10,4. De ta il ed' 

comparison has been made with both sets of results as weil as with those by Troughton [65J. 

Figure 5.3,4.1 shows the comparison between the present method and 

those indicated above. The open circuit capacitance is represented by the electro­

static capacitance of a length A 1 from an infinite microstrip li ne • It is interesting 

to note that in the center portion, around w / h = l, ail four groups of investigators 

agree substantially. Above and below this portion some disagreement is evident. The 

Farrar and Adams curve was computed using a method in which the capacitance of a 

finite section of infinite microstrip is subtracted from the computed capacitance of a 

finite rectangle. This procedure is fraught with error accumulation ; it represents the 

c1assical difficulty of subtracting two large, and nearly equal, numbers. Because this 

difficulty obtrudes particularly badly for wide strip widths, it is held that the Farrar and 

Adams curve may be considered reliable for narrow strip widths but not for broad ones. 

This discrepancy has been communicated to the authors and very recently, they pub­

lished a correction to their results [21 J , which shows much better agreement with the 

present method for wide strips. Their corrected results are also shown in Figure 5.3.4.1. 

Further support is lent to this view by the Napoli and Hughes curve, which, as mey be 
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seen, follows the computed ones weil through the mid-range and up to broad strip 
widths. Troughton has only given two points : for w / h = 1 there is good 
agreement with Napoli and Hughes while for w / h = 3.44 the results are about 
20 % higher. * The reasons why Nopoli and Hughes' experimental results should not 
agree with calculations for narrow strip widths are not evident. However, it is note-
worthy that the shape of their curve at small widths is predicated on one point only, 
so that an experimental error of unusually large magnitude in the measurement of that 
point could weil alter the shape of their results, as presented, quite markedly. 

Stinehelfer's [62J results are not shown in Figure 5.3.4.1 since they 
are higher by more than a factor of two. Ali the evidence available points to the 
fact that the disagreement must be resolved in favour of the results calculated by the 
method proposed here. James and Tse, being in possession of a 

preprint of [56J, have indicated in [31 J that their results are in good agreement 
with those calculated by this method. 

A rudimentary error analysis of the numerical method presented here has 
been made. It has been found that the calculated results are in error probably on the 
low side j and it will be noted that this expectation is borne out by comparison with 
experimental results. 

* It should be noted that the curve given in Figure 2 of Troughton's paper [65J has an error of one order of magnitude in the admittance coordinate [64]; the points plotted in Figure 5.3.4.1 have been corrected. 
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Fi gure 5.3.4.2 shows curves of the excess capacitance of an open 

circuit microstrip termination normalized to strip width as a function of strip width-

to-height ratio and substrate permittivity. Typical CPU times required for e = 1.0 
r 

and e = 9.6 on the IBM S 3«J/75 with three subregions are 16 seconds and 30 
r 

seconds, respectively. This compares favorably with the 5 - 20 minutes reported by 

Farrar and Adams [20] on a GE 635, a computer of roughly comparable speed. The 

permittivity values have been chosen essentially arbitrarily, but in keeping with some 

of the fairly common substrate materials. These open -circuit capacitance curves have 

been fitted with quartic polynomials [56J, to enable users to write function sub-

routines capable, with Iittle arithmetic, of returning the required discontinuity data. 

5.4 Microstrip Gaps []] 

5.4.1 Circuit Model and Existing Work 

Unlike for the microstrip open circuit there is hardly any published 

Iiterature, theoretical orexperimental, on gaps in microstrip. Stinehelfer [62J 

performed transmission loss measurements on gaps in microstrip and used the results to 

mode 1 the discontinuity bya series gap capacitance (see Figure 5.4.1.1). 

A more complete model, to be utilized here, for this discontinuity is a 

symmetrictwoportcapacitive 'Ir network (see Figures5.4.1.2a and b). This 

mode l, of course, assumes that there is no radiation due to or de lay through the gap. 
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The inclusion of these would add sorne resistive and inductive components 

respectively. 

ln the capacitive 'Ir model shown in Figure 5.4.1.2 b it is weil known 

that at least two measurements are required for the determination of the parameters 

Cl and C
12

· Figures 5.4.1 .3a and b illustrate two such measurements. The 

capacitance values thus obtained are denoted by C and C
odd

' respectively. 
even 

5.4.2 Excess Charge Formulation for C and C
odd even 

To obtain the excess charge for C , defined by Figure 5.4.1.3 a, 
even 

an infinitely extending microstriplike charge distribution a (P 1) , of the type de­
CD x 

fined by Equation (5.2.1), is considered. Two other charge distributions each 

!.2 cr (Pl), one having a polarity reversai at x = s /2 and the other at x = - s /2 , 
CD x 

are required. The potentials, as defined by Equation 5.2.2, corresponding to these 

1 1 
three charge distributions are t,CD (P), f C{Js/2 (P) and ~ CfJ -s/2 (P) , respec-

tively. 

Superposing the infinite microstriplike charge distribution with the one 

with polarity reversai at x = s /2 and subtracting the third charge distribution, one 

is Jeft with a microstriplike charge over the intervals J xl> S /2 and zero charge 

1 
dsewhere. The corresponding potential is ~ CD (P) + 2" [~s/2 (P) - t[) -s/2 (P) ] . 
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Now, arguing as in the open circuit case, a certain amount of extra 

charge CT even = CT - CT must be added to each of these microstriplike distribu-x ~ ex> 

tions in order to raise the potential on them to 0 , as required by Figure 5.4.1.3 a. ex> 

Therefore the potential residual on the strip, corresponding to the extra charge 
even. [ 1 [ CT ,IS0 - cp +- ft) fr)(P) -cp_lt'l(p)J},i.e. x ex> ex> 2 s/" ,,/ " 

(5.4.2.1) 

Therefore, as in the open circuit case, the governing integral equation is 

cp:ven (P) = l a:ven (Pl) G even (P ; Pl) d pl (5.4.2.2) 

To obtain the excess charge formulation for C
odd

' as defined in 

Figure 5.4.1.3 b, it can be shown by an analogous procedure that to raise Oower) the 

potential on the semi -infinite strip at x > s /2 (x <-s /2) to CD ( - rD ) an ex> ex> 

extra charge CT odd (- CT odd) is required. The governing integral equation is x x 

t,D:d (P) = J CT ~d (Pl) G odd (P; Pl) d pl (5.4.2.3) 

where 

'," xodd (p) = '," -. 1 [ ( p ) ( P) ] 'U 'U ~ - ~ CD s~ + rD ~/2 (5.4.2.4) 

ln Equations (5.4.2.2) and (5.4.2.3) both the potential residual and 

excess charge approach zero asymptotically at increasing distances From the strip ends. 
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5.4.3 Solution for Excess Charges, and C and C
odd even 

