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ABSTRACT

Axially stretched free surface vortices occur at low-head hydropower intakes under specific flow and geo-

metric conditions. When they are sufficiently strong, they can harm performance or cause premature failure

of mechanical components such as turbine blades or guide vanes. Laboratory-scale experimental models are

currently used to assess the risk of vortex formation during the design phase, but uncertainty remains as to

how vortex characteristics translate from the laboratory scale to the much larger scale of an actual hydro-

power plant. This paper proposes a semi-empirical model that roughly predicts how the approach flow and

intake geometry determine the key vortex characteristics (the core radius, bulk circulation and the depth of

the free surface depression). The model is developed using detailed velocity measurements of the approach

flow and the flow inside the vortex in a laboratory-scale physical model, using analytical models and insights

drawn from previous work.

Keywords: axial vortex stretching; hydraulic model; hydraulics of renewable energy systems; hy-

dropower intake; particle tracking velocimetry (PTV); turbulence in rotating flow; vortex dynamics.

1

Author accepted version.  Final publication as:
Suerich-Gulick, F., Gaskin, S.J., Villeneuve, M. & Parkinson, E. (2014) Free surface intake vortices:  theoretical model 
and measurements, Journal of Hydraulic Research, 52(4): 502-512.



Free surface intake vortices: Theoretical model and measurements

1 Introduction

Free surface vortices are a common problem directly upstream of low-head hydropower plants and pumping

stations. The structure that guides the flow transition from relatively slow-moving open channel (free

surface) flow approaching the plant or station to faster pressure flow entering the submerged pipe or penstock

leading to the turbines or pumps is referred to as the intake; the vortices that form at the intake are referred

to as intake vortices.

The phenomenon of intake vortices was studied extensively in the 70s and 80s by researchers seek-

ing to predict vortex characteristics and risk of air entrainment at a given flow rate and submergence. Early

efforts relied on reduced-scale laboratory experiments (Daggett and Keulegan 1974; Jain et al. 1978; Pennino

and Hecker 1979; Anwar 1983) as well as some surveys of vortex activity in full-scale ’prototype’ hydro-

power and pumping intakes (Gordon 1970; Pennino and Hecker 1979; Gulliver et al. 1986). The resulting

correlations are still used today by design engineers during the early stages of the design process to estimate

the minimum acceptable submergence: this is the minimum distance that the opening of the intake pipe or

penstock may be to the free surface for a given intake velocity before problematic vortices occur (Tastan and

Yildirim 2010). The predictive accuracy of these correlations is limited by the fact that vortex characteristics

such as the characteristic radius, bulk circulation and the tip depth (the total depth of the free surface depres-

sion produced by the vortex) are very sensitive to the geometry of the intake structure and to the associated

velocity distribution. Physical testing using laboratory-scale models therefore remains a key component of

the assessment and optimization process for most large projects. However, a degree of uncertainty remains

when interpreting the results of these tests, because the various forces that control vortex characteristics scale

differently. Scale effects should thus be carefully considered in physical model tests.

Many attempts have been made to assess and predict scale effects. Daggett and Keulegan (1974),

Jain et al. (1978), Anwar (1983), and Tastan and Yildirim (2010) approach the question empirically, identify-

ing the minimum size of a laboratory model (or recommended cut-off values of associated non-dimensional

parameters) required for scale effects to be negligible. These recommended cut-off values vary from author

to author (Tastan and Yildirim 2010) and may be difficult to meet for large-scale projects such as hydropower

intakes within the economic and spatial constraints.

Several analytical models have been developed to describe processes such as vorticity generation,

diffusion and axial vortex stretching that govern intake vortex characteristics. Vorticity is a vector quan-

tity ω that locally quantifies the rate of rotation of a fluid particle about its centre of mass. It is defined

mathematically as the curl of the velocity vector: ω = ∇×V (Helmholtz 1867).

The vortex flow is described using a local cylindrical coordinate system (r,θ ,z) with z pointing down

from the free surface along the central axis of the vortex, and with corresponding radial, azimuthal and axial

velocities Vr,Vθ and Vz. If the axial velocity Vz of a vortex increases along its axis, the vortex is said to be

axially stretched, and its streamlines converge towards the axis (Vr < 0). If viscous losses are negligible, then

the vortex’s angular momentum is conserved and vorticity in the vortex increases in proportion to the axial

gradient (Helmholtz 1867). In most flows, viscosity tends to smear vorticity radially outwards, leading to a

Gaussian-like profile (Rott 1958).

