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ABSTRACT 

The brain contains multiple cognitive processing subsystems. These subsystems are 

also known as brain regions which make up the complex network system--brain. Graph 

spectral theory, as an emerging technology to effectively mine the potential patterns of 

graph signals, has gradually become an important means of complex network analysis. A 

series of brain network analysis and information extraction methods have been developed 

based on graph spectral theory. These methods have been applied in brain signal 

processing (denoising), brain state assessment (brain disease diagnosis and treatment), 

etc. To further explore the capacity of graph spectral theory in the analysis and 

applications in the domain of brain signals, we focus on EEG denoising and the 

assessment of brain states. The specific research content of this thesis is as follows: 

1. Research on EEG denoising techniques based on graph spectral theory. In this 

section, considering the high temporal and low spatial resolution of EEG signals, we 

construct a Joint-time Fourier Transform (JFT) filter based on the temporal and spatial 

smoothing constraints to address EEG denoising. To validate the robustness and 

effectiveness of the proposed JFT graph filtering method, we carry out simulation 

experiments and classification experiments with real EEG data. Wavelet and the JFT 

algorithm are compared. In the simulation experiments, we set up three types of noise for 

simulations of the noise associated with EEG acquisition. The results of the simulation 

experiments show that JFT is capable of suppressing different noise types better than the 

traditional algorithms and better than separate spatial smoothing filters and temporal 

smoothing filters. In the application experiments of real EEG signals, we use data from 

the P300 to validate the proposed JFT filtering method. The experimental results show 

that the accuracy of classification to schizophrenia with auditory hallucinations and 

healthy controls using the signal following denoising by the JFT algorithm is improved 

by 15%-30% compared with the classification before preprocessing, which demonstrates 

that JFT can effectively improve the decoding accuracy of EEG. Therefore, simulation 

experiments and real EEG application experiments show that the model can effectively 

suppress noise, achieve efficient EEG signal processing and robust component extraction, 

and provide effective technical support for future research on the development of EEG 

denoising technology. 
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2. Analysis of schizophrenia based on graph spectral theory. Based on the above 

studies, we further applied the connectome-harmonic decomposition (CHD) method 

developed from graph spectral theory to characterize the coupling of functional signals 

and structural networks in schizophrenia, to explore the changes in the dynamics of brain 

networks in schizophrenia and their links with neurocognitive changes. Specifically, we 

first found that scores on all neurocognitive tasks were lower in Schizophrenia (SCZ) 

patients compared to healthy controls. Then, to explore the electrophysiological 

abnormalities of SCZ patients and their association with neurocognitive changes, we first 

analyzed the scalp ERP and found that the P300 amplitude of SCZ patients showed a 

significant decrease compared to healthy controls. The results of the study showed that 

the total Graph Power Spectral Density (GPSD) of all harmonics in the SCZ patients was 

significantly reduced compared to the healthy controls and highly correlated with the 

neurocognitive scores. Then, considering that the low-frequency and high-frequency 

distributions of the graph harmonics correspond to the brain's two information processing 

mechanisms of functional integration and separation, we further classified the harmonic 

components into 10 sets from low to high. The results revealed that the energy of the 10 

sets of harmonics was significantly lower in the SCZ patients compared to the healthy 

controls. In addition, to further investigate the relationship between graph harmonics and 

EEG rhythms, we designed graph filters based on the harmonic energies and filtered the 

signals into graph low-frequency aligned signals (captured by the first 4 harmonics) and 

graph high-frequency liberal signals (which are captured by the last 196 harmonics). 

Aligned signals are constrained by the structural graph while liberal signals are less 

constrained by the graph than aligned signals and are more liberal to change relative to 

the graph structure. The results of this study showed that the graph low-frequency aligned 

signals could effectively capture most of the different features of EEG rhythm between 

the two groups. In particular, the δ band in the graph low-frequency aligned signal 

effectively captured the abnormal activation of SCZ patients in prefrontal, temporal, and 

occipital regions. Correlation analysis demonstrated that the power spectral density of the 

δ band showed a positive correlation with cognitive ability and effectively predicted the 

neurocognitive task scores of the two groups. The above series of findings suggest that 

there are abnormal brain dynamics changes in SCZ during P300 which is highly 

correlated with its cognitive alterations. These results support the understanding of the 

neural mechanisms underlying changes in SCZ and provide new directions for its clinical 
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diagnosis, identification, and treatment. The demonstration that low-frequency graph 

harmonics capture most of the EEG rhythm indicates the reliability of low-frequency 

graph filters for EEG denoising and the possibility of applying graph harmonics for 

dimensionality reduction. 

Keywords: Graph Spectral Theory, EEG Denoising, Schizophrenia, Connectome-

Harmonic Decomposition, Graph Signal Processing 
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RÉSUMÉ 

Le cerveau contient plusieurs sous-systèmes de traitement cognitif. Ces sous-

systèmes sont également connus sous le nom de régions cérébrales qui composent le 

système de réseau complexe - le cerveau. La théorie spectrale des graphes, en tant que 

technologie émergente pour exploiter efficacement les motifs potentiels des signaux de 

graphes, est progressivement devenue un moyen important d'analyse des réseaux 

complexes. Une série de méthodes d'analyse du réseau cérébral et d'extraction 

d'informations ont été développées sur la base de la théorie spectrale des graphes. Ces 

méthodes ont été appliquées dans le traitement des signaux cérébraux (débruitage), 

l'évaluation de l'état cérébral (diagnostic et traitement des maladies cérébrales), etc. Pour 

explorer davantage la capacité de la théorie spectrale des graphes dans l'analyse et les 

applications dans le domaine des signaux cérébraux, nous nous concentrons sur le 

débruitage de l'EEG et l'évaluation des états cérébraux. Le contenu de recherche 

spécifique de cette thèse est le suivant : 

1. Recherche sur les techniques de débruitage de l'EEG basées sur la théorie spectrale 

des graphes. Dans cette section, compte tenu de la haute résolution temporelle et de la 

faible résolution spatiale des signaux EEG, nous construisons un filtre de transformée de 

Fourier temporelle commune (JFT) basé sur les contraintes de lissage temporel et spatial 

pour résoudre le débruitage de l'EEG. Pour valider la robustesse et l'efficacité de la 

méthode de filtrage de graphe JFT proposée, nous menons des expériences de simulation 

et des expériences de classification avec des données EEG réelles. L'ondelette et 

l'algorithme JFT sont comparés. Dans les expériences de simulation, nous configurons 

trois types de bruit pour simuler le bruit associé à l'acquisition EEG. Les résultats des 

expériences de simulation montrent que JFT est capable de supprimer différents types de 

bruit mieux que les algorithmes traditionnels et mieux que les filtres de lissage spatial et 

temporel séparés. Dans les expériences d'application des signaux EEG réels, nous 

utilisons des données du P300 pour valider la méthode de filtrage JFT proposée. Les 

résultats expérimentaux montrent que la précision de la classification de la schizophrénie 

avec hallucinations auditives et de sujets témoins en bonne santé en utilisant le signal 

après débruitage par l'algorithme JFT est améliorée de 15 % à 30 % par rapport à la 

classification avant prétraitement, ce qui démontre que JFT peut améliorer efficacement 

la précision de décodage de l'EEG. Par conséquent, les expériences de simulation et les 
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expériences d'application EEG réelles montrent que le modèle peut supprimer 

efficacement le bruit, réaliser un traitement efficace des signaux EEG et une extraction 

robuste des composantes, et fournir un support technique efficace pour les futures 

recherches sur le développement de la technologie de débruitage de l'EEG. 

2.Analyse de la schizophrénie basée sur la théorie spectrale des graphes. Sur la base 

des études ci-dessus, nous avons appliqué la méthode de décomposition harmonique du 

connectome (CHD) développée à partir de la théorie spectrale des graphes pour 

caractériser le couplage des signaux fonctionnels et des réseaux structuraux dans la 

schizophrénie, pour explorer les changements dans la dynamique des réseaux cérébraux 

dans la schizophrénie et leurs liens avec les changements neurocognitifs. Plus 

précisément, nous avons d'abord constaté que les scores sur toutes les tâches 

neurocognitives étaient plus bas chez les schizophrènes (SCZ) par rapport aux sujets 

témoins en bonne santé. Ensuite, pour explorer les anomalies électrophysiologiques de la 

SCZ et leur association avec les changements neurocognitifs, nous avons d'abord analysé 

l'ERP du cuir chevelu et avons constaté que l'amplitude du P300 de la SCZ présentait une 

diminution significative par rapport aux sujets témoins en bonne santé. Les résultats de 

l'étude ont montré que la densité spectrale de puissance graphique totale (GPSD) de toutes 

les harmoniques dans la SCZ était significativement réduite par rapport aux sujets témoins 

en bonne santé et hautement corrélée avec les scores neurocognitifs. Ensuite, considérant 

que les distributions de basses et hautes fréquences des harmoniques du graphe 

correspondent aux deux mécanismes de traitement de l'information cérébrale d'intégration 

fonctionnelle et de séparation, nous avons ensuite classé les composantes harmoniques 

en 10 ensembles de bas en haut. Les résultats ont révélé que l'énergie des 10 ensembles 

d'harmoniques était significativement plus faible dans la SCZ par rapport aux sujets 

témoins en bonne santé. De plus, pour enquêter davantage sur la relation entre les 

harmoniques du graphe et les rythmes EEG, nous avons conçu des filtres de graphe basés 

sur les énergies harmoniques et filtré les signaux en signaux alignés de basse fréquence 

du graphe (capturés par les 4 premières harmoniques) et signaux libéraux de haute 

fréquence du graphe (capturés par les 196 dernières harmoniques). Les signaux alignés 

sont contraints par le graphe structurel tandis que les signaux libéraux sont moins 

contraints par le graphe que les signaux alignés et sont plus libéraux pour changer par 

rapport à la structure du graphe. Les résultats de cette étude ont montré que les signaux 

alignés de basse fréquence du graphe pouvaient capturer efficacement la plupart des 
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caractéristiques différentes du rythme EEG entre les deux groupes. En particulier, la 

bande δ dans le signal aligné de basse fréquence du graphe capturait efficacement 

l'activation anormale de la SCZ dans les régions préfrontales, temporales et occipitales. 

L'analyse de corrélation a démontré que la densité spectrale de puissance de la bande δ 

présentait une corrélation positive avec la capacité cognitive et prédisait efficacement les 

scores des tâches neurocognitives des deux groupes. L'ensemble de ces résultats suggère 

qu'il existe des changements anormaux dans la dynamique cérébrale de la SCZ pendant 

le P300 qui sont fortement corrélés avec ses altérations cognitives. Ces résultats 

soutiennent la compréhension des mécanismes neuronaux sous-jacents aux changements 

de la SCZ et fournissent de nouvelles orientations pour son diagnostic clinique, son 

identification et son traitement. La démonstration que les harmoniques graphiques de 

basse fréquence capturent la plupart du rythme EEG indique la fiabilité des filtres de 

graphe de basse fréquence pour le débruitage de l'EEG et la possibilité d'appliquer les 

harmoniques du graphe pour la réduction de dimension. 

Mots-clés: Théorie spectrale des graphes, Débruitage de l'EEG, Schizophrénie, 

Décomposition harmonique du connectome, Traitement des signaux graphiques 
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Chapter 1 Introduction 

1.1 Background and Significance of this Research 

Electroencephalogram (EEG) is a reliable, non-invasive acquisition of brain activity 

that effectively captures the electrophysiological activity of the brain. Compared to 

functional and structural magnetic resonance imaging, EEG signals are inexpensive, 

convenient, and easy to obtain. In addition, a large amount of psychological and disease 

information is contained in EEG signals. Therefore, in recent years, there have been more 

and more cognitive and disease studies based on EEG. For example, EEG is widely used 

in human sleep state detection, motor imagery, decision-making, and other studies(Gaur 

et al., 2021; Markovic, Kaess, & Tarokh, 2020; Si et al., 2020). 

However, EEG is highly susceptible to the interference of noise signals during the 

acquisition process. This will greatly affect the decoding efficiency and accuracy of EEG 

and the establishment of computational models for disease diagnosis. Traditional 

algorithms for EEG denoising mainly include blind source estimation and wavelet 

transform(Carmona & Hudgins, 1994; De Clercq, Vergult, Vanrumste, Van Paesschen, 

& Van Huffel, 2006; Makeig, Bell, Jung, & Sejnowski, 1995). The blind source analysis 

method mainly treats the EEG as a linear weighted sum of various independent sources. 

Because of the different distribution patterns of the noise and the signal, the noise source 

is eliminated to achieve the purpose of noise removal. On the other hand, wavelet 

transform mainly filters out noise signals by threshold selection methods, because the 

amplitudes for wavelet coefficients of noise are small and more dispersed compared with 

those of signals after wavelet transform. However, these existing methods ignore the fact 

that as a highly connected system, the brain has interdependence between its different 

channels, which may affect the performance of these denoising algorithms. 

In addition, cognitive processes are always accompanied by synchronized activation 

between local or global neurons, suggesting that cognitive processes involve synergistic 

functioning and information transfer between different regions of the brain. Therefore, 

separate time-frequency domain approaches are not sufficient to decode how 

synchronized activity in brain regions is involved in cognitive activities. For this reason, 

many studies have considered EEG signals as graph signals and analyzed the features of 

EEG signals in terms of graph features. To explore the information interaction patterns 
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between different brain regions in different cognitive tasks, complex network methods 

have been used to extract the features of EEG signals. For example, linear methods such 

as Coherence (COH), Phase Locking Value (PLV), and dynamic nonlinear models such 

as Granger Causality Analysis (GCA) have been used to characterize the functional 

connectivity of the brain in EEG studies (Basharpoor, Heidari, & Molavi, 2021; Dongwei, 

Fang, Zhen, Haifang, & Junjie, 2013; Z.-M. Wang, Zhou, He, & Guo, 2020). These 

algorithms are widely used in disease and cognitive studies to provide corresponding 

quantitative criteria for the interaction patterns between different brain regions and 

provide explanations of the neural mechanisms for brain diseases and specific cognitive 

states. However, these studies based on graph theory mainly focus on structural and 

functional connections, ignoring the coupling characteristics between functional signals 

and structural connections. 

Therefore, this thesis develops denoising algorithms for EEG signals as well as 

feature extraction techniques based on graph spectral theory. Then, the above algorithms 

were applied to the denoising of P300 signals and the coupled feature between functional 

signals and structural networks in schizophrenia. These algorithms will contribute to the 

future development of EEG denoising technology and characteristic exploitation of 

disease and cognition, and promote the practical application of brain science in related 

fields such as neural engineering and clinical cognitive diagnosis. 

1.2 EEG and Its Applications 

Electrophysiological activities of the brain present different rhythmic distributions 

in different cognitive states. EEG rhythms provide valuable information for us to explore 

the cognitive functions of the brain and diagnosis methods of brain diseases. These 

rhythms are mainly classified according to their frequency and amplitude, and the 

following is a basic introduction of the 5 rhythms in EEG: 

Delta waves (1-4Hz). Compared to other waves, delta waves are large in amplitude 

and fluctuate slowly. This rhythm is commonly associated with deep sleep, immature 

brains in infants, and some brain disorders. For example, abnormal δ waves can be 

observed in the brains of patients suffering from sleep apnoea, or brain injury, or in the 

brains of epileptic patients during their slow-wave sleep (Amzica & Steriade, 1998; 

Ferrillo, Beelke, & Nobili, 2000; Tarokh, Carskadon, & Achermann, 2010). 
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Theta waves (4-8 Hz). Theta waves fluctuate more rapidly than δ waves and are 

usually seen in drowsiness, meditation, and Rapid Eye Movement (REM) sleep. In 

addition to this, theta waves play an important role in memory formation and learning 

processes (Buzsáki, 2002). 

Alpha waves (8-13 Hz). Alpha wave is prominent when the brain is awake and 

relaxed with eyes closed. It is often thought to be associated with an idle state of the brain, 

especially a relaxed but alert mental state. 

Beta waves (13-30 Hz). Beta waves occur when the brain is alert, thinking actively, 

and concentrating. 

Gamma waves (30Hz-100Hz). Gamma waves are the fastest fluctuating waves 

among these five rhythms and are mainly involved in cognitive processes such as 

attention, memory, and perception. 

In addition, EEG can also be classified into spontaneous EEG and evoked EEG 

according to the presence or absence of external stimuli or tasks. Spontaneous EEG refers 

to the electrophysiological activity generated spontaneously by the brain in the absence 

of any external stimulus or task and it responds to the basic state and function of the brain. 

Spontaneous EEG is also closely related to an individual's cognitive function and 

attention level. Evoked EEG, on the other hand, refers to the electrophysiological activity 

of the brain induced by specific stimuli or tasks. Evoked EEG is important for the study 

of specific perceptual and cognitive processes, circuit abnormalities in neurological 

disorders, and modern brain-computer interfaces. For example, some patients with 

schizophrenia experience symptoms such as hallucinations. Wang et al. found that 

schizophrenic patients without auditory hallucinations were found to have relatively 

stronger connectivity in the left frontal and posterior parietal lobes through the evoked 

P300 signal by the auditory oddball stimuli (J. Wang et al., 2023). In addition to this, 

many applications of brain-computer interfaces are carried out precisely with the help of 

evoked EEG. For example, in motor rehabilitation, patients are given a specific motor 

task and their brain signals are captured and analyzed in real-time (Hobbs & Artemiadis, 

2020; Morone et al., 2017). After the task is presented, the patients control their brain 

activities through intention. Then their brain signals are recorded, decoded, translated into 

corresponding commands, and sent to devices such as prosthetic limbs or exoskeletons. 

Finally, the patient can observe the real-time feedback and make self-adjustments to 

facilitate the repair of their damaged limb. In addition, the P300-based spelling system 
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may in the future provide a robust spelling strategy for every motor-disabled patient, so 

that they can enjoy chatting on the Internet through their mind as well. 

In conclusion, EEG has high temporal resolution and can provide rich brain 

information for real-time decoding of brain states during cognitive processes. Besides, 

the rich rhythmic information of EEG also provides a basis for the exploration and 

diagnosis of cognitive functions and diseases. These advantages make EEG widely used 

in brain-computer interface and exploration of cognitive functions and diseases. On the 

one hand, the development of EEG network dynamics techniques helps us to further 

understand and explore cognitive abnormalities in patients with brain diseases, and thus 

develop effective treatments and interventions. On the other hand, noise can greatly 

interfere with the performance of computational models for disease diagnosis and brain-

computer interfaces in EEG, and thus the development of robust noise suppression 

strategies remains very promising and important. 

1.3 Graph Spectral Theory and Its Application to Brain Science 

Graph spectral theory is commonly used in computer science and information 

computing, mainly for the study of the properties and structure of graphs. In this theory, 

a graph is represented as a collection of nodes and edges connecting these nodes. The 

main idea of graph spectral theory is to consider the graph as a matrix, then construct the 

Laplace matrix of the graph, and study the structure and characteristics of the graph by 

some mathematical operations such as eigenvalue decomposition of the Laplace matrix. 

In brain science, graph spectral theory is widely used in brain network analysis, 

classification, and denoising of functional signals. However, compared to functional 

network approaches, harmonic analysis techniques and denoising algorithms developed 

by graph spectral theory have been used less in EEG analysis. To address this, this thesis 

develops corresponding algorithms, aiming to provide new insight for the future 

development of EEG denoising techniques and further understanding of cognitive 

impairment mechanisms for psychiatric disorders from the perspective of network 

dynamics. In the next section, this thesis will focus on the application of graph spectral 

theory in brain science. 
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1.3.1 Brain Network 

Brain activity involves interactions and coordination among multiple brain regions, 

and the information interactions among these brain regions can be portrayed by the 

complex network. When applying the complex network to brain science, we usually 

consider individual brain regions as individual nodes in a graph, and the connected edges 

quantify the distances or the closeness between the nodes. Currently, graph theory is 

widely used in brain network studies of cognitive, psychiatric, or neurological disorders 

of the brain.  

To construct structural networks with Diffusion Tensor Image (DTI), firstly, the 

ROIs as nodes on the graph are divided according to the template. The direction model is 

then used to estimate the fiber and diffusion direction within the discrete voxels. Then, 

according to the bundle imaging algorithm, the approximate fiber bundles of the 

streamlines are obtained. Finally, the number of streamlines can be obtained to construct 

the adjacency matrix. Meanwhile, the construction method of functional connectivity is 

much easier compared to structural connectivity. The ROI is firstly determined based on 

the template, and the functional signals of individual ROIs are usually obtained by 

averaging the signal in the voxel of each ROI. Then, the coupling strength between two 

nodes is determined by algorithms like COH, PLV, and GCA(Basharpoor et al., 2021; C. 

Li et al., 2023; P. Li et al., 2023), etc.  

Brain networks provide evidence for the exploration of brain function and disease. 

An increasing number of studies have shown that many brain diseases can be regarded as 

disorders of brain networks. For example, several studies have reported abnormalities in 

the resting functional network of the brain in Parkinson's patients at the striatum(Hacker, 

Perlmutter, Criswell, Ances, & Snyder, 2012; Helmich et al., 2010). Gratton et al. found 

that the differences in resting-state functional connectivity in Parkinson's patients 

compared with healthy subjects were mainly in the sensorimotor, thalamic, and cerebellar 

networks(Gratton et al., 2019). In addition, Sonuga-Barke and Castellanos et al. proposed 

the "default mode interference" hypothesis, in which they suggested that abnormal 

behaviors in Attention Deficit Hyperactivity Disorder(ADHD) may be associated with 

synchronous dysfunction of the default network(Castellanos et al., 2008; Sonuga-Barke 

& Castellanos, 2007). With a working memory-related paradigm, researchers have found 

a significant increase in reaction time during working memory tasks in ADHD. They 

suggest that distraction in ADHD may be related to an inability to adequately inhibit 
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activity in the default network in response to increased task difficulty(Fassbender et al., 

2009). Furthermore, cognitive deficits in Autism Spectral Disorder (ASD) may be due to 

a widespread lack of connectivity to brain regions relevant for information integration. In 

support of this hypothesis, several studies have reported deficits in connectivity of task-

related brain regions for ASD(Just, Cherkassky, Keller, Kana, & Minshew, 2007; Kana, 

Keller, Cherkassky, Minshew, & Just, 2006; Rudie et al., 2012). In addition to this, 

disruptions in anatomical and functional connectivity in the frontal and temporal lobes in 

schizophrenia have been commonly reported (Price et al., 2008) (Zalesky, Fornito, & 

Bullmore, 2010). In addition, brain networks have been used in emotional brain-computer 

interfaces(Dongwei et al., 2013) and ASD diagnosis (Light et al., 2006). 