The comments made in Section 5.3.3, for open circuits, also apply here, 

subject to the following modifications : 

The Green's function is the some as given in Equation 4.2.3 with 

even 

f odd (n) = [( 2n)2 + (.~ .. ~!:) 2 + (.~:~i) 2] -1~ + [(2n)2 + (xh) 2 + (~)2 ] -1;1 

(5.4.3.1) 

± [ (2n)2 + (T? + ("!-)2 f1~ ± [(2n)2 + (xt
xI

)2 + (yt()2 ] -1~ 

Note that full advantage is taken of the symmetry about the x"1Jxis, and symmetry or anti-

symmetry about the y"1Jxis for the even and odd cases. 

C even 

The desired capacitance values are 

= 

= 

2 r 0' even_ (P') d P' 
J x 

r 0' odd ( P ') d P' 
u x 

(5.4.3.2) 

(5.4.3.3) 

where the indicated integrations are over the half-strips located at x > s /2 . 

For e = 9.6, w /h = 1 and s /w = 0.1 the potential residuals 
r 

are shown in Figures 5.4.3.1 a and b ; also shown are the typical subdivisions used 

for excess charge calculation. 
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5.4.4 Results and Cornparison with Existing Data 

The only published data available for microstrip gaps appear to he those 
due to Stinehelfer [62J *. He performed transmission loss measurements on single 
gaps in uniform 5O..n. microstrip Iines, and cornpared the results with the theoretical 
loss calculated for a capacitive gap in a 5O..n. line. The measurements were made 
at 2 GHz on a substrate of relative permittivity of 8.875 of thickness h = 0.020 
inches and w / h = 1, with a metallic coyer placed sorne distance from the substrate. 
Gap capacitance versus spacing-f'o width ratio curves are given for both coyer off and 
coyer on cases. As the theory proposed here is developed for the coyer off case, it is 
appropriate that cornparison he made with measurements under the some conditions. 

The most meaningful cornparison is to plot transmission Joss against spacing-
to-width ratio frorn Stinehelferls measurements on the sorne graph as loss predicted by 
the 'II' equivalent circuit given here. The measured and calculated results are shown 
in Figure 5.4.4.1 the close agreement is indeed reassuring. 

C
even 

and C
odd

' normalized to strip width, are plotted in Figure 
5.4.4.2 for 0.1 ~ s / w ~ 2.0, substrate dielectric constants of E = 1.0 , 2.5, r 
4.2, 9.6 and 15.0 and width-to-height ratios w /h = 0.5, 1.0 and 2.0. The 
capacitances Cl and C

12 to be used in the 'II' model of the microstrip gap, may be 

* ln June 1972, M. Maedc [78J published sorne results on the gap in microstrip. His formulation is for total charge for the microstrip in a box, and results are presented for the walls IIsufficiently removed" to have negligible effect. The excess capacitance was then obtained from the total capacitance by the sorne argument as used by Farrar and Adams [20, 21 J. There appears to be goOO agreement between his results and those presented here. 
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easily calculated using 

= 1 C 
~ even (5.4.4.1) 

(5.4.4.2) 

These two relations follow readily from Figures 5.4.1.3 a and b. As expected, for 

large values of s / w 1 C
odd 

approaches Cl which in turn approaches the open cir­

cuit capacitance value calculated in Section 5.3. Aiso as s / w approaches zero, 

C approaches zero. 
even 

The calculated values of C and C
odd

' as was the case for the 
even 

open circuit capacitance, are expected to be on the low side ; in these calculations 

the error introduced by subtraction of nearly equal numbers has been el iminated. Typical 

CPU times required on the IBM 360;75 for e = 9.6 are 33 seconds for each of 
r 

C and C
odd

. For e = 1.0, of course, the time required is considerably 
even r 

shorter. 

5.5 Microstrip Steps [7J 

5.5.1 Circuit Model and Existing Work 

ln the case of a sudden change of width of the microstrip line, it appears 

that, there are no publ ished experimental data. The only theoretical data available 

are due to Wolff, Kompa and Mehran C72J, who used an approximate waveguide 
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mode 1 of the microstrip and then proceeded to match local expansions of wave com-

ponents at the discontinuity. They only presented preliminary results of scattering 

coefficients for E = 2.33, with more results to be published later. r 

A typical microstrip step is shown in Figure 5.5.1.1 together with the 

shunt capacitance discontinuity model to be evaluated here. Of course, a resistive 

compone nt could be included in the model, to account for losses due to radiation at 

the junction ; however, what would be more important is inductive components in a 

two port model, as shown in Figure 5.5.1.2, to account for local currents in the dis-

continuity region. 

5.5.2 Excess Charge Formulation 

The excess charge associated with a sudden change of width of the micro-

strip line may be handled in much the same way as was the C case for the gap. even 
Consider two infinite microstripl ike charge distributions of ~ a (l) (P' ) and 

~ CD x 
~ a!) (P~) having width-to-height ratios (w /h)l and (w /h)2' respectively. 

The corresponding potentiels are ~ (D(1) (P ) and ~ (/J (2) (P ). Also, take two ~ CDX ~CD x 
microstriplike charge distributions of } a~) (P~) and} a!) (P~) , each with a 

polarity reversai et x = O. The corresponding potentiels are j (/Jt) (P) end 

} (/)0(2) (P). Note that superposing the first three charge distributions and subtrect­

ing the last one, to the left of the discontinuity plene there results a microstriplike 

distribution a (2) (P' ) while to the right a (1) (P' ) is obtained. CD x ex> x 
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Although the charge distributions on the two half-strips are identical 

to those on microstrip lines of corresponding width-to-height ratios, this is not true 

of the potential on the strips. The superposition of these four charge distributions 

yieldsan overall potential of ~[<O~) (P) + tfJ!) (P) + tfJt) (P) -tfJg) (P)]. 

