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Abstract 

A model-driven approach to scenario-based requirements engineering is proposed. The ap

proach, which is based on Computer Automated Multi-Paradigm Modeling (CAMPaM), aims 

to improve the software process. A framework is given and implemented to reason about models 

of systems at multiple levels of abstraction, to transform between models in different forma

lis ms , and to provide and evolve modeling formalisms. 

The model-driven approach starts with modeling requirements of a system in scenario models 

and the subsequent automatic transformation to state-based behavior models. Then, either 

code can be synthesized or models can be further transformed into models with additional 

information such as explicit timing information or interactions between components. These 

models, together with the inputs (e.g., queries, performance metrics, test cases, etc.) generated 

directly from the scenario models, can be used for a variety of purposes, such as verification, 

analysis, simulation, animation and so on. 

A visual modeling environment is built in AToM3 using Meta-Modeling and Model Transfor

mation. It supports modeling in Sequence Diagrams, automatic transformation to Statecharts, 

and automatic generation of requirements text from Sequence Diagrams. 

An application of the model-driven approach to the assessment of use cases for dependable 

systems is shown. 



Résumé 

Nous proposons ici une approche dirigée par des modèles et basée sur des scénarios. Cette 

approche, basée sur les CAMPaM (Computer Automated Multi-Paradigm Modeling), a pour 

but d'améliorer les processus systèmes. Un espace de travail est alloué et implementé pour 

définir les modèles de systèmes ayant plusieurs niveaux d'abstraction. Il est aussi possible de 

transformer un modèle en un autre à l'aide de différents formalisnes, de les concevoir, ou de les 

faire évoluer. 

L'approche dirigée par des modèles commence par la modélisation des conditions du système 

en différents scénario suivant une transformation automatique des comportements des modèles 

de base. Ensuite, le code et les modèles peuvent être réciproquement synthetisé et tranformé en 

modèle contenant plus d'informations (temps, interactions entre les objets etc.). Ces modèles, 

couples avec les informations d'entrée générées par les modèles de scénario(e.g., requètes), 

peuvent être utilisés pour de multiples objectifs, tel que l'analyse, l'animation, la simulation ou 

encore la vérification ... 

AToM3 (logiciel de Meta-Modeling, et de Model Transformation) utilise une interface graphique 

pour la modélisation. il est possible de modéliser des Sequence Diagrams, de transformer auto

matiquement ces modèles en Statecharts (diagrammes d'états), et de génération automatique 

de texte de conditions des Sequence Diagrams. 

Une application des approches dirigées par des modèles évaluant des cas d'utilisations pour 

systèmes est ici detaillée. 
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1 ntroduction 

Requirements engineering is concerned with the acquisition, analysis, specification, validation, 

and management of requirements of the software system under construction. 

Scenarios provide an excellent means of communication between software project stakeholders 

and are an intuitive way of guiding them through the pro cess of requirements engineering. 

They can play different roles [Sut03] in the following activities [NEOO] of the pro cess: 

• Representing the real world to pro duce models during requirements analysis; 

• Inspiring system designs and generating testing material; 

• Transforming models and requirements specifications into designs and eventually imple-

mentations; 

• Reasoning and validating designs; 

• Communicating requirements among different stakeholders; 

• Maintaining agreement with aIl stakeholders during the elicitation and modeling of re

quirements; 

• Managing requirements changing. 

Sorne benefits [RC9S] can be gained by using scenarios, such as, minimizing the gap between 

specification and implementation, avoiding mismatches between userjengineer view, providing 

a rich view of goals, actions and experiences of users and getting good concepts for extending 

and redesigning existing systems. 

While scenarios have become an established technique in the requirements engineering process, 

many questions still remain for further research. Sorne of them are listed here: 

• Keeping consistency among the models used at different phases (or levels) of the process; 

• Keeping consistency of the models when they evolve with requirements; 

• Reusing requirements models; 

• Deciding when the scenario specification is complete; 

• Capturing and analyzing non-functional requirements. 

Computer Automated Multi-Paradigm Modeling (CAMPaM) [VdL03] aims to simplify the 

modeling of complex systems by establishing a framework to reason about models of systems 

at multiple levels of abstraction, transforming between models in different formalisms, and 

providing and evolving modeling formalisms. Based on the aspects that it addresses, CAMPaM 
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can be naturally applied to the problem of improving scenario-based requirements engineering. 

For example, modeling, analysis and validation at multiple levels and in different views, can be 

achieved by model abstraction and multi-formalism modeling in an automatic and consistent 

way. As another example, rich methods for verification, analysis, simulation and execution 

of the target system provided by CAMPaM, can maintain the agreement with customers and 

increase their acceptability and satisfaction. 

In this thesis, we propose a model-driven approach to scenario-based requirements engineering 

based on CAMPaM, and we present the current implementation of the overall approach. 

In Chapter 1, we introduce our model-driven approach to scenario-based requirements engi

neering. In Chapter 2, the implementation of the first step of our approach, which is the 

meta-modeling of Sequence Diagrams (one of the key scenario-based languages for capturing 

requirements) is presented. In Chapter 3, a full description of the explicit modeling of model 

transformations from Sequence Diagrams to Statecharts (one of the state machine-based mod

eling languages, which can be easily used for requirements simulation, validation and analysis) 

is given. The automatic generation of requirements text from Sequence Diagrams is also ex

plained. Finally, in Chapter 4, a case study is given in detail demonstrating how our approach 

can be applied on requirements elicitation. 



A Madel-Driven Appraach ta Scenaria-Based 

Requirements Engineering 

1.1 Scenario-Based Requirements Engineering 

A requirement is a feature that the system must have or a constraint that it must satisfy 

to be accepted by the client [BD03]. Requirements engineering is concerned with the acquisi

tion, analysis, specification, validation, and management of requirements of the software system 

under construction. Among aIl activities of requirements engineering, there are two main activ

ities: requirements elicitation, which results in specifications of the system that the customer 

understands, is to systematically extract and describe the requirements of the system; and 

requirements analysis, which results in analysis models, aims to formalize the requirements 

specifications produced during requirements elicitation. The resulting analysis models can be 

used to validate, correct and clarify the requirements with clients and users for requirements 

refinement. Then, the complete and unambiguous analysis models become the input of the 

following system development activities, such as high-Ievel system design, validation, testing 

and so on. For requirements analysis, two types of models are used to give a formaI description 

of the system: static models, which represent knowledge about relationships, such as Class 

Diagrams and Entity-Relationship Diagrams; and dynamic models, which represent knowledge 

about behavior, such as Sequence Diagrams and State Diagrams. 

Scenarios and use cases are the most important tools used in requirements elicitation. A 

scenario describes an example of system use in terms of a series of interactions between the 

user and the system. A use case is an abstraction that describes a class of scenarios. Scenarios 

are the starting point for aIl modelling and design, and contribute to several parts of the design 

process. 

Since scenario-based requirements engineering has been advocated as an effective means of 

improving the process of requirements engineering, many methodologies and tools [SMMM98, 

LiOO, Dav03, HKP05, WJ06, Whi05] are developed to try to formalize and automate some stages 

of this process. Sutcliffe et. al. [SMMM98] proposed a method and a tool for specification of use 

cases, automatic generation of scenarios from use cases and semi-automatic validation based-
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on generated scenarios. Rarel et. al. [Dav03, RKP05] proposed a play-in/play-out approach 

to capture behavioral requirements. The Play-Engine automatically constructs corresponding 

requirements in the scenario-based language of Live Sequence Charts (LSCs) [DROl], and finally 

semi-automatically synthesizing a collection of finite state machines. Whittle et. al. [WJ06, 

Whi05] developed a scenario-based language called Use Case Charts (UCCs) to capture scenario

based requirements and presented algorithms for automatic generation of hierarchical state 

machines from scenario-based models. 

Two key activities are apparent in the Rarel's and Whittle's approaches: to find a proper 

scenario-based language, e.g., LSCs or UCCs, to capture and formalize requirements; to trans

form scenarios into an executable form, i.e., state machines, which can be easily used for 

requirements simulation, validation and analysis. Both of these are clearly model-driven ap

proaches. 

1.2 Scenario-Based Modeling Languages 

1.2.1 Sequence Diagrams 

Sequence Diagrams are a visual modeling language. They are the UML variant of Message 

Sequence Charts, used primarily to show the interactions between objects in the sequential 

order that those interactions occur. One of the primary uses of sequence diagrams is in the 

transition from requirements expressed as scenarios to the next level of refinement. Scenarios 

are often refined into one or more sequence diagrams. 

The main purpose of a sequence diagram is to define event sequences that result in sorne 

desired outcome. The focus is less on the messages themselves and more on the order in which 

messages occur. Nevertheless, most Sequence Diagrams will communicate what messages are 

sent between a systems objects as weIl as the order in which they occur. The diagram conveys 

this information along the horizontal and vertical dimensions: the vertical dimension shows, 

top down, the time sequence of messages/calls as they occur, and the horizontal dimension 

shows, left to right, the object instances that the messages are sent to/from. 

1.2.2 Use Case Charts 

Use Case Charts, a 3-level notation based on extended activity diagrams, was proposed by Jon 

Whittle [Whi05], as a way of specifying use cases in detail, in a way that combines the formality 

of precise modeling with the ease of use of existing notations. 

A use case chart, illustrated in Figure 1.1 [Whi05] , specifies the scenarios for a system as a 

3-level, use case-based description: level-l is an extended activity diagram where the nodes are 

use cases; level-2 is a set of extended activity diagrams where the nodes are scenarios; level-3 is 

a set of UML2.0 interaction diagrams. Each level-l use case node is defined by a level-2 activity 

diagram (Le., a set of connected scenario nodes). This diagram is called a scenario chart. Each 

level-2 scenario node is defined by a UML2.0 interaction diagram. 
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Level 1 : use case flow 
(use case chart) 

Level 2: scenario flow 
(scenario ch art) 

Level 3: scenarios 
(interaction diagram) 

Figure 1.1: Use Case Charts 
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use case node 

By using these three levels of abstraction to model system requirements, Use Case Charts im

proves requirements modeling and analysis by providing a precise way for relating and grouping 

scenarios (usually modeled in a set of interaction diagrams). 

Whittle and Jayaraman [WJ06] presented algorithms that transform use case charts into a 

set of hierarchical state machines which then can be used for simulation, test generation and 

validation. The algorithm starts with the conversion to hierarchical state machines for a level-3 

sequence diagram, then proceeds with the combination of a set of hierarchical state machines 

generated for each scenario no de at level-2, and finally completes the synthesis of the final 

hierarchical state machine for the level-l Use Case Chart by further combining generated hi

erarchical state machines. The core of the algorithm is how to synthesize hierarchical state 

machines from a sequence diagram. 

1.2.3 Statecharts 

Statecharts, introduced by David Rarel [Rar87], are a visual and executable formalism for 

modeling complex reactive systems. It has roots in the Finite State Automata (FSA) farmalism 

and adds new concepts ta it. Those new concepts make the formalism suitable for specifying 

discrete event systems. 

Defining statecharts requires first describing the finite state automata (FSA) formalism it ex

tends. A finite state automaton consists of states and transitions between states. One state is 

the initial state and this is the first "active" state. Each transition has a trigger, which is a 
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symbol (or event). If a symbol is provided to the FSA and the active state has a transition that 

has that symbol as a trigger, the target state of the transition then becomes the active state. 

If no such transition exists, then the FSA halts, since it does not recognize the language, the 

set of input symbols, that were fed to it. The FSA also includes at least one "final" state. If 

a transition sets the active state to be one of the final states and the input is at an end, then 

the FSA has accepted the input sequence of symbols. 

Although the FSA formalism is powerful enough to define regular expressions, it is inadequate to 

express conditional transitions, actions, hierarchy, and concurrency. Fortunately, David Harel 

extended FSA to deal with these in [Har87]. Conditional transitions are simply transitions 

that will fire on an event only if both the trigger is matched and the condition al statement 

evaluates to true. Actions are events or code that is executed whenever a transition fires, a 

state is entered, or astate is exited. Hierarchy is achieved by adding composite states that 

can contain other states, including more composite states. The inside of a composite state 

is a FSA in its own right, with its own default state (the equivalent of an initial FSA state). 

Since transitions can exit and return to a given hierarchical level, it becomes necessary to add 

history states as weIl. These history states restore the active state within the composite state 

when a transition returns to the composite state. Hence history allows overriding the default 

state. FinaIly, concurrency is added using orthogonal partitions of a composite state. Each 

orthogonal partition is a simultaneously executing FSA, each with an active state. 

1.2.4 DCharts 

DCharts, a formalism created by Thomas Feng [Hui04], is a combination of sorne features of 

the DEVS formalism (Discrete EVent Systems specification) and Statecharts. Both DEVS and 

Statecharts can be mapped to DCharts, so in terms of expressive power DCharts is at least as 

powerful as these two. Denis Dubé has rebuilt a visual modeling environment for the DCharts 

formalism by applying his formalism-specific user-interface and layout techniques [Den06]. 

1.3 Model-Driven Approaches 

1.3.1 Modeling 

Models are an abstmction of reality. The structure and behavior of systems we wish to analyze 

or design can be represented by models. These models, at various levels of abstmction, are 

always described in sorne formalism or modeling language. In addition to the syntax of a model 

(how it is represented), one needs to also specify its meaning (i.e., assign semantics). 

One can for example specify on the one hand how a system dynamically evolves over time. 

On the other hand, it is possible to concentrate purely on the static structure of the system, 

without specifying its dynamic transitions between states. This demonstrates how, depending 

on the circumstances, one has to choose the right modeling abstraction. 

As another example, during the analysis phase of a software project, models are typically 
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Textual Graphical 

Modelling Languages 
(Formalisms) 

Figure 1.2: Modeling Language Breakdown 
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very informaI and at a high Ievel of abstraction ("back of the envelope sketches"). During 

detailed design on the other hand, models are meticulously specified to enable, for example, 

code generation for embedded systems. 

In many cases, a combination of multiple models representing different views, at various levels 

of abstraction, and using a plethora of formalisms, is required to fully describe the system 

under study. 

1.3.2 Dissecting a Modeling Language 

To "model" modeling languages and ultimately synthesize visual modeling environments for 

those languages, we will break down a modeling language into its basic constituents. This is 

illustrated in Figure 1.2. It is inspired by the description by Harel and Rumpe [HROO]. 

As mentioned previously, the two main aspects of a model are its syntax (how it is represented) 

on the one hand and its semantics (what it means) on the other hand. 

The syntax of modeling languages is traditionally partitioned into concr-ete syntax and abstract 

syntax. In textual languages for example, the concrete syntax is made up of sequences of 

characters taken from an alphabet. These characters are typically grouped into words or tokens. 

Certain sequences ofwords or sentences are considered valid (i.e., belong to the language). The 

(possibly infinite) set of aIl valid sentences is said to make up the language. Costagliola et. 

al. [CLOP02] present a framework of visual language classes in which the analogy between 

textual and visual characters, words, and sentences becomes apparent. Visuallanguages are 

those languages whose concrete syntax is visual (graphical, geometrical, topological, ... ) as 

opposed to textuai. 

For practical reasons, models are often stripped of irrelevant concrete syntax information during 
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syntax checking. This results in an "abstract" representation which captures the "essence" of 

the mode!. This is called the abstmct syntax. Obviously, a single abstract syntax may be 

represented using multiple concrete syntaxes. In programming language compilers, abstract 

syntax of models (due to the nature of programs) is typically represented in Abstmct Syntax 

Trees (ASTs). In the context of general modeling, where models are often graph-like, this 

representation can be generalized to Abstmct Syntax Gmphs (ASGs). 

Once the syntactic correctness of a model has been established, its meaning must be specified. 

This meaning must be unique and precise. Meaning can be expressed by specifying a semantic 

mapping function which maps every model in a language onto an element in a semantic domain. 

For example, the meaning of a Causal Block Diagram is given by mapping it onto an Ordinary 

DifferentiaI Equation. For practical reasons, semantic mapping is usually applied to the abstract 

rather than to the con crete syntax of a mode!. Note that the semantic domain is a modeling 

language in its own right which needs to be properly modeled (and so on, recursively). In 

practice, the semantic mapping function maps abstract syntax onto abstract syntax. 

To continue the introduction of meta-modeling and model transformation concepts, languages 

will explicitly be represented as (possibly infinite) sets as shown in Figure 1.3. In the figure, 

insideness denotes the sub-set relationship. 

The dots represent model which are elements of the encompassing set(s). 

As one can always, at sorne level of abstraction, represent a model as a graph structure, aIl 

models are shown as elements of the set of aIl graphs Graph. Though this restriction is not 

necessary, it is commonly used as it allows for the design, implementation and bootstrapping of 

(meta-)modeling environments. As such, any modeling language becomes a (possibly infinite) 

set of graphs. In the bottom center of Figure 1.3 is the abstract syntax set A. It is a set of 

models stripped of their concrete syntax. 

Meta-modeling is a heavily over-used term. Here, we will use it to denote the explicit description 

(in the form of a model in an appropriate meta-modeling language) of the abstract syntax set 

A. Often, meta-modeling also covers a model of the concrete syntax. Semantics is however not 

covered. In the figure, the set Ais described by means of the model meta-model of A. On the one 

hand, a meta-model can be used to check whether a general model (a graph) belongs to the set 

A. On the other hand, one could, at least in principle, use a meta-model to genemte aIl elements 

of A. This explains why the term meta-model and grammar are often used inter-changeably. 

Severallanguages are suitable to describe meta-models in. Two approaches are in common use: 

1. A meta-model is a type-gmph. Elements of the language described by the meta-model 

are instance graphs. There must be a morphism between an instance-graph (model) 

and a type-graph (meta-mode!) for the model to be in the language. Commonly used 

meta-modeling languages are Entity Relationship Diagrams (ERDs) and Class Diagrams 

(adding inheritance to ERDs). The expressive power of this approach is often not suffi.-
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Figure 1.3: Modeling Languages as Sets 

cient and an extra constmint language (such as the Object Constraint Language in the 

UML) specifying constraints over instances is used to further specify the set of models in 

a language. This is the approach used by the OMG to specify the abstract syntax of the 

Unified Modeling Language (UML). 

2. A more general approach specifies a meta-model as a transformation (in an appropriate 

formalism such as Graph Grammars) which, when applied to a model, verifies its mem

bership of a formalism by reduction. This is similar to the syntax checking based on 

(context-free) grammars used in programming language compiler compilers. Note how 

this approach can be used to model type inferencing and other more sophisticated checks. 

Both types of meta-models (type-graph or grammar) can be interpreted (for fiexibility and 

dynamic modification) or compiled (for performance). 

Note that when meta-modeling is used to synthesize interactive, possibly visual modeling envi

ronments, we need to model when to check whether a model belongs to a language. In free-hand 

modeling, checking is only done when explicitly requested. This means that it is possible to 

create, during modeling, syntactically incorrect models. In syntax-directed modeling, syntactic 

constraints are enforced at all times during editing to prevent a user from creating syntacti-
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cally incorrect models. Note how the latter approach, though possibly more efficient, due to 

its incremental nature -of construction and consequently of checking- may render certain valid 

models in in the modeling language unreachable through incremental construction. Typically, 

syntax-directed modeling environments will be able to give suggestions to modelers whenever 

choices with a finite number of options present themselves. 

The advantages of meta-modeling are numerous. Firstly, an explicit model of a modeling lan

guage can serve as documentation and as specification. Such a specification can be the basis for 

the analysis of properties of models in the language. From the meta-model, a modeling envi

ronment may be automatically generated. The fiexibility of the approach is tremendous: new 

languages can be designed by simply modifying parts of a meta-model. As this modification is 

explicitly applied to models, the relationship between different variants of a modeling language 

is apparent. Above aIl, with an appropriate meta-modeling tool, modifying a meta-model and 

subsequently generating a possibly visual modeling tool is orders of magnitude faster than 

developing such a tool by hand. The tool synthesis is repeatable and less error-prone than 

hand-crafting. 

As a meta-model is a model in an appropriate modeling language in its own right, one should 

be able to meta-model that language's abstract syntax too. Such a model of a meta-modeling 

language is called a meta-meta-model. This is depicted in Figure 1.3. It is noted that the 

notion of "meta-" is relative. In principle, one could continue the meta- hierarchy ad infinitum. 

Luckily, some modeling languages can be meta-modeled by means of a model in the language 

itself. This is called meta-circularity and it allows modeling tool and language compiler builders 

to bootstrap their systems. 

A model m in the Abstract Syntax set (see Figure 1.3) needs at least one concrete syntax. This 

implies that a concrete syntax mapping fun ct ion K, is needed. K, maps an abstract syntax graph 

onto a concrete syntax model. Such a model could be textual (e.g., an element of the set of 

aIl Strings), or visual (e.g., an element of the set of aIl the 2D vector drawings). Note that 

the set of concrete models can be modeled in its own right. It is noted that grammars may 

be used to model a visual concrete syntax. Also, concrete syntax sets will typicaIly be re-used 

for different languages. Often, multiple concrete syntaxes will be defined for a single abstract 

syntax, depending on the user. If exchange between modeling tools is intended, an XML-based 

textual syntax is often used. If in such an exchange, space and performance is an issue, an 

binary format may be used instead. When the formalism is graph-like as in the case of a circuit 

diagram, a visual concrete syntax is often used for human consumption. The concrete syntax 

of complex languages is however rarely entirely visual. When for example equations need to be 

represented, a textual concrete syntax is more appropriate. 