1.3.2 Connectome-Harmonic Decomposition Analysis 

The above studies demonstrate that brain networks provide richer information about 

brain interactions. However, it can’t reveal how functional signals are generated from the 

rich structural networks. Thus, it is necessary to explore new network dynamics 

techniques for further exploration and explanation of this part of the study. To solve this 

problem, the Connectome Harmonic Decomposition (CHD) method based on graph 

spectral theory has emerged. 

Currently, CHD is commonly used for multimodal analysis of MRI and EEG. 

Usually, researchers use structural images to construct the adjacency matrix and then the 

Laplace matrix can be obtained. The eigenvectors of the Laplace matrix are then obtained 

by singular value decomposition, which is also known as connectivity harmonics. 

Connectivity harmonics are closely related to brain structure and cognitive tasks. 

Functional harmonics of dense functional connectivity reveal cortical structures and a 

small number of harmonics are sufficient to decode patterns of task activity(Glomb et al., 

2021). CHD re-expresses functional signals primarily with their dependence on 

underlying structural connectivity(Luppi et al., 2023). Function signal can be represented 

as a weighted sum of a series of connectome harmonics that represent different spatial 

scales of brain activities. CHD emphasizes viewing brain activity from different spatial 

scale perspectives, quantifying the extent to which functional signals are constrained by 

or deviate from the global network of underlying structures. Based on the above theory, 

many studies have begun to explore the coupling features of functional signals and 

connectivity harmonics from the perspective of connectome harmonics. 
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With Functional Magnetic Resonance Imaging (FMRI) as a functional signal, Sihag 

et al. found that CHD features captured Neurofilament (NFL) levels in healthy controls 

and brain-injured patients. The changes in CHD features of brain-injured patients were 

independent of aging. Thus, this study demonstrates that NFL levels can be a reliable 

marker of brain damage to neural axons(Sihag et al., 2022). Luppi et al. explored how 

consciousness arises from a network of fixed anatomical connections with CHD(Luppi et 

al., 2023). They found that in both anesthetized healthy subjects and brain-injured patients, 

a trend towards increased energy of low-frequency connectivity harmonic and decreased 

energy of high-frequency connectome harmonics was observed during their loss of 

consciousness, while the opposite trend was found in induced psychedelic states. In 

another study, Atasoy investigated the cross-frequency correlations between brain 

harmonics and found that Lysergic Acid Diethylamide (LSD) significantly increased the 

cross-frequency correlations between different graph harmonics(Atasoy et al., 2017). In 

addition, Jiao et al. revealed a constrained relationship between blood oxygenation and 

glucose metabolism in the white matter of the human brain based on CHD(J. Li et al., 

2023). 

On the other hand, researchers have decomposed EEG onto connectome harmonics, 

allowing us to track changes in brain network dynamics at the millisecond level(Glomb 

et al., 2020). Glomb et al. found that 90% of the energy of the brain signal was captured 

by the smoothest low-frequency connectome harmonics based on CHD. Besides, a small 

number of connectome harmonics were sufficient to reproduce brain activity during a 

face detection task and they revealed patterns of co-activation in somatosensory and 

frontal cortex in the task(Glomb et al., 2020). Rué-Queralt then compared the effects of 

Principal Component Analysis (PCA), Independent Component Analysis (ICA), and 

CHD on the dimensionality reduction of functional signals. They found that CHD can 

more compactly represent functional signals and distributed functional activities in the 

cerebral cortex tended to appear more in the alpha, theta, and other frequency bands, 

whereas local brain activities tended to appear in the gamma frequency band(Rué-Queralt 

et al., 2021; Rué-Queralt et al., 2023). 

The above study explains the characteristics of functional signals coupled with 

structural networks and provides a basis for the study of spatio-temporal dynamics of the 

brain based on CHD. Besides, CHD has also been used in feature extraction and 

classification. Saboksayr applied Graph Signal Processing(GSP) learning to the 
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construction of functional brain connectivity of EEG and analyzed the graph harmonics 

of different emotional states. They found that the frontal energy of low-valence in the 

low-frequency graph harmonics showed an asymmetric distribution, which is in line with 

the present study and two types of emotional states can be classified with an accuracy rate 

of 92.73% by the low-frequency graph harmonics(Saboksayr, Mateos, & Cetin, 2021). 

Georgiadis et al. investigated the graph harmonic features of cross-frequency coupling 

networks and used them in the classification of motor imagery EEG. They achieved better 

results than conventional methods like Common Spatial Pattern (CSP) (K Georgiadis, 

Laskaris, Nikolopoulos, & Kompatsiaris, 2019). Petrovic proposed the graph Slepian 

operator to solve the problem of signal energy concentration in some nodes and some 

graph domains (Petrovic, Bolton, Preti, Liégeois, & Van De Ville, 2019). Based on this, 

Georgiadis improved the original recognition algorithm to achieve higher classification 

accuracy(Kostas Georgiadis, Adamos, Nikolopoulos, Laskaris, & Kompatsiaris, 2021). 

Overall, the above studies illustrate that CHD provides a robust strategy for feature 

extraction that captures the corresponding cognition and disease features, potentially 

providing a new way of constructing diagnostic models for diseases. However, few 

studies have been carried out on this aspect in the study of schizophrenia. Based on this, 

this thesis proposes a feature extraction method for schizophrenia based on the DTI 

consensus structural network to investigate the coupling characteristics of structural 

networks and functional signals in schizophrenia. This study may provide some new 

insight into the neural mechanisms of cognitive disorders in schizophrenia. 

1.3.3 Denoising  

For the denoising of functional signals, Graph Signal Processing (GSP) developed 

from graph spectral theory provides techniques for graph signal filtering. The low 

frequency of the graph captures the global connectivity patterns and most of the energy 

of the signals. Thus, a low-pass graph filter achieves denoising by preserving the low-

dimensional harmonics and thus preserving the relative invariance of the global 

connectivity between nodes. This domain-smoothing filter based on the underlying graph 

structure is not considered by previously proposed conventional denoising algorithms. 

Thus, in the field of brain science, more researchers have started to apply graph filters 

based on the underlying graph structure to denoise functional signals. 



Chapter 1 Introduction 

9 

In FMRI studies, researchers found that the white matter Blood Oxygen Level 

Dependent (BOLD) signal has a consistent spatial correlation structure with the water 

diffusion direction measured by DTI, which suggests that the white matter BOLD signal 

has a strong dependence on the anatomical structure. Based on this, Abramian et al. 

introduced GSP into the spatial smoothing of white matter BOLD signals for the first time 

and designed a DSS technique for domain-informed smoothing, which was found to be 

superior to the isotropic Gaussian filters commonly used for functional signal 

smoothing(Abramian et al., 2021). Behjad exploited the topological constraints provided 

by grey-white and cortical surfaces to perform a smoothing operation on cortical fMRI in 

volume space, making the filtering process more attuned to the details of the underlying 

brain morphology and structure(Behjat, Westin, & Aganj, 2021). 

Besides, graph spectral theory has been increasingly used in EEG denoising. Pentari 

et al. proposed a new method based on the GSP technique to suppress the effect of heavy 

tail noise in EEG and verified the effectiveness of this algorithm in epileptic EEG 

denoising(Pentari, Tzagkarakis, Marias, & Tsakalides, 2021, 2022). Wenqiang et al. 

regarded EEG as an image and applied the graph filtering method to denoise EEG signal 

to improve the efficiency of the brain-computer interface based on Steady-state Visual 

Evoked Potentials (SSVEP)(Yan, Du, Wu, Zheng, & Xu, 2021). Einizadet solved the 

problem of blind source separation and designed the GraDe method by assuming that 

each source has a unique graph and temporal connectivity structure for a short period 

(Einizade & Sardouie, 2022). 

Graph spectral theory can retain the constraints between channels or brain regions 

rather than previous algorithms. Thus, it may be more adapted to the structural features 

of the brain itself. So, it may be one of the focuses of EEG denoising research in the future. 

Compared with signals such as communication signals, EEG signals are concentrated in 

low frequency bands and the overall changes are smoother. In addition, compared to 

functional signals such as FMRI, the spatial resolution of EEG is low and the temporal 

resolution is high, and thus individual spatial filtering algorithms may not be able to cope 

with complex noise. Therefore, unlike previous studies, we achieve denoising of EEG 

signals with the joint temporal and spatial smoothness constraints mainly based on graph 

spectral theory. This framework may be able to better cope with complex acquisition noise 

than traditional methods 



Chapter 1 Introduction 

10 

1.4 Related Studies 

In this study, we mainly focus on graph spectral theory for EEG denoising and the 

neural mechanisms of cognitive deficits for schizophrenia based on CHD. Therefore, this 

section will focus on these two aspects to introduce the current EEG denoising techniques 

as well as related research on schizophrenia. 

1.4.1 Overview of Noise in EEG and Current Denoising Algorithms 

The brain is a special interconnected structure with noise interference between 

acquisition channels. Besides, during signal collection, EEG is susceptible to 

environmental noise, acquisition system noise, and so on. Designing a robust filter to 

obtain artifact-free EEG signals is both a challenge and an opportunity. This section will 

focus on the sources of noise and the current research on denoising algorithms. 

EEG originates from the synchronized firing activity of millions of neurons. The 

generated electrical impulses can be detected by electrodes placed on the scalp. During 

the acquisition process, various noises can distort EEG. The main sources of these noises 

are as follows: 

1) From the acquisition equipment. EEG signals are very weak and the acquired 

signals need to be amplified by an amplifier to be captured. During this process, 

thermal noise is introduced by the acquisition device. 

2) From electromagnetic interference. The most common noise is Industrial 

Frequency Interference (IFI) in the frequency range of 50 Hz-60 Hz.  

3) From the electrodes. On the one hand, poor contact with the scalp or loosening 

of the electrode can introduce noise and lead to distortion of EEG waveforms; 

on the other hand, poor quality of electrodes can also lead to artifacts.  

4) From various physiological activities of the human body, especially the 

interference generated by muscle movements, such as electrooculography, 

electromyography, and electrocardiogram. 

EEG denoising technology plays an important role in the analysis of brain cognition 

and disease. Effective EEG denoising technology can greatly improve the accuracy of 

disease diagnosis and help to accurately capture brain functional activation patterns. 

Hanas Berger first recorded EEG waves through electrodes in 1924 and put forward 

his insights for feature extraction and denoising of EEG signals, which provided a reliable 

basis for subsequent EEG signal research(La Vaque, 1999). After that, the Fourier 
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transform and Wiener filter were gradually used in the denoising of EEG 

signals(Borowicz, 2018; Carlton & Katz, 1980). A Wiener filter is designed from the 

frequency domain, which mainly targets one-dimensional non-smooth signals. Since 

EEG is a non-stationary signal, the application of Wiener filtering has some drawbacks. 

After that, the Kalman filter was proposed in 1960, which can handle both stationary and 

non-stationary random signals. Then Bohlin used the Kalman filter to denoise EEG for 

the first time(Bohlin, 1977). 

In recent years, blind source analysis techniques such as ICA and Canonical 

Correlation Analysis (CCA), wavelet transform, deep learning, graph learning, and other 

new methods have been applied in EEG denoising, which has favorably promoted the 

development of EEG denoising algorithms. 

In blind source analysis, ICA linearly decomposes multichannel EEG into 

maximally statistically independent components by utilizing Higher-Order Statistics 

(HOS)(Makeig et al., 1995). With Second-Order Statistics (SOS), CCA uses the original 

EEG as the first dataset and its delayed version as the second dataset, aiming to find 

maximally autocorrelated and mutually uncorrelated sources(De Clercq et al., 2006). The 

denoising of ICA mainly takes advantage of the fact that the distribution of noise has 

significant features, e.g., the topography of electrooculographic artifacts is mainly located 

at the front eye electrodes, and the power spectral curve of this component does not have 

any obvious mutation points. CCA takes advantage of the feature that the autocorrelation 

of muscle artifacts is relatively low compared to brain activity. Makeig first used ICA in 

EEG denoising, and Hyvärinen and Sardouie improved on the original ICA technique and 

proposed Fast-ICA and Jacobi-like ICA algorithms(Hyvärinen & Oja, 1997; Makeig et 

al., 1995; Sardouie, Albera, Shamsollahi, & Merlet, 2014). Clercq first applied CCA to 

noise removal of EEG signals(De Clercq et al., 2006). 

As the most effective time-frequency analysis method, Wavelet Transform (WT) is 

mainly used to decompose the signal onto wavelets of different time-frequency scales. 

After this transformation, most of the energy of the EEG signal will be concentrated in a 

few larger wavelet coefficients. Through the threshold selection, we can remove the noise 

in the signal. Carmon applied the wavelet transform to de-noise the EEG signals in 

1998(Carmona & Hudgins, 1994). After that, different solutions have been proposed by 

researchers for the selection of wavelet threshold. The most classical method was 

proposed by Donoho and Johnstone et al(Donoho & Johnstone, 1994, 1995). Besides, 
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there are various thresholding strategies such as hard thresholding and soft 

thresholding(Khatwani & Tiwari, 2013; Şendur & Selesnick, 2002). In general, soft 

thresholding outperforms hard thresholding methods for denoising. Alyasseri et al. 

compared different meta-optimization methods for the selection of wavelet thresholds, 

and finally found that the Flower Pollination Algorithm (FPA) performed the 

best(Alyasseri, Khader, Al-Betar, Abasi, & Makhadmeh, 2019). 

Subsequently, a large number of hybrid adjustable algorithms have been proposed. 

The wavelet transforms or Multimodal Experience Modeling decomposition (MEMD) 

combined with CCA can enhance the algorithm's ability to suppress muscle artifact 

noise(Chen, Xu, Liu, McKeown, & Wang, 2017; Mowla, Ng, Zilany, & Paramesran, 

2015). These algorithms utilize the autocorrelation of EEG signals in the time-frequency 

domain and the mutual uncorrelation between individual channels. They first decompose 

the signal by time-frequency methods and then reconstruct the artifact-free signal after 

CCA decomposition. In addition to this, Dora et al. proposed a technique to remove EEG 

artifacts with minimal supervision based on a data-driven approach(Dora & Holcman, 

2022). 

In addition to this, deep learning methods have been increasingly used in EEG 

denoising due to their good adaptability and performance. Haoming et al. provided a 

benchmark dataset that can be used for the training and testing of EEG denoising models 

and compared the denoising effects of different classical networks(Zhang et al., 2021). 

U-Net, GAN, and many other deep-learning strategies were applied to noise removal (An, 

Lam, & Ling, 2022; Chuang, Chang, Huang, & Jung, 2022; Mashhadi, Khuzani, Heidari, 

& Khaledyan, 2020). Chuang combined ICA and deep learning to reconstruct EEG 

signals, firstly separating the original signals by ICA, and then reconstructing the EEG 

signals by U-NET filtering(Chuang et al., 2022). 

However, most of these methods, wavelet transform and deep learning do not take 

into account the interdependence between different brain regions or acquisition channels. 

Based on this, researchers propose new denoising methods based on graph signal 

processing techniques. Compared with previous algorithms, graph signal processing 

algorithms mainly rely on the constraints of the underlying structural graph. 

In conclusion, denoising is of great significance in the brain-computer interface and 

the construction of cognition and disease models. It not only improves the signal quality 

of EEG but also enhances the signal characteristics and improves the performance of the 
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brain-computer interface. However, nowadays, the current algorithms mainly focus on 

the separate consideration of denoising from time-frequency and spatial aspects. 

Therefore, this thesis proposes the Joint-time vertex (JTV)(Grassi, Loukas, Perraudin, & 

Ricaud, 2017) framework to solve the denoising problem of EEG signals. The 

simultaneous temporal and spatial constraints may achieve superior noise reduction. 

1.4.2 Schizophrenia 

Schizophrenia (SCZ) is one of the most common psychiatric disorders and is usually 

characterized by disturbances in various aspects of emotion, behavior, consciousness, and 

perception. Patients usually suffer from hallucinations, delusions, disorganized speech, 

social withdrawal, and emotional apathy. These symptoms often seriously interfere with 

the patient's daily life, work, and study. Besides, these symptoms of schizophrenia can be 

further categorized into positive and negative symptoms. Positive symptoms of 

schizophrenia refer to patients who experience additional experiences and behaviors; 

negative symptoms refer to patients with schizophrenia who lack some of the emotions 

or behaviors that healthy people have. 

As reported in the Global Burden of Disease Survey for Mental Disorders 2019, the 

SCZ global prevalence rate was 0.29%. Besides, schizophrenia increases the risk of death 

by two to three times(McGrath, Saha, Chant, & Welham, 2008). In addition, 

schizophrenia tends to be a lifelong illness that is not easily cured, thus causing a serious 

burden on patients and their families. Kane compared the effectiveness of comprehensive 

early treatment with that of usual community care for schizophrenia and found that those 

treated longer had greater improvements in quality of life and psychopathology, and were 

able to participate in more work and school learning(Kane et al., 2016). Thus, early 

diagnosis and treatment are essential for schizophrenia. 

Currently, the diagnosis of schizophrenia is based on the subjective judgment of the 

physician, DSM-5 diagnostic criteria, and the patient's family history and symptoms. The 

DSM-5(Tandon et al., 2013) provides clear diagnostic criteria in symptomatology, 

duration, dysfunction, etc., which helps physicians to give an accurate classification of 

the diseases, thus facilitating subsequent pathologic and imaging research. However, 

schizophrenia is also prone to misdiagnosis due to various factors. For example, some of 

the symptoms of schizophrenia usually overlap with those of other mental 

disorders(Ayano et al., 2021). In addition, in the early stage of schizophrenia, the patient's 
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symptoms gradually appear but they may not cooperate with the doctor and conceal the 

actual symptoms when seeking medical treatment, causing a wrong diagnosis. Therefore, 

pathology, imaging, and EEG studies are beneficial to promote the objective diagnosis of 

schizophrenia, as well as important for the exploration of effective individualized 

treatments for schizophrenia. 

In addition, diagnostic methods based on pathology, imaging, and EEG are still being 

explored, and they provide evidence for functional and structural abnormalities of 

schizophrenia. In the following section, the current research on schizophrenia will be 

introduced from the perspective of pathologic studies, imaging studies, and EEG. 

1.4.2.1 Pathology Studies 

Currently, research has found that a variety of proteins are abnormally expressed in 

the brains of schizophrenia, especially proteins associated with neurotransmitters. 

Abnormal expression of these neurotransmitters leads to disturbances in neuronal signals. 

 Among the causes of schizophrenia, the one that has received the most attention is 

the dopamine hypothesis. It suggests that abnormal activity of the dopamine system plays 

an important role in the pathogenesis of schizophrenia. An early study by Carlsson et al. 

found that the antipsychotic drug reserpine blocked the reuptake of dopamine and other 

monoamines(Carlsson & Lindqvist, 1963). After that, Lieberman et al. noted that sodium 

aniline increases synaptic monoamine levels and induces psychotic symptoms(Lieberman, 

Kane, & Alvir, 1987). At this time, researchers did not find a direct link between 

dopamine and schizophrenia. After the 1970s, researchers found a direct correlation 

between the effectiveness of these antipsychotic medications and the affinity of dopamine 

receptors(Creese, Burt, & Snyder, 1976; Seeman & Lee, 1975). Creese and Seeman, et al. 

suggested that these medications treated psychiatric illness primarily by blocking the 

over-reception of dopamine receptors (Creese et al., 1976; Seeman & Lee, 1975). Later, 

the researchers combined schizophrenia with genetics and neurodevelopment. Davis 

subsequently proposed that dopamine abnormalities occur in specific regions of the brain, 

which provided a rational explanation for the absence of abnormally elevated dopamine 

metabolites in cerebrospinal fluid and serum for schizophrenia(Davis, Kahn, Ko, & 

Davidson, 1991). Subsequently, several studies reported elevated dopamine synthesis in 

the presynaptic striatum in schizophrenia(Howes et al., 2009; McGowan, Lawrence, Sales, 

Quested, & Grasby, 2004; Meyer-Lindenberg et al., 2002). To determine the cause of 
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elevated dopamine synthesis, various radiotracers were utilized in imaging studies, and 

several studies reported elevated D2 and D3 receptors in striatal regions(Buchsbaum et 

al., 2006; Kestler, Walker, & Vega, 2001; Takahashi, Higuchi, & Suhara, 2006). As for 

D1 receptors, some studies suggested that prefrontal cortex dopaminergic transmission is 

mediated by D1, and abnormalities in D1 receptor in the prefrontal cortex cause cognitive 

deficits and some negative behavioral manifestations in schizophrenia(Abi-Dargham et 

al., 2022). Due to different radiotracers used, the decreasing and increasing of D1 

receptors have been both reported in different studies(Karlsson, Farde, Halldin, & Sedvall, 

2002; Okubo et al., 1997). 

In addition to the dopamine receptor hypothesis, studies in recent years have shown 

that glutamatergic synaptic dysregulation is also associated with schizophrenia. 

Nowadays, antipsychotic drugs are now poorly tolerated. Some researchers have 

suggested that abnormal N-methyl-D-aspartic acid receptor (NMDA) receptor function 

may be the key to the symptoms of drug resistance(Coyle, 2006). Yurgelun-Todd et al. 

found a significant reduction in gamma-aminobutyric acid (GABA) levels in the 

prefrontal cortex of patients through autopsy of schizophrenia(Yurgelun-Todd et al., 

2005). Besides, the reduced levels of GABA receptors may be due to NMDA receptor 

hypofunction(Woo, Walsh, & Benes, 2004). In healthy individuals, the use of NMDA 

receptor antagonists such as Phencyclidine-D5 Hydrochloride (PCP) and ketamine causes 

schizophrenia-like and persistent psychosis-negative cognitive symptoms for two weeks. 

