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PREFACE

This paper describes some of the development
work undertaken by the author on an electronic
synchronous speed regulating system for the National
Research Council of Canada. 1Its purpose is to show how
a control system of this type may be analysed by means
of servomechanism theory, and the methods by which stable
operation may be obtained. No originality is claimed for
the principle of control or for the methods of analysis
used here. However, the actual analysis of this control
system and its proposed stabilization, has not, to the
author's knowledge, been covered elsewhere in the
literature. The bibliography contains tiiose articles
which were used by the author to obtain an understanding

of the subject, as well as those referred to in the text.



CHAPTER ONE

LNTRODUC TION

At the National Research Laboratories, Ottava,
Canada, a sixty cycle frequency standard for laboratory
use is obtained from an electronic oscillator. The
maximum power which may be drawn from this source is
limited however, to about one kilowatt. In order to
obtain more power, the development of a regulator which
would maintain the output frequency of a D.C.motor-
driven alternator in synchronism with this standurd was
undertaken.

Synchronous speed regulators have been developed
before, notably in the paper will industry, where
electrical or mechanical differential devices are used to
adjust the field rheostats of the various D.C. driving
motors. The response of this type cannot be made fast
enough, however, to take care of instantaneous load
variations without introducing the danger of hunting, and,
in modern high-speed paper machiines, they have been
superseded by electronic or electronic-amplidyne speed
regulators, where adequate anti-hunt provision can be
made. xwlthough the latter are not synchronous ia the
strict sense of the word, the regulation was found to bse
sufiicient for practical purposes.

A regulator for the use cited here, nowever,



will have to maintain exact synchronism, and hence,no steady
state speed error at any load can be permitted. In order to
meet this stipulation, it is necessary to control the integral
of the speed rather than the speed itself. The controlling
force must be derived, therefore, from an angular displacement
instead of an angular velocity. Load compensation will be
obtained by steady state variations in angular position,
which do not show up as steady state speed errors, since the
speed is the time derivative or rate of change of angular
position.

The method proposed here is to apply a voltage
proportional to the angular displacement between the
reference and alternate frequencies to buck the fleld current
of the D.C.motor. Field current control is similar to
armaturé voltage control, but has the advantage that smaller
components can be used, with resultant saving 1ln cost and
space. It has the disadvantage of introducing a fairly

large time constant, the effect of which must be considered.

DESCRIPTION OF THE SYSTEM.

| The motor generator set for wiich the regulator
described in this paper was designed, consists of an A.C.
generator coupled directly to two identical D.C.motors. The
rating of the machinesls as follows:-

A.C.generator - 30 KVA, 550 V, 31.5 4, 1200 RFM, 60 CY, 3 FH.

D.C.motor (each)20 H.F.,115 V, 147 A, 1200 RPM, (connected in
series across 220 V).

Ti.e machines are coupled together by means of a flexible
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coupling. However, since this has a non-linsear

characteristic, a clamp was provided to alleviate the necesw

sity of allowing for its action in the stability calculations.

Most of the machine constants were obtained from

manufacturer's data but are easily measured. The method of

measuring a few of the less easily obtainable constants,

however, is worth mentioning here.

1.

Moment of inertia of the rotating parts. The retardation

method was used to determine this constant. The set was
driven at synchronous speed by the D.C.motors and the
input to the machine at no load measured. The core,
friction, and windage losses at synchronous speed were
determined by subtracting other known losses. The speed
was then raised about 10% above synchronous speed by
inserting a resistance in the field. The armature was
disconnected from tiie line,the additional resistance in
the field shorted out so as to return the field current
to normal value, and a decceleration curve obtained by
means of a stroboscopic disc and watch. If the disc
contains 16 segments and the stroboscopic light is set
to flash n times per minute where n 1s synchronous speed
in revolutions per minute, then the times at which the
rotor speeds reach 17/16, 16/16, 15/16 ... of n
revolutions per minute can be obtained. The moment of
inertia is a function of the slope of tine retardation
curve at any speed, and the losses at that speed, and

may be obtained from the following equation -



WR? = Kw X 2.165 x 10° Lb(Fr)? 1.1

I'pm d ( rpm)

The results obtained by this metl.od were compared with
manufacturer's data and found to be within 2%,

2« Inductance of the D.C.motor field. The set was driven

at rated speed from the A.C. end, and field current for
rated voltage applied to the D.C. machines. The field
was then short circuited and the time required for the
genserated voltage to decay to 0.368 of its former value
was determined. The inductance was obtained by
multiplying the time constant thus obtained by the
resistance of the circuit.

3. Inductance of the D.C. motor armature. The inductance of

the armature was obtained approximately by the General
Radio Impedance bridge. The time constant is very small
compared with other circuits and therefore great
accuracy in determining this constant was not deemed to
be important.

