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Steering-angle computation for the
multibody modelling of differential-driving
mobile robots with a caster
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Wei Li5 and Peihuang Lou1

Abstract
Since many off-the-shelf motor drives are supplied with complete control capability in the current, velocity and position
loop, the robot model in the navigation control architecture can be oriented either to kinematics, interfaced with the
velocity loop, or to dynamics, with the motor-current loop. Moreover, no constraints are imposed by a caster on the
mobility of differential-driving mobile robots. Hence, a reduced model, containing only the platform, is sufficient for
navigation control based only on the robot kinematics. However, if the multibody system model is used for navigation
control based on the robot dynamics, to cope with the demands of high-speed manoeuvres and/or heavy-load operations,
then the caster kinematics, especially the knowledge of the steering angle, is required to calculate the inertia matrix and
the terms of Coriolis and centrifugal forces. While this angle can be measured by means of dedicated encoders to be
installed for casters, the computation technique based on the existing tachometers, already mounted on the motor shafts
for the servo control of the two driving wheels, is proved to be sufficient. Both a thorough kinematics model and a
multibody dynamics model, including the platform and all different wheels, are formulated here for differential-driving
mobile robots. Computational methods based on velocity compatibility and rigid body twists are proposed to estimate the
steering angle. Simulation results of the differential-driving mobile robot moving on a smooth trajectory show the fea-
sibility of the steering-angle computational scheme, which obviates the need of installing caster encoders. Moreover, a
performance comparison on system modelling is implemented via simulation, between the differential-driving mobile
robot model with and without caster dynamics. This further validates the importance of the dynamic effects of casters on
the whole system model. Therefore, the multibody modelling approach for casters with the steering-angle computation
technique can facilitate the navigation control architecture under dynamics conditions.
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Introduction

Differential-driving mobile robots (DDMRs) are widely

used in research and industry environments, for example,

some well-known products like Pioneer, Roomba and

KIVA. One main advantage of DDMRs is the capability

of changing their direction by varying the angular veloci-

ties of their two driving wheels, without any additional
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steering mechanism, as opposed to car-like mobile robots1,2

and unmanned ground vehicles.3 When a DDMR under-

goes planar motion, three wheels are sufficient to guarantee

the stable balance of its platform. In order to avoid any

additional constraint on the mobility of DDMRs, a caster

wheel is normally used as the third wheel.4 Although the

stability and load-carrying capacity can be further

improved by adding extra casters, a suspension mechanism

will be required for more than three contact points on

uneven terrain.

Due to their simple and reliable propulsion mechanism,

DDMRs are adopted in almost all research fields: path-

tracking,5–9 trajectory-planning,10–14 position-estima-

tion,15,16 navigation control17–19 and multi-robot

control.20–22 Robot models are the indispensable basis for

the various applications mentioned earlier. Generally

speaking, kinematics models are more popular in applica-

tions, not only for estimation15,16 and planning,11,13,14 but

also for control.8,17,18,20 Most kinematics models involve

differential equations due to the nonholonomic constraints

of DDMRs,7,14,15,19,22 while some kinematics models are

based on geometric relations that rely on the instantaneous

centre of curvature or trajectory approximation at each

sampling instant.16–18,20 Besides the robot kinematics, it

is important to consider the robot dynamics when high-

speed movement and/or heavy-load operations are required

in realistic work fields.23 The dynamics models can asso-

ciate platform twist with motor armature voltage,5 or with

duty ratio of pulse width modulation of motor voltage,12 or

relate wheel forces to robot acceleration.9,21

Furthermore, the system model can be described hier-

archically, corresponding to the multiple closed loops in the

robot control architecture, for example, navigation control,

which involves three control loops: path tracking, robot

control and drive control. The system model can be either

single or composite, either kinematic or dynamic. For

example, three single models and one composite model

were proposed by Shojaei et al.5 The former includes a

kinematics path-tracking model relating platform pose to

platform twist (rigid body twist is a vector array that

includes point velocity and angular velocity), a dynamics

robot control model relating platform twist to motor arma-

ture voltage, and a dynamics motor control model relating

armature voltage to current. The latter refers to the compo-

site state-space equation assembled by the three foregoing

single models.

To the authors’ knowledge, in the pertinent literature,

the effects of casters in the motion control models of

DDMRs, either kinematic or dynamic, are neglected,

although at least one caster is necessary for the stable bal-

ance of DDMRs. All robot twists in the foregoing kine-

matics models just refer to the robotic platform without

the wheels, since casters do not constrain the mobility of

DDMRs. However, when a caster steers its orientation by

rotating around its offset axis, a steering torque is imposed

on the robotic platform, which is not negligible, as

mentioned in the literature5: ‘The passive caster wheel is

ignored to reduce the complexity of the model. However, it

is more reasonable to take the free-wheel dynamics into

account to avoid a poor performance of the proposed con-

troller in experimental results’. From this perspective,

although an adaptive tracking controller promises to be

robust to overcome uncertainty in the kinematic and

dynamic models of DDMRs,5,21 modelling the kinematics

and dynamics of casters is extremely helpful in enhancing

the performance of these adaptive controllers.

