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ABSTRACT 

Different individuals react differently to infection with similar pathogens and 

weakly pathogenic organisms can cause life-threatening infections in sorne, while highly 

virulent microbes may go undetected in others. The basis of these differences lies within 

the genetic makeup of each individual, which determine their response to infection. 

Unraveling the genetic determinants of susceptibility to infection brings a much c1earer 

understanding of the pathogenesis of diseases and paves the way to potential prophylactic 

and therapeutic interventions urgently needed in the context of increasing antimicrobial 

resistance, globalization of infectious diseases, and emerging or re-emerging pathogens. 

Salmonella spp are highly successful pathogens that have co-evolved with 

countless host species. Even today, they continue to threaten public health throughout the 

world. Their zoonotic nature, their propensity to establish long-term carrier states and the 

emergence of antimicrobial resistant, highly virulent strains greatly complicate the fight 

against this pathogen. As for other infectious diseases, the host response to Salmonella is 

genetically controlled. In order to genetically dissect this response, a mouse model was 

developed and allowed identification of a few genes having a strong impact on the 

outcome of Salmonella infection. The mouse response to Salmonella is, however, 

complex and several additional genetic variants influencing the response to infection 

remain to be identified. 

Here, we present a series of experiments, which contribute to our understanding of 

the host response to acute Salmonella Typhimurium infection in mice. First, we 

investigated the impact of T1r4 expression during Salmonella infection by comparing host 

responses in mice carrying 1, 2 and 3 copies of Tlr4 on the same genetic background. We 

show for the first time, in this narrow range of Tlr4 expression, an incremental protective 

effect against Salmonella due to improved control of bacterial growth and increased 

expression of important downstream immune genes. Second, using a set of reciprocal AlJ 

and C57BL/6J recombinant congenic strains, we identified five novels QTL influencing 

the outcome of Salmonella Typhimurium infection in mice. Finally, we present evidence 

for the genetic basis for one of the newIy identified QTL and de scribe a role for anemia 

and iron balance in the mouse response to Salmonella. 
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RÉSUMÉ 

Différents individus répondent différemment à des pathogènes similaires et alors 

que certains sont gravement malades suite à une infection par un organisme peu virulent, 

d'autres seront complètement résistants à une infection potentiellement grave. Ces 

différences ont leur fondement dans le bagage génétique de chacun. L'identification des 

gènes responsables de la susceptibilité aux pathogènes est essentielle à une meilleure 

compréhension de la pathogénie des infections et peut ouvrir la voie à des interventions 

prophylactiques ou thérapeutiques nécessaires dans la lutte contre la résistance aux 

antimicrobiens, contre la globalisation des maladies infectieuses et contre la menace de 

pathogènes émergeants ou ré-émergeants. 

Les Salmonellae sont des pathogènes accomplis ayant co-évolué avec de 

nombreux hôtes. Encore aujourd'hui, ils sont une menace pour la santé des populations. 

Leur potentiel zoonotique, leur capacité à établir des états de porteurs chroniques et la 

récente émergence de souches résistantes aux antimicrobiens et très virulentes 

compliquent grandement la lutte contre ce pathogène. Comme c'est le cas pour toutes 

maladies infectieuses, la réponse de l'hôte à l'infection à Salmonella est contrôlée 

génétiquement. Afin d'étudier cette réponse, un modèle d'infection chez la souris a été 

développé et a permis l'identification de quelques gènes importants dans l'infection à 

Salmonella. Cependant, comme cette réponse est complexe, il est certain que plusieurs 

variants génétiques additionnels importants dans l'infection à Salmonella existent et 

restent à découvrir. 

Nous exposons ici les résultats d'une série d'expériences visant à approfondir 

notre compréhension des facteurs génétiques impliqués dans la réponse de la souris à 

l'infection à Salmonella Typhimurium. D'abord, nous présentons des données indiquant 

que le niveau d'expression de T/r4 chez des souris possédant 1,2 ou 3 copies du gène 

influence la survie suite à l'infection à Salmonella à cause d'un meilleur contrôle de la 

prolifération bactérienne et d'une régulation fine de gènes effecteurs. Ensuite, nous 

présentons les résultats d'expériences effectuées chez des souris recombinantes 

congéniques qui ont permis d'identifier cinq nouveaux QTL influençant la résistance aux 

Salmonellae. Finalement, nous démontrons la nature moléculaire d'un des nouveaux 
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QTL identifiés et démontrons un rôle pour l'anémie et la surcharge en fer dans la réponse 

de l'hôte à Salmonella Typhimiurium. 
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CHAPTER1: INTRODUCTION 

Infectious diseases have accounted for most of the mortality in human history, 

accounting for approximately 60% of aU deaths in England in the mid 19th century.l With 

the improvements in hygiene, the development of vaccines and the discoveries of 

effective treatments against infectious agents, this figure has now decreased to 

approximately 25%. 2 Despite these improvements, infectious diseases remain, more now 

than ever, a threat to the world health with much of the burden falling on the population 

of the developing countries and especially on infants less than 5 years old (WHO report 

on infectious disease 1999; www.who.intlinfectious-diseases-report). With the 

globalization of exchanges and the circulation of people between countries from aIl over 

the world, emerging or re-emerging infections can now rapidly spread to numerous and 

remote human populations? Moreover, the never-ending battle against antimicrobial 

resistance puts a toU on our capacity to successfully treat microbial infections that were 

once easily overcome with antimicrobials. If we want to continue to have success in our 

battle against invading microorganisms we must extend our understanding of the 

pathogenesis of infectious diseases in the context of in vivo host-pathogen interactions. In 

this regard, the genetic dissection of the complex host response to infection will 

undoubtedly bring a higher level of understanding of the pathogenesis of infectious 

diseases and pave the way to novel prophylactic or therapeutic interventions. 

Section 1. Salmonella spp: clinical manifestations and disease burden 

1.1 The genus Salmonella 

The genus Salmonella, member of the family of Enterobacteriaceae, comprises 

two species, Salmonella enterica and Salmonella hongori.3 More than 2500 serov ars are 

recognized4 and most belong to the subspecies 1 of Salmonella enterica designated 

Salmonella enterica subsp. enterica. This subspecies encompasses most of the clinically 

important serovars infecting human or domestic animaIs and will be the focus of this 

short overview. 
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Salmonella spp are Gram-negative, facultative-intracellular bacilli that are 

ubiquitous in nature and have the capacity to infect a wide variety of different host 

including domesticated and wild mammals, reptiles, birds and insects. The clinically 

important Salmonella serovars are often classified as host-adapted or not. For instance, 

Salmonella enterica subsp enterica serovar Typhi and Paratyphi (thereafter Salmonella 

Typhi and Paratyphi) are only capable ofinfecting humans and higher primates and are 

therefore considered host-adapted to humans. By the same principle, the serovars 

Gallinarum, Abortusovis and Abortusequi cause disease only in poultry, sheep and horses 

respectively, and are considered host-adapted to these species. Other serovars, however, 

such as Dublin and Choleraesuis, are also considered to be host-adapted (in cattle and 

swine), although they can at times cause a highly invasive illness in humans. Host­

adaptation of Salmonellae should therefore not be seen as an indication of the virulence of 

a serovar in a given species, as it has been classically implied, but more as an indication 

of its ability to circulate, maintain itself and cause disease in a particular population.5 

The vast majority of the Salmonella serovars, however, are considered non host­

adapted since they have the ability to cross species barriers, infect successively various 

hosts belonging to distant species, and do not appear to be maintained predominantly in a 

specifie population. Examples of such serovars are numerous and include Typhimurium, 

Enteritidis, Newport and Heidelberg. These Salmonella serovars are considered zoonotic 

organisms and most human cases can be traced to food animaIs, pets or wildlife either 

through direct contact or contamination of the food chain and environment.6-11 

The clinical manifestations associated with Salmonella spp are numerous and 

differ according to the serovar and the host species involved. In the following paragraphs 

1 will discuss the epidemiology, the clinical features and the main clinical syndromes 

associated with Salmonella infections in human and relevant domestic animais. 

1.2 Enteric (typhoid and paratyphoid) fever 

Enteric fever is a systemic disease of human caused by the host-adapted 

Salmonella serovars Typhi (typhoid fever) and Paratyphi (paratyphoid fever).12-15 This 

disease is transmitted from human to human through the feco-oral route and is a problem 

mainly in areas where overcrowding, poor sanitation and lack of access to clean water 
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prevail. While the disease was endemic in most parts of the world up to the 20th century, 

the improvement in hygiene and sanitation in industrialized countries has led to a 

dramatic decrease in its incidence from more than 35000 cases annually in the USA in 

1920 to less than 500 cases annually nowadays.13 The disease remains, however, a threat 

to public health in developing countries where people do not have access to clean water 

and where sanitation infrastructures are lacking. The global burden of enteric fever is 

estimated to ~21.7 million cases and ~200 000 deaths annually for typhoid fever, and 

",,5.4 million cases annually for paratyphoid fever. 16 The highest incidence rates 

(>100/100 000 cases/year) are found in south-central Asia and south-east Asia. Medium 

incidence rates (l0-loo/100 000 cases/year) are found in the rest of Asia, Africa, Latin 

America and the Caribbean, and Oceania (except Australia and New Zeland) while low 

incidence rates « 10/100000 cases/year) are reported from Europe, North America, and 

the rest of the developed world (Figure 1). 

The pathogenesis of typhoid fever has been well described. 12-15
,17 Following 

ingestion, the bacteria must endure the acidity of the stomach before reaching the small 

intestine. In this regard, conditions associated with decreased acidity of the stomach or 

perturbations of the endogenous microbiota are associated with increased risk of 

infection. Once in the small intestine, Salmonella attaches to the epithelium and invades 

the M-cells of the Peyer' s patches. The ability of Salmonella to survive inside 

mononuclear cells in the deeper layers of the gut wall is key to its virulence and aIlows 

dissemination (primary bacteremia) to the spleen, liver, lymph nodes, gallbladder, and 

bone marrow. During the incubation period (5 to 21 days) the bacterium replicates within 

these sites and the appearance of clinicaI signs correlates with the onset of secondary 

bacteremia at a time when the bacterialloads in the reticuloendothelial system (RES) 

reach a certain threshold. The most common clinical signs include fever, generaIized 

malaise, headache, gastrointestinal symptoms, relative bradychardia, splenomegaly and 

leukopenia. Secondary bacteremia may, in rare instances, lead to the seeding of 

additional organs, resulting in extra-intestinal complications such as meningitis, 

myocarditis, arteritis, pneumonia, osteomyelitis or septic arthritis. 17 Additionally, 

intestinal bleeding secondary to the necrosis of the lymphoid tissue of the ileocecum 

(peyer's patches) can occur. Patients with clinical symptoms of more than two weeks 
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duration are at increased risk for such complicetions. Chronic carrier state occurs in 2 to 

5% of the cases with shedding of the organism for more than one year, thereby 

contributing to disease dissemination and persistence. 18 

Without treatment, enteric fever is a severe, debilitating and often fatal disease. 19 

With appropriate and timely treatment, however, the average case fatality rate is now 

estimated to approximately 1 %. 16 While disease-associated deaths can usually be 

prevented by antimicrobial therapy, there is increasing concern that the rise in 

antimicrobial resistant isoiates20 may pave the way to a dramatic increase in case fatality 

rates. 

Chloramphenicol was introduced for the treatment of typhoid fever in 1948 

resulting in greatly decreased morbidity and mortality associated with this disease. 19 

While resistance to chloramphenicol was reported only two years later, it is not until the 

1970s that outbreaks of chloramphenicol resistant Salmonella Typhi were reported from 

severallocations throughout the world. 12
.14.15 Thereafter, additional antimicrobials such as 

ampicillin, sulfonamides and trimethoprime were used successfully in the treatment of 

typhoid fever patients but resistance to these antimicrobial was soon reported. By the 

early 1990s, multidrug resistance (MDR), defined as resistance to all first line 

antimicrobials (chloramphenicol, ampicilIin and sulfonamides/trimethoprime) had 

become common in several parts of the world. The introduction of fluoroquinolones in 

1990s was a major ad vance in the treatment of enteric fever, however, resistance to and 

treatment failure with ciprofloxacin are now increasingly reported and complicates the 

treatment of resistant infections.21
-
23 Finally, third generation cephalosporins remain an 

alternative for the treatment of MDRlfluoroquinolone resistant isolates although 

resistance to cetriaxone as been reported as well.24 

The emergence of highly resistant Typhi isolates greatly complicates the fight 

against this pathogen because of increased duration and decreased efficacy of treatment as 

weIl as increased shedding of the organisms by the infected host, resulting in a higher 

potential for dissemination. The higher cost of treatment associated with more expensive 

drugs is especially of concern in the developing world where people are most at risk but 

lack sufficient resources to cope with the high treatment costs. These observations 

emphasize the need for finding alternative strategies to the CUITent antimicrobial treatment 
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in the fight against Salmonella Typhi and Paratyphi. The study of the genetic 

determinants of the host response to infection in vivo is one way of gaining a better 

understanding of the pathogenesis of the disease, which may give insights to the 

development of effective prophylactic measures. However, it is obvious that the most 

efficient measures in our batde against typhoid fever would be the improvement of 

hygiene and sanitation in endemic areas as well as the vaccination of school-age 

children. 15 

1.3 Salmonellosis 

Non-typhoidal Salmonel/ae, such as Salmonella enterica serovars Enteritidis or 

Typhimurium, are associated with a more localized gastrointestinal illness in humans 

known as salmonellosis. Infection occurs through the feco-oral route and is usually 

associated with contamination of the food chain25 or contact with infected domestic 

animaIs. JO Salmonellosis continues to be one of the most common food-bom diseases, 

accounting for a third of all bacterial isolates reported through the United-States 

FoodNet,26 and it is widely distributed throughout the world.27
,28 In the United-States, it is 

estimated that 1.4 million cases of salmonellosis occur each year, associated with 168000 

physician office visits, 15000 hospitalizations and 400 deaths.25,29 Non-typhoidal 

Salmonel/ae are the pathogens most often associated with food-related deaths, accounting 

for 38% of all deaths reported through FoodNet from 1996-1999.26 The highest incidence 

rates of salmonellosis are found in infants aged less than 6 years, while the highest death 

rates are found in older people (aged ~ 60 years), immunocompromised patients or 

individuals having received antimicrobials prior to infection.26 The economical 

consequences of non-typhoid Salmonel/ae have been estimated to 3 billion US dollars 

annually for the United-States alone. (WHO, Drug-resistant Salmonella, 2005. 

www. who. int/mediacentre/fàctsheets/fs 139). 

Clinical salmonellosis is associated with acute onset of fever, abdominal 

cramping, diarrhea, nausea and vomiting, occurring within 48 hours of consumption of 

contaminated food or water.12 The illness is usually self-limiting and most people recover 

without treatment within 3 to 7 days. In sorne cases, particularly in the very young or the 

elderly, dehydration from diarrheal fluid losses can bec orne severe and life threatening, 
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requiring medical attention. Bacteremia may develop in a small percentage of 

immunocompetent patients although in higher proportion in patient populations with 

compromised immunity or in cases of infection with sorne specifie serovars. Blood 

dissemination of Salmonellae may result in various complications such as endocarditis, 

aortitis, pneumonia, osteomyelitis or septic arthritis and most of the fatal Salmonella 

infections are associated with invasive illness.26 While treatment of infectious diarrheal 

illnesses with antimicrobials is not recommended for the general population, patients at 

risk for extra intestinal dissemination may benefit from appropriate antimicrobial therapy. 

For patients with bloodstream dissemination, effective treatment may be life saving.30
,31 

While the acute death rates associated with non-typhoid Salmonella infection are 

relatively low (0.6-1.2% of cases26
,32), follow-up studies have demonstrated long term 

consequences to acute salmonellosis with one year relative mortality being 2.85 (95% CI: 

2.56 to 3.17) in Salmonella cases compared to the general population.32 

As it is the case for most bacterial pathogens, the development of resistance to 

antimicrobial agents among non-typhoidal Salmonella isolates is common and worrisome. 

Of most concem, is the spread of MDR isolates such as MDR Salmonella Typhimurium 

definitive phage type 104 (DT 104),27 which commonly shows resistance to ampicillin, 

chloramphenicol, streptomycin, sulfonamides and tetracycline. After appearing for the 

first time in the United-Kingdom in the early 1980s, Salmonella Typhimurium DT 104 has 

now spread to most parts of the world, and is commonly found in poultry, pigs, cows, 

sheep, and human. In addition to the 5 above-mentioned antimicrobials, Salmonella 

Typhimurium DTI04 is capable to acquiring resistance to other drugs such as quinolones, 

trimethoprim and cephalosporins,27.33,34 potentially leading to a complete lack of effective 

treatment for infected patients. Even more conceming are the recent reports of increased 

virulence associated with MDR Salmonella isolates leading to excess blood stream 

infections, excess hospitalization and excess death rates. Indeed, when 100 king at 

outbreaks of Salmonella infection in the United-States between 1984 and 2002, it was 

found that significantly more people were hospitalized among those infected with 

resistant Salmonella isolates compared to pansusceptible isolates.35 Additionally, 

multivariate analysis showed that patients infected with non-typhoidal Salmonella 

serovars resistant to 2: 1 antimicrobial had excess bloodstream infections, and excess 
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hospitalizations with bloodstream infection compared to patients infected with 

pansusceptible isolates?6 Finally, a Danish study, looking at Salmonella Typhimurium 

infections, found that while infection with pansusceptible isolates increased the two year 

death rates in patients compared to the general population by a factor of 2.3, patients 

infected with MDR isolates were 4.8 times more likely to die and patients infected with 

quinolone resistant isolates were 10.3 times more likely to die, even after adjusting for 

differences in comorbidity.37 

The reality of antimicrobial resistance for non-typhi Salmonella stresses again the 

importance ofimproving our understanding of the host-pathogen interaction in vivo with 

the hope of finding alternatives to antimicrobial treatment. 

1.4 Invasive non-typhoidal Salmonella infections 

Although most infections attributed to nontyphoidal Salmonellae are limited to the 

gastrointestinal tract, systemic dissemination may occur, resulting in potentially serious 

consequences for affected patients. Based on the FoodNet data from 1996 to 1999, it is 

estimated that more than 2500 cases of invasive Salmonella infection occur annually in 

the United-States, resulting in -1800 hospitalization and 150 deaths?8 Invasive 

Salmonella infections are associated with higher rates ofhospitalization (71% versus 

17%) and higher mortality rates (5.4% versus 0.2%) when compared to enteric 

infections.38 The propensity of Salmonellae to cause invasive illnesses appears to be 

serovar specific. The invasiveness of each serovar is measured by its blood invasiveness 

ratio (BIR), the number of blood isolates per 100 blood plus stool isolates.28 The highest 

BIR are found, as expected, in the human specific serovars Typhi (BIR = 70/100 blood 

plus stool isolates) and Paratyphi (60/100) compared to BIR usually much lower, 8/100, 

for non-host specific serovars such as Enteritidis or Typhimurium. Interestingly, the pig 

and cow adapted serovars, Choleraesuis and Dublin, are capable of causing disease in 

humans with BIR ranging from 40 to 70/100. Although the number of cases caused by 

these serovars in human remains low, their propensity to cause invasive illness makes 

them more dangerous for humans, especially for people with comorbidity. For instance, 

infection with serovars Dublin is associated not only with a much increased risk of 

bloodstream infection compared to serovar Typhimurium (OR 77.7,95% CI: 25.5-
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237.2)36 but also with a dramatic increase in relative mortality within one year of infection 

(15.55; 95%CI-6.57-36.80) compared to the general population, a figure much higher 

than what is reported for serovar Typhimurium infections (3.01; 95%CI: 2.43-3.74).32 

1.5 Infection in domestic animais 

Salmonella spp infections are common in domestic animaIs and are, by 

themselves, associated with a wide array of detrimental consequences including 

economicallosses for producers, losses of valuable breeding stock, and emotional burden 

for owners of affected animaIs. Indirectly, the infection of domestic animaIs is at the 

source of most cases of human salmonellosis through contamination of the food chain.25 

The increasing antimicrobiai resistance noted in non-typhoidai Salmonellae has been 

linked to the use of antimicrobial in food animal either for therapeutic purpose or as 

growth promoter agents.39 Salmonella infections in domestic animaIs should therefore be 

taken seriously and all possible measures should be taken to minimize their impact and 

prevent the spread of antimicrobial resistance. In the following paragraphs, 1 will briefly 

describe the various clinical syndromes and consequences of Salmonella infection in 

poultry, swine, cattle and horses. 

1.5.1 Salmonella infection in poultry. 

Salmo1}ella infection in poultry can be grouped into two categories: 1) pullorum 

disease and fowl typhoid caused by the bird specific Salmonella enterica serovars 

Pullorum and Gallinarum and 2) paratyphoid caused by a wide variety of non-ho st 

specific serovars such as Enteritidis, Typhimurium and Arizonae.40 

Pullorum disease is an acute systemic disease of young birds while fowi typhoid is 

an acute or chronic systemic disease found both in young and oider birds. Both diseases 

used to cause significant losses in commerCial flocks but extensive eradication programs 

have successfully freed most commercial operations in the United-States, Canada, 

Australia, Japan and Western Europe from these diseases. Pullorum disease and fowl 

typhoid may still be found in other parts of the world or in backyard flocks. Chickens are 

the natural host for Salmonella Gàllinarum and Pullorum although outbreaks have been 

reported in other birds. Infection ofhumans or other mammaIs are rare. Transmission 
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within bird flocks occurs both horizontally and vertically . Young birds hatching from 

contaminated eggs or infected soon after hatching will suffer significant morbidity and 

mortality. Typical clinical signs include somnolence, weakness, decreased appetite, poor 

growth, labored breathing and swollen joints. Mortality rates usually peak around the 

second or third week of life and rates up to 100% have been reported. In older birds, 

Salmonella Pullorum rarely causes clinical signs but Salmonella Gallinarum may cause 

acute outbreaks in chickens characterized by sudden drop in food consumption, ruffled 

feathers, pale and shrunken combs, drop in egg production, decreased fertility and 

diminished hatchability. Death may occur within 5 to 10 days. 

Paratyphoid in chickens is of significantIy more public health concem because it 

is caused by the non-specific, zoonotic serovars of Salmonella enterica.40 Contaminated 

poultry meat and eggs are among the most often incriminated source of Salmonella 

outbreaks in humans. The economical consequences for poultry producers are enormous 

and associated with growth depression and mortality in young birds, negative publicity 

resulting from poultry-associated Salmonella outbreaks, and the cost associated with risk 

reduction such as biosecurity practices, cleaning and disinfection programs, rodent 

control, vaccination and testing. Transmission of non-ho st specifie serovars within bird 

flocks can also occur horizontally and vertically. Clinical signs are usually found only in 

very young birds and include progressive somnolence, drooping wings, ruffled feathers, 

anorexia, emaciation, profuse watery diarrhea and lameness. Mortality in young birds 

may be as high as 50%. In older birds, however, significant intestinal and even systemic 

colonization may occur without significant clinical signs except for sorne mild transient 

diarrhea. The lack of clinical signs in birds that are shedding Salmonellae in their feces 

or potentially laying contaminated eggs significantly complicate the control of this 

pathogen. 

Eradication of Salmonella Gallinarum from most commercial flocks in North 

America and Europe in the 1970s may have paved the way to the subsequent outbreak of 

food born Salmonella Enteritidis in humans.5 Because both serovars belong to the same 

DI serogroup, it is believed that eradication of Salmonella Gallinarum in commercial 

flocks lead to decreased immunity against the 09-antigen common to both Gallinarum 

and Enteritidis, allowing the latter to colonize the now naïve flocks. Since Gallinarum 
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cannot infect human, the public health consequences of colonization of poultry by 

Enteritidis were greater. As mentioned previously, Salmonella Gallinarum infection in 

birds is usually associated with obvious clinical signs while Salmonella Enteritidis 

infection appears completely silent, complicating the detection ofinfected animals.7 

Control of Salmonella Gallinarum through effective vaccination instead of systematic 

killing of infected birds might have prevented the public health consequence of the 

Salmonella Enteritidis outbreak. 

1.5.2 Salmonella infection in swine. 

Salmonella spp are associated with two distinct problems in the pig industry. 

First, infections with the swine specific serovar Choleraesuis or with the non-specific 

serovar Typhimurium are associated with clinical disease in pigs. Second, infection with 

other Salmonella enterica serovars is rarely associated with disease in swine but 

contaminates the carcasses and pork products, with potential for public health 

consequences.41 Although much of the contamination of pork products occurs through 

cross contamination at abattoirs, the source of infection remains pigs that are infected at 

the time they leave the farm. It is believed that the stress of shipping and food 

deprivation during transportation increases the shedding of Salmonella by inapparent 

carriers and leads to contamination of the truck and environment of the slaughterhouse 

with subsequent infection of additional individuals. 

Salmonella Choleraesuis, a host-adapted serovar found almost exclusively in 

swine, is the most common cause of Salmonella outbreaks on pig farms. The disease is 

found most often in intensively reared weaned pigs less than 5 months old. Transmission 

occurs from pig to pig or environment to pig either through the feco-oral route or even 

through nose-to-nose contact since Salmonella Choleraesuis also resides in the 

pharyngeal tonsils. The clinical signs of Salmonella Choleraesuis infection are those of a 

systemic disease, because of the highly invasive nature ofthis serovar. Anorexia, 

lethargy and fever are accompanied by a moist, shallow cough, slight expiratory dyspnea, 

icterus, reluctance to move and cyanosis of extremities. Diarrhea usually does not 

develop before day 3 or 4 of the disease. During an outbreak, the case fatality rate is 

usually quite high while the morbidity is usually less than 10%. Stressful situations are 

10 



r 

often associated with the onset of an outbreak. Surviving pigs may remain carrier and 

continue to shed Salmonella in their feces for several weeks. 

The second most common serovar causing clinical disease in pigs is Salmonella 

Typhimurium, which causes a more localized enterocolitis. Disease also occurs most 

often in weaned pigs, up to four months of age. Affected pigs present with a watery, 

yellow diarrhea that spreads rapidly to involve most pigs in a pen within a few days. 

Diseased animaIs are usually febrile, depressed, inappetent and dehydrated but most make 

a complete clinical recovery. A proportion of the affected pigs remains carrier and 

shedder for five months post-infection. 

The control of Salmonella infection and prevalence on pig farms is complicated 

by·the frequent chronic carriers that do not exhibit clinical signs and the numerous 

potential sources of contamination (food, rodents, insects, chronic carriers, etc) although 

for Salmonella Choleraesuis, the only source of contamination appears to be carrier pigs. 

Detection of carriers through fecal culture is not sensitive enough to detect chronic 

carriers because of the intermittent nature of the shedding while serology allows detection 

of previously infected pigs but does not necessarily indicate the carrier or shedder state of 

the animal. Sound management practices, however, are likely to decrease the incidence 

of Salmonella infection in pigs. These include filling of grower and finishing rooms with 

single source, single age pigs, respecting proper animal density, providing adequate 

environment such as a dry, comfortable pen, regulated ambient temperature and adequate 

ventilation. 

1.5.3 Salmonella infection in cattle. 

Salmonella infection in cattle is caused by the host-adapted serovar Dublin or by 

non-ho st specific serovars such as Typhimurium, Newport or Montevideo.42
-44 As it is the 

case for other food animaIs, Salmonella infections in cows pose a significant public health 

threat through the contamination of meat and milk. Of major concems are the outbreaks 

of MDR Salmonella Typhimurium DT! 04 in dairy cattle and humans in the UK and 

USA.45,46 

Salmonella Dublin infection in cattle is associated with long-term carriage and 

intermittent shedding, which may persist for the life of the animal. Shedding occurs 
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through the feces or through the milk and contributes to the persistence of infection 

within a particular herd. Stressors, such as parturition, high ambient temperature or food 

and water deprivation will increase the chances of shedding of Salmonella. Infection in 

calves is associated with systemic disease with fever, depression and respiratory 

symptoms. Diarrhea is often not a predominant clinical sign, a fact that complicates the 

diagnosis. Adults may present with diarrhea, abortion or mastitis. Infection with non­

host adapted serovars, such as Typhimurium, is associated with sporadic cases or 

outbreaks. Because these serovars are not associated with long-term carriage as seen with 

Salmonella Dublin, the disease do es not tend to persist within a herd but reappears 

periodically from accidentaI introduction of infected animaIs (cows, rodents and birds) or 

feedstuffs. Septicemia occurs in neonatal calves and the disease may be fatal with 24 to 

48 hours without treatment. Disease in adult cattle and oIder calves occurs most 

commonly at times of stress and the clinical signs are typical of acute, febrile enterocolitis 

with severe dehydration. Mortality rates may be quite high in the absence of appropriate 

supportive treatment and abortion is common in pregnant female. 

1.5.4 Salmonella infection in horses. 

Equine facilities often face problems associated with Salmonella, especially large 

breeding farms where chronic carriers (the mares) and availability of susceptible host 

(neonatal foals) contribute to disease dissemination and persistence.47 Salmonella spp 

have the capacity to survive for long periods of time in the environment, especially when 

protected in organic matter or dust, thereby allowing persistence until availability of a 

suitable host for replication, and re-contamination of the environment. 

Four clinical syndromes have been reported in horses and reproduced 

experimentally: 1) subclinical infection with latent or active carriage; 2) depression, 

fever, anorexia and neutropenia without colic or diarrhea; 3) fulminant enterocolitis with 

diarrhea; and 4) septicemia with or without diarrhea.48 Any stressful event or any change 

in gastrointestinal homeostasis may transform a latent carrier into an active shedder or a 

full blown clinical case. 

Acute septicemia is often seen in neonatal foals, which present in the first few 

days of life with lethargy, anorexia, weakness and fever. Septicemia in neonates is 

12 



r 

usually fatal without appropriate treatment and often necessitates intensive supportive 

care. Older foals and adult horses with acute Salmonella infection most often present 

with acute, severe enterocolitis with profuse diarrhea and severe dehydration. Increased 

permeability of the colonie mucosa due to intestinal inflammation allows 

lipopolysaccharides (LPS) and other bacterial products to reach the systemic circulation 

leading to development of systemic inflammatory response syndrome, with potential 

complications such as severe sepsis, multiple organ dysfunction syndrome, septic shock 

and death.49 

Large animal hospitals experience relatively frequent outbreaks of salmonellosis 

and in this regard, equine hospitals appear particularly at risk with outbreaks reported 

from several University teaching hospitals.5
0-

53 The vulnerability of equine hospitals may 

be explained by several factors. Pirst of ail, Salmonella spp are capable of establishing 

silent carrier state in horses, even in those that have no history of salmonellosis, and it is 

estimated that 0.8% of the resident horses in equine facilities shed Salmonella in their 

feces based on single fecal cultures.54 This figure is most likely higher in hospitalized 

horses.55
,56 Second, Salmonella spp can survive in the hospital environment for long 

periods oftime53
,5] even after cleaning and disinfection.58 Third, hospitalized horses 

appear as a population vulnerable to infection or reactivation most likely bec au se of stress 

(shipping, hospitalization, pre-existing disease, anesthesia, surgery), and change in 

microbiota (change in food and water, fasting, antimicrobial drug or anti-acid 

medication).59 Pinally, a horse infected with Salmonella and presenting c1inicaI signs can 

rapidly contaminate its environment leading to the rapid spread of the bacteria to adjacent 

hospitalized horses or even to the attending personnel if strict isolation and control 

procedures are not rapidly taken. As seen in most species, the appearance of MDR 

isolates from horses53
,60 will complicate the treatment of infection and pose a public health 

threat given the zoonotic nature of the pathogen. 

The description of the c1inicaI diseases and the problematic associated with 

Salmonella infection in both humans and domestic animaIs found in this section 

emphasizes the need to continue our efforts to understand more fully the pathogenesis of 

Salmonella infection, control its spread and protect the usefulness of current 

antimicrobials. 
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Section 2. The mouse model of typhoid fever 

Because of difficulties associated with experimental studies in humans or large 

animal species, the laboratory mouse has become the preferred animal model for the 

study ofnumerous human disorders, including infectious diseases.61 Although, as with 

any model system, the use of the mouse for the study of human infectious disease is 

fraught with limitations,62 the usefulness of this animal model far outweigh its 

shortcomings. The first advantage of the mouse model resides in the similarities between 

mice and men: they both are mammals that use innate and adaptive immunity in the face 

of invading organisms, they are often susceptible to the same or similar pathogens and 

they share about 99% of their genes.63 The second advantage in using the mouse resides 

in the ease one has to work with these animais: laboratory mi ce are usually docile and 

easy to handle, they have a very short generation time, they are prolific breeders within 

the laboratory setting and their small size limit the cost associated with the care of the 

colonies.64 Finally, the resources associated with the laboratory mouse are almost 

unlimited and include, among others, the availability of hundreds of fully inbred strains, 

recombinant inbred strains, or recombinant congenic strains; the facility to manipulate the 

mouse genome to create congenie lines, knockout or transgenic strains; and the 

availability of complete genome sequences, and numerous mierosatellites and single 

nucleotide polymorphism (SNP) markers. 

For the se reasons, the study of the host response to infection and the 

understanding of the host-pathogen interactions in vivo have been greatly facilitated by 

the use of appropriate mouse models.61,65 ln particular, the mouse model of typhoid fever 

has been invaluable in understanding the pathogenesis of Salmonella infection, 

identifying the bacterial virulence genes important during infection and dissecting the 

genetic components of the host response to this invading pathogen. In the following 

paragraphs, 1 will briefly describe the pathogenesis of Salmonella infection and review 

sorne aspects of Salmonella pathogenicity, as understood from the study of the mouse 

mode!. 

14 



• 

r 

2.1 Pathogenesis of Salmonella Typhimurium infection in mice 

In 1892, Loeffler described an epidemic in mice that closely resembled human 

typhoid fever. Since the growth characteristics of the organism isolated from the affected 

mice were similar to what was seen with isolates from human typhoid patients (known at 

the time as Bacil/us typhi), the organism was named Bacil/us typhimurium (now 

Salmonella Typhimurium).66 Salmonella Typhimurium appears to be a natural pathogen 

of mice, based on its frequent isolation from this natural reservoir.67 Because it induces a 

systemic disease in mice similar to human typhoid fever, and also because Salmonella 

Typhi does not cause disease in species other than human or higher primates, the mouse 

model of Salmonella Typhimurium is now widely accepted as a good model for the study 

of the pathogenesis of typhoid fever. 

Oral inoculation of mice with nontyphoidal Salmonellae rapidly results in the 

localization of the bacteria within the Peyer's patches of the distal ileum and cecum.68 

Salmonella spp appear to enter the Peyer's patches tbrough invasion ofM-cells, a type of 

specialized epithelial cells overlying these intestinallymphoid follicles.69 The destruction 

of the M-cells following Salmonella invasion exposes the basement membrane and allows 

the bacteria to penetrate deeper into the lamina propria. Additionally, the inflarnmatory 

reaction associated with invasion of Salmonella promotes the infiltration of neutrophils 

and macrophages, contributing to tissue inflammation, erosion of the intestinal mucosa 

and penetration of Salmonella into deeper tissues.70 Salmonella may also passively cross 

the intestinal barrier following phagocytosis by CD-18 positive cells which contribute to 

extra intestinal dissemination by migration to systemic sites.71 Two days post-infection, 

the mesenteric lymph nodes draining the ileum and cecum also harbor bacteria and 

systemic dissemination to the spleen and liver rapidly follows.68 In susceptible mice, 

rapid repli cation within these target organs occurs untillethal levels are reached. The 

proliferation of Salmonella within the spleen and liver activates the host innate immune 

system, leading to the infiltration of neutrophils (early in infection) and mononuclear 

phagocytes, and development ofhepatosplenomegaly.72 The lesions within the spleen and 

liver appear as acute foci of necrosis that gradually mature to organized granulomas. 

During infection, Salmonella resides within the macrophages of the spleen and liver 

where it is capable of surviving and replicating.72.73 
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Systemic infection with a sublethal inoculum of Salmonella Typhimurium in mice 

is characterized by four distinct phases of infection74
,75 (Figure 2). The first phase 

involves rapid clearance of the organisms from the blood stream (within 2 hours), 

followed by localization of the inoculum within macrophages and polymorphonuclear 

cells of the spleen and liver where a proportion of the Salmonellae will survive and start 

replicating.72
,73 The second phase of infection takes place over the following week, with 

an exponential growth of the organisms within the RES of the spleen and liver. The 

macrophages exert an important regulatory function during this phase since 

administration of silica (a macrophage poison) results in a major increase in bacterialload 

and a substantial decrease in the LDso by a factor of 100 times.76 T~e ho st innate immune 

system, through the recognition of Salmonella or Salmonella-conserved motifs such as 

LPS, plays a major role at this stage. Recognition of pathogen-associated molecular 

patterns (P AMPs) by the host cell pattern recognition receptors (PRRs) 77 triggers an 

innate immune inflammatory response characterized by the production of several 

cytokines including tumor necrosis factor-a (TNFa) and interferon-y (IFNy) and by an 

abundant mononuclear infiltration of the spleen and liver aimed at the elimination of the 

pathogen. The activation of the innate immune system to stop bacterial growth results in 

the establishment of a plateau (third) phase. The fmal (fourth phase) resolution of 

infection is clearly a function of activation of the acquired immune system and depends 

on T and B cell activation.78
-
81 

In resistant mice, infection with Salmonella Typhimurium results in a subclinical 

infection with chronic carriage and intermittent shedding.82 At 60 days post-infection, 

Salmonella can be isolated from the liver, spleen, cecum, mesenteric lymph nodes, 

Peyer' s patches and the gall bladder with intennittent shedding in the feces. GraduaIly, 

the infection is cleared from most of the sites but persists within the mesenteric lymph 

nodes of several mice and, in fewer mice also within the spleen and liver, up to one year 

following infection. The lesions associated with this chronic Salmonella infection consist 

offoci ofnecrosis, microgranulomas or accumulation ofpolymorphonuclear cells (at day 

60), progressing to rare inflammatory foci consisting primarily of macrophages with 

minimal central necrosis. Similarly to what is seen with human typhoid fever, bacteria 

persist despite high levels of anti-Salmonella antibodies. Throughout infection, and as 
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seen in acute infections, the Salmonellae were localized intracellularly within 

macrophages. Interestingly, in mice infected for 260 days with Salmonella Typhimurium, 

clinical signs of systemic infection can be induced by injection of neutralizing antibodies 

against IFN-y, confirming the essential role ofthis cytokine in the control of Salmonella 

infection (see section 3.3.3). 

Mice are usually resistant to intestinal colonization and pathology following oral 

Salmonella Typhimurium infection, a phenomenon possibly attributed to their 

endogenous microbiota. Instead, as previously discussed, oral infection of mice with 

Salmonella results in the rapid dissemination of the pathogen to systemic sites without 

significant intestinallesions. However, disruption of the resident microbiota with 

antimicrobial administration such as streptomycin, allows intestinal colonization by 

Salmonella Typhimurium in mice. This observation has been exploited for the study of 

the pathogenesis of Salmonella enterocolitis using the mouse as a modeeO,83 Mice pre­

treated with streptomycin and infected orally with Salmonella Typhimurium excrete 

much higher levels of Salmonella in their feces compared to water pre-treated mice. 

Moreover, histopathological examination reveals that streptomycin pre-treated mice 

develop significant colitis and typhlitis by 24 hours post-infection while no lesions are 

present in control mice. The lesions are more pronounced in the cecum and consist of 

edema of the submucosa and lamina propria, crypt elongation, disruption of the crypt 

architecture, reduced number of goblet cells, epithelial erosion and ulceration, 

pronounced polymorphonuclear cells infiltration and transmigration into the intestinal 

lumen. Intestinal inflammation is, however, soon followed by systemic colonization of 

the spleen and liver as seen in non-streptomycin treated mice. 