The regulator consists in general of a full wave,
grid controlled, thyratron rectifier. The plate voltage
supply, and hence tihie control power, 1s derived from the
alternator, and is at alternator frequency. The standard
frequency voltage 1is applied to the grids and tiie output
voltage of the thyratrons is therefore proportional to the
phase displacement between tue two frequencies. This

voltage is applied to a resistor in the field circuit in

such a way as to impede the flow of current in that circuilt.
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-Thus, if the frequency of the alternator increases, the
thyratron output and hence field bucking voltage will decrease,
allowing more field current to flow. This will slow down the
speed of the machines, decreasing the frequency.

It will be shown later that this form of control
1s unstable except at very small gain. The gain is a measure
of the stiffness of the system and determines the value of
the force developed to restore the system to normal after a
disturbance. FHFurthermore, the steady state error of tae
control system is a function of the gain, and since the
firing range of the thyratrons is limited to less than 1800,
the field current variation required by the D.C. motor to
compensate [for a given load change may be unobtainable
without exceeding this range. The gain is thus limited by
stability on one hand and steady state error on the other.

It will be necessary, therefore, to find some way of

increasing the stability of the system, so that it will be
capable of compensating for a reasonable steady state load
variation. A method of accomplishing this by the addition

of derivative or error-rate feedback is proposed in chapter

four.

APPLICATIONS.

ihe application of this regulator, as stated
previously, 1is to maintain synchronism between a D.C. motor
driven alternator and a frequency source of low power,
Another application however, would be in various mill drives

such as in a paper mill, where maintenance of synchronism



is an important factor. A further application, closely
akin to the purpose here, is the speed control of DeCo

motors by a low frequency oscillator.



CHAPTER TWO

ANATIYTICAL METHODS AND DESIGN

In attempting to make a preliminary analysis of
the operation of the regulator, advantage may be taken of
servomechanism theory which has been developed rather
extensively during the late war. Although this theory
deals mainly with the response of a control system to a
definite input function, it is equally applicable to
regulators where thie input 1s constant, and it 1s desired
to maintain the corresponding output constant, or nearly
so, during a temporary external disturbance. It is not
intended here to give a detailed development of modern
servomechanism theory but rather to outline briefly the
methods by which a system may be studied in order to obtain
the requirements for stability and desired response. Two
methods, the transient analysis method and the frequency
response method, are in present use but due to limitations
in contemporary mathematical theory, these may be applied
only to linear systems. A linear systew is ome in which
the motion or variation is related to the cause by a linear
differential equation with constant coefficients. Such a
system is seldom encountered in practice. Howevsr,
assumptions in the interests of producing linsarity over

the range of control required are usually made, and useful

design criteria obtained therefrom. A third method of



approach, that of electromechanical analogies, is at present
being developed. The analogous electrical circuit for the
system is set up and the response to various inputs viewed

on a cathode ray screen. This method is very flexible and
the effect of changing the parameters may easily be
determined. The apparatus required is considerable however,
and the expense is justified only if a fairly large amount of
work is to be done on control systems.

A servomechanism may be defined as a control
system wherein the controlling force 1s derived from the
difference between the input and output quantities. Such
a closed loop control system may be represented in block
schematic as shown in figure 2.1. It is comprised generally
of an error measuring device, an amplifier, and a power
unit. In addition, differentiating or integrating networks
and devices may be included between any two components.

THE TRANSIENT ANALYSIS METHOD

Closed loop control systems have a definite
tendency to hunt or, at least, perform damped oscillations
about the zero error point. The problem is to find methods
of damping these oscillations sufficiently while still
retaining a reasonable degree of respounse and static
stiffness. In the transient analysis method, the differential

equations of each component are set up and combined to form

the complete differential or characteristic equation of the

system. This equation will have the following form:-
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where p represents the first derivative with respect to
time, p2 the second derivative, etc. The coefficients are
proportional to the various system parameters such as
inertia, friction, amplifier gain, and the electrical circuit
constants. This equation is then solved, using any of the
several classical, operatioiial, or transform methods. The
roots of the eyuation will either be real or in conjugate
complex pairs, giving the complementary function with terms
of the form -

Ae%¥(cos wt % B) - for each complex root

hedt - for each real root.
There will also be a particular solution based on the input
function from which may be obtained the degree of steady
state error that exists. The key to the stability and
response of a system analysed by this method however, lies
in the complementary function solution of the characteristic
equation. It is essential for stability that the roots of
the characteristic equation contain no positive real parts.
The value of these roots, which gives the frequency of
oscillations, if any, and the degree of damping, determines
the speed of response of the system.

The main disadvantage of this method is
the labour involved in ths solution of the characteristic
equation, particularly if the degree is five or more. Furthermore
once a solution has been obtained, there is no way of

determining what parameters should be altered to improve



-1l=

System performance, since they are so completely intermixed
in the coefficients. 1f it is merely desired nowever to
determine whether the system is stabie or not, the
characteristic equation need not be solved. The application
Of Hurwitz' and Routh's criteria to tne coefricients will
r.oveal whether there are any roots with positive real parts.
These criteria however,have no provision for determining tne
value of damping, hence the information obtained is of
l1ittle use.