The motivation behind this article lies in bringing the

effect of casters into the kinematics and dynamics model-

ling of DDMRs, in order to derive a precise and reliable

robot model as the basis for further developments of pose

estimation (localization), trajectory planning and naviga-

tion control. Our main contributions are twofold. On the

one hand, a thorough kinematics model and a multibody

dynamics model, including the platform and all different

wheels, are formulated for DDMRs. Both kinematic and

dynamic effects of the caster are taken into account. On

the other hand, computational schemes based on velocity

compatibility and rigid body twists, without using dedi-

cated sensors, are investigated to estimate the steering

angle, which is required to calculate the inertia matrix and

the terms of Coriolis and centrifugal forces in the

dynamics model.

The balance of the article is organized as follows: the

thorough kinematics model is developed for DDMRs in the

second section; the multi-loop navigation control architec-

ture and the multibody dynamics model are introduced in

the third section; steering-angle computational schemes are

included in the fourth section; simulation results are

reported in the fifth section; while conclusions and recom-

mendations for future research are given in the sixth

section.

Thorough kinematics of DDMR

Pioneer P3-DX is a popular commercial mobile robot with

a differential-driving architecture, which has been widely

used by the research community.6,11,13,17,20 In robots with

this architecture, two independently driving wheels are

mounted on the rear shaft coaxially, while a caster wheel

is articulated freely onto the platform of the mobile robot

on the front of its centre line. In order to facilitate the

motion analysis and the multibody modelling, the sketch

of the DDMR framework with its links and connecting

joints is included in Figure 1, based on the design principles

of the kinematic chain for an actual robot. The platform of

the DDMR is depicted as a T-shaped rigid body. Two

coaxial wheels are coupled to the platform by means of

revolutes of axes passing through points O1 and O2. A

bracket is pinned to the platform at point P, on the vertical

axis of a revolute joint. The third wheel, a caster, is

mounted on the bracket by means of a revolute joint of

horizontal axis that passes through O3.
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Let C be the centre of mass of the platform. Point M is

the midpoint of segment O1O2 . Moreover, let the position

vectors of C, M, O1 and O2, in an inertial frame, be denoted

by c, m, o1 and o2, respectively. Additionally, let o be the

scalar angular velocity of the platform about a vertical axis.

In order to proceed with the kinematic analysis of this

system, we define a moving frame F, of axes X, Y and Z,

attached to the platform, with axis Z pointing in the upward

vertical direction. Unit vectors i, j and k are parallel to axes

X, Y and Z, respectively.

Platform kinematics

Let the radius of the three wheels be r, the angular displa-

cements of the two actuated wheels being q1 and q2. The

velocities _oi of points Oi, for i ¼ 1, 2, are given by

_oi ¼ r _qij; i ¼ 1; 2 ð1Þ

Furthermore, the velocity of C can now be expressed in

two-dimensional form as

_c ¼ _oi þ !Eðc� oiÞ; i ¼ 1; 2 ð2Þ

where E is defined as an orthogonal matrix rotating two-

dimensional vectors through an angle of 90� counterclock-

wise,24 that is

E �
0 �1

1 0

� �

All vectors in this subsection are two-dimensional. Let

the distance between the two actuated wheels be 2l. Sub-

stituting equation (1) into equation (2) and subtracting side-

wise equation (2) for i ¼ 2 from equation (2) for i ¼ 1, we

obtain

rð _q1 � _q2Þ þ 2!l ¼ 0 ð3Þ

Hence, the scalar angular velocity of the platform is

derived from equation (3) as

! ¼ r

2l
ð _q2 � _q1Þ ð4Þ

Let the distance between C and M be a, that between C

and P being b. The velocity _c of point C can be obtained in

terms of _q1 and _q2 as well, upon substitution of equation (1)

into equation (2), and addition of equation (2) for i ¼ 1 to

that for i ¼ 2, as

_c ¼ ar

2l
ð _q1 � _q2Þi þ

r

2
ð _q1 þ _q2Þj ð5Þ

Further, the planar twist t of the platform and the two-

dimensional vector _qa of actuated joint rates are defined as

t �
!

_c

� �
; _qa �

_q1

_q2

" #

The differential forward kinematics model of the plat-

form then being expressed as

t ¼ T _qa ð6Þ

with the 3 �2 twist-shaping matrix T defined as

T �
�r=ð2lÞ r=ð2lÞ

ðar=2lÞiþ ðr=2Þj �ðar=2lÞi þ ðr=2Þj

� �

In order to derive the inverse kinematics model, equa-

tion (5) is expressed as

_c ¼ C _qa ð7Þ

where the 2 � 2 matrix C is

C � ½c1 c2� ¼
ar

2l
i þ r

2
j

r

2
j � ar

2l
i

h i
Moreover

detðCÞ ¼ �cT
1 Ec2 ¼

ar2

2l
ð8Þ

Hence

C�1 ¼ 1

detðCÞ
cT

2

�cT
1

" #
E ¼

�
ðl=arÞiþ ð1=rÞj

�T

�
� ðl=arÞiþ ð1=rÞj

�T

2
64

3
75
ð9Þ

The inverse kinematics model of the platform can be

readily obtained from equation (7), namely

_qa ¼ C�1 _c ð10Þ

Caster kinematics

As shown in Figure 1, the caster rolls on the ground at a rate
_q3 around the revolute of horizontal axis on the bracket, in

order to follow the velocities of the two actuated wheels.

