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Abstract 

Motivated by a practical interest in noise generated by turbofan engine, this thesis 

studies the stability of parallel coaxial jets with velocity and temperature profiles 

characteristic of the exhaust region of the engine. Because the bypass stream mixes 

with both the exhaust and the ambient air, these profiles contain thin layers in which 

the velocity and temperature may vary rapidly. As a consequence, multiple insta

bility modes are possible. In accordance with Rayleigh's theorem for axisymmetric 

incompressible shear flows, it follows that there are threc possible modes, only two 

of which are unstable. To complement the study of parallel flow stability, this thesis 

also includes the derivation of the amplitude evolution equation for slowly varying 

axisyrnmetric incompressible ftows. 



Résumé 

Cette thèse, motivée par un intérêt pratique pour le bruit généré par les turboven

tilateurs, étude de la stabilité de jets parallèles ayant des profils de vélocité et de 

température propres à la région d'échappement. Comme le flux secondaire entre en 

contact tant avec le ga:z d'échappement qu'avec l'air ambiant, ces profils contiennent 

de minces couches dans lesquelles la vélocité et la température sont portées à varier 

très rapidement. Par conséquent, de nombreux modes sont possibles. Suivant le 

théorème de Rayleigh pour les flux incompressibles axisymétriques dans les zones de 

cisaillement, trois modes sont possibles, dont deux seuls sont instables. En tant que 

complément de l'étude de la stabilité des flux parallèles, cette thèse inclut également 

une dérivation de l'équation d'évolution d'amplitude pour les flux incompressibles 

axisymétriques à variation lente. 
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Introduction 

A good madel to predict radiated noise for jet ftows is still very much needed today. 

According to Goldstein [8] direct numerical simulations of the Navier-Stokes equa

tions for compressible ftows, is computationally prohibitive. His argument is that the 

number of mesh points necessary to resolve all the relevant length scales is propor

tional to the Reynolds number Re, raised to the nine-fourth. For typical jet engine 

ftows, this corresponds to 1012 to 1015 grid points [8]. This certainly underlines the 

limits of brute numerical computations. However, it is not the purpose of this thesis 

to dismiss numerical simulations, which are continuously being improved and obvi

ously contribute to our understanding of the problem. Instead, the aim here is to 

pursue an alternative, linear stability, to shed light on sorne of the dynamics at play. 

In fact, Morris [18], who has been qui te involved in the modeling of noise radiation, 

pointed out "that numerical simulations have made tremendous progress in recent 

years". 

The first madel to predict radiated noise, considered as the birth of aeroacoustics 

as a research area [25], was published in two papers by Lighthill in the early 1950s [11, 

12]. The madel, known as the acoustic analogy, attempts to identify the origin of noise 

by rearranging the compressible Navier-Stokes equations into a linear wave equation 

for the density on the left hand side of the equation and transfer any remaining terms 

on the left hand side of the equation. The result is a non-homogenous linear wave 

equation where the non-homogeneous terms are identified as noise soArces. 
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The drawback of this approach is that source terms need to be specified or ap

proximated in sorne fashion. lndeed, the theory is not self-contained and information 

about the nature of the turbulence in the flow has to be incorporated before any 

prediction can be made [25]. Nonetheless, this model proved to be successful at pre

dicting the scaling laws of noise radiation, and a number of improvements were later 

made to account for such phenomena as the convection and refraction of the waves 

by the mean flow. In fact, the acoustic analogy model proposed by Lilley [13], which 

corrected the Lighthill rnodel for the refraction of the waves by the mean flow, is still 

used today in the most advanced industrial noise prediction methods [8]. Despite its 

qualities, the acoustic analogy model is unable to account for small changes in the 

flow, such as the changes produced by noise suppression deviees for jet engines. It is 

precisely this limitation that drives current research in aeroacoustics. 

The discovery of large scale turbulence in jet flows in the 1970s by Crow and 

Champagne [6], led them to propose that these large structures could play an impor

tant role in noise generation. Subsequent investigations showed that noise generation 

has two sources, fine scale turbulence and large turbulence structures [25, 18, 26]. 

Specifically of interest for this thesis is· the large scale turbulence that was found to 

be an important source of noise for both supersonic and subsonic flows, though to a 

lesser extent in the case of subsonic flows. The statistical properties of large large 

turbulence suggests that it can be modeled by mean flow instability waves [25], and 

many investigations have shown this to be a good model [16]. Most of the stabil

ity computations reported to date have been for velocity profiles that involve either 

dit>continuities, i.e. vortex t>hccts, or clt>e 'Ü varies slowly with r. We, however, are 

interested primarily in the stability characteristics of coaxial jets with velocity pro

files representative of exhaust conditions for a turbofan engine. In particular, in this 

thesis we carry out a detailed investigation nsing vdocity and temperature profiles 

from the coaxial configuration used in the recent experiments of Papamoschou [19]. 
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The link between instability waves and noise generation is not devoid of problems, 

however. In section 2:2, it is shawn that instability waves for axisymmetric jets decay 

exponentially to zero far away from the jet. This asymptotic behavior, which also 

holds for two-dimensional jets, implies that there .is no acoustic radiation associated 

with the instability waves themselves, unless the phase speed cph of the instability 

wave is equal or greater than the ambient sound speed a00 • Tarn and Morris [23] 

pointed out in 1980 that the problem lay in the parallel flow assumption commonly 

used for stability analysis. Tarn and Burton [24] then showed that this difficulty in the 

modeling of noise radiated by instabilities could be resolved by taking into account the 

slow divergence of the jet flow and by extending the resulting solution to the outer field 

by means of a matched asymptotic expansion [24]. Papers by Benney and Rosenblat, 

Bouthier, Crighton and Gaster, and Saric and Nayfeh [2, 3, 5, 20] had already been 

published on the subject of non-parallel effects in jet flows. All these papers employed 

multiple scales to account for the slow variation of the flow, a method that was first 

proposed by Benney ànd Rosenblat [2]. It is Tarn and Morris [23], however, that 

extended this method to the theory of noise radiation. 

Interestingly, Bouthier [3] is alone in having considered the propagation of wave 

packets in slowly diverging jet flows. Even if the primary goal of this thesis is to 

study the stability characteristics of a parallel coaxial jet, it was deemed worthwhile to 

investigate how Bouthier's development of the amplitude evolution equation in a two

dimensional jet would apply to axisymmètric jets. The derivation of the amplitude 

evolution equation for a wave packet is presented in section 1.2. 

Returning now to the objectives of the present thesis, we have investigated a 

number of the factors influencing the stability characteristics of compressible coaxial 

jets. These include the diameter ratio and the velocity ratio of the primary and 

secondary streams. In experiments, cold jets are often used for the primary stream, so 

we have considered both hot and cold jets. The differences between two-dimensional 
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and axisymmetric jets are also of interest and we compare their amplification rates 

and the number of unstable modes. In the case of coaxial jets, we show that the 

growthrates are comparable for the m = 1 mode and the axisymmetric perturbation, 

but get smaller for increasing values of m, the azimuthal wavenumber. At subsonic 

Mach numbers, compressibility does not change the qualitative behavior of unstable 

modes, except to say that it has a stabilizing effect, so for some comparisons, it is 

sufficient to study the incompressible case. Before discussing these results in more 

detail, however, we first present in chapters 1 and 2 the governing equations and the 

numerical methods that were used to solve them. 
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Chapter 1 

Shear Layer Stability 

1.1 Axisymmetric Jet Stability for Parallel Flows 

1.1.1 Governing Equations 

To obtain the governing equations, we consider small perturbations to a compressible 

stationary parallel jet with velocity and temperature mean profiles V = (0, 0, ü(r)), 

T = f'(r·) in a cylindrical coordinate system (r, e, x). By combining the continuity, 

energy and three momentum equations, a single equation can be derived for the radial 

component of the pressure perturbation p' = p(r) exp{i(ax +me- wt)}. Here the 

barrcd variables represent mean profiles, while the primed variables represent small 

perturbations to the mean profiles. Meanwhile, the hatted variables corresponds to 

the real eigenfunctions of the perturbations. The link between these variables and 

the flow variables, V, p and p , is made explicit in (1.4) below. 

