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Abstract 

This thesis presents two methods to damp electromechanical oscillations in large 

power systems such as Trans-Canadian grid. A control method, used in 

conjunction with Wide Area Measurement System (WAMS), is proposed to damp 

very low frequency inter-area modes of very large systems. This Global PSS 

requires knowledge of the eigenvectors of the targeted modes, and only a limited 

number of power stations are involved in its feedback loop. It does not destabilize 

other modes, and its robustness is assured. Besides mathematical proof, a series 

of simulations are conducted to validate the claims of the proposed Global PSS. 

The second solution is based on fast controllability of Voltage Source Converters 

(VSCs) connecting Renewable technologies to the power system. In this method, 

their injected Active and Reactive powers are modulated to improve power 

system damping. Mathematical formulations are developed to study the 

effectiveness of damping in relation to injection point along the transmission line. 

Taking nonlinearity, due to limit on active/reactive output power, into account, 

trade-offs of feedback gain constants with respect to saturation limits are studied. 

Phase-plane diagrams give clear picture of this nonlinearity, and simulation 

results confirm how high damping can be secured. 

 

 



II 

 

Résumé  

Cette thèse présente deux méthodes pour amortir les oscillations 

électromécaniques dans les grands réseaux électriques tel que le réseau 

transcanadien. Une méthode de contrôle, utilisé avec un système étendu de 

measures (Wide Area Measurement System), est proposée pour amortir de très 

basses fréquences intermodes des très grands réseaux. Ce PSS global exige la 

connaissance des vecteurs propres des modes ciblés, et seulement un nombre 

limité de stations d'alimentation sont impliquées dans la boucle de rétroaction. Il 

ne déstabilise pas les autres modes, et sa robustesse est assurée. En plus de 

preuves mathématiques, des simulations sont effectuées pour valider les 

affirmations du PSS global proposé. 

La deuxième solution est basée sur la contrôlabilité rapide des convertisseurs à 

source de tension (Voltage Source Converter) reliant les technologies à énergie 

renouvelable aux réseaux électriques. Dans cette méthode, l’injection de puissance 

active et réactive est modulée pour améliorer l’amortissement du réseau 

électrique. Des formulations mathématiques sont développées pour étudier 

l’efficacité de l’amortissement en lien avec les points d’injections le long des lignes 

de transmission. En prenant compte des non-linéarités, causées par la limite 

d’injection de puissance active/réactive, les compromis pour les gains de 

rétroaction en rapport avec les limites de saturations sont étudiés. Des 

diagrammes de plan de phase donnent une illustration claire de cette non-
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linéarité et des résultats de simulations confirment comment un amortissement 

élevé peut être sécurisé. 
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1.1 INTRODUCTION 

1.1.1 Background on Definition of Thesis Topic 

This thesis is one of the deliveries of the NSERC Strategic Projects Grant under 

the title, “Design and Operation Trans-Canadian Power Grids: An Integrated 

Approach”. Professor F.D. Galiana, who is the Principal Investigator, is 

addressing the Long-term Expansion Planning and Medium-Term Planning Issues 

and potential benefits. Team member, Professor B.T. Ooi, is responsible for doing 

research to forestall technical problems which can arise in the Trans-Canadian 

Grid. The specific problem, assigned to the author of this thesis, is instability 

associated with electromechanical oscillations. The subject is narrowed further 

because of consideration to past experience.   

 

1.1.1.1  Status of Power Electronics Research 

The power electronics group of Power Energy Research Laboratory has 

researched on high voltage DC transmission (HVDC), Flexible AC Transmission 

Systems (FACTS) and Wind Energy. According to Professor B.T. Ooi, each 

provincial utility can retain the strength of a small system if the interconnections 

to form the large Trans-Canadian grid are by DC transmission or by back-to-

back DC stations, however, they are expensive. Although controllers of Flexible 

AC Transmission Systems (FACTS), such as the Unified Power Flow Controller 

(UPFC) and the Static Synchronous Series Compensator (SSSC), are relatively 
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cheaper, they can also provide decoupling of neighbouring grids. As DC 

transmission is still an expensive technology, the future Trans-Canadian grid is 

most likely to be predominantly AC. Such a Trans-Canadian grid can be 

confronted by lowly damped or even negatively damped electromechanical 

oscillations; therefore Professor B.T. Ooi has defined instability of AC systems to 

be the focus of this thesis. 

 

1.1.1.2  NSERC’s Suggestion 

As suggested to the grantees by NSERC, besides linking the existing provincial 

power grids and evaluating the economic benefits, desirably the research should 

also address integrating sustainable energy resources. 

 

1.1.1.3 Status of Wind Power Research 

The research group in wind energy of the Power Energy Research Laboratory has 

advanced to the stage where besides controlling arrays of wind-turbine generators 

to increase wind power penetration, the complex power outputs can be 

modulated to improve the dynamic performance of the grid. Since damping of 

electromechanical oscillations require complex power sources, utilizing wind farms 

to provide damping dovetails neatly to the long term research program, besides 

meeting NSERC’s wishes. 
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1.1.2 Review on Electromechanical Oscillations in Power System 

Oscillation problems in power system are not new to the electric industry, and 

they were reported and investigated as early as 1920s [1]. As synchronous 

generators have very little damping, amortisseur windings were invented to 

provide damping. Using voltage regulators contributed in steady-state stability 

[2], and transient stability was improved through the use of high-speed fault 

clearing and high response exciters. In the early history of electrical engineering, 

synchronous generators formed small power systems to serve regional loads. A 

small system is considered to be “strong”, because it has large synchronizing 

power with high frequency electromechanical oscillations. As local power systems 

interconnect, usually with long ac transmission lines, the synchronizing power is 

reduced and the frequencies of electromechanical oscillations are lowered [3, 4]. 

The reduced electromechanical frequencies, due to power system expansion, have 

the effect of reducing the damping from amortisseur windings. This led to 

Research and Development in finding damping from speed feedback through field 

excitation control. The final outcome of this is the Power System Stabilizer (PSS) 

[5-7]. The PSS has served power systems well for the past decade or two.  

 

1.1.2.1 Challenges Due to Further Power System Growth 

Canada and many countries are motivated towards forming extensive intra- and 

trans-national grids. The new expansions are stimulated by the need: (i) to offer 
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access and liquidity to energy markets, (ii) to provide the infrastructure for 

integrating alternative energy resources on a large-scale and/or (iii) to address 

power supply security concerns [8, 9]. Studies conducted on future 

interconnections estimate that on one hand there will be inter-area frequencies 

falling well below 0.2 Hz, on the other hand, there will be local oscillations 

exceeding 4 Hz [10, 11]. There is fear that conventional PSS cannot cope with 

such a broad frequency range, as they are limited by their bandwidths.  

In general, the technologies which can cope are: 

(1) HVDC: Asynchronous links, based on back-to-back HVDC [12-15], enable 

power to be traded across regions while disturbances from one region are 

contained within the region. In North America, “HVDC fences” isolate the 

grid of Eastern USA from that of Western USA, the province of Quebec 

and the state of Texas [16, 17]. The regional grids remain relatively small 

and strong so that small signal instability can be suppressed by PSS.    

The power electronic control of the HVDC stations can also assist in 

damping. This technology is expensive. 

(2) Flexible AC Transmission Systems (FACTS): In addition to increasing 

transient stability limit and offering voltage support, FACTS controllers 

(Thyristor Controlled Series Compensator (TCSC), Static VAR 

Compensator (SVC) [18-22], Static Synchronous Series Compensator 

(SSSC), Static Compensator (STATCOM), and Unified Power Flow 
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Controller (UPFC)) have the capacity to enhance dynamic performance 

such as improving system damping [23-34]. So far, not many FACTS 

controllers have been installed.  

(3)  Controllability in Frequency Changers of Sustainable Energy 

Technologies:  Sustainable energy technologies output dc power 

(photovoltaic) or variable frequency ac (variable speed wind turbines). 

Part of their costliness is due to the necessity to have power electronic 

frequency changers to convert the output power to the 60 Hz standard [14, 

35-39].  When the penetration of renewable technologies reaches 20 % [40], 

it means that 20% of the grid power will be power electronically 

controlled. As in FACTS, the fast controllability can be applied to 

improve system damping. The difference with FACTS is that the 20% of 

sustainable energy technologies will have already been paid for and will 

not be added cost. 

Although HVDC and FACTS are viable, the thesis will not consider them for 

reasons already given. In treating the all-AC system, the thesis must review the 

recent advance in WAM (Wide-Area Measurements) and WAC (Wide Area 

Control).  
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1.1.2.2  Wide-Area Measurement (WAM)  

A WAM is a measurement system ideally suited for power systems monitoring 

and control [41-43]. It is based on phasor measurement units (PMUs) [44] that 

continuously stream data to phasor data concentrators (PDCs) at central 

locations. The PMU synchronization is achieved via a GPS system that provides 

precise timing at better than 1μs [45]. Each phasor data concentrator collects and 

collates time-stamped measurements from many PMUs and rebroadcasts the 

combined data stream to locations running a range of power grid monitoring and 

control computer applications [41, 46].  

 

1.1.2.3 Wide Area Control (WAC) 

Pioneering publications, notably those of [47, 48], are proposing Wide Area 

Controls (WAC) which make use of feedback signals taken from phasor 

measurement units (PMU) which are time-stamped by GPS clocks. Based on the 

simultaneously measured positions and speeds of selected generators gathered in 

hierarchical control centers, the requisite damping signals are sent back to the 

field excitation controllers of participating generators. The method depends on 

redundant communication links between the hierarchical control center and the 

selected participating generators. Tests performed on WAMSs have shown that 

control loop latency, including sensing, computation and activation, can be as 

short as 60 ms for direct links and up to 200 ms, when secondary links are 
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involved.  But with respect to the time periods of the incipient low oscillating 

frequency oscillations of the increased-size interconnection, the phase angle is 

acceptable. One corner stone of the research is that conventional PSS will be 

damping the oscillations of 0.2 Hz and above.    

 

1.2 METHODOLOGIES OF RESEARCH  

1.2.1  Function Analysis 

The thesis strives to find analytical proofs and close form analytical solutions, 

wherever possible.  

A close form nonlinear formulation of a new power system archetype model is 

presented in chapter 4. In chapter 5, the difference between linear and nonlinear 

damping feedback is highlighted by Lyapunov functions [49-51]. 

 

1.2.2  Eigenfunctions 

The 2Nx2N [A]-matrix of the power system, made up of N generators, is 

constructed from the classical model of individual generators. The computation 

complexity is reduced by analyzing the NxN sub-matrix [A12], its eigenvalues and 

its left- and right- eigenvectors. The properties of right- and left-eigenvectors 

have led to the Multi-Selectivity Method in chapter 2. Analytical concepts are 

verified using numerical analysis and digital simulations. 
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1.2.3 Numerical Analysis 

Throughout the thesis, numerical analysis has made use of: 

1. MATLAB—Simulink: Simulink [52] as an environment for multidomain 

simulation and model-based design for dynamic and embedded systems is 

used along with its SimPowerSystems toolbox [53] to model power system. 

SimPowerSystems extends Simulink with tools for modeling and 

simulating the generation, transmission, distribution, and consumption of 

electrical power. 

2. MATLAB— Matlab is used for small signal stability analysis of 

interconnected ac power system. For complex power systems, MatNetEig 

toolbox [54] is used to form the sparse linearized coupled differential 

algebraic equations describing the systems dynamics in the frequency 

range of transient power system dynamics. Modal analysis, frequency 

response, and step response can be calculated using this toolbox in Matlab. 

3. HYPERSIM— For digital simulations, the author has access to Hydro-

Quebec’s HYPERSIM, a commercial grade simulation system of 

TransEnergie (Hydro-Quebec), initially from l’Ecole de Technologie 

Superieure (ETS) and later from Polytechnique de Montreal. Invaluable to 

research is the collection of power plant components, based on detail 

models recommended by IEEE Committee Reports: the generator, the 
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field excitation system, the power system stabilizer, the boiler, the high 

pressure, intermediate pressure, and low pressure turbines, as well as the 

governor and the shaft inertias [55-59]. 

 

1.2.4 Phase-Plane Method  

Although the phase-plane method [60] is only suitable for 2-dimension analysis, it 

is useful to demonstrate instability in nonlinear system and nonlinear damping in 

chapter 4. 

 

1.3 ORGANIZATION OF THESIS 

The thesis is organized as follows: 

 Damping from Wide-Area Control: Chapters 2 and 3. 

 Damping from Complex Power Injection from Sustainable Energy 

Technologies: Chapter 4.  

 Nonlinear Damping: Chapter 5. 

 Conclusions and Suggestions of Further Work: Chapter 6.  

Chapter 2 presents the design of the centralized control assuming that the 

classical [A] matrix is given. The computation burden of evaluating eigenvalues 

and eigenvectors of [A] increases with N3, N being the system order. It is assumed 

that the Lanczos method [61-63], which enables the eigenvectors of the few lowest 

frequency modes beyond the range of local PSS, is affordable and accurate. As 
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the remaining eigenvalues and eigenvectors are unknown, it behoves the design to 

have very high selectivity [87]. Although, there is safe guard that PSS can damp 

the high frequency modes, it is preferred the high selectivity will ensure that in 

damping the selected slow modes, the other modes are not destabilized.   

