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ABSTRACT

The integral equations governing the electrostatics of the excess charge
distribution near various microstrip discontinuities are formulated. Discontinuities
considered are : open-circuits, gaps, steps, right angle bends, T junctions and cross—
ings. The resulting equations are solved by a projective method, using polynomial
approximants. Their solution hinges on the development of computationally efficient
techniques for dealing with the singularities and pseudo-singularities that occur, by
suitable coordinate transformations and special weighted quadrature formulae. The
importance of the discontinuity capacitances in the design of distributed microwave
integrated circuits is demonstrated. Also, the integral equation describing the electro-
statics of the microstrip is solved by a projective method, using trial functions that
preserve the singularity in the charge distribution at the strip edges. The capacitance
of rectangular plates on metal backed dielectric substrates is obtained by solving the
Fredholm integral equation of the first kind governing the charge distribution on the

plates. Extensive results are presented.
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CLAIM OF ORIGINALITY

The original contributions in this thesis are -

A unified theoretical treatment, leading to an efficient
numerical method, capable of dealing with the capaci-

tive effect of microstrip discontinuities.

The evaluation of the capacitive effects of the following
microstrip discontinuities : (i) open-circuits, (ii) gaps,
(iii) steps, (iv) right angle bends, (v) T junctions

and (vi) crossings.

The solution of the electrostatic capacitance of rectangular
plates on metal backed dielectric substrates by the Rayleigh-
Ritz method with biquadratic expansion and projection

functions, made possible by the development of computa-
tionally efficient techniques capable of dealing with singularities

and pseudo-singularities.
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CHAPTER |

STATE OF THE ART AND OBJECTIVES

At various stages in the development of the microwave industry, after
the wave propagation characteristics of a new form of transmission line are determined
and its advantages are recognized, the interest shifts onto modeling its discontinuities.
The wave propagating characteristics of microstrip are as well known, as are its
numerous advantages. On the other hand, since there is little known about micro-
strip discontinuities, prototype design is mostly a cut-and-try procedure. The
availability of extensive discontinuity data could increase the market penetration of
microstrip, by substantially reducing the high cost of design. In this thesis a unified
theoretical treatment, capable of dealing with the electrostatic capacitive effects of

microstrip discontinuities will be presented.

In the mid - 1940's ; Whinnery and Jamieson published extensive results
for parallel plane [70] and coaxial [71] transmission lines. Their approach was one
of "matching of electromagnetic wave solutions, across discontinuities® [70] . During
World War 11, a great deal of work was done on waveguide discontinuities at the Radia-
tion Laboratory of Massachusetts Institute of Technology. As a result of this work, a

comprehensive book was compiled by Marcuvitz [39] .

Usually, a transmission line is designed so that, in the frequency band of
operation, only one mode is propagated along it. At a discontinuity, however, to

describe the field fully an infinite number of non-propagating modes is required. These



modes decay rapidly away from the discontinuity . Whinnery and Jamieson [70]
and Marcuvitz [39] showed that such local discontinuity fields can be represented

by lumped equivalent circuits.

In the second half of the 1950's Oliner and Altschuler presented lumped
models for discontinuities in balanced strip transmission lines [3,46]. They obtained
their results using " a small aperture procedure or a Babinet equivalent procedure in

conjunction with an approximate model of the line" [3] .

Although the electrical properties of microstrip transmission lines have
been studied for about twenty years, reliable theoretical data became available only
a few years ago.  Since then, the microstrip transmission line found extensive uses

both in microwave devices and integrated circuits.

The advantages of microstrip over conventional transmission lines are

numerous [29] ; among these are :

) easy infegrability in both monolithic and hybrid circuits

(with similar components, semiconductors, ferrites and

lumped elements)
(i) low volume and weight,
(i) broad bandwidth,
(iv)  high reliability,

v) low production cost.



As far as disadvantages are concerned, there are two main ones, namely : very
high cost of engineering and relatively low power capability. (Although losses in
microstrip are considerably higher than in traditional forms of transmission lines, the
greatly reduced size of the circuit makes this loss quite insignificant.) Circuit de~
signers go to great lengths to increase the power capability of microstrip circuits, by
improved techniques of heat removal. However, even in low power applications,
where heat removal is not a problem, there is a trade ~off between the high develop-
ment cost of microstrip circuits, and their increased reliability and hence lower
maintenance costs. For space and military applications, the increased reliability,
in addition to the other advantages, overrides cost. On the other hand, for more

"every~-day" types of microwave applications relatively few inroads have been made.

As far back as 1937, Palmer [47] using the Schwartz-Christoffel
transformation, rigorously calculated the capacitance of an infinitely long pair of
paralle! plates in air. In 1952, Assadourian and Rimai [5] used a simplified theory
based on conformal mapping and estimated the characteristic impedance, power flow,
together with conductor and dielectric losses.  But it was only in 1965, that Wheeler
[68, 691 also using an approximate conformal mapping, treated the case of two in-
finitely long parallel plates separated by a dielectric sheet and gave results accurate
to within a few percent for very thin conductors. Caulton, Hughes and Sobol [11],
in 1966, repeated Wheeler's calculations, and showed the results to be in good agree-

ment with experiment.



In 1967, Kaupp [33] presented extensive measurements for thick
microstrip lines and used these results to produce some empirical formulae.
Silvester [53], in early 1968, used the substrip method to solve the integral equation,
governing the electrostatics of the microsirip, obtained by partial image theory. This
was the first method capable of dealing equally well with both narrow and wide, and

thick and thin conductors, with considerable accuracy.

At this point, the rate at which papers appeared on the subject increased
rapidly. Still in 1968, Yamashita and Mittra [74] used a variational method in the
Fourier transform domain, to obtain the capacitance of a microstrip structure. This
was followed by Stinehelfer's [61] paper using a finite difference technique for the
microstrip in a box, and by Yamashita's [75] work, again in the Fourier transform

domain, treating various microstriplike structures.

lossel, Kochanov and Strunskiy [30] in 1969, published extensive data
on capacitance calculations of n-conductor systems in vacuum. Among the problems
solved, mostly by a method equivalent to the method of subareas, was that of two thin
infinitely long parallel conductors. In 1970, Mittra and Itoh [44] obtained the
charge distribution on and the potential near a shielded microstrip line, while in 1971,
Yamashita and Atsuki [73] reported an integral equation formulation for the thick

microstrip in a box, where the Green's function was obtained by a Fourier series method.

In addition to the study of the electrostatics of the microstrip, extensive
efforts have been conducted into measuring [4, 12, 41, 67] and theoretically pre~

dicting [13, 16, 27, 28, 43, 76] its dispersive effects. Losses in microstrip [23, 49]



have also received careful consideration. Similarly, the electrostatics [10] of and

dispersion [34, 35] ina coupled pair of microstrip lines has been studied.

From the survey so far presented, it is obvious that in recent years there
has been a substantial amount of literature publishéd'on microstriplike transmission lines.
However, even with the increased use of integrated circuits, there appears to be little
data for finite plates on metal -backed dielectric substrates. In 1959, Reitan [50]
obtained the capacitance of two parallel square plates in vacuum, using the method of
subareas.  Harrington [25], in 1968, solved the same problem by the point matching
method. lossel, Kochanov and Strunskiy [30] , in @ work already mentioned in regard
to infinitely long parallel plates ,also calculated the capacitance of two parallel rec-
tangular plates in air, by Reitan's method. |n 1969, Adams and Mautz [2] found the
capacitance of a rectangular dielectric loaded capacitor, by introducing special matrix
elements to account for the air-dielectric interface. Fuller and Chang [22], in 1970,
showed that if only the total charge is desired, it is possible to reformulate the problem
of the capacitance of a rectangular plate in vacuum in terms of a nonsingular quantity ;

the resulting integral equation is solved by Harrington's moment method.

It was 1971 before Farrar and Adams [20] obtained the capacitance of
a rectangular section of a microstrip line by the point matching method. Later the
same year, Patel (48] solved the capacitance problem of a thin n-conductor system
on a dielectric substrate, by a method similar to that used by Farrar and Adams.  Still
in 1971, Bostian and Wiley [9] claimed that Harrington's method of moments leads to

an inherently ill-conditioned matrix. Their argument was that for a square plate, as the



number of subareas is increased, the matrix is no longer strictly diagonally dominant.
This, however, is not one of the known criteria for ill -conditioned matrices. Asa

matter of fact Harrington and Mautz [26] have just published a rebuttal .

Now, to proceed to survey the available literature on microstrip dis-
continuities, Lewin [38] was the first to consider the problem. His objective was
limited to radiation from microstrip open and short circuits, bends and resonators. In-
terest in radiation from microstrip discontinuities was rekindled recently, when it was
shown [15, 19, 58, 66] that a significant fraction of the power loss in a microstrip

open circuited stub, is due to radiation at the open circuit.

Attempts, however, to actually model microstrip discontinuities are even
more recent. Stinehelfer [62], in 1968, performed measurements on cpen circuit
resonators, gaps and T junctions and crossings. The limited amount of remaining
material on microstrip discontinuity models, appeared since the spring of 1971. The
first of these was Troughton [65] who conducted experiments on microstrip open-
circuits and T junctions. He then proceeded to design successfully, by computer,

a multistub filter using the various measured corrections. Then followed the numerical
calculations of Farrar and Adams [20] on end-effects af open~-circuits, and the
measured results of Napoli and Hughes [45] with possible error limits due to dispersion,
still on open—circuits. In mid - 1971, Sobol [57] in a review paper, made a one line
mention of a simplified theory for the open—circuit effect, but failed to pursue the
point. Later in the same year Stephenson and Easter [60] presented preliminary mea-

surements of a resonant technique capable of dealing with microsirip right angle bends.



Still in 1971, Leighton and Milnes [37] in a study on 3 -db directional couplers
utilized an approximate model of microstrip, similar to that used by Oliner and
Altschuler [3, 46] for balanced stripline, for which the behaviour of a T-junction

had been evaluated by Marcuvitz [39].

In 1972, James and Tse [31], using the same approach as Farrar and
Adams, presented results for microstrip open—circuits, while Farrar and Adams [21]
published a correction to their earlier calculations. Wolff, Kompa and Mehran [72]
in a letter in April 1972, matched infinite series of higher order modes at planes of
discontinuity in microstrip steps and T junctions, on a waveguide model of the micro-

strip line. They presented numerically obtained scattering coefficients.

From this literature survey it is readily seen that, although there are
numerous papers treating microstrip discontinuities, they mostly deal with open circuits
(and even there they show considerable disagreement). For other discontinuities the
available data, with two exceptions [37, 72], are all of experimental origin ; and

since no two experimentalists consider the same case, there exists no supporting evidence .

The lack of data on microstrip discontinuities necessitates time -consuming
and expensive cut-and-try methods in microwave design. Extensive discontinuity data
could reduce substantially one of the two main disadvantages of microstrip fransmission
lines, i.e. the very high cost of engineering. The answer to this problem is not some
time~consuming experimental procedure, but rather a general theoretical approach. If

large quantities of reliable data were to become available, it is not difficult to visualize



the design of microwave circuits entirely by computer, without any subsequent

"tuning" being necessary.

The objective of this thesis is to present a unified theoretical treatment
of the electrostatic behaviour of microstrip discontinuities, leading to an efficient
numerical method capable of dealing with the capacitive effect of a large number of
discontinuities. In particular, microstrip open circuits, gaps, steps, right angle bends,
T junctions and crossings will be considered. In the process, two supporting problems
will be discussed and solved : the first is the electrostatics of microstrip lines, the

second is the electrostatics of rectangular plates on metal backed dielectric substrates.

First, the electrostatic capacitance of microstrip transmission lines is
solved, using trial functions which preserve the essentiai singularity in the charge distri-
bution. This approach provides an efficient means of obtaining electrostatic capacitances,
without having to compromise on the accuracy of the charge distribution detail . Second,
the problem of thin rectangular plates on metal backed substrates is solved. Instead of
the method of subareas with zeroth order approximation on a large number of subareas,

the use of a biquadratic trial set with a single subregion will be shown.



CHAPTER 1

SOME THEORETICAL BACKGROUND

2.1 Introduction

As entire books have been written on the material in this chapter, it
is neither possible nor desirable to go into much detail. Instead, some commonly
used definitions are stated, the variational method is introduced and its relationship
to the Rayleigh-Ritz and Galerkin-Petrov methods are presented. The fundamental
solution for the Laplacian operator is given and used to develop the integral equation
governing the charge distribution on a conducting surface. The resulting integral
operator is shown to be positive definite, which in turn implies, if the Rayleigh-Ritz
equations are used, that the capacitance thus obtained is @ maximum on the Hilbert
space spanned by the trial functions used. An attempt is made to present as much of

a unified treatment as possible of this varied supporting subject matter.

2.2 Definitions [59]

Definition 2.2.1. An inner product, on a real linear space, is a real valued func-

tional of a pair of elements x and y, with the properties

@) <x,y > = <y,x>
(i) <ax,y> = a<x,y> 2.2.1)
@iii) <x] +x2, y> = <x_I P Y2+ <x2 , Y>

(iv) <x, x> 2 0 with <x, x> =0 iff x=0
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Definition 2.2.2. A norm on a real linear space, is a real valued functional

Il x I, with the properties

@ MWxIl =0 with Il xlt=0 iff x=0

(i) Naxil=1lal lxl 2.2.2)
@iy 1 x| ¥ %, =<1 X; n+t Xq i
Definition 2.2.3.  The natural norm of an inner product space is defined by
N xll = <x,x>]/‘2 2.2.3)
Definition 2.2.4. Operator J is positive definite if
< Jdx, x> > 0 (2.2.4)
forall x # O in the domain of the operator J .
Definition 2.2.5. Operator J is symmetric or self-adjoint if
(2.2.5)

<=9X,)’>=<X,<9Y>

forall x and y in the domain of the operator J .
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Definition 2.2.6. A metric on a real linear space is a real valued functiongl

of a pair of elements x and Y » with the properties
0 d(xy) = d(y,x

() d(x,y) 2 0 with d(x,y) = 0 iff X=y 2.2.6)

(iii) d(x,2z) = d(x,y) + d(y, z)

Definition 2.2.7. @) X converges to x, if toeach ¢ > 0 there exists N
such that d (x, xk) < e whenever k > N ; ) a sequence {xk} is @ Cauchy
sequence if to each ¢ > 0 there exists N such that d (xm ’ xn) < ¢ whenever

mn > N3 (c) ametric space is complete if every Cauchy sequence is a convergent

sequence.
An inner product space complete in its natural metric is a Hilbert space.
Definition 2.2.8. Let S and T be two sets in ametric space with S contained

in T. Then S isdensein T if foreach f e T there exists an e ¢ S such that

d(e, f) <e.

