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Abstract

This thesis presents a general framework for the registration of medical images across mul-
tiple clinical contexts involving rigid and non-rigid applications. The proposed framework
relies on gradient orientations as primitive geometric descriptors so as to locally assess image
similarity based on orientation alignment and evaluates the metric on sparse locations corre-
sponding to anatomical boundaries of interest. The two main advantages brought forward
by the proposed approach are: (1) a substantial reduction in computational complexity
and processing time and (2) a significant improvement in robustness against multi-modal
contexts with widely different image formation models and significant non-homogeneities.

The proposed approach is evaluated in multiple clinical contexts and compared against
state-of-the-art techniques. In the context of neurosurgery, image registration can be em-
ployed so as to update a pre-operative magnetic resonance image (MRI) based on an intra-
operative ultrasound volume. The proposed approach is evaluated in this challenging time-
sensitive scenario and is shown to provide robust performance with sub-second processing
times. In the context of the rigid registration of computational tomography (CT) and MRI
brain volumes, the proposed approach is evaluated with a publicly available dataset and
compared against previously proposed techniques. The quantitative results demonstrate
that the proposed approach can employ highly reduced sampling rates (e.g. only 0.05% of
the voxels in the image) while still yielding a median registration error inferior to 1mm.
In the context of the non-rigid registration of inter-patient MRI brain volumes, the pro-
posed approach is evaluated with a publicly available dataset which measures registration
accuracy in terms of the agreement of spatially mapped labels with expert annotated la-
bels. The use of such dataset allows for a fair and unbiased comparison with over fourteen
competing techniques. The quantitative results show that the proposed approach achieves
slightly inferior accuracy than the top performing method but with only one sixth of the
processing time required by the alternative technique. Finally, the proposed approach is
evaluated in the context of automatic brain lesion detection which relies on healthy tissue
probability maps obtained via registration to a brain atlas. The quantitative comparison
against two leading image registration techniques shows that the proposed approach can
lead to a slightly improved performance of brain lesion detection algorithms while requiring
only one sixth of the processing time used by competing registration approaches.
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Sommaire

Cette thèse porte sur de nouvelles techniques de recalage d’images médicales dans dif-
férents contextes cliniques et avec applications rigides et non-rigides. Le principe de base
est l’utilisation d’orientation de gradients en tant que descripteurs géométriques primi-
tifs. Cette technique permet d’évaluer localement la similitude de l’image en se basant
sur l’alignement de l’orientation et de restreindre l’évaluation de la mesure de similarité
à un ensemble de voxels clairsemés qui correspondent aux points anatomiques d’intérêt.
Les deux principaux avantages avancés par l’approche proposée sont les suivants: (1) une
réduction substantielle de la complexité de calcul et (2) une amélioration de la robustesse
lors du recalage entre différentes modalités d’imagerie.

L’approche est évaluée dans divers contextes cliniques et comparée aux techniques de
pointe. Dans le contexte de la neurochirurgie, le recalage d’images peut être employé pour
mettre à jour une image obtenue par résonance magnétique (IRM) pré-opératoire en fonc-
tion d’une échographie intra-opératoire. L’approche proposée est évaluée dans ce scénario
et montre une performance de recalage robuste avec des temps de traitement inférieur à une
seconde. Dans le cadre du recalage rigide de la tomographie axiale calculée par ordinateur
(TACO) et des volumes du cerveau par IRM, l’approche est évaluée avec un ensemble de
données et comparée à des techniques proposées précédemment. Les résultats quantitat-
ifs montrent que l’approche peut utiliser des taux d’échantillonnage très réduits et donne
une erreur de recalage médiane inférieure à 1 mm en utilisant seulement 0,05% des vox-
els. Dans le contexte du recalage non-rigide de volumes du cerveau par IRM, l’approche
est évaluée avec un ensemble de données qui mesure la précision de recalage en terme du
chevauchement des régions anatomiques. L’utilisation de ces données permet une compara-
ison impartiale avec plus de quatorze techniques concurrentes. Les résultats montrent que
l’approche atteint une précision légèrement inférieure à la méthode la plus performante,
mais avec un sixième du temps de traitement requis par la même technique de recalage.
Enfin, l’approche proposée est évaluée dans le contexte de la détection automatique des
lésions cérébrales qui s’appuie sur des probabilités de tissus sains obtenus par recalage entre
l’IRM et un atlas de référence. La comparaison avec deux principales techniques de recalage
montre que l’approche proposée peut conduire à une légère amélioration de performance
des algorithmes de détection de lésions cérébrales tout en exigeant seulement un sixième
du temps de traitement requis par les approches de recalage concurrentes.
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Chapter 1

Introduction

One of the most critical and recurring tasks encountered in a variety of medical image
analysis contexts involves finding the spatial mapping between two images such that corre-
sponding pixels share a common underlying anatomical location. Such inference problem
is commonly known as image registration and involves challenges which vary significantly
with each particular clinical context. For example, some contexts involve the registra-
tion of images brought forward by different imaging technologies (i.e. modalities). Such
multi-modal contexts face the critical challenge of robustly and accurately identifying (and
quantifying) if overlapping image regions correspond to the same underlying location even
though the spatially corresponding pixel pairs typically have non-matching intensity val-
ues, the modalities involved may not expose exactly the same anatomical information, and
each modality involves a unique set of imaging artefacts. Some contexts attempt to infer a
complex physical deformation characterized with an extremely large number of degrees of
freedom (potentially in the order of millions) from two medical images acquired at different
time points. Such registration scenarios face the critical challenge of efficiently solving an
ill-posed problem, with a non-unique solution, which involves an extremely large number
of unknowns.

The wide-ranging diversity of medical imaging contexts which rely on image registra-
tion has led to the proposal of a similarly broad number of image registration techniques.
Nonetheless, a significant number of the most popular and successful state-of-the-art reg-
istration techniques rely on the common principle of defining an image similarity metric
which assesses the similarity of two images throughout their entire domain. Conventional
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methods have relied on similarity metrics, such as cross correlation and mutual information,
which are defined as a function of the corresponding pixel intensity values. However, pixel
intensity values are directly coupled with pixel intensity artefacts specific to each image
modality, such as noise, occlusion, and a non-homogeneous intensity response, which can
quickly break down the underlying assumption of intensity-based similarity metrics regard-
ing a fixed relationship between corresponding image intensities. Some recent methods
have thus proposed extending the image feature space from single pixel values to a set of
values which characterizes the pixel-centric image neighbourhood, so as to define a more
robust measure of image similarity based on a more descriptive set of image features per
location. Unfortunately, such strategies almost inevitably lead to a significant increase in
computational complexity. In particular, techniques which rely on a globally evaluated
metric must perform a series of computational operations on each of the millions of pixels
commonly found in a 3D medical volume. Moreover, in techniques involving an extended
image feature space, the computational operations involved at each pixel involve a substan-
tial computational cost, such as the one related to evaluating the set of transformed image
features found after deforming the image with a spatial transformation.

There are many clinical contexts that simply cannot incur an increase in computa-
tional complexity and processing time, but are nonetheless faced by widely different image
modalities which do compel the use of registration frameworks that go beyond conven-
tional intensity-based similarity metrics. For example, in the context of image-guided
neurosurgery (IGNS), a pre-operative magnetic resonance image (MRI) may be registered
to an intra-operative ultrasound (US) so as to provide an updated MRI volume which
accurately reflects the current anatomy and allows the clinician to minimize damage on
eloquent tissue. This constitutes a very challenging registration problem where the diffi-
culty largely lies in the radically distinct nature of the modalities involved and the need
for significantly reduced processing times that avoid any additional time overhead. Specif-
ically, US images indicate changes in acoustical impedance in the direction of the sound
wave, and therefore expose tissue boundaries and liquid-filled structures relatively well.
However, they are affected by complicated imaging artefacts like speckle, non-Gaussian
noise, shadows and depth sensitivity. On the other hand, MRI volumes can expose differ-
ent tissues very well and are characterized by a relatively simple noise model. Common
image registration methods have great difficulty addressing this context since they typically
rely on a pixel-intensity correspondence assumption, which is easily broken by the complex
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non-homogeneous imaging artefacts found in US. Furthermore, such methods typically rely
on the dense evaluation of a similarity metric across the full spatial domain, which involves
non-negligible processing times.

The work presented in this thesis aims to directly address these limitations and pro-
poses a general registration framework which achieves a substantial reduction in processing
times, as well as a significant improvement in robustness in challenging multi-modal sce-
narios. In particular, this thesis argues that it is possible and more reasonable to seek a
structural correspondence between modalities, where image gradient orientations are used
as primitive geometric descriptors for the underlying scene’s structure and an optimal spa-
tial mapping is one that optimally aligns spatially corresponding gradients. There are two
critically important advantages of using gradient orientations instead of voxel intensities.
The first advantage is that gradient orientation alignment is a purely geometric measure
of image similarity which is strongly decoupled from image artefacts affecting voxel in-
tensities. This provides an important advantage in terms of robustness against complex
and non-homogeneous image formation models, where gradient orientations of prudently
selected locations continue to provide an accurate local representation of structures found
in the underlying scene. The second advantage is that the locations used for evaluating
gradient orientation alignment should intuitively correspond to locations of true underlying
boundaries which are shown to correspond to high gradient magnitude locations and far
less numerous than the number of voxel locations found in the entire image domain. In
other words, the use of gradient orientations leads to a local similarity metric evaluated on
a highly reduced set of locations, as opposed to a metric that is evaluated over the entire
image domain, which consequently yields a significant reduction in processing times.

The advantages brought forward by the proposed techniques are critically important
for the successful integration of intra-operative US in IGNS. This thesis includes a series
of quantitative experimental results on real neurosurgical clinical cases, which illustrate
how a robust registration performance can be obtained in short processing times. The
generality of the proposed approach is further demonstrated with quantitative results that
illustrate important performance gains in a variety of medical image registration scenarios.
The following section outlines the specific contributions that are present in this work.
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1.1 Contributions

The main philosophy of this thesis is that by relying on image gradient orientations (as op-
posed to voxel intensities) on a sparse set of prudently selected locations, one can propose a
robust image registration technique which generalizes to various multi-modal settings and
yields highly reduced processing times. In particular, the proposed registration framework
is shown to provide important performance gains in the rigid registration of pre-operative
MRI to intra-operative US for neurosurgical procedures, the rigid registration of CT and
MRI brain volumes, the inter-patient non-rigid registration of MRI brain volumes for the
automatic labelling of anatomical regions, and the patient to atlas non-rigid registration
of MRI brains volumes for the generation of healthy tissue probability maps. The contri-
butions relating to the development of the registration framework and its contributions to
different clinical contexts are enlisted below:

• A rigid registration method which incorporates a selective gradient orien-
tation alignment metric for improved registration accuracy with drastically
reduced sampling rates

This thesis presents a highly efficient multi-modal rigid registration technique which
involves the optimization of a gradient orientation alignment metric over a sparse
set of locations involving a reduced gradient orientation uncertainty. The proposed
method is the first to demonstrate that superiour accuracy can be achieved by in-
corporating a sub-voxel location sampling strategy (i.e. sampled locations are not
restricted to voxel grid locations)1 and by increasing the selectivity of the gradient
orientation alignment metric so that only tightly aligned gradient orientations are
rewarded. Furthermore, it also allows the use of highly aggressive sampling rates (i.e.
number of evaluated voxels) while continuing to yield sub-millimeter accuracy.

• The first system to permit sufficiently fast and accurate registration of
intra-operative ultrasound (US) to pre-operative MRI to be integrated
into the operating room in the context of image-guided neurosurgery

The work in this thesis yields concrete results towards improving the integration of
1Previous work related to sub-voxel location sampling for image registration has been generally limited

to illustrate how it affects registration robustness in specific contexts and is also generally limited to
voxel-intensity based similarity metrics.
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iUS in the operating room for the purpose of improved guidance throughout neu-
rosurgery. In particular, the implementation of the proposed technique in a GPU
provides the first rigid registration framework which can robustly address the regis-
tration of MRI to iUS with processing times inferior to one second, where competing
techniques involve processing times in the order of minutes. Such performance, in con-
junction with a fast GPU-based volume reconstruction technique (also implemented
as part of this thesis), provides a minimal turnaround time for the surgeon and
substantially reduces the overall delay to obtain updated pre-operative data. Such
contributions were implemented so as to extend a custom neuronavigation frame-
work and are now part of standard protocol for using iUS in neurosurgery in ongoing
research projects at the Montreal Neurological Institute.

• A novel diffeomorphic registration framework based on the symmetric con-
sistency of inferred boundaries evaluated with gradient orientation align-
ment

The proposed diffeomorphic registration approach seeks the optimal alignment of
inferred boundaries in a symmetric fashion. Additionally, it involves an initial infer-
ence of boundaries, which defines a sparse set of locations over which a local similarity
metric is evaluated. A diffeomorphic transformation is then optimized over the set
of boundary locations at both images. As such, it is the first non-rigid registration
approach that combines the notions of gradient orientation alignment and point-to-
point distance in a symmetrically consistent framework. The proposed approach is
evaluated in the context of the registration of inter-patient MRI brain volumes and the
generation of healthy brain tissue priors via the registration to a standard template.
The context of inter-patient MRI brain volumes is evaluated with a commonly used
publicly available dataset and results demonstrate that the proposed technique can
achieve an accuracy similar to top ranking state-of-the-art methods, but with signif-
icantly reduced processing times. In particular, the proposed registration framework
involves average processing times ranging between 1 and 6 minutes, as opposed to
processing times of around half an hour with alternative approaches. The context
involving the generation of healthy brain tissue priors via image registration was
evaluated in terms of how different tissue priors affect the performance of subsequent
lesion detection algorithms. The corresponding results illustrate how the tissue priors
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generated with the proposed approach can be obtained in significantly reduced pro-
cessing times and can lead to improved detection performance in two different brain
lesion detection algorithms.

• The first multi-scale voxel selection strategy based on gradient orientations
of minimal uncertainty

The theoretical framework presents the first analytical multi-scale framework for char-
acterizing the effect of additive image intensity Gaussian noise on computed image
gradient orientations. The task is defined as a Bayesian inference problem, where the
computed image gradient magnitude and orientation constitute “observations” which
shape the posterior distribution of the “true” underlying gradient orientation. This
theoretical exercise provides important conclusions that allow for principled design
choices in the proposed registration algorithm. In particular, the analysis demon-
strates that the uncertainty of the gradient orientation is an inversely monotonic
function of the observed gradient magnitude. In other words, locations with high gra-
dient magnitude constitute locations with reduced gradient orientation uncertainty.
It also demonstrates that the uncertainty of gradient orientations can be directly
compared across scales. This allows the user to define a unique criterion for selecting
gradient orientation locations at all scales at which the gradient is computed.

• The first rigid registration framework which incorporates the pullback
differential for efficient evaluation of transformed gradients

The work in this thesis provides a general framework for reducing the computational
complexity of transformation gradient orientations in the context of image registra-
tion. In particular, it emphasizes that the transformation of image features based
on first-order differentials analytically involves the use of the pullback differential.
In simple terms, the evaluation of an image gradient at a given location after a
transformation additionally involves the pre-multiplication with the Jacobian of the
transformation at such point. This property is particularly powerful in the context
of rigid registrations with a sparse set of evaluated locations, where the Jacobian
matrix is constant at all locations and the registration algorithm will hence involve a
minimal computational overhead.
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Ultimately, the variety of positive results presented in this thesis provide a clear in-
dication that the use of image gradient orientations on a sparse set of prudently selected
locations for image registration can successfully reduce the processing time of rigid and
non-rigid algorithms by significant factors, while maintaining a highly accurate registra-
tion performance across multiple contexts.

1.1.1 Published Work

The publications related to the work presented in this thesis can be found below.

Peer-Reviewed Journal Publications

[47] D. De Nigris, D. L. Collins, and T. Arbel. Multi-Modal Image Registration based on
Gradient Orientations of Minimal Uncertainty. IEEE Transactions on Medical Imaging,
31(12):2343–2354, 2012.

[48] D. De Nigris, D. L. Collins, and T. Arbel. Fast rigid registration of pre-operative magnetic
resonance images to intra-operative ultrasound for neurosurgery based on high confidence
gradient orientations. International Journal of Computer Assisted Radiology and Surgery,
8(4):649–661, 2013.

Peer-Reviewed Conference Publications

[46] D. De Nigris, D. L. Collins, and T. Arbel. Fast and Robust Registration Based on Gradient
Orientations: Case Study Matching Intra-operative Ultrasound to Pre- operative MRI
in Neurosurgery. In Information Processing in Computer-Assisted Interventions, pages
125–134. Springer Berlin Heidelberg, 2012.

[49] D. De Nigris, D. L. Collins, and T. Arbel. SymBA: Diffeomorphic Registration Based
on Gradient Orientation Alignment and Boundary Proximity of Sparsely Selected Vox-
els. In Biomedical Image Registration, volume 8545, pages 21–30. Springer International
Publishing, 2014.

Related Work

The work in the following publications does not appear in this thesis, but is related to this
research.

[50] D. De Nigris, L. Mercier, R. Del Maestro, D. L. Collins, and T. Arbel. Hierarchical
Multimodal Image Registration Based on Adaptive Local Mutual Information. In Medical
Image Computing and Computer-Assisted Intervention - MICCAI 2010, volume 6362, pages
643–651. Springer Berlin Heidelberg, 2010.
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[45] D. De Nigris, D. L. Collins, and T. Arbel. Deformable Registration of Chest CT Scans
with Adaptive Local Mutual Information Medical Image Analysis for the Clinic: A Grand
Challenge, pages 175–184, 2010.

[115] K. Murphy, et al. Evaluation of Registration Methods on Thoracic CT: The EMPIRE10
Challenge. IEEE Transactions on Medical Imaging, 30(11):1901–1920, 2011.

1.2 Structure of the Thesis

The remainder of this document is organized as follows.
The field of image registration is quite vast and varied, in terms of both techniques

and applications. Chapter 2 provides a brief high-level overview of the taxonomy of image
registration algorithms, a description of a few key medical applications, and a discussion
regarding the challenge of choosing a suitable validation strategy for image registration
techniques. Even though such overview is not exhaustive, it provides an important reference
for identifying how the work of this thesis relates to other image registration algorithms.

Chapter 3 presents the theoretical and technical details involving the registration tech-
niques proposed. Section 3.1.1 presents the analysis for characterizing the uncertainty of
gradient orientations in a multi-scale framework. Section 3.1.2 demonstrates the use of
the pullback differential for evaluating the gradient orientation of a transformed image.
Based on those results, Section 3.1.3 defines a rigid registration technique, which is materi-
alized in both a CPU and a GPU-based implementation. Section 3.2 presents the proposed
non-rigid registration technique involving a similarity metric based on gradient orientation
alignment and distance to the nearest boundary. A significant effort is devoted to explain
the use of a time-constant or time-dependent velocity field to characterize a diffeomor-
phism. In particular, it derives the similarity metric gradient expressions that result from
adopting a velocity field with a coarse spatial discretization which explicitly accounts for
the dependency to an interpolation function.

Chapter 4 highlights the relevance of the proposed registration techniques in the context
of IGNS. Section 4.1 provides a brief overview of the clinical background regarding brain
tumour resection and its need for image guidance. Section 4.2 describes the technical
setup involved in a common neuronavigation context and the need for incorporating intra-
operative imaging. Section 4.3 explains the appeal of adopting intra-operative US (iUS) in
such procedures, and the technical requirements involved in integrating iUS in the operating
room, as well as the challenge of registering a pre-operative MRI volume to an iUS image



1 Introduction 9

so as to update pre-operative data. Section 4.4 presents a series of results evaluated with
a publicly available dataset of real brain tumour resection cases with corresponding pre-
operative MRI and iUS. The results obtained with the GPU-based implementation show
that a robust performance can be obtained with sub-second processing times, and is a
clear indication of how it can improve the integration of iUS in the procedure. Section 4.5
performs an in-depth analysis of the inter-rater variability based on the expert landmarks
found in the publicly available dataset, which illustrates the practical challenges of designing
a validation strategy that is consistent, accurate and unbiased. Section 4.6 provides further
detail on the technical contributions that were performed as part of this work so as to
extend the functionality of an existing neuronavigation framework and which have lead to
a more seamless integration of iUS in ongoing clinical procedures. The particular details
describing the technical measures that had to be adopted so as to truly profit from the
massively parallel computational power of a GPU are described in Section 4.6.1.

Chapter 5 presents an exhaustive set of results in the context of the rigid registration of
CT to MRI brain volumes. The experiments relied on a commonly used publicly available
dataset, and thus allowed for a direct comparison with previously reported results. The
set of quantitative results obtained provide a series of critically important conclusions.
Section 5.4.1 shows that in the context of anisotropic volumes, improvements in registration
accuracy can be obtained by sampling sub-voxel locations, as opposed to locations restricted
to voxel-grid locations. The experiments found in Section 5.4.1 and 5.4.2 demonstrate
that the registration accuracy can be further improved by adopting a selective gradient
orientation alignment metric where only tightly aligned gradient orientations are considered
a match. Section 5.4.3 shows that relying on the gradient magnitude as an indicator on
the confidence on such features allows us to select a reduced set of locations from the
top percentage of locations with highest gradient magnitude, while maintaining and even
improving registration accuracy. The experiments in Section 5.4.3 also demonstrate that
the registration technique is not particularly sensitive to the choice of gradient magnitude
threshold. Section 5.4.4 then presents a comprehensive comparison of the registration
performance of the proposed technique against the performance of multiple previously
proposed approaches. The results from such experiments demonstrate that the proposed
technique can rely on an extremely low rate of sampled locations to drive the registration
technique while still obtaining a sub-voxel accuracy.

Chapter 6 and 7 present results related to the proposed non-rigid registration framework
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in two different contexts. Chapter 6 involves the context of inter-patient MRI brain volume
registration which is evaluated with a commonly used publicly available dataset. In such
context, registration performance is evaluated as the overlap of estimated segmentation
labels with expert segmentation labels, and where the estimated labels are obtained from
warping the expert labels found in a second volume. Section 6.2.1 presents a comprehensive
set of experiments which characterize the registration performance in terms of the multiple
parameters involved. Section 6.2.2 compares the registration performance obtained with
the proposed approach against the results obtained with 14 alternative state-of-the-art
techniques. The comparison shows that the proposed technique yields slightly inferior
accuracy than the top ranking methods, but with highly reduced processing times.

Chapter 7 involves the generation of healthy brain tissue priors via a patient to tem-
plate non-rigid registration. In particular, the clinical context involves the detection and
segmentation of multiple sclerosis (MS) brain lesions with automatic algorithms that rely
on healthy brain tissue probabilities. Specifically, MS brain lesions involve intensity pro-
files that have a significant overlap with the profile of healthy tissue types and there is a
fundamental need for additional information, such as healthy tissue probability maps, for
robustly resolving such lesions. A common approach for obtaining healthy tissue proba-
bility maps, also referred to as healthy tissue priors, involves non-linearly registering the
patient’s MRI volume to a standard brain atlas that includes healthy tissue probabilities
for each voxel. The patient’s healthy tissue priors can be then be directly obtained by
evaluating the probability values at the spatially corresponding location in the atlas. The
experimental setup found in Chapter 7 evaluates how tissue priors obtained from compet-
ing registration techniques affect the performance of two automatic brain lesion detection
tasks: the detection of active (i.e. gadolimum-enhanced) MS lesions and the detection
of chronic MS lesions. As such, it constitutes a novel approach for validating a registra-
tion strategy with an explicit focus on bottom-line performance of the task at hand. The
reported results show that both lesion detection algorithms yield a slightly superior de-
tection performance than the two competing state-of-the-art methods. More importantly,
the average processing time of the proposed registration strategy is drastically inferior to
that of the competing methods, and provides an important advantage for improving the
throughput of large scale clinical trials.

Finally, Chapter 8 summarizes a series of conclusions obtained from this work and
proposes multiple extensions and variants that could be pursued in the future.
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Chapter 2

Background and Previous Work

Image registration concerns the general task of mapping the coordinate space of one dataset
to the coordinate space of another dataset. It is an inference problem that appears in various
applications in remote sensing, computer vision and medical imaging. For example, stitched
panoramic image creation [164] is a popular application which involves the construction of
a wide-view panoramic picture from a set of smaller overlapping pictures. It can also be
extended to render fully immersive 360° panoramic pictures which can be explored in any
direction. Image registration plays a fundamental role in panoramic image creation and
various improvements in computational efficiency have been specifically developed so as to
allow robust real time performance in modern smartphones.

Image registration also plays an essential role in a variety of medical image analysis
tasks involving either a single image modality (mono-modal) or various image modalities
(multi-modal). Note that an image modality refers to a specific imaging technology, such as
MRI, PET, CT, US, and X-rays. For example, rigid multi-modal registration is commonly
used to visualize and analyze various medical image modalities in a common coordinate
frame. Non-rigid mono-modal registration techniques are also commonly used for inferring
the physical deformation occurring between time points. Such feature may be used for
tracking a region of interest (e.g. tumour), characterizing abnormal deformations (e.g.
identifying grey matter atrophy), among many other applications.

The image registration field is vast in both applications and proposed techniques. The
wide variety of applied contexts with significantly diverse challenges limits the generality of
any specific registration technique. Hence, registration frameworks are typically proposed
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with a specific application in mind. This chapter provides a brief formal overview of image
registration algorithms, including a brief description of the main components characterizing
a majority of techniques and how they relate to particular challenges. For a complete and
exhaustive survey of image registration methods, the reader is invited to refer to [24, 103,
182].

The chapter is structured as follows. Section 2.1 provides a brief overview of components
involved in an image registration framework. Section 2.2 describes the medical contexts
where image registration plays an important role and provides an overview of the techniques
proposed for such applications. The validation of image registration techniques in real
medical contexts is an important challenge which has lead to many proposed strategies
with varying advantages and disadvantages. In particular, given the absence of an absolute
ground truth, many proposed validation strategies generally involve a limited accuracy in
evaluating geometric error, and can only provide a surrogate measure or an estimation of
the geometric error. Section 2.3 highlights the challenges in designing a validation strategy
that accurately evaluates the performance of an image registration technique in a real
medical context and gives a brief overview of commonly used strategies.