We follow Dahl and Morris' [7] derivation and start with the inviscid momentum 

equations for an ideal gas 

av 
p[at +(V· V) V]= -Vp, (1.1) 
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the continuity equation 
8p ot +V· (pV) = 0, (1.2) 

and the energy equation 

8p ot + (V · V) p + 'Y p(V · V) = 0 , (1.3) 

where p is the pressure, V is the velocity, p is the density, and 'Y is the specifie hcat 

ratio. Equations (1.1) and (1.2) are the usual momentum and continuity equations, 

but the derivation of (1.3) deserves sorne brief comment. For an adiabatic process, 

the first law of therrnodynamics can be written p Dh/ Dt- Dpj Dt= 0, where his the 

enthalpy. If we assume an ideal gas, then the equation of state is given by p = p R T 

and h can be related to the temperature T using cP, the specifie heat at çonstant 

pressure. Taking the substantial time derivative of the equation of state, DT/ Dt can 

be replaced by a combination of Dp/ Dt and Dp/ Dt and the latter can be eliminated 

using the continuity equation. We obtain (1.3) finally by noting that R =cP- Cv and 

the ratio of specifie beats 'Y= cP/cv, where Cv is the specifie beat at constant volume. 

The advantage of presenting equations (1.1), (1.2), and (1.3) over starting with 

linearized equations, as was done by early papers, is that it serves as a convenient 

starting point for readers who may wish to eventually carry out a nonlinear study. 

To derive the governing equation for the eigenfunction p( r), it is necessary linearize 

these equations, however. This is donc by considering small perturbations of order 

f.-l « 1 to the mean profiles 

p=p+f.-lp', V=V+f.-lV', p = j5 + f.-lp'. (1.4) 

Substituting equations (1.4) into (1.1), (1.2), and (1.3) gives, to 0(1), the same 

equations, i.e. (1.1), (1.2), and (1.3), but for the mean variables p, V, and j5. Since 

the profileR are takcn to he stationary and parallel in the x-direction, i.e. V = 

(0, 0, ü(r)), j5 = p(r), and since the pressure is constant for a free jet, more specifically 
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r-'·. 

p = 1/(IM'lJ), where M 0 is the exhaust Mach number, the JL0 order equations are 

automatically satisfied. 

p' 

To order JL, we obtain the linearized equations for the perturbations p', V', and 

av' - ' ' - p' - - 1 , -+V·VV +V ·V"V+-[V·VV]=--Vp at P P ' 

a p' - , , _ _ , , -
Dt+V·Vp +V ·Vp+pV·V +pV·V=O, 

ap' v- T"7 ' -T"7 v' 'T"7 v- o at + · v P + ÎP v · + ÎP v · = . 

(1.5) 

(1.6) 

(1.7) 

Taking the perturbations to be in the form of normal modes, that is (p', V', p') = 

(p('r), V ( r), p( r)) exp{ i ( o:x + m() - wt)}, where for spatially evolving waves, w is real 

and o: is complex and the reverse is true for temporally unstable modes, it is straight

forward to derive the equation for p by substituting into (1.5), (1.6), and (1.7): 

d
2
p [1 1 dH]dp [ 2 ( .. 2 ) m

2
] A -+ ---- -- o: 1-M0 H +- p=O, 

dr2 r H dr dr r 2 

where H(r) = (u- w/o:)2 
T 

(1.8) 

(1.9) 

To derive (1.8), we made use of the fact that the flow is stationary and parallel in 

the x-direction once more, and we used the ideal gas law to substitute temperature 

T(r) for the density p(r'). It is important to point out that all variables in (1.8) are 

dimensionless. Our scaling is identical with that employed in the survey article by 

Michalke [16], in which velocities are nondimensionalized with respect to the exhaust 

velocity and temperature at r = 0, ·u0 and T0 (so ü(O) = 1 and T(O) = 1). Consistent 

with that choice, the pressure and sound speed of the primary stream are used in 

defining M 0 , the exhaust Mach number. The boundary conditions for equation (1.8) 

require that p be bounded as r ---+ 0 and that p tend to zero for r ---+ oo. More will be 

said about the boundary conditions in section 2.2. 
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1.1.2 Eigenvalue Problem 

Equation (1.8), derived in the previous section, describes an eigenvalue problem for 

the pressure perturbation p. When studying spatial instabilities, the eigenvalue is the 

complex wavenumber a = ar+ iai, which is obtained for a given real frequency w 

and azimuthal wavenumber m. The reverse is true for temporally unstable modes, 

i.e. the eigenvalue is the complex frequency, obtained for a given real wavenumber. 

The resulting dispersion relation for spatial instabilities takes the forma = a(w, m) 

for a given wavenumber m. Because the perturbations are in the form of normal 

modes and are proportional to exp{ i (a x + me - wt)}, they will be spatially unstable 

if ai < 0, neutral if ai = 0, and damped if ai > O. 

Given that most of our results exhibit qualitative behavior that is similar for both 

incompressible and compressible jets, let us begin by briefly reviewing the stability 

theory for the incompressible case. For plane parallel flows, the first important result 

is Rayleigh's inflection point theorem. This theorem states that a necessary condition 

for instability is that ü" change sign at sorne point in the flow [15]. In other words, 

u" must vanish at sorne point in the flow and, from a physical point of view, this 

amounts to saying that the vorticity ü' must have an extremum. Building on this 

result, Fjortoft went on to show that an additional necessary condition for instability 

is that the absolu te value of the vorticity has to be local a maximum at the inflection 

point. 

The generalization of Rayleigh's inflection point thcorcm to parallel axisymmctric 

flows is the following (see Batchelor and Gill [1]): a necessary condition for instability 

is that the quantity Q' ( r) = 0 for sorne value of r, where 

(1.10) 

A further condition derived by Batchelor and Gill is the axisymmetric analogue of 

Fjortoft 's theorem. It requires that 1 ~~ 1, be a maximum at the point of inflection 
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with respect to p, where p is given by (1.12). More will be said about the variable p 

and its relation with Rayleigh's infl.ection point theorem below. Batchelor and Gill 

also showed that Howard's semi-circle theorem applies to axisymmetric fl.ows. This 

means that the only neutra! modes that are the limit of unstable modes are those for 

which ii= w/a at the value of r for which Q'(r) =O. 

A particularly significant feature of the stability criterion (1.10) is its dependence 

on m, the azimuthal wavenumber. This is in contrast to Rayleigh's infl.ection point 

theorem for two-dimensional fl.ows which involves only the velocity profile. An illus

trative example considered by Batchelor and Gill is the velocity profile 

(1.11) 

which, according to (1.10), is stable to axisymmetric m = 0 perturbations. These 

authors also showed, by considering neutra! modes and the real part of the semicircle 

theorem, that as rn ---+ oo axisymmetric fl.ows are stable and, as a consequence, for the 

velocity profile (1.11) it turns out that only the non-axisymmetric m = 1 mode can 

be unstable. Growth rates were not computed, but the critical wavenumber below 

which instability can occur was estimated to be a = 1.46. 