THE FREQUELCY RESPONSE MATIOD

The freqguency response or sinusoidal analysis
metihod eliminates the necessity of solving the characteristic
equation, and also shows clearly the effect of each parameter
on system performance. Tne method consists in general of
determining tine output/input ratio of the system for inputs
of different frequenciés. In any stable system the transient
response dies out after a given period of time, and, if a
new similar disturbance occurs, the transient will repeat
itself. Sucn periodic functions of time may be analysed in
a fourier sine series of sinusoidal terms. For each term in
the input, a corresponding term of the same frequency will
appear in the output. Hence variations of the output/input
ratio and phase angle with frequency, called the system
response function, may be determined. Since the input and
output functions each consist of the sum of their various
frequency components, this system response function will

contain all the information available from the characteristic
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equation. The actual interpretation of this function is
rather difficult, due to intermixing of parameters. However,
in automatic control systems where the input consists of the
difference or srror between the input and output, the loop
transfer function based on the output/error ratio leaves
most of the parameters independent.

THE SYSTEM HiusSTONSE FUNCTION.

Although céntrol systems are not usually analysed
by means of the sy:stem response function, a discussion of
some of its properties may be included here. This functicn
may be obtained by setting up the characteristic equation
of the system, and solving for the output/input ratio in
terms of the derivative opsrator p. The substitution p =
jw is then made. From this expression, the magnitude and
phase angle of the system response function may be determined
for various frequencies. Typical system response functions
are shown in figure 2.2, and the system response to a unit
step input is shown in figure 2.3. The ldeal function would
have a vaiue of unity and no phase angle variation over a
range of frequencies. Actual functions however differ from
the ideal in three waysie

1) The frequency response is not linear and resonant
frequencies sometimes appear which produce damped
oscillations under transient conditions. The
relation between the height of the resonant peak
and the time constant of the oscillations is not

expressible generally in mathematical form.
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However, experience has shown that peaks up to a
meximum of 1,3 are acceptables

2) The higher frequencies are usually attenuated,
resulting in sluggish motion of the system. The
System which passes the higher frequencies has a
faster motion, but since the lower frequencies
predominate in most input motions, the value in
this range is most important.

3) The phase variation is equivalent to a time delay,

“ and the best performance is obtained with a system

of least phase lag. It is a measure of the speed
of response of a system and is especially important
at frequencies near resonance.

THE IOOP TRANSFER FUNCTICN.

It was pointed out previously that in certain
types of automatic control systems, tiue control is based
on the error between the input and output, and hence an
investigation of the system response function in terms of
tlie output/error ratio or loop transfer function is
justified. Furthermore, stability, the fundamental
requirement of all automatic control systems, is solely
dependent on the output as a function of error and not of

input. The system rosponse function is related to this new

function by the following equationi-

00/01 - iof_f__ 2e1
) 1+ 9g/e

where © = @35 = ©@5. Equation 2.1 reveals a striking

similarity to that of the feedback amplifier where 9¢/e
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may be compared with the so called 1P characteristic. It
is from the terminology of such amplifiers that the term
loop transfer function is borrowed. The loop transfer
function may be investigated following the methods outlined
by MacColl and Bode, the Nyquist criterion applied, and the
results referred to the more general system response
function by use of a few simplerules developed by Hall.

Nyquist's criterion for stability, as originally

stated in his article, "Regeneration Theory", is in rather
complicated mathamaticai form involving the theory of
functions. Although this must be resorted to in eall
questionable cases, a more practical form which is freguently
used by control engineers may be stated as follows:-

"For a control system to be stable, 1t 1is required
that the Nyguist point -1 + JO be always "seen"
to the left when progressing along a compleX
frequency plot of the loop transfer function in
the direction of increasing frequency”.

A plot of typical loop transfer functions is shown in figure
2ei. The curves 4,B,C, exnibited here are stable with
various degrees of damping depending on tneir proximity to
the Nyquist point. Curve D on the other hand is unstable,
and its system will be subject to oscillations whose
amplitude increases with time.

The freguency characteristic of the loop transfer

function however, will reveal more information than this.

In figure 2.5 the point 0 represents the origin, N the
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Nyquist point and L a point on the characteristic at some
particular frequency. The vector OL is eyual to the value
of the loop transfer function €g/e at that frequency, and
the vector NL is equal to 1 + “o/e. Referring back to
equation 2.1 it is apparent that the magnitude i of the
system response function is determined by

NL

—

M= oL
and that the phase angle at that frequency is £NLO. Thus
from a plot. of the loop transfer function, the system response
function may easily be determined, plotted as in figure 2.2,
and the degree of resouance noted.