Burgers (1948) and Rott (1958) independently developed a vortex model in which an equilibrium
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of axial stretching and viscous diffusion produces a stable vortex with a constant vorticity profile along its

axis. They assume that the radial profiles of Vθ and Vr are constant along z and that the axial velocity Vz is

independent of r and increases linearly with z: Vz(z) = az, Vr(r) =−ar/2, where the gradient a is a constant

with units of s−1 and the profile of Vr is set to satisfy continuity. Solving the axisymmetric Navier–Stokes

equations with these assumptions produces

Vθ (r) =
Γ∞

2πr
[1− exp{−(r/ro)2}], (1)

where Γ∞ is the bulk circulation, assumed to reach a constant value far from the vortex centre. What will be

hereafter referred to as the characteristic radius ro is determined by the ratio of viscosity to axial gradient:

ro = 2(ν/a)1/2, a = ∂Vz/∂ z, (2)

where ν is the kinematic viscosity of the fluid.

Einstein and Li (1951) applied a modified version of this model to intake vortices (later further

adjusted by Bøhling et al. (2010)), defining an inner region in which a Burgers vortex is concentrated, sur-

rounded by an external zone with no axial velocity. Odgaard (1986) used Burgers’s (1948) model directly to

predict critical submergence for an air core vortex in a cylindrical tank with imposed flow rotation: this work

highlighted the link between submergence and the key process of axial stretching (Quick 1970; Carriveau

et al. 2009; Petitjeans 2003). Odgaard (1986) assumes that the axial velocity in the central portion of the

tank follows a linear profile from zero at the free surface to Ui at the bottom of the tank, so that a = Ui/H,

where H is the water depth and Ui is the mean outflow velocity. Odgaard’s and subsequent results (Hite

and Mih 1994; Ito et al. 2010) support the use of Burgers’s model for modelling intake vortices, even if it

does not capture their full complexity. Other variants of Burgers’s model have been proposed by Lundgren

(1985),Hite and Mih (1994),Miles (1998), Rossi et al. (2004), Andersen et al. (2006), Stepanyants and Yeoh

(2008), Ito et al. (2010), and Wang et al. (2011), among others.

There remains a shortage of detailed measurements of vortices and the flow surrounding them for

geometries more closely resembling hydropower intakes, such as Hite and Mih (1994) and Nakayama and

Hisasue (2010). These are required to help adapt models of free surface vortices to specific intakes and

to better understand how geometry and intake approach flow influence vortex characteristics (Quick 1970;

Yildirim et al. 2000; Ansar and Nakato 2001). Computational fluid dynamics models have potential to

help predict the flow field approaching intakes, but they remain expensive and insufficiently validated for

modelling the vortices themselves with adequate accuracy within the time and economic constraints of an

hydraulic industrial context. This paper builds on Odgaard’s (1986) model by first testing its hypotheses

using experimental data collected in a laboratory model and then adapting it to incorporate the influence

of the intake geometry. Detailed velocity measurements are taken to establish the relationship between

the geometry, the flow approaching the intake pipe and the characteristics of the vortices that form. The

measurements are then used to adapt Burgers’s vortex model to the specific intake geometry studied in the

laboratory.

2 Experimental setup

A laboratory-scale experimental model is constructed that reproduces the flow configuration of a simplified

low-head hydropower intake with approximately uniform approach flow conditions. As shown in Fig. 1, the
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channel has a square 1 by 1 m cross-section with a 3.9 m long flat bed and a circular ’intake’ pipe of inner

diameter d = 11.5 cm mounted flush into the downstream wall of the channel, with its axis located 0.14 m

above the channel bed. This is a simplification compared to most hydropower intakes, where the intake

opening is usually more rectangular in shape.
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Figure 1 (a) Vertical section and (b) isometric views of the laboratory model (dimensions in cm).

Adapted from Suerich-Gulick et al. (2014a)

Two narrow piers are mounted perpendicular to the downstream wall on each side of the intake pipe.

Each pier generates a relatively stable vortex pair in its wake (Hite and Mih 1994) with one vortex starting at

the free surface and one starting from the floor of the tank; both vortex tails are entrained into the intake pipe

as shown in Fig. 2a. Similar piers are found at hydropower intakes where they hold the trash-racks across the

penstock opening (Pennino and Hecker 1979; Gulliver et al. 1986; Jiming et al. 2000; Montilla et al. 2004).

The piers in the experiment protrude further into the flow and are less streamlined to produce more stable

vortices and a clearly defined separation zone, thus easing measurements and analysis. Figure 2b shows a

top view schematic of the free surface streamlines in the experiment, with the piers and back wall shown in

grey. Only the free surface vortices are examined in this paper since their presence and effects are of greater

concern to plant operators. The two piers are spaced k=15 cm apart, symmetrically about the pipe axis; their

cross-section is rectangular, 1.2 cm thick and 4.5 cm long and they span the full channel depth (Fig. 1b).