The obvious question to now address is the following: what is the relationship of 

the foregoing stability criteria for plane parallel fl.ows to the axisymmetric case? The 

fact that the two-dimensional results are pertinent was made clear by Batchelor and 

Gill who pointed out that a change in the radial coordinate to 

(1.12) 

changes the stability criterion (1.10) to be that ü(p) has an infl.ection point. One 

difference, however, is that for an axisymmetric jet such as the one illustrated in 

Fig. 2.1, wc would consider only half of the profile, given th at 0 S r < oo. Although 

this reduces the number of unstable modes, the possibility of non-axisymmetric per-
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turbations can lead to additional instabilities, as already noted above for the velocity 

profile ( 1.11). 

1.2 Amplitude Evolution Equation for Slowly Vary

ing Axisymmetric Flows 

Perturbations rarely consist of single wavelengths, as has been considered so far in 

subsections 1.1.1 and 1.1.2. In fact, as mentioned at the end of the introduction, 

such monochromatic instability waves cannat madel noise generation. A number of 

authors have addressed this problem by taking into account the slow divergence of 

the jet in the x-direction through the use of multiple scales expansions [23, 24, 7]. 

However, none of these au thors considered the propagation of wave packets in slowly 

diverging jets. The exception to this is Bou thier [3], who looked at a slowly diverging 

two-dimensional flow, though not in the context of aeroacoustics. 

In the interest of seeing how Bouthier's method [3] applies to axisymmetric jet 

flows and as a starting point for future numerical work on the aeroacoustics of slowly 

diverging coaxial jets, what follows is a derivation of the amplitude evolution equation 

for incompressible slowly varying jets for axisymmetric disturbances. The derivation 

is restricted to incompressible jets and disturbances with no azimuthal dependence 

in arder to keep the algebra more manageable, but the method presented here would 

still apply if these restrictions were lifted. For ease of reference, we tried to keep 

the notation as close as possible to Bouthier's. However, to avoid confusion with 

other variables already used in this thesis or to clarify certain steps, it was deemed 

necessary to change sorne of the notation. 

The assumption that the flow is incompressible means that the continuity equa

tion (1.2) can be solved by using a stream function 4;. For an axisymmctric flow 

V = (v, 0, u) using the cylindrical coordinates (r, (},x), the stream function is given 

10 
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by 'lj;r/r = u and 'lj;xfr = -v. Substituting the stream function into the momentum 

equations ( 1.1) and taking the curl gives the vorticity equation 

a7J; o2
7f; + ~ 87J; a7J; _ a7J; o2

7f; = o. 
or oxor r ox or ox ()r 2 

(1.13). 

We then employ the same method as in subsection 1.1.1 to linearize the equa

tion (1.13). Again, we introduce small perturbations of order 11 « 1 to the mean 

stream function so that 7jJ == 1f; + f1'1j;'. The difference with subsection 1.1.1 is that the 

mean flow 1f; now depends on both x and r to account for the variation of the flow in 

the x-direction. The resulting linearized vorticity equation for the perturbation 'lj;' is 

(1.14) 

where (1.15) 

Because the flow is assumed to vary slowly in the x-direction, we introduce the slow 

scale X = EX and the mean stream function spatial dependence is then expressed as 

1f; = {;(r, X). To apply the multiple scale method and derive the amplitude evolution 

equation, we also need to introduce the slow scale T = Et and and the fast scale 

À= 8(X, T)jc The stream function perturbation can now be expressed in terms of 

these variables 

'lj/(x, r, t, t) = F(À, r, X, T, t). (1.16) 

Applying the chain rule, the partial derivatives become 

o7f;' oF aF 
8x Bx ÔÀ +tâX' 
87j;' aF aF 

(1.17) 
at Sr ÔÀ +t 8T' 

o7f/ âF 
or or 
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Expanding F in powers of E gives 

(1.18) 

We are now in a position to substitute F back into (1.14). We can also take advantage 

of the fact that the mean stream function ·~ does not depend on the fast variable ,\ 

and immediately look for a solution of the form 

i>. Fo = <I>o(r, X, T)e . (1.19) 

To order E
0 this gives: 

L(<I>o) = 0, (1.20) 

where 

L = (1J;r +Br) (( fP _ ~~) _ e~) _ ( a2 _ ~_!!_) '1/Jr. 
r 8 x âr2 r âr âr2 r ar r 

(1.21) 

It is worth noting that the equation (1.20) is equivalent to solving the parallel flow 

problem for an incompressible fluid if8x and -8r are replaced by Œ and w, i.e. the 

wavenumber and frequency of the perturbation. This amounts to solving (1.8) for the 

pressure perturbation p if the temperature is assumed to be constant and the Mach 

number is zero. Obviously, the two problems share the same boundary conditions 

and so in solving (1.20), we require that <1> 0 be bounded as r ____. 0 and r ____. oo. The 

solution of (1.20) also gives us a relation between 8x and 8r 

g(8x, Br, X)= O. (1.22) 

For a parallel flow, this would be a dispersion relation of the form a(w) = Œ discussed 

in subsection 1.1.2. Here, howcver, equation (1.22) is actnally a partial diffmcntial 

equation for the unknown phase 8(X, T). 

The general solution of the perturbation order E
0 is now 

Fo =A( X, T)cjJ0 (r, X, T)ei\ (1.23) 

12 



where A(X, T) is a slowly varying amplitude of the wave packet and c/Jo is a solution 

of (1.20). In arder to obtain the equation for the amplitude A(X, T), it is necessary 

to consider what happens at arder E. Taking advantage of the fact that if; has no À 

dependence, we look for a solution of the form F1 = <I> 1ei>.. It is important to point out 

that we have omitted a term proportional to >.<I> 1ei>. in F1 despite the anticipation of 

non-homogeneous terms proportional to ei>. at this arder. The omission of this secular 

term is justified by the requirement that the asymptotic expansion be uniformly valid 

as E -+ O. Indeed, F1 is included in the expansion (1.18) in the form EF1, hence 

the secular term would be proportional to EÀ<I>ei>. which is of arder EÀ = 0(1). This 

contradicts the validity of the asymptotic expansion and any secular term of this form 

must be set equal to zero. 

With the form of F1 in mind, the problem, to arder E is 

(
a<I>o) (a<I>o) L(<I>I) = K aT + M aX + N (<I>o) , (1.24) 

where the opera tors K, M, and N are given by: 

a2 1 a 
K=--+--+8~ (1.25) ar2 r ar ' 

M = _'t/Jr ( .a
2 _! 0) + (3'1/Jr8~ _ 3'1/Jrr + '1/Jrrr + 2Br8x + 3'1/J·r) , (1.26) 

r ar2 r ar r T2 T r3 

and 

(1.27) 

For this problem to have a solution, it must satisfy a solvability condition. Taking 

J to be the solution of the adjoint problem of (1.20), this condition is expressed as 

0= 1oo[K (~i) + ( M~i) +N(<I>o)] JdT. (1.28) 
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Because the general form of <I>0 is given by <I>0 = A(X, T)<j>0 (r, X, T), as seen from 

equations (1.19) and (1.23), the solvability condition yields an equation for the am

plitude A(X, T). This equation is 

8A 8A 
k(X, T) aT + m(X, T) ax + n(X, T)A = 0, (1.29) 

where k, m, and n are obtained from the orthogonality condition (1.28). They are 

given by 

(1.30) 

m(X, T) =loo J1.J (<Po) ~dr, (1.31) 

and 

(1.32) 

At this point, we have derived a non-homogenous equation for a amplitude travel

ing at the group velocity c9 (X, T) = -mjk. What is still missing from equation (1.29) 

is the dispersive effcct of the slowly varying jet on A(X, T), which is one of the main 

objectives of this derivation. To include this effect, we need to go to higher orders 

in the multiple scale expansion. To ensure that A(X, T) is separable at the desired 

arder, it is necessary to go back to the beginning and introduce a new variable that 

travels with the wave packet 

_ 1/2 ( _ J k(Ex,Et) ,.) 
( - t t ( ) d.r, 0 

m EX, Et 
(1.33) 

The rationale behind the definition of ( will made clear below as the multiple scale 

expansion is carried out. 