2.2 Salmonella virulence mechanisms identified in the mouse model of typhoid fever 

2.2.1 Role of the Salmonella pathogenicity islands. 

The ability of Salmonella to invade cells, survive and replicate within 

macrophages, and evade the immune system to establish long term carriage with 

intermittent shedding are key to its success as a pathogen. Acquisition, by the member of 

the genus Salmonella, of virulence genes found on a virulence plasmid or grouped into 

genomic regions named Salmonella pathogenicity islands (SPI) appear to have 
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contributed to the success of this pathogen.84 Two of the SPI, SPI-l and SPI-2, encode a 

specialized molecular syringe, called type III secretion system (TTSS), that aIlows the 

delivery of effector molecules to the host celIS.85
,86 The TTSS effectors permit a fine 

manipulation of the host ceIl to the benefit of invading Salmonellae. SPI-l and SPI-2 

TTSS work at different times during the invasion and infection processes, delivering 

different effectors to the host cell. It is usually believed that SPI-l TTSS is important for 

intestinal cell invasion in mice87 while SPI-2 TTSS is required for intraceIlular replication 

and systemic disease.88 This view is certainly overly simplified, however, since there 

appears to be an overlap of the SPI-l and SPI-2 functions for both intestinal disease70 and 

intracellular replication.89 

During natural infection, Salmonella gains entry into the host by invading M­

cells.69 Salmonella invasion is a process actively controlled by the pathogen through 

various effector proteins that are injected into the host cell by the SPI-l TTSS. Through 

the injection ofvarious bacterial effectors (SipA and SipC, SopE, SopE2 and SopB), 

Salmonella induces remodeling of the host cytoskeleton, resulting in disappearance of 

apical microvilIi, localized membrane ruffling that surrounds and eventualIy engulfs the 

bacteria (Figure 3).90 SPI-l mutants are attenuated when given orally to mi ce because 

they lack the ability to invade the intestinal mucosa. However, if injected 

intraperitonelly, SPI-l mutants show full virulence. 91 SPI-l TTSS is also essential for 

development of typhlocolitis in the streptomycin pre-treatment model83 although SPI-2 

TTSS also contributes to the severity of the lesions.70 

Once inside the celI, Salmonella uses SPI-2 encoded TTSS to deliver a second set 

of effector proteins into the host celI cytosol. These effectors are essential for replication 

within the splenic and hepatic macrophages and for virulence in mice.73
•
88 FoIlowing 

invasion, Salmonella resides in a membrane-bound compartment known as the 

Salmonella containing vacuole (SCV). The early stages of maturation of the SCY 

resemble those seen with true phagosomal maturation with acquisition of markers of early 

and late phagosomal stages such as Rab5, Rab7, LAMP along with the recruitment of 

vacuolar ATPase resulting in acidification of the SCY (Figure 4).92 However, the 

maturation process appears to be altered by the Salmonella and fusion with pre-lysosomes 

and lysosomes fails to occur93 as indicated by the complete abs~nce of mannose-6-
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phophate receptor (M6PRr,95 from the SCY. Both SPI-I and SPI-2 TISS secreted 

effectors appear to play a role in preventing the merging of the SCY with lysosomes.89
,96 

Throughout this process, the SCY also avoids the delivery of nicotinamide dinucleotide 

phosphate (NADPH) oxidase97 or inducible nitric oxyde synthase (iNOS),98 thereby 

minimizing the exposure of Salmonella to harmful reactive oxygen and reactive nitrogen 

intermediates (ROI and RNI). The maturation of the SCY also differs from normal 

phagolysosome maturation in that it soon undergoes extensive fusion with endosomal 

compartments, resulting in the formation of long tubular extensions of the SCY called the 

Salmonella-induced filaments (Sifs).99,IOO This process is dependant on a SPI-2 TISS 

effector, SifA, that i~ translocated from the SCY into the cytosol.IOI,I02 Although the exact 

function of the Sifs remains unknown, their presence indicate successful establishment of 

late-stage infection and the start of bacterial replication. SifA appears essential for 

maintaining the SCY since SifA mutant Salmonellae are found in the cytosol and not in a 

SCV.73 

2.2.2 Salmonella-induced apoptosis. 

Salmonella may be able to escape the phagocyte where it resides to infect adjacent 

cells through the induction of cell death. Salmonella is capable of inducing cell death 

through two distinct mechanisms: rapid celldeath, dependent on SPI-I TTSS and 

delayed cell death, dependent on SPI-2 TTSS.103 The ability of Salmonella to cause 

inflammation within the intestinal mucosa and thereby invade deeper layers of the gut 

wall was linked to its ability to activate caspase-1 in a particular mouse strain.104 

Following invasion of M cells, Salmonella activates caspase-1 through translocation of 

the SPI-1 TTSS effector SipB into the host cell cytoplasm.105 Caspase-1 is not only a pro­

apoptotic cystein protease but it also directly c1eaves the proinflammatory cytokines 

interleukin (lL)-l (3 and IL-18 into their bioactive forms, thereby promoting inflammation 

within the intestinal mucosa. A study done with caspase-1 knockout mice on a B10.RIII 

genetic background showed that the se mice are more resistant to oral challenge with 

Salmonella while they are as susceptible as their wild-type counterpart to intraperitoneal 

infection, suggesting a role for caspase-1 in tissue colonization and systemic 

dissemination. This view has, however, recently been challenged since additional studies 
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done with caspase-l knockout mi ce of a different genetic background have showed 

increased susceptibility to oral Salmonella challenge, an effect attributed mainly to a 

deficiency in IL-l8 activation. I06
,107 The biological relevance of cell death during 

Salmonella infection certainly continues to be unclear and it still remains to be shown 

whether Salmonella-induced cell death is a bacterial manipulation of the host or a host 

adaptation to the pathogen. However, the results ofthese recent studies emphasize the 

crucial role of caspase-l dependent activation of IL-l j3 and IL-18 in the host response to 

acute Salmonella infection. 

2.2.3 Salmonella-induced immunosuppression. 

The propensity of Salmonella to persist within its host may be related to its ability 

to manipulate the host immune response. Severallines of evidence indicate that 

Salmonella has an immunosuppressive effect. Mice challenged with an attenuated strain 

of Salmonella exhibit a marked depression in their primary antibody response to sheep 

erythrocytes, an effect that persists for several weeks. 1os This immunosuppressive effect 

appears to be de pendant on the production of NO by macrophages. I09 In vitro 

experiments also identified a strong suppression ofMHC class II-dependant presentation 

of ovalbumin by murine dendritic cells infected with virulent Salmonella 

Typhimurium. IIO This effect was de pendant on NO production by the dendritic cells and 

transcription of SPI-2 genes. This mechanism may be relevant to the pathogenicity of 

Salmonella infection in vivo, since the pathogen was frequently found within dendritic 

cells of the subepithelial dome of the Peyer' s patches or of the mesenteric lymph nodes, 

and that vaccination with SPI-2 mutant conferred significantly more protection to 

challenge with a virulent strain compared to vaccination with a PurD mutant (attenuated 

to the same level than an SPI-2 mutant but expressing a functional SPI-2 TTSS). 

Section 3. Genetic determinants of the host response to Salmonella 

Severallines of evidence suggest that the genetic makeup of the host greatly 

contributes to susceptibility or resistance to infectious diseases. In 1988, a seminal study 

published by Sorenson et allli showed that the risk of dying from infectious disease was 

much increased for an adoptee if its biological parent had died of infectious disease 
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before age 50. The contribution of the host genetic background to the risk of infection 

and disease severity has also been evidenced in humans by studies documenting racial 

differences in disease susceptibility, a higher concordance in monozygotic versus 

dizygotic twins and, more recently, using large-scale family-based genome scans and 

association studies.112-115 It is clear from the se genetic analyses that the molecular 

mechanisms of resistance and susceptibility to infectious diseases are extremely complex 

and multifactorial with microbial virulence determinants and geographical environment 

factors modifying the expression of specifie host susceptibility loci. 

In humans, the risk and outcome of Salmonella infection are also influenced by 

genetic factors. For instance, patients with mutations causing sickle cell anemia,116 

chronic granulomatous disease (CGD)117 or defects within cytokine signaling 

pathwaysl18,119 are at increased risk for Salmonella infection. AdditionaIly, MHC class II 

and III genes have been associated with susceptibility to typhoid fever in a population of 

Vietnam. 120 While these examples illustrate that specific gene mutations or variants 

within the MHC have an impact on the host response to Salmonella, it is very likely that 

several additional genetic variants influence the outcome of Salmonella infection and 

remain to be identified. Because of inherent difficulties associated with genetic analysis 

in a human population, the mouse model of typhoid fever is used to identify genes that 

are important in the host response to Salmonella infection. These genes may then be 

good candidates to he tested for their impact on human Salmonella infections. 

It was recognized over 30 years ago that the susceptihility ofinhred mice to 

infection with virulent Salmonella Typhimurium varied from strain to strain and that 

the se differences were geneticaIly controlled.121 ,122 In general, classical inbred strains of 

mi ce can be classified into three distinct categories in regard to their susceptibility to 

Salmonella. 122
,I23 129S6/SvEvTac (129S6) mi ce are extremely resistant to infection with 

Salmonella Typhimurium compared to NJ mice that present an intermediate 

susceptibility phenotype, showing increased survival time with decreasing infectious dose 

but without surviving the infection (Figure 5). Other strains such as C57BL/6J, BALB/cJ 

and C3H1HeJ are extremely susceptible to infection and all succumb within the first week 

independently of the inoculum size. Differentiai susceptibility to Salmonella is aIso 

recognized among the wild-derived mice with CAST/Ei being very resistant in 
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comparison to MOLFlEi or SPRETlEi mice. l23 The development of genomic 

technologies (large scale cloning and sequencing, gene targeting, etc.) and mouse genome 

databases (http://www.informatics.jax.org) in the late 1980s and early 1990s combined 

with classical genetics contributed to the successful identification of several Salmonella 

resistance genes in laboratory mice. More recently, the development of novel models of 

infection together with quantitative trait mapping has identified additional host 

susceptibility loci.I23-125 This section will highlight key studies that led to the discovery of 

major Salmonella resistance genes in mice using different approaches including the 

generation of congenic mouse strains, positional cloning of spontaneous mouse mutations 

associated with susceptibility to Salmonella infection, targeted disruption of candidate 

genes and quantitative trait loci (QTL) mapping. 

3.1 Salmonella resistance loci identified using congenic mice: genes of the major 

histocompatibility complex (H2). 

The mouse histocompatibility complex (H2 complex) on MMU17 is a large 

genomic region encoding dense clusters of immune loci defining more than 120 genes. 126 

The mouse H2 was first identified during the course of transplantation and serological 

studies, and was later shown to influence the outcome of several immune diseases 

including resistance to infection with Salmonella Typhimurium.78.127 Using C57BL/1O 

congenic tines (ail ItY-see below for a description of Ity), Hormaeche and Harrington 78 

showed that mi ce carrying H2b and H2d haplotypes were more susceptible (LDso < 10
3 

CFUs) to a strain of Salmonella Typhimurium ofintermediate virulence than those 

carrying H2a
, H2k and Hihaplotypes (LDso 2:10

4 
CFUs). FI hybrids between H2b 

(susceptible) and H2f (resistant) showed an intermediate phenotype suggesting a 

codominant mode of inheritance. Susceptibility of H2b mice was apparent 4 weeks 

following the infectious challenge and reached a maximum at seven to eight weeks post 

inoculation. The bacterialload was 10 to 100-fold higher in the spleen and liver after 

infection of susceptible H2b congenic strains compared to resistant H2f
. Using congenic 

mouse strains carrying recombinant H2 haplotypes, Salmonella susceptibility was 

mapped to the MHC class II I-Ea subregion. The major role ofMHC class II-dependent 
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immune mechanisms in the elimination of Salmonella Typhimurium during the late 

course of infection was later highlighted using mice laeking MHC class II molecules (i.e. 

lacking H2-I-Aj3 chain) and mature CD4+ TCRaj3 cells. l28
,l29 

ln another series of experiments using Salmonella Typhimurium C5TS (a 

temperature-sensitive mutant), three categories of susceptibility were defined by 

comparing late bacterial clearance among H2 congenie mice on a C57BL/1 0 genetic 

background. '30 The lowest rate of bacterial clearance was observed in H2b
, intermediate 

clearance in H2d
, H2~ H2k

, H2P, H2r
, H2s and H2v

, and high clearance in H2j
, H2Q, and 

H2u
• The impact of the H2 haplotype on bacterial clearance was influenced by different 

genetic backgrounds. Further analysis using H2 recombinant cong.enic mi ce on a 

C57BL/10 genetic background suggested that at least two additional regions of the H2 

complex, H2-D and H2-K are involved in determining the late clearance phenotype. l27 A 

role for class-I restricted T cells in the immune response to Salmonella Typhimurium 

infection was later shown using mice lacking 132-microglobulin (132m). I3I 132m is a 12 

kDa protein known to associate with class 1 (H2-K, H2-D, H2-Q and H2-T) molecules 

that promotes activation of CD8+ T cells that specifically recognized cells infected with 

Salmonella. 

In humans, recent studies support the contribution of the MHC to the host immune 

response to infection with Salmonella. Class II MHC was shown to be associated with 

susceptibility to Salmonella Typhi in Vietnam where typhoid fever is endemic120 and 

MHC class lb molecules were associated with the development of autoimmune reactive 

arthritis following Salmonella infection.132
,l33 The inherent complexity and polymorphism 

of the MHC complex and the linkage disequilibrium between loci will continue to pose a 

significant challenge to the identification of specific Salmonella susceptibility genes 

located in this area of the genome. 

3.2 Salmonella resistance genes identified by position al cloning 

3.2.1 Nrampl. 

The fIfst description of Ity (Immunity to lyphimurium) in the mouse appeared in 

1976.121 In this early paper, the authors showed that eight strains of inbred mice fell into 

two sharply defined groups with respect to resistance to infection. Four strains (CBA, 
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A/J, C3H/He and DBA/2) were resistant (LD5o > 105
) to Salmonella Typhimurium C5 

and the other four strains (BALB/c, C57BL, BI0.D2 and DBA/l) were susceptible (LDso, 

< 10). Ihese strain differences in disease resistance were shown to behave as a simple 

Mendelian trait with a dominant mode of inheritance. Ihree years later, Ity was located 

to mouse chromosome 1 using distinguishable phenotypes as chromosome markers. l34 

Around the same time, two other groups identified host resistance loci for two unrelated 

pathogens, Mycobacterium bovis (Bcg) and Leishmania donovani (Lsh).135,136 These two 

loci were also located on mou se chromosome 1 to the same genomic subregion than 

Ity.I37,138 At that time, it was not clear if Bcg, Ity and Lsh were either the same or very 

closely related genes. The identification of a unique gene underlying Ity/Bcg/Lsh came 

almost 20 years after its first description. 139
,140 

Iwo allelic forms were recognized for Ity: a resistance allele, Ityr and a 

susceptibility allele, Itys.l34 The resistance allele is dominant and influences the rate of 

bacterial growth during the exponential phase of multiplication in the RES and the LDso 

after lethal challenge with high doses of Salmonella Typhimurium.121 Ity is expressed by 

macrophages and Ityr conf ers an increased bactericidaI capacity to this cell type in 

comparison to ItyS.141 Studies involving experimental mouse model of infection with 

Myeobacteria and L. donovani showed that Bel and Lshr behaved similarly, being 

expressed in macrophages and conferring resistance to bacteriaI multiplication of the 

intracellular parasites during the early phase of infection. 135,142,143 A positional cloning 

approach was undertaken to identify the gene underlying the Bcg phenotype. 144,145 Beg 

was mapped by segregation analysis to the proximal portion of mouse chromosome 1 

closely linked to the villin (Vil) gene. l46 High resolution linkage and physical maps were 

generated and allowed to narrow the chromosomal segment encompassing the Bcg locus 

to a size amenable to positionaI cloning.147
,148 Subsequently, using exon amplification, a 

candidate gene for the Bcg locus was found and named naturaI resistance-associated 

macrophage protein-l gene or Nrampl.l40 Nrampl was recently renamed SIc11 al 

because of its membership to a family of solute carriers. 149 Predicted protein sequence 

analysis of Nrampl between Ityr and Itys strains reveaIed a single mutation resulting in 

glycine to aspartic acid substitution at position 169.150 This mutation results in complete 

lack offunction of Nrampl in susceptible mice. 151 The identity of Nrampl, Bcg,Ity and 
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Lsh was confirmed by targeted disruption of Nrampl in mice and phenotypic comparison 

among different genotypes of mice during experimental infections with Salmonella 

Typhimurium, M hovis and L. donovani. 139 Additionally, susceptible mice were rendered 

resistant to BCG and Salmonella Typhimurium by transfer of the resistance allele, further 

confirming the identity of Nrampl with the phenotypic resistance to Salmonella 

Typhimurium. 152 

The identification of Nrampl and its function opened a whole new field in the 

area of host resistance to intracellular pathogens. Nrampl encodes a highly hydrophobic 

56 kDa protein, which possesses 12 transmembrane (TM) domains and a glycosylated 

extracytoplasmic loop. It is expressed in the membrane fraction of macrophages and 

neutrophils as a phosphoglycoprotein of 90 to 100 kDa. 149 During phagocytosis, Nramp 1 

is recruited to the membrane of the phagosome and remains associated with this structure 

during its maturation to a phagolysosome.l53 Its effect on Salmonella replication within 

the macrophage may be related to its capacity to counteract Salmonella' s ability to 

become secluded from the endocytic pathway. Cuellar-Mata et al 154 have indeed shown 

that Nrampl has an impact on SCY maturation. SCY formed in Nrampr/- macrophages 

fail to acquire M6PR and become inaccessible to extracellular markers. In contrast, 

Nrampl wild-type macrophages do acquire M6PR and remain accessible to extracellular 

dextran. Since M6PR is known to regulate the delivery of a subset of lysosomal enzymes 

from the trans-golgi network to the pre-Iysosomal compartment, it is conceivable that 

Nrampl wild type macrophages may have increased bactericidai activity. 

These findings support the hypothesis that Nrampl controis the replication of " 
intracellular parasites by altering the intravacuolar environment of the phagosome. In 

fact, it was shown that Nrampl functions as a pH-dependant cation transporter.155.156 

Divalent cations, like manganese and iron, are likely important for the survival of 

pathogens and removal of these from the phagosome probably results in enhanced 

bacteriostatic or bactericidal activity and increased resistance to intracellular pathogens. 

Nramp orthologues have been identified in Salmonella (MntH) and other bacteria. They 

are also proton-dependent manganese transporters and appear to function as an import 

system for the acquisition of divaIent metals from the extracellular environment. 157 

Salmonella MntH and mammalian Nramp 1 proteins might influence the outcome of 
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bacterial infection through competition for the same essential substrates within the 

microenvironment of the phagosome.149 

Because of the critical role ofNrampl in the mouse model oftyphoid fever, the 

human homologue ofmouse Nrampl was investigated in resistance to typhoid fever in 

humans. Despite the fact that NRAMP 1 contributes c1early to the risk and the progression 

of mycobacterial infections in humans,114,158-160 no allelic association was identified 

between NRAMP 1 and typhoid fever susceptibility in humans in southern Vietnam. 161 

However, these studies do not prec1ude a role for NRAMP 1 in susceptibility to human 

Salmonella infections because of the known effect of the ethnic genetic background on . 
the expression of disease susceptibility. The role of allelic variation at NRAMP 1 was also 

examined in a chicken model of Salmonella infection.162 Using crosses between resistant 

(Wl) and susceptible (C) chickens, NRAMPl was shown to account for 18% of the early 

differential resistance to infection. 

3.2.2 Tlr4. 

Tolllike receptor 4 (TIr4; frrst described as the Lps locus) is another critical gene 

that regulates innate resistance to infection with Salmonella Typhimurium and the host 

response to LPS in mice. Bacterial LPS is a major constituent of the outer membrane of 

Gram-negative bacteria and is essential to the structure and survival of these bacteria. l63 

Through evolution, the immune system of eukaryotes has learned to recognize LPS as an 

indicator of Gram-negative bacterial infection. Indeed, very small amounts of LPS are 

able to initiate a robust inflammatory response in the host. LPS molecules are PAMPs 

that are naturally recognized through receptors of the innate immune system known as 

PRRS. I64 The Toll-like receptor (TLR) family is a good example of PRRs and among 

them, Tlr4 was identified as an important component of the signal transduction initiated 

by LPS. 

The discovery of Tlr4 was rendered possible because of earlier identification of 

LPS hyporesponsiveness of C3H/HeJ mice. 165 C3H/HeJ mice can withstand 20 to 38 

times the LDso for other inbred strains when challenged intravenously with LPS and show 

an altered intraperitoneal inflammatory response with a reduced ratio of neutrophils to 

mononuclear cells following local injection of LPS. I65
,166 However, if challenged with 

26 



Gram-negative bacteria such as Salmonella Typhimurium, C3HIHeJ mi ce present a 

markedly increased susceptibility to this pathogen. The LDso for LPS responsive mi ce to 

Salmonella Typhimurium infection is 2: 2 x 103
, while LPS hyporesponsive strains 

succumb to infection with less than 2 organisms. 167 LPS hyporesponsiveness was also 

recognized in other strains including C57BL/lOScCr,168 its progenitor C57BL/lOScN169 

and more recently in C57BL/6.KB2-mnd. 170 The failure of (C3H/HeJ x 

C57BL/lOScCr)F( and (C3H1HeJ x C57BL/6.KB2-rnnd)Fl to respond to LPS suggest 

that these three strains carry mutations at the same gene. I70,171 Segregation analysis in 

backcrosses between responsive and hyporesponsive strains revealed that this phenotype 

was inherited as a simple Mendelian trait. 172.173 The locus was named Lps, and two alleles 

were defined: Lpsn and Lpsd for normal and defective response to LPS respectively. 174 

The mode of inheritance varied with the phenotype studied and the strain combination 

used: heterozygote mice issued from C3H/HeJ and C57BL/6J present an intermediary 

LPS-response consistent with a codominant mode of inheritance173 whereas crosses made 

between C57BL/IOScCr and Lpsn mice show a fully dominant wild-type allele. 171 These 

observations may be explained by monoallelic expression of Tlr4 and the nature of the 

Lps alle1e in the studied strains (see below).I75 The response to Salmonella infection was 

inherited as a single dominant trait in all crosses performed between Lpi and Lpsn 

mice.167.176 

Early linkage analysis studies revealed that Lps cosegregated with the major 

urinary protein locus (Mup-l) and the polysyndactyly (Ps) mutation indicating that Lps is 

located on mouse chromosome 4.173
.
174 High resolution genetic, physical and 

transcriptional maps of the area were thereafter generated176
,177 and led to the 

identification of Tlr4 as a candidate for LpS.177,178 Three different Tlr4 mutant alle1es were 

identified: C3H/HeJ mice present a single mÏssense mutation resulting in a proline for 

histidine substitution at codon 712 within the signaling domain;178,I79 in C57BL/10ScCr 

mice, there was no Tlr4 transcripts detected178,179 as a consequence of a 75 kb 

chromosomal deletion encompassing the whole Tlr4 gene;l&l the mutation identified in 

C57BL/6.KB2-mnd Tlr4 consists in a complete deletion of exon II. This mutation leads 

to a frameshift resulting in the appearance of a stop codon just downstream of the exon 

junction. The putative T1r4 mutant protein is equivalent to the tirst 31 N-terminal 
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residues of its wild-type counterpart (835 residues).170 Confirmation of the role of Tlr4 in 

LPS hyporesponsiveness was obtained through examination of mice that had been 

rendered deficient for Tlr4. 181 

The TLR familyl64.182.183 is composed of type 1 TM receptors characterized by an 

extracellular leucine-rich repeat domain and an intracellular do main similar to the 

intracellular domain of the IL-I receptor called the TIR (TolllIL-1 receptor) domain. The 

first identified member of this family, Drosophila Toll, functions in a pathway that 

controls the dorso-ventral axis formation of the fly.l84 ln adults, mutations in Drosophila 

Tolllead to increased susceptibility to fungal infection because of failure to induce the 

antifungai peptide Drosomysin thereby linking this gene to innate immunity. In 

mammals, Il TLRs have been identified and most of them have been shown to be 

essentiai for defense against different pathogens by sensing specific PAMPs. TLR4 

appears to interact directIy with LPS with the cooperation ofLBP (LPS-binding protein) 

and co-receptors CDl4 and MD_2.185-187 Ultimately, LPS sensing by TLR41eads to the 

activation of various transcription factors through the activation of two known signaling 

pathways: 1) a MyD88-dependant signaling pathway, dependant on the adaptors MyD88 

and TlRAP, leading to a rapid activation of NFKB and transcription of inflammatory 

cytokines, and 2) a TRIF/TRAM-dependant, MyD88-independent pathway Ieading to 

delayed activation ofNFKB, specific activation ofIRF3, and expression ofIFN-j3 and 

interferon responsive genes. Activation ofTLR4 by LPS leads to the induction ofvarious 

host defense genes induding pro-inflammatory cytokines such as IL-l, IL-6, IL-8 and IL-

12, chemokines, costimulatory molecules (CD80 and CD86), MHC dass II and iNOS by 

antigen presenting cells. I88
-
190 Induction of CD80/CD86 and IL-12 by TLRs contribute to 

the initiation of adaptive immunity and the induction of TH 1 effector responses. l89 

In humans, the role ofTLR4 polymorphisms was originally investigated in the 

response of airways to inhaled LPS. Two co-segregating missense mutations (Asp299Gly 

and Thr399Ile) were identified and found to be associated with a blunted response to 

inhaled LPS.191 These hypomorphic alleles have since been associated with protection or 

susceptibility to various human diseases including Gram-negative infection,192 septic 

shock due to gram-negative organisms,I93 severe malaria,l94 brucellosis,195 Crohn's 

disease,I96 severe sepsis following bum injury,197 atherosclerosis,l98 Legionnaire's 
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disease l99 and late-onset Alzheimer's disease.2OO TLR4 has also been associated with 

resistance to Salmonella Typhimurium in chickens following linkage analysis in 274 

progeny derived from the Salmonella-resistant Wl and the Salmonella-susceptible C 

inbred lines of chickens.201 

3.2.3 Btk. 

The role of B lymphocytes in immunity to Salmonella Typhimurium was studied 

initially in CBAIN inbred mice, a strain that has impaired humoral immunity because of a 

peripheral defect in B-cell activation and function,z°2 This defective phenotype was 

mapped to chromosome X and named xid for x-linked immunodeficiency. The B cell 

defect of CBAIN mice is characterized by an impaired maturation of B cells, diminished 

immunoglobulin production (CBAIN mi ce have low serum IgM and IgG3 levels) and 

compromised T-independent immune response. Because oftheir immunodeficiency, 

CBAIN mi ce present a late susceptibility to infection with pathogens such as Salmonella 

Typhimurium.81 Susceptibility of xid mi ce to Salmonella Typhimurium is recessive; 

hemizygous male and homozygous female present the susceptibility phenotype while 

heterozygous females are resistant81 due to preferential inactivation of the X chromosome 

carrying the defective xid allele,z03 Passive transfer of immune serum restores resistance 

in affected males, an effect attributed to the presence of specific anti-Salmonella 

antibodies.204 These results c1early indicated a role for circulating antibodies in resistance 

to Salmonella Typhimurium during the late (> 1 Odays) phase of infection. 

The xid mutation was localized to a region of mouse chromosome X showing 

conserved homology with a region of the human genome carrying the gene involved in X­

linked agammaglobulinaemia (XLA)205 a disease that resembles the phenotype expressed 

in xid mice.206 Male patients with XLA have a severe B cell immunodeficiency 

characterized by reduced numbers of mature circulating B cells, diminished serum Ig 

levels and disrupted secondary lymphoid architecture. Intestinal infections with 

Salmonella spp have been described in XLA patients however bacterial infections 

involving the respiratory tract caused by Streptococcus pneumoniae, Haemophilus 

irifluenzae, Staphylococcus aureus, and Pseudomonas spp are the most frequent 

infections. 
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In 1993, mutations in the gene encoding Bruton's tyrosine kinase (btk) were 

reported to cause XLA in humans207,208 and xid in mice.205
.209 btk belongs to the Tec family 

of non-receptor protein-tyrosine kinases, known to be highly expressed in hematopoietic 

cells.210 btk is expressed at all stage ofB cell development from pro to mature B cells, but 

is down regulated in plasma B cells. Its expression occurs also in erythroid precursors, 

myeloid cells, mast cells and megakaryocytes but not in T or NK cells. btk participates in 

intracellular signal transduction in a number of cell activation pathways such as those 

mediated by the B cell antigen receptor (BeR) and the toll-like receptor RPI05.211 btk 

encodes a tyrosine kinase that possesses pleckstrin-homology (PH) and Tec-homology 

(TH) domains in addition to src homology (SH) domains (SHI, SH~ and SH3).2I2 btk, as 

a major component of the BCR signaiosome, plays a criticai role in the regulation of pre­

B and mature BCR signaling.213
-
215 Recruitment of btk to the cellular membrane and its 

subsequent activation triggers the mobilization of intracellular calcium and the activation 

of PKC resulting in the degradation of the NF-KB inhibitory protein I-KBa and the 

translocation ofNF-KB to the nucleus.216-218 In humans, more than 175 different 

mutations invol ving all domains of the BTK gene have been identified in XLA patients.206 

In xid rnice, a missense mutation at a conserved arginine residue (R28C) within the PH 

domain of btk impairs its ability to translocate to the plasma membrane and trigger 

signaling cascades that regulates B cell survival and growth,205,209,215 consequently 

affecting resistance to infection with Salmonella. 81 

3.3 Salmonella resistance loci identified using gene-deficient mice 

The use of gene targeting has been very successful for investigating the role of 

several Salmonella resistance genes in mice. Candidate genes have been selected based 

on the biological understanding of the disease phenotype or based on the in vitro response 

to the pathogen. In the following paragraphs, 1 will discuss selected critical genes which 

role in mouse resistance to Salmonella infection was uncovered by engineering knockout 

mlce. 
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3.3.1 Lbp and Cd14. 

Lbp and Cd14, like Tlr4, are known to bind LPS and have been involved in innate 

defense against Salmonella Typhimurium. Lbp is an acute phase protein found in the 

serum that accelerates the binding of LPS to Cd 14 and initiates signaIs through 

membrane-bound Tlr4 in monocytes and myeloid cells.219 Work with Lbp-deficient mice 

has shown that Lbp is essential for the induction of a rapid inflammatory response and for 

survival following intraperitoneal infection with Salmonella Typhimurium?20 The critical 

function of Lbp in resistance to infection was confrrmed by the rescue of the susceptible 

Lbp-/- mi ce with recombinant mouse Lbp supplementation.221 

Cd14 is a glycosylphosphatidylinositol-anchored molecule that is expressed on 

monocytes and neutrophils and acts as a high affinity receptor for LPS. Cdl4-deficient 

mice were found to be extremely resistant to the effect of LPS, with 100% survival and 

almost no detectable clinical signs following challenge with 10 times the LD lOo for 

control mice. This increased resistance correlated with markedly decreased expression of 

cytokines such as TNFa. and IL-6.222 Interestingly, Cdl4-deficient mice were also more 

resistant to Gram-negative (E. coli) bacterial challenge with decreased level of 

bacteremia, suggesting a role for Cd14 in bacterial dissemination.223 However, in the case 

of the Gram-negative intracellular pathogen Salmonella Typhimurium, Cd14 appears as 

an important resistance gene.224 

3.3.2 NADPH oxidase and iNOS. 

Following phagocytosis of virulent Salmonella Typhimurium, two major enzyme 

systems come into play to inactivate the pathogen within the phagosome: the phagocytic 

NADPH oxidase and iNOS. NADPH oxidase and iNOS participate to the generation of 

ROI and RNI respectively.225,226 The importance ofNADPH oxidase in resistance to 

Salmonella infection was originally uncovered in humans suffering from CGD, a group of 

inherited disorders characterized by reCUITent infections and chronic inflammation. The 

disease results from mutations in any one of four subunits of the NADPH-oxidase. The 

majority of patients with CGD present X-linked deficiencies of gp91 Phox (renamed 

CYBB); most autosomal recessive CGD are associated with mutations withinp47phox 

(NeF 1) or p67"hox (NeF2); a rare autosomal recessive form is associated with mutations 
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within p22phox (CYBA).227 Mice deficient in gp91 phox were engineered as a model for 

CGD and found to be extremely susceptible to infection with Salmonella 

Typhimurium.228.229 Early death of gp91 phox deficient mice after Salmonella infection was 

associated with spleen and liver bacterialload exceeding by at least 3 log the wild type 

controls.228 

Studies with iNOS-deficient mi ce support a dual role for NO during virulent 

Salmonella infection in vivo. Enhanced production of NO provides increased host 

defense against pathogens but also contributes to inflammation, tissue damage and even 

endotoxic shock.228.230.231 Additionally, NO is essential for survival following infection 

with an attenuated strain of Salmonella but at the same time, it mediates Salmonella­

induced immunosuppression. I09 Although Nos2 (the gene encoding for iNOS) knockout 

mice are able to control the early replication of Salmonella in the RES organs, they are 

unable to suppress bacterial growth later during infection and eventually die.228 This 

observation contrasts with the gp91 Phox deficient mice which are extremely susceptible to 

Salmonella Typhimurium early during the course of infection even with a very low 

inoculum.228 

It is cIear from these studies that intracellular killing of Salmonella Typhimurium 

is dependent on both ROI and RNI systems, however the se reactive intermediates appear 

to act at different stages of infection (NADPH oxidase being more critical early after 

infection and iNOS later during infection). Double mutant mice (gp91phox-I-/NosTI-) 

exhibited spontaneous infections caused by organisms of the normal flora, resuIting in 

formation of large internaI abscesses.229 This phenotype was not exhibited by mice 

deficient in only one of the enzyme activity, indicating that in spontaneous infections with 

indigenous f1ora, gp91 phox and Nos2 can compensate for each other and that no other 

pathway could compensate for their simultaneous absence. 

3.3.3 Cytokines: TNFa, IFNy and IL-12. 

The release of proinflarnmatory cytokines from activated T cells, NK ceUs and 

macrophages is pivotaI in controlling the primary immune response to Salmonella. 

TNFa232 is a pleiotropic pro-inflammatory cytokine produced mainly by macrophages but 

also by activated NK ceUs and THI lymphocytes. It is encoded,by the Tnfgene and exerts 
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its effects through two types ofreceptors: TNFRp55 (encoded by Tnfrsfla for TNF 

receptor superfamily la gene) and TNFRp75 (Tnfrsflb). This cytokine plays a key role in 

host defense against pathogens through several mechanisms including activation of 

neutrophils and platelets, enhancement of killing activity of macrophages and NK cells, 

and activation of the immune system. Mice carrying a targeted disruption of Tnfrsfl a 

were found to be more susceptible to challenge with virulent Salmonella Typhimurium 

and to attenuated purE, aroA and sseB mutants.233
•
234 The early susceptibility of Tnfrsfl a­

I- mice to Salmonella was attributed to a defect in the early bactericidal capacity of 

Tnfrsfla-I
- macrophages.234 Although this early phase of bacterial killing within the . 

macrophages is associated with activation of the NADPH oxidase system, comparable 

levels of superoxide were detected within the infected macrophages of normal and 

knockout mice. Further analysis, using fluorescence microscopy and transmission 

electron microscopy, showed that TNFRp55 is necessary for targeting of NADPH 

phagocyte oxidase-harboring vesicles to SCY S. 234 

IFNy is produced by activated T cells and NK cells following IL-12 stimulation 

and plays a key role in THI responses. 118 IFNy is responsible for activating macrophages 

and influences also antibody c1ass switching. The growth of attenuated Salmonella 

Typhimurium aroA- is contained in wild type mice, however IFNy-deficient mi ce 

succumb to infection due to unrestricted bacterial proliferation.129
,235 These experiments 

point out the central role that IFNy plays in mice against bacterial strains of poor 

virulence. The anti-Salmonella effect of IFNy appears to be in part due to stimulation of 

the NO production by activated macrophages, which would have a repressive effect on 

the transcription of SPI-2 genes. Inhibition of SPI-2 transcription would facilitate the 

maturation of the SCY by allowing fusion with late endosomes and lysosomes.236 

Deficiencies in the IFNy axis are not only associated with higher susceptibility to 

infection with Salmonella in mi ce but also with increased susceptibility to other 

intracellular pathogens.61 

IL-12 is an heterodimeric cytokine composed oftwo subunits, IL-12p35 (encoded 

by I112a) and IL-12p40 (encoded by I112b), linked by two disulfide bonds.1l8
•
119 IL-12 is 

produced and secreted mainly by antigen presenting cells (dendritic cells and 

macrophages), The IL-12 receptor (composed of two subunits IL12RJ31 and IL12RJ32) is 
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found predominantly on T and NK cells. The principal known function of IL-I2 is the 

induction ofIFNy and consequently the development ofTHI responses. Administration 

of monoclonal antibodies directed against IL-12 exacerbate the mild disease usually 

caused by Salmonella Typhimurium aroA- in BALB/c mice, eventually Ieading to 

death.237 The administration of anti IL-12 antibodies resulted in decreased local and 

systemic IFNy concentration, lower tissue iNOS activity and increased serum IL-I 0 levels 

in infected mice. The role ofIL-12 in resistance to Salmonella infection was also studied 

in mice carrying targeted disruptions of genes encoding for either subunits ofIL-12, I112a 

or I112b.238 In a model of systemic infection with Salmonella Enteritidis, I1l2a-l
- and 

I1l2b-l
- mi ce were more susceptible to infection than wild type mice. However, the 

increased susceptibility was more pronounced in I1l2b-l
- mice. Lack of I1l2b resulted in a 

TH2 response, which was inadequate for immunity against the intracellular pathogen 

Salmonella Enteritidis. 

Pathogenic mutations in genes coding for the IFNyRI, IFNyR2, IL-12p40 and IL-

12Rj31 were reported in the syndrome of Mendelian susceptibility to mycobacterial 

disease. 118,119 These pediatric patients were first identified because of their susceptibility 

to poorly virulent mycobacterial species such as BCG. The patients rarely develop other 

infectious diseases with the exception of Salmonella infections that are found in almost 

half of the cases. The clinical manifestations of the disease are heterogenous and range 

from abdominal abscesses and adenitis to severe sepsis. Several Salmonella serotypes 

have been identified and include Salmonella Paratyphi239
,240 or nontyphoid Salmonella 

serotypes such as Salmonella Typhimurium or Enteritidis.239-243 

3.4 Host resistance loci identified using QTL analysis 

Other loci influencing resistance or susceptibility to Salmonella infection in mi ce 

have been identified using QTL analyses. 123
-
125 The wild-derived inbred mice, MOLFlEi 

was initially found to be extremely susceptible to Salmonella Typhimurium with survival 

time comparable to the survival time of C57BL/6J (NrampF) despite having a wild type 

allele at Nrampl. Subsequently, linkage analysis using 252 (C57BL/6J x MOLF lEi) F2 

mice allowed the mapping of two new QTL, which significantly affect survival tirne 

following lethal infection with Salmonella Typhimurium; 123 A Salmonella-resistant 
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phenotype (lty2) was linked to a region on mouse chromosome Il (LOD score of7.0 at 

D 11 Mit5) and contributed 10% to the variance. Several candidate genes were detected in 

the surrounding region including granulocyte/macrophage colony-stimulating factor 

(Csfgm), interleukin 3 (113), inducible nitric oxide synthase (Nos2) and myeloperoxydase 

(Mpo). The candidacy of Nos2 was evaluated by measuring Nos2 mRNA levels and 

nitrite production in MOLF/Ei mice during infection. MOLFlEi mice showed a 

decreased capacity to induce Nos2 mRNA and to pro duce NO.244 As mentioned earlier, 

studies with Nos2-deficient mice support a dual role for NO during virulent Salmonella 

infection in vivo. Enhanced production of NO provides increased host defense against 

pathogens but also contributes to inflammation, tissue damage and even endotoxic 

shock.245 Although Nos2 knockout mice are able to control the early replication of 

Salmonella in the RES organs, they were unable to suppress bacterial growth and 

eventually die from infection.228 In this model, low Nos2 mRNA levels correlate with a 

reduced NO production and a decreased inflammatory response, a finding that may 

explain the protective effect of lty2 on chromosome Il. 

A second QTL, lty3, was located on mouse chromosome 1, approximately 25 cM 

distal to Nrampl (LOD score of 4.8 at DIMitlOO). lty3 was inherited recessively with the 

MOLFlEi allele conferring susceptibility to infection. The effect ofthis locus was 

identified only after adjustment for the effects of Nramp 1, and contributed to 7% of the 

variance in survival time. The chromosomal region harboring lty3 is also rich in 

candidate genes, including Tlr5 and the neutrophil cytosolic factor 2 gene, Ncj2. Tlr5 

was first considered a great candidate based on its biological function as a signaling PRR 

for flagellin, on its sequence analysis revealing a unique haplotype in MOLFlEi and on its 

very low expression levels in the liver of MOLF lEi compared to other inbred strains, 

including C57BL/6J.246 However, further analyses did not support the candidacy of Tlr5 

as the gene underlying lty3 since, when removed from its original genetic background, 

the MOLF/Ei Tlr5 alle1e was found to be expressed at higher 1eve1 than the C57BL/6J 

allele.247 Moreover, during in vivo flagellin stimulation, MOLFlEi mice were found to 

produce very little IL-6 or CXCL-1 while C57BL/6J mice congenic for lty3, including the 

MOLFlEi Tlr5 allele, showed higher levels ofboth IL-6 and CXCL-1 compared to 
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MOLFlEi or C57BL/6J. These results suggest that the MOLFlEi genetic background 

influences the activity of Tlr5 in vivo and that Tlr5 is not the gene underlying Ity3. 