The water level in the channel is controlled by the back-pressure at the exit of the intake pipe and

it is stabilized with a square-crested weir mounted into the upstream wall of the channel. The water is

injected into the tank through a T-shaped diffuser submerged in a 60 cm long, 40 cm deep reservoir directly

upstream of the channel. Large eddies produced as the flow exits the diffuser are broken down with a 1.9

cm (3/4") thick sheet of aluminum honeycomb placed just downstream of the step from the reservoir to the

channel. A global coordinate system (X ,Y,Z) is defined with its origin at the free surface, half-way across the

downstream wall of the channel. Z points down towards the bed, X points downstream and Y points towards

the right when looking downstream.
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Figure 2 (a) Schematic side view of the intake approach flow on the vertical plane along the

channel centerline, with shading indicating velocity magnitude. Adapted from Suerich-Gulick et al.

(2014a). (b) Top view sketch of streamlines separating off the pier tips.

Eight combinations of submergence and intake velocity are selected to produce a wide range of

vortex intensities (see Table 1). The intake velocity ranges from Ui = 0.58 to 1.80 ms−1 and the relative

submergence ranges from s/d = 1.5 to 3.3, where Ui = 4Q/(πd2) is the mean velocity in the intake pipe

and s is the vertical distance from the free surface to the top of the pipe opening (as shown in Fig. 1b).

The mean channel velocity Uch = Q/(bH) ranges from 16 to 40 mms−1, where H is the nominal water

depth in the channel and b = 1 m is the channel width. The deepest submergence studied (s/d = 3.3) is

the approximate transition point where the vortices become much weaker and more sporadic. Rs = Uis/ν ,

Fs = Ui/(gs)1/2 and W = ρU2
i s/σ are the submergence Reynolds, Froude and Weber numbers respectively,

and Rch = UchH/ν is the channel Reynolds number. The experiment is operated at temperatures ranging

from 12 to 15 ◦C.

2.1 Measurements

For each operating condition, three different measurement methods are used to document the flow conditions

upstream from the intake and directly in front of it, as well as the velocity field inside the vortex and the free

surface depression it produces. These data allow us to clarify how the intake geometry controls the structure

of the flow directly in front of it and how it thereby controls the vortex characteristics. The measurements are

then used to guide the choice of analytical relations and coefficients used to relate the vortex characteristics

to the intake configuration. The data are collected using an acoustic Doppler velocimeter (ADV) and high-

speed films that simultaneously record the free surface profile and particle trajectories for particle tracking

velocimetry (PTV).

2.2 ADV measurements

A Sontek Micro-ADV is used to record the larger-scale structure of the flow approaching the intake and to

quantify how the velocity fields outside the vortex control the circulation and the characteristic radius of the

vortex through axial stretching. Mean velocities UX ,UY and UZ are measured at 30 Hz and averaged over

two minutes. Coarse measurement grids are taken 2 m and 0.2 m upstream of the intake and a vertical line of

more closely-spaced measurements is taken 5.5 cm upstream from the intake pipe on the channel centreline
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Table 1 Operating conditions for the measurements

Case s/d Ui Uch Rs Rch Fs W vortex

×10−5 ×10−4 ×10−3 type*

(ms−1) (mms−1)

1 1.5 0.58 16 0.8 0.5 0.4 0.8 4

2 1.5 0.86 24 1.2 0.7 0.7 1.8 4

3 1.5 1.40 39 2.0 1.2 1.1 4.8 5

4 2.4 0.86 19 1.9 0.7 0.5 2.8 4

5 2.4 1.80 40 4.1 1.5 1.1 12.4 4

6 3.3 0.86 16 2.7 0.7 0.4 3.9 1-3

7 3.3 1.40 25 4.3 1.2 0.7 10.2 1

8 3.3 1.80 33 5.6 1.5 0.9 16.9 1-4

*According to the classification of Hecker (1987).

(see Fig. 2a, where −4X =−5.5 cm.) The profile measured at X = −4X is referred to hereafter as the

intake approach flow. The ADV orientation is accurate within 5◦ and the signal to noise ratio was above 8

for the majority of the measurements, which is sufficient for mean velocity measurements.

The channel flow is roughly uniform with moderate left-right asymmetry across the channel cross-

section that is probably due to a bend in the feeder pipe. The relative asymmetry is amplified at deeper

submergences near the free surface where velocities are very low: this effect may be enhanced by the vortices.

2.3 PTV Measurements

An optical method such as PTV is preferred to measure velocities in the vortices because they are small and

easily perturbed. The intensity and position of the vortices also fluctuate over time-scales of a few seconds.

