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Abstract

Motivated by a practical interest in noise generated by turbofan ehgine, this thesis
studies the stability of parallel coaxial jets with velocity and temperature profiles
characteristic of the exhaust region of the engine. Because the bypass stream mixes
with both the exhaust and the ambient air, these profiles contain thin layers in which
the velocity and temperature may vafy rapidly. As a consequence, multiple insta-
bility modes are possible. In accordance with Rayleigh’s theorem for axisymmetric
incompressible shear flows, it follows that there are threc possible modes, only two
of which are unstable. To complement the study of pérallel flow stability, this thesis
also includes the derivation of the amplitude evolution equation for slowly varying

axisymmetric incompressible flows.



Résumé

Cette these, motivée par un intérét pratique pour le bruit généré par les turboven-
tilateurs, étude de la stabilité de jets paralleles ayant des profils de vélocité et de
température propres a la région d’échappement. Comme le flux secondaire entre en
contact tant avec le gaz d’échappement qu’avec 'air ambiant, ces profils contiennent
de minces couches dans lesquelles la vélocité et la température sont portées & varier
tres rapidement. Par conséquent, de nombreux modes sont possibles. Suivant le
théoreme de Rayleigh pour les flux incompressibles axisymétriques dans les zones de
cisaillement, trois modes sont possibles, dont deux seuls sont instables. En tant que
complément de I'étude de la stabilité des flux paralleles, cette these inclut également
une dérivation de P'équation d’évolution d’amplitude pour les flux incompressibles .

axisymétriques a variation lente.
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Introduction

A good model to predict radiated noise for jet flows is still very much needed today.
According to Goldstein [8] direct numerical simulations of the Navier-Stokes equa-
tions for compressible flows, is computationally prohibitive. His argument is that the
number of mesh points necessary to resolve all the relevant length scales is propor-
tional to the Reynolds number Re, raised to the nine-fourth. For typical jet engine
flows, this corresponds to ‘1012 to 10 grid points [8]. This certainly underlines the
limits of brute numerical computations. However, it is not the purpose of this thesis
to dismiss numerical simulations, which are continuously being improved and obvi-
ously contribute to our understanding of the problem. Instead, the aim here is to
pursue an alternative, linear stability, to shed light on some of the dynamics at plaLy.
In fact, Morris 7[18], who has been quite involved in the modeling of noise radiation,
pointed out “that numerical simulations have made tremendous progress in recent
years”.

The first model to predict radiated noise, considered as the birth of aeroacoustics

“as a research area [25], was published in two papers by Lighthill in the early 1950s [11,
12]. The model, known as the acoustic analogy, attempts to identify the origin of noise
by rearranging the compressible Navier-Stokes equations into a linear wave equation
for the density on the left hand side of the equation and tfansfer any remaining terms
on the left hand side of the equation. The result is a non-homogenous linear wave

equation where the non-homogeneous terms are identified as noise sources.
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The drawback of this approach is that source terms need to be specified or ap-
proximated in some fashion. Indeed, the theory is ﬁot self-contained and information
about the nature of the turbulence in the flow has to be incorporated before any
prediction can be made [25]. Nonetheless, this model proved to be successful at pre-
dicting the scaling laws of noise radiation, and a number of improvements were later
made to account for such phenomena as the convection and refraction of the waves
by the mean flow. In fact, the acoustic analogy model proposed by Lilley [13], which
corrected the Lighthill model for the refraction of the waves by the mean flow, is still
used today in the most advanced industrial noise prediction methods [8]. Despite its
qualities, the acoustic analogy model is unable to account for small changes in the
flow, such as the changes produced by noise suppression devices for jet engines. It is

precisely this limitation that drives current research in aeroacoustics.

The discovery of large scale turbulence in jet flows in the 1970s by Crow and
Champagne [6], led them to propose that these large structures could play an impor-
tant role in noise generation. Subsequent investigations showed that noise generation
has two sources, fine scale turbulence and large turbulence structureé [25, 18, 26].
Specifically of interest for this thesis is the large scale turbulence that was found to
be an important source of noise for both supersonic and subsonic flows, though to a
lesser extent in the case of subsonic flows. The statistical properties of large large
turbulence suggests that it can be modeled by mean flow instability waves [25], and
many investigations have shown this to be a good model [16]. Most of the stabil-
ity computations reported to date have been for velocity profiles that involve either
discontinuities, i.e. vortex sheets, or clse @ varies slowly with r. We, however, are
interested primarily in the stability characteristics of coaxial jets with velocity pro-
files representative of exhaust conditions for a turbofan engine. In particular, in this
thesis we carry out a detailed investigation using velocity and temperature profiles

from the coaxial configuration used in the recent experiments of Papamoschou [19)].
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The link between instability waves and noise generation is not devoid ’of problems,
however. In section 2.2, it is shown that instability waves for axisymmetric jets decay
exponentially to zero far away from the jet. This asymptotic behavior, which also
holds for two-dimensional jets, implies that there is no acoustic radiation associated
with the instability waves themselves, unless the phase speed ¢, of the instability
wave is equal or greater than the ambient sound speed an. Tam and Morris [23]
pointed out in 1980 that the problem lay in the parallel flow assumption commonly
used for stability analysis. Tam and Burton [24] then showed that this difficulty in the
modeling of noise radiated by instabilities could be resolved by taking into account the
slow divergence of the jet flow and by extending the resulting solution to the outer field
by means of a matched asymptotic expansion [24]. Papers by Benney and Rosenblat,
Bouthier, Crighton and Gaster, and Saric and Nayfeh [2, 3, 5, 20] had already been
published on the subject of non-pardllel effects in jet flows. All these papers employed
multiple scales to account for the slow variation of the flow, a method that was first
proposed by Benney and Rosenblat [2]. It is Tam and Morris [23], however, that

extended this method to the theory of noise radiation.

Interestingly, Bouthier [3] is alone in having considered fhe propagation of wave
packets in slowly diverging jet flows. Even if the primary goal of this thesis is to
study the stability characteristics of a parallel coaxial jet, it was deemed worthwhile to
investigate how Bouthier’s development of the amplitude evolution equation in a two-
dimensional jet would apply to axisymmetric jets. The derivation of the amplitude

evolution equation for a wave packet is presented in section 1.2.

Returning now to the objectives of the present thesis, we have investigated a
number of the factors influencing the stability characteristics of compressible coaxial
jets. These include the diameter ratio and the velocity ratio of the primary and
secondary streams. In experiments, cold jets are often used for the primary stream, so

we have considered both hot and cold jets. The differences between two-dimensional
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and axisymmetric jets are also of interest and we compare their amplification rates
and the number of unstable modes. In the case of coaxial jets, we show that the
growth rates are comparable for the m = 1 mode and the axisymmetric perturbation,
but get smaller for increasing values of m, the azimuthal wavenumber. At subsonic
Mach numbers, compressibility does not change the qualitative behavior of unstable
modes, except to saLy that it has a stabilizing effect, so for some comparisons, it is
sufficient to study the incompressible case. Before discussing these results in more
detail, however, we first present in chapters 1 and 2 the goverﬁing equations and the

numerical methods that were used to solve them.