2.1 Overview of Image Registration

Image registration concerns the task of finding a spatial transformation function, T, that
brings a moving image, Im, in spatial correspondence with a fixed image, If , so that
spatially mapped pixel-pairs relate to a common location in the underlying scene. With an
increased effort in providing a general definition, one can formally express such task as an
optimization problem of the following form,

T∗ = argmax
T∈T

Eg (If , Im,T) (2.1)

where T : Ω → Ω is a transformation function that maps the coordinate space, Ω, of the
fixed image, If , to the coordinate space of the moving image, Im. An image, I, corresponds
to a function that maps the coordinate space to n scalar values, I : Ω → R

n. For example,
a grey-scale image has one scalar value per location (i.e. n = 1) and a RGB image has
three scalar values per location (i.e. n = 3). Finally, Eg is an energy functional dependent
on If , Im and T, which yields a maximal value when the images are aligned.
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2.1.1 Ill-posedness and Regularization

Many of the contexts encountered by image registration techniques are characterized by
image data that does not lead to a single solution but to multiple equally valid solutions.
In other words, the image data may not be sufficient to restrict the inference problem to
a single solution. Such problems are ill-posed and a common strategy to address them has
been to rely on regularization.

The regularization strategies encountered in image registration techniques [33, 56, 70,
138, 142, 160] are typically characterized by incorporating a penalty term in the objective
function,

Eg (If , Im,T) = Sg (If , Im ◦T) − R (T) (2.2)

where the penalty term, R : T → R, maps a transformation function to a value assessing
its improbability and Sg measures the similarity of the fixed image with the transformed
moving image. For example, one could assume that a transformation function involving
large displacements is less probable than one involving small displacements.

The penalty term is commonly based on the first or second-order derivatives of the
transformation function. As such, it is based on the basic assumption that transformations
with large local variations are less plausible than transformation with small local variations.
For example, in [142] the authors adopt a penalty term based on the second-order derivatives
of the transformation function to regularize the non-rigid registration of 3D volumes. The
penalty term is expressed as

R(T) = 1
Ω
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and corresponds to the 3D counterpart of the 2D bending energy of a thin-plate of metal [173].

Bayesian Interpretation The use of a regularization strategy can be associated to a
Bayesian interpretation of the image registration problem, such as the one found in [135],
where the objective is to find the transformation that maximizes a posterior probability

T∗ = argmax
T∈T

p(T | If , Im) (2.3)



2 Background and Previous Work 14

where the posterior probability of the transformation function may be expressed as,

p(T | If , Im) = p(Im | If ,T) · p(T)
p(Im)

∝ p(Im | If ,T) · p(T)

where p(Im | If ,T) is the likelihood of T given Im (conditioned to If ), and p(T) is the
prior density on the transformation function which characterizes the plausibility of T in-
dependently of the image data.

In the case where all transformations are equally plausibly, the prior density p(T)
is defined by a uniform distribution and the maximum a posteriori (MAP) estimate is
equivalent to the maximum likelihood estimate (MLE). In other words, the solution is
driven exclusively by the image data. Alternative, if there is a non-uniform prior knowledge
regarding the plausibility of each transformation in the set of valid transformations, one
can embed such information in the form of a non-uniform prior distribution. Finally, if the
optimization is re-expressed in terms of the log posterior, one obtains,

T∗ = argmax
T∈T

log p(Im | If ,T) + log p(T) (2.4)

where the first term assesses image similarity and the second term assesses the plausibility
of the transformation function. Note that the two terms have a direct correspondence with
the terms in Equation 2.2.

2.1.2 Localized Image Similarity

Many commonly used similarity functionals are defined as the integration of a local simi-
larity functional, Sl, over the coordinate space, 1

Sg

(
If , I↓

m

)
= 1

|Ω|

∫
x∈Ω

Sl

(
If , I↓

m

)
(x)dx. (2.5)

Note that the notation convention, I↓
m = Im ◦T, is adopted to compactly express a trans-

formed moving image.
1Note that in a registration context, the spatial domain, Ω, over which one can evaluate the definite

integral will be limited to the overlap of the spatial domain of both images, and one may include a
normalization with respect to the size of the spatial domain.



2 Background and Previous Work 15

Equation 2.5 may also be further simplified into a local similarity function dependent
solely on the image values at the location of interest:

Sg

(
If , I↓

m

)
= 1

|Ω|

∫
x∈Ω

Sl

(
If (x), I↓

m(x)
)

dx. (2.6)

The expression allows for a discretization in the coordinate space that is directly related
to the discretization of the images being registered,

Sg

(
If , I↓

m

)
≈ 1

|ΩZ|
∑

x∈ΩZ

Sl

(
If (x), I↓

m(x)
))

(2.7)

where ΩZ denotes a set of discretized locations identifying the centre of a fixed image voxel.
Note that the computational complexity of evaluating the similarity metric is inversely
related to the resolution of the images being registered, and high resolution images have an
exponentially increased computational complexity. For example, a 3D image with isotropic
voxel spacing of h×h×h will have a number of voxels that is proportional to h−3 and thus
will involve a complexity of O(h−3) for evaluating the similarity metric.

Many different similarity metrics have been proposed for addressing image registration
problems with varying challenges and they constitute a critical component of any technique.
Section 2.1.6, provides an overview of commonly used metrics and discuss their limitations.

2.1.3 Feature Extraction

The types of similarity metrics discussed so far have been limited to functions and func-
tionals of image intensity values. However, many registration algorithms employ an inter-
mediate feature extraction function ψ which maps the intensity values found in the original
images, (If , Im), to either an alternate pair of images, (Ψf , Ψm), where voxel values now
correspond to a feature of interest, or to a sparse set of highly discriminable image features
(e.g. corners).

In the context where the feature extraction function leads to an alternate pair of feature
images, (Ψf , Ψm), the corresponding similarity metric is defined as a function of the feature
images, such as,

Sψ
g

(
Ψf , Ψ↓

m

)
= 1

|ΩZ|
∑
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Sl

(
Ψf (x), Ψ↓

m(x)
))

. (2.8)

Such approaches can be referred to as dense-feature based, since they involve image
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features computed in the entire spatial domain. For example, some approaches may rely
on the optimization of the inner product of normalized image gradients [71] in an attempt
to focus the registration task to image boundaries. Section 2.1.6 describes various im-
age registration approaches that rely on dense-features and discusses the limitations they
address.

Alternatively, in the context where the feature extraction function leads to a sparse set
of highly discriminable image features, the image registration problem can no longer be
characterized as the maximization of a dense objective function and is instead addressed
by sparse point correspondences. Such approaches can be computationally efficient when
dealing with transformations that can be accurately resolved with a small number of point
correspondences, such as a rigid transformation. The two basic steps of such approaches
are to first identify a sparse set of point correspondences based on image feature matches
and then analytically solve for the transformation that minimizes the distance between
such point correspondences.

One of the most successful examples of this type of approach is the use of SIFT2 fea-
tures [100], which can be found in consumer oriented automatic panoramic image stitching
applications [25]. In this approach, a sparse set of highly discriminable SIFT features [100]
is identified in each image and the features are described based on the distribution of
gradient orientations in their neighbourhood.

The use of highly discriminable sparse local image features is a highly active research
topic in the general field of computer vision for tasks such as object detection, object
classification and image stitching. Furthermore, there has been much work devoted to
the development of different features for such tasks. The reader may refer to [112] for
an exhaustive performance comparison of local image features. However, in the context
of medical image registration, there is a more notable trend towards using dense-feature
based approaches or relying directly on image intensity values, and the use of discriminable
sparse local features has been rather limited to a few efforts.

2.1.4 Characterization of a Registration Algorithm

The definition of the registration task found in Equation 2.1 allows us to identify major
key components such as: 1) Eg, the energy functional, 2) ψ, the image feature extraction

2SIFT stands for Scale-Invariant Feature Transform
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function3, 3) T , the space of transformation functions, 4) Ω, the coordinate space and 5) n,
the number of components at each pixel. Further important specifications of a registration
algorithm relate to the optimization strategy used to maximize Eg and all other related
numerical methods (e.g. interpolation strategy, differentiation strategy, etc.).

The following section briefly describes some of the previously proposed schemes that
have seen success in various registration contexts in terms of such key components.

2.1.5 Transformation Function

The space of valid transformation functions, T , plays a critical role in characterizing the
complexity of the optimization found in image registration. For example, so-called para-
metric transformations are fully defined by a small set of parameters and may be addressed
with robust and efficient off-the-shelf optimization techniques (e.g. simplex method). How-
ever, some contexts require solving for a highly complex transformation defined by a very
large set of parameters (typically proportional to the number of pixels found in the image)
and are commonly addressed with a gradient ascent related technique. The next section
briefly describes some of the transformation functions that can be commonly found in image
registration techniques.

Linear Transformations

Linear transformations are functions that can be expressed as a matrix multiplication and
a translational displacement,

T(x) = Ax + b (2.9)

where A is a d × d matrix and b is a translational offset or displacement.
A linear transformation can also be expressed with a single matrix, L = ( A b

0 1 ), in
homogeneous coordinates, such that,

⎛
⎝T(x)

1

⎞
⎠ = L×

⎛
⎝x

1

⎞
⎠ (2.10)

Linear transformations are global parametric transformations that are compactly repre-
sented by a few parameters. They also involve some practical mathematical properties. For

3When there is no feature extraction ψ can be considered equal to the identity function
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example, the composition of linear transformations is obtained as the multiplication of cor-
responding homogeneous matrices and the inversion of a linear transformation is obtained
as the inversion of its homogeneous matrix.

Rigid Transformation

A rigid transformation is a specific type of linear transformation which preserves the dis-
tance between every pair of points. It can be characterized by a rotation matrix, R, and a
translational displacement, b, such that,

T(x) = Rx + b (2.11)

The rotation in 2D space can be compactly characterized with one rotation angle. However,
the rotation in 3D space can be characterized either with three rotation angles (i.e. Euler
angles) or with a quaternion (involving four scalar values).

Thin Plate Splines

Thin Plate Splines (TPS) [20, 55] refers to a non-linear transformation model that satisfies a
specified set of point correspondences, T (xi) = Ti, and minimizes a “certain sort of bending
energy” [20]. For a 2D domain, the transformation along a given spatial dimension, i, can
be expressed as,

Ti = argmin
T

∫ (∂2Ti(x)
∂x2

1

)2

+ 2
(

∂2Ti(x)
∂x1∂x2

)2

+
(

∂2Ti(x)
∂x2

2

)2

dx. (2.12)

The minimization of such energy with N homologous landmarks leads to a solution of
the following form (in 2D),

Ti(x) = a0 +
d∑

i=1
ai · xi +

N∑
l=1

wl · K(x− xl) (2.13)

K(x) = −||x||2 · log
(

||x||2
)

(2.14)

where K denotes the radial basis function or kernel function and where the coefficients
a,w can be obtained by solving a corresponding linear system.



2 Background and Previous Work 19

The TPS transformation is an instance of a more general class of transformation func-
tions called kernel transformations or radial basis transformations, which are defined as the
summation of kernel functions centred at each landmark [44, 159].

B-spline Transformations

w

Fig. 2.1 Uniform grid of B-spline control points. Each control point involves
a displacement vector, w, that locally characterizes the deformation field.

B-spline transformations were initially proposed in [142] for the purposes of medical
image registration and have since seen significant success in numerous clinical applica-
tions [99, 104, 160]. The model defines a non-rigid transformation as the weighted summa-
tion of tensor products of cubic B-splines centred on control points uniformly distributed
in the spatial domain. Fig. 2.1 illustrates a uniform grid of B-spline control points that
defines a transformation function within the spatial domain of the image.

For a 2D domain, a B-spline transformation can be expressed as,

T(x) = x +
∑

y∈Nx

wyβ3

(
x1 − y1

h1

)
β3

(
x2 − y2

h2

)
(2.15)

where β3 is a third order B-spline function [169], hi is the spacing between control points
along dimension i, y is the location of a given control point, and Nx is a neighbourhood of
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control points that have a contribution on the transformation of location x. Note that each
tensor product is weighted by a vector wy which characterizes the displacement contributed
by each control point.

B-spline transformations are very useful for compactly characterizing a non-rigid trans-
formation and provide the flexibility of a user-defined control point grid. In other words, one
can choose to adopt a coarse space grid of control points for compactly characterizing a non-
rigid deformation with somewhat restricted degrees of freedom. Hence, multi-resolution
registration techniques that use B-spline transformations generally adopt a coarse grid of
control points at the initial stage and refine the grid of control points at each subsequent
registration stage. In other words, each registration stage is composed of images blurred
and sampled at a given resolution and a B-spline transformation of a given complexity.
An important advantage of gradually increasing the resolution of the control grid is the
reduction of computational complexity, since B-spline transformations with coarse grids
have a reduced number of transformation parameters.

Diffeomorphisms as the Integration of a Velocity Field

A diffeomorphism [7], ϕ, is a smooth, bijective transformation function that has a smooth
inverse. They were first introduced for computer vision in [168] and have since been devel-
oped with multiple variants [11, 17, 34, 113] for medical image registration tasks. There
are two major advantages regarding the use of a diffeomorphism in an image registration
tasks in comparison with alternative non-linear transformation models such as TPS and B-
spline transformations. First, diffeomorphisms explicitly enforce the constraint that there
is no tearing or folding of the deformation (given that the transformation and its inverse
is smooth and continuous). Second, diffeomorphisms provide both the forward-mapping
transformation function and a backward-mapping transformation function. The benefit of
having both transformations lies in the ability to map image information in any direction
and is illustrated in Fig. 2.2.

In the context of complex registration tasks, diffeomorphisms based on the large de-
formation diffeomorphic metric mapping (LDDMM) model [17] have enjoyed significant
success. In this model, the diffeomorphism is defined as the endpoint, ϕ = φ1, of the flow
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Fig. 2.2 Diffeomorphism and corresponding inverse. A diffeomorphic trans-
formation allows for a smooth and continuous inverse transformation.

of a time-dependent velocity vector field, vt

φt(x) = φ0(x) +
∫ t

u=0
vu

(
φu(x)

)
du (2.16)

where vt(φt) = dφt

dt
, φ0 = id corresponds to the identity function and x is a location in the

fixed image domain. In other words, ϕ maps the coordinate space of the fixed image to the
coordinate space of the moving image.

The numerical implementation of such approach involves the approximation with a
discretization of N time steps such that,

ϕ(x) ≈ x +
N∑

i=1
vi

(
φi(x)

)
(2.17)

In other words, the implementation of a diffeomorphism can be alternatively described
as the composition of a series of small magnitude displacement fields. Fig. 2.3 illustrates
the trajectory of a given location as it advances through the velocity field.

2.1.6 Similarity Metric

The choice of similarity function is critical to the success of image registration and as such
needs to take into consideration the nature of the images being registered.
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Fig. 2.3 Diffeomorphism characterized as the integration of a velocity field.

Mean Squared Difference

When registering images with a common image formation model, one can assume that
spatially corresponding pixels will have similar image intensities. Hence, one can employ
a metric which is maximal when the squared difference of the intensities of corresponding
pixels is minimal, such as the sum of squared differences (SSD) 4,

SSSD
g (If , I↓

m) = − 1
|ΩZ|

∑
x∈ΩZ

(If (x) − I↓
m(x))2. (2.18)

The metric was a popular choice in early computer vision techniques [89, 101], and can
be found implemented in a variety of medical image registration techniques [61, 72, 167].

One can also obtain the same similarity metric by considering the assumption that the
fixed image intensities are related to the moving image intensities by an additive Gaussian
noise model [135].

4Recall that the objective function is maximized, hence the negative sign in the expression for Sg
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Cross Correlation

When registering images of different modalities, the task is of increased difficulty. The most
obvious challenge is that structures and regions that appear on both modalities will typically
have different intensity responses on each modality. For example, voxels corresponding to
bone tissue appear with an intensity If (‘bone’) in the fixed image, while appearing with
a different intensity Im(‘bone’) in the moving image. A possible simplifying assumption
is that there is a fixed mapping function between inter-modality intensities that can be
expressed as a linear function. Under such assumptions, the registration task can be directly
associated [135] to the problem of maximizing the cross correlation (CC) or normalized cross
correlation (NCC) between corresponding image values,

SNCC
g (If , I↓

m) =
∑

x∈ΩZ

(If (x) − Īf )(I↓
m(x) − Ī↓

m)
σIf

σI↓
m

(2.19)

where Ī = 1
|ΩZ|

∑
x I(x) and σ2

I = 1
|ΩZ|

∑
x(I(x) − Ī)2.

The metric was initially proposed for medical image registration contexts in [14, 64]
and has since been implemented in other works [11, 30].

Mutual Information

There are various contexts whereby a relationship between inter-modal intensities simply
cannot be captured by a linear function. In such settings, one can rely on a more general
assumption, namely that spatially corresponding intensities have a fixed and probabilistic
relationship. In other words, one presumes the existence of a joint distribution, p(If , Im),
for spatially corresponding image intensities that is location independent and that exposes
some probabilistic dependency between intensities (i.e. p(If , Im) �= p(If )p(Im)). Under
such assumptions, the registration task can be directly associated [135] to the problem of
maximizing the mutual information (MI) between corresponding image values,

SMI
g (If , I↓

m) = H(If ) + H(I↓
m) − H(If , I↓

m) (2.20)

where H(I) is the marginal entropy of a probability density function, p(I), and H(If , I↓
m)

is the joint entropy of the probability density function, p(If , I↓
m).

The normalized variant of MI is referred to as Normalized Mutual Information (NMI)
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as is commonly expressed as,

SNMI
g (If , I↓

m) = H(If ) + H(I↓
m)

H(If , I↓
m)

. (2.21)

There has been a vast amount of work [31, 36, 85, 93, 102, 142, 160, 165, 166, 172] in-
volving the use of MI in medical image registration contexts. Part of that research effort has
been devoted to the accurate and efficient computation of MI, with particular relevance to
the technicalities of accurately estimating the joint density function, p(If , Im), while main-
taining a reasonable computational complexity. For example, in [176], the authors adopt
a Parzen windows strategy for estimating p(If , Im) and reduce computational complexity
by relying on a stochastic gradient descent optimization strategy. Stochastic optimization
is performed by randomly selecting a small subset of voxel locations at each iteration of
the optimization. The corresponding entropies are then estimated with a different random
subset of voxels.

Most of the initial works [36, 172, 176] based on MI were designed to address the multi-
modal rigid registration of brain volumes. Since most of these modalities are essentially
tissue-based (i.e. the intensity of a given voxel is largely dependent on the tissue-types
found within the voxel’s volume) the use of MI provided a well-justified metric. There were
important subsequent efforts [142, 160] in addressing the non-rigid registration of mono-
modal images with the use of MI. For example, the work in [142] proposed an MI-based
technique for the non-rigid registration of intra-patient mammograms.

More recently, there have been some attempts at employing MI in more challenging
multi-modal registration contexts such as the registration of pre-operative MRI to intra-
operative US [85, 93], where the authors typically rely on some pre-processing stage for
improved robustness. Nonetheless, the use of MI in such approaches is somewhat harder
to justify in contexts like these where the image formation models are very different. In
particular, the image model of US is not exclusively tissue-based (in the sense that a voxel’s
intensity is not largely a function of the tissue-type found within the voxel’s volume) and
involves many complex artefacts, such as a highly non-homogeneous intensity response.
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Incorporating Location Dependency to Global Similarity Functions

Even though similarity functions based on CC or MI can address more general registration
contexts where spatially corresponding image intensities are related linearly or in a prob-
abilistic fashion, they remain sensitive to image formation models that vary throughout
the spatial domain. Consider the case of the image formation model of an MRI machine
involving a bias field that corrupts images as a function of the inhomogeneities in its mag-
netic field. Fig. 2.4 illustrates a MRI brain volume affected by such a bias field, where one
can note how the image intensity is generally brighter in the bottom image region. The
reason why a non-homogeneous image formation model affects those metrics lies in the fact
that both metrics make a global assessment of image similarity. In particular, both NCC
and MI depend on the global statistics of the image intensities, and have no mechanism
for verifying if such statistics do in fact remain constant throughout the spatial domain. A
strategy that has been strongly pursued in recent years to address this limitation has been
to incorporate the notion of locality in such metrics.

Fig. 2.4 MRI vervet brain volume affected by a bias field. Image obtained
from http://www.slicer.org/slicerWiki/

One of the most well-known instances of this principle can be found in the registration
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algorithm known as the Symmetric Image Normalization Method (SyN) [11], part of the
Advanced Normalization Tools (ANTs), where the authors rely on a regional normalized
cross correlation (RNCC) similarity function for resolving a diffeomorphic transformation.
The similarity function can be expressed,

SRNCC
g (If , I↓

m) =
∑

x∈ΩZ

(If (x) − Īf (x))(I↓
m(x) − Ī↓

m(x))
σIf

(x)σI↓
m

(x) (2.22)

Ī(x) = 1
|Nx|

∑
x∈Nx

I(x) (2.23)

σ2
I (x) = 1

|Nx|
∑

x∈Nx

(I(x) − Ī(x))2 (2.24)

where Nx is the neighbourhood of voxel locations centred at x.
Similarly, in [143], the authors apply the same principle to MI, where they propose to

divide the spatial domain into a fixed set of disjoint neighbourhoods and then evaluate
the global value of MI as the average of the neighbourhood specific MI values. Alter-
natively, in [99], the authors propose to improve the robustness of MI by extending the
probability feature space with a random variable representing the spatial location and then
compute the MI between image intensities conditioned to the spatial location. Broadly
speaking, the metric (referred to as Conditional Mutual Information) can be expressed as
the weighted average of MI obtained in spatially constrained regions, where the weights
roughly correspond to the number of pixels found in the region. The metric is burdened
by an increase in computational complexity. However, it provides an improvement in ro-
bustness to non-homogeneous image formation models and to contexts where objects with
a common intensity response appear in different parts of the image.

In [87], the authors pursued the question of how to express the analytical limit of MI
as the spatial region of interest approaches the voxel size. It is clear that one cannot
rely on a single pixel pair sample for estimating a probability density. Hence, they locally
characterize the image with a first-order Taylor expansion and find that MI (referred to as
Local Mutual Information (LMI)) can be expressed as a monotonically decreasing function
of the inner angle, θ = ∠(∇If , ∇I↓

m), of corresponding image gradient orientations,

SLMI
g (If , I↓

m) = 1
|ΩZ|

∑
x∈ΩZ

Cd − log2 | sin(θ(x))| (2.25)
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where Cd is a constant that depends on the dimension of the image.
Such work provides a theoretical justification to go beyond the assumption of intensity

correspondence and rather focus on finding a correspondence between features based on
first-order image differentials (in this case, the feature is the gradient orientation). The
following section describes approaches that explicitly rely on a feature-extraction function
and then define the similarity function based on dense image features defined in entire
image domain.

Dense Image Features

Various image registration algorithms rely on a feature extraction function, ψ, which maps
the image values in given neighbourhood to one or more features which can be compared
to another feature vector with a pre-defined similarity function. The justification behind
feature-based registrations techniques is commonly related to improved robustness with
regards to image artefacts and multi-modal settings. The dense features that have been
proposed for medical image registration contexts are typically based on the statistical dis-
tribution of intensities in a local region, first and second-order derivatives or shape-based
descriptors.

For example, image gradients have been used by various registration techniques [4, 71,
75, 124, 136, 150, 151] as dense features of interest. Some works [71] have proposed to
assess image similarity based exclusively on image gradients. Other techniques [75, 124,
136, 150] use image gradients in a complementary fashion with an intensity-based metric.
For example, in [124] the authors complement the NMI metric with a gradient-based term
that is multiplied with the NMI value. The gradient-based term is evaluated as a function
of both gradient orientation alignment and corresponding gradient magnitudes. Alternative
approaches [4, 151, 161] have proposed evaluating MI over a set of gradient-based image
features, as opposed to image intensities.

The idea of evaluating MI over an extended set of features has also been pursued in [161]
where the authors evaluate not only the voxel’s intensity value, but also a set of scalar values
that reflect structural information and are computed based on the first and second-order
derivatives of the images. The feature images are then evaluated with an estimation of MI
known as α-MI [77] that provides a computationally efficient technique for evaluating MI
in a large feature space.
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Some recent approaches [74, 132] have recently adopted local self-similarity [153] descrip-
tors as robust local image features for complex multi-modal settings. A local self-similarity
descriptor is a feature-vector that evaluates the intensity difference of neighbouring voxels
with relation to the intensity of the voxel of interest. For example, in [74] the authors
propose a Non-Local Shape Descriptor (NLSD) based on the self-similarity of neighbouring
patches. Each component of the NLSD feature vector is evaluated as the Gaussian function
of the intensity difference between all pixels found in the patch centred at the voxel of in-
terest and a corresponding neighbouring patch. The authors then propose a local similarity
function defined as the NCC of the components in the NLSD feature vector.

Dense feature based registration strategies are typically proposed so as to provide im-
provements in registration robustness. However, in many cases, this leads to a significant
increase in computational complexity, which is related to the extraction of the features
from transformed images. In particular, since the extracted image features are functions
of neighbouring image intensities, one cannot simply apply a transformation function to
the image features as if they were conventional scalar images, but must instead apply the
transformation function to the image intensities and then re-compute the image features. In
other words, a feature based registration strategy will typically involve some computational
overhead related to re-computing the image features with every candidate transformation
being evaluated.