In addition to this, Warren et al. found that approximately 6.5% of patients showed 

positive NMDA receptors at their first onset of illness(Warren, Siskind, & O'Gorman, 

2018), providing direct evidence for the NMDA receptor hypothesis. 

1.4.2.2 Brain Imaging 

Structural Magnetic Resonance Imaging (SMRI) and Functional Magnetic 

Resonance Imaging (FMRI) provide evidence of structural and functional changes in the 

brain in schizophrenia. Their non-invasive properties allow them to track changes in the 

course of schizophrenia over time, which facilitates future diagnostic techniques for 

schizophrenia and the continuous updating of treatment guidelines. 

From a structural perspective, researchers have identified abnormal changes in 

multiple brain regions in SCZ patients. Several studies have found gray matter atrophy as 

well as reduced white matter in the frontal lobe, temporal lobe, thalamus, and occipital 
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lobe in SCZ patients, and a prominent reduction in hippocampal subfield 

volume(Andreasen et al., 2011; Hu et al., 2020; Tesli et al., 2020). In addition to this, 

Delisi, Sharma and Shenton, et al. observed asymmetrical deviations in two cerebral 

hemispheres in SCZ patients, and these asymmetrical regions were present in the 

temporal, frontal, and occipital lobes(DeLisi et al., 1997; Sharma et al., 1999; Shenton, 

Dickey, Frumin, & McCarley, 2001). Jiang et al. found the progressive atrophy process 

of gray matter by tracing the gray matter of the brain at different course stages of the 

disease(Jiang et al., 2018).  

For the causes of schizophrenia, brain disconnection is the more widely recognized 

hypothesis. Friston and Frith first proposed that the dysfunction of communication within 

the brain of schizophrenia is the main cause of the symptoms(Friston & Frith, 1995). 

Later on, researchers gave extensive supplements from the abnormalities of structural and 

functional brain connectivity of SCZ. 

In terms of structural connectivity, Csernansky et al. found disruption of frontal-

striatal-thalamic circuits in SCZ patients (Csernansky & Cronenwett, 2008). Price et al. 

found an abnormal distribution of anisotropy (FA) in the left uncinate fasciculus, a 

maximal white matter bundle connecting the frontal and temporal lobes, in the first 

episode of SCZ patients (Price et al., 2008). Andrew et al. constructed a structural network 

based on Diffusion Tensor Imaging (DTI) and analyzed the network properties of SCZ 

patients. They found that SCZ patients had impaired connectivity in a distributed lymph 

node network including the medial frontal, parietal, and left temporal lobes(Zalesky et al., 

2011). Ellison-Wright et al. summarized current research on structural connectivity based 

on DTI and found that there is reduced white matter in the left frontal and left temporal 

lobes and the white matter bundle networks associated with these two regions may be 

affected(Ellison-Wright & Bullmore, 2009). In terms of functional brain connectivity in 

SCZ patients, Andrew et al. found that the dysfunctional connectivity of the sub-network 

mainly involves connectivity between the frontal and temporal lobe in the left hemisphere, 

and functional connectivity disruptions have also been demonstrated in the parietal lobe, 

occipital lobe, and other regions(Zalesky et al., 2010). Subsequent reports by Liu, Repovs, 

et al. have all verified dysfunction of frontal and temporal lobe functional connectivity 

and found that connectivity disruptions are also present in other brain regions, such as 

occipital, parietal, and cerebellar regions (Liu et al., 2008; Repovs, Csernansky, & Barch, 

2011). 
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In conclusion, both anatomical and functional connectivity studies have revealed 

significant alterations in frontotemporal connectivity pathways, as well as significant 

alterations in the connectivity of brain regions such as the parietal and occipital lobes. 

This suggests that disruptions of brain connectivity may be prevalent in SCZ patients. 

1.4.2.3 EEG in Schizophrenia 

Although MRI boasts high spatial resolution and enables direct observation of neural 

substrates associated with schizophrenia during specific tasks, it fails to reveal rapid 

changes in brain activity within milliseconds. Therefore, EEG can provide a 

complementary perspective on the pathophysiological mechanisms 

Shim achieved a classification accuracy of 78.24% by selecting features from the 

scalp and source EEG to classify healthy controls and SCZ patients (Shim, Hwang, Kim, 

Lee, & Im, 2016). Consistent with findings from MRI, the majority of discriminative 

features originated from the frontal and temporal lobes. Additionally, several studies have 

reported abnormalities in multiple rhythms in SCZ patients, such as increased activity in 

the delta and theta bands during resting states(Narayanan et al., 2014; Sponheim, 

Clementz, Iacono, & Beiser, 1994). Furthermore, SCZ patients exhibit impairments in 

facial emotion recognition and auditory processing. Jung et al. found reduced activities 

in the superior frontal gyrus and inferior frontal gyrus in SCZ patients, and there is a 

potential gender difference in facial emotion processing in SCZ patients (H.-T. Jung, Kim, 

Kim, Im, & Lee, 2012). 

In numerous family risk studies of SCZ, the classical auditory oddball paradigm has 

been widely employed to investigate EEG abnormalities in SCZ. Many studies have 

reported reduced P3b amplitude in both SCZ patients and their first-degree relatives. This 

suggests that P300 may serve as a susceptibility marker for psychotic disorders(Kidogami, 

Yoneda, Asaba, & Sakai, 1991). Şevik et al. found a decrease in mismatch negativity 

(MMN) amplitude during working memory processes in both SCZ patients and their 

relatives(Şevik et al., 2011). This may indicate impaired working memory in both SCZ 

patients and their relatives. Narayanan, through ICA, also identified increased slow β 

activity in the frontal-central region and δ activity in the frontal lobe in individuals with 

SCZ patients and their relatives(Narayanan et al., 2014). 

Furthermore, various functional brain network analysis methods have been 

employed in the analysis of abnormal brain activity in SCZ patients. Yeragani et al. 
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observed a significant reduction in coherence between the frontal and central regions in 

the β and γ frequency bands in early-onset SCZ patients (Yeragani, Cashmere, Miewald, 

Tancer, & Keshavan, 2006). Jalili utilized partial correlation to construct the EEG 

network and found significantly higher modularity in the β frequency band in SCZ 

patients compared to the healthy controls(Jalili & Knyazeva, 2011). Besides, the degrees 

of the frontal lobe, left occipital lobe, left temporal lobe, and right temporal lobe in SCZ 

patients are higher than those in the control group. Dynamic network analysis revealed 

decreased strength in the frontal, parietal, and sensorimotor areas during the Sustained 

Attention to Response Task (SART) stimulus process in SCZ patients (Naim-Feil et al., 

2018). This was accompanied by a significant increase in global efficiency and a decrease 

in both global and local clustering coefficients. 

In conclusion, EEG research unveils dynamic changes in brain activity in 

schizophrenia, providing an electrophysiological basis for understanding cognitive and 

functional impairments in schizophrenia. This knowledge contributes to the diagnosis and 

treatment of schizophrenia by offering electrophysiological insights. In this thesis, we 

will provide insights into abnormal network dynamics in SCZ patients from an 

electrophysiological perspective, based on CHD analysis, which complements the 

possible causes and diagnostic strategies for abnormal cognitive functioning in SCZ 

patients. 

1.5 The Main Contributions of this Thesis 

Due to the low signal-to-noise ratio (SNR) of EEG signals and the rich disease 

information embedded in EEG, this thesis explores the application of graph spectral 

theory to the analysis of EEG, and developing corresponding algorithms of EEG 

denoising and extraction of graph spectral features. The main contributions are as follows: 

1. Noise can greatly affect the construction of subsequent analysis models for disease 

and cognition as well as the decoding efficiency of brain-computer interfaces. The graph 

filter developed from the graph spectral theory take into account the dependence between 

different channels of the brain, which is a promising denoising algorithm in the future. 

However, few algorithms consider denoising EEG using both temporal and underlying 

graph structure constraints. For this reason, we propose to solve the problem with a JFT 

filter based on the traditional graph spectral theory. To verify the robustness and 

effectiveness of the algorithm, we designed three sets of noise addition simulation 
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experiments and two sets of classification experiments with P300 real data. The results of 

the simulation experiments and classification experiments verify that the joint spatio-

temporal framework can take into account both structural and temporal constraints on the 

EEG signal, and has stronger suppression of noise. 

2. SCZ is associated with severe neurocognitive deficits and these neurocognitive 

deficits can be used as one of the diagnostic strategies for SCZ patients. Currently, the 

neural mechanisms of SCZ and the exploration of neurophysiological endophenotypes 

need to be further explored. The second project of the thesis focuses on feature extraction 

of graph spectral theory to explore the relationship between graph harmonics, cognitive 

abnormalities, and EEG rhythm in SCZ patients. The CHD method developed from graph 

spectral theory is a reliable tool for the analysis of brain network dynamics. Currently, 

few studies have explored the altered brain spatiotemporal network dynamics of SCZ 

patients as well as the rhythmic abnormalities of SCZ patients under the source space 

from a connectome harmonic perspective to find objective and reliable 

neurophysiological endophenotypes. Thus, this thesis utilizes CHD to explore EEG 

features of SCZ patients based on graph spectral theory. Specifically, we explored the 

changes of cognitive scales and ERPs of SCZ patients, which will support the reliability 

of our preprocessing and subsequent analyses. To explore the connectome harmonic 

abnormalities of SCZ patients and their connection with cognition, we first obtained the 

graph power spectral density (GPSD) of all harmonics and explored the relationship 

between neurocognitive abilities. Then, since different harmonics correspond to different 

spatial distributions of brain activities and support different EEG rhythms, to investigate 

the rhythmic changes of SCZ patients compared with healthy controls in different graph 

harmonics, the high-frequency and low-frequency graph filters are used to obtain the 

graph low-frequency signals (aligned signals) and high-frequency signals (liberal signals) 

and their activation patterns with Power Spectral Density (PSD). Finally, the captured 

differential features were used to predict the individual cognitive task scores. Our results 

reveal abnormal brain activity in SCZ patients and its relationship to cognitive 

performance and provide potential technical support for the diagnosis of SCZ patients. In 

addition, the relationship between harmonics and EEG rhythms and cognitive patterns 

also supports the reliability of the graph spectral theory for the application of 

dimensionality reduction and denoising. 
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1.6 Organization of the Thesis 

This thesis develops corresponding EEG denoising and feature extraction algorithms 

based on graph spectral theory. The whole thesis consists of five chapters, and each 

chapter is organized as follows. 

Chapter 1 Introduction, mainly introduces the theoretical knowledge related to this 

thesis from four aspects. The first part includes the application of EEG rhythm and EEG, 

as well as the application of graph spectral theory in brain science. Then we introduce the 

common noise in EEG and the current denoising techniques in EEG signals. Then we 

discuss the current research on schizophrenia and finally introduce the main work of this 

thesis and the structural arrangement of the thesis. 

Chapter 2 JFT Filter for EEG Denoising Based on Graph Spectral Theory. First, the 

basic knowledge of graph spectral theory is introduced, followed by the introduction to 

the joint time-vertex framework and the corresponding denoising and classification 

algorithms. Then the data and simulation noises used in the thesis are presented followed 

by a detailed analysis and discussion of the results. 

Chapter 3 Analysis of schizophrenia based on graph spectral theory. First, the data 

and the data processing flow are illustrated in this chapter, followed by an introduction to 

the specific techniques used such as the source localization algorithm, the graph spectral 

power density, the power spectral density, etc., and a detailed analysis and discussion of 

the results. 
Chapter 4 General discussion. The key findings and significance and future research 

will be future discussed in this section. The limitations of this study and an outlook on 

future research will be presented in this chapter. 
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Chapter 2 JFT Filter for EEG Denoising Based on Graph Spectral 
Theory 

2.1 Abstract 

EEG has rich brain information and its acquisition is convenient and non-invasive. 

Thus, it is widely used in disease diagnosis, cognitive research, and brain-computer 

interfaces. However, EEG are susceptible to various noise interferences during the 

acquisition process, which affects the construction of computational cognitive models. 

Thus, the development of corresponding denoising algorithms is a necessary and 

challenging task. Previously, researchers have mainly addressed this problem through 

time-frequency algorithms and blind source analysis methods. However, the brain is an 

interactive system. To ensure normal cognitive function, all brain regions in the cortex 

work together and their information transmission is constrained by the underlying 

structural connectivity network. Traditional denoising algorithms do not take into account 

the mutual constraints between these brain regions, which may result in missing 

information. Graph spectral theory naturally represents EEG signals as graph signals and 

realizes noise removal through the relatively stable invariance of the connection distances 

between electrodes. It has been widely used as a reliable denoising technique in DTI, MRI, 

and EEG studies. In the thesis, considering the strong temporal resolution of EEG signals, 

the graph filter alone may not be sufficient to cope with complex noise conditions. So, 

we introduce a joint time-vertex framework into the EEG denoising based on the 

traditional graph spectral theory by applying graph domain-informed constraints and 

temporal smoothing constraints on the signals. A series of experimental results show that 

compared with the current traditional methods, the method proposed in this chapter has a 

strong suppression of different noises and can improve the decoding efficiency of the 

signals, which can be used in the preprocessing of EEG. 

In application validation, as a kind of event-related potential P300 is one of the most 

studied and widely used components and is also widely used in the research of diseases 

and brain-computer interfaces. This thesis mainly explores the application of this 

denoising algorithm in P300 signals. It will provide a new idea for the future development 

of the denoising technology of EEG. 
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2.2 Introduction 

When humans receive an external stimulus (e.g., a visual stimulus, etc.), the 

corresponding sensory cortex of the brain will recognize and interpret the stimulus. If the 

stimulus is recognized as requiring attention and memory, posterior regions of the brain, 

such as the parietal lobe, will generate the corresponding P300 signals. Sutton et al. 

recorded subjects' EEG responses to unidentified stimuli and they found a brain wave 

associated with the appearance of a target stimulus for the first time(Sutton, Braren, Zubin, 

& John, 1965). This positive waveform appeared as positive waveform approximately 

300ms after the stimulus, hence it was named P300. 

 More studies have since found that P300 is associated with cognitive processing 

and attention, and is therefore widely used in neuroscience research and brain-computer 

interfaces. For example, a significant decrease in the P300 amplitude can be observed in 

patients with psychiatric disorders such as schizophrenia(Kidogami et al., 1991) and bi-

directional affective disorder(Wada et al., 2019). Thus, P300 is often used in diagnostic 

studies of such psychiatric disorders. In addition to this, P300 does not depend on the 

training and can be produced by almost everyone’s brain after receiving the target 

stimulus. As a result, researchers have proposed a series of brain-computer interface 

paradigms. Polikoff et al. proposed a brain-computer interface paradigm to use P300 

signals in controlling the movement of the computer screen cursor (Polikoff, Bunnell, & 

Borkowski Jr, 1995). Then Farwell et al. first proposed a system for spelling based on 

P300(Farwell & Donchin, 1988). Donchine et al. improved the system (Donchin, Spencer, 

& Wijesinghe, 2000), by replacing the original commands such as space and quit with the 

numbers, resulting in the system interface that is now commonly used in the P300 spelling 

system, as shown in Figure 2.1 below. The system provides the user with a 6 6×  matrix 

and each cell contains an alphabet. The user is required to focus on the cell containing the 

letter to be texted. The rows and columns of the matrix are randomly highlighted. 

Therefore, only those highlighting events that contain the text of the spelled character will 

elicit P300. This is the same system used for Data 2 in this thesis. 
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Figure 2.1 P300 Spelling System Interface 

However, one of the main problems in analyzing event-related potential (ERP) such 

as P300 is that the amplitude of the single-trial response is small compared to background 

EEG. Besides, the ERP is also susceptible to contamination by the noise generated by the 

acquisition system and other noise such as electromyographic artifacts during acquisition. 

Trial averaging (Da Silva & Wilkins, 1999), the most commonly used technique, assumes 

that the ERP signal occurs at relatively stable time points and enhances the signal-to-noise 

ratio of the ERP by averaging all trials. However, the repetitive time is long for some 

experiments, which creates a serious burden for both subjects and collectors. To obtain a 

stable ERP within a small number of trials, various modern signal processing techniques 

such as independent component analysis (T.-P. Jung et al., 1997), Bayesian averaging 

(Sparacino, Milani, Arslan, & Cobelli, 2002), principal component analysis(Chapman & 

McCrary, 1995), wavelet transform(Carmona & Hudgins, 1994), and deep learning 

(Zhang et al., 2021) are used in EEG signal processing. 

In fact, the brain is a complex network system. We can consider brain signals as 

graph signals, and these information processing units as nodes in the graph. However, 

none of the above methods we mentioned has been able to fully utilize the potential intra- 

and inter-channel dependencies of EEG signals. To address this limitation, graph-based 

methods have received increasing attention in the field of biomedical signal processing. 

Graph signal processing techniques developed from graph spectral theory can utilize the 

underlying structure of the data and process signals on irregular grids. Complex problems 
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such as denoising of graph signals or signal diffusion can be solved by appropriate 

algorithms of graph spectral theory(Pentari et al., 2021, 2022). Compared with previous 

algorithms, this thesis focuses on the ability of spatiotemporal constraints under the pql -

norm for denoising EEG based on graph spectral theory and explores the application of 

this algorithm in ERP processing such as P300. The composite constraint framework will 

also present some new ideas and insights for the development of subsequent denoising 

algorithms. 

2.3 JFT Graph Filter 

In this subsection, we will focus on the basics of graph spectral theory, the joint time-

vertex framework, and the pql -norm JFT graph filter.  

2.3.1 The Basics of Graph Spectral Theory 

For social, energy, and neuronal networks, these high-dimensional data naturally 

reside on weighted graph vertices. The emerging field of Graph Signal Processing (GSP), 

which developed from graph spectral theory, combines algebraic and spectral graph 

theoretical concepts with computational harmonics to process graph signals and develops 

concepts that correspond to Digital Signal Processing (DSP) (R. Li et al., 2021; Ortega, 

Frossard, Kovačević, Moura, & Vandergheynst, 2018; Shuman, Narang, Frossard, Ortega, 

& Vandergheynst, 2013), such as filtering, shift, and modulation. 
Assuming that the single-channel signal of the EEG is , 0,1,... 1ns n N= − , where N 

is the number of sample points, the polynomial representation of the z-transform of ns  

is shown in Eq. (2-1). The unit time shift of the DSP can be obtained as shown in Eq. (2-

2). Similarly, the FIR filter can be expressed in polynomial form as shown in Eq. (2-3). 

 ( )
1

0

N
n

n
n

s z s z
−

−

=

=∑  (2-1) 

 ( ) 1
1 0 1 2, , ,..., ,out shift in N N shifts h s s s s s h z−
− −= ⋅ = =  (2-2) 

 ( )
1

0

N
n

n
n

h z h z
−

−

=

=∑  (2-3) 

One of the important concepts to establish a link between GSP and DSP is the shift-

invariance of DSP. In DSP, we can easily obtain the mathematical expression for the shift-

invariance of DSP as shown in the following equation: 
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 ( ) ( )1 1z h z h z z− −=  (2-4) 

In graph signal processing, its sample points are no longer time points, the nodes of 

the graph. The EEG signal at time t is [ ]0 1 1... T N
Ns s s s C−= ∈ , where N is the number of 

EEG electrodes. Similar to the unit time shift of a DSP, the unit shift of the graph signal 

can be obtained by a unit cyclic matrix cA  as shown in Eq. (2-5). 

 [ ] [ ]1 0 1 2 0 1 1... ...T T
N N c Ns s s s A s s s− − −= ⋅   (2-5) 
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The graph filter H or graph signal H can be represented by the polynomial form of 

A   as shown in Eq. (2-7). 1A VAV −=   can be represented by its eigenvectors, where 

[ ]1, , ,m nV v v v=   . That the ( )mh λ is the characteristic function of the polynomial filter

H as shown in Eq. (2-8). The exponential function ( )mh λ is a characteristic function of 

a linear system, which means that when the input signal is exponential, the response of 

the system is also exponential. This concept corresponds to the exponential invariance of 

DSP. 
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Similarly, we can obtain the mathematical representation of the Graph Fourier 

Transform (GFT) as shown in Eq. (2-9), and the mathematical representation of its inverse 

transform as shown in Eq.(2-10). 

 1
0 1ˆ [ ... ]T

Ns Fs V s f s f s−
−= = =  (2-9) 
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So far, basic concepts like graph filtering and graph Fourier transform in graph signal 

processing are introduced in the subsection. Similar to the wavelet transform, there are 

several choices of cyclic matrices A  for the graph transform, and the most common one 

is the Laplacian matrix L D A= −  rather than the unit cyclic matrix cA . In fact, the 

Laplacian matrix is the Laplacian operator on the graph, which responds to the integral 

of the gains generated when a single node is perturbed with respect to other nodes. 

Moreover, the graph Laplacian matrix is a symmetric semi-positive definite matrix and 

its zero eigenvalue is equal to the number of connected components of the graph. This 

property has also led to the graph Laplacian operator being commonly used in 

classification. On the other hand, the eigenvectors of the Laplacian matrix have spectral 

properties that are associated with the structural and topological properties of the graph. 

Usually, smaller eigenvalues and their corresponding eigenvectors correspond to the 

global structure of the graph, and larger eigenvalues and their corresponding eigenvectors 

correspond to the local structure of the graph. This makes the Laplace matrix the most 

commonly used matrix for constructing graph harmonics in graph signal processing. 

2.3.2 Joint Time-vertex Framework 

We assume that the EEG signal is [ ]1 2, ,..., N T
TX x x x R ×= ∈ . ( ), ,G V Wε=  is the 

undirected graph in which the EEG signal resides, where V   is the EEG acquisition 

channel (node in graph), ε   is the set of functional or structural connectivity edges, 
N NW R ×∈   is the symmetric weight matrix. W  can be estimated by the physical or 

functional connectivity distances between leads. The matrix W   in this thesis can be 

estimated by the following Eq.(2-11), where 1 T
ix R ×∈  is the signal of the ith channel. In 

W , the distance weights of the first k nearest leads to each lead are ultimately retained. 