Chapter 1

Shea'r Layer Stability

1.1 Axisymmetric Jet Stability for Parallel Flows

1.1.1 Governing Equations

To obtain the governing equations, we consider small perturbations to a compressible
stationary parallel jet with ?elocity and temperature mean profiles V' = (0,0, a(r)),
T :‘T(r) in a cylindrical coordinate system (r,0,z). By combining the continuity,
energy and three momentum equations, a single equation can be derived for the radial
component of the pressure perturbation p’ = p(r) exp{i(azx + mf — wt)}. Here the
barred variables represent mean profiles, while the primed variables represent small
perturbations to the mean profiles. Meanwhile, the hatted variables corresponds to
the real eigenfunctions of the perturbations. The link between these variables and
the flow variables, V', p and p , is made explicit in (1.4) below.

We follow Dahl and Morris’ [7] derivation and start with the inviscid momentum

equations for an ideal gas

P+ (VO VI =y 1y



the continuity equation

0
P v (pV) =0, (1.2)
ot
and the energy equation
Ip
5 FV-V)p+yp(V-V)=0, (1.3)

where p is the pressure, V is the velocity, p is the density, and ~ is the specific heat
ratio. Equations (1.1) and (1.2) are the usual momentum and continuity equations,
but the derivation of (1.3) deserves some brief comment. For an adiabatic process,
the first law of thermodynamics can be written p Dh/Dt — Dp/ Dt = 0, where h is the
enthalpy. If we assume an ideal gas, then the equation of state is given by p = p RT
and h can be related to the temperature 7' using c,, the specific heat at constant
pressure. Taking the substantial time derivative of the equation of state, DT/ Dt can
be replaced by a combination of Dp/Dt and Dp/Dt and the latter can be eliminated
using the continuity equation. We obtain (1.3) finally by noting that R = ¢, — ¢, and
the rat-io of specific heats v = ¢,/¢,, where ¢, is the specific heat at constant volume.

The advantage of presenting equations (1.1), (1.2), and (1.3) over starting with
linearized equations, as was done by early papers, is that it serves as a convenient
starting point for readers who may wish to eventually carry out a nonlinear study.
To derive the governing equation for the eigenfunction p(r), it is necessary linearize
these equations, however. This is done by considering small perturbations of order

i < 1 to the mean profiles
p=p+up, V=V+uV',  p=p+u. (1.4)

Substituting equations (1.4) into (1.1), (1.2), and (1.3) gives, to O(1), the same
equations, i.e. (1.1), (1.2), and (1.3), but for the mean variables 5, V, and p. ‘Since
the profiles are taken to be stationary and parallel in the z-direction, ie. V =

(0,0,4(r)), p = p(r), and since the pressure is constant for a free jet, more specifically
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p = 1/(yM2), where My is the exhaust Mach number, the p° order equations are
automatically satisfied.

To order u, we obtain the linearized equations for the perturbations p/, V', and

p
oV _ _ I _
W+V-VV’+V’-VV+%[V~VV]=—%Vp’, (1.5)
o | 'L e L = 'L O
W+V—Vp+V'Vp+pV-V+pV~V:O, (1.6)
ap/ X/ v/ — ! 7 X/
E+V'Vp+7pV~V+’ypV-V=O. (1.7)

Taking the perturbations to be in the form of normal modes, that is (p/, V', p/) =
(B(r), V (r), p(r)) exp{i(cx + mb — wt)}, where for spatially evolving waves, w is real
and o is complex and the reverse is true for temporally unstable modes, it is straight-
forward to derive the equation for p by substituting into (1.5), (1.6), and (1.7):

#p [1 1 dH]dp 2
P { ]—p—[a2(1—M§H)+% p=0, (1.8)

(a-w/jo)’

where  H(r)= (1.9)

To derive (1.8), we made use of the fact that the flow is stationary and parallel in
the z-direction once more, and we used the ideal gas law to substitute temperature
T(r) for the density p(r). It is important to point out that all variables in (1.8) are
dimensionless. Our scaling is identical with that employed in the survey article by
Michalké [16], in which velocities are nondimensionalized with respect to the exhaust
velocity and temperature at 7 = 0, up and Ty (so %(0) = 1 and T(0) = 1). Consistent
with that choice, the pressure and sound speed of the primary stream are used in -
defining My, the exhaust Mach number. The boundary conditions for equation (1.8)

require that p be bounded as » — 0 and that p tend to zero for r — oco. More will be

said about the boundary conditions in section 2.2.
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1.1.2 Eigenvalue Problem

Equation (1.8), derived in the previous section, describes an eigenvalue problem for
the pressure perturbation p. When stud'ying spatial instabilities, the eigenvalue is the
complex wavenumber o = «, + ia;, which is obtained for a given real frequency w
and azimuthal wavenumber m. The reverse is true for temporally unstable modes,
ie. the eigénvalue is the complex frequency, obtained for a given real wavenumber.
The resulting dispersion relation for spatial instabilities takes the form o = a(w,m)
for a given wavenumber m. Because the perturbations are in the form of normal
modes and are proportional to exp{i(az +m#f — wt)}, they will be spatially unstable
if a; < 0, neutral if o; = 0, and damped if o; > 0.

Given that most of our results exhibit qualitative behavior that is similar for both
incompressible and compressible jets, let us begin by briefly reviewing the stability
theory for the incompressible case. For plane parallel flows, the first important result
is Rayleigh’s inflection point theorem. This theorem states that a necessary condition
for instability is that @” change sign at some point in the flow [15]. In other words,
@” must vanish at some point in the flow and, from a physical point of view, this
amounts to saying that the vorticity %' must have an extremum. Building on this
result, Fjgrtoft went on to show that an additional necessary condition for instability
is that the absolute value of the vorticity has to be local a maximum at the inflection -
point. |

The generalization of Rayleigh’s inflection point theorem to parallel axisymmetric
flows is the following (see Batchelor and Gill [1]): a necessary condition for instability

is that the quantity Q'(r) = 0 for some value of r, where

Q(r) = i (1.10)

~ m? + a2r?
A further condition derived by Batchelor and Gill is the axisymmetric analogue of

Fjgrtoft’s theorem. It requires that ‘Z—‘;ﬂ, be a maximum at the point of inflection

8



with respect to p, where p is given by (1.12). Mo.re will be said about the variable p
and its relation with Rayleigh’s inflection point theorem below. Batchelor and Gill
also showed that Howard’s semi-circle theorem applies to axisymmetric flows. This
means that the only neutral modes that are the limit of unstable modes are those for
which % = w/a at the value of r for which Q'(r) = 0.

A particularly significant feature of the stability criterion (1.10) is its dependence
on m, the azimuthal wavenumber. This is in contrast to Rayleigh’s inflection point
theorem for two-dimensional flows which involves only the velocity profile. An illus-

trative example considered by Batchelor and Gill is the velocity profile

= (—1:};2? (1.11)

which, according to (1.10), is stable to axisymmetric m = 0 perturbations. These
authors also showed, by considéring neutral modes and the real part of the semicircle
theorem, that as m — oo axisymmetric flows are stable and, as a consequence, for the
velocity profile (1.11) it turns out that only the non-axisymmetric m = 1 mode can
be unstable. Growth rates were not computed, but the critical wavenumber below
which instability can occur was estimated to be o = 1.46.

