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ABSTRACT 

The rhythmic expression of an autoregulatory loop of circadian clock genes underlies the 

intrinsic circadian rhythmicity in the central circadian pacemaker of the suprachiasmatic 

nucleus (SCN). Clock genes are also known to be rhythmically expressed outside the 

SCN and outside the brain. While these peripheral circadian oscillators are functional, 

their expression is chiefly coordinated by the central circadian pacemaker of the SCN. 

This thesis presents the first evidence of a functional circadian oscillator in human 

peripheral blood mononuclear cells (PBMCs). Measuring levels of RNA transcripts in 

PBMCs sampled throughout specific behavioural protocols permitted the 

characterization of these peripheral circadian oscillators in humans. The expression of 

clock genes HPER1, HPER2, and HPER3 peaks early after the time of typical 

awakening and demonstrates a significant circadian rhythmicity in PBMCs sampled from 

healthy young men that persists in time isolation and under the constant behavioural 

conditions of a constant routine (CR). The functional circadian oscillator in human 

PBMCs is also observable in the presence of the sleep/wake cycle. Using frequent 

sampling over 72 hours, it was determined that the patterns of HPER1 and HPER2 

expression are comparable when sampled in the presence of a habituai sleep/wake 

cycle or during a CR. The expression of HBMAL 1 in PBMCs was more variable under 

different behavioural conditions. The pattern of light and darkness exposure including 

bright light during night shifts, shielding from morning light and sleep in darkened 

quarters can induce adaptive phase delays in the endogenous circadian rhythms of 

cortisol secretion in night shift workers. In the presence of such a light intervention, the 

cortisol rhythm in night shift workers re-assumes an appropriate temporal alignment with 

the shifted sleep/wake schedule and cortisol levels peak near the shifted time of 

awakening. Following nine days of simulated night shift work, HPER1 and HPER2 

expression in PBMCs is aligned to the shifted sleep/wake schedule of a typical night shift 

worker in the presence of a comparable light/darkness intervention. This thesis will 

consider the implications of a functional clock in human white blood cells in light of the 

demonstration of a functional and shiftable circadian oscillator in human PBMCs. 
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RÉSUMÉ 

L'expression des gènes de l'horloge est à la base de la rythmicité intrinsèque de 

l'horloge circadienne central du noyau suprachiasmatique (NSC). Les gènes de l'horloge 

sont aussi exprimés de façon rythmique dans les tissus à l'extérieur du NSC et du 

cerveau. Ces oscillateurs circadiens périphériques sont fonctionnels, mais leur 

expression est principalement coordonnée par l'horloge du NSC. Cette thèse identifie 

pour la première fois un oscillateur circadien fonctionnel dans les cellules 

mononucléaires du sang périphérique (CMSP) chez l'humain. L'analyse des niveaux 

d'ARN des gènes de l'horloge dans des CMSP prélevées au cours de protocoles 

comportementaux a permis la caractérisation de ces oscillateurs circadiens 

périphériques. Les niveaux d'ARN des gènes HPER1, HPER2, et HPER3 mesurés dans 

les CMSP prélevées de jeunes hommes sains démontrent une rythmicité circadienne 

significative qui persiste même sous les conditions contrôlées de la routine constante 

(RC). Dans ces conditions, les niveaux de HPER1, HPER2 et HPER3 présentent un 

maximum après l'heure habituelle du réveil. L'oscillation des gènes de l'horloge dans les 

CMSP humains peut aussi être observée au cour d'un cycle éveil/sommeil typique. 

L'utilisation de prélèvements sanguins fréquents sur une période ininterrompue de 72 

heures a permis de déterminer que les rythmes d'expression de HPER1 et HPER2 en 

présence d'un cycle éveil/sommeil habituel sont similaires aux rythmes observés durant 

une RC. L'expression de HBMAL 1 dans les CMSP est plus variable sous ces conditions 

expérimentales. L'horaire d'exposition à la lumière et à l'obscurité, incluant l'utilisation de 

la lumière vive durant les quarts de nuit, l'exposition à de faibles niveaux de luminosité le 

matin et le maintien d'un horaire de sommeil en obscurité, peut permettre la 

resynchronization des rythmes endogènes des travailleurs de nuit. En présence de cette 

intervention, le rythme de cortisol des travailleurs de nuit reprend un alignement 

temporel approprié et atteint son maximum après l'heure du réveil. Après neuf jours de 

travail de nuit simulé, les rythmes d'expression de HPER1 et HPER2 dans les CMSP 

sont alignées à l'horaire éveil/sommeil décalé quand cette intervention est appliquée. 

Cette thèse se conclut sur une discussion des implications d'une telle horloge 

fonctionnelle dans les globules blancs. 
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PREFACE 

ln this manuscript-based thesis, each chapter represents a manuscript that has been 

submitted for publication or published in a peer-reviewed journal. The bibliography for 

each manuscript appears at the end of each chapter. A preface to each chapter is 

intended to outline the logical progression through the experimental hypotheses. The 

complete reference list for the Introduction (Chapter 1) and the General Discussion 

(Chapter 6) appears in the bibliography at the end of the thesis. 
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CHAPTER 1 

Introduction 

"From lifes out set, the major environmental cycles of day, /ide, month, and year have 

confronted natural selection with windows of opportunity and hazard that recur with 

precisely predictable frequency,· ... Such programs orrer the clear advantage of 

anticipatory preparation for predictab/y recurrent conditions" 

- Colin Pittendrigh, 1993 [1] 

1.1 Circadian rhythm generation in rodents and humans 

1.1.1 A central endogenous pacemaker coordinates circadian rhythms 

The term "circadian" was first conceptualized in 1959 by Franz Halberg subsequent to 

his observation of an unexplained variability in mouse whole blood cell numbers 

sampled at multiple times of day [2, 3]. This term, from the Latin circa (about) and dies 

(day) encompassed the reliable recurrence of events with an approximate 24-hour 

period, and would eventually come to describe the stable and precise daily rhythmicity 

that had been previously observed in the physiology of a number of different species. 

Daily growth lines on fossilized corals are an indication of a predictable daily 

reoccurrence in the organism [4]. The ancient Greek sculptor Androsthenes (b. circa 440 

BC) noted day/night differences in the opening of the leaves of the tamarind tree [2] 

which foreshadowed de Mairan's 18th century observations on day/night differences in 

the leaves of the heliotrope which persisted even when the plant was kept away from 

sunlight [5]. An endogenous clock has been proposed as a functional entity in a wide 

range of organisms from prokaryotes to humans [4, 6]. It has been suggested that 

synchronizing behavioural and physiological processes to naturally occurring rhythmicity 

in the environ ment makes the organism able to efficiently respond to predictable 

changes in the geophysical environment, and thus more fit from an evolutionary 

perspective [1, 4, 6]. For example, ground squirrels and chipmunks with ablated 

circadian clocks living under naturalistic conditions are more likely to become prey, 

possibly resulting from heightened activity at inappropriate times of day [7, 8). 

1.1.1 a The SCN in non-human mammals 

The early 1970s provided some of the first evidence that the suprachiasmatic 

nucleus- a bilateral cluster of cells on either side of the third ventricle in the anterior 
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hypothalamus [2]- was the physical structure responsible for the generation of 

endogenous circadian rhythmicity. Electrolytic les ions of the suprachiasmatic nucleii 

(SCN) of rats resulted in the ablation of circadian rhythms of corticosterone and of 

drinking and activity -results that were not observed with enucleation, lesions in the 

medial preoptic area, or lesions rostral or caudal to the SCN [9, 10]. Subsequent 

experiments in non-human animais came to establish the SCN of the anterior 

hypothalamus as the structure responsible for generating observable endogenous 

circadian rhythmicity [11, 12]. Transplantation of suspensions of foetal SCN tissue is 

sufficient to restore circadian organization to the locomotor activity of behaviourally 

arrhythmic SCN-Iesioned hamsters in the period of the donor animal [13-16]. 

Studies based on recordings in vivo [17], in organotypic slices [18] or in single 

cells [19] have revealed that the SCN demonstrates an intrinsic circadian rhythmicity in 

its electrical activity that is distinct from adjacent hypothalamic structures. The measured 

uptake of radioactive deoxyglucose in the SCN of experimental rats suggested day/night 

differences in the metabolic activity of the neurons of the SCN [20] such that in 

nocturnal, crepuscular and diurnal mammals, peak glucose utilization occurred during 

daylight hours [21]. The firing rates of individual neurons recorded in rat SCN slices or in 

dispersed neurons demonstrate a range of periods in their firing activity (e.g. 16-26 

hours [22]). However, the majority of cells have an approximate 24-hour period such that 

the mean period of firing rates also approximates 24 hours [22, 23]. 

1.1.1b The SCN in humans 

While the identification of the human SCN was initially controversial, post-mortem 

investigations on hypothalamic tissue resulted in the identification of the SCN structure 

in humans [24] with an organization that is analogous to what has been observed in rats 

[25]. Reports of altered sleep/wake patterns following aneurysm near the SCN [26] and 

altered temperature rhythmicity following tumour involving the ventral hypothalamus [27] 

are consistent with the role of the SCN in the generation of circadian rhythmicity in 

humans [28]. 

1.1.2 The expression of SCN-driven rhythms in humans 

ln humans, the SCN consists of a structure of approximately 45,000 cells [29] and 

current technology limits our ability to ethically make in vivo, real-time assessments of 

SCN function. Thus, observed physiological variables, ultimately controlled by the 
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circadian pacemaker, are accepted surrogates for estimating the phase of the 

endogenous biological clock. 

1.1.2a Core body tempe rature 

The rectally-recorded core body temperature rhythm is a weil characterized 

circadian rhythm in humans, which persists even when humans live in time isolation (in a 

research laboratory room or in a cave, for example) over extended periods of time [30-

32]. The variation of the endogenous temperature rhythm is quasi-sinusoidal, with a 

progressive elevation of core body tempe rature in the morning, a maximum a few hours 

before typical bedtime, and a progressive descent in the early night to reach a minimum 

1-2 hours before the habituai time of waking [33-36] (Figure 1.1). Electrolytic lesion of 

the SCN can ablate circadian rhythmicity in recorded core body temperature [37, 38]. 

The SCN may exert control over the core body temperature rhythm via thermoregulatory 

centers in preoptic hypothalamic areas [39, 40], although more studies are needed to 

clarify the precise anatomic relationship that contributes to this circadian rhythm. In the 

broader sense, overall thermoregulation as it is influenced by the regulation of heat 

production [34] and distal vasodilation [41], is also is under some circadian regulation 

[33,42]. The endogenous core body temperature rhythm is easily masked by the effects 

of daily activity, postural changes and sleep, where the observed amplitude would be 

greater than the endogenously generated component [43, 44]. Mathematical paradigms 

have been discussed for unmasking the body temperature rhythm (e.g. [45, 46]). 

However, to date the endogenous core body temperature is arguably most accurately 

measured under the conditions of the constant routine (CR) since putative masking 

effects such as the thermoregulatory response to activity or sleep, for example, are not 

evenly distributed throughout the circadian cycle [47-49]. As discussed in the 

subsequent chapters, the CR protocol conducted in time isolation requires that the 

experimental subject maintains wakefulness in a semi-recumbent posture and remains 

under dim light conditions for extended periods [50-52]. Meals are replaced by frequent 

nutritionally-balanced snacks. Thus, these conditions are designed to limit and more 

evenly distribute the factors that could evoke perturbations in measured endogenous 

rhythms such as body temperature. 
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Figure 1.1. Markers of endogenous circadian rhythmicity observed in humans. The 

typical daily variation in circadian rhythms of core body temperature (upper panel), 

plasma melatonin concentration (middle panel), and plasma cortisol concentration 

(bottom panel) are given in their habituai relationship to the sleep/wake cycle. Circadian 

phase of the tempe rature rhythm may be described as the time of the fitted minimum, 

which normally occurs in the last hours of the sleep episode. Circadian phase of the 

melatonin rhythm may be described as the time of midpoint of peak concentration, which 

typically occurs in the middle of the habituai sleep episode (hatched area). Circadian 

phase of the cortisol rhythm may be described as the time of the fitted maximum, which 

occurs in the early hours of the wake period under entrained conditions. 
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1.1.2b Hormonal rhythms 

Melafonin 

Well-described among hormones that display circadian rhythmicity is the melatonin 

rhythm. The production of melatonin is controlled by the SCN via a neuronal pathway to 

the paraventricular nucleus (PVN). The PVN is an essential relay in the regulation of the 

melatonin rhythm, and its neurons project to the superior cervical ganglion which 

innervates the pineal gland [53, 54]. The variation of plasma melatonin concentration is a 

be"-shaped curve when plotted against time of day, where the peak of melatonin 

concentration typically occurs in the middle of the night and daytime levels are very low 

[55] (Figure 1.1). Lesion of the SCN results in a loss of melatonin rhythmicity at 

intermediate levels suggesting that the normal melatonin rhythm is the result of a 

daytime inhibitory and nighttime stimulatory net input from the SCN [56]. Descriptions of 

the melatonin rhythm are often used as more reliable markers of circadian phase since it 

is less influenced by daily activity than the core body temperature rhythm [57]. Since 

light can rapidly suppress melatonin production in humans [58], this rhythm is also 

reliably assessed under dim light conditions such as in a CR procedure [50]. 

Cortisol 

The daily variation in plasma cortisol levels also demonstrates a strong circadian 

component. Indeed, electrolytic les ion to the SCN abrogates the circadian rhythm in 

plasma corticosterone in rats [59]. The rhythm typica"y has its trough in the early hours 

of the nocturnal sleep episode and peaks at the end of the sleep/darkness episode in the 

morning [55, 60, 61] (Figure 1.1). The human SCN has direct projections to the PVN 

which secretes corticotrophin releasing hormone (CRH), leading to the release of 

adrenocorticotropic hormone (ACTH) by the anterior pituitary and ultimately resulting in 

cortisol release by the adrenals [62]. The PVN may also send autonomie projections to 

the adrenal that also act to control the cortisol rhythm [25, 62]. The endogenous cortisol 

and ACTH rhythms may be altered by early awakening or disrupted sleep [63] and 

experimental sleep loss may raise mean cortisollevels over days [61, 64], although this 

is not a consistent observation [65, 66]. The cortisol secretory rate appears to be 

inversely correlated with the appearance of slow-wave sleep in the 

electroencephalogram (EEG) [67, 68]. Despite the strong circadian component in its 
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regulation, the cortisol rhythm may also be affected by factors such as posture in the 

time of measurement [69], and the timing of meal intake [70]. 

1.1.2c Observable rhythms in multiple systems 

ln a similar fashion, a number of the overt rhythms of a variety of physiological and 

behavioural variables demonstrate an endogenous circadian component when 

measured under controlled conditions or in time isolation. Circadian rhythms in 

subjective and EEG-estimated alertness [71-74], neurobehavioural output [75], mood 

[76], learning [77], electrolyte excretion [78], metabolic rate and respiratory control [79], 

white blood cell numbers in peripheral blood [80-82], cardiovascular and hepatic function 

[2] are consistent with an influence of the endogenous pacemaker in multiple systems. 

The relative contribution of circadian and sleep/wake dependant regulation may 

influence the expression of circadian rhythmicity in hormonal rhythms to varying extents. 

Growth hormone secretion, for example, is mainly influenced by the time of sleep 

occurrence in the day and the presence of slow wave sleep in the EEG [83, 84] and 

demonstrates only a relatively minor circadian component [85]. By comparison, 

melatonin and cortisol are mainly influenced by circadian processes. The repeated 

measurement of multiple circadian rhythms under controlled behavioural conditions such 

as the CR, is a useful tool in the study of human circadian rhythmicity and this is the 

approach that is favoured in the experiments described in the subsequent chapters. 

1 .1.2d The sleep/wake cycle 

Lesion of the SCN in nocturnal and diurnal mammals results in a loss of sleep/wake 

rhythmicity [86], which is consistent with a role for the SCN in the consolidation of sleep 

and waking at fairly predictable times of day. The results of laboratory experiments 

support models of the consolidation of human sleep as the result of a complex 

interaction including homeostatic and circadian components [72, 87-91]. The circadian 

phase at which sleep is initiated, and the time passed since a previous sleep episode 

interact to regulate the sleep episode length [91-93]. Thus, the fraction of the sleep 

episode scored as wakefulness increases throughout the sleep episode [94, 95]. Sleep 

parameters measurable with polysomnography such as sleep propensity, sleep latency, 

sleep efficiency, the fraction of the sleep episode scored as rapid eye movement (REM) 

stage sleep, REM sleep latency, and the fraction of sigma activity (12-15 Hz, i.e. sleep 

spindles) in non-REM sleep co-vary with circadian rhythms of core body temperature or 
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plasma melatonin concentration [73, 91, 93-98]. While sleep is typically initiated shortly 

after to the temperature maximum, on the falling limb of the core body temperature 

rhythm [92], initiating sleep close to the temperature nadir results in abbreviated sleep 

lengths [92, 95, 99, 100]. 

1.1.3 Light is the primary synchronizer of endogenous circadian rhythms 

Arguably, it is not sufficient that an endogenous biological clock simply beats out a 

rhythm for the expression of physiological rhythms. An endogenous circadian 

pacemaker that confers a true advantage to an organism in its environ ment must also be 

able to respond to its environ ment, particularly with respect to the cues or zeitgebers 

which indicate the time or duration of the day. 

1.1.3a Shifting the circadian pacemaker 

ln animais, including humans, the pattern of light exposure is the synchronizer that 

exerts the most powerful influence on the endogenous circadian pacemaker [58, 101-

105]. Retinal ganglion cells and the SCN are directly connected via the 

retinohypothalamic tract, which projects to the SCN [106]. In addition to suppressing 

nocturnal melatonin production [58], the pattern of light exposure can be planned to 

rapidly reset the circadian pacemaker to different phases. 

A "phase response curve" [101, 107-109] describes the response of the 

endogenous circadian pacemaker to light stimuli applied at different times of internai day 

(or, "circadian phases"). In practical terms, it was found that light exposure centered 

before the minimum of the core body temperature cycle (a round 06:00) could result in 

predictable shifts of core body tempe rature, melatonin and cortisol rhythms to later 

times (phase delay) [101, 109-111]. In comparison, a light application centered after the 

temperature minimum could shift the core body temperature, melatonin and cortisol 

rhythms towards earlier times (phase advance) [109, 112]. A light pulse of strong 

enough intensity centered close to the core body temperature minimum could reduce the 

rhythm amplitude and, if applied repeatedly over several cycles, could elicit larger phase 

shifts than those centered further away from the temperature minimum [101, 103, 109]. 

Light applied during the middle of the subjective day may still exert minimal phase shifts 

[113]. Simply advancing or delaying the sleep/wake schedule on a background of dim 

light (10-15 lux) is not sufficient to elicit significant circadian phase shifts and observable 
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rhythms continue to oscillate with the slightly longer-than-24-hour endogenous circadian 

period [96]. 

The intensity of the light stimulus is also relevant for its effect on the endogenous 

circadian pacemaker. The dose-response relationship between the intensity of the light 

stimulus and its resetting effect on the circadian pacemaker is non-linear [102, 104, 105]. 

Thus, while it was initially held that the circadian pacemaker would only respond to bright 

light (> 2,500 lux), it was subsequently found that the biological pacemaker was keenly 

sensitive to light and that resetting and melatonin suppression could also occur with 

simple indoor room light exposure [104, 105, 114-116]. This interpretation is consistent 

with a study from this laboratory, which revealed that the timing of indoor room light of 

-380 lux is sufficient to promote 5-h phase advances of the plasma melatonin and core 

body tempe rature rhythms, as measured with a CR following a simulated Montreal­

London voyage [117] (Figure 1.2). 

There is increasing evidence to suggest that the integration of light information by 

the SCN is sophisticated. Three cycles of a 5-hour exposure to bright light (7,000-10,000 

lux) produce phase shifts of different direction and magnitude depending on the light 

intensity preceding and following the exposure period- even when the bright light pulses 

are ail centered at the same circadian phase [101]. The history of light exposure is 

similarly relevant where the magnitude of light-induced phase advances and delays of 

the dim light melatonin onset is smaller when subjects maintain a short 6-hour 

sleep/darkness episode than when the main sleep/darkness period lasts 9 hours [118, 

119]. In a similar manner, light-induced melatonin suppression is more effective when 

the light pulse is preceded by [120] or presented on a background of [121] dim white 

light compared to brighter light intensities. Additionally, the circadian pacemaker 

integrates light information in such a way that bright light maintains an effect on the 

circadian pacemaker when the light pulse is intermittently interrupted by darkness. 