 
2

i jx x

t
ijW e

−
−

=  (2-11) 

The Discrete Fourier Transform (DFT) provides a means of decomposing a signal 

into a series of harmonic modes. For example, the DFT for an EEG signal can be obtained 

from the following equation. 

 { } TDFT X XU=  (2-12) 
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 ( ) ( )* 2 1
, ,

kjw t

T k

keU t k w
TT

π− −
= =  (2-13) 

Similarly, EEG as a graph signal can be decomposed into a series of graph harmonics. 

The Graph Fourier Transform (GFT) of the signal can be obtained with Eq.(2-14) below. 

In graph signal processing, the graph harmonics refer to the eigenvectors of the Laplacian 

matrix, which can be obtained by equations(2-15) and (2-16). 

 { } *
GGFT X U X=  (2-14) 

 
1 1
2 2

GL I D WD
− −

= −  (2-15) 

 *
G G G GL U U= Λ  (2-16) 

Finally, we can decompose the signal X into harmonic oscillations in time and space. 

Then the Joint time-vertex Fourier transform (JFT) of the signal can be given as follows: 

 { } *
GJFT X U XU=  (2-17) 

where its vector expression is given by the following equation 

 { } * ,J J T GJFT x U x U U U= = ⊗  (2-18) 

2.3.3 Graph Smoothing Filter Based on the pql  norm 

Before introducing graph filters, what we need to understand is the variation in time 

and graph. Let the one-dimensional differential operator of X in time be T
T∇  , where

1
T
T t t tX x x −∇ = − . Then the time Laplacian matrix *

T T TL = ∇ ∇ is the discrete-time second-

order derivative operator, where 1 12T t t t tXL x x x+ −= − + −  . The singular value 

decomposition of TL  is as follows: 

 ( ) ( )( )* , , 2 1 cosT T T T T kL U U k k w= Λ Λ = −  (2-19) 

Similarly, the derivative of the graph signal X with respect to the edge ( ),e n m=  

at node n on the graph is obtained as: 

 ( ) [ ],n n m
X W n m x x
e

∂
= −

∂
 (2-20) 

Then the graph divergence of the graph signal X at node n is 

 G n e
Xx
e ε∈

∂ ∇ = ∂ 
 (2-21) 
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Similarly, *
G G GL = ∇ ∇   as a second-order gradient operator on the graph can be 

obtained. The two gradient operators are merged to obtain the joint gradient operator J∇  

of signal X in graph and time. 

 T G
J

T G

I
I
∇ ⊗ 

∇ =  ⊗∇ 
 (2-22) 

At this point, the total smoothness of the signal X in time and space can be measured 

by the gradient J∇ , as shown in Eq. (2-23) 

 2 2 2

2
T

J J G TF F
x x L x X X∇ = = ∇ + ∇  (2-23) 

where G X∇  and TX∇  represent the smoothness or continuity of the signal in space 

and time, respectively. 

Next, the pql  norm of the temporal and spatial smoothing of signal X can be used 

to solve the artifact-free signal X from the noisy signal by solving the optimal solution of 

(2-24). 

 2arg min p q
T GF p q

X
X Y X Xα β− + ∇ + ∇  (2-24) 

The following part will discuss how to obtain the optimal solution of Eq. (2-24) in 

different cases. When p = 2 and q = 2, we need to obtain the optimal solution of Eq.(2-

25). 
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= − + +
 (2-25) 

Assuming 2( ) T F
h X X= ∇ , 2( ) G F

g X X= ∇ , ( )h X  and ( )g X  are differentiable. 

Therefore, the optimal solution of Eq. (2-25) can be obtained by the following equation 

(2-26). 
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 (2-26) 

where H is the final derived graph filter. 
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When 2, 1p q= = , since 1
( ) Gh X X= ∇  is not differentiable, X can be solved by 

the FISTA algorithm. Assuming 2 2( ) TF F
f X X Y Xα= − + ∇ , Eq.(2-24) can be divided 

into the following two equations 

 
2

2 2
2 2arg min TF F

u
u Y uα− + ∇  (2-27) 

 ( ) 1

2
2 2

1arg min
2X

h Gpro Xx u u Xγ
β
γ

∇− +=  (2-28) 

Table 2.1   FISTA algorithm 

FISTA algorithm 
Input: Contaminated signal Y, α, β 
Set 1 1, 1, 1,u Y t γ= = =  
While not converged do: 

( )2 1 1 1(2 2 )u u u Y L uγ α= − − +  

( )2k hX prox uγ=  

( )2
2 11 1 4 / 2t t= + +  

( )( )1 1 1 2t 1 / tk ku X X u= + − −  

1 ku X=  

1 2t t=  
end 

Then, the signal X can be derived by the FISTA algorithm shown in Table 2.1, where 

GL L=  and ( )2hprox uγ  is as shown in (2-28). Similarly, when 1, 2p q= = , the FISTA 

algorithm is still needed to solve X. At this time, some of the parameters in the iteration 

are shown as follows: 

 DL L=  (2-29) 

 ( ) 1

2
2 2

1arg min
2X

h Tpro Xx u u Xγ
α
γ

∇− +=  (2-30) 

 ( )2 1 1 1(2 2 )u u u Y L uγ β= − − +  (2-31) 

In this thesis, the solution of Eq. (2-28) and Eq. (2-30) refer to the direct solution 

algorithm based on the total time variation of the 1l -norm proposed by Condat(Condat, 

2013) and the algorithm proposed by Fadili(Fadili & Starck, 2009), respectively. 
When 1, 1p q= =  , since both 1

( ) Th X Xα= ∇   and 1
( ) Gg X Xβ= ∇  are not 

differentiable, Forward-Backward-Based Primal-Dual algorithm is used to obtain 
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artifact-free signal X. The flow of the algorithm is shown in Table 2.2, where hproxγ  

and *g
prox

σ  are shown in equations(2-30) and (2-32) respectively. 

( ) ( )*

2 *1 1arg min
2 Fg

z
prox x x z g z

σ σ
= − + (2-32) 

Table 2.2  FB-based primal-dual algorithm 

FB-based primal-dual algorithm for JFT11 
Input: Contaminated signal Y, α, β 
Set 0 , 1/ 2, 1x Y τ σ= = =  
While not converged do: 

2( )ng x Y= −  

( )( )n h n T np prox x g L vτ τ= − +  

( )( )* 2n n G n ng
q prox v L p x

σ
σ= − −  

1 ( )n n n nx x p xλ+ = + −  

1 ( )n n n nv v q vλ+ = + −  
end 

We can find the solution to Eq. (2-32) as shown in Eq. (2-35) with the Moro 

decomposition property of the proximal operator shown in Eq.(2-33), where ( )hprox x  is 

shown in Eq.(2-34). 

 ( ) ( )*h h
x prox x prox x= +  (2-33) 

 ( ) ( ) 2

2

1arg min
2h

u
prox x h x u x= + −  (2-34) 

 ( )*g
prox x x u

σ

β
σ

= −  (2-35) 

 
2

1

1arg min z
2 G

z F

xu zσ σ
β β

= − + ∇  (2-36) 

2.3.4 Stepwise Linear Discriminant Analysis 

The determination of the presence of evoked potentials P300 by EEG features is a 

binary problem with the decision hyperplane shown below: 

 0w x b⋅ − =  (2-37) 

where w  is a vector of feature weights, b is a bias term, and x  is a feature vector. 

Stepwise linear Discriminant Analysis (SWLDA) is a feature selection technique. It 

adds the most statistically significant predictor variable ( p k< ) to the model through a 



Chapter 2 JFT Filter for EEG Denoising Based on Graph Spectral Theory 

31 

combination of forward and backward stepwise regression, starting with no initial model 

term. After the model is updated, backward stepwise regression is performed to remove 

the least significant variables ( p ε>  ). The process is then repeated until the model 

contains a predetermined number of variables or no other variables meet the input or 

removal criteria. 

2.4 Simulation and Real Data Classification Results 

We verify the robustness of the algorithm in simulation experiments and 

classification experiments on two P300 datasets, respectively. In this section, the 

experimental dataset, simulation noise, simulation results, and its classification results 

will be presented. 

2.4.1 Dataset 

Data I contained healthy and auditory hallucinated subjects. All participants signed 

informed consent forms (23 hallucinated subjects and 29 healthy subjects). To elicit 

event-related potentials, the auditory P300 oddball paradigm was applied to the data 

acquisition. In this study, we used Stmtop amplifier and 16-channel electrode caps to 

record P300 and resting-state EEG from both groups of subjects with a sampling rate of 

1000 Hz, and all electrode impedances were kept below 5 KΩ. 

To further validate the algorithm's effectiveness, we introduced dataset II (Wolpaw, 

McFarland, Vaughan, & Schalk, 2003), which is a publicly available P300 brain-computer 

interface dataset. For each character, the user display was as follows: the matrix was 

displayed for a 2.5 s period, and during this time, each character had the same intensity 

(i.e., the matrix was blank). Subsequently, each row and column in the matrix was 

randomly intensified for 100ms (i.e., resulting in 12 different stimuli – 6 rows and 6 

columns). (After the intensification of a row/column, the matrix was blank for 75ms.). In 

this experiment, the signal was sampled at a rate of 240 Hz. Three participants are 

involved, with 2 in the training set with 11 sessions and 41 trials and 1 in the test set with 

8 sessions. Each trial corresponds to one character. 
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2.4.2 Simulation Noise and Simulation Results 

2.4.2.1 Simulation Noise 

To verify the validity of the algorithm, dataset I was rigorously preprocessed to 

obtain ground-truth ERP signals in this thesis. The EEG of healthy subjects was first 

filtered through a low-pass filter of 1-20 Hz. Then electromyographic artifacts were 

removed by ICA. Finally, all the trials were averaged to obtain the robust P300. As a 

result, the averaged P300 signal is the ground truth. To verify the robustness of the 

algorithm to different noises, three types of noises were added to the baseline EEG signal, 

which are Gaussian noise, impulse noise, and spontaneous EEG noise. 
Mathematically, Gaussian noise obeys a probability distribution with mean zero and 

standard deviation σ  . The mathematical expression of its probability distribution is 

shown in the following Eq.(2-38). EEG is usually affected by a variety of noises, 

including physiological noise, environmental noise, and noise of the instrument itself. 

Some of the noises have similar distributions and properties to Gaussian noise, and thus 

Gaussian noise is often used in simulation. 
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Here, the noise is considered as additive noise. As shown in Eq.(2-39), the 

contaminated noise Y is modulated by the original EEG oriX   and the noise S. The 

intensity of noise was controlled by the signal-to-noise ratio as shown in Eq. (2-40). 

 oriY X S= +  (2-39) 
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In addition to Gaussian noise, there is also a lot of non-Gaussian noise and impulse 

noise in the actual acquisition process. Here, the Alpha-stable distribution was used to 

model the impulse noise. The mathematical expression of Alpha-stable probability 

distribution is shown in Eq. (2-41). α is the characteristic index, which usually varies in 
(0, 2] and mainly controls the thickness of the tail in the probability density function. The 

smaller its value is, the thicker the tail is. δ is the position parameter, which is set to 0 in 
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this experiment for the sake of generality. γ  is the scale parameter, which describes the 

degree of deviation of the stable distribution from its mean value. 

 ( ) ( )e i t tt
ααδ γ−Φ =  (2-41) 

When 1.3, 0, 1α δ γ= = = , the pulse noise S is shown in Figure 2.2. 

 

Figure 2.2 The impulsive noise 

Finally, since the P300 is usually submerged in the resting-state EEG. In this thesis, 

the resting-state EEG of the subjects is used as one of the noise signals in the simulation. 

We will randomly cut out a segment from a 5-minute resting-state EEG and add it to the 

original EEG signal oriX . 

Finally, after denoising, the signal-to-noise ratio of the noise-reduced signal can be 

calculated through Eq.(2-42), where deX  is the signal after denoising. 
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2.4.2.2 Simulation results 

Before describing the results, Table 2.3 gives the description of the algorithm and 

the parameter settings for this thesis. Specifically, we compare 4-layer db5 wavelets 

commonly used for EEG denoising. Two soft thresholding methods are used for wavelet 

threshold estimation. They are rigrsure and sqtwolog, respectively. It is worth noting that 

DFTp means that the pl  -norm of temporal smoothing is used for denoising without 

spatial smoothing. JFTpq means that the pl -norm of temporal smoothing and the ql -
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norm of graph smoothing are used as constraints. All simulation experiments were 

repeated 100 times and the average results of these 100 times were calculated. 

Table 2.3  Description of algorithms and parameters 

WT1 WT2 DFTp GFTq JFTpq 
db5 db5 p=2 or 1 p=0 p=1 or 2 

rigrsure sqtwolog q=0 q=1 or 2 q=1 or 2 
4 levels 4 levels    

 

Figure 2.3 Schematic of the EEG waveforms and the SNR after denoising at 

different impulsive noise intensities: (a) EEG waveforms before and after 

denoising at SNR=0dB; (b) impulsive noise intensities SNR=-5dB; (c) 

impulsive noise intensities SNR=0dB; (d) impulsive noise intensities 

SNR=5dB 

First, we added impulse noise to the C3 lead, after which we used algorithms to filter 

the EEG signal. Figure 2.3 shows the ERP waveforms after denoising with these 10 

algorithms as well as the SNR after denoising under the contamination of different 

intensities of impulsive noise. Table 2.4 shows the quantitative results of the denoising 

ability of different algorithms under the contamination of different distributions of 

impulsive noise. Through the ERP waveforms shown in Figure 2.3 (a), we can observe 
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that the impulse noise amplitude is still as high as about 30-40 uV by the GFT1 and WT, 

whereas the impulse noise is suppressed by the GFT2. The impulse noise amplitude is 

weakened to less than 4 uV by the DFT2. JFT algorithm achieves even better impulse 

noise suppression and the impulse noise amplitude is almost minimized to 0. As shown 

in Figure 2.3(b) and (c), at noise intensities of -5dB and 0dB, the SNR of JFT after 

denoising is further significantly improved by 4dB compared to DFT2 (p < 0.01); while 

at noise intensity of 5dB, the SNR of JFT is still significantly improved by 2dB compared 

to DFT2 (p < 0.01). As shown in Table 2.4, we can see that no matter how the distribution 

parameters of the impulse noise, the SNR of WT1 and WT2 is still around -10dB, and 

GFT2 and GFT1 improve the SNR compared to WT. Meanwhile, the SNR of the DFT1 

and DFT2 is basically at 20 dB and 22 dB. The JFT algorithm incorporates graph and 

temporal smoothing and further significantly improves the SNR (p < 0.01). The SNR of 

JFT is basically at about 26 dB after denoising. Overall, the JFT algorithm provides 

significantly better suppression of impulse noise compared to other algorithms. 

Table 2.4 SNR (dB) after denoising at noise intensity of -5dB and different 

parameter distributions of impulse noise. ****: represents the algorithm has a 

significantly different denoising performance from JFT11, JFT12, JFT21, and 

JFT22, respectively 

 α=1.1,
γ=1.5 

α=1.3,γ=
1.5 

α=1.7,
γ=1.5 

α=2.0,
γ=1.5 

α=1.1,
γ=4.5 

α=1.3,
γ=4.5 

α=1.7,
γ=4.5 

α=2.0,
γ=4.5 

WT1**** -10.74 -10.84 -10.87 -10.86 -10.77 -10.87 -10.84 -10.78 
WT2**** -8.94 -9.29 -9.36 -9.32 -9.09 -9.34 -9.30 -9.06 
DFT2**** 22.82 22.53 22.53 22.92 22.89 22.62 22.73 22.62 
DFT1**** 20.67 20.34 20.35 20.67 20.68 20.42 20.54 20.41 
GFT2**** -2.08 -1.03 -1.48 -1.04 -2.85 -3.15 0.90 -2.30 
GFT1**** -2.34 -0.91 -1.50 -0.75 -2.72 -3.15 0.59 -2.52 
JFT11 27.29 27.43 27.24 27.64 26.99 26.66 28.22 26.93 
JFT12 27.25 27.45 27.37 27.64 27.11 26.57 28.40 27.06 
JFT21 27.19 27.45 27.37 27.64 27.11 26.57 28.40 27.06 
JFT22 25.99 26.21 26.16 26.36 26.04 25.55 26.86 26.03 

Figure 2.4 illustrates the ERP signal and the SNR after denoising under the 

contamination of different intensities of Gaussian noise. It is worth noting that, as shown 

in Figure 2.4(b), at noise intensities of -5dB, when only spatial smoothing is utilized, SNR 

with GFT is almost the same as or even worsens; while at noise intensities of 5dB, the 

GFT improves the SNR as shown in Figure 2.4 (d). In addition, compared with the 

wavelet transform, the SNRs of JFT22, JFT21, JFT11, and JFT12 are significantly higher 

than those of WT1 and WT2(p < 0.01). Regardless of the changes in the Gaussian noise 
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intensity, the SNR of JFT11 and JFT21 are significantly improved by about 2 dB 

compared with the DFT2 (p < 0.01). In addition, from Figure 2.4 (a), we can observe that 

the signal tends to change more linearly in a short time when the DFT1 selects improper 

parameters. 

 

Figure 2.4 Schematic of the EEG waveforms and the SNR after denoising at 

different Gaussian noise intensities: (a) EEG waveforms before and after 

denoising at SNR=-5dB; (b) Gaussian noise intensities SNR=-5dB; (c) 

Gaussian noise intensities SNR=0dB; (d) Gaussian noise intensities SNR=5dB 

Due to the low SNR of the P300 signal and the fact that P300 is usually submerged 

by resting EEG, resting EEG is regarded as a noise signal and its intensity is modulated 

by SNR. The denoising results are shown in Figure 2.5. We can observe from Figure 2.5 

(a) is that the GFT algorithm extracts the main waveform of the signal, making the filtered 

P300 waveform more significant. In addition, we can notice that at noise intensities of -

5dB, as shown in Figure 2.5(b), all the filtering algorithms are unable to improve the SNR. 

In Figure 2.5(c) and Figure 2.5(d), we can observe that compared to DFT, GFT has better 

suppression of spontaneous EEG noise, which significantly improves the SNR (p < 0.01). 

WT hardly improves the signal quality when SNR=0. The two algorithms, JFT12 and 

JFT21, further improved SNR compared to GFT (p < 0.01). 
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Figure 2.5 Schematic of the EEG waveforms and the SNR after denoising at 

different spontaneous noise intensities: (a) EEG waveforms before and after 

denoising at SNR=5dB; (b) spontaneous noise intensities SNR=-5dB; (c) 

spontaneous noise intensities SNR=0dB; (d) spontaneous noise intensities 

SNR=5dB 

2.4.3 Classification Results 

In order to further verify the effectiveness of the algorithm, the classification is 

further performed in real data. The signal is first filtered with different denoising 

algorithms, and then we construct the classification model using SWLDA. 

Through the pre-simulation experiments, we can observe that both JFT21 and JFT22 

show good noise suppression ability in the simulation experiments, whereas when using 

DFT1, improperly imposed parameter can lead to linear distortion of the signal. Therefore, 

in dataset 1, we mainly compare the two algorithms, JFT21 and JFT22, as well as DFT2, 

GFT, and WT algorithms. Dataset 1 mainly contains healthy subjects and auditory 

hallucinated patients with schizophrenia. The leave-one-out method was used for dataset 

segmentation. As shown in Table 2.5, the classification accuracy after JFT21 filtering 

reaches 82.69%. 
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Table 2.5  Classification accuracy in healthy controls and auditory verbal 

hallucinations from ERP(%) 

Methods Original data DFT2 GFT2 WT1 WT2 JFT22 JFT21 
Leave-1-out 69.23 73.08 71.15 71.15 69.23 78.85 82.69 

In the P300 spelling system, our main goal is the Information Transfer Rate (ITR). 

Therefore, the signal classification accuracy should be increased while keeping the 

response time as short as possible. Due to the long iteration time of the 1l -norm, we only 

check the effectiveness of the algorithms DFT2, GFT2, JFT22, and WT in dataset 2. The 

results of character spelling accuracy for signals filtered by different algorithms are 

shown in Table 2.6 below for the first 5 repetitive trials. We can find that after JFT22 is 

used for preprocessing, the character recognition accuracy of the P300 speller is 

significantly improved, and all characters can be recognized and decoded when the 

number of repetitions is 5. 

Table 2.6 Character spelling accuracy with different denoising algorithms(%) 

Methods Repetitive trials 
1 2 3 4 5 

Original data 38.71 54.84 67.74 77.42 83.87 
WT1 29.03 54.84 77.42 80.65 96.77 
WT2 54.85 58.06 77.42 87.10 93.55 
GFT 22.58 48.39 54.84 77.42 87.10 
DFT 35.48 54.84 80.65 90.32 100 

JFT22 58.06 67.74 83.87 96.77 100 

2.5 Discussion 

EEG signals are highly susceptible to noise during the acquisition process, and this 

inherent problem hinders the subsequent analysis of EEG, thus affecting the performance 

of brain-computer interfaces and clinical diagnostic models. In this thesis, we mainly 

explore the denoising performance of wavelet transform and JFT filters based on graph-

temporal smoothing. 

The experimental results show that, as shown in Table 2.4 and Figure 2.3, for impulse 

noise, WT has almost less suppression effect on impulse noise at low SNR conditions 

(SNR=-5dB). In contrast, DFT has a good suppression ability for impulse noise. Under a 

strong noise environment, GFT1 and GFT2 have weaker suppression ability on impulsive 

noises. JFT combines the advantages of GFT and DFT to further improve the signal 

quality of the noisy signal, which also suggests that GFT can further take effect after DFT 
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smoothing. Overall, the effectiveness of JFT on impulse noise suppression is better than 

DFT, GFT, and WT. 