The candidacy of Ne/2 was then evaluated and is now supported by sequence 

analysis and functional data in B6.MOLF-Ity/lty3 congenic mice.248 Nefl encodes the 

protein p67phox
, one of the five subunits of the phagocyte NADPH oxidase. In MOLFlEi, 

the Nefl alle1e was found to carry a nonconservative amino acid change (R394Q) within a 

crucial functional domain of the protein. Additionally, B6.MOLF-Ity/lty3 congenic mi ce, 

which are more susceptible to Salmonella compared to control mi ce heterozygous at Ity3, 

showed a trend for decreased expression of Nefl in their spleen. Furthermore, the 

MOLF lEi Nefl alle1e showed decreased PMA and Salmonella-induced superoxide 

production compared to the wild type allele ex vivo. Finally, in humans, a mutation at the 

same amino acid results in CGD and increased risk of Salmonella infection. These 

findings indicate that Nefl remains a very good candidate for Ity3. 

In another study, a chronic mode1 of infection with Salmonella Enteritidis was 

used to identify loci implicated in the late bacterial clearance of the organism from the 

spleen.124 Two strains, C57BL/61 (NrampS, H2') and 129S6 (Nrampr, H2b
) were 

characterized according to their ability to clear Salmonella Enteritidis from the spleen. 

129S6 mice were found to have markedly impaired ability to clear the parasite when 

compared to C57BL/6J. Pairwise epistatic QTL mapping performed on a dense set of 

markers in 300 (129S6 x C57BL/61) F2 mice allow identification of several QTL having 

individual or interacting effect on the bacterial clearance. 124
,125 The detected loci were 

successively numbered as S.almonella Enteritidis âusceptibility (Ses) loci. A sex effect 

was detected in this mode1 with the females showing increased bacterial clearance 

compared to males and forcing the separate analysis of the male and female data. The 

final model retained for the female mice included an individual effect of Ses3 (Dl5Mit29) 

and two interactions involving Sesl (DlMeg5) and Ses4 (DXMit48), and Sesl and Ses5 

(D7Mit267). In males, the model included also one QTL with individual effect, Sesl.l 

(DlMitl23) and three significant interactions involving Sesl and Ses6 (D9Mit2l8), Ses7 

(D2Mitl97) and Ses8 (D4Mit2), and Ses9 (D3Mit356) and SeslO (Dl3Mit36). For all 

loci, the C57BL/61 allele was associated with increased bacterial clearance and behaved 

recessive1y except for Ses7, which was dominant. For both the males and the females, the 
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proposed model explained 47% of the phenotypic variance. The effect of Sesl and Sesl.l 

on the bacterial clearance was confirmed in congenic mice. 

Sesl maps to the genomic region of Nrampl, which segregates in this cross. 

Because of the known effect of Nrampl on the mouse response to Salmonella, the 

candidacy of Nrampl as the gene underlying Sesl was investigated in 129S6 and 129S6 

Nrampr/- mice. 124 Following infection with Salmonella Eilteritidis, mice carrying a 

functional Nrampl gene had higher CFUs in their spleen compared to the Nrampr/- mice, 

indicating that, in this model of chronic infection, having a functional Nrampl allele has a 

detrimental impact on bacterial clearance. Further studies indicated that functional 

polymorphisms at Nrampl influence the T helper differentiation dll!ing chronic infection 

with Salmonella Enteritidis in mi ce with increased bacterial clearance linked to a TH2 

response (seen in mi ce carrying a non-functional Nrampl) and delayed bacterial 

clearance linked to the development of a THI response (as seen in mice carrying a wild­

type Nrampl).249 

These studies illustrate the genetic complexity associated with the host response to 

Salmonella infection in mice and emphasize the need of accounting for sex effect and 

epistasis in genetic mapping studies. The future of genetic mapping of complex trait 

certainly lies within the ability we will have to compute and model multiple genetic and 

environmental interactions. 

Section 4. Iron balance and anemia of inflammation in infectious diseases 

The systemic activation of the host innate and adaptive immune system during 

infection has several consequences on normal body homeostasis. Among others, the 

various cytokines and acute phase proteins produced during systemic inflammation have 

a strong impact on the host erythropoietic response and iron balance. Various 

observations made throughout my PhD work have motivated the investigation of the role 

of anemia and iron balance during Salmonella infection in mice. In the following 

paragraphs, l will briefly introduce two related topics, the pathogenesis of anemia of 

inflammation and the role of iron during infectious diseases. 
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4.1 Anemia of inflammation 

Sustained immune activation may result in the development of anemia, a clinical 

entity referred to as anemia of inflammation. 250 Several clinical conditions have been 

associated with anemia of inflammation, including infections, cancer and autoimmune 

diseases. Anemia of inflammation is usually mild to moderate, normochromic, 

normocytic and non-regenerative. Additionallaboratory findings include low serum iron, 

low to normal transferrin, decreased transferrin saturation, normal to high serum ferritin 

and increased circulating cytokines. The mechanisms underlying this phenomenon are 

numerous and complex and include changes in iron homeostasis, decreased red blood cell 

(RBC) life span, decreased erythropoietin production and decreased proliferation of 

erythroid progenitors, which are ail direct consequences of the immune system activation 

and cytokine productions (Figure 6). 

Anemia of inflammation develops because of the incapacity of the erythropoiesis 

response to increase slightly in reaction to a small decrease in RBC life span.251 The 

decreased survival of RBC is believed to result from the activation of macrophages which 

prematurely remove aging RBC from the blood stream. Whether sorne bacterial products 

or host-derived factors also contribute to the decreased life span of RBC is still open to 

debate. The destruction of RBC in anemia of inflammation is, however, only mildly 

accelerated, and in a normal setting should be easily compensated for. A relative 

resistance to the effect of erythropoietin and changes in iron homeostasis appear to 

prevent such increases in the production of erythrocytes. In fact, the changes in iron 

homeostasis appear central to the development of anemia during infection. The cytokines 

produced by the host increase the sequestration of iron within macrophages and decrease 

its absorption from the intestine, thereby greatly diminishing the availability of iron for 

RBC synthesis. The acute phase protein, hepcidin, appears to play a central role in iron 

regulation during inflammation and in the development of anemia of inflammation. 

Produced by the hepatocytes under the influence of cytokines such as IL-6,252 hepcidin 

decreases the ex port of iron from macrophages, hepatocytes, duodenal enterocytes and 

placental syncytiotrophoblasts. Iron is usually exported from these cells when needed 

through the iron export channel, ferroportin. Under the influence of hepcidin, ferroportin 

is internalized and degraded, thereby sequestering the iron within these cellS.253 
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Therefore, despite seemingly adequate iron stores, iron is unavailable for erythropoiesis 

and anemia ensues. In the case of long standing anemia of inflammation, true iron 

deficiency may develop since absorption from the duodenum is also inhibited. 

Although the pathways regulating hepcidin gene expression are still incompletely 

understood, various signaIs have been identified. First, raised body iron enhances 

hepcidin expression in a mechanism that is independent ofIL_6.252
,254 Up regulation of 

hepcidin expression during iron overload would result in decreased iron release from 

macrophages and decreased duodenal absorption, thereby counteracting the iron overload. 

Alternatively, hypoxia and anemia lead to down regulation of hepcidin expression/55 

which would allow increased export of iron from the RES and enhanced duodenal 

absorption, allowing increased erythropoiesis to compensate for anemia and hypoxia. 

Finally, cytokines produced during inflammation and most notably IL-6, also lead to up 

regulation of hepcidin expression by the hepatocytes.252
,254,255 In this case, the increased 

sequestration of iron within the macrophage would decrease the pool of iron available for 

RBC synthesis and contribute to anemia of inflammation. This phenomenon may be an 

adaptation of the host to deprive invading microorganisms of iron and thereby limit their 

growth. The unwanted but inevitable consequence of this sequestration is the 

development of anemia. 

4.2 The role of iron in infection 

Iron is an essential nutrient to both the host and invading microorganisms. While 

mammalians have evolved severaI mechanisms to sequester, regulate and conserve iron, 

bacteria have at the same time acquired means of getting enough iron from the ecologic 

niches they occupy. During infection, both the host and the invading pathogen will 

compete for this precious nutrient. On one hand, aImost ail bacteria necessitate a minimal 

amount of iron for growth, and such quantity is not normaIly freely available in the host 

where iron is bound to various proteins such as transferrin and lactoferrin. On the other 

hand, the right balance of iron is needed by the host for adequate innate and adaptive 

immune responses and both iron overload and iron depletion have been shown to impair 

the immune response.256 It is, therefore, not surprising that the iron status of the host has 

been linked to susceptibility to various pathogens. 
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The host response to Salmonella infection appears also to be dependent on the 

iron status of the host. In mice, iron overload induced by repeated injections of human 

blood or iron results in decreased resistance to Salmonella infection.257
,258 On the other 

hand, mice kept on an iron-deficient diet were found to be more resistant to Salmonella 

compared to mice fed a regular di et or mice fed with an iron-deficient diet but injected 

with iron lOto 14 days prior to infection.259 Interestingly, acute iron depletion through 

the administration of deferoxamine, an iron chelator capable of binding both intra and 

extracellular iron, increased the susceptibility of mice to Salmonella.257.2(i) This effect was 

noted in both Nrampl resistant and Nrampl susceptible strains and appeared related to an 

impaired capacity of macrophages to restrict the growth of Salmonella because of 

impaired NADPH-dependent respiratory burst.2
(i) These results indicate that a fine 

balance of iron is needed for optimal host defense against Salmonella and that both iron 

overload and iron depletion can exacerbate the growth of this intracellular pathogen. 
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Figure 1: Geographical distribution oftyphoid fever. Geographical distribution of 

estimated typhoid fever incidence rates showing areas of high, medium and low 

incidence. From Crump JA, Luby SP, Mintz ED. The global burden oftyphoid fever. 

Bull World Health Organ 2004; 82: 346-353. 
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Figure 2: Systemic infection with a sublethal inoculum of Salmonella Typhimurium 

in mice is characterized by four distinct phases of infection. The first phase involves 

rapid clearance of the organisms from the blood followed by localization of the inoculum 

within macrophages and polymorphonuclear cells of the spleen and liver. The second 

phase of infection takes place over the following week, with an exponential growth of the 

organisms within the RES of the spleen and liver. The activation of the innate immune 

system to stop bacterial growth results in the establishment of a plateau (third) phase. 

The final (fourth phase) resolution of infection is clearly a function of activation of the 

acquired immune system and depends on T and B cells activation. Adapted from 

Mastroeni P. Immunity to systemic Salmonella infections. Curr Mol Med 2002; 2: 393-

406. 
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Figure 3: Interaction of Salmonella with epithelial ceUs. a) Electron micrograph of 

Salmonella Typhimurium infected MDCK cells. Salmonella induces remodeling of the 

host cytoskeleton, resulting in disappearance of apical microvilli and localized membrane 

ruffling that surrounds and eventually engulfs of the bacteria. Salmonella is colored in 

green, and the apical surface is colored in red. b) Immunofluorescence image showing 

actin cytoskelettal rearrangements (arrow) induced by Salmonella infection of RenIe 407 

cells. Actin stained in red, Salmonella stained in green and DNA stained in blue. Patel 

JC, Galan JE. Manipulation of the host actin cytoskeleton by Salmonella-all in the name 

of entry. Curr Opin Microbiol2005; 8: 10-15. 
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Figure 4: Salmonella redirects phagosomal maturation. The receptor-mediated 

phagocytosis resulting in the formation of a mature phago-Iysosomes is shown on the left. 

The Salmonella TTSS-mediated invasion is shown on the right. The SCY resembles the 

conventional phagosome at early and intermediate stages of maturation. However, at 

later stages, the SCY is redirected away from the phagosomal maturation pathway and 

does not fuse with lysosomes. SPI-2 encoded TTSS mediates the delivery ofSifA to the 

cell cytoplasm resulting in the formation of Sifs. Brumell JH, Grinstein S_ Salmonella 

redirects phagosomal maturation. Curr Opin Microbiol2004; 7: 78-84. 
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Figure 5: Survival curves following intravenous challenge with 104 CFUs of Salmonella 

Typhimurium strain Keller. 129S6/SvEvTac are the most resistant mice followed by 

CASTlEi and Ail C57BL/6J, MOLFlEi and C3H!HeJ are extremely susceptible to 

Salmonella Typhimurium with no individual surviving beyond 7 days post infection. 

From Roy MF, Malo D. Genetic regulation ofhost responses to Salmonella infection in 

mice. Genes Immun 2002; 3: 381-393. 
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Figure 6: Mechanisms underlying the development of anemia of inflammation. 

Recognition of invading microorganisms by the host innate immune system leads to the 

secretion of various cytokines, which impacts on the host erythropoiesis response through 

several mechanisms. "+" stimulates. "-" inhibits. From Weiss G, Goodnough LT. 

Anemia of chronic disease. N Engl J Med 2005; 352: 1011-1023. 
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CHAPTER II: Incrementai expression of Tlr4 correlates with mouse resistance to 

Salmonella infection and fine regulation of relevant immune genes. 

PROLOGUE 

Mice infected either orally or parenterally with Salmonella Typhimurium develop 

a systemic disease similar to what is seen in human typhoid fever, with localization of the 

bacteria in the spleen and the liver. The response of mice to acute Salmonella 

Typhimurium infection is genetically controlled. Using a positional cloning approach, it 
. 

was shown that a functional Tlr4 gene is essential for mouse resistance to Salmonella 

infection. Compared to wild type mice, mi ce carrying a non-functional Tlr4 allele show 

decreased survival and increased bacterialload following infection with Salmonella. In 

order to investigate the impact of the level of expression of Tlr4 on the mouse response to 

Salmonella, four lines of Tlr4 transgenic mice were generated. These mi ce carried 1,3,6 

and >30 copies of the transgene on a C57BLI0/ScNCr background. In the context of a 

wild type allele at Nrampl, the mouse survival following Salmonella infection was 

influenced by the nwnber of copies of the transgene, with a plateau effect starting at three 

copies. 

In this chapter, we report studies aimed at understanding how increasing the level 

of expression of Tlr4 translates into improved host resistance to Salmonella. Given the 

plateau effect noted at three copies of the transgene, studies were performed using mice 

carrying 1 and 3 copies of Tlr4. Additionally, we wished to compare the se transgenic 

lines to mi ce of the same genetic background that would carry 2 natural (non-transgenic) 

copies of Tlr4 in their natural genomic context. By generating a double congenic mouse 

line, BI0.Cg-Nrampl/Tlr4, we were able to study the in vivo host response to Salmonella 

Typhimuriwn in mice carrying 1, 2 and 3 copies of Tlr4 on the same genetic background. 
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ABSTRACT 

The mouse response to Salmonella Typhimurium infection is partly controlled 

through detection of the bacterium LPS by the host pattern recognition receptor, Tlr4. 

Mice deficient in Tlr4 signaling are extremely susceptible to Salmonella infection with a 

1000 fold reduction in LDso. In a previous study, we showed, using transgenic mice 

carrying 1,3,6 and >30 copies of Tlr4, that the level of expression ofthis gene influences 

the outcome of Salmonella infection, with a plateau effect starting at 3 copies. In the 

present study, we further investigate the impact of Tlr4 during Salmonella infection in 

mice expressing TIr4 at slightly sub-normal, normal and slightly supra-normallevels by 

comparing host responses in mi ce carrying l, 2 and 3 copies of Tlr4 on the same genetic 

background. We describe in detail the in vivo host response to pathogenic Salmonella 

and show for the first time, in this narrow range of Tlr4 expression, an incremental 

protective effect against Salmonella due to improved control of bacterial growth in target 

organs and increased expression of important immune response genes in the spleen. 

Keywords: Salmonella, Tlr4, gene expression, intracellular bacteria, infection. 
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IncrementaI expression of Tlr4 correlates with mouse resistance to Salmonella 

infection and fine regulation of relevant immune genes. 

Roy MF, Larivière L, Wilkinson R, Tarn M, Stevenson MM, Malo D. 

INTRODUCTION 

Recognition of pathogen invasion in vertebrates occurs initially through binding 

of conserved microbial motifs, the pathogen associated molecular patterns (pAMPs), with 

specialized host receptors, the pattern recognition receptors (PRRs).77 This system of 

microbial recognition is highly conserved throughout evolution and is found in plants, 

insects and vertebrates. Binding of PAMPs to signaling PRRs initiates a cascade of 

events that lead to the expression of a wide range of genes important in the host innate 

immune response and in the development of its adaptive counterpart. Among the prime 

initiators of the innate immune system, lipopolysaccharide (LPS) covering the outer wall 

of gram-negative bacteria is one of the most studied and most potent immune stimulator. 

Throughout evolution, mammalians have learned to recognize LPS as the very worse of 

the bad news as colorfully described by Lewis in 1972:261 "When we sense 

lipopolysaccharide, we are likely to turn on every defense at our disposaI; we will bomb, 

defoliate, blockade, seal off and destroy aIl the tissues in the area." 

It is trl!e, in fact, that injection of small amounts of LPS to responsive host will 

recapitulate the whole range of events seen with invading pathogens, leading eventually 

to fatal septic shock.262 Beginning with the study of Drosophila Toll,263 the discovery of 

the human homologue Toll-like receptor 4 (Tlr4i88 and the cloning of the Lps gene, 178,179 

our understanding of the molecular mechanisms underlying the host response to LPS has 

progressed tremendously. Circulating LPS are captured by the lipoprotein binding 

protein, which transfers them to the host LPS receptor complex believed to comprise 

CD14, MD-2 and Tlr4. Through its cytoplasmic Toll-Interleukin (IL)-1 receptor (TIR) 

domain, Tlr4 transduces the LPS signal leading to the recruitment of various adaptors and 

kinases, resulting in the transcription of wide array of inflammatory response genes. Four 

adaptor molecules are now recognized as important in full activation of Tlr4 signaling: 

the myeloid differentiation factor 88 (MyD88), the TIR domain-containing adaptor 
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protein (TlRAP), the TIR domain-containing adaptor protein inducing interferon-I) 

(TRIF), and TRIF-related adaptor molecule (TRAM).!&3 With the help of these 4 adaptor 

molecules, the TIr4 signaling cascade follows 2 distinct pathways. On the one hand, the 

MyD88-dependant signaling pathway, dependant on MyD88 and TIRAP, leads to rapid 

activation of NFKB and transcription of inflammatory cytokines. On the other hand, the 

TRIF/TRAM-dependant, MyD88-independent pathway leads to delayed activation of 

NFKB, specific activation ofIRF3, and expression ofIFN-1) and interferon responsive 

genes. 

ln the mouse, the host response to the gram-negative, facultative intracellular 

bacterium Salmonella enterica serovar Typhimurium (or SalmonellÇl Typhimurium) is 

strongly dependant on activation of Tlr4 by LPS. Indeed, mice carrying a proline for 

histidine substitution at codon 712 ofTlr4 are not only hyporesponsive to the effects of 

LPS but also extremely susceptible to Salmonella Typhimurium infection with a 1000 

fold reduction of the LDso.!67,!76 Moreover, the gene expression profiles of macrophages 

infected with Salmonella Typhimurium or exposed to LPS overlap widely.264 Finally, it 

has been shown that LPS is the main PAMP mediating Salmonella-induced production of 

TNF a and nitric oxide by infected macrophages.265 

Knowing the importance of Tlr4 in the mouse model of Salmonella infection, we 

are interested in investigating how changes in the level of expression of Tlr4 impacts on 

the mouse response to this pathogen. T 0 address this question, we previously generated 4 

lines of Tlr4 transgenic mi ce carrying various copy numbers of this gene on a 

C57BL10/ScNCr (BlO/ScNCr) Tlr4 null background.266 We refer to the se mice as Tg382 

(lcopy of Tlr4), Tg388 (3 copies), Tg390 (6 copies) and Tg394 (>30 copies). Using 

the se transgenic mice, we showed that Tlr4 copy number correlates strongly with mRNA 

and cell surface protein expression. Additionally, we identified a functional correlation 

with in vitro splenocytes proliferative response to LPS and in vivo susceptibility to LPS­

induced septic shock. Finally we demonstrated that, in the presence of a wild-type allele 

at Nrampl (Natural resistance-associated macrophage protein 1, a gene known to be 

extremely important in mouse resistance to Salmonellal3~, increasing the number of 

copies of Tlr4 imparts a survival advantage during Salmonella infection in mice with a 

plateau effect starting at 3 copies of the gene. 
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In the present study, we further investigated the impact of Tlr4 during Salmonella 

infection in mice expressing Tlr4 at slightly sub-normal, normal and slightly supra­

normallevels by comparing host responses ofmice carrying 1,2 and 3 copies of Tlr4 on 

the same genetic background. We de scribe in detail the host response to pathogenic 

Salmonella in vivo and show for the first time, in this narrow range of Tlr4 expression, an 

incremental protective effect against Salmonella due to improved control of bacterial 

growth in target organs and increased expression of important immune response genes in 

the spleen. 

RESULTS 

We have previously shown, using transgenic mice possessing 1,3,6 and >30 

copies of Tlr4 that increased Tlr4 expression imparts a survival advantage during 

infection with Salmonella Typhimurium.266 This protective effect appears, however, to 

plateau starting at 3 copies of the gene. To investigate further the role of Tlr4 at 

expression levels that are more biologically relevant we focused our studies on the 

FITg382 and FITg388 mice carrying 1 and 3 copies respectively of the Tlr4 transgene 

(see Materials and Methods for a detailed description of the mice used). Additionally, we 

were interested in comparing these two transgenic strains to a strain that carries 2 natural, 

wild type (non-transgenic) Tlr4 alleles on a similar BIO.C3H-Nrampl background. To 

achieve this, we generated a double congenic mouse strain, BI0.Cg-Nrampl/Tlr4, 

carrying 2 wild type alleles at Tlr4 from the C57BL/IOSnJ strain. These 3 strains allowed 

direct comparison of the effect of 1, 2 and 3 copies of Tlr4 on the mouse response to 

Salmonella Typhimurium infection in the context of a resistant allele at Nrampl. When 

these mice were infected with ~ 103 CFU s of Salmonella Typhimurium intravenously we 

observed a clear effect of the number of copies of the gene. The FITg388 (3 transgenic 

copies) showed the longest survival time, followed by the BIO.Cg-NrampllTlr4 (2 

natural copies), and finally by the FITg382 (l transgene) (Figure 1). The BI0.C3H­

Nrampl mice (no Tlr4 but wild-type Nrampl), BIO/SnJ (Tlr4 but mutated Nrampl), and 

BIO/ScNCr (no Tlr4 and mutated Nrampl) were increasingly more susceptible to 

infection. These results confrrm the important role of Tlr4 and Nrampl during in vivo 

Salmonella infection in the mouse and show for the first time an incremental protection 
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from 0 to 1,2 and 3 copies of the gene. We, thereafter, sought to understand how 

increasing Tlr4 expression translates into improved resistance to Salmonella infection. 

The increased resistance of TIr4 competent mice compared to mice carrying a 

non-functional Tlr4 allele has been linked to improved control ofbacterial growth in the 

liver.176.267 We were therefore interested in testing the hypothesis that increasing Tlr4 

expression would also translate into improved control ofbacterial growth in the spleen 

and liver of mi ce during infection. To verify this hypothesis, we measured the bacterial 

load in the spleen and liver of our mi ce at various time points following Salmonella 

infection. As shown in Figure 2, the FI Tg388 mice were able to control the bacterialload 

in the spleen and the liver for a longer period oftime compared to FI Tg382 or BlO.Cg­

Nrampl/Tlr4 mice. Significant differences were observed for the splenic and liver CFUs 

at day 8 for both FlTg382 and BlO.Cg-NrampllTlr4 compared to FlTg388 mice. 

Additionally, a significant difference was detected at day 10 between FlTg382 and 

FI Tg388 for splenic CFUs. These results indicate a role for the level of Tlr4 expression 

in controlling the bacterial repli cation during the fIfSt 10 days of infection. However, in 

FI Tg388 mi ce the spleen and liver bacterialload eventually increased during the late 

phase of infection to reach lethal numbers around day 15 to 20. Therefore, the increased 

protection conferred by incremental Tlr4 expression appears to be limited to the early 

phase of infection suggesting that despite a robust innate immune response, the host is 

unable to mount protective adaptive immunity resulting in long-term control ofthe 

bacterial replication. 

Given the differences in survival time and bacterialload observed in our mice we 

were interested in comparing the histologicallesions in the FlTg382 and the FlTg388 

mice during infection. The intravenous injection of Salmonella Typhimurium in these 

transgenic mice resulted in microscopic changes detected in the liver, spleen, kidney, 

lung, brain, heart, pancreas and gastrointestinal tract (including the mesenteric lymph 

nodes) at Day 5, 10, 15 and 19 post-infection. There was, however, no obvious 

intergenotype difference in the severity or nature of these changes at the time points were 

both lines were available for study (day 5 and 10, all FIT g3 82 mice dying before day 15). 

The histopathologic lesions were more pronounced in the spleen and the liver where 

leukocytosis and thrombosis of the venular system were found at all time points, 
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suggesting priming of endothelial cells, activation of eirculating leukocytes and activation 

of the coagulation cascade as a consequence of the intravenous injection of Salmonella. 

These lesions were characterized by multifocal mixed inflammatory cells adhering to a 

reactive endothelium with or without c1usters of inflammatory cells and/or thrombosis 

present in the lumen of the affected veins (Figure 3 A through D). Necroinflammatory 

and inflammatory changes characterized by multifocal foei of coagulation necrosis were 

also found in the spleen and the liver and through time, these changes evolved from acute 

to subacute or chronic (Figure 3 A through D). Especially in the liver, bacterial colonies 

were often seen within these lesions, which most likely represent areas of bacterial . 
localization and replication. Splenic histiocytosis was present as early as day 5 post-

infection in sorne mice. The incidence and severity of this change seemed to increase at 

day 10 and 15 post-infection and subsided at day 19 (Figure 3 E through H) indicating 

massive recruitment of tissue macrophages to the spleen of infected mice. Splenic 

periarteriolar lymphoid sheath atrophy was noted starting at day 5 in sorne mice but its 

incidence and severity increased through time to become diffuse and massive at day 19 in 

the mouse examined (Figure 3 1 through L). These lesions could reflect a depletion of T 

lymphocytes and possibly illustrate the failure of the mice to generate an adequate 

adaptive response and control the infection. Extramedullary hematopoiesis was also 

detected in the liver and the spleen ofFITg388 at day 15 and 19 post-infection. While no 

intergenotype difference could be detected in the early time points (day 5 and 10) when 

both strains could be examine d, the massive splenic white pulp periarteriolar lymphoid 

sheath atrophy was observed only in the FITg388 mice that survived longer indicating 

that death occurred in the se strains at similar bacterialload but with different 

histopathologic lesions. 

The spleen is a major organ for the development ofinnate and adaptive immune 

responses.268 During Salmonella infection, it is one of the main site for bacterial 

localization and replication. Immune cells are recruited to the spleen during infection 

and, with increased blood flow and accumulation of inflammatory exsudates, they 

contribute to the development ofa massive splenomegaly. The splenic index ofmice 

infected with Salmonella increases more than 3 times from 0.6 in non-infected mice to 

sometimes more than 2.0 at day 15 post-infection (data not shown). Using flow 
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cytometry analysis, we characterized the cell populations of the spleen during Salmonella 

infection in FITg388 and BlO.Cg-NrampllTlr4 mice using generalleukocytes markers 

with the aim of identifying Tlr4 copy number-induced differences in cell recruitment. As 

shown in Figure 4, the major cell populations recruited to the spleen during infection 

expressed Gr 1 and Mac 1, consistent with the observation of infiltration of neutrophils and 

macrophages seen on histopathologic examination. The percentage of cells expressing 

these markers increased in both groups examined throughout infection to finally plateau 

at day 15 in the FITg388. The MHC class II molecule I-Ab was upregulated in ahigher 

percentage of cells and with a higher mean fluorescence intensity (data not shown) at day 

4 in hoth groups, indicating activation of antigen-presenting cells. The percentage of 

cells expressing the B cell marker IgM declined on day 8 and 15 after a small increase on 

day 4. The percentage of CD3 positive cells steadily declined throughout infection in 

both groups, which is in agreement with the depletion of lymphocytes in the periarteriolar 

lymphoid sheaths seen on histopathology. Dendritic cells were recruited to the spleen 

during Salmonella infection in both groups as shown by the increased percentage of 

CDIlc positive cells. Finally, NK cells did not appear to play a major role in mouse 

salmonellosis with percentages of Pan-NK postitive cells showing a slight decline 

throughout infection. In order to detect potential Tlr4-induced differences in the 

development of an adaptive response, we also studied the up regulation of the co­

stimulatory molecules CD40, CD80 and CD86 on Macl-positive and CDIlc-positive 

cells at day 4 in BlO.C3H-Nrampl, FITg382, BIO.Cg-NrampllTlr4 and FITg388. While 

these molecules were up regulated on both cell types in all 4 strains of rnice, we failed to 

detect any significant difference between the groups (data not shown). These results 

indicate that the effect of increased Tlr4 expression leading to increased control of 

bacterial proliferation is not reflected in an obvious difference in the recruitment of 

effector cells to the spleen. 

The systemic activation of the immune system during infection may he reflected 

hy changes in circulating white blood cells. To investigate for potential Tlr4-induced 

differences in the hematological changes that occur during Salmonella infection we 

performed red blood cell and white blood cell counts in FI Tg388 and BlO.Cg­

Nrampl/Tlr4 mice (Figure 5). Both strain ofmice developed a severe leukopenia at day 4 
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post-infection (Figure 5A) indicating acute activation of the immune system caused by 

intravenous Salmonella infection. Again no intergenotype differences were observed 

except for a more pronounced rebound neutrophilia (Figure 5C) and monocytosis (Figure 

5D) in the BIO.Cg-Nrampl/Tlr4 mice at day 8. We were, however, surprised to observe 

the development of anemia in both strains of mice during infection (Figure 5E). This 

anemia worsened throughout infection to become quite severe at day 15 in F1Tg388 

mice, probably explaining the extramedullary hematopoïesis observed at day 15 and 19 in 

these mice. To the best of our knowledge, development of anemia in mice during 

Salmonella infection as not previously been described and we are currently investigating 

further the mechanisms underlying this pathology. 

In continuing our search for pinpointing a precise mechanism explaining increased 

resistance to Salmonella brought by incremental expression of Tlr4, we next compared 

mRNA expression of immune-related genes in the spleen of our mice during infection 

using a Tlr4 pathway-specific oligo array (SuperArray Bioscience Corporation). The 

genes from the TIr4-specific pathway that were the most regulated within each group 

during infection (Figure 6 and Table 1 and Supplemental Table 1) were selected for study 

with qPCR. This technique was expected to be more sensitive to detect small differences 

in gene expression that could exist between the groups carrying 1, 2 or 3 copies of Tlr4 at 

similar time points. The genes selected for qPCR analysis were: chemokine (C-X-C 

motif) ligand 10 (Cxc/lO), interferon-y (/fng), interleukin-12a (Rl2a), 1112b, Rlb, 

interferon-regulatory factor-l (Irfl), Irj7, Myd88, NFKB inhibitor alpha (Nfkbia) and Toll 

interacting protein (Tollip). Additionally, we investigated the expression of Tlr4 as an 

internaI control for the genotype of our mice and our qPCR technique. We observed 

incremental Tlr4 expression across our 3 groups at all time points studied (Figure 7 A, B 

and C), confirming the validity of our qPCR technique, the genotype of our mice and the 

correlation between the number of copies of Tlr4 and its mRNA expression. 

Additionally, T/r4 expression increased in aH 3 groups during Salmonella infection 

(Figure 7 D, E and F) reflecting either up-regulation of its expression on cells normally 

expressing Tlr4 or the recruitment of Tlr4 expressing cells to the spleen. 

Reasonably good agreement was found between the array and the qPCR results 

with respect to the overall trend in gene expression during Salmonella infection in our 
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mice. The genes that were found to be up regulated during Salmonella infection (Figure 7 

D, E and F) aIl belong to what has been described as the common host response to 

infection. 269 !lib, encoding the pro-inflammatory cytokine IL-I~, was strongly and 

similarly up regulated in aIl 3 groups at day 4 and 8 post-infection. I112a, I112b (at day 4) 

and lfng were aIl up regulated during Salmonella infection indicating activation of the 

ILI2-IFNy axis shown to be important in immunity to Salmonella. 119 CxcliO, encoding 

an interferon-inducible chemokine important in T cell recruitment, was also strongly 

induced by Salmonella infection in a pattern similar to Ifng. Two transcription factors, 

IrfJ and Irj7, which mediate the effect of interferons, were also up regulated during 

infection in all three groups studied. Myd88, a gene extremely important in the Tlr4 

signaling cascade leading to rapid production ofpro-inflammatory cytokines, was 

induced by infection in our three groups of mice. Irfi, Irj7 and Myd88 are good example 

of genes that may amplify the host immune response through a positive feedback loop. 

On the other hand, we also detected increased expression of two negative regulator of 

inflammation in aIl three groups following infection: Nfkbia and Tollip. While IKBa 

(encoded by Nfkbia) is important for sequestration ofNF-KB to the cytoplasm, Tollip is 

believed to be important in terminating TLR signaling during inflammation. Our results 

illustrate the concomitant activation of both positive and negative regulators of the 

inflammatory response during Salmonella infection. In addition, our findings 

demonstrate activation of both arms of the Tlr4 signaling cascade with III b, III 2 a and 

I112b being good example of Myd88-dependent genes and CxcliO, Irfl and Irj7 

representing the activation of the Trif-dependent arm of Tlr4 signaling. 

When we compared gene expression across our 3 groups at similar time points, we 

were able to identify small but significant differences in gene expression (Figure 7 A, B 

and C). For example, when comparing gene expression in non-infected mice (Figure 7A) 

we could see a tendency for increasing mRNA expression in almost all the genes studied 

according to the number of copies of Tlr4 of the strains. These differences were 

significant for Illb (FITg388 vs BIO.Cg-Nrampimr4) and lfng (FI Tg388 vs FI Tg382 

and BlO.Cg-Nrampi/Tlr4). On day 4 (Figure 7B) we found that CxcliO was 

overexpressed in the FI Tg388 compared to the 2 other groups (significant in FI Tg388 vs 

FI Tg382). Additionally, mRNA expression of Myd88 was significantly higher in the 

57 



FITg388 group compare to both the FITg382 and the BlO.Cg-Nrampl/Tlr4. Finally, on 

day 8 (Figure 7C), differences in gene expression for CxcllO, III b, Ifng and Ir17 were 

observed between the FITg388 and the BIO.Cg-Nrampl/Tlr4 strain. 

In summary, our results show that while up regulation of these important immune 

genes during infection occurred with a similar pattern in the three strains studied, sorne 

slight but significant differences could be detected betweeti the groups at specific time 

points. The FITg388 strain in particular showed higher constitutive expression of 

specific immune related transcripts compared to the 2 other groups. These results suggest 

that increased basal Tlr4 expression in vivo leads to increased expression of downstream 

immune related genes in the spleen, which appears to provide a survival advantage 

following Salmonella infection in mice. 

DISCUSSION 

In our original description of the Tlr4 transgenic mice we demonstrated a clear 

copy number effect on the mouse response to LPS in vitro and in vivo. However, the 

effect of Tlr4 expression on the in vivo mouse resistance to Salmonella infection showed 

a plateau starting at 3 copies of the gene.266 The mice carrying 6 or 30 copies of Tlr4 

were less or equally resistant compared to the strain carrying 3 copies (Bihl et af66 and 

data not shown). In the present study, we further refined our understanding of the role of 

expression of Tlr4 within a narrow, biologically relevant range, on the host response to 

Salmonella infection. We showed, for the first time, an incremental protective response 

against gram-negative sepsis from 0 to l, 2 and 3 copies of Tlr4 (Figure 1). The small 

differences in survival between the groups carrying 2 and 3 copies' of Tlr4 and the lack of 

benefit from higher levels of Tlr4 expression illustrate the fine balance in gene dosage 

brought about by millions ofyears of evolution of the innate immune system. Indeed, a 

recently published phylogenetic analysis of TLRs revealed that most vertebrates have 

exactly one gene orthologous to each of the TLR family for recognition of specific 

PAMPs (except for the TLRI family which comprise Tlrl, Tlr2, Tlr6 and Tlr10).27o This 

study suggests that the TLR superfamily of genes is under strong selective pressure for 

maintenance of the actual repertoire of PAMPs recognition and for maintenance of the 

gene dosage within each family. These conclusions are in agreement with our findings of 
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the role of Tlr4 gene dosage on the mouse response to gram-negative infection. The 

sm ail differences in survival and bacterialload seen in the narrow range of copy number 

of Tlr4 from 1 to 3 copies suggests that 2 copies of Tlr4 per genome represents the most 

advantageous dosage possible for a diploid organism. 

The increased resistance to Salmonella infection in the FITg388 correlates with 

improved control of the bacterialload within the spleen and the liver (Figure 2). Previous 

studies using Tlr4 wild-type and natural functional knockout mice demonstrated the 

importance of a functional Tlr4 for the early control of bacterial proliferation167
,176,267 and 

establishment of a plateau phase.75 In our study, we show a T1r4 expression level­

dependent mechanism for control of bacterial growth at later time points, approximately 

from day 5 to day 10 post-infection (prolongation of the plateau phase). The exact 

mechanism underlying this phenomenon remains unc1ear. We first believed that 

increased Tlr4 expression would result in a more robust inflammatory response that 

would be visible on histopathologic examination. However, no obvious differences could 

be detected. Given the low sensibility of histopathologic examination to subtle changes 

in cell recruitment, we performed F ACS analysis to identify potential T1r4-induced 

differences. Again, we could not detect any major differences between the FI Tg388 and 

the other strains examined. Therefore, the increased resistance and betler control of 

bacterialload probably resides not in the type or quantity of cells recruited to the spleen 

but in their activation state and the type of cytokine, chemokines and antibacterial 

molecules they produce. 

Using oligoarrays and qPCR for mRNA expression analysis of important immune 

effectors in the whole spleen of our mice, we found sorne interesting Tlr4 copy number­

induced differences. In particular, we detected increased basal expression of IFNy in the 

FI Tg388 mice compared to the 2 other strains indicating that constitutive supra-normal 

expression of Tlr4 also leads to constitutive supra-normal expression of IFNy (Figure 

7 A). Activated T cells syrithesize IFNy following IL-12 stimulation. Although no 

significant differences were detected for IL-I2 expression, we observed a Tlr4 copy 

number trend for increased constitutive IL-12a and IL-12b expression, possibly 

explaining the significant increase in basal IFNy expression. The importance of the IL-

12/IFNy axis in the host response to Salmonella is well known in mice and in humans. 
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Wild type mice infected with attenuated Salmonella Typhimurium are capable of 

controlling the infection while IFNy deficient mice succumb to infection due to 

unrestricted growth of the bacteria.129.235 Administration of monoclonal antibodies 

directed against IL 12 exacerbates the mild disease caused by attenuated Salmonelld37 and 

mice carrying targeted disruption of /112a or /112b are more susceptible to Salmonella 

Enteritidis.238 Moreover, the syndrome of Mendelian susceptibility to mycobacterial 

disease illustrates the importance of IL12 and IFNy in the host response to Salmonella in 

humans. 119 Affected patients carrying a pathogenic mutation in one of the genes coding 

for the IFNy receptor, the IL-12 receptor or the IL-12 p40 subunit show increased 

susceptibility to environmental mycobacterial species and Salmonella. The IL-12/IFNy 

axis is therefore extremely important in immunity against Salmonella most likely through 

its effect on the generation of a type 1 adaptive immune response. Our observations go 

along these lines and suggest that increased constitutive expression of Tlr4 leads to 

increased basal expression of1L-12 and IFNy, which seems to confer a survival 

advantage when the animal is suddenly confronted to an infectious agent such as 

Salmonella. 