The obvious question to now address is the following: what is the relationship of
the foregoing stability criteria for plane parallel flows to the axisymmetric case? The
fact that the two-dimensional results are pertinent was made clear by Batchelor and

Gill who pointed out that a change in the radial coordinate to
p=m?logr + a’r?/2 (1.12)

changes the stability criterion (1.10) to be that @(p) has an inflection point. One
difference, however, is that for an axisymmetric jet such as the.one. illustrated in
Fig. 2.1, we would consider only half of the profile, given that 0 < r < oco. Although

this reduces the number of unstable modes, the possibility of non-axisymmetric per-
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turbations can lead to additional instabilities, as already noted above for the velocity

profile (1.11).

1.2 Amplitude Evolution Equation for Slowly Vary-
ing Axisymmetric Flows

Perturbations rarely consist of single wavelengths, as has been considered so far in
subsections 1.1.1 and 1.1.2. In fact, as mentioned at the end of the introduction,
suchv monochromatic instability waves cannot model noise generation. A number of
authors have addressed this problem by taking into account the slow divergence of
the jet in the z-direction through the use of multiple scales expansions [23, 24, 7].
However, none of these authors considered the propagation of wave packets in slowly
diverging jets. The exception to this is Bouthier [3], who looked at a slowly diverging
two-dimensional flow, though not in the context of aeroacoustics. _

In the interest of seeing how Bouthier’s method [3] applies to axisymmetric jet
flows and as a starting point for future numerical work on the aeroacoustics of slowly
diverging coaxial jets, what follows is a derivation of the amplitude evolution equation
for incompressible Slowly varying jets for axisymmetric disturbances. The derivation
is restricted to incbmpressible jets and disturbances with no-azimuthal dependence
in order to keep the algebra more manageable, but the method presented here would
still apply if these restrictions were lifted. For ease of reference, we tried to keep
the notation as close as possible to Bouthier’s. However, to avoid confusion with
other variables already used in this thesis or to clarify certain steps, it was deemed
" necessary to change some of the notation.

The assumption that the flow is incompressible means that the continuity equa-
tion (1.2) can be solved by using a stream function ¢. For an axisymmetric flow

V = (v,0,u) using the cylindrical coordinates (r, 8, z), the stream function is given

10



by 9,/r = u and 1, /r = —v. Substituting the stream function into the momentum

equations (1.1) and taking the curl gives the vorticity equation

O 0% 10y Wiy _
roeor "oz or  dsore (1.13).

We then employ the same method as in subsectioh 1.1.1 to linearize the equa-
tion (1.13). Again, we introduce small perturbations of order u << 1 to the mean
stream function so that ¥ = ¢ + u1)’. The difference with subsection 1.1.1 is that the
mean flow ¥ now depends on both z and r to account for the variation of the flow in

the z-direction. The resulting linearized vorticity equation for the perturbation ¢’ is

9 o MO oy WO or D g, 0D
8tD¢r8r D'+ 5r awaaaDw e oDV
+_ % pry + 2 D%} =0, (1.14)
8t 8 19
2_—_—.— S —
where D* = 57 + 5% " 7B (1.15)

Because the flow is assumed to vary slowly in the z-direction, we introduce the slow
scale X = ex and the mean stream function spatial dependence is then expressed as
¢ = 1(r, X). To apply the multiple scale method and derive the amplitude evolution
equation, we also need to introduce the slow scale T = ¢t and and the fast scale
A = O(X,T)/e. The stream function perturbation can now be expressed in terms of
these variables

’W(l’ar,taf) :F()\,T,X,T,G). (116)

Applying the chain rule, the partial derivatives become

o’ ‘ oF oF

5. = Oxgy teaaw

Y’ dF  OF

o = oy tear (L.17)
o _ OF

or  or’



Expanding F' in powers of ¢ gives
F = Fo(\r, X,T) +eF (A7, X, T) + O(c2). | (1.18)

We are now in a position to substitute F' back into (1.14). We can also take advantage
of the fact that the mean stream function i) does not depend on the fast variable A’

and immediately look for a solution of the form

Fy = @y(r, X, T)e™. (1.19)
To order ¢° this gives:
L(®p) = 0, (1.20)
where
Y,  ©Or 7?10 9 2 10\ Yy
S T N G Y (R 2
L (r +@X) ((87“2 ri)r) Ok or: ror) r (121)

It is worth noting that the equation (1.20) is equivalent to solving the parallel flow
problem for an incompressible fluid if © x and —© are replaced by « and w, i.e. the
wavenumber and frequency of the perturbation. This amounts to solving (1.8) for the
pressure perturbation p if the temperature is assumed to be constant and the Mach
number is zero. Obviously, the two problems share the same boundary conditions
and so in sleing‘ (1.20), we require that ®¢ be bounded as r — 0 and r — oco. The

solution of (1.20) also gives us a relation between O x and O
9(©x,0r7,X) =0. (1.22)

‘For a parallel flow, this would be a dispersion relation of the form a(w) = a discussed
in subscction 1.1.2. Here, however, equation (1.22) is actually a partial differential
equation for the unknown phase O(X,T).

The general solution of the perturbation order €° is now
Fy = A(X, T)¢o(r, X, T)e™, (1.23)

12



where A(X,T) is a slowly varying amplitude of the wave packet and ¢, is a solution
of (1.20). In order to obtain the equation for the amplitude A(X,T), it is necessary
to consider what happens at order e. Taking advantage of the fact that ¢ has no \
dependence, we look for a solution of the form F; = ®,e**. It is important to point out
that we have omitted a term proportional to A®;e** in F} despite the anticipation of
non-homogeneous terms proportional to e** at this order. The omission of this secular
term is justified by the requirement that the asymptotic expansion be uniformly valid
as € — 0. Indeed, F} is included in the expansion (1.18) in the form eFj, hence
the secular term would be proportional to eA®e** which is of order eA = O(1). This
contradicts the validity of the asymptotic expansion and any secular term of this form
must be set equal to zero.

With the form of F} in mind, the problem, to order ¢ is

_ 0‘1’0 OCI)O
L(®) =K (—8—,Z—;> + M (dX) + N (Do) , (1.24)
where the operators K, M, and N are given by:

9% 10

K = ~52 + = . + 6% (1.25)
[ T 02 ]‘ G / 7‘92 1 Tr rrr T

M=oY (010N (30:O0% 3 ‘/) +2@T@X+3‘/ . (1.26)

r \or? ror r r2

and

Nzﬂ{fi_3¢_xa_2_(l/)x9§<+¢er_¢Xr_ "/}_X_) -
or

r ord 2 Or? T T r2 73
bxO%F 1,050
+<2¢1X2x+3(/1 xOxx
r r

+@T@XX+2@TX9X) . (1.27)

For this problem to have a solution, it must satisfy a solvability condition. Taking

@ to be the solution of the adjoint problem of (1.20), this condition is expressed as

0= /:o [K (%{%‘)) + (Mgf(") + N(@o)} pdr. (1.28)

13



Because the general form of ® is given by ®y = A(X,T)¢o(r, X, T), as seen from
equations (1.19) and (1.23), the solvability condition yields an equation for the am-
plitude A(X,T). This equation is

0A

kX, 1)22 L nix, )24

9T X + TI(X,T)A =0, (1.29)

where k, m, and n are obtained from the orthogonality condition (1.28). They are

given by
KX, T) = /OOOK (¢o) pdr, (1.30)
m(X,T) = /OOOM (¢0) &dr,» (1.31)
and .
n(X,T) = /0 h [K (%3) +M (%%) +N (qﬁo)} ddr. (1.32)

At this point, we have derived a non-homogenous equation for a amplitude travel-
"ing at the group velocity ¢,(X,T) = —m/k. What is still missing from equation (1.29)
is the dispersive effect of the slowly varying jet on A(X,T), which is one of the main
objectives of this derivation. To include this effect, we need to go to higher orders
in the multiple scale expansion. To ensure that A(X,T) is separable at the desired
order, it is necessary to go back to the beginning and introduce a new variable that

travels with the wave packet

¢ =e/? <t - Mldm) . (1.33)

m(ex, et)

The rationale behind the definition of { will made clear below as the multiple scale

expansion is carried out.