Delays in the core body temperature and plasma melatonin phase caused by a 5-hour 

bright light pulse timed before the core body temperature minimum are comparable to 

those observed when lights are turned off for -44 minutes of each 90-minute segment of 

the light exposure period [122, 123]. 
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Figure 1.2: An appropriately timed exposure to indoor room light can improve circadian adaptation to simulated jet-Iag. (A) The 

experimental protocol, for late and early light treatment groups, as reported [117]. Upon their admission to the laboratory, subjects 

maintained their habituai sleep/darkness times (black bars) until sleep times were advanced by 5 hours as of experimental day 5 to 

simulate a Montreal-London voyage. The London-based sleep schedule was maintained for 7 days, while participants received a 

daily 6-hour exposure to indoor room light (sun symbols, mean +/- SO: 379+/-10 lux) timed just before bed (late light group) or on an 

advancing schedule (early light group). Circadian phase was estimated during constant routines (grey bars) performed before and 

after one week on the shifted sleep/wake schedule. (8) At the start of the study, both experimental groups demonstrate temperature 

and melatonin rhythms that are appropriately aligned to the Montreal sleep/wake schedule. Typical sleep times on each schedule 

are shown as hatched areas. Following one week of simulated jet lag (London), the endogenous rhythms remained maladapted in 

the late light group (dashed lines; open symbols) while an appropriate temporal alignment is regained in subjects on the advancing 

early light group schedule (solid lines; closed symbols). Figure created from results reported in [117]. 
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1.1.3b Entraining the circadian pacemaker 

The effect of light on the human circadian pacemaker is an essential part of the 

biological role of the central circadian pacemaker. Experimental observations have 

revealed that the period of the endogenous circadian pacemaker (as estimated with core 

body temperature, melatonin, or cortisol rhythms) is approximately 24.2 hours [73, 124]. 

This pacemaker, freed from environ mental time cues, would then free-run and 

physiological rhythms expressed with the endogenous period would become 

desynchronized with 24-hour day/night cycles. Such a situation has been observed in 

some blind individuals. For example, the plasma cortisol rhythm in one blind woman free 

runs with a period between 24 and 24.5 hours as sampled repeatedly during a study 

spanning 5 days [125]. In another individual, the melatonin rhythm cycles with the 

endogenous period and occurs at a slightly later time in every subsequent 24-hour day 

[126]. The core body temperature rhythm of another blind subject free-runs with a period 

of about 24.22 hours despite the maintenance of a 24-hour schedule [47]. A clock that 

gradually drifts out of time with the environ ment poses a problem. Part of the function of 

photic regulation of the SeN is the phenomenon of entrain ment, by which the alignment 

of the circadian pacemaker is constantly reset to the 24-hour geophysical day [127]. 

1.1.3c Spectral sensitivity of the circadian pacemaker 

Recent evidence has demonstrated that conscious light perception is not 

necessary to elicit the response of the circadian system to light. While certain individuals 

lacking conscious visual perception will demonstrate circadian rhythms that are not 

entrained by the pattern of light/darkness exposure and free-run with the endogenous 

period, others can demonstrate melatonin suppression with bright light stimulus [128]. 

Mice that have neither rods nor cones still demonstrate melatonin suppression or phase 

shifts in locomotor activity following light pulse; a response that is eliminated when the 

animal is enucleated [129, 130]. The focus of a number of investigations has been the 

identification of the retinal photopigment that is responsible for the light response of the 

SeN. Melanopsin-containing retinal ganglion cells project to brain regions involved in 

non-visual light responses including the SeN [131-133]. Melanopsin-null mice have a 

reduced, though not abolished, locomotor activity phase shift response to light pulses 

[134]. However, melanopsin-deficient animais lacking rod and cone function have 

activity rhythms that do not entrain to the light/darkness schedule [132, 135]. 
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ln the rat, melanopsin-bearing retinal ganglion cells demonstrate an intrinsic 

sensitivity for light of 484 nm [136] although it has been demonstrated that melanopsin 

expressed in COS-1 cells reconstituted with 11-cis-retinal is most efficiently activated by 

light of 420-440 nm [137]. In the hamster, monochromatic light of 515 or 476 nm more 

efficiently induces phase shifts than light of 574 nm [138]. In mice lacking rods and 

cones, a locomotor activity phase-shifting response is most efficiently generated using 

light of about 481 nm [135]. 

ln humans, plasma melatonin suppression is most efficiently mediated with light 

of wavelengths in the 446-477 nm range [139, 140]. This spectral sensitivity is consistent 

with the identification of melanopsin in human retinal ganglion cells of eyes harvested 

post-mortem [141]. Light of wavelengths below 500 nm more effectively suppress 

melatonin than light of longer wavelengths, even when the irradiance dose is kept equal 

[42, 142]. Lenses equipped with filters that block wavelengths below 540 nm are 

sufficient to counteract the melatonin suppression that would have been incurred by a 

bright full-spectrum light provided at night [143, 144]. Similarly, shorter wavelength light 

(e.g. in the violetlblue visible light range) can more efficiently induce significantly larger 

phase shifts in the tempe rature and melatonin rhythms than light of longer wavelengths 

(e.g. in the green visible red light range) [145, 146]. Therefore, the evidence is consistent 

with the observation that light perception by the circadian system is mainly mediated by 

non-rod non-cone photoreceptors with sensitivity for wavelengths in the blue visible light 

range. 

1.1.3d Other synchronisers of the circadian pacemaker 

Other cues can reset the oscillation of the circadian pacemaker. Certain individuals 

lacking both conscious visual and circadian light perception with endogenous periods 

close to 24 hours can be entrained to a 24-hour sleep/wake schedule [147]. Exercise 

has been proposed as one of the non-photic signaIs that can entrain circadian rhythms 

in animaIs [148, 149]. Indeed, appropriately-timed exercise may induce larger phase 

delays [150, 151] or phase advances of the plasma melatonin rhythm [49] than those 

induced by shifts of the sleep/wake schedule on an indoor room light background alone. 

There is evidence to suggest that other non-photic cues such as food intake 

[152], auditory stimuli [153] or exogenous melatonin [154] can significantly affect 

endogenous circadian rhythms in humans. The effect of these factors on resetting is still, 

in large part, being established since light exposure was not always carefully controlled 
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in several early studies [155]. Yet, the influence of non-photic synchronisers on the 

central circadian pacemaker cannot be completely dismissed. 

1.2 Molecular bases of circadian rhythmicity 

1.2.1 A functional molecular clock underlies SCN function 

The characteristic endogenous rhythmic activity of the neurons of the SCN is dependant 

on the expression of so-called circadian clock genes. The molecular components of the 

circadian clock are now known to include, but are not limited to, Clock [156] and Small 

[157], three Periodgenes (Per 1,2, 3) [158,159], and two cryptochrome genes (Cry 1, 

L? [160] (Figure 1.3). The expression of these genes is organized in a series of auto­

regulatory loops, with both positive and negative limbs, in a manner that is somewhat 

conserved throughout evolution [161-163]. In mammals, CLOCK and BMAL1 proteins 

are transcription factors that dimerize and promote the expression of the Per and Cry 

genes as weil as clock-controlled genes that are the output of the pacemaker (e.g. 

neuropeptides [164]). The PER and CRY proteins, in turn, associate in the cytoplasm 

and act to repress their own transcription in the nucleus [160, 165, 166]. The 

CLOCK:BMAL 1 protein dimer is also thought to promote the transcription of orphan 

nuclear receptors Rev-erb (a and fJ) and Ror (a and fJ), which in turn modulate the 

activity at the Small promoter [167-170]. Specifically, the REV-ERB protein binds the 

retinoic acid response element in the Small promoter to repress its transcription [167, 

171], while ROR activates Small transcription [168, 170, 171]. This is such that within 

the SCN, molecular loops are expressed with the endogenous circadian period of the 

animal, and individual clock genes demonstrate a circadian rhythm in the levels of 

transcripts in the cell. In the rodent SCN, the expression of Pertranscripts peaks in the 

mid to la te part of the light period, Cry expression peaks towards the end of the light 

period and Small transcript expression peaks in the middle of the dark phase. 

Interestingly, this temporal organization is maintained relative to the light/dark cycle in 

diurnal rodents [172]. 
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Figure 1.3. The molecular dock. The transcription of dock genes Per1, Per2, Per3 and 

Cry 1, Cry2 is induced at their respective promoter E boxes by the CLOCK:BMAL 1 

protein dimer (C:B symbol). The activity of PER and CRY proteins is modulated post­

translationally by phosphorylation and ubiquitination. In this manner, the casein kinases 

1 (0 and E) play an important role in the regulation of the molecular clock. The PER and 

CRY protein products then enter the nucleus and negatively regulate their own 

transcription by acting on the CLOCK:BMAL 1 dimer. CLOCK:BMAL 1 also regulates the 

rhythmic transcription of clock controlled genes (e.g. vasopressin production), which may 

be specifically related to the cell's function. In another arm of the regulatory loop, the 

activity at the response element Smal1 promoter is modulated by retinoic acid-related 

orphan nuclear receptor response elements (RORE). Specifically, the retinoic acid­

related orphan nuclear receptors (RORs) positively modulate activity at the Smal1 

promoter. The orphan nuclear receptors REV-ERBs repress Smal1 transcription by 

acting at the RORE of the Smal1 promoter. Inset: The regulatory loops result in a 24-

hour rhythmicity in the observed levels of clock gene transcripts. Clock genes Per1 and 

Smal1 demonstrate rhythms that are in anti-phase to each other. 
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As a result of the dependence of the SeN on a functional molecular clock, 

deleting or mutating to the components of the molecular clock may incur observable 

effects on circadian rhythms. Mice bearing mutations in the Perl gene have reduced 

periods of locomotor activity [158, 159, 173]. 8mal1 mutant animais are arrhythmic [157] 

and Per2 mutant animais display short periods in locomotor activity and become 

arrhythmic under constant conditions [158, 174]. Animais with a Clock mutation 

demonstrate long periods under constant darkness (DD) conditions and altered clock 

gene expression rhythms in the SCN [164, 175]. One of the first circadian mutants 

serendipitously identified was the tau hamster mutant which displayed a short period of 

locomotor activity of approximately 20 hours [176]. The tau hamster encodes a mutant 

casein kinase (le) that is deficient in its ability to phosphorylate the PER proteins, thereby 

profoundly altering the regulation of the period of the molecular clock, and ultimately the 

period of recorded locomotor activity [177]. Analogous to what had been observed in 

SCN-Iesioned animais, transplanting foetal SCN grafts of genetic clock mutants confers 

the behavioural phenotype of the donor in the partial rescue of locomotor activity 

rhythms [178]. Transplanting SCN to genetic mutant animais rescues locomotor activity 

and clock gene expression in the period of the donor animal [179]. 

Similar to what is observed in animais with mutations of clock genes, certain 

aspects of human sleep preference and disorders have also been associated with 

circadian clock genes. Familial advanced sleep phase disorder is characterized by 

advanced circadian phase and sleep times [180] and is associated with nucleotide 

substitutions in the CKIJ and HPER2 genes. These substitutions result in a reduced 

period in transgenic mice [181, 182] although this appears to be genetically 

heterogeneous [183]. A haplotype of HPER3 has been associated with the delayed 

sleep phase disorder in a Japanese population [184]. The N408 allele of CKIê is a 

marker for other circadian rhythm sleep/wake disorders such as delayed sleep phase 

disorder and the non-24-hour sleep/wake disorder based on samples drawn from -135 

patients [185]. Similarly, diurnal preference has been associated with polymorphisms in 

HCLOCK[186, 187], HPER2[188] and HPER3[189, 190]. 

1.2.2 Functional circadian cJocks are also present outside the SCN 

A rhythmic expression of components of the molecular clock has also been 

demonstrated in non-SCN brain regions and non-neuronal tissues. Temporarily exposing 

fibroblasts to media rich in horse serum (in a so-called "serum-shock" experiment) can 
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induce the rhythmic expression of Per1 and Per2transcripts [191]. It would then appear 

that the molecular machinery in non-SCN tissue is functionally similar to that in the SCN. 

ln the SCN, just as in peripheral tissues including the heart, eye and lung in rodents, 

Per2 and Smal1 mRNA levels peak in anti-phase to each other [192-194]. Per 

transcripts oscillate in neuronal extra-SCN and in non-neuronal tissues with peaks 

occurring several hours after that observed in SCN culture [191, 195-203]. 

ln an analogy to SCN graft studies, Pando et al [204] established a method of 

transplanting mou se embryo fibroblasts within a collagen pellet to a new host. By 

varying the genotype of the graft and the host, they determined that in the presence of a 

host with a functional clock, grafted fibroblasts will display the characteristics of 

peripheral oscillators of the host, such that a host-derived signal may rescue some 

phenotypes in the graft. The abolition of diurnal differences in Per expression in 

peripheral tissues following SCN ablation [205] supports this view. SCN-Iesioned mice 

do not demonstrate day/night differences in mRNA levels of Per1, Per2 or Smal1 in the 

liver or kidney, until their blood stream is physically connected to SCN intact animais 

whereupon the differences in clock gene expression are restored [206]. Similarly, 

fibroblasts plated in the presence of SCN cells demonstrate a coherent rhythm in their 

clock gene expression that is delayed relative to that of SCN cells, and that is lost when 

they are plated in the absence of SCN neurons [207]. 

Cell cultures derived from tissues of SCN and extra-SCN origin can demonstrate 

rhythmic expression of Per transcripts, which may be particularly robust in certain 

tissues (such as the pituitary or the liver) [195, 208]. That clock gene expression in non­

SCN tissue could not be observed over sustained periods was thought to signify that the 

SCN was necessary for the sustained function of these peripheral clocks. 

Recent evidence has served to challenge the notion that the function of 

peripheral oscillators is singularly dependant on the central circadian pacemaker. Rat-1 

fibroblasts transfected with a luciferase reporter fused to the Smal1 or Per2 genes 

revealed that individual cells demonstrate independant expression of clock gene-driven 

luminescence, with periods that averaged close to 24 hours but that varied between -19 

and 30 hours [209]. Contrary to the dampening in amplitude that was thought to occur, 

rhythmicity in these cells became synchronised to each other with serum shock, and 

then gradually desynchronized from each other [209]. Increasing time in culture 

accounted for a loss in mean estimated amplitude [209]. Similarly, individual fibroblasts 
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demonstrate circadian rhythms in clock gene expression wh en a fluorescent reporter is 

fused to the rev-erba gene [210]. The rhythmicity in the expression of a modified clock 

protein can be maintained over several cycles in multiple tissues even when the 

peripheral organs are harvested from SCN-Iesioned animais [211]. Instead, the phase 

of peak PER2:LUCIFERASE expression is desynchronized between many explants from 

SCN-Iesioned mice leading to an apparent loss of rhythmicity within the tissue [211]. 

Similarly, fluorescence reporting associated with 8mal1 transcription has been used to 

demonstrate sustained rhythmic activity in the liver over 3 weeks [200]. In culture, the 

expression of a reporter fused to the 8mal1 gene is out of phase in individual fibroblasts 

and this accounts for the loss in mean amplitude over time [210]. This evidence is 

consistent with the truly functional nature of peripheral circadian oscillators. The SCN is 

currently proposed as the mechanism by which the cells constituting peripheral clocks 

are synchronized. 

Proposed mechanisms for the mediation of SCN direction have included 

diffusible factors from the SCN [212], adrenergic innervation [213], signalling via 

glucocorticoid receptors [214] or hormone-induced interaction with retinoid receptors 

[215]. Interestingly, although dominance may be ultimately relegated to the SCN, the 

nature and mode of control of a diffused factor on the expression of peripheral clock 

genes may be tissue-specifie [202, 215]. For example, transplanting the SCN from a 

genetic mutant hamster results in the ablation or restoration of clock gene rhythms in 

certain tissues but not in others [179]. The existence of functional circadian oscillators in 

the SCN and in the periphery does not preclude the importance of the relationship 

between them. 

1.2.3 Identifying human peripheral circadian oscillators 

Zanello and colleagues first showed the expression of clock genes in the human 

periphery by detecting HCLOCK and HPER1 transcripts and proteins in human 

keratinocyctes, fibroblasts and melanocytes [216]. Biopsied colonie crypts also contain 

HPER1 and HPER2mRNA and their protein products [217]. Just like non-human tissue 

culture, human tissue culture can demonstrate rhythmic clock gene activity. 

Neuroblastoma cells transfected with an HPER1 promoter-Iuciferase reporter exhibit 

promoter show continued rhythmic oscillation during two cycles following stimulation with 

serum-rich medium [218]. 
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Table 1.1 Expression of clock genes in human peripheral tissues. 

Abbreviations: PBMCs- Peripheral blood mononuclear cells, LD- Light/Darkness cycle; CR- constant routine) 
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2001 Oral mucosa, - 4-hour sampling for 24-
HPER1, HBMAL 1, Significant circadian rhythmicity in HPER1, HBMAL 1, 
HCRY1, HTIM, HCRY1 transcript levels. Greater variability, lower 

[219J skin hours 
HCLGCK amplitude in skin 

2002 
PBMCs Sampling at 09:00 and 21:00 HCLGC/(, HPER2 Morning/evening differences in HPER2expression 

[220J 
2003 PBMC -2-hour sampling during 35- HPER1-3 HDEC1 Signi~icant circadian rhythmicit~ .in transcript levels 
[Ch. 2J hour CR ' sustalned under constant conditions 

2004 
Mono and 

-2-hour sampling during 26-
Significant circadian rhythmicity in transcript levels in both 

polymorpho- HPER1 cell subpopulations. Secondary peak in HPER1 expression 
[221J nuclear cells 

hour modified CR 
in polymorphonuclear cells 

2005 
PBMCs 

-4-hour sampling during 24 HPER2, HBMAL 1, Peaks in HPER2and HBMAL 1 expression segregate into 
[222] hours HREV-ERB morning and late molecular chronotypes 

2006 -2 hour sampling during 72 HPER1,HPER2, 
Comparable circadian rhythmicity in HPER1, HPER2 

[Ch. 3J 
PBMC 

hours HBMAL1 
transcript levels in habituai sleep/wake cycle and under 
constant conditions 

Culture of human biopsies 
Skin, hair root, 

HBMAL1 
Inter-tissue variability in amplitude of c10ck gene 

keratinocytes, Primary cell culture 
luciferase reporter 

expression; inter-individual variability in period of 
expression 

2005 Whole blood Patient with non-24 hour 
HPER1-3, Combined therapy including bright light (2,500-3,000 lux), 

[224J cells sleep/wake syndrome 
HCLGC/(, exercise, melatonin, methyl B12., methylphenidate 
HBMAL1 hydrochloride alters clock gene expression 

2005 
PBMCs 

Sampling before and after 
HBMAL1, HCRY1 Inter-individual variability in measured levels 

[225J 24-hour blue light exposure 
2006 

PBMCs 
Simulated night shift work HPER1,HPER2, Re-alignment in melatonin, cortisol and c10ck gene 
with liqht intervention HBMAL1 expression after nine 
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Serum shock performed in human fibroblasts from different cell lines (Iung, myeloid, 

epithelioid) resulted in an immediate increase in HPER1, HPER2 transcripts with an 

intermediate increase in HBMAL 1 [226]. HPER1 transcription is induced in autopsied 

human bronchial epithelia cells in culture stimulated by fenoterol and procaterol (~­

adrenoreceptor agonists) for 1 h [227]. Dexamethasone stimulates HPER1 expression 

in human bronchial epithelial cells and in PBMCs in vitro [228]. The serum shock 

response of human tissues in culture is also evident in the induction of HPER2 

oscillation in vascular smooth muscle cells or the phase shift in this rhythm with retinoic 

acid [215]. 