Meanwhile, the bracket rotates around the revolute of

Figure 1. Diagram of a differential-driving mobile robot.
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vertical axis passing through point P on the platform, which

changes the orientation of the caster, given by the steering

angle  , in order to adapt to the pose of the platform.

In this subsection, all vectors are considered three-

dimensional. Let !i, for i ¼ 1, 2, 3, denote the three-

dimensional angular velocity vector of the ith wheel, _o3

being the velocity vector of the centre of the caster. Addi-

tionally, !4 denotes the scalar angular velocity of the

bracket. Besides, we define another moving frame, F3,

of axes X3, Y3 and Z, associated with the bracket, with

X3 defined along the horizontal axis of the bracket. Unit

vectors i3 and j3, parallel to axes X3 and Y3, are now

introduced. The angular velocities of the two actuated

wheels are

!1 ¼ � _q1i þ !k ¼ ½�i� ðr=2lÞk ðr=2lÞk �
_q1

_q2

2
4

3
5

!2 ¼ � _q2i þ !k ¼ ½�ðr=2lÞk �iþ ðr=2lÞk �
_q1

_q2

2
4

3
5
ð11Þ

while the scalar angular velocity of the bracket is

!4 ¼ ! þ _ ¼ r

2l
ð _q2 � _q1Þ þ _ ð12Þ

with  denoting the steering angle, between vectors j and

j3, measured in the positive direction of k.

Moreover, the angular velocity of the caster can be read-

ily expressed in the frame fixed to the bracket, namely

!3 ¼ � _q3i3 þ !4k ð13Þ

The velocity of the centre of the caster is

_o3 ¼ !3 � rk ¼ r _q3j3 ð14Þ

As shown in Figure 1, point P is the intersection of the

vertical steering axis of the bracket with the platform plane.

Let the height of the platform be h, the distance between

point P and O3 being d. The velocity of P can be calculated

in two independent ways. First, P is regarded as a point on

the platform, its velocity then being

_p ¼ _cþ !k � bj ð15Þ

On the other hand, if point P is regarded as a point of the

bracket, then its velocity can be written as

_p ¼ _o3 þ !4k � ðp� o3Þ ð16Þ

Upon equating the right-hand sides of the above-

mentioned two equations and simplifying them, we obtain

a vector equation in the unactuated joint rates

r _q3j3 � _ di3 ¼ _c þ !ðdi3 � biÞ ð17Þ

Furthermore, _q3 can be found by dot-multiplying both

sides of equation (17) by j3, and _ likewise by i3

_q3 ¼
a sin 

2
ð _q2 � _q1Þ þ

cos 

2
ð _q1 þ _q2Þ ð18Þ

_ ¼ r a cos � d
2

ð _q2 � _q1Þ �
sin 

2
ð _q1 þ _q2Þ

� �
ð19Þ

with the definitions given in the following

a � aþ b

l
; d � d

l
; r � r

d
; l � a

l
ð20Þ

Letting _qu � ½ _q3
_ �T denote the vector of unactuated

joint rates, we have

_qu ¼ Y _qa ð21Þ

with the entries of the 2 � 2 matrix Y given in the

following

q11 ¼
ð cos � a sin Þ

2
ð22Þ

q12 ¼
ð cos þ a sin Þ

2
ð23Þ

q21 ¼
�rða cos � d þ sin Þ

2
ð24Þ

q22 ¼
rða cos � d � sin Þ

2
ð25Þ

Apparently, the kinematics model of the DDMR con-

sists of two main elements: the platform and the caster. The

former relates the planar twist of the platform to the vector

of actuated joint rates, while the joint rates of the caster are

associated with those of the driving wheels in the latter.

Since the casters do not constrain the mobility of the

DDMR, the platform kinematics can be used to represent

its planar motion in many applications. On the contrary, a

thorough kinematics of the DDMR has to include the caster

kinematics, in order to describe its spatial motion.

Multibody dynamics of DDMRs

Either the kinematics model or the dynamics model can be

used for the navigation control architecture of mobile

robots. If a DDMR is actuated only at the purely kinematics

level, the reduced kinematics, only containing the platform,

is sufficient for navigation control. However, if the

dynamics model of the multibody DDMR is employed in

the navigation control architecture, the kinematics of the

caster, especially the steering angle, is required for the

inverse-dynamics computation.

Navigation control architecture

Since electric motors are the common actuators in most

rolling robots, the motor motion control system is to be

analysed before the system is integrated into the navigation

control architecture of mobile robots. A typical motion

control system includes a feedback system with three

4 International Journal of Advanced Robotic Systems



cascaded loops, that is, the outer position loop, the inter-

mediate velocity loop and the inner current loop, as shown

in Figure 2. The position, velocity and current controllers

can be physically implemented either in a controller or in a

drive. A drive, also called an amplifier, is used to amplify

low-power command signals generated by the controller to

high-power voltage and current levels necessary to operate

a motor.25

Motion control systems have traditionally used a velo-

city sensor, for example, a tachometer, and a position sen-

sor, for example, an encoder. Motor velocity and position

are measured and fed back into the controller, while motor

current is closed in a control loop by the drive. Nowadays,

the boundary between the functions of a controller and a

drive is becoming blur. Many off-the-shelf motor drives

provide the complete control capability for all three loops,

which implies that there are several optional control inter-

faces when a motion control system is integrated into the

navigation control architecture of mobile robots.