2.1.7 Optimization

The choice of optimization strategy is typically based on a trade-off between robustness,
accuracy and computational complexity. In the context of medical image registration,
there is a dominant trend to address the optimization task with a gradient-descent related
strategy. However, there has been significant work in employing direct search methods (e.g.
simplex method) when either the computational cost of the evaluating the energy function
is minimal and/or the space of transformation parameters is relatively small. Furthermore,
there have also been some efforts in employing second-order optimization methods (e.g.
Newton’s method) for reducing the number of iterations necessary to reach the maxima.
For a more detailed analysis on the performance of different optimization strategies in
specific image registration context, the reader may refer to [21]. This section reviews the
major categories of optimization techniques.
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Direct Search Methods

Direct search methods are optimization strategies that rely solely on evaluations of the
objective function and do not rely on its derivatives. They are typically based on stochastic
principles (e.g. simulated annealing) or graph-based frameworks (e.g. iterated conditional
modes).

Stochastic based direct search methods can be found in various image registration strate-
gies, but can be considered better suited for contexts where the transformation parameters
are of reduced size (e.g. rigid transformation). For registration contexts involving a large
set of transformation parameters, these strategies tend to lead to an impractical computa-
tional complexity.

First-Order Methods

First-order optimization methods rely on the first-order differential of the objective func-
tion. They represent a wide range of techniques that are commonly referred to as gradient
descent strategies. Most of these techniques can be expressed at a given optimization
iteration k as,

Wk
T ←Wk−1

T + λk · ∇WEg(If , Im,T) (2.26)

where WT corresponds to the vector of parameters that characterize the transformation
function T, ∇WEg(If , Im,T) is the gradient of Eg with respect to WT, and λ defines the
step size at each iteration.

First-order methods are greedy and can only find a local extrema. Hence, they generally
rely on the assumption that the initial location is within the vicinity of the global extrema.
In the context of image registration, special care is often devoted to ensuring that the
gradient descent strategy does not fall into a local extrema. A common strategy is to use
a multi-resolution image pyramid, which is described in Section 2.1.8.

Second-Order Methods

Second-order optimization methods rely on the second-order differential of the objective
function. Many of these techniques can be associated to Newton’s method. In general,
Newton’s method is an approach for finding the location of a function’s zeros (i.e. f(x) = 0).
In the context of image registration, it is an iterative technique, somewhat similar to
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gradient descent, which finds local extrema defined as the location an objective function’s
derivative zeros. An iteration k of Newton’s method can be expressed as,

Wk+1
T ←Wk

T + λn ·H−1
(
Eg

)
· ∇W

(
Eg(If , Im,T)

)
(2.27)

where H
(
Eg

)
is the Hessian matrix of the energy function, Eg.

Newton’s method may provide an improved rate of convergence with relation to a
gradient decent strategy. However, it relies on the assumption that the objective function
can be approximated by a quadratic function in the vicinity of the extrema. Note that
the evaluation of the Hessian matrix is typically more computationally expensive than
to the evaluation of the gradient. Thus, even if the method yields an improved rate of
convergence, it may still do so at an increase computational cost with relation to a gradient
descent strategy. The reader may refer to [21] for an exhaustive comparison of first-order
and second-order optimization methods in the context of image registration.

Various second-order optimization methods that can be characterized as an approxima-
tion to Newton’s method. Specifically, such methods estimate the value of H−1

(
Eg

)
with

a computationally efficient expression that continues to provide improved rates of conver-
gence. For example, the registration technique proposed in [121], commonly referred to as
the “Demons’ algorithm” and known for its reduced processing times, has been subsequently
described [121] as an estimation of Newton’s method.

2.1.8 Improvements in Computational Efficiency

Multi-Resolution

One of the most commonly used techniques for improving computationally efficiency and
robustness against local extrema in image registration techniques is the use of a multi-
resolution image pyramid [95]. The typical setup in a multi-resolution registration approach
can be described as N sequential registration stages where each stage involves an image
pair with a specific resolution. More specifically, the initial registration stage consists of a
coarse image resolution and its solution is used to initialize a subsequent stage involving
a finer image resolution. The final registration stage is commonly defined as the original
resolution of the input images.

Fig. 2.5 illustrates a conventional multi-resolution image pyramid where higher pyramid
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Fig. 2.5 Multi-resolution image pyramid.

levels corresponds to coarser registration stages and are characterized as upsampled variants
of the original input image. Multi-resolution image pyramids are heavily based on scale-
space theory [95] in which the notion of scale is characterized by the convolution of the
image with a Gaussian function of a given standard deviation. Hence, most multi-resolution
image pyramids rely on a Gaussian blurring operation of different scale at each registration
stage which is then downsampled to the specified resolution.

Voxel Selection

A commonly used technique [16, 19, 22, 51, 60, 104, 117, 119, 128, 144, 172] for reducing
the computational complexity of a registration is to prudently select a reduced subset of
voxels and restrict the evaluation of the similarity metric to such voxels.

Some of the early works [104, 172] in medical image registration already include this idea
of relying on fully randomized voxel selection scheme. In such works, there was no attempt
in giving a different priority to each voxel, so as to choose the most informative voxels. Note
that the strategy is a very simple approach for reducing computational complexity and has
no inherent bias regarding the voxels selected. Nonetheless, a fully random selection of
voxels typically leads to a significant loss in registration accuracy. In order to mitigate the
penalty in registration accuracy, subsequent methods [22, 51, 60, 119, 144] have developed
heuristics and theoretical frameworks for defining the utility of a given voxel in resolving
the transformation.

Many of the recently proposed voxel selection strategies for intensity-based similarity
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metrics lead to a preference for high gradient magnitude locations. The reasoning be-
hind such preference typically highlight that such locations can be associated to increasing
variations of the similarity metric and are thus effectively driving most of the image reg-
istration. In contrast, the image similarity in low gradient magnitude location will not
be greatly affected if the image is slightly displaced. For example, in [144], the authors
propose a gradient magnitude subsampling (GMS) approach, where the moving image is
subsampled on off-grid locations with a probability of being sampled that is proportional
to the gradient magnitude.

Voxel selection strategies are generally proposed so as to provide a similar registration
accuracy as conventional full sampling registration approaches with a significantly reduc-
tion in computational complexity. However, the advantages of voxel selection strategies
have generally been limited to registration contexts with linear transformations. Registra-
tion contexts involving complex non-linear transformations (e.g. B-spline transformations)
typically suffer a sharper degradation in registration accuracy as the sampling rate is de-
creased. It also important to note that voxel selection strategies are typically coupled with
a “conventional” intensity-based similarity metric (e.g. SSD, NCC, MI) and are not meant
to improve the robustness against challenging imaging artefacts, such as non-homogeneous
image formation models, occlusion and complex noise models.

2.2 Medical Applications

Image registration techniques can be found in a wide variety of medical image analysis
applications, each with a unique set of challenges. Some those applications include the
fusion of anatomical images (e.g. CT, MRI) and functional images (e.g. PET, fMRI) [36, 60,
176, 177], segmentation of anatomical regions [37, 39], construction of reference atlases [13,
59, 62, 86, 179, 181], longitudinal analysis of anatomical structures of interest [41, 45, 115],
computer assisted interventions [35, 48, 85, 93], among many others. The reader is invited
to refer to [57, 68, 78, 103, 118, 123, 155] for exhaustive surveys characterizing the field. This
section includes a brief summary of a set of key medical applications of image registration
techniques that relate to the work presented in this thesis.
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2.2.1 Multi-Modal Fusion of Anatomical Images

One of the most common uses of medical image registration is the rigid alignment of
anatomical images, such as CT or MRI volumes, so that spatially corresponding voxels
correspond to a common anatomical location. The registered images can then be visually
“fused”, allowing the user to view multiple modalities in a common coordinate frame.

A major assumption behind such registration contexts is that anatomical structures
do not undergo any non-rigid deformations between the time points where each image
was obtained. It is important to note that one also assumes that the image formation
model itself does not induce a deformation that is different for each acquisition. Such an
assumption is not fully satisfied by various medical imaging modalities. For example, MRI
images typically suffer a (small) non-linear deformation induced by the inhomogeneities of
the magnetic field [28].

(a) CT (b) PD-weighted MRI (c) T1-weighted MRI (d) T2-weighted MRI

Fig. 2.6 Case involving the rigid registration of brain CT and MRI volumes.
Images obtained from the RIRE dataset http://www.insight-journal.org/rire/.

An iconic example of multi-modal fusion can be found in the rigid alignment of multi-
modal brain volumes. This context has been thoroughly explored by many different tech-
niques [36, 47, 60, 124, 125, 176] and there are publicly available datasets [177] that can be
considered a well-accepted validation standard for comparing techniques. Fig. 2.6 illustrates
a clinical case involving the rigid registration between a brain CT volume and a set of brain
MRI volumes. A majority of the techniques previously proposed for this context [36, 60, 176]
have relied on the maximization of NMI, which constitutes an intensity-based multi-modal
similarity metric.
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2.2.2 Anatomical Segmentation

Image registration techniques commonly play a key role in image analysis pipelines with the
objective of segmenting anatomical structures. The basic principle of such segmentation
strategies is to rely on a pre-defined expert labelled atlas (template) image where the
anatomical region of interest has been manually identified. Some important variants to
this approach are discussed in this section.

Some techniques rely on a hard mapping of labels based on the spatially mapped atlas
labels. For example, in [37, 39], the authors propose a segmentation algorithm that registers
a patient’s brain MRI to a standard brain template, and then resolves the patient’s brain
tissue labels via the spatial mapping to the labels in the template obtained from a patient
to template non-linear registration.

Other segmentation techniques rely on a probabilistic atlas [59, 105, 152] where each
voxel involves a vector of tissue type probabilities. For example, the ICBM 2009 brain
atlas [59] includes for each voxel the probability of it being classified as grey matter, white
matter or cerebrospinal fluid. Different works [8, 12] have proposed probabilistic segmenta-
tion strategies based on the Expectation Maximization (EM) algorithm using a probabilistic
brain atlas as a prior probability for the healthy tissue type segmentation of brains.

There are also probabilistic segmentation techniques [54, 88, 163] for the purposes of
brain lesion detection that also rely on healthy tissue type probabilities obtained from a
registration to a probabilistic brain atlas. In this context, the lesion detection methods
rely on the prior knowledge regarding the healthy tissue type probability of each voxel
for characterizing a probabilistic model that, in conjunction with multiple image features,
allows for the detection of pathologies.

An alternative approach for segmenting anatomical structures of interest involves reg-
istering the subject’s image to multiple atlases that include a valid segmentation. Such
methods [2, 81, 145, 175] are referred to as Multi-Atlas Label Fusion (MALF) techniques.
The patient’s segmentation labels are obtained by warping the labels in the pre-segmented
atlases to the patient’s space. One must also define a fusion scheme which describes how
multiple template labels are jointly used to resolve the patient’s segmentation label. For
example, a commonly used fusion scheme is to adopt the label value that was obtained
from a majority of the reference templates.
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2.2.3 Longitudinal Analysis

Non-rigid registration techniques can be commonly found in intra-patient longitudinal stud-
ies [9, 10, 41, 131, 142, 180], where a given subject is imaged at multiple time points and
the registration is used to infer the physical deformation the subject underwent across time.
This strategy has been pursued with various image modalities and anatomical structures of
interest. For example, in [142] the authors proposed a non-rigid registration technique for
inferring the deformation between MR mammograms. In [41], the authors propose a tech-
nique for inferring the deformation between lung CT volumes at exhale and inhale states.
In [9], the authors rely on a symmetric diffeomorphic registration technique for inferring
the amount of grey matter atrophy suffered by a patient across imaging time points.

2.2.4 Image Guided Interventions

Image guided interventions are contexts where image registration can play a key role in
multiple stages. Computer assisted clinical procedures are characterized by a pre-operative
imaging modality followed by an intra-operative imaging acquisition which may be used
for either tracking the location of a region of interest, characterizing physical deformation
undergone after the pre-operative image was acquired and/or exposing key anatomical
regions that can be imaged by an intra-operative modality.

The key responsibility of any image registration involved in such procedures is to resolve
the spatial mapping between two or more imaging acquisitions. At an initial planning stage,
prior to the clinical intervention, multiple image modalities (e.g. T1-weighted MRI, CT,
DTI, PET, fMRI, etc.) may be used for diagnostics and planning of the procedure. To
allow the clinician to interpret all pre-operative modalities in a common coordinate space,
one must rely on a multi-modal rigid registration strategy. Once the clinical intervention is
ongoing, one must rely on an image registration technique to rigidly or non-rigidly bring the
pre-operative imaging data in spatial correspondence with the intra-operative data. The
clinician may rely on such intra-operative registration to either: 1) allow the interpretation
of all pre and intra-operative modalities in a common coordinate space, or 2) characterize
the physical deformation that has taken place since the pre-operative images were acquired.
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Image Guided Radiation Therapy

Image Guided Radiation Therapy (IGRT) [52, 82, 120] and Image Guided Radiosurgery
(IGRS), are both alternatives to standard tumour resection surgery and involves the use
of accurately targeted radiation beams to treat tumours. In order to account for pa-
tient displacement throughout the radiation treatment, radiosurgery systems typically
employ an image-guided solution that continuously tracks the region of interest and al-
lows a robotic arm to continuously reposition the radiation beam. For example, the Cy-
berKnife™ System[29] is a commercial solution that provides continuous skull tracking
with the use of X-Ray imaging for the targeting of intra-cranial tumours. The tracking
of the skull, also known as motion correction in this context, is driven by the registration
between a pre-intervention CT acquisition and intra-intervention X-Ray images. The reg-
istration resolves the transformation between corresponding coordinate spaces and leads to
an update of the robotic arm location.

Image Guided Neurosurgery

One of the motivating clinical contexts for this work can be found in Image Guided
Neurosurgery (IGNS), where the physician relies on pre-operative imaging and a tracked
pointer (whose location is known and displayed onto the pre-operative volume) for guidance
throughout the surgical procedure. Unfortunately, brain movements during open-skull op-
erations are known to reduce the utility of image guidance. Intra-operative imaging modal-
ities have thus been proposed for improved guidance accuracy. Some modalities, such as
intra-operative MRI, involve a prohibitive cost, as well as requiring major modifications to
the operating room and surgical procedure. Alternatively, intra-operative ultrasound (iUS)
provides a highly appealing option given its ease of use and relatively inexpensive costs.

Multi-modal registration plays a fundamental role in this context. In particular, one
can leverage a registration technique for resolving the deformation between a pre-operative
MRI volume and an iUS so as to update all pre-operative information and compensate for
soft tissue deformations found through the operation. This registration task is particularly
challenging given the widely different nature of the modalities involves, and there has been
a significant amount of work [48, 85, 132, 133] devoted to it. As such context constitutes a
critical component of this work, it will be further detailed in Chapter 4 prior to presenting
corresponding experimental results.
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2.3 Validation of Registration Techniques

Validation of medical image registration algorithms is an ongoing challenge faced by the
research community which arises from an absence of ground truth in real medical contexts.
There have been many different approaches proposed for estimating the geometric accuracy
of registration algorithms and the topic has been discussed in detail in some works [114, 137].
One should note that even though the geometric error is the direct and natural measure
of accuracy of a registration task, it’s relevance is closely related to the clinical task at
hand. For example, some clinical tasks may indeed require an accurate spatial mapping of
anatomical regions found throughout the entire image domain, and a measure of geometric
error evaluated across the domain may indeed be a suitable validation strategy. Other tasks
may instead focus on tracking a particular region of interest, and choosing a performance
metric evaluated over the entire domain may poorly reflect the accuracy in the region of
interest. This section describes the main validation strategies employed in medical image
registration contexts.

2.3.1 Simulated Registration Tasks

Some validation strategies [15, 19, 149, 174] rely on synthetic or simulated medical image
volumes generated with a known ground-truth spatial deformation. Hence, they allow
for a direct computation of the geometric error at any location in the spatial domain.
Unfortunately, simulated medical images recreate their real counterparts with a limited
accuracy and typically do not incorporate all the complex artefacts and imperfections found
in the true image formation model. Additionally, in the context of non-rigid deformations,
one is faced with the challenge of defining a physically plausible transformation that reflects
the biomechanical properties of the anatomical structures of interest. For example, in [149],
the authors propose a finite-element method for simulating gold standard deformations so
as to validate a breast MRI non-rigid registration technique.

2.3.2 Distance between Homologous landmarks

An alternative strategy is one that relies on true medical volumes found in real clinical
cases. However, one is rapidly burdened by the task of identifying a suitable gold standard.
The task of defining a valid ground truth (i.e. the “true” transformation function) is
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rendered practically impossible in the context of complex non-linear transformations with
the extreme scenario where a displacement must be specified at each voxel location.

In the absence of a ground-truth transformation function, some authors [48, 104, 114,
122, 124, 133] rely on manually selected homologous landmarks and evaluate the mean dis-
tance (or any other related statistics) as the registration performance metric. Furthermore,
in contexts that involve simple transformations (e.g. rigid transformation), one can also
make use of such point correspondences for characterizing the geometric error throughout
the spatial domain [58].

It is important to note that the manual selection of homologous landmarks can be
strongly biased by each expert and the prior knowledge he/she relies on for identifying the
landmarks. In particular, a clinical expert may rely on anatomical knowledge regarding a
specific anatomical region of interest for assessing its location, even though there might be
no visual information illustrating a correspondence. Furthermore, if the expert has complete
freedom to choose landmarks he/she might do so with an arbitrary spatial distribution that
does not properly capture registration accuracy throughout the spatial domain.

In order to reduce the effect of expert bias and poor spatial distribution of landmarks,
validation strategies may enforce constraints on the landmarks that can be selected. For
example, in [114] the authors propose a state-of-the-art semi-automatic strategy that gen-
erates a well-distributed large set of homologous landmarks and relies on minimal user
interaction for correctness.

2.3.3 Agreement between Spatially Mapped Labels

In the absence of a complex ground truth deformation field and with the goal of bypass-
ing any manual identification of point correspondences, there has been significant work
[3, 49, 90, 94, 99, 139, 146, 171] in validating registration techniques based on the overlap
of expert segmented anatomical regions and tissue types. Such methods typically involve
a pre-existing dataset of expert-annotated medical volumes. The approach has received
some criticism [137] which underlines that, in some contexts, an excellent agreement be-
tween anatomical labels can be brought forward by an implausible transformation function.
Nonetheless, for contexts where the anatomical labels correspond to unique and localized
anatomical regions, as opposed to general tissue types, the validation approach can provide
an informative surrogate measure with regards to geometric accuracy. For example, in [90],
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the authors evaluate the performance of fourteen state-of-the-art non-linear registration
techniques by relying on four different datasets of T1-weighted MRI brain volumes with
corresponding expert segmentations of various anatomical regions (e.g. cortical foldings).
Fig. 2.7 illustrates the four different datasets of expert-labelled MRI brain volumes used.
Registration performance is evaluated by first registering a patient’s MRI volume to a sec-
ond patient’s MRI volume, and then evaluating the agreement between spatially mapped
anatomical labels.

2.4 Summary

Image registration is a problem that extends to a wide variety of applications and involves
decades of research efforts. The diversity of challenges faced in each particular context
has lead to large family of techniques that aim to improve each of the registration com-
ponents including the energy function to be optimized, the choice of image features, the
transformation model used to deform images, the image interpolation technique and the
optimization strategy used. The overview of registration methods presented in this chap-
ter illustrates the particular importance of the similarity metric and transformation model
used, and how these two critical components largely characterize the type of problems that
can be addressed.

As automated medical image analysis continues to develop and become a more critical
part of standard clinical procedure, registration of medical volumes stands out as a crit-
ically important component that is present in a vast majority of such applications. The
overview of medical image registration contexts presented in this chapter listed some key
examples and the challenges that may be encountered. This chapter also illustrated the
major difficulties in defining a validation strategy that is suitable for a particular medi-
cal context, and how one is divided between a synthetically generated yet highly accurate
strategy or the use of a dataset of real clinical cases with manually generated ground truth.

An important phenomenon that stands out in the overview of previous work is the
conflict between robustness and computational efficiency. In particular, there seems to be
a common trend towards improving registration robustness by increasing the dimension-
ality of the image feature space, which unfortunately also leads to a natural increase in
computational complexity and processing time. This provides a fundamental challenge for
medical applications with time sensitive constraints such as the ones found in image guided
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Fig. 2.7 Publicly available datasets of expert labelled brain MRI volumes
used for the evaluation of non-linear registration techniques performed in [90].
Each quadrant illustrates the MRI volumes and anatomical labels from a spe-
cific dataset. The left column of each quadrant illustrates a T1-weighted head
MRI. The middle column of each quadrant illustrates the same T1-weighted
MRI after removal of non-brain tissue by brain masking. The right column of
each quadrant illustrates the anatomical labels identified in the T1-weighted
MRI. Image obtained from http://www.mindboggle.info/data.html.

interventions where real time or near real time performance is critically important for a
successful integration with a clinical procedure.

The work presented in this thesis seeks to achieve the same type of advantage in reg-
istration robustness brought forward by feature-based techniques, but avoiding a penalty
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in terms of computational complexity. Instead, it seeks a reduction in processing times by
relying on a sparse set of data, similar to pixel selection strategies used with intensity-based
metrics. The basic principle adopted for achieving such goals is to rely on image gradient
orientations at prudently selected locations as a sparse and compact representation of the
anatomical structures of interest in an image. The following chapter provides a detailed
description of two proposed techniques that follow such principle and following chapters
provide a series of quantitative results that illustrate the advantages brought forward with
relation to competing state-of-the-art methods.
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Chapter 3

Image Registration based on
Gradient Orientations of Minimal
Uncertainty

The previous chapter presented a general overview of various image registration techniques
proposed for medical contexts. An important trend that was identified was the use of
multi-dimensional image features, proposed so as to achieve improved registration robust-
ness. Unfortunately, the use of a large number of image features was shown to also involve
a significant increase in computational complexity corresponding to the cost of computing
the image features of a transformed image for every candidate transformation function.
Needless to say, there are many time-sensitive clinical applications which require registra-
tion solutions with significantly reduced computationally complexity in conjunction with
strong robustness against complex image models.

This chapter presents the theory and methodology regarding two closely related regis-
tration techniques that are motivated by such challenging time-sensitive applications and
which largely rely on image gradient orientations as features for assessing the quality of an
image match. The basic principle of using image gradients as a driving feature for image
registration is not, in and of itself, a novel idea. However, such efforts [71, 75, 87, 106, 124]
have generally been limited to a dense evaluation of the similarity metric throughout the
image domain, and there has also been no effort in minimizing the computational over-
head introduced when evaluating the gradient orientations of a transformed image. The
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framework presented in this thesis directly addresses these issues by focusing on a sparse
set of locations that relate to structures of interest and illustrating how the evaluation of
transformed image gradients can be performed with computational efficiency.

There are two key intuitions that are behind the registration techniques developed in
this chapter. The first is that a majority of the image domain is characterized by visu-
ally homogeneous regions involving locations that are virtually indistinguishable from each
other, and it is thus more informative and profitable to focus on visually non-homogeneous
regions. The second is the principle of characterizing such regions of interest with a primi-
tive geometric descriptor inferred from the image, instead of relying on the region’s image
intensity profile. The work in this thesis adopts what is perhaps the simplest geometric
descriptor that can be inferred from an image region, that is, the orientation/direction in
which change is occurring in the region.

In this work, the principle of focusing on image regions where “something is happening”
is directly associated to accurately identifying locations corresponding to an interface be-
tween homogeneous regions (i.e. boundaries). Such task is considered essentially equivalent
to the problem of edge detection, where the goal is to identify image boundaries that cor-
respond to boundaries in the underlying scene. Nonetheless, the problem of accurately and
robustly identifying the location of anatomical boundaries represents a non-trivial challenge
by itself, with a significant amount of research devoted to it. For the purposes of a gra-
dient orientation based registration and where inferred boundaries are used for restricting
the locations where a similarity metric will be evaluated, the sensitivity to edge detection
performance is shaped by the complexity (i.e. degrees of freedom) of the transformation
model being resolved. For example, a global 1 parametric transformation model (e.g. rigid
transformation) involves a small set of parameters and can be analytically solved with a
few point correspondences. In other words, one can solve a rigid transformation model with
a few geometric constraints. Furthermore, if the geometric constraints are free of errors,
then the resulting transformation will also have no error and there will be no benefit in
increasing the number of geometric constraints. Alternatively, if the geometric constraints
involve some error or degradation, an increase in the number of constraints will lead to a
reduction in the error of the transformation. The first method in this chapter addresses
the rigid registration of multi-modal volumes based on such principles. It characterizes

1A rigid transformation model is global since the scope of its parameters is global and not local. In
direct contrast, a B-spline transformation is local since its parameters have a strictly local scope.
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the confidence on the gradient orientations with a formal analysis on the effect of additive
Gaussian noise on the computed orientations. It then relies on such indicator of confidence
so as to prudently select a sparse set of locations which will accurately drive the registration
process.

In direct contrast to a global parametric transform, a non-linear transformation model
(e.g. B-spline transformation) typically involves a large set of locally-scoped parameters
and therefore requires an increased number of geometric constraints for it to be resolved.
Such transformation models provide some degree of local freedom, where sufficiently far
spatial regions have fully decoupled displacements. This may quickly lead to an ambiguity
when relying on the constraints evaluated by gradient orientation alignment. Specifically,
any ambiguity in the precise location of the boundary will lead to an ambiguity in the local
deformation. Unfortunately, most of the images encountered in practice do in fact involve
such ambiguity since they expose boundaries with an image gradient that spans over a cer-
tain width. In other words, the image gradient by itself does not provide a pixel compact
identification of the boundary’s location. This is a challenge for a registration framework
based on gradient orientation alignment since it constitutes an ambiguity in both the selec-
tion of locations for the evaluation of the metric and in the geometric accuracy of the metric
with relation to a second image. Such limitations can be directly addressed by adopting an
explicit dependency on a pixel compact edge detection method which can accurately define
the locations to be evaluated. Additionally, the ambiguity in the similarity metric itself
can be restricted by also including a distance-based term which penalizes locations that
are far from an inferred boundary location. These are the principles that characterize the
second proposed method. In particular, the method involves a diffeomorphic (non-rigid)
registration technique which identifies a sparse set of boundary locations in each image
and consequently seeks the transformation that jointly maximizes alignment with their
spatially corresponding gradient orientations and minimizes the distance to the nearest
spatially corresponding boundary. In order to enforce a hard constraint on the degrees of
freedom of the non-linear transformation model, the proposed technique also relies on a
coarse spatially discretized velocity field. and also relies on symmetric consistency, where
the similarity metric is evaluated on selected locations identified in the fixed image domain
and in the moving image domain.