With the new dependence on(, i.e. 1/J' = F(>., r, X, T, (, E), the partial derivatives 
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become 

o'l/J' aF 1 aF aF 
a x ex a>.. + cl/2 cg a( +ca x, 
o'if/ aF 112 aF aF 

(1.34) - Gr a>.. + c 8( +car' at 
()4;' DF 
- -ar ar 

We also need to revise the expansion ofF to account for the fact that the new variable 

is of order c112 . The new expansion takes the form 

By setting F0 = <I>0 (r, X, T, ()é>. once again, we recover (1.20), (1.21), and (1.22) to 

order c0 . So similarly to ( 1. 23), the general solution takes the form 

Fo = A(X, T, ()<jJ0 (r, X, T)ei>-. (1.36) 

Things get a little more interesting at order E
112

. Just as before, we look for a 

solution of the form F1; 2 = <I> 1; 2 (r, X, T, ()ei>., where the secular term of the form Àr/Jo 

has been set to zero in order to satisfy the requirement that the expansion be uniformly 

valid as c --+ O. We obtain an non-homogeneous equation analogous to (1.24) with 

the important addition that the non-homogeneous terms are all multiplied by ~t 

( 
1 ) 3A 

L(<l>1;2) = K(r/Jo) +cg M(r/Jo) o( · (1.37) 

The homogeneous solution of equation (1.37) is A1; 2 </Y0 , where L(<Po) = 0 and A1; 2 (X, T, () 

is an unknown amplitude determined at or der c312
• The particular solution is obtained 

by variation of parameters and has the form ~t<P1;2 (r, X, T). Hence, the general so

lution at urder t 112 is given by 

(1.38) 
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However, for there to be such a solution, it is necessary for the non-homogeneous part 

of (1.37) to satisfy the solvability condition 

0 = .to [K(<!Jo) + ~M(<!Jo)] ~dr= k + ~m, h ~ ~ 
(1.39) 

where ~ is again the solution of the adjoint problem of (1.20). Because the group 

velocity is given cg = -m/ k, the two terms in (1.39) cancel and the solvability 

condition is automatically satisfied. It is precisely for this cancellation to take place 

that ( was defined by (1.33). 

Finally, order E allows us to obtain the amplitude evolution equation we are 'Seek

ing. Taking the solution at this order to have the form F1 = <J> 1ei>., once more omitting 

the secular term in the process, leads to 

L(<I> ) = G (&<J>l/2) - :Q· (<I> ) + P(82<J>o) 
1 ac, t o 8(2 , (1.40) 

where 
1 

G = K + -M, (1.41) 
Cg 

the same non-homogeneous operator as in equation (1.37). Q has already been derived 

from order E in equation (1.24): 

() () 

Q = K &T + M oX + N. (1.42) 

As for P, it is a new opera tor 

1 ( 8r 'l/Jr8x) P=-- 28x+-+3--
~ ~ ~r 

(1.43) 

The forms of G and Q are not too surprising in retrospect. The non-homogeneous 

terms of equation (1.40) must either come from the contribution of E
112 

· E
112 = E, 

which gives Gand P, or the contributions from E, which gives Q. 

Applying the solvability condition to equation (1.40) means that 

o =loo [ G ( 
8!~2 ) - iQ(<I>o) + p ( 

8;~0 ) J ~dr. (1.44) 
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Substituting <I>0 = A<Po and <I>1;2 = ~t<P112 + A1;2<Po from equations (1.36) and (1.38) 

gives 

(1.45) 

where we made use of the fact that ft G(çb0)~dr = 0 as shawn in equation (1.39). 

Noting that J0
00Q(<I>0)~dr is simply the left hand side of equation (1.28), we have 

derived the desired amplitude evolution equation, namely, 

8A 8A 82A 
k(X, T) oT + m(X, T) oX + p(X, T) o(2 + n(X, T)A = 0, (1.46) 

where 

(1.47) 

and k, m, and n are defined by equations (1.30), (1.31), and (1.32). This equation 

is very similar to (1.29), as can be expected, but this time it includes the dispersive 

effect of the medium on the wave through the term P%~1. 
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Chapter 2 

Description of the N umerical 

Problem 

2.1 Mean Flow Profiles 

As stated in the introduction, we wish to investigate the stability of compressible 

mean flows representative of those in the experiments reported by Papamoschou [19]. 

In modelling these profiles, we have adapted to t>ome extent ideas cmploycd by other 

investigators, such as Crighton and Gaster [5], with modifications so as to describe a 

coaxial jet. The first velocity profile that we employ, hereafter referred to as profile 

1, has the form 

'Ïl (1- h)ül + hü2, 

where Un - ~ { 1 + tanh [bn ( :n - ~n)]}, and n = 1, 2. (2.1) 

The parameter h is the velocity ratio, Us/UP in the notation of Ref. [19], of the 

secondary (bypass) stream to the primary stream of the coaxial jet (see Fig. 2.1). R 1 

and H2 represent the radii of the primary and secondary streams, respectively. The 

radii are defined such that they coïncide with the mid-point of the velocity in the two 
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streams. In (2.1) this corresponds to u1 (R1 ) = u1 (0)/2 and u2 (R2 ) = u2 (0)/2. We, in 

fact, use R1 as the reference length scale for the problem; hence, the velocity profile 

u is normalized so that R1 = 1. Finally, the parameters b1 and b2 are related to the 

momentum thicknesses el and e2, i.e. the momentum thickness computed for fil and 

fi.2 independently, through bn = Rn/ 4Bn. For incompressible plane flows nonnalized 

at r = 0, as is the case here, the momentum thickness is defined as 

(} = 100

'1L (1 - n) dr . (2.2) 

For a thin shear layer, such as the shear layers considered here, equation (2.2) is a 

good approximation of the momentum thickness. In fact, (2.2) is regularly used in 

the study of axisymmetric flows instabilities [5, 16, 22]. 

As already mentioned, we compute two separate momentum thicknesses instead 

of just one for 'il. The reason that we employ two momentum thicknesses is that each 

of the two instability modes appears to be associated with one or the other of the 

mixing layers. We are following here the procedure of Talamelli and Gavarini [22], who 

investigated the stability of incompressible coaxial jets to axisymmetric perturbations. 

Finally, we note that, at the Mach numbers under consideration, it is the velocity 

profile that most influences the stability, so the incompressible momentum thickness 

is sufficient for the purpose at hand. 