Finally, a model m in the Abstract Syntax set (see Figure 1.3) needs a unique and precise mean

ing. As previously discussed, this is achieved by providing a Semantic Domain and a semantic 

mapping function [[.]]. This mapping can be given informaIly in English, pragmatically with 
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code or formally with model transformations. N atural languages are very ambiguous and not 

very useful since they cannot be executed. Code is executable, but it is often hard to under

stand, analyze and maintain. It can be very hard to understand, manage and derive properties 

from code. This is why formalisms such as Graph Grammars are often used to specify semantic 

mapping functions in particular and model transformations in general. Graph Grammars are a 

visu al formalism for specifying transformations. Graph Grammars are formally defined and at 

a higher level than code. Complex behavior can be expressed very intuitively with a few graph

ical rules. Furthermore, Graph Grammar models can be analyzed and executed. As efficient 

execution may be an issue, Graph Grammars can often be seen as an executable specification 

for manual coding. As such, they can be used to automatically generate transformation unit 

tests. 

1.3.3 Computer Automated Multi-Paradigm Modeling 

Computer Automated Multi-Paradigm Modeling (CAMPaM) [VdL03] ai ms to simplify the 

modeling of complex systems by supporting 

• Multi-Formalism modeling, concerned with the coupling of and transformation between 

models described in different formalisms; and 

• Model Abstmction, concerned with the relationship between models at different levels of 

abstraction; 

This is achieved through Meta-Modeling as weIl as the explicit modeling of Model Tmnsforma

tion. 

Meta-modeling can help in defining high abstraction level notations. With meta-modeling, we 

can describe, using a high-Ievel, visual notation, the (possibly graphical) syntax of languages 

for particular needs: domain-specific visual languages. Such languages have the potential to 

greatly increase system quality and reduce development costs, as they are notations tailored to 

specific needs. 

Sorne languages such as the UML are rigorously defined through meta-modeling. But meta

modeling the syntax of a language is only one side of the coin. One needs to formally specify the 

semantics of a language as was mentioned before. We may be interested in defining a language's 

opemtional semantics (i.e., how models described in the language are simulated or executed), 

or its denotational or tmnsformational semantics (i.e., defining a mapping onto another weIl

defined language; this may include code generation when mapping onto a virtual machine). 

We may also wish to optimize the models (i.e., reduce the complexity without removing salient 

features). As models, meta-models and meta-metamodels can aIl be described as attributed, 

typed graphs, Graph Grammars can be used as a formaI, graphical and high-Ievel notation to 

specify the model transformations. 
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AToM3 , A Tool for Multi-formalism and Meta-Modeling, developed in the Modeling, Design and 

Simulation Lab (MSDL) of McGill University by Juan de Lara and Hans Vangheluwe [dLV02a], 

implemented these meta-modeling and graph transformation concepts. The tool was proven 

to be very powerful, allowing the meta-modeling of known formalisms such as DEVS [PB03], 

Statecharts [BV03, Fen03], UML Class Diagrams and Activity Diagrams [dLV05], Finite State 

Automata [VdL02], Petri Nets [dLV02b], GPSS [dLV02d], Process Interaction Networks [dLV04], 

Hybrid Systems [LJVdLM04, dLGV04, dLVAM03], Causal Block Diagrams [PdLV02, dLVA04b], 

Dataflow Diagrams [dLV02c] (a subset of Simulink) and many others. More importantly, many 

new formalisms were constructed using the tool, such as the Traffic formalism [JdLMny]. 

The philosophy of AToM3 is to model everything explicitly. That is, not only formalisms and 

transformations are modeled explicitly, but also composite types and the user interfaces of the 

generated tools. In fact, the entire AToM3 tool was bootstrapped from a small kernel with 

code-generating capabilities. 

1.4 A Madel-Driven Appraach ta Scenaria-Based Requirements En

gineering 

We propose a model-driven approach to scenario-based requirements engineering, as shown in 

Figure 1.4. 

The approach starts at the top level of the figure which models requirements of a system in sce

narios by means of formalisms such as Use Cases, Sequence Diagrams, or Use Case Charts [Whi05]. 

Then, state-based behavior models (e.g., Statecharts [Har87] or DCharts [Hui04] models) can 

be generated automatically by model transformation. At this point, we can already use gen

erated hierarchical state machines (HSMs) to do sorne automatic simulation by tools such as 

SCASP [Whi05], RHAPSODY [HKP05], and SVM [Fen03], and even synthesize code for ex

ecution by tools such as the Statechart compiler SCC [Hui04]. However, HSMs are limited 

to the cases where explicit timing information or interactions between components are impor

tant for simulation, analysis and verification. So we further transform these HSMs to models 

in formalisms such as DEVS, Communicating Sequential Processes (CSP), or Timed Petri Nets 

(TPN). Sorne examples can be found in [dLV02b, BV03]. We can now map HSMs into models 

of one single formalism, kiltera [Ern07], which allows mapping onto other formalisms as shown 

in Figure 1.4. Since the mapping from HSMs to kiltera is not trivial, we will still need human 

intervention to aid in refinement. 

Kiltera aims to provide the means to model complex, dynamic, possibly large, inter acting 

systems which have a structure that changes over time. As kiltera combines the ability to 

observe the passage of timeand describe a system's behavior in a time-dependent manner, with 

the ability to describe changes in the network of communications between components, it is easy 

to derive models for simulation, analysis or verification from Kiltera by model transformation. 

Then we can do model checking, analysis, simulation or animation with those derived models. 
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Figure 1.4: A Model-Driven Approach to Scenario-Based Requirements Engineering 

Another advantage of our approach is that the inputs of these tasks, such as queries, perfor

mance metrics and test cases, can be automatically generated from the scenario models done 

at the beginning. Furthermore, as illustrated at the top of Figure 1.4, the scenario models 

can be used to generate textual or graphical representation of requirements in a language the 

customers are familiar with for their evaluation and immediate feedback. 

As shown at the top of Figure 1.4, there is a transformation which leads to a dependability 

analysis model. This shows that it is easy to transform scenario models to some formalism such 

as DA-Charts for some specifie analysis (e.g., dependability analysis) [MSKV06]. A detailed 

example will be given in a case study in Section 4. 

The key to the success of our approach is the application of meta-modeling and model trans

formation as introduced in previous sections. 

This thesis implements some key parts of the approach, in particular for those steps enclosed 
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in the dashed rectangle on the top of Figure 1.4. Specifically, the main contribution of this 

thesis is the implementation of a visual modeling environment for building scenario models, for 

automatic transformation to behavior models for further analysis, and for automatic generation 

of requirements text from scenario models. 
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The following sections illustrate how to build a visual modeling environment for Sequence 

Diagrams with AToM3 . 

First, we give a brief introduction to Sequence Diagrams formalism. Then we define the meta

model using Class Diagrams which provides the abstract syntax (denoting entities of the for

malism, their attributes, relationships and constraints) as weU as the concrete visual syntax 

(how the entities and relationships should be rendered in a visual interactive tool, as well as 

the possible layout constraints). Finally, we model the reactive behavior of formalism-specific 

user-interfaces be means of the new framework developed in Denis Dubé's M.Sc. thesis [Den06]. 

This new framework greatly simplifies the building of a visual modeling environment for a 

domain-specifie formalism. Rather than purely hard-co ding the environment, the reactive 

behavior of the visual modeling environment, including formalism-specific behaviors and layout 

considerations are explicitly modeled. Subsequently, the interactive environment is synthesized. 

2.1 Sequence Diagrams Basics 

Sequence Diagrams are a visual modeling language, which is the UML variant of Message 

Sequence Charts, used primarily to show the interactions between objects in the sequential 

order that those interactions occur. One of the primary uses of sequence diagrams is in the 

transition from requirements expressed as scenarios to the next and more detailed level of 

refinement. Scenarios are often refined into one or more sequence diagrams. 

The main purpose of a Sequence Diagram is to define event sequences that result in sorne 

desired outcome. The focus is less on the messages themselves and more on the order in which 

messages occur. Nevertheless, most sequence diagrams will communicate what messages are 

sent between a systems objects as weIl as the order in which they occur. The diagram conveys 

this information along the horizontal and vertical dimensions: the vertical dimension shows, 

top down, the time sequence of messages/caUs as they occur, and the horizontal dimension 

shows, left to right, the object instances that the messages are sent to/from. 

• Lifeline. When drawing a sequence diagram, lifeline notation elements are placed across 

the top of the diagram. Lifelines represent either roles or object instances that participate 
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in the sequence being modeled. Lifelines are drawn as a box with a dashed line descending 

from the center of the bottom edge. The lifelines name is placed inside the box. 

The UML standard for naming a lifeline follows the format: 

InstanceName : ClassName 

• Messages. The first message of a sequence diagram always starts at the top and is 

typically located on the left si de of the diagram for readability. Subsequent messages are 

then added to the diagram slightly lower than the previous message. 

To show an object (i.e., lifeline) sending a message to another object, one draws a line 

to the receiving object with a solid arrowhead (if a synchronous calI operation) or with 

a harpoon arrowhead (if an asynchronous signal). The messagejmethod name is placed 

above the arrowed line. The message that is being sent to the receiving object represents 

an operationjmethod that the receiving objects class implements . 

• Combined Fragments. In most sequence diagrams, the UMLl.x "in-line" guard is not 

sufficient to handle the logic required for a sequence being modeled. This lack of func

tionality was a problem in UMLl.x. UML2.0 has addressed this problem by removing the 

"in-line" guard and adding a notation element called a Combined Fragment. A combined 

fragment is used to group sets of messages together to show conditional fiow in a sequence 

diagram. The UML2.0 specification identifies eleven interaction types for combined frag

ments. In this thesis we model four of them which are mostly used: alternatives, option, 

parallel and loop. 

• Alternatives. Alternatives are used to designate a mutually exclusive choice between 

two or more message sequences. Alternatives allow the modeling of the classic "if 

then else" logic. The word "aIt" is placed inside the frames namebox. The larger 

rectangle is then divided into Interaction Operands. In UML, Operands are sep

arated by a dashed line. Each operand is given a guard to test against, and this 

guard is placed towards the top left section of the operand on top of a lifeline. If an 

operand's guard equates to "true", then that operand is the operand to follow. Al
ternative combination fragments are not limited to simple "if then else" tests. There 

can be as many alternative paths as are needed. Note that according to UML2.0, 

if more than one alternative is true, one of them is selected nondeterministically for 

execution. 

• Option. The option combination fragment is used to model a sequence that, given 

a certain condition, will occur; otherwise, the sequence does not occur. An option 

is used to model a simple "if then" statement. The option combination fragment 

notation is similar to the alternation combination fragment, except that it only has 
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one operand and there never can be an "else" guard. To draw an option combinat ion 

one draws a frame. The text "opt" is placed inside the frame's namebox, and in the 

frame's content area the option's guard is placed towards the top left corner on top 

of a lifeline. Then the options sequence of messages is placed in the remainder of 

the frame's content area . 

• Loop. OccasionaUy one will need to model a repetitive sequence. In UML2.0, model

ing a repeating sequence has been improved with the addition of the loop combina

tion fragment. The loop combination fragment is very similar in appearance to the 

option combination fragment. One draws a frame, and in the frame's namebox the 

text "loop" is placed. Inside the frame's content area the loop's guard is placed ta

wards the top left corner, on top of a lifeline. Then, the loop's sequence of messages 

is placed in the remainder of the frame's content area. 

• Pamllel. The parallel combination fragment element needs to be used when creating 

a sequence diagram that shows parallel processing activities. The parallel combina

tion fragment is drawn using a frame, and one places the text "par" in the frame's 

namebox. The frame's content section is broken up into horizontal operands sepa

rated by a dashed line. Each operand in the frame represents a thread of execution 

done in parallel. 

• Intemction Uses. An interaction use refers to an interaction. The interaction use is a 

shorthand for copying the contents of the referred interaction to where the interaction 

use is. An interaction use is drawn using a frame. The text "ref" is placed inside the 

frame's namebox, and the name of the sequence diagram being referenced is placed inside 

the frame's content area. 

A constraint for interaction use is that the interaction use must coyer aU lifelines of the 

enclosing interaction that appear within the referred interaction. 

2.2 Sequence Diagrams Meta-Model 

The Sequence Diagrams formalism, shown in Figure 2.1, was modeled in the Class Diagrams for

malism within AToM3 . The latter formalism is similar to UML Class Diagrams, in that it has 

classes with attributes, associations with multiplicities, and inheritance. The main difference 

lies in the fact that the AToM3 version allows one to immediately generate a formalism-specific 

editor, with a generic visual modeling environment, from the Class Diagram and extra informa

tion. The rectangular boxes in the class diagram become the nodes/vertices in the generated 

formalism. Each of them gets a name attribute that appears on or near the visual icon in the 

generated formalism. The nodes and the meaning of their attributes are as foUows: 

• Intemction is a representation of the entire model. AU other entities will be contained 

by this entity, since it is responsible for providing basic UI handling. The notation for 
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an Interaction in a Sequence Diagram is a solid-outline black rectangle. The Interaction 

name is in a pentagon in the upper left corner of the rectangle. 

• Lifeline represents an individual participant in the Interaction. A Lifeline is shown using 

a symbol that consists of a black rectangle forming its "head" followed by a vertical 

line that represents the lifetime of the participant. A Lifeline has two attributes which 

represent the name of the participant class (instanceN ame) and the name of an instance 

of that class (classN ame) respectively. These attribut es are displayed inside the head 

rectangle in the following format: 

instanceN ame : classN ame 

There is no significance to the horizontal ordering of the lifelines. 

• ActionFmgment is used to hold syntactic points (called OccurrenceSpecifica,tions in UML) 

at the ends of Messages. An ActionFragment is represented as a green thin rectangle that 

covers the Lifeline line. In our meta-model, we restrict an ActionFragment to have at most 

one OccurrenceSpecification on each side. Since the order of these points along a Lifeline 

is significant denoting the order in which these OccurrenceSpecifications will occur, we 

strongly recommend to use only one OccurrenceSpecification for each ActionFragment 

unless there is a case where the order is insignificant. The absolute distances between the 

OccurrenceSpecifications on the Lifeline are, however, irrelevant for the semantics. 

The ActionFragment is actually the combination of an atomic ExecutionSpecification 

and an OccurrenceSpecification of UML2.0. The main reason for the combination is to 

simplify the definition of the Graph Grammar rules for transforming Sequence Diagrams 

to Statecharts which is described in Section 3. 

• CombinedFmgment is defined by an interaction operator and corresponding interaction 

operands. A CombinedFragment is represented as a solid-outline black rectangle with 

the operator shown in the upper left corner of the rectangle. Depending on what kind 

of operator is defined, specifie constraints can be imposed on the number of operands 

a CombinedFragment can contain. For example, "option (opt)" or "loop" must have 

exactly one operand. 

• IntemctionOpemnd is contained in a CombinedFragment. An InteractionOperand, with 

an optional guard expression, represents one operand of the expression given by the 

enclosing CombinedFragment. An InteractionOperand is depicted as a solid-outline gray 

rectangle with the optional guard shown in the upper left corner of the rectangle. This 

visual representation is not adhere to the UML standard but makes both the graphical 

component layout and model transformation easier to be implemented. For example, the 

implementation of the UI scoping mechanism is much easier by using a rectangle than by 

a line. 
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• IntemctionUse refers to another Interaction. The InteractionUse is a shorthand for copy

ing the contents of the referred Interaction where the InteractionUse is. It is common to 

want to share portions of an interaction between several other interactions. An Interac

tionUse allows multiple interactions to reference an interaction that represents a common 

portion of their specification. An InteractionUse is represented as a solid-outline black 

rectangle with the name of the referred Interaction shown in the upper left corner of the 

rectangle. 

The entities whose icons have a hexagonal shape at the top are generated as relationshipsjedges. 

They come in two types, which are set via edit dialogs. The first type is the invisible hierarchical 

relationship. The following .entities are of this type: InteractionContains, CombinedFragment

Contains, InteractionOperandContains, and InteractionUseCovers. AToM3 was extended to 

internally keep track of such hierarchical relationships, so finding parents and children is easy. 

The second type of relationship is the visible arrows, which possess attributes just like the 

nodes did. The visual relationships and the meaning of their attributes are as follows: 

• ActionConnection represents a connection between a Lifeline and an ActionFragment, or 

between two ActionFragments which cover the same Lifeline. 

• Message defines a particular communication between Lifelines of an Interaction. A Mes

sage associates two OccurrenceSpecifications - one sen ding OccurrenceSpecification and 

one receiving OccurrenceSpecification. The "message" attribute defines the signature of 

the Message. A message is shown as a line from the sender to the receiver with a filled ar

row head. The "isSynchronous" attribute determines whether the message is synchronous 

of asynchronous. The "description" attribute is used when one wants to give sorne cus

tomized description about the message. This customized description will be used when 

requirements text is generated from this Sequence Diagram (see details in Section 3.6). 

In AToM3 meta-modeling environment, one can specify visu al representations (concrete visual 

syntax) for aIl visible entities of the generated formalism in its meta-model. Figure 2.2 lists 

these icons attached to each entity of the meta-model shown in Figure 2.1 

2.3 Formalism-Specific UI Modeling 

Although the class diagram in Figure 2.1 is sufficient to generate a working modeling environ

ment for Sequence Diagrams formalism, more formalism-specific UI modeling is needed for two 

main reasons. 

The first reason is that the general purpose layout methods can not be directly applied to 

Sequence Diagrams due to the following speciallayout requirements. First, because the vertical 

dimension of a sequence diagram is the time axis. This requires proper ordering of elements 

along it denoting causality. Second, aIl entities of a sequence diagram should be aligned in both 
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Interaction: name InteractionOperand: guard 

Lifeline: 
insta ceName: classN{me 

ActionFragment: 

1 
• 

Interaction Use: 

D 
Message: 

message 
~ 

ComblnedFragment: .nteract.onOperator 

ActionConnectlon: 

Figure 2.2: Visual representations of the meta-model of the Sequence Diagrams formalism 

dimensions (i.e., horizontally and vertically) in aesthetic ways. Third, due to the introduction 

of combined fragments, a sequence diagram will have a hierarchical structure. In other words, 

unless a layout method is constructed for the purpose of dealing with compound graphs, graphs 

with hierarchical containment, the layout method will be of no use. Without automatic layout 

support there is a significant risk that modelers will avoid adding to an existing Sequence 

Diagrams model simply because the task of doing the layout manually is so time consuming. 

The second reason for doing formalism-specific UI modeling is to maximally constrains users, 

allowing them, to only build syntactically and semantically correct models (i.e., to prevent 

users from constructing sequence diagrams that are illegal at the abstract syntax level). This 

is particularly devastating for novice modelers. For example, one could have an interaction 

operand directly enclosed in any other containment entities but combined fragments; or one 

could connect an interaction use to sorne lifelines which do not even exist inside the interaction 

that that interaction use refers to. 

In general, the goal is to make the visual modeling environment as user-friendly as possible. 

Thanks to Denis Dubé's thesis work [Den06), we can now use his new framework to explicitly· 

model the behavior of Sequence Diagrams-specific user interfaces to achieve the above goals. The 

framework has greatly shortened the time for building such a formalism-specific user interface. 

The framework works as follows. First, a model of generic user-interface 'reactive behavior is 

constructed. The code generated from this model is generally applicable to most formalisms 

(i.e., it is formalism independent). Thereafter, each formalism provides additional models that 



2.3 Formalism-Specific UI Modeling 23 

refine the generic UI behaviors with more specifie behaviors. Using visual eues (bounding 

boxes), the correct formalism-specific or generic behavior is chosen even in the presence of 

multiple simultaneous formalisms. Finally, the formalism-specific behaviors themselves include 

automatic graph layout method invocations in specifie sequences and appropriate times. 

We follow the approach proposed in [Den06], by altering the buttons model of the generated 

formalism, observing events with the use of pre and post statecharts, acting on events with 

Sequence Diagrams formalism and entity-specific statecharts, and handling layout for each hi

erarchical Sequence Diagrams entity (again with a statechart). 

Furthermore, statecharts models built in [Den06] were our excellent starting point for building 

statecharts models for our new formalism. 

AIso, we follow the conventions used in [Den06] to describe these statecharts. That is, in the 

following subsections, the labels on the states and transitions of the UI behavior statecharts 

use a custom notation to make them more expressive. A star, x*, indicates that action code 

is present. A plus, x+, indicates that a different statechart handles the action. Parenthesis, 

<x>, indicate that the trigger event is generated by another statechart, such as the pre/post 

UI observers or another UI behavior statechart. Regular brackets, (x), indicate the event 

was generated by the initialization routine for the entity when it is first instantiated. Square 

brackets [x] indicate that the event was generated by the statechart itself, usually within the 

action code of astate. 

2.3.1 Buttons Model 

The buttons model is a trivial model, in the aptly named Buttons formalism. The buttons in this 

model correspond directly to the buttons that appear in the AToM3 application's formalism 

toolbar. Buttons models are automatically generated from a meta-model, such as a class 

diagram, to allow a user to create the entities specified in the meta-mode!. 

A more exotic change to the buttons model is also needed. The Interaction entity creation 

button is modified to instantiate 5 different statecharts. A statechart for controlling buttons 

behavior, a pre and a post statechart, an Interaction specifie behavior statechart, and finally 

an Interaction specifie layout statechart. These will be discussed further in the following sub

sections. The number of different statecharts may seem excessive, but Interaction is not an 

ordinary entity. !ts purpose is to provide a formalism-specific override to the generic UI be

havior. 

The other entity-creating buttons, such as for creating a Lifeline, are also modified. Instead of 

the buttons creating the entity in question on the canvas, they directly send an event to the 

Interaction's button statechart. Thus, the Interaction is made fully responsible for the creation 

of aIl other entities. Due to this approach, it is impossible to create a new entity outside of the 

visual container formed by the Interaction. 
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2.3.2 Button Behavior Model 

The button behavior model is quite simple and is shown in Figure 2.3. When the button to 

create entity X is pushed, the events "<Reset>" and "<X Button>" are sent to this statechart. 