In summary, the fundamental motivation behind both techniques lies in exploiting the
sparsity of boundary information, as evaluated through gradient orientation alignment, in
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a computationally efficient fashion, while relying on geometric consistency constraints for
facilitating the optimization tasks. It is clear that the two proposed methods are in reality
variants of a common framework. Nonetheless, there are significant technical differences
and their methodologies are therefore described in separate sections.

The techniques described in this chapter are proposed with the aim of being generally
applicable to multiple mono-modal or multi-modal contexts involving image formation
models that can expose anatomical structures or boundaries (as opposed to functional
imaging modalities). The subsequent chapters illustrate the generality of the proposed
techniques with important contributions in registration performance in the contexts of: the
rigid registration of pre-operative MRI to intra-operative US for neurosurgical procedures,
the rigid registration of CT and MRI brain volumes, the inter-patient non-rigid registration
of MRI brain volumes for automatic anatomical labelling, and the registration of patient
to atlas MRI brain volumes for the generation of healthy tissue probability maps.

3.1 Multi-Modal Rigid Registration based on Gradient
Orientation of Minimal Uncertainty

This section describes a framework for the use of gradient orientation as features of interests
in a rigid registration context. Similar to related work [50, 71, 75, 87, 106, 124], a local
similarity function based on gradient orientation alignment is adopted. The local similarity
metric is maximal when corresponding gradients are parallel and minimal when they are
perpendicular.

In this work, a significant effort is devoted to characterizing the reliability or certainty
of such image features across the spatial domain, so as to focus computation to areas
of low uncertainty. This constitutes a direct contrast with other techniques that simply
evaluate the similarity measure uniformly throughout the entire domain. In particular,
the computation of gradient orientations is cast as a Bayesian inference problem afflicted
by image noise, and this effort leads to the theoretical result that the uncertainty on the
estimated gradient orientation does in fact vary throughout the image. Specifically, the
analysis adopts the assumption of additive Gaussian noise on voxel intensities and describes
how it leads to an orientation variance that is spatially non-homogeneous. An important
outcome of this analysis is that the corresponding gradient magnitude is an indicator of
the orientation variance. In particular, the analysis shows that normalizing the gradient
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magnitude with the norm of its corresponding derivative kernel allows one to compare the
uncertainty across scales, and one can therefore define a common selection criterion for all
scales. This results leads to a multi-scale selection scheme where a gradient magnitude
threshold (corresponding to an uncertainty threshold) is defined a priori at the finest scale
and gradient magnitude thresholds of coarser scales are automatically computed so that
they correspond to an identical uncertainty threshold. Such a selection scheme permits a
robust and accurate coarse to fine registration strategy that quickly drives the optimization
to the neighbourhood of the solution while focusing on confident features at each scale.

Previously proposed gradient orientation based metrics [71, 75, 87, 106, 124] have gen-
erally been characterized by a fixed local similarity function, which reflects how tightly ori-
entations should be aligned. In particular, various previously proposed metrics [71, 87, 124]
evaluate gradient orientation alignment as the inner product of the normalized image gradi-
ents, which also corresponds to the cosine of the inner angle between corresponding gradient
orientations (i.e. cos(Δθ)). Unfortunately, such a metric does not provide a high discrim-
inability between “somewhat well aligned” and “tightly aligned” gradient orientations, and
an inner angle of 14° already yields a metric value corresponding to 97% of the maximum
possible value. The similarity metric presented in this work can be parametrized with dif-
ferent matching criteria and quantitative results will demonstrate that imposing a strict
matching criterion on rigid registrations can lead to improvements in registration accuracy.

In order to bypass the evaluation of transformed interpolated voxel intensities and
corresponding image derivatives, the proposed framework makes use of a computationally
efficient evaluation of transformed image gradients. Specifically, the image gradient of the
original (undeformed) image is transformed by multiplication with the Jacobian of the
transformation function, a linear mapping known as the pullback in differential geometry.
In contexts involving rigid transformations, the Jacobian is simply the rotation matrix and
is thus constant across the spatial domain.

3.1.1 Methodology

This section describes the proposed rigid registration method, referred to as GOA (Gradient
Orientation Alignment), and its three main components: 1) a local similarity function
evaluating the resemblance of gradient orientations, 2) a multi-scale gradient orientation
selection strategy that identifies locations of reduced uncertainty in the fixed image domain,
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and 3) a computationally efficient technique for estimating gradient orientations of the
transformed moving image.

Fig. 3.1 Algorithmic diagram of proposed rigid registration method, re-
ferred to as GOA. The block diagram illustrates the pre-processing stage and
optimization stage of the approach. The pre-processing stage involves the
computation of image gradient at various image scales and consequently iden-
tifying the sampled locations of interest, Ω, in the fixed image domain and for
each image scale. The optimization stage involves the maximization of mean
gradient orientation alignment at subsequent image scales and evaluated on
the locations of interest. The multi-resolution approach first addresses the
coarsest image scale, initializes the next stage with the obtained solution, and
proceeds sequentially until reaching the finest image scale.

The algorithm, illustrated in Fig. 3.1, consists of two stages. The first is a pre-processing
stage where the image derivatives of both images are computed at multiple scales and where
sampling masks (i.e. locations of interests) in the fixed image domain are computed for
based on gradient orientation uncertainty and at each image scale. The second stage is a
coarse to fine optimization stage in which the local similarity function is evaluated over the
selected locations and where each scale is initialized with the transformation obtained in
the previous (coarser) scale.

Note the proposed method restricts the voxel selection to the fixed image domain. It that
sense, the method can be considered asymmetric, and each of the images being registered
plays a unique role. This particular choice will be justified in the following chapters, where
quantitative benefits in registration performance in multi-modal contexts are presented. It
is important to highlight that a symmetric variant of the proposed technique is relatively
straightforward to develop and may be particularly relevant for mono-modal contexts where
both images share a common image formation model. In the following sections, a detailed
description of each component as well as of the algorithmic implementation is presented.
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Local Similarity Measure

The method relies on a localized similarity function based on gradient orientation alignment
that includes a parameter that characterizes its matching criterion. In particular, gradient
orientation similarity is evaluated as,
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where Δθ = ∠(∇If , ∇I↓
m) is the inner angle between ∇If and ∇I↓

m; and N ∈ N is the
function’s parameter. Notice that the same metric can also be expressed as the inner
product between normalized gradients raised to the N -th power. The value of N is an
important parameter that relates to the existence of matched boundaries with inverted
image intensity transitions, as well as the strictness or selectivity involved in evaluating
gradient orientation alignment.

In a general multi-modal context, matched locations may have inverted intensity tran-
sitions. For example, a boundary in a first modality may involve a transition from white
to black, while its corresponding boundary in a second modality may involve a transition
from black to white. In order to reflect such possibility, one can adopt an even value of
N , in which gradient orientations with inner angle of π are also rewarded. However, in
contexts where it is known a priori that matched boundaries must have non-inverted in-
tensity transitions (e.g. mono-modal registration), one can adopt an odd value for N which
penalizes corresponding gradients with inverted transitions.

Additionally, the parameter N also characterizes how strict or selective the matching
criterion is. Hence, metrics with large values of N only reward tightly aligned orientations.
On the other hand, metrics with small values of N tend to measure the projection of a
normalized gradient onto another. In that sense, the parameter N can be considered a
tuning parameter of the proposed method. The quantitative results shown in Chapter 5
demonstrate that employing a highly selective metric in the context of rigid registrations
can lead to gains in accuracy.
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Multi-Scale Selection of Gradient Orientations

Similar to other registration frameworks, the proposed method relies on a multi-resolution
strategy where coarse resolution images are registered first and their solution is used to
initialize a subsequent (finer) image resolution registration stage. However, the proposed
method also relies on a voxel selection strategy which identifies locations of interest where
the similarity metric will be evaluated. It is thus of critical value to adopt a consistent
voxel selection strategy across scales which is based on a common criterion.

This section provides an analysis of gradient orientation degradation brought forward
by image noise, which consequently provides an indicator of gradient orientation uncer-
tainty which can be compared across image scales. In particular, the posterior probability
of image gradient orientations is derived based on voxel intensities subjected to additive
Gaussian noise. This analysis demonstrates that the gradient magnitude is an indicator of
the orientation variance (relative to other orientations in the same image) and that nor-
malizing the gradient magnitude with respect to its corresponding derivative kernel also
allows one to define a “scale-independent” indicator of gradient orientation uncertainty.
The details regarding such derivation are outlined below.

Inferring Gradient Orientations on Images with Noise Consider a discretized 2D
image, I : N2 → R, affected by i.i.d. additive Gaussian noise and whose formation model
can be expressed for each pixel as,

I[i, j] = F [i, j] + ε[i, j] (3.3)

where F is an undegraded (i.e. noiseless) image, i, j is a 2D voxel index and ε[i, j] is an
i.i.d. Gaussian random variable with variance σ2.

The probability density of a pixel intensity is expressed as,

p(I[i, j] | F [i, j]) = 1√
2πσ2

exp
(

− (I[i, j] − F [i, j])2

2σ2

)
(3.4)

Each image derivative, ∂I/∂x and ∂I/∂y, can be estimated with a linear operator (e.g.
central-difference, Gaussian derivative, etc.) that is fully characterized by its corresponding
kernel, Kx and Ky. Hence, each estimated image derivative, ∂̂I/∂x and ∂̂I/∂y, resulting
from the discrete convolution of its kernel with the image, will follow a normal distribution
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(given that the voxel intensity has a normal distribution). In this work, the analysis is
restricted to operators that act solely on voxels in the spatial dimension of interest2. For
example, one may adopt a central-difference operator to estimate the derivative along the
x dimension, and such operator only relies on the previous and next voxel along the x axis.
For such types of linear operators, the estimated image derivatives are also independent.
Finally, if one assumes that the kernels are just rotated variants of each other and thus have
the same norm-2 (||Kx||2 = ||Ky||2 = ||K||2), one can express their conditional density as,

p
(
∇̂I[i, j] | ∇̂F [i, j]

)
= 1
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(3.5)

where ∇̂I =
(

∂̂I/∂x, ∂̂I/∂y
)

is the computed image gradient and ∇̂F is the correspond-
ing gradient of the undegraded image.

The joint density of the image gradient magnitude, m = |∇̂I|, and gradient orientation,
θ = ∠(∇̂I), can be estimated through the distribution,

p (m, θ | r, φ) = m

2π||K||2(σ2) exp
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− m2 − 2mr cos(θ − φ) + r2

2||K||2σ2

)
(3.6)

where r and φ are the magnitude and orientation of ∇̂F and the voxel index [i, j] is not
shown for legibility purposes.

The posterior of φ is derived by solving the following integral,

p (φ | m, θ) =
∫

r

p (m, θ, r, φ)
p (m, θ) dr

=
∫

r

p (m, θ | r, φ) · p (r, φ)
p (m, θ) dr

∝
∫

r
p (m, θ | r, φ) dr (3.7)

where a uniform prior for (r, φ) is adopted (i.e. there is no prior knowledge on gradient
magnitude and orientation).

Solving the integral in the previous expression, as well as for the normalization constant,
2 Note that some operators (e.g. Sobel) would not satisfy such constraint.
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one obtains the resulting expression,

p (φ | m, θ) =
e
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where Δ = φ − θ is the difference between the undegraded orientation and the observed
orientation, Φ() is the cumulative distribution function of a Gaussian random variable, and
I0 is the modified Bessel function of the first kind of order zero.

Note that even thought the expression found in Equation 3.8 is relatively complex, all
non-constant terms can be re-expressed as functions of m

|K|σ . Fig. 3.2 illustrates the density
with different values of m

|K|σ and shows that it is simply a unimodal directional density
whose variance is a monotonically decreasing function of m

|K| . In other words, m
|K| provides

a common indicator of the precision (i.e. inverse of variance) of a given gradient orientation
across kernels of different scales and without knowledge of the noise variance, σ. Note that
without knowledge of σ we are left unable to evaluate absolute probabilities or confidence
intervals regarding gradient orientations, and we are also unable to compare the gradient
orientation uncertainties between different image modalities.

(a) m
|K|σ = 1 (b) m

|K|σ = 2 (c) m
|K|σ = 4 (d) m

|K|σ = 8

Fig. 3.2 Posterior density of gradient orientation conditioned to different
values of m

|K|σ .

Multi-Scale Uncertainty Threshold The proposed method relies on the obtained indi-
cator of uncertainty in a multi-scale orientation selection scheme where only locations whose
uncertainty is below a given threshold are selected. In particular, a gradient magnitude
threshold, β1, is defined a priori for the finest image scale, and corresponding thresholds
for coarser scales are directly obtained. In a multi-scale approach, we have unique kernels
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for each scale and we can equalize the orientation posterior of different scales. Solving
for two scales, k and l, one can derive the following relationship between corresponding
magnitudes,

mk

|Kk| = ml

|Kl|
. (3.9)

In other words, a gradient orientation, φk, computed with the differential operator (i.e.
kernel), Kk, and with corresponding magnitude, mk, has the same variance as an orienta-
tion, φl, computed with the differential operator, Kl, and with corresponding magnitude,
ml = |Kl|

|Kk| · mk. The threshold value for all scales can therefore be obtained by multiplying
β1 with the ratio of norms of corresponding kernels,

βn = |Kn|
|K1|

· β1. (3.10)

Fig. 3.3 illustrates the multi-scale pixel selection strategy applied to a coronal slice
extracted from a synthetic T1-weighted MRI volume obtained from BrainWeb [92]. A four-
scale setup is demonstrated, where a gradient magnitude threshold at the finest scale has
been defined such that the top 10% pixels with highest gradient magnitude are selected.
The thresholds corresponding to coarser scales are automatically obtained by multiplication
with the ratio of kernel norms. Fig. 3.3 illustrates the computed gradient orientations and
magnitudes, as well as the selected gradient orientations. Notice that the percentage of
selected locations increases as the scale of the operator increases. Hence, even if one selects
a small percentage of highly confident locations at the finest scale, one can still make use of
most of the locations at coarser scales without sacrificing certainty on gradient orientations.

This section described a principled approach for selecting locations of interest across
image scales based on a minimal gradient orientation uncertainty, which provides a principle
technique for focusing the registration method to regions that more accurately reflect the
geometry of the underlying scene. However, the proposed registration method involves the
evaluation of gradient orientation alignment on corresponding points, and thus also requires
the computation of image gradient orientation of a transformed image. The next section
describes the linear mapping, referred to as the pullback differential, involved in evaluating
image gradients in a transformed coordinate space and how it can be evaluated in a linear
registration context so as to minimize computational complexity.
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Fig. 3.3 Multi-scale pixel selection based on gradient magnitude thresh-
old. Each row corresponds to a given differentiation kernel, where the top
row corresponds to the finest scale and the bottom row to the coarsest. The
left column shows all the computed gradient orientations, the middle column
shows the gradient magnitude, and the right column shows the gradient orien-
tations corresponding to selected locations. The percentage of selected pixels
at each level is: 10.0%, 44.04%, 75.15% and 90.73%. Note that the multi-scale
scheme does not involve a downsampling operation and simply modifies the
scale (i.e. variance) of the Gaussian derivative kernel. The brain MRI image
was obtained from BrainWeb [92].

3.1.2 Transformation of Image Gradients

A straightforward approach for evaluating the gradient orientations of a transformed mov-
ing image, I↓

m = Im ◦T, involves first evaluating the pixel intensities by some interpolation
scheme, then computing the image derivatives by convolution with linear operators, and
then evaluating the gradient orientation. Consequently, the computational cost of a gra-
dient orientation based metric which follows such strategy will be higher than that of a
pixel-intensity based metric. Fortunately, one can adopt a computationally efficient ap-
proach for evaluating the gradient orientation of the deformed image with a linear mapping
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Fig. 3.4 Inversely Transformed Gradient Orientation. The left image cor-
responds to the moving image in its original coordinate space, the right image
corresponds to the moving image evaluated on the inversely transformed co-
ordinate space. Hence, a location, x, on the transformed image coordinates
(i.e. fixed image domain), corresponds to location T(x) on the original image
coordinates (i.e. moving image domain).

(known as the pullback or covariant vector transformation law) obtained with the deriva-
tive of the transformation function. Such a strategy has also been used in the context of
DT-MRI registration [26], which is inherently in directional vector form.

The pullback differential is illustrated in Fig. 3.4, where the transformation function
maps a location in the spatial domain of the fixed image, x = (x1, ..., xD), to a location in
the D-dimensional spatial domain of the moving image, T = (T1, ..., TD). By expanding
the derivative of the moving image, Im, with respect to a particular dimension, xj, of the
fixed image spatial domain, one obtains the following expression

∂(Im ◦T)
∂xj

∣∣∣∣∣
x

=
D∑
i

∂Im

∂Ti

∣∣∣∣∣
T(x)

· ∂Ti

∂xj

∣∣∣∣∣
x

(3.11)

where the term ∂Ti

∂xj
corresponds to the (i, j)-th component of the spatial Jacobian matrix

of the transformation function:

JT =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂T1

∂x1
· · · ∂T1

∂xD... . . . ...
∂TD

∂x1
· · · ∂TD

∂xD

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.12)

Re-arranging terms, the expression for the image gradient of the transformed moving
image is,

∇I↓
m(x) = JT

T(x) · ∇Im

(
T(x)

)
(3.13)
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where ∇Im(x) =
(

∂Im(x)
∂x1

, . . . , ∂Im(x)
∂xD

)
is the gradient of the original (undeformed) moving

image. In other words, the gradient of the transformed moving image can be evaluated
as the product of the transposed spatial Jacobian matrix and the gradient of original
(undeformed) image at the mapped location.

In the context of linear transformations,

T(x) = Ax + b (3.14)

the expression in Equation 3.13 can be directly evaluated as,

∇I↓
m(x) = AT · ∇Im

(
T(x)

)
(3.15)

since A is already known.
Hence, in registration contexts involving linear transformations, the derivatives of both

images need to be computed only once at a pre-processing stage, and transformed vectors
involve a left-side matrix multiplication with a known matrix. This allows the computa-
tional complexity of the method to be significantly reduced.

In order to demonstrate the computational advantage of evaluating the transformed
gradient orientation with the pullback differential, a quantitative comparison of its com-
putational cost is implemented in C++ with the Insight Toolkit library. Note that the
conventional approach consists of the interpolation of the required voxel intensities followed
by their convolution with a derivative operator, while the proposed approach consists of
the interpolation of the original image gradient at the location of interest followed by a
multiplication with the spatial Jacobian.

The benchmark involves the computation of the transformed image gradient with both
approaches at 128,000 random locations for each of 100 random rigid transformations in
a 2D and a 3D image. The average processing time is evaluated for each approach. Note
that a linear interpolation scheme is employed for both intensity values and gradients, and
a Gaussian derivative operator of varying radii ranging from 1 to 4 pixels is also employed.
For the proposed approach, the initial computation of the original moving image gradient
is not accounted for, since it is only done once prior to optimization.

The results are found in Table 3.1, which show the percentage of the average processing
time of the proposed approach as compared to a conventional approach. Notice that one
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obtains a significant reduction in computational time for all radii. In particular, the smallest
reduction is obtained with a 3D image and a derivative operator of radius 1, where the
proposed approach took approximately one third of the time a conventional approach takes.
As the radius is increased, there is an even more significant reduction in processing times.

Derivative Operator Radius 2D Image 3D Image
1 30.69% 33.23%
2 19.00% 20.48%
3 12.92% 15.63%
4 9.81% 12.74%

Table 3.1 Comparison of processing time for evaluating transform image
gradients. The values found in the table (expressed in percentages) corre-
spond to the ratio of the average processing time of the proposed approach
for computing the transformed image gradient to the average processing time
of a conventional approach. The conventional approach first interpolates all
required image intensities and then computes each derivative by convolution
with a derivative operator. Percentages values below one hundred indicate
faster processing times for the proposed approach.

3.1.3 Algorithmic Description

This section provides an algorithmic description of the proposed method, illustrated in
Fig. 3.1, and also shown in pseudocode in Algorithm 1. The method is composed of two
stages: a pre-processing stage and a multi-scale optimization stage. Furthermore, it requires
the following configuration parameters: the matching criterion of the local measure, N ; the
standard deviation of Gaussian derivative kernels at each scale; and a percentage, p, of
high gradient magnitude locations at the finest scale of the fixed image, which effectively
defines the threshold and hence sampling mask at such scale.

The pre-processing stage consists of the evaluation of image gradients of both images at
all scales. The gradients are computed by convolution with corresponding discrete Gaussian
derivative kernels. Notice that at different stages, the image size remains constant while the
derivative kernel is changed. The sampling masks at each scale are automatically obtained
by identifying their corresponding thresholds.

Once the pre-processing stage is concluded, a multi-scale optimization of the metric is
performed. Starting with the coarser image scale, a subset of pixel locations whose gradient
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magnitude is larger than the given threshold is selected. The subset can be either the full
sampling mask or a reduced pre-defined number of randomly selected locations within the
mask, where the latter option allows us to further reduce computational time but can
potentially degrade registration robustness and accuracy.

The similarity metric is evaluated as the mean local measure of gradient orientation
alignment on the selected subset and maximized with a covariance matrix adaptation evo-
lution strategy [73], a non-gradient based optimizer. The result of the optimization is then
used as the initial point for the next (finer) scale where the transformation is refined, and
consequently for following scales. The final solution is obtained as the optimization result
of the finest scale.

Algorithm 1 Proposed multi-scale registration algorithm.
1: procedure Registration(If , Im, p)
2: for s ← 1, M do
3: ∇Is

f ← gradient(If , s)
4: ∇Is

m ← gradient(Im, s)
5: end for 
 Compute image gradients at each scale s.
6: βM ← percentile(∇IM

f , p) 
 Find threshold at finest scale M
7: for s ← 1, M − 1 do
8: βs ← |Ks|

|KM | · βM

9: end for 
 Find thresholds at coarser scales
10: T← I 
 Initialize transformation to identity function.
11: for s ← 1, M do
12: Ω ← selectP ixels(∇Is

f , βs) 
 Select a subset of pixels such that ∇Is
f > βs

13: T← arg maxT S(∇Is
f , ∇Is

m,T, Ω) 
 Optimize metric
14: end for
15: return T
16: end procedure

The method has been implemented in both a CPU-based C++ application, and a
hardware accelerated GPU-based application. The CPU-based application was developed
as an extension of Elastix [91] which itself relies on the Insight Toolkit (ITK) Library [80].
Section 4.6.1 outlines the specifications of the GPU-based implementation, which had to be
adjusted so as to fully exploit the massive parallel computational capacity of such device.
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3.2 Diffeomorphic Registration Based on Gradient Orientation
Alignment and Boundary Proximity

The registration framework presented in the previous section was limited to contexts with
rigid transformations. It is important to note that rigid transformations involve a compact
set of transformation parameters with a global scope (i.e. a change in any of the trans-
formation parameters affects all transformed locations). In other words, the displacement
encountered at a given location does not have any local degree of freedom, and is instead di-
rectly coupled with the displacement encountered at all other locations. Such phenomenon
somewhat relaxes the task of measuring local image similarity, since it is only necessary to
define a similarity measure which, when evaluated over a series of locations of interest, can
provide an accurate measure of global image similarity to discriminate over a compact set
of transformation parameters.

Unfortunately, in contexts involving non-linear transformations, the adopted transfor-
mation model typically involves a very large set of transformation parameters with local
scope. In other words, displacements encountered at a given region can be fully independent
of displacements encountered at an alternative (distant) region. Hence, where in the rigid
registration context, one could rely on all evaluated locations to provide discriminability
over the entire and compact set of transformation parameters; in the non-linear registration
context, a small subset of evaluated locations provides discriminability exclusively over a
small subset of transformation parameters. As such, any proposed local similarity measure
is faced with the task of providing improved local discriminability.

This section proposes a diffeomorphic non-linear registration framework, referred to
as SymBA (Symmetric Boundary Alignment), which directly addresses the challenge of
improved local discriminability by extending and adapting the components found in the
rigid registration technique proposed in Section 3.1.1. In particular, the proposed non-rigid
registration framework is based on a diffeormorphic transformation function and focuses on
matching detected edges from both images by maximizing gradient orientation alignment
and minimizing the distance to the nearest corresponding boundary. It is characterized by
the following major components: an inference of the location of boundaries of interest in
both images, a local similarity metric based on gradient orientation alignment and distance
to the nearest inferred boundary, and a velocity field optimized in a coarse to fine strategy
with a gradient ascent technique. The following section provides a detailed description of
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the proposed technique and its components.

3.2.1 Methodology

The rigid registration technique described in Section 3.1 involved the use of a gradient mag-
nitude threshold, where all locations with gradient magnitude above such threshold were
considered valid locations for evaluating the similarity metric. The gradient magnitude was
used as a selection criterion since locations with high gradient magnitude were shown to
involve gradient orientations with reduced uncertainty (i.e. reduced variability with regards
to the true underlying orientation). Unfortunately, locations with a high gradient magni-
tude do not necessarily provide a pixel compact localization of the underlying boundary of
interest, and exposed image boundaries are instead commonly characterized by a band (i.e.
stripe) of high gradient magnitude pixels spanning a few pixels in the normal direction of
the underlying boundary.

In order to minimize the ambiguity in the location of image boundaries that arises
with the exclusive use of gradient magnitude, the proposed approach relies on an explicit
inference of boundary locations performed with either a conventional off-the-shelf edge
detector (e.g. Canny) or a context specific edge detection strategy. It is important to
note that selecting an optimal edge detector for a given task is not a focus of this thesis.
One of the main advantages of using a dedicated edge detector is that it provides a pixel
compact edge location. For example, some edge detection methods rely on non-maximum
suppression to identify boundaries with a pixel resolution, and some methods can even
provide sub-pixel boundary location accuracy.