Similarly, in Gaussian noise, as shown in Figure 2.4, the SNRs of the filtered signals 

with 1l -norm and 2l -norm GFT decrease at a high intensity of Gaussian noise (SNR=-

5dB), while the SNR of the filtered signal with GFT improves after denoising high 

intensity of Gaussian noise (SNR=5dB). These results indicate that GFT may deteriorate 

the signal quality in strong noisy environments and fail to achieve the purpose of 

denoising. This may be due to the fact that the estimation of the underlying graph where 

the signals reside relies on the signal itself rather than the actual distance between the 

leads. The deterioration of the signal leads to a serious failure of the estimation of the 

adjacency matrix. In this case, the main energy of the signal is concentrated in the noisy 

channel, and the edge weights between the noisy channel and the rest of the channels 

cannot be estimated accurately. As a result, the noise cannot be filtered out by GFT. DFT 

(temporal smoothing), on the other hand, is more robust to Gaussian noise compared to 

wavelet transform. Thus, GFT can further take effect in denoising after the DFT has 

effectively suppressed the noise, resulting in an overall higher SNR of JFT. Although the 

WT can suppress Gaussian noise well, it has little or no suppression effect on impulse 

noise. This may be due to the fact that the wavelet coefficients of impulsive noise after 

wavelet transform are concentrated and not lower than those of the actual EEG signal. It 

is worth noting that DFT1 imposes more similar to a linear constraint on the EEG signal. 

When the parameters are not properly chosen, as shown in Figure 2.4, the EEG signal 

within the small window is more similar to linear, which we believe is not in line with the 

characteristics of the EEG signal and may interfere with the subsequent feature extraction 

of the EEG signal. Thus, we recommend DFT2 for EEG noise reduction compared to 

DFT1. 

And as for spontaneous noise, to reveal the results of Figure 2.5(b), the signal 

waveform at noise intensity of SNR=-5dB is drawn in Figure 2.6.  We found that the 

ERP signal has been completely submerged in the resting EEG, and all the algorithms are 

unable to extract the P300 signal. At SNR=5dB, as shown in Figure 2.5(a), the role of 

GFT is more similar to that of PCA in extracting the main components of the EEG signal. 

In general, the signal power is more concentrated in the lower frequencies of the graph, 

which also captures the vast majority of the signal's features. This is the main reason why 

GSP are currently used for dimensionality reduction(Kalantar, Sadreazami, Mohammadi, 
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& Asif, 2017; Rui, Nejati, & Cheung, 2016). Previously, Rué-Queralt found that the 

connectome harmonics decomposition provided by graph spectral theory may be superior 

to techniques such as PCA and ICA in dimensionality reduction. The study in this thesis 

implies that reconstruction of the signal with low-dimensional harmonics preserves the 

main features and suppresses some of the noises. However, the denoising performance of 

GFT will be greatly affected by the estimation of the graph structure. Thus, the 

development of a stable estimation method of the underlying graph structure may be more 

beneficial for the subsequent application and development of denoising algorithms based 

on graph spectral theory. 

 

Figure 2.6 Signal waveform when SNR=-5dB (the intensity of spontaneous EEG noise) 

To explore the improvement of decoding efficiency of EEG signals after JFT 

denoising, we constructed classifiers using SWLDA for the data before and after 

denoising. In dataset 1, we classified auditory hallucinations with schizophrenia and 

healthy controls and found that the classification accuracy after JFT21 filtering was as 

high as 82.69%. In dataset 2, the character recognition accuracy of the P300 speller after 

JFT22 denoising is as high as 100% when the number of repetitions is 5. Besides, the 

computation time of JFT22 is much smaller than that of WT. The classification 

experiments in the P300 dataset verify the effectiveness of the algorithm and favorably 

support the hypothesis that the combination of temporal and spatial constraints can 

suppress the noise better. 

Overall, graph spectral theory can remove noise based on the dependencies between 

different channels of the EEG signal. Considering the low spatial resolution and high 

temporal resolution of EEG signals, the pure graph filter method may not be sufficient to 

deal with complex noises. Thus, we introduce temporal smoothing and develop the JFT 

methods. The results of simulation and classification experiments show that JFT has 
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better performance in suppressing various noises compared with traditional wavelet 

transform and other methods, and can effectively improve the decoding accuracy of 

disease models and brain-computer interface. 

2.6 Conclusion 

In this chapter, we focus on the performance of denoising algorithms based on graph 

spectral theory. We combine the graph domain-informed constraints with the temporal 

smoothing constraints, develop a JFT algorithm, and further explore the effectiveness of 

the algorithm in simulation experiments and classification experiments. We find that the 

denoising algorithm under the joint constraints can effectively suppress impulse noise, 

Gaussian noise, and spontaneous EEG noise, enhance the decoding efficiency, and 

improve the efficiency of the classification. However, the poor performance of the GFT 

at high intensity of impulse and Gaussian noise reminds us that the effectiveness of the 

estimation of the underlying graph structure will greatly affect the performance of the 

GFT. Although the estimation of the graph structure has not been deeply explored at 

present, the experimental results still demonstrate the effectiveness of the graph spectral 

theory based on the joint time-vertex framework, which provides new insight for the 

development of denoising algorithms for EEG signals based on graph spectral theory. In 

addition, although graph spectral theory has been increasingly used in denoising and 

feature extraction in cognition and disease research, further exploration is needed 

regarding the relationship between graph spectral features, cognition and EEG rhythms. 
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Chapter 3 Analysis of Schizophrenia Based on Graph Spectral Theory 

3.1 Abstract 

In the previous chapter, we focused on the application of graph spectral theory to 

denoise EEG. In this chapter, we will delve into the main reasons why graph spectral 

theory can be used for denoising. The relationship between graph harmonics and EEG 

rhythms will be further discussed in depth in this chapter. In previous studies, researchers 

have found that connectome-harmonic decomposition (CHD) analysis based on graph 

spectral theory provides a natural distribution pattern of connectomes and is an effective 

tool for analyzing the coupling of structural networks and functional signals as well as 

cortical network dynamics. Therefore, in this section, we will explore the application of 

CHD analysis based on graph spectral theory in schizophrenia.  

Abnormalities in brain network dynamics in schizophrenia have now been widely 

reported. For SCZ, researchers have now mainly explored the brain network connectivity 

changes in SCZ patients as well as ERP components. However, few researches have been 

carried out to explore the neural mechanism changes in schizophrenia from the 

perspective of the coupling of structural and functional signals. So, this study may fill the 

gap in this part of the study. On the other hand, current studies of schizophrenia have 

focused on the P300 component of the ERPs but have rarely investigated the activation 

patterns of different EEG rhythms from the source space and their relationship with 

neurocognitive alterations. In addition, the relationship between brain rhythm alterations 

of SCZ patients and graph harmonics needs to be further elucidated. Therefore, this thesis 

combines the power spectral density and graph spectral theory to explore the differences 

between the two groups of subjects in the brain activation of low-frequency graph 

harmonic and high-frequency graph harmonic and their relationship with neurocognition. 

This will further provide new analytical techniques and a research basis for the 

exploration of the neurophysiological endophenotypes of schizophrenia. In addition, the 

difference in cognitive patterns captured by low-frequency and high-frequency graph 

harmonics will further support and demonstrate the reliability of graph harmonics for 

dimensionality and graph filters. 
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3.2 Introduction 

SCZ is one of the most common and disabling psychiatric disorders. Thus, finding 

objective neurophysiological endophenotypes and exploring their relationship with 

neurocognitive alterations play an important role in understanding the neural mechanisms 

of SCZ, diagnosis, and assessment of treatment effects. The Schizophrenia Genetics 

Consortium examined the genetic basis of neurocognitive biomarkers in families with a 

high prevalence of SCZ and identified candidate endophenotypes related to attention, 

working memory, and verbal declarative memory(Gur et al., 2007). Antonova et al. 

investigated structural-neurocognitive relationships in SCZ and found that the prefrontal 

cortex, temporal lobe, hippocampus, and parahippocampal gyrus were highly correlated 

with neurocognitive levels(Antonova, Sharma, Morris, & Kumari, 2004). In EEG, 

researchers mainly found prepulse inhibition deficits in SCZ patients (Swerdlow et al., 

2014), loss of oculomotor nerve during counter scanning(Levy et al., 2004), mismatch 

negativity(MMN)(Levy et al., 2004), and P300 deficits in SCZ patients (Bramon, Rabe-

Hesketh, Sham, Murray, & Frangou, 2004). These deficits are highly correlated with 

neurocognitive deficits such as attention. In addition to this, dysfunctions in EEG rhythms 

in SCZ patients have been widely reported. δ and θ as the most basic components of the 

P300, usually show a tendency to be decreased in SCZ patients (Schmiedt, Brand, 

Hildebrandt, & Basar-Eroglu, 2005). However, γ activity is influenced by the behavioral 

state of schizophrenia and the difficulty of tasks and shows either an increased or an 

attenuated tendency(Başar & Güntekin, 2008). Specifically, patients with a working 

memory load (Kedzior & KMathes, 2007) or positive symptoms (Schmiedt et al., 2005) 

usually show increased gamma amplitude. These studies have explored the SCZ 

abnormalities and their relationship with neurocognitive activities, mainly in terms of 

EEG rhythms and gray matter in local brain regions. However, as a highly interconnected 

system, the brain accomplishes cognitive functional activities mainly through complex 

modulations across multiple brain regions. Classical signal processing methods in the 

time and frequency domains are not sufficient to decode the cognitive activities of the 

brain. As a result, complex network analysis methods have been widely noticed and used 

in disease research. 

Graph spectral theory is an effective means of analyzing complex networks and an 

emerging tool for describing the fundamental characteristics of the interactions between 

multiple brain regions. It can be used to filter functional signals such as FMRI (Medaglia 
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et al., 2018), extract features (Pilavci & Farrugia, 2019), decode of cognitive processes 

(Preti & Van De Ville, 2019) and neurological disorders (Jestrović, Coyle, & Sejdić, 2017), 

as well as explore the structure-function relationships. Unlike previous techniques for 

exploring brain dynamics, the connectome-harmonics used in this thesis rely exclusively 

on structural connectivity and can be used as a generalized, anatomical harmonic 

representation for any functional signals. It is analogous to the decomposition of signals 

by Fourier transforms using sine and cosine functions. In previous studies, researchers 

have found that brain oscillations can be categorized into δ, θ, α, β, and γ waves according 

to their frequency bands and that different waves support different modes of information 

processing (Fries, 2015). A more recent study by Vezoli has shown that white matter 

anatomy limits oscillatory activity in different frequency bands(Vezoli et al., 2021). 

Studies of brain network dynamics have shown that low-frequency oscillations are more 

likely to modulate long-range interactions and high-frequency oscillations are more likely 

to modulate short-range localized activity. This result was demonstrated by CHD 

analysis(Rué-Queralt et al., 2021; Rué-Queralt et al., 2023) which further suggests that 

CHD analysis may become an important tool for subsequent studies of structural and 

functional coupling. Indeed, the CHD method was later used for the estimation of 

functional networks in resting-state states by Atasoy(Atasoy et al., 2017). Besides, it has 

since been widely used in the study of disorders such as autism spectrum 

disorders(Brahim, Hajjam El Hassani, & Farrugia, 2019), and ADHD(Y. Li & Mateos, 

2019). Local and distributed functions of the brain coexist, and CHD emphasizes viewing 

brain activity in terms of connectome harmonics (distribution patterns at different spatial 

scales). Thus, CHD analysis is just as reasonable as viewing it in terms of discrete spatial 

locations (Luppi et al., 2023). 

Numerous reports elucidated the changes in brain network dynamics of SCZ patients 

and suggested that these abnormal network dynamics should be responsible for the 

neurocognitive deficits in SCZ patients. Farzan et al. found that cognitive deficits may be 

caused by abnormal connectivity between frontal, temporal, and parietal regions in 

patients with schizophrenia(Farzan et al., 2010). Stotesbury found that reduced 

processing speed was associated with white matter abnormalities that are widespread 

across brain regions(Stotesbury et al., 2018). Eryilmaz et al. reported that the degree 

centrality of the brain network in the prefrontal and parietal lobes was associated with 

working memory and was a valid predictor of working memory test scores of SCZ 
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patients (Eryilmaz et al., 2022). Studies have revealed structural or functional network 

abnormalities between different brain regions of SCZ patients. However, few researchers 

have revealed changes in the coupling of structural network and function signal in SCZ 

patients and their relationship with cognitive impairment. In this thesis, we introduced the 

CHD analysis to reveal the changes in cortical network dynamics during P300 in SCZ, 

the activation changes in different EEG rhythms at low-frequency and high-frequency 

graph harmonics, and their associations with neurocognition. Our research will provide a 

new way of the exploration of the neurophysiological endophenotypes of SCZ. 

3.3 Data and Processing Flow 

3.3.1 Data 

The research data were collected and provided by the B-SNIP(Clementz et al., 2016). 

The schizophrenia (N=147), as well as healthy controls (HC) (N=200), underwent clinical 

characterization and brief assessment of schizophrenia cognition (BACS). Healthy 

controls were identified based on their family history; they and their first-degree relatives 

must have no history of psychiatric disorders. All participants underwent EEG recording 

with a sampling rate of 1000Hz and 64 electrodes. Additionally, to elicit event-related 

potentials, the auditory oddball paradigm was applied. During the collection process, 

participants sat in soundproof booths and listened to tones emitted from two 8 Ω speakers 

positioned 50 centimeters in front of them. The stimuli consisted of 567 standard tones 

(1000 Hz) and 100 target tones (1500 Hz), presented in a pseudorandom order with a trial 

interval of 1300 milliseconds. Participants were instructed to press a button when they 

detected a target tone. 

3.3.2 Data Processing Flow 

Figure 3.1 illustrates the data acquisition and processing of EEG signals in this study. 

As shown in Figure 3.1(a), SCZ patients and healthy controls had completed the 

neurocognitive tasks and scores, and their task-state P300 EEG had been acquired. After 

that, to ensure the reliability of the results, we first pre-processed the data with eeglab. As 

shown in Figure 3.1 (b), the EEG signals were firstly filtered by a 0.5-45Hz bandpass 

filter, then REST reference was used for zero potential estimation, followed by removing 

muscle artifacts and electromyographic artifacts by ICA. After that, the ERP is extracted 
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based on the label information, at which time the trial with EEG amplitude higher than 

120uV will be identified as an artifact, and the trial will be discarded.  

 

Figure 3.1 Flowchart of data analysis based on graph spectral theory 

Before applying CHD analysis, we need to construct the connectome harmonics 

through the process shown in Figure 3.1 (c). Firstly, we obtain the structural brain network 

through DTI images. Then to ensure the portability of the structural network in SCZ 

patients and healthy controls, we keep only the first 13% of the connections and obtain 

the connectome harmonics by constructing the Laplace matrix. After obtaining the 

connectome harmonics, as in Figure 3.1 (d), we averaged the scalp ERP over all trials and 

traced them back to the cortex, followed by extracting the source activity of 200 ROIs 

according to Schaefer's template. At this point, we had access to the connectome 

harmonics and the EEG signals residing on these networks, thus allowing us to perform 
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a CHD analysis. We first analyzed the graph spectral power density of EEG signals at 

different graph harmonics. After that, to further explore the relationship between graph 

harmonics and rhythms, we filtered the signals into graph high-frequency and low-

frequency signals and analyzed their PSD to find the cortex activation at different graph 

harmonics. As shown in Figure 3.1 (e), the extracted features are correlated and predicted 

with the collected BACS scales to understand the relationship between graph harmonics 

and neurocognitive abilities. 

3.4 Methods 

In the previous part, we introduced the main technical routes of this chapter. In this 

section, we will specifically introduce the methods used in this chapter, which mainly 

include source localization techniques, construction of consensus structural brain 

networks, graph power spectral density, and power spectral density. 

3.4.1 Source Localization Techniques 

Here, we used standardized low resolution brain electromagnetic tomography 

(sLORETA) to reconstruct cortical source signals from scalp EEG. As shown in Eq.(3-1), 

sLORETA assumes that the scalp EEG 1ERφ ×∈  can be obtained from the current density 
3 1VJ R ×∈   in the cortex with a certain weight, and the weight transfer matrix is 

(3 )E VK R ×∈ , and V is the number of sources. Besides, the acquired signal will also be 

susceptible to noise in the natural environment and other noise interference. The noise 

signal is represented by 1ERε ×∈ . To obtain the solution of Eq. (3-1), we can solve the 

minimization problem shown in Eq. (3-2), where α  is the regularization parameter. 

 KJφ ε= +  (3-1) 

 2 2arg min KJ J
J

φ α− +  (3-2) 

The solution of the problem is as follows: 

 J Tφ
∧

=  (3-3) 

 T TT K KK Hα
+

 = +   (3-4) 

where E EH R ×∈  is the centroid matrix and +  is Moore–Penrose pseudoinverse. 
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Ultimately, by normalizing J
∧  with Bayesian theory, we obtain the solved current 

density for the l th voxel as shown in the following Eq.(3-5), where 
J

S∧   is the variance 

of the estimated normalized current density. 

 { } 1T

ll
J ll

P J S J∧

−∧ ∧ =   
 (3-5) 

 T T

J
S K KK H Kα∧

+
 = +   (3-6) 

After obtaining the source EEG, we obtained 200 ROIs’ locations based on the 2018 

Schaefer template, and then found the corresponding voxels in each ROI. Then, the source 

activities for voxels within each ROI are averaged to obtain the source EEG activity for 

each ROI. 

3.4.2 Construction of Consensus Structural Brain Networks 

To obtain connectome harmonics, we obtained consensus connectivity matrices from 

the publicly available DTI database from the Human Brain Connectome Project. The 

dataset contained a total of 400 healthy subjects (170 males; age range 21-35 years). Next, 

we performed DTI preprocessing of the DTI images using FMRIB software with MRtrix3 

and Freesurfer. First, the Eddy function of FSL was used to correct the DTI images for 

motion. Then, to attenuate each isotropic diffusion in the cerebral white matter and to 

provide more accurate fiber orientation information, we used constrained spherical 

deconvolution to estimate the multi-shell and multi-tissue response function. Then, the 

FAST algorithm was used to segment the T1w-weighted images that had been registered 

to the b0 volume. With anatomically constrained traction, the second-order integration of 

the fiber orientation distribution was performed to generate an initial traction map with 

10 million streamlines. The spherical deconvolution (SIFT2) method was then applied to 

informally filter the traction map to provide a more accurate metric of biofiber 

connectivity. Finally, an anatomical connectivity matrix was obtained based on the 

definition of the 200-region atlas provided by Schaefer. Finally, after averaging the 

network adjacent matrices across all subjects, to ensure the stability of the filtered 

structural connections across all subjects (healthy controls and SCZ patients), we retained 

only the top 13% of the connections in the DTI matrix and further binarized them. As a 

result, we obtained the consensus binary DTI network matrix between these 200 ROIs.  
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3.4.3 Graph Power Spectral Density 

Now, the consensus matrix N NW R ×∈  is obtained. We then obtain the normalized 

Laplace matrix by the following Eq. (3-8) and Eq. (3-9), where N ND R ×∈  is the diagonal 

matrix which can be obtained from Eq. (3-7). By decomposing the matrix in Eq. (3-10), 

we can obtain the basis of the graph Fourier transform 1[ ,... ] N N
NU u u R ×= ∈ , which is 

also referred as the connectome harmonics. Λ is the diagonal matrix, where dλ  is the 

eigenvalue of the Laplace matrix which characterizes the smoothness of the graph 

connectivity harmonics over the graph. In general, low-frequency harmonics correspond 

to smaller dλ , slower variation patterns on the graph, and coarse-grained spatial variation 

patterns. High-frequency harmonics correspond to larger dλ  , faster variation of the 

signal on the graph, and fine-grained spatial variation patterns. 

 
1

( )
N

ij
i

D ii W
=

=∑  (3-7) 

 L D W= −  (3-8) 

 
1 1
2 2

normL D LD
− −

=  (3-9) 

 T
normL U U= Λ  (3-10) 

From the above equations, we obtain the connectome harmonics U . Now, we can 

quantify how brain activity is constrained by this underlying structural network through 

the Graph Fourier Transform(GFT). By connectome harmonics matrix U  , we can re-

express the EEG source signal at the ith ROI and time t , as shown in Eq. (3-11). 1
ty  

measures the degree to which the signal is constrained by the structural connections. 

1[y ,... ]t t t
NY y=  is the graph Fourier coefficient which can be obtained from the GFT as 

shown in Eq.(3-11) 

 t T tY U J=  (3-11) 

Finally, to obtain the graph power spectral density (GPSD), we refer to the method 

used by Rue-Queralt to regularize the graph Fourier coefficients tY for each subject(Rué-

Queralt et al., 2021). The GPSD of each harmonic at time point t is then obtained by using 

the following Eq. (3-12), which represents the activation of the connectome harmonics at 

time point t. Usually, the activation of low-frequency connectome harmonics corresponds 

to the activation of the information integration mode, while the activation of high-

frequency harmonics corresponds to the activation of the information segregation mode. 
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With GPSD, we can observe changes in the brain dynamics (integration or segregation) 

at the ms level. 

 ( ) 2
, t

dGPSD u t yλ=  (3-12) 

3.4.4 Power Spectral Density 

We will obtain aligned signals (corresponding to the graph low-frequency signal) 

and liberal signals (corresponding to the graph high-frequency signal) through graph 

filters to further understand their role in contributing to the EEG rhythms. The first k
connectome harmonics that capture 50% of the graph energy are recognized as the low-

frequency harmonics and the rest harmonics as the high-frequency harmonics, where we 

choose k  to be 4. Next, we can construct the low-frequency graph filter by Eq. (3-13) 

and Eq. (3-14). Subsequently, the low-frequency aligned signals can be obtained by Eq. 

(3-16). Similarly, the graph high-frequency filter is constructed by Eq. (3-13) and Eq. (3-

15), and then the high-frequency liberal signal is obtained by Eq. (3-17). 