Turning now to the temperature profile, the "cold" temperature profile T2 is taken 

from Papamoschou's experiments, while the "hot" temperature profile T1 is taken 

from the mean flow of a typical turbofan engine such as the General Electric CFM56, 

for which the primary stream is heated. To relate the temperature profiles to the 

velocity profile, a method commonly employed is the Crocco-Busemann law [21] 

T-( ) _ ,:r ( _ t ) -(, ) (r- 1) M6u (1- u) 
r - 1. 00 + 1 00 u r + 

2 
. (2.3) 

Having obtained the values of the "cold" temperature profile T2 of the primary stream, 

secondary stream and outer region directly from Papamoschou, we did not need to 
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use the Busemann-Crocco law. However, in order to allow for the temperature to vary 

smoothly between the streams, we were inspired by (2.3) to use a quadratic relation 

between t 2 and ü 

t 2 = aü2 + bü + c . (2.4) 

Using Papamoschou's data, the constants for a temperature profile normalized at 

r = 0 were found to be a = -0.0592, b = -0.1032 and c = 1.1624. As for the hot 

temperature profile t 1 , Papamoschou advised us to use 

(2.5) 

The distinctive feature of T1 is that the temperature of the primary stream, where 

the flow is heated by combustion, is twice that of the secondary stream and the outer 

region. Fig. 2.1 shows the velocity profile 1 and the temperature profiles, all of which 

are normalized at r =O. Finally, the Mach number for t 1 is M 0 = 0.6558, while the 

Mach number for t 2 is M0 = 1. 

A prirnary subject of interest for this thesis is the effect of the radius ratio 

r = R2/ R1 on the stability of the jet. From Eq. (2.1), it is straightforward to vary r 
by changing R2 . However, to do this without also changing b2 does not account for 

the change in the momentum thickness 02 of the outer mixing layer as r varies. For 

a two-dimensional profile, no such change would occur since changing r corresponds 

sim ply to a translation of the shear layer. However, the axisymmetric case is not as 

straightforward, because a simple translation would be inconsistent with the cylindri

cal geometry of the problem. To account for this change in the momentum thickness 

of the outer stream, 02 , we employ the relation 

B= ~ (x+~D) 
100 3 

(2.6) 

based on similarity arguments for axisymmctric jets first used by Crip;hton and 

Gaster [5] in the context of slowly diverging jet flows. When applied to a coaxial 
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Figure 2.1: Velocity defined by equation (2.1) along with hot and cold temperature 

profiles. The velodty ratio used for this figure is h = O. 7, the radius ratio is r = 2, 

and the momentum thicknesses are el = 0.1 and e2 = 0.14. 

jet profile, this relation was found to be an excellent representation of Papamoschou's 

experimental data for the first ten primary radii, R1 , after the exhaust (see Fig. 13 

(b) ofRef. [19]). 

According to Crow and Champagne [6], the instabilities first develop one diarneter 

length away from the exhaust of the jet. Using this as the axial position of the 

profile, the two momentum thicknesses are e1 = 0.1 and e2 = 3/50 + R2/25. Using 

Papamoschou's Fig. 13 (b) again, the reference geometry for this thesis (Fig. 2.1) 

has velocity ratio h = O. 7 and radius ratio r = 2. The secondary stream momentum 

thickness for this geometry is therefore e2 = 0.14. 

We also considered a second approach to account for the relation between r and 
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()2 . Going back to the boundary layer equations, we found that Schlichting's [21] 

similarity solution could be adapted to describe the shape of the secondary stream 

by matching it to the primary stream. Specifying R2 in this new profile, hereafter 

referred to as profile 2, automatically determines the secondary stream thickness ()2 , 

bence providing for a simple way of varying the radius ratio r. Profiles 1 and 2 

are compared in Fig. 2.2. For a derivation of profile 2, we refer the reader to the 

Appendix. 

---Profile]. 
-Profi1~2 

,.1 
1 

hi 
1 

0.61 
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0'-----_L ______ _L___· ___ L__ __ ~ 
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Figure 2.2: Comparison of velocity profile 1 from equation (2.1) and the velocity 

profile 2 using the matched similarity solution as described in the appendix, equation. 

The velocity ratio used for this figure is h = O. 7, the radius ratio is r = 2, and the 

momentum thicknesses are ()1 = .0.1 and fh = 0.14. 
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2.2 Numerical Method 

The range of integration is from r = 0 to r ---+ oo and, because the governing equation 

for the pressure perturbation (1.8) has a regular singular point at r = 0 and an 

irregular singular point at infinity, s~ries solutions are required at both ends. A Runge

Kutta method was used to carry out the integration. For neutral or for unstable 

perturbations with small growth rates, it is necessary to indent the integration contour 

to avoid the singularity at ile - w /a = 0 in order to obtain accurate converged 

solutions. Because il~ is negative, the integration path passes above the singularity 

in the complex r plane, corresponding to the viscous limit as the Reynolds number 

Re ---+ oo or to the initial value problem as t ---+ oo (see Ref. [14], p.124 for the two 

dimensional case). The integration path used is shown in Fig. 2.3. 

We first take a look at the infinite series used to deal with the singular points at 

r = 0 and r = oo. Near the origin, i.e. r ---+ 0, equation (1.8) reduces to 

d2A 1dA [ 2] P P 2 2 m A -+---a (1-M0 H)+- p=O. 
dr 2 r dr r 2 

(2.7) 

The solution to (2. 7) can be represented by a Frobenius expansion having the form 

(2.8) 

If the velocity and temperature profiles are relatively fiat near the centerline, as in 

our case, H(r) ~ H(O) and a good approximation to the solution is given by the 

modified Bessel function lm so that near r = 0 

(2.9) 

As r ---+ oo, il ---+ 0 and H is constant, such that once again, (1.8) becomes a 

rnodified Bessel equation. This time, how<)vcr, the dcsircd bchavi(x corresponds to 

the function Km, whose asymptotic expansion decays exponentially as r ---+ oo so that 

p rv Km ( aJ1- MJH(oo) r) (2.10) 
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Using the conditions (2.9) and (2.10) above to initiate the integration, we integrate 

toward an interior value of r from either side and compute the Wronskian W(w, a) of 

the two solutions at this interior point. Integrating toward an interior point means 

that the Runge-Kutta method will not pick up the exponentially growing solutions 

as r ---+ 0 or r ---+ oo. Iterating on the parameters of the problem, the integration is 

repeated until W(w, a) = O. The Newton method for complex functions was used 

in order to achieve a rapid convergence. Because this algorithm is quite sensitive to 

initial conditions, a good starting guess was first obtained by plotting W on a coarse 

grid. Once the Newton method had successfully converged, it was simple to reuse 

the solutions as subsequent guesses by varying the parameters of interest by small 

increments. 

Indenting the integration path into the complex plane to solve equation 1.8 also 

requires sorne explanation. In the interest of simplicity, we use a general second order 

equation 

(
d2 A dA ) 

f dr;' d~,p,r =O. (2.11) 

With the complex variable r = rr + iri, the first derivative takes the form 

dp = (orr) dp + (ori) di) . 
dr or drr or dri 

(2.12) 

On the segment from 0 to A in Fig. 2.3, the independent variable is r r rand 

so (2.11) is the same, except for the obvious substitution. On the segment from A 

to B however, the independent variable ri is given r =rA+ iri, where rA is the real 

component of point A. Isolating for ri we get ri = -i(r-r A) and so the equation (2.12) 

reduces to 
dp .dp 
-=-~-

dr dri ' 
(2.13) 

while the second order derivative becomes 

(2.14) 
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Figure 2.3: Integration path for pin equation (1.8). The indented contour is used in 

order to avoid the singularity at Üc - w /a = 0, denoted by "x" in the figure, as the 

growth rate approaches the neutral solution, i.e. -ai ---+ O. 