Once the boundary locations have been identified, a distance map is computed where
the Euclidean distance to the nearest boundary is evaluated at every voxel. Fig. 3.5 illus-
trates the locations that are detected by an edge operator applied to a MRI T1-weighted
brain volume, as well as the corresponding distance map obtained from the detected edge
locations.

Once a set of boundary locations, Ω, and a corresponding distance map, D, are com-
puted for each image, a localized similarity metric can evaluate gradient orientation align-
ment and Euclidean distance to the nearest boundary. For a location, xf , in the fixed
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Fig. 3.5 Detected edges on a T1-weighted MRI brain volume. The first
column shows the MRI brain volume. The second column shows the boundary
locations detected with a Canny edge operator. The third column shows the
distance image (jet colormap) computed from the detected edges.

image domain, the metric is expressed as,

s(xf ; D↓
m, ∇I↓

m) = exp
(

−(D↓
m (xf ))2

2σ2

)
×
〈 ∇If (xf )

|∇If (xf ) | ,
∇I↓

m (xf )
|∇I↓

m (xf ) |

〉N

(3.16)

where ∇If is the fixed image gradient, ∇I↓
m = ∇ (Im ◦Tf ) is the image gradient from the

moving image deformed by the transformation function Tf , and D↓
m = Dm ◦Tf is the dis-

tance map obtained from the moving image deformed by Tf . Note that the transformation
function, Tf , is expressed with an f underscore so as to explicitly state that it involves a
transformation from the fixed image domain to the moving image domain3.

The proposed similarity metric simply extends the measure of gradient orientation align-
ment, previously presented in Equation 2.6, with a measure based on the Euclidean distance
to the nearest corresponding boundary. The main motivation behind such additional term
is to provide the local discriminability required so as to resolve complex non-linear transfor-
mations. The similarity metric is characterized by two parameters: the standard deviation,
σ, defining the falloff of the Gaussian function evaluating the distance to the closest bound-
ary, and the gradient orientation selectivity, N , defining how gradient orientation alignment
is evaluated and which follows the same rationale as the parameter found in Equation 2.6.

3 The transformation function, T, used throughout the derivations in Section 3.1.1 also involved the
mapping from the fixed image domain to the moving image domain. However, it was not necessary to
explicitly express the distinction in such equations since it was the only transformation direction considered.
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Fig. 3.6 Algorithmic outline of diffeomorphic registration technique, re-
ferred to as SymBA. The block diagram illustrates the pre-processing stage
and optimization stage of the approach. The pre-processing stage involves the
computation of image gradients, the inference of image boundary locations,
and the computation of a distance map based on boundary locations. The op-
timization stage involves the maximization of gradient orientation alignment
and minimization of distance to nearest boundary.

The rigid registration technique described in Section 3.1 involved an asymmetric voxel
selection technique, where voxel locations identified in the fixed image domain are evaluated
in terms of gradient orientation alignment at the spatially corresponding moving image
location. Hence, such technique holds the assumption that locations selected from the
fixed image domain correspond to an underlying anatomical boundary that is also exposed
in the moving image domain, but that boundaries exposed in the moving image domain
do not necessarily have a counterpart in the fixed image domain. This assumption is
particularly relevant in multi-modal contexts where one image modality (e.g. MRI) exposes
much more anatomical boundaries than a second modality (e.g. CT or US). However, in
mono-modal contexts, both images expose the same anatomical boundaries and one can
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safely assume that boundaries inferred in either image will indeed have a counterpart in
the second image. As such, one can consider abandoning the asymmetric evaluation of the
local metric. In particular, for mono-modal contexts one can define an energy function
where the local similarity metric, defined in Equation 3.16, is evaluated over both sets of
boundary locations,

S(Ψf , Ψm) = 1
|Ωf |

∑
xf ∈Ωf

s(xf ; D↓
m, ∇I↓

m) + 1
|Ωm|

∑
xm∈Ωm

s(xm; D↑
f , ∇I↑

f ) (3.17)

where Ψ = (∇I, D, Ω) is a notation convention used to group features of interest inferred
from each image. Furthermore, D↑

f = Df ◦Tm and ∇I↑
f = ∇(If ◦Tm) are the fixed distance

map and gradient image deformed by Tm = T−1
f . Note that the energy function involves

a stronger notion of compromise between the inferences made in each image and that it
requires the use of an invertible transformation.

The next section describes a proposed diffeomorphic transformation model which pro-
vides both a forward and backward mapping transformation, and which also allows for the
computational efficient evaluation of related derivatives which are required to evaluate the
proposed similarity metric and its gradient.

3.2.2 Diffeomorphism as the Integration of a Velocity Field

An energy function computed over both sets of locations involves the use of an invert-
ible transformation. Specifically, the similarity metric for a boundary location, xm, in the
moving image domain relies on the evaluation of Tm(xm). Hence, one requires a transfor-
mation that allows a forward mapping, Tf (xf ), and a backward mapping, Tm(xm), such
that (Tm ◦Tf )(xf ) = xf .

Many commonly used non-linear transformation models used in registration contexts,
such as B-Splines and Thin Plate Splines, are limited to the characterization of a forward
mapping transformation and do not provide (nor guarantee the existence) of an inverse
transformation (i.e. backward mapping transformation). Hence, such transformation mod-
els are simply not well-suited for the proposed registration technique. However, there are
diffeomorphic registration methods, such as the one presented in [11], which directly address
the task of characterizing both a forward mapping transformation and a backward map-
ping transformation. Unfortunately, such methods commonly involve the evaluation of the
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displacement field and the corresponding inverse displacement field across the entire image
domain at each optimization iteration. In particular, at each optimization iteration of the
method presented in [11], the forward mapping displacement field is first updated based
on the gradient of the energy function, and an iterative algorithm is then used to identify
the corresponding backward mapping displacement field. Such operations involve a signif-
icant computational overhead and have limited use in the proposed registration method,
which is focused on a sparse set of locations and thus does not require the evaluation of
the transformation function across the entire image domain throughout the optimization.

In order to address such limitations, the proposed framework relies on a diffeomorphic
transformation model characterized as the integration of a velocity field (discretized in time
and space). Specifically, the forward mapping transformation is obtained as the composition
of τ single-time-step transformations,

Tf (xf ) =
(

τ∏
t=1

φf,t

)
(xf ) = (φf,1 ◦ . . . ◦ φf,τ ) (xf ) (3.18)

where the single-time-step transform at time index t is characterized as a displacement
field, dt, evaluated based on the linearization of a velocity field, v,

φf,t(xf ) = xf + dt(xf ) (3.19)

= xf + vt(xf )Δt (3.20)

where τ × Δt = 1.
The backward mapping transformation can be directly evaluated by integrating the

velocity field in the negative direction,

Tm(xm) =
(

τ∏
t=1

φm,t

)
(xm) = (φm,1 ◦ . . . ◦ φm,τ ) (xm) (3.21)

where φm,t(xm) = xm − vt(xm)Δt.
The main advantage of using such transformation model is that it can characterize both

a forward and backward mapping transformation, which can be evaluated on-demand at
specific locations of interest. Hence, each optimization iteration of the proposed registration
method can focus exclusively at the locations where the similarity metric will be evaluated.
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Interpolation

The transformation model adopted in the proposed framework employs a coarsely dis-
cretized velocity field image (with a voxel resolution coarser than the one of the images
being registered). Hence, the evaluation of the velocity field across the image domain re-
quires an interpolation function. Such dependency to an interpolation function is explicitly
expressed in all following derivations. In particular, a forward mapping transformation
involving τ time steps can be expressed as,

Tf (xf ) = xf +
τ∑

t=1

⎡
⎢⎢⎢⎢⎢⎢⎣

〈
w
(
φt−1(xf )

)
,Vt,1

〉
〈
w
(
φt−1(xf )

)
,Vt,2

〉
〈
w
(
φt−1(xf )

)
,Vt,3

〉

⎤
⎥⎥⎥⎥⎥⎥⎦

Δt (3.22)

= xf +
τ∑

t=1

⎡
⎢⎢⎢⎢⎢⎢⎣

〈
Wt,Vt,1

〉
〈
Wt,Vt,2

〉
〈
Wt,Vt,3

〉

⎤
⎥⎥⎥⎥⎥⎥⎦

Δt (3.23)

where w represents an interpolation function, which maps a coordinate location to a vector
of interpolation coefficients, W. Furthermore, Vt,d is a vector composed of the velocity
image pixel values for dimension, d, and at time index t.

In order to incorporate such transformation model in the proposed registration frame-
work, it is necessary to derive the expressions which characterize the mapping of image
gradient orientations from one domain to another, as well as the expressions which charac-
terize the gradient of the transformation in terms of its parameters. Such derivations are
covered in the following section.

Spatial Jacobian Matrix

This section outlines the derivation of the spatial Jacobian matrix of the proposed trans-
formation function, which constitutes a key component for mapping image gradient orien-
tations from one image domain to another, as well as a key component for the derivations
of the gradient of the similarity function in terms of the transformation parameters.

The forward mapping transformation function is defined in Equation 3.18 as the com-
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position of τ single-time-step transformations. Hence, one can rely on the chain rule of
differentiation to express the Jacobian matrix of the transformation function as the prod-
uct of the Jacobians of all τ single-time-step transformations. In particular, the Jacobian
matrix of the forward mapping transformation can be expressed as,

JTf
(xf ) =

τ∏
t=1

Jφf,t
(φf,t−1) (3.24)

where Jφf,t
(φf,t−1) is the Jacobian matrix of the single-time-step transformation encoun-

tered at time index t and at location φf,t−1.
The expression for Jφf,t

(φf,t−1) can be decomposed into two terms,

Jφf,t
(φf,t−1) = Id+ Jdt (φf,t−1) (3.25)

where Jdt (φf,t−1) is the Jacobian of the displacement dt encountered at time index t, which
is expressed as,

Jdt (φf,t−1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

〈
JW(φf,t−1),Vt,1

〉
〈

JW(φf,t−1),Vt,2

〉
〈

JW(φf,t−1),Vt,3

〉

⎤
⎥⎥⎥⎥⎥⎥⎦

Δt (3.26)

where JW(φf,t−1) is the Jacobian of the vector of interpolation weights in terms of the
location φf,t−1 and can be easily evaluated in commonly used interpolation techniques,
such as linear interpolation.

This result will be employed for subsequent derivations. In particular, the next section
presents the required derivations for mapping vectors from one image domain to another in
terms of the proposed transformation model, which constitute a fundamental component
for the evaluation of gradient orientation alignment.

3.2.3 Transformation of Image Gradients

Section 3.1.2 illustrated that the pullback transformation of image gradients involves the
left-side multiplication of a moving image gradient with the transpose of the Jacobian of
the transformation at the point of interest. Such result led to a computationally efficient
solution for the rigid registration method described in Section 3.1.3, where the Jacobian
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matrix is constant at all points in the domain and is known. Unfortunately, the same
strategy cannot be efficiently adopted in contexts involving non-linear transformations since
the Jacobian matrix is no longer constant across the domain. This section describes a
computationally efficient approach for estimating a transformed image gradient orientation
which is specifically suited for the diffeomorphic transformation model employed.

The result from Section 3.1.2 is a particular example of a more general principle of the
vector transformation law under a spatial transformation function. In particular, a vector,
ny, defined on the transformed coordinate space (e.g. moving image domain), can be
mapped back (“pulled-back”) so as to obtain the corresponding vector, nx, in the original
coordinate space (e.g. fixed image domain),

nx = JT
Tf

(x) · ny. (3.27)

where JT
Tf

(x) is the transpose of the Jacobian matrix of the forward mapping transforma-
tion function, Tf , at location, x.

The Jacobian matrix is commonly expressed in terms of first-order partial derivatives,

JT =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂T1

∂x1
· · · ∂T1

∂xD... . . . ...
∂TD

∂x1
· · · ∂TD

∂xD

.

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.28)

However, it can also be expressed in terms of directional derivatives. For example, a
Jacobian matrix for a 3D domain can be expressed as,

⎡
⎢⎢⎢⎣

| | |
∂T
∂e1

∂T
∂e2

∂T
∂e3

| | |

⎤
⎥⎥⎥⎦ (3.29)

where ei is the i-th basis of the fixed image coordinate space, such that e1 = (1, 0, 0),
e2 = (0, 1, 0) and e3 = (0, 0, 1).

Hence, the estimation of a Jacobian matrix can be decomposed into the estimation of a
series of directional derivatives. For improved readability, the ongoing analysis is hereafter
restricted to a 3D domain, which constitutes a main context of interest. In such context,
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the Jacobian matrix is composed of three directional derivatives.
A general and straightforward approach which can be adopted for any transformation

function is to estimate the directional derivatives of the Jacobian by a finite-difference
method and consequently perform the matrix vector multiplication. The simplest finite-
difference methods are the forward, backward and central-difference methods, which involve
two function evaluations. One can further simplify such computation by fixing one of the
two function evaluations at the point, x, which was already required. Specifically, to
minimize computational cost, each of these directional derivatives can be estimated with a
forward-difference strategy, in the following fashion,

∂T
∂ei

≈ T(x + h · ei) −T(x)
h

(3.30)

where h is arbitrarily small and T(x) was already required. Hence, each directional deriva-
tive only involves a single additional transformation evaluation at x + h · ei.

In other words, the mapping of a vector in the moving image domain to the fixed image
domain (i.e. ny → nx) can be performed by first evaluating three directional derivatives and
then multiplying the obtained Jacobian matrix transpose with the moving domain vector.
This constitutes a general solution, valid for all transformation functions and vectors, which
unfortunately leads to the computational overhead involved with the evaluation of three
additional transformed locations.

The previously described procedure is a general approach for estimating the Jacobian
matrix of any given transformation function, which is consequently used for evaluating a
transformed image gradient. The procedure can be simplified by considering two points
that are specific to the proposed registration technique. The first point is that the pro-
posed registration technique is exclusively interested in the orientation of vectors, and can
safely ignore any variations in the magnitude of a vector induced by a transformation. The
second point is that the diffeomorphic transformation function adopted in this work is char-
acterized as the composition of a series of single-time-step transformations that allow for
a computationally simple evaluation of the Jacobian matrix, as described in Section 3.2.2.
The following section describes how both points lead to a computationally efficient approach
for evaluating a transformed normalized vector.
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Pushforward of a Normalized Image Gradient

The result from Section 3.1.2 led to a pullback mapping of a vector in the transformed
coordinate space to the original coordinate space (i.e. ny → nx). This section describes an
alternative pushforward mapping of a normalized vector in the fixed image domain to the
moving image domain (i.e. nx → ny where |nx| = 1).

Consider the general pullback vector transformation expression,

nx = JT
Tf

(x) · ny. (3.31)

Restricting the vector nx to have a unit magnitude, one can define a rotation matrix,
R, which satisfies,

R · nx =

⎡
⎢⎢⎢⎣
1
0
0

⎤
⎥⎥⎥⎦ . (3.32)

In particular, the rotation matrix, R, is defined as,

R =
[
nx qx rx

]T
(3.33)

where qx and rx are orthonormal vectors such that nx = qx × rx.
Applying the rotation matrix to both sides of Equation 3.31 leads to,

⎡
⎢⎢⎢⎣
1
0
0

⎤
⎥⎥⎥⎦ = R · JT

Tf
(x) · ny (3.34)

which can be re-arranged to
⎡
⎢⎢⎢⎣
1
0
0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
(JTf

(x) · nx)T

(JTf
(x) · qx)T

(JTf
(x) · rx)T

⎤
⎥⎥⎥⎦ · ny. (3.35)

Note that the matrix Γ =

⎡
⎢⎢⎢⎣
(JTf

(x) · nx)T

(JTf
(x) · qx)T

(JTf
(x) · rx)T

⎤
⎥⎥⎥⎦ is composed of three directional derivatives
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that are re-oriented so that the first derivative is evaluated in the direction of the vector
nx. Furthermore, the equation can provide a direct expression for ny,

ny = Γ−1 ·

⎡
⎢⎢⎢⎣
1
0
0

⎤
⎥⎥⎥⎦ (3.36)

which indicates that ny corresponds to the first column of Γ−1.
By re-arranging terms based on the components of Γ−1, the following analytical expres-

sion for ny is reached,

ny = 1
det(Γ)

(
JTf

(x) · qx × JTf
(x) · rx

)
. (3.37)

Note that the proposed registration technique is exclusively interested in the orientation
of the transformed vector and any scale terms (e.g. the magnitude of the determinant) can
be safely ignored. The final expression of interest is thus,

ny ∝ JTf
(x) · qx × JTf

(x) · rx. (3.38)

In other words, in a forward mapping transformation function, the fixed image gradient
orientation can be expressed in the moving image domain as the cross product of two
directional derivatives evaluated in directions orthogonal to nx.

The evaluation of the directional derivatives, JT(x) · qx and JTf
(x) · rx, can be per-

formed with a minimal computational overhead in the proposed diffeomorphic transfor-
mation function. In particular, Section 3.2.2 described how the Jacobian matrix of the
diffeomorphic transformation function is decomposed into the product of a series of Jaco-
bians from single-time-step transformations. Hence, the left-side multiplication of a vector,
qx, by the Jacobian matrix, can be re-expressed as,

JTf
(x) · qx =

(
τ∏

t=1
Jφt(φt−1)

)
· qx (3.39)

= Jφτ (φτ−1) · qx,τ−1 (3.40)
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where qx,τ−1 and “previous” vectors can be similarly defined as,

qx,τ−1 = Jφτ−1(φτ−2) · qx,τ−2 (3.41)

qx,τ−2 = Jφτ−2(φτ−3) · qx,τ−3 (3.42)
... (3.43)

qx,1 = Jφ1(φ0) · qx,0 = Jφ1(x) · qx. (3.44)

In other words, at every time index, t, an input vector, qx,t−1, is linearly mapped to a
new vector, qx,t = Jφt(φt−1) ·qx,t−1. Thus, instead of explicitly computing the full Jacobian
matrix, which involves τ matrix multiplications, and then performing a multiplication with
qx, one can choose to ignore the explicit value of the full Jacobian matrix and directly
perform τ linear mappings of qx at each time step. Note that the evaluation of the push
forward transformed vector is performed in the same order of time integration as the evalu-
ation of the transformed location and thus both operations can be coupled within the same
computational procedure. Furthermore, such computations involve the evaluation of inter-
polation weights and their corresponding spatial derivatives which generally share many
internal computations. In short, at every time index, t, one can combine the evaluation of a
transformed location and two linearly mapped vectors into a single computational method.
The combined approach for evaluating the transformation induced to both a coordinate
location, x, and a normalized vector, n, is presented in pseudocode in Algorithm 3.2.3.

This section presented the computational approach adopted by the proposed registration
framework for evaluating transformed image gradient orientations in an efficient fashion,
which allows the evaluation of the proposed similarity metric. However, the optimization
strategy also relies on the gradient of the similarity function with regards to transformation
parameters, and its corresponding derivations are covered in the following section.

3.2.4 Optimization

The proposed framework employs a direct gradient ascent strategy so as to seek the max-
imization of the similarity function, and where the transformation parameters updated at
every iteration correspond to the pixel values of the velocity field image. In particular, the
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Algorithm 2 Forward Transform Point and Normalized Vector
1: procedure FowardTransformPointAndVector(x,n)
2:
3: (q, r) ← OrthonormalV ectors(n)
4: 
 Compute orthonormal vectors which satisfy n = q × r
5: x′ ← x 
 Initialize x′

6:
7: for i ← 1, τ do 
 Loop over τ time steps
8: (x′,q′, r′) ← TransformPointAndV ectors(x′,q′, r′,Vi)
9: end for
10:
11: n′ ← q′ × r′
12:
13: return (x′,n′)
14: end procedure
15:
16: procedure TransformPointAndVectors(x,q, r,V)
17:
18: (W,Jx (W)) ← ComputeInterpolationWeightsAndJacobian(x)
19:

20: x′ ← x + Δt ·

⎡
⎢⎣〈W,V1〉
〈W,V2〉
〈W,V3〉

⎤
⎥⎦

21:
22:

23: q′ ← q + Δt ·

⎡
⎢⎣〈Jx(W),V1 · q1〉
〈Jx(W),V2 · q2〉
〈Jx(W),V3 · q3〉

⎤
⎥⎦

24:

25: r′ ← r+ Δt ·

⎡
⎢⎣〈Jx(W),V1 · r1〉
〈Jx(W),V2 · r2〉
〈Jx(W),V3 · r3〉

⎤
⎥⎦

26:
27: return (x′,q′, r′)
28: end procedure

k-th optimization iteration can be expressed as,

Vk ← Vk−1 + λk · d S

dV (3.45)
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where d S
d V corresponds to the total derivative of the similarity function with respect to the

velocity field pixel values, V, and is evaluated as the average value of the total derivative
of the local similarity metric, d s

d V , at each evaluated location.
The total derivative d s

d V can be expressed as,

d s

dV = ∇Tf

(
s
)

· dTf

dV (3.46)

where ∇Tf

(
s
)

is the gradient of the local similarity function, s, with respect to Tf and d ϕ
d V

is the total derivative of Tf with respect to V.
Note that the gradient ∇Tf

(
s
)

is composed of three partial derivatives (for a 3D do-
main),

∇ϕ(s) =
(

∂s

∂Tf,1
,

∂s

∂Tf,2
,

∂s

∂Tf,3

)
(3.47)

where ∂s
∂Tf,i

corresponds to the partial derivative of the similarity function, s, with respect to
the i-th component of the transformed coordinate location, Tf . In this work, each partial
derivative is estimated with a finite difference method.

The expression for d Tf

d V can be derived by considering the dependency of the transfor-
mation function to the previous single-time-step transformation,

Tf = φτ (3.48)

= φτ−1 + dτ (3.49)

= φτ−1 +

⎡
⎢⎢⎢⎣
〈Wτ ,V1〉
〈Wτ ,V2〉
〈Wτ ,V3〉

⎤
⎥⎥⎥⎦Δt (3.50)

= φτ−1 +

⎡
⎢⎢⎢⎣
〈w ◦ φτ−1,V1〉
〈w ◦ φτ−1,V2〉
〈w ◦ φτ−1,V3〉

⎤
⎥⎥⎥⎦Δt (3.51)

whereTf = φτ since the transformation corresponds to the end time point of the integration
of the velocity field, and Vd is the vector of velocity field image pixel values corresponding
to the spatial dimension d.
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The differentiation of Equation 3.51 leads to the expression for the total derivative,

d φτ

dV = d φτ−1

dV + Jdτ (φτ−1) · d φτ−1

dV + Jdτ (V) (3.52)

= Jdτ (V) +
(
Id+ Jdτ (φτ−1)

)d φτ−1

dV (3.53)

where Jdτ (φτ−1) is the Jacobian of dτ with respect to φτ−1, defined in Equation 3.26,
Jdτ (V) is the Jacobian of dτ with respect to the velocity image pixel values, and Id is the
identity matrix.

The Jacobian Jdτ (V) essentially involves a sparse matrix whose non-zero components
correspond to interpolation coefficients multiplied by Δt. For example, if the vector of
velocity image pixel values is flattened into a linear vector (e.g. V = (V1,V2,V3)) which
concatenates the pixel values for all three components, one can express the matrix Jdτ (V)
as,

Jdτ (V) =

⎡
⎢⎢⎢⎣
Wτ , . . . , 0 0, . . . , 0 0, . . . , 0
0, . . . , 0 0, . . . ,Wτ , . . . , 0 0, . . . , 0
0, . . . , 0 0, . . . , 0 0, . . . ,Wτ

⎤
⎥⎥⎥⎦Δt. (3.54)

The expression found in Equation 3.53 can be simplified by adopting the assumption
that Jdτ (φτ−1) 
 Id. The assumption corresponds to stating that local variations on
displacements found in single-time-step transformations are relatively small, and play a
negligible effect with relation to the identity matrix. It important to note that Jdτ (φτ−1)
is proportional to Δt, and such assumption can be guaranteed with a sufficiently large
number of time steps. Under such assumption the total derivative can be approximated as,

d φτ

dV ≈ Jdτ (V) + d φτ−1

dV (3.55)

which is a much simpler computation that simply accumulates the Jacobian across time
indices.

The proposed registration framework adopts either a time-dependent/dynamic velocity
field where the velocity field encountered at each time point is unique, or a time time-
constant/static velocity field where the velocity field is common across all time points. In
the context of a time-constant/static velocity field, the expression for updating the velocity
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field at the k-th optimization iteration is defined as,

Vk ← Vk−1 + λk ·
τ∑
i

Jdi
(V) (3.56)

which simply accumulates the Jacobians Jdτ (V) from all time points.
Alternatively, in the context of a time-dependent/dynamic velocity field, each of the τ

velocity fields must be updated at each optimization iteration. In particular, the expression
for updating the velocity field with time index, t, and at the k-th optimization iteration is
defined as,

Vk
t ← Vk−1

t + λk · Jdt(Vt). (3.57)

Multi-Resolution Optimization

As mentioned in the previous section, the proposed registration technique relies on a gra-
dient ascent approach for optimizing the similarity metric. Furthermore, the learning rate
of the gradient ascent is continuously adapted with a “bold driver” strategy, and the op-
timization is stopped when either a minimum rate of change or a maximum number of
iterations is reached.

Many registration techniques adopt a multi-resolution image pyramid, described in
Section 2.1.8, for simplifying the registration task. The proposed approach also adopts
a related coarse to fine optimization strategy in which both the resolution of the images
being registered and the velocity image is increased from stage to stage. It is important
to highlight that the resolution of the velocity field (i.e. the voxel spacing of the discrete
image defining the velocity field) employed will not necessarily correspond to the resolution
of the images being registered. In other words, one can evaluate a deformation field with
a finer voxel resolution than the one found in the velocity field.