Definition 2.2.9. A subspace M of a linear space is called a linear manifold if

whenever x and y are in M, sois ax +By.

Definition 2.2.10. A normed linear space which is complete in its natural metric

is called a Banach space.
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Definition 2.2.11. [36] Let E be a Banach space and E be a subspace of

E. The projection operator Pn from E to En s{ofisfies the properties :

(i) Pn E = En
) 2.2.7)
(i) Pn = Pn
2.3 Fundamental Solution for the Laplacian Operator and its Re lationship

to the Green's Functions [ 59 ]

Let & denote a differential operator, then the fundamental solution of

£ with pole at P' is the solution of the equation,

SE(P;P) = §(P-PY @.3.1)

where P and P' may be points in n-dimensional space. Electrostatically speaking,
E (P ; P') is the potential ot some point P due to a unit charge at P' . Qbserve
that no boundary conditions are imposed on E (P ; P') in Equation (2.3.1), and

two distinct fundamental solutions may differ by the solution of the homogeneous equa-
tion corresponding to (2.3.1). When the boundary conditions appropriate to the
given problem are imposed on Equation (2.3.1), the solution is called a Green's func-

tion and is denoted by G (P ; P') .
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Stakgold [59] and many others show that the fundamental solution

corresponding to the negative Laplacian £ = - V2 is

[ o
— In in two dimensions
2% tp-p'I
E(P;P) = J 2.3.2)
___l— in three dimensions
4xlpP-pl

2.4 Charged Thin Metal Plate in an Unbounded Region

The analysis of the charged thin plate in an unbounded region is essen-
tially that presented by Stakgold [59]. In what follows all operators operate with

respect to coordinate point P unless otherwise stated.

It is well known that the governing differential equation, for the plate

Sp shown in Figure 2.4.1, is

2

-vo(P) = 0 for P A 2.4.1)

o (P) = 1 for P ¢ Sp 2.4.2)

lim © (P) = 0 (2.4.3)
IPl ~

The fundamental solution, as defined in Equation (2.3.1), is the solution to



Figure

2.4.1

Thin conductor in vacuum

14
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-v2E(p;py - 5 (P -PY) @.4.4)

which, in turn, is given in Equation 2.3.2). As shown in Figure 2.4.1, one side

of the plate surface Sp is denoted by S+, the other by S_ , while the normal to S+

is denoted by n . The region R is that part of all space, enclosed internally by

S, and S_ and externally by a sphere Sr .

Multiply Equation (2.4.1) by E(P;P) and integrate over R,

- [ Ecppy v2 6 (P) dR = 0 (2.4.5)

R

Similarly, multiply Equation (2.4.4) by 0o (P) and integrate over R,

©(P) Y2 E(P;P) dR = o(p') @.4.6)
R

Subtract Equation (2.4.5) from Equation (2.4.6) to obtain

©(P) = TLE(P;P) v20(R) - o (p) 72 (ps pyTag
R 2.4.7)

Apply Green's theorem, noting that the positive normal is defined as pointing outward

from region R, and is antiparallel to n along S, -
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o(P) = ;[E(P;P')M_@(p) SE(P3P) 145
on on

+ L T-e;Py °p (P) +o@ B3P
S on on

s D ote(ryey 220 L pp) 2ECREP) 14 2.4.8)
s dn dn

Stakgold [59] proves that the behaviour of ¢ and E far from the origin is such as

to make the first integral in (2.4.8) zero. Imposing the boundary condition given in

JE (P; P")
on

are continuous across

(2.4.2), and observing that both E (P ; P') and

Sp , solongas P' ¢ Sp , one obtains

30 (P) 30 (P,)

o(P) = j E(P;P) [ - 1ds (2.4.9)
on dn
S
p
©(P,)
But - — is just the negative of the gradient of the potential on the S, side
n

of the surface Sp , which means that it is the electric field intensity at S+ . This,
in turn multiplied by the permittivity ¢, is the flux density or the surface charge

dv (P_)
density © ( P+) on S_. Similarly, —5 s proportional to the surface charge

density 0 (P_) on S_. Therefore, denoting the total surface charge density on Sp

by o (P), Equation (2.4.9) becomes

o(P) = — " E(P;P) o(P) dsS (2.4.10)

€
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Since E (P ;P is symmetric, coordinates P and P' can be interchanged,

®(P) = % ! E(P;P)a(P)ds 2.4.11)

S
p

where the integration is performed with respect to the primed variable over $

An analogous procedure can be ysed to prove that, for the two dimen-
sional case of an infinitely long thin strip, the form of Equation 2.4.11) is still
valid subject to the following interpretation : @ E(P;P) isthe two dimensional
fundamental solution, (b) integration is over a line segment, rather than a surface

and (c) O(P") is charge density per unit length along the line segment.

In order to determine the surface charge density o (P') on the plate,
let P approach some point on Sp . Then using the continuity of simple layer
potential [59] together with the boundary condition in Equation (2.4.2), the result-

ing Fredholm integral equation of the first kind to be solved is

LoD e 4 _ 2.4.12)
dre -~ lp-p|

s

p

and this is valid forall P ¢ Sp
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2.5 Variational Formulation

Let J be a symmetric and positive definite operator defined on a linear

manifold D g dense in a real Hilbert space. Consider the operator equation

duv = f (2.5 ])
together with the associated functional

F(v) =2 <f, v>=-<dy, v> 2.5.2)
where v ¢ D g - Then the following theorems can be proved [59] :

Theorem 2.5.1.  Equation 2.5.1) has at most one solution.

Theorem 2.5.2. () If Equation 2.5.1) has a solution u, then

& (v) attains its maximum valve for v = v .

b) If 3F(v) attains its maximum value for some

function u, then u is the solution of Equa-

tion (2.5.1) .
Note that the maximum value of the functional ¥ (v) is 3 () = <f, u>.

By Theorems 2.5.1 and 2.5.2, there exists only one v ¢ Dy, which
maximizes &. Suppose that one is willing to settle for an approximate solution in

E , some n-dimensional subspace of D g- Then
n
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max F(v) s max F(v) = 3(u) 2.5.3)
veEn veDcg

Hence, max &(v) isa lower bound to the true solution. Let Pn be the

veE
. n. ..
(symmetric) projection operator onto En' If ve En , then an = v and

2 <f,v> -<dv,v>

]

F(v)

2 <f,P v>- <3v,P v >
n n

i

2 <Pnf,v> - <Pn dv,v> 2.5.4)

By Theorem 2.5.2, the function u € En which maximizes F (v ) is the solution

of the equation

P Ju = P f ; u €E 2.5.5)

n n n n n

Observe that Equation (2.5.5) could also be obtained by simply projecting Equation

2.5.1) onto En . In the space En

max &(v) = <f, v = < max F(v) (2.5.6)
n
veEn veDcSl

Let the set { v } beabasisfor E_ 3 since u ¢E
n n n n

n
;

a, v, 2.5.7)

3 =

i=1
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Perform the projection indicated in Equation (2.5.5) , in this case, taking inner

products with the basis function set { A }

<Jun,v' > = <f, v, > (2.5.8)
i=1,2,...,n
and substitute (2.5.7) into .5.8)
n
ui <=9vi,vi> = <f,vi> 2.5.9)
i=1
1=1,2,..., n
This equation may be written in matrix form
L =
i Ja. £ (2.5.10)
where L. = <dv,,v. > = |,
i i’ ji
T _
a, = [c],cz,...,an]
iT = [ <f,v

]>, <f,v2>, cees <f,vn>]

This system of linear equations is called the Rayleigh-Ritz or Galerkin equations.

It is appropriate to note that the form of Equation (2.5.10) is the same,
irrespective of whether it was obtained variationally or by projections. While the

variational approach, applicable only under special circumstances, guarantees the
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maximality of some functional, projections, having considerably fewer restrictions

on both the operator and the function space, have wider applicability .

2.6 Advantage of the Variational Method

The variational solution is particularly advantageous if one is interested,
in the actual maximum of the related functional % + ot just obtaining the solution of
the operator equation. [t will be shown that an error of order € in the solution yields

2 . . .
only order € error in the maximum value of the functional .

Define the function

F(e) = F(u+en) 2.6.1)

where U s the exact solution ,
M is some element in the domain DJ ’

€ is some real parameter.

Expand Equation (2.6.1) inq Taylor series about ¢ = 0

2
F(e)=F(0)+ed—l-: +€2d—’2: ..
de| €=0 de [e=0

2
+ (-:2 d F(u+en)

de2 e=0

F(u) + ¢ 5 (v+em)
de

1]

]
o

€

2.6.2)
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In the case of the variational method
d¥F(u+emn)
de e=0

implying that

2
2
Fe)=B) v e S2lopen)
de €

+ ... 2.6.3)

]
o

Therefore, if the error in the solution of Ju=f is of order ¢, then the error in F
is of order 52 . So that for small errors, F is likely to have twice as many good

significant figures as the approximate solution.

2.7 Rayleigh—Ritz Method over many Subregions

Consider the projected operator equation

P Ju = P f @.5.5)

n n n
and let En' the subspace of DJ , be defined on a region of space denoted by S.

Subdivide S into m non-overlapping subregions S1 rSyrens Sm such that

m
Ss=U Si , so that one ends up with corresponding subdivisions, El , Ei g oeen E': '
i=1

of E
n



23

Let { v; } be basis functions with local support for E; on S, , and
i
m

En = U E; - Hence, if uln denotes the approximate solution in the ith syb-
i=1

region, then

n
P T 0
v ; ai vi @.7.1)
i=1
m -
_ i
o = ) ot 2.7.2)

Let ' denote the forcing function with local support in the ith subregion, then

[~13

f 2.7.3)

il
—t

Substitute Equations 2.7.1), 2.7.2) ond 2.7.3) into 2.5.5)

s

@ P dvio= ) b (2.7.4)

m
T i i
/L i n

Perform the indicated projections, onto the set { vrl: } for k= 1,2, ... ,m.

13

N ,
L) e <Ivi, WS> ] <#,vl> ?.7.5)

4 I £

=1 j=1 i=l ke o

Using the product integral definition of an inner product, <f', v:< >=0 when i # k;
whereas, for the integral operator given in Equation 2.4.12), <4 v; , vlk > # 0 when

i # k. Hence qfull matrix results.
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2.8 Gaierkin ~ Petrov Method [36, 42]

Although not variational ly stationary, this generalization of the Rayleigh-
Ritz method is worth mentioning. Consider, again, Equation (2.5.1)
du = f 2.5.1)

where v ¢ Dy while f e R 4 where Dy and R g 9re Banach spaces. Let E be
a subspace of the domain DJ , while Gn is a subspace of the range RJ . Also, let

{v_1 be a basis set in E ond {w }abosissefin(; .
n n n n

Expand y e En on the subspace basis set { v, }

n
o= Y av. 2.8.1)
n L [
i=1
Use the approximation givenby (2.8.1) in Equation (2.5.1)
n
) o Jv. = ¢ 2.8.2)

For the Galerkin-Petrov method project both sides of Equation (2.8.2) on the subspace

G ,

n

n
—
) a. P dv =p_ f 2.8.3)
Z.-] i Gn i Gn

=

where P G is the projection operator onto subspace Gn - When inner product pro-
n
jections can be used, (2.8.3) becomes
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n
Y K] > <z >
/, ai < vi . wi f, wi (2.8.4)

i=1 i=1,2, ...n

If {wn = { v }, possible when the range space is contained in the
domain space, the Bubnov-Galerkin method results. If ; in addition, the operator
is positive definite and symmetric, Equation (2.8.4) is equivalent to the Rayleigh-

Ritz equations.

2.9 The Integral Operator Corresponding to the Laplacian is Positive Definite

The three dimensional electrostatic problem, to be solved in Chapter IV,
is formulated in terms of Rayleigh-Ritz equations using product integral inner products.
Therefore if the integral operator can be shown to be positive definite then the capaci-
tance obtained is guaranteed to be a lower bound to the exact value. The integral

operator under consideration is given in Equation (2.4.12) to be

gy =[ P 45 (py 2.9.1)
1P-pP'I
S
p
where d S (P') indicates infegration with respect to the primed coordinate over the

plate surface Sp . The inner product definition to be used is

u(P) v(P)dS(P) 2.9.2)
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Thus, consider the inner product

<duy v>= J" v (P) J iﬂdS(P') ds (P 2.9.3)
S g !P-Pl
3 P

Apply the mean value theorem for multiple integrals [51] to the integration in the

primed coordinate

1
I P-pI

dS(P") ds (P) 2.9.4)

<Jd v, u>= j u (P) u(Po) j
S

S
P P

where Po is some point in Sp . Change the order of integration, as permitted by
Fubini's theorem [24] ,

<suuz=ur) [ [ 2B g5y a5 2.9.5)
s s

IP-pl
PP

and, now, apply the mean value theorem to the integration in the unprimed coordinate,
which incidentally is identical in form to the earlier integration in the primed coordinate .

Then

1
IP-P1

<du,u >= UZ(PO) i ds(P) ds (P 2.9.6)
s

J
S
PP



Therefore, -

<Jduy, v > > 0 2.9.7)

forallreal u # 0. Hence by Definition 2.2.4, the integral operator in question

is positive definite.

Incidentally, the fact that the operator is symmetric is obvious. There-
fore, if the Rayleigh=Ritz method is used, to solve the integral equation given in

2.4.12) , then the functional which is being maximized is

max & (v) = <f, y > = j g (P') dS(P") 2.9.8)

S
P

i.e. the total charge on the plate. This in turn is proportional to the electrostatic
capacitance. Hence the capacitance thus obtained is a lower bound and is variationally

stationary.



28

CHAPTER 111

THE INFINITE MICROSTRIP PROBLEM [55]

3.1 Introduction

Numerous solutions have appeared in the literature for the electrostatic
capacitance of microstrip transmission lines : g simplified theory [5], conformal
mappings [47, 68, 69], substrip approximations to the integral equation formulation
of the problem [10, 53], polynomial trial functions in the Fourier transform domain
[74], as well as others. Al these methods produced quite good approximations to
the capacitance values on the strip, since the electrostatic capacitance is variationally
stationary.  Hence even relatively large errors in the computed charge distributions,
yield acceptably good values of C . To obtain local charge distributions of reason-
able accuracy, especially in the neighbourhood of the strip edge, the existing matrix

methods result in large systems of equations and therefore time-consuming computation.