 ( ) ( )( )0 1,... nF diag f fλ λ −=  (3-13) 

 ( ) { }1, 0,..., 4
0,L k

if k
f

otherwise
λ

 ∈
= 


 (3-14) 

 ( ) { }0, 0,..., 4
1,H k

if k
f

otherwise
λ

 ∈
= 


 (3-15) 

 aligned T t
i L iJ UF U J=  (3-16) 

 liberal T t
i H iJ UF U J=  (3-17) 

Then we calculate the power spectral density of SCZ patients and healthy controls 

at each ROI by the average periodogram method Weltch. The signal sequence  ( )x t  

contains N sampling points, and it can be divided into L   segments. The coverage 

between the i th and 1i − th segments is 50%. Assuming that the signal of i -th segment 

is [ ]ix n  , its periodogram ( ) ( )i
sP f  . and the corrected periodogram ( ) ( )i

wP f   can be 

obtained by the following Eq. (3-18) and Eq. (3-19), where [ ]w n (the Hamming window) 

is mainly used to solve the problem of spectrum leakage. 

 [ ] [ ]
21( ) 2

1

1( ) Li j fn
s in

P f w n x n e
L

π−

=
= ∑  (3-18) 
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 ( )( ) ( )
1

1( ) ( )Mi i
w Si

P f P f
M =

= ∑  (3-19) 

Now, we can obtain the PSD distributions of the graph low-frequency signal alignedJ  

and graph high-frequency signals liberalJ  at different ROIs. 

3.4.5 Correlation and Regression Prediction Analysis 

In order to further explore the neural mechanisms of cognitive impairment in SCZ 

patients, we expected to find potential relationships between the above features and 

cognitive scales to find the neurophysiological endophenotypes of SCZ. We used Pearson 

correlation analysis to calculate the correlation between the GPSD of the source EEG 

signals and the distribution of the PSD of the graph low-frequency and high-frequency 

signals with the cognitive scales, respectively. We then constructed a prediction model to 

predict cognitive task scores using the EEG activation of aligned signal in δ-wave. The 

prediction model is as follows: 

 0 1 1 2 2 ... m mAR P P Pβ β β β ε= + + + + +  (3-20) 

where AR  denotes the specific cognitive task score, 1...mP  denotes the PSD for m ROI, 
ε is the error term, and 0...mβ  is the regression coefficient. 

The cross-validation strategy of leave-one-out is used to partition the training and 

test sets. For n samples, in each cross-validation, n-1 samples are used as the training set, 

and one remaining sample is used as the test sample. Based on the PSD and cognitive task 

scores of these n-1 samples, a prediction model was constructed to predict the cognitive 

scores of the rest. This process was repeated n times until all samples were used as a test 

sample. Next, to measure the predictive performance of the predictive model, Pearson's 

correlation was used to assess the correlation coefficients between the subjects' actual 

cognitive task scores and the predicted cognitive task scores. Meanwhile, root mean 

square error (RMSE) was used to measure the prediction error, which is defined as 

follows: 

 ( )2

1

1 N

i i
i

RSME X Y
N =

= −∑  (3-21) 

where N is the number of samples, X is the observed value, and Y  is the predicted 

value. The smaller the RMSE, the higher the correlation coefficient, and the more 

effective the predictive model. 
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3.5 Results 

In this section, we will focus on the findings of this chapter. Firstly, we’ll introduce 

the cognitive scales and ERP. The change of P300 of SCZ is the most reproducible result 

at present, which will provide the basis for the reliability of our data and pre-processing. 

Then we will present the results of the graph harmonic analysis, focusing on the change 

of GPSD and EEG rhythms on different graph harmonics for SCZ patients, and explore 

the relationship between these features and neurocognitive scales, to reveal the 

associations between cortical graph harmonic changes and neurocognitive deficits of SCZ 

patients. 

3.5.1 Cognitive Scales and ERPs 

Figure 3.2 (a) below illustrates the scores obtained by SCZ patients and the healthy 

subject group in various cognitive tasks after undergoing the BACS cognitive assessment. 

We found that the SCZ patients obtained much lower scores than the healthy subjects in 

all of these experiments in the Digital Sequencing, Symbol coding, Tower of London, 

Token Motor, Verbal Memory, and the Animal Naming Test (p < 0.01; FDR corrected). 

Figure 3.2 (b) shows the ERP waveforms of SCZ patients and healthy controls. We found 

that the evoked EEG amplitude of SCZ patients was significantly lower than the evoked 

EEG amplitude of the healthy control group during P300 (p < 0.01; FDR corrected). 
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Figure 3.2  Cognitive scale scores and ERP waveforms for two groups of 

subjects. (a) Differences in cognitive task scores of two groups (*: p < 0.01 by 

T-test). The error bar represents the standard deviation; (b) Evoked ERP 

waveforms of healthy subjects and SCZ patients (*: p < 0.01 by T-test). 

3.5.2 GPSD 

Next, we calculated and compared the total GPSD and the GPSD on each connected 

harmonic of the two groups of subjects during P300. As shown in Figure 3.3 (a) below, 

the total GPSD of SCZ patients was significantly lower than that of the healthy control 

group. After that, we divided the 200 harmonics evenly into 10 groups and obtained the 

summed GPSD on each set of harmonics for the healthy subjects and the schizophrenic 

patients. As shown in Figure 3.3 (b), we can find that the GPSD of SCZ patients is 

significantly lower than that of the healthy control group (p < 0.01; FDR corrected) on all 

the binned harmonics, which represent different spatial distributions. The top of Figure 

3.3 (b) shows the energy distribution of each set of harmonics. What we can observe is 

that the energy of the first harmonic tends to be more globally smoothed, whereas the last 

9 harmonics tend to be more locally distributed compared to the first harmonic. 
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Figure 3.3 Total harmonic energy alteration and alteration of harmonics at 

different scales. (a) Total GPSD for all harmonics for two groups; (b) 

Distribution of GPSD at 10 sets of harmonics and their differences between the 

two groups (*: p < 0.01 by T-test) 

To further understand the differences in different EEG rhythms at different spatial 

scales, we obtained the low-frequency aligned signals and the high-frequency liberal 

signals and analyzed their PSD distributions. As shown in Figure 3.4 below, we can see 

that for the aligned signals, the differences in the PSD distributions of HC and SCZ 

patients are mainly concentrated in the δ, β, and γ bands. Specifically, in the δ band, the 

activation of SCZ patients in the frontal, occipital, and temporal lobes was significantly 

lower compared to that of the healthy controls; whereas, no differences between SCZ 

patients and the healthy controls were seen in the θ- and α-frequency bands; in the β-

frequency band, we observed that the brain activation of SCZ patients in the right 

temporal lobe, occipital lobe, and other regions was significantly lower than that of the 

healthy controls; in the γ-frequency band, the differences in PSDs between two groups 

were mainly centered on right occipital lobe, parietal lobe and temporal lobe ( p<0.01 , 

FDR corrected ). For the graph high-frequency signals, the differences in PSD between 

HC and SCZ patients were mainly concentrated in the β and γ bands. Specifically, in the 

β-band, the brain activation of SCZ patients was stronger in the right temporal lobe and 

occipital lobe than in the healthy control group; in the γ-band, we could find that the brain 

regions with increased activation were almost the same as those in the β-band. 
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Figure 3.4 T-value topographic maps of the statistical difference in PSD 

between the aligned signal and the liberal signal for healthy controls and the 

SCZ patients (p < 0.01 by T-test). The red color represents higher activation in 

the region of healthy subjects and the blue color represents higher activation in 

the region of SCZ patients 

3.5.3 Correlation and Prediction Results 

To verify the relationship between changes in brain network dynamics and cognitive 

changes, we analyzed the relationship between GPSD and cognitive scale scores of the 

two groups of subjects and found that GPSD showed significant positive correlations with 

scores on all cognitive tasks during P300, as shown in Figure 3.5 below. Specifically, 

scores on the digit sequencing task were positively correlated with GPSD 

( 0.207, 0.01r p= <  ); scores on the symbol-coding task were positively correlated with 

GPSD ( 0.3, 0.01r p= <  ); scores on the Tower of London task were positively correlated 

with GPSD ( 0.207, 0.01r p= <  ); scores on the token motor task were positively 

correlated with GPSD ( 0.238, 0.01r p= <  ); scores on the animal naming task were 

positively correlated with GPSD ( 0.242, 0.01r p= <  ); and scores on the verbal memory 

scores were positively correlated with GPSD ( 0.273, 0.01r p= <  ). 
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Figure 3.5 Relationships between total GPSD and individual scores on 

cognitive tasks for two groups of subjects (by Pearson correlation). (a) Digit 

sequencing task; (b) Symbol-coding task; (c) Tower of London task; (d) Token 

motor task; (e) Animal naming task; (f) Verbal memory scores. 

As shown in Figure 3.4, the graph low-frequency captures most of the different EEG 

rhythms between the two groups. Then, to verify whether the alteration in PSD in graph 

low-frequency is associated with cognitive impairment, we do correlation and prediction 

analysis with the cognitive scales. Figure 3.6 and Figure 3.7 illustrate the correlation 

results between PSD of the δ and γ bands in graph low-frequency and cognitive scales. In 

the δ and γ bands, the brain regions that showed strong correlations with the cognitive 

scales were essentially the same as those presented in Figure 3.4 where activation 

differences existed (p < 0.01). Specifically, PSD in the frontal, temporal, and occipital 

cortex in the δ frequency band all showed a significant positive correlation with scores 

on the six cognitive tasks; activation in the parietal lobe in the γ frequency band, on the 

other hand, showed a negative correlation with scores on the cognitive tasks.  
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Figure 3.6 R-value topographic maps of relationships between PSD of aligned 

signals for the δ-band and scores on tasks such as digit sorting, symbol 

encoding, Tower of London, token movement, verbal memory, and animal 

naming 

 

Figure 3.7 R-value topographic maps of relationships between PSD of aligned 

signals for the γ-band and scores on tasks such as digit sorting, symbol 

encoding, Tower of London, token movement, verbal memory, and animal 

naming 

From Figure 3.6, we can find that PSD in the δ band of aligned signal has a great 

relationship with neurocognition, which suggests that the activation in the δ band may 

capture the key brain regions of cognitive deficits in SCZ patients. To further validate our 
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hypothesis, we next utilized the PSD of aligned signals to predict the cognitive task scores. 

The results are shown in Figure 3.8, where the black solid dots represent individual 

subjects and the dashed diagonal line represents the ideal prediction state. We can find 

that in all six tasks, the predicted task scores are positively correlated with the actual 

observed task scores, and the values are significantly less than 0.01. In particular, 

compared to the scores of the other four tasks, we were able to predict better for the scores 

of the two tasks, symbol encoding and verbal memory with PSD of the δ-band. 

 

Figure 3.8 Relationship between actual and predicted scores on each cognitive 

task (by Pearson correlation). (a) Digit sequencing task; (b) Symbol-coding 

task; (c) Tower of London task; (d) Token motor task; (e) Animal naming task; 

(f) Verbal memory scores. 

3.6 Discussion 

Previous studies have found that schizophrenia has varying degrees of impairment 

in cognitive function and cerebral cortex compared to healthy individuals. In the present 

study, researchers found that SCZ patients scored lower than healthy subjects on the tasks 

of digit sequencing task, symbol-coding, Tower of London, token motor, verbal memory, 

and animal naming. This suggests impairments of SCZ in neurocognitive functions such 

as working memory (Lee & Park, 2005), processing speed, attention, planning and 
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execution ability, motor control, and verbal (Brébion, David, Bressan, & Pilowsky, 2006), 

and memory abilities, respectively. Our results are consistent with previous studies and 

we both found significantly lower scores on various BACS tasks in SCZ patients (Keefe 

et al., 2008). Neurocognitive deficits are one of the most important features of psychiatric 

syndromes. In fact, functional imaging is closely related to cognitive deficits which can 

provide guidance for cognitive intervention and rehabilitation. In this thesis, we explored 

the differences in ERP and brain network dynamics between SCZ patients and healthy 

controls and their relationship with neurocognitive dysfunction to provide new insight for 

the exploration of neurophysiological endophenotypes. 

First, the P300 mainly reflects extensive synchronization between the prefrontal and 

parietal cortex, reflecting the involvement of higher cognitive processes such as attention, 

working memory, cognitive control, and decision-making. Besides, P300 is associated 

with information processing deficits and thus has been used in studies of schizophrenia. 

In the present study, we found significant differences between SCZ patients and healthy 

controls in the information processing states characterized by the P300. Indeed, a decrease 

in P300 amplitude is the most common and reproducible of psychotic 

phenotypes(Bramon et al., 2004). Previous studies have shown that the altered amplitude 

of the P300 in SCZ patients correlates with working memory capacity. Parker et al 

revealed strong correlations between P300 amplitude and cognitive abilities such as 

attention, planning and execution, and verbal ability(Parker et al., 2021). In the ERP study, 

our study is highly consistent with previous studies. The P300 component can 

characterize cognitive abilities in individuals with severe psychotic syndromes. 

Furthermore, it has been previously clarified that schizophrenia is a brain dis-

connection disorder(Friston & Frith, 1995). SCZ patients have significant abnormalities 

in brain network dynamics. However, few have revealed the brain abnormalities of SCZ 

patients from the coupling of structural and functional signals. Thus, in this study, we 

mainly utilized the graph spectral theory to explore the altered EEG network dynamics in 

schizophrenia and its relationship with brain cognitive deficits. As shown in Figure 3.3, 

our results indicate that the overall GPSD of the SCZ patients was significantly reduced 

during P300 and that this change did not occur at a single harmonic, but was significantly 

reduced at both high-frequency and low-frequency harmonics. Previous studies have 

clarified that low-frequency graph harmonics correspond to long-range connectivity-

related activity patterns, while high-frequency graph harmonics correspond more to short-
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range connectivity patterns. The low-frequency and high-frequency graph harmonics are 

also believed to encode the two information processing modes of integration and 

segregation, respectively (Glomb et al., 2020; Rué-Queralt et al., 2021; Rué-Queralt et 

al., 2023; R. Wang et al., 2019). The alteration of GPSD in low-frequency and high-

frequency graph harmonics during P300 reminds us that functional segregation and 

integration may be disrupted in SCZ patients compared to healthy controls. Studies have 

reported possible alterations in integration and segregation dynamics for SCZ  patients 

by exploring the small-world properties of the network. The SCZ patients showed lower 

clustering (segregation metrics) and shorter path lengths (integration metrics) compared 

to the HC(Rubinov et al., 2009). Similarly, Vértes et al. found reduced topological 

properties of clustering and modularity in childhood-onset SCZ (Vértes et al., 2012). Our 

reports are consistent with the current findings. The reduction of the GPSD for SCZ 

patients and its strong correlation with neurocognition in Figure 3.5 suggests that the 

cortical dynamics of the SCZ patients slowed down, and the slowing down of flexibility 

affected the cognitive activity of the SCZ patients, leading to abnormal behavioral 

performance of the SCZ patients in various cognitive tasks. 

To further investigate cortical temporal rhythmic alterations in SCZ patients at 

different spatial scales, we divided the signal into a graph low-frequency component that 

relies more on the graph structure and a high-frequency component that is more liberal 

relative to the graph structure. The results in Figure 3.4 show that differences in δ band 

are more likely captured by graph low-frequency harmonics compared to β and γ bands. 

The β and γ band differences are scattered in both high-frequency and low-frequency 

harmonics. Current research suggests that different temporal frequencies support different 

spatial scales of information processing patterns (Fries, 2015; Vezoli et al., 2021). Low-

frequency oscillations are more inclined to modulate long-range interactions and high-

frequency oscillations are more inclined to modulate short-range localized activity (Rué-

Queralt et al., 2023). We can infer that the graph low-frequency harmonic captures long-

range connectivity patterns and should be more inclined to capture the activity of low-

frequency rhythms such as δ and θ bands. This is broadly consistent with the findings of 

this thesis. However, the present differences of γ and β bands in both low-frequency and 

high-frequency graph harmonics in this thesis may be influenced by the order of graph 

filter. In addition, the results in Figure 3.4 further illustrate that the four graph low-

frequency connectome harmonics are sufficient to capture most of the difference patterns 
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of temporal rhythm between SCZ patients and HC, proving the reliability of 

dimensionality reduction and the graph spectral filters with graph harmonics. 

In addition, in this thesis, we found that the activation in the δ-band captured by the 

graph low-frequency harmonics significantly decreased in the frontal and temporal, and 

occipital lobes. Indeed, studies of anatomical findings have reported gray matter atrophy 

in frontal, temporal, thalamic, and occipital regions in SCZ patients (Andreasen et al., 

2011; Hu et al., 2020; Tesli et al., 2020), as well as diminished activation in the δ-band 

(Schmiedt et al., 2005). The results in this thesis are highly consistent with the current 

findings. In order to further validate the relationship between cognitive abilities and the 

activation patterns in δ- band captured by the low-frequency graph harmonics, we 

predicted the subjects' cognitive task scores with the PSD in the temporal and prefrontal 

lobes in δ-band. The result is shown in Figure 3.8. Consistent with the correlation results 

as shown in Figure 3.6, the PSD of δ-band can better predict the scores of symbol-coding 

and verbal memory compared to the other four tasks. This may indicate that the high 

degree of frontal and temporal gray matter atrophy in the SCZ patients prevented the SCZ 

patients from the maintenance of the normal activity of corresponding EEG rhythms 

during the P300 process and further affected the neurocognitive abilities of SCZ patients, 

especially attention, processing speed, and verbal memory abilities(Donati, D’Agostino, 

& Ferrarelli, 2020). Compared to the gamma rhythm, the δ and θ rhythms are the main 

components of P300. The difference in the δ rhythm further validates the induced P300 

may be caused by abnormalities in the frontal, temporal, and occipital lobes. 

Overall, our results reveal the changes in brain activation at different spatial scales 

of graph harmonics and reflect abnormal slowing down of brain network dynamics in 

SCZ patients as well as abnormal changes in EEG rhythms supported by different graph 

harmonics. These abnormal alterations are closely associated with neurocognitive deficits 

in SCZ patients, which provides some rationale for exploring the neural mechanisms and 

developing diagnostic techniques for SCZ patients. 

3.7 Conclusion 

In this section, we focus on the analysis and application of graph spectral theory in 

schizophrenia, exploring changes in the brain dynamics of SCZ patients, mainly with the 

help of harmonic energy as well as the activation of different brain rhythms at different 

spatial scales of graph harmonics in the SCZ patients. We explored the link between these 
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changes and neurocognitive deficits. In the present study, we found that changes in 

cortical dynamics of SCZ patients were slowed down, and that slowed flexibility led to 

impairments in numerous cognitive abilities. In addition, functional separation and 

integration may be disrupted in SCZ patients compared to healthy subjects. Besides, brain 

regions with differential activation in the δ-band were more compatible with the gray 

matter-reduced regions of SCZ patients, and the PSD of these regions was highly 

correlated with cognitive ability. The strong correlation between the brain network 

dynamics features captured by graph harmonics and cognitive abilities illustrates the 

difference in neural mechanisms between SCZ patients and healthy controls. It may 

provide new insight for the development of future diagnostic techniques for SCZ patients.
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Chapter 4 General Discussion 

4.1 Key Findings and Significance 

Traditional time-frequency analysis techniques are insufficient to support us in 

decoding brain activity. Thus, the development of complex network analysis methods is 

important for understanding of cognitive neural mechanisms and development of 

diagnostic models of psychiatric and neurological disorders. Graph spectral theory is an 

emerging method and important tool for complex network analysis, which is now widely 

used in brain network disorders of psychiatric and neurological diseases, denoising FMRI, 

and function-structure coupling features. Functional network disorders in various 

psychiatric and neurological disorders like schizophrenia, ADHD, and Parkinson's have 

been widely reported in EEG studies. At present, researchers have less research on graph 

spectral theory in denoising and coupling of structural and functional signals, especially 

in EEG. On the one hand, unlike the traditional denoising techniques, the graph spectral 

theory is based on the invariance of the underlying structure of the signal, which fully 

takes into account the dependence between different brain regions and may be more in 

line with the mechanism of the brain itself. On the other hand, in the research of 

schizophrenia and other disorders, there are few studies that have explored the altered 

dynamics of the brain network in SCZ patients from the perspective of structural 

connectivity harmonics, and our study may fill the gap for this part of research exploration. 

In fact, brain function abnormalities of SCZ patients may be reflected in different 

connectivity harmonics, and the study of harmonics may be as important as the 

exploration of EEG rhythms. Based on this, in this thesis, we have successively focused 

on the application of graph spectral theory in denoising EEG and the graph spectral 

features of SZC, in order to develop more reliable denoising algorithms and conduct more 

in-depth research on the exploration of neural mechanisms and neurophysiological 

endophenotypes of SCZ. The results of this thesis are summarized as follows: 

1. Based on the joint time-vertex framework, we develop a JFT graph based on the 

constraints of time smoothing and graph smoothing under the joint pql  norm. To verify 

the robustness of the algorithm to different noises, we introduce impulse noise simulated 

by alpha-stable distributions, Gaussian noise, and resting EEG noise and explore the 

effect of JFT in real applications. We found that: (1) As the estimation of the graph 
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structure with the algorithm this thesis used will be affected by the quality of the EEG 

signal itself, GFT (only with graph smoothing) can’t achieve denoising when the signal 

is seriously damaged. However, after DFT (only the time constraints) to improve the SNR 

ratio of the signal, GFT can further play a role, which makes JFT perform significantly 

better than that of the traditional wavelet, DFT, and GFT in denoising. JFT shows a good 

suppression ability for all three types of noise. (2) Further to verify the applicability of 

JFT, we used JFT as a preprocessing algorithm and found an improvement in the 

classification accuracy of EEG signals from healthy controls and SCZ patients and an 

improvement in the decoding efficiency of the brain-computer interface of the P300 

spelling system. These results demonstrate the effectiveness of the JFT framework for 

filtering and our research can further promote the development of EEG denoising 

technology. 