As before, a certain amount of extra charge 0' step = a
t 

- a must be added, to the 
x CD 

semi-infinite microstriplike charge distributions, to raise the potential on the two half-

strips to 'D (1) or (fJ (2) , as the case may be. Therefore the potential residual, 
CD CD 

producing this excess charge a step 
, is 

x 

<0 ~tep (P) 1 
= 

~ 

([J (1) (P) - tfJ (2) (P) - (/) (1) (P) + <0 (2) (P) 
'CD CD '0 0 

tfJ (2) (P) _ (/) (1) (P) _ ~ (1) (P) +<0 (2) (P) 
CD CD 0 0 

while the governing integral equation is 

co step (P) = Jr 0' step (Pl) G step ( P ; Pl) d pl 
X X 

for x > 0 

(5.5.2.1) 

for x < 0 

(5.5.2.2) 

The indicated integration is over both half-strips. However, as in earlier instances, 

both excess charge and potential residuals approach zero rapidly at increasing distances 

from the discontinuity plane, so that integration over finite regions suffi ces . 

5.5.3 Solution for Excess Charge and C 
step 

Much of the commentary made in Section 5.3.3 applies here, toc. The 

excess charges are calculated directly. The potential residual is zero at the junction 
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of the two half-strips and rises to a maximum (falls to a minimum) moving onto the 

wider (narrower) of the strips and then returns to zero quite rapidly. For e = 9.6, 
r 

(w / h)l = 1.0 and (w / h}2 = 2.0 the potential residual is plotted in Figure 5.5.3.1 

also shown are the typical subdivisions used for excess charge calculation. 

The Green's function utilized in Equation 5.5.2.2 is the same as that 

given in Equation 4.2.3 with 

f step (n) = [(2n)2 + (X~I) 2 + (y?,I)2] -1;2 + [(2n)2 + (T) 2 + (~) 2] -1;2 

(5.5.3.1) 

where symmetry about the x-axis is included. To evaluate Ct use 
sep 

C = Jr a step (Pl) d pl (5.5.3.2) 
step x 

and the integration is performed over both half-strips. 

5.5.4 Results ând Comparison with Existing Data 

The scattering coefficients calculated by Wolff, Kompa and Mehran [72 J, 

show considerable frequency dependence. The lowest frequency at which they indicate 

a sharp dip in the scattering coefficient is for a step of 5O.n. to 10.n. on a substrate 

thickness of 0.625 mm or 1.5 mm (there seems to be some confusion about which 

va 1 ue was used). The w idth of the 10.n. 1 i ne for the a . 625 mm substrate is about 

14.5 mm. At 5 GHz, since the relative phase velocity of a 10.n. line on substrate of 



Figure 5.5.3.1 Potentiol residuol neor 0 microstrip step (w
1 
/h = 1, 

w2 /h = 2 and Er = 9.6) 
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e = 2.33;s about 0.686, the strip width Îs comparable to a third of a wavelength. r 

Surely, when typical dimensions are larger thanonetenth of a wavelength, the electro-

static approximation is not valid. Without giving results, Wolff, Kompa and Mehran 

[72J indicate that for e = 9.9 the frequency dependence is negligible up to 20 GHz. r 

This, however, supports the results obtained here. For the commonly used alumina 

substrate thicknesses (about 0.5 mm) realistic impedances can be obtained using small 

width-to-height ratios and the resulting capacitive effects are very small. Still, 

qualitatively speaking, the effect of the shunt capacitance, at the discontinuity plane, 

on the scattering coefficients is the some as predicted by Wolff, Kompa and Mehran 

The reason there are no experimental results available, may be partly due to this very 

small shunt capacitance contribution of most practical microstrip steps ; this is both 

difficult to measure and is not significant enough to affect seriously the performance of 

the ove ra Il circuit. 

ln Figure 5.5.4.1 calculated values are normalized to the geometric mean 

of the two strip widths. As expected in the case of equal width strips, i.e. no step, 

C = O. These calculated values of step capacitance are expected to be on the step 

low side. Typical CPU time required on the IBM S 360/75 is 1.0 minutes for 

e = 9.6 . 
r 
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104 5.6 Microstrip Right Angle Bends 5.6.1 Circuit Model and Existing Work 
For the case of a microstrip right angle bend, published data are very 

scarce. The only data available appear to be the experimental results of Stephenson 

and Easter [60]. The equivalent circuit used by them includes a shunt capacitance 

to aeeount for a charge accumulation at the corner and series lengths of transmission 

lines on either side to account for the increased current path around the corner. 

Their equivalent circuit 1 together with the reference planes used, is shown in Figure 

5.6.1.1. This model is basically the some as that proposed for the microstrip step in 

Figure 5.5.1.2. The addition of a resistive compone nt to the model of Figure 5.6.1.1, 

to account for loss due to radiation at the bend would make the model more or less 

complete. 

Stephenson and Easter devised two types of resonant measurements : 

o (i) two 90 corners are incorporated into a c10sed ring resonator and (ii) a right 

angle bend in a symmetrical open-ended resonator. At various frequencies voltage 

maxima or minima oecur at the corners and the two unknowns in the model can be 

evaluated. 

5.6.2 Excess Charge Formulation 

The excess charges which constitute C
bend are due to the potential 

residuol, when two microstrip type charge distributions exist on the arms of a right 

angle bend up to terminal planes Tl and T
2 shown in Figure 5.6.1. ta. 
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1 
Let '7f cp (P) be the potential corresponding to an infinite micro-

~ 0) x 

striplike charge distribution of ~2 (J (Pl) parallel to the x-axis. Aiso let 0) x 
1 '2 cp 1.0 (P) represent the potential corresponding to a microstriplike charge distri-

bution with a polarity reversai at x = 1.0. Therefore the potential corresponding 

to a microstriplike charge on the interval x E ( 1, 0) is, by superposition, 

~ [cp 0) (Px) + cp 1 .0 (Px) ]. Similarly, in the y-direction, the potential corres­

ponding to a microstriplike charge on the interval y E ( 1,0) is 

1 
~ [0 (P) + (Dl 0 (P )]. 8y superposition one can generate microstriplike 
~ 0) y . y 

distributions parallel to the positive x and y axes up to terminal planes Tl and 

T 2. Therefore the potential residual required is 

bend 
CPx (P) = (D 0) 

1 
'7f[cp (P)+lP10(P)+cp (P )+"'1 O(P)] 
~ O)x . X O)y • y 

while the governing integral equation for the excess charge is 

(Dbend (P) = 
x 

f (Jbend (Pl) Gbend (P ; Pl) dPI 
,J X 

(5.6.2.1) 

(5.6.2.2) 