Using human skin biopsies and oral mucosa punches obtained under local 

anaesthesia at 4-hour intervals, Bjarnason and colleagues have ascertained that 

HPER1, HCRY1, and HBMAL 1 ail oscillate rhythmically in human peripheral tissues 

[219]. More precisely, in oral mucosa they identified a peak expression of HPER1 early 

in the active (light) period, a peak of HCRY1 later in the active period and a peak of 

HBMAL 1 at almost 12 hours from that of HPER1. In skin, the time of peak HBMAL 1 

expression was similar, while the expression of HPER1 occurred later. More recently, 

Takata and colleagues [220] have described the expression of HPER2 in human 

peripheral blood mononuclear cells (PBMCs) at two time points during the day. They 

determined in a group of 9 healthy volunteers that the expression of HPER2 in PBMCs 

at 09:00 was significantly greater than that determined at 21 :00 hours. Using a modified 

CR, Kusanagi and colleagues confirmed the results discussed in Chapter 2 of this thesis 

by sampling white blood cells and determined HPER1 expression in mononuclear and 

polymorphonuclear white blood cell subsets [221]. Teboul and colleagues have shown 

that a significant circadian variation in the expression of HREV-ERBa, HBMAL 1 and 

HPER2 mRNA in human PBMCs using sampling in medical residents during their 

habituai sleep/wake schedule with the exception of being briefly awakened for night 

samples [222]. Studies on human clock gene expression (with an emphasis on clocks in 

circulating blood ce Ils) are summarized in Table 1.1. 

1.2.4 Synchronizing peripheral circadian oscillators 

Shifts in the lightldark cycle resynchronize peripheral oscillators more slowly than 

the SCN and phase shifts in peripheral tissues may follow shifts observed in the SCN by 

several days [195, 208, 229, 230]. As a result, desynchronization may exist between 

tissues or between the SCN and peripheral clocks following a shift in the lightldarkness 
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schedule. This presents an interesting concept in its similarity to the desynchronization 

that exists between hormonal and behavioural rhythms following transmeridian flight or 

shift work. It remains unclear whether the light responsiveness of clock gene expression 

occurs in the SCN only. Thirty minutes of exposure to 2,000 lux white light can induce 

Perl expression in the adrenals of transgenic mice [231]. However, this induction is 

abrogated in SCN lesioned animais which suggests that the responsiveness of at least 

some peripheral tissues is SCN-dependant. 

Very IiUle evidence on the effect of light on human peripheral clocks is available. 

HCRYl and HBMAL 1 expression in PBMCs sampled from neonates before and after 24 

hours of blue light exposure with covered eyes suggests a slight decrease in the 

transcription of HBMAL 1 and an increase in HCRYl transcription [225]. However, this 

experiment reported only two time points, and the experimental results include a 

reduction in melatonin levels that suggest that a change in melatonin secretion (either 

suppression or a phase shift) was induced by light [225]. Thus, interpretation of these 

results is difficult. It was also recently demonstrated that levels of HPER2 transcripts in 

oral mucosa are greater in the presence of a nocturnal blue light pulse (460 nm) than 

when participants were exposed to green light (555 nm) or darkness in the same period 

[232]. 

ln experiments with nocturnal rodents, it has been demonstrated that the 

restriction of food-availability to the light period results in a shift in the liver expression of 

Perl,2,3, Cryl and clock-controlled genes [233-235]. Observed shifts in peripheral 

tissues such as the liver or kidney may be modulated by the presence of glucocorticoids 

since phase shifts occur more rapidly in adrenalectomized animais and animais lacking 

functional glucocorticoid receptors [236]. Daytime restricted feeding also results in 

changes in Perl and Per2 transcripts and PER2 protein expression in brain areas 

including the cortex, hippocampus and limbic forebrain [237, 238]. Importantly, the 

restricted feeding regimen in these experiments elicited no phase shifts in SCN clock 

gene expression. Considering the mechanisms by which the SCN may contribute to the 

coordination of peripheral clocks, it is noteworthy that an artificial environ mental 

temperature cycle, designed to oppose the light and darkness phase (with warmer 

temperatures during darkness and cooler temperatures during the light period) can shift 

the expression of Per2 and Cryl in mouse liver, without any significant effect on their 

expression in the SCN [239]. These results are consistent with the hypothesis that 
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peripheral oscillators may become synchronized by inputs from the SCN (as suggested 

by the effect of light to which the SCN would be sensitive [232]) or by the direct effect of 

non-photic synchronizers. 

Krauchi and colleagues have examined the effects of early and late 

carbohydrate-rich meals on circadian phase of core-body temperature, heart rate and 

salivary melatonin [152]. While they observe significant differences between groups in 

the core body temperature and heart rate rhythms in the intervention group, no 

differences were observed in the time of onset of melatonin and it remains difficult to 

discern which elements of these changes may be accounted for by masking effects of 

meals administered immediately before the evaluation. Nevertheless, these results do 

not preclude the possibility that non-photic cues such as food intake may also influence 

peripheral oscillators in humans. 

1.3 Shift work: A case of circadian misalignment 

Humans may be unique in their capacity and desire to deliberately counteract the 

endogenous circadian clock and sleep at atypical circadian phases. This is the case for 

night shift workers who remain affected by a circadian misalignment with their atypical 

sleep/wake schedule. This may not be without consequences: night shift work has been 

associated with an increased risk for cardiovascular pathology [240, 241], the 

development of insulin-resistance markers (Le. hyperglycaemeia, hypertension, 

hypertriglyceridemia) [242] and gastrointestinal iIInesses [240, 243], cancer [244-246], 

pregnancy complications [247] or high numbers of events for which they were 

hospitalised or required medical consultations [248]. 

The number of shift workers who reveal appropriate circadian phase shifts in the 

absence of a circadian intervention are in the minority. In most individuals, circadian 

adjustment of cortisol and melatonin circadian rhythms remains incomplete [249-253]. 

This is particularly true on the first night shift worked in which endogenous core body 

temperature and endocrine rhythms continue to display their habituai entrainment to a 

day-oriented schedule. Maladaptation to the night shift may persist despite consecutive 

shifts worked: nurses working two consecutive night shifts with no intervention 

demonstrate persistently day-oriented rhythms of plasma cortisol and urinary excretion 

rate of 6-sulfatoxymelatonin [254] and night guards continue to demonstrate high 

nighttime plasma melatonin levels and elevated plasma cortisol towards the end of the 

night shift despite a week of consecutive night shifts [250]. 
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A number of studies have applied the phase and dose response curves to light to 

promote circadian adaptation to night shift work. Initial laboratory studies demonstrated 

that an appropriately timed bright light stimulus (5,000-12,000 lux) could induce a phase 

shift of the circadian pacemaker to adjust to the schedule of a typical night worker [255, 

256]. Light exposure planned in conjunction with times of light avoidance (with the use 

of sunglasses or a stable sleep/darkness schedule) is also associated with appropriate 

circadian phase shifts in simulated night shift work and jet-Iag [257, 258]. Bright light of 

1,000-4,000 lux presented during three simulated night shifts in the laboratory results in 

a 6.25-hour delay in the core body temperature rhythm in middle-aged (40-60 years) 

subjects [259]. Medium intensity light of -1,230 lux for six simulated night shifts is 

sufficient to shift the core body tempe rature minima into the daytime sleep/darkness 

period [260]. Gradually delaying bright light exposure together with the sleep/darkness 

period that follows it results in delays in the core body temperature and acrophase of 6-

suphatoxymelatonin that are comparable to the shift in the sleep/wake cycle [261]. As 

suggested by the sensitivity of the human circadian pacemaker, intermittent exposure to 

bright light (5,000 lux) during simulated night shift work such that one third of each hour 

is spent in indoor room light (of 500 lux) was sufficient to delay temperature minima into 

the daytime sleep period [262]. Similarly, the proportion of subjects demonstrating large 

delays in the temperature rhythm was larger when either a 3 or 6-hour bright light pulse 

was used compared to when participants remained in room light throughout the 

simulated night shift [263]. 

ln a manner that is consistent with the effect of light on the endogenous circadian 

pacemaker, the pattern of light and darkness spontaneously selected by night shift 

workers can be associated with adaptive phase delays that permit the alignment of 

physiological rhythms with the shifted sleep/wake cycle. Specifically, the times selected 

for sleep are important in determining the magnitude of phase shifts induced by night 

time bright light exposure [264]. Nurses who demonstrate appropriate delays in 6-

sulphatoxymelatonin secretion were more likely to go to bed in the morning and 

consequently avoid daylight at times of day that could counteract circadian adaptation 

[265]. Similarly, night shift workers who maintain stable bedtimes (thereby controlling 

the pattern of light/darkness exposure throughout the day) are more likely to 

demonstrate adapted salivary cortisol rhythms [253]: workers who avoided morning 

bright light exposure had further delayed circadian rhythms of cortisol and melatonin 
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[251]. A number of studies have stressed the importance of protection from morning light 

on the commute home [264, 266] since bright light exposure at that time could enforce 

the maintenance of a day-oriented circadian alignment. Field studies on the night shift 

worker population have been of fundamental importance in demonstrating the efficacy of 

bright light in the workplace and the importance of the pattern of IighUdarkness exposure 

for adaptation to atypical work schedules [265, 267, 268]. Using various combinations of 

sunglasses, darkened sleep quarters and bright light during night shifts results in longer 

daytime sleep and improved performance and vigilance measures during simulated and 

real night shifts [269, 270]. 

Together, night shift work and the use of the IighUdark schedule to shift the 

central circadian pacemaker in the SCN provide a useful and practical background on 

which to explore the expression of a human peripheral circadian oscillator when 

challenged to adapt. Shifted sleep/wake and lighUdark schedules can provide useful 

paradigms to explore the relationship of central and peripheral circadian oscillators in 

humans. An abrupt change in the sleep/wake cycle may reveal differences in the 

resetting capacity of peripheral oscillators relative to the central circadian pacemaker of 

the SCN. Establishing the existence of a functional circadian oscillator in the human 

periphery th en provides a novel context in which the consequences of an internai 

desynchronization between oscillators can be explored. 

1.4 Thesis rationale and goals 

At the time that these experiments were started, very little information existed on the 

expression of peripheral circadian oscillators in humans. The experiments described in 

this thesis test the general hypothesis that an observable rhythmic expression of 

circadian clock genes exists in the human periphery. Specifically, clock gene expression 

in white blood cells isolated from seriai blood samples was measured. These peripheral 

blood mononuclear cells (PBMCs) include monocytes and lymphocytes but not 

polymorphonuclear cells [271]. There is a demonstrated circadian rhythm in the numbers 

of PBMCs with a peak in cell numbers during the habituai sleep episode [81, 82]. These 

cells are easily isolated from whole blood on a density gradient and thus provide an ideal 

means by which to sample the clock throughout a circadian cycle. The experiments are 

designed to first measure the expression of clock genes under constant conditions and 

in the presence of a standard sleep/wake cycle, and to establish the relationship of these 
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peripheral oscillators with the SCN-driven rhythms of core body temperature and plasma 

melatonin secretion. As described for the initial identification of endogenous circadian 

rhythmicity in humans, it was expected that the presence of a functional peripheral 

circadian oscillator in PBMCs in vivo would manifest itself as a rhythm detectable under 

different behavioural and environmental conditions. This study had not yet been carried 

out in a putative peripheral circadian oscillator in humans. The resetting capacity of 

peripheral circadian oscillators in PBMCs was also then tested in a night shift work 

simulation with a bright light intervention expected to realign SCN-driven rhythms. To 

my knowledge, this is the first time that peripheral clock gene expression has been 

measured in humans following a shifted sleep/wake schedule. Thus the nover 

hypotheses behind the work presented here are: 

1. A significant circadian expression of circadian clock genes exists in human 

PBMCs. This significant circadian expression of clock genes could be detected 

under constant behavioural and dim light conditions wh en the masking effect of 

sleep, activity and meal intake is minimized. The expression of clock genes in 

the peripheral oscillator of PBMCs would demonstrate a stable relationship with 

the endogenous melatonin circadian rhythm as detected in plasma. Chapter 2 

(Circadian c/ock genes osci//ate in human periphera/ b/ood mononuc/ear ce//s) 

describes the expression of HPER1, HPER2, HPER3 and HDEC1 detected in 

PBMCs at -120-minute intervals during a 35-hour constant routine procedure. 

Il. The significant circadian expression of circadian clock genes in human PBMCs 

could be measured in the presence of a habituai sleep/wake cycle. Clock gene 

expression would maintain a stable relationship with SCN-driven rhythms of 

plasma melatonin and cortisol secretion. Chapter 3 (Expression of c/ock genes 

in human periphera/ b/ood mononuc/ear ce//s throughout the s/eep/wake and 

circadian cycles) compares the expression of HPER1, HPER2 and HBMAL 1 

quantified under both constant routine conditions and in the presence of a 

habituai sleep/wake cycle. 

III. The peripheral oscillator in PBMCs could become realigned to a shifted 

sleep/wake schedule in the presence of a light intervention known to shift 

endogenous circadian rhythms of melatonin and cortisol. Chapter 4 (Contro//ed 

31 



exposure to light and darkness realigns the salivary cortisol rhythm in night shift 

workers) de scribes the effect of a light intervention designed to significantly delay 

the SCN-driven en doge nous cortisol rhythm. Chapter 5 (Entrainment of circadian 

rhythms of melatonin, cortisol and clock gene expression to simulated night shift 

worR) describes a laboratory experiment of simulated night shift work, with a light 

intervention. The expression of HPER1, HPER2 and HBMAL 1 transcripts is 

quantified in cells sampled at the beginning, the middle and the end of nine days 

on a night shift worker's schedule. 
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2.1 Preface 

At the time that this investigation was initiated, the presence of a circadian oscillator had 

been established in oral mucosa and skin (12). Testing HPER2 expression in PBMCs 

sampled in the morning and the evening, suggested a diurnal difference in clock gene 

expression, but could not establish whether a circadian rhythm was present (13). The 

object of the present investigation was to perform repeated measurements of clock gene 

expression in PBMCs sampled from research participants living under constant 

conditions to test the hypothesis that a significant circadian expression of circadian clock 

genes exists in human PBMCs. 

2.2 Abstract 

ln mammals, it is weil documented that observable circadian rhythms are controlled by a 

central oscillator that is organized in transcriptional and translational feedback loops 

involving several clock genes. Although recent studies have demonstrated that clock 

genes oscillate in many peripheral tissues, their characteristics in the human immune 

system remain unknown. The present study investigates whether circadian clock genes 

function in human peripheral blood mononuclear cells. On the basis of studies derived 

from 3 human subjects under controlled conditions, circadian clock genes HPER1, 

HPER2, HPER3, and HDEC1 are expressed in a circadian manner in human peripheral 

blood mononuclear cells (PBMCs), with the peak level occurring during the habituai time 

of activity. The demonstration of functional circadian machinery in human PBMCs 

suggests that peripheral blood cells may be useful for the investigation of human 

circadian rhythms and their associated disorders. 

2.3 Introduction 

ln humans, as in other animal species, most physiological and behavioural functions are 

expressed rhythmically across days and nights. These daily rhythms, referred to as 

circadian, are controlled by self-sustained biologie oscillators. In mammals, primary 

neuronal cultures as weil as ablation and transplantation studies indicate that the central 

component of this complex oscillatory system resides in the suprachiasmatic nuclei 

(SCN) of the anterior hypothalamus (1,2). Molecular components of the circadian 

oscillator in the mouse have been found to involve transcriptional-translational feedback 

loops of at least 10 genes, namely, mPer1-3, mCry1-2, Clock, SMal1, Tau (casein 

kinase 110), NPAS2, and Dec1-2. Of these, mPer1-2, mCry1-2, and Dec1-2 are negative 

regulators, whereas SMal1 and Clock/NPAS2 are positive regulators (3-5). In addition, 
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Tau (casein kinase 110) binds and phosphorylates period proteins (PERs), thereby 

posttranscriptionally regulating their stability. 

Studies from rodents have shown that the molecular clock mechanisms oscillate 

not only in the central nervous system, but also in peripheral organs, such as the liver, 

kidney, and fibroblast cells (6). Given that the many immune parameters, such as 

cytokine synthesis and white blood cell counts, fluctuate in a circadian fashion (7), we 

hypothesized that a veritable circadian expression of functional clock components may 

be observed in human peripheral blood mononuclear cells (PBMCs) and, therefore, may 

play certain roles in controlling the immune circadian physiology. 

ln this brief report, we present the expression profile of circadian clock genes 

HPER1, HPER2, HPER3, and HDEC1 in human PBMCs from 3 human subjects studied 

in a time-free environment. As human blood is widely used in clinical settings, our 

approach may not only provide a useful tool to elucidate the molecular mechanisms of 

human circadian rhythms, but also prompt the investigation of new means to diagnose 

and treat sleep/wake cycle and mood disturbances associated with jet lag, shift work, 

and a variety of medical and psychiatric disorders. 

2.4 Study design 

Three physically and mentally healthy young men, aged 20, 22, and 27 years, were 

recruited from the community. Each provided an informed consent in accordance with 

the guidelines of the Douglas Hospital Research Ethics Board (Montreal, QC, Canada). 

For 3 weeks prior to their admission, subjects kept regular sleep times, restricted to a 

single 8-hour nocturnal sleep episode. This procedure served to ensure that the 

circadian pacemaker was weil stabilized relative to the sleep/wake schedule. 

Each subject was studied individually in a time-free, light-controlled laboratory 

room for at least 5 consecutive days. After 3 baseline days on their habituai schedule, 

subjects underwent a 35-hour constant routine procedure designed to unmask the 

endogenous circadian oscillation of physiological parameters. This procedure consists of 

a regimen of enforced waking, in a semirecumbent posture, under very dim light 

conditions (approximately 4 lux), with minimal levels of activity and with nutritional intake 

divided into hourly snacks. Indeed, the expression of physiologic markers known to be 

controlled by the circadian pacemaker may be confounded by levels of light exposure, 

meals, or postural changes. Thus, sampling for approximately 1.5 days under these 
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conditions allows us to investigate at least one complete circadian cycle with limited 

masking of the endogenous circadian expression. 

Plasma melatonin concentration was determined by means of commercially 

available radioimmunoassays (Stockgrand, Surrey, United Kingdom). Every 120 

minutes, PBMCs were isolated from heparinized blood samples by means of 

Histopaque-1077 (Sigma, St Louis, MO) gradient centrifugation, washed, and 

subsequently frozen at BO°C. The total RNA of each sample was extracted by means of 

Trizol reagent, and the cDNA was generated with Superscript Il reverse transcriptase. 

We performed a TaqMan quantitative real-time reverse-transcription polymerase chain 

reaction (RT-PCR) to determine the level of HPER1, HPER2, HPER3, and HDECI 

expression relative to the housekeeping gene HCDK4 by means of the standard protocol 

described by Applied Biosystems (ABI, Foster City, CA).(9) 

On the basis of the published sequences,(10) the primer sets for HPER1, 

HPER2, HPER3, HDEC1, and HCDK4 are designed as follows: 

HPERI forward primer, 

5' -TTCCTGACGGGCCGAA T-3'; 

HPERI reverse primer, 

5' -CGCTTGCAACGCAGCA-3'; 

HPERI TaqMan probe, 

5' -FAM-TCTACA TTTCGGAGCAGGCAGCCG-Tamra-3'; 

HPER2forward primer, 

5' -CCACGAGAA TGAAA TCCGCT -3'; 

HPER2 reverse primer, 

5' -CCCGCACCTTGACCAGG-3'; 

HPER2TaqMan probe, 

5' -FAM-CCACCCCTTCCGCATGACGC-Tamra-3'; 

HPER3 forward primer, 5'-TTTCCT AA TGTCGCCGAAGAG-3'; 

HPER3 reverse primer, 

5' -CCTGGTATGTCATGAGAA TGCG-3'; 

HPER3TaqMan probe, 

5'-FAM-ATCTGGAGAATGATACGGCAGACACCTGA-Tamra-3'; 

HDECI fo rwa rd primer, 

5' -GAGAA TCGGAGAAGGGCGAC-3'; 
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HDEC1 reverse primer, 

5' -GCGTCCGTGGTCACTTTTG-3'; 

HDEC1 TaqMan probe, 

5' -FAM-TGCGCAGTGAGCAGCCGTGC-T amra-3'; 

HCDK4 fo rwa rd primer, 

5' -GAGGCGACTGGAGGCTTTT -3'; 

HCDK4 reverse primer, 

5'-GGATGTGGCACAGACGTCC-3'; 

HCDK4TaqMan probe, 

5' -FAMAGCA TCCCAA TGTTGTCCGGCTGA-Tamra-3'. 