If not already there, the statechart moves to an Idle state upon receipt of the first event. The 

second event th en moves it to astate whereby entity X can get instantiated. It then waits 

for an event requesting the creation of that entity. The "<Create>" event is generated by 

the Interaction specifie behavior statechart when it intercepts and handles the "Model Action" 

event. See Section 2.3.4 for more details. 

Button Behaviour 
.-----------------------------------------~ 

InteractionActions 
Lifeline Mode 

T: <Create>* 
T: <lnteractionOperand Button> 

:::::----_____ !!;ln~te~ra~ct~io~n~9Perand Mode 

T: <Create>* 

Figure 2.3: Button Behavior Statechart 

2.3.3 Pre/Post Observer Statechart Models 

A pre DI statechart observes events before the generic DI behavior statechart acts on them. 

The pre DI statechart is shown in Figure 2.4. Likewise, the post DI statechart observes events 

just after the generic DI behavior statechart acts on them and is shown in Figure 2.5. For 

the Sequence Diagrams formalism, these observers prove useful mainly for the following four 

events: deletion, selection, the drop after dragging selected entities, edit, and save. 

The deletion event is useful for two reasons. The first of these is rather trivial. It removes 

the pre/post statecharts from the main event loop if the Interaction instance has been deleted. 

The second is a layout consideration. If an action fragment is deleted, then its parent, an 

interaction operand or the interaction, may require less area. Thus it makes sense to send the 
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Pre UI observer 
Initial 

T: Start 
A: atom3i = eventhandler.gecevent"paramsO 

Main 

fI 
v 

trom SD_V3_Code.prePostChartActions import preChartDeletion 

N: EntityDeleteRequest 
T: <Shift-KeyPress-Delete> 
A: preChartDeletion(atom3i) 

N: DeleteRequest 
T: <KeyPress-Delete> 
A: preChartDeletion(atom31) 

N: Clear Canvas 
T: <Control-KeyPress-Delete> 
A: preChartDeletion(atom3i) 

Figure 2.4: Pre UI Observer Statechart 

T: cAny-ButtonReleu.1 > 
A: poatCtw1FInllhSeloction(atom3I. lastSelectodOlljoc:tTupIe) 

~~~::~~~::~--------------------------~T:~'~~~~'~l' 

N: ClearCanvu 
T: <Control.l(eyPrus.QsIete, 
A: poatChortDelOllon(atom3i. p<eChort. poatChart, canvuc 
N:Edit 
T: <KeyPrus .. > 
A: pootChortEd~(at0m3ij 

N:Edit 
T: Edli PropI1IIes 
A: poIIChoIIEdII(at0m3I) 

N:_ 
T: <Contro!.KeyProu'1> 
A: from SD_V3_~.cana_lmpo" genXML 

gonXMl(aIDm3I) 

T: <Any-ButtonRele ..... ". 
A: poatChartRniahDrag(atom3l) 

G: cIJ.lsltemUndefC<JrlOfUnseIoctod( atom3I. ovenlhandlor.get...ovent..J)ll18mSOl 

T: <Shift-8uttonPreu-b 
G:cIJ._ltemu.-cursor( atom3l. _r.get... ..... ..J)II18mSOl 

N: 
T: cButtonPreu-b f1W 
G: cIJ.lINoltemUnderCursor( atom3I. owntflandlor.goL ... nI...jJarIrno() 

T: <8uttonP,...-b 
G: cIJ.lIItemU.-curoorUnoelocled( atom3l. owntflandler.goLownl...J)II1Wr1O) 

N: SIor1 Drag 
T: cButtonPr ... -1> 
G: cIJ.llltemU.-cu-s.tocled( atom3i. ovenIhanchr.goCovont..,paromIOl and no! 00.1 

~i~~== 
G: OO.geIOverIappedhomUnderCurwor( .lom3i. ",-"'.get...oven\.jIaramI() ) 

Figure 2.5: Post UI Observer Statechart 
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behavior statechart of the parent a layout request event. The parent's behavior chart will in 

turn send a layout request event to the parent's layout statechart, where the layout will finally 

be handled. At the very least, this layout will result in the parent container shrinking itself to 

occupy less space. Ultimately, the parent may also completely redraw itself and its contents in 

a new configuration that takes advantage of the state's removal. 

The selection event makes it possible to detect what entities are selected. If an entity with 

hierarchical children, via containment relationships, is selected, then the children should also 

be selected. This makes it impossible for a user to delete or drag a container entity without 

doing the same to the contained children entities. 

The drop event at the end of a drag and drop operation aUows for dragging multiple entities 

outside the Interaction scoped UI environment. This is very useful for temporary editing 

by a modeler. For example, one could drag a combined fragment out of the Interaction, 

which triggers a containment disconnect (as the next section will show), and then drag the 

combined fragment back into another interaction operand inside the Interaction, triggering a 

new containment relation inside an interaction operand. 

The save event triggers a procedure to generate an XML file which stores sorne basic information 

about the current Interaction model (e.g., in which file the model is stored, what lifelines it 

contains, and etc.). This information is used for validation when the model is referred to by 

an interaction use in another model. For example, an interaction use is valid if the lifelines it 

covers exist in the referred interaction model (see Section 2.3.4). 

FinaUy, the edit event simply triggers an edit dialog. It could have been handled with entity

specific behavior statecharts. However, if edit were only handled by the Interaction behavior 

statechart, then an entity outside the containment of Interaction could not be edited. 

2.3.4 Formalism Entity-Specific Behavior Models 

AlI visual entities of the Sequence Diagrams formalism require their own behavior models. The 

most important of these are those associated with the artificial entity that contains aU oth

ers of the Sequence Diagrams formalism and those of the combined fragments and interaction 

operands. Referring to the class diagram in Figure 2.1, these are Interaction, CombinedFrag

ment and InteractionOperand respectively. At the other extreme, the behavior statechart for 

Message, is trivial. AlI the remaining entities, excluding the non-visual containment relation

ships, use behavior statecharts that are subsets of that of the interaction operand. 

Interaction Behavior Statechart 

The behavior of the Interaction (see Figure 2.6) entity begins with initialization when the entity 

is first created. This initialization includes a "(create)*" trigger that sets the active state to 

"Idle". From then on, the foUowing four events trigger interesting behavior: 

1. The "<InteractionSelect>*" event is generated by the post UI observer statechart. The 



2.3 Formalism-Specific UI Modeling 27 

Interaction Behaviour Model 

Figure 2.6: Interaction Behavior Statechart 

event indicates that Interaction has been selected by the user. It is then necessary to 

ensure that aIl the hierarchical children of Interaction are also selected so that deI ete and 

drag operations work as expected. 

2. The "<Control-Button-Press-3>" event is directly captured from the main event loop 

and explicitly handled, thus halting its propagation. This event indicates that a Sequence 

Diagrams formalism entity should be added to the canvas. Note that the same event is 

generated if one uses the AToM3 menu system or a keyboardjmouse shortcut. The actual 

creation of an entity is of course handled by the button behavior statechart previously 

seen in Section 2.3.2. 

3. The "<Control-Button-Press-l>*" event is also directly captured from the main event 

loop. Moreover, this event triggers a lock, forcing aIl events in the main event loop to 

only this statechart. The lock is only released when either an arrow is finally created or 

the process is aborted, via the "<Arrow Created>*" and "Reset*" events respectively. 

It is necessary to refine the behavior found in the generic UI behavior statechart for two 

reasons. The first is merely for the convenience of the user. Instead of allowing the user to 

draw arrows to indicate containment relationships, only transitions may be drawn. This 

saves time, and a perfectly good drag-and-drop method exists for creating and destroying 

containment relationships as shall be shown later in this section. The second reason is 

simply to know when transitions are actually created so that their UI behavior statecharts 
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may be initialized. 

The "<Arrow Created>*" event also invokes a procedure which aligns a lifeline and aIl 

action fragments along it, if the created arrow is an ActionConnection (a link between a 

lifeline and an action fragment or between two action fragments), or aligns an interaction 

use and a lifeline it covers if the created arrow is of type InteractionUseCovers. 

4. The "<layoutRequest>" event is generated exclusively by the UI behavior statecharts of 

the children entities of Interaction. This event occurs when a new entity is created since 

the new entity will be contained by the Interaction and thus upsets the old layout. The 

event can also occur when Interaction is idle, such as when an entity is manually.dragged 

by the user. The layout request is forwarded to the layout statechart of the Interaction, 

described in Section 2.3.4. 

Before the layout request is forwarded, two formalism-specific layout procedures are done. 

First, each lifeline and aIl action fragments along it are aligned verticaIly. Second, aIl 

visuallinks (i.e., links of types of ActionConnection and Message) are straightened out. 

CombinedFragment Behavior Statechart 

The behavior of the CombinedFragment (see Figure 2.7), is the most complex of aIl. Fortu

nately, it is also re-usable by many other entities as shall be shown further on in this section. 

The initialization phase is rather involved, with two main possibilities. The first is that an 

interactive session with the user is in effect, in which case the "( create)" trigger signaIs the 

creation of a new Interaction. Immediately, the user is presented with a dialog asking him in 

which of the entities in the region of the newly created CombinedFragment they would like to 

contain the new fragment. If the fragment is successfully connected to either an Interaction 

or another InteractionOperand, then the "[didConnect]" trigger is generated, followed by a 

"<layoutRequest>" event to the container, and finally a "[Done]" event to set the state to 

"HasParent". If the fragment is not successfully connected, then a "[didNotConnect]" event is 

generated and the active state is set to "N oParent" . 

Finally, the second of the two possibilities is that the model was being loaded rather than 

interactively edited. In this case, a "(loadModeICreate)" event is first sent when the Com

binedFragment is first instantiated, setting the active state to "NoParent". Then a second 

"(loadModeICreate)" event is sent if a containing relationship is instantiated with this Com

binedFragment as its parent, thus setting the active state to "HasParent". The following is 

a list of aIl the events that occur after the initialization phaSe. Unless stated otherwise, the 

events are generated by the post UI observer statechart. 

1. The "<lnteractionSelect>*" event is dealt with in the same manner as the Interaction 

UI behavior statechart. AlI hierarchical children are selected. 

2. The "<lnteractionDrop>" event indicates that this fragment, among potentially many 
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CombinedFragment Behaviour Model 

T: (disconnected] 

Oefautt· ,....-----~.." 

Idle 

T: (10 ModelCreate) 

serviceLayoutRequest+ 

Figure 2.7: CombinedFragment Behavior Statechart 

other entities, has just been dragged and then dropped. The transition with this trigger 

promptly generates two events: "[Done]", which restores the active state to either "No

Parent" or "RasParent", followed by "[drop]", which causes hierarchical connection or 

hierarchical disconnection, respectively, to be attempted. A disconnection occurs only if 

the entity has been dropped outside of its parent container and the user has explicitly 

agreed to disconnect it. This triggers a "<layoutRequest>" followed by an attempt to 

hierarchically connect the disconnected fragment in its new location. 

3. The "<InteractionDelete>" event indicates that this fragment is to be deleted. Before 

being erased, it warns its hierarchical container parent with a "<layoutRequest>". In 

this fashion the parent can find a new layout that takes advantage of the extra space 

afforded by the deleted entity. 

4. The "<layoutRequest>" event is generated exclusively by the UI behavior statecharts of 

the children entities of CombinedFragment, just as it Was in Interaction. This event occurs 

whenever the children of this entity are modified by the user, such as by addjremoving 

them from the CombinedFragment or by simply moving them. The layout request is 

forwarded to the layout statechart of the CombinedFragment, described in Section 2.3.4. 
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Message Behavior Statechart 

The behavior of the Message is triviaUy simple, as Figure 2.8 shows. As noted earlier, the 

message is a hyper-edge only in the meta-model, in the generated Sequence Diagrams formalism 

itself it is a simple directed edge with one source and one target. The transition is first initialized 

with a "(create)" event. Afterwards, it simply awaits "<Edit>*" events from the post DI 

behavior chart in order to apply changes made in its edit dialog. These changes affect the 

information content of the label associated with the message. 

o T: (create~ 
Default' 

T: <Edit>' 

Figure 2.8: Message Behavior Statechart 

Other Behavior Statecharts 

The DI behavior statecharts of the remaining Sequence Diagrams formalism entities are subsets 

of the one previously shown for CombinedFragment. The behavior statechart of Interaction

Operand entity which is also a hierarchical container entity, has the same structure of that of 

CombinedFragment. 

The remaining entities are not hierarchical container entities, but rather primitive children. 

They include Lifeline, ActionFragment, and InteractionDse. The main structural difference 

between their DI behavior statecharts and that of the one for CombinedFragment is that they 

do not accept the "<layoutRequest>" event. NaturaUy, no entity exists that would generate 

and send it to them. 

Another difference the InteractionDse DI behavior statechart has is it accepts "<Edit>" event. 

The event indicates that the user has opened an edit dialog on the InteractionUse attributes. 

In particular, the user may give or change the name of the referred interaction. Thus the 

transition with this trigger event will execute action code to load the XML file of the referred 

interaction. The XML file stores basic information about the Interaction model it represents 

(e.g., in which file the model is stored, what lifelines it contains, and etc.) and is generated 

when the model is saved (see Section 2.3.3). Then, the information retrieved from the XML 

file is used for validation. First, an interaction use is valid if the lifelines it covers exist.in the 

referred interaction mode!. Second, an interaction can not contain an interaction use which 

refers to the interaction itself to avoid infinite looping. 

In aU other aspects, the UI behavior statecharts are identical to that of the CombinedFragment. 
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Layout Behavior 

We reuse one of the layout behavior statechart models in [Den06], the one using the built-in 

Force-transfer layout algorithm, as the basic layout behavior model of the Sequence Diagrams 

formalism. The model is shown in Figure 2.9. Structurally, it is very simple. It is initialized 

with a "(create)*" event and is thereafter ready to do layout. The "<applyLayout>" event, 

which triggers the layout sequence, is generated by the behavior statechart associated with 

the entity requiring layout. This occurs when the entity's behavior statechart enters the state 

"serviceLayoutRequest+". Thereafter, the following sequence of actions occur: 

nteractlon yout 

T: <applyLayoul> 

Figure 2.9: Force-Transfer Layout Statechart 

1. Apply the built-in general purpose layout algorithm. Inside the action code, a choice is 

made of which types of entities and links that should be sent to the layout algorithm. This 

choice is generally limited to only the direct children entities of the hierarchical container 

parent and the visual arrows between them. Moreover, all the parameters passed to the 

layout algorithm are chosen. After the layout is applied, a "[Done]" event is generated. 

2. Apply a trivial shrink-wrapping algorithm. This simply fits the hierarchical parent to be 

visually just large enough to contain all its children entities. As is explained in the third 

action, either a "[Done]" or a "[requestParentLayout]" event are generated when done. 

3. Send a layout request to the behavior statechart of the parent of this hierarchical con

tainer. This action is only taken conditionally, which is depicted in the layout statechart 

using two alternate transitions. Clearly one condition is that the hierarchical container 

possesses a hierarchical parent itself. The other condition is that the hierarchical con

tainer has either moved or changed size. Obviously, if neither position nor size have 

changed, the layout of the higher-Ievels of the hierarchy are completely unaffected. Fi

nally, a "[Done]" event is generated and the layout statechart returns to the "!dIe", ready 

state. 
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The propagation of layout requests described in action 3 propagate upwards only, in the current 

implementation. In other words, they propagate from the lowest to the highest level of the 

hierarchy. This is because the lowest level of the hierarchy will determine a layout that uses a 

certain area. Requesting this lower level hierarchical container to use more space is meaningless, 

since area is at a premium. Requesting it to use less space is equally unfeasible, since it will 

simply result in overlap. By obscuring information, overlap defeats the purpose of automatic 

layout. 

2.4 Sequence Diagrams Modeling in AToM3 

Figure 2.10 shows the visual environment of the Sequence Diagrams formalism built in AToM3 . 

The buttons on the top panel give access to aU the entities to be used in a Sequence Diagram 

model. 

... rom vO ) uSÛ'Jq sequenccDiaqroa'l3 H[T,,\ _ n 

Sequen:;eDlagramV3_META 

100 

bar 

doThis 

doThat 

x<O 

Figure 2.10: Sequence Diagrams modeling environment built in AToM3 

The illustrated Sequence Diagram model contains one interaction (and only one, as constrained 

by the meta-model) which encloses three lifelines: a : A, b : B, c : C. There is an interaction 
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use between message f 00 and bar which refers to interaction l nteraction~ (containing lifelines 

a : A and b : B and a series of messages between a : A and b : B (not shown in this model)). An 

"alternative" combined fragment follows message bar which contains three operands: x > 0, 

x == 0 and x < o. Each of the first two operands, x > 0 and x == 0, contains one message 

sending from b : B to c : C. Inside the last operand, in case of x < 0, the same behavior which 

is modeled in Interaction_2 and represented by the second interaction use repeats. 



Madel Transformation 

3.1 Introduction 

The transformation of models is a crucial element in aU model-based endeavors [VdL04]. As 

models and meta-models are essentiaUy attributed and typed graphs, we can transform them 

using graph rewriting. Transformation models are specified in the form of Graph Grammar 

formalism. Graph grammars are a natural, formaI, visual, declarative and high-Ievel represen

tation of the transformation. A Graph Grammar is composed of an ordered set of rules. A 

rule consists of a Left Hand Side (LHS) graph and a Right Hand Side (RHS) graph. Rules can 

have applicability conditions (pre-conditions) and actions (post-actions) which are checked and 

performed respectively when the rule is applied. 

Rules are evaluated in order against a host graph which represents the model to be transformed. 

If a graph matching is found between the LHS graph of a rule and a subgraph of the host graph, 

the rule is eligible to be applied. Then, the pre-condition of the rule is evaluated. If it is true, 

the rule is applied. When a rule is applied, the matching subgraph of the host graph is replaced 

by the RHS graph of the rule. After a rule matching and subsequent application, the graph 

rewriting system st arts the search again. The graph grammar execution ends when no more 

matching rules are found. 

Nodes and links in LHSs and RHSs are identified by me ans of numbers (labels). If a number 

appears on both the LHS and the RHS of a rule, the node or connection is retained wh en the 

rule is applied. If the number appears only on the LHS, the no de or connection is deleted when 

the rule is applied. FinaUy, if the number appears only on the RHS, the node or connection is 

created when the rule is applied. Node and connection attributes in LHSs must be provided 

with attribute values which will be compared with the node and connection attributes of the 

host graph during the matching process. These attributes can be set to ANY, or may have 

specific values. In the RHS, we can specify changed attribute values for those nodes which also 

appear in the LHS. In AToM3, we can either copy the value of the attribut es of the LHS, specify 

a new value, or associate arbitrary Python code to compute the attribute value, possibly based 

on other nodes' attributes. 

During formalism transformation we have a model in a source formalism that is transformed to 
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a model in a target formalism. The model elements in the source formalism could be related to 

each other. The application of a rule may introduce the counterpart model element from the 

target formalism for a model element in the source formalism. Removing the source formalism 

model elements at this stage will destroy all its relationships and hence we have no way to 

find out what it connects to. To precisely keep track of source formalism elements and their 

counterpart elements in the target formalism, we use a GenericGraph formalism which acts as 

a 'helper" during the transformation. The GenericGraph formalism consists of only two types 

of elements, GenericGraphNode and GenericGraphEdge. This is cleaner than adding "helper" 

relationships to either of those two formalisms or than using sorne of the relationships of those 

two formalisms out-of-context. 

3.2 Sequence Diagrams Model to Statecharts Model 

The Sequence Diagrams formalism is used primarily to show the interactions between objects by 

means of messages arranged in time sequence. It has become one of the most important tools in 

scenario-based requirements engineering process, as it can be used to capture and elicit dynamic 

and functional behaviors of a system, in a very readable but also quite formaI way. One of the 

primary uses of sequence diagrams is, during the requirements phase of a project, to transition 

from requirements expressed as use cases to the next and more detailed level of refinement. 

Then during the design phase, architects and developers can use the diagram to force out the 

system's object interactions and the overall system design. Not only analysts, architects and 

developers can benefit from the diagram, but a business staff can also find sequence diagrams 

use fuI to communicate. 

Statecharts are the essence of executable models. By executing (or simulating) the model, 

we can learn the behavior of the system precisely so the requirements of the system can be 

validated. The transition from interaction diagrams (e.g., Sequence Diagrams, Live Sequence 

Charts [DH01] and Use Case Charts [Whi05]) to Finite State Machines (e.g., Statecharts) has 

become one of the key activities in object-oriented analysis and design. The generated state 

machines can be simulated by tools such as Rhapsody [Rha] and SVM [Hui04]. 

Since the release of the new UML specification, UML 2.0 [MLS05], the Sequence Diagrams 

formalism has become more powerful and rigorous as it provides more well-defined constructs. 

For example, structured control constructs (Combined Fragments) such as loops, conditionals, 

and parallel execution, are introduced, which provide a more precise way to model more complex 

flow of control. The introduction of Interaction Uses (an interaction use is a reference to another 

interaction, which is usually defined in its own sequence diagram) provides a natural way to 

reuse existing sequence diagrams and decompose more complex sequences into simpler ones. 

The richness of constructs of the Sequence Diagrams formalism is definitely one advantage, 

but also a big challenge for its transformation to other formalisms, e.g., Statecharts. For 

example, since combined fragments are actually nested structures which can form a series of 
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nested scopes inside an interaction, the transformation procedure needs to be able to transform 

recursively inside each scope and combine results with outer scope ones. This is not an easy 

nor intuitive task (using existing graph transformation engines). Another challenge is how to 

transform interaction uses, i.e., replacing them with actual interactions and combining them for 

ultimate transformation to other formalisms. The following sections will explain the strategy 

and algorithms for tackling these problems in details. 

3.2.1 Four Phases of the Transformation 

We now present the Graph Grammar rules used to transform a Sequence Diagram model to 

a Statechart model. The graph grammar consists of fort y-six rules. In order to explain them 

clearly, these rules are grouped into four categories according to their function and different 

phases in which they are executed during a transformation. Figure 3.1 depicts these four 

phases, which will be explained in the subsequent sections. Now they are summarized here . 

• 
Contaln Interaction Use? 

Import referred to Interactlon"--"/ 

Optimize resulting DCharts model 

Figure 3.1: Four phases of the transformation 

1. Initialization. In this phase, the source model is parsed, and sorne global and local data 

structures which are used in the following phases to help to control the transformation 

flow are initialized. 

2. Importation. In this phase, all Interaction Use fragments are dereferenced, i.e., replaced 

by the actual Interaction referred to. This is an optional phase, since an interaction 

is valid without any interaction use. As an interaction use can refer to an interaction 

which in turn contains other interaction uses, this process can be recursive. However, 

an interaction can not contain an interaction use which refers to the interaction itself 

to avoid infinite looping. This constraint (specified in the meta-model of the Sequence 

Diagrams formalism) is checked when the model is saved (see Section 2.3.4). Because 

the importation will change the original model by adding new elements, Initialization is 
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needed again after this phase. 

3. Transformation. This is the core phase of the whole transformation. The transformation 

proceeds in two dimensions. The horizontal dimension follows the order of appearances 

of difIerent objects. The vertical dimension follows the order of occurrences of a series of 

messages. The procedures ensure the processing is in the correct order with consideration 

of nested control constructs. 

4. Optimization. After the previous two phases, an executable Statecharts model is gen

erated. However, a number of redundant elements are also added to the target model 

in those phases, which makes it hard to read or refine. This phase is analogous to the 

optimization phase after the code generation of a compilation. 

Figure 3.2 shows an example of Sequence Diagrams in AToM3. We use this example to illustrate 

the key concepts and algorithms of the transformation process. On the left side of the figure 

is the interaction Interaction_l which contains three lifelines a : A, b : Band c : C, three 

messages before, after and doIt, and one interaction use between the two messages which 

refers to interaction l nteraction.2 and covers lifelines a : A and b : B. On the right side of 

the figure is the l nteraction.2 which contains two lifelines a : A and b : B as l nteraction_l 

does and one combined fragment whose operator is "ait". Inside the "ait" combined fragment, 

there are two alternative operands, "x > 0" and "x <= 0", which contain two messages foo 

and bar respectively. Note that number labels are added for action fragments which are not in 

the original models for ease of the illustration. 

Interaction_1 

a A 1 1 b B 
1 1 c c 1 1 a : A 

1 1 b B 
1 

l 3 

belore 
ait 

x>O 
:7 9 

Interaction_2 100 

2 4 
alter 

1 

5 6 
doit H 8 W 

bar 

1 

Figure 3.2: A simple example of Sequence Diagrams model in AToM3 
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3.2.2 Phase One: Initialization 

This phase aims to initialize sorne data structures (others are initialized in other phases when 

necessary) used in the next phases to help the control of the transformation flow. In general, 

there are three reasons why we need these data structures for the transformation procedure. 

First, it is because of the complex nature of the Sequence Diagrams formalism, as we discussed 

previously. Second, as the use of the graph-matching and the simple ordering of graph gram

mar rules (in AToM3, which only supports any minimal "programmed graph rewriting") is 

inadequate to control the complex transformation flow in our case, if they work only by them

selves. Last, it is because we want to reduce the number of the graph grammar rules which is 

already over forty. The evaluation and manipulation of these data structures are implemented 

by intensively using pre-condition and post-action of graph grammar rules. 

The initialized data structures (or variables) are listed in Table 3.1 and Table 3.2. There are 

two categories: Global and Local. The global ones are linked with the model graph under 

transformation and can be accessed anytime and anywhere. For example, maxScope keeps the 

information about the maximum number of scopes an Interaction model currently has, which 

is determined by how many levels of nested structured control constructs (e.g., Combined 

Fragments) the model contains. The local ones are linked to specific graph elements which 

normally can only be accessed when these elements appear in a rule. For example, the scope of 

a Combined Fragment element remembers the number of the scope the element itself is at. For 

instance, if a Combined Fragment element C FI is directly contained inside an Interaction, then 

CH.scope = 0; and if another Combined Fragment CF2 is inside CFI , then CF2.scope = l. 
One important use of this scope is to determine whether the element of a matched subgraph is 

in the right scope the transformation is currently working on. This is one of the pre-conditions 

to be evaluated to determine if a rule can be executed. 

As we will explain in Section 3.2.4, the transformation of a sequence diagram proceeds in order 

of objects (or lifelines) from left to right, and from top to bottom along each lifeline. Two 

important types of information need to be known to ensure the correct ordering. First, which 

lifeline is currently being transformed, which is recorded by g_c:urrentLifeline. Second, the ver

tical ordering of messages and fragments along each lifeline (recorded in coveredLif elinesM ap 

and position) and what the vertical position of the current transformation is (recorded by 

g_c:urrentPosition) . 

The coveredLifelinesM ap of a Combined Fragment in Table 3.2 is needed. The reason is that 

each Combined Fragment may cover multiple Lifelines. And for each of these Lifelines, the 

vertical position of the Combined Fragment is different, and a flag to remember if an iteration 

of the transforming pro cess is done on that Combined Fragment is needed. The reason for 

the use of coveredLifelinesM ap of an Interaction Operand is similar, but without the need to 

remember the vertical position. 

In order to clearly explain all graph grammar rules for the transformation of a Sequence Diagram 
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Table 3.1: Global data structures initialized in Phase One 

Name Type Description 

g_ini tialized boolean If initialization of an Interaction is done 

int 

g_topLevelCombinedFragments list 

g_transitionCount int 

g-BtateCount int 

g_currentLifeline object 

g_currentPosition int 

g_currentScope int 

g_currentOptimizationScope int 

g_currentInteraction U se object 

g_currentImportedInteraction object 

g_originalInteraction object 

Deepest level of nesting an Interaction has 

List of aIl Combined Fragments at top level 

Counter for the number of transitions generated so 
far, used to generate a globally unique name for a 
transition 

Counter for the number of states generated so far, 
used to generate a globally unique name for astate 

Lifeline element being transformed 

Vertical position of a Lifeline the transformation is 
working on 

Nesting scope the transformation is working on 

Nesting scope the transformation is working on dur
ing optimization 

Interaction Use being transformed 

Interaction being imported because of an Interac
tion Use 

Interaction used to distinguish from imported ones 
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Table 3.2: Local data structures initialized in Phase One 
Name Linked Element Type Description 

coveredLifelinesMap CombinedFragment dict Map of a Combined fragment to re
member its vertical position on a 
Lifeline and whether it is processed 
for each covered Lifeline. Mapping: 
lifeline -+ [position, isProcessedJ 

scope 

ggParent 

CombinedFragment int Nesting scope of a Combined frag
ment inside an Interaction 

CombinedFragment object Parent element of a Combined frag
ment 

coveredLifelinesMap InteractionOperand dict Map of an Interaction Operand 
to remember if it's processed for 
each of covered Lifeline. Mapping: 
lifeline -+ [isProcessed] 

belongsTo 

position 

scope 

scopeHasSet 

ActionFragment 

ActionFragment 

ActionFragment 

ActionFragment 

object Lifeline to which an Action fragment 
belongs 

int Vertical position of an Action frag
ment on its root Lifeline 

int N esting scope of an Action fragment 
inside an Interaction 

boolean If the nesting scope of an Action frag
ment is set 
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model to a Statecharts model, we adopt the following method: first, we give a list of the rules 

with their order and short descriptions in a table; then we show their concrete visual syntax; 

and finally we describe the necessary algorithms. 

There is one graph grammar rule in this phase which should be executed after the InitialAction 

of the whole graph grammar and may be executed each time after the importation of referred 

interactions is done ,if necessary. As there is no concrete visual syntax for this rule, we only 

list it in Table 3.3. 

Table 3.3: Graph Grammar rules in execution order in Phase One 
Order Rule Name Description 
o initInteraction Initialize data structures used in the next phases to 

help the control of the transformation flow. 

The pre-condition is very simple, just check if the global g_initialized is true. The main 

procedure of the initialization in the post-action has three steps: 

1. setPosition(graph). Set the vertical position of each of the Action Fragment and Com

bined Fragment elements along a Lifeline. The algorithm is shown in Aigorithm 1. 

2. setScope(graph). Set the scope of each of the Action Fragment and Combined Fragment 

elements. The algorithm is shown in Aigorithm 2. 

3. initiateGlobals. Set default values of other uns et global variables. 

We do not provide details about some procedures used in the Aigorithm 1 and Algorithm 2, be-

cause their names are self-explanatory(for example, hasN extActionFragment, getN extActionFragment, 

etc.). 

3.2.3 Phase Two: Importation 

In this phase, aIl Interaction Use fragments are replaced by the actual referred to Interactions. 

This is an optional phase, since an interaction is valid without containing any interaction use. 

As an interaction use can refer to an interaction which in turn contains other interaction uses, 

this process can be recursive. Because the importation will modify the original model by adding 

new elements, Phase One is repeated after this phase. 

To combine the two interactions, two things need to be determined for each of the lifelines in 

the imported interaction. First, which action fragment is in the head position along a lifeline, 

and which one is the tail (they could be the same one). Second, which action fragment is in the 

position just before the interaction use along the lifeline in the original interaction, and which 

one is just after that interaction use (there could be none) . 

It would be hard to achieve this task in a simple way if we only use the graph matching of 

graph grammars. So, we use some auxiliary data structures which are shown in Table 3.4. The 
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Algorithm 1 setPosition(Graph graph) 
for ail lifeline in graph do 

count = 0 
while hasN extActionFragment (lifeline) do 

actionFragment = getN extActionFragment (lifeline) 
actionFragment.belongsTo = lifeline 
actionFragment.position = count 
if insideCombinedFragment (actionFragment) then 

combinedFragment = getParent (actionFragment) 
setCFPosition( combinedFragment, lifeline, count) 

end if 
count += 1 

end while 
end for 

## set position of CombinedFragment recursively 
setCFPosition(CombinedFragment combinedFragment, Lifeline lifeline, int position): 
if not hasSetForCurrentLifeline( combinedFragment, lifeline) then 

combinedFragment.coveredLifelinesMap[lifeline] = [position, False] 
if insideCombinedFragment(combinedFragment) then 

parentCombinedFragment = getParent( combinedFragment) 
setCFPosition(parentCombinedFragment, lifeline, position) 

end if 
end if 

Algorithm 2 setScope(Graph graph) 
g-IIlaxScope = 0 
interaction = getInteraction(graph) 
for ail combinedFragment in interaction do 

g_topLevelCombinedFragments. app end (combinedFragment) 
setCFandAFScope( combinedFragment, 0) 

end for 

## set scope of CombinedFragment and ActionFragment recursively 
setCFandAFScope( CombinedFragment combinedFragment, int scope): 
if scope > g-IIlaxScope then 

g_maxScope = scope 
end if 
for ail containedEntity in combinedFragment do 

42 

if isinstance( containedEntity, ActionFragment) and not containedEntity.scopeHasSet 
then 

containedEntity.scope = scope + 1 
containedEntity.scopeHasSet = True 

end if 
if isinstance( containedEntity, CombinedFragment) then 

setCFandAFScope( combinedFragment, scope+ 1) 
end if 

end for 
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procedure of the task is used in the post-action of rule importInteraction and the algorithm 

is shown in Algorithm 3. 

Table 3.4: Local data structures linked with a Lifeline element in Phase Two 

Name Type 

headAF object 

tailAF object 

beforeAF object 

afterAF object 

Description 

Action fragment in the head position 

Action fragment in the tail position 

Action fragment in the position before the interaction use referring to 
the enclosing interaction 

Action fragment in the position after the interaction use referring to 
the enclosing interaction 

If we apply the algorithm to the example shown in Figure 3.2, the values of the variables 

attached to the lifelines graph elements of l nteraction_2 will be set as shown in Table 3.5. 

Note that ai stands for ActionFragment and the subscript numbers correspond to those shown 

in Figure 3.2. 

Table 3.5: Settings of variables after applying Algorithm 3 on Figure 3.2 

Lifeline headAF tailAF beforeAF after AF 

a: A ais 
b: B aig ailO 

There are thirteen rules in this phase which are shown in Figures 3.3, 3.4 and 3.5. 

The list of rules, their execution order and short descriptions are given in Table 3.6. Note 

that sorne rules have the same order which can have two meanings. First, it means that there 

is a mutually exclusive choice between conditions of these rules. For example, only one of 

connectHeadAFFirst and connectHeadAFFirstPrime will be executed in one pro cess iteration. 

Second, it implies that the actual execution order of these rules is determined randomly and 

makes no difference. For example, the rules with order of 8. 

The result of the transformation upon the example sequence diagram is shown in Figure 3.6. 

Note that number labels are added for action fragments which are not in the original models for 

ease of the illustration. Note how a special "seq" combined fragment which has only one operand 

is added by rule createWrapperCF to enclose aIl elements imported from Interaction_2. It is 

redundant after this phase and will be removed by the optimization described in Section 3.2.5. 

As an interaction may contain more than one interaction use, the strategy to control the flow of 

the transformation is to ensure we transform one interaction use at a time. That is, one iteration 
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Algorithm 3 setlnteractionUsePosition(Graph graph) 
importedlnteraction = getlmportedlnteraction(graph) 
g_currentlmportedlnteraction = importedlnteraction 
for ail lifeline in importedlnteraction do 

lifeline.tailAF = None 
lifeline.headAF = getN extActionFragment(lifeline) 
while hasN extActionFragment(lifeline) do 

lifeline.tailAF = getNextActionFragment(lifeline) 
end while 
lifeline.beforeAF = None 
lifeline.afterAF = None 
originalLifeline = getOriginalLifeline (g_originalInteraction) 
setlnteraction UsePositionHelper( originalLifeline, lifeline) 

end for 

## set replacement positions based-on geometrical coordinates 
setlnteraction UsePositionHelper(Lifeline originalLifeline, Lifeline lifeline): 
(xju, yju, mju, nju) = getGraphBoundaryBox(g_currentlnteractionUse) 
while hasN extActionFragment ( originalLifeline) do 

actionFragment = getN extActionFragment(lifeline) 
(x_af, y_af, m_af, n_af) = getGraphBoundaryBox(actionFragment) 
if n_af :S y ju then 

lifeline.beforeAF = actionFragment 
end if 
if (nju :S y_af) and (lifeline.afterAF =1- None) then 

lifeline.afterAF = actionFragment 
end if 

end while 

44 
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Rule 1 : importlnteradion 

LHS -- RHS 
P .. -condltlon: 
retum (g_currentlnteractionUse -- None) 

1 1 Post .. ctJon: 
interactionUse = LHS.getNodeWithLabel(l) 
g_currentlnteractionUse = interactionUse 

LJ EJ ~~~~a3~tl~~~~;ia~~~ri~~i~:.'lth(interactionuse.referSTO) 

setlnteractlonUsePositlon(atom3i.getCurrentModeiGraph()) 

Rule 2 : connedHeadAFFirstPrime 

LHS -- RHS 

1 4 1 4 
<ANY> 

2 
<ANY> 5 

<COPIED>2 <COPIED>S 

tNY
> 

1 

:<ANY> 1 tNY
> 

1 

:<ANY> 1 ~COPIED.COPI~' ~COPIED.COPI+: 

3 1 3 

1 

P.....,ondltlon: 

i~~~i~~o~S.~~~tl::~?t~'f.:~~i(l) 
headAF - LHS'getNodeWithLabeI(3) 