THE INVERSE I'hralisFiii FUNCTICN.

In certain cases, the inverse transfer function or
error/output ratio simplifies the calculation. Iaverting
equation 2.1, the following eguivalence results:-

cif€o = 8_ + 1 2a2
€o-

If e/eo is plotted én the complex freyuency plane, the

sane éurve may be used for the 6i/eo function by displacing
the origin to =1+j0. The ratio l/& then is the distance
from the new origin to a yoint on the curve corresponding to
a particular frequency. Likewise, tue phase angle of the
system response function is the negative of the angle that
the ei/eo vector makes with the real axis.

25IGN COIISIDERATICNS.
In the design of automatic control sy.teuws, the

first step is of course tLe selection of the type of

control to be used and cowmponents reyuired. It will be
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governed by such factors as cost, size, weight and
availability. The next step consists mainly of predicting
the values of the adjustable parameters which will give
optimum performance. In some cases it will be easier

to set the system up and use cut and try methods of
adjustment. However, in more complicated systeus an
enalysis is sometimes of use. This is especially so

where the simple system does not meet the specifications
and the addition of extra circuits and feedback 1s necessary.
In meking the adjustment, the following criteria should be
adhered to:-

1) The systew must be stable.

2) The resonant frequency or frequencies should

be as high as possible.

3) The damping at each resonant frequency should

be high.

L) The gain factor of the system should be high.
Unfortunately the above factors are not independent and
hence any design will in general be a compromise. Further-
more, accurate prediction of adjustable parameters for
optimum performance 1is nindered by the difficulty of
obtaining mechanical and electrical constants accurately.
the results obtained are usually surfficlent to

However,

onable the engineer tO set up the systewm, upon which final

ad justment or ntuning up" can be made.

Mhe method of obtaining values for the adjustable

parameters of a system, which will be given lers, is an
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interpretation of the loop transfer function and was
developed by Hall. It will be apparent however that

the process could also be applied to the inverse transfer
function with slight modification.

The loop transfer function will consist of two
parts, a frequency dependent portion and a frequency
invariant portion or gain factor. The galin is usually the
most easily adjustable and hence a method for obtaining
optimum gain is desirable.

It has been stated previously that the gain of
the system should be high. This is based on the presise
that high gain -

1) reduces steady state and transient errors

in the systen,
2) increases the resonant frequency of the
system in most cases,
3) increases the magnitudes of the real roots
of the system 1in most cases.
High gain however also reduces the real parts of the complex
roots or damping constants, and hence continued increase in
gain will result in instability. The optimum value of gain
may be determined from the transient response of the system
if known. A transient analysis, except for simple systems
is laborious, and therefore selection based on the amplitude
of the resonant peak of the system response function is
frequently used. In figure 2.6, some typical system response

functions are shown. Curve A represents an overdamped

system (no couwplex roots), curve B critically damped,. -
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curve ¢ underdamped with large damping factor, and curve D,
underdamped with small dauping factor. Curve C is usually
considsred optimum for most applications and represents an
amplitude response of approximately one and one-third. If
the gain obtained for optimum transient performance of the
system is not sufficient to meet other specifications,
variations in the freguency dependent portion, either by
adjusting parameters, adding fesdback, or even sxtra
components, must be considereds

SELECTION OF THE GAIN FACTOR.

Before giving the steps for determining optimum
gain, the locus of constant amplitude M of the system
response function will be derived.

Let the loop transfer function vector ©o/e = X + jY

Then =% _ =0%g/e =/x2 + Y2 )
°1 1+ 9/ (1+X)< + Y
or M2 = X% + Y%, >
(L +X)~+Y
Xz + 2M° X+ Y% = -M2
M~=1 M~ =1
2 2 2 2
X + M ] + Y7 = M
Center at —Mz 0 2l
Me=1

further relation .
and @ Center of circle = M 2e5

intercept on real axis M-I

Having now obtained the locus for constant L.,
it is merely required to select the value oI gain whigh will

place the locus of the transfer function in tangency with
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the locus of maximum amplitude response desired. The
simplest procedure is to recognize that changes in gain
are equivalent to scale changes in the complex freyuency
plane where the transfer function is plotted. This
procedure is as follows:-
1) Tlot the frequency dependent portion only of
the loop transfer function.
2) Construct a circle that is both tangeat to
the locus of the transfer function and which
has a radius and position that equation 2.5
holds for the desired M (usually M=1.3)
3) The value of gain then is the factor by which
the location of the centre of this circle
must be multiplied to agree with the value
obtained from equation Z2.4.
This method is illustrated in the next chapter where it

is applied to the loop transfer function of the simple

regulator.
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CHAPTER THREE

ANALYSIS OF THZ 3ILPLE RUGULLTOR

The circuit of the first prototype of the
electronic synchronous speed regulator, without anti-hunt
feedback, is shown in fig. 3.1l. The output fregquency
and voltage of the alternator is applied to the thyratron
plates through transformer T and is compared with the
reference frequency which is applied to the thyratron grids
through transformer T,. The variable resistor R} is a
device by means of which the amount of bucking voltage
introduced into the field circuit may be varied without
changing the effective resistance offered to the field
supply voltage. Resistor R2 is added to 1limit the thyratron
current to a safe value. Resistor R3 is tne usual field
rheostat for rough adjustment of the field current to a value
which is in the range of thyratron control. Selection of the
steady state firing angle of the thyratrons may be obtained
by small adjustments of R3.