Although the indicated integration is over the entire bend including the semi-infinite 

arms, both potential residual and excess charge fall to zero on moving away from the 

discontinuity region. 
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5.6.3 Solution for Excess Charge and C
bend 

The method described in Section 5.3.3 still applies, but subject to 

the following changes: 

Function fend(n) required in the Green's function given by 

Equation4.2.3 is 

(5.6.3.1) 

and the œnd capacitance is calculated from 

Î bend 
= J (Tx ( P') d P' (5.6.3.2) 

A typical residual voltage for a dielectric substrate of e = 1.0 and r 
microstrip width-to-height ratio w /h = l, is shown in Figure 5.6.3.1. Not 

shown in this figure is that moving further away from the discontinuity sorne small 

amount of negative potential residual appears and then it dies down to zero. This is 

due to the interaction between the two normal microstriplike distributions and is most 

noticeable for small e 's and (w / h)'s. Numerical experiments indicate that the r 

most significant part of the excess charge is located near the outer edge of the corner 

region. Thus, the typical discretization used is also shown in Figure 5.6.3.1. 

Although the symmetry about the 45
0 

angle is not accounted for in Equation (5.6.3.1), 

the discretization of the region is done so that full advantage may be taken of this 

symmetry during computation. 



Figure 5.6.3.1 Potential residuo! near a microstrip right angle bend 
(w1 /h = 1.0 and Er = 1.0) 
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5.6.4 Results and Comparison with Existing Data 

The bend capacitances obtained by Stephenson and Easter [60 ] by 

means of their two resonant measurements agree with each other in order of magni-

tude only. However, the two types of measurements, both 900 bends and 

chamfered corners for a 5O.n. microstrip line on alumina substrate, indicate that the 

lengths of transmission line in the model of Figure 5.6.1.1 are negligible. 

For vorious sound reasons, Stephenson and Eoster conclude that the 

result obtained via the right angle bend in a symmetrical open-ended resonator is the 

better of the two. Error Iimits are also indicated. Their measurement, at 10 GHz 

on 0.5 mm lucalox with a strip width corresponding to approximately 5O.n. charac-

teristic impedance, is shown in Figure 5.6.4.1 together with their indicated error 

1 imits. 

Aiso shown in Figure 5.6.4.1 are bend capacitances, calculated by 

this method, normalized with respect to strip width for vorious commonly used substrates. 

As expected the calculated values are lower than those obtained experimentally. 

Nevertheless, the close agreement between the results is an indication of the accuracy 

ofthe method. Typical computation time on an IBM s36O;75 is 50 seconds for 

e = 1.0 and 110 seconds for e = 9.9 . 
r r 
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5.7 Microstrip T Junctions 

5.7.1 Circuit Model and Existing Work 

ln the case of microstrip T junctions, four sources of data were 

located. Stinehelfer [62] and Troughton (65] presented experimental results. 

They both performed transmission loss measurements on microstrip T structures to 

determine the electrical length of a stub; comparing this with the physical length 

an "electrical defining plane" [65] for the stub can be determined. Stinehelfer 

presented results obtained using quarter wavelength long short circuited stubs, while 

Troughton used quarter and three-quarter wavelength long open circuited stubs. 80th 

investigators indicated that a correction to the separation between two stubs is also 

required. 

On the theoretical side Leighton and Milnes [37], as weil as Wolff, 

Kompa and Mehran [72], used a parallel plate waveguide approximation, valid 

over a restricted range of parameters, with magnetic walls on the sides. Leighton and 

Milnes, then use a Babinet equivalent of this model to obtain a new model in which a 

T junction equivalent circuit has been determined by Marcuvitz [39]. Wolff, 

Kompa and Mehran, on the other hand, motched wave components, at the discontinuity 

planes and were able to obtain scattering coefficients for the T junction. 

The simplest equivalent circuit for the T junction is an outcropping of the 

work of experimenta1 ists . The microstrip T junction, together with this model, is 

shown in Figure 5.7.1 .1. The lengths of transmission lines are used to correct for the 

electrical defining planes of the stub and main lines, while the shunt capacitor accounts 

for the charge surplus or deficiency at the junction. 
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5.7.2 Excess Charge Formulation 

The potential residual, causing a charge surplus or deficiency at the 

T junction, is that due to three microstriplike charge distributions on the arms of 

the T structure, up to the terminal planes Tl' T
2 

and T
3

, shown in Figure 5.7.1.1 a. 

To evaluate this potential residual, take a microstriplike charge distribution 

} a!) (P~) , of width-to-height ratio (w
2 

/h) parai lei to the x-axis, with 

correspon<':ing potential } CD!) (Px) given by Equation (5.2.1). Take another 

microstriplike charge distribution } a~) (P~) , having a polarity reversai at x = w 1 ' 

with the corresponding potential ~.t,O (2) (P ), given by Equation (5.2.2). The super-~ w1 x 

position of these two distributions yields a microstriplike charge, of width-to-height 

ratio (w
2 

/ h) , on the interval x E [w
1 

' CD J and a corresponding potential of 

1 [CD (2) (P ) + ({) (2) (P ) J. Similarly, in the y-direction, an infinite micro-2" CD x w
1 x 

striplike charge distribution a (1) (P') together with charge distributions CD y 

.!- a (1) (P') with polarity reversais at y = 1.0 and -1.0 are required. The ~ CD Y 

respective potentials, by Equations (5.2.1) and (5.2.2), are (,0 (1) (P ) , 
CD Y 

} CD1(~~ (Py) and ~ (,O.S~O (Py)' The superposition of these three yields a micro-

striplike distribution on the two intervals 1 yi> 1.0 , with corresponding potential 

[(,0(1) (P) + 1 [(,0(1) (P) _ (,0(1) (P )]J. 
CD Y "2 1.0 Y -1.0 Y 

Now, superposing the two resulting distributions, microstriplike charges 

are generated on the arms of the T structure, up to the terminal planes Tl' T 2 and 

T 3' Therefore, the potential residual, in this case, is 
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CPxT (P) = cp - [ !. [cp (2) (P ) +,,0 (2) (P )] +cp (1) (P ) + 1 [tp (1) (P ) -(D (1) (P )]} 
(X) 2 (X) x w 1 x (X) y "1 1 .0 y -1 . 0 y 

(5.7.2.1) 

while the integral equation governing the excess charge is 

(5.7.2.2) 

ln Equation (5.7.2.2) , both the potential residual and the excess charge fall to zero 

moving away from the discontinuity, so that integration over finite regions suffi ces . 