This means that equation (2.11) now has the form 

f 
p .pA . Ü 

( 
d2 A dA ) 

- drr' -~ dri' p, rA + ~ri = ' (2.15) 

with Ti as the independent variable. Using the same technique, it is straightforward 

to find what form (2.11) takes along any of the segments of Fig. 2.3. 

It is not sufficient to know the form of the equation along each segment to solve it, 

howcvcr. The boundary conditions at each point must also be modificd in ordcr for 

the integration to be correctly performed. Taking point A as an example again, we 

must relate the values obtained by integrating from 0 ---+ A to the boundary conditions 

needed to integrate along A ---+ B. For a second arder equation such as (2.11), the 

necessary boundary conditions are p and ~~. Using the equation (2.12) once more, 

26 



we have 
dp 
dr 

dp 
drr' 

and 
dp .dp 
-=-~-

dr dri 
(2.16) 

along the segment from 0 to A and from A to B respectively. In other words, the 

derivative with respect torr and ri at point A are related by 

dp .dp 
-=2-. 
drr dri 

(2.17) 

Using this relation, it is easy to convert the solution obtained by integrating from 

0 to A into the boundary conditions for the segment from A to B. Because all the 

segments intersect at a 90° angle, this relation holds for all the other points in Fig. 2.3. 

As a final note on the indented pa th, one has to be mindful of matched profiles such 

as profile 2 described in the Appendix. In the specifie case of profile 2, the indented 

path cannot include the matching point, which is really a line in the complex plane. 

The problem is that Profile 2 is not analytic across this line. Renee, it does not 

make sense to integrate accross this line, exèept on the real axis where the matching 

guarantees a continuous first derivative. In practice, avoiding this problem should 

not present significant difficulties if the indented path is kept relatively short. 

lt is worth mentioning, before moving on to the computational results, that our 

implementation of the numerical method described in this section was tested using 

Michalke's results such as Fig.9 of his survey article [16]. As expected, we were able 

to reproduce is results without problems. 
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Chapter 3 

Computational Results 

The necessary conditions for instability of the incompressible axisymmetric problem 

given in subsection 1.1.2 specify that there are at most two unstable modes per 

azimuthal wavenumber m when applied to profiles 1 and 2, discussed above. Both 

of these modes were found to be unstable for the first few wavenumbers, m = 0, 1, 

and 2. The result, discussed in subsection 1.1.2, that the neutra! solution of these 

modes must satisfy u = wja for r such Q'(r) = 0 (see Eq. (1.10)), can be used to 

identify the modes. One value of r for which u = w /a is found to lie in the primary 

stream, while the other one is found to lie in the secondary stream. For this reason, 

the modes wïn be referred to as mode I and mode II, de pen ding on whether their 

neutra! limit lies in the primary or secondary stream. 

3.1 Two-dimensional vs Axisymmetric Incompress

ible Jet Flows 

The mirror symmetry about the x-axis for two-dimensional jets means that there are 

even and odd modes. Applying the two-dimensiona.l criteria for instability, inflection 
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Figure 3.1: Growth rates -Œi of the two-dimensional modes and axisymmetric modes 

with rn = 0 for the incompressible profile 1 with velodty ratio h = O. 7 and radius 

ratio r = 2. 

point of maximum vorticity, to profile 1 suggests that there are two even and two 

odd modes. As in the case of the axisymmetric flow, the modes are associated with 

the primary stream or the secondary stream. Renee, for two dimensional geometry 

it still makes sense to refer to modes 1 and II, provided the symmetry of the mode 

is specified. 

The incomprcf'it->iblc instabilitiet-> of profile 1 for a two-dimcn8ional and an axif'iym

metric geometry with rn = 0 exhibit surprisingly close values of growth rate -ai 

for velocity ratio h = 0.7 and radius ratio r = 2. Nevertheless, Fig. 3.1 shows that 

the two-dimensional modes are slightly more unstable than the axisymmetric modes, 

while the phase speed cph is greater for the axisymmetric modes, see Fig.3.2. The 
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Figure 3.2: Phase speed cph of the two-dimensional modes and axisymmetric modes 

with rn = 0 for the incompressible profile 1 with velodty ratio h = O. 7 and radius 

ratio r = 2. 

exception to this is the phase speed of the odd mode 1 which hecomes infinite as 

Œr --+O. This mode behaves as an irregular mode, to use Michalke's terminology [16], 

for small values of Œr. According to Michalke, irregular modes are characterized as 

having finite growth rate -ai > 0 when Œr --+ 0, just as in Fig. 3.1. However, for 

larger values of Œr, this mode still behaves like a regular mode as it tends to a neutral 

solution. This pinching of a regular and irregular mode is associated with the onset of 

absolute instability explained by Huerre and Monkewitz [10]. It is worth noting that 

this hehavior of the odd mode 1 was also found to be present for a two-dimensional 

broken line profile having the same velocity and radius ratios. 

There are two other important differences between the two-dimensional and ax-
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isymmetric fiows. The first, which has already been mentioned in the introduction, 

is that there can be many more unstable modes for the axisymmetric jet because 

of the azimuthal number. Here the m = 0 case was used for a comparison with 

the two-dimensional jet instabilities because, as presented in section 3.3 below, this 

corresponds to the most unstable case for all the profiles studied here. 

The second important difference is that a change in the geometry of the profile 

will not have the same effect on the two-dimensional modes as on the axisymmetric 

modes. For instance, the two-dimensional modes are much more affected by a change 

in the diameter ratio in (2.1). If r is increased to 3, the instabilities decrease, as 

discussed below in section 3.4. This deçrease is much more pronounced for the two

dimensional modes, however, to the point where they are no longer the most unstable 

modes for r = 3. 

3.2 Compressible Axisymmetric Jet Flows 

Adding compressibility to the problem does not significantly affect the stability of the 

jet flow. In fact, it is only for mode II, as shawn in Fig. 3.3, that there are noticeable 

differences between the incompressible and the compressible profiles. Interestingly, 

the incompressible profile is found to be more unstable thau the compressible profile, 

exccpt for the hot profile at low wavcnumber Œr· As such, compressibility has a 

stabilizing effect for bath hot and cold profiles. This means that the incompressible 

stability analysis gives an upper boundary for the most unstable wavenumber, as well 

as the shape and width of the unstable spectrum. 

Nonetheless, the study of the compressible profile is an important problem. Un

der certain circumstances, it can lead to radiating modes, also referred to as Mach 

waves by Michalke [16]. These occur when the pressure perturbation p(r) from (1.8) 

decays as ,.- 112 rather than exponentially. More specifically, as r --+ oo, the pressure 
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Figure 3.3: Growth rate -ai of mode II for the incompressible and compressible 

profile 1 with velocity ratio h = O. 7 and radius ratio r = 2. 

perturbation behaves according to (2.10), which has the asymptotic form 

P 
"' ~e(-Àrr-e<;x)ei(e<rx->.;r+m<f;-wt) 

Vr ' 
where Àr+i,\i o:r(1-M~-(k)2 -i2k) 112 ,and k=-adar. (3.1) 

Renee, radiating modes require that Àr = O. This can happen only for neutral 

solutions, i.e. L'ii = 0, and only if the convective wavc numhcr, dcfincd as Mc = 

(cph/U0 )M0 (T0 /Too) 112
, is greater thari one. As mentioned by Michalke [16], for m = 0 

it is easy to determine the wave fronts of the general instability waves from equa

tion (3.1): they are characterized by CYrX- ,\ir- wl =constant. Because instability 

waves are monochromatic, they will travel in the direction normal to the wave fronts. 
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Taking the jet axis as reference, the waves's inclination angle 11 is given by 

(3.2) 

In the case of radiating modes, we have already established that o:i = 0, so the above 

equation simplifies to 

1 
COSJ1 =M. 

c 

Since the propagation speed of the instability waves is given by 

(3.3) 

(3.4) 

where a00 is the ambient sound speed, radiating modes travel precisely at Mach 1, 

cw = 1. Renee, these modes correspond to acoustic radiation. 
a= 

For the temperature profiles studied here, no such radiating modes are observed. 