High selectivity is obtained by using the linear independence of left eigenvectors 

and the right eigenvectors. Three (3) layers of selectivity are incorporated in the 

design. The first layer is in using the right eigenvector to select the generator 

stations which are positioned to yield the most sensitive detection of modal 

disturbance and at the same exert maximum power to suppress the disturbance. 

The second layer is in applying the left eigenvector as weights to the “observer or 

[C]” inputs of the centralized controller. By the spatial filtering, the targeted low 

frequency mode is recognized. Once recognized, the centralized controller sends 

suppression signal to the selected generators in amounts proportional to the right 

eigenvector. The right eigenvector in the controllability matrix [B] is third layer 

of selectivity. 

Chapter 3 presents results from digital simulations and eigenvalue analysis to 

validate the claims on the ability to damp the selected low frequency modes 

without destabilizing the others.  

As proof of the robustness of the method, the author’s 12-generator test system 

has been subjected to tests in which every one of the tie lines connecting the 4 

areas is assumed to have been severed, one at a time. It is found that the 
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centralized control continues to damp out the disturbances following the 

disruptions.    

 

Controllability in Frequency Changers of Sustainable Energy Technologies: 

Chapter 4 

The frequency changers of sustainable energy technologies are mainly Voltage-

Source Converters (VSCs) [36, 38, 64]. They have the same fast controllability of 

FACTS controllers to inject reactive power to improve power system damping. 

But whereas FACTS controllers can inject reactive power only, the sustainable 

energy technologies can inject active power, reactive power and a combination of 

the two.   

The research is directed to finding out the effectiveness of damping in relation to 

the placement of the injection point along the transmission line. It is found that 

reactive damping is most effective in the middle of the line while active power is 

best next to the transformers of the line. The findings of this thesis confirm the 

investigations by small signal linearization [65].  

The difference with the research by [65] lies in the fact the complex power 

modulator (frequency changers of sustainable energy technologies) is modeled as 

a nonlinear equation and the close-form algebraic expression is retained 

throughout the research.  
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One reason for the retention of the nonlinearity is that prior work has depended 

on small signal linearization. Consequently, the consequences of large 

perturbations remain in the dark. 

  

Investigating Nonlinear Damping: Chapter 5 

The other reason is that in designing injection of active and/or reactive power to 

augment damping requires tuning of the proportional and integral feedback gains 

with respect to the saturation limits. Without taking nonlinearity into account, 

the designer merely gropes by trial and error. Using phase-plane diagrams, this 

chapter gives a clear picture of the trade-offs of gain constants with respect to 

saturation limits in securing high damping.  Simulations and the method of 

Lyapunov show that whereas linear damping attenuates exponentially with time, 

nonlinear damping attenuates linearly with time.  
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CHAPTER 2 

 

DAMPING INTER-AREA OSCILLATIONS 

BY MULTIPLE MODAL SELECTIVITY 

METHOD 
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2.1 INTRODUCTION 

The research of this chapter is motivated by concern that existing designs in 

power system stabilizers (PSS) may not have broad enough bandwidth: (i)to 

damp low frequency inter-area oscillations when interconnected power utilities 

continue to grow in size and, at the same time, (ii) to damp the high frequency 

oscillations of local modes. The solution, proposed here, adds a Global PSS 

(which damps the inter-area modes) to existing PSS (which continue to damp the 

high frequency local area modes).  

In the Global PSS concept, PMU time-stamped information of speeds of selected 

generators is telecommunicated to a Central Controller which applies the 

Multiple Modal Selectivity Method to generate feedback commands which are 

telecommunicated back to the same selected generators to damp the low 

frequency oscillations. Because the inter-area frequencies fall well below 0.2 Hz, 

communication delay is negligible in the 5 second period of the oscillations.  

The methodology is based on state feedback applied to the linearized [A] matrix 

of classical small signal stability analysis of the power system. Well aware that all 

the eigenfunctions of [A] are not often available for high order systems, the 

method is developed to require knowledge of only the few very low frequency 

inter-area modes which can be obtained economically by Lanczos-based methods 

[61-63]. It is possible to get by with the limited knowledge by taking advantage of 

the properties of left and right eigenvectors. Exploiting the fundamental 
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properties, 3 levels of selectivity to damp the low frequency modes without 

destabilizing the others are incorporated in the design: (1) selecting power 

stations best placed to implement the feedback control; (2) screening the speed 

signals telecommunicated to central control; (2) modal weighting of the signals 

feedback telecommunicated back to the few selected stations. 

The chapter is organized as follows: Section 2 presents the classical small signal 

stability analysis framework. Section 3 presents the Multiple Modal Selectivity 

Method. Section 4 presents a small power system to test the method. Section 5 

describes how the method is implemented in central control. Section 6 describes 

the planning stage to select which power stations are to be included in the 

control.  

 

2.2 BACKGROUND 

2.2.1 Dynamics of Linear Systems  

This research follows the standard linearized equations used in steady-state 

stability analysis of the power system:  

 11 12

21 22

[ ] [ ]

[ ] [ ]

A A

A A

w w
dd

é ù é ù é ùD Dê ú ê ú ê ú=ê ú ê ú ê úDDê ú ê ú ê úë û ë ûë û


  (2.1) 

The N-tuple vectors of rotor speed and angle perturbations are Δ and Δδ. The 

N×N sub-matrices of the 2N×2N [A]-matrix are [A21]=[I], [A11]=[A22]=[0] and 

[A12] has the formula: 



17 
 

 1

12
[ ] [ ( )] [ ]eP
A diag h

d
-

é ù¶ê ú= -ê ú¶ë û
 (2.2) 

where eP dé ù¶ ¶ê úë û is the Jacobian of Pe given by DC power flow equations [41]. Note 

that derivations leading to (2.2) are simplified by assuming that generator speed 

and its terminal frequency are the same. Pe is linked to dynamics of generators by 

 
2

1,...,
i i

i i
m e

s

H d
p p i N

dt

w
w

= - =  (2.3) 

The diagonal matrix [diag(h)] is defined as 

 

1

2

0 . 0

0 . 02
( )

. . . .

0 0 .
S

N

H

H
diag h

H

w

é ù
ê ú
ê ú
ê úé ù = ê úê úë û ê ú
ê ú
ê úë û

 (2.4) 

The [A]-matrix is constructed here using (2.3); that is, the generator classical 

model. Then again, one can use highly detail models to represent generators and 

their sub-systems dynamics. However, in that case, not much will be gained 

since, as far as rotor speeds are concerned, the mode shapes of slow inter-area 

oscillations (to be discussed in Section 2.4.2) will stay largely the same. At the 

same time, the mathematics will become increasingly unwieldy and the problem 

dimensionality will grow by many folds.  

To halve the dimensionality, the practice is to analyze the N×N sub-matrix [A12], 

instead of the 2N×2N [A]-matrix, and use its eigen properties alone to describe 

the system dynamics. This practice has been extended to the formulations of this 

thesis and the correctness of the conclusions reached since the N×N analysis has 
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been counter-checked by 2N×2N analysis. Moreover, the predictions are checked 

numerically in eigenvalues evaluations and time-domain simulations based on 

(2.1).  

 

2.2.2 Modal Analysis [63, 66] 

On diagonalizing [A12], one has a N×N diagonal matrix: 

 
12

[ ( )] [ ] [ ][ ]Tdiag V A Ul =  (2.5) 

where the right eigenvector matrix is 

 1 2[ ] [ , , , ]NU u u u=   (2.6) 

and where the left eigenvector matrix is 

 1 2[ ] [ , , , ]NV v v v=   (2.7) 

The linear independence property which is the key feature of the method is: 

 
1

0

T

j i

T

j i

v u i j

v u i j

= =

= ¹
 (2.8) 

The above relations can also be stated as [V]T[U]=[I]. While (2.8) is a general 

mathematical property, it has been proved in Appendix A of [66] that for the 

specific case of [A12] 

 ( )j jv diag h ué ù= ê úë û  (2.9) 

The eigenvalues in the vector  of (2.5) are all negative real numbers of the form 

–(k)
2. They are reconstituted in the 2N×2N eigenvalue matrix [] of the [A]- 

matrix: 
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 11 12

21 22

é ùL Lê úé ùL =ê ú ê úë û L Lê úë û
 (2.10) 

where  [11]=[diag(j)], [22]=[diag(-j)] and [12]=[21] =[0].  This means that 

the modes have oscillatory frequencies k, k=1,2..N, but there is no negative real 

parts to provide damping.  The right and left eigenvectors of (2.6) and (2.7) are 

all real numbers. They have been used to build the left and right eigenvectors of 

2N×2N [A]-matrix in our in-depth analysis [67], but the concepts of this research 

can be presented without being encumbered by mathematical correctness.  

 

2.2.3 Linear feedback  

The standard linearized control feedback equations are: 

 [ ] [ ]x A x B z= +  (2.11) 

 [ ]z K y=  (2.12) 

 [ ]y C x=  (2.13) 

Following other authors [10, 63, 68], this thesis considers the speed vector   as 

the feedback signals for damping, which makes the sub-matrix [A11] in (2.1) non-

zero and allows setting  

 11
[ ] [0]

[ ]
[0] [0]

C
C

é ù
ê ú= ê ú
ê úë û

 (2.14) 

 11
[ ] [0]

[ ]
[0] [0]

B
B

é ù
ê ú= ê ú
ê úë û

 (2.15) 
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The speed signals received at central control is y=[C11], with [C11] deciding 

which stations should be connected to central control. A “connected station” here 

refers to a power station that is fully equipped to operate as part of a WAMS-

based monitoring and control system. 

The N×N gain matrix 
11

[ ]K  is chosen to achieve high selectivity in controlling 

the targeted modes. Its outputs 
11

[ ]z K y=  are relayed to the same stations so 

that 
11 11

[ ] [ ]B C=  and the feedback signals 
11

[ ]B z  are added to the first row of 

(2.1). The presence of the feedback loop changes the original [A]-matrix in (2.1) 

by [ΔA], where 

 11
[ ] [0]

[ ]
[0] [0]

A
A

é ùDê úD = ê ú
ê úë û

 (2.16) 

where 

 
11 11 11 11

[ ] [ ][ ][ ]A B K CD =  (2.17) 

It can be shown that the matrices [U] and [V] of (2.6) and (2.7) can be applied to 

[A] of (2.16) to yield [11], where 

 
11 11

[ ] [ ] [ ][ ]TV A UDL = D  (2.18) 

is a real NxN matrix added to the imaginary diagonal sub-

matrix
11

][ [ ( )]diag jwL =  of (2.10). Substituting (2.17) in (2.18) 

 
11 11 11 11

[ ] [ ] [ ][ ][ ][ ]TV B K C UDL =  (2.19) 
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2.3 METHOD OF MULTIPLE MODAL SELECTIVITY 

The Multiple Modal Selectivity Method [87] adds to the advances of Selective 

Modal Analysis [69, 70]. It is more easily understood by considering first the 

perfect decoupling of a single mode, the kth mode. After deriving the key 

equations, the same equations are applied to the realistic case with minor 

changes. To show that the derived formulas are specific to the kth mode alone, 

subscript (k) has been added to symbols such as [11] to become [11(k)].  

 

2.3.1 Perfect Decoupling  

From Lanczos-based method [61], the right and left eigenvectors uk and vk of the 

kth mode (the target mode) have been solved. It is assumed that all N stations are 

connected to central control so that [C11]=[B11]=[I], which is the identity matrix. 

The damping coefficient is chosen to be -k. Two selectivity stages are 

implemented through the gain matrix: 

 
11( )

[ ]
T

k kk k
K u vs= -  (2.20) 

Substituting [C11]=[B11]=[I] and (2.20) in (2.19)  

 
11( )

[ ] [ ] [ ]
TT

k kk k
V u v UsDL = -  (2.21) 

The first stage is at the measurement-side, which yields a row vector: 

 1 2[ ] [ , , , ]
T T T T

k k k k Nv U v u v u v u=   (2.22)-a 

The second stage is at the controller-side, which yields a column vector: 
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1

2[ ]

T

k

T

T k
k

T

N k

v u

v u
V u

v u

é ù
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê úë û


 (2.22)-b 

Therefore, the i-jth element of [11(k)] is:  

 
( )

( )( )
T T

i k k jij k k
v u v ul sD = -  (2.23) 

Based on (2.8), [11(k)] entries are all zero except for the kth element for which 

kk(k)= -k. For the closed loop feedback system of [A]+[A(k)], the kth eigenvalue 

is kk(k)=-k+jk, and the k+Nth eigenvalue is kk(k)=-k-jk.  All the other 

eigenvalues are ii=+ji, i+N,i+N=-ji (i=1,2..N, ik) and, therefore, have no 

damping.  