A dual-harmonic regression model was used on individual curves for the expression of 

each gene with the use of a period search from 23.91 to 24.45 hours (11). As reported 

previously (12), a 12/24-hour composite model explains a greater amount of variance in 

the data. The circadian variation of transcriptional expression was considered significant 

if the 95% confidence interval (CI) describing the amplitude of the first harmonic did not 

include the zero axis. We also performed cross-correlation analyses between the 

variation in the expression of clock genes and that of the plasma melatonin secretion, a 

reliable circadian marker. 

2.5 Results and discussion 

Regression analyses indicated that transcripts of ail clock genes studied displayed a 

daily rhythm that was significantly different from zero with the exception of the 

expression of HDEC1 for subjects S 13 and S20 (Table 2.1). Peak clock gene expression 

was observed mostly during the usual time of activity and light exposure. Transcript 

levels of ail 4 genes were found to correlate positively and significantly with the secretion 

of plasma melatonin, a reliable circadian marker. Peak clock gene expression followed 

the peak of melatonin concentration by a maximum of 9 hours (Figure 2.1). These 

results are consistent with animal studies since the oscillation of clock genes in 

peripheral tissues often lags several hours behind that of the SCN of the central nervous 

system. 

Our findings of a significant oscillation of HPER mRNA levels across circadian 

phases in PBMCs of human subjects are consistent with the results of a prior study (12) 

conducted under ambulatory conditions on oral mucosa and skin biopsies. One study 

also revealed that the expression of HPER2 in PBMCs is significantly different in the 
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morning and the evening.(13) The enforcement of constant conditions in the present 

study implies that the significant circadian oscillation we observe is not explained by 

postural changes, alteration in exposure to light, food intake, or the stress induced by 

needle insertion or biopsy punches. The use of the constant routine procedure also 

reveals that the oscillation of clock genes in PBMCs is present even in the absence of 

sleep/darkness episodes, an observation that supports its endogenous nature. While 

interindividual variability may account for the reduced regression amplitude observed for 

HDEC1 transcripts in 2 subjects, it is possible that the period of awakening associated 

with the constant routine may have influenced our observations. Further investigation 

into the expression of clock genes under a variety of conditions will elucidate the 

influence of sleep and waking on clock gene expression in humans. 

Although limited to a few subjects, our results support the presence of a 

significant and cyclic transcription of clock genes in peripheral PBMCs of healthy 

controls. They also demonstrate the feasibility of studying PBMCs as an accessible 

surrogate for the identificatiol1 of rhythmic clock gene expression in humans. 

Experimental tools using this technique could thus be refined in humans to investigate 

the effects of various drugs on the sleep/wake cycle and endogenous circadian rhythms. 

Future studies should clarify the time relationship of clock gene expression in the SCN 

and PBMCs in lower mammals and extend these findings to humans. 
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Table 2.1 

Expression of eloek gene mRNA in human PBMCs based on dual-harmonie regression 

analysis 

~··1';,; :!:~~:'~1jl/i!llflili~il'!·r~~1:,~j~~<:~t,~'~~.;·:1i~i~~~!t~~_;'~: :'~<;tzr~t;{~"1h~~~~~,~~};(~'" 
S12 22.566 7.598 - 37.533 
S13 2.773 -0.203 - 5.75 
S20 1.723 -0.399 - 3.845 
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Figure 2.1 

Circadian variation of clock gene mRNAtranscripts in human PBMCs. Transcript 

expression of HPER1, HPER2, HPER3, and HDEC1 for each subject is shown with a 

solid line and the dual-harmonie regression with a dotted line. The y-axis represents the 

relative intensity of mRNA expression. The value of the lowest mRNA expression is 

designated 1, and the levels of mRNA expression at ail other time points are calibrated 

to this value. Error bars indicate the standard deviation on the basis of the mRNA 

samples assayed in triplicates. The x-axis indicates the time, in hours, under the 

constant-routine procedure. In the melatonin (ML T) panel, the y-axis represents plasma 

melatonin concentration (picograms per milligram) in each subject. For the purposes of 

illustration, times where subjects are habitually asleep are projected as open rectangles 

(0). 
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3.1 Preface 

The previous experiment (Chapter 2) demonstrated that levels of clock gene transcripts 

oscillated in a circadian fashion in human PBMCs sampled under a constant routine. A 

functional circadian oscillator therefore exists in these cells. The present experiment 

develops and extends these observations. It was important to establish that measuring 

the expression of these clocks in individuals was possible over sustained periods. It was 

also important to describe the pattern of clock gene expression under entrained 

conditions and to compare it with data acquired under constant conditions. The 

experiments described in this chapter were designed to test the hypothesis that the 

significant circadian expression of clock genes in human PBMCs could be measured in 

the presence of a habituai sleep/wake cycle. 

3.2 Abstract 

Rhythmic expression of circadian clock genes in the neurons of the suprachiasmatic 

nucleus (SCN) is necessary for the manifestation of endogenous circadian rhythmicity in 

behaviour and physiology. Recent evidence demonstrating rhythmic clock gene 

expression in non-SCN tissues suggests that functional clocks exist outside the central 

circadian pacemaker of the brain. In this investigation, we evaluate the nature of an 

oscillator in peripheral blood mononuclear cells (PBMCs) by assessing clock gene 

expression throughout both a typical sleep/wake cycle (LD) and during a constant 

routine (CR). Six healthy men and women aged (mean ±SEM) 23.7 ±1.6 years 

participated in this 5-day investigation in temporal isolation. Core body tempe rature and 

plasma melatonin concentration were measured as markers of the central circadian 

pacemaker. The expression of HPERI, HPER2, and HBMAL 1 was quantified in PBMCs 

sampled throughout an uninterrupted 72-hour period. The core body temperature 

minimum and the midpoint of melatonin concentration measured during the CR occurred 

2:17 ±O:20 and 3:24 ±O:09 hours before habituai awakening, respectively, and were weil 

aligned to the sleep/wake cycle. HPERI and HPER2 expression in PBMCs 

demonstrated significant circadian rhythmicity that peaked early after waketime and was 

comparable under LD and CR conditions. HBMAL 1 expression was more variable, and 

peaked in the middle of the wake period under LD conditions and during the habituai 

sleep period under CR conditions. Using sampling every 2 hours over 3 consecutive 

days, our results compare for the first time clock gene expression in a human peripheral 

oscillator under different sleep/wake conditions. 
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3.3 Introduction 

The suprachiasmatic nucleus (SCN) of the anterior hypothalamus is the central circadian 

pacemaker and generates observable daily rhythmicity in physiology and behaviour. 

Wh en humans live in a time-free environ ment, centrally-driven rhythms of core body 

temperature, melatonin and cortisol persist with a period of approximately 24 hours (18, 

22, 35, 74, 75). The average -24-hour rhythmicity in the firing activity of the neurons of 

the SCN (38, 71, 77) correlates with behavioural rhythmicity (45) and is thought to be the 

result of the expression of circadian clock genes in an autoregulatory feedback loop (19). 

ln this molecular loop, core clock genes such as Period(Per) 1 and 2 and Cryptochrome 

(CIJ1 1 and 2 are induced following the binding of a CLOCK:BMAL 1 protein dimer to 

elements in their respective promoter sequences. PER and CRY proteins form dimers 

and enter the nucleus where they inhibit their own transcription. In addition to this, the 

REV-ERBa protein, whose gene transcription is also activated by CLOCK:BMAL 1, 

enters the nucleus and represses the transcription of the Smal1 gene. A consequence of 

these feedback loops is the rhythmicity in messenger RNAs from many of these genes. 

For example, in the SCN of diurnal and nocturnal rodents Per1 and Per2 expression 

peaks during the subjective day (1, 5, 15, 19, 73, 82) while Smal1 expression peaks in 

anti-phase during the subjective night (15,19,60,64). 

The observation that circadian clock genes also rhythmically oscillate in cultured 

fibroblasts (7, 76) has led to the suggestion that functional circadian oscillators may exist 

outside the SCN. Indeed, rodent studies have confirmed the presence of circadian 

pacemakers in multiple physiological systems and rhythmic clock gene expression is 

present in, among other tissues, the liver (57,81), the stomach (78), the lung (81), the 

bone marrow (20, 31), the vasculature (50, 55) and the adrenal glands (39, 58). 

Rhythmic clock gene expression has also been identified in non-SCN brain regions 

including the pineal (1), the olfactory bulb (3, 30) as weil as regions of the forebrain (4, 

42) and the hypothalamus (1). Lesion of the SCN results in the desynchronization in the 

cellular rhythms in peripheral oscillators (82) or an ablation of gene expression in certain 

tissues (4, 33). Thus, despite the presence of multiple oscillators, the SCN is still 

regarded as a master circadian pacemaker. 

ln an analogy to what has been observed in animal studies, clock gene products 

are present in human skin tissue culture (83), and rhythmic clock gene expression may 

be induced in cultured human vascular smooth muscle cells (40, 50), fibroblasts (53) and 
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neuroblastoma cell lines (48). To date, only a few human peripheral oscillators have 

been identified in vivo. HPERI and HBMAL 1 expression demonstrate significant 

circadian rhythmicity in the skin and oral mucosa sampled from healthy young men (8). 

HPER2expression in human peripheral blood mononuclear cells (PBMCs) displays day­

night differences with two-point sampling under habituai sleep-wake conditions (68). In a 

prior study including three healthy young men studied under controlled conditions in a 

time-free environment, we have demonstrated a significant circadian expression of 

HPERI and HPER2 in PBMCs (9). These results were confirmed by other studies 

conducted either in similar conditions (41) or during a regular sleep-wake cycle (69). 

Peripheral circadian oscillators in humans have the potential to become a valuable tool 

in the understanding of the circadian contribution to various medical disorders. To date, 

little information exists on the capacity for frequent sampling of peripheral clocks in 

PBMCs over extended periods. Moreover, IiUle is known on the expression of peripheral 

oscillators under different behavioral conditions. In this investigation, clock gene 

expression was quantified in PBMCs sampled every two hours over three consecutive 

days under both habituai sleep/wake and constant routine conditions. 

3.4 Materials and Melhods 

Subjects 

Six healthy participants (four men aged ± SEM: 24.4 ± 2.4 years, and two women aged 

22.5 ± 0.4 years) were empanelled in this investigation between January and August 

2004 (Table 3.1). Potential candidates were recruited via ads placed in local 

newspapers, and selected candidates were remunerated for their participation in the 

study. This investigation was performed with the approbation of the Douglas Hospital 

Research Ethics Board. Ali participants provided informed consent prior to their 

empanelment in the study. 

Inclusion/Exclusion Criteria 

Ali candidates were verified to be in good physical health following a complete medical 

interview and examination including electrocardiogram and haematological screen. 

Calculated body mass indices (BMI) were ail within normal ranges. Participants were 

drug-free, nonsmokers at the lime of study and eliminated the intake of ail alcoholic or 

caffeinated beverages in the three weeks preceding the start of the investigation. 

Candidates had no history of night work or transmeridian travel (a cross >2 time zones) in 

the 3 months prior to investigation. 
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Selected candidates had no evidence of psychopathology on structured interviews 

(Structured Clinicallnterview for DSM-IV). They also had no history of sleep pathologies 

or disturbances, as confirmed following interview with a sleep disorders physician. Five 

participants scored as intermediate chronotypes and one participant scored as a 

morning type on the Horne-Ostberg morningness-eveningness questionnaire (37, Table 

3.1). Ali reported good sleep quality with sleep latencies less than 15 min and the 

absence of nocturnal awakenings or premature morning awakenings. 

Both of the female participants had no history of gynecological pathology and 

reported no pregnancies in the 6 months preceding the study. Menstrual cycles had a 

duration of 28 and 30 days with a maximum monthly variation of 3 days. Normal 

ovulation was confirmed by midluteal phase progesterone levels. The investigation was 

planned during the follicular phase of the menstrual cycle. 

S/udy Pr%col 

The investigative protocol took place in the facilities of the Centre for Study and 

Treatment of Circadian Rhythms. Subjects were admiUed to windowless, sound-proof 

and climate-controlled suites each equipped with a private bathroom and a section for 

meals and leisure. Subjects lived therein for the duration of the investigation without 

knowledge of Ume. 

Study participants each maintained stable sleep/wake schedules for at least 14 

days prior to their admission to the laboratory. The sleep/wake schedule included a 

single, nocturnal 8-hour sleep episode and naps were prohibited. In order to verify 

adherence to the sleep/wake schedule, participants were required to cali the laboratory 

voicemail at bed and wake times in addition to completing sleep/wake logs. The 

sleep/wake schedule was also verified using wrist actigraphy (Actiwatch 64, MiniMitter, 

Bend, OR, USA) in the last week preceding the study start. The purpose of the imposed 

sleep/wake schedule was to stabilize the entrainment of the endogenous circadian 

pacemaker and limit the inter-individual variability in phase relationships between the 

endogenous circadian pacemaker and the sleep/wake schedule. 

The laboratory investigation contained two separate behavioural conditions within 

the five-day laboratory study. Upon admission to the laboratory, participants maintained 

the sleep/wake schedules kept in the preparatory phase of the investigation (Figure 3.1). 

Specifically, the midpoint of 8-hour laboratory sleep episode corresponded with the 

midpoint of reported sleep/darkness times in the pre-study period. Ambient light intensity 
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measured in the angle of gaze with a research photometer (IL 1400A, International Light, 

MA, U.S.A.) during wake periods was (mean ± SEM) 118 ± 8 lux and participants slept 

in darkness (-0.03 lux). This segment of the experiment was designed to evaluate 

central and peripheral clocks in the presence of a light/darkness schedule (LD). Upon 

awakening on experimental day three, participants maintained wakefulness throughout a 

32-hour Constant Routine (CR) procedure (described below). A final, ad libitum sleep 

episode fo"owed the CR. Equipment failure resulted in the interruption of blood sampling 

in subject S02. The participant subsequently returned to the laboratory to undergo a 

complete CR procedure, and the resulting data is discussed herein. 

Constant Routine 

Sleep, meal consumption and light exposure are among the conditions that may mask 

the endogenous expression of markers of the endogenous circadian pacemaker. The 

CR is a procedure designed to systematica"y limit potential masking effects on 

measured rhythmicity (21, 26, 52). Participants were required to maintain wakefulness 

throughout the CR procedure. Levels of activity were limited and participants maintained 

a semi-recumbent posture in bed throughout. Ambient light intensities remained constant 

and dim (mean ± SEM: 4 ± 004 lux), and meals were replaced by sma", nutritiona"y­

balanced hourly snacks. Daily calorie requirements, adjusted for reduced activity levels, 

were evaluated for each individual by a registered dietician and evenly distributed across 

snacks throughout the CR. 

Sampling 

Throughout the experiment, we sampled markers of both the central circadian 

pacemaker and the peripheral cJock in PBMCs. For each research participant, we 

co"ected whole blood samples at regular intervals throughout a 72-hour period for the 

subsequent assay of plasma melatonin concentration and PBMC cJock gene expression. 

Upon admission to the laboratory on experimental day 1, each participant had an 

indwelling catheter inserted in a forearm vein. Our blood sampling system included an 

intravenous extension which permitted frequent blood sampling for an extended duration 

without interruption of the participants' sleep. In between blood samples, an infusion of 

heparinized saline (7 lU/cc at 30cc/hr) was used to reduce the risk of clotting at the 

catheter insertion site. The volume drawn throughout a" blood sampling periods did not 

exceed 610 mL. Basal plasma melatonin concentrations co"ected during habituai wake 

periods were not significantly altered throughout the 72-hour period (see individual 
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plasma melatonin results in supplementary figures) suggesting that important changes in 

total blood volume were unlikely. 

Core body temperature, a marker of the central circadian pacemaker was 

continuously sampled via a 10-cm rectal sensor (Rectal-esophageal temperature probe, 

Cincinnati Sub Zero, Cincinnati, OH USA) and stored to a data acquisition system. For 

the assay of plasma melatonin concentration, another marker of the central circadian 

pacemaker, 2.5 ml whole blood samples were collected into K2EDTA-coated 

Vacutainers (7.2 mg K2EDTA, Becton Dickinson, Franklin lakes, NJ, USA) every -60 

minutes, placed on ice for 15 minutes and centrifuged at 4°C for 15 minutes. Plasma 

was stored at -80°C until time of assay. Melatonin concentration was determined in 

duplicata using a radioimmunoassay kit (Stockgrand, Guilford, Surrey, UK), using a 

standard curve with a concentration range of 2.5- 250 pg/0.5 ml and a least detectable 

dose of 2.5 pg/mL. 

Peripheral blood mononuclear cells were isolated from 10 ml who le blood 

samples drawn every -120 minutes. Who le blood was collected into heparin-coated 

Vacutainers (86 USP units Sodium Heparin, Becton Dickinson, Franklin lakes, NJ, USA) 

and centrifuged for 30 minutes on a density gradient (Histopaque-1077, Sigma-Aldrich 

Canada, Oakville, ON, Canada). As specified by the manufacturer, the ce Il layer retained 

for analyses excluded polymorphonuclear cells such as neutrophils, basophils and 

eosinophils and included mononuclear cells su ch as monocytes and lymphocytes. 

Isolated PBMCs were subsequently washed with a phosphate buffered saline solution 

(PBS) and stored at -80°C in Trizol reagent (Invitrogen Canada, Burlington, ON, 

Canada). RNA was subsequently extracted and precipitated from each sample 

according to the manufacturer's instructions, and verified for its concentration on an 

agarose gel. Complementary DNA was reverse transcribed from extracted RNA using 

MultiScribe Reverse Transcriptase (TaqMan Reverse Transcription Reagents, Applied 

Biosystems, Foster City, CA, USA). Quantification of c10ck gene expression was 

performed by real-time PCR using SYBR Green chemistry (Applied Biosystems, Foster 

City, CA, USA) on an AB5700 cycler (Applied Biosystems, Foster City, CA, USA). The 

PCR program used included two minutes at 60°C and 10 minutes at 950C followed by 

40 cycles of 95°C for 15 seconds and 60°C for one minute. The expression of the c10ck 

genes HPER1, HPER2, HBMAL 1 were described relative to the expression of HCDK4 

(cyclin-dependent kinase 4) (9) using the following primers: 
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HPER1 

Forward: 5'-TG G CTATCCACAAGAAGATTC-3 , 

Reverse: 5'-GGTCAAAGGGCTGGCCCG-3' 

HPER2 

Forward: 5'-GGCCATCCACAAAAAGATCCTGC-3' 

Reverse: 5' -GAAACCGAA TGGGAGAA TAGTCG-3' 

HBMAL1 

Forward: 5' -GGCTCA TAGA TGCAAAAACTGG-3' 

Reverse: 5' -CTCCAGAACA T AA TCGAGA TGG-3' 

HCDK4 

Forward: 5'-ATCCCAA TGTTGTCCGGCTG-3' 

Reverse: 5'-TGATCTCCCGGTCAGTTCGG-3' 

ln order to avoid amplification of genomic DNA within extracted RNA samples, primer 

sets were designed to overlap junctions between successive exons, thereby conferring 

to the reaction a preference for the amplification of reverse transcribed cDNA. The 

concentration of primers used in reaction mixtures was adjusted for each primer such 

that the efficiency of amplification for each primer set was comparable over a range of 

possible cDNA concentrations. The specificity of the amplification with each primer set 

was ensured by the verification of the dissociation tempe rature of each reaction product. 

Each amplification reaction was performed in triplicate. 