For purpose of analysis, the regulator may be
represented 1in block form as shown in fig.3.2. Before
proceeding with the developuent of the transfer function
however, a fow assumptions must be made in the interests of
preserving the linzarity of the system. These are:-

1) The function (l+cos@) is assumed to be linear and

of the form (2-K;0),in order that tie voltage output
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of the thyratrons may be expressed as a direct
linear function of the firing angle. Since
the regulator must be stable over its entire
operating range, the maximum value of K, unity,
will be used in stability calculations. If the
system is fairly "stiff" and the angular variation
for a given load éhange is small, then the error
obtained in making thie assumption will not be
large.

2) The field current-speed relationship for the
shunt motor is also assumed to be linear over
the range considered. That is:-

V' = A - BI}
1+T,p(1+T,p) 3.1

The numerator is the familiar eguation of the
straight line and the denominator contains innerent
time delays which must be considered in any transient
analysis. The derivation of this equation will be
given later.

3) The variation of the thyratron plate voltage Ey, which
is derived from the alternator output voltage and
hence is a function of the speed, is assumed to be
negligible. This is necessary to avoid the
occurrence of a derivative squared term in the

equation which would destroy the linearity.

DERIVATION OF THE IOCP TRANSFER FUNGTION.

In the study of closed cycle control systems, it

;¢ convenient to "break" the continuity of the control loop
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at some pdnt, and determine the transfer function in terms
of the input and output quantities at that point. In this
case the break is made between the alternator and the
thyratron control, as shown in figure 3.2. The firing
angle of the thyratrons is the difference in phase between
the plate and grid voltages, and may be expressed as the
integral of the difference between the two angular
velocities. That is:-

§ = Vt--Vs 3.2

Y

where Vi,V are the angular velocities of the two voltages
expressed in electrical radians per second. Hence the
voltage output of the thyratrons is:-

B¢ = Eg(l+cos 6) - I%Rk

= Et—I%Rk+Etcos{V3‘Vs} 3.3
p L

Applying the cosine approximation:-

E6=2Et~I%RK-EtKl (Vg-v3) 3ek
- | (—p—)

To cause sufficient field current variation for a given

load change, only part of the thyratron output, K2E@’ need

be applied to the field bucking resistor. The field current

is then:- .
If = E s"KzEb

Rfil+Tfp)

= Esa2K23t+K21}Rk+EtKlKZEVt‘ng
| P 3¢5

Rf(l+Tfp)

t
solving for Ipt=

1

- ‘ Vi - .
E 2K2Et+EtKlK2§ t ng 3.6
.
(Rp-K Ry) (14T, D)

Ir <



For analysis, only the transient portion of equation

3.6 is required leaving
V-V }

- BgK4K § L
. —p—= -
Req (1 + Tep)

The derivation of the field speed relatiomns for
a shunt motor is given elsewhere by licCann, Osbon and
Kirschbaum, but is reproduced here for completeness.
Neglecting saturation effects, the motor air gap flux, for

variations of field current I, about the normal value Igo,

may be eXpressed by:i-

g = go
Ito

(Iro + Ip)

The motor voltage constant which is proportional to field

flux can then be written:-
| §

Ky f_El (Ifo + If) volts/radian/seco

Ifo

and the motor torque coefficient:-
Ky = %
- Iro

(Iro + Iy ft.lbs/ampere

Applying these last two equations to the relationships wnich

describe the action of a shunt motor, the following eguations

are obtained:~-
1) the voltage equation

Eg = Ky(Vo#V) +Rg(1+Tap) (Igo+Ig)

= BV (Ip0+IA(VotV) +Rg(1+T4p) (Igo+Ig)
Iro

of which the tramnsient portion is:i-

O=Kv
Ifo
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2) the torgue eguation

Ki(Igotlg) = JR(V44V)

———iIfo+If)(IaO+Ia) = JP(VO+V)

of whicih the transient position is:-

P~

"%3 (IfOIa+IfIao+IfIa) = JIV 3.9

In any practical speed controlling system, the transient
speed variation V will not be more than a few per cent of
normal speed Vg, and the field current variation Ip will

be small compared to the normal value I The terms

fo®
IeV, Iplgos and IpI,, in equations 3.8 end 3.9 may
therefore be neglected without affecting the accuracy of

the result to any great degree. The eguations then

become : =~
“KvVo  1=R_(1+Tgp) Io+K,V 3.10
Ifo |
KeI, = JOV 3,11

which may be combined to obtain:-

v = (KvKt ___Q_) I
- | Tro
KVKt + Jp (14T,D) 3.12
Rg
= ~Blp 3.13

1+T,.P (1+TaP)

where B = VO/Ifo

KyKt

In general, the value of B obtained here will be sommewhat



greater than actual due to neglecting saturation effects.
However, this represents the worst possible value and
any tendency for it to be smaller will result in increased
stability. Armature reaction would also affect the value
of B in a manner opposite to saturation but since the
machine is operated at something less than full load, it
is assumed to be negligible.