Since in the analysis of discontinuity effects an accurate knowledge of the
charge distribution itself becomes important, it would be highly desirable to develop a
method which has accuracy comparable to the substrip method, with a large number of
subdivisions, yet possibly requiring shorter computing times. Therefore, it is not in-
appropriate to take time to discuss another, more economical, approach to obtain
microstrip transmission line parameters. The method described below, which, incidentally,
is equally well suited to deal with the electrostatics of coupled strips, takes relatively
little computing time, but yields good charge distribution accuracy, including preserving

the all important singularity at the strip edge.
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It is appropriate, at this time, to point out that dispersion in microstrip,
especially at frequencies above 5 GHz, is a factor to be contended with. Various
investigators published results in this area [ 4, 12, 13, 16, 27, 28, 41, 43, 67,76 ].
Typically, over the range of 5 - 12 GHz for a characteristic impedance Zo = 50 a
on alumina substrate ( € = 10) of 0.025inch thickness, there isa 2.2 % disper-
sion in the phase velocity [67]. However, as the microstrip discontinuities are to be
discussed from the electrostatic point of view, only the electrostatic solution is of

immediate interest.

3.2 Governing Integral Equation

As in much previous work, the TEM formulation of the microstrip problem
is used. The integral equation which governs the electrostatic charge distribution on

the infinite strip is given in [53] to be

1
O (¥) G (y;y)dy' (3.2.1)

wm(y)

-1

= f -1, 1]. is the el tati tential
where qom(y) <pm or ye [ ] qow(y) Is the electrostatic potential on
the line z=h while °_ denotes the constant potential on the line segment z=h
and ye [-1,1]. L (y") is the charge distribution and Gco (y ;y") is the
Green’s function for the problem (see Figure 3.2.1) . y and y' are potential and

charge coordinates, respectively. It can be shown, using extended image theory, that



Z .

g
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the necessary Green's function is

_ 4n" +( -l)
6 _(yiy) = ——n Y & 1a LN

2x(eyte) el 4 (n=1+ 1) 2

where K = ( € e]) /( e+ el) . The potential due to a charged wire of radius r,
near a metal backed dielectric substrate, was obtained by Kaden [32] in a form similar

to that given in Equation (3.2.2).

3.3.  Treatment of Singularities and Solution of the Integral Equations

It should be noted that the Green's function in Equation (3.2.2) contains
a singularity of the form In | y -y' I . Also, it is well known [1, 52] that the
charge distribution % ® (y') on the strip in vacuum is continuous but singular at the

edges, and it may be written in the form

o_(y') = <) (3.3.1)

/1-y'2

where ¢ (y") is a slowly varying continuous function. Assume, that even when a
dielectric is present the charge density can still be written in the form given by Equa-
tion (3.3.1). According to the Weierstrass approximation theorem [591, such

functions are well approximated by polynomials. Therefore, a good family of functions
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for approximating the charge distribution is { !bi (y') } given by

f. (y"
. (y') = L (3.3.2)
/l-y'z
i-] .
TT U -y*1, 0>
Y i-1 (3.3.3)

b (y'")

k
o M) =) e b (y) (3.3.4)
i=1
the integral equation (3.2.1) assumes the form
A
3.3.5)

To solve for the coefficients a. , one variant of the Galerkin-Petrov
i

method [36, 42] can be used. Projecting both sides of Equation (3.3.5) ontoa

finite set of even order Legendre polynomials P2i (y) yields

1 RN
frp(y)P2i (y)dy = ; o J f¢i (y') Po; (y) Gy {y 5y dy'dy

-1 =1 -1 -1
(3.3.6)

Ly
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It might be noted, in passing, that the integral projection in Equation
(3.3.6) cannot be regarded as a moment method [26] - not all members of the set
{ lbi } are square integrable and therefore do not belong to any normed space on
which the product integral constitutes an inner product. ( As a matter of fact the
expansion and projection sets do not even span the same space .) This also implies
that the result is not variationally stationary and the capacitance thus obtained is not
a lower bound to the true solution. Nevertheless, Equation (3.3.6) may be regarded

as a non-symmetric matrix equation which is solved readily for the coefficients a. .

No difficulty is encountered in evaluating the integral on the left side of
Equation (3.3.6) ; for the microstrip of constant potential, © « (y) = o for
y e [ -1, 1], all Legendre polynomials except the zeroth are orthogonal to the con-
stant potential function Oy - Therefore no actual calculations are required to obtain

the forcing vector for the matrix equation corresponding to (3.3.6) .

However, the double integral contains a singular kernel in addition to the
singularity in . . Its evaluation may, therefore, cause some concern. Forfunately,
the integral can be shown to be convergent, so it may readily be evaluated, provided
suitable weighted quadrature formulae are available. Such formulae may be constructed
in the manner indicated by Silvester and Hsieh [54] ; alternately, suitable product
quadrature rules may be obtained as described in Appendix | . The latter approach

is to be followed here.

The double infegral on the rigkt hand side of Equation (3.3.6) can be

designated by | and rewritten as



1 1f,(y) -y G, yiy)
-] = 2,(y) o[ lrzyly o dy'dy
-1 -1 ]-y ly=-y'l+1 |n[-—l—yll—-:’

by =y'l+1 535

by simply substituting the expression in Equation (3.3.2) for zbi (r') and multiplying

and dividing Gm(y sy by Inlly-y1/(ly-y'1+1)]. Note, that the

ratio
G _ (yiy"

t(y,y) = 2 (3.3.8)
In_'L-_)i'_
ly =y'1+1

is no longer singular when y =y' . Also, observe that simply dividingby Inly -y']

would not be acceptable as r (y , y') would be singular whenly -y'l= 1.

The integral in Equation (3.3.7) can be rearranged to read

] 1
L " l - II ] 1

| ] fi(Y) vr In Y=Y ?' Pzi(y)r(y,y)dy dy
S31-,2 A dy-y'l+l (3.3.9)

To perform the integration in the y' direction, Gaussian quadrature formulae with

weight (1 -y~ 12 are easily obtained from Stroud and Secrest [63], so that |
in Equation (3.3.9) becomes

) .1 ly-y'nl
- Z An fi (Yln) I I'n ——— P2i ()’) r (Yr )"n) dy (3.3.10)

n=1 - by =yt 14l
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where An and y' are quadrature weights and points, respectively. To evaluate
n
the integral in the y-direction, Gaussian quadrature formulae with weight
In [y -y'n b/ (ly -y'n I'+1) ] for each quadrature point y;‘ » can be obtained

so that

ZAHy)? B o Poi i) s 73 @.3.11)

n=1 m=1
where an and Yon OF€ quadrature weights and points corresponding to the indicated
logarithmic weight, for each of the N quadrature points in the y’ ~direction. Note
that this weight function does not change sign within the interval of integration, a
property required to be able to obtain Gaussian quadrature formulae by the method des-
cribed in Appendix I.  Ten point quadratures in both directions have been found
adequate to give good cccuroc} where the width to height ratio of the strip does not
exceed three. For wider strips, the formulation appears to be entirely adequate, but
ten point quadratures no longer suffice for accurate integrations, i.e. thisis a program
limitation rather than a limitation in the method and may be removed, if desired, by
using quadrature formulae of higher precision. (For the few instances in which very
wide strip capacitances were required, rather than increase the number of quadrature
points, good success was obtained by projecting the results from the substrip approxima-

tion onto the set { z/)i } given in Equation (3.3.2).)

It is worth noting that the approximation involved in Equations (3.3.2)
and (3.3.3) is in fact in polynomial with a Chebyshev weight.  Since any polyno-

mials of a given degree span exactly the same function space, they may readily be
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converted to another family of polynomials of the same degree. It is appreciated,
that this approximation is in fact equivalent to an approximation in Chebyshev

polynomials, with the equal ripple properties of the latter.

A note regarding the evaluation and convergence of the infinite series
in Equation (3.2.2) is appropriate. [n vacuum € = ¢ and K=0 and the series
becomes finite, in fact only the n=1 term exists. When the dielectric is other than
vacuum -1 <K <0, Silvester [53] noted that "each term in the series is smaller
than Kn-] by the logarithmic factor, so that the series must not only converge, but
must converge more quickly than a geometric series.” He also observed, that since this
is an alternating series, an overestimate of the number of terms required for convergence

within an error limit E is

M = InE (3.3.12)
IntK! -

This is a consequence of the fact that truncating an alternating geometric seriesat the

Mth  term results in an error of at most | K IM. .

3.4 Results and Comparison with Existing Data

Unfortunately, no exact results - that is to say results of known superior
accuracy - are available for strips on substrates of high permittivity. On the other

hand, for parallel strips in free space, Palmer [47] presents a detailed analysis, by



means of conformal mapping, which permits computation of the capacitance to ar-
bitrary accuracy. The analysis given by Palmer is sufficiently complicated to
preclude finding analytic expressions for the charge density. On the other hand, the
positions of successive flux lines on the strips themselves may be determined from his
analysis.  Since these positions are known to high accuracy, it is pessible to perform

numerical differentiation so as to.plot the charge density on the strip surfaces.

Figure 3.4.1 shows comparative results obtained by conformal mapping
and the present method, for a strip five times as wide as its height above ground plane,
in vacuum. The charge distribution, it is noted, is very similar for both the conformal
mapping solution and the numerical approximation ; however the average charge densi-
ties differ sufficiently to lead to a capacitance error under 2 % . Similar comments
apply to the width~to-height ratio of about 0.1 , a quite narrow strip, shown in Figure
3.4.2. The essential feature to note is that the small matrix size (the two cases
illustrated were obtained using 2 x 2 matrices) results in short computing times. In
this case 8 /60 seconds are required, as opposed to 56 / 60 seconds for the substrip
method using a 50 x 50 matrix required to model accurately the local charge distribu-
tion. The singularity near the edges is still modeled accurately. In actual fact the
saving in computation time is not quite as great as it appears. In the substrip method a
large fraction of the time is consumed by matrix solving, while in this method virtually
the whole time is taken up by integrating the Green's function. Requiring an error in
the infinite series of not more than 10 7 puts the break even point at about 45 x 45

matrix for e, = 10.0 . However, if fewer terms are taken in the series the computa-

1
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Figure 3.4.1 Microstrip charge density distribution in vacuum
for w/h = 5.0
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Figure 3.4.2 Microstrip charge density distribution in vacuum

for w /h = 0.1
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tion time for this method falls considerably. Table 3.1 shows comparative valves

of microstrip capacitance obtained by this method, as opposed to the results obtained
by Silvester [53] by the substrip approximation. This program, with N substrips
specified, also recalculates with N /2 substrips and using quadratic Aitken extra-
polation produces a capacitance equivalent to about 2 N substrip approximation. |t
should also be mentioned here that since the new method is not variationally stationary,
the fact that the capacitances are higher than those obtained by the substrip method is

not necessarily an indication of better accuracy .

Therefore the task of obtaining an economical means of solving the
microstrip capacitance problem, while still preserving the singularity in the charge
density at the strip edge has been accomplished. A further improvement in the solu=
tion of this problem would be the use of linear or quadratic expansion functions near

the center of the strip, while stiil maintaining singular functions near the edge.



TABLE 3. 1.

Microstrip capacitance in p F / meter

Substrip [37] This Method
w /h € 30 x 30 Matrix 2 x 2 Matrix
0.2 2.5 28.2 28.6
2.667 2.5 92.2 92.5
0.2 4.2 42.9 43.5
2.667 4.2 145.9 146.0
0.2 9.0 84.1 85.4
2.667 9.0 296.8 296.5
0.2 16.0 144 .2 146.4
2.667 16.0 516.5 515.7
0.2 51.0 444 .6 451.3
2.667 51.0 1614.6 1611.0

41
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CHAPTER IV

CAPACITANCE OF RECTANGULAR PLATES

ON METAL-BACKED DIELECTRICS [8]

4.1 Introduction

In recent years a substantial amount of literature has become available
for microstriplike and related structures. But even with the increased use of inte-
grated circuits there appears to be very little data for finite plates on dielectric
substrates. Reitan [50] and Harrington [26] obtained the capacitance of two
parallel square plates in vacuum. Adams and Mautz [2] found the capacitance of
a rectangular dielectric loaded capacitor, while Farrar and Adams [20] obtained

the capacitance of a rectangular section of a microstrip line.

Initially, the rectangular plate problem was tackled with the intention of
obtaining the discontinuity capacitance at an open circuited microstrip by the same
method as used by Farrar and Adams [20] . This involves successively increasing the
length of a rectangular section of a microstrip line until the difference, between the
capacitance of the rectangular section and capacitance of an equal length of infinite
microstrip line, converges. Ideally this difference represents twice the open circuit
capacitance. This approach, however, entails serious numerical problems, to be dis-
cussed in Section 5.3, and was abandoned. Nevertheless, the problem of rectangular
plates on metal backed dielectrics is worthwhile in its own right, particularly in the

design of lumped element integrated circuitry. Also, the method used to solve the
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governing integral equation for the rectangular plate, will be used to directly obtain

the excess charges at various microstrip discontinuities.

For a charged rectangular plate in vacuum, the governing differential
equation and the appropriate boundary conditions are given in Equations 2.4.1) ,
2.4.2) and (2.4.3). Normally, one would proceed to solve the differential equa-
tion directly ; however, this being a three dimensional exterior problem, it is not well
suited to be approached from this point of view. Instead the equivalent integral

equation was obtained in Equation 2.4.12).

4.2 Governing Integral Equation

The rectangular conducting plate on metal backed dielectric substrate is
shown in Figure 4.2.1a . To facilitate the analysis, the equivalent problem, shown

in Figure 4.2.1 b is considered.