A drive control and trajectory tracking system was pro-

posed for a robotic wheelchair.26 A more general naviga-

tion control architecture based on the kinematics model is

shown in Figure 3. This is a multi-closed-loop cascaded

feedback control system, including hardware, software and

algorithm blocks. Path deviations are calculated by com-

paring the data coming from the path generator with that

from the localization system. Path-tracking is used to elim-

inate these path deviations by controlling the twist

t ¼ ½! _c�T of the robotic platform. Since the casters do

not restrict the degree of freedom of the platform, only the

inverse kinematics model of the platform, shown in equa-

tion (10), is required in this control architecture, the caster

kinematics being obviated. The actuated joint-rate vector
_qa ¼ ½ _q1

_q2�T can be readily obtained using equation

(10), then taken as the desired angular velocities for the

motors of the driving wheels. Thus, the motor drives, used

in the drive control block, carry out the feedback control of

both the velocity- and the current-loop.

The reduced kinematics model only containing the plat-

form can be effective in applications whereby the robot is

lightweight. However, it is nearly impossible to ignore the

effects of multibody dynamics for either heavy-duty

robotic vehicles or for lightweight robots performing fast

manoeuvres. Therefore, another solution is proposed for

the navigation control architecture, as shown in Figure 4.

This architecture includes an additional algorithm block

for inverse dynamics, between inverse kinematics and

drive control. Since a time-history of actuated joint rates

can be obtained using the inverse kinematics while a

mobile robot tracks the target path, actuated joint rates

and their time derivatives are all known in the inverse

dynamics of mobile robots, which generate the desired

torques for the motors of the driving wheels. In this case,

the motion control system only needs drives to close the

current loop and to implement the torque feedback con-

trol. When the robot dynamics is integrated into the navi-

gation control architecture, a multibody system model

will be adopted, implying that each rigid body, including

the caster and the bracket, should be taken into account.

Furthermore, the inertia matrices and the terms of Coriolis

and centrifugal forces of the caster and the bracket are

both posture-dependent, associated with the steering

angle, as discussed in the following.

Multibody dynamics model

First, we recall the generalized dynamics model derived

from the Newton–Euler equations by means of the natural

Figure 2. Multi-loop motion control system.

Figure 3. Kinematic navigation control architecture.
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orthogonal complement for a mechanical system contain-

ing n rigid bodies27

I€q ¼ �C _qþ t þ d þ g ð26Þ

where I is the positive definite n � n generalized inertia

matrix, C _q being the n-dimensional vector of Coriolis and

centrifugal-force terms. Furthermore, t, d and g denote the

n-dimensional vectors of generalized active, dissipative

and gravity forces, respectively. Moreover, the twist t is a

linear transformation of the independent generalized

speeds _q, under the 6n � n twist-shaping matrix T, that is

I � TT MT ð27Þ

Moreover

C � TT M _Tþ TT WMT ð28Þ

and

t � TT wA; d � TT wD; g � TT wG ð29Þ

where M is the 6n � 6n inertia matrix containing n 6 � 6

inertia dyads Mi, and W is the 6n � 6n angular-velocity

matrix containing n 6 � 6 angular-velocity dyads Wi.

Furthermore, wA, wG and wD account for the 6n-dimen-

sional wrenches exerted by the actuators, gravity and dis-

sipation, respectively. That is

M ¼ diagðM1; . . . ;MnÞ; W ¼ diagðW1; . . . ;WnÞ

Mi �
Ii O

O mi1

� �
; Wi �

O i O

O O

� �

with Ii and mi defined as the 3 � 3 moment-of-inertia

matrix and the mass of the ith body, while O i is the 3 �
3 angular velocity matrix, the cross-product matrix of the

angular velocity vector !i, that is, O i ¼ CPMð!iÞ. The

latter is defined such that, for any r 2 R3, !i � r ¼ O ir.

Since the Newton–Euler formulation applies to multi-

body dynamics, we distinguish five rigid bodies composing

the DDMR, as shown in Figure 1. These are the left actu-

ated wheel, the right actuated wheel, the caster, the bracket

carrying the caster and the platform. These bodies are

labelled from 1 to 5, in the foregoing order. The 6 � 6

inertia dyads of the three wheels are denoted by M1 to

M3, with a similar notation for their corresponding six-

dimensional twists. Since the bracket and the platform

undergo planar motion, their counterpart items are labelled

M0
4, M0

5, t04 and t05. The primes indicate 3 � 3 mass

matrices and three-dimensional twists, as opposed to 6 �
6 matrices and six-dimensional twists in the general case.