PTV is accessible and allows the velocity to be measured at many points across the vortex over time-scales

(0.3 to 2 seconds) that are sufficiently small compared to the vortex time-scale. Appropriate film segments

are selected by assessing vortex stability from the shape of the free surface depression, which is visible on

the particle images.

Velocities are measured in the right vortex by tracking particles (Pliolite VT) that are injected into

the vortex just below the free surface and filmed through the outflow wall with a high-speed camera (Fastec

Troubleshooter). The particles are injected at the centre of the vortex to get a more clearly defined profile

in the vortex core (r < ro), since velocities there have the greatest impact on the free surface depression.

The vortex is lit from above and below to compensate for light refracted by the free surface depression. The

particles have diameters ranging from 150 to 350 µm so each particle covers 0.6 to 1.6 pixels in the image.

They have a density of 1.003 kg ·m−3 and a terminal velocity of 0.6 to 1.3 mm · s−1 in still 12 ◦C water.

The images are recorded at 250 frames per second except for the deepest submergence where 50 frames per

second is more appropriate for the much lower velocities.
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The particles are tracked using an open-source particle-tracking code developed by Sbalzarini and

Koumoutsakos (2005) that was modified for this experiment to optimize tracking. Figure 3 shows (a) a

sample film frame with black and white inverted, (b) the graphical output from the particle-tracking code,

and (c) a single plotted trajectory. The transverse coordinate of the particles follows a sinusoidal path in

time, of amplitude 2r j and period τ j, which is computed for every complete trajectory cycle j found in the

image sequence. Assuming that the azimuthal velocity is steady and axisymmetric and that Vθ ÀVr, Vθ can

be computed as Vθ , j(r j) = 2πr jτ−1. Burgers’s model (equation 1) can be rewritten in terms of the frequency

τ and fitted to the measured velocities by adjusting ro and Γ∞.
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Figure 3 (a) Sample PTV film frame, (b) particle tracking output, (c) sample plotted trajectory.

Fitting Burgers’s model to plots of (r j,τ j) or the inverse (r j,τ−1
j ) yields different values for ro and Γ∞

since points at large radii are weighted more heavily when fitting to τ and smaller radius points are weighted

more heavily for τ−1. The results of both fitting approaches are indicated as error bars to the mean of the two

in plots of measured ro and Γ∞ values (Figs. 6 to 8). A greater difference between the two values obtained
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Figure 4 The radial profiles of Vθ measured using PTV for the eight operating conditions.
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suggests greater deviation from Burgers’s profile. Figure 4 shows the 18 radial profiles of azimuthal velocity

Vθ (r/ro)/Vθ ,max that were measured for the eight operating conditions, with Burgers’s profile (equation 1)

plotted as a solid line. The data points measured outside the vortex core (r j > ro) tend to stray further from

the model profile, possibly due to the non-axisymmetric geometry or greater turbulence there.

The axial velocity Vz is computed directly from the vertical displacement of particles averaged over

three frames. Vz fluctuates significantly as the particles complete each circuit around the vortex so the mean

slope ∂Vz/∂ z is obtained by fitting a straight line through the oscillating signal. Beyond optical effects,

deviation of the Vz field from axisymmetry may be due to the presence of the wall or pier, curvature of the

vortex, or long-wave oscillations travelling along its axis (Crow 1970; Jacquin and Pantano 2002). The slopes

of the non-dimensionalized profiles obtained in this manner seem quite consistent for each submergence over

different flow rates, despite considerable scatter of the individual velocity points (see Fig. 5b). A few profiles

that cover the full vortex length are obtained by tracking TiO2 powder ’dye’ injected into the vortex core

from the free surface to the intake pipe for three conditions (the highest flow rates at each submergence

level). These profiles are consistent with those obtained using PTV and appear in Fig. 5b as well.

3 Analysis and discussion

In this section, the vortices observed in the experiment are qualitatively described and a theoretical model

is developed by combining Burgers’s vortex model (equation 1) with simple analytical relations that link

the characteristic radius ro, and the bulk circulation Γ∞ to the intake approach flow and intake geometry.

The analytical relations are adjusted to the particular intake geometry using empirical coefficients fitted to

measurements from the experiment. The final model predicts the range of ro, Γ∞ and tip depth values that

one should expect for a given set of flow conditions for this configuration.

3.1 Qualitative description

The vortices produced at the lowest submergence are the strongest and most persistent and those formed at the

deepest submergence are the weakest and least persistent. Table 1 indicates the strongest vortex type observed

(Hecker 1987). The vortices at the low and medium submergences produce a visible depression of the free

surface with a tip depth h0 (maximum depression) ranging from a few millimeters to a deep funnel more than

a centimeter deep that periodically entrains air bubbles at the highest intake velocity. The vortices produced at

the deepest submergence (s/d = 3.3) produce such a small depression that they can only be detected from the

deformation of reflections on the free surface. At greater flow rates, they rarely last more than a few seconds

before dissipating and they require many minutes to form again, but they occasionally entrain floating

particles. They also appear to be more strongly influenced by minor asymmetries in the approach flow. At

the lowest flow rate for the deepest submergence, the vortices produce a more coherent and long-lasting dye

core; this is probably due to lower background turbulence levels and associated perturbations.