Statistica/ Ana/ysis 

The core body temperature phase for each individual was defined as the time of fitted 

minimum of temperature data collected under CR conditions. The first five hours of 

temperature data collected during the CR were removed for analysis to account for the 

possible masking effect of the preceding sleep episode. The temperature phase was 

determined following the application of a dual-harmonic regression model to the data 

(11) with parameters set for a search within two standard deviations of the expected 

period of the central circadian pacemaker (22) and without seriai correlated noise. Due 

to the possible masking effects of a sleep/wake schedule on the expression of the 

endogenous temperature rhythm, core body temperature data collected during the LD 

subsegment of the investigation could not be reliably used as a marker of the central 

circadian pacemaker. 
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The phase of the plasma melatonin rhythm was defined as the midpoint between 

times when melatonin concentrations rose above and fell below 24-hour average 

concentrations (84). Typical indoor light intensities may be sufficient to mask the 

endogenous expression of the melatonin rhythm (85). Thus, melatonin data collected 

during the CR most reliably estimates the endogenous phase of the melatonin rhythm. 

Relative clock gene expression was determined from real-time PCR results expressed in 

cycles required to cross the detection threshold. 

Fold change in gene expression of each clock gene was determined for each 

sample relative to HCDK4 expression using the 2-MC
T calculation (47). Fold change in 

gene expression for each sample was then expressed as a proportion of maximum 

expression for each behavioural condition of the study (i.e. LD or CR). The maximum 

fold change in gene expression determined for each participant during LD and CR 

subsegments were compared using paired t-tests. In order to determine whether we 

could detect a significant circadian expression of clock genes in PBMCs, we performed a 

dual-harmonic regression on each individual's gene expression profile per experimental 

condition within a period search of 23-26 hours corresponding to the range of period 

found in the expression of HBMAL 1 in human fibroblasts (12). As described previously, 

we defined a statistically significant circadian oscillation where the 95% confidence 

interval for the amplitude of the expression did not include the zero value (9). These 

regression analyses also provided an estimate of the fitted amplitude of clock gene 

expression which represents the mean to trough difference in the first harmonic. 

Amplitude fits were compared between conditions using paired t-tests. The phase of 

clock gene expression in PBMCs was defined as the time of fitted maximum of 

expression as determined by dual-harmonic regression analyses. Circadian phase of 

clock gene expression during LD and CR were compared using paired t-tests. 

To describe the relationship between circadian phase markers and the sleep­

wake cycle, we calculated phase angles as: (Wake-time)-(Phase), where as described, 

circadian phase was defined as the time of fitted temperature minimum, midpoint of peak 

melatonin expression, and fitted maximum of HPER1, HPER2, and HBMAL 1. Calculated 

phase angles during LD and CR were compared using paired t-tests. 

ln order to compare the relationship between the expression of circadian markers 

and the sleep/wake cycle, we calculated a profile of the expression of each circadian 

marker across a total of six wake or sleep 4-hour bins corresponding to the 24-hour day. 
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Individual data for clock gene expression, determined on a sample-by-sample basis, 

were first aligned to the time of habituai awakening, and data was assigned to one of 

four bins corresponding to the habituai wake period (W1-W4) or to one of two bins 

corresponding to the habituai sleep period (S1-S2). The selection of 4-hour analysis bins 

permitted us to analyse individual dock gene data in a meaningful way with respect to 

the sleep/wake cycle. Group means represent the average of individual subject means 

per bin and ail participants are included in each 4-hour bin average. Expression profiles 

during CR and during LD were compared using two-factor ANOVA for repeated 

measures (factors: time of day and experimental segment). 

Results are expressed as mean ± SEM. 

3.5 Results 

Participants maintained steady sleep/wake schedules in the pre-study period, such that 

mean sleep period lengths were 8:03 ± 0:01 hours. The longest and shortest average 

reported sleep period lengths were within five minutes of the indicated 8-hour sleep 

period length. Average bedtimes and waketimes in laboratory were 23:22 ± 0:09 and 

07:22 ± 0:09, respectively. 

Ali available data points for markers of central and peripheral circadian oscillators 

during the 3-day sampling period are shown for each individual in supplementary 

Figures 3.81-3.86. Figure 3.2 iIIustrates the mean expression of circadian markers 

aligned to each individual's habituai waketime (assigned a relative clock hour of 08:00). 

The time of the fitted minimum of the core body tempe rature rhythm, as determined 

during the CR evaluation, occurred 2:16 ± 0:20 hours before habituai awakening (Figure 

3.2 A). The midpoint of peak plasma melatonin concentration measured during the CR 

occurred 3:24 ± 0:09 hours before the time of habituai awakening (Figure 3.2 B). 

Dual harmonie regression analyses performed on the expression of HPER1 in PBMCs 

revealed a significant amplitude of oscillation in ail cases during LD conditions (Figure 

3.2C). Four of six individuals (801, S02, S06, S07) demonstrated a significant circadian 

oscillation during CR. The average maximum fold change in HPER1 expression in the 

group of participants was 3.5 ± 0.8 during LD conditions and 3.6 ± 0.7 during CR 

conditions (p=0.8). Dual harmonie regression analyses revealed that the fitted amplitude 

of HPER1 expression was also comparable between LD and CR conditions (p=0.2). The 

time of fitted peak HPER1 expression was comparable between conditions and occurred 
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2:36 ± 1 :45 hours after awakening during the LD condition and 1 :49 ± 2:11 hours after 

the time of projected awakening under CR conditions (p=0.8). 

Four of the six participants (S01, S02, S03, S08) demonstrated a significant 

oscillation in HPER2 expression in PBMCs during the LD subsegment of the study, while 

the amplitude of oscillation was statistically significant in ail cases under CR conditions 

(Figure 3.2 D). The average maximum fold change in HPER2 expression during LD and 

CR conditions were 2.8 ± 1.4 and 1.8 ± 0.2, respectively, and comparable between 

conditions (p=O.4). The fitted amplitude of HPER2 expression was also comparable 

between LD and CR conditions (p=0.5). Under LD and CR conditions, peak HPER2 

expression in PBMCs occurred 1 :55 ± 1 :43 hours before awakening and 0:04 ± 1 :22 

hours after habituai awakening, respectively. These times were comparable between LD 

and CR conditions (p=0.3). 

The circadian rhythmicity of HBMAL 1 expression in PBMCs was statistically 

significant in four of six subjects under both LD and CR conditions (Figure 3.2 E). Under 

LD conditions participants S01, S02, S07, and S08 demonstrated a significant circadian 

rhythmicity, while under CR conditions the amplitude of expression was significant in 

participants S02, S03, S06, and S08. The mean maximum fold change in HBMAL 1 

expression was 2.5 ±1.4 during LD conditions and 1.6 ±0.1 during CR conditions and 

comparable between conditions (p=0.5). Similarly, the fitted amplitude of HBMAL 1 

expression was comparable during LD and CR (p=0.8). Under LD conditions, the time of 

peak HBMAL 1 expression occurred 6:00 ± 2:27 hours after awakening, while under CR 

conditions, HBMAL 1 transcript levels peaked 2:08 ± 2:05 hours before habituai 

awakening. A trend towards a significant difference in calculated phase angles was 

observed between both conditions (p=0.06). 

ln order to compare the daily expression of circadian markers under LD and CR 

conditions, we calculated a profile of the expression of each marker across six wake or 

sleep bins corresponding to the 24-hour day (Figure 3.3). Core body temperature and 

plasma melatonin concentration varied significantly throughout the day (p<0.001 and 

p<0.001, respectively), while no significant difference was observed between LD and CR 

conditions (Figure 3.3 A, B). The expression of HPERI and HPER2 in PBMCs also 

demonstrated a statistically significant variation over time (p=0.03, and p<0.01, 

respectively), where expression profiles were comparable during LD and CR (p=0.8 and 

p=0.7, respectively; Figure 3.3 C, D). The variation in HBMAL 1 expression over time 
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was not statistically significant (p=O.8) and no significant differences were detected 

between LD and CR conditions (p=O.2; Figure 3.3 E). 

3.6 Discussion 

The inclusion of a 40-hour segment performed under normal sleep/wake conditions (LD) 

and a 32-hour segment performed under constant conditions (CR) within our blood 

sampling session demonstrates the possibility of assessing the function of peripheral 

circadian oscillators in human PBMCs with frequent sampling over an extended period. 

The sustained rhythmic expression of clock gene rhythmicity under constant conditions 

implies that the observed rhythmicity is not generated by behavioural or postural 

changes. The core body temperature and plasma melatonin rhythms measured under 

CR conditions confirmed a normal alignment of the central circadian pacemaker to the 

habituai sleep/wake schedule. As expected under conditions of normal entra in ment, the 

core body temperature minimum occurred in the last hours of the habituai sleep period 

and the midpoint of peak plasma melatonin concentration occurred near the middle of 

the habituai sleep episode. Our observation of peak HPERI expression in PBMCs just 

after the time of habituai awakening is in accordance with previous observations that we 

have made under CR conditions (9) and with those of others made under modified CR 

conditions (41). The morning peak of HPER2 expression in PBMCs is consistent with 

our prior observations under CR conditions (9) and those of others made in the presence 

of a sleep/wake cycle (68). The mean expression profile of HBMAL 1 in our individuals 

displays a less prominent rhythmicity than HPERI or HPER2 (Figure 3.2E). While the 

alignment of HPERI and HPER2 expression to the sleep/wake cycle were comparable 

under our LD and CR conditions, HBMAL 1 expression displayed a trend towards a 

difference in its expression under these conditions. Only during LD conditions did the 

mean daily variation in HBMAL 1 expression approximate a peak in anti-phase from peak 

HPERI and HPER2 expression. The early morning fitted peak of HBMAL 1 expression 

under CR conditions and the low amplitude mean rhythm relative to the sleep/wake 

cycle suggest an inter-individual variability that obscures a coherent mean rhythm in 

HBMALI. 

Inter-subject variability in the expression of clock genes in PBMCs has previously 

been reported. Teboul and colleagues sampled HPER2 and HBMAL 1 expression in 

PBMCs fram who le blood sampled at 4-hour intervals for 24 hours (69). The inter­

individual variability in times of peak HBMAL 1 expression was greater than that for 
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HPER2 expression, similar to what we have observed. They additionally noted that the 

times of peak clock gene expression segregate their experimental group into apparent 

molecular chronotypes. While we noted no such differences in our experimental group, 

the error values we calculated for the group mean phase of clock gene expression were 

larger than those calculated for the phase of core body temperature or plasma 

melatonin. Interestingly, when the period of HBMAL 1 expression is monitored in biopsied 

human fibroblasts, the intra-subject standard deviation is 8 times smaller than the inter­

subject variability in the period of clock gene expression (12). The contribution of post­

transcriptional events must also be considered. When Per2 is constitutively expressed in 

mou se fibroblasts, PER2 protein may continue to display circadian rhythmicity (80). In 

the mou se liver, almost half of the rhythmically expressed proteins do not have 

correspondingly rhythmic RNA levels (61). Thus, post-transcriptional events may also 

significantly contribute to the function of peripheral oscillators in PBMCs. 

Environmental changes may have specific effects on the function of peripheral 

oscillators. The feeding schedule, for example, can reset rodent peripheral oscillators 

independently of the SCN (24, 34, 65). Thus, although CR conditions are sufficient to 

reduce inter-individual variability in centrally-driven rhythms, they may have a negligible 

effect on peripheral oscillators in PBMCs. The factors that permit the SCN to coordinate 

peripheral rhythms are yet unknown, but may be specific to each peripheral oscillator 

(13, 32, 57, 79). A number of hormonal rhythms are driven by the central circadian 

pacemaker, and are potential signais for entrainment. There is evidence to suggest that 

melatonin is an immune modulator, where lymphocytes and PBMCs would exhibit 

transcription of genes encoding enzymes for melatonin synthesis (16, 27) as weil as 

melatonin receptors (17). Glucocorticoids have also been associated with an 

immunomodulatory function and the trafficking of lymphocytes in peripheral blood (2, 28, 

36). Glucocorticods can stimulate HPER1 expression in human PBMCs in vitro and in 

vivo (14, 29). As we previously reported for PBMCs (9), observed rhythms of HPER1 

and HPER2 are in stable relationships with melatonin, a centrally-driven circadian 

rhythm. Future investigation will be required to elucidate the specific relationship of these 

centrally-driven rhythms to the synchronization of peripheral clocks in PBMCs. 

Significant circadian rhythmicity has been observed in the numbers and relative 

proportions of white blood cell subsets. In particular, PBMCs were shown to peak in 

number during the sleep period (10, 51, 63, 70). By our method, the PBMCs include 
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lymphocytes and other mononuclear cells. However, each of these distinct white blood 

cell populations may display a unique rhythmicity in their cell numbers and proportions 

such that relative abundance of each cell subpopulation within sampled PBMCs may 

vary throughout the day (2, 10) or even across seasons (44). Our use of a non-rhythmic 

internai control gene in addition to the input of identical RNA amounts in each real-time 

PCR reaction controls for daily changes in total RNA resulting from diurnal or seasonal 

changes in total cell numbers. Nevertheless, our results point to the heterogeneity of the 

peripheral circadian oscillators in PBMCs, and the possibility that different immune cell 

subsets may have clocks that are individually regulated in a distinctive manner. Indeed, 

Kusanagi and colleagues demonstrated that although the rhythms of HPERI expression 

are comparable in human polymorphonuclear and mononuclear cells (41), 

polymorphonuclear cells demonstrated a secondary HPERI peak towards the end of the 

wake period that did not occur in the mononuclear population (41). Moreover, in PB MC 

tissue culture, the induction of HPERI by a systemic dose of corticosteroids is greater in 

monocytes than it is in lymphocytes, suggesting that the response of cell subpopulations 

to the cellular environment may not be the same (29). 

Although it is likely that inter-individual differences play a role in the variability in 

PBMC clock gene expression, the mechanism is yet unclear. Glucocorticoids and sex 

hormones may interact in modulating the activity of the immune system (23). As 

lymphocytes and monocytes express estrogen receptors (43), the sex of the participants 

may have contributed to the variability in clock gene expression. However, of ail the 

phase markers we analyzed, female participants in follicular phase differed from male 

participants only in the time of fitted peak of HBMAL 1 expression during the CR 

(p=0.005). The eight cases of non-significant circadian amplitude observed under both 

behavioral conditions were observed in a total of five individuals (including both female 

participants), suggesting that the regulation of clock genes in PBMCs is more complex 

than simple sex-based differences. Prior studies have shown that 24-hour mean core 

body temperature is comparable between men and women (6). Our selection of women 

in the follicular phase of the menstrual cycle was meant to limit sex-based inter­

individual variability that could have occurred by including women ta king oral 

contraceptives or in the luteal phase of their menstrual cycle (6). A non-significant 

amplitude in circadian expression of clock genes in PBMCs may not necessarily signify 

the absence of a functional molecular clock in individual cells (54, 72). Rather, a lack of 
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coordination between the clock gene expression in PBMC subpopulations may result in 

an apparent reduction in the amplitude of the observed rhythm. A greater understanding 

of the components that contribute to the organization of peripheral oscillators in PBMCs 

will significantly contribute to our ability to interpret peripheral clock gene expression in 

humans. 

The results of microarray studies showed that most clock-controlled genes 

display rhythmicity in a tissue-specifie manner (25, 49, 56, 59, 62, 66). This situation 

raises the possibility that clocks in peripheral tissues exert local control over a tissue's 

function while the central circadian pacemaker SCN orchestrates overall rhythmicity. A 

recent report showed that Per2-deficient mice have an increased survival rate as weil as 

an altered NK cell-mediated cytokine response to LPS-induced endotoxic shock (46). 

Moreover, Bma/1-defficient mice demonstrate a deficiency in B lymphocyte development 

(67). These data indicate a functional role for the molecular clock in the immune system. 

Further study of clock genes and clock-controlled genes in human PBMCs and other 

tissues will provide important information on the associations between sleep/wake cycle 

disorders and overall health. 
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Subject Sex Age 
Chronotype 

Bedtime Waketime Month of Study 
(37)[272] 

S01 M 19.6 1 ntermed iate 23:25 07:25 January 
S02 M 21.9 Morning 22:57 06:57 January/February* 
S03 M 25.4 Intermediate 23:59 07:59 February 
S06 F 22.9 Intermediate 23:32 07:32 March 
S07 M 30.5 1 ntermed iate 23:00 07:00 July 
S08 F 22.0 Intermediate 23:24 07:24 August 

Table 3.1 

Study Participants. * This subject completed the experiment in two separate laboratory 

visits. See Methods for details. 
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Figure 3.1 

Experimental protocol. Blood samples, co"ected repeatedly over a continuous 72-hour 

period beginning on experimental day 1, were assayed for their melatonin concentration 

and for the expression of clock genes in PBMCs. At the start of the study, participants 

lived on their habituai sleep/wake schedule. Wake episodes were spent in normal indoor 

light intensities (mean ± SEM: 118± 8 lux), and sleep episodes took place in total 

darkness (-0.03 lux). A 32-hour Constant Routine (CR) procedure was initiated upon 

awakening on experimental day 3 (mean intensity ± SEM: 4 ± 0.4 lux; see Methods for 

details on the CR procedure). 

59 



Figure 3.2 
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Circadian expression of central and peripheral markers for LD and CR experimental 

subsegments. Mean fitted core body temperature (CBT) minimum and midpoint of peak 

plasma melatonin (ML T) concentration are shown in panels A and B. Fitted maximum 

expression of HPERI, HPER2 and HBMAL 1 in PBMCs are shown in panels C-E, 

respectively. Mean circadian phase for each marker is indicated within panels as a 

triangle. Ali error bars represent SEM. Although ail subjects are included in the analyses, 

the fraction of the study group for whom a significant circadian amplitude in clock gene 

expression was detected is shown in panels C-E. Mean expression of circadian markers 

was calculated from individual subject data first aligned to habituai wake time. For 

visualisation purposes, bedtime and waketime are assigned the relative clock hours of 0 

and 8, respectively. 
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Figure 3.3 

Daily profile expression of central and peripheral circadian markers. The 24-hour day is 

represented as 4-hour bins corresponding to habituai wake (W1 - W4) or sleep times 

(S1, S2) for ail six participants. ANOVA for repeated measures revealed no significant 

differences between LD and CR conditions. P values for the time effect are shown in the 

upper left hand corner of each panel. 
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Figure 3.S1 
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Equipment failliTe during the Lü portion of the investigation resulted in missing core body temperature data. 
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Figure 3.52 
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Figure 3.84 
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Figure 3.S6 
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4.1 Preface 

The present experiment describes the manipulation of the pattern of light/darkness to 

phase delay and consequently realign the endogenous cortisol rhythm in night shift 

workers. This study included real night shift workers on their actual work schedules. 

Thus, principles established in laboratory experiments could be applied in the field. This 

investigation provides a demonstration of light-induced shifting of the central circadian 

pacemaker. As a prelude to the investigation of the effects of simulated night shift work 

on PBMC oscillators (Chapter 5), it is established here that a light/darkness intervention 

can promote the appropriate circadian alignment of the SCN-driven cortisol rhythms of 

night shift workers. 

4.2 Abstract 

The efficacy of a light/darkness intervention designed to promote circadian adaptation to 

night shift work was tested in this combined field and laboratory study. Six full-time night 

shift workers (mean age ± SD: 37.1 ± 8.1 years) were provided an intervention 

consisting of an intermittent exposure to full-spectrum bright white light (-2,000 lux) in 

the first 6 hours of their 8-hour shift, shielding from morning light with tinted lenses 

(neutral gray density, 15% visual light transmission), and regular sleep/darkness 

episodes in darkened quarters beginning 2 hours after the end of each shift. Five control 

group workers (41.1 ± 9.9 years) were observed in the presence of a regular 

sleep/darkness schedule only. Constant routines (CR) performed before and after a 

sequence of -12 night shifts over 3 weeks revealed that treatment group workers 

displayed significant shifts in the time of peak cortisol expression and realignment of the 

rhythm with the night-oriented schedule. Smaller phase shifts suggesting an incomplete 

adaptation to the shift work schedule were observed in the control group. Our 

observations support careful control of the pattern of light and darkness exposure for the 

adaptation of physiological rhythms to night shift work. 