5.7.3 Solution for Excess Charge and CT 

The changes, applicable to Section 5.3.3, in regard to a microstrip T 

junction are : 

The function fT (n) required in the Greenls function given by 

Equation (4.2.3) is 

fT (n) = [( 2n) 2 + (TI) 2 + (y~l) 2] -1~ + [(2n)2 + (T) 2 + (~) 2 ] -1~ 

(5.7 .3.1) 

and the ï junction capacitance is given by 

= r (] T (Pl) d pl 
J x 

(5.7.3.2) 



The potential residuai on a dielectric substrate of € = 9.9 1 with 
r 
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main line (w
1 

/h) = 1.0 and stub line (w
2 

/h) = 1.0 is shown in Figure 5.7.3.1. 

ln this case regions of negative residuals are much more pronounced than for the right 

angle bend. A typical discretization of the region is also shown in Figure 5.7.3.1 . 

5.7.4 Results and Comparison with Existing Data 

Stinehelfer's [62] measurements, on quarter wavelength long short 

circuited stubs, indicate that the electrical length of the stubs is shorter than the 

physical length, while Troughton's measurements, on quarter and three-quarter wave-

length open circuited stubs, indicate that the electrical length of the stub is longer 

than the physical length. Troughton also indicates that Il if the stub is À /4 and 

3 À /4, à 1 (the correction to the physical length) is consistent, but differs from 

the value found from a half-wavelength stub." ln addition to the specific problems 

in each measurement (such as accurate end effect correction in Troughton's case and 

difficulty of determining the exact frequency at which total transmission occurs in 

Stinehelfer's case and accurate phase velocity in both cases) , part of the discrepancy 

is resolved considering the model given in Figure 5.7.1.1 b. If L denotes the 

physical length of the stub, in Troughton's case already corrected for the end effect, 

then Troughton measured the frequency at which ( 1
2 

+ L) = À /4, while $tine-

helfer measured the conditions under which cot [2n (12+ L)]= I.lC Z Asa 
À T 

matter of fa ct , in principle, performing measurements on open and short-circuited 
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Figure 5.7 . 3.1 Potential residua! near a microstrip T junction (w 1 /h = 1 .0 , 
w2 /h = 1.0 and €r = 9.9) 



quarter wavelength stubs, it would be possible to determine both 1
2 

and S . 
This, however, may be frustrated by the difficulties already enumerated. 
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The theoretical results of Leighton and Milnes [37J on the approximate 

model of the micros\'rip line, are valid over a restricted range of parameters. Since 

both the model and the reference planes used here are totally different, no comparison 

was made with their data. 

The approximate theoretical results of Wolff, Kompa and Mehran [72J 

are in terms of magnitudes of scattering coefficients of the T junction. The data 

given are for polyguide substrate, relative dielectric constant of e = 2.33, and they 
r 

show very pronounced frequency dependence, especiallyabove 5 GHz. This, at 

first sight, cannot be explained in terms of the capacitor CT obtained here. A 

quick calculation, however, will indicate that at 5 GHz for e = 2.33 the wave­
r 

length is about 40 mm, while the typical dimensions required for the characteristic 

impedances utilized range from 4.5 mm to about 10 mm. For such structures the 

excess charges occupy a significant fraction of the wavelength, so that the electro-

static approximation is not valid. This argument is further substantiated by their note 

to the effect that the frequency dependence is small for alumina substrate (e = 9.9), 
r 

where realistic impedances are obtained for smaller width-to-height ratios and the 

commonly available substrate thicknesses are 0.020 and 0.025 inches. 

Figure 5.7.4.1 shows the capacitance CT normalized to main line 

width plotted against stub line impedance. The behaviour of CT' in that it varies 

from positive to negative, depeoqing whether there is a charge deficiency or charge 
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surplus, is similar to that observed experimentally by Matthaei, Young and Jones [40 ] 

in stripline. Due to the variation in the sign of the potential residual, generally 

speaking, the capacitances thus obtained are expected to have somewhat larger errors 

than, for example, in the open circuit case, where the potential residual is of uni-

form sign. The CPU time required, on an IBM 5360;75, to evaluate CT on a 

dielectric substrate of E = 9.9 is 3.6 minutes. 
r 

5.8 Microstrip Crossings 

5.8.1 Circuit Model and Existing Work 

For microstrip crossings, it appears, that the only published source of 

data is that obtained experimentally by 5tinehelfer [62]. He performed transmission 

loss measurements, as in the case of T junctions, on a pair of quarter wavelength 

short circuited stubs placed back to back, so as to determine the electrical lengths of 

the stubs. 5imilarly, a correction to the physical distance between a pair of crossings 

was noted. 

The circuit model shown in Figure 5.8.1.1 b, for the crossing shown in 

Figure 5.8.1.1 a, was arrived at as a consequence of the results obtained in the above 

experiments. The lengths of transmission lines correct for the electrical lengths of 

the stubs and their electrical spacing from various other discontinuities. The shunt 

capacitor C takes core of the charge surplus or deficiency near the crossing. 
+ 
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5.8.2 Excess Charge Formu lation 

As in earlier discontinuities, the potential residual sought is obtained 

from the potential due to microstriplike charge distributions on the four arms of the 

crossing~ up to the reference planes Tl' T 2' T 3 and T 4 . 

To obtain such a distribution, an infinite microstriplike charge 

(] (2) (Pl) of width-to-he ight ratio (w
2 

/ h) is required. Also needed are two 
00 x 

charge distributions } (]!) (P~) with polarity reversaIs at x = w 1/2 and - w 1/2 . 

The corresponding potential distributions, given by Equations (5.2.1) and (5.2.2) 

are cp!) (P) , cp~)/2 (Px) and CP~l/2(Px)' respectively. By superposition, 

microstriplike charge densities of (w
2

/h) are obtained on the two intervals 

1 xl> w
1
/2 and the resulting potential is [cp (2) (P ) +~ [c,o(2) (P) _cp(2) (P )]J 

00 x 2 w1/2 x -w1/2 x 

Simi larly, the potential corresponding to microstriplike charge distribution 

(] (1) (Pl) of width-to-height ratio (w
1 
/h) on the intervals 1 yI> 1.0 is 

00 y 

[ ~ (1) (P ) + 1 [0 (1) (P ) (1) (P)]). 
co y "2 1.0 Y - C/J -1.0 Y 

By superposition of these two resultant distributions, microstriplike 

charge densities of appropriate width -to-height ratios are generated, on the arms of the 

crossing, up to the four terminal planes. Therefore, the potential residual sought is 

co, +(P) ='" _ [,~(1) ( ) 1 [ (1) (P) (1) ( )J 
x \LoI 00 '1""00 P Y + 1" C/J1.0 y -Cp-1.0 Py 

(5.8.2.1 ) 

+ 0 (2) (P) + 1 [ C/J (2) (P) - CD (2) /.2 (P )]J 
00 x 1" w1/2 x -Hl x 
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and the integral equation governing the excess charge is 

(5.8.2.2) 

As in earlier instances, integration over a finite region is sufficient, since both 

potential residual and charge density distribution go to zero on moving away from 

the discontinuity. 