 

2.3.2 Practical Case  

In practice, it is only affordable to connect a limited number of power stations to 

the central control. In order to preserve the result of (2.23), the changes required 

in mathematical modeling are to put zeroes in the diagonal terms of 

[C11]=[B11][I], where the stations are not connected. This has the consequence 

that zeroes have to replace the elements in the corresponding rows of the right 

and left eigenvectors. The changes are conveniently accommodated by defining 

new N-tuple vectors îu and îv such that: 

 
11

ˆ [ ]i iu B u=  (2.24)-a 

 
11

ˆ [ ]i iv C v=  (2.24)-b 
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For example, when only stations 1, 3, and N are connected, 

1 3
ˆ [ , 0, , 0, , 0, ]

T

i i i Ni
u u u u=   and

1 3
ˆ [ , 0, , 0, , 0, ]
T

i i i Ni
v v v v=  . This also allows the gain 

matrix to be defined as: 

 
11( )

ˆˆ[ ]
T

k kk k
K u vs= -  (2.25) 

With this remodeling, (2.23) is modified to:  

 
( )

ˆ ˆˆ ˆ( )( )
T T

i k k jij k k
v u v ul sD = -  (2.26) 

The k-kth term yields a negative real damping term:     

 2

( )
ˆ ˆ( )
T

k kkk k k
v ul sD = -  (2.27) 

Since ˆ ˆ( ) 0
T

i kv u ¹  for ik, and ˆ ˆ( ) 0
T

k jv u ¹ for jk, [11(k)] is a full NxN matrix of 

real numbers. Therefore, in damping the kth mode, the other modes are affected.  

At best, one chooses the locations of the connected stations to minimize the 

lambda-ratio in the [11(k)]-matrix: 

 ( )

( ) 2
( )

ˆ ˆˆ ˆ( )( )

ˆ ˆ( )

T T

ij k i k k j

ij k T
kk k k k

v u v u
lambda ratio

v u

l

l

D
- = =

D
 (2.28) 

The quadratic structures in the numerator and denominator in (2.28) contribute 

towards making [11(k)] close to a diagonal matrix. For example, if 

ˆ ˆˆ ˆ| | / | | 0.33
T T

i k k kv u v u £ and ˆ ˆˆ ˆ| | / | | 0.33
T T

k j k kv u v u £ ,  then lambda-ratioij  0.1. 

 

2.3.3 Negative Real Numbers for Diagonal Elements 

From (2.26), the diagonal elements are 
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( )

ˆ ˆˆ ˆ( )( )
T T

i k k iii k k
v u v ul sD = -  (2.29) 

From (9), ˆˆ ˆ( )i iv diag h ué ù= ê úë û and ˆˆ ˆ( )k kv diag h ué ù= ê úë û , where 
11

ˆ( ) [ ][ ( )]diag h C diag hé ù =ê úë û . On 

substitution in (2.29), as ˆ ˆˆ ˆ ˆ ˆ[ ( )] [ ( )]
T T

i k k iu diag h u u diag h u= , it indicates that  

 
( )

0           1,2..
ii k

i NlD £ =  (2.30) 

Since the diagonal elements of [11(k)] are all not positive, the trace of 

[11]+[11(k)] does not have a real positive part. While that is insufficient to 

guarantee stable operation, it indicates that the feedback is unlikely to be de-

stabilizing. This conclusion based on the trace is supported by eigenvalue 

evaluations of [A]+[A], that is the 2N×2N system of (2.1) with the feedback 

system of (2.16). In every case, the real parts of the complex conjugate pairs of 

all the eigenvalues have negative real parts. The time domain simulations also 

show that every mode is positively damped.  

2.4 TEST SYSTEM MODAL PROPERTIES  

A 12-generator system has been contrived, shown in Figure 2.1, to test the 

proposed method. Although a small power system, it has the low frequency 

modes similar to the inter-area modes of large systems and high frequency modes, 

which the method must not destabilize. The system is intended primarily to 

bring the ideas across quickly. There is no conceptual barrier in applying the 

ideas to continental-size grids (USA-Canada, European Union, Brazil, Russia, 

India, China).  
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Figure 2.1  Power System one-line diagram 

 

 

2.4.1 Test Power System 

The power system of Figure 2.1 consists of four regions, each having 3 generating 

units, connected by three 69 kV lines. The 4 tie-lines connecting the regions are 

operating at 115 kV. The generators are all thermal, have round rotors, ideal 

step-up transformers, and a rating of 250 MVA, which is also chosen to be the 

system MVA base. Loads are assumed to be fixed power demands with unity 

power factors. 
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Table 2.1  Power system load and generation data 

Bus No. Generation Load Bus No. Generation Load 

H(s) Pg(MW) Pd (MW) H(s) Pg (MW) Pd (MW) 

1 3.5 200 200 7 4.1 197 220 

2 4.1 210 82 8 4.3 205 324 

3 3.8 190 160 9 3.6 198 264 

4 4.0 200 225 10 3.8 197 130 

5 4.2 195 285 11 4.0 200 180 

6 4.3 210 110 12 4.5 203 225 

 

Table 2.1 contains the generation and load data, as well as the generators’ 

normalized inertia, for each bus. Resistive losses and shunt capacitances are not 

modeled in the lines. Table 2.2 lists their inductive reactances and connectivity 

data.  

Table 2.2  Lines’ connectivity and per-unit reactances 

line X(pu) line X(pu) Line X(pu) Line X(pu) 

1-2 0.655 5-6 0.619 9-7 0.716 3-4 2.466 

2-3 0.704 6-4 0.705 10-11 0.680 6-7 2.793 

3-1 0.712 7-8 0.629 11-12 0.704 9-10 2.607 

4-5 0.632 8-9 0.678 12-10 0.601 12-1 2.827 
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2.4.2 Open Loop Properties  

By formulating the [A]–matrix of (2.1) and using eigenanalysis software, the 12 

modes are solved. Table 2.3 lists the eigenvalues of the modes, #1, #2….. #11, 

in ascending orders of their frequencies (all real parts are zero) and classifies 

them as “slow’ and “fast”. Mode # 12 is the zero frequency reference.  

 

Table 2.3 Modal frequencies and their classification 

Mode  (rad/s) f (Hz) Class Mode  (rad/s) f  (Hz) Class 

1 3.15 0.502 slow 7 14.76 2.349 fast 

2 3.31 0.527 slow 8 15.08 2.399 fast 

3 4.69 0.746 slow 9 15.24 2.426 fast 

4 14.16 2.254 fast 10 15.70 2.499 fast 

5 14.29 2.275 fast 11 15.99 2.545 fast 

6 14.53 2.312 fast 12 0.00 0.000  
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Figure 2.2 Mode shapes of the sub-matrix [A12] right eigenvectors 
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2.4.3 Mode Shapes of Right Eigenvectors 

The mode shapes in Figure 2.2 are drawn from right eigenvector components of 

[A12]. They are presented in order, Mode #1, #2,…, #12, from top to bottom, 

starting from the left  column.  

The envelopes of the bars of Mode #1 and #2 have the lowest spatial frequency 

profile. Mode #3 has the next higher spatial frequency. The lowest spatial 

frequency correlates with the lowest temporal frequency, a finding that is in good 

agreement with analytical conclusions of [67]. 

 

2.4.4 Mode Shapes of Left Eigenvectors 

The left eigenvector mode shapes are not displayed. From (2.9), they are similar 

to Figure 2.2 since in Table 2.2 the sizes of the inertia constants in h do not vary 

significantly.  

 

2.4.5 Implementing Linear Independence   

2.4.5.1 Perfect case 

As described in section 2.3, the Multiple Modal Selectivity Method depends on 

linear independence of (2.8). Figure 2.3 is a graphical illustration of the inner 

product operation, for v1
Tu1, v2

Tu1 and v9
Tu1. The 3 rows in the first column of 

Figure 2.3 depict the same mode shape of u1 of Mode #1.  The interest is to know 

how Mode #1 can become coupled to itself, to a slow Mode #2 and to fast Mode 
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#9. The second column shows the mode shapes of v1, v2
 and v9 in the 3 rows. The 

bar charts in the last column are the results of multiplying corresponding bars of 

the two mode shapes on the same row. In the last column, for v1
Tu1, the bars only 

take positive values and add up to 1 (i.e. v1
Tu1=1).  But, for v2

Tu1 and v9
Tu1 the 

bars assume both positive and negative values, so that they tally to zero (i.e. 

v2
Tu1=v9

Tu1=0). 
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Figure 2.3 Graphical interpretations of operations v1
Tu1 , v2

Tu1 and v9
Tu1. 
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2.4.5.2 Practical case 

Reducing the number of connected stations causes 
î

u and îv to have fewer bars 

than 
i

u  and 
i

v .  In Figure 2.3, the heavy bars in the first two columns denote 
1̂

u , 

1̂
v , 

2̂
v , and 

9̂
v  mode shapes when power stations 2, 5, 8, and 11 are connected.  

The heavy bars in the first row, third column indicate that a reasonably large 

value for 1 1ˆ ˆ
T

v u  is attainable. The second row, third column indicates that the 

value of 2 1ˆ ˆ
T

v u is not zero but small. It says that, by connecting stations 2, 5, 8, 

and 11, modes #1 and #2 are almost decoupled. Finally, one sees that 9 1ˆ ˆ
T

v u is 

unlikely to be small. The examples show that locating the best stations is critical 

in moving ˆ ˆ
T

i iv u  and ˆ ˆ
T

j iv u towards 1 and zero, respectively, and, thus, the success 

of the method.  

 

2.5 IMPLEMENTATION   

2.5.1 Imposed Requirements 

As PSS can damp the fast modes of Figure 2.1, the Multiple Modal Selectivity 

Method is required to damp the slow modes (#1, #2, and #3). The slow modes 

should be decoupled so that oscillation excited in one mode does not disturb 

another slow mode. The only information available is the right eigenvectors of 

the slow modes, which have been solved by a Lanczos- based method [61]. The 

number of power stations connected to central control should not exceed 4. 
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Knowing u1, u2 and u3 the left eigenvectors v1, v2 and v3 are computed from (2.9).  

At this point, the 4 connected power stations are assigned algebraic numbers j, l, 

m, and n. Their choice is determined by selection based on a performance 

criterion described in the next section. After determining j, l, m, and n the 

reduced vectors k̂u , k̂v , k=1,2,3 are formed. 
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Figure 2.4 Feedback Loop in Central Control 

 

Figure 2.4 shows the central control feedback blocks for Modes #1, #2 and #3, 

each of which implements ˆˆ
T

k kk
u vs- (k=1,2,3) as described in section 2.3. The 
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selected speeds are{ }, , , 
j l m n

x x x x , the outputs are { }, , , 
j l m n

z z z z and the reduced 

vectors are ˆ [0,.., , 0,.., , 0,.., , 0,.., ,.., 0]
T

k jk lk mk nk
u u u u u=  and 

ˆ [0,.., , 0,.., , 0,.., , 0,.., ,.., 0]
T

k jk lk mk nk
v v v v v= .  

In controlling 3 modes, the central control of Figure 2.4 requires modifying (2.20) 

and (2.21) as follows: 

 

3

11 11( )1
3

11 11( )1

[ ] [ ]

[ ] [ ]

kk

kk

K K
=

=

=

DL = DL

å
å

 (2.31) 

 

2.5.2 Control Center Level Implementation 

At the control center, the feedback signals, 
11

ˆ[ ]B z z= , will be calculated from 

measwD , the measured rotor speed deviations telemetered by WAMS. From (2.17) 

and (2.20), one has, 

 
11 11 11

ˆ [ ] [ ] [ ]
m

T meas

k kk
k S

z B z B u v Cs w
Î

æ ö÷ç ÷ç= = - D÷ç ÷ç ÷è ø
å  (2.32) 

The index set Sm contains the target modes. Using definitions (2.24) and bringing 

measwD inside the summation, (2.32) becomes 

 ˆ ˆ
m

kk
k S

z f u
Î

= å  (2.33) 

The weights fk  in (2.33) are related to the measurements by,  

 
,

ˆ
t

T meas meas
kk k k k j j

j S

f v vs w s w
Î

= - D = - Då  (2.34) 

The index set St is holding indices of selected rotor speed telemetries. In Fig. 2.4, 

the summations on the left form fk , k=1,2,3, while the  summations on the right 
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follow (2.33) to generate the control signals { }, , , 
j l m n

z z z z , which are the nonzero 

entries of ẑ . 

 

2.5.3 Plant Level Implementation  

Through WAMS, the calculated control signals will be dispatched to power 

plants whose generators are selected to damp the inter-area oscillations. At the 

plant level, the control signal will be passed to the Remote Terminal Unit (RTU) 

of the selected generator for realization. At this point, a few options are available 

for feeding back the control signal. It can be input via the generator PSS or 

directly via the generator Exciter input, with the possibility of being combined 

with the locally generated control signal or used alone.  Depending on the choice, 

“conditioning” of the control signal will be different. Preliminary simulations 

done by the author on systems with fully modelled generators indicate that, when 

no local control signal is present, both options can successfully damp the inter-

area oscillations.  
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2.6 SELECTION OF CONTROLLING GENERATORS  

2.6.1 Maximizing Damping  

In order to maximize the damping in all the 3 modes, based on (2.27), the best 

placement of the 4 stations j, l, m and n corresponds to îu and îv (i=1, 2, 3) which 

maximize sS where 

 
3

1

ˆ ˆ
T

i i
i

v us
=

S = å  (2.35) 

 

2.6.2 Maximizing Decoupling 

It is highly desirable to have dynamics of the modes decoupled [68]. As has been 

illustrated in Figure 2.3, the rth mode is decoupled from the ith mode when ˆ ˆ
T

r iv u  is 

small relative to ˆ ˆ
T

i iv u . For the 3 slow modes to be as decoupled as possible, it is 

desirable to have 
decoup

S as small as possible. 