With the new dependence on ¢, i.e. ¢ = F(\,r, X, T,(,¢€), the partial derivatives
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become

. OF L, 10F  9F

3r - mtelLac Tax

d _ OF L ,0F  OF

5 = @Tb—x-l*é ER ST (1.34)
o OF .

or  or’

We also need to revise the expansion of F' to account for the fact that the new variable

is of order €/2. The new expansion takes the form
F = FoOA\r, X, T,{) + /2 Fy oA\ 7, X, T,¢) + eFr (N7, X, T,¢) + O(¢¥%). (1.35)

By setting Fy = ®o(r, X, T,{)e** once again, we recover (1.20), (1.21), and (1.22) to

order €°. So similarly to (1.23), the general solution takes the form
Fy = A(X,T,C)éo(r, X, T)e™. (1.36)

Things get a little more interesting at order ¢/2. Just as before, we look for a
solution of the form F 12 = ®1ya(r, X, T,¢ )e*, where the secular term of the form A\¢y
has been set to zero in order to satisfy the requirement that the expansion be uniformly
valid as ¢ — 0. We obtain an non-homogeneous equation analogous to (1.24) with
the important addition that the non-homogeneous terms are all multiplied by %—?

L@y = (Ko + 01(0n) ) 52 (137)
The homogeneous solution of equation (1.37) is Ay /2¢, where L(¢o) = 0 and Ay/5(X, T, ()
is an unknown amplitude determined at order €¥/2, The particular solution is obtained
by variation of parameters and has the forfn %’é‘-qﬁl s2(r, X, T). Hence, the general so-
lution at order €'/? is given by

0A .
F1/2 = (:92—(]51/2 + A1/2¢0) 61)‘ . (138)
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However, for there to be such a solution, it is necessary for the non-homogeneous part
of (1.37) to satisfy the solvability condition |
0= /Oo [K(qﬁo) + —1—M(¢0)] Jir=k+—m, (1.39)
0 Cq Cq
where ¢ is again the solution of the adjoint problem of (1.20). Because the group
velocity is given c;,, = —m/k, the two terms in (1.39) cancel and the solvability
condition is automatically satisfied. It is precisely for this cancellation to take place
that ( was defined by (1.33).
Finally, order € allows us to obtain the amplitude evolution equation we are seek-
ing. Taking the solution at this order to have the form F} = ®,e**, once more omitting

the secular term in the process, leads to

o 29 ,
L(®) = ( e 2) iQ(®0) + p(dd<2°>, (1.40)
where
G=K+1m, (1.41)
Cq

the same non-homogeneous operator as in equation (1.37). (Q has already been derived

from order € in equation (1.24):

0 )
As for P, it is a new operator .
1 -0 '
P=- (2@X+—+3w X) . (1.43)
Cq Cq CgT

The forms of G and ) are not too surprising in retrospect. The non-homogeneous
terms of equation (1.40) must either come from the contribution of ¢'/% . ¢!/2 = ¢,
which gives G and P, or the contributions from e, which gives Q.

Applying the solvability condition to equation (1.40) means that

0= /Ooo {G (%2”) iQ(®o) + P (a;<2 )} dr. (1.44)
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Substituting ®; = A¢y and @,/ = a< ¢1/2 + Ay/2¢0 from equations (1.36) and (1.38)

gives , .
0=i [ 16 (@) + Po0)] 2 b+ / Q(@0)ddr (1.45)
0
where we made use of the fact that fo ¢0)¢dr = 0 as shown in equation (1.39).

Noting that [° Q(®y)¢dr is simply the left hand side of equation (1.28), we have

derived the desired amplitude evolution equation, namely,

0A 0A 9?A
KX T) 55+ mlX, T) 5 +p(X.T) 55 +n(X.T)A =0, (1.46)
where '
' o] dZA . .
pX.T) =i [ (6 (0ye) + Plo0] S (1.47)

and k, m, and n are defined by equations (1.30), (1.31), and (1.32). This equation
is very similar to (1.29), as can be expected, but this time it includes the dispersive

effect of the mcdluln on the wave through the term p24 342 .
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Chapter 2

DeScription of the Numerical

Problem

2.1 Mean Flow Profiles

As stated in the introduction, we wish to investigate the stability of compressible
mean flows representative of those in the experiments reported by Papamoschou [19].
In modelling these profiles, we have adapted to some extent ideas employed by other
investigators, such as Crighton and Gaster [5], with modifications so as to describe a
coaxial jet. The first v;elocity profile that we employ, hereafter referred to as profile

1, has the form

u = (1 - h)'l_tl + h’ag,

1 R, r |
where u, = §{l+tanh [bn (T—R—>]},and n=12. (2.1)

n
The parameter h is the velocity ratio, Us/U, in the notation of Ref. [19], of the
secondary (bypass) stream to the primary stream of the coaxial jet (see Fig. 2.1). R;
and I, represent the radii of the primary and secondary streams, respecti{fely. The

radii are defined such that they coincide with the mid-point of the velocity in the two
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streams. In (2.1) this corresponds to @;(R;) = 41(0)/2 and @a(Ry) = 12(0)/2. We, in
fact, use R; as the reference length scale for the problem; hence, the velocity profile
% is normalized so that R; = 1. Finally, the parameters b; and by are related to the
momentum thicknesses §; and 65, i.e. the momentum thickness computed for @; and
o independently, through b, = R,,/46,. For incompressible plane flows normalized

at r = 0, as is the case here, the momentum thickness is defined as

0= /Oou (1 —u) drv. (2.2)

For a thin shear layer, such as the shear layeré considered here, equation (2.2) is a
good approximation of the momentum thickness. In fact, (2.2) is regularly used in
the study of axisymmetric flows instabilities [5, 16, 22]. '

As already mentioned, we compute two separate momentum thicknesses instead
of just one for %. The reason that we employ two momentum thicknesses is that each
of the two instability modes appears to be associated with one or the other of the‘
mixing layers. We are following here the procedure of Talamelli and Gavarini [22], who
investigated the stability of incompressible coaxial jets to axisymmetric perturbations.
Finally, we note that, at the Mach numbers under consideration, it is the velocity
profile that most influences the stability, so the incompressible momentum thickness
is sufﬁcient for the purpose at hand.