3.2 Axial flow gradients and the vortex characteristic radius

This section demonstrates how the characteristic radius ro can be predicted from the gradients of the flow

outside the vortex. ro is shown to be quite well predicted by the ratio of the molecular viscosity ν to the axial

gradient of the axial velocity a = ∂Vz/∂ z inside the vortex near the free surface. Next, the axial gradient a
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inside the vortex is shown to be driven by the vertical gradient of the intake approach velocity ∂ |U |/∂Z out-

side the vortex. Finally, the non-dimensional intake approach velocity |U |/Ui for all the operating conditions

can be written as a simple analytical function of the non-dimensional distance from the inlet η/d, with two

empirical coefficients that account for the specific geometry of the intake. In order to present the resulting

vortex model in a more logical sequence, these three elements are presented below in the reverse order: from

the structure of the intake approach flow to the flow inside the vortex to the characteristic radius.

First, mean vertical gradients in the intake approach flow are examined. We find that the flow

bracketed by the piers can be sufficiently well described for this purpose as a slice of two-dimensional flow

into a horizontal line sink located at the upper edge of the intake opening, as shown in Fig. 2a (Bøhling et al.

2010; Yildirim et al. 2000). The upper boundary formed by the free surface causes the flow to deviate from

that into a pure line sink. At the deepest submergence, the approach velocity approaches zero at the free

surface and begins to recirculate slightly about a horizontal axis formed by the line where the free surface

meets the downstream wall. The non-dimensionalized intake approach velocities |U |/Ui collapse onto a

single line given by

|U | f it(η)
Ui

=
c1d
4k ( d

η
− c2), (3)

where |U |= (U2
X +U2

Y +U2
Z )1/2 and η is the total distance from the top of the inlet opening to each measure-

ment point, so that η = [(s−Z)2 +(4X)2]1/2 (see Fig. 2a). The non-dimensional coefficients c1= 0.8 and

c2=0.28 are selected to produce the best fit to the data. Figure 5a shows the measured velocities as points and

the curve fit |U | f it/Ui as a solid line. The point η/d = c2 = 0.28 where the line crosses the graph’s vertical

axis roughly corresponds to the point where recirculation begins to occur at the free surface for the deepest

submergence.
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Figure 5 (a) The mean magnitude of velocity |U |/Ui outside the vortex, measured by

ADV (symbols) and estimated (line) using equation (3). (b) Comparison of the vertical

velocity profiles measured inside (Vz) and outside the vortex (|U | f it and UZ). Adapted

from (Suerich-Gulick et al. 2014a).
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Next, we examine the link between the intake approach flow (outside the vortex) and the axial

flow inside the vortex. Although the vortex is not perfectly vertical along its full length, it is close enough

to vertical near the free surface, which is the zone of interest. As shown in Fig. 5(b), the measurements

reveal that the mean gradient of the axial flow Vz inside the vortex is driven by the mean vertical gradient

of the velocity outside the vortex. However Vz tends towards a more linear profile for the low and medium

submergences, producing much higher axial velocities and gradients near the free surface inside the vortex

than outside it. The thick solid lines in Fig. 5(b) show the axial velocity Vz/Ui measured inside the vortex,

while the dashed line shows |U | f it/Ui, as defined in equation (3). The location of the free surface is indicated

for each submergence; moving upward on the graph to larger values of η/d indicates a greater vertical

distance from the intake pipe.

The central jet of higher Vz inside the vortex following a linear axial profile resembles the axial

velocity field produced by Rossi et al.’s (2004) analytical/numerical model and the simulation results of

Bøhling et al. (2010). It is possible that the linear axial profile of Vz forms inside the vortex because it is

more stable than a non-linear one. Pressure may play a role in pushing the axial profile of Vz from a non-linear

one towards a linear one: the tighter vortex produced by the steeper axial gradient near the intake opening

should produce a greater pressure local drop due to centripetal acceleration in the vortex that could drive

greater axial velocity from the weaker gradient zone near the free surface to the stronger gradient region

closer to the intake pipe. Vz appears to stay closer to the velocity |U | outside the vortex for the deepest

submergence, developing a linear profile only under some conditions. The effect of the pressure gradient

may be too weak under these conditions to push the axial velocity towards a more linear one. Alternatively,

the linear axial profile may not have time to form if the vortices have a shorter lifespan, or if the gradient

∂Vz/∂ z (Nolan 2001) or the circulation (Jacquin and Pantano 2002) are not strong enough to stabilize the

vortices in the presence of the radial gradient in Vz.