Besides, the transformation matrices of the five moving

bodies are expressed in a similar way, which relate the body

twists with the vector of actuated joint rates _qa

ti ¼ Ti
_qa; i ¼ 1; 2; 3 ð30Þ

t0i ¼ T0i _qa; i ¼ 4; 5 ð31Þ

where, from equations (1), (6) and (11)

T1 ¼
�i� ðrd=2Þk ðrd=2Þk

rj 0

" #

T2 ¼
�ðrd=2Þk �iþ ðrd=2Þk

0 rj

" #

T3 ¼
Y 3

G3

" #
; T04 ¼

qT
4

G4

" #

T05 ¼ 1

2

�rd rd

rðli þ jÞ rð�li þ jÞ

" #
ð32Þ

with Y 3, G3, q4 and G4 as yet to be derived.

Upon first substituting equations (4) and (19) into equa-

tion (12), and then substituting equations (12) and (18) into

equation (13), one obtains

!3 ¼ �q11i3 þ q21 �
rd
2

� �
k � q12i3 þ q22 þ

rd
2

� �
k

� �
_qa

ð33Þ

and hence

Y 3 ¼ ½�q11i3 þ �q21k � q12i3 þ �q22k� ð34Þ

with �q21 and �q22 defined as

�q21 � q21 � rd=2; �q22 � q22 þ rd=2 ð35Þ

Moreover

_o3 ¼ rðq11
_q1 þ q12

_q2Þj3 ð36Þ

and hence

G3 ¼ ½rq11j3 rq12j3� ð37Þ

Substitution of equations (4) and (19) into equation (12)

yields

Figure 4. Dynamic navigation control architecture.
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!4 ¼ ½�q21
�q22�T _qa ð38Þ

with q4 defined as

q4 ¼ ½�q21
�q22�T ð39Þ

Let point O4 be the centre of mass of the bracket,

lying in the middle of segment PO3. The velocity _o4

of point O4 is

_o4 ¼ _o3 þ !4k � 1

2
½dj3 þ ðh� rÞk� ¼ r _q3j3 �

d

2
!4i3

ð40Þ

Upon substituting equations (18) and (38) into equation

(40), G4 is readily obtained

G4 ¼ d rq11j3 �
1

2
�q21i3 rq12j3 þ

1

2
�q22i3

� �
ð41Þ

The 2� 2 generalized inertia matrix I is now obtained as

I ¼
X3

i¼ 1

TT
i MiTi þ

X5

i¼ 4

ðT0ÞiT M0
iT
0
i ð42Þ

The coefficient matrix C can be derived in a similar

way. It is noteworthy that the linear transformation

matrices T1, T2 and T
0

5 are related to the platform triad

fi, j, kg, while the matrices T3 and T04 are dependent on

the bracket triad fi3, j3, kg and the steering angle  . Since

the inertia dyad Mi and the angular-velocity dyad Wi are all

diagonal matrices, the triad vectors fi, j, kg and the bracket

triad vectors fi3, j3, kg will not appear in matrices TT MT,

TT M_T and TT WMT. Therefore, the inertia matrix I( ) is

dependent only on the steering angle  , and the coefficient

matrix Cð ; _ Þ only on this angle and its derivative, which

are required by the inverse-dynamics model, equation (26).

When the time history of the actuated joint rates is given,

the torque requirements at the different actuated joints can

be determined, as long as  is known for the computation of

matrices I( ) and Cð ; _ Þ.

Steering angle computation

In the navigation control architecture, path tracking can be

a purely kinematics control technique without consider-

ation of the effect of the caster. Only the platform twist

t05 is generated as the first-stage output. Then, the inverse

kinematics model of the platform, equation (10), can trans-

form the twist t05 into the actuated joint-rate vector _qa, the

second-stage output. Third, the desired torque t can

be obtained from inverse dynamics, when the steering

angle  is already known.

Angle  can be obtained in two ways. One is by means

of an encoder installed on the vertical axis of each caster. In

practice, however, commercial off-the-shelf casters do not

have a mechanical interface for installing encoders. The

common structure of caster products is shown in Figure 5.

The bracket is connected with the plate by means of a thrust

bearing, which allows the bracket to freely rotate with

respect to the plate, about a vertical axis. The plate is then

used to fix the caster assembly onto the robotic platform. It

is apparent that commercial casters do not have a physi-

cally vertical shaft passing through the plate, so it is diffi-

cult to mount an encoder on the bracket.

Furthermore, if the mobile robot has more than one

caster, especially for the purposes of enhancing the stability

and load-carrying capacity of a heavy-duty robot, the

motion measurement system tends to become complex and

bulky. This may explain why the kinematics navigation

control architecture is more popular in research and indus-

trial practice – only requiring a simple platform kinematics

model, and without the need of additional sensors for the

casters. On the contrary, dynamics control requires not only

an inverse dynamics model with extra computational cost

for matrices I( ) and Cð ; _ Þ, but also additional sensors to

measure the steering angle of each caster. In this case, the

computation of this angle, independent of dedicated sen-

sors, is preferred.

As shown in Figure 1, the steering angle  is the angle

between axis Y attached to the platform and axis Y3

attached to the bracket. Axis Y3 is the direction of the

velocity of point P on the vertical steering axis of the

bracket, which coincides with the corresponding point on

the platform. Since these two points have the same velocity,

the velocity _p of point P on the platform is derived in order

to calculate the steering angle  . Two different approaches

are outlined in the following.