Despite increased expression of Tlr4, improved control ofbacterial growth and 

increased survival time, the FI Tg388 mi ce fail to completely control the infection, 

indicating that a robust innate immune response against Salmonella infection is not 

sufficient for survival. It is conceivable that the host-pathogen interactions in this model 

are such that the host fails to mount a protective adaptive immune response. While 

mortality from sepsis has long been linked to excessive activation of systemic 

inflammation, it is now believed that excessive anti-inflammatory response with 

accompanying immunosuppression certainly contributes to mortality in severe sepsis.271 

Along these lines, we observed in our mice a severe and diffuse depletion of lymphocytes 

in the splenic white pulp (Figure 3 J, K and L), decreasing percentages of CD3+ and 

IgM+ cells (Figure 4), and a severe and persistant Iymphopenia (Figure SB) at a time 

where one would expect to see clonai expansion of lymphocytes. Depletion of 

lymphocytes from the splenic white pulp and lymphopenia have been reported in human 

patients dying from severe sepsis.272 The mechanism underlying lymphocyte depletion 

during sepsis is believed to be apoptosis, and treatment with ap<?ptosis inhibitor or use of 
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mice with genetic modifications rendering them less susceptible to apoptosis improve 

survival from polymicrobial sepsis.273,274 It is conceivable that sepsis-induced apoptosis 

could contribute to the failure of our mice to resolve the infection. In addition, we also 

observed a drop in I112b expression on day 8, below the level of expression seen in non­

infected mice. Given the importance of1L-12 in the mouse response to Salmonella, we 

could hypothesize that the failure of sustaining IL-12 expression is detrimental to the 

hosto Indeed, John et al have showed that IL-12p40 is essential for a sustained IFNy 

production by T cells in mi ce immunized with live Salmonella Typhimurium aroA.275 

The study of the effect of the level of expression of Tlr4 within a biologically 

relevant range is important in light of recent findings regarding the role of human 

polymorphisms within the TLR4 gene in association with various diseases. Two 

polymorphisms, Asp299Gly and Thr399lle, were originally described as hyporesponsive 

in regards to inhaled LPS in healthy human volunteers. 191 Following this publication, 

numerous studies have found an association between these polymorphisms and 

susceptibility to a wide range of infectious and non-infectious diseases. For example, the 

hypomorphic TLR4 alleles have been associated with increased risk of gram-negative 

infectionl92 or septic shock due to gram-negative organisms,193 severe malaria/94 

brucellosis,195 Crohn' s disease,l96 and severe sepsis following bum injury.l97 On the other 

hand, the same alleles have shown protective effects against various diseases su ch as 

atherosclerosis,198 Legionnaire's disease l99 and late-onset Alzheimer's disease.2OO ln light 

of these findings, the mice characterized in the present study could represent invaluable 

tools to study in more depth the role of slightly different levels of Tlr4 expression on 

specific diseases outcome and pathophysiology. 

ln conclusion, we provide evidence for a Tlr4 expression level-induced difference 

in mouse survival following Salmonella infection due to improved control ofbacterial 

growth in the spleen and the liver and increased expression of relevant immune genes at 

the site of infection. The lack of striking differences in sorne of the specific 

measurements made during infection in our 3 mice strains should not be surprising. We 

were in fact looking at 3 aImost identicaI mice strains that differed only by 1 or 2 copies 

of the Tlr4 gene, each of them possessing at least 1 copy. Therefore, it was probably only 

possible to detect differences by using methods that are very sensitive to small changes 
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such as mRNA qPCR expression analysis. The differences in survival and bacterialload 

were however noticeable and must be explained by sorne subtle Tlr4 copy number­

induced change in the host response to the invasive pathogen occurring at the cellular 

level. The subtle changes we detected in whole spleen mRNA expression give an 

indication ofthe possible mechanisms underlying the increased resistance in the FI Tg388 

mÏce. Further experiments should allow a better understanding of the real biologicaI 

impact of the se subtle changes in gene expression. 

MATERIALS AND METHODS 

Animal used: Transgenic mice carrying different copy numbers of Tlr4 were generated 

in our laboratory266 and were maintained at the Montreal General Hospital Research 

Institute (MGHRI) animal facility under conditions specified by the Canadian Council on 

Animal Care (CCAC). These mice carry a 129S6/SvEvTac Tlr4 BAC transgene on a 

BI O/ScN Cr background. The original BI O/ScN Cr strain has no Tlr4 because of a 75kb 

chromosomal deletion encompassing the Tlr410cusl80 and carries a mutated, non­

functional allele at Nrampl (NramplASP169)).150 Because of the known major effect of 

Nrampl on mouse salmonellosis, we generated a congenic strain, BlO/ScNCr.C3H­

Nrampl (or BIO.C3H-Nrampl) through 10 consecutives backcross generations to be used 

in a cross with our transgenic strain. The BIO.C3H-Nrampl are now maintained in a wild 

type NramplGly169 homozygote state at the MGHRI animal facility. (Tg x BIO.C3H­

Nrampl)FI mi ce carrying the transgene and one wild type allele at Nrampl are used in 

experimental infection with Salmonella Typhimurium. We refer to these mice as 

FI Tg382 (l copy ofthe Tlr4 transgene and 1 wild-type allele at Nrampl) and FI Tg388 (3 

copies of the Tlr4 transgene and 1 wild-type allele at Nrampl). A double congenic strain, 

C57BLlI0ScNCr.Cg_NramplGly169T1r4Pro712 (abbreviated BlO.Cg-Nrampl/Tlr4), was 

generated through backcrossing ofTlr4 from C57BL/I0SnJ onto a BlO.C3H-Nrampl 

background. The mice used in our infections are homozygote wild type at Tlr4 and 

heterozygote at Nrampl (GlyI69/AspI69) in concordance with the FI Tg mice. 

C57BLlI0ScNCr (maintained at the MGHRI animal facility) and C57BLllOSnJ (obtained 

from the Jackson Laboratory) were used as controls. At the time of infection, aIl mice 

were aged between 2 and 6 months. 
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In vivo Salmonella infection: AlI animal procedures were performed in accordance with 

the regulations of the CCAC. Salmonella Typhimurium strain Keller was grown in 

trypticase soy broth at 37°C for 1.5 hour followed by enumeration of the colony-forming 

units (CFUs) by incubating lO-fold seriaI dilutions on trypticase soy agar at 37°C for 16 

hours. Each mouse was infected with 0.2ml of 0.9% saline containing _103 CFUs of 

Salmonella Typhimurium by intravenous injection in the tail vein. The inoculation dose 

was verified by plating lO-fold seriaI dilutions of the dose on agar plates. For survival 

analysis, animaIs were monitored twice a day and moribund animaIs were sacrificed by 

CO2 asphyxiation. For determination of the splenic and hepatic bacterialloads, mice 

were sacrificed at various time points after infection and half of the spleen and the left 

laterallobe of the liver were collected aseptically, weighed and homogenized with a 

Polytron homogenizer in isotonic saline. SeriaI dilutions of each homogenate were plated 

on trypticase soy agar to enumerate the CFUs within each organ. For histopathologic 

examination, mice were anesthetized with ketamine and xylazine intramuscularly and 

perfused first with 20ml ofphysiologic saline followed by 20ml offresh 4% 

paraformaldehyde. The organs were harvested, placed in 4% paraformaldehyde for 

several hours, washed in PBS twice and stored in 20% sucrose-PBS at 4°C. Tissue 

processing and histopatlogic examinations were performed by CTBR Bio-Research Inc 

(Senneville, Québec). The splenic index was calculated as follow: SI = --J (spleen wt x 

lOO/body wt). 

Flow cytometry: Single cell suspensions of spleens harvested from mice sacrificed 

before or at various time points following infection with Salmonella were prepared as 

previously described.276 The various cell populations were determined by single-color 

staining of the cells with fluorescein isothiocyanate (mC) or phytoerythrin (PE)­

conjugated monoclonal antibodies against Mac-l (CD 1 lb, clone MlnO, rat IgG2b), Gr-l 

(Ly-6G and Ly-6C, clone RB6-8C5, rat IgG2b), CD3e (clone 14S-2Cll, hamster IgGI), 

CDllc (clone HL3, hamster IgGI), CD49blPan-NK (clone DXS, rat IgM), I_Ab (clone 

AF6-120.1, mouse (BALB/c) IgG2a) and IgM (clone R6-60.2, rat IgG2a). CDI6/CD32 

(clone 2.4G2, rat IgG2b) was used prior to staining to block the non-specific binding by 

Fc receptors. All antibodies were purchased from BD Biosciences. Cell acquisition and 
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data analysis was done with CellQuest software (BD Biosciences). Results are shown as 

the mean percentage of positively stained cells per spleen. 

Hematologie parameters: Red blood cells were counted manually after dilution in PBS. 

White blood ceUs counts were also done manually after dilution in 3% acetic acid. 

Leukocyte differentials were determined by counting 400 leukocytes on Diff Quick­

stained blood smears. 

Tlr4 pathway-speeifie oligoarray: Half of the spleens were harvested immediately after 

the mi ce were sacrificed by C02 asphyxiation and snap frozen in liquid nitrogen before 

being stored at -80°C. Approximately 50 mg of spleen was homogenized using a mortar 

and pestle kept on dry ice and RNA was extracted with Trizol Reagent (Invitrogen) 

according to the manufacturer instructions. cRNA target for microarray hybridization 

were synthesized using the TrueLabeling-AMP Linear RNA Amplification kit from 

SuperArray Bioscience Corporation according to the manufacturer instructions using 

biotin-16-dUTP for labeling. The synthesized probes were purified using RNeasy minikit 

(Qiagen). The probes were hybridized to the OligoGEArray Mouse Toll-like Receptor 

Signaling Pathway Microarray (SuperArray Bioscience Corporation) according to the 

manufacturer instructions. RNA from infected (3 mice per group per time point) and 

non-infected (2 mice per group) male mice was used to hybridize the arrays (RNA from a 

single mouse per array for a total of24 arrays). The array images were acquired by 

exposing X-ray films and digitalized with a desktop scanner. The images and the data 

were analyzed' using the GEArray Expression Analysis Suite. Background correction was 

done by subtracting the local background and normalization was performed using 4 

housekeeping genes present on the arrays. 

Quantitative real-time RT-PCR: The same RNA samples used for array hybridization 

were used for quantitative real-time RT-PCR (qPCR) analysis. cDNA were synthesized 

all at once using M-ML V reverse transcriptase (Invitrogen). All primers were designed to 

overlap two exons and primer specificity was verified by ensuring a single band of the 

expected size on ethidium bromide stained agarose gel. Standards were prepared from 

lü-fold serial dilutions of the gel extracted PCR product for aIl genes tested. qPCR was 

performed on Chromo4 Real-Time PCR Detection System (Bio-Rad Laboratories) using 

Brilliant SYBR Green QPCR Master Mix (Stratagene). AU samples were amplified in 
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triplicates during the same PCR run on 96 wells plates. Three potential housekeeping 

genes were tested (Polymerase (RNA) II (DNA directed) polypeptide A (Polr2a), TATA 

box binding protein (Tbp) and Glucose-6-phosphate dehydrogenase X-linked (G6pdx)) 

and the best housekeeping genes were chosen after analysis in Bestkeeper.277 Polr2a and 

Tbp were found to be stable across our groups and experimental conditions and they were 

incorporated into a Bestkeeper Index used for relative quantification. PCR amplification 

efficiencies were measured on individual amplification plots using LinReg PCR. 278 The 

software REST 384 (http://www.gene-guantification.infoD279 was used to analyze the 

relative expression of our measured transcripts using an efficiency corrected ratio. Error 

estimations of the calculated ratios were obtained using a Taylor's ~eries as implemented 

in REST. The significance of the difference in expression ratios across our groups or 

experimental time points was investigated using pair wise fixed randomization tests 

implemented in REST (2000 randomizations for each test). 
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TABLES 

IlIb 7.0 5.3 9.3 5.6 0.6 

Table 1: Genes upregulated during Salmonella infection: Gene expression ratios 

comparing various time points after Salmonella infection (day 4 vs 0; day 8 vs 0; day 8 vs 

4) within our 3 groups. Each array was hybridized with RNA from a single mouse. n = 3 

per group on day 4 and 8 and n = 2 per group for day O. A total of24 arrays were used. 
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SUPPLEMENTAL TABLE 

Gapd Btk Casp8 Ccl2 Cdl4 Cd80 Cd86 Chuk 

Clecsf9 Csf2 Csf3 CxcllO Elkl Fadd Fos Gpcl 

Hmgbl Hrasl Hspa4 Hspdl Ifnal Ifnb Ifng Ikbkb 

Ikbkg IlIO Ill2a Ill2b IlIa Illb Il2 Il6 

Irak 1 Irak2 Irak3 Irak4 Irfl Irf3 Irf7 Jun 

Lta Ly64 Ly86 ,. Ly96 Mal Map2k3 Map2k4 Map2k6 

Map3kl Map3kl4 Map3k7ipl Map3k7ip2 Map4k4 MapklO Mapkll Mapkl2 

Mapkl3 Mapkl4 Mapk8 Mapk8ip3 Mapk9 Myd88 Nfkbl Nfkb2 

Nfkbia Nfkbib Nfkbie Nfkbill Nr2c2 Pelil Peli2 PgIyrp 

Pglyrp3 Prkra PTGES Ptgs2 Rel Rela Relb Ripk2 

Sitpec Tbkl Tirap TIr1 Tlr2 TIr3 TIr4 TIrS 

TIr6 Tlr7 TIr8 Tlr9 Tnf Tollip Traf6 Ube2n 

Ube2vI Blank PUCI8 Lucl Luc2 ASIR2 ASIRl ASI 

Rps27a B2m Hspcb Hspcb Ppia Ppia BAS2C BAS2C 

Supplemental Table 1: Array Iayout with gene symbols from the Oligo GEArray mouse 

Toll-like receptor signaling pathway microarray (Superarray Bioscience Corporation). 
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Figure 1 
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Figure 1: Cumulative survival in mice following intravenous infection with 103 

CFUs of Salmonella Typhimurium. The results shown are combined from two separate 

infections. T en to twenty mice (both male and female) per group were used in both 

experiments. Kaplan Meir survival analysis was performed on the data from the 

individual infections datasets and showed a significant difference in survival (p < 0.05) 

between the FITg382 and the BIO.Cg-Nrampl/Tlr4 compared to the FITg388. The 

BIO.C3H-Nrampl, BIO/SnJ and BIO/ScNCr were increasingly susceptible to infection. 

(Kaplan Meir survival analysis with Tarone-Ware rank test performed with StatView 

5.0.) 
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Figure 2 
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Figure 2: Splenic and hepatic bacterialload in mice following infection with 103 

CFUs of Salmonella Typhimurium. Mean +/- SEM of the log of CFU per gram of 

spleen (A) or liver (B) of mice at various time points following intravenous infection with 

103 CFUs of Salmonella Typhimurium. The results shown are combined from two 

separate infections. Six mice (males and females) per group and per time point were used 

in both experiments. * p < 0.05 and ** p < 0.01 compared to FI Tg388 (ANOVA with 

Fisher's PLSD performed with StatView 5.0 on the separate infections datasets). 
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Figure 3 
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Figure 3 (previous page): Progression of the lesions in the spleen and liver ofmice 

infected with Salmonella Typhimurium (Hematoxylin and eosin staining). A, B, C 

and D: liver, objective 4X. Hepatic necrosis and inflammation (denoted by "N") 

progressing from moderate and acute (A) to marked and subacute (B) and finally 

moderate and subacute to chronic (C and D). The leukocytosis and thrombosis of the 

venular system is shown by the arrows. E, F, G and H: splenic red pulp, objective 40X. 

Acute inflammation and necrosis of the splenic red pulp with no evidence of histiocytosis 

(E). Progression of the splenic histiocytosis from slight (F) to moderate (G) and finally 

minimal (H). I, J, K and L: splenic white pulp, objective 10X. Normal splenic white 

pulp showing the periarteriolar lymphoid sheath (1). Progression of the periarteriolar 

lymphoid sheath atrophy from slight (1) to moderate (K) and finally massive (L). 

Moderate leukocytosis and thrombosis of the venular system is also show in J and K 

(arrows). 
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Figure 4 
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Figure 4: Flow cytometry analysis of the cell population recruited to the spleen 

du ring Salmonella infection. Mean +/- SEM percent of cell with positive staining for the 

various markers. Six mice per group and per time point were used. A) Cell populations 

of the spleen during Salmonella infection in FITg388 mice. B) Cell populations of the 

spleen during Salmonella infection in BIO.Cg-Nrampl/Tlr4. 
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Figure 5: Red blood cell and white blood cell counts in mice infected with 

Salmonella Typhimurium. Mean +/- SEM are shown for the FITg388 and the BlO.Cg­

NrampllTlr4. Six mice per group and per time point were used. 
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Figure 6: mRNA expression in whole spleen during Salmonella infection in mice as 

measured by oligoarray analysis. Typical arrays for each group and each time point are 

shown. Whole spleen mRNA from single mouse were hybridized to each array. We had 

three arrays per group on day 4 and 8 and two arrays per group for non-infected mice. 

(Refer to Supplemental Table 1 for the list and position ofthe genes on the array.) 
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Figure 7 
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Figure 7: mRNA expression in whole spleen during Salmonella infection in mice as 

measured by quantitative real-time RT-PCR. A, Band C) Relative expression ratios 

of various transcripts comparing the response of each groups within a similar time point. 

D, E and F) Relative expression ratios of various transcripts illustrating the effect of 

Salmonella infection in each mouse strain. * indicates significantly different (p < 0.05 

after 2000 randomizations in REST 384) from the reference group (FI Tg382 (A through 

C) or Day 0 (D through F)). t indicates significantly different (p < 0.05 after 2000 

randomizations in REST 384) from the intermediate group (BIO.Cg (A through C) or Day 

4 (D through F)) . 
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CHAPTER III: Complexity in the host response to Salmonella Typhimurium 

infection in AcB and BeA recombinant congenic strains. 

PROLOGUE 

The dissection of complex genetic traits, such as the susceptibility to Salmonella 

Typhimurium infection in mice, may be facilitated by the use of specialized mouse 

ressources such as the recombinant congenic strains (RCS). RCS are derived from 

reciprocal double backcrosses followed by inbreeding for several generations. The 

resultant newly inbred RCS therefore possess ~12.5% of the donor genome onto the 

recipient genome. A set of AlJ and C57BL/6J RCS was generated and consisted of 14 

AcB and 22 BcA strains. These strains can be used for the study of various phenotypes 

for which the two parental strains differ. When infected with Salmonella Typhimurium, 

AlJ shows an intermediate resistance while C57BL/6J are extremely susceptible. 

Previous studies have shown that this difference is mainly due to the fact that C57BL/6J 

carries a mutated, non-functional allele at Nrampl. Nrampl is implicated in the transport 

of divalent cations at the phagolysosomal membrane and has a tremendous impact on the 

growth of Salmonella in the spleen and liver early during infection. 

In the present study, we undertook a systematic screening of the 36 AlJ and 

C57BL/6J RCS for their susceptibility to acute infection with Salmonella Typhimurium. 

While we knew before hand that Nrampl, which segregates in these lines, would be the 

main determinant of the susceptibility or resistance of the mice, we hypothesized that 

additional genes influencing the outcome of Salmonella infection would segregate in this 

RCS set. The strains identified as having a deviant phenotype from their known Nramp 1 

genotype would then be used in the generation of fully informative crosses for QTL 

mapping and gene identification. 
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ABSTRACT 

The host response to Salmonella infection is controlled by its genetic makeup. 

Using the mouse mode! oftyphoid fever, several genes were found to influence the 

outcome of Salmonella infection, inc1uding Nrampl (Slcllal). In order to improve our 

knowledge of genetic determinants of the mouse response to acute Salmonella 

Typhimurium infection, we performed a systematic screening of a set of A/J and 

C57BL/6J recombinant congenic strains (RCS) for their resistance to infection. While we 

knew that the parental strains differ in their susceptibility to Salmonella because 

C57BL/6J mice carry a non-functional alle!e at Nrampl, we hypothesized that other 

genes would influence the response to Salmonella and segregate in the RCS. We 

identified several RCS that showed a non-expected phenotype given their known Nramp 1 

genotype proving that the response to Salmonella in A/J and C57BL/6J mice is complex. 

Based on these findings, we selected two RCS for generation of fully informative F2 

crosses, (AcB61 x 129S6) and (AcB64 x DBA/2J). Genetic analyses performed on the se 

crosses identified five novel Salmonella susceptibility QTL mapping to chromosomes 3 

(Ity4), 2 (Ity5), 14 (Ity6), 7 (Ity7) and 15 (Ity8). These results illustrate the genetic 

complexity associated with the mouse response to Salmonella Typhimurium. 

Key words: S,!lmonella, host resistance, recombinant congenic strains, QTL, infection. 
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Complexity in the host response to Salmonella Typhimurium infection in AcB and 

BcA recombinant congenie strains. 

Roy MF, Riendeau N, Loredo-Osti Je and Malo D. 

INTRODUCTION 

Salmonella spp are gram-negative, facultative intracellular pathogens that infect a 

wide range of ho st species such as mammals, reptiles and birds. 12 Several serov ars are 

recognized but they almost ail belong to the same species designated Salmonella. 

enterica.3 In humans, two main clinical syndromes are recognized, according to the host 

specificity of the infecting serovar. Salmonella enterica serovars Typhi and Paratyphi 

(Salmonella Typhi or Paratyphi) are the causative agents of enteric fever, a systemic 

illness found only in humans, where the bacteria localizes to the spleen and liver. 13
.14 

These host specifie serov ars continue to be a major threat to public health in developing 

countries where access to clean water is problematic, and in travelers returning from 

endemic areas. The non-host specific serovars such Salmonella enterica serovars 

Typhimurium and Enteritidis (Salmonella Typhimurium and Enteritidis) are causative 

agents of a more localized gastrointestinal illness, commonly known as salmonellosis. 

Isolated cases or outbreaks of salmonellosis are most often seen in industrialized 

countries, usually associated with food contamination280 or contact with domestic animais 

that are shedding Salmonella. \0 The emergence of antimicrobial resistance among the 

various Salmonella serovars noted over the past few decades greatly complicates the 

treatment of infected patients and these resistant isolates are associated with increased 

bloodstream infection, hospitalization and mortality (reviewed in Molbak281
). A better 

understanding of the host-pathogen interactions and of the pathogenesis of both enteric 

fever and salmonellosis will permit elaboration of new anti-Salmonella strategies that rely 

less on antimicrobials such as more effective vaccines, breeding of more resistant animal 

stock or prophylactic identification of genetically susceptible host. 

Salmonella Typhimurium infection in mice recapitulates the disease found in 

humans infected with Salmonella Typhi or Paratyphi.66 Following infection of mice, 

either orally or parenterally, the bacterium rapidly localizes to the spleen and the liver 

where it replicates. This experimental model is an invaluable tool for the study of the 
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host genes that may influence the outcome of infection and it was used to show that the 

mouse genetic background has a major impact on the course of infection. Using a 

positional c10ning approach, two major genes influencing the innate immune response of 

mice to Salmonella Typhimurium infection have been identified: the natural resistance 

associated macrophage protein 1 gene (Nramp 1, also known as Sic Il al) 139,140.150 and the 

TolI-like receptor 4 (Tlr4) gene. 178,179 Nramp1 has a tremendous impact on the exponentiaI 

growth of the bacteria in the spleen and liver during the first 5 days of infection and mice 

carrying a point mutation in Nramp1 (Gly1 69Asp) are extremely susceptible to 

Salmonella. 121 The mouse Tlr4 is also involved in the early mouse response to 

Salmonella infection and mi ce carrying a non-functional allele show a 1000 fold 

reduction in LDso compared to wild type animaIs. 167 The mouse Bruton' s tyrosine kinase 

gene (btk) has also been shown, through positional cloning, to control the late response to 

Salmonella Typhimurium.81 ,205 In addition to these positionally cloned genes, studies 

done using congenic and knockout mice have shown a role for several additional genes 

including the ones encoding for interferon gamma, interleukin-12, NADPH oxidases, 

inducible nitric oxide synthase, lipoprotein binding protein, CD14 and the mouse MHC 

complex (reviewed in Roy and Malo282
). 

It is clear that the mouse response to Salmonella Typhimurium is most likely 

complex and under the influence of several genes. While the genes described above seem 

to have a major impact on the host response to Salmonella it is conceivable that additionaI 

gene variants of smaller effect also make a significant contribution to disease outcome in 

mice. These may be ancient functional variants that have been fixed in the various inbred 

strains or more recent mutations that occurred during the breeding of the strains. 

Polymorphisms in orthologous genes could potentially also exist in the human population 

and have a similar impact on the outcome of enteric fever or diseases caused by other 

intracellular pathogens. To date, two quantitative trait loci (QTL), Ity2 and Ity3 

(lmmunity to Iyphimurium 2 and 3), have been identified as influencing the outcome of 

acute Salmonella Typhimurium infection in a (C57BL/6J x MOLF lEi)F2 cross.l23 

Additionally, in a chronic model of infection with Salmonella Enteritidis, severaI QTL 

were found to be involved in persistence of the infection in target organs.124.125 It is likely 

that several additional QTL influence the mou se resistance to Salmonella infection and 
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that identification of the genes underlying these QTL will be good candidate to test for 

their impact on Salmonella infection in human or veterinary important species. 

Recombinant congenic strains (RCS) have been used in an attempt to genetically 

dissect complex trait.283-286 RCS are generated through reciprocal double backcrosses 

followed by inbreeding for several generations. In a typicaI ReS set, one has transferred 

a fixed proportion of the genome from one strain (the donor strain) onto the background 

of a second strain (the recipient strain) and has generated a set of new inbred strains, each 

carrying a small proportion of the donor strain in various combinations. If the parental 

strains differ significantly in a quantitative trait of interest, then the study of the strain 

distribution pattern (SDP) in relation to the phenotype should facilitate the identification 

of genomic regions influencing the studied trait. The mapping of the gene is usually not 

possible by the sole study of the SDP unless the gene has a strong, Mendelian-type effect 

on the phenotype. The usual approach to gene identification is to cross the interesting 

RCS back to their background strain and limit the search for linkage to the already known 

donor regions. 

In order to identify additionaI QTL influencing the outcome of acute Salmonella 

Typhimurium infection in mice, we undertook a systematic screening of a set of AlJ and 

C57BL/6J RCS (AcBlBcA RCS).285 While it is weIl known that these two parental 

strains differ in their susceptibility to acute Salmonella Typhimurium infection because of 

Nrampl (C57BL/6J mice carry a non-functional Nrampl gene), we hypothesized that 

additional genes, influencing the outcome of Salmonella infection would segregate in the 

AcB and BcA RCS. Using this approach, we have identified several strains that showed a 

deviant phenotype from what was expected given their known Nramp 1 genotype. Two of 

these strains were selected for generation of two fully informative F2 crosses. Linkage 

analysis in these crosses revealed five novel QTL that influence the outcome of typhoid 

fever in mice. These findings show that the phenotypic difference in resistance to 

Salmonella between AlJ and C57BL/6J cannot be explained by Nrampl alone and that 

overall, the mouse response to Salmonella Typhimurium is complex and under the 

influence of several QTL and environmental factors. 
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RESULTS 

Screening of the AcB/BcA ReS 

The parental strains, AlJ and C57BLl6J, differ in their susceptibility to Salmonella 

Typhimurium infection mainly because C57BLl6J carries a non-functional allele at 

Nrampl, rendering it extremely susceptible to Salmonella infection. We hypothesized, 

however, that additional genes, besides Nrampl, have an impact on the mouse response to 

Salmonella and segregate in the AcB/BcA RCS. To test this hypothesis, we undertook a 

systematic screening of the thirty-six AcBlBcA RCS and tested their susceptibility to 

Salmonella Typhim,urium infection by measuring survival and splenic and hepatic 

bacterialload at day 4. When infected with 103 CFUs of Salmonella Typhimurium 

intravenously, most RCS behaved as expected from their known Nramp 1 genotype. AlI 

the strains carrying a non-functional alle1e at Nrampl (Nrampl susceptible) were 

extreme1y susceptible to Salmonella and died on day 4,5 or 6 post-infection (Figure 1). 

Similarly, most of the RCS carrying a wild-type allele at Nrampl (Nrampl resistant) were 

more resistant to Salmonella infection and showed a phenotype almost identical to their 

resistant parent, Ail Interestingly, sorne of the Nrampl resistant RCS showed a deviant 

phenotype. The strains AcB61 and AcB62, despite carrying a resistant alle1e at Nrampl, 

were extremely susceptible to infection and did not survive past day 7. Such an extreme 

susceptibility is rarely seen in inbred strains of mice and when seen, it has usually been 

attributed to spontaneous mutation either in Nrampl (e.g. C57BLl6J, C57BL 1 O/J or 

BALB/c)121.140 or Tlr4 (e.g. C3H1HeJ or C57BLlI0ScNCr).167.178.179 One exception is the 

wild-derived inbred strain MOLF/Ei with a low mean survival time of 6 days apparently 

attributable to the effect of several genes. l23 Two other RCS, AcB60 and AcB64, were 

found to be more resistant than their resistant parent, A/J. Here again, this increased 

resistance to virulent Salmonella Typhimurium with a fair percentage of mice being able 

to survive the infection is rarely seen in inbred mouse strains with the exception of 

129S6/SvEvTac (129S6, complete1y resistant) and CASTIEi.282 Finally, AcB56, AcB63 

and BcA69 showed an intermediate phenotype between that of C57BU6J and A/J. These 

results illustrate the complexity underlying the mouse response to acute Salmonella 

infection and indicate that additional genes, besides Nrampl, control the mouse survival 

following Salmonella infection and segregate in the AcBlBcA RCS. 
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We were also interested in studying the genetic control of the bacterial growth in 

the target organs by measuring the spleen and liver bacterialloads at day 4 following 

infection in each of the available RCS. Figure 2 shows that, as expected, the RCS 

segregate into two major groups according to their genotype at Nrampl. AlI Nrampl 

susceptible strains show bacterialloads similar to their C57BL/6J parental strain and 

much higher than Ail Likewise, most of the Nrampl resistant strains showed lower 

bacterialloads, corresponding to the levels measured in AlJ. Interestingly, sorne strain­

to-strain variations in bacterialload could be observed within the two Nrampl groups. 

Especially, we observed that two Nrampl resistant strains, AcB61 and AcB62, showed an 

intermediate level of CFU s, between that of the two parental strains. As mentioned 

earlier, the se two strains were also found to be extremely susceptible to Salmonella 

infection in terms of survival (Figure 1). Additionally, a few Nrampl susceptible strains 

(BcA72, BcA73, BcA76, BcA79, AcB51 and AcB53) presented lower or higher CFUs 

compared to the C57BL/6J parent. Finally, two groups, BcA66 and BcA80 showed a sex 

effect with the males having lower CFUs in the spleen and the liver compared to the 

females. 

Taken together, the survival and bacterialload measurements made in the thirty­

six AcB/BcA RCS revealed the existence of Nramp l-independent genetic mechanisms 

influencing the host response to Salmonella Typhimurium infection in C57BL/6J and AlJ. 

Segregation analysis of the survival phenotype in AcB61 and AcB64 F2 crosses 

Following identification of a few RCS that showed a deviant phenotype from what 

would have been expected given their known Nrampl genotype, we selected two strains, 

AcB61 (extremely susceptible) and AcB64 (more resistant), for further genetic analysis. 

We decided to generate two fully informative segregating F2 populations by intercrossing 

these RCS with unrelated inbred strains. While it could have been advantageous to cross 

these strains to AlJ and concentrate our search for linkage to the already known 

C57BL/6J congenic fragments, we decided to do otherwise for two main reasons. First, 

spontaneous mutations influencing the phenotype of interest can occur during the 

generation of the RCS and these would go undetected in a cross with one of the parental 

strain unless the mutation occurred at or close to a congenic fragment. 287 Second, the 

genomic structure of the ReS is not completely known and small congenie fragments 
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could have been missed during the initial genotyping of the se strains. We therefore 

generated two fully segregating F2 populations, (AcB61 x 129S6) and (AcB64 x 

DBA/2J). The inbred partners were chosen so they would differ as much as possible in 

their phenotype from the AcB strain and also on the basis that they did not carry mutation 

in genes known to be important in Salmonella resistance. 247 (AcB6I x I29S6) and 249 

(AcB64 x DBA/2J) F2 mice were generated and the survival of each mouse following 

infection with 103 CFUs of Salmonella Typhimurium was recorded. Figure 3a and b 

show the cumulative survival ofthe FIs, F2s and the parental strains for both crosses. 

Both FI populations showed a survival phenotype almost identical to their resistant parent 

while the F2 populations showed a continuo us distribution in their phenotype, 

intermediate between that of their respective parental strain. On closer examination, 

however, the (AcB61 x 129S6)F2 mice appear to segregate into more or less 3 groups: 1) 

a susceptible group dying before day 12; 2) an intermediate group dying between day 12 

and 40 and 3) a resistant group surviving the infection past day 50. For both crosses, 

sorne mi ce survived the infection past day 50, although in greater number for the (AcB6I 

x 129S6)F2 cross. Sorne of these mice were followed for more that 90 days and showed 

no signs of illness although they still carried Salmonella in their spleen and liver (data not 

shown) at that time. These results suggest that for both crosses, the mouse response to 

Salmonella infection behaves as a complex trait and is under the influences of more than 

one gene and potentially additional environmental factors. No effect of the infection day 

or of the sex was observed on the survival of the F2 mice and therefore, we could analyze 

together the F2 mi ce from each individual cross. 

Genetic analysis of the survival time in (AcB61 x 129S6)F2 mice 

As a first exploration for potential survival-associated genomic regions in the 

(AcB61 x 129S6)F2 cross, we performed a one locus interval mapping in R/qt1288 under a 

non-parametric modef89 which was indicated given the distribution of the survival time in 

this cross (Figure 3c). Supplemental Figure la shows the genetic map used and the 

names and physical positions of the markers are listed in Supplemental Table 1. Two loci 

were found to be significantly associated with survival in this cross (Figure 4a). A highly 

significant LOD score of 28.8 was detected at position 44cM on chromosome 3. We will 

refer to this locus as Ity4. A second significant peak was detected on the distal end of 
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chromosome 2 at position 117cM with a LOD score of 4.6 (Ity5). The p = 0.05 genome 

wide significance threshold for this cross, established following 1000 permutations was 

3.4. 

Because of concems that the extremely high LOD score on chromosome 3 might 

interfere with detection of additional QTL or lead to spurious association, we repeated the 

analysis after having removed aH the mice that were AcB61 homozygous for the marker 

most closely associated with Ity4. One hundred and ninety individuals were left for 

analysis and interval mapping under the non-parametric model revealed that the distal 

chromosome 2 locus continued to be strongly associated with survival following 

Salmonella infection in this cross with a LOD score that increased to 6.5 (maximum LOD 

score position at 121cM). These results show that both Ity4 and Ity5 independently 

contribute to the mouse response to acute Salmonella Typhimurium infection in this 

cross. 

Examination of the distribution of the survival time in the (AcB61 x12986)F2 

population reveals that approximately 50% of the mice survived the infection beyond day 

50, thus this distribution was heavily censored (Figure 3c). Because the interval mapping 

approach described above does not properly account for censored data, we re-analyzed 

our data using a survival analysis approach. A Weibull distribution for the survival times 

was assumed and a parametric survival regression at the markers was carried out using 

the statistical pro gram R.290 Two loci, co-Iocalizing with the ones detected in the initial 

analysis (Ity4 and Ity5, Figure 4a) were found to he significantly associated with survival 

time in this cross (Figure Sa, Table 1 and 8upplemental Table 1). First, a significant 

association was found on a region of chromosome 3 (Ity4) extending from 65.7 to 

124.3Mb with genome wide p-value < 0.05. The peak LOD score was 27.3 under a 

dominant model at the typed marker 03-098415492-M (position = 98.4Mb, p-value < 

0.0001, 1.5-lod support interval = 72.7-100.5Mb) with the 12986 allele conferring 

protection against Salmonella infection. A second significant association was detected on 

the distal end of chromosome 2 (Ity5) with a genome wide p-value < 0.05 from 155.5 to 

180.0Mb. The peak LOD score was 5.4 under an additive model at 02-167943959-M 

(position = 168.8Mb, p-value = 0.0005, 1.5-lod support interval = 165.2-180.0Mb) with 

the protective effect associated with the 12986 allele. The proportion of the phenotypic 
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variance explained was 42.1 % and 7.5% for Ity4 and Ity5, respectively. The survival 

curves with the F2 mi ce grouped according to their genotype at 02-167943959-M and 03-

098415492-M, the typed markers most strongly associated with survival time, are shown 

on Figure 6a and b. No interaction effect between these loci was detected (Figure 6c). 

Genetic analysis of the survival time in the (AcB64 x DBA/2J)F2 mice 

A similar approach was used to analyze the survival data from the (AcB64 x 

DBA/2J)F2 cross. Exploratory one locus interval mapping of the survival phenotype was 

performed in Rlqtl. Given the survival time distribution (Figure 3d) we used the two-part 

model described by Karl Broman289 and implemented in Rlqtl. Under the two-part model, 

two separate analyses are performed: one for a binary trait (the mi~e that died versus the 

mice that survived) and one for the normal trait conditional on a non-censored phenotype 

(mice that did not survive the infection). The final LOD score for the two-part model is 

the sum of the two LOD scores obtained on the separate analyses. The genetic map used 

is shown in Supplemental Figure 1 b and the names and physical positions of the markers 

are listed on Supplemental Table 2. Two loci reached the genome wide (p = 0.05) 

significance threshold estabIished following 1000 permutations (LOD = 4.2) (Figure 4b). 

Ity6, at position 27cM on chromosome 14, with a LOD score of 5.3 and Ity7, at position 

52.8cM on chromosome 7, with a LOD score of 4.3. Several additionalloci, which did 

not reach the p = 0.05 significance threshold but that presented a LOD score 2: 3 were also 

detected: chromosome 3 at position 51cM with a LOD score of3.5; chromosome 10 at 

7.5cM with a LOD score of3.8; chromosome Il at 58cM with a LOD score of3.0; 

chromosome 12 at 68.7cM with a LOD score of 3.4; chromosome 15 at 51.6cM with a 

LOD score of3.6; chromosome 19 at 38cM with aLOD score of3.6; and chromosome X 

at position 45cM with a LOD score of 3.2. These results illustrate the genetic complexity 

associated with the mouse response to Salmonella Typhimurium infection in this cross. 

The survival phenotype in the (AcB64 x DBA/2J)F2 cross was also heavily 

censored since about 25% of mice survived beyond day 50 (Figure 3d). As for the 

previous cross, and in order to properly account for the incomplete observation of the 

data, inference was carried out through parametric survival regression at the markers 

under a Weibull model for the survival times. Three loci having a small effect on the 

survival times reached the genome wide significance (Figure 5b, Table 2 and 
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Supplemental Table 2), two co-Iocalizing with the previously detected Ity6 and Ity7, and 

the third one co-Iocalizing with the locus detected on chromosome 15. The first locus, 

Ity6, was detected on chromosome 14 at the marker 14-055172074-M with a LOD score 

of 4.8 under a recessive model (position = 54.7Mb, p-value = 0.0289, 1.5-lod support 

interval = 44.4-84.4Mb). The resistant allele for Ity6 was inherited from the susceptible 

strain, DBA/2J, and behaved recessively, with only the mice homozygous for the DBA/2J 

allele showing increased resistance. This locus explained 7.4% of the phenotypic 

variance. A second significant association was found on chromosome 7 at the marker 07-

096980068-M (lty7) with a LOD score of 5.8 under a recessive model (position = 

95.7Mb, p-value = 0.0076, 1.5-10d support interval = 87.9-105.0Mb) and explaining 5.7% 

of the phenotypic variance. The third locus, Ity8, was located on the distal end of 

chromosome 15 at the marker 15-096231715-M with a LOD score of 5.4 under a 

recessive model (position = 95.7Mb, p-value = 0.0134, 1.5-lod support interval = 88.3-

102.6Mb) and explaining 4.0% of the phenotypic variance. For both Ity7 and Ity8, the 

protective allele was inherited from the resistant AcB64 parent and behaved in a 

dominant fashion. The survival curves with the F2 mice grouped according to their 

genotype at 14-055172074-M, 07-096980068-M and 15-096231715-M, the typed 

markers most strongly associated with survival time, are shown on Figure 7a-c. No 

interaction among these three loci was detected as seen in Figure 7d for Ity6 and Ity7. 

DISCUSSION 

The susceptibility to infectious diseases in the human population is partially 

controlled by the genetic constitution of the infected hosto 111.291.292 The host response to 

Salmonella spp also follows this rule, as evidenced by several studies that identified 

genetic variants responsible for increased susceptibility to this pathogen. For instance, 

patients with mutations in the interleukin-12/interferon-gamma axis show increased 

susceptibility to mycobacteria and Salmonella. 119 The same is true for patients with 

defect in the NADPH oxidase system (chronic granulomatous diseasell7
) or sickle cell 

anemia patients,116 which often present with Salmonella infections. Finally, the 

susceptibility to typhoid fever in humans has also been linked to specific MHC genes. 120 

While these studies give sorne insights into the genetic control of the host response to 
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Salmonella, there is most likely a wealth of other genetic variants that influence the 

outcome of an encounter between Salmonella and its host. 

Because of the inherent difficulties associated with the genetic dissection of 

susceptibility to infectious diseases in the human population, the experimental model of 

typhoid fever in the mouse has been used extensively. Using forward (positional c1oning) 

or reverse (knockout) genetic approaches, several genes have been shown to influence the 

outcome of Salmonella Typhimurium infection in mi ce (reviewed in Roy and Mal0282
). 

While most of the genes identified so far have a c1ear, Mendelian-type effect on the 

phenotype, there are most likely several additional variants of lesser effect that also 

contribute to the response of mice to Salmonella Typhimurium. These variants may be 

highly relevant candidates to be tested for their effect in human typhoid fever or other 

infections with intracellular pathogens. Using a (C57BL/6J x MOLFlEi)F2 cross, 

Sebastiani et at 13 have indeed identified two QTL (lty2 on chromosome Il and Ity3 on 

distal chromosome 1) that each have a small effect on the mouse response to acute 

Salmonella infection. In the present study, we have used a specialized tool of mouse 

genetics, the RCS, to further increase our understanding of the genetic basis of the host 

response to Salmonella Typhimurium infection in mice. 