Applying eguation 3.7 to that Jjust obtained, the
transient speed variation of the rotor in electrical radians

per second or alternator output freyuency variation becomes:-

a

Vv, = -BKiKp Ey (Vt"vsg
D

Req ElfTrp( 1+Top) ; (1+T¢P) 3.1k

It

""G’( Vt-VS)

3.15
p(1+Tfp¥l+Trp(l+TaP)}

-G(ift-vs)
“(p)

If the break in the control loop is now closed, Vg becomes

3.16

V.. The system response function is obtained by solving
a

for V, in terms of Vg -

Va/Vs } G/‘%(P)

— 3.17
l+G/Q(p)

The loop transfer function may be determined by solving

for V, in terms of the error Vg -Vg, OTr Dy inspection from

equation 3.17.

Ve = G
VsTg /u(p) 3.18



= BK1K2E4/Req
p(l+TfP)(l+TrP(l+Tap))
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In accordance with the wmethod set out in chapter two, the
derivative operator p may now be replaced by jw and the
fregquency dependent porticn of the loop transfer function
l/%(P) plotted in the complex plane. Inserting numerical
values for the motor generator set described in chapter

one, the following eyuation is obtained and plotted:-

1
T - 1 320
(p) p(1+o.5p)21+o.9p(1+o.007)}
= 1 321

p+1.4D2+0 . 457p3+0,00315pk

Inserting p = Jw

= 1
< gw) JWoLLw2_30.457W3+0,00315wr 322

A plot of equation 3.22, for frequeacies varying from 0.2
radians/second to l..4 radians/second is shown in figure 3.3.
The locﬁs of M=l.3 is now drawn tangent to the transfer

function, using the relation:-

center of circle =M = l.3=
Toal axis iutvercept W-1 0.3 Le33

The center of this circle is apparently at -3.5, but according

to equation 2.3, 1ib should be at

- mz = =169 = =2.45
Mz~l 0‘69

‘ ] Rk = 0670.
Hence the scale change OT allowable gain 1is 2 7

Having obtained the gain for optimum performance,
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the proper adjustment can now be determined. Refsrring
to equation 3.19, the gain of the system is evidently
equal to:-
G = BKjKpoEg
Req

Inserting numerical values, the equation becomes:-

G = (121)%)@9‘5) K, = 100K

2
To obtain the desired performance then, the value of Ko

should be adjusted to approximately 0.007.
EXFPERTMENTAL RESULT.

The regulating system, with the adjustment just
obtained, was set up in the laboratory and the transient
performance found to be quite satisfactory. By unaking slight
ad justments in RB’ it was found that stable operations
could be obtained over the entire firing range of the
thyratrons. However, the steady state load change over
which regulation could be maintained was found to be only
about 0.5 kw. This is due to the low value of K2 which is
a measure of the field current variation for a corresponding
change in thyratron firing angle. If the change in field
current required to maintain constant speed for a given load
variation is known, the approximate value of K, reyuired
may be determined from a modification of eguation 3.7. The
modification consists of replacing tiie cosine approximation,

by the actual function, and dropring the derivative term,
giving the following eyuation:=-

Ip1-Ipp = EtKZ(cosez—cosgl)




from which

323
Et(cosezacosel)

The K, term in Req is small and may be neglected. Fron
the motor generator sef described nere, tine value of
K2 required for a 5 kw load change is 0.07. This is
calculated assuming that the change in firing angle is
from 1350 to ASO so as to allow ample room for a slight
overshoot during the transient.

sttempts to increase K, in the present system
resulted first in hunting and finally in cowplete
instebility. If the control is to extend over a reasonable
load range then some means of increasing the allowable value
of K2 will be required. &xamination of the gain factor
reveals that none of the other parameters are readily
adjustable. Variation of By and Rgq Will result in no net
improvement whereas B is a machine constant and therefore
fixed. The frequency dependent portion of the loop transfer
function will therefore have to be modified in order to
increase the allowable galn. <hapter four illustrates how

this may be effected by means of additional feedback circuits.
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CHAYTER FOUR

INCREASED STABITITY BY DBERIVATIVE Fi2DBACK

Although it is intended that this regulator
should compensate for steady state load variations by
similar variations in thyratron firing angle, it should
be mentioned here thut the problem could be solved in
another way. A completely separate control, based on load
variation, could be used in addition to the synchronous
regulator. However, tiis type of control is not
generally of the closed looy variety and hence it is
rather sensitive to external disturbances. One such
control, using a diffeircsntial series field to maintain
necrly constant speed under load, was added to the system
ad justed as in chapter three, and was found capable of
withstanding load variations up to 6 kw. Slight variations
in line voltage and other parameters that were assumed
constant, resulted in complete loss of synclronism however,

and investigation of this type of load cowmpensation was

discontinued.