The axial gradient of Vz near the free surface is significant because it determines the characteristic

radius ro of the vortex in combination with the molecular viscosity ν . As shown in Figure 6(a), ro extracted

from the measured azimuthal velocity profile (Fig. 4) is well predicted by Burgers’s model ro = 2(ν/a)1/2,

with a = ∂Vz/∂ z extracted from the same particle trajectories as ro. Previous authors proposed using an

effective turbulent viscosity νeff to predict ro (Odgaard 1986; Hite and Mih 1994), but here the molecular ν
predicts ro quite well even with surrounding turbulent flow, similarly to the laminar case studied by Petitjeans

(2003). This supports the hypothesis that radial turbulent mixing is suppressed inside the vortex by the flow

rotation, as has been extensively documented in airplane wing tip vortices and other applications (Spalart

1998; Jacquin and Pantano 2002), where the spreading rate of vortices in turbulent flow has been shown to

be governed by viscous diffusion, not turbulent diffusion (Cotel and Breidenthal 1999). It would appear that

turbulence is suppressed to a significant degree within intake vortices as well, given that dye injected into

the vortex produces a clearly delimited dye core (Anwar 1983; Hecker 1987; Schäfer and Hellman 2005),

but sufficient turbulence may persist to partially suppress diffusion and hence affect ro. This question is

discussed further in (Suerich-Gulick et al. 2014b).

Greater scatter and deviation from the predicted value of ro is observed for the deep submergence

(black data points), where ro is both more sensitive to variations in a and where the slope of Vz(z) is very

small and difficult to distinguish from the azimuthal oscillations. It is much more difficult to assess the

stability of these shorter-lived vortices since they don’t deform the free surface enough to be visible from
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the side. These vortices may therefore not have reached the equilibrium state assumed in Burgers’s model,

and a may vary considerably with time for a given operating condition as the vortex forms, strengthens and

weakens.

 0

 4

 8

 0  1.5  3

r
o

(mm)

(a)

a=∂V
z

/∂z (s
-1

)

Eq. (2)

Experiment

 0

 3

 6

 2  4  6

r
o

d

×102

r
o,est

 /{d(1-β)1/2}  ×102  (Eq. 5)

(b)

β = 0.15

 0.66

 0.85

Figure 6 (a) Dependence of the characteristic radius ro on the axial velocity gradient a = ∂Vz/∂ z

near the free surface inside the vortex. ro measured by PTV (symbols) is compared to the estimate

(line) given by equation (2) using the measured gradient a. (b) Dependence of ro on the geometry

and flow conditions. Measured values (symbols) are compared to estimates (lines) obtained from

equation (5). See Fig. 4 for the key to operating conditions.

We have established that ro is controlled by ν and ∂Vz/∂ z and that the profile Vz(z) is driven by

the intake approach velocity. ro can therefore now be predicted as a function of the submergence s/d and

the intake velocity Ui (Fig. 6b). Given the uncertainty as to how much Vz(z) will tend towards a more linear

profile, a range of values for ro is predicted instead of a fixed value. We assume that the axial velocity Vz

inside the vortex matches the magnitude of velocity |U | outside the vortex at the free surface and at a distance

z = β s below the free surface, following a linear profile between the two points. The non-dimensional

coefficient β , ranging from 0 to 0.85, indicates how far the linear profile extends below the free surface.

β = 0.66 indicates that the linear profile extends 2/3 of the distance from the free surface to the top of the

intake pipe and β = 0 indicates that Vz matches the |U | profile along the full length of the vortex. |U | f it is

estimated using equation (3) with η ≈ s at the free surface and η ≈ (1−β )s at z = β s, producing

aest =
c1Uid2

4ks2(1−β )
. (4)

The resulting characteristic radius ro,est is obtained by substituting aest into equation (2):

ro,est =
4s
d (νk(1−β )

c1Ui
)

1/2

. (5)

When Vz(z) follows the outside profile |U |(Z) over most of the vortex length (corresponding to

a smaller value of β ), then the axial gradient a=∂Vz/∂ z at the free surface is weaker, producing a larger

characteristic radius ro for a given Ui and s/d. If a linear profile forms over a greater proportion of the flow
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(larger β ), then a greater a at the free surface will produce a smaller characteristic radius. Figure 6b compares

the values of ro/d measured in the experiment to the envelope of values estimated from equation (5) using

different values of β (0.15,0.66,0.85). The solid line β = 0.66 roughly corresponds to the profiles observed

in Fig. 5b for s/d = 2.4 and some cases of s/d = 1.5. β = 0.15 (dotted line) and β = 0.85 (dashed line)

roughly bracket the measured values that lie above and below this mean, respectively.