2. We then explored the graph spectral features of schizophrenia based on the oddball 

paradigm of the P300 to understand the altered brain dynamics of SCZ patients and their 

relationship with cognition. Based on this, we found: (1) a decrease in the P300 amplitude 

of the scalp EEG in SCZ patients; (2) abnormal energy changes at different harmonics in 

SCZ patients. On the one hand, the decrease in total GPSD indicates the slowing down of 

cortical dynamics in SCZ patients and affects their neurocognition; on the other hand, the 

balance between dissociation and integration in SCZ patients is disrupted which is 

reflected in the significant changes of different harmonic energies for SCZ patients; (3) 

most of the differential features of EEG rhythms in SCZ patients are captured by the low-

frequency aligned signals and the δ-band in the aligned signals captured abnormal PSD 

activation in the SCZ patients in prefrontal, temporal, and occipital regions. This may be 

due to the fact that the normal activity in the δ-band is affected by the diminished gray 

matter volume of the SCZ patients over these regions, and the positive correlation 

between this abnormal change and cognitive performance further suggests that the 

abnormal activation in the δ-band affects the neurocognitive function of the SCZ patients. 

These results suggest that there are abnormal brain dynamics changes in SCZ patients 

during P300, and contribute to our understanding of the neural mechanisms of SCZ and 

provide new ideas for clinical diagnosis and treatment of SCZ patients. 
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4.2 Future Research 

In this thesis, we have developed denoising and analysis methods for EEG based on 

graph spectral theory and have achieved some results so far. In the following, the 

limitations of the two current research works and the future research direction and content 

will be explained in detail. 

1. In the denoising algorithm, this thesis uses the k-neighborhood algorithm to 

estimate the adjacency matrix, which relies on the EEG signals and is not based on the 

true structural distances. So GFT based on the graph structure is susceptible to the 

interference of the noise, which will lead to the failure of the graph filters when the noise 

causes a large change in the signal. In this regard, future denoising algorithms of EEG 

can conduct in-depth research on the graph structure itself. 

2. In addition, the filters in this thesis emphasize constraints based on simultaneous 

time and graph. Regarding the simultaneous constraints on time and graph space, we 

mainly consider the smoothness constraints, but in fact, more constraint strategies can be 

introduced into the framework, such as graph wavelet filters and Slepian operators which 

can suppress excessive signal energy at some nodes. 

3. In the direction of exploring the brain network dynamics of schizophrenia based 

on graph spectral theory, we did not deeply explore the differences in each harmonic of 

SCZ patients but divided the harmonics into 10 groups. In fact, each harmonic may be as 

worthy of deeper exploration as the EEG rhythms. The delineation of harmonic rhythms 

may later be as important to cognitive research as the delineation of EEG rhythms.  

4. In addition, changes in brain dynamics regarding the SCZ during different specific 

cognitive processing could be also considered in the future. In this process, we have 

focused on neural processes in the oddball paradigm and have not focused on cognitive 

changes in the brain during other cognitive processing, such as working memory load. In 

future studies, the analytical ideas presented in this thesis can also be applied to the brain 

state changes in the coupling of structural and functional signals in healthy controls and 

SCZ patients in the study of cognitive tasks such as working memory. 

5. In this thesis, we lack further analysis on whether the characteristics captured by 

the research methods are heritable. Besides, this thesis did not gain access to the DTI of 

SCZ patients for the construction of the graph harmonics for each subject but rather used 

the 13% of the strongest connections in healthy controls. However, the consistency of the 

coupling of EEG rhythms and graph harmonics with the current research can still indicate 
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the validity of the analysis techniques presented in this thesis. In the subsequent work, we 

will collect the DTI data of both SCZ patients, and study the alterations in the structural 

graph harmonics of the two groups, as well as the coupling characteristics of the 

functional signals with the structural graph harmonics to find out the relationship between 

cognitive alterations and the functional brain states. In addition, to further validate 

whether the proposed method can truly serve as a biomarker for SCZ, we will further 

collect data from first-degree relatives of SCZ patients to verify the alterations in the brain 

states compared to healthy subjects and SCZ patients and to find similar features between 

the relatives and SCZ patients, as well as the links between these brain features and the 

genetic profiles.



Chapter 5 Bibliography 

67 

Chapter 5 Bibliography 

Abi-Dargham, A., Javitch, J. A., Slifstein, M., Anticevic, A., Calkins, M. E., Cho, Y. T., . . . Gur, R. E. 

(2022). Dopamine D1R receptor stimulation as a mechanistic pro-cognitive target for 

schizophrenia. Schizophrenia bulletin, 48(1), 199-210.  

Abramian, D., Larsson, M., Eklund, A., Aganj, I., Westin, C.-F., & Behjat, H. (2021). Diffusion-

informed spatial smoothing of fMRI data in white matter using spectral graph filters. NeuroImage, 

237, 118095.  

Alyasseri, Z. A. A., Khader, A. T., Al-Betar, M. A., Abasi, A. K., & Makhadmeh, S. N. (2019). EEG 

signals denoising using optimal wavelet transform hybridized with efficient metaheuristic 

methods. IEEE Access, 8, 10584-10605.  

Amzica, F., & Steriade, M. (1998). Electrophysiological correlates of sleep delta waves. 

Electroencephalography and clinical neurophysiology, 107(2), 69-83.  

An, Y., Lam, H. K., & Ling, S. H. (2022). Auto-Denoising for EEG Signals Using Generative 

Adversarial Network. Sensors, 22(5), 1750.  

Andreasen, N. C., Nopoulos, P., Magnotta, V., Pierson, R., Ziebell, S., & Ho, B.-C. (2011). Progressive 

brain change in schizophrenia: a prospective longitudinal study of first-episode schizophrenia. 

Biological psychiatry, 70(7), 672-679.  

Antonova, E., Sharma, T., Morris, R., & Kumari, V. (2004). The relationship between brain structure 

and neurocognition in schizophrenia: a selective review. Schizophrenia research, 70(2-3), 117-

145.  

Atasoy, S., Roseman, L., Kaelen, M., Kringelbach, M. L., Deco, G., & Carhart-Harris, R. L. (2017). 

Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-

organization under LSD. Scientific reports, 7(1), 17661.  

Ayano, G., Demelash, S., Yohannes, Z., Haile, K., Tulu, M., Assefa, D., . . . Chaka, A. (2021). 

Misdiagnosis, detection rate, and associated factors of severe psychiatric disorders in specialized 

psychiatry centers in Ethiopia. Annals of general psychiatry, 20, 1-10.  

Başar, E., & Güntekin, B. (2008). A review of brain oscillations in cognitive disorders and the role of 

neurotransmitters. Brain research, 1235, 172-193.  

Basharpoor, S., Heidari, F., & Molavi, P. (2021). EEG coherence in theta, alpha, and beta bands in 

frontal regions and executive functions. Applied Neuropsychology: Adult, 28(3), 310-317.  



Chapter 5 Bibliography 

68 

Behjat, H., Westin, C.-F., & Aganj, I. (2021). Cortical surface-informed volumetric spatial smoothing 

of fMRI data via graph signal processing. Paper presented at the 2021 43rd Annual International 

Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico.  

Bohlin, T. (1977). Analysis of EEG signals with changing spectra using a short-word Kalman estimator. 

Mathematical Biosciences, 35(3-4), 221-259.  

Borowicz, A. (2018). Using a multichannel Wiener filter to remove eye-blink artifacts from EEG data. 

Biomedical Signal Processing and Control, 45, 246-255.  

Brahim, A., Hajjam El Hassani, M., & Farrugia, N. (2019). Classification of autism spectrum disorder 

through the graph fourier transform of fmri temporal signals projected on structural connectome. 

Paper presented at the Computer Analysis of Images and Patterns: CAIP 2019 International 

Workshops, Salerno, Italy.  

Bramon, E., Rabe-Hesketh, S., Sham, P., Murray, R. M., & Frangou, S. (2004). Meta-analysis of the 

P300 and P50 waveforms in schizophrenia. Schizophrenia research, 70(2-3), 315-329.  

Brébion, G., David, A. S., Bressan, R. A., & Pilowsky, L. S. (2006). Processing speed: a strong 

predictor of verbal memory performance in schizophrenia. Journal of Clinical and Experimental 

Neuropsychology, 28(3), 370-382.  

Buchsbaum, M. S., Christian, B. T., Lehrer, D. S., Narayanan, T. K., Shi, B., Mantil, J., . . . Mukherjee, 

J. (2006). D2/D3 dopamine receptor binding with [F-18] fallypride in thalamus and cortex of 

patients with schizophrenia. Schizophrenia research, 85(1-3), 232-244.  

Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33(3), 325-340.  

Carlsson, A., & Lindqvist, M. (1963). Effect of chlorpromazine or haloperidol on formation of 3‐

methoxytyramine and normetanephrine in mouse brain. Acta pharmacologica et toxicologica, 

20(2), 140-144.  

Carlton, E. H., & Katz, S. (1980). Is Wiener filtering an effective method of improving evoked 

potential estimation? IEEE Transactions on Biomedical Engineering(4), 187-192.  

Carmona, R. A., & Hudgins, L. H. (1994). Wavelet denoising of EEG signals and identification of 

evoked response potentials. Paper presented at the Wavelet Applications in Signal and Image 

Processing II, San Diego, CA, United States.  

Castellanos, F. X., Margulies, D. S., Kelly, C., Uddin, L. Q., Ghaffari, M., Kirsch, A., . . . Biswal, B. 

(2008). Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-

deficit/hyperactivity disorder. Biological psychiatry, 63(3), 332-337.  

Chapman, R. M., & McCrary, J. W. (1995). EP component identification and measurement by principal 

components-analysis. Brain and cognition, 27(3), 288-310.  



Chapter 5 Bibliography 

69 

Chen, X., Xu, X., Liu, A., McKeown, M. J., & Wang, Z. J. (2017). The use of multivariate EMD and 

CCA for denoising muscle artifacts from few-channel EEG recordings. IEEE Transactions on 

Instrumentation and Measurement, 67(2), 359-370.  

Chuang, C.-H., Chang, K.-Y., Huang, C.-S., & Jung, T.-P. (2022). IC-U-Net: a U-Net-based denoising 

autoencoder using mixtures of independent components for automatic EEG artifact removal. 

NeuroImage, 263, 119586.  

Clementz, B. A., Sweeney, J. A., Hamm, J. P., Ivleva, E. I., Ethridge, L. E., Pearlson, G. D., . . . 

Tamminga, C. A. (2016). Identification of distinct psychosis biotypes using brain-based 

biomarkers. American Journal of Psychiatry, 173(4), 373-384.  

Condat, L. (2013). A direct algorithm for 1-D total variation denoising. IEEE Signal Processing Letters, 

20(11), 1054-1057.  

Coyle, J. T. (2006). Glutamate and schizophrenia: beyond the dopamine hypothesis. Cellular and 

molecular neurobiology, 26, 363-382.  

Creese, I., Burt, D. R., & Snyder, S. H. (1976). Dopamine receptor binding predicts clinical and 

pharmacological potencies of antischizophrenic drugs. Science, 192(4238), 481-483.  

Csernansky, J. G., & Cronenwett, W. J. (2008). Neural networks in schizophrenia. In (Vol. 165, pp. 

937-939): American Journal of Psychiatry. 

Da Silva, F. L. J. E., Lippincott Williams, & Wilkins, P. (1999). Event-related potentials: methodology 

and quantification. Electroencephalography, Lippincott Williams and Wilkins, Philadelphia.  

Davis, K. L., Kahn, R. S., Ko, G., & Davidson, M. (1991). Dopamine in schizophrenia: a review and 

reconceptualization. The American journal of psychiatry, 148(11), 1474-1486.  

De Clercq, W., Vergult, A., Vanrumste, B., Van Paesschen, W., & Van Huffel, S. (2006). Canonical 

correlation analysis applied to remove muscle artifacts from the electroencephalogram. IEEE 

Transactions on Biomedical Engineering, 53(12), 2583-2587.  

DeLisi, L. E., Sakuma, M., Kushner, M., Finer, D. L., Hoff, A. L., & Crow, T. J. (1997). Anomalous 

cerebral asymmetry and language processing in schizophrenia. Schizophrenia bulletin, 23(2), 

255-271.  

Donati, F. L., D’Agostino, A., & Ferrarelli, F. (2020). Neurocognitive and neurophysiological 

endophenotypes in schizophrenia: An overview. Biomarkers in Neuropsychiatry, 3, 100017.  

Donchin, E., Spencer, K. M., & Wijesinghe, R. (2000). The mental prosthesis: assessing the speed of 

a P300-based brain-computer interface. IEEE transactions on rehabilitation engineering, 8(2), 

174-179.  



Chapter 5 Bibliography 

70 

Dongwei, C., Fang, W., Zhen, W., Haifang, L., & Junjie, C. (2013). EEG-based emotion recognition 

with brain network using independent components analysis and granger causality. Paper 

presented at the 2013 International Conference on Computer Medical Applications (ICCMA), 

Sousse, Tunisia.  

Donoho, D. L., & Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 

81(3), 425-455.  

Donoho, D. L., & Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage. 

Journal of the american statistical association, 90(432), 1200-1224.  

Dora, M., & Holcman, D. (2022). Adaptive single-channel EEG artifact removal with applications to 

clinical monitoring. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 

286-295.  

Einizade, A., & Sardouie, S. H. (2022). A unified approach for simultaneous graph learning and blind 

separation of graph signal sources. IEEE Transactions on Signal and Information Processing over 

Networks, 8, 543-555.  

Ellison-Wright, I., & Bullmore, E. (2009). Meta-analysis of diffusion tensor imaging studies in 

schizophrenia. Schizophrenia research, 108(1-3), 3-10.  

Eryilmaz, H., Pax, M., O’Neill, A. G., Vangel, M., Diez, I., Holt, D. J., . . . Roffman, J. L. (2022). 

Network hub centrality and working memory performance in schizophrenia. Schizophrenia, 8(1), 

76.  

Fadili, M.-J., & Starck, J.-L. (2009). Monotone operator splitting for optimization problems in sparse 

recovery. Paper presented at the 2009 16th IEEE International Conference on Image Processing 

(ICIP), Cairo, Egypt.  

Farwell, L. A., & Donchin, E. (1988). Talking off the top of your head: toward a mental prosthesis 

utilizing event-related brain potentials. Electroencephalography and clinical neurophysiology, 

70(6), 510-523.  

Farzan, F., Barr, M. S., Levinson, A. J., Chen, R., Wong, W., Fitzgerald, P. B., & Daskalakis, Z. J. 

(2010). Evidence for gamma inhibition deficits in the dorsolateral prefrontal cortex of patients 

with schizophrenia. Brain, 133(5), 1505-1514.  

Fassbender, C., Zhang, H., Buzy, W. M., Cortes, C. R., Mizuiri, D., Beckett, L., & Schweitzer, J. B. 

(2009). A lack of default network suppression is linked to increased distractibility in ADHD. 

Brain research, 1273, 114-128.  

Ferrillo, F., Beelke, M., & Nobili, L. (2000). Sleep EEG synchronization mechanisms and activation 

of interictal epileptic spikes. Clinical Neurophysiology, 111, S65-S73.  



Chapter 5 Bibliography 

71 

Fries, P. (2015). Rhythms for cognition: communication through coherence. Neuron, 88(1), 220-235.  

Friston, K. J., & Frith, C. D. (1995). Schizophrenia: a disconnection syndrome. Clin Neurosci, 3(2), 

89-97.  

Gaur, P., Gupta, H., Chowdhury, A., McCreadie, K., Pachori, R. B., & Wang, H. (2021). A sliding 

window common spatial pattern for enhancing motor imagery classification in EEG-BCI. IEEE 

Transactions on Instrumentation and Measurement, 70, 1-9.  

Georgiadis, K., Adamos, D. A., Nikolopoulos, S., Laskaris, N., & Kompatsiaris, I. (2021). Covariation 

informed graph slepians for motor imagery decoding. IEEE Transactions on Neural Systems and 

Rehabilitation Engineering, 29, 340-349.  

Georgiadis, K., Laskaris, N., Nikolopoulos, S., & Kompatsiaris, I. (2019). Connectivity steered graph 

Fourier transform for motor imagery BCI decoding. Journal of neural engineering, 16(5), 056021.  

Glomb, K., Kringelbach, M. L., Deco, G., Hagmann, P., Pearson, J., & Atasoy, S. (2021). Functional 

harmonics reveal multi-dimensional basis functions underlying cortical organization. Cell 

Reports, 36(8).  

Glomb, K., Queralt, J. R., Pascucci, D., Defferrard, M., Tourbier, S., Carboni, M., . . . Hagmann, P. 

(2020). Connectome spectral analysis to track EEG task dynamics on a subsecond scale. 

NeuroImage, 221, 117137.  

Grassi, F., Loukas, A., Perraudin, N., & Ricaud, B. (2017). A time-vertex signal processing framework: 

Scalable processing and meaningful representations for time-series on graphs. IEEE Transactions 

on Signal Processing, 66(3), 817-829.  

Gratton, C., Koller, J. M., Shannon, W., Greene, D. J., Maiti, B., Snyder, A. Z., . . . Campbell, M. C. 

(2019). Emergent functional network effects in Parkinson disease. Cerebral Cortex, 29(6), 2509-

2523.  

Gur, R. E., Calkins, M. E., Gur, R. C., Horan, W. P., Nuechterlein, K. H., Seidman, L. J., & Stone, W. 

S. (2007). The consortium on the genetics of schizophrenia: neurocognitive endophenotypes. 

Schizophrenia bulletin, 33(1), 49-68.  

Hacker, C. D., Perlmutter, J. S., Criswell, S. R., Ances, B. M., & Snyder, A. Z. (2012). Resting state 

functional connectivity of the striatum in Parkinson’s disease. Brain, 135(12), 3699-3711.  

Helmich, R. C., Derikx, L. C., Bakker, M., Scheeringa, R., Bloem, B. R., & Toni, I. (2010). Spatial 

remapping of cortico-striatal connectivity in Parkinson's disease. Cerebral Cortex, 20(5), 1175-

1186.  

Hobbs, B., & Artemiadis, P. (2020). A review of robot-assisted lower-limb stroke therapy: unexplored 

paths and future directions in gait rehabilitation. Frontiers in neurorobotics, 14, 19.  



Chapter 5 Bibliography 

72 

Howes, O. D., Montgomery, A. J., Asselin, M.-C., Murray, R. M., Valli, I., Tabraham, P., . . . Broome, 

M. (2009). Elevated striatal dopamine function linked to prodromal signs of schizophrenia. 

Archives of general psychiatry, 66(1), 13-20.  

Hu, N., Luo, C., Zhang, W., Yang, X., Xiao, Y., Sweeney, J. A., . . . Gong, Q. (2020). Hippocampal 

subfield alterations in schizophrenia: a selective review of structural MRI studies. Biomarkers in 

Neuropsychiatry, 3, 100026.  

Hyvärinen, A., & Oja, E. (1997). A fast fixed-point algorithm for independent component analysis. 

Neural computation, 9(7), 1483-1492.  

Jalili, M., & Knyazeva, M. G. (2011). EEG-based functional networks in schizophrenia. Computers 

in Biology, 41(12), 1178-1186.  

Jestrović, I., Coyle, J. L., & Sejdić, E. (2017). Differences in brain networks during consecutive 

swallows detected using an optimized vertex–frequency algorithm. Neuroscience, 344, 113-123.  

Jiang, Y., Luo, C., Li, X., Duan, M., He, H., Chen, X., . . . Woelfer, M. (2018). Progressive reduction 

in gray matter in patients with schizophrenia assessed with MR imaging by using causal network 

analysis. Radiology, 287(2), 633-642.  

Jung, H.-T., Kim, D.-W., Kim, S., Im, C.-H., & Lee, S.-H. (2012). Reduced source activity of event-

related potentials for affective facial pictures in schizophrenia patients. Schizophrenia research, 

136(1-3), 150-159.  

Jung, T.-P., Humphries, C., Lee, T.-W., Makeig, S., McKeown, M., Iragui, V., & Sejnowski, T. J. (1997). 

Extended ICA removes artifacts from electroencephalographic recordings. Advances in neural 

information processing systems, 10.  

Just, M. A., Cherkassky, V. L., Keller, T. A., Kana, R. K., & Minshew, N. J. (2007). Functional and 

anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive 

function task and corpus callosum morphometry. Cerebral Cortex, 17(4), 951-961.  

Kalantar, G., Sadreazami, H., Mohammadi, A., & Asif, A. (2017). Adaptive dimensionality reduction 

method using graph-based spectral decomposition for motor imagery-based brain-computer 

interfaces. Paper presented at the 2017 IEEE Global Conference on Signal and Information 

Processing (GlobalSIP), Montreal, QC, Canada.  

Kana, R. K., Keller, T. A., Cherkassky, V. L., Minshew, N. J., & Just, M. A. (2006). Sentence 

comprehension in autism: thinking in pictures with decreased functional connectivity. Brain, 

129(9), 2484-2493.  



Chapter 5 Bibliography 

73 

Kane, J. M., Robinson, D. G., Schooler, N. R., Mueser, K. T., Penn, D. L., Rosenheck, R. A., . . . 

Estroff, S. E. (2016). Comprehensive versus usual community care for first-episode psychosis: 

2-year outcomes from the NIMH RAISE early treatment program. American Journal of 

Psychiatry, 173(4), 362-372.  

Karlsson, P., Farde, L., Halldin, C., & Sedvall, G. (2002). PET study of D1 dopamine receptor binding 

in neuroleptic-naive patients with schizophrenia. American Journal of Psychiatry, 159(5), 761-

767.  

Kedzior, B.-E. C. A. H., & KMathes, B. (2007). Working memory related gamma oscillations in 

schizophrenia patients. Int J Psychophysiol, 64, 3945.  

Keefe, R. S., Harvey, P. D., Goldberg, T. E., Gold, J. M., Walker, T. M., Kennel, C., & Hawkins, K. 

(2008). Norms and standardization of the Brief Assessment of Cognition in Schizophrenia 

(BACS). Schizophrenia research, 102(1-3), 108-115.  