3.3 Summary

In this chapter, I have detailed the general framework regarding a multi-modal rigid regis-
tration technique and a diffeomorphic registration technique. Both approaches are based on
the common principle of assessing image resemblance at sparse prudently selected locations
based on gradient orientation alignment. However, in order to truly exploit the sparse and
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directional nature of the features used, I have developed a series of contributions that lead
to the improvements in registration performance that are desired.

In the context of rigid registrations, I devoted a significant analytical effort to justifying
the use of the gradient magnitude as an indicator of the confidence on a given gradient
orientation. The analysis was framed as a Bayesian inference problem and dependent on
the linear operator used for computing the derivative. As such, it yielded the key conclusion
that the confidence of gradient orientations can be compared across scales and a common
confidence threshold can be defined for all scales. I also illustrated the importance of
using the pullback differential for evaluating the transformed image gradient. These two
points are critical for achieving a highly efficient performance, and the experimental results
illustrating such performance are presented in Chapters 4 and 5.

In the context of non-rigid registrations, I presented an approach that explicitly relies
on inferred boundaries and enforces multiple constraints on a diffeomorphic transformation
function to yield a highly efficient registration performance. In particular, the approach
defines a symmetric energy function in which boundaries inferred in each image are warped
to maximize the gradient orientation alignment and minimize the distance to the nearest
boundary at their mapped location. The framework characterizes a diffeomorphic transfor-
mation as the integration of a time-constant or time-dependent velocity field. Such setup
allows the optimization to focus on locations where the similarity metric is being evaluated
while preserving a parametric description of the transformation throughout the full image
domain.

Chapters 6 and 7 demonstrate a series of experimental results highlighting the advan-
tages brought forward by the proposed non-rigid registration technique. In particular,
Chapter 6 illustrates how the proposed technique leads to significantly reduced process-
ing times in the context of inter-patient non-linear registration of brain MRI volumes as
evaluated with a publicly available dataset and compared against fourteen state-of-the-art
registration techniques. Chapter 7 then evaluates the registration performance of the pro-
posed technique in the context of patient to atlas brain registration for the generation of
healthy tissue priors which consequently serve as inputs to automatic brain lesion detection
and segmentation algorithms. In such context, the final lesion and detection performance
is evaluated with a dataset of real clinical cases and it is shown that the tissue priors
generated with the proposed registration technique can lead to slightly improved detection
performance with highly reduced registration computation times. A critical advantage of
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such reduction in processing times lies in large scale clinical trials that rely on medical
image analysis pipeline where non-rigid registration technique typically involve a major
component of the overall computational cost.
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Chapter 4

Image Guided Neurosurgery: Clinical
Context and Results

The previous chapter provided the algorithmic details regarding the proposed framework
for image registration, with particular focus on yielding improved computational efficiency
in medical imaging contexts with challenging image models. This chapter focuses on de-
scribing the critical relevance of the proposed registration technique in the context of neuro-
surgical procedures that rely on image guidance, referred to as Image Guided Neurosurgery
(IGNS) or Neuronavigation, and adopt intra-operative ultrasound (iUS) for improved intra-
operative guidance. One of the major challenges for truly taking advantage of iUS lies in the
fast and robust registration of pre-operative volumes (such as MRI) to the iUS volume so as
to update all pre-operative data. This chapter demonstrates how the proposed registration
technique (along with other technical contributions) can lead to a complete neuronavigation
solution based on iUS with minimal interference in the operating room, which constitutes
a proven framework that is unmatched by alternative commercial solutions.

The chapter is structured as follows. Section 4.1 briefly describes the clinical background
regarding intra-cranial tumour resection and highlights the importance of improved intra-
operative guidance so as to maximize the removal of pathological tissue and minimize
the damage to eloquent tissue. Section 4.2 and 4.3 describes the technical challenges
involved in neuronavigation and illustrates the particular appeal for adopting tracked iUS
as a framework for intra-operative imaging. Section 4.3.2 provides a description of the
unique difficulties that characterize this registration problem and also outlines previous
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attempts that have addressed such context with limited success. Section 4.4 then presents
a series of experimental results obtained from the proposed registration framework with
the use of a publicly available dataset of real clinical cases. The demonstrated registration
performance, with some additional technical contributions, ultimately illustrates how the
proposed techniques can provide a significant clinical impact in this context.

4.1 Intra-cranial Tumour Resection

This section describes the clinical context of intra-cranial tumour resection, which consti-
tutes a key neurosurgical procedure that can substantially benefit from improved intra-
operative guidance so as to maximize clinical outcomes. Intra-cranial tumours include
primary and secondary tumours in the brain with challenging clinical outcomes and where
surgical resection is a common treatment. A key prognostic factor in neuro-oncology is
believed to be the extent of surgical resection. Some studies [148] estimate the benefits of
a total resection as extending the survival from around 11 to 14 months in glioblastoma
and from around 60 to 90 months in low grade glioma. One of the main challenges in
achieving a total resection lies in accurately identifying tumour tissue throughout the pro-
cedure, particularly with relation to eloquent tissue (i.e. healthy brain tissue related to
critical functions). The primary objective of the surgical procedure is thus to maximize the
removal of tumour tissue while minimizing the damage on healthy tissue.

Various intra-operative technological strategies have been proposed to improve the iden-
tification of residual tumour throughout the procedure. Such strategies typically involve
a neuronavigation system, intra-operative imaging modalities, and possibly intra-operative
contrast agents. Among the proposed intra-operative strategies, iUS has been heavily ad-
vocated [18, 69, 83, 84, 96, 97, 129, 147, 157, 170] as a minimal footprint, cost-effective and
clinically valuable modality for neurosurgical procedures. As such, iUS can be considered
as a direct alternative to intra-operative MRI or intra-operative CT, which may provide
higher quality imaging but at the expense of substantial and costly modifications to the
operating room. In order to illustrate the importance of incorporating an intra-operative
imaging solution, the next section will first provide a brief technical description of the com-
ponents involved in a conventional neuronavigation system and what kind of limitations
they encounter if they are based exclusively on pre-operative imaging data.
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4.2 Neuronavigation

Neuronavigation, or Image Guided Neurosurgery, is a commonly used framework with com-
mercial solutions offered by companies such as Medtronic™, BrainLab™ and Stryker™.
The main feature of a neuronavigation system, as shown in Fig. 4.1, is the integration of
medical imaging data with a real-time 3D tracking technology, which allows the clinician
to visualize the location of a 3D tracking tool overlayed onto the medical image. The
technological framework can be considered the surgical analogy of a GPS system which
continuously provides an indication of someone’s location and overlays it in a street map.
Common 3D tracking technologies found in neuronavigation systems are either based on
stereo infrared optics or electromagnetic tracking. Optic based tracking technology is sig-
nificantly more common and involves the use of a stereo infrared camera in conjunction
with reflective infrared spheres which serve as markers.

A brain tumour resection procedure with support from a neuronavigation system in-
volves a series of stages that are depicted in Fig. 4.2. The first stage involves the acquisition
of pre-operative images, the diagnosis of brain tumour and the planning of the surgical pro-
cedure. For example, the clinical team can choose to acquire a a series of MRI volumes so as
to identify the location and size of the brain tumours. The surgical team may then choose
to manually segment the tumour tissue and other anatomical regions of interest so that
they can be displayed as unique 3D objects in the neuronavigation system. The clinicians
are then faced with the task of defining the surgical plan to be followed in the procedure
which involves: defining location and size of the craniotonomy, defining the trajectory or
path to reach the tumour, and identifying the eloquent regions that are in danger of being
damaged by the procedure.

The second stage relates to the activities that take place in the operating room during
the procedure. In order to setup the neuronavigation system in the operating room, the pre-
operative image data must be first loaded into the system. Then, the clinician must register
the coordinate space of the real-world, referred to as “world space”, to the coordinate
space of the image data, referred to as “image space”. A common approach to resolve
such registration involves the manual identification of six to eight homologous landmarks
in the patient’s head (e.g. tip of the nose, ears, etc.) with a tracked pointing tool and
correspondingly in the pre-operative image. Fig. 4.3 illustrates a common setup used for
performing a landmark based registration. Once the real world is registered to the pre-
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Tracked Reference Marker

Tracked 3D Pointer

3D Object Tracking based on Infrared Stereo Vision

Fig. 4.1 Neuronavigation with tracked 3D pointer. A pointing tool with
reflective infrared spheres can be continously tracked in 3D with the use of a
stereo infrared camera. A reference marker (also with reflective spheres) may
also be used so as to define an abitrary coordinate reference frame in relation
to the reference marker position. Image obtained from [97]

operative image(s), the clinician can use the 3D tracked pointer to probe different points
in the patient’s brain and visualize its corresponding location in the pre-operative image,
such as illustrated in Fig. 4.1.

The final stage involves a post-operative analysis of the extent of tumour resection. In
particular, a series of post-operative images are acquired and are consequently analyzed
by the clinical team so as to evaluate the extent of the tumour removed and if there was
significant damage to nearby healthy regions.

The neuronavigation system described so far is restricted to mapping a real world 3D
location to pre-operative image data. As such, it only provides a spatially registered pre-
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Acquisition of Pre-operative Images

Pre-processing and Analysis of Pre-
operative Images

Pre-operative Planning of Surgical 
Procedure

Patient to Image Registration

Loading Pre-operative Data into 
Neuronavigation 

Tissue Resection

Intra-operative Navigation and 
Visualization

Acquisition of Post-operative  
Images

Analysis of Post-operative Images

Intra-operative

Pre-operative

Post-operative

Fig. 4.2 Flowchart of a surgical procedure based on neuronavigation.
Images obtained from [97], http://www.synaptivemedical.com, and http://
martinos.org/qtim/miccai2013.

Fig. 4.3 Patient registration to image space based on homologous land-
marks. Image obtained from [97].

resection snapshot of the patient’s anatomy, and any anatomical changes that occur any
time after the acquisition of the pre-operative images and particularly throughout the proce-
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dure can simply not be captured. Unfortunately, brain soft-tissue deformations, commonly
referred to as brain-shift, are a common occurrence in neurosurgical procedures involving
brain tumours and automatically lead to a degradation in navigation accuracy. They are
brought forward by the treatment of intra-cranial pressure prior and during surgery and by
external forces applied during surgery, such as that related to retractors and gravity. Fur-
thermore, deformations brought forward by tumour tissue resection and draining associated
with cysts additionally lead to even more significant anatomical displacements. Fig. 4.4 il-
lustrates the prominent swelling of brain tissue brought forward by changes in intra-cranial
pressure in a brain tumour resection surgery and Fig. 4.5 illustrates the phenomenon of
brain-shift with corresponding pre and intra-operative MRI image slices.

Fig. 4.4 Brain-shift caused by changes in intra-cranial pressure. Notice that
the brain is bulging out of the dural opening, illustrated with a black arrow.
Image obtained from [107].

The clear need for visualizing anatomical changes that occur throughout a brain tumour
resection procedure leads to the adoption of an intra-operative modality. Intra-operative
MRI and CT are commonly used modalities that can generate high quality images but at
significant financial and practical expense. Alternatively, intra-operative US is a financially
accessible and minimal footprint modality that can provide a more practical solution for
intra-operative imaging. The following section describes the use of tracked iUS in neuron-
avigation systems and the technical support it relies on.
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Fig. 4.5 Illustration of brain-shift encountered after removal of the dura and
imaged with a T2-weighted intra-operative MRI. Notice how the deformation
of the left ventricle follows the direction of the tumour bulging. Image obtained
from [116].

4.3 Navigation with Tracked Ultrasound

Tracked iUS is a highly appealing imaging modality for clinical interventions. It is portable,
free of health risks, relatively inexpensive, and allows for a simple integration in the oper-
ating room. Furthermore, it allows for real-time imaging and can provide continuous visual
feedback throughout the intervention.

Fig. 4.6 illustrates the use of a tracked US in a neuronavigation system. The US probe
is mounted on a tracked piece so that the probe’s location and orientation can be identified
by the tracking system. Modern US systems natively generate 2D images or 3D volumes.
In the context of neurosurgery, 2D US systems are typically preferred since they involve
probes of smaller dimensions that can be more easily positioned within a craniotonomy.

One should note that it is necessary to perform an ultrasound image calibration so
as to resolve the fixed relationship between the 3D location of the US probe and the
location of its corresponding 2D image plane, as shown in Fig. 4.7. The problem of robustly
and accurately resolving the spatial calibration of an ultrasound probe continues to be an
important research topic [32, 79, 98, 111, 126], and is not covered in detail in this work.

Once the probe is properly calibrated, the neuronavigation system can track the location
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Tracked Reference Marker

Tracked US Probe

3D Object Tracking based on Infrared Stereo Vision

Fig. 4.6 Neuronavigation with tracked ultrasound. The setup involves a
infrared stereo camera for continuously tracking the 3D location and orienta-
tion of a ultrasound probe with the use of reflective infrared spheres fixed to
the probe. The acquired intra-operative US volume, illustrated with a heat
map in the display, can then be accurately overlayed on the pre-operative MRI
volumes. Image obtained from [97].

and orientation of each 2D image slice as it is being captured. The neuronavigation system
can rely on a volume reconstruction algorithm [43, 67, 140, 141, 156] to generate a 3D
volume from the sweep of tracked 2D image slices. Finally, the reconstructed 3D volume can
be displayed in the neuronavigation system and visually compared with the pre-operative
MRI volume.

In summary, the use of a tracked iUS involves the minimal requirements of properly
mounting a known configuration of reflective spheres to the US probe and inferring the
mapping between the position of the reflective spheres with relation to the location and
orientation of the US image plane. However, the US device itself and the intra-operative
procedure required to make use of it have practically negligible interference in the oper-
ating room in comparison with other modalities. Fig. 4.8 shows a complete commercial
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Fig. 4.7 Tracked ultrasound probe. Image obtained from [97].

neuronavigation system that includes support for tracked iUS. In direct contrast, Fig. 4.9
shows the proposed operating room configuration to allow integration of an intra-operative
MRI. Note how the neuronavigation system with iUS support is highly portable and can be
easily displaced throughout the procedure. Alternatively, the intra-operative MRI solution
involves a custom built operating room configuration.

It is important to note that the practical advantages for the integration of iUS in the
clinical procedure come with a significant penalty in imaging quality and consistency with
relation to modalities like MRI or CT. Intra-operative US suffers from the challenge that
the surgeon must be trained in the positioning and coupling of the US probe, as well
as in the anatomical interpretation of the acquired images. Such US-specific training is
typically limited to US radiologist, and not neurosurgeons. As such, there is generally an
important learning curve associated with integrating iUS in the procedure. Furthermore,
the technical characteristics of iUS lead to a restricted field-of-view with a trade-off between
image resolution and penetration depth. Additionally, there are various US specific imaging
artefacts (e.g. shadows, speckle), which can lead to a misinterpretation of the image if they



4 Image Guided Neurosurgery: Clinical Context and Results 86

are not well understood. In direct contrast, competing modalities such as intra-operative
MRI provide a far less restricted field of view and can be directly interpreted by a clinician
(as any other MRI image). Even with all its imaging challenges, the highly reduced cost
of iUS and its limited disturbance of the clinical procedure continue to make iUS a highly
appealing image modality for many clinical interventions.

Fig. 4.8 Commercial neuronavigation system with support for iUS. Image
obtained from http://www.sonowand.com/.

4.3.1 Navigation Accuracy

The clinical benefit of incorporating a neuronavigation system in a surgical procedure is
directly related to the navigation accuracy that it can provide. A particularly important
measure of navigation accuracy is the difference between the true anatomical location
of a surgical tool and the anatomical location it is mapped to in the medical images.
Unfortunately, it is not easy to characterize such accuracy in a clinical setting. Hence, most
efforts [96, 130] have been limited to a controlled lab environment and the efforts [162]
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Fig. 4.9 Operating room configuration integrating an intra-operative MRI.
An example operating room based on Medtronic™Polestar N30. Image ob-
tained from http://www.medtronic.com/.

that do characterize the accuracy in a clinical setting have been limited to rigid body
assumptions.

In the context of neuronavigation with iUS, there is an important distinction regarding
the error in accuracy relating to the mapping between pre-operative volumes and the patient
space, and the error in accuracy relating to the mapping between intra-operative images
and the patient space. The first source of error is associated to the precision of the patient
to volume registration performed at the beginning of the procedure, which is typically
affected by patient displacement throughout the procedure. In particular, some studies
have shown [162] that there is a consistent decrease in such accuracy with relation to
the duration of the procedure. Additionally, navigation accuracy can also be significantly
affected by soft-tissue brain deformations, referred to as brain-shift [93, 130, 134]. Such
soft-tissue deformations generally occur after the dura has been removed and are due to
variations in intra-cranial pressure or external forces, such as gravity or retractors.

The second source of error is directly related to the precision of the iUS spatial cali-
bration and the precision of the 3D tracking framework. The distinction between the two
sources of navigation accuracy error is particularly important since it implies that intra-
operative displacements can only affect the first type of error while having no effect on the
second type of error. Hence, one can safely rely exclusively on a tracked iUS for navigation
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and guidance with no concern regarding intra-operative displacements.
Unfortunately, there is typically a variety of pre-operative imaging data that bears

critical relevance throughout the procedure and there is significant interest in ensuring
that it is properly mapped to the patient’s space. For example, consider a set of manual
anatomical annotations performed on a pre-operative MRI which identify critical regions
of eloquent tissue corresponding to high priority functions (e.g. speech). In the presence
of intra-operative deformations, there is a clear interest in updating the location of such
critical regions so as to fully ensure that they do not suffer any damage. In order to
address this concern, the use of iUS can play key role where it can be used so as to correct
for intra-operative displacements by registering the pre-operative image data to the iUS.
This is a fundamental motivation behind the development of a multi-modal registration
technique than can robustly resolve the spatial mapping between a pre-operative MRI
brain volume and an iUS image. A successful and fast registration effectively allows the
clinician to continue relying on all pre-operative imaging data once it has been updated
to reflect the intra-operative deformations, and with no particular concern regarding a
significant degradation in navigation accuracy. The next section briefly describes some of
the previous work related to this task and consequently present a series of results with our
proposed technique yielding sub-second processing times with robust performance.

4.3.2 Registration of Brain MRI to US

Some initial efforts [40, 65–67] addressing the registration of brain MRI to US for neu-
rosurgery proposed semi-automatic procedures where the clinician would identify a few
homologous anatomical landmarks (or location displacements), and with a physical model
of the brain (e.g. elastic) automatically evaluate the deformation throughout the full do-
main. For example, the work in [66, 67] was one of the key early works that successfully
demonstrated the feasibility of relying on iUS for updating a pMR volume and identifying
brain-shift deformation encountered throughout a procedure. In particular, the authors
proposed an interactive non-linear registration technique for matching the pMR volume
to the iUS volume. This setup presented a triplanar view of a warped iUS volume and
a non-warped pMR volume which was continuously updated in real-time based on freely
manipulated locations of a few homologous landmarks identified by the clinician. The tech-
nique internally relied on a thin plate spline transformation model to characterize a smooth
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deformation field throughout the spatial domain.
Subsequent efforts have largely focused on the proposal of fully automatic image regis-

tration techniques. Unfortunately, the registration of pre-operative MRI to iUS is a prob-
lem faced with multiple challenges brought forward by the widely different image formation
models of each modality. MRI can be largely characterized as a tissue-type based modality,
where the image intensity of a given voxel is mainly a function of the tissue found within
the voxel’s volume. On the other hand, US images illustrate different acoustic impedance
transitions encountered by the ultrasonic wave. Figs. 4.10(a)-4.10(d) show four different
neurosurgical cases and illustrate the differences between the two modalities. Notice that
the MRI allows for an accurate identification of multiple soft-tissue types such as grey mat-
ter, white matter and bone, and hence also permits the localization of many anatomical
structures on the brain (e.g. lateral ventricles, falx, sulci, grey and white matter boundaries,
etc.). Alternatively, the corresponding US only exposes the tumour tissue and its boundary
(with some degree of uncertainty), and also depicts part of some key structures like the
falx and the lateral ventricles. In short, while the MRI can expose a variety of anatomical
structures in the brain, the iUS can only expose a few key anatomical boundaries and in-
volves complex artefacts such as speckle and a non-homogeneous intensity response. Such
phenomena are extremely challenging for any multi-modal image registration technique. In
particular, the limited anatomical exposure depicted by iUS can be considered an example
of complex image occlusion, where an image simply does not depict some components of
the scene. Complex image occlusion in conjunction with a strongly non-homogeneous im-
age formation model are a direct challenge for intensity-based similarity metrics, such as
MI, that rely on the predictive power of a fixed global mapping of inter-modality intensity
values.

In the particular context of brain tumours, we are also affected by the fact that
pathologies from different cases can have quite unique image features in each modality.
Figs. 4.10(a)-4.10(c) contrast three cases with significantly different depictions in each
modality. In particular, we can observe that the inner tumour tissue and the tumour
boundaries in the iUS are exposed with quite distinctive image characteristics in each case.
For example, Fig. 4.10(c) depicts tumour tissue with very high US intensity values, but
does not allow for an accurate identification of its boundary. Alternatively, in Fig. 4.10(b),
the tumour tissue is depicted with a low US intensity and the boundary can be identified
with increased certainty. Furthermore, Figures 4.10(b) and 4.10(c) provide a prominent
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(a) Case 4 (b) Case 6

(c) Case 8 (d) Case 9

Fig. 4.10 Pre-operative MRI volume and the iUS volume in a brain tu-
mour resection surgery as mapped by an intial patient to volume landmark
registration. The first column shows the MRI image in greyscale with the cor-
responding iUS overlapped and heat map colored. The second column shows
the MRI image. The third column shows the iUS. The top row shows a coro-
nal view, the middle row shows a sagittal view, and the bottom row shows a
transverse view. Anatomical structures found in the iUS are identified by a
green arrow and label, while structures found in the MR are identified by a
white arrow and label.
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depiction of the lateral ventricles in the iUS, a highly informative anatomical structure for
identifying a match across modalities. On the other hand, Fig. 4.10(a) provides a very weak
depiction of the lateral ventricles. This kind of variability in exposing anatomical struc-
tures in iUS is a clear challenge for conventional multi-modal registration approaches that
assume a global hard mapping between image features of one modality to image features
of a second modality.

The registration of MRI to US images has been previously addressed by various works [6,
42, 85, 93, 106, 110, 132, 133]. Some approaches [23, 136] rely on gradient magnitude as
an image feature of interest in conjunction with a conventional multi-modal similarity
metric such as mutual information (MI) or normalized cross-correlation (NCC). Other
proposed techniques rely on local-phase [106] as a feature in conjunction with MI. A major
challenge encountered by such approaches is that the image intensity response found in
US is significantly non-homogeneous. Consider the coronal view found in Fig. 4.10(d)
where we can clearly observe how the US intensity decays with relation to the distance
from the probe. In particular, notice that the US pixel intensities corresponding to white
matter tissue are far from consistent, and will likely result in a degradation of registration
performance when using a similarity metric that involves the full image domain. There
have also been approaches [85, 93] that propose a preprocessing stage in which imaging
artefacts (e.g. speckle, noise) are reduced and consequently register the preprocessed images
with a multi-modal metric like normalized mutual information (NMI) evaluated over a
sampling mask that typically covers the tumour volume and part of its surrounding region.
Alternatively, other works [6, 110] have proposed the generation of a pseudo-US by hard-
mapping segmented structures in the MRI to specific intensity values, and then registering
the pseudo-US with the acquired iUS.

Previously proposed methods have largely pursued an improved assessment of image
similarity that relies on pre-processed images and/or extended image features. However,
they also continue to rely on a global notion of image similarity based on image intensities
and other related features throughout the entire image domain. Unfortunately, given the
particular image formation model of US, it can be easily argued that most of the image
domain that does not involve anatomical boundaries does not provide image information
which can truly help in resolving correspondence to an MRI. In that sense, a global as-
sessment of image similarity is simply poor-suited for this particular context and there
is instead significant interest in ignoring the US regions which are simply uninformative
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of underlying anatomical structure. The same issue can be also directly related to the
time-sensitive requirements of this particular context. In short, a registration technique
that relies on a global assessment of similarity with an extended set of image features can
rapidly become impractical in terms of computational cost and processing times. The prin-
ciple of focusing on exposed anatomical boundaries so as to increase registration robustness
and minimize processing times constitutes a critical component of the proposed technique
and its benefits are shown in the experimental results section.

The next section enlists a series of experimental findings which show that the proposed
approach brings forward gains in computational performance and registration accuracy,
as evaluated over fourteen clinical cases obtained from a publicly available dataset. In
particular, the proposed technique achieves a robust performance, in the sense that all
fourteen cases used for validation have a resulting mean distance between corresponding
points that is larger than the smallest possible mean distance (under a rigid transformation)
by no more than 1 mm. Furthermore, such performance is achieved with a highly reduced
subset of voxels (e.g. 2% of the image) and a GPU-based implementation, which leads to
an average processing time of 0.76 seconds. This achievement permits the technique to be
easily embedded in a clinical neuronavigation system, minimizing the delay suffered every
time an updated MRI is required.

4.4 Experiments

4.4.1 Clinical Dataset

The validation of the proposed rigid registration technique in the context of IGNS was
performed with the use of fourteen clinical neurosurgical cases obtained from the Montreal
Neurological Institute’s Brain Images of Tumors for Evaluation (MNI BITE) [108], an open
access on-line1 dataset of clinical MRI and US images of brain tumours. In particular, the
rigid registration of pre-operative MRI images to iUS was evaluated with images obtained
prior to tumour resection, identified as Group 2 of the MNI BITE dataset. The cases
involve low and high-grade gliomas (LGG and HGG respectively) at different depths and
locations in the brain and with tumour volumes ranging between 0.2 and 79.2 cm3. The
initial location of each case corresponds to a preliminary registration involving the manual

1http://www.bic.mni.mcgill.ca/Services/ServicesBITE
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identification of corresponding points on the skin and the MRI image, as is common in
standard clinical procedures.