Turning now to the temperature profile, the “cold” temperature profile T, is taken
from Papamoschou’s experiments, while the “hot” temperature profile T} is taken
from the mcan flow of a typical turbofan engine such as the General Electric CFM56,
for which the primary stream is heated. To relate the temperature profiles to the
velocity profile, a method commonly employed is the Crocco-Busemann law [21]

(y-DMga(i—a)

T(r) = Too + (1 — Tao) A(r) + 5

(2.3)

Having obtained the values of the “cold” temperature profile Ty of the primary stream,

secondary stream and outer region directly from Papamoschou, we did not need to
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use the Busemann-Crocco law. However, in order to allow for the temperature to vary
smoothly between the streams, we were inspired by (2.3) to use a quadratic relation

between Ty and @

Ty =au* +bu+c. (2.4)

Using Papamoschou’s data, the constants for a temperature profile normalized at
r = 0 were found to be a = —0.0592, b = —0.1032 and ¢ = 1.1624. As for the hot

temperature profile Ty, Papamoschou advised us to use

- 1 R,1 r 1 ‘
T1_§{1+tanh [b1< , — R—l>:|}+§ (25)

The distinctive feature of 7 is that the temperature of the primary stream, where

the flow is heated by combustion, is twice that of the secondary stream and the outer
region. Fig. 2.1 shows the velocity profile 1 and the temperature profiles, all of which
are normalized at r = 0. Finally, the Mach number for T} is My = 0.6558, while the
Mach number for Ty is M, = 1.

A primary subject of interest for this thesis is the effect of the radius ratio
I' = Ry/R; on the stability of the jet. From Eq. (2.1), it is straightforward to vary I'
by changing R,. However, to do this without also changing b; does not account for
the change in the momentum ;chickness 0, of the outer mixing layer as I' varies. For
a two-dimensional profile, no such change would occur since changing I’ corresponds
simply to a translation of the shear layer. However, the axisymmetric case is not as
straightforward, because a simple translation would be inconsistent with the cylindri-
cal geometry of the problem. To account for this change in the momentum thickness

of the outer stream, 65, we employ the relation

3 2

based on similarity arguments for axisymmetric jets first used by Crighton and

Gaster [5] in the context of slowly diverging jet flows. When applied to a coaxial
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Figure 2.1: Velocity defined by equation (2.1) along with hot and cold temperature
profiles. The velocity ratio used for this figure is h = 0.7, the radius ratio is I' = 2,

and the momentum thicknesses are #; = 0.1 and 6, = 0.14.

jet profile, this relation was found to be an excellent representation of Papamoschou’s
experimental data for the first ten primary radii, Ry, after the exhaust (see Fig. 13
(b) of Ref. [19]).

According to Crow and Champagne [6], the instabilities first develop one diameter
length away from the exhaust of the jet. Using this as the axial position of the

profile, the two momentum thicknesses are §; = 0.1 and 6, = 3/50 + Ry/25. Using

'Papamoschou’s Fig. 13 (b) again, the reference geometry for this thesis (Fig. 2.1)

has velocity ratio h = 0.7 and radius ratio T' = 2. The secondary stream momentum

thickness for this geometry is therefore f; = 0.14.

We also considered a second approach to account for the relation between I' and
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6. Going back to the boundary layer equations, we found that Schlichting’s [21]
similarity solution could be adapted to describe the shape of the secondary stream
by matching it to the primary stream. Specifying R, in this new profile, hereafter
referred to as profile 2, automatically determines the secondary stream thickness 65,
hence providing for a simple way of varying the radius ratio I". Profiles 1 and 2
are compared in Fig. 2.2. For a derivation of profile 2, we refer the reader to the

Appendix.

1.2

T Profile
ZProfife 3

Figure 2.2: Comparison of velocity profile 1 from equation (2.1) and the velocity
profile 2 using the matched similarity solution as described in the appendix, equation.
The velocity ratio used for this figure is h = 0.7, the radius ratio is I' = 2, and the

momentum thicknesses are #; = 0.1 and 0, = 0.14.
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2.2 Numerical Method

The range of integration is from r =0 tor — oo and, because the governing equation
for the pressure pe‘rturbation‘ (1.8) has a regular singular point at » = 0 and an
irregular singular point at infinity, series solutions are required at both ends. A Runge-
Kutta method was used to carry out the integration. For neutral or for unstable
perturbations with small growth rates, it is necessary to indent the integration contour
to avoid the singularity at 4. — w/a = 0 in order to obtain accurate converged
solutions. Because 4, is negative, the integration path passes above the singularity
in the complex r plane, Vcorresponding to the viscous limit as the Reynolds number
Re — oo or to the initial value problem as ¢ — oo (see Ref. [14], p.124 for the two
dimensional case). The integration path used is shown in Fig. 2.3.
We first take a look at the infinite series used to deal with the singular points at
r =0 and r = co. Near the origin, i.e. r— 0, equation (1.8) reduces to
25 5 2
%Jr%g’;’— o (1= M3H) + 25| p=0. 2.7)

The solution to (2.7) can be represented by a Frobenius expansion having the form
ﬁ = Do T'Iml []. + §17'2 + O(T4)] . ) (28)

If the velocity and temperature profiles are relatively flat near the centerline, as in
our case, H(r) ~ H(0) and a good approximation to the solution is given by the

modified Bessel function I, so that near r =0

p~In (amr> . (2.9)

As r — oo, @ — 0 and H is constant, such that once again, (1.8) becomes a
modified Bessel equation. This time, however, the desired behavior corresponds to

the function K, whose asymptotic expansion decays exponentially as r — oo so that

pr~Kn (amr) . (2.10)
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Using the conditions (2.9) and (2.10) above to initiate the integration, we integrate
toward an interior value of r from either side and compute the Wronskian W (w, &) of
the two solutions at this interior point. Integrating toward an interior point means
that the Runge-Kutta method will not pick up the exponentially growing solutions
as v — ( or r — oo. Iterating on the parameters of the problem, the integration is
repeated until W(w,a) = 0. The Newton method for complex functions was used
in order to achieve a rapid convergence. Because this algorithm is quite sensitive to
initial conditions, a good starting guess was first obtained by plotting W on a coarse
grid. Once the Newton method. had successfully converged, it was simple to reuse
the solutions as subsequent guesses by varying the parameters of interest by small
increments.

Indenting the integrat‘ion path into the complex plane to solve equation 1.8 also

requires some explanation. In the interest of simplicity, we use a general second order

equation _
(@ dp
—, —.p = 0. 2.11
r(55 Far) =0 2.11)
With the complex variable r = r, + ir;, the first derivative takes the form
dp or.\ dp or;\ dp
— = v —_— 2.12
dr (8r>drr+(8r>dri (212)

On the segment from 0 to A in Fig. 2.3, the independent variable is r, = r and
so (2.11) is the same, except for the obvious substitution. On the segment from A

to B however, the independent variable r; is given r = r4 + ir;, where r4 is the real

component of point A. Isolating for r; we get r; = —i(r—r4) and so the equation (2.12)
reduces to

dp dp

B 2.

dr ' dr;’ (2.13)

while the second order derivative becomes

d’p 2. 4P dp |
g = VG =g 21



r,-A

Figure 2.3: Integration path for p in equation (1.8). The indented contour is used in
order to avoid the singularity at i, — w/a = 0, denoted by “x” in the figure, as the

growth rate approaches the neutral solution, i.e. —a; — 0.