In the usual contrel system, several sources of
feedback voltage exist, and it 1s the problem of the control
engineer to decidse which of tiese will be of the most use.
In choosing a source of feedback voltage, the metiod
suggested by Hanna, Oplinger, and Valentine in their pager
on voltage regulators may be used as a guide. This wethod
consists briefly of taking the derivative of the voltage

obtained just following any time lag 1. the control system
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and feeding it back into the controller. It will be

apparent that this is a powerful method of overconing the
effect of such time delays. In most cases, the feedback
voltage will be too suiall for immediate use, but this
difficulty may be overcome by use of suitable amplifiers.

In grid controlled rectifier circuits, the
feedback voltage may be conveniently introduced in the form
of a D.C. blas between the grid and the cathode. The effect
of this voltage in controlling the output of the thyratrons
is not generally expressible in linear mathewatical form,
especially where it is superimposed on phuse suift control.
However, by making certain assumjtions in the interests of
linearity uas before, an equation can be formed and various
feedback voltages investigated. Although accurate design
data cannot be determined therefrom, an indication will be
obtained as to whether or not the particular type of feedback
will tend to improve the stability.

If the maximum variation of the bias voltace is kept
to something less than 70% of the peak value of the applied
grid voltage, the firing angle may be assumed to vary linearly

with bias voltage without introducing a very large error.
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Thus -

& = KqE
Jbr bol
Eg

where the constant K3 1s of somewnat similar nature to

K; and like K1, has a maximum value of unity. Applying
this to the voltage output equation of the thyratrons,

3+3, the following equation is obtained:e

= t (Ve-v
Eg = 2By=IpR~EK; (. S}uKBK

E
____E_E By Lol

Eg

By inserting various voltage functions for the value of

%1

Ep, the effect of different types of feedback may now be
determined.

DERIVATIVE FELDBACK FROPORTICNAL TO FIBELD CURTENT,

In any circuit containing resistance and inductance,
there will be a time delay between a variation in applied
voltage and a consequent variation in current. Thus, a
voltage proportional to the field current may be obtained

directly from the field terminals as in figure 4.l and may
be expressed by:-

o = Ip(R+Lgp) b3
where R is the internal resistance of the field oniy. If
this voltage is applied to the teruinals of & resistance-
capacitance differentiating circuit, as shown, the voltage
across the resistor alone will be:-

Epe = 1 Ry
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R, Cp
= ¢ '

If the time constant R,C is made equal to that of the
field Lr/R s then

\Ebf = RReCpIr 4.5
Inserting this voltage, amplified if necessary, in
equaetion 4.2

- ' (Vg -V K
Tg = 2By - IjR, - By b /s ) _ KeK1KsE4RRoCIfp

g

and solving as before:-

s
where KqK) K5KzE4RRC
At ===

eq "g

Examination of equation 4.6 will reveal that with proper
ad justment of amplifier gain Ka» the effect of the field
time constant may be removed entirely. Fig. 4.2 shows

the improvement in the loop transfer function resulting
from this type of feedback. The allowable gain of the
system has been increased from 0.70 to 1.53 or over 100%.
It will also be noted that the resonant frequency of the
system is slightly higher, which will tend to increase the
speed of response.

DERIVATIVE FEEDBACK PROPORTIONAL TO VELOCITY
The other major time lag in the control system

described here occurs in the field current-speed relationship

of the D.C.motor and is caused by the mechanical inertia of
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the rotating parts. Following the same procedure as befors
then, a feedback voltage proportional to the velocity should
have some effect in reducing the value of this time delay.
Such a voltage may be obtained from a tachometer generator
attached directly to the end of the rotor shaft, as shown

in figure 4.3. The voltage is directly proportional to

speed, hence:-

e = KV L7

where Kg is in volts per selectrical radian per sec. It
will be convenient to pass this voltage tharough the
differentiating network shown, from which the feedback
voltage Ebg may be obtai.ed after sultable awplification
Kge

Eb = KaKg‘I‘nga

1+Tép
Tg is the time constant of the differentiating circuit.

g

Le8

If this voltage is added in series with the feedback voltage
from the field and they are applied as a bias to the thyratron

grids, the following equation for the velocity may be

obtained: - B K KB
~ B -l 0 ket Y
Va = Req ( p )
(1+T o p=Aop) (1+T p(1-T P)g-A P
f a .
where