In this graph and the next, all the measurements for a given operating condition are vertically

aligned, so the significant variability of ro within one operating condition is clearly visible. Once again

the measured values of ro for the deep submergence (black points), stray furthest from the mean value in

Fig. 6b. It is likely that some of this variability is due to variations in the axial velocity profile inside the

vortex.

3.3 Bulk circulation Γ∞

The bulk circulation Γ∞ is controlled by the interaction of the channel flow with the intake geometry, as

vorticity generated upstream or near the intake becomes concentrated into a vortex above the intake pipe

through axial stretching (Quick 1970; Suerich-Gulick et al. 2014a). Γ∞ is estimated by integrating Vθ along

the full circumference of a circle of radius rÀ ro (Thomson 1869) since the bulk of vorticity is concentrated

in r < ro: Γ∞ = Γ (r À ro) =
∫ 2π

0 Vθ rdθ . The two free surface vortices are roughly confined to the wake of

the pier here in all but one case, so the integral is computed along a circle of diameter lp inscribed inside

the region delimited by the pier and the downstream wall (see Fig. 2b). The azimuthal velocity on this circle

should be proportional to the mean horizontal free surface velocity measured directly in front of the intake,

which is roughly equal to |U | f it at η = s, since UZ = 0 at the free surface. Γ∞ is therefore estimated as

πlpU f it,η=s. As was the case for ro, there are significant variations in Γ∞ at each operating condition, so we

estimate a range of values for Γ∞ instead of a fixed value:

Γ∞,est =
c3c1dUiπlp

4k ( d
c4s

− c2), (6)

where the coefficients c3 and c4 are fitted to the measured data. c3 = 0.33 and c4 takes two values, 1.0 and

0.6 which give the lower (Γ∞,min) and upper (Γ∞,max) estimated values of Γ∞, respectively. The resulting range

of values is indicated by the grey boxes in Fig. 7a, while the points show the measured values.

Setting c4 to 0.6 instead of 1.0 is roughly equivalent to estimating the circulation from the approach

velocity |U | a third of the way down from the free surface instead of directly at the free surface. This suggests

that the stronger approach velocity below the free surface may be strengthening the vortex to a greater Γ∞

value under certain conditions, for example if the vortex lasts longer. The magnitude of the variations in Γ∞

also appears to scale with the channel Reynolds number Rch, as shown in Fig. 7b, so that

Γ∞,max−Γ∞,min ≈ c5νRch, (7)

where c5 = 0.06 is fitted to the measured data. Perhaps the greater turbulence levels at greater Reynolds

numbers produce greater occasional deviations from the mean free surface velocity, generating greater cir-

culation.

In all cases except for case 6 (Ui = 0.86,s/d = 3.3), the mean intensity of the two free surface

vortices appears to be roughly equal when averaged over time. In case 6, the mean approach velocity at the
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Figure 7 The bulk circulation Γ∞. (a) Comparison of measured (symbols) to estimated (boxes)

values obtained from equation (6). (b) Variation in measured Γ∞ (symbols) as a function of Rch, with

the upper limit (line) estimated using equation (7). See Fig. 4 for the key to operating conditions.

free surface was so weak that the flow structure was qualitatively different from the other cases and only

one vortex formed at any given time, halfway between the two piers. The data points for this case are not

included in Fig. 7.

3.4 Free surface depression

The centripetal acceleration V 2
θ /r in the vortex generates a pressure drop in its centre and hence a depres-

sion of the free surface whose magnitude is determined by the equilibrium of the forces exerted by gravity,

centripetal acceleration, and surface tension. Neglecting surface tension, which is left to a subsequent paper

(Suerich-Gulick et al. 2014b), an analytical relation for the tip depth h0 is obtained by substituting Burgers’s

profile (equation 1) for Vθ (r):

h0 =
∫ 0

∞
(Vθ (ŕ)2

gŕ )dŕ =
0.17Γ 2

∞
π2r2

og
, (8)

where h0 is the distance from the nominal (undeformed) free surface down to the lowest point of the free

surface depression caused by the vortex, and g is the gravitational acceleration.