In Chapter |1, it was pointed out that a fundamental solution becomes a
Green’s function when boundary conditions are satisfied. The boundary condition im=
posed by the ground plane was satisfied by using an image plate as given in Figure 4.2.1b.
To satisfy the air dielectric boundary condition, Silvester [53] used partial image theory
in the case of the microstrip problem. He showed that for a line charge at a distance a
from a dielectric sheet of thickness 2 h, the image representation valid in the dielectric
region is as shown in Figure 4.2.2. This representation isequally valid in the case of

a point charge, required for three dimensional problems. Therefore, the potential at a
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by Superposition of the Partial images , s

@
-k " 2n
‘D(xl}'lz) =

—-.*_/K

—~—t
4n¢

I
n
p =0 /(x o2

+(y-y')2+[z-(4n+])h-aJ2

@.2.1)

®
“>" 2n 1

4q € n=0 /x

( _x|)2+(y-y')2+fz+(4n+3)h+a]2

where K =(eo-e])/(eo+e

I) is the image coefficient. For a thin plate ¢ = 0,
so that the Potential in the - h

plane is given by

2n
-_— K

1
4 € n=0

(4nh)2+(x-x

[0}
Oy = 1K 7

Pt (y = yy2

4.2.2)
- K-k T k20 ‘\]\__
4”1 =0 (4 (n+1)h12+(x -X')2+(y-y')2

Equation 4.2.2

feépresents the Potential qt 4 point (x, Y,

located gt point (x', y',

ness 2h .

tal solutions 1, satisfy the
Therefore Equation @4.2.2) represents the Green's
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function for the problem. To simplify the computations to follow, the 8 - way
symmetry inherent in the configuration shown in Figure 4.2.3, is included in the

Green’s function, which becomes

@
Gxy;x,y) = 1 [f Q) -(1-K) Z K”']f(n)J
21r(eo+e])h e @.2.3)

where

O = D20+ (202, (L2712, 002, (R 5 (LYy2y71/2
@.2.4)
L (20 (X502, EEO212 o2, (K4 ()2 1712

Using the Green's function given in Equation (4.2.3), with all the image
points built into it, only the positive quadrant of the top plate, shown in Figure 4.2.4,
needs to be considered. A similar Green's function, containing only half the terms of

Equation (4.2.3), has recently been obtained by Patel [487 for the case when the

ground plane is at infinity.

Therefore, referring to Figure 4.2.4, the integral equation to be solved is

b a
Il Gxys sty ox, y) dx' dy' = o (x, y) 4.2.5)
y=0 x=0
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Figure 4.2.3 8 - way symmetry for the rectangular plate on metal

backed dielectric substrate

Y.y’

Figure 4.2.4 Region of integration for Equation 4.2.5)
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Even prior to proceeding to solve this equation, the matter of evalua-
tion and convergence of the infinite series should be disposed of. On examining
f (n), given by Equation (4.2.4), it is readily noted that f (n) < nz' . Therefore,
subject to the change that each term in the alternating geometric series is smaller
than Kn_] by the factor _r2;_ s the rest of the argument, regarding convergence and
the number of terms required for convergence to within a specified error limit for the

infinite microstrip problem, is also applicable here.

4.3 Solution of Integral Equation by Rayleigh-Ritz Method

over Many Subregions

Observe that the three ~dimensional boundary value problem has been re-~
duced to a two-dimensional integral equation. The question asked in Equation (4.2.5)
is : "What charge distribution o (x} y') is required on the plate to produce some given
potential ¢ (x, y) onit 2" To solve Equation (4.2.5) the Rayleigh-Ritz method over
many subregions, described in Section 2.5, is used. In the present context Equation

(2.7.5) can be written as

" 13
/]3

1

ot
—_

l

L8 <INV () v () > = <of (x, ), v (k) > @3
1

I=1,2, ... n;k=1, ..., m

Thisisan mn x mn matrix equation which can be solved for the unknown
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coefficeints a; by any standard technique. Once the a; are known, the total

charge on the plate is readily calculated as

b a
r 1 | 1 1

Q = 4 [ [ owxy)dx dy
y'=0 x'=0
b a m n

= \—. ‘_‘- i i 1 1 1 ]
s [ [ L% Vi(x,y) dx dy 4.3.2)

y'=0 x'=0 i=1 j=I

Since the charge distribution was calculated for the case when ©(x,y)=1v onthe

plate with respect to the ground plane, the capacitance of the rectangular plate is

Q T
C = — = QT farads 4.3.3)
v
4.4 Evaluation of Inner Products - Special Treatment of Singularities

and Pseudo=singularities

The typical matrix element in Equation (4.3.1) is an inner product of
the form

< Jv; (x',y", ":< (x,y)>
@4.4.1)

=f ! ] J' G(x,y;x',y')v;(x',y')v:< x,y)dx' dy'dx dy
kth  i-th
region region



where G (x,y ; x', y') is given in Equation 4.2.3). Three distinct cases need

to be examined in some detail.

To perform the integration in (4.4.1), when the integrand contains no
singularities, a four-dimensional Cartesian product rule is used. This involves con-
sidering the integration as an iterated integral and applying a Gaussian quadrature
formula in each coordinate direction [14]. The use ;f a three point Gaussian quad-
rature formula in each direction, yields 81 quadrature points for the four-dimensional
region. Although, in principle, féwer points may be sufficient to integrate four-
dimensional complete polynomials of 5th degree (i.e. all polynomials x; x‘i,). xl:; X4
such that i+j+k+1 < 5) the extra points are not wasted as these permit the exact
integration of all polynomials xi] xi2 xI:; xi such that i, j,k and | <5,

The second case, which is necessary to consider, arises when i =k in
Equation (4.4.1) . In this case the Green's function contains a singularity ; the in-
tegral, with the singular kernel, is of the form

e

d b d v
r i Vi(er)Vl(xl)’) . .
j f J dx'dy'dxdy 4.4.2)

J
y=¢ x=a ykcx*a /<x-x')2+<y -y

This integration is once again over a hypercube, but here there is a
singularity at x=x"' and y=y'. However, performing two coordinate transformations
the singularity sheet can be shown to have a point projection on the sheet formed by the

remaining two coordinates. First, let the order of integration in (4.4.2) be changed to
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V. (XIY)VI(XIY)

-
l
[
[ pan ]
e o

dx'dx] dy' dy
y=c y'=¢ x=a x'=a

4.4.3)
/(x-x'>2+ v -y

Now perform the transformation x ~x' = p and x +x' = q as suggested for the
logarithmic singularity [54] .

Referring to Figures 4.4.1a and b, and using the

symmetry about the q - axis in Figure 4.4.1 b, l; may be written as

28 PR EP (e E19.9) + i35 vy (2r9,)
p =1 [‘ i Z dq dpJldy' dy
y=c y'=c p=0 q=2a+p / )
Pt ly=y) @.4.4)

A similar procedure can now be repeated in the y y* - plane, setting y -y'=r and
y +y'=s, toyield

b-a d-¢

2bp 2d-r
1or o ’
A S L

p=0 r=0 p2 + r2

F(psr,q,5)ds dq dr dp (4.4.5)
=2a+p s=2c+r

where

Pig Tis,  pig T ptg - g, r4s
Flpmas) = v (=g v (5 )+ v (B Ty v (B IF

v (B3, i I(_E,ng (P19, s

Sy BRS

)

The integration indicated by Equation (4.4.5) can be performed if the following in-

tegrals can be evaluated :
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Figure 4.4.1 Region of integration in the x x' - plane and in the

transformed p q - plane
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b d-—
A -H-g—g dr dp @.4.6)
p=0 =0 \/p +r

where
2bp 2d-r
r\ >
H(p,) =) ] F(piriqss) ds dgq 4.4.7)
g=2a+p s=2c+r

The integral in (4.4.6) can be evaluated by performing the transformation p =R cos &

and r = Rsin® . Referring to Figure 4.4.2

a (ba)sech 7/2 (d~c) cosec &
= j j mkdgde+f j HR® cdrdoe
60 R=0 R 6=a p=0 N 4.4.8)

Note that in the integrations in Equation (4.4.8) the singularity is no longer present.
Each integral in (4.4.8) can be evaluated using a Cartesian product of Gaussian
quadrature formulae in the R -8 plane. Once the quadrature nodes for the inte -
grations in Equation (4.4.8) are known, the integrations indicated by (4.4.7) become

a definite integral, which can be evaluated by a Cartesian product rule in the s q -

plane.
The third case to be considered is a pseudo-singularity which takes the
form
d b d b v
r r h Vi(XIY)VI(XIY)
l, = ] dx'dy' dx dy (4.4.9)

=Qa y'=c x'=a AAZ + (X ‘Xl)2+ ()’ _y,)2

J
y=c X



o= tan-Tld-cllb-a

(d-c)

(b-a) P

Figure 4.4.2 Region of integration for Equation (4.4.8)
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The integrand here is in fact continuous throughout the region of integration, but has
very large derivatives as well as values if k is small ; straightforward use of Gauss-
Legendre quadratures, therefore, leads to bounded but very large error.  From the
numerical point of view, this integral is difficult and requires special treatment similar

to true singular integrands.  |n this case the equation equivalent to (4.4.6) is of the

form
b-a d-c
r " H(p,r
= ) A g, dp (4.4.10)

p=0 =0 A2+p2+r2

Perform the same polar transformation as before, i.e. p=Rcos® and r=Rsin® .

Now referring to Figure 4.4.3 l, can be rewritten as

/2 3k
r‘ .

L=t [ R 4R o) dr de
2 v f2. 2
6=0 R=0 k +R (4.4.-”)
a (b-a)sect /2 (d-c)cosec®
P R R
] H(R,6)dRdG + H(R,6)dR d 6
60 Redk k2 + g2 6=a R=3k /K2 +R?

To evaluate the first integral in Equation (4.4.11) a Gaussian quadrature formula is
developed with weight R /«/kz—-i-? for the R-direction, while a Gauss-Legendre
quadrature is used in the @ direction. This ensures that the pseudo-singular part of the
integral is evaluated rather accurately. The second and third integrals in Equation
@.4.11) do not have pseudo-singular integrands and straightforward Cartesian products

of Gauss-Legendre formulae may be taken.
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o= tan“’[(ci4c),(5-a')]

(¢-c)

(b-2) P

Figure 4.4.3 i
Region of integration for Equation (4.4.11)



The inner product on the right of Equation (4.3.1) is, simply, a two-
dimensional integral with nonsingular integrand, so that its evaluation is done very

simply using a Cartesian product of Gauss-Legendre formulqe.

4.5 Results and Comparison with Existing Datu

Since Equation (4.3.1) is the Rayleigh-Ritz equation over many sub-
regions and the integral operator in it is obtained by the superposition of a number of
positive definite operators, the method is variationally stationary. The corresponding
functional, which is in effect maximized, was shown in Equation (2.9.8) to be the

capacitance of the rectangular plate .

In all the present calculations the basis functions used are
2 2 - .
{vi (x,y)} =1{1,x, Yo x ,y 3. Although it is well known that the charge dis-
tribution on a rectangular plate contains singularities at the plate edge, so that the
polynomial basis set used is not well suited to reproduce these singularities, nevertheless
relatively high accuracy is expected for the total charge and hence the capacitance of
the plate for the reason described in Section 2.6. Also in Chapter 11, it was pointed

out that the capacitance thus obtained is a lower bound to the exact value.

As a result of the variational nature of the solution, increasing the number
of basis functions or using more subregions, the capacitance value obtained should increase
or stay unchanged. This type of behaviour is readily seen in Table 4.5.1 for € = 2.5

and w /1 = 1.0.



TABLE 4.5.1

Cd/eA, where C is the parallel plate capacitance normalized

w. r. t. capacitance of infinite plates

Number of

d / NSubregions 1 2 3 5
1.0 6.17 6.20 6.25 6.30
0.2 3.26 3.26 3.33 3.4

It is appropriate at this point to compare the results obtained by the
present method with those in [20, 26, 50] . Reitan [50] calculated the parallel
square plate capacitance in vacuum using constant basis functions over 36 subregions
on the plate, which is equivalent to using 9 subregions on one quarter of the plate.
A comparison of his results with those obtained by the present method, using the bi-
quadratic basis set over one subregion, is shown in Table 4.5.2.  Harrington [26]
solved the same problem by the point matching method. His results together with those
obtained by this method are shown in Figure 4.5.1. Farrar and Adams [20] caleu-
lated the electrostatic capacitance of square and rectangular plates on a metal backed
dielectric substrate. They also use a number of subregions with constant basis functions ;

however they do not indicate how many subregions were used. Figure 4.5.2a and b
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TABLE 4.5.2
Parallel Square Plate (w = | ) Capacitance in Vacuum

c/w (pf/cm)
Reitan -9 const This Method

d/w Subregions One Subregion
0.005 17.74 18.8
0.025 3.7892 3.93
0.05 2.0295 2.07
0.10 1.1324 1.14
0.20 0.6629 0.671
0.50 0.3750 0.385
1.0 0.2801 0.289

show their results together with those obtained by this method. Note that the results
obtained by the present method are equal to or higher than the others.  Since this
method produces a lower bound to the true capacitance, the higher values thus obtained

are closer to the exact solution.

A sufficiently large number of computations has been carried out using
the above method to permit determining, within a small percentage error, the eleciro-

static capacitance of virtually any rectangular plate separated by a dielectric sheet
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from an infinite conducting sheet (or, what is equivalent, any rectangular plate pair

separated by an infinite dielectric sheet). The results of these calculations are given

in Figures 4.5.3 and 4.5.4.

In Figure 4.5.3 extensive results are shown for a thin rectangular plate
of width w and length | a distance h from an infinite conducting sheet in vacuum.
(The same curves apply for two paralle! rectangular plates spaced d=2h apart with
the ordinate relabeled ¢ d / € A). The capacitance values as given have been
normalized to the capacitance of a similar configuration, calculated on the assumption
that there is no fringing. It will be noted that the range w /| shown covers all
possible cases : w /1=0 corresponds to infinitely long strip, while w /1 =1 re-
presents a square plate over a ground plane ) The parameter of Figure 4.5.3, d /w,
has been used in preference to d /1 for two reasons. First, this choice makes the
left-hand endpoints (w/1=0) of all curves represent strips with specified ratio of
width-to-height above ground plane, directly comparable with the microstrip results
given in Chapter ||]. Secondly, it has been found that Figures 4.5.4 a ~e are ren-

dered most easily legible by this choice .

If a dielectric sheet of relative permittivity € is inserted between the
ground plane and the rectangular plate, the capacitance rises from its original free-
space value Co to some higher value C . This value, however, is always lower than
the value Cr that would be achieved by filling all space with dielectric of permittivity

€. - One may define effective filling factor 7 as the ratio of capacitance with di-

electric sheet in place, to capacitance obtained in a space of homogeneous relative

permittivity € -
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n = c/cC 4.5.1)
Since Cr = € Cc> , the actual capacitance C can be found from

C = n € C ' @4.5.2)
provided 7 is known.