 
3 3 3

1 1 1

ˆ ˆˆ ˆ| |
T T

r i i idecoup
r i i

v u v u
= = =

S = -åå å  (2.36) 

In combining maximum damping and maximum decoupling, the figure of 

performance used is 

 
decoup

W s= S -S  (2.37) 

By exhaustively evaluating all combinations of (j, l, m, n) and ranking W in 

order of magnitude, one has a range of best values from which to choose. If the 

power station is not suitably equipped, it is passed over for a lower ranked 
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member in the list. In selecting 4 out of 12 power stations exhaustively, the 

number of evaluations is 
12!

4! 8 !´
. The selection of j, l, m and n by the author is 

{2,5,8,11}. Figure 2.5 is a 3x3 table presenting the graphical evaluations of ˆ ˆ
T

r iv u , 

r=1,2,3, i=1,2,3. Note that the bars in the diagonal charts – i.e. (a), (e) and (i) – 

are all positive and add to a high value for good damping in each mode. In the 

off-diagonal graphs, half of the bars are positive and the other half are negative. 

The opposite polarities help in ensuring that their algebraic sum is close to zero, 

to provide decoupling.  

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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Figure 2.5 Graphical depiction of terms defining decoupling conditions 
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The quadratic structure of Multiple Modal Selective Method ensures that the 

decoupling is better than suggested by the results in Figure 2.5 for example, from 

Figure 2.5(b), the coupling between Mode #1 and #2 is 2 1ˆ ˆ 0.01
T

v u = . What is 

finally important is the off-diagonal elements 12(1) of the sub-matrix [11(1)] 

when compared with diagonal elements 11(1). Taking 1 1ˆ ˆ 0.37
T

v u =  from Fig.5 

(a) and applying (2.28), the lambda-ratio12(1)=0.01×0.01/(0.37)2=0.00073.  

An attempt has been made to reduce the number of stations from 4 to 3, but the 

decoupling becomes poor. This is because positive sum with negative sum do not 

cancel. Figure 2.5 shows this very clearly when power station 2 is removed so 

that {2,5,8,11} becomes {5,8,11}.  

 

2.7 CONCLUSION 

Besides singling out the targeted modes to be heavily damped, the Multiple 

Selectivity Method ensures that all the other modes will have their eigenvalues 

shifted to the left in the complex s-plane (see equations (2.29) and (2.30)). 

Therefore, the fast modes will never be destabilized on account of the Multiple 

Selectivity Method. As the fast modes are assumed to be damped by traditional 

PSS, this is a fail-safe feature.  
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CHAPTER 3 

 

MULTIPLE MODAL SELECTIVITY 

METHOD: TEST RESULTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 
 

3.1 INTRODUCTION 

This chapter presents a series of simulation results and eigenvalue evaluations to 

validate the claims in chapter 2. The chapter is organized as follows: 

 

3.1.1 Tests of Multiple Selectivity 

First, tests have been performed on the 12-generators of Figure 2.1 to validate 

the claims on Multiple Modal Selectivity method. Then more demanding tests 

have been performed on the well known 16-machine 68 bus System [54] and the 

4-Generator System of SymPowerSystems toolbox [71]. 

 

3.1.2 Tests on Robustness 

Section 3.4 shows that even if ˆku or k̂v in s- ˆˆ
T

k kk
u v of the Central Control of 

Figure 2.4 is not known accurately, the Global PSS should do its job as long 

as =ˆ ˆ[ ( )]k kv diag h u . Using digital simulations and eigenvalue evaluations, this 

chapter shows that the Multiple-Selectivity Method provides robust damping as 

claimed. 

The robustness claim is validated by showing that the Global PSS continues to 

damp the 12-generator system when circuit breakers sever a tie-line of Figure 2.1. 
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The chapter is organized as follows: 

In section 3.2, three of the twelve generators of Figure 2.1 have been chosen to 

damp the three lowest frequency modes. It should be noted that none of the 

modes have damping without the Global PSS. The results show that while the 

Global PSS damps the targeted modes heavily, it also damps the high frequency 

modes, although very lightly.  

Section 3.3.1 presents the results of eigenvalue analysis on a 16-machine 68 bus 

System. Section 3.3.2 presents simulation of recovery after opening circuit 

breakers of a faulted line of the 4-Generator System. Robustness of the Global 

PSS is discussed in section 3.4. 

 

3.2 RESULTS FROM NUMERICAL TESTS  

3.2.1 Simulations – No Decoupling  

In the first instance, simulation results are presented for the case where reducing 

the number of controlling power stations to 3 is preferred to having 4 controlling 

stations. The search for the best location of the 3 stations, based on W s= S , 

yields power stations (5, 8, 11).  The equations simulated are [A]+[A] with 

excitation due to an arbitrary initial value x(0). The modal graphical displays 

are obtained from  ( )T

i
v x t , i=1,…12. 
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Figure 3.1  Modal responses following excitation of all modes for power stations {5,8,11}. 

No decoupling in targeted slow modes. 

 

Figure 3.1 shows the responses of the targeted slow modes #1, #2, #3 (in the 

left column) together with a sample of the fast modes #4, #8, #11. The 

simulation results show that the control of Figure 2.4 provides significant 

damping of the targeted slow modes.  The high frequency modes (#4, #8, #11) 

are also damped, although only lightly. The control experiment consists of 

repeating the simulation without the controls of Figure 2.4. The results show that 

none of the modes has damping.  
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3.2.2 Eigenvalue Evaluation – No Decoupling  

Table 3.1 lists the eigenvalues of [A]+[A]. Comparing the modal frequencies in 

Table 3.1 with those of Table 2.3, the feedback loop does not markedly change 

the system modal frequencies. But it adds significant damping to the targeted 

modes (#1,#2, #3), as well as some fast modes.  

 

Table 3.1 System closed loop eigenvalues (σ1=σ2=σ3=-5) 

Mode Real(λ) +Imag(λ) Mode Real(λ) +Imag(λ) 

1 - 0.3428 3.143 7 - 0. 3841 14.631 

2 - 0.3821 3.291 8 - 0.5555 15.003 

3 -0.4599 4.679 9 - 0.0537 15.169 

4 - 0.4372 14.252 10 - 0.0786 15.666 

5 - 0.0830 14.386 11 - 0.0258 15.978 

6 - 0.1642 14.5521 12 - 0.0013  

 

Table 3.1 is only a sample of the extensive tests that has been conducted. In all 

cases, involving the many sets of parameters of the system, all modes have 

positive damping; a situation consistent with (2.30), which follows the conclusion 

that the trace of [A]+[A] is always negative.  
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3.2.3 Simulations – With Decoupling 

 

0 10 20
-0.1

0

0.1


1
 = -0.34+3.14i

0 10 20
-0.2

0

0.2


2
 = -0.38+3.29i

0 10 20
-1

0

1


3
 = -0.46+4.68i

Time(s)

0 10 20
-0.1

0

0.1


1
 = -0.31+3.16i

0 10 20
-0.2

0

0.2


2
 = -0.18+3.31i

0 10 20
-1

0

1


3
 = -0.28+4.65i

Time(s)  

Figure 3.2 Response of slow modes #1, #2, #3 for excitation of mode #3. Left—no 

decoupling {5,8,11}; Right—with decoupling {2,5,8,11}. 

 

Figure 3.2 compares the left hand column, which has the results of “no 

decoupling” for connecting power stations {5,8,11} with the right hand column, 

which bears the results of “with decoupling” for connecting power stations 

{2,5,8,11}.  

The simulations are the responses of the the slow modes following excitation of 

mode #3 only. The excitation of the ith mode in isolation is by initial state 

x(0)=u3. Modes #1 and #2 are virtually undisturbed in the right hand graphs.  
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Simulation experiments have been performed in which mode #1 is excited in 

isolation and then with mode #2 excited in isolation. Because the results are 

similar, they are not presented here. The inability of {5, 8, 11} to provide 

decoupling is very clear from Figure 2.5. In all the off-diagonal graphs, when the 

bar of power station 2 is missing, the summation cannot approach zero. 

 

3.3 PERFORMANCE ON POWER SYSTEMS WITH 

REALISTICALLY MODELED GENERATORS 

 

3.3.1 Tests on a 16-machine 68-bus System (Eigen-analysis) 

To show that the Multiple Selectivity Method functions in a realistic system 

where each generator station has detailed models of the alternator, governor 

system, excitation control and power system stabilizer, the author has turned to 

eigenvalue analysis of the 16-machine system (86 transmission lines, 68 buses) in 

MatNetEig toolbox of Matlab, which is available in [54].  

The system data for this test, as indicated in [54], has been borrowed from [72]. 

The objective of the test is to increase the damping of the system three lowest 

frequency modes. The mode shapes shown in Figure 3.3 correspond to the lowest 

three modes and can be generated directly using the toolbox applications.  

Stations #5, #13, #14 and #16 are selected to fulfill the stated objective. 
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After sorting through hundreds of eigenvalue pairs solved by the MatNetEig 

toolbox, the eleven electromechanical eigenvalues are identified and plotted as 

encircled dots in Figure 3.4. 
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Figure 3.3 Mode shapes of three lowest frequencies 

 

As the feedback loop gains 1=2=3 are increased from zero, eigenvalues of the 3 

target low-frequency modes migrate to the left, indicating increased damping. As 

predicted by the theory, the other electromechanical modes are only marginally 

affected by the target modes’ movements and remain largely decoupled. Although 

the 3 modes are lightly coupled, their damping is increased. The increased 

damping comes from (2.29) and (2.30) which is a feature of the Multiple Modal 

Selectivity Method.  The dynamics of the non-electromechanical modes are 
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influenced very little by the changes in the dynamics of the electromechanical 

modes. 
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Figure 3.4 Electromechanical eigenvalues 

 

3.3.2 Test by 4-Generator System (Time-domain Simulation) 

To validate the approach via time-domain simulation, the authors make use of 

the 4-generator system shown in Figure 3.5 which is taken from [71, 73]. 

SimPowerSystems toolbox [71] has the same level of detailed modeling of system 

components as the MatNetEig toolbox. One can readily show that for this case 

generator and generator sub-system modes are strongly damped by the PSS. 
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In order to have an electromechanical modal frequency beyond the effective range 

of the PSS, the normalized inertias of the generators are artificially increased to 

100s. 

 

Figure 3.5 Four-Generator System [71, 73] 

 

At a low modal frequency of 0.1 Hz (approaching wide-area oscillation), the 

simulations in Figure 3.6 show that the system is unstable for 3 cases: without 

PSS, with speed feedback (∆ω PSS), and with multi-band PSS (MB PSS).  

The test scenario calls for clearing a 3-phase solid ground fault at t=1s at the 

location shown in Figure 3.5. The system protection clears the fault 133ms later 

by disconnecting the affected line-section. In applying the Multiple Selectivity 

Method, the signals generated by the Central Control form the inputs of the PSS 

on generator G1 and G3. Even with a delay time of 200 ms (representing wide-

area control loop latency), the proposed strategy remains stable. 

As the above two tests are performed on power systems with fully modeled 

generators, they support the notion that the Multiple Modal Selectivity Method 

can be applied to realistic power systems. 
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Figure 3.6 Simulation of pu speed of G3 after occurrence and clearing of three phase 

ground fault. 

 

3.4 ROBUSTNESS OF THE METHOD 

In Section 2.3, it has been assumed that the eigenvector uk is known precisely. 

One can replace uk by an approximation wk and define 
11

ˆwk ku C wé ù= ê úë û  and 

ˆˆ ˆ( )wk wkv diag h ué ù= ê úë û . The control gain matrix, in this case, is 
11( )

ˆˆ[ ]
T

wk wkk k
K u vs= - . 

From (2.26), one obtains 

 l sD = -
( )

ˆ ˆˆ ˆ( )( )
k k

T T

i w w iii k k
v u v u  (3.1) 

As ˆ ˆˆ ˆ ˆ ˆ[ ( )] [ ( )]
T T

i wk wk iu diag h u u diag h u= it follows that 
( )

0
ii k

lD £  for all i=1,2…N, 

including i=k. This result is the same as (2.30). As in Section 2.3, the diagonal 

elements of [11(k)] are all not positive and the trace of [11]+[11(k)] does not 
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have a real positive part. Therefore, the system is as stable as in (2.25) when the 

exact eigenvector uk is applied.The eigenvectors change with load which affect [A] 

in the terms Vi0Vj0cos(i0-j0). In practice, bus voltages are kept close to their 

nominal values and (i0-j0) hardly goes beyond the range (+15,-15). Since 

cos(0)=1 and cos(15)=0.965, at the extreme this can represent a 4% 

parameter change.  