~~~i~::~::,~~~n uis~:ia~~~~VCat~(~;1(4) 
retum (Interaction -- 9 currentimportedlnteraction) and (not lifeline. headAFConnected) and (headAF -- ilfeline.headAF) and 
!ilfeline.befOreAF == None) and (originailnteraction == 9 originalinteraction) and (lifeilne.instanceName == originaiLifeilne.instanceName) and 
Iifeilne.ciassName == originaILifeline.ciassnema) -

Post·.ctlon: 
lifeline - LHSJetNodeWithLabel(2) 
Iifeline._headA Connected - True 

Rule 2 : connedHeadAFFlrst 

LHS -- RHS 
P.....,ondltlon: 

1 1 :~~~i~~o~S.'g'!tp::~~~:e~~)el(l) 
<ANY> 

2 
<COPIED~ 4 headAF = LHsl.etNodeWithLabel(3) 

1 
beforeAF • LH .getNodeWithLabel(4) 

~ANY> :<ANY> 1 ~COPIED.COPI~: 
retum (Interaction •• 9 currentlmportedinteraction) and 
!not lifeline. headAFConnected) and 
headAF .= lifeline.headAF) and 

1 4 
(beforeAF -- Iifeline.beforeAF) 

1 1 ~ 
post .. ctlon: 
lifeilne - LH~etNodeWithLabel(2) 

3 lifeilne._hea Connected = ltue 

1 
1 

Rule 3 : connedHeadAFSecond 

LHS -- RHS 
P .. -condltlon: 

1 1 :~~I~~o~s.~JJo·:I:~'f.:~~~I(l) 
<ANY> 

2 
4 <COPIED~ 4 ~~~~r!" Jis~~=~~~(~~1(3) 

~ANY> :<ANY> 1 1 ~COPIED.COPI+: 1 
retum (interaction == 9 currentlmgortedlnteractiOn) and 
(beforeAF = = ilfeilne.beforeAF) an 
(successorAF ! = ilfeilne.headAF) 

1 

":l ~ 3 1 ~ 

1 1 

Figure 3.3: Graph Grammar rules in execution order in Phase Two - Part One 
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Rule 4 : connectTaIiAFFlrst 

LHS -- RHS 

1 1 
<ANY> 2 <COPIEO> 

tNY> i<ANY> 1 

Rule 5 : connectTaliAFSecond 

LHS -- RHS 

1 1 
<ANY> 2 

<COP)EO~ 3 

bNY> I;<ANY> 1 ~COPIEO .. COPI~: 
4 

1 1 3 

1 
1 

Rule 6 : connectTailAFThird 

LHS -- RHS 

1 1 
<ANY> 2 3 <COPIEO~ 3 

bNY
> ;<ANY> 1 1 ~COPIED .. COPI~; 1 1 

~ 
1 

4 4 1 
1 

Rule 7 : createWrapperCF 

LHS -- RHS 

1.---------, 1 
<COPIEO> 

2 
seq 

3 

Pre-condltlon: 

i~~~i~~o~S.~~J~:~3.~:e'i(~I(l) 
retum (lntera~lon -- 9 currentlmportedlnteraction) and 
(lifeline. headAFConneCfed) and 
(headA/'" -- Iifeline.headAF) and 
(lifeline.afterAF -- None) 

Pre-c:ondltlon: 

:~~~I~~o~S.';~J~~~3.~t'i(~I(l) 
~~~M !~~.~.e~~~~~:~~~N4) 
retum (lntera::Bon aa 9_currentlmportedlnteractlon) and 
(not IIfeline. headAFConnected) and 
Ita'lAF -- Ilfeline.tallAF) and 
afterAF -- Ilfeline.afterAF) 

Post-action: 
lifellne - LHs.~etNodeWlthLabel(2) 
IIfellne._tallAF onnected a liue 

Pre-c:ondltlon: 

:~~~I~~!O~S.~~J~~J,~t'i(~)el(l) 
predece550r~ - LHS.getNodeWlthLabel(3) 

~~~~I~~~:~N~e:~~=I~lx,rtedlnteractIOn) and 
(afterAF -- Ilfeline.afteillF) and 
(predecessorAF !- lifeline.tailAF) 

P .. -condltlon: 
Interaction - LHS.getNodeWlthLabel(1) 
retum (interaction -- 9 currentlmportedlnteraction) and 
(Q..currentlmportedlnteriction.wrapperCF -- None) 

Post .. ctlon: 
wrapperCF - RHS.getNodeWlthLabel(2) 
9_currentimportedfnteraction.wrapperCF - wrapperCF 

Figure 3.4: Graph Grammar rules in execution order in Phase Two - Part Two 

46 
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Rule 8 : connectAFWithWl'lpperCF 

LHS -+ RHS 
........... dltlon. 

1 1 Interaction· LHS.r.!'ttlleWlthLabem 
<ANY> <COPIEO> comblnedfrogmen • ~ Label(2) 

=~~c:;, ~!'g_CU~w:'~~~et'lctkw1} and 

2 
~M't~~:rt~=~~~~:nedFngment) 

2 _. 
LJ 

<COPIEO> 
:~:~::~.~~=~~~ Jlue 

<ANY> 3 <COPIEO> 3 

41 41 
1 

Rule 8 : connectCFWIthWl'lpperCF 

LHS -+ RHS 
Pn<ondltlon: 

1 1 Interaction - LHS.r,tNodeWlthLabel(l) 40 
comtHnedFragmen • LH::=odeWithLabel(2) 

<ANY> <COPIEO> contelnodCF • LHS.getN WlthLabel(4) 
retum (interact:jon •• III cUrnlntlmportedlntenctJon) and 
~(=n:::=~~;e~~lnedFngment) 

2 2 -_. 
LJ 

<COPIEO> contelnodCF • RHS.getNodoWithUbel(4) 

<COPIEO> 3· conbinedCF.connectedWithYkapperCF -1i'ue 

41~~' 

Rule 8 : connectCFWIthWl'lpperCF 

LHS -+ RHS 
PN-condltloft: 

1 1 =,""~'i:;r,!'l~s~=,:!",JM,Label(2) 
<ANY> 40 <COPIED> InteractionUso • LHS.getNodoWithLabel(4) 

retum (interaction •• III cunntlmportecllntensctionJ Ind 

~~'t::r:=~~n:~:ct~~~~Fragment) 
2 2 -_. 
LJ 

<COPIEO> ~::=uu:.~:'~-::;'~~~ Jlue 
<ANY> 3· <COPIEO> 3 

]~] 
Rule 9 : c1elnlmportedUfeline 

LHS -+ RHS 
_ndlIIon. 