Values of effective filling factor n are given in Figures 4.5.4 q -¢
for € = 2.5, 4.2, 9, 16 + 51 ; these choices are appropriate to some of the
commonly employed dielectric materials. While 7 is obviously dependent on €, as
well as on the geometric parameters, its variation with €. is not very rapid. There-
fore very little accuracy is lost by, for example, using Figure 4.5.4 d for qll

14 < €, < 18 without modification or correction.

If capacitance values are required for relative permittivities not close to
one of the tabulated values, linear interpolation has been found quite effective. As an
extreme example, sup;pose w/l =04, d/w=0.5 and € = 4.2. Using
Figure 4.54 b, n = 0.772 ;s obtained. Were this curve not available, it would be
necessary to interpolate between Figure 4.5.4 o (from which = 0.822) and
Figure 4.5.4 ¢ (where n» = 0.731) . The interpolation yields mn = 0.798, in error
by less than four percent, despite the very large range of relative permittivities spanned
by the interpolation. Various numerical tests have shown that interpolation between

adjacent pairs of computed curves » ordinarily yields errors of about one percent, and

occasionally two percent. It is believed that this accuracy level is entirely adequate
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for practical work, where neither permittivities, nor geometric parameters are likely

to be known much more accurately.

In conclusion, the use of the Rayleigh-Ritz method with biquadratic
basis functions, as opposed to a large number of zeroth order subregions, indicates
that electrostatic capacitance values accurate to within a few percent can be achieved
using one subregion. The computing times required by this method have been found
sufficiently short to permit presentation of q set of universal curves, from which the
capacitance of a rectangular plate on q conductively backed substrate, or of a pair of
rectangular plates separated by a dielectric sheet » may be found. Typical computa-

tion times are given in Table 4.5.3. The computation time, as a consequence of

TABLE 4.5.3

No. o € 1.0 9.9

Subregions 46 Terms
1 4.2 sec 5.4 sec
3 15.9 sec 22.1 sec
5 29.3 sec 47 .6 sec

Computation times for rectangular plate capacitance calculations



Equation (3.3.12), which is also applicable here, increases with increasing €]

(decreasing K ) for a specified value of the truncation error in the infinite series.

An important advance on this problem, would be the development of
efficient quadrature formulae required for the evaluation of the four-dimensional
singular integrals generated by the Cartesian product of triangular, rather than rec-
tangular, subregions. The use of high-order triangular subregions would not only
reduce the number of subregions required for a Manhattan type rectangular geometry,
and hence permit the solution of larger systems of conductors, but would also allow

the treatment of conductors of virtually any shape.



67

CHAPTER V

MICROSTRIP DISCONTINUITY CAPACITANCES

5.1 Introduction

Although numerous papers have been published on microstrip discon-
tinuities, mostly during the past year and almost exclusively treating microstrip open

circuits, the results show a great deal of disagreement.

Many discontinuities are well represented by capacitive models. In
other discontinuities, the capacitive component is dominant, though it forms an in-
complete model. In this chapter a method is presented capable of dealing with the
capacitive effects of the discontinuity of any junction of microstrip transmission lines.
Its simplicity and inherently high accuracy, in addition to its versatility will be

demonstrated.

5.2 Definitions and Methodology

The approaches so far utilized in obtaining discontinuity capacitance
values, both numerically and experimentally, run into considerable difficulties with
numerous errors.  The most important of these errors is invariably due to the subtraction

of two numbers of almost equal magnitude.

The method presented here, determines excess capacitance directly.

Subtraction of almost equal numbers is avoided, so that the overall accuracy realized



is that of the resulting excess capacitance. The best way to introduce the methodo-
logy utilized is by actually obtaining the governing integral equations for the excess
charges, and hence excess capacitances, at various discontinuities. But prior to
that, a number of commonly used symbols are defined and g key artifice is described.
As in Equation (3.2.1), let 0, M (P ) denote the potential, in the plane of the
microstrip, corresponding to an infinite microstriplike charge distribution 0 M (P' ) .
The subscript x on the charge and potential coordinates, P' and P » indicates that
the axis of the microstrip is parallel to the x - axis ; while the superscript 1 in-
dicates a microstrip of width~to-height ratio (w/h )] . When the meaning is
obvious both of these will be omitted. Therefore as in Equation 3.2.1)

oM ) - [V ye w (PP dP 5.2.1)

@

In the case when P is on the microstrip, © () P) =0 M) = constant.
X ® ‘x ®

Now, let 05(]) (P ) represent the potential, in the plane of the micro-
strip, associated with q microstriplike charge density distribution o M (P' ) witha

sudden polanfy reversal in the charge at x= £. |t is shown in Appendix 1| that
(1) = o) p . pt '
o' ®) =] eV g g P iP AP (5.2.2)

The Green's function required in Equation (5.2.1) is given by Equation

(3.2.2) while that required in (5.2.2), with reference to Figure 3.2.1, is
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1-K

@
[FO)-(1-K ) K P e (5.2.3)

n=I

Gg(xl)' ;)'.) =
411’60

where

Jir= 5+ (y -y P s b ol s +(x - )

(5.2.4)*
Jix-8 + (g -y eali2 " (x-9)

f() = log

and K is the image coefficient defined in Section 4.2.

M

The charge distribution that causes ¢ £ is exactly the same as
c 1) (P!) over the inferval x ¢ (£, ®) and equal to - @ M (P ) over the in-
@ X [ o] X",
terval (-co; &) . While this situation may be physically difficult to realize, there

is no mathematical objection to it. This simple artifice holds the key to the useful

formulation of the excess charge problem, as will be shown in the following sections.

To evaluate the integral in Equation (5.2.2), recall that the charge dis-
tribution resulting from (5.2.1) is of the form given by
k

o (y) = 7—2 /e (y) 3.3.4)
i=1

Note that the Green's function in (5.2.3) has a singularity at y =y*, while the

ratio

G, (xyys5y")
rg(y;y') = = (5.2.5)
| ly-y'l
Og ————
ly-y'l + 1

is no longer singular.  Substituting into the integration to be performed in (5.2.2),

then

* The notations log and In are used interchangeably in the thesis, both implying
natural logarithm.
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kKo log T——w—r—le-y'l
A (xy) =} e | LX £ 60 e (yiy) 4y 626

i“I:] l -1 /] -y'z

In this integrand fi (y") r ¢ (y ;y") is nonsingular over the interval

y' ¢ [ -1, 1], all the singularities are packed in the weight

log [ty -y'1/(ly=-y'1+1) ]//:2 . Goaussian quadrature formulae, with
this weight, can be developed for each y, by the procedure described in Appendix I .
The work in this chapter, as in the previous ones, is confined to microstrips assumed to

be of zero thickness.

5.3 Microstrip Open Circuits [56]

5.3.1 Circuit Model and Existing Data

A fact generally true for almost all wave -guiding structures is that, unlike
for short circuits, physical terminations which closely correspond to mathematical open
circuits are almost impossible to realize. For a microstrip open circuit, i.e. a micro-
strip line terminated by simply cutting it off square, a number of phenomena may occur.
At the end region a charge accumulation is expected ; corresponding to this charge,
there may be some local currents ; and, finally, there may be some energy loss due to
radiation at the open circuit. Each of these can, respectively, be accounted for in

terms of capacitive, inductive and resistive components. Consequently the physical

open circuit may be modeled by an R-L-C termination.
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In practical work, judging by published experimental data for alumina
substrates, the radiative and inductive components are almost who! ly negligible up
to 1GHz. Inthe 1 to 20 GHz range the inductive and in particular the radia-
tive component is measurable, but the capacitive aspect is still the dominant
component. To date, therefore, two models have been propased as practically usable
for the open termination : a pure equivalent capacitance and a length of transmission

line electrostatically equivalent to that capacitance (see Figure 5.3.1.1).

Attempts have been made to determine the fermination parameters ex-
perimentally.  Stinehelfer [62] performed some measurements as far back as 1969.
Troughton [65] has, recently published results for two width to height ratios which
appear to have been very carefully conducted. Napoli and Hughes [45] have given
a much more extensive set of data, most laudably together with an indication of possible
error limits due to dispersion. Concurrently, some theoretical attempts have been
made. Farrar and Adams [20] have published computed results for the open circuit
pair formed by a rectangular finite piece of strip. Sobol [57] in a review paper
alludes toa "simple" theory for wide strips, but surprisingly omits to indicate where
it has been published or what its basic assumptions may be. And finally James and
Tse [31] using a method similar to that of Farrar and Adams present considerably more

extensive results.

Experimental work in this area is made particularly difficult by the
existence of dispersion on the line. On the theoretical side, even in the electro-

static assumption, great difficulties arise since analytic solution is impossible and all
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numerical approaches lead to two dimensional infegral equations with singular
kernels. The approaches tried so far encountered numerous errors, since they have
involved the subtraction of two numbers of almost equal size ; this holds true for
both analytic and numerical approaches.  As already mentioned, the method pro-
posed here determines the excess charge directly so that the above problem is not

encountered.

5.3.2 ° Excess Charge Formulation

To formulate the excess charge problem usefully, consider an infinite
microstriplike charge distribution, as given in Equation (5.2.1) , of -;- o (P'x ) with
its associated potential —;— %0 (Px) . Also, consider a charge distribution
-]2- L (P;) with a polarity reversal at x =0, as given by Equation (5.2.2), with
its corresponding potential -]7 o, ( Px) - By the superposition of these two charge
distributions, there results the hypothetical distribution exactly equal to the charge on

an infinite strip for x ¢ [0, @ ] and zero for x el-®,0]. The potential corres-

ponding to such a distribution is %—[ °y (Px) ¥ (Px) ].

It is readily seen that this potential distribution cannot satisfy the re-
quirement of constant potential everywhere on the half-strip. Indeed, were it to
satisfy this condition, the desired end capacitance would be zero ! To rajse the

potential everywhere on the half=strip to the constant value @, r 9 certain amount of

extra charge o = 0, = O, must be placed on it. Here 0; denotes the total charge
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density on the actual open circuited semi-infinite microstrip. Therefore, the

potential residual annihilated by the extra charge o on the half-strip is

1
o 'i-[(om + N (Px) 1, or

0 P = -;?- [com -0, (P) ] (6.3.2.1)

X

Since both ®0 and %o (P) are known (caw is chosen as unity, while
25 (P) can be calculated from Equation (5.2.2) ) , (p:c can be obtained. |In
order to find the unknown excess charge O‘:c corresponding to cp:c , a three dimen-
sional problem, analogous to the rectangular plate of Chapter IV, must be solved.

Therefore, as in Equation (4.2.5),

oc _ oc \\ AOC o ,
02 (P) = [ 0% () ™ (p;p) dp (5.3.2.2)
half-strip

where G°¢ (P 5 P') is the three—dimensional Green's function given in Equation

(4.2.4) except, now there is no symmetry about the y-axis.

Although this equation requires integration over the semi-infinite strip,
computationally effective ways can be devised for its solution since both the potential
and the excess charge approach zero asymptotically (and rather rapidly) for points at

increasing distances from the strip end.
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5.3.3 Solution for Excess Charge and Coc

It should be observed, that Equation (5.3.2.2) permits the solution
for excess charge directly, without further arithmetic manipulation or approximation.
The only subtraction in the entire formulation is that required for the potential resi-
dual qa:c in Equation (5.3.2.1) ; these numbers are numerically very different near
the strip end, where the excess charge resides ; their difference, therefore, is deter-
minable to high accuracy. The region in which the potential residual is known only
with poor accuracy, i.e. far away from the termination is an area of no interest in

any case, since it contains little if any of the excess charge.

To solve Equation (5.3.2.2) the following steps need to be taken :

() assume © = 1 andevaluate ¢ (P') asin
© ®
Chapter 111 ,
(i) use L (P") in Equation (5.2.2) to solve for
®q (P},
(iii) evaluate the potential residual (o:c ,
(iv) use the Green's function as given in Equation

4.2.3) with

0 = L2 s G20 (L2 T2 4 [2n? 4+ (555) 24 (L

)2]-]/2

(5.3.3.1)
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(v)  solve Equation (5.3.2.2) using the Rayleigh-Ritz
method over many subregions, in a manner similar to

that employed in Chapter IV for the rectangular plates,

(vi) evaluate the total excess charge and hence the open
circuit capacitance .

= r oc 1 1
Co = . O (P)dp (5.3.3.2)

For e = 9.6 and two relatively extreme strip widths the potential
residual appears plotted in Figure 5.3.3.1. This figure also shows the typical sub-
regions used in the excess charge calculations. As may be seen from Figure 5.3.3.1
the potential residual does not extend far back from the open circuited end, so that
integration over the semi-infinite strip is in fact not required ; carrying integrations
back about two substrate thicknesses for alumina substrates, appears to be adequate for
most width~to-height ratios. While it is possible to develop quadrature formulge to
integrate over the semi-infinite strip, this has not appeared worthwhile since the po-
tential residual dies off very rapidly. The exact distance how far back from the strip
end the integration is carried is not critical.  This geometric truncation has been tested

by repeated recomputation using larger and larger regions of integration.
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5.3.4  Results and Comparison with Existing Data

There have appeared in the literature, both experimental and theore-
tical, results for the open circuit capacitance of a microstrip line. The results
given by Napoli and Hughes [45] are of considerable imporfance in this regard as
are those of Farrar and Adams [20] . Both were concerned with alumina substrates,
results being presented for relative permittivities of 9.6 and 10.4. Detailed

comparison has been made with both sets of results as well as with these by Troughton [65].

Figure 5.3.4.1 shows the comparison between the present method and
those indicated above. The open circuit capacitance is represented by the electro-
static capacitance of a length A | from an infinite microstrip line. It is inferesting
to note that in the center portion, around w /h =1, all four groups of investigators
agree substantially.  Above and below this portion some disagreement is evident. The
Farrar and Adams curve was computed using a method in which the capacitance of a
finite section of infinite microstrip is subtracted from the computed capacitance of a
finite rectangle. This procedure is fraught with error accumulation ; it represents the
classical difficulty of subtracting two large, and nearly equal, numbers. Because this
difficulty obtrudes particularly badly for wide strip widths, it is held that the Farrar and
Adams curve may be considered reliable for narrow strip widths but not for broad ones.
This discrepancy has been communicated to the authors and very recently, they pub-
lished a correction to their results [21], which shows much better agreement with the
present method for wide strips. Their corrected results are also shown in Figure 5.3.4.1.