Not only is Multiple-Selectivity Method robust with respect to small parameter 

variations but it is robust for major changes such as: (i) a disconnected local line; 

(ii) a disconnected tie-line. 
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Figure 3.7 Shapes of low frequency modes: (a) intact system; (b) one open local line) 
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3.4.1 Sensitivity of Mode Shapes to a disconnected local line 

Figure 3.7 shows in (a) the original mode shapes of the targeted modes. In (b) it 

shows the same modes when a local line (in one of the areas) is opened. Although 

Stations #2, #5, #8 and #11, which are shown with heavy bars, will pick up 

different numbers from the designed values of the Central Controller of Figure 

2.4, from(3.1), the slow modes will still be positively damped. The amount of 

positive damping is no longer the same, but the difference is not a big amount. 

Time domain simulation results in Figure 3.8, confirm this. 
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Figure 3.8 Slow modes damped by Multiple Selectivity Control: (a)Intact system 

(b)System with disconnected local line 
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3.4.2 Sensitivity of Mode Shapes to disconnected tie-line  

In order to leave no doubt that robustness holds for disconnection of tie-lines, 

results are presented for disconnection of every one of the tie-lines in the 12-

generator system of Figure 2.1. To understand why there is the robustness, the 

targeted mode shapes of the four cases of disconnection of tie-lines (Figure 2.1) 

are presented in Figure 3.9, 3.11, 3.13, and 3.15 . In particular, the stations #2, 

#5, #8, and #11 are highlighted. 

In these Figures, although modes shapes of intact system are different from the 

systems with open tie-line, the underlying fact which emerges is that the mode 

shapes reflect the 3 ways in which the 4 areas oscillate against each other. From 

the oscillations picked up by stations #2, #5, #8,and #11 the central controller 

of Figure 2.4 recognizes the inter-area oscillations and sends the appropriate 

damping signals. 

 

3.4.3 Time Domain Proof of Robustness 

Figure 3.10 shows the damping of the slow modes when one tie-line has been 

disconnected. This experiment has been repeated 4 times, each time for one of 

the 4 tie-lines disconnected. The system is positively damped for each case. 
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Figure 3.9 Shapes of low frequency modes: (a) intact system; (b) open 1st tie-line) 
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Figure 3.10 Slow modes damped by Multiple Selectivity Control: (a)Intact system 

(b)System with 1st tie-line disconnected 
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Figure 3.11 Shapes of low frequency modes: (a) intact system; (b) open 2nd tie-line) 
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Figure 3.12 Slow modes damped by Multiple Selectivity Control: (a) Intact system      

(b) System with 2nd tie-line disconnected 
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Figure 3.13 Shapes of low frequency modes: (a) intact system; (b) open 3rd tie-line) 
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Figure 3.14 Slow modes damped by Multiple Selectivity Control: (a) Intact system      

(b) System with 3rd tie-line disconnected 
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Figure 3.15 Shapes of low frequency modes: (a) intact system; (b) open 4th tie-line) 
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Figure 3.16 Slow modes damped by Multiple Selectivity Control: (a) Intact system      

(b) System with 4th tie-line disconnected 
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3.4.4 Proof by Eigenvalue Evaluations 
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Figure 3.17 Slow modes Comparison of eigenvalues of 3 slow modes—intact system with 

system with disconnected tie-line (4 cases). 

 

Figure 3.17 plots on the complex s-plane the 3 slow modes identified by square, 

circle and x symbols. The large symbols are for the intact system. The 4 

additional symbols are for the 4 cases of having one of the 4 tie-lines disconnected 

at one time. Although positively damped, the damping is reduced. The slowest 

mode has its frequency reduced significantly.  
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3.5  CONCLUSION  

The Multiple Modal Selectivity Method has been presented and its claims have 

been validated by eigenvalue analysis and simulations in realistic systems 

involving 16 generators, each modeled by high order equations and equipped with 

power system stabilizers, etc. The claims are: (i) using WAMS-based controls, 

central control can damp the very low frequency oscillations of inter-area modes; 

(ii) the damping of the inter-area modes can be decoupled; (iii) the only 

information required is the eigenvectors of the target inter-area modes; (iv) only 

a limited number of power stations are required for providing speed 

measurements and implementing the control feedback signals; (v) in damping the 

targeted inter-area modes, the other modes receive positive damping, although 

PSS is already there to damp the fast modes.   

A high order of selectivity is achieved via multiple discrimination stages: (i) 

speed measurements that provide best feedback signals; (ii) feedback gains that 

discriminate the observed signal and send control signals selectively; (iii) use 

power stations best placed to implement the controls. 

3.5.1 Robustness 

Robustness has been demonstrated in two cases: 1) Disconnection of a local line; 

2) Disconnection of a tie-line. This robustness is a significant feature of the 

Multiple Modal Selectivity Method. 
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CHAPTER 4 

 

DAMPING CAPABILITY OF RENEWABLE 

ENERGIES AS AFFECTED BY POINT OF 

INSERTION 
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4.1 INTRODUCTION 

Control strategies, such as the Multiple Modal Selectivity Method of chapter 2, 

by themselves are insufficient. In order to damp electromechanical oscillations in 

a power system, the control signals must be backed by adequate active and/or 

reactive power. In this respect, when sustainable energy technologies reach high 

penetration, the power electronically controlled complex powers from their 

frequency changers (VSCs) can be counted on to help the conventional power 

plants [35, 37, 74-80]. A preliminary assessment, based on simulation studies on 

the 39 bus, 10 generator—New England Test System, shows that the damping 

capability of sustainable energy technologies [81] is determined by their locations. 

This chapter confirms the simulation studies [65, 81]. It further shows that the 

locations which affect the damping capability are evident in the algebraic 

expressions in the close form formulation which is derived in this chapter. 

The sustainable energy technology researched on in the Power Energy Research 

Lab is wind energy. As wind velocity is stochastic, before considering it for 

damping, research in [82] has established that the output power of a wind farm 

can be closely controlled. Figure 4.1 shows that there are hourly periods when the 

output power of a wind farm (comprising 24 wind turbine generators) can be 

regulated by a combination of power electronic control over the generators and 

pitch angle control of the wind-turbine blades.  
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Figure 4.1 2500-second simulation of wind farm, from [82]: (a) wind velocity; (b) wind 

farm (24 WTGs) output. 

 

Furthermore, as Figure 4.2 shows the wind farm can deliver 0.2 Hz auxiliary 

power, intended for damping operation. In addition to instantaneous power from 

wind velocity, the research of [82, 83] shows that the kinetic energy in the high 

inertia wind turbine blades ( H4 seconds) possess standby storage power to 

draw on in the 5 second duration of the Global PSS operation.  

The preliminary assessment of [81] has been followed by further validation by 

simulations [65]. The research of [65] and chapter 2 makes use of small signal 

linearization. In order to find out if their conclusions apply beyond the 

assumptions of small signal linearization, this chapter develops a methodology 

which does not depend on small signal linearization. 

 



61 

 

 
Figure 4.2 Auxiliary Power for Damping, from [82]: (a) wind farm power output; (b) 

pitch angle of turbine blade; (c) damping power from individual WTG. 

 

It represents the sustainable energy technology by an ideal complex power load 

or source (negative load) inserted along a transmission line between two 

conventional generators and derives a close form formulation of the dynamic 

interaction. 

For decades, power engineers have used the archetype model of a single generator 

“swinging” against an infinite bus to bring out the concepts of synchronizing 

power, small signal stability and transient stability (equal area criterion). The 

derived close form formulation has the potential of being another archetype 

model from which useful analytical conclusion can be drawn in the future. 
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In this chapter and in part of chapter 5, the close form nonlinear formulation is 

retained for two purposes: (i) to confirm the results of [65] which has been 

obtained from small signal linearization; (ii) to gain analytical insights (which the 

numerical evaluations of [65] cannot) regarding damping effectiveness in relation 

to the point of connection of the transmission line.  

This chapter is organized as follows: 

Section 4.2 derives the nonlinear formulation. Section 4.3 shows that their 

predictions are better viewed by a phase-plane diagram [60]. Section 4.4 brings 

out the concept of nonlinear damping using phase-plane diagram. Section 4.5 

presents two location factors (see Figure 4.6) to give an analytical explanation for 

the difference in damping effectiveness by active power modulation and by 

reactive power modulation. 
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4.2 COMPLEX POWER LOAD IN TRANSMISSION LINE 

 

CC jQP 
1dP 2dP

 

Figure 4.3 Complex Power Load at distance rL from G1, 0 r  1.0. 

 

Figure 4.3 shows a positive complex load PC+jQC located at distance rL         

(0 r  1.0, L is line length) from generator G1. In modeling a wind farm, the 

complex power of the load will be negative. Voltages, complex powers and 

impedances are per-unitized (for kV-base and MVA-base, see Appendix B). 

Assuming the reactance of the lossless double line is jXL and the transformer 

reactances on both ends to be jXT, the impedance on G1 side is jX1=j(XT+rXL) 

and on G2 side is jX2=j(XT+XL- rXL). The voltages of G1 and G2 are d= 
1 1

V V  

and d= 
2 2

V V . As [84] has shown, the power electronic converters of a renewable 

energy installation can be modeled as a voltage source, 
C C C

V V d=  . In 

simulation tests, a 3-phase-to-ground fault is simulated at a point shown and the 

circuit breakers on both sides are opened on clearing the fault within 100ms. 
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4.2.1 Dynamic Equation of System 

The prime-mover powers of G1 and G2 are Pm1, Pm2 and the load powers are Pd1, 

Pd2 respectively. For simplicity, it is assumed that the inertia constants are equal, 

i.e. H1=H2=H.  The rotor speeds, 1 and 2, of generators G1 and G2 are 

governed by Newton’s Law of Motion: 

 
w

w
= - -1

1 1 1
0

2
m d

dH
P P P

dt
 (4.1) 

 
w

w
= - -2

2 2 2
0

2
m d

dH
P P P

dt
 (4.2) 

where P1 and P2 are the powers transferred by G1 and G2 respectively in the 

direction to the complex load. Defining 

 d d d
-

= -
1 2 1 2

 (4.3) 

 w w w- = -
1 2 1 2

 (4.4) 

 
d

w-
-=1 2

1 2

d

dt
 (4.5) 

and subtracting (4.2) from (4.1), one has 

 
w

w
- = - - - - -1 2

1 1 2 1 1 2
0

2
( ) ( ) ( )

m d m d

dH
P P P P P P

dt
 (4.6) 

Assigning the voltages of generators in Figure 4.3 to be d= 
1 1

V V , d= 
2 2

V V  

and  load to be d= 
C C C

V V , the currents from G1 and G2 to the load are: 

 
-

=
 

 1
1

1

C
V V

I
jX

 (4.7) 

and 
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-

=
 

 2
2

2

C
V V

I
jX

 (4.8) 

The complex power of the load is 

 + = +  * *

1 2
( )

C C C
P jQ V I I  (4.9) 

Substituting (4.7) and (4.8) to the complex conjugate of (4.9) 

 ( ) ( )
é ùæ ö÷çê ú÷ç- = - + - ÷ê úç ÷÷çè øê úë û

    * 1
1 1 2

2

( )
C C C C C

X
jX P jQ V V V V V

X
 (4.10) 

which can be simplified to: 

 

æ ö÷ç ÷- + +ç ÷ç ÷÷çè ø
=

+


 

21
1

2*

1
1 2

2

( ) 1
C C C

C

X
jX P jQ V

X
V

X
V V

X

 (4.11) 

Multiplying *

C
V  by 

C
V yields a quadratic equation of 2

C
V   

 
é ùæ ö÷çê ú÷ç+ = + + +÷ê úç ÷÷çè øê úë û

 
22

2 2 2 21 1
1 2 1 1

2 2

1
C C C C

X X
V V V V X Q X P

X X
 (4.12) 

whose solution is: 

 - - -
- + - -

=
+

2

1 2 1 2 1 22

1 2

2

1 1
C C C

C

S Q Q Q Q P
V

X X

 (4.13) 

For feasible solution, the argument inside the square root must be positive. Also, 

the positive root yields a physical solution. In calculating 2

C
V , it is assumed 

that = = 
1 2

V V V , and 
-1 2

S  is defined as: 

 
d d

-

+ - +
=

+

2 2
2 1 1 2 1 2 2

1 2
1 2 1 2

2 cos( )

2 ( )

X X X X
S V

X X X X
 (4.14) 
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Rewriting (4.11) as 

 

æ öæ ö æ ö÷ç ÷ç ÷ç÷÷ç ÷- + +ç +ç÷÷ ÷ç ç ç÷÷ ÷÷çç ÷çè ø ÷ç ÷ç ÷ç= ÷ç ÷ç ÷ç ÷÷ç ÷ç÷ç ÷ç+ +÷ç ÷ç÷ ÷ç ç ÷÷÷ç è øè ø

 


   

2 * *1 1
1 1 2

2* 2

* *1 1
1 2 1 2

2 2

( ) 1
C C C

C

X X
jX P jQ V V V

X X
V

X X
V V V V

X X

 (4.15) 

which yields: 