It is important to highlight that while this intra-operative context does in fact involve
non-rigid deformations, a major component of the deformation encountered can be cap-
tured by a rigid transformation. Furthermore, Section 4.5 demonstrates that the manual
landmarks used for measuring registration accuracy include a significant variability across
experts and a relatively small number of locations per case, between 19 and 40 landmarks in
total per case, which can critically limit the ability of the landmarks to fully and impartially
capture the accuracy of a given deformation across the entire image domain. The exper-
iments in this chapter are thus limited to the validation of a rigid registration technique
and further work should focus on the validation of non-rigid approaches.

4.4.2 Validation Strategy

Given the lack of a ground truth, the registration accuracy of each method is evaluated
as the mean distance between homologous landmarks independently identified by two or
three experts2, commonly referred to as the mean target registration error (mTRE). Each
case has between 19 and 40 landmarks in total. It is of critical importance to note that the
minimal mTRE under a rigid transformation has a unique non-zero value for each case, both
for each expert’s landmarks as well as for the combined set of all experts’ landmarks. There
are two main reasons behind this phenomenon. The first is the inherent uncertainty from
the experts in accurately identifying anatomical locations in both modalities (particularly
in the US volume). Thus, large errors in the identification of landmarks reduce the accuracy
of the performance metric and also result in a potentially false large value for the minimal
mTRE under a rigid transformation. The second is the potential presence of non-rigid
deformations. In particular, in the case of perfectly accurate landmarks, a non-zero minimal
mTRE effectively estimates the “residual” part of the deformation that is not fully explained
by a rigid transformation. Hence, a large minimal mTRE can reflect the presence of errors in
the identified landmarks and/or significant non-rigid components in the true deformation.
For the purposes of illustrating the variability of landmark identification between experts
and the potential need for a non-rigid registration, a quantitative analysis of the inter-expert
variability is presented in Section 4.5.

2Note that the third expert in the MNI BITE dataset identified homologous landmarks for the first six
cases only.
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4.4.3 Results

This section presents a series of quantitative results obtained with the proposed rigid reg-
istration technique, referred to as GOA, described in Section 3.1.3. It is important to note
that such technique involve the maximization of gradient orientation alignment over high
gradient magnitude locations selected from the fixed image domain. The voxel selection
used in the technique is thus asymmetric, and hence involves the important underlying as-
sumption that selected fixed image boundary locations do indeed have a counterpart in the
moving image, while the inverse case of moving image boundaries having a counterpart in
the fixed image domain is not necessarily true. This asymmetric correspondence of bound-
aries across images maps directly to the context involving MRI volumes registered to US
volumes. In particular, US volumes generally expose only a limited set of key anatomical
boundaries (e.g. tumour boundary, lateral ventricles and falx) which can also be identified
in the MRI volume. Consequently, the results shown in this chapter adopt the US volume
as the fixed image, whose exposed boundaries have a counterpart in the MRI volume. The
alternative of choosing the MRI volume as the fixed image volume would likely be ill-fated
since many of the anatomical boundaries exposed in the MRI (e.g. grey to white matter
interface) simply cannot be identified in the US volume.

The rigid registration approach was evaluated with three simple variants. The first
configuration, referred to as GOA Full Mask, involves the maximization of gradient orien-
tation alignment of the top 20% locations with the highest gradient magnitude in the re-
constructed 3D US volume. The second configuration, referred to as GOA Subset, provides
reduced processing times and involves the maximization of gradient orientation alignment
of 8,000 locations randomly selected from the previously defined top 20% mask. It is im-
portant to note that 8,000 locations correspond to approximately 2% of the voxel locations
found in the US volume (the exact ratio varies from case to case). The first two configura-
tions were implemented in C++ and run on a computer with an Intel Core 2 Quad Q6700
CPU. The third configuration, GOA Subset on GPU, is implemented to run on a NVIDIA
GTX 670 video card and was developed to provide highly reduced processing times. It
involves the maximization of gradient orientation alignment of 16,000 locations randomly
selected from the top 20% mask.

Fig. 4.11 illustrates the images from Case 3 before and after registration with GOA Sub-
set on GPU. Notice how key structures like the falx and the lateral ventricles are closely



4 Image Guided Neurosurgery: Clinical Context and Results 95

Fig. 4.11 Pre-operative MRI and iUS slices from Case 3 before and after
registration. The first row shows the slices at their initial location (coronal,
sagittal and transverse). The second row shows the slices after registration
with the proposed approach. Anatomical structures found in the iUS are
identified by a green arrow and label, while structures found in the MR are
identified by a white arrow and label. Notice how key anatomical structures
like the falx and the lateral ventricles are tightly aligned after registration with
the proposed approach.

aligned after registration. The registration results for the three configurations and each of
the fourteen cases are shown in Fig. 4.12 and Fig. 4.13. In Fig. 4.12, the performance of
each configuration is illustrated with relation to a superset of landmarks that includes all
experts’ landmarks. It is important to note that all configurations consistently improve the
registration accuracy with relation to their corresponding initial location. Additionally, one
can also observe that the resulting mTRE is very close to the minimal mean distance under
a rigid transformation (depicted as a red dashed line). The same set of results is enlisted in
Table 4.1, which also shows the processing times for each configuration. The first configura-
tion, GOA Full Mask, involves a processing time that ranges from 36 to 76 seconds, which
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is comparable to the processing time of conventional intensity-based methods. Alterna-
tively, the second configuration, GOA Subset, obtains a similar registration accuracy with
significantly reduced processing times that range from 7 to 14 seconds. Finally, the third
configuration, GOA Subset on GPU, also obtains a similar registration accuracy but with
highly reduced processing times that range from 0.61 to 0.93 seconds. Note that alternative
registration techniques typically involve computational times in the order of minutes. Such
a drastic reduction in processing times is critically important in this intra-operative con-
text, since it allows the clinician to immediately obtain updated/corrected pre-operative
data.
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Fig. 4.12 Rigid registration results with proposed method evaluated the
set of all landmarks independently identified by three different experts. The
x-axis corresponds to the clinical case, while the y-axis corresponds to the
mTRE between manually identified corresponding anatomical points. Also
shown are the initial mTRE (Initial) in blue, as well as the minimal mTRE
(Minimal) possible under a rigid transformation, shown as a red dashed line.
Notice that the three configurations yield a mTRE just slightly larger than
the minimal mTRE. Table 4.1 also lists the resulting mTRE values for each
configuration as well as the corresponding processing times.

In Fig. 4.13 the performance of each configuration is illustrated with relation to the set
of landmarks identified by each expert. It is immediately clear that the proposed method
is in very close agreement with the landmarks selected by Expert 1 and Expert 3, since the
resulting mTRE is quite close to their minimal mTRE. On the other hand, when evaluated
with relation to Expert 2 landmarks, one encounters a slightly larger value than the minimal
mTRE. However, this comes as no surprise, since Section 4.5 will demonstrate that Expert
2 had significant disagreements with Expert 1 and 3. Thus, any method that tends to align
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GOA Full Mask Subset Subset on GPU

Case mTRE Time mTRE Time mTRE Time
in mm in secs in mm in secs in mm in secs

1 4.89 53 4.86 12 4.86 0.71
2 1.79 50 1.78 9 1.71 0.71
3 2.73 76 2.65 16 2.83 0.93
4 1.68 37 1.72 7 1.76 0.61
5 2.12 36 2.13 9 2.00 0.88
6 1.81 48 1.71 9 1.81 0.68
7 2.51 48 2.64 14 2.75 0.79
8 2.63 56 2.65 10 2.51 0.82
9 2.70 40 2.79 7 2.67 0.86
10 1.95 73 1.94 9 2.05 0.67
11 1.56 52 1.82 9 1.78 0.73
12 2.64 41 2.47 8 2.58 0.72
13 3.47 43 3.42 12 3.57 0.89
14 2.94 62 2.92 9 3.04 0.69

Average 2.53 51 2.54 10 2.57 0.76
Median 2.57 49 2.55 9 2.54 0.73

Table 4.1 Rigid registration results with proposed method evaluated as the
mean distance (i.e. mTRE in mm) between all the landmarks independently
identified by all experts combined. The results are also illustrated in Fig. 4.12.
Also shown is the processing time for each case. Notice that the GPU imple-
mentation of the proposed approach yields an average processing time of 0.76
seconds.
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more with landmarks from Expert 1 and 3, will inevitably show a degradation with relation
to the landmarks from Expert 2.
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Fig. 4.13 Rigid registration results with proposed method evaluated with
each of three sets of landmarks identified by a particular expert. The x-axis
corresponds to the clinical case, while the y-axis corresponds to the mTRE
between manually identified corresponding anatomical points. Also shown are
the initial mTRE, (Initial), in blue, as well as the minimal mTRE (Minimal)
possible under a rigid transformation, shown as a red dashed line. Notice that
for Expert 1 and 3, all three configurations yield a mTRE just slightly larger
than the minimal mTRE and significantly decreased with relation to the initial
mTRE. However, evaluation with relation to Expert 2 yields various cases with
poor performance (e.g. Case 1, 7, 8, 12, 13 and 14).
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A statistical summary of the registration performance of the proposed approaches as
well as of competing techniques is presented in Table 4.2. The evaluated methods are char-
acterized by a choice of similarity metric: Mutual Information (MI), Normalized Cross Cor-
relation (NCC), Normalized Mutual Information (NMI) and Gradient Orientation Align-
ment (GOA); input images: Original Images (ORI), Gradient Magnitude Images (GM) and
Median Filtered MRI in conjunction with a Gaussian blurred US (PRE); and optimiza-
tion strategy: Covariance-Matrix-Adaptation-Evolution-Strategy (CAE) and a Gradient
Descent (GD) optimizer with adaptive gain. The mean and median value of two accuracy
measures are reported: the mTRE of the homologous landmarks from all experts combined,
and the difference between such mTRE and the minimal mTRE. The number of cases that
had a successful registration are also demonstrated, where success is defined as an instance
when the mTRE is larger than the minimal mTRE by no more than 1 or 2 mm.

The results obtained indicate that conventional multi-modal intensity-based metrics,
like MI, NCC and NMI, generally show very poor performance in this particular context.
Nonetheless, if one makes use of gradient magnitude images with the same multi-modal
similarity metrics, one can obtain slightly improved results. A particularly good-performing
configuration involves the maximization of NMI between gradient magnitude images with
a gradient-descent strategy, which successfully registers 12 of the 14 cases with an mTRE
less than 1 mm larger than the minimal mTRE.

In comparison with other competing techniques evaluated, the proposed approach is the
only one where all cases were successfully registered to an mTRE that was less than 1 mm
larger than the minimal mTRE. In particular, the median value of the difference between
the mTRE and the minimal mTRE is of 0.27 mm for the first configuration, (GOA Full
Mask); 0.22 mm for the second configuration, (GOA Subset); and 0.33 mm for the third
configuration, (GOA Subset on GPU).
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Method mTRE mTRE minus minimal mTRE Number of Successes

in mm in mm
Average Median Average Median <1mm <2mm

MI+ORI+CAE 22.62 9.20 20.42 7.51 3 3
NMI+ORI+CAE 21.58 8.63 19.39 6.89 3 4
NCC+ORI+CAE 70.58 76.30 68.38 74.11 0 0
MI+ORI+GD 11.83 6.84 9.64 4.44 3 5
NMI+ORI+GD 11.68 6.88 9.64 4.44 3 5
NCC+ORI+GD 37.83 29.73 35.63 28.21 0 0
MI+GM+CAE 3.00 2.90 0.81 0.64 9 12
NMI+GM+CAE 3.01 2.78 0.82 0.59 10 12
NCC+GM+CAE 6.59 3.09 4.39 0.79 8 11
MI+GM+GD 2.90 2.67 0.71 0.61 11 14
NMI+GM+GD 2.87 2.66 0.67 0.60 12 13
NCC+GM+GD 3.77 2.91 1.57 0.69 9 12
NMI+PRE+CAE 13.47 9.22 11.28 6.83 0 1
NMI+PRE+GD 10.78 8.67 8.59 5.83 0 0
GOA Full Mask 2.53 2.57 0.33 0.27 14 14
GOA Subset 2.54 2.55 0.34 0.22 14 14
GOA Subset on GPU 2.57 2.54 0.37 0.33 14 14

Table 4.2 Statistical summary of rigid registration results with all evaluated techniques. The
first column identifies the method used which are characterized by a similarity metric (e.g. Mutual
Information (MI), Normalized Cross Correlation (NCC), Normalized Mutual Information (NMI)
and Gradient Orientation Alignment (GOA)), input images (e.g. Original Images (ORI), Gradient
Magnitude Images (GM) and Median Filtered MRI in conjunction with a Gaussian blurred US
(PRE)). and optimization strategy (e.g. Covariance-Matrix-Adaptation-Evolution-Strategy (CAE)
and a Gradient Descent (GD) optimizer with adaptive gain). The first two columns of registration
results show the average and median value of the mTRE between manually identified corresponding
points. Also shown are the average and median value of the mean distance minus the minimal
mTRE. The last columns indicate the number of cases in which the resulting mTRE is larger than
the minimal mTRE by no more than 1 or 2 mm respectively.
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4.5 Inter-Expert Variability

The validation of image registration is a general issue across many medical imaging contexts,
and it is particularly important and challenging in the context of IGNS. The importance
lies in the fact that the validation strategy will ultimately characterize the precision of a
registration technique and provide the clinician with a measure of how much to “trust”
the updated pre-operative imaging data. Hence, a poorly designed validation strategy may
wrongly evaluate a registration technique as having a high accuracy and can consequently
lead to a mistaken decision of whether a particular region of tissue should be resected
or not. The particular challenge lies in the fact that iUS is an image modality that is
relatively hard to interpret by experts, and there is simply no easy approach for accurately
identifying a dense set of homologous correspondences. This section provides an analysis
of the agreement between the three experts which provided homologous landmarks so as to
evaluate the performance of a registration algorithm. In short, the objective is to illustrate
the challenges of the validation strategy with a series of quantitative results.

For each expert’s landmarks, the initial mTRE of each case is evaluated. The mTRE
evaluated with the optimal rigid transformation is also reported. The optimal rigid trans-
formation given a set of landmarks is obtained analytically by solving the corresponding
Orthogonal Procrustes problem [154]. Note that the mTRE evaluated with the optimal
rigid transformation corresponds to the minimal mTRE that can be obtained with a rigid
transformation given that set of landmark points. In order to analyze the agreement be-
tween different experts, the mTRE of a given expert’s landmarks with relation to the
optimal rigid transformation obtained with another expert’s landmarks is also evaluated.
Such measure is particularly informative in cases that do not appear to require a non-rigid
transformation.

Tables 4.3-4.5 list the results from such analysis. For example, Table 4.3 evaluates
the mTRE based on the landmarks identified by Expert 1. The column labeled Initial
lists the mTRE values computed at the initial (unregistered) location of each case. The
column labeled Expert 1 Solution lists the mTRE values computed with the optimal rigid
transformation (analytically) obtained from Expert 1’s landmarks. Hence, the column
labeled Expert 1 Solution in Table 4.3 also lists the minimal possible mTRE. All values
of the minimal mTRE larger than 2 mm (highlighted in bold) are identified as cases with
potential need for a non-rigid model. Notice that between Expert 1 and 3, only Expert
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mTRE based on Expert 1 Expert 2 Expert 3
Expert 1 Landmarks Solution Solution Solution

Case Initial (Minimal)
1 3.62 1.23 11.55 2.11
2 6.29 1.38 1.86 1.47
3 8.79 1.63 1.98 2.25
4 4.07 1.10 1.58 1.48
5 3.20 2.37 2.51 2.47
6 2.89 0.96 2.11 1.93
7 3.70 1.71 2.52 -
8 4.70 0.89 2.86 -
9 4.82 1.89 2.71 -
10 3.83 1.26 2.15 -
11 1.90 1.39 1.72 -
12 4.89 1.67 3.84 -
13 7.30 1.45 4.79 -
14 4.23 1.09 2.58 -

Average 4.59 1.43 3.20 1.95
Median 4.15 1.38 2.52 2.02

Table 4.3 Analysis of homologous landmarks identified by Expert 1. Re-
ported numbers include the initial mTRE (Initial), and the minimal mTRE,
found with the analytical rigid transformation obtained from each expert’s
landmarks. Minimal mTRE values larger than 2 mm are highlighted in bold
and expose a potential need for a non-rigid registration. Values of mTRE
larger than 3 mm are shown in red bold and indicate a notable difference
between experts.

1 yields one case with a minimal mTRE larger than 2 mm. In direct contrast, Expert 2
yields six cases with a minimal mTRE larger than 2 mm. Hence, one could argue that for
most of the evaluated cases and their corresponding landmarks, a rigid transformation can
characterize most of the deformation encountered.

In Tables 4.3-4.5, all mTRE values larger than 3 mm and evaluated with relation to
a different expert’s solution are identified as cases with significant disagreement between
experts (highlighted in red bold). The most striking case of disagreement is found in Case
1, where each expert has a corresponding minimal mTRE of 1.23, 1.23, and 1.35 mm. Thus,
there seems to be no strong need for a non-rigid transformation. However, the rigid solution
obtained with the landmarks from Expert 2 results in a mTRE value of 11.55 mm with
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Fig. 4.14 Homologous landmarks identified by Expert 1 and 2 for Case
1. Points identified by Expert 1 are colored in blue (MR) and white (US).
Points identified by Expert 2 are colored in green (MR) and yellow (US). A
coronal and transverse slice of the MRI are also shown for reference, as well
as a translucent rendering of the skin’s surface.
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mTRE based on Expert 1 Expert 2 Expert 3
Expert 2 Landmarks Solution Solution Solution

Case Initial (Minimal)
1 7.20 10.28 1.23 8.11
2 5.93 2.29 1.91 2.27
3 9.02 3.10 2.86 3.92
4 3.68 2.23 1.61 1.88
5 1.96 2.12 1.67 2.21
6 1.86 2.45 1.04 2.16
7 2.31 3.10 1.74 -
8 3.02 3.83 2.49 -
9 5.33 3.36 2.39 -
10 2.43 2.48 1.71 -
11 1.26 1.53 1.22 -
12 2.61 3.66 2.04 -
13 3.49 5.40 2.56 -
14 3.45 3.62 2.57 -

Average 3.82 3.53 1.93 3.42
Median 3.23 3.10 1.83 2.24

Table 4.4 Analysis of homologous landmarks identified by Expert 2. Re-
ported numbers include the initial mTRE (Initial), and the minimal mTRE,
found with the analytical rigid transformation obtained from each expert’s
landmarks. Minimal mTRE values larger than 2 mm are highlighted in bold
and expose a potential need for a non-rigid registration. Values of mTRE
larger than 3 mm are shown in red bold and indicate a notable difference
between experts.

Expert 1’s landmarks. In contrast, the rigid solution obtained with the landmarks from
Expert 3 results in a mTRE value of 2.11 mm with Expert 1’s landmarks. Additionally,
the rigid transformation from Expert 2 results in a mTRE of 10.69 mm when evaluated
with the landmarks chosen by Expert 3. In contrast, the rigid transformation from Expert
1 results in a mTRE of 2.66 mm when evaluated with Expert 3’s landmarks. Hence, one
can argue that Expert 1 and 3 seem to somewhat agree on the deformation encountered in
Case 1, while having a strong disagreement with Expert 2.

The landmarks identified by Expert 1 and 2 for Case 1 are illustrated in Fig. 4.14 for
further analysis. Notice the significant difference between the spatial distribution of each
set, and the difference between the apparent transformation for each set. In particular, the
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mTRE based on Expert 1 Expert 2 Expert 3
Expert 3 Landmarks Solution Solution Solution

Case Initial (Minimal)
1 2.39 2.66 10.69 1.35
2 6.87 1.10 1.47 0.88
3 10.69 2.49 3.06 1.50
4 4.10 2.11 1.87 1.70
5 2.76 1.79 1.86 1.30
6 2.45 2.16 1.95 1.10

Average 4.88 2.05 3.48 1.31
Median 3.43 2.13 1.91 1.33

Table 4.5 Analysis of homologous landmarks identified by Expert 3. Re-
ported numbers include the initial mTRE (Initial), and the minimal mTRE,
found with the analytical rigid transformation obtained from each expert’s
landmarks. Minimal mTRE values larger than 2 mm are highlighted in bold
and expose a potential need for a non-rigid registration. Values of mTRE
larger than 3 mm are shown in red bold and indicate a notable difference be-
tween experts. Note that Expert 3 only labelled the first six of fourteen cases
in the dataset.

points identified by Expert 1 (shown in blue and white) are already quite close in distance,
while the ones identified by Expert 2 (shown in green and yellow) are significantly farther
apart. For reference purposes, Fig. 4.15 illustrates the landmarks identified by Expert 1
and 2 for Case 13, which exposes a less prominent disagreement between experts. In such
case, the distributions of the two landmark sets are relatively similar when compared to
the ones found in Case 1.

The relevance of the inter-expert analysis on the landmarks lies in highlighting the
challenges involved in the validation of a registration method in real clinical cases with
no ground truth. In particular, it is important to underline that although the use of
manually identified points allows for a quantitative evaluation of performance, there is still
a significant degree of subjectivity behind such validation strategy and the numerical results
should not be accepted blindly. In particular, based on the exposed variability between
experts and corresponding landmarks, one can argue that the validation of a non-rigid
registration based on this particular dataset is rather compromised.
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Fig. 4.15 Homologous landmarks identified by Expert 1 and 2 for Case
13. Points identified by Expert 1 are colored in blue (MR) and white (US).
Points identified by Expert 2 are colored in green (MR) and yellow (US). A
coronal and transverse slice of the MRI are also shown for reference, as well
as a translucent rendering of the skin’s surface.
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4.6 Impact

4.6.1 IBIS NeuroNav

The proposed registration techniques evaluated in this section have been integrated into
a prototype neuronavigation system, referred to as IBIS NeuroNav[109], which has been
custom developed at the Montreal Neurological Institute. IBIS provides a wide range of
functionality for neuronavigation including: loading of medical volumes and segmented
surfaces, 3D visualization, integration with 3D tracking technology, support for capture
and visualization of tracked ultrasound, among many others.

A key feature of IBIS is that it is includes a modular plug-in architecture that allows
developers to extend its functionality. Such architecture was leveraged so as to extend IBIS
with robust registration techniques based on the proposed strategy in conjunction with a
fast 3D reconstruction implementation which jointly greatly reduce the overhead of using
iUS in the operating room. The following section briefly outlines the technical contributions
developed as an extension of IBIS.

Technical Contributions to IBIS

GPU-based reconstruction of a 3D US volume To minimize the computational
overhead of integrating tracked US in the operating room, a GPU-based 3D reconstruction
algorithm was implemented as a plug-in for IBIS. The 3D reconstruction algorithm takes
as input a series of masked 2D US images with known location and orientation, and con-
structs a 3D volume based on the interpolated values of the 2D US slices. The GPU-based
reconstruction algorithm involves processing times that typically range between 5 to 10
seconds.

In it important to note that the prior protocol involved the used of a Perl script, referred
to as volregrid, which is part of the MINC tool distribution (http://packages.bic.mni.mcgill.ca).
The script had to be executed as a standalone (independently of IBIS) application and
involved processing times in the order of minutes. Once the script had finished, the recon-
structed 3D volume had to be manually loaded into IBIS.

The new protocol based on the GPU-based reconstruction allows for a much more seam-
less integration of iUS in the operating room, since the processing times are significantly
reduced and the reconstructed volume is automatically loaded and visualized within IBIS.
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CPU-based and GPU-based multi-modal rigid registration Two rigid registration
implementations, based on the framework in Section 3.1, were implemented in both a
CPU and in a GPU for further accelerated computational times. The GPU-accelerated
implementation involved some non-trivial modifications and was specifically developed so as
to efficiently exploit the massively parallel nature of both the algorithm and the hardware.
The details regarding the GPU-based registration technique can be found in Section 4.6.1.

IBIS has been implemented in C++ and relies on the Insight Toolkit Library. As such, it
was straightforward to port the standalone registration code used for research experiments
into an IBIS plugin. Nonetheless, there was a special effort required so as to ensure that
the transformation hierarchy of all objects in the 3D scene in IBIS was accounted for by the
registration plugin. For example, in the case of neurosurgery the 3D scene typically has a set
of 3D volumes and segmented surfaces grouped under a “Pre-operative” group. The images
obtained intra-operatively are separately grouped under an “Intra-operative” group. Thus,
when rigidly registering a pre-operative MRI to an iUS it is critically important to apply
the transformation obtained to the entire “Pre-operative” group, so that all pre-operative
data can be properly updated.

Accelerated Implementation on Graphical Processing Unit

This section briefly describes the modifications that had to be done on the proposed registra-
tion technique so as to maximize the computational throughput of the graphical processing
unit. Note that GPU-specific development was performed in OpenCL.

The sole distinction between the CPU-based implementation and the GPU-based im-
plementation lies in the evaluation of the similarity function, which largely represents the
most computationally expensive component of the registration technique. All other com-
ponents, such as the initial computation of the image gradients, the selection of a reduced
subset of locations of interest, and the overhead operations performed by the optimizer,
are performed in the CPU with a common C++ implementation.

The evaluation of the local similarity function can be rendered highly efficient by care-
fully considering the memory access limitations of the GPU. In particular, a common
challenge in maximizing the computational efficiency of a technique in a GPU lies in max-
imizing the data throughput between the GPU memory bank and the parallel processing
units. Fig. 4.16 illustrates how the data is allocated in the GPU in the proposed imple-
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mentation for the purposes of evaluating the similarity function efficiently in parallel. The
strategy for achieving parallelized memory access is known as memory coalescing, where
the objective is to ensure that parallel processing units jointly load the input data, and thus
require one single memory read request. An important requirement for achieving this goal
is that the input data used by the processing units should be 16-byte aligned and ordered
in the same order as the processing units are ordered. When the algorithm is setup in such
a fashion, the GPU can load the complete input data array in a single read request to the
memory buffer.