Further support is lent to this view by the Napoli and Hughes curve, which, as may be
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Figure 5.3.4.1 Comparative end effect results obtained by Napoli and
Hughes [45], Troughton [65], Farrar and Adams
[20,21] and this method.
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seen, follows the computed ones well through the mid-range and up to broad strip
widths.  Troughton has only given two points : for w /h =1 there is good
agreement with Napoli and Hughes while for w /h = 3.44 the results are about

20 % higher.* The reasons why Napoli and Hughes' experimental results should not
agree with calculations for narrow strip widths are not evident. However, it is note-
worthy that the shape of their curve at small widths is predicated on one point only,
so that an experimental error of unusually large magnitude in the measurement of that

point could well alter the shape of their results, as presented, quite markedly .

Stinehelfer's [62] results are not shown in Figure 5.3.4.1 since they
are higher by more than a factor of fwo. All the evidence available points to the
fact that the disagreement must be resolved in favour of the results calculated by the
method proposed here.  James and Tse, - being in possession of a
preprint of [56], have indicated in [31] that their results are in good agreement

with those calculated by this method.

A rudimentary error analysis of the numerical method presented here has
been made. It has been found that the calculated results are in error probably on the
low side ; and it will be noted that this expectation is borne out by comparison with

experimental results.

* It should be noted that the curve given in Figure 2 of Troughton's paper [65]
has an error of one order of magnitude in the admittance coordinate [64] ; the
points plotted in Figure 5.3.4.1 have been corrected.
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Figure 5.3.4.2 shows curves of the excess capacitance of an open
circuit microstrip termination normalized to strip width as a function of strip width~
to-height ratio and substrate permittivity. Typical CPU times required for € = 1.0
and ¢ = 9.6 onthe IBM § 360/75 with three subregions are 16 seconds and 30
seconds, respectively. This compares favoraBly with the 5 - 20 minutes reported by
Farrar and Adams [20] ona GE 635, a computer of roughly comparable speed. The
permittivity values have been ch:)sen essentially arbitrarily, but in keeping with some
of the fairly common substrate materials. These open —circuit capacitance curves have

been fitted with quartic polynomials [56], to enable users to write function sub-

routines capable, with little arithmetic, of returning the required discontinuity data.

5.4 Microstrip Gaps [7]

5.4.1 Circuit Model and Existing Work

Unlike for the microstrip open circuit there is hardly any published
literature, theoretical or experimental, on gaps in microstrip. Stinchelfer [62]
performed transmission loss measurements on gaps in microstrip and used the results to

model the discontinuity by a series gap capacitance (see Figure 5.4.1.1).

A more complete model, to be utilized here, for this discontinuity is a
symmetric two port capacitive w network (see Figures 5.4.1.2a and b). This

model, of course, assumes that there is no radiation due to or delay through the gap.
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Figure 5.3.4.2 Open circuit capacitances, normalized to strip width, as

as a function of width—to-height ratio and permittivity.
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Figure 5.4.1.1 Stinehelfer's [62] 9ap capacitance model for a gap in the

microstrip
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Figure  5.4.1.2  Microstrip gap and capacitive w - equivalent network
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The inclusion of these would add some resistive and inductive components

respectively.

In the capacitive m model shown in Figure 5.4.1.2 b it is well known
that at least two measurements are required for the determination of the parameters

< and C Figures 5.4.1.3a and b illustrate two such measurements. The

12°
capacitance values thus obtained are denoted by Ceven and C odd respectively.

5.4.2  Excess Charge Formulation for Ceven and C odd

To obtain the excess charge for Ceven ¢ defined by Figure 5.4.1.3 q,
an infinitely extending microstriplike charge distribution L (Px') ; of the type de-
fined by Equation (5.2.1), is considered. Two other charge distributions each
-]i o, (P;) » one having a polarity reversal at x =s /2 and the otherat x=-5s/2,

are required. The potentials, as defined by Equation 5.2.2, corresponding to these
three charge distributions are ? 0 (P)., ;— (ps/2 (P) and ]7 © -s/2 (P) , respec-
tively.

Superposing the infinite microstriplike charge distribution with the one
with polarity reversal at x =s /2 and subtracting the third charge distribution, one

is left with a microstriplike charge over the intervals | x| > s /2 and zero charge

. - 1
elsewhere. The corresponding potential is I (P) + 7 [(as/z (P) 'D-s/2 (P)1.
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Now, arguing as in the open circuit case, a certain amount of extra
even . e Bl goers
charge T = 0, -0 must be added to each of these microstriplike distribu-

tions in order to raise the potential on them to ® ., + 9 required by Figure 5.4.1.3a.

Therefore the potential residual on the strip, corresponding to the extra charge

even
(o}
X

riso_ - {cpm+]E [«osﬂ (P) "L (P)1},i.e.

even

(P) = 7 Lo p(P) -0 4 (P)] (5.4.2.1)

Therefore, as in the open circuit case, the governing integral equation is
02" (P) = [ 0" (pr) GOV (b py a pr 5.4.2.2)

To obtain the excess charge formulation for Co ad * o defined in
Figure 5.4.1.3 b, it can be shown by an analogous procedure that to raise (lower) the
potential on the semi-infinite stripat x > s /2 (x <-s/2) to o (-wm) an

extra charge O‘:dd (- O:dd) is required. The governing integral equation is

02 (7) = [ o (p) 6% (pipy ap (5.4.2.3)
where
cp:dd (P) = o, - ]2 [cos/z (P) + to_s/z (P)] (5.4.2.4)

In Equations (5.4.2.2) and (5.4.2.3) both the potential residual and

excess charge approach zero asymptotically at increasing distances from the strip ends.
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5.4.3 lution f
Solution for Excess Charges, and Ceven and C odd

The comments made in Section 5.3.3, for open circuits, also apply here,

subject to the following modifications :

The Green's function is the same as given in Equation 4.2.3 with

even

LR PN S e LA e AL Je S L SR R I

(5.4.3.1)
2 19 [ - 2 1 ' _
£ o2+ CE 0 (G212 s 1o + (2024 (71772
Note that full advantage is taken of the symmetry about the x-axis, and symmetry or anti-
symmetry about the y-axis for the even and odd cases.

The desired capacitance values are

_ f _even ., .

en =2 jOT(p P (5.4.3.2)
odd . .

Cy = I 0> (p1) dP (5.4.3.3)

where the indicated integrations are over the half-strips located at x > s /2.

For € = 9.6, w/h=1 and s /w = 0.1 the potential residuals
are shown in Figures 5.4.3.1a and b ; also shown are the typical subdivisions used

for excess charge calculation.
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5.4.4  Results and Comparison with Existing Data

The only published data available for microstrip gaps appear to be those
due to Stinehelfer [62]* . He performed transmission loss measurements on single
gaps in uniform 50 . microstrip lines, and compared the results with the theoretical
loss calculated for a capaciﬁvé gapina 50 & line. The measurements were made
at 2 GHz on a substrate of relative permittivity of 8.875 of thickness h = 0.020
inchesand w /h = 1, with a metallic cover placed some distance from the substrate .
Gap capacitance versus spacing~to width ratio curves are given for both cover off and
cover on cases.  As the theory proposed here is developed for the cover off case s itis

appropriate that comparison be made with measurements under the same conditions.

The most meaningful comparison is to plot transmission loss against spacing-
to-width ratio from Stinehelfer’s measurements on the same graph as loss predicted by
the w equivalent cireuit given here. The measured and calculated results are shown

in Figure 5.4.4.1 ; the close agreement is indeed reassuring.

Ceven and C odd 7 Normalized to strip width, are plotted in Figure
5.4.4.2 for 0.1 <5 /w 2.0, substrate dielectric constants of €= 1.0, 2.5,
4.2, 9.6 and 15.0 and width~to-height ratios w/h =0.5 1.0 and 2.0. The

capacitances C. and C.__ to be used in the © model of the microstrip gap, may be

* In June 1972, M. Maedc 78] published some results on the gap in microstrip.
His formulation is for total charge for the microstrip in a box, and results are presented
for the walls “sufficiently removed” to have negligible effect. The excess capacitance
was then obtained from the totql capacitance by the same argument as used by Farrar and
Adams [20, 21]. There appears to be good agreement between his results and those
presented here .
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easily calculated using

¢, = 3C.. 5.4.4.1)

1
C = -2[C

12 - C, ] (5.474.2)

odd 1

These two relations follow readily from Figures 5.4.1.3a and b. As expected, for
large values of s /w,C odd approaches C] which in turn approaches the open cir-
cuit capacitance value calculated in Section 5.3. Alsoas s /w approaches zero,

C approaches zero.
even

The calculated values of C and C ,,, as was the case for the
even odd
open circuit capacitance, are expected to be on the low side ; in these calculations
the error infroduced by subtraction of nearly equal numbers has been eliminated. Typical
CPU times required on the IBM 360/75 for € = 9.6 are 33 seconds for each of

Ceven and Codd :

For ¢ = 1.0, of course, the time required is considerably

shorter.

5.5 Microstrip Steps [7]

5.5.1 Circuit Model and Existing Work

In the case of a sudden change of width of the microstrip line, it appears
that, there are no published experimental data. The only theoretical data available

are due to Wolff, Kompa and Mehran {727, who used an approximate waveguide
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model of the micrestrip and then proceeded to match local expansions of wave com-
ponents at the discontinuity. They only presented preliminary results of scattering

coefficients for € = 2.33, with more results to be published later.

A typical microstrip step is shown in Figure 5.5.1.1 together with the
shunt capacitance discontinuity model to be evaluated here . Of course, a resistive
component could be included in the model, to account for losses due to radiation at
the junction ; however, what would be more important is inductive components in a
two port model, as shown in Figure 5§.5.1.2, to account for local currents in the dis-

continuity region.

3.5.2  Excess Charge Formulation

The excess charge associated with a sudden change of width of the micro-
strip line may be handled in much the same way as was the Ceven case for the gap.
Consider two infinite microstriplike charge distributions of -]2- og) (P'x) and

;_. Uc(:) (P)'() having width~to-height ratios (w /h)] and (w /h)2 s Tespectively.

The corresponding potentials are ;— co(lz (Px) and % <pc(:) (Px) . Also, take two

microstriplike charge distributions of ]7 O'Cg) ( P;) and ;— t:r‘:l()2 ) ( P)'() » each with a

1
polarity reversal at x=0 . The corresponding potentials are 3 (po(]) ( Px) and
7 9 ( Px) - Note that superpasing the first three charge distributions and subtract-
ing the last one, to the left of the discontinuity plane there results g microstriplike

distribution © @) (P’ ) while to the right o M (P* ) is obtained.
® ' x ®  x
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Although the charge distributions on the two half-strips are identical
to those on microstrip lines of corresponding width~to-height ratios, this is not true
of the potential on the strips. The superposition of these four charge distributions
. . 1.0 @) ™) @)
yields an overall potential of f[wm (Px) o (Px) + 0 (Px) 20 (Px)] .

. te
As before, a certain amount of extra charge 0: P = o, -0 must be added, to the

semi-infinite microstriplike charge distributions, to raise the potential on the two half-

(1) @

strips to By O O "+ @ the case may be. Therefore the potential residual,

step .
14

producing this excess charge @ is

X

@q(:) (P) - ¢’C(3) (P) - (Do(]) (P) + ¢0(2) (P) for x >0

step _ 1
e, (P) =5 (5.5.2.1)
2@y -0 (p) - " (P +od (P)  for x <0

@ x

while the governing integral equation is
0P (p) = | o (P) TP (P p) (5.5.2.2)

The indicated integration is over both halfstrips. However, as in earlier instances,
both excess charge and potential residuals approach zero rapidly at increasing distances

from the discontinuity plane, so that integration over finite regions suffices.

5.5.3 Solution for Excess Charge and C
step

Much of the commentary made in Section 5.3.3 applies here, too. The

excess charges are calculated directly. The potential residual is zero at the junction
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of the two half-strips and rises to a maximum (falls to a minimum) moving onto the
wider (narrower) of the sirips and then returns to zero quite rapidly. For e = 9.6,
r

(w /h)] =1.0 and (W /h)2 = 2.0 the potential residual is plotted in Figure 5.5.3.1 ;

also shown are the typical subdivisions used for excess charge calculation.

The Green's function utilized in Equation 5.5.2.2 is the same as that

given in Equation 4.2.3 with

(9P < L+ (22 (P T+ (5 (21712
(5.5.3.1)

where symmetry about the x-axis is included. To evaluate Csfep use

- P _step ' .
C srep j (P dP (5.5.3.2)

and the integration is performed over both half-strips.

5.5.4 Results and Comparison with Existing Data

The scattering coefficients calculated by Wolff, Kompa and Mehran [72],
show considerable frequency dependence. The lowest frequency at which they indicate
a sharp dip in the scattering coefficient is for a step of 50 a to 10 ~ on a substrate
thickness of 0.625mm or 1.5mm (there seems to be some confusion about which
value was used).  The width of the 10 » line for the 0.625 mm substrate is about

14.5mm. At 5 GHz, since the relatfive phase velocity of a 10 » line on substrate of
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Figure  5.5.3.1 Potentigl residual near a microstrip step (w] /h=1,

w2/h=2 and e = 9.6)
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e = 2.33 is about 0.686, the strip width is comparable to a third of a wavelength.
Surely, when typical dimensions are larger than onetenth of g wavelength, the electro-
static approximation is not valid. Without giving results, Wolff, Kompa and Mehran
[72] indicate that for € = 9.9 the frequency dependence is negligible up to 20 GHz.
This, however, supports the results obtained here. For the commonly used alumina
substrate thicknesses (about 0.5 mm) realistic impedances can be obtained using small
width—to-height ratios and the resulting capacitive effects are very small.  Still,
qualitatively speaking, the effect of the shunt capacitance, at the discontinuity plane,
on the scattering coefficients is the same as predicted by Wolff, Kompa and Mehran
The reason there are no experimental results available, may be partly due to this very
small shunt capacitance contribution of most practical microstrip steps ; this is both
difficult to measure and is not significant enough to offect seriously the performance of

the overall circuit.