 

d d d d

-

é ùé ù æ öæ ö æ ö+ ÷÷ ç ÷ç çê úê ú ÷÷ ÷çç ç+ = + +÷÷ ÷ê úçê úç ç ÷÷ ÷÷ ÷çç ç ÷çè ø è øê úè øê úë û ë û
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* 21 1 2
1 2

2 2

1 1
1 2 1 2

2 2

2 1

cos( ) cos( ) sin( ) sin( )

C C C C

C

X X X
V S V Q jP

X X X

X X
V jV

X X

 (4.16) 

Substituting 2

C
V from (4.13) in (4.16) and writing = -*

C CR CI
V V jV , the real and 

imaginary parts are: 

 

( ) ( )

( )

d d d d

d d

-

- -

éæ ö æ öæ ö÷ ÷+ +ç çê ÷ç÷ ÷ç ç÷ç= +÷ ÷êç ç÷÷ ÷çç ç÷÷÷ ÷çê + +÷ ÷è øç çè ø è øë

ææ ö æ öç÷+ç ÷çç÷ç ÷ç - -÷çç ÷÷ ççç ÷÷÷ çç+ ÷ è øçè øè

2 1 1 2 2 1 1 2

1 21 2 1 2

2

2 1 1 2

1 2 1 21 2

sin( ) sin( ) cos( ) cos( )

2 2

cos( ) cos( )
            1 2

2

C
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C C

X X P X X
V V

SX X X X

X X Q P

S QX X

ù
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úû

1

2
 (4.17) 
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1
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 (4.18) 

The power transferred from G1 to the load is: 

 
d d

= -1 1
1

1 1

sin cos
( ) ( )

CR CI

V V
P V V

X X
 (4.19) 

Substituting 
CR

V and 
CI

V  from (4.17) and (4.18),  
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d d

d d
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- -

= + -
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2
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1 1 2

1 2 1 1 2
2 1

2
1 2 2

1 2 1 2

{[ cos( )]
2( )

sin( )[1 (1 ) ]}

C

C C

X PV
P

X X X S

Q P

S S

 (4.20) 

By interchanging the subscripts 1 and 2, the real power transferred from G2 is: 

 

d d

d d

-

- -

= + -
+

+ - + - -

2
1

2 2 1
1 2 2 2 1

2 1

2
2 1 2

1 2 1 2

{[ cos( )]
2( )
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C

C C

X PV
P

X X X S

Q P

S S

 (4.21) 

Substituting (4.19) and (4.20) in (P1- P2), one has the equation embodying the 

dynamics of Figure 4.3. 

 

w
w

d
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+
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1 2

1 1 2 1
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22 1
1 2
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m d m d

C C C

dH V
P P P P

dt X X

X X P Q P

X X S S S

 (4.22) 

Equations (4.5) and (4.22) are the key equations of this chapter. They constitute 

the amended archetype. Putting PC=0.0 and QC=0.0, (4.22) reverts to the 

familiar equation of the existing archetype: 

 
w

d
w

-
-= - - - -

+

2
1 2

1 1 2 1 1 2
0 1 2

2 2
( ) ( ) sin( )

( )m d m d

dH V
P P P P

dt X X
 (4.23) 

 

4.3 PHASE PLANE METHOD 

Because of the sin(d
-1 2

) term on the right-hand side of (4.22), the equations (4.5) 

and (4.22) are nonlinear. Dividing (4.22) by (4.5), one has the gradient of 

w -1 2
with respect to d -1 2
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w
d

-
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=1 2

1 2

d Numerator

d Denominator
 (4.24) 

where from (4.22) 

 

d -
- - -

= - - - - ´
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- + + - -
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1 1 2 1
1 2

22 1
1 2

1 2 1 2 1 2 1 2

( ) ( )
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m d m d
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Numerator P P P P

X X

X X P Q P
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 (4.25) 

and from (4.5) 

 w
w -

=
1 2

0

2H
Denominator  (4.26) 

A graphical approach based on the phase-plane method, as illustrated by    

Figure 4.4, is applied to view its dynamic characteristics. 

 

4.3.1 Phase-Plane Diagram 

In the w -1 2
-vs-d -1 2

 plane in Figure 4.4, every co-ordinate point (d -1 2
,w -1 2

) has a 

value by which the Numerator of (4.25) and the Denominator of (4.26) can be 

computed. The computed gradient of (4.24) forms the slope of the co-ordinate 

point. Based on (4.5), d -1 2
increases with time for 1-2  0. Therefore, an arrow tip 

is attached to the gradient so that the trajectories on the upper half-plane move 

to the right. Applying the same argument to the lower half-plane, the arrow 

heads are attached so that the trajectories move to the left. From any coordinate 

point (1-2, 1-2) in Figure 4.4, the arrow tip points to the direction of the next 

position (1-2 +1-2, 1-2+1-2) at a later time.  
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Figure 4.4 Phase-plane representation of Undamped System 

 

4.3.2 System without Damping 

Figure 4.4 is for the case of wind farm power (negative complex power           

PC= (-PC0), QC=0) injected at position r=0.0 along the transmission line. The 

numerator of (4.24) is 

 

d
-

- -

= - - - - ´
+

æ ö- - ÷ç ÷ç- + + - ÷ç ÷÷çè ø

2

1 1 2 1

1 2

2
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( ) ( )
2( )

{( ) 2 sin( )[1 1 ]}

m d m d

C C

V
Num P P P P

X X

X X P P

X X S S

 (4.27) 

and the denominator is from (4.5). 
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4.3.3 Limit Cycles 

Figure 4.4 displays an inner region bounded by a separatrix (line of A and B). A 

trajectory inside the separatrix, such as from a point E, closes upon itself 

indicating that the periodic oscillation is undamped (limit cycles) and never 

converges to the focal point. Within the separatrix, the system is stable.  

 

4.3.4 Unstable Operating Region  

After a severe fault, the system can take (1-2, 1-2) to a point such as C outside 

the separatrix. The trajectory C to D is unbounded and strays away from the 

focus within the separatrix. The objective of the phase-plane diagram is to 

discover if the wind farm has unexpected instability. Simulations show that with 

the fast circuit breakers, which can clear a 3-phase to line-to-ground fault within 

100 ms, the post-fault states (1-2, 1-2) lie within the separatrix so that 

synchronism is never lost. 

 

4.4 CONCEPT OF NONLINEAR DAMPING 

4.4.1 Damping by Modulating Active Power 

Damping can be produced by introducing a modulated active power term which 

is proportional to the frequency 1-2. The frequency 1-2 can be measured by a 

phase-lock loop (PLL) and applied to modulate the active power control of the 
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wind farm using a gain KP (dimensionless). From the example of Figure 4.4, one 

substitutes PC=- (PC0 + KP 1-2) while keeping QC=0 (in situations requiring 

voltage support QC=QC0) in (4.25). To bring out the damping coefficient 

explicitly, one makes the approximation + » +1 1 0.5x x  (valid when x1.0). 

Then, one makes a second approximation:  (1+y)2(1+2y) (valid when y1.0). 

These approximations are made only to bring out the rotation of the gradients in 

the phase-plane to explain how damping is realized, and they are not the same as 

the linearization technique of [65, 85].  

Numerator of (4.25) has an additional term to Num of (4.27) which is: 
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-
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-
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 (4.28) 

Therefore (4.24) becomes 

 1 2

1 2

d Num Numdamp

d Denominator Denominator

w
d

-

-

= +  (4.29) 

Because 1-2 in Numdamp and in Denominator cancel each other, 

Numdamp/Denominator in (4.29) is independent of 1-2. This second term 

Numdamp/Denominator, evaluated at operating angle 1-2,0, is defined as the 

closed-form formula of damping factor from active power modulation,P in (4.30). 

 2
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1 2,0 2
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d -
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 (4.30) 
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Using the slopes of Figure 4.4 as the reference, Numdamp/Denominator of (4.29) 

can be regarded as the term which rotates the slopes to those of Figure 4.5. As 

time increases, trajectories follow the new slopes, which veer to the right. Thus a 

trajectory from A converges to the equilibrium at B. 

 

 

Figure 4.5 Phase-plane: damping by PC =KP1-2, KP=10 

 

 

4.4.2 Damping by Modulating Reactive Power 

Damping by reactive power modulation, using a gain KQ (dimensionless), is 

analysed by using the same technique as in the previous section. By substituting 

PC=(-PC0) and QC=-(KQ1-2) in (4.25), the closed-form formula of damping factor 

due to reactive power modulation is derived and defined as: 
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 (4.31) 

    

 

4.5 DEPENDENCE ON LOCATION IN TRANSMISSION LINE 

4.5.1 Dependence of Damping on “r” 

The position “r” (0 r  1.0), enters (4.22), (4.30) and (4.31) as X1=(XT+rXL) 

and X2=(XT+XL-rXL). sP
 of (4.30) and s

Q
 of (4.31) are dependent on X1 and X2 

explicitly and on S1-2 (see (4.14)) in the denominators of both equations. The 

characteristics of s
P
 and s

Q
can be understood from the location factors, 

illustrated by Figure 4.6-(a) and Figure 4.6–(b). 

 

4.5.1.1  Location Factor 1/S1-2: 

From (4.14) S1-2 is a term similar to reactive power because when cos(1-2)1.0, 

equation (4.14) becomes 

 
2 2

1 2
1 2

1
( )

2

V V
S

X X- » +  (4.32) 

Figure 4.6-(a) shows the dependence of 
1 2

1 / S
-

on “r”.  
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Figure 4.6 Location Factors (a) 1/S1-2, (b) [(X2/X1)-(X1/X2)]/S1-2 

 

4.5.1.2  Location Factor [(X2/X1)-(X1/X2)]/S1-2: 

s
P
of (4.30) is heavily dependent on [(X2/X1)-(X1/X2)]/S1-2. Its location factor is 

displayed in Figure 4.6-(b). The location factors explain how the shapes of -s
P
 

and   -s
Q

 are dependent on “r”. 

   

4.5.2 Active Power Modulation 

In this sub-section, PC=-(PC0+KP 1-2) and QC=0.0, |KP|=20. Figure 4.7 displays 

s-
P
 plotted as a function of “r”. From Figure 4.7, it is apparent that the 

location factor of Figure 4.6-(b) dominates. This term is the first term on the 

right-hand side of (4.30). Although the location factor in Figure 4.6-(b) is 

negative for r 0.5,  s-
P
 0.0 because the PLL in the wind farm measures 1-2 as 
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a negative value. 

4.5.2.1  Dependence on P1: 

The size of P1, the active power transmitted from G1, enters as the second term 

on the right-hand side of (4.30) through sin(1-2). This second term is multiplied 

by (1/S1-2)
2 which is a small term because it is the square of the ordinate of 

Figure 4.6-(a). Its addition has little effect on damping as Figure 4.7 shows. 

 

 

Figure 4.7 Dependence of s-
P

on “r” and P1 (PC0=-0.2 pu, QC0=0.0, |KP|=20) 

 

4.5.2.2  Dependence on –PC0:  

Figure 4.8 shows the influence of -PC0, the active power of the wind farm. It 

enters (4.30) as the second term and as already discussed, it is a small term. 
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Figure 4.8 Dependence of s-
P

on “r” and PC0 (wind farm).  (P1=0.8 pu, QC0=0.0 pu, 

|KP|=20) 

 

4.5.3 Reactive Power Modulation  

Setting PC=(-PC0) and QC=-(KQ 1-2), the damping s
Q

 according to (4.31) is 

dependent on location factor of (1/S1-2) as shown in Figure 4.6-(a).  

 

4.5.3.1  Dependence on P1:  

As shown in Figure 4.9, s
Q

 is strongly dependent on P1 through sin(1-2). In 

(4.31), the sin(1-2) term is multiplied by (1/S1-2), whereas in Figure 4.7 it is 

multiplied by (1/S1-2)
2 which is smaller. 
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Figure 4.9 s-
Q

as a function of “r” and P1 (PC0=0.24 pu, QC0=0 pu, KQ =20) 

 

 

 

Figure 4.10 s-
Q

 as a function of “r” and PC0 (wind farm power), (P1=0.8 pu, QC0=0 pu,      

KQ =20) 
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4.5.3.2  Dependence on –PC0:  

The injected wind power -PC0 affects sin(1-2). From (4.31), s-
Q

 is dependent on 

sin(1-2). Thus in Figure 4.10, there are 3 distinct curves of s-
Q

, one for each 

value of -PC0. Comparing Figure Figure 4.7 and Figure 4.8 with Figure Figure 4.9 

and Figure 4.10 (the same modulation gain KP=KQ have been used), the damping 

from reactive power modulation is lower than from active power modulation by a 

factor of about 1/3.  

 

 

4.5.3.3 Validation of Predictions 

The graphs of Figure 4.7 to Figure 4.10 are in agreement with those in [65], 

which have already been validated by simulations using EMTDC-PSCAD, a 

commercial grade software. 

 

4.6 CONCLUSION 

A synchronous generator swinging against an infinite bus is the model whose 

close form formulation is used to illustrate many properties of a power system. 