Velocity computation based on compatibility

This problem can be handled by means of constraints on the

velocity field of a rigid body. For a rigid body in planar

motion, the velocity field is fully determined by the velo-

cities of two points; the velocity of a third point can then be

obtained according to the velocity-compatibility condition.

By virtue of the body rigidity, the velocity components of

two arbitrary points projected along the line joining them

are equal

ðp� o1ÞT _p ¼ ðp� o1ÞT _o1

ðp� o2ÞT _p ¼ ðp� o2ÞT _o2

or, in a terser form

Figure 5. Off-the-shelf caster structure.
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S1 _p ¼ S2

_o1

_o2

� �
ð43Þ

where the 2 � 2 matrix S1 and the 2 � 4 matrix S2 are

S1 ¼
sT

1

sT
2

" #
; S2 ¼

sT
1 0T

0T sT
2

" #
ð44Þ

with s1 and s2 defined as

s1 ¼ li þ ðaþ bÞj
s2 ¼ �liþ ðaþ bÞj

ð45Þ

Moreover

detðS1Þ ¼ �sT
1 Es2 ¼ 2lðaþ bÞ ð46Þ

The inverse of S1 being

S�1
1 ¼

1

detðS1Þ
E½�s2 s1� ¼

½ljþ ðaþ bÞi lj � ðaþ bÞi�
2lðaþ bÞ

ð47Þ

Upon substituting equation (47) into equation (43), one

can readily solve for the velocity _p, namely

_p ¼ S�1
1 S2

_o1

_o2

� �
ð48Þ

Finally, the velocity _p can be represented in terms of

actuated joint rates and geometric parameters, after sub-

stituting equations (1), (44) and (47) into equation (48),

which yields

_p ¼ r

2
að _q1 � _q2Þi þ

r

2
ð _q1 þ _q2Þj ð49Þ

Velocity computation based on twists

If the twist of a rigid body is known, the velocity of an

arbitrary point of the body, given by its position vector, is

readily computed by means of the velocity field provided

by the twist. For the DDMR under study, the platform twist

t has already been derived in terms of actuated joint rates,

as per equation (6). The velocity _p of point P can be

obtained using the velocity of a known point and the scalar

angular velocity of the platform. Although the velocity of

any point on the platform can be used, point M, the mid-

point of line O1O2, is chosen for the sake of simplicity and

robustness, because the measured values of the two actu-

ated joint rates are averaged. According to equation (5), the

velocity of point M is

_m ¼ r

2
ð _q1 þ _q2Þj ð50Þ

The velocity of point P can thus be expressed as

_p ¼ _mþ !Eðp�mÞ ¼ _m � !ðaþ bÞi ð51Þ

Substitution of equations (4) and (50) into equation (51)

leads to the same result of equation (49). It is thus apparent

that the computational method based on the twist is more

convenient than that based on compatibility, since the com-

putation of the inverse matrix is obviated for a rigid body

undergoing planar motion.

Steering angle

As shown in Figure 1, since the steering angle  is that

between the velocity _p and axis Y, we can obtain the har-

monic functions of this angle by means of the components

of _p

cos ¼ jT _p

jj _pjj ¼
_q1 þ _q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð _q1 þ _q2Þ2 þ a2ð _q1 � _q2Þ2
q

sin ¼ iT _p

jj _pjj ¼
að _q1 � _q2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð _q1 þ _q2Þ2 þ a2ð _q1 � _q2Þ2
q

ð52Þ

The steering angle  is thus uniquely determined from

equation (52).

Simulation

Simulation tests were conducted to verify the feasibility of

the foregoing computational scheme for the steering angle,

and further, to evaluate the significance of caster dynamics

on the multibody modelling of a DDMR. The geometric

parameters of the DDMR at hand are given in Table 1. In

order to simplify the computation of the actuated joint

rates, the scalar equations of the inverse kinematics of the

platform are first derived. Both sides of equation (10) are

dot-multiplied by j, thereby obtaining

_cT j ¼ r

2
ð _q1 þ _q2Þ ð53Þ

The scalar equations of the inverse kinematics are read-

ily derived by combining equations (4) and (53), namely

_q1 ¼
_y

r
� l

r
!; _q2 ¼

_y

r
þ l

r
! ð54Þ

where the longitudinal speed is _y � _c � j.

Steering-angle computation

When the DDMR tracks a straight line, the two actuated

joint rates are equal. The steering angle  remains zero in

this trajectory, according to equation (52). Next, we con-

sider the path tracking upon changing course, that is, when

Table 1. Geometric parameters.

r/m l/m a/m b/m d/m a d r l

0.04 0.2 0.18 0.42 0.02 3 0.1 2 0.9
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the path consists of two lines at a given angle, joined by a

blending curve. Rather than circular arcs and ellipses,

Lamé curves, named after their inventor, the French math-

ematician Gabriel Lamé (1795–1870), are used here to

smooth the trajectory at the blending points, thus providing

the full trajectory with G2-continuity, meaning that posi-

tion, tangent and curvature are all continuous along the

path.28 The third-order Lamé curve, the lowest order of this

curve family with a variable curvature, is chosen as the

target trajectory for the DDMR. This curve is defined in

the inertial frame F0 as

x

gx

� �3

þ y

gy

 !3

¼ 1 ð55Þ

where gx ¼ 1 m, gy ¼1 m, 0 � x � gx; 0 � y � gy.