In Figure 5.5.4.1 calculated values are normalized to the geometric mean
of the two strip widths. As expected in the case of equal width strips, i.e. no step,
Csfep = 0. These calculated values of step capacitance are expected to be on the
low side. Typical CPU time required on the IBM S 360/75 is 1.0 minutes for

€ =9.6.
r
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as a function of width~to-height ratio and substrate
permittivity
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Let ]7 ® 0 (Px) be the potential corresponding to an infinite micro-
striplike charge distribution of -]-2- o, (P'x) paralle! to the x-axis. Also let
]—z-qo 1.0 (Px) represent the potential corresponding to a microstriplike charge distri-
bution with a polarity reversal at x=1.0 . Therefore the potential corresponding
to a microstriplike charge on the interval x ¢ (1, ) is, by superposition,
-]2- [(Dm (Px) + 0y (Px) ]. Similarly, in the y-direction, the potential corres~
ponding to @ microstriplike charge on the interval y ¢ (1,00) is
;— [tpm ( Py) + o (Py) 1. By superposition one can generate microstriplike
distributions parallel to the positive x and y axes up to terminal planes T] and

Ty - Therefore the potential residual required is

bend
% P = e - ;[cpm (P)+e 4 (Px)+<z>m (P),)wl.0 (Py)] (5.6.2.1)

while the governing integral equation for the excess charge is

I‘ o bend

X

0™ (p) = Py %™ (p ;s py dpr (5.6.2.2)

Although the indicated integration is over the entire bend including the semi~infinite
arms, both potential residual and excess charge fall to zero on moving away from the

discontinuity region.
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5.6.3  Solution for Excess Charge and Cben 4

The method described in Section 5.3.3 still applies, but subject to

the following changes :

Function fbend(n) required in the Green's function given by

Equation 4.2.3 is
2, (22 (1%1)2]-1/2 (5.6.3.1)

and the bend capacitance is calculated from

‘ _ [ _bend
C —JO‘X

(P') d P 5.6.3.2)
A typical residual voltage for a dielectric substrate of e =1.0 and
microstrip width~to-height ratio w /h = 1, is shown in Figure 5.6.3.1. Not
shown in this figure is that moving further away from the discontinuity some small
amount of negative potential residual appears and then it dies down to zero. This is
due to the interaction between the two normal microstriplike distributions and is most
noticeable for small € 's and (w /h)'s . Numerical experiments indicate that the
most significant part of the excess charge is located near the outer edge of the corner
region. Thus, the typical discretization used is also shown in Figure 5.6.3.1.
Although the symmetry about the 45° angle is not accounted for in Equation (5.6.3.1),
the discretization of the region is done so that full advantage may be taken of this

symmetry during computation.
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5.6.4  Results and Comparison with Existing Data

The bend capacitances obtained by Stephenson and Easter [60] by
means of their two resonant measurements agree with each other in order of magni -
tude only.i However, the two types of measurements, both 90° bends and
chamfered corners for a 50 ~ microstrip line on alumina substrate, indicate that the

lengths of transmission line in the model of Figure 5.6.1.1 are negligible .

For various sound reasons, Stephenson and Easter conclude that the
result obtained via the right angle bend in a symmetrical open-ended resonator is the
better of the two. Error limits are also indicated. Their measurement, at 10 GHz
on 0.5 mm Lucalox with a strip width corresponding to approximately 50 a charac-
teristic impedance, is shown in Figure 5.6.4.1 together with their indicated error

limits.

Also shown in Figure 5.6.4.1 are bend capacitances , calculated by
this method, normalized with respect to strip width for various commonly used substrates.
As expected the calculated values are lower than those obtained experimentally .
Nevertheless, the close agreement between the results is an indication of the accuracy
of the method. Typical computation time onan IBM $360/75 is 50 seconds for

er= 1.0 and 110 seconds for er= 9.9.
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5.7 Microstrip T Junctions

3.7.1  Circuit Model and Existing Work

In the case of microstrip T junctions, four sources of data were
located. Stinehelfer [62] and Troughton [65] presented experimental results.
They both performed transmission loss measurements on  microstrip T structures to
determine the electrical length of a stub ; comparing this with the physical length
an "electrical defining plane™ [45] for the stub can be determined. Stinehelfer
presented results obtained using quarter wavelength long short circuited stubs, while
Troughton used quarter and three quarter wavelength long open circuited stubs. Both
investigators indicated that g correction to the separation between two stubs is also

required.

On the theoretical side Leighton and Milnes [37 1, as well as Wolff,
Kompa and Mehran [72], used o parallel plate waveguide approximation, valid
over a restricted range of parameters, with magretic walls on the sides. Leighton and
Milres, then use a Babinet equivalent of this model to obtain a new model in which o
T junction equivalent circuit has been determined by Marcuvitz [39] . Wolff,
Kompa and Mehran , on the other hand, matched wave components, at the disconfinuify

planes and were able to obtain scattering coefficients for the T junction.

The simplest equivalent circuit for the T junction is an outcropping of the
work of experimentalists. The microstrip T junction, together with this model, is
shown in Figure 5.7.1.1. The lengths of transmission lines are used to correct for the

electrical defining planes of the stub and main lines, while the shunt capacitor accounts

for the charge surplus or deficiency at the junction.



112

)

b

(

ircuj

lent ¢

Iva

ts equi

i

ith

junction together w

tcrostrip T

5.7.1.1 m

Figure



113

5.7.2  Excess Charge Formulation

The potential residual, causing a charge surplus or deficiency at the
T junction, is that due to three microstriplike charge distributions on the arms of
the T structure, up to the terminal planes T], T2 and T3, shown in Figure 5.7.1.1 q.
To evaluate this potential residual, take a microstriplike charge distribution
;— ag) (P)'() » of width~to-height ratio (w2 /h) parallel to the x=axis, with

;- t_Dc(:) ( P ) given by Equation (5.2.1). Take another

(2) (Pl

corresponcing potential
microstriplike charge disfribuﬁon ) , having a polarity reversal at x = Wi
with the corresponding potential 2-. o g: ( Px) + given by Equation (5.2.2). The super-
position of these two distributions yields a microstriplike charge, of width~to-height
ratio (w /h) , on the interval x ¢ [ Wy, @ ] anda corresponding potential of
2— [co @ (P ) + o, (2) (P ) 1. Similarly, in the y-direction, an infinite micro-
striplike charge dlsfrlbuhon o( ) (P' ) together with charge distributions

Q(:) (P' ) with polarity reversals at y=1.0 and -1.0 are required. The
respechve potenhals, by Equations (5.2. 1) and (5.2.2), are ?y M (Py) '

( ) (P ) and -2 0. (1) (P ) . The superposition of these three yields a micro-

-1.0
sfnphke distribution on the two intervals | yl > 1.0, with corresponding potential

{to(])(P)+ (]) (P)-(pq)o(P)]}

Now, superposing the two resulting distributions, microstriplike charges

T, and

are generated on the arms of the T structure + up to the terminal planes T] + Ty

T3. Therefore, the potential residual, in this case, is
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T _ 1 @ 2) (1) 1 (1) (1)
(Dx (P)y = @m { '2‘[‘903 (Px)+<°w] (Px)]""Pm (Py)+'2[¢]_o(Py) "D.].o(Py)]}
(5.7.2.1)

while the integral equation governing the excess charge is
t.oxT(P) = f oxT (P) GT (P;P) dP (6.7.2.2)

In Equation (5.7.2.2) , both the potential residual and the excess charge fall to zero

moving away from the discontinuity, so that integration over finite regions suffices.

5.7.3 Solution for Excess Charge and CT

The changes, applicable to Section 5.3.3, in regard to a microstrip T
junction are :

The function f' (n) required in the Green's function given by

Equation (4.2.3) is

T = [im? e () 20 X272, fanf + (5292 (42)2 1772

(5.7.3.1)

and the T junction capacitance is given by

c, [ ool ) ar (5.7.3.2)
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The potential residual on a dieleciric substrate of €= 9.9, with
main line (w] /h)=1.0 and stub line (w2 /h) =1.0 is shown in Figure 5.7.3.1.
In this case regions of negative residuals are much more pronounced than for the right

angle bend. A typical discretization of the region is also shown in Figure 5.7.3.1.

5.7.4 Results and Comparison with Existing Data

Stinehelfer's [62] measurements, on quarter wavelength long short
circuited stubs, indicate that the electrical length of the stubs is shorter than the
physical length, while Troughton's measurements, on quarter and three —quarter wave-
length open circuited stubs, indicate that the electrical length of the stub is longer
than the physical length. Troughton also indicates that " if the stub is \ /4 and
37/4, Al (the correction to the physical length) is consistent, but differs from
the value found from a half-wavelength stub.” In addition to the specific problems
in each measurement (such as accurate end effect correction in Troughton's case and
difficulty of determining the exact frequency at which total transmission occurs in
Stinehelfer's case and accurate phase velocity in both cases) , part of the discrepancy
is resolved considering the model given in Figure 5.7.1.1b. If L denotes the
physical length of the stub, in Troughton's case already corrected for the end effect,
then Troughton measured the frequency at which ( l2 +L) = A/4, while Stine-

27 (lp+1)

helfer measured the conditions under which cot [

]':UCTZ . Asa

matter of fact, in principle, performing measurements on open and short—circuited
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quarter wavelength stubs, it would be possible to determine both 12 and CT .

This, however, may be frustrated by the difficulties already enumerated.

The theoretical results of Leighton and Milnes [37] on the approximate
model of the microsirip line, are valid over a restricted range of parameters. Since
both the model and the reference planes used here are totally different, no comparison

was made with their data.

The approximate theoretical results of Wolff, Kompa and Mehran [721]
are in terms of magnitudes of scattering coefficients of the T junction. The data
given are for polyguide substrate, relative dielectric constant of € = 2.33, and they
show very pronounced frequency dependence, especially above 5 GHz. This, at
first sight, cannot be explained in terms of the capacitor CT obtained here. A
quick caleulation, however, will indicate that at 5 GHz for € = 2.33 the wave-
length is about 40 mm, while the typical dimensions required for the characteristic
impedances utilized range from 4.5 mm to about 10 mm. For such structures the
excess charges occupy a significant fraction of the wavelength, so that the electro-
static approximation is not valid. This argument is further substantiated by their note
to the effect that the frequency dependence is small for alumina substrate ( €= 9.9,
where realistic impedances are obtained for smaller width-to-height ratios and the

commonly available substrate thicknesses are 0.020 and 0.025 inches.

Figure 5.7.4.1 shows the capacitance CT normalized to main line
width plotted against stub line impedance. The behaviour of CT , in that it varies

from pasitive to negative, depending whether there is a charge deficiency or charge
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surplus, is similar to that observed experimentally by Matthaei, Young and Jones [40]
in stripline.  Due to the variation in the sign of the potential residual, generally
speaking, the capacitances thus obtained are expected to have somewhat larger errors
than, for example, in the open circuit case, where the potential residual is of uni-
formsign. The CPU time required, onan 1BM 5360/75 , to evaluate CT ona

dielectric substrate of € = 9.9 is 3.6 minutes.

5.8 Microstrip Crossings

5.8.1  Circuit Model and Existing Work

For microstrip crossings, it appears, that the only published source of
data is that obtained experimentally by Stinehelfer [62] . He performed transmission
loss measurements, as in the case of T junctions, on a pair of quarter wavelength
short circuited stubs placed back to back, so as to determine the electrical lengths of
the stubs.  Similarly, a correction to the physical distance between a pair of crossings

was noted.

The circuit model shown in Figure 5.8.1.1 b, for the cressing shown in
Figure 5.8.1.1 a, was arrived at as a consequence of the results obtained in the above
experiments. The lengths of transmission lines correct for the electrical lengths of
the stubs and their electrical spacing from various other discontinuities. The shunt

capacitor C + takes care of the charge surplus or deficiency near the crossing.
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5.8.2  Excess Charge Formulation

As in earlier discontinuities, the potential residual sought is obtained
from the potential due to microstriplike charge distributions on the four arms of the
crossmg‘, up to the reference planes T] ' T2, T3 and T4 .

To obtain such a distribution, an infinite microstriplike charge
Of) (P)'() of width-to-height ratio ( W, /h) isrequired. Also needed are two

charge distributions ;- 00(3) (P;) with polarity reversals at x = w, /2 and -w, /2.

The corresponding potential distributions, given by Equations (5.2.1) and (5.2.2)

@ @ @) . .
are @ (Px) ’ ¢w]/2 (Px) and <p_w]/2(Px), respectively. By superpesition,
microstriplike charge densities of ( W, /h) are obtained on the two intervals

. I @) V) (2)
>

x| W, /2 and the resulting potential is {qom (Px) [(p Y (P ) -0 w. /2 (Px)]} .

Y1 "
Similarly, the potential corresponding to microstriplike charge distribution

( ) (P' ) of width~to-height ratio w] /h) on the intervals Iyl > 1.0 is

[ gV (P) + 5o () (®) - 00, ()T

By superposition of these two resultant distributions, microstriplike
charge densities of appropriate width-to-height ratios are generated, on the arms of the

crossing, up to the four terminal planes. Therefore, the potential residual sought is

*py = M L, o
0 (M) =0y, ~log (P) + zleofg (R)-ogq ()]

(5.8.2.1)
ro@ )+ L lo® @)
o) X

/2(9)—@ /2(P ) 13
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and the integral equation governing the excess charge is
+ + 1 + 1 ]
o (P) = fcrx (P) G (P:P) dP (5.8.2.2)

As in earlier instances, integration over a finite region is sufficient, since both
potential residual and charge density distribution go to zero on moving away from

the discontinuity.

5.8.3  Solution of Excess Charge and C,

The comments in Section 5.3.3 are applicable to the crossing subject
+
to the following modifications.  Function f (n) required in the Green's function

given by Equation (4.2.3) is

o= L’ s (52 D 22 e ()2 4 (22712

+ (202 + (%f_"')z + (%:L')"’:]"/2 +Len?+ (’i;:_"')2 + (Z;l')z 771/2
(5.8.3.1)

while the crossing capacitance is given by

c, = [ o (par (5.8.3.2)
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In Figure 5.8.3.1 the potential residual for a stub of (w] /h)=3
and main line of (w2 /h) =1, on a substrate of relative dielectric constant
€= 9.9, isshown. Alsoshown in the figure is a typical discretization of the

region.

5.8.4 Results and Comparison with Existing Data

The results given by Stinehelfer [62] , done on two short circuited
quarter wavelength long stubs back to back, indicate that the electrical length of the
stubs is shorter than the physical length. However, arguing as for the T junction,
the model given in Figure 5.8.1.1 b would indicate that such a measurement in effect

2x (lp+ L)
determines the frequency at which 2 cot [—)\_— l=uw C,Z - Lis the
physical length of the stub. Another transmission loss measurement, on quarter wave-
length long open circuited stubs, would give the frequency at which ( |2 +L)=N/4.
From two such measurements, in principle, l2 and C+ may be determined.  The
difficulties with such an experimental approach were outlined in Section 5.7.4.