This chapter has presented Figure 4.3 as potentially usefully model which has 

(4.22) as a close form formulation. This model can have many applications. For 

instance, the load can be a positive complex power to model a large city.      
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In this chapter, the model has been applied to study the damping available from 

a sustainable energy technology (specifically wind energy).  

The research gives an analytical explanation for the difference in effectiveness of 

damping by active and reactive power modulation based on the location factors, 

illustrated in Figure 4.6. 
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CHAPTER 5 

 

NONLINEAR DAMPING OF NONLINEAR 

OSCILLATIONS BY RENEWABLE 

TECHNOLOGIES  
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5.1 INTRODUCTION 

Although the sustainable energy technology of chapter 4 has active and/or 

reactive power to help damp electromechanical oscillations in the power system, 

the amount of damping is limited by the MVA rating of the installation, 

irrespective of the active power feedback gain KP and the reactive power feedback 

gain KQ. Normally, “saturation blocks” are placed in the signal paths to prevent 

the MVA rating from being exceeded. The “saturation blocks” represent one form 

of nonlinearity. The other nonlinearity lies in the sin term in (4.22) in chapter 4. 

Small perturbation linearization can get past the sin nonlinearity but not the 

“saturation blocks”.  

In practice, when one uses low feedback gains to remain in the linear region, the 

damping is feeble. When high gains are used to obtain better damping, most of 

the operation lies in the saturated region. There is a need to know how the high 

damping is achieved during saturation. 

In applying phase-plane diagrams to understand the damping process, the 

conclusion is quickly reached that nonlinear damping is more effective.  

The research uncovers an interesting conclusion: (i) Nonlinear feedback damps 

linearly with time. (ii) Linear feedback damps exponentially with time (linearly 

with distance). 

An explanation for the different damping rates is given using Energy functions. It 

should be stated that because (4.22) is complicated, an approximation to that 
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equation is used to define an energy function. The Energy functions used are 

related to the energy of simpler dynamic linear and nonlinear systems. Although 

lacking in mathematical rigour, the “proofs” reveal the physical mechanism of 

damping. In nonlinear damping, the rate of energy dissipation is proportional to 

power. In linear damping, the energy is dissipated as work.   

This chapter is organized as follows: 

Section 5.2 describes how the feedback gain, KP (or KQ), interacts with the 

saturation limit in the phase-plane and why nonlinear damping is preferred to 

linear damping. It develops a theory based on Energy functions to explain the 

difference in their damping rates.  

Hitherto, results have been obtained by using MATLAB to simulate(4.22).   In 

order to strengthen the proof of principle, further simulations have been 

performed with HYPERSIM in Section 5.4.  

Hitherto, high damping has been pursued without regard to operational 

constraints of the specific sustainable energy technology. Section 5.5 reviews what 

may be the reservations of wind turbine manufacturers and wind farm owners. 
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5.2 DAMPING BY A MIX OF LINEAR AND NONLINEAR 

FEEDBACK   

 

5.2.1 MVA Rating Constraints on Linear Control  

The gain KP in linear feedback of active power modulation is constrained by 

|Srating|, the MVA rating of the renewable technology installation. As QC0=0.0 in 

this study, the active power allowed is: 

 2 2

0 1 2
( )

C P rating
P K Sw

-
- - £  (5.1) 

Assuming that on clearing a fault, the permitted line frequency deviation is 1-2f, 

the size of the linear gain is limited to 
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P
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=  (5.2) 

 For reactive power modulation,  

 2 2 2

0 1 2
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C Q rating
P K Sw

-
- + - £  (5.3) 

 
2 2
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1 2

rating C

Q
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S P
K

w -

-
=  (5.4) 

Simulations show that damping, under exclusive linear control, is weak because 

KP and KQ are not high enough because of the MVA rating constraint. 
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5.2.2 Linear Control with “Saturation Blocks” 

In control design which uses a high Kp gain, “saturation blocks” are placed in the 

signal paths to prevent the MVA rating from being exceeded. From (5.2), it 

follows that the excursion of 1-2 in the linear feedback range is very limited.   

Figure 5.1 is the phase-plane picture for active power modulation when KP=50. 

Linear feedback is restricted to active power within the limits:                   

PC,lower  -PC  PC,upper .Figure 5.1 (a) consists of three regions: Figure 5.1(b) 

shows the upper region -PC   PC,upper and the lower region and   -PC   PC,lower . 

The equivalent frequency dependent damping gain in the regions are 

KP=PC,upper/1-2 and KP=PClower/1-2. The equivalent damping gain becomes 

lower for larger 1-2.  

Linear operation is restricted to the thin slice (KP is large) of Figure 5.1(c). When 

the trajectory crosses the region of (c), although KP is high, 1-2 is small and the 

amount of KP1-2 to rotate the gradients is small.  

 

5.3 BANG-BANG NONLINEAR DAMPING 

This section investigates on the damping which is produced by setting the gain 

KP or KQ to be very large so that the slice of Figure 5.1(c) becomes 

infinitesimally thin. Therefore, damping comes almost entirely from the nonlinear 

regions of Figure 5.1(b).  The injection of PC (or QC ) is to its maximum limit 

PC,LIMIT  (or QC,LIMIT ):   
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Figure 5.1 (a) composite phase-plane diagram; (b) regions of no damping; (c) region of 

heavy damping. 
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or 
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D = - D  (5.6) 

 In order to develop a theory of nonlinear damping, the equations in (5.7) and 

later in (5.12) have been used as approximations to (4.22). P , P and P are 

used to represent clusters of symbols in (4.22). In particular, the equation for 

QC=0 and PC=PC0 is of the form: 
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5.3.1 Limit Cycles 

Multiplying (5.7) by 1-2, and substituting 
1 2 1 2

d dtd w- -= , one has 
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On integration with respect to time from t0 to t, one has 
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Defining an energy function E(t) 

 2
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Equation (5.9) becomes on substituting(5.10): 
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0

( ) ( )E t E t=  (5.11)  

From (5.11), one sees that the limit cycles of Figure 4.4 represent conservation of 

energy (involving exchanges of kinetic and magnetic energy). The limit cycles 

never converge to the equilibrium point because there is no “mechanism” to 

reduce the initial energy storage, E(t0). 

 

5.3.2 Nonlinear Damping of Limit Cycles 

Linear damping is produced by introducing a power term Kp1-2 so that 

PC=PC0+Kp1-2. Equation (5.7), which is derived from (4.6), is basically a 

“torque” balance equation, except that power engineers prefer to use power terms 

by multiplying “torques” by 0. The linear damping power KP1-2, as a “torque” 

has to be divided by 1-2. Using P as a cluster coefficient, the damping power 

KP1-2 becomes   a “damping torque” so that (5.7) is modified as: 
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In implementing Nonlinear Damping, PC=PC0+PC.  PC has to be divided by 1-

2 also. Equation (5.12) becomes 
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 On integrating (5.13) with respect to time by retracing the steps of (5.8)to 

(5.11), one has 
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From (5.14), the initial energy E(t0) is linearly depleted to E(tf)=0 by a constant 

power drain, PPC, in the time span 

 0
0

( )
f

C

E t
t t

P Pr

- =
D

 (5.15) 

 

5.3.3 Validation of Nonlinear Damping Theory 

The results in Figure 5.2, which are obtained by numerical integration of (4.5) 

and (4.22), validate the theory. The real power setting is PC=-(PC0+PC). Only 

the full oscillation of 1-2 for PC= 20 MW is displayed. A straight line envelope 

passes over the peaks, showing agreement with (5.14). For clarity, only the 

envelopes for PC =40 MW, 60MW and 80MW are shown.  
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Figure 5.2 Oscillation of 1-2 under Nonlinear Damping by Active Power: PC= 20, 40, 

60, and 80MW 
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Figure 5.3 is similar to Figure 5.2 except that it presents the results of nonlinear 

reactive damping. In Figure 5.2 and Figure 5.3, the intersections of the straight 

line envelopes and the time axis yield the final times tf of the transients. Figure 

5.4 shows that 1/(tf-t0) is linearly proportional to PC and QC validating the 

formula derived in (5.15). The inverse time relation corresponds to the everyday 

notion that the larger the power drain, the faster the time for a fixed store of 

energy to be depleted. Damping by PC is more effective than by QC. 
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Figure 5.3 Oscillation of 1-2 under Nonlinear Damping by Reactive Power  QC= 60, 

80, 100, 120 MVAR 
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Figure 5.4 Inverse damping time-vs-PC  or QC 

 

5.3.4 Comparison with Linear Damping 

For exclusive linear damping, the starting point of analysis is (5.12). Multiplying 

(5.12) by 1-2 and on integration with respect to time, one has an expression 

similar to (5.14), 

 
0 0

( ) ( ) ( )
P f

E t E t P Kr d d= - -  (5.16) 

except that depletion of the energy is by the work done by the “torque”, PKP, in 

traversing an angular distance δ’
1-2, which is obtained from integrating: 

 2
1 2

1
d

dt
w

d -
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¢
 (5.17) 

The angular distance δ’
1-2 is a monotonically increasing function of time, like the 

length of a thread wound around a spool.  
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Figure 5.5 1-2-vs-d’1-2 the angular distance, under Linear Gain, KP= 20, 40, 60, and 80. 

 

In order to demonstrate the correctness of (5.16), the simulated 1-2 is plotted 

as a function δ’1-2 in Figure 5.5. The peaks of 1-2 (for KP=5) fit a straight line. 

Only the straight line envelopes for KP=10, 15 and 20 are displayed. Figure 5.5 is 

similar to Figure 5.2 except that the x-axis is not time but the angular distance 

δ’1-2. 

The exponential decay with time is evident in the crowding of the oscillations 

close to the terminal distance δ’1-2f. Depending on Nonlinear or Linear Damping, 

the same amount initial energy E(t0) is depleted linearly by one of the two 

mechanisms: 

 
1 1 2,00 2,

( ) ( )
C f fP

P P t t P Kr r d d- -- ¢ ¢D = -  (5.18) 
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5.4 FURTHER PROOF OF PRINCIPLE BY SIMULATION 

The simulation proof of principle in [65] made use of detail model of power 

electronic converters but very simplified models of generators, transformers and 

transmission lines were used. This section presents further proof by using 

Hypersim, a commercial grade simulation system of TransEnergie (Hydro-

Quebec). The objective is to represent Figure 4.3 with detail models of 

generators, transformers and transmission line (see Appendix B), which are 

generally accepted by industry. The amortisseur windings and power system 

stabilizers (PSS) have been disenabled so as to highlight the damping from the 

renewable technology. The renewable technology is modeled by the S-

modulator(Figure B.1).  

 

5.4.1 Test Conditions 

Appendix B lists the active power loads and the generator parameters of the 

tests. Each test consists of evaluating the system damping following the clearing 

of a 3-phase-to-ground fault at the location shown in Figure 4.3.  

 

5.4.2 Tests on Active Power Modulation 

The test results of Figure 5.6 and Figure 5.7 confirm the predictions of Figure 4.7 

and [65] that damping by active power is excellent at r=0.0 and poor in the 

“electrical middle” of the transmission line (which is r=0.667 for the post-fault 
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system of Figure 4.3).  

 

Figure 5.6 Location r=0.0. Damping from active power modulation (a) phase-plane; (b) 

frequency deviation; (c) renewable energy active power. 

 

The renewable technology output is PC0=120 MW and QC0=0.0. The gain is 

KP=100 and the bounds are 0.0 -PC  140 MW. For such a high gain, the 

region of Figure 5.6 (c) is very thin and the damping comes almost entirely from 
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the regions of Figure 5.6(b) for which Nonlinear Damping of Section 5.3 applies.  

The asymmetrical bounds make use of the full capacity of the renewable 

technology whose rating is assumed to be Srating=140 MVA. 

 

5.4.2.1  Renewable technology at End of Transmission Line near to G1 

The number of oscillations required for the transient to be damped out is shown 

in the phase-plane of Figure 5.6(a) (predicted by (4.5) and (4.22)) and it agrees 

with the number from simulations by HYPERSIM in Figure 5.6(b) and (c). 

Figure 5.6(c) shows asymmetrical nonlinear injection of active damping power.  

When the damping power injections are asymmetrical, the average grid frequency 

can drift from the 60 Hz due to load-generation unbalance as simulations in [81] 

have shown. The drift is negligible in large systems. In any case, there is the 

AGC to keep the grid frequency regulated. 

 

5.4.2.2  Renewable technology in “Middle” of Transmission Line 

The phase-plane diagram in Figure 5.7 shows that there is very little damping 

when the renewable technology is situated in the “electrical middle” of the 

transmission line. The simulations are terminated at t=15s and for this reason, 

the very lightly damped trajectory appears as a circular band in Figure 5.7. 

HYPERSIM simulations confirm the results. 
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Figure 5.7 Location r=0.667. Damping from active power modulation (a) phase-plane; 

(b) frequency deviation; (c) wind farm active power. 

 

5.4.2.3  Tests on Reactive Power Modulation in “Middle” of Transmission Line 

Figure 5.8 confirms that reactive power modulation can provide good damping in 

the “electrical middle” of a transmission line. 
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Figure 5.8 Location r=0.667 (electrical midpoint).Damping from reactive power 

modulation(a)phase plane;(b)frequency deviation;(c)renewable technology reactive 

power. 