1 1 Interaction· LHS.getNodeWlthLabel(l) 

D 
retum (Interaction •• g_currentlmportedlnteractlon) 

<ANY> 2 tNY> <ANY> 1 
1 

Rule 10 : c1unlmportlcllntel'lctlon 

LHS -+ RHS 
P...-conclltlon: 

1 3 3 ~~~~=~~TLabel(l) 
<ANY> <ANY> <COPIEO> =lIlnterIIctIon • LH~eWlthLabel(l) 

InteractlonU .. - LH5.g WlthLabel(4) 

r=J 
retum ~_ .-Jgtumlnumporteclnteractlon) 
Ind 1 Illinteraction ~ !nllllnteractlon) 

21 <COPIEO> , 

Incl wra~F •• LCU i'npOrtedtnterKtlon.WnlpperCF) 
Ind InteractIonUse·· g_currentlntaractlonUse) 

20 
__ no 

iLcurrentimportedlntenlctton - None 
III cUfTelltlnterKtlonUse - None 
gJnltlollzed.FoI" 

Figure 3.5: Graph Grammar rules in execution order in Phase Two - Part Three 
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Order 
1 

2 

2 

3 

4 

5 

6 

7 

8 

8 

8 

9 
10 

Table 3.6: Graph Grammar rules in execution order in Phase Two 
Rule Name Description 
importInteraction Import the Interaction model referred to by a cur

rent target Interaction Use and initialize helper 
data structures used in the next steps. 

connectHeadAFFirst Connect the head ActionFragment of a Lifeline in 
the imported Interaction with the proper one of 
the same Lifeline (with the same class name and 
instance name) but in the original Interaction. 

connectHeadAFFirstPrime Connect the head ActionFragment of a Lifeline in 
the imported Interaction directly with the same 
Lifeline but in the original Interaction. The check
ing specified in the meta-model is done when the 
model is saved (see Section 2.3.4). 

connectHeadAFSecond Disconnect the ActionFragment of the Lifeline in 
the original Interaction affected by previous rules 
from its old successor. 

connectTailAFFirst Remove the Lifeline from the imported Interaction 
as there is no ActionFragment of the same Lifeline 
in the original Interaction need to be connected. 

connectTailAFSecond Connect the tail ActionFragment of a Lifeline in 
the imported Interaction with the proper one of 
the same Lifeline (with the same class name and 
instance name) but in the original Interaction. 

connectTailAFThird Disconnect the ActionFragment of the Lifeline in 
the original Interaction affected by previous rules 
from its old predecessor. 

create WrapperCF Create a CombinedFragment (together with an 
InteractionOperand inside) for holding an Ac
tionFragments, CombinedFragments and Interac
tionUses inside the imported Interaction in order 
to move them into the original Interaction in one 
time. 

connectAFWith WrapperCF Wrap ActionFragments inside the CombinedFrag-

connectCFWith WrapperCF 

connectIUWith WrapperCF 

cleanImportedLifeline 
cleanImportedInteraction 

ment. 
Wrap CombinedFragments inside the Combined
Fragment. 
Wrap InteractionUses inside the CombinedFrag-
ment. 
Remove Lifeline of the imported Interaction. 
Connect the wrapper CombinedFragment created 
earlier with the original Interaction, then remove 
the imported one and the Interaction Use that 
refers to it. 

48 
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Interaction_1 

a A b B c C 

1 before 3 .. ... 

seq 

ait 
~,~ ,~"" ~ ~, ~ ~ 

x>o 

;7 9 
... foo 

1 
"[" 
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bar 

... 
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after 4 
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5 
doit 

6 .. ... 

Figure 3.6: Transformation result of Phase Two 



3.2 Sequence Diagrams Model to Statecharts Model 50 

of the set of rules in this phase corresponds to the transformation of one interaction use. This 

is implemented by evaluating and manipulating the global variable g_currentInteractionU se. 

The pre-condition of rule importInteraction checks if g_currentInteractionU se is null to 

st art the new transformation of a matched interaction use element. The post-action of rule 

cleanImportedInteraction sets g_currentInteractionU se to null to end the current iteration 

and to prepare for the next potential one. 

3.2.4 Phase Three: Transformation 

This is the core phase which maps Sequence Diagrams to Statecharts. The transformation 

proceeds in two dimensions. The horizontal dimension follows the order of appearance of 

different lifelines. The vertical dimension follows the order of occurrences of a series of messages. 

The procedures ensure both dimensions are processed in correct order with respect to nested 

control constructs. 

The strategy to transform a sequence diagram is depicted in Figure 3.7. Each iteration starts 

with finding an unprocessed lifeline element. It then proceeds with messages and fragments 

along the lifeline from top to bottom. If the interaction contains nested fragments, the process 

continues from the outermost to the innermost of nested scopes. 

There are sixteen rules in this phase which are shown in Figures 3.8, 3.9 and 3.10. 

The list of rules, their execution order and short descriptions are given in Table 3.7. 

Rule msgI n states that a message directed towards a lifeline becomes a triggering event in 

the Statecharts. Rule msgOut states that a message directed away from a lifeline becomes an 

action to send that message in the Statecharts. Both of these rules result in a transition to a 

new state. 

A combined fragment resultsin a transition to a new composite state which is a container of en

closed orthogonal components and states transformed from interaction operands and messages 

by the following rules. Rule interactionOperand is a general rule for all kinds of combined 

fragment operators. Based on the result of that rule, more operations are implemented in rule 

operatorParallel, operatorLoop and operatorOption for sorne specifie operators. For example, 

different orthogonal components representing branches of a "parallel" combined fragment are 

combined into one composite state by rule operator Parallel; an extra transition from "final" 

state to "default" state of a "loop" combined fragment is added by rule operator Loop; an extra 

transition with the opposite guard condition from "final" state to "default" state of a "option" 

combined fragment is added by rule operatorOption. 

It is easy to find that sorne constructs are redundant after the transformation of this phase. 

For example, for "loop" combined fragment, the corresponding composite state has no need 

to contain its own "default" and "final" states and another enclosed composite state (and 

even its enclosed orthogonal component), if the "guard" information can be somehow moved 

to somewhere at the inside and the loop-back transition can also be connected between the 
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• 

Has Unprocessed Lifeline? 
[No] 

Clean SO Elements 

[No] 

Has More Scope? 

[No] 

Has Unprocessed Message? 

[No] 
[Yes] 

Process Message 

Figure 3.7: The strategy of Phase Three 
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Rule 11 : Interaction 

LHS -- RHS 

2 
_1tIon: 

1/ <sp:~r> 
=~.:: ;;'t'e"'.:J::'~:"'..!:1'"'11) 1 -_: 

G_ un Interaction. LHS.getNodeWithLabelll) 

CJ Il <COPIE~ 1 
Interactlon,_tnverSed - lNe 

G_Composite 4 :~~:~~~La~~~) 
composite - =odeWithLabeI14) 
fi".1 • LHS.ge eWithLabeIIS) 

65 g=:~:.r::t dc~art 
compO$lte.totalChHdIW\ • 0 

Rul. 12 : IItlllne 

LHS -- RHS 
'...condition: 

l~NY> <ANY> 1 1 ~COPIEO.COPI~> ~~:I~~~~~::~~~) 
(v_cunentUfeilne _. None) 

1 2 2 [ -_: 
<ANY> <COPIEO> 1 ~:;::'';;'!\Yt"r=~~12) 

3<SPECIFIED>1 
o~' ~WlthLabelI3) 
defau - LHS. eWithLabe1(4) 
ftnal • LHS. odeWithL..beI(5) 

4~ 
lifeline. tnversed - '1hIfi 
compoSlte.totalChlld ... +- 1 
deflutlgghrent - orthogOOlI 
defl=O <SPECIFIEO> defluit. - ° 5. final. rent - orthogonal 
ftnal.scope - 0 
9 currenU..ifeUne • Ilfellne , ~.~ ~~. g:currentfoskion - 0 
9_ currantScope • 0 

Rule 13 : comblnedFragment 

LHS 

1
1

<ANY> 1 

2..ANv> 
, 3~. 
. <ANY> 

Rule 14 : InteractionOperand 

LHS -- RHS 

1 3 Il 3 <ANY> <ANY> 4 0 <COPIEO> 

2p;m;-" '"~"" <ANY> 2 ;;;co;.iElh·,wl Sc ~~EO> V SPECIFI 
; 

~: ' i 1 . 8 9 [ 

1 

.... ~s ECIFIE~ .i 5. si 
Poot_. 
comblnedFrl9ment - LHS.getNodeWithLabelll) 
~,:=,:,~~~~~~bel(2) 

P.-:_ItIon: 
comblnedFr.gment • UiS.getNodeWIthLabel(1} 
If =:~=edFragment.coveredUfeilnesMap.hasJœy(g_CurrentUfellne): 

InteractionOpennil.covorodLlfelinesMlp(g cu,,""tLlfelineIlO] - Tru< 
l"te ... ctlonO~nd _ LHS.getNodeWithlabeI(2) composlte.totillChlklren +- 1 -
processed _ InleractlonOpennd.coveredUfellnesM.p(g currentUfell"e] (01 ~.unprocusedChUdren +- 1 
composite - LHS.getNodeWithLabeI(3) - ~Hs~~~~~~(6) 
retum Inot prucessed) Incl Ipos~lon __ g currentPos~IonJ Incl defouTt - R=odeWithLabeIII) 

1~==:~;Ta !_!U~~~~~~::} ~~u7t~. ~~g~=t. orthogonal 
~~~=i:r. ~~nedfragment + 1 
newcomposlte.totIIChlld .. n • 1 
newcomposte.scope - -1 

Figure 3.8: Graph Grammar ruies in execution order in Phase Three - Part One 
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Rule 15 : operatorLoop 

LHS ----+ 

1 <A1!.Y~ 

/? 
<ANY> 

4. 

Rule 15 : operatorOptlon 

LHS ----+ 

l:î 
<ANY> 

4. 

Rule 15 : operatorPilrallel 

RHS 

Rule 18 : msgln 

LHS ----+ II-T-J2 <ANY> 

3 

4 
' .' 

<ANY> 

5(}---11 : 
<ANY> 

Rule 18 : msgOut 

LHS ----+ 

<A;> If---Ti2 
4 <ANY> 

50--..... , 
<ANY> 

RHS 
Pr.conclltlon: 

'~ 
composite. UiS.getNodeWithLabel(l) 
retum (not composite. traversed) .nd 

~~O;(:',=-~n~~a~~~~l!~i~,) 
P_: 
composite - LHS.getNodeWlthLabelll) 
composite._trlveriecl -1Ne 

4V 
RHS 

Pre-conclltlon: 

17~ 
composite· LHS.getNodeWlthLobelll) 
retum (not composite. tnlveBed) and 
{composlte.belongsTo _ .. 9 currentUfellne' 
and (composlte.lnteractJonOpentor .- 'opt') 

<COPIED> .... t4ctIon: 
composite - LHS.gotNodeWlthLobel(1) 
composite,_tnverSed -Thle 

5 

4~ 
<SPEC IED> 

LHS 
r;-;:;;;;;;;;;;;;====;, ...-....-111 ... : 

RHS 

1~2 <CO;IED> 

4<éop~t> 
<C PIED> 

<SPECIFIED 

6<>--_, 
, <SPECIFIED> - .. ' _._ ..... - ...... 

RHS 

1~2 <COPIED> 

3 

4<oop~~) 
<~ PIED> 
7 <SPECIFIED: 

<~~~: 
.. ..... .. 

3 : tt:~:gotN==:::c:lm mu~ - 1~IOng"lb -- 9 currenWfelino) • 

l~t:~~~:n-:-ir") and 
If c1.tDtalChildren -- cl.unprocessedChlklren: 

rwtum resuI' 
else: 

retum result and c2.remalned 

Post-ectlon: 
cl - LHS.gotNodeWlthLobelll) 
g.;:i;,y:''''':~Lobel(3) 
If cl.totllChlklren •• cl.unprucessedChlldren: 

c2.l1!IIIOlned • live 
cl.unprocessedChlldren -- 1 

P_dltlon: 
.1 - LHS.gotNodeWithLobelll) 

~~r::l:t:l.:==I::::IW 
retum (not message. ln trlversedland 
r"beJOngSTO -- iii cürrintUfellne and 

:~:==::;,.~~=r:~J and 
lal.ggPa"'" _. preSto".ggParent) 

Poat-llCtlINl: 
mossor: - LHS.getNodeWlthLobeI(3) 
preSto - LHSi?,etNodeWithLobeIIS) 
-Sto .. - RH .getNodeWlthLobel(6) message. In _ -live 
-Sto .. :ggllorent - ~S'"t •. ggParen' 
~.=~. r.l t.~.scope 

...-....-1tIon: 

~LHS'~~~~=bel(3) 
preStor: - LHS.getNodeWithLobeIIS) 
retum (not mesug •. Jn_tnlversed) and 
rl.beIongslb -- 9 cumm'Ufellno) and 
af.posItlOn -- SI cürrentPosition) Ind 
.f.seo •• priSt.te.scope) and 
.f.6~rent -- pre5Qte.9g~rent) 
_t-Kllon, rnessor: - LHS.gotNodeWlthLabel~) 
preSti' • LHS~-""beli ) _ ... RH .getNodeWithLobel(6) 
message. In traversed -'lhIe 
newStiite:gghrent - =tlte.ggParent 
=~-r.1 ".scope 

Figure 3.9: Graph Grammar rules in execution order in Phase Three - Part Two 
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Rule 20 : connectWithFinal 

LHS -- RHS Pre-c:ondltlon: 

10----- ~îD, 
If J'_c:~~~rs~~+~ IIrmaxScope: 
retum False 

~~~~tEttS.UlJJo':!~~~t~!il(l) 
<ANY> retum (nct Rnal. traversed) and 2. (preState.ggl'ilrent -= final.ggParent) and 

(preState.scope == final.scope) 

Post-.ctIon: 
UlS.getNodeWithLabel(2ktraversed - True 

Rule 21 : cleanUfeline 

LHS -- RHS 
Polt·Ktlon: 

1 

~Y> :<ANY> 1 

g_cunentUteline = None 

1 

Rule 22 : cleanActionFragment 

LHS -- RHS 

11 

Rule 23 : cleanlnteraction 

LHS -- RHS 
1 2 <ANY> 

12~'1 <ANY> 

t--

Rule 25 : cleanlnteractionOperand 

LHS -- RHS 

1 
l<ANY> 

Figure 3.10: Graph Grammar rules in execution order in Phase Three - Part Three 
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Table 3.7: Graph Grammar rules in execution order in Phase Three 
Order Rule Name Description 
Il interaction Transform an Interaction element to a DChart ele

ment, with two new state nodes and one new com
posite node enclosed and a link to the original In
teraction element. 

12 lifeline 

13 combinedFragment 

14 interaction Operand 

15 operatorParallel 

15 operatorLoop 
15 operatorOption 

18 msgIn 

18 msgOut 

19 setScope 

20 connect WithFinal 

21 cleanLifeline 
22 cleanActionFragment 
23 cleanInteraction 
24 clean CombinedFramgment 
25 cleanInteractionOperand 

Transform a Lifeline no de to an Orthogonal node, 
with two new state nodes enclosed and a link to the 
original Lifeline node. 
Transform a CombinedFragment element, which is 
in the current transforming level, to a composite 
node, with two new state nodes enclosed and one 
new state node concatenated and a link to the orig
inal CombinedFragment element. 
Transform an InteractionOperand element, en
closed in a transformed CombinedFragment ele-
ment, to an new Orthogonal element enclosed in a 
new composite element, with two new state nodes 
enclosed. 
Adjust a transformed "parallel" CombinedFrag
ment. 
Adjust a transformed "loop" CombinedFragment. 
Adjust a transformed "option" CombinedFrag
ment. 
Transform an incoming event (Message) along the 
current Lifeline, to a transition and astate node. 
Transform an outgoing event (Message) along the 
current Lifeline, to a transition and astate node. 
Increase the scope to st art the transformation of 
another nested level. No visual syntax. 
Connect the last Basic node in any enclosing frag
ment with a "final" state node. 
Remove Lifelines. 
Remove Lifelines. 
Remove Interaction. 
Remove CombinedFramgments. 
Remove InteractionOperands. 
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"default" and "final" states of the inside. We consider aU of such situations and optimize 

these structures as much as possible in the next phase, Optimization, to make the generated 

Statecharts more readable for humans and more efficient for simulation and analysis. 

The result of the transformation upon the example Sequence Diagrams is shown in Figure 3.11. 

There are many states and many levels of nested composite components. Although this is a 

correct synthesized statechart, most states and components are redundant and can be optimized 

away. 

3.2.5 Phase Four: Optimization 

After the previous two phases, an executable Statecharts model is generated. However, as 

discussed earlier, a number of redundant elements are also generated in the target model in 

those phases, which makes it hard to read and refine. Now it is time to make sorne optimization 

to get the final compact, readable and efficient Statecharts model. This phase is analogous to 

the optimization phase after the code generation of a compilation. 

There are three subphases for the optimization: 

1. Orthogonal optimization. Any orthogonal component which is the only enclosed orthog

onal of the parent composite, is considered redundant and is removed. AU states and 

composites enclosed by the removed orthogonal component become children of the par

ent composite. 

2. Composite optimization. Any composite which does not enclose any orthogonal compo

nent is considered redundant and is removed. Again, aU enclosed states and composites 

become children of the parent component. The enclosed "default" and "final" state are 

replaced by normal states and connected with outer states by transitions. As a parent 

component could be a composite or an orthogonal component, there are two sets of rules 

for this subphase. Since the composites could be nested, this recursive process starts from 

the outermost one. 

3. Tmnsition and state optimization. Any transition without triggering and action and its 

guard always true, is redundant and is removed. 

There are sixteen rules in this phase which are shown in Figures 3.12 and 3.13. 

Note that visual syntax of rule 34, 35, 36 and 37 are not shown in figures because they are 

very similar to those of 29, 30, 31 and 32. The only difference is that the outermost container 

element of the first set is a Composite component, and an Orthogonal component for the second 

set. The list of rules, their execution or der and short descriptions are given in Table 3.8. 

After these optimizations, the final statecharts transformed from the example of Figure 3.2 is 

shown in Figure 3.14. 
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o .. ~ 

'-' 

+1 
J' f' A: r] 

--'. 

Figure 3.11: Transformation result of Phase Three 
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Rule 26 : orthogonalOptFlrst 

LHS - RHS 
Pre-concllt\on: 

1 1 composite - LHS.getNodeWothLabel(l) 
<ANV> <COPIEO> state - LHS.getNodeWithLabel(3) 

2oc:ANV> 30 
:U':"J~~;.~:~~~I~~O,!':'~ftimlzed) and 

<COPIEO> Post~lon: 

30 
composite. LHS.getNodeWithLabel(l) 

2§<COPIEO> state - LHS.getNOdeWithLabel(3) 
<ANY> state. orthogonalOptimlzed • True 

state.ggParent • composite , 
§ 

Rule 27 : orthogonalOptSecond 

LHS - RHS 
Pre-conclltlon: 

1 1 r.;;,~~J.~.;e~~~L!:''l13~bel(l) 
<ANV> <COPIE03U retum (not composite. orthogonalOptimlzed) and 

2~V;' 
(parentCompos~e.totaTChlldren •• 1) 

! T"'I~ 
Polt-llctlon: 

.r:;::~n,~n. r.::~~~~.;.\":l!f.~~L!:~3~bel(1) 

'1 
composlte._orthogon.,Optimlzed -ll'ue . . composlte.ggPlrent - parentComposite 

{ ! 
[ ! 
b_~~','4",,"""'''''''''''''''''''/; t .. 