RCS have been used before in the identification of QTL underlying complex 

traits. This approach is based on the premise that the isolation of the various genes 

underlying a quantitative trait in the individual RCS will facilitate their identification. 

Additionally, the mapping of QTL with RCS is further facilitated by the unlimited supply 

of each individual RCS (permitting accurate phenotyping), and by the complete 

genotypes known for each strain (limiting the cost and labor associated with the project). 

Detection of single gene effect may be possible by the sole study of the strain distribution 

pattern in relation to the phenotype of interest. 285 In our case, a simple marker regression 

of the mean phenotype for each of the thirty-six ReS against their known genotypes was 

powerful enough to detect the effect of Nrampl (LOD score of 3.9, 12.8 and 11.5 at 

D1Mit532 for survival, splenic and hepatic bacterialloads respectively), a gene known to 

have a strong, Mendelian-type effect on the mouse response to Salmonella Typhimurium. 

However, as would have been expected, no other loci having an impact on one or the 

other measured phenotypes could be detected and further breeding was necessary for 
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identification of additional QTL. The usual approach when using ReS for the genetic 

dissection of complex trait is to first identify the individual ReS that show an unexpected 

or interesting phenotype and then generate a new cross involving the se ReS. One may 

cross the ReS back to the background strain and then limit the search for linkage to the 

known congenic fragments. 284 This approach presents the advantages of limiting the cost 

and workload associated with genotyping and prevents the introduction of a new strain 

with additional polymorphisms that will complicate the mapping of the QTL. A 

disadvantage of this approach is that one will not he able to identify new mutations that 

may have occurred during the generation of the ReS unless the mutation occurred by . 
chance close to or within a congenic fragment. 287 Additionally, one may also miss sorne 

small congenic fragments that have escaped detection during the initial genotyping of the 

mice. We, therefore, chose a different approach where the selected ReS would be 

crossed to an unrelated inbred partner thereby maximizing the chance of finding the QTL. 

In addition to polymorphisms already segregating in the ReS, introduction of a new 

unrelated inbred mou se strain increases the polymorphisms content of the cross and 

maximizes the chance of identifying QTL important in the studied phenotype. 

The systematic screening of the AcBlBcA ReS aliowed us to identify several 

strains that showed a deviant phenotype from their known Nramp 1 genotype. 

Two of these deviant strains were selected for further genetic analysis, which Ied to the 

identification of five new QTL invoived in the mouse response to acute Salmonella 

infection. In the (AcB61 x 129S6)F2 cross, two QTL were detected, which together 

explain aimost haif of the phenotypic variance in this cross. Ity4 by itself accounts for 

42.1 % of the phenotypic variance indicating that the gene or genes underlying this QTL 

exert a major, Mendelian-type effect on the host response to Salmonella in this mouse 

model. The genomic region underlying this QTL is gene-rich and contains more than 300 

genes with several potential candidates, inc1uding a malaria resistance gene, the liver and 

red blood cell specifie pyruvate kinase gene (Pklr).287 We are currently in the process of 

fine mapping this region and are evaluating good positional candidates. Ity5 also appears 

to have, by itself, a major impact on the mouse response to Salmonella as evident from 

Figure 6b. The genomic region underlying the confidence intervai for Ity5 contains 97 

genes. Generation of reciprocal congenie strains earrying this region shouid allow us to 
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confirm its impact on mouse salmondlosis and help in the fine mapping of this QTL. 

These two loci do not co-Iocalize with C57BL/6J congenic fragments indicating that we 

are either mapping a new spontaneous mutation that occurred during the generation of the 

RCS or a variant between AlJ and the 129S6 strain. 

The situation appears more complex for the (AcB64 x DBAl2J) cross with several 

loci possibly each controlling a small percentage of the phenotypic variance. Using 

interval mapping and survival analysis, three loci, Ity6, Ity7 and Ity8, were found to be 

significantly associated with the mouse response to Salmonella infection. Additional 

QTL are most likely segregating in this cross but did not reach the significance threshold. 

The generation, genotyping and phenotyping of a few hundreds additional mice will be 

necessary in order to get a c1ear understanding of the genetic contribution to the 

phenotype in this case. The QTL mapping in this cross is further complicated by non­

genetic, environmental factors, which appear to play an important role in the outcome of 

Salmonella infection in this case. As noted on Figure 1 and 3b, even in the genetically 

identical AcB64 and (AcB64 x DBAl2J)Fl mice, the variance of the survival phenotype 

is quite large implicating additional factors beside genetic effects. It may be that, in these 

intermediately resistant strains, factors such as the inoculation dose or the state of the 

immune system can exert a greater influence than in mice that are extremely resistant 

(e.g. 129S6) or extremely susceptible (e.g. C57BL/6J or AcB61). As observed for Ity4 

and Ity5, Ity6 and Ity7 do not map to C57BL/6J congenic fragments, indicating again that 

we are either mapping new mutations or DBAl2J versus AlJ variants. However, Ity8 and 

the potentialloci on chromosome 3 do map to a C57BL/6J congenic fragment, which may 

facilitate the mapping of these QTL. 

In addition to the AcB61 and AcB64 strains that were selected for further genetic 

analysis, the systematic screening of the thirty-six RCS identified a few additional strains 

that may be worth further investigation. In particular, the AcB62 strain presents a 

phenotype quite similar to the AcB61 strain with a very short survival time and higher 

bacterialload in the spleen and liver at day 4. We are currently investigating the 

possibility that the same genomic region conf ers susceptibility to Salmonella in both 

AcB61 and AcB62. Another very interesting strain that may be worth further 

investigation is the AcB60 strain. AcB60 mice showed increased survival following 
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Salmonella infection and in this regard, resemble the AcB64 strain. Examination of the 

C57BL/6J congenic fragments present in these strains revealed a single common 

C57BL/6J fragment at position 37 to 43cM on chromosome 18. While this locus was not 

identified in the survival or interval mapping analysis of the (AcB64 x DBAl2J)F2 cross, 

it may still be involved in the response to Salmonella Typhimurium in AcBlBcA RCS. In 

fact comparison of the mean survival time between the Nrampl resistant RCS that carry a 

C57BL/6J congenic fragment at this locus with the mice that are AlJ at this same location 

revealed a higher mean survival time associated with the C57BL/6J genotype (mean 

survival time of 19 for the C57BL/6J genotype versus Il for the group carrying the AlJ 

genotype). Finally, we also identified a sex effect for the bacterialload at day 4 in the 

BcA66 and BcA80. Interestingly, in these two cases, the male mice present lower CFUs 

in the spleen and liver compared to the female mice. This situation is unusual for 

infectious diseases where the females are usually found to be more resistant than the 

males (e.g. resistance to malaria 284 or bacterial clearance in chronic Salmonella 

Enteritidis infection 1 
24). 

In conclusion, the study of the thirty-six AcBlBcA RCS for various Salmonella 

Typhimurium related phenotypes c1early demonstrated that the phenotypic difference 

between the parental strains C57BL/6J and AlJ cannot be explained solely based on their 

different allele at Nrampl. Genetic analysis involving fully informative crosses derived 

from two RCS and unrelated inbred partners allowed us to identify five novel QTL, 

inc1uding a locus with major effect, associated with the mouse survival following 

Salmonella infection. Ity5 and especially Ity4 detected in our (AcB61 x 129S6)F2 cross 

appear to have a strong effect on the phenotype and should be amenable to positional 

c10ning within a reasonable time frame. The situation for the (AcB64 x DBAl2J)F2 

cross seems much more complex with potentially severalloci and additional 

environmental factors contributing to the outcome of Salmonella infection. Increasing the 

number ofmice in our analysis may allow a c1earer understanding of the real genetic 

factors underlying the survival phenotype in this cross. Such confirmation will be 

necessary before one undertakes confirmation of these QTL in congenic strains. 
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MATERIALS AND METHODS 

Animais used: thirty-six AlJ and C57BL6/J RCS have been generated285 and were 

purchased from Emerillon Therapeutics Inc. (Montreal, QC, Canada). These strains were 

produced through reciprocal double backcrosses followed by inbreeding for more than 20 

generations and consist of 14 AcB and 22 BeA strains. A/J, C57BL/6J and DBA/2J were 

purchased from the Jackson Laboratory (Bar Harbor, ME, USA) while 129S6 were 

purchased from Taconic (Hudson, NY, USA). (AcB61 x 129S6)F2 and (AcB64 x 

DBA/2J)F2 mice were generated at the Montreal General Hospital Research Institute 

animal facility. 

In vivo Salmonella infection: AlI animal procedures were performed in accordance with 

the regulations of the Canadian Council on Animal Care. The Salmonella infections were 

performed as previously described. 293 Briefly, Salmonella Typhimurium strain Keller was 

grown in trypticase soy broth and each mouse was infected intravenously with 

approximately 103 colony forming units (CFUs) diluted in 200ul of 0.9% saline. The 

infectious dose was verified by plating of seriaI dilutions on trypticase soy agar. For 

survival analysis, the mice were monitored twice daily and moribund animaIs were 

sacrificed by C02 asphyxiation. Enumeration of the liver and splenic bacterial load was 

done on day 4 post-infection by plating of serially dilutedspleen or liver homogenates. 

For each RCS, we infected approximately 10 to 12 mi ce (males and females) and 

recorded the ~urvival time and the spleen and liver bacterialload at day 4. AlJ and 

C57BL/6J mice were included as controls at each infection. The F2 mice were infected 

by groups of 50 to 100 mice and each time the parental strains were included as controls. 

AIl mice were aged between 2 and 6 months at the time of infection. 

Genotyping: DNA was extracted from biopsies of mice tail with ovemight digestion in 

lysis buffer and proteinase K, followed by a chloroform extraction. DNA concentrations 

were measured with Quant-iT™ DNA AsSay Kit (Molecular Probes, Invitrogen, 

Burlington, ON, Canada) and adjusted to 10ng/ul. Single nucleotide polymorphisms 

(SNPs) were chosen preferably from the KBiosciences mouse SNP panef94 or from 

publicly available SNP database (WeIl come Trust 

(www.well.ox.ac.uk/mouse/INBREDSD or Jackson Laboratory 

(www.informaties.jax.orgD databases). SNP genotyping was performed by KBiosciences 
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(Hoddesdon, Herts, UK). In house genotyping was performed using simple sequence 

length polymorphisms. Microsatellite markers were selected from public databases and 

PCR products were resolved either on ethidium bromide stained high-resolution agarose 

gels (MetaPhor, Cambrex, Walkersville, MD, USA) or on polyacrylamide gel following 

labeling with 33p. 

Genetie analysis: An exploratory one locus interval mapping for the survival phenotype 

was performed in Rlqtl288 using the expectation-maximization algorithm under a non­

parametrie model289 (for the (AeB61 x 1 29S6)F2 miee) or un der the two-part model289 (for 

the (AcB64 x DBA/2J)F2 cross) on a grid of genotypes estimated every leM. 

Significance thresholds were established following 1000 permutations. One locus 

mapping for the survival phenotype for both, (AcB61 x 129S6) and (AcB64 x DBA/2J), 

F2 mice was performed using a parametric survival regression at the markers under a 

Weibull model for the survival time distribution. The significance was assessed via 10 

000 bootstrapped resamples controlling the genome wide type 1 error. I.S-lod support 

intervals were obtained by interpolation on the physical map. The mode of inheritance 

was inferred according to the genome wide p-values of the lod scores under the different 

models and graphic inspection. 

ACKNOWLEDGMENTS 

The authors wish to acknowledge the contribution of Rosalie Wilkinson, Line Larivière 

and Line Laroche whose technical assistance was essential to the realization of this 

project. We also wish to thank Dr Karl Broman for his advices regarding the genetic 

analysis of these crosses. The RCS mice and genotypes were provided by Emerillon 

Therapeutics and funded in part by Genome Quebec. This work was supported by a grant 

from the Canadian Genetic Disease Network (CGDN). M.F. Roy was the recipient of a 

CIHR fellowship. D. Malo is a William Dawson Scholar. 

93 



) ) 

TABLES 

Table 1 

Marker Full model Additive model Recessive model Dominant model 
JAX SNP ID or Mit rs # LOD score Corrected LOD score Corrected LOD Corrected LOD Corrected 

marker p-values p-values score l'-values score p-values 
02-145828186-N rs3023694 3.0000 0.2823 2.9322 0.0791 2.2234 0.3128 1.6939 0.7041 
02-148389584-N rs3022940 2.9146 0.3262 2.8636 0.0917 2.1190 0.3798 1.7070 0.6940 
02-154428186-N rs4223578 3.3032 0.1672 3.2473 0.0426 2.3944 0.2255 1.9320 0.5126 
02-162979695-M rs3700147 4.7392 0.0116 4.6029 0.0024 1.9277 0.5141 4.0171 0.0106 
02-167943959-M rs3687512 5.4800 0.0028 5.4356 0.0005 3.5438 0.0227 3.5501 0.0242 
02-172943830-M rs3710327 5.1963 0.0051 5.1897 0.0007 2.8377 0.0968 3.9929 0.0111 

D2Mit457 3.6648 0.0871 3.6492 0.0177 2.3510 0.2463 2.4797 0.1961 
02-179086475-M rs3680965 3.3899 0.1436 3.3656 0.0331 2.3038 0.2689 2.2442 0.3033 
03-033933315-N rs4223883 3.8571 0.0625 3.7551 0.0142 1.8365 0.5863 3.1552 0.0528 
03-065861493-N rs3022960 19.1213 0.0000 16.5559 0.0000 4.2802 0.0048 18.2525 0.0000 
03-073214161-M rs3681493 27.3309 0.0000 21.1722 0.0000 4.5504 0.0026 26.2591 0.0000 
03-098415492-M rs3672755 27.3627 0.0000 20.4602 0.0000 3.4433 0.0282 27.3289 0.0000 

03-115468851-N rs4224164 15.4721 0.0000 12.4746 0.0000 2.8619 0.0915 15.2473 0.0000 

03-124103177-M rs3720182 9.2841 0.0000 7.5783 0.0000 1.6792 0.7177 9.1392 0.0000 

03-136177436-M rs4136498 3.2830 0.1737 3.2409 0.0432 1.7365 0.6686 2.5317 0.1784 

Table 1: LOD scores and corrected p-values for the survival analysis under the Weibull model for the (AcB61 x 

129S6)F2 mice. AIl results with a corrected p value < 0.1 are listed. Results with a corrected p value < 0.05 are shown in bold 

as are the markers most strongly associated with survival. The complete list of results and the physical position of the markers 

can be found on Supplemental Table 1. 
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Table 2 

Marker Full model Additive model Recessive model Dominant model 
JAX SNP ID or Mit 

rs# 
LOD Corrected LOD score Corrected LOD Corrected LOD Corrected 

marker score ~-values p-values score p-values score p-values 
07-096980068-M rs3726275 6.0708 0.0300 4.3444 0.0610 5.8028 0.0076 1.1279 0.9999 
12-107541607-M rs3682260 4.2167 0.3062 2.1592 0.8089 4.1792 0.0763 0.1484 1.0000 
14-055172074-M rs3659450 5.4586 0.0637 4.9732 0.0247 4.8115 0.0289 2.1844 0.7992 
14-080955404-M rs3699634 4.6296 0.1883 4.4264 0.0535 3.7842 0.1356 2.1361 0.8194 
15-096231715-M rs3676400 5.3904 0.0707 3.1140 0.3149 5.3513 0.0134 0.2214 1.0000 
19-038092479-M rs3695591_ L 4.7Q09_ 0.1707 4.3620 0.0597 3.9814 '----- 0.1()15 1.9641 0.8935 

- _ ... _--

Table 2: LOD scores and corrected p-values for the survival analysis under the Weibull model for the (AcB64 x 

DBA/2J)F2 mice. AIl results with a corrected p value < 0.1 are listed. Results with a corrected p value < 0.05 are shown in 

bold as are the markers most strongly associated with survival. The complete list of results and the physical position of the 

markers can be found on Supplemental Table 2. 
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Supplemental Table 1 .... 
LOD scores Corrected p-values 

Chr Marker ID rs # Position (Mb) full additive recessive dominant full additive recessive dominant 

1 01-009072542-M rs3714728 9.04 0.497 0.008 0.202 0.125 1.000 1.000 1.000 1.000 
1 Dl Mit212 40.00 1.120 0.145 9·057 0.772 1.000 1.000 1.000 1.000 

1 01-072993159-M rs3716722 73.00 0.389 0.003 0.110 0.159 1.000 1.000 1.000 1.000 
1 01-102073421-M rs3720366 101.80 0.058 0.035 0.058 0.004 1.000 1.000 1.000 1.000 
1 01-129114100-M rs3661721 128.58 0.210 0.051 0.177 0.002 1.000 1.000 1.000 1.000 
1 01-162977516-M rs3706326 162.45 0.387 0.381 0.192 0.300 1.000 1.000 1.000 1.000 
1 DIMitl16 178.00 0.462 0.357 0.088 0.455 1.000 1.000 1.000 1.000 
1 01-193173300-M rs3715125 192.35 1.492 1.150 0.343 1.458 0.999 0.985 1.000 0.872 
2 02-012171555-M rs4137557 12.06 0.095 0.086 0.086 0.033 1.000 1.000 1.000 1.000 
2 02-050206336-M rs3684870 50.47 0.027 0.027 0.021 0.ûl5 1.000 1.000 1.000 1.000 
2 02-072065558-N rs4223212 72.22 0.175 0.027 0.125 0.008 1.000 1.000 1.000 1.000 
2 02-108953011-M rs3657882 109.55 1.534 0.424 1.324 0.ûl0 0.998 1.000 0.940 1.000 
2 02-122995884-M rs3726142 123.70 1.904 0.810 1.817 0.015 0.946 1.000 0.601 1.000 

2 02-133158154-M rs3724080 133.80 2.002 1.541 1.940 0.422 0.909 0.817 0.505 1.000 

2 02-145828186-N rs3023694 146.47 3.000 2.932 2.223 1.694 0.282 0.079 0.313 0.704 

2 02-148389584-N rs3022940 149.10 2.915 2.864 2.119 1.707 0.326 0.092 0.380 0.694 

2 02-154428186-N rs4223578 155.50 3.303 3.247 2.394 1.932 0.167 0.043 0.226 0.513 

2 02-1 62979695-M rs3700147 163.90 4.739 4.603 1.928 4.017 0.012 0.002 0.514 0.011 

2 02-167943959-M rs3687512 168.80 5.480 5.436 3.544 3.550 0.003 0.001 0.023 0.024 

2 02-172943830-M rs3710327 173.66 5.196 5.190 2.838 3.993 0.005 0.001 0.097 0.011 

2 D2Mit457 180.00 3.665 3.649 2.351 2.480 0.087 0.018 0.246 0.196 

2 02-1 79086475-M rs3680965 180.20 3.390 3.366 2.304 2.244 0.144 0.033 0.269 0.303 

3 03-007561998-N rs4223706 7.58 1.247 0.973 1.235 0.219 1.000 0.998 0.970 1.000 

3 03-033933315-N rs4223883 33.92 3.857 3.755 1.836 3.155 0.063 0.014 0.586 0.053 

3 03-065861493-N rs3022960 65.68 19.121 16.556 4.280 18.253 0.000 0.000 0.005 0.000 

3 03-073214161-M rs3681493 73.50 27.331 21.172 4.550 26.259 0.000 0.000 0.003 0.000 

3 03-0984 1 5492-M rs3672755 98.40 27.363 20.460 3.443 27.329 0.000 0.000 0.028 0.000 

3 03-115468851-N rs4224164 115.60 15.472 12.475 2.862 15.247 0.000 0.000 0.092 0.000 

3 03-124103177-M rs3720182 124.25 9.284 7.578 1.679 9.139 0.000 0.000 0.718 0.000 

3 03-136177436-M rs4136498 136.30 3.283 3.241 1.737 2.532 0.174 0.043 0.669 0.178 

3 03-157197990-M rs3697892 157.31 1.871 1.306 1.861 0.255 0.956 0.950 0.567 1.000 

4 04-007200424-M rs3692198 7.18 0.457 0.365 0.075 0.451 1.000 1.000 1.000 1.000 

4 D4Mit41 35.00 0.154 0.056 0.144 0.001 1.000 1.000 1.000 1.000 
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4 04-067425585-N rs3023981 67.53 0.142 0.067 0.136 0.002 1.000 1.000 1.000 1.000 
4 04-101002669-M rs3672377 101.27 0.103 0.063 0.103 0.008 1.000 1.000 1.000 1.000 
4 D4Mit308 123.00 0.217 0.150 0.033 0.216 1.000 1.000 1.000 1.000 
4 04-141084977-M rs3718220 141.48 0.385 0.003 0.103 0.154 1.000 1.000 1.000 1.000 
5 05-015030133-M rs3692583 14.73 2.245 0.698 0.011 1.981 0.773 1.000 1.000 0.471 
5 05-038394376-M rs3716546 38.10 0.975 0.971 0.642 0.610 1.000 0.998 1.000 1.000 
5 05-088937905-M rs3690045 88.60 0.109 0.001 0.047 0.026 1.000 1.000 1.000 1.000 
5 05-113995253-M rs3668084 113.26 0.105 0.025 0.002 0.085 1.000 1.000 1.000 1.000 
5 rs3701266 125.85 1.217 0.606 1.175 0.028 1.000 1.000 0.983 1.000 
5 D5Mit244 127.00 1.604 0.944 1.588 0.101 0.994 0.999 0.784 1.000 
5 rs3661159 129.80 1.452 0.994 1.452 0.162 0.999 0.997 0.875 1.000 
5 05-136184664-M rs3141573 135.00 1.686 1.357 1.646 0.299 0.990 0.927 0.742 1.000 
5 05-14423961O-M rs3716217 142.80 1.239 0.662 1.237 0.047 1.000 1.000 0.970 1.000 

5 05-147904991-M rs3710365 146.77 1.587 1.211 1.575 0.189 0.996 0.975 0.795 1.000 
5 rs6257511 150.30 1.407 1.218 1.340 0.321 1.000 0.974 0.932 1.000 
6 06-008096966-M rs3656818 8.09 0.804 0.618 0.790 0.157 1.000 1.000 1.000 1.000 
6 D6Mit346 19.74 0.302 0.232 0.297 0.060 1.000 1.000 1.000 1.000 1 

6 06-052633670-N rs3023069 52.29 0.074 0.002 0.013 0.039 1.000 1.000 1.000 1.000 

6 06-080041434-M rs3725568 79.60 1.267 0.110 0.765 0.138 1.000 1.000 1.000 1.000 

6 06-090142535-M rs3708822 89.83 0.904 0.735 0.891 0.195 1.000 1.000 1.000 1.000 

6 06-098102692-N rs3023081 97.90 1.086 1.058 0.922 0.517 1.000 0.994 0.999 1.000 

6 06-107618320-N rs4226165 107.40 0.737 0.651 0.706 0.229 1.000 1.000 1.000 1.000 

6 06-1I5164803-M rs371 II 96 115.06 1.277 1.132 1.212 0.400 1.000 0.989 0.976 1.000 

6 06-121280548-M rs3710839 121.20 0.304 0.303 0.195 0.222 1.000 1.000 1.000 1.000 

6 06-131929438-M rs3721822 131.80 1.029 0.897 0.361 0.964 1.000 1.000 1.000 0.999 

6 06-139951073-M rs3711613 139.90 1.420 1.134 0.363 1.386 1.000 0.988 1.000 0.911 

7 07 -007210802-M rs3673010 7.04 0.016 0.009 0.001 0.016 1.000 1.000 1.000 1.000 

7 D7Mit117 25.34 0.080 0.005 0.044 0.011 1.000 1.000 1.000 1.000 

7 07-039020313-M rs3680765 38.02 1.006 0.264 0.835 0.010 1.000 1.000 1.000 1.000 

7 07-073958894-N rs3023147 72.66 0.570 0.424 0.567 0.083 1.000 1.000 1.000 1.000 

7 07 -096980068-M rs3726275 95.65 0.931 0.296 0.833 0.001 1.000 1.000 1.000 1.000 

7 07-127943093-M rs3690034 126.85 0.850 0.003 0.239 0.343 1.000 1.000 1.000 1.000 

8 08-006942658-M rs3661145 6.99 0.688 0.205 0.007 0.568 1.000 1.000 1.000 1.000 

8 D8Mit4 30.86 0.262 0.137 0.261 0.014 1.000 1.000 1.000 1.000 

8 08-065245444-M rs3694940 64.83 0.805 0.738 0.702 0.315 1.000 1.000 1.000 1.000 

8 08-090088021-M rs3693131 89.67 1.623 0.227 1.195 0.102 0.993 1.000 0.979 1.000 
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8 08-123825384-N rs4227443 123.44 0.664 0.282 0.617 0.001 1.000 1.000 1.000 1.000 

9 09-016198772-M rs3719348 16.06 0.114 0.113 0.062 0.089 1.000 1.000 1.000 1.000 
9 09-044591533-N rs3023211 44.38 1.379 0.422 0.000 1.226 1.000 1.000 1.000 0.971 
9 09-063923771-M rs3656848 63.55 0.959 0.522 0.046 0.946 1.000 1.000 1.000 0.999 
9 09-095891774-N rs3023143 95.35 0.693 0.572 0.675 0.181 1.000 1.000 1.000 1.000 
9 09-123708875-M rs3713370 122.57 0.267 0.142 0.260 0.ü10 1.000 1.000 1.000 1.000 
10 10-010187387 -M rs3663269 10.03 0.008 0.005 0.001 0.008 1.000 1.000 1.000 1.000 
10 10-043132794-M rs3702010 42.88 0.073 0.019 0.059 0.001 1.000 1.000 1.000 1.000 
10 1O-086567143-M rs3687328 85.92 0.006 0.001 0.000 0.003 1.000 1.000 1.000 1.000 
10 10-121549764-M rs3653850 120.87 0.772 0.155 0.014 0.600 1.000 1.000 1.000 1.000 
11 11-005661856-N rs4222040 5.66 0.213 0.071 0.000 0.185 1.000 1.000 1.000 1.000 
11 11-019956728-M rs3707185 20.06 0.513 0.011 0.119 0.225 1.000 1.000 1.000 1.000 
11 1l-054801294-M rs3695837 54.92 0.595 0.232 0.001 0.550 1.000 1.000 1.000 1.000 
11 11-075291642-M rs3691128 75.46 0.437 0.016 0.076 0.220 1.000 1.000 1.000 1.000 
11 11-102928307-N rs4229101 102.99 0.378 0.104 0.002 0.310 1.000 1.000 1.000 1.000 
11 11-122195777 -M rs3675603 122.14 0.264 0.247 0.237 0.096 1.000 1.000 1.000 1.000 

12 12-008348907-M rs4139707 8.35 0.613 0.175 0.002 0.525 1.000 1.000 1.000 1.000 

12 12-040444748-M rs3668360 40.33 0.754 0.273 0.004 0.681 1.000 1.000 1.000 1.000 

12 12-070670478-M rs3663221 70.67 0.364 0.000 0.110 0.155 1.000 1.000 1.000 1.000 

12 12-092440423-M rs3719660 92.30 0.550 0.050 0.057 0.356 1.000 1.000 1.000 1.000 1 

12 12-107541607-M rs3682260 107.32 0.248 0.033 0.014 0.177 1.000 1.000 1.000 1.000 

13 13-009820324-M rs3719002 9.88 2.366 1.978 2.256 0.749 0.689 0.483 0.297 1.000 

13 13-013772045-M rs3680731 13.80 2.296 1.706 2.269 0.507 0.739 0.696 0.290 1.000 

13 13-035991657-N rs3090767 36.01 1.000 0.943 0.886 0.450 1.000 0.999 1.000 1.000 

13 13-05261241O-N rs4229748 52.40 0.509 0.499 0.290 0.402 1.000 1.000 1.000 1.000 

13 13-083172977-M rs3681496 82.33 0.113 0.104 0.047 0.102 1.000 1.000 1.000 1.000 

13 13-113945175-M rs3694860 113.08 0.108 0.030 0.000 0.090 1.000 1.000 1.000 1.000 

14 14-026281846-N rs423 0248 25.91 0.444 0.059 0.034 0.303 1.000 1.000 1.000 1.000 

14 14-055172074-M rs3659450 54.70 0.312 0.261 0.067 0.304 1.000 1.000 1.000 1.000 

14 14-080955404-M rs3699634 80.45 0.116 0.007 0.066 0.ü15 1.000 1.000 1.000 1.000 

14 14-114403652-M rs3685710 114.23 0.307 0.285 0.265 0.126 1.000 1.000 1.000 1.000 

15 15-004024569-M rs4137670 4.02 0.385 0.342 0.360 0.121 1.000 1.000 1.000 1.000 

15 15-033125499-M rs3720676 32.99 0.450 0.274 0.040 0.445 1.000 1.000 1.000 1.000 

15 15-052940678-M rs3653403 52.69 0.465 0.392 0.132 0.453 1.000 1.000 1.000 1.000 

15 15-074039561-M rs3672870 73.78 1.262 0.963 1.242 0.255 1.000 0.998 0.969 1.000 

15 15-103221933-M rs3665905 102.70 0.161 0.046 0.140 0.000 1.000 1.000 1.000 1.000 

98 



) 

-

-16 16-006018464-C rs4155455 6.02 0.373 0.360 0.310 0.180 1.000 1.000 1.000 1.000 
16 D16Mitl03 0.361 0.012 0.185 0.065 1.000 1.000 1.000 1.000 
16 16-061226828-C rs4193065 61.31 0.409 0.068 0.304 0.016 1.000 1.000 1.000 1.000 
16 16-090091107 -C rs4216475 90.03 0.011 0.001 0.008 0.001 1.000 1.000 1.000 1.000 
17 17-004147924-M rs3667161 4.18 0.828 0.008 0.329 0.264 1.000 1.000 1.000 1.000 
17 17-039842179-N rs3690398 39.09 0.465 0.398 0.159 0.418 1.000 1.000 1.000 1.000 
17 17-071150883-N rs3022791 70.53 0.310 0.216 0.310 0.031 1.000 1.000 1.000 1.000 
17 17-092673068-N rs3023460 92.03 0.374 0.208 0.028 0.368 1.000 1.000 1.000 1.000 
18 18-005066417-M rs3706767 5.18 0.384 0.238 0.380 0.033 1.000 1.000 1.000 1.000 
18 18-032061772-M rs3666799 32.17 0.879 0.391 0.011 0.838 1.000 1.000 1.000 1.000 
18 18-056903229-M rs3721446 56.99 0.340 0.330 0.175 0.269 1.000 1.000 1.000 1.000 
18 D18Mitl86 72.00 1.022 1.006 0.584 0.728 1.000 0.997 1.000 1.000 
18 18-080151519-M rs3656292 79.93 0.981 0.980 0.670 0.617 1.000 0.998 1.000 1.000 
19 19-005218596-N rs4232023 5.07 0.264 0.237 0.077 0.252 1.000 1.000 1.000 1.000 
19 19-018239318-M rs3691881 17.88 0.139 0.092 0.139 0.017 1.000 1.000 1.000 1.000 

-19 19-038092479-M rs3695591 37.79 0.793 0.696 0.240 0.748 1.000 1.000 1.000 1.000 
19 19-057152618-M rs3703896 56.90 1.285 0.994 0.263 1.261 1.000 0.997 1.000 0.961 
X X-008280846-M rs3653863 8.97 0.429 0.428 0.342 0.337 1.000 1.000 1.000 1.000 
X X-048681421-M rs3695410 49.75 0.918 0.917 0.706 0.774 1.000 0.999 1.000 1.000 
X X-076336029-M rs3685806 78.31 0.739 0.737 0.557 0.632 1.000 1.000 1.000 1.000 

X X-100282424-M rs3683627 102.65 0.160 0.156 0.146 0.112 1.000 1.000 1.000 1.000 

X X-132656933-M rs3705296 135.48 0.353 0.298 0.353 0.134 1.000 1.000 1.000 1.000 

Supplemental Table 1: Markers ID, physical position and associated LOD scores and corrected p-values for the (AcB61 

x 129S6)F2 cross. The LOD scores were obtained following one locus mapping for the survival phenotype using a parametric 

survival regression at the markers under a Weibull model for the survival time distribution. The significance was assessed via 

10 000 bootstrapped resamples controlling the for genome wide type 1 error. The values obtained under the various models are 

shown. 
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Position LOD scores Corrected p-values 

Chr Marker ID rs# (Mb) full add res dom full add res dom 

1 o 1-009072542-M rs3714728 9.04 0.944 0.911 0.743 0.455 1.000 1.000 1.000 1.000 

1 DIMit212 40.20 0.232 0.217 0.200 0.084 1.000 1.000 1.000 1.000 

1 01-072993159-M rs3716722 73.00 0.610 0.452 0.601 0.093 1.000 1.000 1.000 1.000 
1 01-102073421-M rs3720366 101.80 0.428 0.102 0.004 0.360 1.000 1.000 1.000 1.000 
1 01-129114100-M rs3661721 128.58 0.089 0.062 0.089 0.011 1.000 1.000 1.000 1.000 
1 01-162977516-M rs3706326 162.45 0.020 0.017 0.020 0.005 1.000 1.000 1.000 1.000 
1 01-193173300-M rs3715125 192.35 1.682 1.646 1.261 0.887 1.000 0.976 0.999 1.000 
2 02-020414303-M rs3677975 20.55 0.182 0.061 0.00.1 0.162 1.000 1.000 1.000 1.000 
2 rs4223189 62.62 0.525 0.070 0.019 0.394 1.000 1.000 1.000 1.000 
2 02-072065558-N rs4223212 72.22 0.398 0.138 0.001 0.377 1.000 1.000 1.000 1.000 

2 02-098132688-M rs3692748 98.44 1.517 0.080 0.181 0.984 1.000 1.000 1.000 1.000 

2 02-145828186-N rs3023694 146.47 1.003 0.090 0.091 0.668 1.000 1.000 1.000 1.000 

2 02-172943830-M rs3710327 173.66 0.080 0.052 0.080 0.008 1.000 1.000 1.000 1.000 

3 03-007561998-N rs4223706 7.58 0.242 0.235 0.192 0.126 1.000 1.000 1.000 1.000 

3 03-033933315-N rs4223883 33.92 0.421 0.353 0.396 0.126 1.000 1.000 1.000 1.000 

3 03-065861493-N rs3022960 65.68 0.931 0.896 0.769 0.463 1.000 1.000 1.000 1.000 

3 03-100489838-M rs3163371 100.68 3.295 2.788 3.043 0.897 0.722 0.467 0.363 1.000 

3 03-124103177-M rs3720182 124.25 3.876 3.864 2.615 2.393 0.443 0.118 0.564 0.683 1 

3 03-157197990-M rs3697892 157.31 1.408 1.368 0.725 1.124 1.000 0.997 1.000 1.000 

4 04-007200424-M rs3692198 7.18 0.749 0.507 0.087 0.748 1.000 1.000 1.000 1.000 

4 04-043070534-M rs3725792 43.08 0.799 0.795 0.587 0.446 1.000 1.000 1.000 1.000 

4 04-067425585-N rs3023981 67.53 2.842 1.519 2.781 0.112 0.905 0.989 0.480 1.000 

4 04-101002669-M rs3672377 101.27 1.505 1.435 1.289 0.640 1.000 0.995 0.999 1.000 

4 04-141084977-M rs3718220 141.48 0.144 0.144 0.092 0.095 1.000 1.000 1.000 1.000 

5 05-015030133-M rs3692583 14.73 0.647 0.633 0.525 0.355 1.000 1.000 1.000 1.000 

5 D5Mit294 19.70 0.436 0.396 0.402 0:169 1.000 1.000 1.000 1.000 

5 05-038394376-M rs3716546 38.10 0.233 0.188 0.053 0.229 1.000 1.000 1.000 1.000 1 

5 05-057223972-M rs3685257 57.07 0.803 0.339 0.005 0.757 1.000 1.000 1.000 1.000 

5 05-088937905-M rs3690045 88.60 1.656 1.378 0.418 1.591 1.000 0.997 1.000 0.983 

5 05-113995253-M rs3668084 113.26 1.325 1.087 0.337 1.282 1.000 1.000 1.000 0.999 

5 05-147904991-M rs3710365 146.77 0.282 0.039 0.010 0.189 ·1.000 1.000 1.000 1.000 

6 06-006933444-M rs3717555 6.93 2.806 1.063 2.644 0.003 0.916 1.000 0.551 1.000 

6 06-052633670-N rs3023069 52.29 1.622 0.962 1.604 0.106 1.000 1.000 0.982 1.000 
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6 06-090 142535-M rs3708822 89.83 1.008 0.815 0.990 0.212 1.000 1.000 1.000 1.000 

6 06-115164803-M rs3711196 115.06 0.584 0.258 0.538 0.005 1.000 1.000 1.000 1.000 

6 06-146801412-N rs3023 100 146.44 1.208 1.006 1.184 0.309 1.000 1.000 1.000 1.000 
7 07-007210802-M rs3673010 7.04 1.331 1.175 1.237 0.465 1.000 1.000 0.999 1.000 
7 07 -039020313-M rs3680765 38.02 0.006 0.001 0.004 0.000 1.000 1.000 1.000 1.000 
7 07 -073958894-N rs3023147 72.66 1.411 1.004 1.351 0.241 1.000 1.000 0.998 1.000 
7 07-096980068-M rs3726275 95.65 6.071 4.344 5.803 1.128 0.030 0.061 0.008 1.000 
7 07-127943093-M rs3690034 126.85 1.445 1.443 0.829 0.998 1.000 0.994 1.000 1.000 
8 08-026008244-M rs3688321 26.02 0.037 0.005 0.028 0.002 1.000 1.000 1.000 1.000 
8 08-065245444-M rs3694940 64.83 0.017 0.000 0.006 0.006 1.000 1.000 1.000 1.000 
8 08-090088021-M rs3693131 89.67 0.180 0.053 0.153 0.000 1.000 1.000 1.000 1.000 
8 08-123825384-N rs4227443 123.44 0.128 0.ûl8 0.007 0.093 1.000 1.000 1.000 1.000 1 

9 D9Mit204 26.70 0.574 0.148 0.000 0.463 1.000 1.000 1.000 1.000 1 

9 09-041967507-M rs4140117 41.76 0.093 0.001 0.039 0.023 1.000 1.000 1.000 1.000 
9 09-063923771-M rs3656848 63.55 2.489 0.515 1.952 0.022 0.979 1.000 0.902 1.000 
9 09-087760212-M rs3691725 87.21 0.551 0.142 0.463 0.003 1.000 1.000 1.000 1.000 
9 09-123708875-M rs3713370 122.57 0.385 0.248 0.385 0.038 1.000 1.000 1.000 1.000 
10 10-01 0l87387-M rs3663269 10.03 2.993 2.185 2.971 0.420 0.857 0.798 0.394 1.000 

10 10-028554348-N rs3023233 28.32 2.820 2.308 2.709 0.645 0.912 0.733 0.518 1.000 

10 rs3023241 86.99 1.036 0.136 0.758 0.064 1.000 1.000 1.000 1.000 

10 W-121549764-M rs3653850 120.87 0.641 0.640 0.440 0.393 1.000 1.000 1.000 1.000 

11 11-005661856-N rs4222040 5.66 3.037 1.780 3.028 0.242 0.840 0.946 0.370 1.000 

11 11-019956728-M rs3707185 20.06 1.009 0.975 0.474 0.869 1.000 1.000 1.000 1.000 

11 rs6239937 34.81 0.032 0.012 0.030 0.000 1.000 1.000 1.000 1.000 

11 11-054801294-M rs3695837 54.92 2.493 0.304 0.225 1.691 0.979 1.000 1.000 0.971 

11 Dl1Mit313 55.90 2.525 1.327 0.083 2.496 0.975 0.998 1.000 0.626 

Il 11-075291642-M rs3691128 75.46 1.669 1.526 0.563 1.485 1.000 0.989 1.000 0.992 

Il 11-102928307-N rs4229101 102.99 1.459 1.357 1.250 0.647 1.000 0.997 0.999 1.000 

11 11-121181118-M rs3726373 121.13 0.784 0.491 0.784 0.096 1.000 1.000 1.000 1.000 

12 12-008348907-M rs4139707 8.35 2.928 2.862 2.258 1.532 0.879 0.433 0.765 0.990 

12 12-040444748-M rs3668360 40.33 2.280 2.280 1.525 1.544 0.994 0.750 0.990 0.989 

12 12-070670478-M rs3663221 70.67 0.677 0.576 0.173 0.650 1.000 1.000 1.000 1.000 

12 D12Mit231 96.00 1.676 1.212 1.638 0.287 1.000 1.000 0.977 1.000 

12 12-W7541607-M rs3682260 107.32 4.217 2.159 4.179 0.148 0.306 0.809 0.076 1.000 