This means that equation (2.11) now has the form

%  dp
f( D =it ﬁ,m+m>_=0, (2.15)

S dr? Yary
with r; as the independent variable. Using the same technique, it is straightforward
to find what form (2.11) takes along any of the segments of Fig. 2.3.

It is not sufficient to know the form of the equation along each segment to solve it,
however. The boundary conditions at ecach point must also be modified in order for
the integration to be correctly performed. Taking point A as an example again, we
must relate the values obtained by integrating from 0 — A to the boundary conditions
needed to integrate along A — 3. For a second order equation such as (2.11), the

necessary boundary conditions are p and %. Using the equation (2.12) once more,
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we have
b _ dp and o _ ;4
dr — dr,’ dr 7ld’ri
along the segment from 0 to A and from A to B respectively. In other words, the

(2.16)

derivative with respect to r, and r; at point A are related by

dp _ .dp

Using this relation, it is easy to convert the solution obtained by integrating from
0 to A into the boundary conditions for the segment from A to B. Because all the
segments intersect at a 90° angle, this relation holds for all the other points in Fig. 2.3.

As a final note on the indented path, one has to be mindful of matched profiles such
as profile 2 described in the Appendix. In the specific case of profile 2, the indented
path cannot include the matching point, which is really a line in the complex plane.
The problem is that Profile 2 is not analytic across this line. Hence, it does not
make sense to integrate accross this line, except on the real axis where the matching
guarantees a continuous first derivative. In practice, avoiding this problem should
not present significant difficulties if the indented path is kept relatively short.

It is worth mentioning, before moving on to the computational results, that our
implementation of the numerical method described in this section was tested using
Michalke’s results such as Fig.9 of his survey article [16]. As expected, we were able

to reproduce is results without problems.
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Chapter 3

Computational Results

The necessary conditions for instability of the incoinpressible axisymmetric problem
given in subsection 1.1.2 specify that there are at most two unstable modes per
azimuthal wavenumber m when applied to profiles 1 and 2, discussed above. Both
of these modes were found to be unstable for the first few wavenumbers, m = 0, 1,
and 2. The result, discussed in subsection 1.1.2, that the neutral solution of these
modes must satisfy @ = w/a for r such Q'(r) = 0 (see Eq. (1.10)), can be used to
identify the modes. One value of 7 for which @ = w /a is found to lie in the primary
stream, while the other one is found to lie in the secondary stream. For this reason,.
the modes will be referred to as mode I and mode /I, depending on whether their

neutral limit lies in the primary or secondary stream. .

3.1 Two-dimensional vs Axisymmetric Incompress-

ible Jet Flows

The mirror symmetry about the z-axis for two-dimensional jets means that there are

even and odd modes. Applying the two-dimensional criteria for instability, inflection
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|

1.2

-a; Ry

Figure 3.1: Growth rates —q; of the two-dimensional modes and axisymmetric modes
with m = 0 for the incompressible profile 1 with velocity ratio h = 0.7 and radius

ratio I’ = 2.

point of maximum vorticity, to profile 1 suggests that there are two even and two

odd modes. As in the case of the axisymmetric flow, the modes are associated with

the primary stream or the secondary stream. Hence, for two dimensional geometry
it still makes sense to refer to modes [ and [/, provided the symmetry of the mode
is specified.

The incompressible instabilities of profile 1 for a two-dimensional and an axisym-
metric geometry with m = 0 exhibit surprisingly close values of growth rate —o;
for velocity ratio h = 0.7 and radius ratio I' = 2. Nevertheless, Fig; 3.1 shows that
the two-dimensional modes are slightly more unstable than the axisymmetric modes,

while the phase speed c,, is greater for the axisymmetric modes, see Fig.3.2. The

30



1.6 r - : : - .

1.4
1.2 :
: mode

_ |

L e 1 ko e o o i T T i 2

T

-
-
-

cph/To o8

06 mode IT

,,,,,,

0.4

0.2

Figure 3.2: Phase speed ¢, of the two-dimensional modes and axisymmetric modes
with m = 0 for the incompressible profile 1 with velocity ratio h = 0.7 and radius

ratio I' = 2.

exception to this is the phase speed of the odd mode [ which becomes infinite as
a, — 0. This mode behaves as an irregular mode, to use Michalke’s terminology [16],
for small values of a;. According to Michalke, irregular modes are characterized as
having finite growth rate —a; > 0 when «, — 0, just as in Fig. 3.1. However, for
larger values of ar,‘ this mode still behaves like a regular mode as it tends to a neutral
solution. This pinching of a regular and irregular mode is associated with the onset of
absolute instability explained by Huerre and Monkewitz [10]. It is worth noting that
this behavior of the odd mode I was also found to be present for a two-dimensional

broken line profile having the same velocity and radius ratios.

There are two other important differences between the two-dimensional and ax-
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isymmetric flows. The first, which has already been mentioned in the introduction,
is that there can be many more unstable modes for the axisymmetric jet because
of the azimuthal number. Here the m = 0 case was uéed for a comparison with
the two-dimensional jet instabilities because, as presented in section 3.3 below, this
corresponds to the most unstable case for all the profiles studied here.

The second important difference is that a change in the geometry of the profile
will not have the same effect on the two-dimensional modes as on the axisymmetric
modes. For instance, the two-dimensional modes are much more affected by a change
in the diameter ratio in (2.1). If T" is increased to 3, the instabilities decrease, as
discussed below in section 3.4. This decrease is much more pronounced for the two-
dimensional modes, however, to the point where they are no longer the most unstable

modes for I = 3.

3.2 Compressible Axisymmetric Jet Flows

Adding compressibility to the problem does not significantly affect the stability of the
jet flow. In fact; it is only for mode 11, as shown in Fig. 3.3, that there are noticeable
differences between the incompressible and the compressible profiles. Interestingly,
the incompressiblé profile is found to be more unstable than the compressible profile,
except for the hot profile at l‘ow wavenumber «,. As such, compressibility has a
stabilizing effect for both hot and cold profiles. This means that the incompressible
stability analysis gives an upper boundary for the most unstable wavenumber, as well
as the shape and width of the unstable spectrum.

Nonetheless, the study of the compressible profile is an important problem. Un-
der certain circumstances, it can lead to radiating modes, also referred to as Mach
waves by Michalke [16]. These occur when the pressure perturbation p(r) from (1.8)

decays as r~1/2 rather than exponentially. More specifically, as r — oo, the pressure

32



0.8 T ; T

‘—Incomp]

0.7
0.6

05
~-a;Ri04
0.3

0.2

0.1

() 0.5 1 15 2 2.5 3 Y P
: a,Rq

Figure 3.3: Growth rate —cq; of mode I for the incompressible and compressible

profile 1 with veloc‘:ity ratio A = 0.7 and radius ratio I' = 2.

perturbation behaves according to (2.10), which has the asymptotic form

1

p o~ —=elTArTmam)gilare=Xirtme-wt)
-

where A, +iN = a, (1—- M7 - (k)* — i2k)1/2 ,and k= —ao;j/a,. (3.1)