Kestler, L., Walker, E., & Vega, E. (2001). Dopamine receptors in the brains of schizophrenia patients: 

a meta-analysis of the findings. Behavioural pharmacology, 12(5), 355-371.  

Khatwani, P., & Tiwari, A. (2013). A survey on different noise removal techniques of EEG signals. 

International Journal of Advanced Research in Computer and Communication Engineering, 2(2), 

1091-1095.  

Kidogami, Y., Yoneda, H., Asaba, H., & Sakai, T. (1991). P300 in first degree relatives of 

schizophrenics. Schizophrenia research, 6(1), 9-13.  

La Vaque, T. (1999). The history of EEG hans berger: psychophysiologist. A historical vignette. 

Journal of Neurotherapy, 3(2), 1-9.  

Lee, J., & Park, S. (2005). Working memory impairments in schizophrenia: a meta-analysis. Journal 

of abnormal psychology, 114(4), 599.  

Levy, D. L., O'Driscoll, G., Matthysse, S., Cook, S. R., Holzman, P. S., & Mendell, N. R. (2004). 

Antisaccade performance in biological relatives of schizophrenia patients: a meta-analysis. 

Schizophrenia research, 71(1), 113-125.  

Li, C., Li, P., Zhang, Y., Li, N., Si, Y., Li, F., . . . Systems, L. (2023). Effective emotion recognition by 

learning discriminative graph topologies in EEG brain networks. IEEE Transactions on Neural 

Networks and Learning Systems.  

Li, J., Wu, G.-R., Shi, M., Xia, J., Meng, Y., Yang, S., . . . Liao, W. (2023). Spatiotemporal topological 

correspondence between blood oxygenation and glucose metabolism revealed by simultaneous 

fPET-fMRI in brain’s white matter. Cerebral Cortex, 33(15), bhad201.  



Chapter 5 Bibliography 

74 

Li, P., Gao, X., Li, C., Yi, C., Huang, W., Si, Y., . . . Systems, L. (2023). Granger causal inference 

based on dual laplacian distribution and its application to MI-BCI classification. IEEE 

Transactions on Neural Networks and Learning Systems.  

Li, R., Yuan, X., Radfar, M., Marendy, P., Ni, W., O’Brien, T. J., & Casillas-Espinosa, P. M. (2021). 

Graph signal processing, graph neural network and graph learning on biological data: a 

systematic review. IEEE Reviews in Biomedical Engineering, 16, 109-135.  

Li, Y., & Mateos, G. (2019). Identifying structural brain networks from functional connectivity: A 

network deconvolution approach. Paper presented at the ICASSP 2019-2019 IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK.  

Lieberman, J., Kane, J., & Alvir, J. (1987). Provocative tests with psychostimulant drugs in 

schizophrenia. Psychopharmacology, 91, 415-433.  

Light, G. A., Hsu, J. L., Hsieh, M. H., Meyer-Gomes, K., Sprock, J., Swerdlow, N. R., & Braff, D. L. 

(2006). Gamma band oscillations reveal neural network cortical coherence dysfunction in 

schizophrenia patients. Biological psychiatry, 60(11), 1231-1240.  

Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., . . . Jiang, T. (2008). Disrupted small-world 

networks in schizophrenia. Brain, 131(4), 945-961.  

Luppi, A. I., Vohryzek, J., Kringelbach, M. L., Mediano, P. A., Craig, M. M., Adapa, R., . . . Peattie, 

A. R. (2023). Distributed harmonic patterns of structure-function dependence orchestrate human 

consciousness. Communications biology, 6(1), 117.  

Makeig, S., Bell, A., Jung, T.-P., & Sejnowski, T. J. (1995). Independent component analysis of 

electroencephalographic data. Advances in neural information processing systems, 8.  

Markovic, A., Kaess, M., & Tarokh, L. (2020). Gender differences in adolescent sleep 

neurophysiology: a high-density sleep EEG study. Scientific reports, 10(1), 15935.  

Mashhadi, N., Khuzani, A. Z., Heidari, M., & Khaledyan, D. (2020). Deep learning denoising for 

EOG artifacts removal from EEG signals. Paper presented at the 2020 IEEE Global Humanitarian 

Technology Conference (GHTC), Seattle, WA, USA.  

McGowan, S., Lawrence, A. D., Sales, T., Quested, D., & Grasby, P. (2004). Presynaptic dopaminergic 

dysfunction in schizophrenia: a positron emission tomographic [18F] fluorodopa study. Archives 

of general psychiatry, 61(2), 134-142.  

McGrath, J., Saha, S., Chant, D., & Welham, J. (2008). Schizophrenia: a concise overview of incidence, 

prevalence, and mortality. Epidemiologic reviews, 30(1), 67-76.  



Chapter 5 Bibliography 

75 

Medaglia, J. D., Huang, W., Karuza, E. A., Kelkar, A., Thompson-Schill, S. L., Ribeiro, A., & Bassett, 

D. S. (2018). Functional alignment with anatomical networks is associated with cognitive 

flexibility. Nature human behaviour, 2(2), 156-164.  

Meyer-Lindenberg, A., Miletich, R. S., Kohn, P. D., Esposito, G., Carson, R. E., Quarantelli, M., . . . 

Berman, K. F. (2002). Reduced prefrontal activity predicts exaggerated striatal dopaminergic 

function in schizophrenia. Nature neuroscience, 5(3), 267-271.  

Morone, G., Paolucci, S., Cherubini, A., De Angelis, D., Venturiero, V., Coiro, P., & Iosa, M. (2017). 

Robot-assisted gait training for stroke patients: current state of the art and perspectives of robotics. 

Neuropsychiatric disease and treatment, 13, 1303-1311.  

Mowla, M. R., Ng, S.-C., Zilany, M. S., & Paramesran, R. (2015). Artifacts-matched blind source 

separation and wavelet transform for multichannel EEG denoising. Biomedical Signal Processing 

and Control, 22, 111-118.  

Naim-Feil, J., Rubinson, M., Freche, D., Grinshpoon, A., Peled, A., Moses, E., & Levit-Binnun, N. 

(2018). Altered brain network dynamics in schizophrenia: a cognitive electroencephalography 

study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(1), 88-98.  

Narayanan, B., O’Neil, K., Berwise, C., Stevens, M. C., Calhoun, V. D., Clementz, B. A., . . . Pearlson, 

G. D. (2014). Resting state electroencephalogram oscillatory abnormalities in schizophrenia and 

psychotic bipolar patients and their relatives from the bipolar and schizophrenia network on 

intermediate phenotypes study. Biological psychiatry, 76(6), 456-465.  

Okubo, Y., Suhara, T., Suzuki, K., Kobayashi, K., Inoue, O., Terasaki, O., . . . Matsushima, E. (1997). 

Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature, 

385(6617), 634-636.  

Ortega, A., Frossard, P., Kovačević, J., Moura, J. M., & Vandergheynst, P. (2018). Graph signal 

processing: Overview, challenges, and applications. Proceedings of the IEEE, 106(5), 808-828.  

Parker, D. A., Trotti, R. L., McDowell, J. E., Keedy, S. K., Hill, S. K., Gershon, E. S., . . . Tamminga, 

C. A. (2021). Auditory oddball responses across the schizophrenia-bipolar spectrum and their 

relationship to cognitive and clinical features. American Journal of Psychiatry, 178(10), 952-964.  

Pentari, A., Tzagkarakis, G., Marias, K., & Tsakalides, P. (2021). Graph-based denoising of EEG 

signals in impulsive environments. Paper presented at the 2020 28th European Signal Processing 

Conference (EUSIPCO), Amsterdam, Netherlands.  

Pentari, A., Tzagkarakis, G., Marias, K., & Tsakalides, P. (2022). Graph denoising of impulsive EEG 

signals and the effect of their graph representation. Biomedical Signal Processing and Control, 

78, 103886.  



Chapter 5 Bibliography 

76 

Petrovic, M., Bolton, T. A., Preti, M. G., Liégeois, R., & Van De Ville, D. (2019). Guided graph 

spectral embedding: Application to the C. elegans connectome. Network Neuroscience, 3(3), 807-

826.  

Pilavci, Y. Y., & Farrugia, N. (2019). Spectral graph wavelet transform as feature extractor for 

machine learning in neuroimaging. Paper presented at the ICASSP 2019-2019 IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK.  

Polikoff, J. B., Bunnell, H. T., & Borkowski Jr, W. J. (1995). Toward a P300-based computer interface. 

Paper presented at the Proc. RESNA’95 Annual Conf., Vancouver, Canada.  

Preti, M. G., & Van De Ville, D. (2019). Decoupling of brain function from structure reveals regional 

behavioral specialization in humans. Nature communications, 10(1), 4747.  

Price, G., Cercignani, M., Parker, G. J., Altmann, D. R., Barnes, T. R., Barker, G. J., . . . Ron, M. A. 

(2008). White matter tracts in first-episode psychosis: a DTI tractography study of the uncinate 

fasciculus. NeuroImage, 39(3), 949-955.  

Repovs, G., Csernansky, J. G., & Barch, D. M. (2011). Brain network connectivity in individuals with 

schizophrenia and their siblings. Biological psychiatry, 69(10), 967-973.  

Rubinov, M., Knock, S. A., Stam, C. J., Micheloyannis, S., Harris, A. W., Williams, L. M., & 

Breakspear, M. (2009). Small‐world properties of nonlinear brain activity in schizophrenia. 

Human brain mapping, 30(2), 403-416.  

Rudie, J. D., Shehzad, Z., Hernandez, L. M., Colich, N. L., Bookheimer, S. Y., Iacoboni, M., & 

Dapretto, M. (2012). Reduced functional integration and segregation of distributed neural 

systems underlying social and emotional information processing in autism spectrum disorders. 

Cerebral Cortex, 22(5), 1025-1037.  

Rué-Queralt, J., Glomb, K., Pascucci, D., Tourbier, S., Carboni, M., Vulliémoz, S., . . . Hagmann, P. 

(2021). The connectome spectrum as a canonical basis for a sparse representation of fast brain 

activity. NeuroImage, 244, 118611.  

Rué-Queralt, J., Mancini, V., Rochas, V., Latrèche, C., Uhlhaas, P. J., Michel, C. M., . . . Hagmann, P. 

(2023). The coupling between the spatial and temporal scales of neural processes revealed by a 

joint time-vertex connectome spectral analysis. NeuroImage, 280, 120337.  

Rui, L., Nejati, H., & Cheung, N.-M. (2016). Dimensionality reduction of brain imaging data using 

graph signal processing. Paper presented at the 2016 IEEE International Conference on Image 

Processing (ICIP), Phoenix, AZ, USA.  

Saboksayr, S. S., Mateos, G., & Cetin, M. (2021). Online discriminative graph learning from multi-

class smooth signals. Signal Processing, 186, 108101.  



Chapter 5 Bibliography 

77 

Sardouie, S. H., Albera, L., Shamsollahi, M. B., & Merlet, I. (2014). An efficient Jacobi-like 

deflationary ICA algorithm: application to EEG denoising. IEEE Signal Processing Letters, 22(8), 

1198-1202.  

Schmiedt, C., Brand, A., Hildebrandt, H., & Basar-Eroglu, C. (2005). Event-related theta oscillations 

during working memory tasks in patients with schizophrenia and healthy controls. Cognitive 

Brain Research, 25(3), 936-947.  

Seeman, P., & Lee, T. (1975). Antipsychotic drugs: direct correlation between clinical potency and 

presynaptic action on dopamine neurons. Science, 188(4194), 1217-1219.  

Şendur, L., & Selesnick, I. W. (2002). A bivariate shrinkage function for wavelet-based denoising. 

Paper presented at the 2002 IEEE International Conference on Acoustics, Speech, and Signal 

Processing, Orlando, FL, USA.  

Şevik, A. E., Yağcıoğlu, A. E. A., Yağcıoğlu, S., Karahan, S., Gürses, N., & Yıldız, M. (2011). 

Neuropsychological performance and auditory event related potentials in schizophrenia patients 

and their siblings: a family study. Schizophrenia research, 130(1-3), 195-202.  

Sharma, T., Lancaster, E., Sigmundsson, T., Lewis, S., Takei, N., Gurling, H., . . . Murray, R. (1999). 

Lack of normal pattern of cerebral asymmetry in familial schizophrenic patients and their 

relatives—The Maudsley Family Study. Schizophrenia research, 40(2), 111-120.  

Shenton, M. E., Dickey, C. C., Frumin, M., & McCarley, R. W. (2001). A review of MRI findings in 

schizophrenia. Schizophrenia research, 49(1-2), 1-52.  

Shim, M., Hwang, H.-J., Kim, D.-W., Lee, S.-H., & Im, C.-H. (2016). Machine-learning-based 

diagnosis of schizophrenia using combined sensor-level and source-level EEG features. 

Schizophrenia research, 176(2-3), 314-319.  

Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., & Vandergheynst, P. (2013). The emerging field 

of signal processing on graphs: Extending high-dimensional data analysis to networks and other 

irregular domains. IEEE Signal Processing Magazine, 30(3), 83-98.  

Si, Y., Li, F., Duan, K., Tao, Q., Li, C., Cao, Z., . . . Yao, D. (2020). Predicting individual decision-

making responses based on single-trial EEG. NeuroImage, 206, 116333.  

Sihag, S., Naze, S., Taghdiri, F., Gumus, M., Tator, C., Green, R., . . . Dominguez, L. G. (2022). 

Functional brain activity constrained by structural connectivity reveals cohort-specific features 

for serum neurofilament light chain. Communications Medicine, 2(1), 8.  

Sonuga-Barke, E. J., & Castellanos, F. X. (2007). Spontaneous attentional fluctuations in impaired 

states and pathological conditions: a neurobiological hypothesis. Neuroscience and 

Biobehavioral Reviews, 31(7), 977-986.  



Chapter 5 Bibliography 

78 

Sparacino, G., Milani, S., Arslan, E., & Cobelli, C. (2002). A Bayesian approach to estimate evoked 

potentials. Computer methods and programs in biomedicine, 68(3), 233-248.  

Sponheim, S. R., Clementz, B. A., Iacono, W. G., & Beiser, M. (1994). Resting EEG in first‐episode 

and chronic schizophrenia. Psychophysiology, 31(1), 37-43.  

Stotesbury, H., Kirkham, F. J., Kölbel, M., Balfour, P., Clayden, J. D., Sahota, S., . . . Kesse-Adu, R. 

(2018). White matter integrity and processing speed in sickle cell anemia. Neurology, 90(23), 

e2042-e2050.  

Sutton, S., Braren, M., Zubin, J., & John, E. (1965). Evoked-potential correlates of stimulus 

uncertainty. Science, 150(3700), 1187-1188.  

Swerdlow, N. R., Light, G. A., Sprock, J., Calkins, M. E., Green, M. F., Greenwood, T. A., . . . 

Nuechterlein, K. H. (2014). Deficient prepulse inhibition in schizophrenia detected by the multi-

site COGS. Schizophrenia research, 152(2-3), 503-512.  

Takahashi, H., Higuchi, M., & Suhara, T. (2006). The role of extrastriatal dopamine D2 receptors in 

schizophrenia. Biological psychiatry, 59(10), 919-928.  

Tandon, R., Gaebel, W., Barch, D. M., Bustillo, J., Gur, R. E., Heckers, S., . . . Tsuang, M. (2013). 

Definition and description of schizophrenia in the DSM-5. Schizophrenia research, 150(1), 3-10.  

Tarokh, L., Carskadon, M. A., & Achermann, P. (2010). Developmental changes in brain connectivity 

assessed using the sleep EEG. Neuroscience, 171(2), 622-634.  

Tesli, N., van der Meer, D., Rokicki, J., Storvestre, G., Røsæg, C., Jensen, A., . . . Tesli, M. (2020). 

Hippocampal subfield and amygdala nuclei volumes in schizophrenia patients with a history of 

violence. European archives of psychiatry and clinical neuroscience, 270, 771-782.  

Vértes, P. E., Alexander-Bloch, A. F., Gogtay, N., Giedd, J. N., Rapoport, J. L., & Bullmore, E. T. 

(2012). Simple models of human brain functional networks. Proceedings of the National 

Academy of Sciences, 109(15), 5868-5873.  

Vezoli, J., Vinck, M., Bosman, C. A., Bastos, A. M., Lewis, C. M., Kennedy, H., & Fries, P. (2021). 

Brain rhythms define distinct interaction networks with differential dependence on anatomy. 

Neuron, 109(23), 3862-3878. e3865.  

Wada, M., Kurose, S., Miyazaki, T., Nakajima, S., Masuda, F., Mimura, Y., . . . Mashima, Y. (2019). 

The P300 event-related potential in bipolar disorder: A systematic review and meta-analysis. 

Journal of affective disorders, 256, 234-249.  

Wang, J., Dong, W., Li, Y., Wydell, T. N., Quan, W., Tian, J., . . . Yi, C. (2023). Discrimination of 

auditory verbal hallucination in schizophrenia based on EEG brain networks. Psychiatry 

Research: Neuroimaging, 331, 111632.  



Chapter 5 Bibliography 

79 

Wang, R., Lin, P., Liu, M., Wu, Y., Zhou, T., & Zhou, C. (2019). Hierarchical connectome modes and 

critical state jointly maximize human brain functional diversity. Physical review letters, 123(3), 

038301.  

Wang, Z.-M., Zhou, R., He, Y., & Guo, X.-M. (2020). Functional integration and separation of brain 

network based on phase locking value during emotion processing. IEEE Transactions on 

Cognitive and Developmental Systems, 15(2), 444-453.  

Warren, N., Siskind, D., & O'Gorman, C. (2018). Refining the psychiatric syndrome of anti‐N‐

methyl‐d‐aspartate receptor encephalitis. Acta Psychiatrica Scandinavica, 138(5), 401-408.  

Wolpaw, J. R., McFarland, D. J., Vaughan, T. M., & Schalk, G. (2003). The Wadsworth Center brain-

computer interface (BCI) research and development program. IEEE Transactions on Neural 

Systems and Rehabilitation Engineering, 11(2), 1-4.  

Woo, T.-U. W., Walsh, J. P., & Benes, F. M. (2004). Density of glutamic acid decarboxylase 67 

messenger rna–containingneurons that express the n-methyl-d-aspartatereceptor subunit nr2a in 

the anterior cingulate cortex in schizophreniaand bipolar disorder. Archives of General 

Ppsychiatry, 61(7), 649-657.  

Yan, W., Du, C., Wu, Y., Zheng, X., & Xu, G. (2021). SSVEP-EEG denoising via image filtering 

methods. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 1634-1643.  

Yeragani, V. K., Cashmere, D., Miewald, J., Tancer, M., & Keshavan, M. S. (2006). Decreased 

coherence in higher frequency ranges (beta and gamma) between central and frontal EEG in 

patients with schizophrenia: a preliminary report. Psychiatry research, 141(1), 53-60.  

Yurgelun-Todd, D. A., Coyle, J. T., Gruber, S. A., Renshaw, P. F., Silveri, M. M., Amico, E., . . . Goff, 

D. C. (2005). Functional magnetic resonance imaging studies of schizophrenic patients during 

word production: effects of D-cycloserine. Psychiatry Research: Neuroimaging, 138(1), 23-31.  

Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based statistic: identifying differences in 

brain networks. NeuroImage, 53(4), 1197-1207.  

Zalesky, A., Fornito, A., Seal, M. L., Cocchi, L., Westin, C.-F., Bullmore, E. T., . . . Pantelis, C. (2011). 

Disrupted axonal fiber connectivity in schizophrenia. Biological psychiatry, 69(1), 80-89.  

Zhang, H., Zhao, M., Wei, C., Mantini, D., Li, Z., & Liu, Q. (2021). EEGdenoiseNet: a benchmark 

dataset for deep learning solutions of EEG denoising. Journal of neural engineering, 18(5), 

056057.  

 


	ABSTRACT
	RÉSUMÉ
	Table of Contents
	Chapter 1  Introduction
	1.1 Background and Significance of this Research
	1.2 EEG and Its Applications
	1.3 Graph Spectral Theory and Its Application to Brain Science
	1.3.1 Brain Network
	1.3.2 Connectome-Harmonic Decomposition Analysis
	1.3.3 Denoising

	1.4 Related Studies
	1.4.1 Overview of Noise in EEG and Current Denoising Algorithms
	1.4.2 Schizophrenia
	1.4.2.1 Pathology Studies
	1.4.2.2 Brain Imaging
	1.4.2.3 EEG in Schizophrenia


	1.5 The Main Contributions of this Thesis
	1.6 Organization of the Thesis

	Chapter 2  JFT Filter for EEG Denoising Based on Graph Spectral Theory
	2.1 Abstract
	2.2 Introduction
	2.3 JFT Graph Filter
	2.3.1 The Basics of Graph Spectral Theory
	2.3.2 Joint Time-vertex Framework
	2.3.3 Graph Smoothing Filter Based on the  norm
	2.3.4 Stepwise Linear Discriminant Analysis

	2.4 Simulation and Real Data Classification Results
	2.4.1 Dataset
	2.4.2 Simulation Noise and Simulation Results
	2.4.2.1 Simulation Noise
	2.4.2.2 Simulation results

	2.4.3 Classification Results

	2.5 Discussion
	2.6 Conclusion

	Chapter 3  Analysis of Schizophrenia Based on Graph Spectral Theory
	3.1 Abstract
	3.2 Introduction
	3.3 Data and Processing Flow
	3.3.1 Data
	3.3.2 Data Processing Flow

	3.4 Methods
	3.4.1 Source Localization Techniques
	3.4.2 Construction of Consensus Structural Brain Networks
	3.4.3 Graph Power Spectral Density
	3.4.4 Power Spectral Density
	3.4.5 Correlation and Regression Prediction Analysis

	3.5 Results
	3.5.1 Cognitive Scales and ERPs
	3.5.2 GPSD
	3.5.3 Correlation and Prediction Results

	3.6 Discussion
	3.7 Conclusion

	Chapter 4  General Discussion
	4.1 Key Findings and Significance
	4.2 Future Research

	Chapter 5  Bibliography