Suppose that the DDMR starts on a straight line and

accelerates to a constant speed of 0.5 m s�1. Then, the

DDMR enters this Lamé curve at point A(gx, 0), moves

counterclockwise along this curved trajectory and departs

from this curve at point B(0, gy) to join the other line. When

the DDMR travels on the Lamé curve, the steering angle of

the caster begins to change from zero gradually, affected by

the variable curvature k

k ¼
2xyg3

x g3
y ðx3g3

y þ y3g3
x Þ

ðy4g6
x þ x4g6

yÞ
3=2

ð56Þ

In order to simplify the computation of the curvature,

the coordinates x and y are defined explicitly in terms of

parameter ’ as

xð�Þ ¼ gx

ð1þ tan3�Þ1=3

yð�Þ ¼
gy tan�

ð1þ tan3�Þ1=3

ð57Þ

where � is the orientation angle of the DDMR, measured

with respect to axis X 0 in the inertial frame F0, and defined

positive counterclockwise, as shown in Figure 7.

Upon substituting equation (57) into equation (56), we

obtain

k ¼
2gxgyð1þ tan3�Þ4=3

tan�

ðg2
x tan4�þ g2

y Þ
3=2

ð58Þ

In Lamé curves, the curvature increases gradually from

zero to a maximum, and then decreases to zero again, when

the orientation angle � changes from 0 to p=2. Since the

DDMR travels on a Lamé curve at a constant speed of 0.5

m s�1 (assuming that the DDMR has already been under

control), the angular velocity o changes according to

the curvature k, thus resulting in the variation of actuated

joint-rate vector _qa and the steering angle  , as shown in

Figure 6. When the orientation angle � becomes 45�, the

curvature k, the angular velocity ! and the steering angle  
reach their maximum values: 1.782 m�1, 0.891 rad s�1 and

46.912�, respectively.

A set of poses of the robotic platform and the caster on

typical points of the Lamé curve are depicted in Figure 7.

The bold dashed lines, tangent to the curve at typical points,

denote the platform heading direction. The bold solid lines

connecting with the front end of the platform indicate

the caster. The angle between the corresponding dashed

line and the solid line is nothing but the steering angle.

Since the turning motion of the caster is towed by the plat-

form, the orientation change of the former lags behind that

of the latter. The orientation difference between platform

and caster, the origin of the steering angle, increases with

the trajectory curvature synchronously.

As mentioned earlier, the dynamics of the DDMR with

casters is posture-dependent. Essentially, this dependence

on the steering angle stems from the transformation matrix

Y , relating the unactuated joint rates _qu to the actuated

joint rates _qa in equation (21). The variation of the entries

of matrix Y with the orientation angle ’ is illustrated in

Figure 8.

Figure 6. Time histories of variables along the Lamé curve.

Figure 7. Poses of the DDMR on the Lamé curve with the tan-
gents at the inflection points making a right angle. DDMR:
differential-driving mobile robot.
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It is noteworthy that the Lamé curve is not limited to

blending two lines at a right angle. In fact, any two lines at

an arbitrary angle can be smoothly blended by means of

Lamé curves, suitably shaped by affine transformation, for

example, a stretched or squeezed Lamé curve in which its

tangents at the inflection points make angles of 120� or 60�,
for example, as shown in Figures 9 and 10, respectively.

Apparently, a stretch deformation makes the curvature of

the Lamé curve smaller at each point, while its squeezed

counterpart makes it larger, as illustrated in Figures 6, 11

and 12. When the orientation angle � becomes 45�, the

curvature k and the steering angle  reach their maximum

values: 0.594 m�1 and 19.614� on the stretched Lamé curve

and 5.345 m�1 and 72.683� on the squeezed Lamé curve,

respectively. Hence, it can be concluded that the steering

angle will change with the curvature of the trajectory that

the DDMR tracks.

Figure 8. Matrix-element variation along the Lamé curve of Fig-
ure 7.

Figure 9. Poses of the DDMR on the stretched Lamé curve with
the tangents at the inflection points making an angle of 120�.
DDMR: differential-driving mobile robot.

Figure 10. Poses of the DDMR on the squeezed Lamé curve with
the tangents at the inflection points making an angle of 60�.
DDMR: differential-driving mobile robot.

Figure 11. Time-histories of variables along the Lamé curve of
Figure 9.

Figure 12. Time-histories of variables along the Lamé curve of
Figure 10.
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Modelling-performance comparison

As explained earlier, the dynamic effects of casters are

often neglected in the system modelling of DDMRs in the

literature. Possible reasons include the following: (1) cas-

ters do not constrain the mobility of DDMRs and (2) the

mass of a caster is relatively small when compared with that

of the platform of the DDMR, so that its effects on the inertia

of the whole system can be ignored in order to reduce the

complexity of the robot model. However, to the authors’

knowledge, the research work providing a justification of

the claim that the caster dynamics is negligible has not been

reported. A performance comparison is conducted in this

subsection to evaluate the dynamic effects of casters on the

whole system model, by considering the generalized inertia

matrix with and without the caster and its bracket.