Hence, radiating modes require that A\, = 0. This can happen only for neutral
solutions, i.e. «; = 0, and only if the convective wave number, defined as M, =
(con/Uo) Mo(To/Two)'/?, is greater than one. As mentioned by Michalke [16], for m = 0
it is easy to determine the wave fronts of the general instability waves from equa-
tion (3.1): they are characterized by a,x — A\ir — wt = constant. Becausé instability

waves are monoéhromatic, they will travel in the direction normal to the wave fronts. |
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Taking the jet axis as reference, the waves’s inclination angle i is given by

-1

(\/(MC? L k) AR MR- 1 +k2>

cos?p= |1+ 5 ,

(3.2)

In the case of radiating modes, we have already established that «; = 0, so the above

equation simplifies to

COS L= Tr- (3.3)
Since the propagation speed of the instability waves is given by
Cow = Qoo M, cOs 4, (3.4)

where a,, is the ambient sound speed, radiating modes travel precisely at Mach 1,

fw = 1. Hence, these modes correspond to acoustic radiation.

oo

For the temperature profiles studied here, no such radiating modes are observed.
However, raising the Mach number for the hot profile does produce a radiating mode.
Indeed, using proﬁlé 1 from Fig. 2.1 with h = 0.7 and " = 2, the above conditions
are satisfied for the neutral solution of mode I if My > 0.8281. Raising the Mach
- number is not the only trigger for the development of radiating modes. As will be
discussed in section 3.4, increasing the velocity ratio  increases the phase speed ¢,
which implies that the Mach number for which a radiating mode develops is lowered.
For instance, when A is raised to 0.8, the Mach number at which a radiating mode
develops is lowered to 0.7843. Nevertheless, raising h to 1 still does not produce a

radiating mode for the reference Mach number for the hot profile (M, = 0.6558).
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Figure 3.4: Effect of the azimuthal wavenumber m on the growth rate —«; of mode

I1 for the incompressible profile 1 with velocity ratio i = 0.7 and radius ratio I' = 2.

3.3 Effect Qf the Azimuthal Number on Incom-

pressible Jet Flows

The most unstable modes for profile 1 (Fig. 2.1) are found to be the axisymmetric
modes for which m = 0. The one exception is mode I for a small wavenumber,
where both m = 1 and 2 are more unstable (see Fig. 3.4). The fact that m = 0 is
the most unstable mode is in contrast with the profile (1.11), which is only unstable
for m = 1. As Batchelor and Gill noted, however, the latter result is characteristic of
profiles that vary slowly in r, which is not the case here. In fact, Michalke found that
for a profile defined only through @; from equation (2.1), the axisymmetric mode is

generally more unstable than the m = 1 mode.
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Michalke conjectured that the important parameter here is §/R. He found that
if /R > 0.1, then m = 1 becomes more unstable than m = 0. This is consis-
tent with Batchelor and Gill’s note about slowly varying profiles, ds /R is inversely

proportional to the steepness of the profile when using ;.
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Figure 3.5: Effect of the diameter ratio I" on the growth rate —a; of mode /1 for the

incompressible profile 1 with velocity ratio h = 0.7..

Michalke’s result cannot be transposed directly to coaxial jets. The reference
length scale being R, there are three relevant parameters: 61/Ry, 62/R1, and I'. As
will be shown in section 3.4, mode [ is relatively unaffected by 65/ R and I'. As such,
61/ R, remains a good criterion to determine which azimuthal wavenumber between
m = 0 and 1 is the most unstable. In fact, it is for 8;/R; = 0.1, just as for Michalke,
that m = 0 and m = 1 are found to be equally unstable, while higher values are m

are less unstable.
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For mode I, the transition between m = 0 and m = 1 as the most unstable
azimuthal wavenumber depends on both 6/ R; and I'. Discarding (2.6) to let I" and
6, vary independently, the transition for I' = 2 occurs at 62/ R; = 0.246, while for
I' = 3, the transition occurs at 8,/ R; = 0.425. Finally, if (2.6) is employed, m =0 is

more unstable than m = 1 for all values of I

3.4 Effect of Velocity and Radius Ratios on Incom-
pressible Jet Flows
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Figure 3.6: Effect of the velocity ratio h on the growth rate —a; of mode I for the

incompressible profile 1 with radius ratio I' = 2.

The first striking result arising from the study of the cffect of A and ' on the
stvability of the coaxial jet is that mode I and /] appear to be “independent”. By
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this we mean that changing h affects mode I, while changing " affects mode I (see
Fig. 3.5 and 3.6). In other words, there is a simple mechanism by which one can tune
the stability of the two modes. For example, increasing I' reduces the instability of

secondary mode which, in the present case, is the most unstable mode.

However, it would be inexact to claim that all aspects of the two modes can be
controlled independently through h and I'. Looking at the phase speed, Fig. 3.7, it
is clear that mode I/ is affected by a change in h since ¢, — h as a, — 0 for that
mode. A change in T, on the other hand, still has little impact on the phase speed or
growth rate of mode I provided I' > 2. As I' — 1 however, the distinction between
the two streams is blurred and the stability of the coaxial jet no longer behaves so

elegantly. Changes in I" or h will then affect both modes. Nonetheless, for the values
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Figure 3.8: Effect of the diameter ratio I' on the growth rate —a; of mode I for the

incompressible profile 2 with velocity ratio h = 0.7.

of interest, I' does not affect mode I, while h has a limited effect on mode I1.

Despite the simplicity of the mechanism described above, changing the radius ratio
R, is not a straightforward matter, as was touched upon in section 2.1. Ultimately,
it was decided to use the relation (2.6) to describe the change in the momentum
thickness 6, With I'. However, if the secondary stream momentum thickness is left
unaltered as I is changed, it was found that the stability of mode I remains relatively
unaffected. This suggests that 0, is a parameter of prime interest for the stabiiity of

the secondary stream.

To account for the strong dependence of the results on the choice of equation (2.6)
to determine 65, we investigated the stability of profile 2 based on similarity solutions

of the boundary layer equations (see Fig.2.2). The stability of this profiie was found
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to bé quite different from that of profile 1. Although mode I of profile 2 is essentially
identical because the primary stream of this mode remains unaltered, mode I] is
considerably more unstable. Furthermore, the range of unstable wavenumbers a,
for mode 71 is much larger. This can be explained by the fact that the secondary
stream of profile 2 is much sharper than for profile 1. Such sharp variations in r are
generally associated with large wavenumbers .. This is exemplified by the fact that
discontinuous profiles are unstable for all wavenumbers.

Our investigation of the new velocity profile indicates that the choice of profile
is important factor in the overall stability, for any given #,. However, we also found
that even when the profile is altered, the effect of 6, remains the same. According
to the similarity solution used for profile 2, 05 decreases from 0.140 to 0.133 as the
radius ratio I" goes from 2 to 4. On the‘ other hand, using equafion (2.6) means that
6, increases from 0.140 to 0.220 for the same increase in I'. As such, even though
the instability decreased with I' for profile 1 and increased with profile 2 (see Fig. 3.5
and Fig. 3.8), the important point is that in both cases the instability increased
with decreasing momentum thickness ;. This serves to confirm that the momentum

thickness 8, is a parameter of prime interest in the study of the stability of mode /1.
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Concluding Remarks

In this thesis, we have presented the results of an investigation of the stability of
both plane and coaxial jets with velocity and temperature profiles characteristic of the
exhaust region for a turbofan engine. The form of the profiles and the parameters that
we varied were guided largely by experiments conducted by Papamoschou involving
coaxial jets. We were particularly interested in how the stability of the jet would be
influenced by the geometric effects, compressibility, the azimuthal wavenumber of the

perturbation and the ratio of the velocities of the primary and secondary streams.