Using the results given by Stinehelfer, no estimate of C+ can be made.  There appear

to be no other data available for comparison.

In the computer program the computational details for the stub and main

line are somewhat different. Therefore, when interchanging the width-to-height
ratios of the stub and mainline left C+ unchanged, this, in a small measure, provided

a check on the program details.
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Figure 5.8.4.1 shows crossing capacitance values C+ normalized
to main line width for various main line impedances, plotted against
stub line impedance. The stub characteristic impedances range from 25 a to
100 ~. The substrate dielectric constant used is € = 9.9 . Asinthe case of T
junctions, due to the variation in the sign of the potential residual, general ly speak-
ing the errors in capacitance values can be expected to be larger than in those cases
where the potential residual is of uniform sign. The computation time required on an

IBM S360/75 , for C+ on a relative dielectric constant €= 9.9 isabout 3.7 minutes.
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CHAPTER VI

IMPORTANCE OF DISCONTINUITY CAPACITANCES IN THE DESIGN

OF AN OPEN CIRCUITED MULTISTUB MICROSTRIP FILTER

6.1 Introduction

In Section 5.4.4 it was demonstrated that calculated capacitive effects
at a gap in a microstrip, were able to predict the measured transmission loss for various
gaps. In this chapter, the importance of discontinuity capacitances in the design of
distributed element microwave components is shown ; in particular, a five-section

ten=stub microstrip filter is analyzed.

The filter under consideration, was actually built by Atwood and Stine -
helfer [6]. They, however, not only covered the filter with a ground plane, but
also included "mode supression walls between stubs to prevent higher order mode
radiation between sections of the filter" [6]. The various filter dimensions used in
their design were taken from Stinehelfer's finite difference program for the microstrip
inabox [611. Therefore it should be stressed, that the intent is not necessarily to
account for the discrepancy between their ideal and measured characteristics, but
rather to simply demonstrate that the inclusion of discontinuity capacitances result in
changes of sufficient importance to alter the design characteristics of a microwave

device.
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6.2 A Two-port Network Analysis Program (NTSM)

In order to be able to analyze the behaviour of passive microwave
circuits, a special purpose network analysis program, NTSM, was written. The
program is based on the properties of modified transfer coefficient matrices (ABCD)
for cascaded two-ports. A more general program of this nature was written earlier
(18], however at fhcf time only lossless transmission lines were considered. Since
losses in microstrip are of some consequence, the present program can also account

for these.

The transfer coefficients A, B, C and D provide the relationship

= 6.2.1)

between the input and output variables of a two-port network, shown in Figure 6.2.1.
The overall transfer coefficient matrix for N cascaded two-ports, shown in Figure 6.2.2,
is simply the matrix product of the individual transfer matrices , taken in order in which

they occur,

(6.2.2)

Transfer matrices were evaluated for a number of elemental building

blocks, necessary for the present analysis, such as : series and shunt capacitors, a
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length of transmission line, open and short circuited shunt stubs and shunt stubs
terminated by a capacitor. Fora general purpose program of this nature, of course,

other elemental two ports have to be included.

The network properties of particular interest to microwave engineers,

such as transmission loss,input impedance, reflection coefficient and voltage standing

wave ratio, are easily evaluated in terms of the transfer coefficients of the overall

network .

6.3 Analysis of the Five-Section Ten=Stub Filter

Using results from filter theory, Atwood and Stinehelfer [6] obtained
the passband filter design shown in Figure 6.3.1. This design was implemented in
microstrip on a substrate of relative dielectric constant e = 8.875 and thickness of
0.020 inches. The center frequency of the filter was ideally at 9.5 GHz while its

bandwidth was 1 GHz.

The first step in such a design is the determination of the relative phase
velocities of the transmission lines of various characteristic impedances. The electro-
static phase velocities must be corrected for dispersion so that the physical dimensions,
given in multiples of A /4 at center frequency, can be specified as accurately as
possible.  Typical corrections for dispersion were measured by Troughton [67] for
25 o and 50 o lines on 0.025 inch thick alumina. He indicated 2.8 % and 2.2 %

dispersion in phase velocity at 10 GHz for the 25 o and 50 o lines, respectively.
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This was extrapolated to the 70 ~ and 100 a lines as 1.6 % and 1.0 % approxi=
mately. These extrapolations may be in error by as much as 0.5 % , however this

is really irrelevant, since the results of this step are the starting point from which the
discontinuity capacitances are added. Thus the effects of the discontinuities can be

clearly seen by themselves.

Three types of capacitive discontinuity effects will be included in

turn ¢

) crossing effects at the stubs,
(D) end effects at open circuits,

(iii)  step effect at the 50 o to 70.7 line transition.

The discontinuity capacitance values, as calculated by the method described in

Chapter V, relevant to this problem are :

c (28.2 ~) = 0.060 pF
oc

Coc (36.0 ») = 0.044 pF
step (50 aand 70.7 ») = 0.0015pF

C, (100 nand 70.7 nand 49.32) = -0.032* pF

C+ (100 aand 28.2 ~) = =0.030 pF

C+ (100 aand 36.0 ~) = <0.35pF

* This value was obtained by linear interpolation between C+ (100 aand 49.3 »)
and C+ (70.7 nand 49.3 a) .
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Figure 6.3.2 a and b show the circuit model and the transmission
loss for the ideal filter. Figures 6.3.3 - 6.3.5 a and b show how the suc-
cessive inclusion of the various capacitive discontinuities affect filter response. And,

finally, in Figure 6.3.6 the effects of line losses are indicated.

6.4 Results

In Figure 6.3.2 a and b the ideal filter model and response are
indicated. As designed, the center frequency of the passband region is 9.5 GHz

while the bandwidth is 1 GHz.

Figure 6.3.3 a shows the ideal circuit model modified to account for
the capacitance effect of crossing discontinuities. The resulting transmission loss,
as given in Figure 6.3.3 b, shows minimal changes in the passband region, however just
outside passband at 9.8 GHz the transmission loss changes from 3.1db to 1.4db,

while at 8.6 GHz it changes from 9.2db to 12.9db.

The circuit model is further modified to correct the open circuit end
effect in Figure 6.3.4 a. In this case the transmission loss, shown in Figure 6.3.4 b,
shows considerable change. First of all, the passband region now extends from
8.65 GHz to 9.75 GHz. That corresponds to a bandwidth of 1.1 GHz and a
center frequency of 9.2 GHz. Secondly, the passband region shows a deterioration

of about 0.2 db.
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In Figure 6.3.5 @ two step capacitances are included. These
capacitances are so small that no further noticeable change in filter response,

as shown in Figure 6.3.5 b , is observed.

In addition to all the capacitive discontinuities, the effect of lossy lines
771 is also included. These losses contribute, typically, 0.3db to further

deteriorate the characteristics in the passband region, as shown in Figure 6.3.6.

Atwood and Stinehelfer's [6] measured filter response shows the same
type of qualitative behaviour ; a bandwidth of 1.275 GHz with center frequency of
9.25 GHz as opposed to a bandwidth of 1.1 GHz and center frequency of 9.2 GHz
predicted with the discontinuities. The measured passband was, typically, 1db worse
than the predicted one. Since the physical filter included a number of further effects,
such as those described in the introduction to this chapter, which are not taken account
of in the analysis and are not known in detail, no precise quantitative comparisons can
be made. In this light, the agreement is quite good, especially when one remembers
that this is an approx'imafe mathematical treatment of the idealized version of a physi -

cal filter.
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CHAPTER Vil

CONCLUSIONS

The use of trial functions which preserve the singularity in the charge
distribution at the edge of the microstrip transmission line ,shows that accurate
determination of charge density distribution and transmission line parameters is

possible with matrices as smallas 2x 2 .

Point matching solutions to the capacitance of rectangular plates on
metal backed dielectric substrates have been obtained over the past year. However
the transformations described in Section 4.2, permitted the use of fewer high-order
subregions in the solution of the charge distribution on rectangular plates. This
approach is readily usable to obtain the parasitic capacitance in @ multiconductor
system of Manhattan type (rectangular) geometry. The results presented are of in-

terest in the design of lumped element integrated circuitry.

The methodology presented for the formulation of the excess charge
distribution near various microstrip discontinuities, is readily extended to cases not
discussed. This formulation is not only highly elegant but, what is more important,
it is considerably more economical than the theoretical and experimental methods
used by other investigators to date. The computation times required are sufficiently
small to permit the calculation of extensive results of interest to the designer of dis-
tributed microwave integrated systems. In addition, an important source of error,
encountered by feilow investigators in the theoretical study of microstrip open circuits,

i.e. the subtraction of nearly equal large numbers, has been completely eliminated.
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The experimental methods of characterizing various discontinuities are too time
consuming and expensive to be used to obtain extensive data. And, the experi-
mental results cannot guarantee accuracy to better than a few percent, which can

readily be obtained by the methodpresented herein.

For open circuits, gaps, steps and even right angle bends on alumina
substrates, the capacitive component in the discontinuity models, appears to be domi-
nant up to frequencies as high as 20 GHz. Therefore, the capacitive models given
are expected and do account greatly for the experimentally observed phenomena in
these cases. For T junctions and crossings, however, the experimental evidence in-

dicates that discontinuity series inductances are no longer negligible.

The simulation of the multistub filter in Chapter VI, clearly demonstrates
the importance of these discontinuity capacitances. The inclusion of the various dis—
continuity capacitances affected the filter response by an amount comparable to the
effect of dispersion at 10 GHz in the microsirip line. But while dispersion appears
to be negligible below 5 GHz, the discontinuity capacitances are not. This was amply

demonstrated for the gap in microstrip.

Although microstrip has made considerable inroads in the microwave in-
dustry due to the numerous advantages discussed in Chapter |, the high cost of
engineering involved precludes its use when small quantities are involved. This problem
could be overcome by completely computerizing the design of microwave integrated

circuits and thus eliminating cut and try methods common today .
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To this end, microstrip discontinuities have to be adequately modeled.
Further study needs to be conducted in the area of discontinuity inductances and
radiation losses and discontinuities, to fully characterize them. The frequency de-
pendence of these models also needs to be studied, especially if they are to be used
above 20 GHz. In the case of discontinuity capacitances, little or no dispersion
is expected so long as the excess charges extend over a region smaller than one tenth

of the microstrip wavelength. This is borne out by the available experimental evi-

dence.

It is hoped that the methodology and results presented herein, bring

closer the day of fully computerized microwave integrated circuit design.
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APPENDIX |

A highly efficient program was written, by P. Silvester, to obtain

Gaussian quadrature formulae, for almost arbitrary weight functions, of the form

b N
Jr w(x)f(x)dx=z Wif(xi) (1.1)
a i=1

In this program the user must supply a subroutine capable of returning

the inner products
b

<, x> = [ w1 dx (1.2)
a

Using these inner products and some recurrence relations [14], the polynomials
orthogonal with respect to w (x ) can be generated. The roots of the N+h order
orthogonal polynomial, correspond to the quadrature points of the N-point Gaussian
quadrature formulae. To obtain rapid convergence, by Newton's method, to the
roots of the N-th order orthogonal polynomial, advantage is taken of the fact that
one, and only one, of the N-roots lie in each of the N-intervals determined by the
two end points and the roots of the (N - 1)-th order orthogonal polynomial.  The
one important requirement in the founding theorem of this approach, is that w (x)
must be single signed on the interval [a, b]. As soon as the quadrature points are

known, the corresponding weights are readily calculated.
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The user can specify the degree of the quadrature desired, foge.fher
with tolerance limits on the quadrature points and weights. If the tolerance checks
on the quadrature points and / or the weights are violated prior to reaching the de-
sired degree of quadrature, the highest degree of quadrature, within the specified

tolerance limit, is returned.
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APPENDIX i

Consider a line of unit charge density, coincident with the x'-axis
with a polarity reversal at the origin, as shown in Figure i1.1. The primed and

unprimed quantities refer to charge and potential coordinates respectively.

Let r denote the polar distance from the line of charge. The potential

at some point P (x, y, z) due tosucha charge distribution is

vl pEde 1 o F” 4 :
J —_— = —=__—_.. —_—
dme AAZ+ (x'-9<)2 due 0 %2+ ' -x) 0 / +(x+x)

(.1

These integrals are tabulated [17], so that

X

lim {[log(2/x'2-2x'x+x2+r2 +2x'-2x:|' 0
x:

41e X~

/ X
-[log(ZA/x'2+2x'x+x2+r2 +2x'+2x ]x'=0}

1 ~/X2-2Xx+x2+r2 + X-x}

= lim {log
d1eX o /X2+2Xx+x2+r2+ X +x
1 ~/x2+r2 + x
+ log 1.2
4 1 ¢ /x2+r2 -

But the first ferm of this sum vanishes, so that
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2 2
1
og /x +r + X (”.3)

£ instead of x = 0, thenbya

Of course, if the polarity reversal occurs at x

simple coordinate translation

2 2
vV = log { «/(x-E) oz (x-E)} (11.4)
hme Jix-e2 + 2 - (x-8)

Now, consider the microstrip line shown in Figure 11.2, and in particular,

the line of charge at (x', y', h) . Suppose that the microstrip has a charge distribu-

tion of o (y'), and let there be a polarity reversal at x = ¢ . The potential due to

such a line of charge in homogeneous medium, by Equation (11.4) , is

o | St oo Prem® s -8
4me S8+ g2+ @2 - - )
(||.5)

As in the case of the infinite microstrip [53], an infinite series of
partial images can be generated for this line to account for ground plane and the air
dielectric interface. Thus, the potential in the plane z=h, due to this line of
charge on top of a metal backed dielectric substrate of thickness h, is

ot ©
7 (1. {£(0) - (1-K) LK £@) (1.6

4 ki3 €0 n=1

V(x,y) =
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where K = (eo-e])/(eo+e]) and
3 2 . 2.2
f() = log /(x-ﬁ) +({y-y) +4n" h" + (x-&) (1.7)
/(x-€)2+(y-y')2+4n2h2 - (x-§)

Therefore, the potential in the z=h plane due toa microstriplike
charge distribution with a polarity reversal at x = ¢ is, by superposition,
1

NVuy) = [ ooy Gy (xy35y) dy (1.8)
-

where
@
Gg(x,y;y')="'< (PO - -k ) K" f@) (11.9)
"€ n=1

and f (n) is given by Equation (11.7) .
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