5.8.3 Solution of Excess Charge and C 
+ 

The comments in Section 5.3.3 ore applicable to the crossing subject 

to the following modifications. Function f+ (n) required in the Greenls function 

given by Equation (4.2.3) is 

f+ (n) = [(2n)2 + (X;,I) 2 + (~) 2 f1~ + [(2n)2 + (~)2 + (y~')2J -1~ 

+ [(2n)2 + (t? + (yt7I)2J-1~ + [(2n)2 + (~)2 + (y~')2 J-1~ 

(5.8.3.1) 

while the crossing capacitance is given by 

0' + (Pl) d pl 
X 

(5.8.3.2) 
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ln Figure 5.8.3.1 the potential residual for a stub of (w
1 

/h) = 3 

and main line of (w
2 

/ h) = l, on a substrate of relative dielectric constant 

e = 9.9, is shown. Aiso shown in the figure is a typical discretization of the 
r 

region. 

5.8.4 Results and Comparison with Existing Data 

The results given by Stinehelfer [62J, done on two short circuited 

quarter wavelength long stubs back to back, indicate that the electrical length of the 

stubs is shorter than the physical length. However, arguing as for the T junction, 

the model given in Figure 5.8.1.1 b would indicate that such a measurement in effect 
21T ( 12 + L) 

determines the frequency at which 2 cot [ À J = Col C + Z .. L is the 

physical length of the stub. Another transmission loss measurement, on quarter wave-

length long open circuited stubs, would give the frequency at which (1
2 

+ L) = À /4 . 

From two su ch measurements, in principle, 1
2 

and C+ may be determined. The 

difficulties with such an experimental approach were outl ined in Section 5.7.4. 

Using the results given by Stinehelfer, no estimate of C can be made. There appear 
+ 

to be no other data available for comparison. 

ln the computer program the computational details for the stub and main 

line are somewhat different. Therefore, when interchanging the width-to-height 

ratios of the stub and mainline left C unchanged, this, in a small measure, provided 
+ 

a check on the program de ta ils . 
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Figure 5.8.3.1 Potential residual near a microstrip crossing (w
1
/h = 3, 

w 2 /h = 1 and Er = 9.9) 
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Figure 5.8.4.1 shows crossing capacitance values C normalized 
+ 

to main line width for various main line impedances, plotted against 

stub line impedance. The stub characteristic impedances range from 25.n. to 

1oo.n.. The substrate dielectric constant used is E = 9.9. As in the case of T r . 

junctions, due to the variation in the sign of the potential residual, generallyspeak-

ing the errors in capacitance values can be expected to be larger than in those cases 

where the potential residual is of uniform sign. The computation time required on an 

IBM 5360;75 ,for C on a relative dielectric constant E = 9.9 is about 3.7 minutes. . + r 
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Figure 5.8.4.1 Microstrip crossing capacitances, normalized to main 

line width, as a function of stub line impedance 



CHAPTER VI 

IMPORTANCE OF DISCONTINUITY CAPACITANCES IN THE DESIGN 

OF AN OPEN CIRCUITED MULTISTUB MICROSTRIP FILTER 

6.1 Introduction 
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ln Section 5.4.4 it was demonstrated that calculated capacitive effects 

at a gap in a microstrip, were able to predict the measured transmission loss for various 

gaps. In this chapter, the importance of discontinuity capacitances in the design of 

distributed element microwave components is shown ; in particular, a five-section 

ten-stub microstrip filter is analyzed. 

The filter under consideration, was actually built by Atwood and Stine­

helfer [6J. They, however, not only covered the filter with a ground plane, but 

also included "mode supression walls between stubs to prevent higher order mode 

radiation between sections of the filter" [6]. The various filter dimensions used in 

their design were taken from Stinehelfer's finite difference program for the microstrip 

in a box [61]. Therefore it should be stressed, that the intent is not necessarily to 

account for the discrepancy between their ideal and measured characteristics, but 

rather to simply demonstrate that the inclusion of discontinuity capacitances result in 

changes of sufficient importance to alter the design characteristics of a microwave 

device. 
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6.2 A Two,:>ort Network Analysis Program (NTSM) 

ln order to be able to analyze the behaviour of passive microwave 

circuits, a special purpose network analysis program, NTSM, was written. The 

program is based on the properties of modified transfer coefficient matrices (A BCO) 

for cascaded two,:>orts. A more general program of this nature was written earl ier 

[l8 J , however at that time only lossless transmission lines were considered. Since 

losses in microstrip are of sorne consequence, the present program can also account 

for these. 

The transfer coefficients A, B, C and 0 provide the relationship 

(6.2.1) 

between the input and output variables of a two,:>ort network, shown in Figure 6.2.1. 

The overall transfer coefficient matrix for N cascaded two,:>orts, shown in Figure 6.2.2, 

is simply the matrix product of the individual transfer matrices, taken in order in which 

they occur, 

N 
V

l rn A. B. 

} 
V

N 1 1 

= (6.2.2) 

Il C. O. IN 
i=l 1 1 

Transfer matrices were evaluated for a number of elemental building 

blocks, necessary for the present analysis, such as : series and shunt capa ci tors , a 



129 

1 
~ .. 

[~ B ] 
.... -

1 D V 
..... 

+ 
v. 2 --
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Figure 6.2.2 N cascaded two~orts 



130 

length of transmission line, open and short circuited shunt stubs and shunt stubs 

terminated by a capacitor. For a general purpose program of this nature, of course, 

other elemental two ports have to be inc\uded. 

The network properties of particular interest to microwave engineers, 

su ch as transmission loss,input impedance, reflection coefficient and voltage standing 

wave ratio, are easily evaluated in terms of the transfer coefficients of the overall 

network. 