First, we conducted a comparison between a two-dimensional and an axisymmetric
jet, the flow being incompressible. For the profiles under consideration, there are two
modes of instability associated with either the primary or secondary streams. It was
found that for profile 1 in the incompressible case, that the growth rate —a; is very
similar for the two-dimensional and axisymmetric cases for both modes. However, it
was also observed that the two-dimensional and axisymmetric cases react differently
to changes in geometry in that two-dimensional flows are more sensitive to such
changes. We then described the effect of compressibility on the stability of the profile.
We found that, overall, compressibility decrcased the instability of the profile, except
for low wavenumbers. As compressibility allows for the generation radiating modes
travelling at ambient sound speed, it is noteworthy that some were observed here.
These occurred in the hot profile for My > 0.8281, though the critical value of A,

can be decreased by increasing h.
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- Another conclusion derived from our analysis is that generally, the most unstable
modes are those associated with the azimuthal number m = 0. However, if the profile
is slowly varying in r, it is possible for the m = 1 modes to become more unstable
than the m = 0 mode. The parameters determining which of the two profiles is more
unstable were found to be 6,/ R; for mode I, mirroring Michalke’s findings, while for
mode 1, the significant parameters were found to be both 65/R; and T

The final element of analysis was the effect of velocity ratio s and radius ratio I" on
the stability of profile 1 and 2. It was observed that mode I was mainly influenced by
h, while mode /I was mainly influenced by the secondary stream momentum thickness
f,, through the intermediary of I' since fs = 65(T"). The observed “independence”
of the two modes, provided I' > 2, has the benefit that it is straightforward to tune
the instabilities. Specifically, it is simple to reduces instability of the most unstable
mode, mode I1, by increasing 6,.

Future investigations on the stability of coaxial jets would most benefit from using
non-parallel profiles. This would allow one to compute estimates of the radiated
noise associated with the instabilities waves. Dahl and Morris [7] considered this
problem for supersonic jets. To the best knowledge of the author, however, such an
analysis hasn’t been carried out for subsonic jets such as those studied in this thesis.
Furthermore, the linear stability of slowly divergent axisymmetric jets in general could
be supplemented by studying the propagation of wavepackets by solving the amplitude
evolution equation derived in section 1.2. This theory could then be compared with
Tam and Morris [23], or Dahl and Morris for coaxial jets, to determine if the predicted

radiated noise is improved by a wave packet analysis.
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Appendix A

Similarity Solution for the Velocity
Profile 2

Profile 2 from Fig. 2.2 is derived by matching the primary stream of Profile 1 to
the similarity solution of the boundary layer equations at a point 7,,, which depends
on the desired secondary radius R;. The simiilarity solution then serves to describe
the secondary stream and the outer region of the velocity profile. The advantage of
this matched broﬁle is that once the secondary radius Ry is specified, the similar-
ity solution determines the secondary stream momentum thickness, i.e. ;. Hence,
by solving the boundary layer equations, we have designed a means to relate the
secondary momentum thickness to the secondary radius, A2 = 05(R2).

As mentioned before, the boundary layer equations are the starting point for this

solution. They are derived from the steady Navier-Stokes for incompressible flows
V.-VV=-Vp+vV?¥vV, (A1)

and the continuity equation

V.-V=0. (A.2)
To get the boundary layer equations for an axisymmetric flow from (A.1) and (A.2),
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a number of terms must be neglected. The neglected terms are those whose con-
tributions are sfn_all in the boundary layers and they are determined using order of
magnitude arguments (Ref. [4], p.27) based on the fact that variations accross the
boudary layer are mﬁch larger than those pafallel to the boundary layer. For axisym-

metric flows, these simplifications take the form (Ref. [21], p.231)

ou ou 10 ou
N& —+ UE = U;E <’I""5—7:> , (A?))
and
ou Ov ,
Ir + el 0, (A.4)

where the r-direction of (A.1) was neglected, while the #-direction is zero for axisym-
metric flows. One important assumption made in deriving (A.3) is that the pressure
can be regarded as constant. This means that the flux of momentum in the z-direction

is constant

J = 27rp/ u*rdr = const . (A.5)
0

Just as in section 1.2, we can introduce a stream function defined as v, /r = u and

/7= —v to solve (A.4). Substituting the stream function into (A.3), we get
1 (&p 0%y + 1oy oy Oy azzp) 9 (82¢ 13w>

o VB:C

s\ Brasor Trocor 9zt oz ror ) (AD

We now look for a similarity solution to this equation by looking at a solution of the

form (Ref. [21], p.231)
P~ ;r”F(n), where n = % . (A.T)

By requiring that the solution satisfy equation (A.5) and that the friction and in-
ertial terms in (A.3) be of the same order, we obtain that p and n are equal to 1.

Substituting the similarity solution into equation (A.6), we obtain the equation -

!
(FF' =nF? —nFF") = 4 (F” — 5) . (A.8)

1
z dn n

n
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Integrating by parts twice leads to the equation
Fle e — — — 4+ —, (A.9)

In Schlichting’s treatment of this equation (Ref. [21], p.232), the boundaries used,
i.e. n = 0 and n = oo, mean that C;, C; = 0. However, taking the boundary condition
at an arbitrary point 7, = r,/* # 0 means that these constants do not necessarily
vanish. A priori, the only requirement is that lim,_,. @(n) = 0. This requirement

means that lim, .., F’/n = 0, and hence we conclude that

F? )
T LI .

lim — 4 5 T =0 (A.10)

So as n — 00, F(n) — 2 — /4 — C1n? + 2Cy, or equivalently

1 ¥
= G xt (A.11)
2 \/4 — 01772 + 202 n

U —

However, such a solution would imply that the momentum flux of the jet, J o
fooo @rdr, is infinite. To avoid this, it is necessary to take C; = 0.
It is now easy to solve (A.8). We first look for a particular solution, because (A.8)

is a Ricatta’s equation which has a solution of the form

Fm)=1/fm) + ), (A.12)

where F}, is a particular solution. Trying a to find a constant solution, F}, = const.,
to (A.9), we get a quadratic equation for F),
2

. Fp '

Taking the root F, = 2 — \/4+ 2C; for convenience, we can now substitute (A.12)
into (A.9) to find f(n). The resulting equation is a non-homogeneous first order

equation

1
f’—{-fy%:%, where v =+/442C,. (A.14)
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This equation is easily solved with the standard techniques, i.e. integrating factor
and variation of parameter for first order equations.
Having solved equation (A.6) for the stream function, we can now compute the

velocity profile for the secondary stream

us(n)zl/;;—im{ - [tanh (%m (g)w%l)r} , (A.15)

where (3 is a constant of integration. The constants 3 and ~ are determined by
matching u, and v/, with the primary stream u,, from equation (2.1), at 7y, while =
is chosen such that #; = 0.14 when I = 2, just as for profile 1. This matching of u;
and ug gives us the Velocity profile 2 as shown in Fig. 2.2. It should be noted that the
viscosity v is unimportant since the resulting mean velocity profile @ is normalized at

n = 0.
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