4.3 Introduction 

Despite years of night work experience, circadian maladaptation to night work may 

persist. Spontaneous adjustment of the core body temperature rhythm, and of melatonin, 

cortisol, thyroid stimulating hormone, or prolactin secretion to shifts in the rest-activity 

cycle are reported in a minority of shift workers (Sack et al., 1992; Roden et al., 1993; 

Koller et al., 1994; Weibel et al., 1997; Weibel and Brandenberger, 1998; Goh, 2000). 
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Appropriately-timed nocturnal bright light has proven an effective intervention to promote 

the realignment of endogenous rhythms of core body temperature, melatonin, and 

cortisol to a nocturnal reorientation of the work schedule in laboratory simulations 

(Czeisler et aL, 1990; Dawson et aL, 1993; Martin and Eastman, 1998; Horowitz et aL, 

2001; Crowley et aL, 2003). Field studies have confirmed this finding, where the 

presence of higher light intensities during the night shift have been associated with 

circadian adaptation (Stewart et aL, 1995; Gibbs et aL, 2002; Boivin and James, 2002). It 

has been further demonstrated that control of the pattern of light and darkness exposure 

throughout the day, including limited exposure to bright light during the morning 

commute home, are important in the adjustment of circadian phase (Eastman et aL, 

1994; Buxton et aL, 2000; Dumont et aL, 2001; Crowley et aL, 2003). 

ln a previous investigation (Boivin and James, 2002), we determined that a 

comprehensive lightldarkness intervention including phototherapy in the workplace, 

shielding from bright morning light and the maintenance of a stable diurnal 

sleep/darkness period could promote circadian adaptation in nurses working full-time 

night shifts. In this report, we present an evaluation of the circadian rhythm of salivary 

cortisol collected in 11 of the 15 nurses participating in our previous study. Sampling was 

performed both before and after the period of night shift work under controlled laboratory 

conditions. 

4.4 Methods 

Subjects 

Eleven nurses working full-time night shifts (at least 8 shifts /15 days) consented to this 

investigation designed to test the efficacy of a lightldarkness intervention for the 

alignment of the circadian pacemaker with a schedule of night shifts. Night shifts were ail 

of an 8-hour duration and started either at 23:30 or 00:00 hours. Ali workers were 

screened for medical and psychological conditions in an interview with a physician. None 

of the female subjects used birth control pills. The group of workers included 6 males 

(age ± SD: 40.7 ± 8.4 years) and 5 females (36.9 ±9.7 years) and was comprised of a 

subgroup of subjects for whom results have previously been reported (Boivin and 

James, 2002). 

On average, workers drank 1.4 ± 1.1 cups of coffee and less than one serving of 

alcohol daily. Those who smoked (3 control group workers, 2 treatment group workers), 

consumed an average of 8.2 ±7.8 cigarettes daily. Alcohol consumption was prohibited 

80 



on work days and minimal « 1 drink 1 day) on days off. Consumption of these products 

was comparable between groups. Informed consent was obtained prior to the 

experiment start in accordance with the procedures of the Douglas Hospital Research 

Ethics board, and the hospital sponsoring the participation of the nurses, where 

applicable. 

Investigation Protoco/ 

ln order to establish a baseline condition, each worker was studied following a vacation 

period lasting at least 10 days. During this period, subjects lived on a day-oriented 

schedule, kept regular sleep times, and avoided daytime napping. Times in bed were 

noted in appropriate logs and were confirmed by wrist actigraphy monitoring (Actiwatch-

64, or Actiwatch-L, Mini-Mitter, Bend, OR, USA) and daily telephone calls in the week 

prior to admission to the laboratory. Subsequent to the vacation period, workers were 

admitted to the laboratory for an initial evaluation of circadian phase. (Figure 4.1). 

Circadian phase was assessed via the constant routine (CR) procedure designed 

to unmask the endogenous expression of the circadian system (Czeisler et aL, 1986; 

Milis et al. 1978). In this laboratory procedure, subjects maintained wakefulness in a 

semi-recumbent posture for 36 hours. Light intensities within the laboratory suite, as 

measured in the angle of gaze (IL 1400A, International Light, MA, U.S.A.), were dim « 7 

lux), and emitted from ceiling-mounted banks of full-spectrum cool-white fluorescent 

fixtures (4100 OK, TL80 F32T8/TL841 from, Philips, U.S.A., and Octron 800, F032/841 

from Sylvania, U.S.A.) covered with lenses emitting less than 1 % radiant energy up to 

400 nanometres (K-S-H Uvalite Plus, K-S-H Inc., U.S.A.). Research assistants were 

present to assist the participant in staying awake. 

Subsequent to the evaluation of circadian phase, ail workers returned to their 

regular schedule of 11-12 night shifts over a 19-20 day period. The distribution of night 

shifts and days off varied according to the habituai practices of the place of employment. 

Workers were readmitted to the laboratory following the last night shift worked for a 

second 36-hour CR and the evaluation of circadian phase. The final CR was performed 

after an average of 4.7 ± 2.0 consecutive night shifts. The number of nights worked prior 

to the final CR was comparable between groups (p=0.6). 

Light/darkness intervention 

The 6 nurses (2 female, 4 male) studied in the treatment condition were provided an 

intervention designed to carefully control exposure to light and darkness throughout the 
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day. In the first 6 hours of each night shift, treatment group workers were intermittently 

exposed to full-spectrum bright, white light (mean intensity measured with a portable 

light meter in the angle of gaze ± SD: 2,590 ± 1,317 lux) via portable lamps (Sunbox 

Company, Gaithersburg, MD, USA) set up at the nursing station. Workers were 

instructed to remain under bright light as much as the workload permitted and to look 

into the lights as much as possible. In the final two hours of the night shift, the portable 

lights were shut off, and the workers remained in their habituai lighting environments 

(mean intensity ± SD: 104 ± 58 lux). Workers in the treatment group were also given a 

pair of goggles with neutral grey density lenses (Astrospec 3000 or Flashback both with 

SCT-gray lens tint, 15% visuallight transmission, Uvex, Smithfield RI, U.S.A), and were 

instructed to wear them during the morning commute home. Control group workers (3 

female, 2 male) received no bright light in the workplace (mean intensity ± SD: 131 ± 

122 lux) and wore clear, UV-excluding goggles during the commute home (Astrospec 

3000 or Flashback both with clear lens, 90% visual light transmission, Uxex Smithfield 

RI, U.S.A.). Ali workers were instructed to maintain stable sleep/darkness schedules 

including a single 8-hour diurnal sleep episode beginning 2 hours after the end of the 

night shift. Adherence to the sleep/darkness schedule was verified using sleep/wake 

logs, wrist actigraphy monitoring (Actiwatch-64, or Actiwatch-L, Mini-Mitter, Bend, OR, 

USA) and daily telephone calls to the laboratory at bed and wake times. In exceptional 

circumstances where the sleep/darkness period was abbreviated or interrupted (-12% of 

ail diurnal sleep observations), workers wore darkened goggles throughout the period 

corresponding to the assigned sleep/darkness period and noted this in appropriate logs. 

Treatment group workers had their sleeping quarters deliberately darkened with opaque 

material covering the windows. It was observed, however, that control group workers 

also slept in dark bedrooms. 

Measuremenfs and analyses 

During CRs, saliva samples destined for the assay of cortisol concentration were 

collected at 60-minute intervals and stored at -20°C until the time of assay. Salivary 

cortisol concentration was determined in duplicata via radioimmunoassay (Diagnostic 

Systems Laboratories, Webster, Texas). The kit had cross-reactivities of 100% for 

cortisol, 33% for prednisolone, 9.3% for corticosterone, and 1.4% for prednisone. Kit 

sensitivity was to 0.01 mg/dl. The salivary cortisol rhythm was characterised with the 

application of a single harmonic regression model to each subject's data. The amplitude 
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of the rhythm was defined as the mean to trough difference of this harmonie. Times of 

fitted maximum and fitted minimum were both used as circadian phase markers in our 

analyses. By convention, phase (<1» shifts in the cortisol rhythm were calculated as <1> 

[initial] - <1> [final], such that adaptive phase delays were expressed as negative values. In 

order to ascertain the alignment of the cortisol rhythm with the sleep/wake cycle, we 

calculated phase angles as the difference: (bedtime) - (time of fitted maximum of the 

cortisol rhythm). Thus, a negative phase angle would indicate that peak cortisol values 

were observed after bedtime. Sleep times for the analysis of data from the first CR were 

based on mean times in bed for the week prior to laboratory admission, scaled to an 8-

hour length. In order to determine adaptation to the night shift work schedule, daily 

reported bedtimes for the ambulatory night-shift period were used for the calculation of 

phase angles in the final CR. Between and within group differences were analysed 

using non-parametric analyses. Analysis of reported sleep/darkness times revealed that 

the assigned schedule was weil maintained. 

Unless specified, ail error values represent SEM. 

4.5 Results 

Baseline 

Mean cortisol concentration during initial and final CRs is shown in Figure 4.1 (Iower 

panels). At the time of the initial CR, times of maximum and minimum cortisol 

concentration were comparable between groups (Table 4.1). The fitted amplitude of the 

cortisol rhythm was also comparable between groups. In the control and treatment 

groups, the peak of the cortisol rhythm occurred 8:32 ± 1 :37 and 9:51 ± 0:18 hours after 

bedtime, respectively. 

Final 

Following the period of night shift work, the time of maximum cortisol concentration in 

the control group was shifted by -3:03 ± 2:07. The treatment group displayed a 

significantly larger shift of -11 :04 ± 1 :16 (P=0.02). Similarly, observed shifts in the time of 

minimum concentration were -3:41 ± 2:09 in the control group and -11 :26 ± 1 :26 in the 

treatment group, for a significant difference between groups (P= 0.03). The interval 

between the times of the maximum and minimum were comparable between groups for 

the initial and final CRs. Compared to the initial CR, a 39-minute reduction of this interval 

was observed in control group workers (P=0.08) compared to a 22-minute reduction in 
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treatment group workers (P=0.2). No differences between or within groups in 24-hour 

mean cortisollevels were detected. 

Following the period of night shift work, peak cortisol concentration occurred 1: 15 

± 2:10 after bedtimes in the control group, whereas peak levels of cortisol concentration 

occurred 11 :38 ± 1 :22 after bedtimes in the treatment group, for a significant difference 

between groups (P=0.009). 

4.6 Discussion 

Following a day-oriented vacation period, the shift workers empanelled in this 

investigation displayed cortisol rhythms well-adapted to day-oriented life. As expected, 

peak cortisol secretion occurred in the hours following the time of habituai awakening, 

and lowest concentrations were observed close to the onset of night time sleep (de 

Lacerda et al., 1973; Van Cauter, 1990). Following the period of night shift work, workers 

who remained in their habituai light environments displayed a misalignment between the 

endogenous circadian cortisol rhythm and their sleep/wake schedule. This resulted in 

higher cortisol concentration near diurnal bedtimes whereas minimal levels were 

detected near the start of the nocturnal active period. Conversely, workers who received 

the intervention displayed peak cortisol levels after awakening in the evening, prior to the 

start of their work shifts, and lowest levels in the morning close to their new bedtimes. 

The phase angles between peak cortisol levels and bedtimes in the treatment 

group were comparable before and after 12 night shifts worked over a -3-week period. 

This indicates a circadian re-entrainment with the shifted sleep and work schedule in this 

group. This result is consistent with the reentrainment of core body temperature and 

salivary melatonin rhythms in these subjects (mean shifts of -8: 15 ± 1 :08 and -10:33 ± 

1 :05, respectively). The smaller phase delay shift in the cortisol maxima of the control 

group (Table 1) suggests that a partial adaptation of this rhythm has occurred in the 

absence of the full intervention provided. Indeed, consistent phase shifts were detected 

in the core body temperature and salivary melatonin rhythms in these subjects (mean 

shifts of -2:46 ± 2:10 and -2:10 ± 2:38, respectively). This partial adaptation supports our 

prior interpretation (Boivin and James, 2002) that judicious timing of the schedule of 

sleep/darkness can induce adaptive phase delays of smaller magnitude compared to the 

three-tiered intervention of the treatment group. 

The use of the constant routine procedure combined with a workplace 

intervention allowed us to accurately quantify circadian phase in nurses working nights. 
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The consistency of observed phase shifts between three reliable circadian markers 

assessed during CR reinforces our conclusion on the efficacy and usefulness of the 

intervention provided. 

Weibel and colleagues previously reported on the rhythm of plasma cortisol in 

night shift workers (Weibel et aL, 1996) sampled under controlled postural conditions. 

Their analyses revealed that shifts observed in the time of the acrophase were over 

twice the magnitude of changes in the timing of the quiescent period. Other groups have 

also reported on changes in the shape of the cortisol rhythm following an abrupt shift 

(Desir et aL, 1981; Caufriez et aL, 2002). In order to document changes in the shape of 

the cortisol secretion curve in the present study, we evaluated the interval between the 

peak and the nadir of salivary cortisol secretion for each subject (Table 4.1). No 

significant differences in this calculated interval were detected in either group of workers. 

However, it is possible that our sample size is insufficient to detect small modifications in 

the shape of the cortisol rhythm following night shifts. lnterestingly, the night shift 

workers studied in the Weibel investigation had a wider variability in their sleep and 

wake times on work days than our workers. This, may have contributed to additional 

variability in the timing of peak and low cortisol secretion. In our study, workers of both 

groups went to bed two hours after the end of their night shifts and remained in darkness 

for comparable periods. Variability in the number of consecutive shifts worked 

immediately preceding the final CR (minimum 2 shifts, maximum 8 shifts) may also have 

contributed to some of the variability in the cortisol rhythm. Nevertheless, the mean 

number of consecutive shifts worked prior to the final CR was comparable between 

groups. 

A lack of entrainment of melatonin and/or cortisol to a night-oriented schedule is 

reported in a number of studies despite a series of shifts (Sack et aL, 1992; Roden et al., 

1993; Koller et al., 1994; Costa et al., 1997; Hennig et al., 1998). The control group 

workers in this study demonstrated greater variability in the alignment of their cortisol 

rhythm with the sleepwake schedule than treatment group workers. This resulted in an 

apparent reduction in the mean amplitude of the cortisol rhythm in the control group 

following a work period including -12 night shifts (Figure 4.1, lower panels). This change 

is secondary to the averaging of data points for iIIustrative purposes, since our analyses 

of individual curves revealed that circadian amplitude was maintained in both groups 

(Table 4.1). 
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The sampling interval used in the present study is large compared to the 10-20 

minute sampling interval of plasma cortisol used in some prior studies (Weibel et aL, 

1996; Weibel and Brandenberger, 1998; Weibel and Brandenberger, 2002). It is thus 

possible that our longer sampling interval has introduced some variability in the reported 

results. Nevertheless, the cortisol data are consistent with those of salivary melatonin 

(sampled 1/hour) and core body temperature data (sampled 1/minute) also collected 

during CRs. 

Populations of workers much like ours are described as having varying degrees 

of circadian adaptation, where some report no adaptation at ail. The pattern of light 

exposure maintained by night shift workers who spontaneously adapt to a night shift 

work schedule are notable for the stability of sleep times (Roden et aL, 1993), limited 

exposure to bright sunlight in the morning (Koller et aL, 1994), brighter light during shift 

hours combined with sleep times in darkness (Dumont et aL, 2001), and limited 

exposure to light throughout the day in Antarctic studies (Midwinter and Arendt, 1991). In 

particular, shift workers displaying adapted rhythms of salivary cortisol over a series of 

consecutive night shifts also reported stable morning sleep times (Hennig et aL, 1998). 

Circadian adaptation of the cortisol rhythm in shift workers is worthy of 

investigation for a number of reasons. The demonstration of reduced memory 

performance with pharmacological reduction of cortisol levels, and increased 

performance and cognitive efficiency in the presence of exogenous cortisol (Lupien et 

aL, 2002), suggests that a misalignment in the cortisol rhythm resulting in lower levels 

during the waking episode could contribute to the observed reduction in performance in 

the workplace (Akerstedt, 1995). 

Indeed, the administration of exogenous glucocorticoids has resulted in reduced 

subjective ratings of fatigue in emergency room physicians on night shifts (Whitcomb et 

aL, 2000) and increased objective measures of vigilance as assessed via 

polysomnography during repeated nap opportunities (Meixner et aL, 2003). Thus, an 

appropriate alignment of peak cortisol levels with the start of the night shift (as achieved 

by the treatment group) seems to the worker's advantage. 

As is weil known, sleeping at inappropriate circadian phases as in shiftwork may 

result in an abbreviation of the sleep period (Foret and Benoit, 1974; Kurumatani et aL, 

1994; Rosekind et aL, 1994; Sallinen et aL, 2003). The accumulation of sleep debt over 

a number of consecutive night shifts worked, for example, may in turn result in elevated 
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basal cortisollevels (Leproult et al., 1997; Charloux et al., 2001). In our small sample of 

workers, we were unable to detect significant between group differences in mean 

salivary cortisol levels. The long-term consequences of a misalignment between the 

endogenous cortisol rhythm and the sleep/wake cycle are largely unknown, but could 

contribute to the increased risk of metabolic disorders, induding diabetes, associated 

with shift work (Karlsson et al. 2001, Koller et aL, 1978; Knutsson, 2003). This is 

particularly true in light of the hypothesis that cortisol may directly affect glucose 

metabolism (Van Cauter et aL, 1992, 1997; Dinneen et aL, 1993;). More specifically, the 

elevation of cortisol levels at inappropriate times of day results in profiles of insulin 

secretion and plasma glucose concentration that are consistent with a temporary insulin 

resistance (Lund et aL, 2001 ; Plat et al., 1999). 

ln summary, the present study is in line with previous observations on the 

efficacy of careful control of light and darkness throughout the day as a practical means 

to promote reentrainment to a schedule of night work. Where persistent maladaptation to 

shiftwork may explain how working non-standard schedules can be predictive of the 

development of a chronic disorder (Shields, 2002), promoting the circadian adaptation of 

shift workers, or at least those on full-time night shifts, may be a worthy approach. 
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Figure 4.1 

Experimental protocol and mean pattern of expression of salivary cortisol during CRs. 

Upper panels show the protocol for the experimental groups. Successive days are 

shown side-by-side and along the vertical axis. Sleep/darkness periods are indicated as 

black bars. Hatched bars indicate CR evaluations. Dark grey bars indicate periods of 

night shift work performed in habituai lighting. In the treatment group, intermittent 

exposure to bright light during the first 6 hours of night shifts is shown as light grey bars. 

ln lower panels, mean salivary cortisol concentration per 4 hours is shown (±SEM) in 

both groups of workers for initial (CR 1) and final (CR2) CRs. The times of fitted cortisol 

maxima relative to sleep/darkness episodes are shown for each group as solid triangles 

in upper panels. Mean cortisol concentration was averaged across groups based on 

hours of awakening into each constant routine. To facilitate visualization, workers were 

assigned relative clock times of awakening of 08:00 for the initial CR and 18:00 for the 

final CR. 
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Initial CR Final CR P 
Amplitude (OC) 

Control group 0.06 ± 0.01 0.07 ±0.02 0.5 
Treatment group 0.05 ± 0.01 0.07 ± 0.02 0.3 

P 0.7 0.8 

Time of fitted maximum 
Control group 08:00 ± 1:12 11 :03 ± 02:02 0.1 

Treatment group 10:13 ± 00:38 21: 17 ± 01:21 0.03* 
P 0.1 0.009* 

Time of fitted minimum 
Control group 19:52 ± 0:58 23:33 ± 2:05 0.1 

Treatment group 21 :48 ± 0:48 09:14 ± 1:23 0.03* 
P 0.3 0.004* 

Phase angle calculated between bedtime and fitted maximum 
Control group -8:32 ± 1:37 -1 :15 ± 2:10 0.04* 

Treatment group -9:51 ± 0:18 -11 :38 ± 1 :22 0.2 
P 0.8 0.009* 

Interval between maximum and minimum 
Control group 12:08 ± 0:16 11 :29 ± 00:20 0.08 

Treatment group 12:25 ± 0:17 12:03 ± 0:18 0.2 
P 0.7 0.2 

24-hour mean concentration (Jlgldl) 
Control group 0.08 ± 0.02 0.1 ± 0.03 0.3 

Treatment group 0.07 ± 0.01 0.1 ± 0.02 0.07 
P 1.0 0.4 

Table 4.1 

Characteristics of endogenous salivary cortisol rhythm measured during CRs. For the 

calculation of phase angles, bedtimes in the first constant routine are based on mean 

sleep times during the preceding vacation period, scaled to an 8-hour length. Phase 

angles trom the second constant routine are based on reported bedtimes during the 

night shift work period. By convention, negative phase angles indicate that the fitted 

cortisol maximum occurs after bedtime. Signiticant comparisons are marked with *. 
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5.1 Preface 

Having established the sustained circadian rhythmicity in the expression of clock genes 

in PBMCs (Chapters 2 & 3), the next test in the investigation was to determine whether 

these functional clocks could be shifted. In this case, the shift in the sleep/wake 

schedule simulates night shift work. Phase shifts in the expression of hormonal markers 

controlled by the SCN would be induced by judicious exposure to light and darkness, as 

observed in Chapter 4. It was hypothesized that the expression of peripheral oscillators 

in PBMCs could become realigned to a shifted sleep/wake schedule, in the presence of 

a light intervention that could shift endogenous rhythms of melatonin and cortisol. 