6.3 Analysis of the Five-Section Ten-Stub Filter 

Using results from filter theory, Atwood and Stinehelfer [6] obtained 

the passband filter design shown in Figure 6.3.1. This design was implemented in 

microstrip on a substrate of relative dielectric constant E = 8.875 and thickness of 
r 

0.020 inches. The center frequency of the filter was ideally at 9.5 GHz while its 

bandwidth was 1 GHz. 

The first step in such a design is the determination of the relative phase 

velocities of the transmission lines of various characteristic impedances. The electro-

static phase velocities must be corrected for dispersion so that the physical dimensions, 

given in multiples of À /4 at center frequency, can be specified as accurately as 

possible. Typical corrections for dispersion were measured by Troughton [67J for 

25 JI. and 50 J\. lines on 0.025 inch thick alumina. He indicated 2.8 % and 2.2 % 

dispersion in phase velocity at 10 GHz for the 25 JI. and 50 JI. lines, respectively. 
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Figure 6.3.1 Atwood and Stinehelfer's [6] passband filter design 
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This was extrapolated to the 70.!l. and 1oo.!l. lines as 1.6 % ond 1.0 % approxi-

mately. These extrapolations may be in error byas much as 0.5 % , hawever this 

is really irrelevant, since the results of this step are the starting point from which the 

discontinuity capacitances are added. Thus the effects of the discontinuities can be 

clearly seen by themselves. 

Three types of capacitive discontinuity effects will be included in 

turn : 

(i) crossing effects at the stubs, 

(ii) end effects at open circuits, 

(iii) step effect at the 5O.!l. to 70.7 .!l. line transition. 

The discontinuity capacitance values, as calculated by the methoc:l described in 

Chapter V, relevant to this problem are: 

* 

C (28.2.!l.) 
oc 

= 0.060 pF 

C (36.0 .!l.) = 0.044 pF 
oc 

C ( 50 .n. and 70.7 .n.) = 0.0015 pF 
step 

C+ (100 .!l.and 70.7 .!l.and 49.3.!l.) = -0.032 * pF 

C+ (100 .!l.and 28.2 .!l.) = -0.030 pF 

C+ (100 .n.and 36.0 .n.) = -0.35 pF 

This value was obtained by linear interpolation between C.,. (100 .!l.and 49.3.!l.) 

and C (70.7 .n.and 49.3 .!l.) • 
1" 
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Figure 6.3.2 a and b show the circuit model and the transmission 

loss for the ideal filter. Figures 6.3.3 - 6.3.5 a and b show how the suc­

cessive inclusion of the various capacitive discontinuities affect filter response. And, 

finally, in Figure 6.3.6 the effects of line losses are indicated. 

6.4 Results 

ln Figure 6.3.2 a and b the ideal filter model and response are 

indicated. As designed, the center frequency of the passband region is 9.5 GHz 

while the bandwidth is 1 GHz. 

Figure 6.3.3 a shows the ideal circuit model modified to account for 

the capacitance effect of crossing discontinuities. The resulting transmission loss, 

as given in Figure 6.3.3 b, shows minimal changes in the passband region, however just 

outside passband at 9.8 GHz the transmission loss changes from 3.1 db to 1.4 db, 

while at 8.6 GHz it changes from 9.2 db to 12.9 db. 

The circuit model is further modified to correct the open circuit end 

effect in Figure 6.3.4 a. In this case the transmission loss, shown in Figure 6.3.4 b, 

shows considerable change. First of ail, the passband region now extends from 

8.65 GHz to 9.75 GHz. That corresponds to a bandwidth of 1.1 GHz and a 

center frequency of 9.2 GHz. Secondly, the passband region shows a deterioration 

of about 0.2 db. 
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ln Figure 6.3.5 a two step capacitances are included. These 

capacitances are so small that no further noticeable change in filter response, 

as shown in Figure 6.3.5 b, is observed. 

137 

ln addition to ail the capacitive discontinuities, the effect of lossy lines 

C77J is also included. These losses contribute, typically, 0.3 db to further 

deteriorate the characteristics in the passband region, as shown in Figure 6.3.6. 

Atwood and Stinehelfer's [6J measured filter response shows the same 

type of qualitative behaviour ; a bandwidth of 1 .275 GHz with center frequency of 

9.25 GHz as opposed to a bandwidth of 1.1 GHz and center frequency of 9.2 GHz 

predicted with the discontinuities. The measured passband was, typically, 1 db worse 

than the predicted one. Since the physical filter included a number of further effects, 

such as those described in the introduction to this chapter, which are not taken account 

of in the analysis and are not known in detai 1, no precise quantitative comparisons can 

be made. In this light, the agreement is quite good, especially when one remembers 

that this is an approximate mathematical treatment of the idealized version of a physi­

cal fil ter • 
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CHAPTER VII 

CONCLUSIONS 
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The use of trial functions which preserve the singularity in the charge 

distribution at the edge of the microstrip transmission li ne ,shows that accurate 

determination of charge density distribution and transmission line parameters is 

possible with matrices as small as 2 x 2 . 

Point matching solutions to the capacitance of rectangular plates on 

metal backed dielectric substrates have been obtained over the past year. However 

the transformations described in Section 4.2, permitted the use of fewer high-order 

subregions in the solution of the charge distribution on rectangular plates. This 

approach is readily usable to obtain the parasitic capacitance in a multiconductor 

system of Manhattan type (rectangular) geometry. The results presented are of in­

terest in the design of lumped element integrated circuitry. 

The methodology presented for the formulation of the excess charge 

distribution near various microstrip discontinuities, is readily extended to cases not 

discussed. This formulation is not only highly elegant but, what is more important, 

it is considerably more economical than the theoretical and experimental methods 

used by other investigators to date. The computation times required are sufficiently 

small to permit the calculation of extensive results of interest to the designer of dis­

tributed microwave integrated systems. In addition, an important source of error, 

encountered by feilow investigators in the theoretical study of microstrip open circuits, 

i.e. the subtraction of nearly equal large numbers, has been completely eliminated. 
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The experimental methods of characterizing various discontinuities are too time 

consuming and expensive to be used to obtain extensive data. And, the experi­

mental results cannot guarantee accuracy to better than a few percent, which can 

readily be obtained by the methodpresented herein. 