However, raising the Mach number for the hot profile do es produce a radia ting mode. 

Indeed, using profile 1 from Fig. 2.1 with h = 0.7 and r = 2, the above conditions 

are satisfied for the neutral solution of mode I if M 0 > 0.8281. Raising the Mach 

number is not the only trigger for the development of radiating modes. As will be 

discussed in section 3.4, increasing the velocity ratio h increases the phase speed cph, 

which implies that the Mach number for which a radiating mode develops is lowered. 

For instance, when h is raised to 0.8, the Mach number at which a radiating mode 

develops is lowered to O. 7843. Nevertheless, raising h to 1 still does not produce a 

radiating mode for the reference Mach number for the hot profile (Mo= 0.6558). 
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Figure 3.4: Effect of the azimuthal wavenumber m on the growth rate -ai of mode 

11 for the incompressible profile 1 with vclocity ratio h = O. 7 and radius ratio r = 2. 

3.3 Effect of the Azimuthal Number on Incom-

pressible Jet Flows 

The most unstable modes for profile 1 (Fig. 2.1) are found to be the axisymmetric 

modes for which m = O. The one exception is mode 11 for a small wavenumber, 

where both m = 1 and 2 are more unstable (see Fig. 3.4). The fact that m = 0 is 

the most unstable mode is in contrast with the profile ( 1.11), which is only unstablc 

for m = 1. As Batchelor and Gill noted, however, the latter result is characteristic of 

profiles that vary slowly in r, which is not the case here. In fact, Michalke found that 

for a profile defiricd only through ü 1 from equation (2.1), the axisymmetric mode is 

generally more unstable than the m = 1 mode. 

35 



Michalke conjectured that the important parameter here is (} / R. He found that 

if ()jR > 0.1, then m = 1 becomes more unstable than m = O. This is consis

tent with Batchelor and Gill's note about slowly varying profiles, as (} / R is inversely 

proportional to the steepness of the profile when using ïh. 
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Figure 3.5: Effect of the diameter ratio r on the growth rate -ai of mode II for the 

incompressible profile 1 with vclocity ratio h = O. 7. 

Michalke's result cannot be transposed directly to coaxial jets. The reference 

length scale being R1 , there are three relevant parameters: (}tf R1 , (}2 / R1 , and r. As 

will be shown in section 3.4, mode I is rclativcly unaffcctcd by fh/ R1 and r. As such, 

(}t/ R1 remains a good criterion to determine which azimuthal wavenumber between 

m = 0 and 1 is the most unstable. In fact, it is for Bt/ R1 = 0.1, just as for Michalke, 

that rn = 0 and rn = 1 are found to be equally unstable, while higher values are rn 

are less unstable. 
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For mode II, the transition between m = 0 and m = 1 as the most unstable 

azimuthal wavenumber depends on both ()2 / R1 and r. Discarding (2.ü) to let r and 

()2 vary independently, the transition for r = 2 occurs at 02 / R1 = 0.246, while for 

r = 3, the transition occurs at 02 / R1 = 0.425. Finally, if (2.6) is employed, m = 0 is 

more unstable than m = 1 for all values of r. 

3.4 Effect ofVelocity and Radius Ratios on Incom-

pressible Jet Flows 
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Figure 3.6: Effect ~f the velocity ratio h on the growth rate -ai of mode I for the 

incompressible profile 1 with radius ratio r = 2. 

The first striking rcsult arising from the study of the cffcct of h and r on the 

stability of the coaxial jet is that mode I and II appear to be "independent". By 
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Figure 3. 7: Effect of the velocîty ratio h on the phase speed cph of modes I and II 

for the incompressible profile 1. 

this we mean that changing h affects mode I, while changing r affects mode II (see 

Fig. 3.5 and 3.6). In other words, there is a simple mechanism by which one can tune 

the stability of the two modes. For example, inèreasing r reduces the instability of 

secondary mode which, in the present case, is the most unstable mode. 

However, it would be inexact to claim that all aspects of the two modes can be 

controlled independently through h and r. Looking at the phase speed, Fig. 3. 7, it 

is clear that mode 1 I is affectcd by a change in h since cph ---+ h as O:r ---+ 0 for that 

mode. A change in r, on the other hand, still has little impact on the phase speed or 

growth rate of mode 1 provided r ;::: 2. As r ---+ 1 however, the distinction between 

the two streams is blurred and the stability of the coaxial jet no longer behaves so 

elegantly. Changes in r or h will then affect bath modes. Nonetheless, for the values 
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Figure 3.8: Effect of the diameter ratio r on the growth rate -ai of mode II for the 

incompressible profile 2 with velocity ratio h = O. 7. 

of interest, r do es not affect mode I, while h has a limited effect on mode II. 

Despite the simplicity of the mechanism described above, changing the radius ratio 

R2 is not a straightforward matter, as was touched upon in section 2.1. Ultimately, 

it was decided to use the relation (2.6) to describe the change in the momentum 

thickness fh with r. However, if the secondary stream momentum thickness is left 

unaltered as r is changed, it was found that the stability of mode II remains relatively 

unaffected. This suggests that 02 is a parameter of prime interest for the stability of 

the secondary stream. 

To account for the strong dependence of the results on the choice of equation (2.6) 

to determine (h, wc investit-;atcd the stability of profile 2 bascd on similarity solutions 

of the boundary layer equations (see Fig.2.2). The stability of this profile was found 
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to be quite different from that of profile 1. Although mode I of profile 2 is essentially 

identical because the prima;ry strèam of this mode remains unaltered, mode II is 

considerably more unstable. Furthermore, the range of unstable wavenumbers ar 

for mode II is much larger. This can be explained by the fact that the secondary 

stream of profile 2 is much sharper than for profile 1. Such sharp variations in r are 

generally associated with large wavenumbers ar. This is exemplified by the fact that 

discontinuous profiles are unstable for all wavenumbers. 

Our investigation of the new velocity profile indicates that the choice of profile 

is important factor in the overall stability, for any given ()2 . However, we also found 

that even when the profile is altered, the effect of ()2 remains the same. According 

to the similarity solution used for profile 2, ()2 decreases from 0.140 to 0.133 as the 

radius ratio r goes from 2 to 4. On the other hand, using equation (2.6) means that 

()2 increases from 0.140 to 0.220 for the same increase in r. As such, even though 

the instability decreased with r for profile 1 and increased with profile 2 (see Fig. 3.5 

and Fig. 3.8), the important point is that in both cases the instability increased 

with decreasing momentum thickness ()2 . This serves to confirm that the momentum 

thickness ()2 is a parameter of prime interest in the study of the stability of mode II. 
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Concluding Remarks 

In this thesis, we have presented the results of an investigation of the stability of 

both plane and coaxial jets with velocity and temperature profiles characteristic of the 

exhaust region for a turbofan engine. The form of the profiles and the parameters that 

we varied were guided largely by experiments conducted by Papamoschou involving 

coaxial jets. We were particularly interested in how the stability of the jet would be 

infiuenced by the geometrie effects, compressibility, the azimuthal wavenumber of the 

perturbation and the ratio of the velocities of the primary and secondary streams. 