The tip depth h0,comp that corresponds to the Vθ profiles measured in the experiment is computed

by substituting the measured values of Γ∞ and ro into equation (8). It is compared in Fig. 8a to the actual

measured tip depth h0,exp recorded in the same film segments as the particle trajectories used to measure

the velocities, allowing us to evaluate if the velocities were properly measured and if Burgers’s model is

appropriate. The solid line in Fig. 8a indicates exact agreement between h0,comp and h0,exp; the horizontal

error bars show the spread in ro and Γ∞ values obtained from the two fitting methods (section 2.3), while the

symbols indicate their mean. The h0,comp values follow the same trend as h0,exp, but the former are larger

because they are computed without surface tension, which significantly reduces the total depression in the

experiment.
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Alternatively the expressions for Γ∞ (equation 6) and ro (equation 5) developed above can be sub-

stituted into Burgers’s relation (equation 1) for Vθ (r), producing an estimated tip depth h0,est in terms of the

intake conditions and geometry:

h0,est

d
=

0.17Γ 2
∞

π2dr2
og

=
c6c2

3c3
1

(1−β )
RsF2

s(d
k)

3( lp

s )
2

( d
c4s

− c2)
2
, (9)

where c6 = 6.6×10−4 is determined by the integration and RsF2
s = U3

i /(νg).

The estimated range of h0,est/d compares fairly well to the measured values h0,exp/d, as shown in

Fig. 8b. The symbols indicate the measured values and the gray boxes indicate the values estimated using

equation (9) with (c4 = 1.0,β = 0.15) for the minima, (c4 = 0.66,β = 0.75) for the mid-range values, and

(c4 = 0.6,β = 0.85) for the maxima. There is much greater scatter in this graph, due to the variations in ro and

Γ∞ discussed above. It is difficult to compare the results presented here to empirical relationships, because

most of these relationships predict the critical submergence for air entrainment, whereas the experiment

described here focuses mainly on weaker vortices.

 0

 0.15

 0.3

 0  0.15  0.3

h0,exp


d

h0,comp /d  (Eq. 8)

(a)

10-2

100

10-4 10-2

h0

d

h0,est(1-β )/d  (Eq. 9 w/ c4=1.0) 

(b)

Figure 8 Free surface depression. (a) Correspondence between the measured tip depth h0,exp

and the computed tip depth h0,comp obtained from equation (8) with the measured ro and Γ∞ values.

(b) The measured tip depth (symbols) and the predicted limiting values (boxes) estimated from the

geometry and flow conditions (equation 9). See Fig. 4 for the key to operating conditions.

4 Conclusion

The results presented here establish a clear link between the velocity profile directly in front of the intake

and the axial velocity profile Vz(z) inside the vortex, highlighting the role of the intake approach flow in driv-

ing axial vortex stretching. The measurements strongly suggest that radial turbulent diffusion is effectively

suppressed in the vortex core, in agreement with observations in wing tip vortices. It is difficult to predict

how much Vz(z) will stray from the non-linear profile of the flow outside the vortex towards a more linear

one and equally difficult to explain the significant variations in Γ∞ observed for a given operating condition.

Due to observed variations in the axial profile Vz(z) and Γ∞, expected ranges for ro, Γ∞ and h0 are estimated

14



as a function of Ui and s/d instead of fixed values. These analytical relations are used in a subsequent paper

(Suerich-Gulick et al. 2014b) to propose and discuss quantitative relations for translating vortex character-

istics observed in a laboratory-scale model to the prototype scale based on the scaling behaviour of surface

tension, viscosity and turbulence.
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Notation

a = axial gradient of axial velocity (s−1)

b = channel width (m)

c1−6 = non-dimensional model coefficients (-)

d = intake pipe inner diameter (m)

Fs = intake Froude number (-)

g = gravitational acceleration (ms−2)

H = nominal flow depth (m)

h0 = tip depth of free surface depression (m)

k = distance between the piers (m)

lp = pier length (m)

Q = intake flow rate (m3s−1)

Rs = intake Reynolds number (-)

Rch = channel Reynolds number (-)

r = vortex radial coordinate (m)

ro = vortex characteristic radius (m)

s = intake submergence (m)

U = velocity vector in the channel (ms−1)

Ui = mean intake velocity (ms−1)

Uch = mean channel velocity (ms−1)
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V = velocity vector inside the vortex (ms−1)

W = intake Weber number (-)

X = global longitudinal coordinate (m)

Y = global lateral coordinate(m)

Z = global vertical coordinate (m)

z = vortex axial coordinate (m)

β = ratio of distance from free surface to intake (-)

4X = ADV measurement line offset (m)

Γ∞ = vortex bulk circulation (m2s−1)

η = total distance from top of intake pipe (m)

ν = water molecular viscosity (m2s−1)

π = trigonometric constant (-)

ρ = water density (kg m−3)

τ = particle trajectory period (s)

θ = vortex azimuthal coordinate (rad)

ω = vorticity vector (s−1)

Subscripts
comp = computed value

est = estimated value

exp = measured value

fit = fitted value

j = particle number

max = maximum value

min = minimum value
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