5.2 Abstract 

Context: Judicious light and darkness exposure throughout the day can promote the 

appropriate alignment of hormonal circadian rhythms to night shift work. The 

resynchronization of human peripheral circadian oscillators is largely unknown to date. 

Objective: Evaluate clock gene expression in peripheral blood mononuclear cells 

(PBMCs) with respect to the simultaneous resetting of plasma melatonin and cortisol 

rhythms throughout simulated night shift work. 

Participants: Five healthy candidates aged 18-30 years. 

Design and Setting: Participants were placed on a 1 O-hour delayed sleep/wake schedule 

simulating nighttime "work" followed by a daytime sleep episode. Baseline, intermediate 

and final circadian evaluations were performed in the temporal isolation laboratory. 

Intervention: Full-spectrum white light of (mean ±SEM) 6,036±326 lux during night shifts; 

dim light exposure after each night shift; maintenance of a single 8-hour sleep/darkness 

episode beginning two hours after the end of each night shift. 

Outcome Measures: Circadian rhythms of plasma melatonin and cortisol. Circadian 

rhythms of expression of clock genes HPER1, HPER2and HBMAL 1 in PBMCs. 

Results: Following nine days on the night schedule, hormonal rhythms were adapted to 

the shifted schedule. HPER1 and HPER2 expression in PBMCs displayed significant 

circadian rhythmicity, also appropriately aligned to the shifted sleep/wake schedule. 

Conclusions: This is the tirst demonstration of the simultaneous entrainment of 

peripheral circadian oscillators in PBMCs and centrally-driven hormonal rhythms 

following a shifted schedule. The study of peripheral circadian oscillators has important 

implications for understanding the medical disorders affecting night shift workers. 
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5.3 1 ntroduction 

The rapid reorientation in the sleep/wake schedule brought about by night shift work 

results in a misalignment between the output of the endogenous circadian pacemaker 

and the shifted schedule. Night shift workers typically display hormonal circadian 

rhythms that are maladapted to a night-oriented schedule (1) . Light is the primary 

synchronizer of the endogenous circadian pacemaker of the suprachiasmatic nucleus 

(SCN), and careful control over light and darkness exposure throughout the day 

effectively promotes circadian adaptation of workers to night shifts (2, 3). The rhythmic 

expression of circadian clock genes required for the intrinsic rhythmicity of the SCN is 

also present in non-SCN tissue (4, 5), and the SCN coordinates the expression of 

cellular rhythmicity within peripheral tissues (6). Rhythmic clock gene expression has 

been observed in human oral mucosa and skin samples (7) and in peripheral blood 

mononuclear cells (PBMCs) (5, 8-10). Under constant conditions, the expression of core 

clock genes HPERI and HPER2 displays a significant circadian oscillation in PBMCs 

with expression peaks a few hours after that of plasma melatonin concentration (10). 

The aim of this simulated night shift work experiment is to document the circadian 

alignment of clock gene expression in PBMCs when a light intervention that shifts 

plasma melatonin and cortisol rhythms is provided. 

5.4 Methods 

Four male and one female candidate, ail healthy, non-smoking and drug-free (group 

mean age ±SD: 24.9 ±4.8 years) with normal BMI (23.4 ±1.6 kg/m2) gave informed 

consent to their participation in this study approved by the Douglas Hospital Research 

Ethics Board. Selected candidates had no history of night shift work or travel across time 

zones in the three months preceding the study. The female participant had regular 

menses with an average cycle duration of 32 days. The study took place within the 

follicular phase of her menstrual cycle. 

For two weeks before the start of the investigation, subjects maintained a stable 

8-hour night-time sleep/darkness period and took no naps during the day (Table 5.81). 

Meal-times were standardized throughout the study and subjects took breakfast at 30 

minutes after awakening, lunch at 5 hours after awakening, dinner at 11 hours after 

awakening and an evening snack at 13.5 hours after awakening. 
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The experimental protocol for the 12-day investigation is shown in Figure 5.1. 

After a baseline assessment on their habituaI schedule (experimental days 1-2), subjects 

underwent a 9-day simulated night shift work procedure during which their sleep episode 

was delayed by 10 hours. Circadian phase was reevaluated after 4 simulated night shifts 

in the laboratory (on experimental days 5-6) and after additional 5 simulated night shifts 

at home (on experimental days 11-12). Evaluations were performed in a time-free 

laboratory and circadian rhythms of melatonin, cortisol and clock gene expression in 

PBMCs were determined from blood sampling via an indwelling catheter. Each 24-hour 

sampling period included a 16-hour constant posture (CP) period of limited activity 

where participants maintained a semi-recumbent posture in bed. Meals were replaced 

by hourly, nutritionally balanced snacks. 

Circadian phase of the plasma melatonin rhythm was defined from hourly whole 

blood samples as the midpoint between the upward and downward crossing of the 24-

hour average of plasma melatonin concentration (2). The phase of the cortisol rhythm 

was defined as the time of the fitted maximum of cortisol concentration, based on a 

single harmonie regression applied to hourly sampling data (3). RNA was extracted from 

PBMCs isolated from whole blood samples drawn every -120 minutes (Extraction 

procedure detailed in supplementary material). Quantification of HPERI, HPER2, 

HBMAL 1 expression was determined relative to HCDK4 (10) expression using SYBR 

Green chemistry (Applied Biosystems, USA). 

Fold change in gene expression of each clock gene for each sample was 

determined using the 2-MC
T calculation (11) and then expressed as a proportion of 

maximum expression for each blood sampling evaluation. A statistically significant 

circadian oscillation was observed where the 95% confidence interval for the amplitude 

of the expression estimated by a dual-harmonie regression analysis with a period search 

of 23-26 hours (12) did not include the zero value (10). The phase of clock gene 

expression in PBMCs was defined as the time of fitted maximum of expression. For each 

laboratory evaluation, we determined a profile of the expression of each circadian 

marker across a total of six wake or sleep bins corresponding to the 24-hour day. Two­

factor ANOVA for repeated measures (time-of-day and sampling session) were 

performed on binned values. 

Results are expressed as mean ± SEM. 
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5.5 Results 

The midpoint of melatonin expression occurred 3:17 ±0:14, and 3:11 ±0:16 hours before 

waketime in the baseline and final evaluations, respedively (Figure 5.1). During these 

blood sampling sessions, the fitted maximum of cortisol occurred 3:07 ± 0:37, and 3:29 ± 

0:40 hours after waketime, respedively. The alignment of melatonin and cortisol rhythms 

with the sleep/wake cycle were comparable in the baseline and final evaluations (t-test, 

p=0.7 and p=0.9, respectively). As observed in night shift workers receiving a similar 

intervention (2, 3), these markers displayed an appropriate alignment to the sleep/wake 

cycle in night and daytime sleep schedules (Figure 5.2). 

During the baseline evaluation, the time of fitted maximum of HPERI, HPER2 

and HBMAL 1 occurred at 2:53 ± 3:16, 8:00 ± 2:35 and 10:14 ± 0:30 hours after 

waketime, respectively. At the end of nine days on the shifted sleep/wake schedule, the 

fitted peak of HPERI and HPER2 expression occurred 5:35 ± 2:40 and 0:40 ±0:44 after 

waketime, respectively. The fitted peak of HBMAL 1 expression occurred 9:21 ± 4:20 

before awakening. The alignment of HPERI and HPER2 maxima to the sleep/wake 

schedule were comparable in the initial and final conditions (Hest, p=0.6 and p=0.2, 

respectively), although these phase angles were more variable than those calculated for 

hormonal rhythms (Figure 5.51). The alignment of HBMAL 1 expression tended to differ 

in the initial and final conditions (p=0.07). 

5.6 Discussion 

This study has demonstrated an alignment of clock gene expression (particularly 

HPER2) to a shifted schedule in an experiment of light-induced phase shifts of the 

endogenous melatonin and cortisol rhythms. The time, duration, and intensity our 

lightldarkness intervention were expected to promote rapid and large delays in the 

expression of the central circadian pacemaker (13). Changes in the profile of clock gene 

expression occurred as of 3 days on the night shift schedule such that a greater 

proportion of the expressed rhythms were of significant amplitudes and in their habituai 

relationships to the sleep/wake cycle after 9 days of simulated night shift work (Figure 

5.2). 

Inter-subject variability in HPERI and HPER2 expression at baseline resulted in 

little rhythmicity in the group mean of gene expression (Figure 5.2). By the final 

evaluation, group means of HPERI and HPER2 expression demonstrated clear 

rhythmicity throughout the day, and both reached maximal levels in the early hours of 
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the wake period. This observation is in line with what has previously been described for 

the pattern of HPER1 and HPER2 expression in PBMCs under constant conditions and 

in the presence of a habituai sleep/wake schedule (9, 10). Conversely, the group mean 

pattern of HBMAL 1 expression demonstrated rhythmic changes throughout the day at 

baseline and was more variable at the end of the experiment although the fitted peak of 

HBMAL 1 expression occurs la te in the wake-period as we would expect (5). 

Clock gene polymorphisms may contribute to diurnal preference and certain 

sleep/wake disorders (5) and an observed segregation in the times of peak HPER2 

expression in PBMCs has been attributed to the existence of molecular phenotypes that 

may in turn explain the heterogeneity in clock gene expression (8). Although none of our 

participants demonstrated extreme diurnal preferences, we cannot determine the extent 

to which these factors contributed to the variability we observed in the initial condition. 

ln rodents, the pattern of light exposure has been shown to affect the expression 

of clock genes in the SCN and in peripheral oscillators. However, the time required for 

phase shifts in extra-SCN oscillators may be longer and associated with a temporary 

internai desynchrony (14, 15). In jaundiced neonates with covered eyes, blue light 

therapy appears to reduce mean HBMAL 1 expression in PBMCs when samples 

collected before and after light exposure are compared (16). While the result suggests 

that it may be possible to entrain oscillators in human PBMCs without the involvement of 

the SCN, significant inter-individual variability in the expression makes this interpretation 

tenuous. Blue light that suppresses plasma melatonin concentration was reported to 

induce HPER2 expression in oral mucosa samples during a 2-hour exposure (17). The 

specifie wavelength used led the authors to suggest that the effects on HPER2 are 

mediated via the SCN. The factors by which the SCN coordinates clock gene expression 

in PBMCs are yet unknown. In our experiments, we tightly controlled behavioural and 

environmental conditions. However, unknown factors might still be present and reflected 

in our results. Interestingly, a number of experiments suggest that glucocorticoids may 

play a role in the communication between the SCN and peripheral oscillators in vivo 

(18). In humans, HPER1 is induced in PBMCs sampled following prednisolone therapy 

(19). Here, we report a co-occurrence of the entrainment of the cortisol and clock gene 

expression rhythms. Future investigations are required to elucidate the nature of this 

relationship in PBMCs since the net effect of synchronizers acting on PBMC oscillators 

was variable rhythmicity at the tirst evaluation. 
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Changes in rodent feeding schedules may shift the oscillation of peripheral clocks 

without shifting SCN-driven rhythms and there may be an interaction between photic and 

non-photic resetting factors on peripheral clock gene expression (20). We cannot 

determine from our experiment the specifie contributions of the shifted sleep/wake and 

meal schedule and of the light intervention on clock gene expression. It is tempting to 

suggest that in the presence of the light intervention, an SCN-directed entrainment 

signal was powerfu1 enough to reduce inter-individual differences contributing to the 

variability observed in the baseline conditions and entrain clock gene expression to the 

shifted sleep/wake schedule. Future study will be required to partial out the nature of 

synchronizers of peripheral circadian oscillators, and to quantify their relative strength. It 

remains of interest that clock gene expression was in a conventional alignment relative 

to sleep times by the final evaluation. 

The molecular clock is thought to interact with the regulation of the cell cycle and 

tumorigenesis (5). Moreover, cancerous cells may demonstrate abnormalities in 

circadian clock genes (5). In light of recent evidence associating increased risk of certain 

cancers with night shift work (5), our results demonstrate that circadian adaptation to 

night shift work may be advantageous on a fundamentallevel. 
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Figure 5.1 

Experimental protocol and mean shifts in circadian markers. A: Participants remained in 

a time-free environ ment for 6 days. They maintained their habituai sleep/wake schedules 

for the first night in the laboratory and were placed on a schedule of simulated night work 

and a daytime sleep as of Experimental day 3. This schedule, delayed by 10 hours 

relative to habituai sleep/wake times, was maintained for the remainder of the 12-day 

study. On the day of laboratory admission participants remained in ordinary indoor room 

light (mean ±SD, in the angle of gaze 144±62 lux). Thereafter, ambient light levels during 

periods of wakefulness remained dim (6±3 lux) except when subjects were exposed to 

bright full-spectrum light (6,036± 728 lux) during their 8-hour simulated night shifts 

(shown as open rectangles with symbol). Participants slept in darkness (-0.03 lux, 

shown as black rectangles). Subjects returned home in the evening of day 6. During the 

ambulatory segment of the investigation, full spectrum white light was provided by 

portable lamps equipped with fluorescent bulbs covered with an ultraviolet filter (Sunbox 
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Company, Gaithersburg, MD, U.S.A) throughout each 8-hour simulated night shift. 

Participants slept in their own darkened bedrooms, and reduced their exposure to 

morning light in the two hours preceding sleep/darkness by wearing sunglasses with 5% 

visual light transmission (The Litebook Company, Medicine Hat, AB). The maintenance 

of sleep/darkness schedules was verified by sleep/wake logs, regular telephone calls to 

the laboratory and wristactigraphy monitoring. Subjects returned to the laboratory on the 

evening of day 10 for the final circadian assessment. The expression of markers of the 

endogenous circadian pacemaker and of dock gene in PBMCs were measured by 24-

hour blood sampling sessions performed before the start of simulated night shifts 

(experimental day 2), after three days on the shifted schedule (experimental days 5-6), 

and at the end of the shifted schedule (experimental days 11-12). Blood sampling 

periods are shown as horizontal lines overlaid on the protocol. Each sampling period 

included a 16-hour constant posture (CP) period shown as grey rectangles. For 

iIIustrative purposes, bedtimes for nighttime and daytime sleep episodes were assigned 

relative dock times of 00:00 and 10:00, respectively. Ali studies were performed in the 

months of July and August 2005. B-F: Mean phase of each marker is shown relative to 

night or daytime sleep periods (hatched boxes representing night and day sleep 

episodes). To demonstrate the relationship between the sleep/wake schedule and 

circadian phase, phase angles were calculated as: (waketime) - (circadian phase) for 

each individual. Thus, positive and negative phase angles indicate that the circadian 

marker occurred before and after waketime, respectively. Group mean phase angles are 

shown in decimal hours ±SEM. One subject did not participate in the final evaluation, 

thus results of this evaluation are given for n=4 subjects, while n=5 for the first two 

evaluations. See Figure 5.S1 for individual results. 
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Expression of circadian markers throughout the sleep/wake cycle. Individual data was 

first aligned to the time of habituai awakening, and each data point was assigned to a 4-

hour bin representing Wake (W1-W4) or Sleep (S1-S2) periods throughout the 24-hour 

day, and then averaged across ail subjects. For each clock gene evaluation, the fraction 

of individuals for whom a significant circadian amplitude of expression was detected is 

shown in the upper left corner of each cell. One subject did not participate in the final 

evaluation, thus results for this evaluation are given for n=4 subjects. ANOVA for 

repeated measures performed on daily rhythms for ail three blood sampling sessions 

revealed a significant time of day x blood sampling session interaction for melatonin 

(F1O.55=2.40, p=0.02), and a significant effect of time of day for cortisol (F5.55=50.01, 

p<0.0001). No statistically significant effects or interactions were detected by ANOVA for 

HPER1. A significant time of day x blood sampling session interaction was detected for 

HPER2 rhythms (F1O•55=2.99, p=0.004) where simple main effects analyses revealed a 

significant effect of time of day at the final blood sampling session (p=0.001). A 
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significant interaction was also detected for HBMAL 1 (F1O.ss=3.34, p=0.002, 

respectively), where simple main effects analyses revealed a significant effect of time of 

day at the first blood sampling session (p=0.0006). 
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5.7 Supplementary materials 

RNA Extraction and real-time PCR 

Peripheral blood mononuclear cells were isolated from whole blood samples drawn 

every -120 minutes on a density gradient (Histopaque-1077, Sigma-Aldrich Canada, 

Oakville, ON, Canada) and stored at -800C in Trizol reagent (Invitrogen Canada, 

Burlington, ON, Canada). RNA was extracted and reverse transcribed using MultiScribe 

Reverse Transcriptase (Applied Biosystems, Foster City, CA, USA). Quantification of 

clock gene expression was performed by real-time PCR using SYBR Green chemistry 

(Applied Biosystems, Foster City, CA, USA). The expression of clock genes HPERI, 

HPER2, HBMAL 1 was described relative to the expression of HCDK4 using the following 

primers: 

HPERI 

Forward: 5'-TGGCTATCCACAAGAAGATTC-3' 

Reverse: 5'-GGTCAAAGGGCTGGCCCG-3' 

HPER2 

Forward: 5'-GGCCATCCACAAAAAGATCCTGC-3' 

Reverse: 5' -GAAACCGAA TGGGAGAA TAGTCG-3' 

HBMALI 

Forward: 5' -GGCTCA T AGA TGCAAAAACTGG-3' 

Reverse: 5'-CTCCAGAACATAATCGAGATGG-3' 

HCDK4 

Forward: 5'-ATCCCAA TGTTGTCCGGCTG-3' 

Reverse: 5'-TGATCTCCCGGTCAGTTCGG-3' 

Sleep/Darkness schedule 

During the screening phase preceding the start of the experiment, participants 

maintained stable sleep schedules including a single night-time sleep episode and 

restricting naps. Participants recorded times in and out of bed in sleep/wake logs and 

left voice messages with the laboratory to confirm these times. Sleep/wake schedules 

were also verified using wrist actigraphy. Mean reported times in bed are shown in Table 

S1. During the pre-study period, Mean sleep period lengths were within 10 minutes of 

the 8-hour target sleep/darkness period. 

During the ambulatory segment of the investigation, participants maintained the 

night shift worker's sleep/wake schedule while at home. Times in and out of bed were 
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verified as in the pre-study segment of the investigation. During this ambulatory 

segment, participants reported sleep/darkness periods within 10 minutes of the 8-hour 

target period length. 
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T01 
T02 
T04 
T05 
T06 

Table 5.51 

Baseline 
Time in bed Time out of bed 

23:25 7:30 
22:01 6:04 
00:00 8:01 
23:26 7:29 
23:58 8:08 

Night shift schedule 
Time in bed Time out of bed 

9:30 17:28 
8:05 16:05 
10:02 18:06 
9:29 17:36 

Mean times in and out of bed reported in sleep/wake logs for each participant. During 

the baseline period, subjects maintained a habituai day-oriented sleep-wake schedule 

prior to their admission to the laboratory. During the ambulatory phase of the 

investigation (experimental days 6-10), participants maintained a night-oriented schedule 

by remaining awake at night and sleeping during the day. 5ubject T06 did not 

participate in the last segment of the investigation (experimental days 6-12). 
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Individual circadian phase markers during each blood sampling session of the 

experimental protocol. The experimental protocol is shown in panel A as in Figure 5.1. 

ln panels B-F, phase markers for each individual are shown relative to night or daytime 

sleep periods (hatched boxes representing night and day sleep episodes). To 

demonstrate the relationship between the sleep/wake schedule and circadian phase, 

phase angles were calculated as: (waketime) - (circadian phase) for each individual. 