For open circuits, gaps, steps and even right angle bends on alumina 

substrates, the capacitive component in the discontinuity models, appears to be domi­

nant up to frequencies as high as 20 GHz. Therefore, the capacitive models given 

are expected and do account greatly for the experimentally observed phenomena in 

these cases. For T junctions and crossings, however, the experimental evidence in­

dicates that discontinuity series inductances are no longer negligible. 

The simulation of the multistub filter in Chapter VI, clearly demonstrates 

the importance of these discontinuity capacitances. The inclusion of the various dis­

continuity capacitances affected the filter response by an amount comparable to the 

effect of dispersion at 10 GHz in the microstrip line. But while dispersion appears 

to be negligible below 5 GHz, the discontinuity capacitances are not. This was amply 

demonstrated for the gap in microstrip. 

Although microstrip has made considerable inroads in the microwave in­

dustry due to the numerous advantages discussed in Chapter l, the high cost of 

engineering involved precludes its use when small quantities are involved. This problem 

could be overcome by completely computerizing the design of microwave integrated 

circuits and th us eliminating cut and try methods common today. 
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To this end , microstrip discontinuities have to be adequately modeled. 

Further study needs to be conducted in the area of discontinuity inductances and 

radiation losses and discontinuities , to fully characterize them. The frequency de­

pendence of the se models also needs to be studied , especially if they are to be used 

above 20 GHz. In the case of discontinuity capacitances, little or no dispersion 

is expected so long as the excess charges extend over a region smaller than one tenth 

of the microstrip wavelength. This is borne out by the available experimental evi­

dence. 

It is hoped that the methodology and results presented herein , bring 

doser the day of fully computerized microwave integrated circuit design. 
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APPENDIX 1 

A highly efficient program was written, by P. Silvester, to obtain 

Gaussian quadrature formulae, for almost arbitrary weight functions, of the form 

b N 

J w(x) f(x) dx = L W. f (x.) 
1 1 

( 1.1) 

a i=l 

ln this program the user must supply a subroutine capable of returning 

the i nner products 

b 

= J '+' w (x) Xl 1 d x ( 1.2) 
a 

Using these inner products and some recurrence relations [J4J, the polynomials 

orthogonal with respect to w (x) can be generated. The roots of the N'i'h order 

orthogonal polynomial, correspond to the quadrature points of the N-point Gaussian 

quadrature formulae. To obtain rapid convergence, by Newton's method, to the 

roots of the N-th order orthogonal polynomial, advantage is taken of the fact that 

one, and only one, of the N-roots lie in each of the N-intervals determined by the 

two end points and the roots of the (N - 1 )-th order orthogonal polynomial. The 

one important requirement in the founding theorem of this approach, is that w (x) 

must be single signed on the interval [a, bJ. As soon as the quadrature points are 

known, the corresponding weights are readily calculated. 
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The user can specify the degree of the quadrature desired, together 

with tolerance limits on the quadrature points and weights. If the tolerance checks 

on the quadrature points and / or the weights are violated prior to reaching the de­

sired degree of quadrature, the highest degree of quadrature 1 within the specified 

tolerance limit 1 is returned. 
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APPENDIX Il 

Consider a line of unit charge density, coincident with the xl~xis 

with a polarity reversai at the origin, as shown in Figure Il.1. The primed and 

unprimed quantities refer to charge and potential coordinates respectively. 

Let r denote the polar distance frorn the line of charge. The potential 

at sorne point P (x, y, z) due to such a charge distribution is 

CD CD 

v = 1 :1: d Xl = 

.J J?+ (xl-xl 

_1_ [f dx
l 

_ 

4'1\' E • /2 2 o .Ir + (xl-X) 

f d Xl ] 

/2 2 o Jr + (x1+X) 

(II. 1) 

These integrals are tabulated [17], 50 that 

j 2 2 2 
X 

V = lim [ [ log (2 Xl - 2 Xl X + X + r + 2 Xl - 2 X ] 

4 '1\' E X~(X) 
Xl = 0 

X j 2 2 2 
- [ log (2 Xl + 2 Xl X + X + r +2XI+2x ]xl=O 1 

j 2 2 2 

lim 
[ log X - 2 X x + x + r + X -x } 

= 
4 '1\' E X~(X) j 2 2 2 

X +x X +2Xx+x +r + 

2 

+ --log 
+ r + x (11.2) 

4 '1\' E 2 
+ r - x 

But the first term of this sum vanishes , so that 
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)/ + 2 
V log 

r + x 
(11.3) = 

4 'Ir E j x
2 + 2 

r - x 

Of course, if the polarity reversai occurs at x = ~ instead of x = 0, then bya 

simple coordinate translation 

2 
v = log 

+ r 
(liA) 

4 'Ir E 
+ r 

2 

Now, consider the microstrip line shown in Figure Il.2, and in particular, 

the line of charge at (Xl, yI, h). Suppose that the microstrip has a charge distribu-

tion of cr ( yI ), and let there be a polarity reversaI at x = ~. The potential due to 
CD 

such a line of charge in homogeneous medium, by Equation (1104), is 

cr (yI) 
CD 

V (x, y, z) = ---log 
4 'Ir E 

/ 2 2 2 [ J (x -~) + (y-yl) + (Z-Zl) 

/ 2 2 2 
.; (x -~) + (y-yl) + (Z-Zl) 

+ (x -~) } 

- (x - ~) 

(l1.S) 

As in the case of the infinite microstrip [53], an infinite series of 

partial images can be generated for this line to account for ground plane and the air 

dielectric interface. Thus, the potential in the plane z = h, due to this line of 

charge on top of a metal backed dielectric substrate of thickness h, is 

V(x,y) = 
cr (yI) 

CD 
CD 
.~ n-1 

(1 - K) [ f ( 0) - (1 - K) L K f (n) } 

4 'Ir EO n=l 

(11.6) 
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where K = ( Ea - El ) / ( Ea + El ) and 

~' 2 2 22 
+ (x -~) 

f (n) 
1 (x -~) + (y - yi) + 4 n h 

(II .7) = og 
j 2 2 2 2 

(x -~) ( x -~) + (y - yi) + 4 n h 

Therefore, the potential in the z = h plane due to a microstriplike 

charge distribution with a polarity reversaI at x =; is, by superposition, 

where 

v (x, y) = J 0' CD (yi) G; (x, Y ; yi) d yi 

-1 

CD 

G ; (x, y ; yi) = 1 - K [f (0) - (1 _ K) I K n -1 f (n) } 

4'IT Ea n=l 

and f (n) is given by Equation (11.7) • 

(II .8) 

(11.9) 
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