Rule 28 : orthogonalOptThird 

LHS - RHS 
Pre-conclltlon: 

1 1 ~t'::~f:m~i.~:~~:~n~~IH) 
<ANV> 

D 2~V> 

Rule 29 : composlteOptFlrst 

LHS - RHS 
Pre-concIltlon: 

<ANV> <COPIEO> composite. LHS.getNodeWithLabel(l)) 

70 ~i~SC.O:=\::fJr~lzed) and 

20 20 
<COPIEO> (composite.scope--- g_currentOptimizationScope 

<A:V> <CC:'EO> 
post .. ctIon: 
composite. LHS.getNodeWithLabel(l)) 

3 rv> ~I 3

F
7;'ED> 6·1 

state • LHS.getNOdeWithLabel(7) 
state. composkeOptimized • ll'ue 

°7o!!' 

state.ggParent • composke 

46<ANV> 46 <COPIEO> 

Rule 30 : compositeOptSecond 

LHS - RHS 
Pre-conclltlon: 

<ANV> <COPIEO> ~:::,!~:~J.~.;.l":l!r.:~L!:'î[('3ïbel(1) 
7 compos~eContalned • LHS.getNodeW thLabel(7) 

20 20 <ET 
retum (not composlteCont.lned. composlteoptimlzed) 
and -

<A:V> <CC:'EO> 
(parentComposlte.5Cope _. G_currentOptlmlzationScope) 
and· 

3 rv> ~I 3r~'EO> 
(composlte.totalChlklren > 0) 

6·1 
__ no 

Oà6• =~:~~~.;.l":l~'W~L!:r3~bel(1) 
compositeContalned • LHS.g_eWlthLabel(7) 

46<ANv> 46 <COPIED> 

composkeContalned. compOslteOptlmlzed • 1l'ue 
compositeContalned.ggParent • parentComposke 
composlte.totalChlldren •• 1 

Figure 3.12: Graph Grammar rules in execution order in Phase Four - Part One 
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Rule 31 : compositeOptThlrd 

LHS 

Rule 32 : composlteOptFour 

LHS 

<ANY> 

Rule 38 : cleanStateFirst 

RHS 
;;::;;~~=====::;) .......,ondltlon: IJ <COPIEO> composite. LH:t2etNodeWlthlllbel(l) 

~:"!Ut~~od~~~,'l:1(5) 
retum (no! 3mult. compostteOptimlzed) Ind 

!not finll. composifeOpomlzed) Ind 
composlte.scope -- g_currentOptlmlzatlonScope) 

Poot-actlon: 
compostteParent. LHS.getNodeWlthlllbel(l) 
compostte • LHS.getNodeWlthlllbel(3) 
defou~ • LHS.getNodeWothlllbel(5) 
final • LHS.geINodeWllhlllbel(6) 

L---~~=cIIFŒ~1 ~=~~~=~~~~~1h.e lhJe 
compOstte. compostteOptimlzed • 1hJe 

~=~~~!~t~=-~:-n~nt 

RHS 
I);::::;;;;;;;;;;;;;;:=====:::;J P....:ondltlon: 

<COPIEO> compostte. LHS.getNodeWlthlllbel(l) 
retum (compostte.scope •• g_curmltOptlmlzl~onScope 

<COPIEO> 

5~;?~ 
.-----=::-;.;~--...,-- r---..,,"'-----. P....:ondltlon: 

3 

2 

Rule 38 : cleanStateSecond 

LHS 

Rule 39 : flnalstateOptFirst 

LHS 

Rule 40 : flnalstateOptSecond 

LHS __ 

~4 2. \NY> 

< 

RHS 

<COPyO> <COPIEO> 
1 2 

4 
<COPIEO> 

stale. LHS.QetNodeWlthlllbel(3) 
transition. (HS.getNodoWllhlllbel(4) 
retum transl~on.rsRedundent() and 

!::::=~~::'':8:: N and 

P....:ondltlon: 
stale • LHS.QetNodeWlthlllbel(3) 
transition. (HS.QetNodeWilhlllbel(S) 
retum tran_n.ISRedundentO and 

!::::==~1:U:: fl"nd 

P....:ondItIon: 

r-----:;~~---_, ::::/:."ot~riif~~~1~~=~~IZed) 

2 4 

.-----=--=------, 

__ n: 

translHon • LHS.getNodeWothlllbel(3) 
transltlon._finalstateO~mlzed .1hJe 

Figure 3.13: Graph Grammar rules in execution order in Phase Four - Part Two 
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Order 
26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

38 

39 

40 

Table 3.8: Graph Grammar rules in execution order in Phase Four 
Rule Name Description 
orthogonalOptFirst Reconnect the enclosed state no de of the removing 

orthogonal component with its parent composite. 
orthogonalOptSecond Reconnect the enclosed composite node of the re

moving orthogonal component with its parent com
posite. 

orthogonalOptThird Remove the orthogonal component which is the 

compositeOptFirst 

compositeOptSecond 

compositeOptThird 

compositeOptFour 

setOptimizationScope 

compositeOptFirstPrime 

compositeOptSecondPrime 

compositeOptThirdPrime 

compositeOptFourPrime 

cleanStateFirst 

cleanStateSecond 

finalstateOptFirst 

finalstateOptSecond 

only enclosed orthogonal component of the parent 
composite. 
Reconnect the enclosed state node of the removing 
composite with its parent composite. 
Reconnect the enclosed composite no de of the re
moving composite with its parent composite. 
Copy transitions originally to and from the remov
ing composite to new transitions of its inside states. 
Remove the composite which does not enclose any 
orthogonal component. 
Increase the scope of nesting for optimization to 
starts another iteration. No visual syntax. 
Reconnect the enclosed state no de of the removing 
composite with its parent orthogonal component. 
Reconnect the enclosed composite node of the re
moving composite with its parent orthogonal com
ponent. 
Copy transitions originally to and from the remov
ing composite to new transitions of its inside states. 
Remove the composite which does not enclose any 
orthogonal component. 
Remove state whose only outgoing transition is re
dundant which has one incoming transition. 
Remove state whose only outgoing transition is re
dundant which has two incoming transitions. 
Replace each incoming transition of a final state 
(except for the one in the top level) by a copied 
transition to a new state. 
Remove final states (except for the one in the top 
level). 
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nteractlon_1 

Figure 3.14: The final generated Statechart for the example of Figure 3.2 



3.3 Broadcasting Problem of Statecharts 62 

3.3 Broadcasting Problem of Statecharts 

As we use Harel's Statecharts as our target formalism of the transformation, generated models 

inherit the events broadcasting feature. That is, an event can be seen everywhere within a 

state machine at the same time. While sometimes this is simple and convenient, the broadcast 

property is not suited for modeling communication between objects. 

For example, if there is another object d : D in the example Sequence Diagram (shown in 

Figure 3.2) and c : G sends the same message "before" to d : D after c : G receives message 

"doIt", then the generated Statechart will have an extra orthogonal component "O_D_d" which 

has a transition whose trigger is "before". The problem happens when the event "before" is 

triggered by the first transition in "O-A_a". Both transitions with the trigger event "before" 

in "O_B_b" and "O-.D_d" are triggered, which is not a desired effect. 

In the UML Statecharts, events are not broadcast globally. Broadcasting happens only within an 

object. Events may be sent (multicast) to an identified set of objects through explicit channels 

between them. 

In this thesis, we took a simpler way to solve this problem. We narrow out the broadcasting 

by giving events (transformed from messages in Sequence Diagrams) globally unique names. 

Applied to the same example described ab ove , message "before" sending from a : A to b : B 

will be transformed into event "before_O" and message "before" sen ding from c : G to d : D 

will be transformed into event "before_l". 

3.4 Behavior Trace Comparison 

In this section, we give an informaI comparison of behavior traces between a Sequence Diagram 

model (shown in Figure 3.2) and its transformed Statechart model (shown in Figure 3.14). 

The Sequence Diagram model Interaction_l (shown on the left of Figure 3.2) has two possible 

complete traces because of the use of an "alternative" combined fragment (containing two 

operands) in the reference interaction Interaction..2 (shown on the right of Figure 3.2). The 

same thing is to the Statechart model DG J nteraction_l. 

We illustrate the traces as follows: 

1. In l nteraction_l, lifeline a : A sends message "before" to b : B. Correspondingly, in 

DGJnteraction_l, after the first transition from "G-.Default" to "G_Composite", event 

"before" is generated with the transition Ts_O_ s_8 in orthogonal component "O-A_a" which 

immediately triggers the transition Ts_18_d6 in "O~_b"; 

2. In Interaction_l, a choice is made based on the value of variable "x". That is, if x > 0, 

then b : B sends message "foo" to a : A; otherwise, a : A sends message "bar" to b : B. 

This corresponds to a series of transitions in DGJnteraction_l: if x> 0, two transitions 

TS_8_s_l8 and T s..26_s_3l are triggered in parallel followed by transitions TS_18_s_5 and 
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T s:31->s..28; if x :S 0, two transitions Ts _8->s_1l and T s..26->S-29 are triggered in parallel 

followed by transitions Ts _ll->s_5 and T s..29->s..28; 

3. In l nteraction_1, lifeline b : B sends message "after" to a : A. Correspondingly, in 

DG J nteraction_1, event "after" is generated with the transition T s..28->s:35 in orthogonal 

component "O~_b" which immediately triggers the transition Ts_5-+sAO in "O_A_a"; 

4. Finally, in l nteraction_1, lifeline b : B sends message "bar" to c : G. This corre

sponds to the generation of event "bar" with the transition T s:35-+sAl in orthogonal 

component "O~_b" which immediately triggers the transition T s_5-+sAO in "O_C_c", in 

DG J nteraction_1. 

3.5 Transformation Application on a Simple Sequence Diagram Model 

In this section, we give a detailed description about the application of the graph grammars 

we defined in previous sections to the Sequence Diagram model shown in Figure 3.2. We 

only explain the key steps the transformation process. The complete list of steps is given in 

Appendix A. 

The results of Step 1 with execution of procedures setPosition (see Aigorithm 1), setScope 

(see Aigorithm 2) and initiateGlobals) are listed in Tables 3.9 and 3.10. 

Table 3.9: Transformation result of Rule initlnteraction - global variables assignment 

Name Value 

True 

o 
g_topLevelCombinedFragments o 
g_transition Count o 
g.-StateCount o 
g_currentLifeline None 

g_currentPosition o 
g_currentScope o 
g_currentOptimizationScope o 
g_currentlnteraction U se None 

g_currentlmportedInteraction None 

g_orîginallnteraction Interaction_1 

Steps 2 to 10 are shown in Figure 3.15. In Step 2, g_currentInteractionU se is set and the the 

procedure setlnteractionU sePosition (see Aigorithm 3) is executed which generates results 

shown in Table 3.4. 



3.5 Transformation Application on a Simple Sequence Diagram Model 64 

--, 

... 
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.... 

SIlp5.6._~lIIeheid __ "lflom"2111d"lflom"4(NIel}: 

--' 

... 

- ..... 

.... 

SlIpt.10. _auling. ___ CaonbinedIngmen"seq" (IIIIe 7) lIId encIosin9l11e~r...,..... ..... _1IIe"seq": 

--' 

-
.... 

Figure 3.15: Steps 2 to 10 of the transformation from Sequence Diagrams to Statecharts 
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Table 3.10: Local variables setting of ActionFragments - Round One 

Element belongsTo position scope 

ah lifelinea:A 0 0 

ah lif elinea:A 1 0 

ah lifelineb:B 0 0 

af4 lif elineb:B 1 0 

af5 lif elineb:B 2 0 

af6 lifelinec:c 0 0 

After Steps 11 to 13 clean imported lifelines and interaction and reset sorne global variables, 

the transformed model is shown in Figure 3.6. Step 14 executes Rule initInteraction again 

and reset variables. Now, g_maxScope is set to 2 and sorne other local variables are set as 

shown in Table 3.11. 

Table 3.11: Local variables setting of ActionFragments - Round Two 

Element belongsTo position scope 

ah lifelinea:A 0 0 

ah li f el inea:A 3 0 

ah lif elineb:B 0 0 

af4 lif elineb:B 3 0 

af5 lif elineb:B 4 0 

af6 lif elinec:c 0 0 

ah lif elinea:A 1 2 

af8 lif elinea:A 2 2 

afg lif elineb:B 1 2 

aflO lif elineb:B 2 2 

Figure 3.16 shows Steps 15 to 31 which complete the transformation from lifeline a A to 

orthogonal component "O-A_a". 

Steps 15 to 18 can be easily understood from Figure 3.16. Step 19 adds composite component 

C_1, orthogonal component 0_0, states s_6 and s_7, and transitions T s..3-+C_l and TC_l-+sA. Step 

20 (Rule setScope) increases g_currentScope by 1. Step 21 adds composite C_2, states s_8 and 

s_9 and s_10, and transitions Ts_6-+C.2 and TC.2-+s_10. Step 22 adds composite component 

C3, orthogonal component 0_1, states s_l1 and s_12, and transitions Ts_8-+C_3 and TC_3-+s_9. 
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Step 15· Rule 11: interaction 

u~". ___ ..... _' _S~! 

G_~ 

G_F .... 

1 

Step 16 • Rule 12: IWeline 

Step 19· Rule 14: interactionOperand 

Step 21 • Rule 13: combinedFragment 

Step 22 • Rule 14: InteractionOperand 

Step 24 • Rule lB: msgln 

Step 27 • Rule 20: connetWithAnal 

Step 29 • Rule 20: connetWithRnal 

Step 26 • Rule 18: msgln 
Step 30 • Rule 20: connetWlthAnal 

tnteractiorU 

Rule 21: cleanUfeline 
1 b 

, belOte 3 
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-~ ,o.x:..----

A:~V. 
"-' 

"-'. tu .• 
Step 18 • Rule 13: combinedFragment 
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Step 23 • Rule 14: interactionOperand 

Step 25 • Rule 18: msgOut 

Step 28 • Rule 20: connetWithAnal 

Figure 3.16: Steps 15 ta 30 of the transformation from Sequence Diagrams ta Statecharts 
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Step 23 adds composite component CA, orthogonal component 0_2, states 8_13 and 8_14, and 

transitions Ts-S-+CA and TCA-+s_9. Step 24 adds state 8_15 and a transition T s_ll-+B-1S. Step 25 

adds state 8_16 and a transition Ts_13-+s_16. Step 26 adds state 8_17 and a transition Ts_S-+s_17. 

Step 27 adds a transition TdS-+s_12. Step 28 adds a transition Ts_16-+d4. Step 29 adds a 

transition T s_lO-+s-1. Step 30 adds a transition Ts_17-+s_1. Step 31 removes lifeline a : A. 

Steps 32 to 53 are very similar to those shown in Figure 3.16 as they transform lifeline b : 

B to orthogonal component "O_B_b" and lifeline c : C to orthogonal component "O_C_c" 

respectively. From Step 54 to Step 69, aIl remained Sequence Diagrams elements are removed. 

We get the Statecharts model shown in Figure 3.11. 

From Step 70 until the end, the transformed model is further optimized to reduce unnecessary 

states, composite and orthogonal components. Although the amount of steps is quite large 

(over one hundred), the number of corresponding rules is not that large and most of them are 

very simple. Steps 70 to 89 reconnect state or composite nodes of the redundant orthogonal 

components with these orthogonals parents. Then in Steps 90 to 95, those orthogonal com

ponents are safely removed. Steps 96 to 152 do similar things but result in the removing of 

redundant composite components. The remaining steps are even simpler which remove redun

dant states. FinaIly, the transformation is complete and the generated Statechart is shown in 

Figure 3.14. 

3.6 Requirements Generation 

Before requirements are captured in the form of a series of Sequence Diagrams, they are usually 

expressed in the form of Use Cases (in plain text or visuaIly) by domain experts or end users. In 

this case, it is useful to automate the mapping from a Use Case to a Sequence Diagram. Li [LiOO] 

proposed a semi-automatic approach to translate a use case to message sends. However, in order 

to reduce the complexity of parsing a naturallanguage and the vagueness, the approach requires 

that requirements be normalized before translation. 

Another way to help fill the gap between Use Cases and Sequence Diagrams is the inverse of 

the previous mapping. As mentioned in Section 1.4, our model-driven approach supports that 

well-defined Sequence Diagrams can be used to generate textual representation of requirements 

in a naturallanguage the customers are familiar with. The generated requirements can be used 

for evaluation and immediate feedback. This process is fully automatic and provides a useful 

way to refine requirements at the earliest stage. 

In the following sections, we describe the algorithms of the textual requirements generation 

from Sequence Diagrams models and shows its application by means of an example. 

3.6.1 Aigorithms 

The algorithm of the main procedure is listed in Algorithm 4. The first step (shown in AI

gorithm 5) is to initialize variables of each lifeline and the action fragments along it. These 
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initialized variables are used in the next steps. The second step (shown in Algorithm 6) is 

to set proper scope information of combined fragments, interaction operands, interaction uses, 

and action fragments. The algorithm is similar to Algorithm 2 in section 3.2.2. The third step 

(shown in Algorithm 7) is to create a list which contains aU message sends. Each element of 

the list is a tuple which stores the information of the source, the target, and the message itself. 

The list is sorted by time sequence of the messages, visuaUy from the top to the bottom of a 

diagram. The fourth step (shown in Algorithm 8) is to insert interaction uses into the list cre

ated in the previous step. The proper insertion position is decided by the visual position where 

an interaction use appears in the diagram. That is, an interaction use is inserted either to the 

first position of the list because it is the first element on the time axis, or after the message 

send which is the closest one before the interaction use. The last step (shown in Algorithm 9) 

is to iterate through the list to emit text description of each element, either a message send or 

an interaction use. 

Algorithm 4 genReq(Graph graph) 

lifelines = initializeLifelines(graph) 
setScopes (graph) 
messages = initializeMessages(lifelines) 
insertInteraction Uses(graph, messages) 
emitText(graph, messages) 

Algorithm 5 initializeLifelines(Graph graph) 
sort aU lifelines in graph in order of their geometric positions 
for ail lifeline in lifelines do 

lifeline.actionFtagments = [ J 
while hasN extActionFragment(lifeline) do 

actionFragment = getN extActionFragment(lifeline) 
actionFragment.belongsTo = lifeline 
actionFragment.scope = 0 
actionFragment.scopeHasSet = False 
lifeline.actionFragments.append( actionFragment) 

end while 
end for 
return lifelines 

The generated text description of a message send foUows the simple format: 

sourceactar + "sendsmessage" + message + "ta" + targetactar 

if there is no customized description of the message, i.e., the "description" attribute of the 

message is left empty. Otherwise, if a user gives any more natural description to a message, 
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Algorithm 6 setScopes(Graph graph) 

interaction = getInteraction(graph) 
for ail combinedFragment in interaction do 

setScopeHelper( combinedFragment, 0) 
end for 
for ail interactionUse in interaction do 

interactionUse.scope = 0 
end for 

## helper fun ct ion for setting scope recursively 
setScopeHelper(CombinedFragment combinedFragment, int scope): 
combinedFragment.scope = scope 
combinedFragment.emitted = False 
combinedFragment.operandsNum = 0 
combinedFragment.emittedOperandsNum = 0 
for ail interactionOperand contained in combinedFragment do 

interactionOperand.parentContainer = combinedFragment 
interactionOperand.emitted = False 
combinedFragment.operandsNum += 1 

end for 
for ail containedEntity contained in interactionOperand do 

containedEntity.parentContainer = interactionOperand 
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if isinstance( containedEntity, ActionFragment) and not containedEntity.scopeHasSet 
then 

containedEntity.scope = scope + 1 
containedEntity.scopeHasSet = True 

end if 
if isinstance( containedEntity, Interaction U se) and not containedEntity.scopeHasSet then 

containedEntity.scope = scope + 1 
containedEntity.scopeHasSet = True 

end if 
if isinstance( containedEntity, CombinedFragment) then 

setScopeHelper( combinedFragment, scope+ 1) 
end if 

end for 
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Algorithm 7 initializeMessages(List lifelines) 

messages = [ 1 
for ail lifeline in lifelines do 

for ail actionFragment in lifeline.actionFragments do 
source = actionFragment 
message = getOutLink( actionFragment) 
target = getOutNode(message) 
messages.append((source, target, message)) 

end for 
end for 
sort messages in the order of time when they happen 
return messages 

Algorithm 8 insertInteractionUses(Graph graph, List messages) 
for ail interactionUse contained in graph do 

interactionUse.closestAF = None 
for aillifeline covered by interactionUse do 

while hasN extActionFragment (lifeline) do 
actionFragment = getN extActionFragment(lifeline) 
if actionFragment is ahead of interactionUse then 

if interactionUse.closestAF not None then 
if actionFragment is ahead of interactionUse.closestAF then 

interactionUse.closestAF = actionFragment 
end if 

else 
interactionUse.closestAF = actionFragment 

end if 
end if 

end while 
end for 
if interactionUse.closestAF not None then 

index = 0 
for ail (source, target, message) in messages do 

index += 1 

70 

if source == interactionUse.closestAF or target == interactionUse.closestAF then 
messages.insert(index, interaction Use) 
break 

end if 
end for 

else 
messages.insert(O, interactionUse) 

end if 
end for 
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Algorithm 9 emitText(Graph graph, List messages) 
generate interaction name text 
generate actors list text 
for ail message in messages do 

if isinstance(message, InteractionUse) then 
generate message text as an InteractionUse 

else 
(s, t, m) = message 
if source.scope > 0 then 

interactionOperand = source. parent Container 
combinedFragment = interactionOperand.parentContainer 
if not interactionOperand.emitted then 

interaction Operator = combinedFragment.interaction Operator 
generate output W.r.t. the interactionOperator type 
interactionOperand.emitted = True 
combinedFragment.emittedOperandsNum += 1 

end if 
end if 
generate message text 

end if 
end for 

the generated text description of the message send follows this format: 

sourceactor + customizeddescription + targetactor 
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As one can see, the above format is insufficient to deal with the case when there is a need 

that either the "source actor" or "target actor" should appear in the middle of a description. 

In order to make the generated text more natural to read, we provide two macro variables, 

"$SOURCE$" and "$TARGET$", which can be include anywhere in a customized description. 

They represent the real "source actor" and "target actor" respectively. That is, the generation 

algorithm will replace a macro variable with the real actor. 

"source actor" or "target actor" cornes from its lifeline's "instanceName" or "className" at

tribute. If "instanceName" is not empty then "instanceNaIIie" is used to represent the actor; 

otherwise, "className" is used. 