13 13-004607731-N rs3023640 4.58 0.939 0.075 0.072 0.586 1.000 1.000 1.000 1.000 

13 13-035991657-N rs3090767 36.01 1.196 0.855 0.209 1.181 1.000 1.000 1.000 1.000 
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13 13-05261241O-N rs4229748 52.40 0.100 0.100 0.066 0.065 1.000 1.000 1.000 1.000 
13 13-083172977-M rs3681496 82.33 0.223 0.093 0.001 0.207 1.000 1.000 1.000 1.000 
13 13-113945175-M rs3694860 113.08 0.844 0.813 0.389 0.719 1.000 1.000 1.000 1.000 
14 14-026281846-N rs4230248 25.91 1.313 0.813 1.313 0.137 1.000 1.000 0.998 1.000 
14 14-055172074-M rs3659450 54.72 5.459 4.973 4.812 2.184 0.064 0.025 0.029 0.799 

1 14 14-080955404-M rs3699634 80.45 4.630 4.426 3.784 2.136 0.188 0.054 0.136 0.819 
1 

14 14-114403652-M rs3685710 114.23 3.061 2.794 2.818 1.110 0.831 0.464 0.463 1.000 
15 15-004024569-M rs4137670 4.02 0.843 0.083 0.077 0.569 1.000 1.000 1.000 1.000 
15 15-033125499-M rs3720676 32.99 0.187 0.019 0.015 0.126 1.000 1.000 ·1.000 1.000 
15 15-052940678-M rs3653403 52.69 0.497 0.007 0.112 0.218 1.000 1.000 1.000 1.000 
15 15-074039561-M rs3672870 73.78 0.673 0.205 0.596 0.002 1.000 1.000 1.000 1.000 
15 15-096231715-M rs3676400 95.69 5.390 3.114 5.351 0.221 0.071 0.315 0.013 1.000 
16 16-0060 18464-C rs4155455 6.02 0.459 0.232 0.450 0.010 1.000 1.000 1.000 1.000 
16 16-027122263 -C rs4165510 27.12 0.023 0.020 0.023 0.008 1.000 1.000 1.000 1.000 
16 rs3656776 72.83 1.530 1.221 0.346 1.457 1.000 1.000 1.000 0.993 

16 16-090091107 -C rs4216475 90.03 0.606 0.242 0.004 0.579 1.000 1.000 1.000 1.000 

17 17-0 13493244-M rs3664721 12.88 0.121 0.116 0.062 0.099 1.000 1.000 1.000 1.000 

17 17-039842179-N rs3690398 39.09 1.119 0.358 0.001 1.024 1.000 1.000 1.000 1.000 

17 17-07 Il 50883-N rs3022791 70.53 0.707 0.ül8 0.322 0.162 1.000 1.000 1.000 1.000 

17 17-092673068-N rs3023460 92.03 2.200 2.130 1.777 1.066 0.996 0.824 0.952 1.000 

18 18-011819268-M rs3710602 11.95 1.389 0.244 0.025 0.956 1.000 1.000 1.000 1.000 

18 18-056903229-M rs3721446 56.99 0.317 0.315 0.230 0.195 1.000 1.000 1.000 1.000 

18 18-080151519-M rs3656292 79.93 0.040 0.040 0.030 0.024 1.000 1.000 1.000 1.000 

19 19-005218596-N rs4232023 5.07 3.850 3.663 1.748 3.192 0.455 0.157 0.958 0.296 

19 19-023050081-M rs3674514 22.69 3.036 3.033 1.957 2.126 0.840 0.350 0.900 0.825 

19 19-038092479-M rs3695591 37.79 4.701 4.362 3.981 1.964 0.171 0.060 0.102 0.894 

19 19-057152618-M rs3703896 56.90 0.780 0.757 0.607 0.395 1.000 1.000 1.000 1.000 

X DXMit55 5.00 0.373 0.368 0.260 0.324 1.000 1.000 1.000 1.000 

X rs13483712 7.79 0.189 0.156 0.070 0.187 1.000 1.000 1.000 1.000 

X rsI3483723 19.30 0.042 0.030 0.042 0.009 1.000 1.000 1.000 1.000 

X X-048681421-M rs3695410 49.75 0.255 0.255 0.195 0.202 1.000 1.000 1.000 1.000 

X X-076336029-M rs3685806 78.31 1.307 1.267 1.174 0.814 1.000 0.999 1.000 1.000 

X rs13483929 101.42 0.744 0.744 0.574 0.590 1.000 1.000 1.000 1.000 

X X-142258812-M rs3715531 145.08 1.171 0.246 0.000 0.752 1.000 1.000 1.000 1.000 
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Supplemental Table 2: Markers ID, physical position and associated LOD scores and corrected p-values for the (AcB64 

x DBA/2J)F2 cross. The LOD scores were obtained following one locus mapping for the survival phenotype using a 

parametric survival regression at the markers under a Weibull model for the survival time distribution. The significance was 

assessed via 10000 bootstrapped resamples controlling for the genome wide type 1 error. The values obtained under the 

various models are shown. 
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FIGURES 

Figure 1 
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Figure 1: Cumulative survival in the AcB/BcA RCS following intravenous infection 

with 103 CFUs of Salmonella Typhimurium. Most of the RCS showed a phenotype 

that correlated with their Nrampl genotype with aIl of the Nrampl susceptible RCS 

(Nrampl S) behaving similarly to the C57BL/6J parental strain and most of the Nrampl 

resistant RCS (Nramp 1 R) behaving similarly to the AlJ parental strain. However, sorne 

Nrampl resistant RCS showed a deviant phenotype. The AcB61 and AcB62 RCS were 

aImost as susceptible as C57BL/6J despite carrying a resistant allele at Nrampl. The 

AcB60 and AcB64 were more resistant than their resistant parent AlJ. The AcB56, 

AcB63 and BcA69 showed an intermediate phenotype between that of the B6 and Ail. 
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Figure 2 
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Figure 2: Bacterialload in the spleen (a) and liver (b) of the RCS at day 4 following 

intravenous infection with 103 CFUs of Salmonella Typhimurium. The log ofCFUs 

per gram of spleen or liver is sho-wn for each mouse tested and the horizontallines 

represent the mean CFUs for each group. The RCS can be divided into two groups 

according to their kno-wn genotype at Nrampl. The Nrampl susceptible RCS (Nrampl S) 

show bacterialloads that are similar to their Nrampl susceptible parent C57BL/6J but 

much higher than AlJ. The Nrampl resistant RCS (Nrampl R) have lower bacterial 

loads, similar to the AlJ parental strain. Within each group however, we observe sorne 

strain-to-strain variation. Of interest, the AcB61 and AcB62 strains, which carry a 

resistant alle1e at Nrampl, show bacterialloads that are intermediate between that of 

C57BL/6J and AlJ. * Indicates significantly different (p < 0.05) from the reference strain 

(AlJ for the Nrampl R group and C57BL/6J for the Nrampl S group - ANOVA with 

Fisher's protected least significance difference performed in Stat View 5.0). "S" indicates 

a sex difference with the males having lower CFUs compared to female mice. The 

statistical analyses were performed on each individual infection. 

105 



Figure 3 
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Figure 3: Cumulative survival in the FIs, F2s and the parental strains for both 

crosses following intravenous infection with 103 CFUs of Salmonella Typhimurium. 

a) (AcB61 x 129S6)F2 cross. 247 F2 animaIs were infected and survival was recorded. 

The FIs behaved as the resistant parent 129S6 while the F2 population appears to 

segregate more or less into three groups. Approximately 25% of the F2 mice behave 

similarly to the AcB61 parent and succumb early following infection. An additional 25% 

of the F2 mice survive for a longer period of time while 50% of the F2 are as resistant as 

the 129S6 parent and survive the infection. b) (AcB64 x DBA/2J)F2 cross. 249 F2 

animaIs were infected and survival was recorded. The FI mice behaved similarly to the 

resistant parent AcB64 while the F2 mice showed a continuous distribution in survival, 

intermediate between the two parental strains. c) Examination of the frequency 

distribution of the survival in the (AcB61 x 129S6)F2 mice reveals that the phenotype is 

not normally distributed and presents a major spike in the distribution at day 50 (censored 

data). d) Examination of the frequency distribution of the survival in the (AcB64 x 

DBA/2J)F2 mice reveals a spike in the distribution at day 50 (censored data). However, 

among the non-surviving mice, the phenotype is more normally distributed with a slight 

skew to the right. 
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Figure 4 
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Figure 4: One locus interval mapping using a non-parametric model for the 

survival phenotype in the (AcB61 x 12986) F2 mice (a) and the two-part model in 

(AcB64 x DBA/2J) F2 mice (b). The LOD scores are shown for each position across the 

genomes. In (b) the dotted line represents the LOD trace for the analysis of the survival 

phenotype, conditional on a non-censored phenotype (mice that did not survive the 

infection), the dashed line represents the LOD trace for the analysis of the binary trait 

(survive versus did not survive) and the continuous line is the sum ofthe two separate 

analysis. The horizontallines represent the genome wide significance threshold after 

1000 permutations (fullline, p = 0.01; long dash, p = 0.05; small dash, p = 0.1). The 

LOD thresholds are 3.0, 3.4 and 4.2 for p = 0.1, p = 0.05 and p = 0.01 respectively for (a) 

and 3.9, 4.2 and 5.2 for p = 0.1, p = 0.05 and p = 0.01 respectively for (b). 
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Figure 5 (previous page): Parametric survival regression on the markers under the 

Weibull distribution for the (AcB61 x 12986) (a) and the (AcB64 x DBA/2J) (b) F2 

mice. The results are shown only for the chromosomes presenting significant peaks. The 

lod scores obtained under the different mode of inheritance are shown. Two significant 

associations are found for the (AcB61 x 129S6)F2 cross (Ity4 and Ity5) and three 

significant associations are detected for the (AcB64 x DBA/2J)F2 cross (Ity6-Ity8). The 

model with lower genome wide p values (solid line) overlays the dominant model of 

inheritance for chromosome 3 (a), the additive model for chromosome 2 (a) and the 

recessive model for chromosomes 7, 14 and 15 (b). The positions of the peaks are similar 

to the ones obtained with the interval mapping approach (Figure 5). 
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Figure 6 

a 
Ity4 (chr3) 

.8 
.... AcB61 

.6 
.... 12956 

.4 
.... Het 

.2 

0 

0 10 20 30 40 50 
lime (in days) 

b 

.8 Ity5 (chr2) 

.6 .... AcB61 

.4 .... 12956 

.2 -e- Het 

0 
, i' : i , 

0 10 20 30 40 50 
TIITI8 (in days) 

Ity411ty5 
c 1 .. AcB611AcB61 

.8 ..... AcB61lHet 

.6 -e- AcB61/129S6 

.4 .... 129S6 or Hetl129S6 

.2 ...- 129 or HetJHet 

0 .... 12956 or HetlAcB61 

0 10 20 30 40 50 

TIITI8 (in days) 

Figure 6: Cumulative survival following Salmonella Typhimurium infection in 

(AcB61 X 129S6)F2 mice according to their genotypes at Ity4 and Ity5. Mice were 

grouped according to their genotype at the typed marker most c10sely associated with the 

peak LOD score on: a) chromosome 3 (03-098415492-M) and b) chromosome 2 (02-

172943830-M). c) The mice were grouped according to their genotype at both markers. 

"AcB61" represents mice homozygous for the AcB61 allele. "129S6" represents mice 

homozygous for the 129S6 allele. "Het" represents mice heterozygous at the typed 

marker. 
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Figure 7 
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Figure 7: Cumulative survival following Salmonella Typhimurium infection in 

(AcB64 x DBA/2J)F2 mice according to their genotypes at Ity6, Ity7 and Ity8. Mice 

were grouped according to their genotype at the typed marker most closely associated 

with the peak LOD score on: a) chromosome 14 (l4-055172074-M); b) chromosome 7 

(07-096980068-M); c) chromosome 15 (15-096231715-M); d) combined effect of the 

chromosome 7 and 14 loci. "AcB64" represents mice homozygous for the AcB64 allele. 

"DBA/2J" represents mice homozygous for the DBA/2J allele. "Het" represents mice 

heterozygous at the typed marker. 
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Supplemental Figure 1 
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Supplemental Figure 1: Genetic map ofthe (AcB61 x 129S6)F2 (a) and (AcB64 x 

DBA/2J)F2 (b) crosses. a) 247 (AcB61 x 129S6)F2 mice were genotyped with a total of 

127 SNP or micro satellite markers. Among these 247 mice, 63 were genotyped only for 

selected chromosomes (2,3,5,6 and 13). b) 249 (AcB64 x DBA/2J)F2 mice were 

genotyped with a total of 103 SNP or micro satellite markers. The list and physical 

position of the markers are available on Supplemental Tables 1 and 2. 
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CHAPTER IV: Pyruvate kinase deficiency confers susceptibility to Salmonella 

Typhimurium infection in mice. 

PROLOGUE 

The genetic analysis of the survival phenotype following Salmonella 

Typhimurium infection in (AcB61 x 129S6)F2 mice allowed identification oftwo novel 

QTL, Ity4 and Ity5. Ity4 was found to exert a major effect on the mouse response to 

Salmonella, explaining 42% of the phenotypic variance associated with survival time in 

this cross. The physicallocation of Ity4 on mouse chromosome 3 correlates with a 

previously identified malaria resistance gene, the liver and red blood cell pyruvate kinase 

gene, Pklr. AcB61 is known to carry a point mutation in Pklr, rendering the pyruvate 

kinase (PK) protein nonfunctional. PK catalyses the transformation of 

phosphoenolpyruvate to pyruvate during glycolysis and is essential for the generation of 

A TP in RBCs. As a consequence of the PK deficiency, the AcB61 mice present a 

constitutive hemolytic anemia with reticulocytosis. 

In previous experiments, we have shown that Salmonella infection in C57BL/I0 

mice leads to the development of severe anemia. Knowing that the AcB61 mice are 

constitutively anemic, we hypothesized that the added anemia-inducing stimuli of 

Salmonella infection would precipitate the anemia to critically low level in the se mice, 

thereby contributing to their early demise. It was therefore conceivable that Pklr was 

indeed the gene underlying Ity4. In the present study, we present strong evidences in 

support of the candidacy of Pklr as the gene underlying Ity4. We show that PK deficient 

mice are more susceptible to Salmonella infection because of their constitutive hemolytic 

anemia and resultant increased body iron load. 
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ABSTRACT 

The mouse response to acute Salmonella Typhimurium infection is complex and 

under the influence of several genes in addition to environmental factors. In a previous 

study, we have identified two novel Salmonella susceptibility loci, Ity4 and Ity5, in a 

(AcB61 x 129S6)F2 cross. Ity4 maps to mouse chromosome 3 with a LOD score of28.8 

and explains 42% of the phenotypic variance. !ts protective effect is associated with the 

129S6 allele, which behaves in a dominant fashion. The peak LOD score associated with 

Ity4 maps to the region of the liver and red blood cell specific pyruvate kinase (Pklr) 

gene, previously shown to be mutated in AcB61. During Plasmodium chabaudi 

infection, the pyruvate kinase (PK) deficiency associated with the Pklr mutation protects 

the mice against this parasite as indicated by improved survival and lower peak 

parasitemia. Given that red blood cell defects have previously been associated with both 

increased resistance to malaria and increased susceptibility to Salmonella we investigated 

the candidacy of Pklr as the gene underlying Ity4. The data presented here strongly 

support the candidacy of Pklr as a susceptibility gene to acute Salmonella Typhimurium 

infection in mice through its effect on red blood cell turnover and iron metabolism. 

Key words: Salmonella, host resistance, anemia, iron, pyruvate kinase, infection. 
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Pyruvate kinase deficiency confers susceptibility to Salmonella Typhimurium 

infection in mice. 

Roy MF, Riendeau N, Bédard C, Hélie P, Canonne-Hergaux F, Gros P, Malo D. 

INTRODUCTION 

Infectious diseases remain a major cause of death worldwide, especially in 

children and young adults, with most of the burden falling on the populations of the 

poorest countries (www.who.int/infectious-disease-report). With emerging and re­

emerging pathogens, the globalization of exchanges between countries, and the constant 

threat of antimicrobial resistance,2 it becomes increasingly clear that a better 

understanding of the host and pathogen interactions in vivo is needed. One approach to 

this problem is the study of the genetic determinants of the host response to infection, 

which frequently leads to a better understanding of disease pathogenesis. The outcome of 

an encounter between hosts and pathogens results from the battle of two genomes in 

addition to environmental factors and the fitness of the two protagonists. While microbial 

organisms have and continue to acquire virulence factors enabling them to thrive in a 

particular niche/95
.296 the ho st genomes have accumulated polymorphisms, which at time, 

confer resistance or susceptibility to specifie pathogens.297
-
299 The importance of the host 

genetic makeup in the response to infection was illustrated in a seminal study by 

Sorenson et allll where it was shown that the relative risk of death from infectious 

diseases for an adoptee was significantly increased when their biological parent had died 

of infectious disease before age 50. Additional evidence for a major role of genetic 

factors cornes from twin studies,291 linkage and association studies3OO
,301 and numerous 

studies of specifie gene defect conferring susceptibility or resistance to individual 

pathogens.298,302 

The host response to Salmonella infection is also controlled by genetic factors. In 

humans, patients with mutations leading to sickle œIl anemia, 116 chronic granulomatous 

diseasel17 or the syndrome of Mendelian susceptibility to mycobacterial diseasel19 are 

more susceptible to infection with non-host specifie Salmonel/ae. Additionally, particular 

MHC haplotypes are associated with increased risk of typhoid (ever (caused by the 
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human specific serovars Typhi and Paratyphi). 120 There are most Iikely several additional 

polymorphisms that impacts on the host response to Salmonella infection but their 

identification in human populations is hindered by the difficulties and complexities 

associated with human-based studies. In this context, the mouse model oftyphoid fever 

is used to identify additional genetic factors that control the host response to Gram­

negative, intracellular pathogens, factors that can later be studied in humans or relevant 

veterinary species. 

Infection of mice with Salmonella enterica serovar Typhimurium (Salmonella 

Typhimurium), either orally or parenterally, results in the localization and replication of 
, 

the bacteria in the spleen and liver, thereby mimicking human typhoid fever. 66 Using this 

model, several genes were identified as having a strong impact on the mouse 

susceptibility to acute Salmonella Typhimurium infection,282 including Nrampl (Natural 

resistance associated macrophage prote in 1, also known as Slcll al) and Tlr4 (Toll-like 

receptor 4). Nrampl is a transmembrane protein involved in the transport of divalent 

cations. 155,156 Following phagocytosis, it is recruited to the membrane of the 

phagolysosomel53 where it is believed to deprive the bacteria from essential divalent 

cations, including iron. Mice carrying non-functional allele at Nrampl are extremely 

susceptible to Salmonella infection and succumb to infection with less than 10 

organisms. 12l
,139,14O,15O Tlr4 is the pattern recognition receptor for LPS and is responsible 

for most of the mouse response following infection with Salmonella.264
,265 Mice carrying 

a non-functional Tlr4 allele show a lOOO-fold reduction in LDs0167,178 while increasing the 

number of copies of Tlr4 from 0 to 1,2 and 3 copies ofthe gene brings an incremental 

protective effect from death following Salmonella Typhimurium infection. 293 

Aiming to expand our understanding of the genetic determinants of the host 

response to Salmonella infection using the mouse model of typhoid fever, we recently 

undertook a systematic screening of a set of thirty-six AlJ and C57BL/6J recombinant 

congenic strains (AcB/BcA RCS) for their response to acute Salmonella infection?03 

While we knew, before hand, that the parental strains, A/J and C57BL/6J, differ in their 

susceptibility to Salmonella infection mainly because C57BL/6J carries a point mutation 

in Nrampl, we hypothesized that additional genes would influence the outcome of 

infection and segregate in the RCS. We showed, indeed, that Nrampl alone is not 
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sufficient to explain the phenotypic variance among the ReS and that additional genes 

influence the response to Salmonella. In particular, we have identified the strains AcB61 

and AcB62 as extremely susceptible to Salmonella Typhimurium despite the fact that 

they carry a functional allele at Nrampl. Interval mapping perforrned on a 

(129S6/SvEvTac (or 129S6) x AcB61)F2 cross revealed a major locus (lty4, lmmunity to 

Iyphimurium locus 4) influencing the survival phenotype at position 44cM on mouse 

chromosome 3 with a LOD score of28.8. The strains AcB61, AcB62 and AcB55 were 

previously found to carry a spontaneous mutation in the liver and red blood cell (RBC) 

specific pyruvate kinase gene, Pklr (Min-Go et aF' and P. Gros, personal 

communication). Pklr deficient mice present a constitutive hemolytic anemia with 

reticulocytosis and splenomegaly,276 and are more resistant to Plasmodium chabaudi 

infection.287 Because the position of Pklr is exactly under our major Ity4 peak on 

chromosome 3 we evaluated its candidacy as the gene underlying the susceptibility of the 

AcB61 strain to Salmonella and characterized the phenotypic expression of the Pklr 

deficiency during infection. Additionally, we further characterized the effect of 

Salmonella infection on the mouse erythroid response. The results presented in this paper 

strongly support the candidacy of Pklr as the gene underlying Ity4 through its effect on 

the mouse erythroid response and iron metabolism. 

RESULTS 

Evaluation of the candidacy of Pklr as the gene underlying Ity4 

In a previous study, we have mapped a Salmonella susceptibility loci to mouse 

chromosome 3 in a F2 cross between the extremely susceptible AcB61 strain and the 

totally resistant 129S6 strain?03 This loci, named Ity4, maps to position 44cM with a 

LOD score of28.8, explaining 42% of the phenotypic variance. The AcB61 strain was 

previously shown to carry a point mutation in the Pklr gene, rendering it resistant to 

Plasmodium chabaudi.287 Since Pklr maps directly under our chromosome 3 peak LOD 

score (Figure la) we evaluated its candidacy as the gene underlying Ity4. 

We first genotyped 306 (AcB61 x 129S6)F2 mice for the known Pk/r mutation 

and examined their survival following Salmonella Typhimurium infection according to 

their genotype at Pk/r. Figure 1 b shows a strong correlation between the mouse genotype 
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at Pklr and survival following Salmonella infection. Mice homozygous for the AcB61 

mutated allele have very little chance of surviving the infection while mice carrying at 

least one 129S6 allele are much more resistant, indicating that Pklr or a gene tightly 

linked to Pklr confers susceptibility to Salmonella. Repeating the intervaI mapping, this 

time including the Pklr genotypes in the analysis led to arise of the peak LOD score from 

28.8303 to 30.3 (Figure la). Additionally, examination of the survival foHowing 

Salmonella infection for the three recombinant congenic strains known to carry a mutated 

Pklr allele (AcB61, AcB62 and AcB55) (Min-Oo et affrl and P. Gros, personal 

communication) showed a concordant phenotype with aH three strains being extremely 

susceptible (Figure 1c) while none of the other Nrampl resistant RCS showed such 

susceptibility.303 The AcB55 strain was even more susceptible than the C57BL/6J parent 

with ail mice dying on day 4. We attribute this extreme susceptibility to Salmonella to 

the fact that the AcB55 strain carries mutated alleles at both Nrampl and Pklr. We aIso 

observed a lack of complementation in FI mice derived from crosses between AcB61 and 

AcB62, and between AcB61 and AcB55 indicating that the same gene is responsible for 

their susceptibility to Salmonella (Figure 1 d). Since these three strains are known to 

carry the same point mutation in Pklr, it is likely that this gene is responsible for their 

susceptibility to Salmonella Typhimurium infection. Finally, using a fine mapping 

approach targeted to the mice presenting non-resolved recombination around the Pklr 

gene, we were able to decrease the support interval from a 25.3Mb region to a region of 

3.7Mb just surrounding Pklr (Figure 2). Taken together, these resuJts points toward Pklr 

as the gene underlying the susceptibility of the AcB61 mice. 

Salmonella-induced anemia 

Having accumulated strong evidence in support of Pklr as the gene underlying 

Ity4, we became interested in understanding how a RBC defect conf ers susceptibility to 

Salmonella Typhimurium. We have previously shown293 that mice on a C57BL/10 

background develop a severe anemia during the course of Salmonella infection. Knowing 

that the AcB61 mice present a constitutive anemia, we hypothesized that the added 

anemia-inducing stimuli of the Salmonella infection would Iead to the rapid development 

of an even more severe anemia in these mice, contributing to their early demise. To test 

this hypothesis and aiso to shed light on the pathophysiology of Salmonella-induced 
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anemia in mice, we studied the RBC parameters before and during Salmonella 

Typhimurium infection in AcB61, AlJ and C57BL/6J mice. As expected, the AcB61 

mice present a constitutive anemia with reticulocytosis (Figure 3a-e). During Salmonella 

infection, the anemia rapidly worsens in AcB61 mice to reach critically low levels on day 

5. By comparison, the RBC parameters showed only a slight decrease in the AlJ (Figure 

3f-j) and C57BL/6J (Figure 3k-o) parental strains. The reticulocyte response appeared 

blunted by Salmonella infection in all3 groups (decreasing reticulocytes, Figure 3e, i, j, 

n, and 0), which probably contributes to the development of anemia during infection. The 

sustained percentage of reticulocytes (Figure 3d) in AcB61 mice despite the worsening 

anemia and decreasing absolute reticulocyte count may indicate increased resistance of 

younger erythrocytes to phagocytosis by activated macrophages during Salmonella 

infection. These results suggest that Salmonella-induced anemia results from a slightly 

decreased erythropoiesis response in the face of increased phagocytosis of aging RBCs. 

Additionally, these findings show that Salmonella infection rapidly worsens the anemia in 

AcB61 mi ce and that the severity of the anemia could contribute to the early demise of 

the se mice. In the face of severe sepsis, the low hematocrit seen in the AcB61 (mean ± 

SEM = 16.6 ± 1.3%) certainly interferes with the capacity of the body to maintain oxygen 

delivery to vital organs?04 

The erythropoiesis response in the bone marrow was investigated in AlJ, 

C57BL/6J and AcB61 mi ce before and on day 5 following Salmonella infection. No 

noticeable difference were detected between the different groups in regards to the 

myeloid:erythroid ratios before or during infection suggesting that the compensatory 

response to the decreased RBC life span in AcB61 occurs mainly in the spleen and liver 

as previously described.276 Interestingly, on day 5, Salmonella-induced pathologies were 

noted. The myeloid:erythroid ratio was increased with numerous segmented 

granulocytes. Additionally, variable numbers offoci characterized by fibrin deposition, 

more or less degenerated neutrophils and necrotic cells were found. These foci were 

sometime angiocentric and/or associated with thrombosed vessels. In one mouse, 

bacteria were visible in the center of one of these foci. These findings illustrate the 

attempt of the mice to produce increased numbers of myeloid cells in response to acute 

sepsis and indicate that Salmonella is capable of reaching the bone marrow. 
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Hepcidin expression during Salmonella infection. 

The development of anemia during infection, referred to as anemia of 

inflammation, is weIl described and may be explained by several mechanisms including 

changes in iron homeostasis, decreased proliferation of erythroid progenitors, reduced 

erythropoietin production and decreased RBC life span.250 The newly described protein 

hepcidin is an important player in iron homeostasis and a cruciallink between anemia and 

inflammation.251 During infection, inflammatory cytokines such as interleukin-6 are 

produced, leading to the up-regulation of the acute phase protein hepcidin, which in tum 

leads to internalization of the iron transporter ferroportin. The end result of this cascade 

of events is the sequestration of iron in macrophages and the diminution of absorption of 

alimentary iron from the duodenum. Since iron availability is crucial for RBC synthesis, 

these changes contribute to the development of anemia. To investigate whether hepcidin 

could be implicated in the development of anemia in our model, we studied its expression 

in the liver of our mice before and during infection. Figure 4 shows that hepcidin 

expression is slightly up regulated at day 5 in ail three groups with significant differences 

detected only for AcB61 and C57BL/6J mice, the two strains that present obvious signs 

of disease at day 5. These results indicate that hepcidin up regulation may contribute to 

the development of anemia during Salmonella infection in mice. 

Iron homeostasis during Salmonella infection 

The crucial role of iron in the regulation of RBC synthesis lead us to investigate 

its metabolism in our three strains of mi ce before and during infection with Salmonella 

Typhimurium. We fIfSt measured the level of iron within the liver of our mice. As 

shown in Figure 5a, the level ofiron in the liver of AcB61 mice is.increased 

approximately 6 times compared to AlJ or C57BL/6J, indicating that the rapid turnover of 

RBC in these mice somehow leads to accumulation of iron in the liver. Iron overload in 

human pyruvate kinase (PK) deficiency patients has been described, although usually 

associated with additional risk factors such as splenectomy, repeated transfusion or 

mutations in the primary hereditary hemochromatosis gene HFE?OS-307 Intracellular iron 

staining of sections of liver and spleen confirmed that there is increased iron stores in 

both organs for AcB61 compared to B6 (not shown) and A/J (Figure 6). At the time 

points studied, however, we could not detect an effect of Salmonella infection on the level 
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ofhepatic iron. Serum iron seemed to decrease on day 3 post-infection in all three groups 

(significant only in A/J) followed by a significant rise on day 5 in the two most 

susceptible groups C57BL/6J and AcB61 (Figure 5b). The sharp rise in serum iron 

shortly before death in these two strains was surprising, especially in the face of increased 

hepcidin expression. The significance and pathogenesis of this finding is unknown but 

may reflect tissue necrosis with release of iron in the circulation. The circulating 

transferrin increased during infection in aIl three groups and it was usually higher in 

AcB61 (Figure 5c). FinaIly, the levels of circulating ferritin increased during infection in 

AcB61 and C57BL/6J and were higher in AcB61 at aIl time points (Figure 5d) most 

likely reflecting the increased iron load in these mice. 

Taken together these results indicate that Salmonella infection impacts on the iron 

metabolism as indicated by the changes in serum iron, serum transferrin and serum 

ferritin. Additionally, these results suggest that hepatic iron overload in Pklr deficient 

AcB61 mice, as indicated by increased liver iron, increased ferritin and increased 

transferrin, may contribute to their increased susceptibility to Salmonella by providing 

increased access to iron to the invading intracellular pathogen. We therefore hypothesize 

that the susceptibility of the AcB61 mice to acute Salmonella Typhimurium infection is 

due to the rapidly worsening anemia and the increased iron levels in the spleen and liver, 

two direct consequences of the Pklr deficiency. 

Salmonella infection in mice rendered anemic through injection of phenylhydrazine 

To investigate the impact of anemia on the mouse response to Salmonella 

infection, we induced acute hemolytic anemia in AlJ mice, a strain closely related to the 

AcB61. Phenylhydrazine, a potent oxidizing agent that causes a transient but severe 

hemolytic anemia with reticulocytosis, was injected intraperitoneally two days prior to 

Salmonella infection. The sole injection of phenylhydrazine was well tolerated by the 

mice with 100% survival (Figure 7a) and no clinically visible adverse effects. Two days 

following phenylhydrazine injection, the mi ce were severely anemic and by day 5, they 

showed a vigorous reticulocytosis response with improving anemia (Figure 7b-d). Mice 

infected with Salmonella two days following phenylhydrazine injection showed a 

dramatic increased in susceptibility compared to the controis with aIl mice dying on days 

3 or 4 (Figure 7a). The Salmonella infection appeared to compromise the capacity of the 
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AIl mice to recover from the phenylhydrazine-induced anemia despite a seemingly 

adequate reticulocyte response (Figure 7b-d versus e-g), indicating again that Salmonella 

infection most likely increases the removal of RBC from the circulation. 

These findings suggest that severe anemia, as seen in AcB61 or phenylhydrazine­

injected AIl mice, could contribute to susceptibility to Salmonella infection. However, 

the very rapid death of the AIl mice injected with both phenylhydrazine and Salmonella 

may be due to additional effects of the phenylhydrazine and the acute hemolytic crisis. 

For instance, the hemolytic crisis induced by phenylhydrazine has been associated with 

the release of free iron and iron overload/o8 which may have favored a more rapid growth 

of the Salmonellae. Moreover, a study done in the 1960s showed that, contrary to what is 

observed for phenylhydrazine or anti-mouse erythrocyte antibodies-induced hemolytic 

anemia, bleeding of the mice to decrease their hematocrit to 30% did not increased their 

susceptibility to Salmonella?09 Additional experiments will be needed to investigate 

further the role of anemia, acute hemolytic crisis and acute iron overload on mouse 

resistance to Salmonella in AIl and AcB61 mice. 

Salmonella infection in iron overloaded mice 

We were then interested in testing our hypothesis that the iron overIoad seen in the 

AcB61 mice is detrimental to the host in the face of Salmonella infection. We therefore 

injected AIl mi ce with iron dextran three times a week for three weeks before infection 

with Salmonella. The sole injection of iron was weIl tolerated by the mice, which showed 

no adverse effect from the repeated intraperitoneal iron injections. However, following 

Salmonella infection, the iron-overloaded mi ce showed much increased susceptibility to 

Salmonella infection compared to control mice injected with PBS (Figure 8). These 

results are in agreement with previous report of increased susceptibility of mice to 

Salmonella following iron overload257.258 and indicate that the increased susceptibility of 

the AcB61 mice to Salmonella may at least partially be explained by their increased iron 

load. 

DISCUSSION 

In the present study, we investigated the candidacy of Pklr, the gene encoding for 

the liver and RBC specific pyruvate kinase, as a candidate for Ity4, a Salmonella 
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Typhimurium susceptibility loci previously identitied by us in a (AcB61 x 129S6)F2 

crosS.3
0

3 Using a fine mapping approach, we were able to reduce the interval of Ity4 from 

a 25.3Mb region to a region of 3. 7Mb just surrounding Pklr. Although this region still 

contains close to one hundred genes, the phenotypic correlation between the three RCS 

known to carry the Pklr mutation strongly support its candidacy. Additionally, the lack of 

complementation in FI crosses derived from these strains indicate that the same gene is 

responsible for their increased susceptibility to Salmonella. Taken together, these results, 

along with the functional data discussed below, strongly support Pklr as the gene 

underlying Ity4. 

The Pklr mutation investigated in this study was tirst identitied in the AcB61 and 

AcB55 RCS as a gene conferring resistance to Plasmodium chabaudi infection.287 PK is 

an essential enzyme for glycolysis in RBCs. Erythrocytes deficient in PK have decreased 

ATP, increased glycolytic intermediates such as 2,3-diphosphoglycerate, and a shortened 

life span.307 As a result, humans or animais with PK deficiency show a constitutive 

hemolytic anemia with reticulocytosis. The mutation found in sorne AcB/BcA RCS arose 

during the breeding of the RCS and is not present in the parental strains.287 It is 

associated with an isoleucine to asparagine substitution at amino acid position 90 

resulting in a loss of function of the PK. When infected with Plasmodium chabaudi, PK 

deticient mice were more resistant than wild type mice as indicated by lower peak 

parasitemia and increased survival. 

While it may tirst appear unexpected for a RBC defect to confer both resistance to 

malaria and susceptibility to Salmonella infection, this association is not unheard of. In 

fact, several hemoglobinopathies and RBC enzymatic defects are known to confer 

protection to malaria in human populations31O while at the same time conferring 

susceptibility to various pathogens, including Salmonella. 116
,311 A similar observation can 

be made in mice where, for instance, f3-thalassemia is not only associated with increased 

resistance to malaria310 but also with susceptibility to Salmonel/a.3l2 The reasons 

underlying the increased susceptibility to infection in patients with RBC defects are not 

completely understood but may be related to the severity of the anemia, phagocyte 

dysfunction or iron overload.311 Our experiments suggest that these mechanisms may also 
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be implicated in the increased susceptibility of the AcB61 mice to acute Salmonella 

Typhimurium infection. 

Adequate tissue oxygen delivery is essential for life. Whole body oxygenation is 

determined by the arterial content in oxygen (dependant in part on the hemoglobin 

concentration), the cardiac output and the oxygen extraction ratio at the organ level. 304 

During severe sepsis, such as during acute systemic Salmonella infection in rnice, the 

normal physiologic mechanisms allowing adequate delivery of oxygen are compromised 

as a direct consequence of the systemic inflammatory response.313 While the AcB61 mice 

seem perfectly adapted to live with their anemia in a normal situation, it is conceivable 

that the rapid decrease of their hematocrit to critically low levels during Salmonella 

infection superimposed with the sepsis-induced compromised cardiovascular function is 

detrimental to their survival. In this regard, we have shown that mice of a similar genetic 

background rendered anemic through phenylhydrazine injection are also more susceptible 

to Salmonella infection. However, a study published in 1967 showed that moderate 

anemia (hematocrit = 30%) induced by acute bleeding does not increase the susceptibility 

of mice to Salmonella in contrast to hemolytic anemia,309 suggesting that the actual 

hemolytic nature of the anemia may be more important in increasing the susceptibility of 

mice to Salmonella than the anemia itself. The hemolytic anemia of our models 

(phenylhydrazine-injected and PK-deficient mice) is mainly "extravascular" and 

therefore, associated with phagocytosis of altered but still intact RBC by the RES. This 

erythrophagocytosis may by itselfbe related to increased susceptibility to Salmonella 

since it has been shown that erythrophagocytosis per se diminishes the capacity of 

macrophages to kill Salmonella in vitro.314
;J'5 

In addition to the adverse effect of the anemia and erythropagocytosis, the iron 

overload found in the AcB61 mice (and the probable acute iron release following 

phenylhydrazine-induced hemolytic crisis in AlJ rnice) most likely also contributes to 

their increased susceptibility to Salmonella. Iron is an essential nutrient to both the host 

and the pathogen and, during infection, they compete for this essential metal. 256 The host 

iron binding proteins (transferrin, ferritin, lactoferrin and hemoproteins) willlimit the 

availability of free iron to pre vent both the growth of microorganisms and tissue damage 

from free iron-induced reactive oxygen intermediates.316 The normal host is a very hostile 
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environment for microorganisms, which require 1011 to 1012 higher concentration of free 

iron than what is usually available within the host. Since pathogenic microorganisms 

have evolved specialized mechanisms to acquire iron during infection, it is conceivable 

that any situation leading to iron overload may favor the multiplication of invading 

organisms. Indeed, iron overload in humans has been linked to increased susceptibility to 

sorne pathogens including Mycobacterium tuberculosis, 317 HIV, 318 fungal organisms319 

and Listeria monocytogenes.320 Here, we show that A/J mice rendered iron overloaded 

through repeated administration of iron are markedly impaired in their resistance to 

Salmonella infection. These results are in agreement with previous studies, which have 

shown a role for iron overload in susceptibility to Salmonella infection.257
,258 The 

importance of iron for the growth of Salmonella is aIso illustrated by the increased 

resistance of mice rendered iron-deficient through dietary restrictions.259 

Interestingly, the role of iron in bacterial growth may not be the sole factor 

responsible for an association between iron balance and susceptibility to infection. In 

fact, several studies have shown that a proper iron balance is essential to both innate and 

adaptive immune responses. In mice, acute iron depletion through the administration of 

deferoxamine, an iron chelator capable of binding both intra and extracellular iron, 

increased the susceptibility to Salmonella.257
,260 This effect was noted in both Nrampl 

resistant and Nrampl susceptible strains and appeared related to an impaired capacity of 

macrophages to restrict the growth of Salmonella because of impaired NAD PH­

dependent respiratory burSt.260 On the other hand, iron overload was shown to alter the 

development ofTHl response during Candida albicans infection in mice.321 Iron also 

appears to directly impair phagocytosis as indicated by the phagocytosis defect noted in 

normal polymorphonuclear cells incubated with serum of thalassemic patients, a defect 

corrected by the addition of deferoxamine.322 Finally, during experimental sepsis in mice, 

the administration of iron was associated with increased morbidity and mortality in 

addition to increased oxidative damage to the heart and kidneys?23 Increased gut 

epithelial and splenic apoptosis resulting from the combined effect of sepsis and iron 

administration has been suggested to contribute to increased mortality during sepsis.324 

Our results and the findings in the above mentioned studies indicate that a fine balance of 
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iron is needed for optimal host defense against Salmonella and other pathogens, and that 

both iron overload and iron depletion can adversely affect the outcome of sepsis. 

During the course of our experiments, we have also investigated the mechanisms 

underlying the development of anemia in mice during Salmonella infection. We have 

previously found that mice infected with Salmonella Typhimurium develop anemia, 

which worsens throughout the course of infection.293 Here, we show that the development 

of anemia in mice during Salmonella infection is associated with decreased erythropoiesis 

as indicated by the decreasing reticulocyte count found AlJ, AcB61 and C57BL/6J. 