As shown in Figure 1, the masses of the left actuated

wheel, the right actuated wheel, the caster, the bracket and

the platform are assumed as: m1 ¼ m2 ¼ m3 ¼ m4 ¼ 1 kg,

m5 ¼ 30 kg, respectively. The geometric parameters are

listed in Table 1. When the generalized inertia matrix is

computed for the dynamics modelling of DDMRs, most

previous methods do not consider the caster and its bracket,

while our approach covers all five rigid bodies, namely

Ip ¼ I1 þ I2 þ I5

Ic ¼ I3 þ I4

ð59Þ

where Ip is the generalized inertia of the platform and the

two actuated wheels, while Ic is that of the caster and its

bracket.

According to equation (42), since the inertia dyads Mi

are all diagonal matrices, the generalized inertia matrices Ip

and Ic are both 2� 2 symmetric, positive definite matrices.

Since caster and its bracket are not modelled in the litera-

ture, the generalized inertia Ip is not affected by the steering

angle. In our multibody model, all wheels are considered,

the generalized inertia matrix Ic, reported herein, being

posture-dependent.

Simulation is conducted to test the variation of the gen-

eralized inertia Ic along with the steering angle in the

�90� �  � 90� interval, the results being illustrated in

Figure 13. The plot of matrix entry (1, 2) is symmetric

about the vertical line across the zero point of the steering

angle, while those of entries (1, 1) and (2, 2) have their

wave valleys shifted from the middle line. It is noteworthy

that the plots of these entries fluctuate dramatically about

their horizontal lines.

In order to evaluate the dynamic effects of the caster on

the generalized inertia matrix quantitatively, still without

relying on the specific geometric and inertial parameters,

the ratio of the variable inertia caused by the caster to

the constant inertia reported in the literature is plotted in

Figure 14. In fact, this inertia ratio also implies the rela-

tively computational error on the generalized inertia

matrix incurred when the caster dynamics is neglected

in the model of DDMRs.

The inertia ratio for entry (1, 2) exhibits an extremely

large variation range, with a maximum value of 76.4%
when  ¼ +90�, and a minimum value of 26.5% when

 ¼ 0�. The amplitudes of the inertia ratio for entries (1, 1)

and (2, 2) are also too large to be ignored. The former

attains a maximum of 26.6% when  ¼ �72� and a min-

imum of 17% when  ¼ 18�, while the latter attains a

maximum of 26.6% when  ¼ 72� and a minimum of

17% when  ¼ �18�. As shown in Figures 7, 9 and 10,

the maximum steering angles of the DDMR travelling on

the normal, stretched and squeezed Lamé curves are 47�,
20� and 73�, respectively. Taking the normal Lamé curve,

for example, the relatively computational errors of the gen-

eralized inertia matrix reach 19.2% for the (1, 1) entry, 53%
for the (1, 2) and (2, 1) entries, and, finally, 24.9% for entry

(2, 2). The comparison results verify definitely that the

dynamic effects of casters on the whole system model

exceed the significance that was expected as usual, even

if the mass of the caster only accounts for a small propor-

tion in the total mass of a DDMR.

Finally, we summarize the foregoing simulation results:

(1) the caster-wheel dynamics has a significant effect on the

Figure 13. The inertia-matrix entries of the caster.

Figure 14. The inertia ratio of the caster to others.
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multibody modelling of a DDMR; (2) the steering angle is

indispensable for the accurate dynamics model of the

DDMR with casters; (3) the steering angle is readily cal-

culated by means of the computational scheme proposed

here, thereby obviating the need of dedicated encoders for

casters; and (4) the steering angle is influenced by the

trajectory curvature, which is addressed by means of a

trajectory with a smooth curvature variation, thus easing

the control task.

Conclusions

Given that many off-the-shelf motor drives are supplied

with full control capability in the current, velocity and

position loops, the DDMR model in the navigation control

architecture can be either kinematic or dynamic. The for-

mer relates platform twist and joint rates in the velocity

loop, while the latter associates joint rates with motor tor-

ques in the motor-current loop. For DDMRs with casters, a

reduced model is sufficient for purely kinematic navigation

control. However, the multibody system model is indispen-

sable for dynamic navigation control of heavy-duty robotic

vehicles in high-speed manoeuvres. In this case, the caster

kinematics, especially the knowledge of the steering angle,

is required to calculate the inertia matrix and the terms of

Coriolis and centrifugal forces.

A thorough kinematics model and a multibody

dynamics model, including the platform and all different

wheels, are formulated for DDMRs. Computational

schemes based on velocity compatibility and rigid body

twists are proposed to estimate the steering angle without

using dedicated encoders for casters. Lamé curves, with

G2-continuity, are chosen here as the blending curves for

DDMR manoeuvres. Simulation results verify the feasibil-

ity of the computation technique and the significance of the

caster dynamics. Since almost all current commercial

mobile robots are not equipped with dedicated encoders for

measuring the steering angle of casters, a customized

DDMR prototype will be developed as an experimental

platform, in which a dedicated encoder will be mounted

on the specially designed vertical shaft of the caster, in

order to further validate our approaches in the prototype.
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