The generated text description of an interaction use follows the simple format: 

"Interaction" + refersTo + "isimportedhere" 

3.6.2 Example 

We apply Algorithm 4 to the simple Sequence Diagrams model (shown in Figure 3.2) to generate 

textual requirements. The result is shown below. Note that for this example, messages of 



3.6 Requirements Generation 72 

Sequence Diagrams models 1 nteraction_l and 1 nteraction-'2 are an annotated with customized 

descriptions. Some of these customized descriptions contains macro variable "$TARGET$" in 

the middle of the text. For example, in Interaction_l, the annotated description of message 

send l is "asks $TARGET$ to start a service", in which "$TARGET$" is then translated into 

"b". 

Use Case: Interaction_1 

Actors: a, b, c 

Scenario: 

1. a asks b to start a service 

2. Interaction 'Interaction_2' is imported here 

3. b reports status to a 

4. b asks c to log the status 

Use Case: Interaction_2 

Actors: a, b 

Scenario: 

1. If x>O: 

2. b returns a service handler to a 

3. Else if x<=O: 

4. a asks b to start another service 



Case Study: Model-Driven Dependability 

Analysis on An Elevator Control System 

In this chapter, we demonstrate the usefulness of our model-driven approach in the content of 

scenario-based requirements engineering, by means of an elevator control system case study. In 

particular, the case study shows how the model-driven approach helps developers to model and 

analyze the dependability of use cases and to discover more reliable and safe ways of designing 

the interactions with the system and the environment. 

The demonstration described here extends our previous work [MSKV06] by automating the 

process of mapping use cases from scenario-based models (Le., Sequence Diagrams) to state

based models (Le., Statecharts). 

Section 4.1 provides background information on dependability, use cases, and the exceptional 

use cases approach in [SMKD05]. Section 4.2 describes our model-driven process for assessing 

and refining use cases. Section 4.3 presents our probabilistic statecharts formalism used for 

dependability analysis. Section 4.4 illustrates our proposed process by means of an elevator 

control system case study. 

4.1 Background 

4.1.1 Dependability 

Dependability [LAK92] is that property of a computer system such that reliance can justifi

ably be placed on the service it delivers. It involves satisfying several requirements: availability, 

reliability, safety, maintainability, confidentiality, and integrity. The dependability requirement 

varies with the target application, since a constraint can be essential for one environment and 

not so much for others. In the following, we focus on the reliability and safety attributes of 

dependability. The reliability of a system measures its aptitude to provide service and remain 

operating as long as required [GM02]. The safety of a system is determined by the lack of 

catastrophic failures [GM02]. 

Fault tolerance is a means of achieving system dependability. As defined in [ALR01], fauIt 

tolerance includes error detection and system recovery. At the use case level, error detection 
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involves detection of exceptional situations by means of secondary actors such as sensors and 

time-outs. Recovery at the use case level involves describing the interactions with the environ

ment that are needed to continue to deliver the current service, or to offer a degraded service, or 

to take actions that prevent a catastrophe. The former two recovery actions increase reliability, 

whereas the latter ensures safety. 

4.1.2 Use Cases 

Use cases are a widely used formalism for discovering and recording behavioral requirements 

of software systems [Lar02]. A use case describes, without revealing the details o( the system's 

internaI workings, the system's responsibilities and its interactions with its environment as it 

performs work in serving one or more requests that, if successfully completed, satisfy a goal 

of a particular stakeholder. The external entities in the environment that interact with the 

system are called actors. 

Use cases are stories of actors using a system to meet goals. The actor that wants to achieve 

the goal is referred to as the primary actor. Entities that the system needs to fulfill the goal 

are called secondary actors. Secondary actors include software or hardware that is out of our 

control. The system, on the other hand, is the software that we are developing and which is 

under our control. 

4.1.3 Exceptions and Handlers in Use Cases 

In [SMKD05], an approach was proposed that extends traditional use case driven requirements 

elicitation, leading the analyst to focus on all possible exceptional situations that can interrupt 

normal system interaction. 

An exception occurrence endangers the complet ion of the actor's goal, suspending the normal 

interaction temporarily or for good. To guarantee reliable service or ensure safety, special 

interaction with the environment might be necessary. These handling actions can be described 

in a handler use case. That way, from the very beginning, exceptional interaction and behavior 

is clearly identified and separated from the normal behavior of the system. Similar to standard 

use cases, handler use cases are reusable. Handlers can be defined for handlers in order to 

specify actions to be taken when an exception is raised in a handler itself. 

4.2 Model-Driven Dependability Analysis of Use Cases 

In [MSKV06], we proposed a model-driven approach for assessing and refining use cases to 

ensure that the specified functionality meets the dependability requirements of the system as 

defined by the stakeholders. 

Now we extends our previous work by automating the process of mapping use cases from 

scenario-based models (i.e., Sequence Diagrams) to state-based models (i.e., Statecharts). 

For the purpose of analysis, we introduce probabilities in use cases. The value associated with 
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each interaction step represents the probability with which the step succeeds. If we assume 

reliable communication and a perfect software (which we must at the requirements level), the 

success and failure of each interaction depends on the quality of the hardware device, e.g. 

motor, sensor, etc. The reliability of each hardware component can be obtained from the 

manufacturer. If the secondary actor is a software system, its reliability is also either known 

or must be determined statistically. 

Our proposed pro cess is illustrated in Figure 4.1. First, the analyst starts off with standard 

use case-driven requirements elicitation (see step 1). Using the exceptional use case approach 

described in[SMKD05] the analyst discovers exception al situations, adds detection hardware 

to the system if needed, and refines the use cases (see step 2). Then, each use case step that 

represents an interaction with a secondary actor is annotated with a probability value that 

specifies the chances of success of the interaction (see step 3). Additionally, each interaction 

step is annotated with a safety tag if the failure of that step threatens the safety of the system. 

Next, each use case is modeled in Sequence Diagrams (see step 4). Then, these models are 

automatically mapped to Statecharts and manually annotated with probabilities in DA-Charts 

(see step 5). The reasons why we do not give probabilities in Sequence Diagrams are discussed 

in Section 4.4.4. DA-Charts and the mapping pro cess are described in Section 4.3. The DA

Charts are then mathematically analyzed by our dependability assessment tool (see step 6) and 

a report is produced. 

The assessment report allows the analyst to decide if the current system specification achieves 

the desired reliability and safety. If not, several options can be investigated. It is possible 

to increase the reliability of secondary actors by, for instance, buying more reliable hardware 

components, or employing redundant hardware and voting techniques. Alternatively, the use 

cases have to be revisited and refined. First, the system must be capable of detecting the 

exceptional situation. This might require the use of time-outs, or even the addition of detection 

hardware to the system. Then, handler use cases must be defined that compensate for the failure 

of the actor, or bring the system to a safe hait. The analyst can perform the refinements in 

the annotated use cases or on the sequence diagrams. 

After the changes, the effects on the system reliability and safety are determined by re-running 

the probabilistic analysis. The refinement pro cess is repeated until the stakeholders are satis

fied. 

4.2.1 Elevator System 

We demonstrate our approach by applying it to an elevator control system case study. An 

elevator system is a hard real-time application requiring high levels of dependability. 

For the sake of simplicity, there is only one elevator cabin that travels between the ftoors. 

The job of the development team is to decide on the required hardware, and to implement the 

elevator control software that pro cesses the user requests and coordinates the different hardware 
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I. Step: q 2. Step: q 3. Step: q 4. Step: ri 5. Step: q 6. Step: q 7. Step: 
Standard Exceptional Annotated Map to Sequellc.?' Transfonn to Transfonn to Dependability 

Use Cases Use Cases Exceptional Use Cases Diagrarns Statecharts DA-Charts Analysis 
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Figure 4.1: Model-Driven Pro cess for Assessment and Refinement of Use Cases 

devices. Initially, only "mandatory" elevator hardware has been added to the system: a mot or 

to go up, go down or stop; a cabin door that opens and doses; fioor sensors that detect when 

the cabin is approaching a fioor; two buttons on each fioor to call the elevator; and a series of 

buttons inside the elevator cabin. 

Standard use case-driven requirements elicitation applied to the elevator control system results 

in the use case model shown in Figure 4.2. In the elevator system there is initially only one 

primary actor, the User. A user has only one goal with the system: to take the elevator to go 

to a destination fioor. The primary actor (User) is the one that initiates the TakeLift use case. 

AlI secondary actors (the Door, the M otor, the Exterior and Interior Floor Buttons, as well as 

the Floor Sens ors ) that collaborate to provide the user goal are also depicted. For simplicity, 

we only discuss the subfunction level use case ElevatorArrival (shown in Figure 4.3) in detail. 

Elevator Control System 

Floor 
Sen80r 

f 
~----------------~~~~ 

Figure 4.2: Standard Elevator Use Case Diagram 

To ride the elevator the User enters the cabin, selects a destination fioor, waits until the cabin 

arrives at the destination fioor and finally exits the elevator. 

CallElevator and RideElevator both indude the ElevatorArrival use case shown in Figure 4.3. 

It is a subfunction level use case that describes how the system directs the elevator to a specific 

fioor: once the system detects that the elevator is approaching the destination fioor, it requests 

the motor to stop and opens the door. 
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Use Case: ElevatorArrival 
Primary Actor: N / A 
Intention: System wants to move the elevator to the User's destination fioor. 
Level: Subfunction 
Main Success Scenario: 

1. System asks motor to start moving in the direction of the destination fioor; 
2. System detects elevator is approaching destination fioor; 
3. System requests motor to stop; 
4. System opens door. 

Figure 4.3: ElevatorArrival Use Case 
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The analysis of the basic use case following the approach in [SMKD05] lead to the discovery 

of sorne critical exceptions that interrupt the normal elevator arrivaI processing: MissedFloor, 

MotorFailure and DoorStuckClosed. 

4.3 DA-Charts: Probabilistic Statecharts 

In this section, we introduce DA-Charts (short for Dependability Assessment Charts), a proba

bilistic extension of the Statecharts formalism introduced by David Rarel [Rar87]. 

4.3.1 Extending Statecharts with Probabilities 

We extend the statecharts formalism with probabilities to enable dependability assessment. 

While stochastic petri nets [Mar90] is an established formalism with dearly defined semantics, 

statecharts seem a more natural match for our domain. This, thanks to their modularity, 

broadcast, and orthogonality features. Statecharts also make it possible to design visually 

simple and structured models. 

Standard statecharts are solely event-driven. State transitions occur if the associated event is 

triggered and any specified condition is satisfied. Given the event, a source state has only one 

possible target state. In the formalism we propose, DA-Charts, when an event is triggered, a 

state can transition to one of two possible target states: a success state and a failure state. 

When an event is triggered, the system moves to a success state with probability p and to a 

failure state with probability l-p. In most real-time systems, the probability of ending up in 

a success state is doser to 1 and the failure state probability is doser to O. For example, if a 

motor in a mechanical system is asked to stop, it might stop with a probability of 0.999 and 

it might fail to stop with probability 0.001. As in statecharts, the transition may broadcast 

events. The event that is broadcast can be different depending on whether the transition leads 

to a success state or a failure state. Renee, the outcome of the event might vary. 

DA-Charts Syntax. The statecharts notation is extended to indude probabilities. The 

standard transition is split into two transitions, each annotated with the probability that the 

event associated with the transition leads to a success state or a failed state. The notation 

used for this purpose adds an attribute next to the event: event[conditionj {probability} jaction. 
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Absence of the probability attribute denotes a probability of 1. 

DA-Charts Constraints. Our DA-Charts formalism is constrained by the following: 

• Every DA-Chart must contain a system component describing the behavior of the soft

ware of the system. No probabilities are aIlowed in the system component, since at the 

requirements level we assume a fault-free implementation. 

• Each secondary actor is modelled by an orthogonal component. Each service that an 

actor provides can either succeed or fail, which is modeUed by two transitions leading to 

either a success or a failed state, annotated with the corresponding probabilities. 

• To monitor the safety constraints of the system, an additional orthogonal safety-status 

component is created. Whenever the failure of an actor leads to an unsafe condition, a 

ta Unsafe event is broadcast to the safety-status component. Other quality constraints 

can be modeUed in a similar manner. 

4.3.2 DA-Charts Implementation in AToM3 

DA-Charts is a simple extension of the statechart syntax: a simple edge is extended by adding 

a probability attribute which becomes a P-Edge, so the action and the target depend on the 

outcome of a probabilistic experiment. A traditional edge can be seen as a P-Edge whose 

probability is 1. 

We implement tool support for DA-Charts by extending the meta-model of the DCharts for

malism (a variant of Statecharts) described in [Hui04). This is done in three steps as follows. 

First, probability is added as a float attribute to the Hyperedge relationship of the existing 

DCharts meta-model (an Entity-Relationship diagram). The default value of probability is 1. 

Two constraints are added. One constraint aIlows users to only set the probability of a transi

tion to a maximum of 1; the other one checks if the total probability of aIl transitions from the 

same source no de and triggered by the same event is 1. AToM3 [dLV02a, dLVA04a) allows for 

the subsequent synthesis of a visu al DA-Charts modeling environment from this meta-mode!. 

Second, a Probability Analysis (PA) module which can compute probabilities of reaching a 

target state is implemented. The algorithm is described in the next section. Lastly, a button 

which invokes the PA module is added to the visual modeling environment. 

The semantics of a DA-Chart are described informally as foUows. When an event occurs, all 

P-Edges which are triggered by the event and whose guards hold are taken. The system then 

leaves the source node(s), chooses one of those P-Edges probabilisticaUy, executes the action 

of the chosen P-Edge, and enters the target node(s). 

4.3.3 Probability Analysis of DA-Charts in AToM3 

Given a source state (consisting of a tuple of source nodes) and a target state, the probability 

to reach the target from the source is computed by finding aU paths that lead from the source 
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to the target state. The probability of each path is calculated as the product of aH transition 

probabilities. The total probability is then computed by adding the probabilities of aH paths. 

A probabilistic analysis algorithm based on the above observations has been implemented in 

AToM3 . It reads two arguments, model M containing aH elements, such as components, nodes 

and edges, and a tuple of node names of the target state T. It then produces a float value in 

the range [O,IJ. The algorithm is shown in Aigorithm 10. 

Algorithm 10 probAnalysis(M, T) 

a2Lmap = {} 
for ail node in M do 

for ail transition starting from node do 
action = getActionTriggered(transition) 
a2Lmap[actionJ = transition 

end for 
end for 
p=O 
for ail node in T do 

transitions = getIncomeLinks(node) 
for ail transition in transitions do 

p += calculateProb(transition, a2t_map) 
end for 

end for 
return p 

## computes accumulated probability starting from target node 
calculateProb( transition, a2Lmap): 
p=O 
(trigger, prob, action) = parseTransition(transition) 
prevNode = getlncomeNode(transition) 
if isNuH(trigger) then 

transitions = getlncomeLinks(prevNode) 
if isEmpty(transitions) then 

p=1 
else 

for ail t in transitions do 
p += prob * calculateProb(t, a2Lmap) 

end for 
end if 

else 
transition = a2Lmap[trigger] 
p += prob * calculateProb(transition, a2Lmap) 

end if 
return p 

An analyst wanting to compute, for instance, the reliability of the system has to first press the 

PA button, and then select the target state that symbolizes the successful complet ion of the 
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goal, after which a pop-up dialog shows the result and aIl possible paths leading to the target 

state are highlighted in the model. 

Figure 4.4 shows an example DA-Chart model in AToM3 . The model consists of three compo

nents: System, Dl and D2. The default state is (s5, sl, s8) and the only transition which can 

happen initially is the one from sl to s2. The probability of reaching (s3, *) ("*" means we 

do not care about what other nodes are when the system ends in the state containing s3) from 

(s5, sl, s8) is 99.95% which is the combination of the probabilities along two possible paths: 

Ts1 ...... s2, Ts5 ...... s6 , and Ts2 ...... s3 for path one; Ts1 ...... s2 , Ts5 ...... s7 , Ts2 ...... s4, TsS ...... s9, and Ts4 ...... s3 for path 

two. The computation performed can be mathematically defined as follows: 

_ A fo'U vO. 3 using. OChiiU tsVJ _ 1:1 X 

M 

":,('J ~,' 
";!, \':' 

o 
56 57 
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.2 __ ~---..1!...""~E:!:~' AlI"lyats ______ ~ __ ~ 

Theprobabiüty of reaching (13, *)!rom ! 

(s 1,1S,I8) 0: O.999SOO 

Figure 4.4: Example DA-Chart model in AToM3 

4.3.4 Mapping Exceptional Use Cases to Sequence Diagrams and DA-Charts 

We assume that the system software and the communication channels between the system 

and the actors are reliable. During requirements elicitation, the developer can assume that 

the system itself, once it has been built, will always behave according to specification - in 
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other words, it will not contain any fauIts, and will therefore never fail. As the development 

continues into design and implementation phases, this assumption is most certainly not realistic. 

Dependability assessment and fauIt forecasting techniques have to be used to estimate the 

reliability of the implemented system. If needed, fault tolerance mechanisms have to be built 

into the system to increase its dependability. 

AIthough the system is assumed to function perfectly, a reliable system cannot assume that it 

will operate in a fauIt free environment. Rence, at this point we need to consider the possible 

failure of (secondary) actors to perform the services requested by the system that affects the 

dependability of the system. 

First, each use case is mapped to one Sequence Diagram and subsequently transformed into a 

Statechart. Then each Statechart is annotated with probabilities to become one DA-Chart. As 

mentioned ab ove , the DA-Chart has one orthogonal system component that models the behav

ior of the system, one sajety-status component that records unsafe states, and one probabilistic 

orthogonal component for each secondary actor. 

Each step in the use case is first mapped to a message (and finally mapped to a transition) in 

the system component, as well as a message in the actor involved in the step as follows: 

• An appropriately named message is created and transformed to a transition, e.g. start 

or stop. 

• A step that describes an input sent by an actor A to the system is mapped to: 

• an outgoing message, e.g. apFlrSnsrDetected, sending from the component modeling 

the reliability of A. In the generated Statecharts model, the probability annotation 

p from the step is added to the success transition, the probability l-p is added to 

the failure transition. 

• an incoming message in the system that moves the system to the next state. 

• A step that describes an output sent by the system to an actor A is mapped to: 

• an outgoing message in the system, e.g. start or stop. 

• an incoming message within the component modeling the behavior of A, that leads 

to a success state and a failure state. In the generated Statecharts model, probability 

annotation p from the step is added to the success transition, the probability l-p 

is added to the failure transition. 

• A step that describes an output sent by an actor A to an actor B is mapped to: 

• an outgoing message within the component modeling the behavior of A, e.g. star

tAck or stopAck. 

• an incoming message within the component modeling the behavior of B, e.g. star

tAck or stopAck. 
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• Each exception associated with the step is mapped to a failure message, e.g. motorFailure 

or atFlrSnsrFailure, sending from the corresponding actor to the system . 

• If a step is tagged as Safety-critical, the actor who sends a failure message may also send 

a message toUnsafe to the safety-status component, and the actor who sends a success 

message may also send a message toSafe to the safety-status component. 

Tomodel the randomness of the system in Sequence Diagrams, we take advantage of one 

characteristic of Alternative combination fragments. That is, according to UML2.0, if more 

than one operand of an alternative combination fragment is true, one of them is selected 

nondeterministically for execution. 

4.4 Dependability Analysis Using DA-Charts 

4.4.1 Analyze Exceptions in the Elevator Arrivai Use Case 

We use the Elevator System case study to demonstrate our assessment approach. At this point, 

the standard use case has been already analyzed for exceptional situations that can arise while 

servicing a request. As discussed in Section 4.2.1, several failures might occur: the destination 

Hoor might not be detected (MissedFloor); the mot or might fail (MotorFailure); or the door 

might not open at the Hoor (DoorStuckClosed). 

To detect whether the elevator is approaching a Hoor, we need to introduce a sensor, Ap

prFloorSensor. To detect a motor failure, an additional sensor, AtFloorSensor is added. It 

detects when the cabin stopped, and therefore when it is safe to open the doors. 

Figure 4.5 shows the updated version of the ElevatorArrival use case that includes the added 

acknowledgment steps and the exception extensions. Sorne steps are annotated with (made up) 

probabilities of success: the ApprFloorSensor and the AtFloorSensor have failure chances of 

2% and 5% respectively. The mot or has a 1 % chance of failure. For space reasons, we assume 

that the mot or always starts and the door always opens. In addition, each step is tagged as 

Safety-critical if the failure of that step threatens the system safety. 

4.4.2 Iteration One: Modeling the Basic Elevator Arrivai Use Case with Failures 

and Evaluating Dependability 

We first model the initial ElevatorArrival use case shown in Section 4.4.1 as a Sequence Di

agram without giving probabilities following the pro cess described in Section 4.3.4, as shown 

in Figure 4.6. Then the model is automatically transformed into a Statechart by means of 

the Graph Grammar rules we defined in Section 3. And finally, we annotate the transformed 

model as a DA-Chart with probabilities. The result is shown in Figure 4.7 (we modified the 

automatically generated names of sorne states with more meaningful ones). The model consists 

mainly of four orthogonal components which model the behavior of the system (System), a 

motor (Motor), and two sensors (ApprFloorSensor and AtFloorSensor). An additional orthog-
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Use Case: ElevatorArrival 
Intention: System wants to move the elevator to the User's destination Hoor. 
Level: Subfunction 
Main Success Scenario: 

1. System asks motor to start moving towards the destination Hoor. 
2. System detects elevator is approaching destination Hoor. Reliability:O.98 Safety-critical 
3. System requests motor to stop. Reliability:O.99 Safety-critical 
4. System receives confirmation elevator is stopped at destination Hoor. Reliability:O.95 
5. System requests door to open. 
6. System receives confirmation that door is open. 