A, = KKEK K BET,

Eg R eq
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Equating Af to Tf, as before, the denominator only of
equation 4.9 becomes:

1 + TrP (1 - TaP) - 4P

1 + TgP
In this expression, the term Ta is quite small and by suit-
able circuit components, the term Tg can be made equally
small also. If then the term Ag is made approximately
equal to Tr, by suitable amplification, these two terms
will tend to cancel each other. Thus the effect of the
inertia of the rotor may be reduced, leaving only a few
very small time constants wich have negligible effect on
the stability of the system. The denominator of equation
4.9 will in fact approach the value of one, which is ideal
since the locus of the loop transfer function will be coinci-
dent with the imaginary axis. (Note that in equation 4.9
there is still a 1/P term in the numerator.) The centre of

the constant M circle is at the origin and hence the allow-

able gain is infinite.

CONCLUS ION

\

The control system has been set up on a motor-

generator set at MeGill University and an attempt has been

made to stabilize the regulator at higher values of gain by the

methods just outlined. However, some difficulties arose which

are not too apparent theoretically but which have to be con-
sidered before any practical result can be obtained. 'these
difficulties are caused mainly by the operating character-

istics of the tayratron tubes. The current output is
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of a pulsating nature and hence the voltage which appears
across the field will also Dbe pulsating. This is of little
Oor no consequence as far as the field current is concerned
due to the smoothing effect of the field inductance., How-
ever, the pulsating voltage is unsuitable for application as

a D.C. bias control on the thyratrons and an averaging circuit
had to be devised. For this purpose, a diode detector circuit,
such as those used in radio, was found to be suitable. The
time constant of the detector was about one-tenth of a se-
cond which is long compared to the pulse duration but fairly
snort compared to the overall oscillating frequency of the
system.

A further difficulty arose when this voltage
was applied between the cathode and grid transformer centre
tap. Although the voltage appeared at this point, it was
not evident on the grids themselves. It is thought that
this may be caused by the protective resistances in the grid
circuit. The addition of an entirely separate circuit for
applying this voltage to the grids appears to solve this
problem, but, due to time limitations, this has not been in-
vestigated. Thus, at the time of presentation, no experi-
mental verification of the proposed stabilization was obtained

and satisfactory operation of the regulator cannot be reported.



LIST GF SYWBOLS

(Representative values shown in brackets)

p - the Heaviside derivative operator
© - firing angle of the thyratrons

Vo= normal angular velocity of the motor - elect. rad./sec.

(377)

V - transient variation only of the angular velocity of the
motor.

V"’ (Vo + V)

Vi- angular velocity of voltage applied to thyratron plates -
elect. rad./sec.

Vg- angular velocity of voltage applied to thyratron grids -
elect. rad./sec.

Vg- angular velocity of alternator output voltage - elect.
rad./sec.

Eg- D.C. motor supply voltage (200v)

Eg- voltage output of thyratrons at firing angle ©.
Ey- voltage output of thyratrons at 6 = 90° (49.5v)
Eg- peak value of voltage applied to thyratron grids.
Ep~- voltage applied as a bias to thyratron grids,
Eyp- feedback bias voltage proportional to field current.
Ebg‘ " " H R H  velocity.

Ip,- normal field current of D.C. motot. (3.10a)
o

Ir- transient portion only the field current
Ip'- (Igo * If)

Igo- normal armature current.

Ig- transient portion only of armature current

Rp- total field circuit resistance

Rk - resistance of thyratron circuit.



Kng- resistance across which bucking voltage is applied.
(Rt - KoRk) - (60 ohms)

Ry~ total armature circuit resistance (0.26)

R - actual resistance of field alone

Ro- resistance in differentiating circuit

Lp~- inductance of the field circuit

Lg- " " " armature circuit

J - moment 05 1nert1a of the rotating parts - ft. lbs./elect.
rad./secc (2.10)

C - capacitance of the differentiating circuit,

Tp- time constant of the field circuit - (0.5 secs)

Tg- O " n " armature circuit - (0.007 secs.)

Tp- n " W rotating parts - (0.9 secs.)

Tg- time constant of the tachometer generator differentiating
circuit.

- normal field flux
¢ - transient variation of the field flux
K',- voltage constant proportional to flux and velocity

K_- n " " " yelocity only - volts/elect.
rad./sec. (0.5)

K't' torque constant proportional to flux and armature current

Ky - n n " " grmature current only -
ft. lbs./ampere. (1.198)

B - Vo/Ifo - elect. rad./ampere (121)

Kj- cosine approximation constant

Ko- proportionality constant - see Kok

Kz~ proportlonality constant between the D.C. bias voltage and
5 firing angle of the thyratrons.

voltage constant of the tachometer generator - volts/elect.
rad./sec.

K,- amplifier gain
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