 

The gain is KQ=100. Although PC0=120 MW, because of (5.4) and 

Srating=140MVA, the reactive power constraint is -72 MVA  QC  72 MVA. Good 

agreement in the predictions in Figure 5.8(a) with HYPERSIM simulation in (b) 

can be seen from the same number of oscillations required to damp the transient. 
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The peaks of the oscillations in (b) fit a straight line as in Figure 5.3. Saturation 

of reactive power is shown in (c). 

 

5.5 NON-ELECTRICAL ENGINEERING LIMITS 

5.5.1 Limits from Wind-Turbine Manufacturers 
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Figure 5.9 Active power modulation. r=0.0, KP =100: (a) frequency deviation;  

(b) wind farm power. 

 

Up to this point, this chapter has addressed electrical engineering constraints 
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(MVA limit) only. Wind turbine manufacturers and wind farm operators would 

have their reservations and would want the active power deviation to be more 

restricted. Assuming that active power deviation of around 15% is acceptable, the 

damping achievable is shown in Figure 5.9.  The gain is KP=100. 
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Figure 5.10 Active power modulation of Figure 5.9 added to damping of PSS.  

 

The reduced damping does not have to be disappointing. This is because the 

damping from the wind farms is required only to augment the system damping. 

When the power system stabilizers (PSS) of the generators are activated, the 

simulations in Figure 5.10 show that active power modulation improves the 

damping. 

In the middle of the line, the reactive power modulation of Figure 5.8 improves 
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the damping by the PSS as Figure 5.11 shows. Unlike active power which 

impacts on the mechanical system, the large reactive power constraint of            

-72 MVA  Q C 72 MVA is not likely to be objectionable to wind farm 

manufacturers or wind farm owners.  
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Figure 5.11 Reactive power modulation of Figure 5.8 added to damping of PSS. 

 

 

5.6 CONCLUSIONS 

Limit cycles in power systems are due to perpetual exchanges of kinetic energy 

and magnetic energy whose sum, the total energy, remains constant. Damping 

from linear feedback can be viewed as depletion of the total energy by work done 

by an opposing torque (proportional to the feedback gain KP) in the angular 
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distance δ’1-2.When KP is constant, the system damps linearly with respect to δ’1-2.  

As damping from bang-bang nonlinear feedback depletes the total energy by a 

drain of active (or reactive) power, it is time dependent. This is because the time 

integral of power is energy. When the injected active (or reactive) power is 

constant, the damping attenuates linearly with time. The research points to the 

desirability of using a strategy based on using a very high gain KP (or KQ) and 

operating to the limit of the MVA rating of the installation. The high KP (or KQ) 

restricts linear operation to a small region so as to derive high damping from 

bang-bang nonlinear regions. On convergence near to the equilibrium, the 

exponential damping of linear feedback is free of “chatter”. 
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CHAPTER 6 

 

SUMMARY AND CONCLUSION 
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6.1 INTRODUCTION 

The research of this thesis has been motivated by the concern that as more power 

grids continue to interconnect, for example the Trans-Canadian Grid, the 

electromechanical oscillations of the large interconnection will fall below the 

bandwidth of existing power system stabilizers (PSS). If the interconnection will 

be by HVDC, the system will retain the stability of the original small power grids 

thus avoiding the problem. However HVDC decoupling is expensive. This thesis 

examines the alternative of stabilization of the all-ac system by the Global PSS 

concept. The Global PSS makes use of a Central Controller which receives 

telecommunicated information of key generator stations bearing the GPS time-

stamped measurements of PMUs. Then from a stabilization algorithm in the 

Central Controller, and feedback control signals are telecommunicated back to 

the same key generator stations.  

The thesis has proposed the Multiple Modal Selectivity Method of chapter 2 as 

the stabilization algorithm and presented proof of principles by simulations and 

eigenvalue evaluations in chapter 3. Noting that control signals must be backed 

by sufficient active and reactive power, chapter 4 has continued the on-going 

research on using the complex power of sustainable energy technologies to 

provide damping. The on-going research work has been based on small signal 

linearization. The thesis confirms that its conclusions apply also in large signal 

perturbations. Chapter 5 pursues the question of complex power availability to 
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greater depth. Given that there is always a MVA rating, the conclusion of 

chapter 5 is: “bang-bang damping” is the preferred strategy of every sustainable 

energy installation.  

 

6.2 CONCLUSIONS OF THESIS 

From the engineering practice viewpoint, it can be concluded that: 

(i) the Multiple Modal Selectivity Method has the selectivity and robustness 

to be used in a Global PSS to damp electromechanical modes of a large 

all-ac power system; 

(ii) active power and reactive power from sustainable energy technologies can 

contribute to system damping. Active power is more effective when the 

sustainable energy technology is located at the ends of a transmission line. 

Reactive power is more effective when the location is in the middle of the 

line. These conclusions are no longer restricted to the assumptions of 

small signal linearization. 

(iii) “Bang-bang (nonlinear) damping” is more effective than linear feedback 

strategy. 

 

From the engineering science viewpoint: 

(i) the Multiple Modal Selectivity Method has analytical expressions which 

prove that in stabilizing the “targeted modes” the non-targeted modes 
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are never destabilized. In addition, the positive damping is not sensitive 

to parameter variations (such as: changes in loading, disconnection of a 

tie-line.) 

(ii) a new archetype model, consisting of a complex power load situated in a 

transmission line between two generators (Figure 4.3), has been  

presented with close form formulation of its dynamics (equation  4.22). 

The archetype model is used in the thesis to represent a sustainable 

energy technology installation. Because of the usefulness of a close form 

formulation, it will have many other applications in future research. 

(iii) the phase-plane enables damping in the linear and nonlinear regime to be 

understood. Although restricted to 2-dimensions, the concepts carry to 

high dimensions. 

(iv) Energy functions (similar to Lyapunov functions) have been used to 

explain that nonlinear damping attenuates linearly with respect with 

time, while linear damping attenuates linearly with respect to distance 

(exponentially with respect to time).  

 

Having presented the conclusions in terse summaries, the paragraphs below 

outline some of the important features: 
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6.2.1 Chapter 2 

Upper most in mind in conceiving the innovative Multiple Modal Selectivity 

Method is that all the eigenvectors of very large systems are not readily available 

but a number of the lowest frequency (targeted) modes can be obtained by 

Lanczos-type method. Even if an algorithm is found which can damp the targeted 

modes, there is the possibility of destabilizing others. Therefore, the algorithm 

must have high selectivity. The Multiple Modal Selectivity Method takes 

advantage of the linear independence of eigenvectors uk and its relationship with 

the reciprocal base vector, vk, in vj
T uk=jk where jk is the Kronecker delta to 

establish three levels of selectivity: 

(i) by choice of the generator stations;  

(ii) by the spatial filter which screens the information received from the 

generator stations; 

(iii) by the relative weights of the commands sent back to the generator 

stations in feedback response  

In addition to the three screenings, the gain, in the Central Control given as 

(2.26) 
( )

ˆ ˆˆ ˆ( )( )
T T

i k k jij k k
v u v ul sD = - , ensures that the eigenvalues of non-targeted 

modes are shifted to the left of the s-plane, so that there is no possibility of 

destabilization. This adds a “fail safe” feature to the design which assumes that 

the non-targeted fast modes will be damped by conventional PSS.  
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6.2.2 Chapter 3   

The claims of chapter 2 have been validated by simulations and eigenvalue 

analysis. The Multiple Modal Selectivity Method passes the demanding test of 

maintaining stability after one of the tie-lines of the 12-generator test system is 

opened. 

 

6.2.3 Chapter 4   

The archetype model of Figure 4.3 and its close form formulation of its dynamics 

(equation(4.22)) are applied to represent a sustainable energy technology 

installation situated in a transmission line between two generators.  This 

research shows that the conclusions of the previous study [65] is not restricted by 

the assumptions of small signal linearization but are true for large signals as 

well. The study shows that the difference in damping characteristics of active 

and reactive power modulation is clearly written in equation(4.22).   

 

6.2.4 Chapter 5  

The phase-plane diagram identifies the extent of damping in the linear region 

and in the saturated region. Noting that damping in the linear region will 

inherently be small, the conclusion is reached that “bang-bang damping” should 

be the preferred strategy. The research further shows that in linear damping, the 

energy is dissipated as work (therefore, attenuated with distance). On the other 
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hand in the nonlinear damping strategy, the energy is depleted as power 

(therefore, attenuated linearly with time).  

 

6.3 FUTURE WORK   

Because the Multiple Modal Selectivity Method is promising, it requires further 

exhaustive testing, especially by independent researchers. So far, proof of 

principle is based on 12 and 16-generator systems, as four generators are chosen 

to damp three selected modes. There is a long way to go to stabilize practical 

power grids which have thousand or tens of thousands of generators. How many 

generators should be chosen? What is the MVA requirement to provide adequate 

damping? 

The archetype of Figure 4.3 and equation (4.22) represent a key to many 

theoretical questions. Numerical methods are powerful in yielding answers. 

Analytical continuity provides the glue to bond diverse facts. 
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APPENDIX 

APPENDIX A: INVESTIGATION ON GENERATOR MODELING 

The purpose of this section is to identify the simplest generator model that can 

produce effective control strategies for damping inter-area oscillations.  

The suitability of different generator models are judged based on the resulting 

inter-area mode eigenvectors.  Four generator models are tested, starting from 

full model (with all sub-systems) and then removing sub-systems and the 

generator details, one at a time. By comparing the mode shapes, the simplest 

model that is still suitable for damping the inter-area oscillations is selected. The 

tests are separately done for round rotors and salient pole generators.  The test 

system is a 2 area, 4 machines system of [3, 73], with the data taken from 

MatNetEig toolbox of Matlab  [54]. 

Model Descriptions 

 Model 1:  Includes generator sub-transient reactances, Exciter system, 

and PSS. 

 Model 2:  Model 1, less the PSS 

 Model 3:  Model 2, less the Exciter system 

 Model 4:  Model 3, less the generator sub-transient reactance (classical 

model). 
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In the table below, variables defining generator internal dynamic for different 

models are listed. 

 

Table A.1 

State Name Model 1 Model 2 Model 3 Model 4 

Angle X X X X 

Speed X X X X 

Ψf X X X - 

Ψd X X X - 

Ψkq1 X X X - 

Ψkq2 X X X - 

PSSst1 X - - - 

PSSst2 X - - - 

PSSst3 X - - - 

Transducer X X - - 

AVR2 X X - - 
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Mode Shape for Different Generator Models – Round Rotor (RR) Case:  
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Figure A.1 Mode shapes corresponding to f1=0.54 Hz (RR case) 
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Figure A.2 Mode shapes corresponding to f2=1.14Hz (RR case) 
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Figure A.3 Mode shapes corresponding to f3=1.18 Hz (RR case) 
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Mode Shape for Different Generator Models – Salient Pole(SP) Case:  
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Figure A.4 Mode shapes corresponding to f1=0.54 Hz (SP case) 
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Figure A.5 Mode shapes corresponding to f2=1.14Hz (SP case) 
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Figure A.6 Mode shapes corresponding to f3=1.18 Hz (SP case) 
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Comparing Figures Figure A.1 to Figure A.6 one can conclude: 

 Regardless of the model used, components of the eigenvectors associated 

with rotor speeds are the dominant ones;  

 For different models, relative magnitudes of the speed components change 

little; 

 As expected, the generator rotor type (round or salient pole) has little 

impact on the results, as their associated damper windings respond only to 

fast transients. 

The above results largely remain unchanged when the study is repeated with the 

participation factors. 
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APPENDIX B: INFORMATION REGARDING VALIDATION TEST 

 

Table B.1 Generator parameters 

Base MVA 504 Base Voltage (kV) 20 

H (s) 3.1 Ra (p.u.) 0.002 

Xd (p.u.) 1.05 Xq (p.u.) 0.686 

Xd' (p.u.) 0.25 Xq' (p.u.) 0.228 

Xd" (p.u.) 0.15 Xq" (p.u.) 0.12 

Td' (s) 7.6 Tq' (s) 0.85 

Td" (s) 0.03 Tq" (s) 0.03 

 

 Transformers: Primary voltage: 20kV, Secondary Voltage: 115kV, 

connection:  /Y.  

 Transmission lines: R=0.02 p.u., X=0.4 p.u., MVbase=100 MVA and 

Vbase=115 kV 

 

Table B.2 Generation and Load powers 

Generation Load 

Pm1 (MW) 400 Pd1 (MW) 300 

Pm2 (MW) 80 Pd2 (MW) 300 

PC0 (MW) 120 - - 
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Figure B.1 Block diagram of S-Modulator 

 

The S-Modulator [86], which models the wind farm, is integrated in HYPERSIM. 

The frequency deviation 1-2 , is measured by the Phase Lock Loop (PLL) of 

HYPERSIM. The feedback signal 1-2 , is applied to form the complex power 

references: Pref=PC0+KP1-2, and Qref=QC0+KQ1-2.  Saturation limits can be set. 
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