Extensions: 
2a. Exception {MissedFloor} 
4a. Exception{MotorFailure} 
6a. Exception{DoorStuckClosed} 

Figure 4.5: Updated ElevatorArrival Use Case 
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onal component is used to monitor the safety outcome of the system. Note that the system has 

no randomness. 

To clarify the model, one of the components is briefly explained here. The Motor is initially 

ready (in the mtLready state). After it is triggered by the System (by the start event), it 

acknowledges the System's request (by broadcasting startAck) and goes into running mode (by 

transitioning to the mtLstarted state). When the motor is asked to stop (by the stop event), the 

Motor will either stop itself successfully (going to mtLstopped) and send an acknowledgment (by 

broadcasting stopAck) , or fail to stop (going to mtr_failed and broadcasting motorFailure). The 

chances of success and failure are 99% and 1% respectively. Before we add these probabilities to 

the DA-Chart model, we need to model this non-deterministic choice in the Sequence.Diagram 

model. As we mentioned in Section 4.3.4, we model this by means of alternative combinat ion 

fragments. First, in case of the Mo to r, after it receives the stop message from the System, we 

use an alternative combined fragment with two interaction operands whose guards are both 

set to true (or 1), to enclose the random branches of the following events from this point. As 

shown in Figure 4.6, messages starting from motorFailure and ending before motorSuccess are 

enclosed in one interaction operand, and following messages are enclosed in another operand 

of the same alternative combination fragment. 

Safety Analysis. 

We want to ensure the safety levels maintained by the elevator arrivaI system. The system is 

unsafe if the approaching floor sensor fails to detect the destination floor (because then the 

system never tells the motor to stop), or if the motor fails to stop when told to do so. This is 

why the failure transition in the ApprFloorSensor component, as well as the failure transition 

in the Motor component broadcast a toUnsafe event that is recorded in the Status component. 

It is interesting to note that actually achieving the goal of the use case has nothing to do with 

safety. Our tool then calculates that the probability of reaching the state safe from the initial 

system state (sys_ready) is 97.02%, which is the combination of the probabilities along two 
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possible paths. 

Reliability Analysis. 

Our tool calculates a reliability (probability of reaching the goalSuccess state) of 92.169%. 

Although we assume that the door is 100% reliable, a failure of the AtFloorSensor would 

prevent the system from knowing that the destination fioor is reached, and hence the system 

cannot request the door to open. The person riding the elevator would be stuck inside the 

cabin, and hence the goal fails. 

Requirement Generation from Sequence Diagrams. 

The automatic generation of requirements text from the Sequence Diagrams model (shown in 

Figure 4.6) is shown below. 

Use Case: Elevator 

Actors: System, Motor, ApFlrSnsr, AtFlrSnsr, Status 

Scenario: 

1. System sends message 'start' to Motor 

2. Motor sends message 'startAck' to ApFlrSnsr 

3. If 1: 

4. ApFlrSnsr sends message 'missedFloor' to System 

5. Else if 1: 

6. ApFlrSnsr sends message 'apFlrSnsrDetected' to System 

7. System sends message 'stop' to Motor 

8. If 1: 

9. Motor sends message 'motorFailure' to System 

10. Motor sends message 'toUnsafe' to Status 

11. Else if 1: 

12. Motor sends message 'motorSuccess' to System 

13. Motor sends message 'stopAck' to AtFlrSnsr 

14. AtFlrSnsr sends message 'toSafe' to Status 

15. If 1: 

16. AtFlrSnsr sends message 'atFlrSnsrFailure' to System 

17. Else if 1: 

18. AtFlrSnsr sends message 'floorReached' to System 

4.4.3 Iteration Two: Modeling the Refined Safety-Enhanced Elevator Arrivai Use 

Case and Evaluating Dependability 

For a safety-critical system like the elevator control system, a higher level of safety is desirable. 

Safety can be increased by using more reliable or replicated hardware, but such hardware might 
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Handler Use Case: EmergencyBrake 
Handler Class: Safety 
Context & Exception: ElevatorArrival{MotorFailure} 
Intention: System wants to stop operation of elevator and secure the cabin. 
Level: Subfunction 
Main Success Scenario: 

1. System stops motor. 
2. System activates the emergency brakes. Reliability:O.999 Safety-critical 
3. System turns on the emergency display. 

Figure 4.8: EmergencyBrake Handler Use Case 
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not be available or might be too costly. Another possibility is to initiate an action that can 

prevent catastrophes from happening. To illustrate this approach, we focus on the mot or failure 

problem. To remain in a safe state even if the mot or fails, it is necessary to use additional 

hardware like an emergency brake. This behavior is encapsulated in the EmergencyBrake safety 

handler (shown in Figure 4.8). 

The sequence diagram model of the elevator arrival system is updated to reflect the use of 

emergency brakes (see Figure 4.9), which is then automatically transformed and manually 

annotated into the DA-Chart model (see Figure 4.10). Another orthogonal component to 

model the behavior of the emergency brakes is added. The brake used has a 99.9% chance of 

success. 

Safety Analysis. 

A probability analysis of the updated model shows a significant improvement in the safety 

achieved by the system. It is now safe 97.999% (probability of reaching the state safe_l and 

safe_2) of the time, which evaluates to an increase of 0.979%. The safety would be even more 

improved if the missedFloor exception were detected and handled. 

Reliability Analysis. 

The reliability of the system has not changed. The use case could be further refined so that the 

elevator detects when the AtFloorSensor fails, and then the system could redirect the elevator 

to the nearest floor. Even though the original goal of the user is not satisfied, the system 

attempts to provide reliable service in a degraded manner. 

Requirement Generation from Sequence Diagrams. 

The automatic generation of requirements text from the Sequence Diagrams model (shown in 

Figure 4.9) is shown below. 

Use Case: Elevator 

Actors: System, Motor, ApFlrSnsr, AtFlrSnsr, Status, EmergBrk 

Scenario: 

1. System sends message 'start' to Motor 
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2. Motor sends message 'startAck' to ApFlrSnsr 

3. If 1: 

4. ApFlrSnsr sends message 'missedFloor' to System 

5. Else if 1: 

6. ApFlrSnsr sends message 'apFlrSnsrDetected' to System 

7. System sends message 'stop' to Motor 

8. If 1: 

9. Motor sends message 'motorFailure' to System 

10. System sends message 'activeEB' to EmergBrk 

11. If 1: 

12. EmergBrk sends message 'toSafe_l' to Status 

13. Else if 1: 

14. EmergBrk sends message 'toUnsafe' to Status 

15. Else if 1: 

16. Motor sends message 'motorSuccess' to System 

17. Motor sends message 'stopAck' to AtFlrSnsr 

18. AtFlrSnsr sends message 'toSafe_2' to Status 

19. If 1: 

20. AtFlrSnsr sends message 'atFlrSnsrFailure' to System 

21. Else if 1: 

22. AtFlrSnsr sends message 'floorReached' to System 

4.4.4 Discussion 
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Assessment and refinement is supposed to be an iterative process, and can be continued as long 

as it is realistic and feasible, until the derived system safety and reliability are met. Supported 

by our model-driven approach, iterations are correct and not time-consuming, and immediate 

feedback is given to the analyst of how changes in the use cases affect system dependability. 

As we mentioned in Section 4.2, we do not give probabilities in Sequence Diagrams, otherwise 

there would be direct transformation from a Sequence Diagram model to a DA-Chart mode!. 

The main reason we do not add probability to Sequence Diagrams is we have not found a way 

to formally define the probability and its precise meaning in Sequence Diagram at the moment 

of writing this thesis. This will become one of subjects of our future work. 
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Related Work 

Requirements engineering is concerned with the acquisition, analysis, specification, validation, 

and management of requirements of the software system under construction. Scenarios and 

use cases are the most important tools used in requirements elicitation. Since scenario-based 

requirements engineering has been advocated as an effective means of improving the pro cess 

of requirements engineering, many methodologies and tools [SMMM98, LiOO, Dav03, HKP05, 

WJ06, Whi05] are developed to try to formalize and automate sorne stages of this process. 

Sutcliffe et. al. [SMMM98] proposed a method and a tool for specification of use cases, auto

matic generation of scenarios from use cases and semi-automatic validation based-on generated 

scenarios. 

Li [LiDO] proposed a semi-automatic approach to translate a use case to message sends. How

ever, in order to reduce the complexity of parsing a naturallanguage and the vagueness, the 

approach requires that requirements be normalized before translation. 

Harel et. al. [Dav03, HKP05] proposed a play-injplay-out approach to capture behavioral 

requirements. The Play-Engine automatically constructs corresponding requirements in the 

scenario-based language of Live Sequence Charts (LSCs) [DHO!], and finally semi-automatically 

synthesizing a collection of finite state machines. 

Whittle et. al. [WJ06, Whi05] developed a scenario-based language called Use Case Charts 

(UCCs) to capture scenario-based requirements and presented algorithms for automatic gener

ation of hierarchical state machines from scenario-based models. 

Two key activities are apparent in the Harel's and Whittle's approaches: to find a proper 

scenario-based language, e.g., LSCs or UCCs, to capture and formalize requirements; to trans

form scenarios into an executable form, Le., state machines, which can be easily used for 

requirements simulation, validation and analysis. Both of these are clearly model-driven ap

proaches. 



Conclusions and Future Work 

In this thesis we proposed a model-driven approach to scenario-based requirements engineering. 

The approach, which is an application of Computer Automated Multi-Paradigm Modeling 

(CAMPaM), aims to improve the software process. The model-driven approach st arts with 

modeling requirements of a system in scenario models in particular, Sequence Diagrams, and the 

subsequent automatic transformation to state-based behavior models in particular, Statecharts. 

Then, either code can be synthesized or models can be further transformed into models with 

additional information such as explicit timing information or interactions between components. 

These models, together with the inputs (e.g., queries, performance metrics, test cases, etc.) 

generated directly from the scenario models, can be used for a variety of purposes, such as 

verification, analysis, simulation, animation and so on. 

A visual modeling environment was built in AToM3 using Meta-Modeling and Model Trans

formation to support the model-driven approach. It supports modeling in Sequence Diagrams, 

automatic transformation to Statecharts, and automatic generation of requirements text from 

Sequence Diagrams. 

An application of the model-driven approach to the assessment of use cases for dependable 

systems was shown. In particular, the case study shows how the model-driven approach helps 

developers to model and analyze the dependability of use cases and to discover more reliable 

and safe ways of designing the interactions with the system and the environment. 

In the future, the other parts of the model-driven approach will be studied and implemented. 

For example, the transformation from HSMs to kiltera and the subsequent transformation from 

kiltera to other formalisms (e.g., TPN, CSP, DEVS); the generation of queries, performance 

metrics and test cases from the scenario models. It would be use fuI to build two-way trans

formations between formalisms. For example, the transformation from Statechart models to 

Sequence Diagram models. It would be preferable to adopt the Use Case Charts formalism for 

scenario modeling. Use Case Charts provide a higher level of abstraction for capturing the func

tionality of a system than using Sequence Diagrams alone. It adds two more abstraction levels 

above Sequence Diagram: Scenario Chart (used to group and relate a set of Sequence Diagram 

models) and Use Case Chart (used to group and relate a set of Scenario Chart models). 
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Transformation Trace 

The trace of the model transformation applied to the example of Figure 3.2 described in Section 

3 is listed as follows: 

Step 1 : initlnteraction_GG_rule 0 

Step 2: importlnteraction_GG_rule 1 

Step 3: connectHeadAFFirst_GG_rule 2 

Step 4: connectHeadAFFirst_GG_rule 2 

Step 5: connectHeadAFSecond_GG_rule 3 

Step 6: connectHeadAFSecond_GG_rule 3 

Step 7: connectTailAFSecond_GG_rule 5 

Step 8: connectTailAFSecond_GG_rule 5 

Step 9: createWrapperCF_GG_rule 7 

Step 10: connectCFWithWrapperCF_GG_rule 8 

Step 11: cleanlmportedLifeline_GG_rule 9 

Step 12: cleanlmportedLifeline_GG_rule 9 

Step 13: cleanlmportedlnteraction_GG_rule 10 

Step 14: initlnteraction_GG_rule 0 

Step 15: interaction_GG_rule 11 

Step 16: lifeline_GG_rule 12 

Step 17: msgOut_GG_rule 18 

Step 18: combinedFragment_GG_rule 13 

Step 19: interactionOperand_GG_rule 14 

Step 20: setScope_GG_rule 19 

Step 21 : combinedFragment_GG_rule 13 

Step 22: interactionOperand_GG_rule 14 

Step 23: interactionOperand_GG_rule 14 

Step 24: msgln_GG_rule 18 

Step 25: msgOut_GG_rule 18 

Step 26: msgln_GG_rule 18 
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Step 27: connetWithFinal_GG_rule 20 

Step 28: connetWithFinal_GG_rule 20 

Step 29: connetWithFinal_GG_rule 20 

Step 30: connetWithFinal_GG_rule 20 

Step 31 : cleanLifeline_GG_rule 21 

Step 32: lifeline_GG_rule 12 

Step 33: msgln_GG_rule 18 

Step 34: combinedFragment_GG_rule 13 

Step 35: interactionOperand_GG_rule 14 

Step 36: setScope_GG_rule 19 

Step 37: combinedFragment_GG_rule 13 

Step 38: interactionOperand_GG_rule 14 

Step 39: interactionOperand_GG_rule 14 

Step 40: msgOut_GG_rule 18 

Step 41: msgln_GG_rule 18 

Step 42: msgOut_GG_rule 18 

Step 43: msgOut_GG_rule 18 

Step 44: connetWithFinal_GG_rule 20 

Step 45: connetWithFinal_GG_rule 20 

Step 46: connetWithFinal_GG_rule 20 

Step 47: connetWithFinal_GG_rule 20 

Step 48: cleanLifeline_GG_rule 21 

Step 49: lifeline_GG_rule 12 

Step 50: msgln_GG_rule 18 

Step 51 : setScope_GG_rule 19 

Step 52: connetWithFinal_GG_rule 20 

Step 53: cleanLifeline_GG_rule 21 

Step 54: cleanActionFragment_GG_rule 22 

Step 55: cleanActionFragment_GG_rule 22 

Step 56: cleanActionFragment_GG_rule 22 

Step 57: cleanActionFragment_GG_rule 22 

Step 58: cleanActionFragment_GG_rule 22 

Step 59: cleanActionFragment_GG_rule 22 

Step 60: cleanActionFragment_GG_rule 22 

Step 61: cleanActionFragment_GG_rule 22 

Step 62: cleanActionFragment_GG_rule 22 

Step 63: cleanActionFragment_GG_rule 22 
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Step 64: cleanlnteraction_GG_rule 23 

Step 65: cleanCombinedFragment_GG_rule 24 

Step 66: cleanCombinedFragment_GG_rule 24 

Step 67: cleanlnteractionOperand_GG_rule 25 

Step 68: cleanlnteractionOperand_GG_rule 25 

Step 69: cleanlnteractionOperand_GG_rule 25 

Step 70: orthogonalOptFirst_GG_rule 26 

Step 71 : orthogonalOptFirst_GG_rule 26 

Step 72: orthogonalOptFirst_GG_rule 26 

Step 73: orthogonalOptFirst_GG_rule 26 

Step 74: orthogonalOptFirst_GG_rule 26 

Step 75: orthogonalOptFirst_GG_rule 26 

Step 76: orthogonalOptFirst_GG_rule 26 

Step 77: orthogonalOptFirst_GG_rule 26 

Step 78: orthogonalOptFirst_GG_rule 26 

Step 79: orthogonalOptFirst_GG_rule 26 

Step 80: orthogonalOptFirst_GG_rule 26 

Step 81 : orthogonalOptFirst_GG_rule 26 

Step 82: orthogonalOptFirst_GG_rule 26 

Step 83: orthogonalOptFirst_GG_rule 26 

Step 84: orthogonalOptFirst_GG_rule 26 

Step 85: orthogonalOptFirst_GG_rule 26 

Step 86: orthogonalOptFirst_GG_rule 26 

Step 87: orthogonalOptFirst_GG_rule 26 

Step 88: orthogonalOptSecond_GG_rule 27 

Step 89: orthogonalOptSecond_GG_rule 27 

Step 90: orthogonalOptThird_GG_rule 28 

Step 91: orthogonalOptThird_GG_rule 28 

Step 92: orthogonalOptThird_GG_rule 28 

Step 93: orthogonalOptThird_GG_rule 28 

Step 94: orthogonalOptThird_GG_rule 28 

Step 95: orthogonalOptThird_GG_rule 28 

Step 96: compositeOptFirst_GG_rule 29 

Step 97: compositeOptFirst_GG_rule 29 

Step 98: compositeOptSecond_GG_rule 30 

Step 99: compositeOptSecond_GG_rule 30 

Step 100: compositeOptThird_GG_rule 31 

Step 101: compositeOptFirst_GG_rule 29 
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Step 102: compositeOptFirst_GG_rule 29 

Step 103: compositeOptThird_GG_rule 31 

Step 104: compositeOptSecond_GG_rule 30 

Step 105: compositeOptSecond_GG_rule 30 

Step 106: compositeOptThird_GG_rule 31 

Step 107: compositeOptThird_GG_rule 31 

Step 108: compositeOptThird_GG_rule 31 

Step 109: compositeOptFirst_GG_rule 29 

Step 110: compositeOptFirst_GG_rule 29 

Step 111: compositeOptThird_GG_rule 31 

Step 112: compositeOptSecond_GG_rule 30 

Step 113: compositeOptSecond_GG_rule 30 

Step 114: compositeOptThird_GG_rule 31 

Step 115: compositeOptThird_GG_rule 31 

Step 116: compositeOptFour_GG_rule 32 

Step 117: compositeOptFour_GG_rule 32 

Step 118: compositeOptFour_GG_rule 32 

Step 119: compositeOptFour_GG_rule 32 

Step 120: compositeOptFour_GG_rule 32 

Step 121: compositeOptFour_GG_rule 32 

Step 122: compositeOptFour_GG_rule 32 

Step 123: compositeOptFour_GG_rule 32 

Step 124: setOptScope_GG_rule 33 

Step 125: compositeOptPrime_GG_rule 34 

Step 126: compositeOptSecondPrime_GG_rule 35 

Step 127: compositeOptSecondPrime_GG_rule 35 

Step 128: compositeOptSecondPrime_GG_rule 35 

Step 129: compositeOptSecondPrime_GG_rule 35 

Step 130: compositeOptSecondPrime_GG_rule 35 

Step 131: compositeOptSecondPrime_GG_rule 35 

Step 132: compositeOptSecondPrime_GG_rule 35 

Step 133: compositeOptSecondPrime_GG_rule 35 

Step 134: compositeOptSecondPrime_GG_rule 35 

Step 135: compositeOptSecondPrime_GG_rule 35 

Step 136: compositeOptSecondPrime_GG_rule 35 

Step 137: compositeOptThirdPrime_GG_rule 36 

Step 138: compositeOptFourPrime_GG_rule 37 

Step 139: compositeOptPrime_GG_rule 34 

Step 140: compositeOptPrime_GG_rule 35 
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Step 141: compositeOptSecondPrime_GG_rule 35 

Step 142: compositeOptSecondPrime_GG_rule 35 

Step 143: compositeOptSecondPrime_GG_rule 35 

Step 144: compositeOptSecondPrime_GG_rule 35 

Step 145: compositeOptSecondPrime_GG_rule 35 

Step 146: compositeOptSecondPrime_GG_rule 35 

Step 147: compositeOptSecondPrime_GG_rule 35 

Step 148: compositeOptSecondPrime_GG_rule 35 

Step 149: compositeOptSecondPrime_GG_rule 35 

Step 150: compositeOptSecondPrime_GG_rule 35 

Step 151: compositeOptThirdPrime_GG_rule 36 

Step 152: compositeOptFourPrime_GG_rule 37 

Step 153: cleanStateFirstPrime_GG_rule 38 

Step 154: cleanStateSecond_GG_rule 38 

Step 155: cleanStateFirstPrime_GG_rule 38 

Step 156: cleanStateFirst_GG_rule 38 

Step 157: cleanStateFirstPrime_GG_rule 38 

Step 158: cleanStateFirst_GG_rule 38 

Step 159: cleanStateSecond_GG_rule 38 

Step 160: cleanStateFirst_GG_rule 38 

Step 161: cleanStateFirst_GG_rule 38 

Step 162: cleanStateSecond_GG_rule 38 

Step 163: cleanStateFirstPrime_GG_rule 38 

Step 164: cleanStateFirst_GG_rule 38 

Step 165: cleanStateSecond_GG_rule 38 

Step 166: cleanStateFirst_GG_rule 38 

Step 167: cleanStateFirstPrime_GG_rule 38 

Step 168: cleanStateSecond_GG_rule 38 

Step 169: cleanStateSecond_GG_rule 38 

Step 170: cleanStateFirst_GG_rule 38 

Step 171: cleanStateFirstPrime_GG_rule 38 

Step 172: cleanStateFirst_GG_rule 38 

Step 173: cleanStateFirstPrime_GG_rule 38 

Step 174: cleanStateFirstPrime_GG_rule 38 

Step 175: cleanStateFirstPrime_GG_rule 38 

Step 176: cleanStateFirstPrime_GG_rule 38 

Step 177: cleanStateFirstPrime_GG_rule 38 

Step 178: finalstateOptFirst_GG_rule 39 

Step 179: finalstateOptFirst_GG_rule 39 
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Step 180: finalstateOptFirst_GG_rule 39 

Step 181: finalstateOptSecond_GG_rule 40 

Step 182: finalstateOptSecond_GG_rule 40 

Step 183: finalstateOptSecond_GG_rule 40 