During infection, circulating pro-inflammatory cytokines are believed to contribute to a 

decreased erythropoiesis response by a direct inhibition of the proliferation of the 

progenitor cell, decreased erythropoietin secretion and decreased sensitivity to the effect 

of erythropoietin.250 The decreased availability of iron, because of sequestration in the 

RES may also contribute to the decreased erythropoiesis. The acute phase protein 

hepcidin plays a central role in the regulation of iron and in the development of anemia of 

inflammation,251 and it was increased in our mice at day 5. Other factors that may have 

contributed to the rapid development of anemia in our mice during Salmonella infection 

include the relatively short half-life of RBC in normal mice (60 days in mice compared to 

120 days in human) and the increased phagocytosis of the older RBCs by the activated 

macrophages of the RES. Evidence for this statement cornes from the observation that in 

AcB61 mice, the percentage of reticulocytes remains high throughout infection in the face 

of worsening anemia and decreasing absolute reticulocyte counts, indicating increased 

resistance of the reticulocytes compared to mature RBC and an overall increased 

destruction of the RBC. Additionally, in phenylhydrazine-treated, Salmonella-infected 

mice, the anemia persists despite a reticulocyte response that is equivalent to what is seen 

in phenylhydrazine treated, non-infected mice, again suggesting increased RBC 

destruction during Salmonella infection. Taken together, these findings indicate that the 

pathogenesis of Salmonella infection includes both decreased erythropoiesis and 

increased RBC removal from the circulation. 

In conclusion, we presented strong evidences in support of the candidacy of Pklr 

as the gene underlying Ity4. As seen with other RBC pathologies, the PK deficiency in 

mice is both protective against malaria and detrimental in regards to acute infection with 
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Salmonella Typhimurium. The reasons underlying this increased susceptibility are 

probably numerous but include the severity of the anemia and the iron overload found in 

the se mice. Finally, mouse infection with Salmonella Typhimurium induces anemia 

through decreased proliferation of RBC progenitors and increased destruction of aging 

erythrocytes. 

MATERIALS AND METHODS 

Animais used: AlI animal experiments were performed under conditions 

specified by the Canadian Council on Animal Care. AcB61 , AcB62 and AcB55 were 

generated from A/J and C57BL/6J through reciprocal double backcrosses followed by 

inbreeding for several generations.285 These mice were either purchased from Emerillon 

Therapeutics (Montreal, Québec, Canada) or bred by us at the Montreal General Hospital 

Research Institute (MGHRI) animal faciIity. AIJ and C57BL/6J were purchased from the 

Jackson Laboratory (Bar Harbor, ME, USA) while the 129S6/SvEvTac (129S6) mice 

were purchased from Taconic (Hudson, NY, USA). (AcB61 x 129S6)F2 (described in 

Roy et aP03), (AcB61 x AcB62)Fl and (AcB61 x AcB55)Fl mice were generated at the 

MGHRI animal faciIity. 

In vivo Salmonella infection: The Salmonella infections were performed as 

previously described. 293 Briefly, Salmonella Typhimurium strain Keller was grown in 

trypticase soy broth and each mouse was infected intravenously with approximately 103 

colony forming units (CFUs) diluted in 200ul of 0.9% saline. The infectious dose was 

verified by plating of seriaI dilutions on trypticase soy agar. For survival analysis, the 

mice were monitored twice daily and moribund animais were sacrificed by CO2 

asphyxiation. The survival data for the (AcB61 x 129S6)F2 mice are described 

elsewhere.303 Ali mice were aged between 2 and 6 months at the time of infection. 

Genotyping: DNA was extracted from 3mm biopsy samples of mice tails using 

ovemight digestion in Iysis buffer and proteinase K, followed by a chloroform extraction. 

Genotyping for the Pklr mutation was performed using restriction enzyme digestion as 

previously described.2fr7 Pklr exon 2 specific primers surrounding the Pklr mutations 

were used to amplify genomic DNA. The PCR products were subjected to SlaNI 

restriction enzyme digestion and then resolved on ethidium bromide-stained 1.5% agarose 
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gel. The Pklr mutation disrupts the SfaN1 restriction site and therefore SIaN1 digestion 

can be used to correctly identify the genotype of the mice at Pklr. Fine mapping around 

Pklr was performed by sequencing of PCR amplified DNA fragments of 400 to 500 bp 

surrounding known single nucleotide polymorphisms (SNPs) polymorphie between 

129S6 and AIl. The sequencing was performed at the McGill University and Genome 

Quebec Innovation Center (Montreal, QC, Canada). 

Genetic analysis: The genetic analysis for the survival phenotype in (AcB61 x 

129S6)F2 mice is reported elsewhere.303 Here, we repeated the one locus interval 

mapping for the survival phenotype of the (AcB61 x 129S6)F2 mice in Rlqtl288 under a 

non-parametric model this time including the direct genotyping data for the Pklr 

mutation. 

Hematologies and iron studies: For complete blood counts, mice were sacrificed 

by C02 asphyxiation at various time points, blood was collected by cardiac puncture and 

immediately transferred to pediatric 200ul EDT A tubes. Analyses were performed at the 

Faculté de médicine vétérinaire of the Université de Montréal (St-Hyacinthe, Québec, 

Canada) under the supervision and with the collaboration of Dr C. Bédard. Bone marrow 

sections from the femur and sternum were also evaluated at the Faculté de médicine 

vétérinaire of the Université de Montréal by Dr P. Hélie. For iron studies, mice were 

sacrificed by CO2 asphyxiation at various time points, blood was collected by cardiac 

puncture and allowed to clot at room temperature for 2 hours. Serum was harvested 

following centrifugation and kept at -80°C for future analysis. Liver sections were 

harvested, snap frozen in liquid nitrogen and stored at -80°C. Additionalliver sections, 

the spleen and the gastrointestinal tract were collected, fixed for 48 hours in 10% buffered 

formalin, transferred to 70% ethanol and embedded in paraffin blocks. Liver iron, serum 

iron, transferrin and ferritin were measured at the Institut national de la santé et de la 

recherche médicale (INSERM) (Paris, France) under the supervision and with the 

collaboration of Dr F. Canonne-Hergaux. lntracellular iron staining of sections of the 

spleen and liver were also performed by Dr F. Canonne-Hergaux at the INSERM. 

Hepcidin 1 rnRNA expression: Total RNA was extracted from the liver with 

Trizol Reagent (Invitrogen, Burlington, ONT, Canada) according to the manufacturer 

instructions. cDNAs were synthesized all at once using M-ML V reverse transcriptase 
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(Invitrogen). Quantitative PCR was performed on Chrom04 Real-Time PCR Detection 

System (Bio-Rad Laboratories, Mississauga, ONT, Canada) using Brilliant SYBR Green 

QPCR Master Mix (Stratagene, La Jolla, CA, USA). AIl samples were amplified in 

triplicates during the same PCR ron on 96 wells plates. Two housekeeping genes were 

used (Polymerase (RNA) II (DNA directed) polypeptide A (Polr2a) and TATA box 

binding prote in (Tbp). Their stability was evaluated in Bestkeeper.277 Both were found to 

be stable across our groups and experimental conditions and they were incorporated into a 

Bestkeeper Index used for relative quantification. PCR amplification efficiencies were 

measured on individual amplification plots using LinReg peR. 278 The software REST 

384 (http://www.gene-quantification.info0279 was used to analyze the relative expression 

of our measured transcripts using an efficiency corrected ratio. Error estimations of the 

calculated ratios were obtained using a Taylor's series as implemented in REST. The 

significance of the difference in expression ratios across experimental time points was 

investigated using pair wise fixed randomization tests implemented in REST (2000 

randomizations for each test). The hepcidin primers specific for hepcidin 1 have 

previously been described.325 

Phenylhydrazine-induced hemolytic anemia: Ail mi ce were injected with 3.2mg 

of phenylhydrazine hydrochloride diluted in 100ul of PBS intraperitoneallr26 two days 

prior to infection with Salmonella. Control mice received the same volume ofPBS, 

intraperitonneally. The course of the hemolytic anemia was followed in non-infected and 

Salmonella-infected mi ce by seriaI measurements ofRBC parameters as previously 

described. Survival was recorded for the following three groups: 1) Salmonella-infected, 

phenylhydrazine-injected mice; 2) Salmonella-infected, PBS-injected mice; and 3) 

phenylhydrazine-injected mice. 

Iron overload: Iron overload was induced in Ail mice by intraperitoneal injection 

of iron dextran (Sigma, Oakville, ON, Canada) four times a week for three weeks prior to 

infection (for a total of 8 injections) at a dosage of 1.2mg per mouse diluted in 100ul of 

PBS.321 Control mice were injected with the same volume of PBS intraperitoneally. 

Survival was recorded and compared between normal and iron-overloaded mice, 

following Salmonella Typhimurium infection. 
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Figure 1: Candidacy of Pklr as the gene underlying Ity4. a) Interval mapping under a 

non-parametric model showing the LOD score trace for chromosome 3 for the survival 

phenotype in a 247 (AcB61x129S6)F2 mice. Adding the genotype of the mice at the Pklr 

mutation as a marker in this cross increased the peak LOD score from 28.8 to 30.3. Pklr 

maps directly under the peak LOD score as shown on the graph. The positions of the 

typed markers are shown as small grey vertical bars above the x axis. b) Cumulative 

survival in 306 F2 mice according to their genotype at the Pklr mutation. There is a 

strong correlation between the mice genotype at Pklr and survival. The mi ce that are 

homozygous (m/m) for the mutation have very !ittle chance of surviving the infection 

while the mice that are wild type (+/+) or heterozygous (+/m) are much more resistant. c) 

Concordant phenotype among the three RCS known to carry a mutated Pklr gene. The 

AcB55 strain extreme susceptibility is most likely explained by the presence of mutations 

at both Pklr and Nrampl. (n = 5 for AcB61, AcB62 and AcB55; n = 19 for C57BL/6J; 

and n = 23 for AlI) cl) Survival following Salmonella Typhimurium infection in FI mice 

derived from (AcB61 x AcB62) and (AcB61 x AcB55), the RCS known to carry a 

mutated Pklr allele. The lack of complementation seen in the FI mice indicates that their 

susceptibility can be attributed to the same gene. (n = 2 for AcB62, n = 3 for AcB62, n = 

4 for AcB61, n = 4 for (AcB61xAcB55)Fl and n = 8 for (AcB61 x AcB62)Fl) 
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Figure 2 
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Figure 2: Fine mapping of the Ity4 region. The Ity4 support interval was reduced from 

25.3Mb to 3.7Mb by selected genotyping ofthe non-resolved recombinants in the Pklr 

region. "R" represents mice carrying a resistant allele, i.e. 129S6 homozygous or 

heterozygous mice. "s" represents the mice carrying a susceptible allele, i.e. AcB61 

homozygous. "ND" indicates that the genotype was not determined. "U" indicates an 

unknown genotype. The list and physical position of the markers used are shown at the 

top ofthe graph. For the Pklr marker, the mutation was directly genotyped. Light gray 

areas correspond to mice showing a resistant phenotype and their associated resistant 

haplotype around Pklr. Dark grey areas correspond to mice showing a susceptible 

phenotype and their associated susceptible haplotype around Pklr. 
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Figure 3 
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Figure 3 (previous page): RBC parameters in AcB61, AlJ and C57BL/6J mice 

before (day 0) and after (days 3 and 5) infection with Salmonella Typhimurium. The 

values for each individual mouse are shown. The AcB61 mice show a constitutive 

anemia with reticulocytosis (a-e). During Salmonella infection the anemia in AcB61 

mice rapidly worsens (a-c) while the parental strains, AlJ and C57BL/6J, are only starting 

to develop a mild anemia (f-h and k-m). The reticulocyte counts are decreasing in aIl 

three strains (e, j, and 0) indicating that the erythropoietic response. is decreased during 

Salmonella infection. The sustained percentage ofreticulocytes seen in AcB61 (d) may 

indicate greater resistance of the reticulocytes to the increased phagocytosis of aging RBC 

by activated macrophages. n = 8 for each group and each time points except for AcB61 

on day 3 (n = 6), AIl on day 5 (n = 12) and C57BL/6J on day 5 (n = 3; most mice being 

dead early on day 5). "*,, indicates significantly different (p < 0.05) from day O. "t" 

indicates significantly different (p < 0.05) from day 3. (ANOVA with Fisher's protected 

least significant difference post-hoc test done in StatView 5.0) 
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Figure 4 
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Figure 4: mRNA hepcidin expression in the liver of mice during Salmonella 

infection. Hepcidin is slightly increased during Salmonella infection in aU strains. 

Significant differences (p < 0.05 following 2000 randomizations as implemented in REST 

384) are found in AcB61 and C57BL/6J mice at day 5. 
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Figure 5: Iron parameters in AcB61, A/J and C57BL/6J mice before (day 0) and 

following (days 3 and 5) infection with Salmonella Typhimurium. Means +/- s.e.m. 

are shown. a) Liver iron is dramatically increased in AcB61 mi ce compared to the two 

parental strains. Salmonella infection has no detectable effect on liver iron. b) Serum 

iron is increased in non-infected AlJ mice compared to the two other strains. During 

Salmonella infection serum iron tends to decrease on day 3 to finally increase on day 5, 

especially in most susceptible strains AcB61 and C57BL/6J. c) Serum transferrin is 

increased in AcB61 compared to the two parental strains and it increases during 

Salmonella infection in all three strains. d) Serum ferritin is increased in AcB61 

compared to the two parental strains and it increases during Salmonella infection in the 

most susceptible strains AcB61 and C57BL/6J. n = 4 for each group and each time points 

except for the C57BL/6J mice on day 5 when only 1 mouse was still alive at the time of 

tissue harvest. "*,, represents significantly different (p < 0.05) from day O. "t" represents 

significantly different (p < 0.05) from day 3. (ANOVA with Fisher's protected least 

significant difference post-hoc test performed in StatView 5.0). 
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Figure 6 
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Figure 6 (previous page): Intracellular iron staining in the spleen and liver of 

AcB61 and A/J mice before infection and at day 5 post-infection. Objective 63x. 

Perls staining. a) Spleen, uninfected mice. b) Spleen, day 5 post-infection. c) Liver, 

uninfected mice. d) Liver, day 5 post-infection. lncreased amounts of iron are detected 

in the AcB6l compared to AlJ and C57BL/6J (data not shown) in non-infected and day 5 

mice. The differences are more pronounced in the liver. 
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Figure 7 
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Figure 7 (previous page): Survival and RBC parameters in A1J mice injected with 

phenylhydrazine prior to Salmonella infection. Mice were injected intraperitonneally 

with phenylhydrazine or PBS two days prior to infection with 1000 CFUs of Salmonella 

Typhimurium intravenously. a) Cumulative survival in AlJ mice injected with 

phehylhydrazine only (Phenyl), phenylhydrazine and Salmonella (phenyl+Salm) or PBS 

and Salmonella (PBS+Salm). Prior injection with phenylhydrazine results in much 

increased susceptibility to Salmonella. (n = 10 for PBS+Salm, n = 14 for Phenyl+Salm 

and n = 4 for Phenyl) b-d) Phenylhydrazine injection in AlJ mice leads to the rapid 

development of anemia followed by a regenerative response. (n = 8 for day 0, n = 4 for 

days 2 and 5 and n = 3 for day 7) e-g) Mice injected with phenylhydrazine following 

Salmonella infection showed a severe anemia at day 3 post-infection. This level of 

anemia is close to what is seen in AcB61 mice one or two days prior to death. Mice 

injected with both phenylhydrazine and Salmonella appear unable to recover from the 

phenylhydrazine-induced anemia compared to mice that received phenylhydrazine orny 

(b and c versus e and f), despite a seemingly adequate reticulocyte response (d versus g). 

(n = 8 for day -2 and n = 4 for all other time points) 
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Figure 8: Survival following Salmonella Typhimurium in iron overloaded mice. AlJ 

mice were injected intraperitoneally with iron dextran or PBS 3 times a week for 3 weeks 

(total of 8 injections) prior to infection with 1000 CFUs of Salmonella Typhimurium 

intravenously. Mice having received repeated iron injections (Iron+Salm) showed 

decreased survival following Salmonella infection compared to control mice injected with 

PBS (PBS+Salm). (n = 10 for lron+Salm and n = 7 for PBS+Salm) 
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CHAPTER V: DISCUSSION 

From a clinical point of view, it has long been recognized that the outcome of 

infectious diseases varies between species and between individuals of a same species. 

While several factors influence the outcome of a host-pathogen interaction, the genetic 

makeup of both the host and the pathogen plays a major role. Strictly speaking, any 

clinical infectious diseases may be seen as an immunodeficiency of the host in the context 

of this particular battle occurring between the two genomes. 1 The unraveling of the 

genetic components involved allows us to improve our understanding of infectious 

disease pathogenesis and paves the way to new prophylactic or therapeutic interventions. 

It is crucial for us to rapidly reach a higher level of understanding of the pathogenesis of 

infectious diseases and of the genomic interactions occurring during the course of 

infection if we want to successfully face the threat of increasing antimicrobial resistance, 

globalization of infectious diseases and newly emerging or the re-emerging pathogens.2 

The ultimate goal of the genetic dissection of the host response to various 

pathogens is to find direct application for human or relevant veterinary species. The 

unraveling of complex traits, such as the susceptibility to infectious diseases in human, is 

complicated by the intrinsic characteristics of these traits. By definition, complex traits 

are complex because they lack a direct genotype-phenotype correlation. They are, 

instead, influenced by environmental factors in addition to genetic factors, and the latter 

are complicated by phenomena such as incomplete penetrance, genetic heterogeneity and 

phenocopy.327 In these circumstances, the use of relevant mouse models greatly facilitates 

the process of mapping and cloning of the genetic components of the complex traits by 

allowing the control of experimental conditions, the ad libitum mating of phenotypically 

distant strains and the rapid generation of hundreds of progeny. The genes identified in 

such experimental crosses can later be tested in human populations or at least give a clue 

into the possible pathways involved in the disease of interest. Moreover, the cloning of 

susceptibility genes to a particular pathogen usually brings a higher understanding of the 

disease pathogenesis. 

The phenotype underlying a complex trait is often measured as a quantitative trait 

(e.g. survival time, as opposed to a binary trait, survived or died) and for this reason, the 
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genomic region associated with these phenotypes are named QTL. QTL mapping in 

experimental crosses is a long and tedious process beginning with the identification of 

phenotypically distant strains. These strains are then crossed to generate segregating 

populations (generally a F2 or backcross) and each progeny is carefully studied for the 

phenotype( s) of interest. Each individual is then genotyped with a set of polymorphic 

markers and genetic analysis allows identification of the QTL influencing the measured 

phenotype(s). The cloning of the QTL to identify the actual quantitative trait gene (QTG) 

is the ultimate goal of the process but also its rate-limiting step. As of 2005, more than 

2000 QTL had been described but the associated QTG had been identified for less than 

1 % ofthem.328 

Several factors may explain the difficulties mouse geneticists have had in 

identifying the culprit. Among others are the mapping resolution of classical mouse 

crosses, the common lack of a clear coding sequence variants to account for the QTL, the 

small individual effect of each QTL, the presence of physically linked QTG underlying a 

single identified QTL and the computing difficulties associated with interaction mapping 

considering more than two loci at a time. Different approaches are being proposed to 

resolve sorne ofthese issues including new genomics resources (whole genome sequence 

for several strains and several thousands SNPs), new techniques (in silico mapping and 

expression QTL analysis), and new animal resources (chromosome substitution strains, 

the collaborative cross, heterogenous stockS).328 One can therefore hope that sorne 

progress in QTG identification will be made in the near future. 

During the course of my PhD, 1 have used two different approaches to gain further 

understanding of the genetic components underlying the complex host response to 

Salmonella Typhimurium infection in mice. First, 1 have used a hypothesis driven 

approach, often used by immunologists and named "reverse" genetics, where one starts 

from a specific gene and studies the phenotypic consequences of a given manipulation of 

this gene. In a second time, 1 have used the more c1assical "forward" genetic approach of 

QTL mapping described above, starting from the phenotype and, without any prior 

hypothesis, attempting to identify the gene(s) underlying the phenotype. 

ln Chapter II, 1 presented data pertaining to the reverse genetic analysis of the Tlr4 

gene in the context of mouse typhoid. While Tlr4 was initially identified as a gene 
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having a strong impact on the mouse response to LPS and Salmonella infection using a 

classical "forward" genetic approach,I78,179 it was decided to further study its function 

starting from the hypothesis that its level of expression would influence the host response 

to both LPS and Salmonella. Prior to my arrivaI to the lab, transgenic mice carrying 1,3, 

6 and >30 copies of T/r4 were generated and partially characterized.266 It was found that 

indeed, the number of copies of Tlr4 had a direct impact on the level of expression of the 

transcript and the protein, along with a strong functional impact on the in vitro 

proliferative response of splenocytes to LPS. In vivo, the impact of the level of 

expression of T/r4 on the response to LPS-induced septic shock was also evident while . 
the response to systemic Salmonella Typhimurium was seen only in the context of a wild 

type allele at Nramp l, with a plateau effect starting at 3 copies of the gene for both 

phenotypes. 1 then took over the project and we became interested in understanding how 

increasing the number of copies of Tlr4 impacts on the in vivo mouse response to 

Salmonella. In addition, we wanted to compare the effect of 1 and 3 copies of the 

transgene to the effect of two natural, non-transgenic copies of T/r4 in its natural genomic 

context. The generation of a double congenic strain, BlO.Cg-NrampI/Tlr4, allowed 

direct comparison of the effect of 0, 1, 2 or 3 copies of T/r4 in mice of identical genetic 

background. Using these mice we could show an incremental protective effect for 

survival following Salmonella Typhimurium infection in mice carrying 0, 1, 2 and 3 

copies of T/r4. The improved survival correlated with improved control of the bacterial 

growth in the spleen and the liver. Additionally, gene expression analysis using qPCR 

identified that the higher constitutive expression of relevant effector genes downstream of 

the Tlr4 signaling cascade probably influence the outcome of Salmonella infection in 

mlce. 

Several additional experiments could be done to further understand the real 

biological impact of the small increments in T/r4 expression. First, it would be useful to 

identify the main ceU type involved in the se Tlr4-induced gene expression differences. 

The gene expression analyses presented in Chapter II were done on who le spleen RNA 

and may not totally reflect the real changes occurring within different ceU populations of 

the spleen. By sorting the various populations of cells prior to RNA extraction, we could 

identify different patterns of gene expression in the different cell types. This could give a 
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,~. c1earer picture of the real impact of the level of Tlr4 expression. Second, the changes in 

gene expression identified in our experiments were more pronounced at days 0 and 4 

compared to day 8, suggesting that events occurring early during infection are important 

in determining the outcome. Accordingly, it could be interesting to study gene expression 

at earlier time points such as days 1,2 or 3. Third, while gene expression analysis are 

interesting for understanding basic biological processes, the real biological impact can 

only be fully evaluated by studies done at the protein level. Protein arrays and liquid 

bead arrays are becoming increasingly available and could be used to study the impact of 

Tlr4 expression at the protein level in the spleen, liver or serum of our mice. Finally, 

while we have exploited our Tlr4 transgenic and congenic mice in the context of the 

mouse response to Salmonella, these mice represent an invaluable tool that could be used 

to study a wide array of diseases relevant to human health. Recently, several publications 

have identified a role for Tlr4 polymorphisms in different diseases inc1uding 

atherosc1erosis, late-onset Alzheimer's disease and various infectious diseases.192-194,198-200 

Since these Tlr4 variants have been associated with subtle functional differences, the 

mice we have developed could be used to study the impact of small changes in Tlr4 

signaling in these diseases. 

In Chapter III, l presented a different approach for the genetic dissection of the 

mouse response to Salmonella. Using a more c1assical "forward" genetic approach, we 

have screened a set of AcBlBcA RCS to identify phenotypically interesting strains that 

could later be used in fully informative crosses for QTL identification and c1oning. The 

screening of the RCS was very infonnative. Prior knowledge of the genetics of the 

. mouse response to Salmonella predicted that this screening would mainly identify 

Nrampl as a strong determinant of the outcome of infection. However, the shuffling of 

different small C57BL/6J or NJ congenic fragments on the opposite genetic background 

allowed identification of genetic effects independent of Nrampl. Two strains, which 

appeared most interesting to us, were chosen for further genetic analysis: the very 

susceptible AcB61 and the very resistant AcB64 strain. Fully infonnative crosses derived 

from the se strains allowed identification of five novel QTL involved in the mouse 

response to Salmonella Typhimurium, thereby increasing our list of Ity loci from three to 

eight members. The strong effect associated with the Ity4 locus and the prior knowledge 
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of the genetics of the RCS allowed us to identify the QTG underlying this locus (Chapter 

IV). However,Ity5, identified in the same (AcB61 x 129S6)F2 cross, probably aiso has a 

strong impact on the host response to Salmonella and should be amenable to positional 

cloning. We intend to confirm its existence in congenic strains and use subcongenics to 

further decrease the Ity5 interval. The genomic region of Ity5 is not too gene rich and the 

generation of subcongenics may allow us to reduce the Ity5 genomic interval to a region 

containing a reasonable number of candidates. 

The situation is more complex for the (AcB64 x DBA/2J)F2 cross with several 

QTL of small effects most likely involved, in addition to environrnental factors. 

Increasing the number of F2 mice in our genetic analysis will allow us to get a clearer 

picture of the number, position and strength of the QTL involved before we undertake the 

confirmation of sorne ofthese QTL in congenic strains. Given the phenotypic 

resemblance of the AcB60 strain with AcB64, one may hypothesize that the same QTL 

contribute to the outcome of infection in these two strains. Genetic analysis in a (AcB60 

x DBA/2J)F2 cross could confirm this hypothesis and may be helpful in the cloning of 

Ity6-Ity8. The screening of the RCS identified additional strains that may be of interest. 

While we have shown that the extreme susceptibility of AcB55 and AcB62 is most likely 

also attributable to Pklr (Chapter IV), the sex effect identified in BcA66 and BcA80, the 

intermediate susceptibility of the AcB56, AcB63 and BcA69 and the high CFUs seen in 

AcB53, BcA73 and BcA76 may be worth further investigation. 

In Chapter IV, 1 presented the work done for the identification of the gene 

underlying Ity4. Our prior knowledge of a Pklr mutation in AcB61 2
'if7 along with the 

physical position of Pklr in relation to Ity4 clued us into the possible involvement ofthis 

gene. The phenotypic comparison between the three RCS known to have a mutated Pklr 

along with the complementation studies further strengthened the candidacy of Pklr. 

Moreover, using a fine mapping approach we were able to decrease the Ity4 interval from 

25Mb to a region of 3.7Mb just surrounding Pklr. Finally, we presented biologically 

plausible explanations for a role of this RBC enzymatic defect in the susceptibility to 

Salmonella in mice. Although our data strongly favor the candidacy of Pklr as the gene 

underlying Ity4, we cannot exclude that a gene close1y linked to Pklr is responsible or 

contributing to the phenotype .. The formaI prooffor a role of Pklr in the mouse response 
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to Salmonella would be obtained by Pklr complementation in AcB61 or disruption in AlJ 

mlce. 

Sorne observations made during the course of my PhD work have led us to 

become interested to the effect of anemia and iron on the host response to infection. We 

first observed in C57BL/I 0 mice that Salmonella infection leads to the development of 

severe anemia (Chapter II). To our knowledge, this finding has not been reported in the 

recent scientific literature. In human typhoid fever, anemia appears to be a common 

clinicopathological finding, however, not much has been writlen on the pathogenesis of 

this phenomenon. We, therefore, sought to understand the mechanisms underlying the 

development of anemia during Salmonella infection and the results of these experiments 

were also presented in Chapter IV. The preliminary investigations made indicate that 

Salmonella infection in mi ce decreases the erythropoietic response as indicated by 

decreased numbers of reticulocytes in the peripheral circulation. Intriguingly, the anemia 

and decreasing reticulocyte counts occur even in the face of extramedullary 

erythropoiesis as seen on histopathology in the spleen and liver of the C57BL/I0 mice. 

The rapid development of the anemia in our mice cannot, therefore, be explained solely 

by the decreased output of RBC. Sorne of our observations and the current understanding 

of the pathogenesis of anemia of inflammation251 rather suggest that the destruction of the 

RBC by the RES is probably accelerated during infection. We can thus conclude that 

anemia develops in mi ce during Salmonella infection because of failure of the 

erythropoiesis response to compensate for the increased destruction of the RBCs as is 

usuaIly the case in anemia of inflammation. Additionally, the rapidity with which the 

anemia develops in mice is probably favored by the shorter haIf-life of the RBC in this 

species compared to human. 

Several of our findings indicate that the Salmonella-induced anemia in mi ce 

somehow fits the definition of anemia of inflammation including the decreased 

erythropoiesis, the increased RBC destruction, the increased ferritin and increased 

hepcidin expression. However, aIthough the serum iTOn seemed to decrease on day 3 in 

our mice, it was markedly increased on day 5 in AcB61 and C57BL/6J; in contrast, 

anemia of inflammation is usually characterized by hypoferremia. Furthennore, the 

transferrin was increased during infection in the three strains studied while it is usuaIly 
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decreased or normal in anemia of inflammation. These discrepancies are intriguing and 

may be related to the acute and severe nature of the infection in our mice, which may 

have a direct effect on these iron parameters. Additionally, these findings may he specific 

of the Salmonella-induced anemia in mice. It would be interesting to see if a different 

model of sepsis having a similar time course in mice would also result in the development 

of anemia or if this is strictly a feature of systemic Salmonella infection. 

In Chapter IV, 1 also presented the results of various experiments aimed at 

understanding the biological basis of the susceptibililty of the PK deficient AcB61 strain 

to Salmonella. Given our knowledge of the constitutive anemia in AcB61 and our prior 

observations of the Salmonella-induced anemia, we hypothesized that these mi ce may be 

overly susceptible to Salmonella because of development of a fatal anemia during 

infection. Examination of the RBC parameters during infection showed that, as 

predicted, the anemia in AcB61 rapidly worsens during Salmonella infection to reach 

critically low and potentially harmfullevels just prior to death. To confirm the role of 

anemia in the susceptibility of the AcB61 mice, we used a model of acute hemolytic 

anemia induced by intraperitoneal administration of phenylhydrazine in a closely related 

strain, Ail Although we have shown that phenylhydrazine-injected mice are more 

susceptible to Salmonella compared to control mice, it does not allow us to conclude that 

anemia was the sole factor responsible for this increased susceptibility. The rapid release 

of iron following phenylhydrazine injection3Œ could have contributed to the increased 

susceptibility of our mice because of free iron-induced tissue damage/16 compromised 

innate immunity or increased bacterial growth.256 Additionally, a study published in the 

1960s indicated that, contrary to what is seen during phenylhydrazine-induced hemolytic 

anemia, acute bleeding of the mice to create anemia of similar amplitude does not 

increase the susceptibility of mice to Salmonella.3Œ This finding suggest that the 

hemolytic nature of the anemia (implying phagocytosis of RBC by the RES) rather that 

the anemia itself is detrimental to the host during Salmonella infection. Indeed, it has 

been shown that erythopagocytosis per se impairs the bactericidal function of Salmonella­

infected macrophages.314
.315 

During our investigations of the nature of the Salmonella-induced anemia, we 

unexpectedly noted that the iron load in AcB61 was much increased compared to AlJ and 
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C57BL/6l. This observation raised the possibility that iron overload could also be 

implicated in the susceptibility of the AcB61 mi ce to Salmonella. Indeed, previous 

studies have showed that iron overload is detrimental to the host during systemic 

Salmonella infection.257
•
258 To confirm that this was also true in our experimental model 

of Salmonella Typhimurium infection, we induced iron overload in Ail mice through 

repeated iron injections and showed that iron overloaded mice were in fact more 

susceptible to Salmonella compared to control mice. 

Thus, it seems that the reasons underlying the susceptibility of PK deficient mice 

are numerous but probably involve the severity of anemia, its hemolytic nature and the 

iron overload. Additional experiments will be needed to clarify the respective role of 

these mechanisms and we can envi sion a few here. First, we could measure the bacterial 

load at day 3 in phenylhydrazine-treated, Salmonella-infected mice and compared it to 

control mice (Salmonella and PBS). Second, we could repeat the phenylhydrazine 

experiment but this time, infecting with Salmonella on day 4 after the phenylhydrazine 

injection rather than on day 2. This delay in infecting the mice with Salmonella may 

allow us to avoid the acute hemolytic crisis with its associated release of iron while still 

having anemic mice with a marked reticulocytosis, a situation that reflects what is seen in 

AcB61 mice. Third, we could perform Salmonella infection in Ail mice following acute 

bleeding to decrease the hematocrit to various levels, and observe the effect the se 

manipulations on survival. Fourth, we could try iron chelation or iron deficient-di et in 

AcB61 mi ce prior to infection to see if we can improve their resistance by decreasing the 

iron load. In such experiments, however, one would need to carefully titrate the iron load 

to avoid completely depleting the cells of iron given the importance of this metal in the 

generation of ROI for host defense.260 Fifth, it would be interesting to measure the iron 

parameters in the AcB55 and AcB62 mice, which have a similar phenotype compared to 

the AcB61 mice and are also known to carry the Pklr mutation. Finally, following the 

iron load in Pk deficient mice at various ages and correlating it with the susceptibility to 

Salmonella could also be informative. 

ln conclusion, the work 1 have done throughout my PhD has increased our 

understanding of the pathogenesis of acute systemic Salmonella Typhimurium infection 

in mice. We have showed that a fine regulation of an important innate immune pathway 
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such as Tlr4 signaling, early in infection influences the course of the disease. 

Additionally, we have showed that, in a model apparently explained by a simple 

Mendelian trait such as the mouse response to Salmonella Typhimurium in C57BL/6J and 

AlJ mice, deeper investigations reveal additional complexity that was hidden by the 

strong genetic effect of Nrampl. Building on these findings, we have identified five 

novel QTL, Ity4-Ity8, thereby contributing greatly to the knowledge of the genomic 

regions involved susceptibility in mouse typhoid. Finally, we have showed that Pklr, a 

gene previously shown to increase mouse resistance to Plasmodium chabaudi infection in 

mice is also involved in the mouse susceptibility to Salmonella thereby revealing the 

molecular nature of Ity4. The impact of the Pklr mutation on the mouse response to 

Salmonella is explained by its effect on the RBC turnover and iron metabolism. As a 

who le, the work presented here lays the foundation to numerous additional studies that 

could be undertaken to further define the genetic and pathophysiologic basis of acute 

Salmonella Typhimurium infection in mice. 
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STATEMENT OF ORIGINALITY 

The work presented in this thesis contributes significantly to our knowledge of the 

genetics and pathophysiology of the mouse response to acute Salmonella Typhimurium 

infection. 

Chapter II: Incrementai expression of Tlr4 correlates with mouse resistance to 

Salmonella infection and fine regulation of relevant immune genes. 

-Generation of C57I;JL/l OScN Cr. Cg-Nramp 1/Tlr4. 

-Identification of an incremental protective effect from 0 to 1,2 and 3 copies of Tlr4 on 

mouse survival following acute Salmonella Typhimurium infection. 

-Identification of a T/r4 expression level effect for the control of the bacterial 

proliferation in the spleen and liver. 

-Identification of a Tlr4 expression level-induced fine regulation of relevant downstream 

immune genes. 

-Identification of a Salmonella-induced anemia in mice. 

Chapter III: Complexity in the host response to Salmonella Typhimurium infection 

in AcB and BeA recombinant congenic strains. 

-Screening of the 36 AlJ and C57BL/6J RCS for their susceptibility to Salmonella 

Typhimurium through monitoring of survival time and bacterialload in the spleen and 

liver. 

-Identification of Nrampl-independent genetic control for the host response to Salmonella 

infection in AlJ and C57BL/6J. 

-Generation oftwo novel F2 crosses: (AcB61 x 129S6) and (AcB64 x DBAl2J) and 

phenotyping of these F2 mice for their susceptibility to Salmonella Typhimmurium. 

-Identification offive novel Salmonella susceptibility loci, Ity4-Ity8. 

Chapter IV: Pyruvate kinase deficiency confers susceptibility to Salmonella 

Typhimurium infection in mice. 

-Identification of Pklr as a susceptibility gene in the mouse response to Salmonella. 
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-Investigation and description of the nature of the Salmonella-induced anemia in mice. 

-Identification of iron overload in AcB61 mice. 

-Description of the biological basis for a role of Pklr on the mouse response to 

Salmonella infection. 

-In vivo expression ofhepcidin at days 0, 3 and 5 following Salmonella infection in AlJ, 

C57BL/6J and AcB61 mice. 

-Combined phenylhydrazine and Salmonella infection in mice with phenotyping for 

survival and RBC parameters. 

-Investigation of the iron metabolism (iron, ferritin and transferrin dosages and Perls 

staining for iron in the spleen and liver) during Salmonella infection in AlJ, C57BL/6J 

and AcB61 mice. 
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Genetic regulation of host responses to Salmonella 
infection in mice 
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Salmonella spp are Gram-negative bacteria capable of infecting a wide range of host species, including humans, domesticated 
and wild mammals, reptiles, blrds and insects. The outcome of an encounter between Salmonella and ifs host is dependent 
upon multiple factors including the host genetic background. To facilitate the study of the genetic factors involved in resistance 
to this pathogen, mouse models of Salmonella infection have been developed and studied for years, allowing identifteation of 
severa/ genes and pathways that may influence the disease outcome. In this review, we Wl11 cover some of the genes involved 
in mouse resistance to Salmonella that were identified through the study of congenic mouse strains, cloning of spontaneous 
mouse mutations, use of site-directed mutagenesis or quantitative trait loci analysis. In para/leI, the relevant information 
pertaining to genes involved in resistance to Salmonella in humans will be discussed. 
Genes and Immunity (2002) 3,381-393. doi:10.1038/sj.gene.6363924 
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Introduction 

Salmonella are facultative intracellular Gram-negative 
bacteria that are found ubiquitously in nature with 
2463 serotypes currentIy recognized. DNA-DNA hybri­
dization has shown that almost aIl Salmonella serotypes 
belong to the same species now designated Salmonella 
enterica.1 Some Salmonella serotypes are host adapted 
(Typhi and Paratyphi in humans, Dublin in cattle, 
Gallinarum in birds) while others <Typhimurium and 
Enteritidis) have the ability to infect a wide range of 
hosts including domesticated and wild mammals, 
reptiles, birds and insects. These serotypes are consid­
ered zoonotic organisms because they have the capacity 
to cause disease in animaIs and humans. The principal 
clinical manifestations associated with Salmonella infec­
tion in humans are enteric fever (typhoid and para­
typhoid) and a self-limiting gastroenteritis 
(saimonellosis). Additionally, silent carriage of this 
bacterium is frequent and contributes to disease dis­
semination. Enteric fever, caused by Salmonella Typhi and 
Salmonella Paratyphi, still represents a major public 
health problem in many developing countries with over 
16 million cases reported annually worldwide and 
600000 deaths associated with untreated infection.2 On 
the other hand, industrialized countries experience an 
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increased incidence of non-typhoidal Salmonella infec­
tions with most cases tracing back to food contamination. 
Approximately 1.4 million cases (sporadic form or 
outbreaks) per year of salmonellosis occur in the United 
States alone.2 ln veterinary medicine, Salmonella spp are 
also significant pathogens associated with economic and 
productivity losses, food contamination,M and outbreaks 
among horses hospita1ized in large animal c1inics5 or on 
breeding farm facilities.6 

The contribution of the host genetic background to the 
risk of infection and disease severity has been evidenced 
in humans by studies documenting racial differences in 
disease suscephbility, a higher concordance in mono­
zygotic vs dizygotic twins and, more recentIy, using 
large-scale family-based genome scans and association 
studies.7

-9 It is clear from these genetic analyses that the 
molecular mechanisms of resistance and susceptibility to 
infectious diseases are extremely complex and multi­
factorial with microbial virulence determinants and 
geographical environment factors modifying the expres­
sion of specific host susceptibility loci. 

In humans, the risk and outcome of Salmonella 
infection are also influenced by multiple factors. For 
instance, the use of antimicrobials may lead to disruption 
of the host endogenous flora and subsequently favor 
proliferation of pathogenic bacteria such as Salmonella 
Spp.l0 Similarly, loss of the gastric acid barrier (because 
of achlorhydria or use of acid suppressor drugs) may 
increase host susceptibility to enteric pathogens." Sev­
eral specific human populations are aIso at increased risk 
of Salmonella infection including patients with sickIe œIl 
anemia,'2 chronic granulomatous disease (CGD),13 
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pathogenic mutations within cytokine signaling 
pathways14,15 or HIV infection.16 Indeed, AlOS patients 
are not only at increased risk for non-typhoidal Salmo­
nella infection but they also experience higher in­
cidence of bloodstream invasion and focal suppurative 
complications.17 Finally, clustering of reactive Salmemella­
triggered arthritis within families suggests that genetic 
factors may also play a role in the development of post­
infectious sequelae.18 

The understanding of the complex host response to 
Salmonella infection in humans and other animal species 
has advanced considerably through the use of mouse 
models of infection. The laboratory mouse is weIl known 
to have a broad range of host susceptibility to human 
pathogens. Early work with cIassieal inbred strains of 
mice has shown differential host response to infection 
with Salmonella. The development of genomie technolo­
gies (large-scale cloning and sequencing, gene targeting, 
etc) and mouse genome databases (http://www.infor­
matics.jax.org) in the late 19805 and early 19905 com­
bined with classical genetics contributed to the 
successful identification of several Salmemella resistance 
genes (lty, Lps, xid, etc) in laboratory miee. More recently, 
the development of novel models of infection together 
with quantitative trait mapping has identified additional 
host susceptibility loci.19,20 This review will highlight key 
studies that led to the discovery of major Salmonella 
resistance genes in mice using different approaches 

1 2 3 4 

including the generation of congenie mouse strains, 
positional cloning of spontaneous mouse mutations 
associated with susceptibility to Salmonella infection, 
targeted disruption of candidate genes and quantitative 
trait loci (QTL) mapping (Figure 1). 