First, we conducted a comparison between a two-dimensional and an axisymmetric 

jet, the flow being incompressible. For the profiles under consideration, there are two 

modes of instability associated with either the primary or secondary streams. It was 

found that for profile 1 in the incompressible case, that the growth rate -ai is very 

similar for the two-dimensional and axisymmetric cases for both modes. However, it 

was also observed that the two-dimensional and axisymmetric cases react differently 

to changes in geometry in that two-dimensional fiows are more sensitive to such 

changes. We then described the effect of compressibility on the stability of the profile. 

Wc found that, ovcrall, comprcssibility decrcased the instability of the profile, exœpt 

for low wavenumbers. As compressibility allows for the generation radiating modes 

travelling at ambient sound speed, it is noteworthy that sorne were observed here. 

Thcse occurrcd in the hot profile for M 0 ~ 0.8281, though the critical value of M 0 

can be decreased by increasing h. 
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Another conclusion derived from our analysis is that generally, the most unstable 

modes are those associated with the azimuthal number m =O. However, if the profile 

is slowly varying in r, it is possible for the m = 1 modes to become more unstable 

than the m = 0 mode. The parameters determining which of the two profiles is more 

unstable were found to be Od R1 for mode I, mirroring Michalke's findings, while for 

mode II, the significant parameters were found to be bath 02 / R1 and r. 
The final element of analysis was the effect of velocity ratio h and radius ratio r on 

the stability of profile 1 and 2. It was observed that mode I was mainly influenced by 

h, while mode II was mainly influenced by the secondary stream momentum thickness 

02 , through the intermediary of r since 02 = 02 (f). The observed "independence" 

of the two modes, provided r 2: 2, has the benefit that it is straightforward to tune 

the instabilities. Specifically, it is simple to reduces instability of the most unstable 

mode, mode I 1, by increasing 82 . 

Future investigations on the stability of coaxial jets would most benefit from using 

non-parallel profiles. This would allow one to compute estimates of the radiated 

noise associated with the instabilities waves. Dahl and Morris [7] considered this 

problem for supersonic jets. To the best knowledge of the author, however, such an 

analysis hasn't been carried out for subsonic jets such as those studied in this thesis. 

Furthermore, the linear stability of slowly divergent axisymmetric jets in general could 

be supplemented by studying the propagation of wavepackets by solving the amplitude 

evolution equation derived in section 1.2. This theory could then be compared with 

Tarn and Morris [23], or Dahl and Morris for coaxial jets, to determine if the predicted 

radiated noise is improved by a wave packet analysis. 
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Appendix A 

Similarity Solution for the Velocity 

Profile 2 

Profile 2 from Fig. 2.2 is derived by matching the primary stream of Profile 1 to 

the similarity solution of the boundary layer equations at a point Tm, which depends 

on the desired secondary radius R2 . The sirriilarity solution th en serves to describe 

the secondary stream and the outer region of the velocity profile. The advantage of 

this matched profile is that once the secondary radius R2 is specified, the similar

ity solution determines the secondary stream momentum thickness, i.e. (h. Renee, 

by solving the boundary layer equations, we have designed a means to relate the 

secondary momentum thickness to the secondary radius, 02 = B2 (R2 ). 

As mentioned before, the boundary layer equations are the starting point for this 

solution. They are derived from the steady Navier-Stokes for incompressible fiows 

(A.l) 

and the continuity equation 

V· V= O. (A.2) 

To get the boundary layer equations for an axisymmetric flow from (A.l) and (A.2), 
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a number of terms must be neglected. The neglected terms are those whose con

tributions are small in the boundary layers and they are determined using order of 

magnitude arguments (Ref. [4], p.27) based on the fact that variations accross the 

boudary layer are much larger than those parallel to the boundary layer. For axisym

metric flows, thcse simplifications take the form (Ref. [21], p.231) 

nôu +v ôu =v~~ (r ôu) 
ôx ôr r ôr ôr ' 

(A.3) 

and 
ôu ôv 
-;:) + --:::1 = 0 ' 
u.T ur 

(A.4) 

where the r-direction of (A.1) was neglected, while the 0-direction is zero for axisym

metric flows. One important assumption made in deriving (A.3) is that the pressure 

can be regarded as constant. This means that the flux of momentum in the x-direction 

is constant 

(A.5) 

.Just as in section 1.2, we can introduce a stream function defined as '1/Jr/r = u and 

'1/Jx/r = -v to solve (A.4). Substituting the stream function into (A.3), we get 

We now look for a similarity solution to this equation by looking at a solution of the 

form (Ref. [21], p.231) 

r 
where 17 =-. xn 

(A.7) 

By requiring that the solution satisfy equation (A.5) and that the friction and in

ertial terms in (A.3) be of the same order, we obtain that p and n are equal to 1. 

Substituting the similarity solution into equation (A.6), we obtain the equation· 

(A.8) 
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Integrating by parts twice leads to the equation 

F' = _ F
2 

+ 2F _ c177 + C2 . 
277 77 2 77 

(A.9) 

In Schlichting's treatment of this equation (Ref. [21], p.232), the boundaries used, 

i.e. TJ = 0 and 77 = oo, mean that Cl, c2 =O. However, taking the boundary condition 

at an arbitrary point 77m = r mf.r i= 0 means that these constants do not necessarily 

vanish. A priori, the only requirement is that lim11-.00 u(77) = O. This requirement 

means that lim11-.00 F' /77 = 0, and hence we conclude that 

F 2 2F C C 
l. 1 2 0 Im--+---+-= . 

q-+oo 2772 772 2 772 
(A.10) 

So as 77 ~ oo, F(77) ~ 2- )4- C1772 + 2C2, or equivalently 

(A. 11) 

However, such a solution would imply that the momentum flux of the jet, J <X 

ft nh·dr, is infinite. To avoid this, it is necessary to take C1 =O. 

It is now easy to solve (A.8). We first look for a particular solution, because (A.8) 

is a Ricatta's equation which has a solution of the form 

F(77) = 1/ !(77) -i- FP(77), (A.12) 

where Fp is a particular solution. Trying a to find a constant solution, Fp = const., 

to (A.9), we get a quadratic equation for Fp 

p2 
0=-f+2Fp+C2 . (A.13) 

Taking the root Fp = 2- J4 + 2C2 for convenience, we can now substitute (A.12) 

into (A.9) to find j(77). The resulting equation is a non-homogeneous first arder 

equation 

1·1 f 1 h +r- = -, w ere 
77 277 

(A.14) 
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This equation is easily solved with the standard techniques, i.e. integrating factor 

and variation of pararneter for first order equations. 

Having solved equation (A.6} for the stream function, we can now compute the 

velocity profile for the secondary stream 

(A.15) 

where f3 is a constant of integration. The constants f3 and r are determined by 

matching Us and u~ with the primary stream u1 , from equation (2.1), at 1Jm, while x 

is chosen such that B2 = 0.14 when r = 2, just as for profile 1. This matching of u1 

and 'Us gives us the velocity profile 2 as shown in Fig. 2.2. It should be noted that the 

viscosity v is unimportant since the resulting mean velocity profile u is normalized at 

17 =o. 
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