Individual data are shown in separate colors. Group mean phase angles are shown in 

decimal hours ±5EM. 5ubject T06 did not participate in the final evaluation, thus results 

of this evaluation are given for n=4 subjects, while n=5 for the tirst two evaluations. 
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CHAPTER 6 

General Discussion 

6.1 Characteristics and implications of an en doge nous peripheral oscillator in 

PBMCs 

The rhythmic and circadian expression of elements of the clock mechanism is taken to 

mean that the molecular loop that comprises the clock is functional. In recent years, 

evidence has been rapidly accumulating for the presence of rhythmic clock gene 

expression and a functional peripheral clock in a number of human tissues. 

There was prior evidence to suggest that human fibroblast and skin cell culture 

could express clock gene mRNA or proteins [216], and that human vascular smooth 

muscle cells [215], fibroblasts [226] or neural cells [218] in culture could demonstrate an 

oscillation of clock genes following serum shock. However, none of these prior 

investigations used tissue harvested from humans at regular intervals. Thus, the 

presence of a functional clock could only be confirmed with repeated sampling 

throughout a circadian cycle. Bjarnason and colleagues used oral mucosa and skin 

sampling at 4-hour intervals for 24 hours and demonstrated that significant circadian 

rhythms in clock gene expression could be measured in vivo in these cells [219]. They 

were thus the first to identify a functional peripheral circadian oscillator in humans [219]. 

There was evidence to suggest the presence of diurnal changes in clock gene 

expression in the immune system. In rat mononuclear cells, Per2 mRNA peaks at the 

beginning of the dark period [273]. A change in HPERI and HPER2 expression was 

reported in human lymphocytes sampled before and after surgery. However, the aim of 

this report was to determine the effects of surgery on PBMC clock gene expression 

rather than to measure diurnal variation [274]. It was also previously known that in 

PBMCs sampled at 09:00 and 21 :00, HCLOCK levels showed no significant difference 

while mean HPER2 levels were higher in the morning sample [220]. In the present 

thesis, it was demonstrated with repeated sampling of PBMCs from whole blood over a 

35-hour duration that HPERI, HPER2 and HBMAL Ilevels oscillate in the presence of a 

standard sleep/wake cycle (Chapter 3). The persistence of a significant oscillation under 

controlled behavioural and constant dim light conditions (Chapters 2 and 3) confirms the 

endogenous nature of this circadian rhythm. From the experiments published so far on 

clock gene expression in the human circulating immune cells, the morning peak of 
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HPER1 is comparable in mononuclear cells and polymorphonuclear cells [221]. 

However, the circadian phase of HPER2 and HBMAL 1 expression may be variable when 

sampled at 4-hour intervals from healthy adults in the presence of their habituai 

sleep/wake schedule [222]. 

To date, PBMC oscillators are also characterized by inter-individual variability in 

the patterns of clock gene expression. A number of specifie factors may regulate clock 

gene expression in PBMCs, as discussed below (section 6.2). However, it is also 

possible that characteristics specifie to an individual may significantly affect the presence 

of factors that would entrain peripheral clocks. The times of peak HPER2 and HBMAL 1 

expression during the sleep/wake cycle segregate into two groups which has led to the 

suggestion that molecular chronotypes may be defined based on PBMC clock gene 

expression [222]. This was not apparent from the investigations presented here, 

although significant inter-individual variability was present. Similarly, the polymorphisms 

that contribute to preferred diurnality [186-189] may also contribute to the variability in 

PBMC clock gene expression. The inclusion of participants of moderate diurnality in the 

present experiments makes it impossible to determine the extent of this influence. 

Circadian rhythms are also shiftable by definition. A study in which HCRY1 and 

HBMAL 1 are compared in PBMCs before and after 24-hours of phototherapy for 

jaundiced neonates, is difficult to interpret since the sampling frequency is insufficient to 

describe a circadian rhythm or reliably assess circadian phase [225]. Thus, there was no 

a priori evidence of the length of time required for light-induced phase shifts in human 

peripheral oscillators. The present investigations demonstrate that a change in the 

diurnal expression of clock genes in PBMCs can occur following a 9 days on shifted 

sleep/wake schedule. The synchronization that was observed suggests that a shift has 

occurred, although the mechanisms by which this shift was achieved remain unclear. 

Animal studies suggest that phase shifts in clock gene expression in the SCN precede 

those observed in peripheral tissues [195, 229]. However, stimuli such as feeding time 

can phase shift peripheral oscillators independently of the SCN [235]. Thus, the 

experimental paradigm presented in this thesis does not allow the distinction as to 

whether shifted peripheral rhythms are the result of bright light induced phase shifts of 

the SCN (as suggested by delays of cortisol and melatonin circadian rhythms) or other 

mechanisms su ch as the change in the sleep/wake and meal-timing schedules. 

Measuring clock gene expression in PBMCs in individuals who would undergo the same 

113 



experimental manipulation of the sleep/wake cycle but remain in constant dim light 

during wake periods could clarify this issue. Aiso relevant to this question, clock gene 

expression may be measured in the PBMCs of individuals lacking conscious and 

circadian vision in their naturalistic environment. As endogenous circadian phase drifts 

away from the 24-hour day, the peripheral oscillator will betray whether it remains in 

phase with the sleep/wake cycle or drifts in an out of phase with SCN-driven rhythms 

such as melatonin or cortisol secretion. 

Intuitively, peripheral oscillators should serve to optimize the function of the 

peripheral tissues. Indeed, a tissue's function may be regulated by the molecular clock to 

a significant extent as measured in the number of rhythmic transcripts throughout the 

day in the liver [275], the heart [276], the adrenals [277] or in adipose tissue [278]. In 

support of this, ablating the SCN or changing the hormonal environ ment has different 

consequences for different tissues [179, 279-282]. Ce Ils harvested from the femur­

derived bone marrow of mice demonstrate differences in Pert and Per2 expression 

based on the relative differentiation of the cell in the marrow [283-285]. In a similar 

fashion, peripheral oscillators in PBMCs may serve to optimize the function of PBMCs. 

It is possible that differences in clock gene expression confer some advantage to 

subsets of cells in their specific function. A secondary peak expression of HPERt in 

polymorphonuclear cells as observed under modified CR conditions is not present in 

mononuclear cells sampled simultaneously [221]. Similarly, the response of cultured 

human monocytes and lymphocytes to glucocorticoid stimulation is not the same [286]. 

Conversely, estimating clock gene expression from a more heterogeneous population 

(such as from the RNA extracted from non-separated whole blood cells) may result in 

mean circadian rhythms of lower amplitude [224]. 

ln a functional sense, the clock in the immune system may contribute to the 

diurnal rhythmicity in cell numbers or even the variation in PBMC cellular subsets [80-82, 

287-289]. It may also play a role in the function of white blood cells. Under constant 

darkness conditions and in the presence of 12h:12h lighUdarkness schedule, rat NK 

cells demonstrate a circadian rhythm in clock gene expression with Pert and Per2 peaks 

occurring early in the subjective day and a Smalt peak occurring in anti-phase [290, 

291]. The rhythmic expression of the molecular clock components is associated with 

mRNA and protein for cytolytic factors essential to NK cell activity [290]. Using RNA 

interference to knock down rPER2 levels in an NK cell line results in a significant 
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reduction in detected granzyme Band perforin prote in [291]. The expression of IFN-y in 

response to a lipopolysaccharide challenge is reduced in Per2 knockout mice compared 

to wild-type mice [292]. Similarly, the maturation of B lymphocytes is altered in 8ma/1 

knockout mice [293]. 8ma/1 knockout mice demonstrate specifie changes in the cell 

population of the immune system: the proportion of neutrophils and monocytes is 

significantly increased in 40-week old animais [294]. 

If the peripheral oscillators are specifie to the tissue's function, then it may be 

advantageous that a peripheral oscillator can dissociate itself from the SCN. Following 

an abrupt shift in the lightldarkness schedule, laboratory rodents demonstrate rhythmic 

Perl expression in the SCN that adapts more rapidly than Perl expression in the liver 

[195]. However, restricting food availability to a few hours during the light period can 

rapidly entrain peripheral clocks in the liver without affecting phase of clock gene 

expression in the SCN [233, 234]. It is known that clock gene expression in peripheral 

tissues may be directly related to functions such as fatty acid metabolism [278, 295] or 

phospholipid biosynthesis [296]. The rapid adaptation of a peripheral clock to a stimulus 

that is closely related to its function may therefore be useful to the organism. In this 

manner, the rapid response of the liver clock to a restricted feeding regimen [235] is 

consistent with the tissue's role in the response to food. Despite the advantage 

conferred by this organization, there may nevertheless be consequences to the internai 

desynchronization resulting from differences in the adaptation rates in central and 

peripheral clocks. Specifically, internai desynchronization may result in conflicting 

entrainment signais in peripheral clocks. Arguably, this may contribute to the chronic 

health consequences in populations prone to internai desynchronization such as night 

shift workers [240]. 

The present assays in humans principally discuss mRNA transcription as a 

surrogate for expression. The regulation of individual clock genes or clock controlled 

genes can differ between tissues in post-transcriptional modifications [297-299] and in 

the amplitude [279] or variability [209] of expression. Disruption of the CLOCK protein in 

the mouse SCN results in a reduction, but not an abrogation, in the amplitude of clock 

gene expression while locomotor rhythms remain robust [280]. In peripheral tissues, a 

similar disruption of CLOCK may have more severe consequences on the phase and 

amplitude of expression of specifie clock genes in the liver clock, for example [280, 300]. 

DEC1 is known to bind the Perl promoter and regulate its expression [301, 302] but this 
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gene demonstrates little circadian rhythmicity in PBMCs under constant conditions 

(Chapter 2). Dec1 expression in Clock mutant animais is arrhythmic in the heart while it 

maintains the circadian rhythm in its expression (although of reduced amplitude and 

phase delayed relative to wild type) in skeletal muscle [303]. Recent technical advances 

in the study of animais models, including RNA interference to knock down the translation 

of a specific gene transcript and measurement of clock gene-driven luminescence for 

multiple clock genes in a single tissue [200] may produce useful answers to the tissue­

specific and clock gene specifie regulation that occurs in peripheral osci"ators. 

6.2 Factors involved in the synchronization of human peripheral oscillators 

The usefulness of assessing peripheral elock gene expression in PBMCs is limited by 

our understanding of the signais that entrain it. A circadian reporter construct including 

the mouse 8mal1 promoter provided evidence for the oscillation of clock gene 

expression in autopsied skin fibroblasts, monocytes and keratinocytes and determined 

that the standard deviation in the estimated period is over 8 times higher between 

individuals than within several cultures from a single individual [223]. This would suggest 

that within an individual, there exists some mechanism by which peripheral clocks are 

coordinated. The variability in the clock gene expression [222], (Chapters 2, 3 & 5) may 

persist beeause the factors that contribute to the condition are not sufficiently reduced in 

the habituai sleep/wake cycle or under CR conditions. There is no circadian clock gene 

expression rhythm detected in horse PBMCs [304], which suggests that either no 

peripheral clock exists in horse PBMCs or, more likely, that under habituallight darkness 

sampling conditions, clock gene expression was not coordinated [304]. In the same 

animais, a functional circadian pacemaker was observed in adipose tissue [304]. Just as 

peripheral oscillators perform specific functions, they may also be coordinated in a 

specific way in different tissues. 

A number of different factors contribute to the ce"ular environ ment of PBMCs: 

from regional blood flow [305] to ce"ular subtype trafficking [80]. SCN coordination of 

peripheral rhythms might be achieved via the rhythms it controls, su ch as cortisol or 

melatonin, both of which contribute to the peripheral blood environment [211]. 

Glucocorticoid rhythms can alter the expression of PBMCs in culture and in vivo [286]. 

Glucocorticoids may specifica"y affect the expression of molecular clocks in certain 

tissues more than others: adrenalectomy selectively abolishes PER2 rhythms in the 

central nucleus of the amygdala but not the basolateral amygdala or the dentate gyrus 
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[306]. Dexamethasone stimulates Per1 expression in human bronchial epithelial ce Ils 

and in PBMCs in vitro. [228]. Glucocorticoid receptors in the immune system are weil 

identified [307, 308]. 

Melatonin also has specific properties in the immune system and is a reasonable 

means by which peripheral clocks may be entrained [309, 310]. PBMCs can synthesize 

their own melatonin under in vitro stimulation thus may also contribute to their own 

cellular environ ment [311, 312]. In sufficient doses in vitro, melatonin can increase T 

lymphocyte and NK cell activity and increase the transcription of cytokines in human 

monocytes [56]. Differences in dock gene expression are apparent in the adrenals of 

melatonin proficient and deficient mouse strains [313], and importantly it appears that 

any effect of melatonin is tissue-specific [314]. 

Alternatively, cellular docks may be reset by mechanisms not driven by the SCN. 

ln rat fibroblasts, signalling via pathways involving cAMP-dependant kinases, protein 

kinase C, Ca++ or glucocorticoids can induce Per1 or Per2 dock gene expression [315] 

and it appears that the amplitude and sustained rhythmicity of Per2 expression depends 

on the signal used [316]. Further, the expression of genes for nudear receptors, 

induding glucocorticoid receptors, may be regulated in a circadian manner that is also 

tissue-specific [317], thereby presenting another level of regulation in which the 

expression of peripheral circadian oscillators may be controlled bya specific factor. 

Just as hormonal rhythms are driven by the SCN to different extents, peripheral 

clocks may be more or less dependant on the SCN for their synchronization. It is more 

likely that photic and non-photic stimuli interact in producing the rhythmicity that is 

observed, much in the sa me way as mice on a time and calorie-restricted diet 

demonstrate larger light-induced phase advances in locomotor activity than mice fed ad 

libitum [318J. As suggested above, elements that are a part of the sleep/wake cycle may 

significantly affect the cellular environ ment of PBMCs and ultimately their dock 

expression. 

6.3 A model for the regulation of clock gene expression in human PBMCs 

Figure 6.1A presents a model for the factors that may influence the circadian rhythmicity 

in human PBMCs. This rhythmicity is the result of the effects of factors, which may 

indude hormonal rhythms as weil as yet unidentified tissue-specific blood-borne signais. 

The findings discussed in the present thesis show that under constant conditions and in 

the presence of a sleep/wake cycle, the resulting rhythmicity is observable. 
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A strong SCN stimulus may be induced in the presence of a powerfu1 SCN 

synchronizer su ch as bright light (Figure 6.18). This in turn may result in the 

synchronisation of peripheral oscillators and increased mean amplitude in the population 

of cells. Thus, just as a serum shock restores apparent rhythmicity in a group of cells 

despite the initial phase of desynchronized cells [210], a powerful light stimulus may 

invoke a powerful resetting stimulus in the periphery. This situation could explain the 

resynchronization in PBMC oscillators discussed in Chapter 5, in which a bright light 

stimulus was applied for 9 days. This relationship could be tested in an experiment that 

compares the effect of strong versus weak SCN entraining signais on readaptation to a 

shifted sleep/wake schedule. The rate of adaptation of PBMC oscillators may be 

compared in the presence of light stimuli versus a timed exercise regimen or sound cue, 

for example. The relative strength of the stimulus and the magnitude of the shift in the 

sleep/wake schedule may be varied to challenge the resetting capacity of peripheral 

oscillators. Depending on the length of the experiment and the number of blood 

sampling periods, it may be determined whether a weak SCN stimulus implies that it 

takes longer for peripheral rhythms to become synchronized to reveal an observable 

rhythmicity. 

As discussed previously, a number of factors may contribute to the expression of 

clock genes in PBMCs. Blood-borne signais may differentially affect PBMC 

subpopulations and contribute to an increased variability and reduced amplitude of clock 

gene expression (Figure 6.1 C). Differences in the presence of receptors in PBMC 

subtypes may also modulate the entrainment of peripheral clocks. Experiments in which 

primary PBMC cultures are maintained and studied may elucidate this relationship. The 

response of specific white blood cell subpopulations to glucocorticoids may be examined 

in vitro. If the glucocorticoid concentration applied to the cells is controlled to mimic the 

endogenous circadian rhythm, we may learn more about the relative contribution of 

endogenous cortisol levels to the regulation of PB MC molecular clocks. 
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Further, experiments examining the presence of glucocorticoid receptors at different 

times of day in different cell populations may also significantly contribute to our 

understanding of this relationship. Finally, the contribution of inter-individual factors to 

the presence of non-specific signaIs is also of importance. 

6.4 Outlook: the future of human peripheral clock study and the implications for 

human health 

Considering the relationship of peripheral oscillators to tissue function, an easily 

accessible peripheral oscillator in humans, su ch as those in PBMCs, has potential use 

as a diagnostic tool to provide information on the tissue's function or its relationship to 

markers of the central circadian pacemaker. In an analogy to how cortisol and melatonin 

hormonal rhythms are accepted surrogates for estimating the activity of the SCN, 

measuring clock gene expression may be an additional indicator of tissue function 

proper. This may be considered in a number of ways. There is now evidence to 

demonstrate that peripheral oscillators become desynchronized in disease. Progressive 

stages of Alzheimer's disease is characterized by altered clock gene expression [319] 

and loss of rhythmicity in pineal and cerebrospinal fluid melatonin [320-322]. Cancerous 

tissue also demonstrates alterations in the pattern of HPER protein expression [323]. 

Thus, detecting desynchronized clock gene expression in human peripheral tissues may 

be a clinically-relevant indicator of disease severity. Indeed, differences in tumour clock 

gene expression relative to healthy cells may be useful in targeting chemotherapy [323]. 

One may, therefore, easily imagine how understanding the function of clocks in PBMCs 

may contribute to significant observations on susceptibility to infection, for example. 

Sampling peripheral circadian oscillators may also be relevant in understanding 

the long-term effects of circadian misalignment such as in night shift work. The relative 

breast cancer risk posed by night shift work is thought to exceed that caused by well­

known risks such as a diet high in fat or the use oral contraceptives, for example [244]. 

HPERI expression is thought to regulate the progression of the cell cycle and human 

colon cancer cell lines with knocked-down HPERI expression demonstrate a reduced 

apoptotic response following high dose irradiation [324]. In certain murine carcinoma cell 

lines, Per2 over-expression reduces cell proliferation and increases apoptotic events 

[325]. The expression of peripheral clocks may therefore be an important mechanism by 

which cellular division and death are controlled as weil as a valuable diagnostic tool. 
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Given that the phase of clock gene expression in whole blood cells may be 

altered in hypersomnia [326] and non-24 hour sleep/wake syndrome [224], it will be of 

interest to associate the expression of peripheral circadian oscillators with known 

sleep/wake disorders. It may also be of interest to investigate how circadian 

disturbances in psychiatrie populations [327] affect peripheral clocks. 

The present thesis contributes to the early stages of understanding human 

peripheral circadian oscillators. The potential benefits of this line of investigation may be 

significant. Exploring the expression of peripheral clocks in other human tissues may 

result in the characterization of a human peripheral oscillator that are less invasely 

sampled (e.g. keratinocytes [223]). This may be facilitated by improvements in PCR 

techniques that may allow the assessment of many clock genes in minute amounts of 

tissue. There may exist human peripheral oscillators that are more homogeneous than 

PBMCs with a variability of expression that is more easily controlled. This may provide a 

background on which significant advances may be made in our understanding of the 

regulation of human peripheral oscillators. It may even be possible to be able to gather 

useful information from a single sample of a peripheral clock. For example, introducing 

luminescent reporters in the sample and then evaluating the ability of specifie agents to 

induce clock gene expression in the sample may be useful to better understand the state 

of the tissue. 

For some time, the health consequences of night shift work have suggested that 

circadian disorganization could be a cause of physiological dysfunction- although the 

precise mechanism is yet unknown. In this application as in others, the continued 

exploration of peripheral oscillators in humans is likely to yield valuable observations at 

the interface between circadian clock function and proper function of the organism as a 

whole. 
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