Mouse model of Salmonella Typhimurium 
infection 
Salmemella Typhimurium infection in miee induces a 
systemic disease similar to human typhoid fever. 
Systemic infection with a sublethal inoculum of Salmo­
nella Typhimurium in the miee is characterized by four 
distinct phases of infection (reviewed in Ref. 21). The first 
phase involves rapid clearance of the organisms from the 
bloodstream (within 2 hl, followed by the localization of 
approximately 10% of the inoculum within macrophages 
and polymorphonuclear cells of the spleen and liver 
where the bacteria have the abiIity to survive and 
replicate.22.23 The second phase of infection takes place 
over the following week, with an exponential growth of 
the organisms within the reticu1oendothelial system 
(RES). The macrophages exert an important regulatory 
function during this phase since administration of silica 
(a macrophage poison) results in a major increase in 
bacterialload and a substantial decrease in the LDso by a 
factor of 100 times.24 The host innate system, through the 
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Figure 1 Salmonella host resistance/susceptibility loci mapped in the mouse genome. The positions of the loci were taken from the Meuse 
Genome Informatics database of the Jackson Laboratory (http://www.informatics.jax.org/). The genes whose functions were uncovered by 
the study of spontaneous mouse mutants are shown in red with the corresponding locus shown in black when applicable. Genes studied by 
targeted mutation are shown in green. Finally. the blue boxes represent locis involved in susceptjbility/resistance to Salmonella that were 
mapped by QTL analysis. The corresponding identified genes or the loci name are a1so shown in blue. 
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recognition of Salmonella or Salmonella-conserved motifs 
such as lipopolysaccharide (LPS), regulates adaptive 
immunity. Recognition of pathogen-associated molecular 
patterns (PAMPs) by the host cell pattern recognition 
receptors (PRRs) triggers an innate immune inflamma­
tory response characterized by the production of several 
cytokines including tumor necrosis factor (1NF) and 
interferon-y (INFy) and by an abundant mononuclear 
inilltration of the RES aimed at the elimination of the 
pathogen. The activation of the innate immune system to 
stop bacterial growth results in the establishment of a 
plateau (third) phase. The final (fourth phase) resolution 
of infection is clearly a function of activation of the 
acquired immune system and depends on T and B cells 
activation. :5-28 

It was recognized over 30 years ago that the suscept­
ibiIity of inbred mice to infection with .virulent Salmonella 
Typhimurium varied from strain to strain and that these 
differences were genetically controlled.29.311 In general, 
classical inbred strains of mice can be classified into three 
distinct categories in regard to their susceptibility to 
Salmonella.20.30 129S6/SvEvTac mice are extremely resis­
tant to infection with Salmonella Typhimurium compared 
to AIJ mice that present an intermediate susceptibility 
phenotype and show increased survival time with 
decreasing infectious dose but cannot survive the 
infection (Figure 2). Other strains such as C57BL/6J, 
BALB/cJ and C3H/HeJ are extremely susceptible 
to infection and all succumb within the first week 
independent of the inoculum size. Differentiai suscept­
ibiIity to Salmonella is aIso recognized among the wiId­
derived mice with CAST /Ei being very resistant 
in comparison to MOLF lEi or SPRET /Ei mice.20 
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Figure 2 Survival curves following intravenous challenge with 10' 

~ CFU of Salmonella Typhimurium strain Keller. 129S6/SvEvTac are 
the most resistant mice followed by CAST /Ei and A/J. C57BL/6J, 
MOLF /Ei and C3H/HeJ are extremely susceptible to Salmonella 
Typhimurium with no individual surviving beyond 7 days post­
infection. 
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Salmonella resistance loci identifled 
uslng congenic mice 
Genes of the major histocompatibility complex (H2) 
The mouse histocompatibility complex (H2 complex) on 
MMU17 is a large genomic region encoding dense 
clusters of immune loci defining more than 120 genes 
(reviewed in Ref.31

). The mouse H2 was first identified 
during the course of transplantation and serological 
studies, and was later shown to influence the outcome of 
several immune diseases including resistance to infection 
with Salmonella Typhimurium.25.32 The H2 complex is 
divided into three major regions: class l, class n and class 
III. Mouse H2 haplotypes are defined by alleles at 
polymorphie class 1 and class n genes. The class 1 region 
eontains highly polymorphie la genes which present 
peptides to exp T cells and less polymorphic lb genes 
which engage NI< cells and yl) T celIs. The number of 
class la and class lb genes carried by different strains of 
mice varies considerably: mice with H2b and H2k 
haplotype possess only one H2-D locus compared to 
mice with H2d, H2b and H2'! haplotypes whieh have five 
H2-D loci. The class n region is highly conserved 
between the mouse and man both at the level of coding 
sequences and gene structure. The class Il region 
contains the polymorphic class nex and class np genes 
as welI as proteins involved in class 1 restricted antigen 
presentation (Abcd2/Tap1 and Psmb9/Lmp2). The class 
III region is the most conserved region in mammals and 
contains several genes involved in innate and adaptive 
immunity including the complement components C4 and 
C2, the pro-infIammatory cytokines Tnt and Ua and the 
chaperone Hsp70-1. 

The effect of the H2 complex on mouse susceptibility 
to Salmonella Typhimurium infection was evaluated in 
C57BL/IO congenie lines (aIl Ity--see below for a 
description of Ity).25 Mice carrying H2b and H2d 
haplotypes were more susceptible (LD50 <lQ3CFU) to a 
strain of Salmonella Typhimurium of intermediate viru­
lence than those carrying H2., H2k and H2E haplotypes 
(LD50 ~ llJ4CFU). FI hybrids between H2b (susceptible) 
and H2E (resistant) showed an intermediate phenotype 
suggesting a codominant mode of inheritance. Suscept­
ibility of H2b mice was apparent 4 weeks following the 
infectious challenge and reached a maximum at 7-8 
weeks post-inoculation. The bacterial load was 10- to 
lOO-fold higher in the spleen and liver after infection of 
susceptible H2b congenie strains compared to resistant 
H21. Using congenic mouse strains carrying recombinant 
H2 haplotypes, Salmonella susceptibility was mapped to 
the MHC class II I-Eex subregion. The major role of MHC 
class-I1-dependent immune mechanisms in the elimina­
tion of Salmonella Typhimurium during the late course of 
infection was later highlighted using mice lacking MHC 
class Il molecu1es (je lacking H2-I-Ap chain) and mature 
CD4+ TCRexp cells.33.34 

. In another series of experiments using Salmonella 
Typhimurium C5TS (a temperature-sensitive mutant), 
three categories of susceptibility were defined by 
comparing late bacterial clearance among H2 congenic 
mice on a C57BL/10 genetic background.3S The lowest 
rate of bacterial clearance was observed in H2b

, 

intermediate clearance in H2d, H21, H2k, H2p , H2r
, H2" 

and H2v, and high clearance in H21, H2'! and H2u. The 
influence of the H2 haplotype on bacterial clearance was 
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influenced by different genetic backgrounds. Further 
analysis using H2 recombinant congenic miœ on a 
C57BL/IO genetic background suggested that at least 
two additional regions of the H2 complex, H2-0 and H2-
K, are involved in determining the late-clearanœ 
phenotype.32 A role for class-I restricted T cells in the 
immune response to Salmonella Typhimurium infection 
was la ter shown using mice lacking ~2-microglobulin 
(~2 m).36 ~2 m is a 12 kOa protein known to associate with 
class 1 (H2-K, H2-0, H2-Q and H2-T) molecules that 
promotes activation of C08+ T cells that specifically 
recognize cells infected with Salmonella. 

ln humans, recent studies support the contribution of 
the MHC to the host immune response to infection with 
Salmonella. Class II MHC was shown to be associated 
with susceptibility to Salmonella Typhi in Vietnam where 
typhoid fever is endemic,37 and MHC class lb molecules 
were associated with the development of autoimmune 
reactive arthritis following Salmonella infection.38,39 The 
inherent complexity and polymorphism of the MHC 
complex and the linkage disequilibrium between loci 
will continue to pose a significant challenge to the 
identification of specific Salmonella susceptibility genes 
located in this area of the genome. . 

Salmonella resistance genes identified 
by positional cloning 
Nrampl 
The fust description of Ity (immunity to Typhimurium) 
in the mouse appeared in 1976.29 ln this early paper, the 
authors showed that eight strains of inbred mice fell into 
two sharply defined groups with respect to resistance to 
infection. Four strains (CBA, A/J, C3H/He and OBA/2) 
were resistant (LOso > lOS) to Salmonella Typhimurium CS 
and the other four strains (BALB/c, C57BL, 810.02 and 
OBA/t) were susceptible (LOso<lO). These strain 
differences in disease resistanœ were shown to behave 
as a simple Mendelian trait with a dominant mode of 
inheritance. Three years later, Ity was located to mouse 
chromosome 1 using distinguishable phenotypes as 
chromosome' markers.40 Around the same time, two 
other groups identified host resistance loci for two 
unrelated pathogens, Mycobacterium bouis (Bcg) and 
Leishmania donovani (Lsh).41,42 These two loci were also 
located on mouse chromosome 1 to the same genomic 
subregion as Ity.43M At that time, it was not clear if Bcg, 
Ity and Lsh were either the same or very closely related 
genes. The identification of a unique gene underlying lty/ 
Bcg/Lsh came almost 20 years after its first descrip­
tion.4S,46 

Two allelic forms were recognized for Ity: a resistance 
allele (lty,) and a susceptibility allele (lty').40 The 
resistance allele is dominant and influences the rate of 
bacterial growth during the exponential phase of multi­
plication in the RES and the LOsa after lethal challenge 
with high doses of Salmonella Typhimurium.29 Ity is 
expressed by macrophages and Ity' confers an increased 
bactericidal capacity to this cell type in comparison to 
Ity-.47 Studies involving an experimental mouse model of 
infection with Mycobacteria and L. donovani showed that 
Bcg' and Lsh' behaved similarly, being expressed in 
macrophages and conferring resistance to bacterial 
multiplication of the intracellular parasites during the 
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early phase of infection.41
.48A

9 A positional cloning 
approach was undertaken to identify the gene und er­
lying the Bcg phenotype.SO,sl Bcg was mapped by 
segregation analysis to the proximal portion of mouse 
chromosome 1 closely linked to the villin (Vil) gene.52 

High-resolution linkage and physical maps were gener­
ated and allowed to narrow the chromosomal segment 
encompassing the Bcg locus to a size amenable for 
positional cloning.S3.54 Subsequently, using exon amplifi­
cation, a candidate gene for the Bcg locus was found and 
named natural resistance-associated macrophage protein 
gene or Nrampl.45 Nrampl was reœntly renamed Slcllal 
because of its membership to a family of solute carriers.55 

Predicted protein sequence analysis of Nrampl between 
Ity' and Ity' strains revealed a single mutation resulting 
in glycine to aspartic acid substitution at position 169.56 

This mutation results in a complete lack of function of 
Nramp1 in susceptible mice.57 The identity of Nrampl, 
Bcg, Ity and Lsh was confirmed by targeted disruption of 
Nrampl in mice and phenotypic comparison among 
different genotypes of miœ during experimental infec­
tions with Salmonella Typhimurium, M. bavis and L. 
donovani.46 Additionally, susceptible mice were rendered 
resistant to BCG and Salmonella Typhimurium by transfer 
of the resistance allele, further confirming the identity of 
Nrampl with the phenotypic resistance to Salmonella 
Typhimurium.58 

The identification of Nrampl and its function opens a 
whole new field in the area of host resistance to 
intraœIlular pathogens. Nrampl encodes for a highly 
hydrophobic 56 kOa protein, which possesses 12 
transmembrane (TM) domains and a glycosylated 
extracytoplasmic loop. It is expressed in the membrane 
fraction of macrophages and neutrophils as a phos­
phoglycoprotein of 90-100kDa (reviewed in Ref.55). 

During Salmonella infection, phagocytes ingest the 
bacteria into a phagosome, which matures by sequen­
tial fusions with a series of endosomal and lysosomal 
compartments and results in the formation of phago­
lysosomes that possess antimicrobial properties. To 
survive into the host cens, Salmonella evade this 
process by affecting the maturation process of the 
phagosome. Salmonella generate a unique compartment 
termed Salmonella-containing vacuole (SCY) (reviewed 
in Ref. 59). During phagocytosis, Nrampl is recruited to 
the membrane of the phagosome and remains asso­
ciated with this structure during its maturation to 
phagolysosome.60 Nramp1 appears to have an impact 
on SCV maturation: SCVs formed in Nramp1-deficient 
macrophages fail to acquire M6PR (mannose 6 phos­
phate receptor), a protein known to regulate the 
delivery of a subset of Iysosomal enzymes from the 
trans-golgi network to the pre-lysosomal compartment, 
thereby facilitating bacterial killing.61 

These findings support the hypothesis that Nrampl 
controls the replication of intracellular parasites by 
altering the intravacuolar environment of the phago­
some. In fact, it was recently shown that Nrampl 
functions as a pH-dependent manganese transporter.62 

Divalent cations like manganese are likely to be 
important for the survival of pathogens, and removal 
of these from the phagosome probably results in 
enhanced bacteriostatic or bactericidal activity and hence 
in increased resistance to intracellular pathogens. Nramp 
orthologues have been identified in Salmonella (MntH) 



and other bacteria. They are also proton-dependent 
manganese transporters and appear to function as an 
import system for the acquisition of divalent metals from 
the extracellular environment.6.~ Salmonella MntH and 
mammalian Nrampl proteins might influence the out­
come of bacterial infection through competition for the 
same essential substrates within the microenvironment 
of the phagosome.S5 

Because of the critical role of Nrampl in the mouse 
model of typhoid fever, the human homologue of mouse 
NRAMPl was investigated in resistance to typhoid fever 
in humans. Despite the fact that NRAMPl contributes 
clearly to the risk and the progression of mycobacterial 
infections in humans/'- no allelic association was 
identified between NRAMPl and typhoid fever suscept­
ibility in humans in southem Vietnam.67 However, these 
studies do not preclude a role for NRAMPl in suscept­
ibility to human Salmonella infections because of the 
known effect of the ethnie genetic background on the 
expression of disease susceptibility. The role of allelic 
variation at NRAMPl was also examined in a chieken 
model of Salmonella infection.68 Salmonellosis in young 
chickens is a major systemic disease resulting in 
economic losses for the poultry industry. In adult 
chickens, Salmonella infection does not cause significant 
clinical signs or mortality, therefore constituting an 
insidious risk for human health. In chickens, resistance 
to infection with Salmonella Typhimurium is inherited as 
a complex trait.68

•69 Using crosses between resistant (Wl) 
and susceptible (C) chickens, NRAMPl was shown to 
account for 18% of the early differential resistance to 
infection.68 A genome scan performed more recently on 
the same animal panel clearly showed that the region 
surrounding NRAMPl has a major impact on the 
susceptibility of chickens to Salmonella infection and 
proves the utility of comparative genomics in studying 
host resistance to infection (V Forgetta and D Malo, 
unpubIished data). 

Tlr4 
Toll-like receptor 4 (TIr4; first described as the Lps locus) 
is another critical gene that regulates innate resistance to 
infection with Salmonella Typhimurium and the host 
response to LPS in mice. Bacterial LPS is a major 
constituent of the outer membrane of Gram-negative 
bacteria and is essential to the structure and survival of 
these bacteria (reviewed in Ref. 70). Through evolution, 
the immune system of eucaryotes has leamed to 
recognize LPS as an indicator of Gram-negative bacterial 
infection. Indeed, very small amounts of LPS are able to 
initiate a robust inflammatory response in the host. LPS 
molecules are PAMP that are naturally recognized 
through receptors of the innate immune system known 
as PRRs (reviewed in Ref. 71). The Toll-like receptor (TLR) 
famlly is a good example of PRRs and, among them, TIr4 
was identified as an important component of the signal 
transduction initiated by LPS. 

The discovery of TIr4 was rendered possible because 
of earlier identification of LPS hyporesponsiveness of 
C3H/HeJ mice.72 C3H/HeJ mice can withstand 20-38 
times the LDsa for other inbred strains when challenged 
intravenously with LPS and show an altered intraper­
itoneal inflammatory response with a reduced ratio of 
neutrophils to mononuclear cells following local injection 
of LPS.72.73 However, if challenged with Gram-negative 
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bacteria such as Salmonella Typhimurium, C3H/He] mice 
present a markedly increased suscepbbility to this 
pathogen. The LDsa for LPS-responsive mice to Salmo­
nella Typhimurium infection is ~2 x 1()3, while LPS 
hyporesponsive strains succumb to infection with less 
than two organisms.74 LPS hyporesponsiveness was also 
recognized in other strains including C57BL/10Sc:.Cr,75 its 
progenitor C57BL/l()5cN76 and more recently in C57BL/ 
6.KB2-mnd.77 The fallure of (C3H/HeJ x C57BL/ 
10ScCr)F1 and (C3H/He] x C57BL/6.KB2-mnd)F1 to 
respond to LPS suggests that these three strains carry 
mutations at the same gene.77078 Segregation analysis in 
backcrosses between responsive and hyporesponsive 
strains revealed that this phenotype was inherited as a 
simple Mendelian trait.19,80 The locus was named Lps, 
and two alleles were defined: Lps" and LpS" for normal 
and defective response to LPS respectively.81 The mode 
of inheritance varled with the phenotype studied and the 
strain combination used: heterozygote mice issued from 
C3H/He] and C57BL/6] present an intermediary LPS 
response consistent with a codominant mode of inheri­
tance,80 whereas crosses made between C57BL/IOScCr 
and Lps" miœ show a fu)]y dominant wild-type allele78 
The response to Salmonella infection was inherited as a 
single dominant trait in aIl crosses performed between 
LpS" and Lps" mice74.B2 

Early linkage analysis studies revealed that Lps 
cosegregated with the major urlnary protein locus 
(Mup-1) and the polysyndactyly (Ps) mutation indicating 
that Lps is located on mouse chromosome 4.80.81 High­
resolution genetic, physical and transcriptional maps of 
the area were thereafter generatedll2.83 and led to the 
identification of Tlr4 as a candidate for Lps.83,84 Three 
different Tlr4 mutant alIeles were identified: C3H/HeJ 
mice present a single missense mutation resulting in a 
proline for histidine substitution at codon 712 within the 
signaling domain;B4.B5 in C57BL/IOScCr mice, there were 
no Tlr4 transcripts detected84

,85 as a consequence of a 
75 kb chromosomal deletion encompassing the whole 
TIr4 gene;B6 the mutation identified in C57BL/6.KB2-mnd 
Tlr4 consists in a complete deletion of exon II. This 
mutation leads to a frameshift resulting in the appear­
ance of a stop codon just downstream of the exon 
junction. The putative T1r4 mutant protein is equivalent 
to the first 31 N-terminal residues of its wild-type 
counterpart (835 residues).77 Confirmation of the role of 
Tlr4 in LPS hyporesponsiveness was obtained through 
examination of mice that had been rendered deficient for 
Tlr4.87 

The TLR family (reviewed in Refs. 71 and 88) is 
composed of type 1 TM receptors characterized by an 
extraœllular leucine-rich repeat domain and an intracel­
lular domain simi1ar to the intraceIlular domain of the 
interleukin OL)-1 receptor called the TIR (Toll/IL-l 
receptor) domain. The first identified member of this 
family, Drosophila Toll, functions in a pathway that 
controls the dorso-ventral axis formation of the fly 
(reviewed in Ref. 89). In adults, mutations in Drosophila 
Toll lead to increased susceptibility to fungal infection 
because of fallure to induce the antifungal peptide 
Drosomysin, thereby linking this gene to innate immu­
nity. In mammals, at least 10 TLRs have been identified 
and some of them have been shown to be essential for 
defense against different pathogens by sensing specific 
PAMPs. TLR4 appears to interact directly with LPS with 
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the cooperation of LBP (LPS-binding protein) and co­
receptors CD14 and MD-2.--92 Ultimately, LPS sensing 
by TLR4 leads to the activation of the transcription factor 
NF-leB and the MAP kinases, JNK and p38, through the 
activation of two known signaling pathways: a common 
TLR signaling My088-TOLLlP-IRAK-TRAF6 pathway 
(reviewed in Ref.7' ) and an My088-independent path­
way involving the adapter protein T1RAp'93,94 Activation 
of TLR4 by LPS leads to the induction of various host 
defense genes including pro-inflammatory cytokines 
such as Ill, IL6, ILS and IL12, chemokines, costimulatory 
molecules (C080 and C086), MHC c1ass II and NOS2 by 
APC cells.9S-97 Induction of C080/C086 and IL-12 by 
TLRs contributes to the initiation of adaptive immunity 
and the induction of TH1 effector responses.97 

btk 
The role of B lymphocytes in immunity to Salmonella 
Typhimurium was studied initially in CBA/N inbred 
mice, a strain that has impaired humoral immunity 
because of a peripheral defect in B-cell activation and 
function (reviewed in Ref. 98). This defective phenotype 
was mapped to chromosome X and named xid for x­
linked immunodeficiency. The B-cell defect of CBA/N 
mice is characterized by an impaired maturation of B 
cells, diminished immunoglobulin production (CBA/N 
mice have low serum IgM and IgG3 levels) and 
compromised T-independent immune response. Because 
of their immunodeficiency, CBA/N mice present a late 
susceptibility to infection with pathogens such as 
Salmonella Typhimurium.28 Susceptibility of xid mice to 
Salmonella Typhimurium is recessive; hemizygous males 
and homozygous females present the susceptibility 
phenotype while heterozygous femaIes are resistanf28 
due to preferential inactivation of the X chromosome 
carrying the defective xid alIele.99 Passive transfer of 
immune serum restores resistance in affected males, an 
effect attributed ta the presence of specific anti-Salmonella 
antibodies. 'OO These resuIts c1early indicated a raIe for 
circuIating antibodies in ,resistance ta Salmonella Typhi­
murium during the late (> 10 days) phase of infection. 

The xid mutation was localized to a region of mouse 
chromosome X showing conserved homology with a 
region of the human genome carrying the gene involved 
in X-Iinked agammaglobulinemia (XLA),101 a disease 
(reviewed in Ref. 102) that resembles the phenotype 
expressed in xid mice. Male patients with XLA have a 
severe B-cell immunodeficiency characterized by re­
duced numbers of mature circulating B cells, diminished 
serum Ig levels and disrupted secondary Iymphoid 
architecture, Intestinal infections with Salmonella spp 
have been described in XLA patients; however, bacterial 
infections involving the respiratory tract caused by 
Streptococcus pneumoniae, Haemophilus influenzae, Staphy­
lococcus aureus and Pseudomonas spp are the most 
frequent infections. 

In 1993, mutations in the gene encoding Bruton's 
tyrosine kinase (btk) were reported to cause XLA in 
humans'03'l04 and xid in mice.101.105 btk belongs to the 
Tec family of non-receptor protein-tyrosine kinases, 
known to be highly expressed in hematopoietic cells 
(reviewed in Ref. 106). btk is expressed at ail stages of 
B-cell development from pro- to mature B cells, but is 
down-reguIated in plasma B cells. Its expression occurs 
also in erythroid precursors, myeloid cells, mast cells and 
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megacaryocytes but not in T or NI< cells. btk participates 
in intracellular signal transduction in a number of cell 
activation pathways such as those mediated by the B-cell 
antigen receptor (BeR) and the Toll-like receptor 
RP105,107 btk encodes a tyrosine kinase that possesses 
pleckstrin-homology (PH) and Tec-homology (TH) da­
mains in addition to src homology (SH) domains (SHI, 
SH2 and SH3).108 btk, as a major component of the BCR 
signaIosome, plays a critical role in the reguIation of pre­
B and mature BCR signaling.' 09-111 Recruitment of btk to 
the cellular membrane and its subsequent activation 
triggers the mobiIization of intracellular calcium and the 
activation of PKC, resulting in the degradation of the NF­
leB inhibitory protein I-leBcx and the translocation of 
NF-leB to the nucleus.112

-
114 In humans, more than 175 

different mutations involving aIl domains of the btk gene 
have been identified in XLA patients.'02 In xid mice, a 
missense mutation at a conserved arginine residue 
(R28C) within the PH domain of btk impairs its abiIity 
to translocate to the plasma membrane and trigger 
signaling cascades that reguIate B-cell survival and 
growth,'0','05,111 consequently affecting resistance to 
infection with Salmonella.28 

Salmonella resistance loci identified 
uslng gene-deficient mice 
The use of gene targeting has been very successful for 
investigating the role of severaI Salmonella resistance 
genes in mice. Candidate genes have been selected based 
on the biological understanding of the disease phenotype 
or based on the in vitro response to the pathogen. In the 
following sections, we will discuss selected critical genes 
whose role in mouse resistance to Salmonella infection 
was uncovered by engineering knockout mice. 

Lbp and Cd14 
Lbp and Cd14, Iike Tlr4, are known to bind LPS and have 
been involved in innate defense against Salmonella 
Typhimurium. Lbp is an acute-phase protein found in 
the serum that accelerates the binding of LPS to Cd14 
and initiates signais through membrane-bound TIr4 in 
monocytes and myeloid cells (reviewed in Ref. 115). Work 
with Lbp-deficient mice has shown that Lbp is essential 
for the induction of a rapid inflammatory response and 
for survival following intraperitoneal infection with 
Salmonella Typhimurium.116 The critical function of Lbp 
in resistance to infection was confirmed by the rescue of 
the susceptible Lbp-'- mice with recombinant mouse 

. Lbp supplementation.ll7 

Cd14 is a glycosylphosphatidylinositol-anchored ma­
lecule that is expressed on monocytes and neutrophiIs 
and acts as a high-affinity receptor for LPS. Cdl4-
deficient mice were found to be extremely resistant to 
the effect of LPS, with 100% survival and almost no 
detectable clinical signs following challenge with 10 
times the LO,OO for control mice. This increased resistance 
correIated with markedly decreased expression of 
cytokines such as TNFcx and IL6.118 Interestingly, Cdl4-
deficient mice were also more resistant to Gram-negative 
(Escherichia coli) bacterial challenge with a decreased 
level ofbacteremia, suggesting a role for Cd14 in bacterial 
dissemination.'20 However, in the case of the Gram­
negative intraœllular pathogen Salmonella Typhimurium, 



Cd14, as for 11r4, is essential to improve survival to 
infection. 119 

NADPH oxidase and Nos2 
Following phagocytosis of virulent Salmonella Typhimur­
ium, two major enzyme systems come into play to 
inactivate the pathogen within the phagosome: the 
phagocytic nicotinamide dinudeotide phosphate 
(NAOPH) oxidase and the inducible nitric oxide 
synthase (Nos2). NAOPH oxidase and Nos2 participate 
in the generation of reactive oxygen intermediates (ROI) 
and reactive nitrogen intermediates (RNl) respectively 
(reviewed in Refs. 121 and 122). 

The importance of NADPH oxidase in resistance to 
Salmonella infection was originally uncovered in humans 
suffering from CGO, a group of inherited disorders 
characterized by recurrent infections and chronic inflam­
mation. The disease results from mutations in any one of 
four subunits of the NADPH oxidase. The majority of 
patients with CGO present X-linked deficiencies of 
gp91pho% (renamed CYBB); most autosomal recessive 
CGD are associated with mutations within p47plto% 
(NCF1) or p67phD% (NCF2); a rare autosomal recessive 
form is associated with mutations within p22plto% (CYBA) 
(reviewed in Ref. 123). Mice deficient in gp91phD% were 
engineered as a model for CGD and found to be 
extremely susceptible to infection with Salmonella Typhi­
murium.124.125 Early death of gp91phO%-deficient mice after 
Salmonella infection was associated with spleen and liver 
bacterial load exceeding by at least 3 log the wild-type 
controls.'24 

Studies with Nos2-deficient mice support a dual role 
for NO during virulent Salmonella infection in vivo. 
Enhanced production of NO provides increased host 
defense against pathogens but also contributes to 
inflammation, tissue damage and even endotoxic 
shock.'24.'26.127 Although Nos2 knockout mice are able to 
control the early replication of Salmonella in the RES 
organs, they are unable to suppress bacterial growth later 
during infection and eventually die.124 This observation 
contrasts with the gp91phO%-deficient mice which are 
extremely susceptible to Salmonella Typhimurium early 
during the course of infection even with a very low 
inoculum.'24 

It is elear from these studies that intracellular killing of 
Salmonella Typhimurium is dependent on both ROI and 
RNI systems; however these reactive intermediates 
appear to act at different stages of infection (NADPH 
oxidase being more critical early after infection and Nos2 
Iater during infection). Double mutant mice (gp91phD,,-I-/ 
Nos2-1-) exhibited spontaneous infections caused by 
organisms of the normal flora, resulting in the formation 
of large internaI abscesses.'25 This phenotype was not 
exhibited by mice deficient in onIy one of the enzyme 
activities, indicating that in spontaneous infections with 
indigenous flora, gp91p

lto% and Nos2 can compensate for 
each other and that no other pathway could compensate 
for their simultaneous absence. 

The critical roIe of phagocyte NADPH oxidase and 
Nos2 was exemplified by recent work showing how 
Salmonella have evolved strategies to circumvent the· 
action of the bactericidal activities of RNI and ROI. In 
macrophages, Salmonella inhibit the fusion of SCY with 
endosomes and lysosomes'28 and prevent the localiza­
tion of NADPH oxidase'29.'30 and Nos2'31 with SCVs, 
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thereby protecting the bacteria from the microbiddal 
effect of ROI and RNI. 

Cytokines: Tnf, Ifng and n12 
The release of pro-inflammatory cytokines from acti­
vated T cells, NK cells and macrophages is pivotaI in 
controlling the primary immune response to Salmonella. 
TNFa (reviewed in Ref. 132) is a pleiotropic pro­
inflammatory cytokine produced mainly by macro­
phages but also by activated NK cells and THI 
lymphocytes. It is encoded by the Tnt gene and exerts 
its effects through two types of receptors: TNFRp55 
(encoded by Tnfrsfla for TNF receptor superfamiIy la 
gene) and TNFRp75 (Tnfrsflb). This cytokine plays a key 
role in host defense against pathogens through several 
mechanisms including activation of neutrophils and 
platelets, enhancement of killing activity of macrophages 
and NI< cells, and activation of the immune system. Mice 
carrying a targeted disruption of Tnfrsfla were found to 
be more suscephble to challenge with virulent Salmonella 
Typhimurium and to attenuated purE, aroA and sseB 
mutants.I33•134 The early susceptibility of Tnfrsfla-' - mice 
to Salmonella was attributed to a defect in the early 
bactericidal capacity of Tnfrsfla-' - macrophages. l34 

Although this early phase of bacterial killing within the 
macrophages is associated with activation of the 
NADPH oxidase system, comparable levels of super­
oxide were detected within the infected macrophages of 
normal and knockout mice. Further analysis, using 
fluorescence microscopy and transmission electron mi­
croscopy, showed that TNFRp55 is necessary for target­
ing of NADPH phagocyte oxidase-harboring vesicles to 
SCVS.I34 

INFy (reviewed in Ref. 15) is produced by activated T 
cells and NI< cells following ILl2 stimulation, and pIays 
a key role in THI responses. INFy is responsible for 
activating macrophages and influences also the antibody 
class switching. The growth of attenuated Salmonella 
Typhimurium aroA- is contained in wild-type mice; 
however INFy-deficient mice succumb to infection due 
to unrestricted bacterial proliferation.33•135 These experi­
ments point out the central role that INFy plays in mice 
against bacterial strains of poor virulence. Deficiencies in 
the IFNy axis are not only associated with higher 
susceptibility to infection with. Salmonella in mice but 
aIso with increased susceptibility to other intracellular 
pathogens (reviewed in Ref.I36). 

ILl2 (reviewed in Refs. 14 and 15) is a heterodimeric 
cytokine composed of two subunits, ILl2p35 (encoded 
by Il12a) and ILl2p40 (encoded by 1112b), linked by two 
disulfide bonds. ILl2 is produced and secreted mainIy 
by antigen-presenting cells (dendritic cells and macro­
phages). The IL12 receptor (composed of two subunits 
IL12RIH and IL12RP2) is found predominantly on T and 
NK cells. The principal known function of ILl2 is the 
induction of IFNy and consequently the development of 
THI responses. Administration of monoclonal antibodies 
directed against IL12 exacerba tes the mild disease 
usually caused by Salmonella Typhimurium aroA- in 
BALB/c mice, eventually leading to death.t37 The 
administration of anti-ILl2 antibodies resulted in de­
creased local and systemic IFNy concentration, lower 
tissue Nos2 activity and increased serum ILlO levels in 
infected mice. The role of ILl2 in resistance to Salmonella 
infection was also studied in mice carrying targeted 
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disruptions of genes encoding for either subunits of ILl2, 
Il12a or II12b.'38 In a model of systemic infection with 
Salmonella Enteritidis, 1l12a- l - and 1l12b- l - mice were 
more susceptible to infection than wild-type mice. 
However, the increased susceptibiIity was more pro­
nounced in Il12b-l - mice. Lack of 1l12b resulted in a TH2 
response, which was inadequate for immunity against 
the intracellular pathogen Salmonella Enteritidis. 

Pathogenic mutations in genes coding for the IFN'YR1, 
IFN'YR2, IL12p40 and ILl2R/l1 were reported in the 
syndrome of Mendelian susceptibiIity to mycobacterial 
disease (reviewed in Refs, 14 and 15). These pediatric 
patients were first identified because of their suscept­
ibility to poorly virulent mycobacterial species such as 
BCG. The patients rarely develop other infectious 
diseases with the exception of Salmonella infections that 
are found in almost haIt of the cases. The clinical 
manifestations of the disease are heterogenous and range 
from abdominal abscesses and adenitis to severe sepsis. 
Severa! Salmonella serotypes have been identified and 
include Salmonella Paratyphj139.140 or non-typhoid Salmo­
nella serotypes such as Salmonella Typhimurium,'40 
Salmonella Enteritidis,139.141-143 Salmonella group B139.140 
or untyped Salmonella.'39.144.145 

Host resistance loci identified using 
QTL analysis 
Other loci influencing resistance or susceptibility to 
Salmonella infection in mice have been identified using 
QTL analyses.'9.20 The wild-derived inbred mice, Mus 
musculus molossinus (MOLF/Ei), were initially found to 
he extremely susceptible to Salmonella Typhimurium 
with survival time comparable to the survival time of 
C57BL/6J (Nrampl s). Subsequently, linkage analysis 
using 252(C57BL/6] x MOLF/Ei)F2 allowed the map­
ping of two QTLs, which significantly affect survival 
time following lethal infection with Salmonella Typhi­
murium.20•146 A Salmonella-resistant phenotype (lty2) was 
linked to a region on mouse chromosome 11 (LOD score 
of 7.0 at D11Mit5) and contributed 10% to the variance. 
Several candidate genes were detected in the surround­
ing region including granulocyte/macrophage colony­
stimuIating factor (Csfgm), interleukin 3 (lB), inducible 
nîtric oxide synthase (Nos2) and myeloperoxydase (Mpo). 
The candidacy of Nos2 was evaluated by measuring Nos2 
mRNA levels and nitrite production in MOLF/Ei mice 
during infection. MOLF /Ei mice showed a decreased 
capacity to induce Nos2 mRNA and to produce NO.'47 As 
mentioned earlier in this review, studies with Nos2-
deficient mice support a dual role for NO during virulent 
Salmonella infection in vivo. Enhanced production of NO 
provides increased host defense against pathogens but 
also contributes to inflammation, tissue damage and 
even endotoxic shock (reviewed in Ref.'48). Although 
Nos2 knockout mice are able to control the early 
replication of Salmonella in the RES organs, they were 
unable to suppress bacterial growth and eventually die 
from infection.124 In this model, low Nos2 mRNA levels 
correlate with a reduced NO production and a decreased 
inflammatory response, a finding that may expIain the 
protective effect of Ity2 on chromosome 11. 

A second QTL (Ity3) conferring recessive susceptibility 
was located on mouse chromosome 1, approximately 
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25cM distal to Nrampl (LOD score of 4.8 at DIMitlOO). 
The effect of this locus was identified only after 
adjustment for the effects of Nrampl, and contributed 
to 7% of the variance in survival time. The chromosomal 
region harboring Ity3 is also rich in candidate genes 
including severa! genes involved in complement activa­
tion (C4bp, Cfh and Daf1.), inducible prostaglandin 
synthase 2 gene (Ptgs2) and a member of the Toll-like 
receptor family, TIr5. The candidacy of Tlr5 as the gene 
underlying Ity3 was assessed by mapping, expression 
and sequencing analyses.t46 Tlr5 is expressed pre­
dominantly in the Iiver, a main site for the proliferation 
of Salmonella in MOLF /Ei. Analysis of TIr5 mRNA 
expression during infection of mice with Salmonella 
Typhimurium shows that TIrS mRNA levels in the liver 
are consistently lower in MOLF /Ei than in cIassical 
inbred mouse strains including C57BL/6], 12956/ 
SvEvTac, C3H/HeJ and C57BL/10J. There is at least a 
50% reduction in the amount of TirS mRNA expressed 
in MOLF /Ei mice throughout infection. Finally, TirS 
sequence analysis in MOLF /Ei and 47 other inbred 
strains shows various sequence variants that define 
a unique TirS haplotype in MOLF /Ei mice associated 
with a lower level of Tlr5 mRNA expression.'46 
It is possible to envisage that low levels of TIr5 
expression may lead to the inability of MOLF /Ei mice 
to regu1ate a proper immune response to Salmonella 
Typhimurium. Most importantly, Tlr5 has been shown 
to mediate the innate immune response to bacterial 
flageIlin from Salmonella Typhimurium.'49.'50 Flagellin is 
a structural component of bacterial flagella and a 
virulence factor recognized by the host innate immune 
system. Activation of Tlr5 by flagellin mobiIizes the 
nuclear factor NF1CJl and stimulates TNFcx and IL6 
production. 

In another study, a chronic model of infection with 
Salmonella Enteritidis was used to identify loci implicated 
in the late bacteria! clearance of the organism from the 
spleen.19 Two strains, C57BL/6J (Nram".) and 12956/ 
SvEvTac (Nrampl r

), were characterized according to their 
ability to clear Salmonella Enteritidis from the spleen. 
12956/SvEvTac mice were found to have markedly 
impaired ability to clear the parasite when compared to 
C57BL/6J. A genome scan performed on 302 (C57BL/ 
6J x 12956/SvEvTac) F2 progeny identified three 
dominant loci associated with the phenotype. The loci, 
designated Sesl, Ses2 and Ses3 (Salmonella Enteritidis 
susceptibility), were located on chromosome 1 (D1Mcg5), 
7 (D7Mit62) and 15 (D15Mit29) respectively. Sesl showed 
the strongest LOD score (9.9), contributed to 14% of the 
phenotypic variance and mapped in the area of Nrampl. 
Ses2 and Ses3 had smaller effects with respective LOD 
scores of 4 and 3.2. The effect of aU three loci on baeterial 
clearance was greater in females than in males. In this 
model of chronic infection with Salmonella Enteritidis, 
functional polymorphism at Nrampl was associated with 
increased bacterial clearance during the late phase of 
infection. In addition to its specific role as a cation 
transporter,62 Nramp1 has been associated with regu1a­
tion of macrophage activation as measured by the 
production of nitric oxide, III /l, INF'Y and MHC class II 
expressiont5t and TH1/TH2 differentiation.152 In hu­
mans, a dual role for Nrampl has also been reported in 
acute and chronic infection with the intraceIluIar patho­
gen Mycobacterium lepraef,4.66 



Conclusion 
Resistance to Salmonella infection is a complex biological 
trait controlled by several host genes along with bacterial 
virulence factors. Mouse models of Salmonella infection 
have contributed substantially. to the identification of 
Salmonella resistance genes and to our understanding of 
the complex interaction between the host and the 
microbe genomes in vivo. For the past 50 years, 
identification of Salmonella resistance genes was facili­
tated by the availability of unique mouse mutants that 
present Salmonella susceptible phenotypes inherited as 
simple Mendelian traits. Now the future of mouse 
genetics in the study of ~ost resistance ~o Sa!~on~lla 
and other infections is movmg toward the Identification 
of inbred mouse strains that show a complex mode of 
inheritance to specific pathogens for QTL gene identifi­
cation.19.20 •153-160 Dissection of the complex host response 
to Salmonella infection combined with the complete 
mouse genome sequence will contribute further to our 
understanding of the genetic control of host immunity. 
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