In the proposed technique, the input array is composed of data elements each involving 8
single floating-point values. In particular, the data structure stores a fixed image gradient,
∇If (x), and its corresponding location, x. To ensure memory coalescing, two unused
floating-point values are also included, such that the parallel memory read request remains
16-byte aligned. The original moving image gradient is stored in a four-component 3D
image in the GPU memory. Note that similar to the input array, voxel values are 16-byte
aligned so as to maximize memory efficiency.
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Fig. 4.16 GPU data allocation for evaluating the similarity function in par-
allel.

The evaluation of the similarity function requires the corresponding transformed moving
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image gradient, ∇I↓
m. In order to evaluate the transformed moving image gradient, as

expressed in Equation 3.13, one first requires the transformed fixed image location, T(x),
so that one can evaluate the interpolated value of the original (undeformed) moving image
gradient. In the context of rigid registrations, one can compactly express the relationship
between a given fixed image location, x = (x, y, z), and the spatially mapped moving image
index, (i, j, k), with a single homogeneous matrix such as,

⎛
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i

j

k

1

⎞
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⎞
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⎞
⎟⎟⎟⎟⎟⎟⎠

(4.2)

where Th is the rigid transformation matrix expressed in homogeneous coordinates and
where Mf→m is a matrix which maps a location in the moving image spatial domain
to a continuous voxel index. Hence, one can join both matrices into a single matrix,
Tf→m, which maps a fixed image location to a continuous voxel index in the moving
image. Finally, the interpolated moving image gradient value is obtained by relying on
hardware-implemented image interpolation units found in the GPU.

The interpolated moving image gradient is then pre-multiplied by the rotation matrix,
R = JT , to obtain the transformed moving image gradient. One can then compute the
value of the local similarity metric. The algorithmic outline of the sequence performed by
each parallel processing unit is summarized in Algorithm 3.

4.7 Conclusions

Brain tumour resection is an aggressive option for improving the prognosis of suffering
patients, yet in some cases it is the only alternative towards preventing an imminent death.
Studies have shown that the extent of surgical resection is an important factor for the
prognosis of the patient and the use of intra-operative imaging solutions, such as US, is an
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Algorithm 3 Local similarity function in parallel processing unit.
1: procedure Similarity(id,Tf→m,R)
2: ∇If (x),x← loadData(id)
3:

4:

⎛
⎜⎜⎜⎝

i
j
k
1

⎞
⎟⎟⎟⎠ ← Tf→m ×

⎛
⎜⎜⎜⎝

x
y
z
1

⎞
⎟⎟⎟⎠

5:
6: ∇Im (T(x)) ← interpolate(∇Im, [i, j, k])
7:
8: ∇I↓

m (x) ← R × ∇Im(T(x))
9:
10: return s (∇If (x) , ∇I↓

m (x))
11: end procedure

appealing technical strategy for optimizing tumour resection while minimizing the damage
on eloquent tissue.

In this chapter, I have described the technical setup involving the use of freehand tracked
iUS for improving the accuracy of IGNS. I have enlisted two key technical contributions
that extend the functionality of IBIS Neuronav and that allow a more seamless integra-
tion of iUS in the operating room. The first contribution involves the implementation of
a GPU-based volume reconstruction plug-in, which allows the clinician to obtain a 3D
US volume immediately after an acquisition sweep. The second contribution involves the
implementation of a CPU and a GPU-based MRI to iUS rigid registration technique for
correcting image misalignments suffered during surgery.

The performance of the proposed registration technique was evaluated on a publicly
available dataset of real clinical cases. A key result of such set of experiments is that
the GPU-based technique can provide a highly robust rigid registration performance with
sub-second processing times. Such performance in conjunction with a GPU-based volume
reconstruction technique provides an extremely fast turnaround time for the clinician and
thus minimizes the overhead of adopting iUS.

The next chapter evaluates the performance of the proposed rigid registration technique
in a multi-modal context involving brain CT and MRI volumes with the use of a publicly
available dataset. In particular, it presents a series of experimental results that illustrate
the performance of the proposed technique with varying parametrizations and compares
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the performance against various previously proposed approaches.
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Chapter 5

Rigid Registration of CT to MRI
Brain Volumes

The previous chapter described in detail the clinical relevance and impact of the proposed
registration technique in the challenging context of IGNS based on iUS. This chapter fo-
cuses on the multi-modal rigid registration of CT and MRI brain volumes, which consti-
tutes a more conventional context that has been previously approached by many different
groups [31, 36, 60, 124, 177]. Registration performance is evaluated with a commonly used
and publicly available dataset [177] and thus allows for a direct and fair comparison with
previously reported results. This chapter also provides a detailed quantitative analysis of
the performance of the proposed technique with a variety of different parameterizations.
Since such analysis is also based on the same publicly available dataset [177] it provides an
unbiased representation of how the method’s parameters affect its accuracy.

The chapter is structured as follows. Section 5.1 describes the variety of clinical contexts
that necessitate the rigid registration of brain CT and MRI volumes. Section 5.2 provides
a brief overview of the publicly available dataset used for evaluation of registration perfor-
mance as well as describing its corresponding validation strategy. Section 5.3 presents a
brief recapitulation of the rigid registration technique and the specific parameters involved.
Section 5.4 then presents a variety of quantitative experimental results. The first set of
results characterize the performance of the proposed technique with varying parameteriza-
tions, while the second set of results focuses on comparing registration performance with
previously proposed techniques. The comparison against competing techniques includes a
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previously proposed registration strategy [124] which similarly relies on image gradients
as critical image features of interest, and thus serves as an important reference regarding
previous efforts that follow such intuition. Nonetheless, there are important distinctions in
the way image gradient information is employed in such method and the proposed method,
and they are discussed with the corresponding experimental results.

The results presented in this chapter provide significant evidence of the generality of the
proposed technique to various multi-modal contexts, as well as of the important benefits
that can be obtained in terms of robustness, accuracy, and computational efficiency. For
example, the performance comparison includes an evaluation of registration accuracy as
a function of the percentage of voxels used to estimate the similarity metric, where the
proposed method achieves a median registration error inferior to 1 mm with an extremely
reduced sampling rate involving 0.05% of the voxels in the domain. In contrast, a state-
of-the-art pixel selection technique achieved a comparable yet slightly worse registration
accuracy with 5% of the voxels (i.e. 100 times more voxels).

5.1 Clinical Applications

The need for rigid-registration of multi-modal brain volumes commonly arises in the context
of surgical guidance and planning where the clinician may desire to jointly analyze a series
of brain images from different modalities in a common coordinate frame. Since the image
coordinate space of each modality generally is arbitrary and not matched across modalities,
there is an immediate need to register all acquired images into a common coordinate space.
A similar issue arises in longitudinal studies where a patient is scanned at multiple time
points and the clinician is interested in identifying any anatomical changes that occurred
through time. For example, a clinician may rely on a series of MRI modalities across
multiple time points so as to identify the evolution of a brain tumour. In such context,
accurately registered multi-modal images across time points allow for a localized (e.g. per
pixel) analysis of changes through time.

5.2 Retrospective Image Registration Evaluation Project

The experiments shown in this chapter are evaluated with real clinical cases obtained from
the Retrospective Image Registration Evaluation (RIRE) Project [177], also known as the
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Vanderbilt dataset. The RIRE dataset is an open-access dataset of rigid registration cases
involving CT, MRI and PET brain volumes. The MRI volumes found in the dataset
include T1-weighted, T2-weighted and PD-weighted modalities. Furthermore, some cases
also include rectified versions of MRI modalities, which correct MRI volumes for static field
inhomogeneity by using an image rectification technique [28].

The RIRE project also provides a “blind” validation tool in their website, in which any
researcher can upload a set of transformations obtained by their algorithm and the website
will provide a quantitative description of the registration accuracy obtained. The validation
strategy is “blind” because the user does not know the gold standard used for evaluating
accuracy. Furthermore, all uploaded results are stored in the website and can be verified
by other research groups. As such, the RIRE dataset provides a very controlled strategy
for comparing registration performance across competing methods.

5.3 Methodology

The rigid registration technique evaluated in this section is described in detailed in Sec-
tion 3.1.1 and it involves the maximization of a local similarity metric evaluating gradient
orientation alignment of a highly reduced set of selected voxel locations chosen from within
a top set of high gradient magnitude voxels. In particular, the metric is expressed as,

Sl(∇If (x), ∇I↓
m(x)); N) = cos (θ (x))N (5.1)

where θ = ∠(∇If , ∇I↓
m) is the inner angle between the fixed image gradient, ∇If , and

the transformed moving image gradient, ∇I↓
m; and N is a parameter characterizing the

selectivity with which to evaluate gradient orientation alignment.
The proposed technique is asymmetric in the sense that the fixed image plays a different

role than the moving image. In particular, the locations where the local similarity metric
is evaluated are selected from the fixed image domain. As such, it implicitly assumes
that selected locations have an anatomically corresponding image boundary in the moving
image. In the results shown in this chapter, the fixed image modality is chosen to be CT,
since it strongly and accurately depicts bone-tissue and skin-tissue boundaries which can
be also found in MRI volumes. The alternative choice of choosing the MRI volumes as the
fixed image modality could likely lead to decreased robustness since most of the soft-tissue
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(e.g. gray matter, white matter) boundaries found in MRI volumes are simply not exposed
in the CT volume.

5.4 Results

In this section, the performance of the proposed registration technique is evaluated with
relation to varying parameters that include: the matching criterion, N , the uncertainty
(i.e. gradient magnitude) threshold, the sampling rate and the use of (or lack of) a sub-
voxel location sampling. The different configurations of the method are evaluated with
the use of the training set found in the RIRE dataset. The training set involves the
registration between one CT volume and six MRI volumes (three modalities with and
without rectification) and provides the ground truth transformation for each registration
task. For this particular set of experiments, the registration performance of each case
is evaluated as the mean distance between the estimated and gold truth location of the
eight vertex points defining the CT volume boundary. Such a metric can be considered an
approximation of the upper bound on the mean target registration error (mTRE) within
the full CT volume, and will be referred to as the mean vertex registration error (mVRE).
The performance across all training cases is then evaluated as the median value of the
mVRE. One should note that the performance metric used for the training set is not the
same as the one used of the testing set, which is blindly evaluated through the dataset’s
website.

5.4.1 Random Sub-Voxel Location Sampling

Image volumes in the RIRE database are largely anisotropic and significantly coarse in the
out-of-plane dimension (e.g. one volume in the dataset has a voxel spacing of 1.27 × 1.27
× 4.11 mm). Such a largely anisotropic voxel spacing can lead to a potential registration
degradation particularly with relation to high-curvature boundaries (e.g. corners) where the
gradient orientation has a significant variation within the voxel volume. This constitutes
valuable image information content for the proposed technique. If one chooses a sampling
strategy limited to on-grid locations one can potentially miss such variation in the gradient
orientation. In order to avoid this kind of degradation, a scheme that allows the evaluation
of the local metric at locations that do not exclusively fall in the image grid is introduced.
In particular, once a voxel of interest is selected, an alternative sub-voxel location within
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the voxel’s volume is identified by adding a random offset to the voxel location. Note that
once one chooses a location that does not fall in the voxel grid, one is obliged to also adopt
an interpolation strategy to compute the fixed image gradient orientation. The influence of
incorporating such random offset is evaluated with different values of the matching criterion,
N , for a fixed sampling mask defined by the top 10% of highest gradient magnitude voxels.
Fig. 5.1 illustrates the median value of the mVRE obtained with and without random
offsets along with the correspond standard deviation. The comparison between using and
not using a random offset for evaluated locations consistently demonstrates that the offset
brings forward a significant improvement in registration accuracy. Thus, all subsequent
experiments will include such sub-voxel location sampling scheme.

Fig. 5.1 Median mVRE using all voxels within a sampling mask defined
by the top 10% voxels with highest gradient magnitude. The error bars il-
lustrate the standard deviation for each set of experiments. The plot on the
left evaluates the similarity measure on locations specified by the voxel grid,
while the plot on the right embeds a random offset within the voxel’s volume.
Additionally, multiple values of the matching criterion, N , see Equation 5.1,
are also evaluated.

5.4.2 Sampling Rate

In the next set of experiments, registration performance is evaluated as a function of the
number of locations used (i.e. sampling rate). Since the subset of pixels used for registration
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is randomly selected and fixed through the optimization, performance is evaluated across
multiple realizations of each registration task. In particular, each individual registration
case is evaluated with twenty random instances. Fig. 5.2 illustrates the median mVRE
with a varying number of pixels. The average processing time for a given number of pixels
is also shown. For reference, the registration performance obtained using all pixels within
the sampling mask is also shown. Similar to previous experiments, one can notice that
the registration accuracy tends to be higher for large values of N , see Equation 5.1. In
particular, one can observe that the smallest value of N , consistently yields the worst
performance for all configurations. The “optimal” value of N is not consistent across
different numbers of evaluated voxels. Nonetheless, when using a subset of voxels, one can
observe that a value of N of 16 or 32 tends to provide optimal or close to optimal results.
It is important to highlight that one can resolve most of the transformation with very few
voxels and in a short amount of time. In particular, with one thousand voxels, namely
0.013% of all voxels in the volume, one can register the volumes with a median mVRE of
3.1 mm and with an average processing time of 6 seconds (of which 3 seconds are devoted
to computing image gradients and the sampling mask).

5.4.3 Sensitivity to Magnitude Threshold

The last component explored is the gradient magnitude threshold defining the sampling
mask. For this set of experiments, the value of N is fixed to 32 and the method continues
to incorporate a random offset for sub-voxel location sampling. Five masks evaluated with
varying thresholds are illustrated in Fig. 5.3. The first and most restrictive mask is defined
by the top 1% high gradient magnitude voxels, while the last and least restrictive mask is
defined by the top 40% high gradient magnitude voxels. The registration performance is also
evaluated with a reduced number of selected voxels. In particular, the method randomly
selects a reduced number of voxels (e.g. 8,000) within a particular mask and restricts the
optimization of the metric to those fixed locations. Fig. 5.4 illustrates the registration
performance evaluated with different masks. The sampling mask defined by the top 10%
of the voxels shows consistently better performance when evaluating a randomly selected
subset of locations. Furthermore, when using the full sampling mask we observe a relatively
similar performance for the masks defined by the top 10%, 20% or 40% of the voxels. In
other words, once voxels found in the top 10% mask have been selected, the performance
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gain provided by incorporating additional voxels is relatively small. Finally, it is important
to note that the performance obtained with 8,000 voxels (0.105% of the image domain) of
the top 10% mask is already very close to the performance obtained with the full image
domain and takes on average 28 seconds to compute (in comparison to 1045 seconds when
using the full image domain).

(a) Top 1% (b) Top 5% (c) Top 10% (d) Top 20% (e) Top 40%

Fig. 5.3 Sampling masks obtained from top percentage of high gradient
magnitude voxels.
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Fig. 5.4 Median mVRE evaluated with different sampling masks obtained
from varying thresholds and using randomly selected subsets of voxel within
each mask. Notice that when using a subset of voxels, the mask defined by
the top 10% voxels consistently yields the best results.
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5.4.4 Performance Comparison with Alternative Approaches

The performance of the proposed method is then evaluated across all CT to MRI registra-
tion cases found in the testing dataset. The evaluated configuration involves an N value
of 32 and a sampling mask defined by the top 10% of high gradient magnitude pixels. In
order to demonstrate the trade-off between processing time and registration accuracy, the
performance with a reduced number of selected voxels is also evaluated.

Number of Voxels Evaluated 1000 2000 4000 8000 All

Fixed Moving Number of cases randomly sampled all voxels
from top 10% mask in top 10% mask

CT T1 16 1.19 2.08 1.92 2.13 1.63
CT T2 16 1.59 1.79 1.65 1.69 1.56
CT PD 11 2.27 2.37 1.85 1.49 1.61
CT T1-rect 6 1.20 0.98 0.83 0.70 0.64
CT T2-rect 7 1.26 1.14 0.75 0.87 0.76
CT PD-rect 7 1.03 0.67 0.78 0.56 0.51

Table 5.1 Rigid registration results expressed in median registration error
(in mm) of the VOIs of all cases found in RIRE dataset with a varying number
of randomly selected voxels from the top 10 % voxels with highest gradient
magnitude.

Table 5.1 lists the results of the proposed method. Notice that the performance metric
of each task is computed based on the Target Registration Error (TRE) evaluated at
each center location of six to ten Volumes of Interests (VOI) per case. The VOIs were
identified in the original RIRE project to be of diagnostic and/or surgical importance.
Since the VOIs will generally be closer to the center of rotation of the rigid transformation,
a performance metric based on VOIs will tend to have smaller values compared to the
performance metric used for the training case. The performance for each particular moving
image modality is computed as the median mTRE across all cases. Note that the tasks
involving rectified MRI volumes show a significantly improved accuracy compared with their
non-rectified counterparts. The proposed method shows sub-voxel registration accuracy
across all modalities and achieves sub-millimeter accuracy for rectified MRI volumes.

For comparison purposes, in Table 5.2 the performance of alternative top performing
methods evaluated with the RIRE dataset is also shown. The most recently published top
performing method (NMICUR) involves the maximization of NMI evaluated over prudently
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selected voxels which provide highly informative structural information[60] identified with
the use of curvelets. The table also includes the top performing method (NMICP) previ-
ously presented by Collignon et al.[36] and found in the original RIRE publication[177],
which also corresponds to the maximization of NMI. Additionally, the results for an alterna-
tive technique based on NMI maximization with Generalized Partial Volume Interpolation
NMIGPV [31] are also shown. It is important to note that the results from competing meth-
ods have been provided by the original authors of each technique and can be found either
in the RIRE website or the original publications. Since most methods present only results
for cases involving rectified MRI volumes, the comparison of performance will be limited
to this subset of cases. Also note that for competing methods evaluated with varying pa-
rameterizations, only the results corresponding to their best performing setup are listed.
The results shown for the reference top performing method (NMICUR) correspond to the
use of a sampling mask that extends to 15% of the full image domain. Alternatively, the
results shown with the proposed method correspond to a sampling mask covering 10% of
the image. Notice that the results obtained with the proposed approach have the smallest
median values but are similar to the results obtained with NMICUR. To determine if there
is a significant difference between the two techniques, a general linear model repeated mea-
sures analysis is performed, where the two techniques (NMICUR and proposed approach)
correspond to within-subject factors and the case is the between-subject factor. The sta-
tistical analysis yielded no significant differences between both methods (F(1,19)=3.502,
p=0.063). However, even if there is no significant difference in registration accuracy, the
proposed approach used only 10% of the voxels, as opposed to 15% of the voxels, to achieve
such performance.

NMICP NMIGPV NMICUR Proposed
Intensity Orientation

CT/T1-rect 0.7 0.87 0.66 0.64
CT/T2-rect 0.8 1.11 0.77 0.76
CT/PD-rect 0.8 0.90 0.69 0.51

Table 5.2 Rigid Registration Results expressed in median registration error
(in mm) of the VOIs of all cases found in RIRE dataset.

A major motivation of the proposed technique is to exploit the sparse selection of evalu-
ated locations so as to significantly reduce computational times. The following experiments
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evaluate the registration performance of the proposed framework with extremely aggressive
sampling rates, and compare the results with a previously proposed state-of-the-start pixel
selection method. Fig. 5.5 shows the mTRE box plots obtained from all cases with rectified
MRI volumes and for different sampling rates. The figure also includes the performance of
the top performing (NMICUR) method with the use of all voxels within a sampling mask
defined by either 5% or 10% of the voxels found in the image. The figure also reports the
performance of a related NMI method that randomly selects a subset of voxels (i.e. voxels
are sampled following a uniform distribution). Notice that the proposed approach is able to
resolve the registration with sub-voxel accuracy with extremely few voxels. In particular,
one can observe that even when only 0.05% of the voxels are used, one can already obtain
a significantly improved registration performance (F(1,19)=15.755, p<0.001) compared to
the one obtained with the top performing NMI method with 5% of the voxels. Similarly,
one can observe a significantly improved performance comparing both methods when using
10% of the voxels (F(1,19)=130.612, p<0.001). The use of a reduced subset of the im-
age brings forward a significant reduction in computation times, since the computational
complexity per optimization iteration relates linearly to the number of voxels evaluated.
One should note that the stopping criterion for the optimization is not a fixed number of
optimization iterations, but rather an arbitrarily small difference in the metric’s value or
the candidate transformation parameters. Thus, the total computational complexity does
not hold a strict linear relation with regards to number of voxels used, but does follow a
monotonic relationship.

The idea of relying on image gradient information for multi-modal registration context
was previously developed in the work by Pluim et al.[124]. In such work, the authors adopt
a similarity measure defined as the product of a gradient-based metric and the mutual
information between image intensities. Specifically, the proposed similarity metric from
such work is expressed as,
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Fig. 5.5 Box plots showing the VOI registration error of 20 different cases
of CT to rectified MRI rigid registration with varying number of voxels. The
blue box plots to the left of the dotted line correspond to results obtained
with the proposed approach and with a varying percentage of evaluated vox-
els. The green box plots corresponds to the reference top performing method,
NMICUR, consisting in the maximization of NMI evaluated over prudently se-
lected voxels[60]. The black box plots correspond to a method that maximizes
NMI evaluated over randomly selected voxels. Notice that with just 0.05% of
the voxels one can already obtain more accurate results than those obtained
with top performing method with 5% of the voxels and comparable to those
obtained with 10% of the voxels with statistical significance (F(1,19)=15.755,
p<0.001)

where Δθ = ∠(∇If , ∇I↓
m) is the inner angle between ∇If and ∇I↓

m.
In other words, the metric is a conventional MI metric weighted by a measure of both

gradient orientation alignment and the inferior gradient magnitude from the two images.
There are some important differences between the proposed framwork found in this thesis
and the previously proposed technique. In particular, the previously proposed technique in-
volves the evaluation of a similarity metric over the entire image domain, while the proposed
framework relies on the sparse selection of locations which lead to important reductions in
processing times. Additionally, the previously proposed technique employs image gradients
in conjunction with MI, while the proposed framework relies exclusively on image gradient
orientation alignement, and therefore involves a further reduced computational cost for
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evaluating the metric.
It is thus of particular interest to compare the differences in performance of the pro-

posed approach with such previously presented work. In the original publication [124], the
authors measure the accuracy of their proposed metric by setting the initial position to the
gold standard solution and then evaluating the position after optimization of the metric.
Thus, as stated by the authors, such measures of accuracy are not directly comparable
to the registration performance reported by other methods. Nonetheless, they provide an
indication as to what might be the best accuracy achievable with methods based on such
metrics. Table 5.3 shows the results obtained with such a setup, as found in the original
publication, and with four different metrics: MI, NMI, and the product of either MI or
NMI and their proposed gradient-based measure. As noted by the original authors, the
four evaluated metrics have a similar accuracy with no significant statistical difference.
Notice that the proposed approach yields a similar accuracy when actually solving the
registration problem from its original position. Furthermore, it manages to achieve such
accuracy with a reduced number of voxels as opposed to the full image domain. In fact,
the proposed method relies solely on the gradient orientation alignment of the top 10% of
the voxels with highest gradient magnitude.

MI NMI MI×G NMI×G Proposed
CT/T1-rect 0.71 0.61 0.78 0.8 0.64
CT/T2-rect 0.72 0.63 0.89 1.04 0.76
CT/PD-rect 0.68 0.71 0.69 0.87 0.51

Table 5.3 Rigid registration results expressed in median error (in mm) of
the VOIs of all cases found in the RIRE Dataset. Results involving inten-
sity based metrics (MI, NMI) and a gradient-based metric (G) are the ones
reported by Pluim et al.[124], which are not directly comparable to other
methods since their initial position was set to the gold standard solution.
The metrics labelled MI×G and NMI×G involve the product of the gradient-
based metric (G) with either MI or NMI. Note that the gradient-based metric
(G) evaluates both gradient magnitude similarity and gradient orientation
alignment and is evaluated over the full image domain, whereas the proposed
approach is solely based on gradient orientation alignment of the top 10%
locations with highest gradient magnitude.

Finally, in Table 5.4, the RIRE identification numbers of the results obtained with the
proposed approach are provided for reference. Note that such results involve the CT to
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Method ID Percentage / Number of Voxels
10556 10% / between 7 × 105 and 8.9 × 105

10607 ∼5% / 320000
10606 ∼2.5% / 160000
10579 ∼0.5% / 32000
10578 ∼0.1% / 8000
10577 ∼0.5% / 4000
10576 ∼0.03% / 2000
10575 ∼0.01% / 1000

Table 5.4 Identification Numbers for RIRE website corresponding to eval-
uations of the proposed approach configured with N = 32.

rectified MRI dataset, and were characterized by an N value of 32 and a varying number
of selected locations.

5.5 Conclusions

In this chapter, I have presented a comprehensive quantitative evaluation of rigid regis-
tration performance in a rigid registration context involving CT and MRI brain volumes.
The experiments were performed with the use of a publicly available and commonly used
dataset, thereby allowing a non-biased direct comparison with previous work.

The first set of experiments were performed so as to characterize the sensitivity of the
proposed approach to different parameterizations. I demonstrated that even though the
proposed technique yields a robust performance with varying parameter values, there are
various components that tend to provide an improvement in accuracy. The two factors
that were shown to bring forward such improvements are the use of a sub-voxel location
sampling strategy and the use of a highly selective metric where only tightly aligned gradient
orientations are rewarded.

The second set of experiments illustrate the performance of the proposed approach with
regards to previous work. There are two critically important results. The first result is that
the proposed technique can yield a registration accuracy which has no statistical difference
compared to the top performing alternative technique, which relies on NMI as a driving
similarity metric. The second result is that the proposed approach allows for much more
aggressive sampling rates that continue to yield a sub-voxel registration accuracy. In other
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words, the registration accuracy of the proposed technique degrades with relation to the
number of locations used at a much slower rate than previously reported voxel sampling
strategies for MI-based registration.
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Chapter 6

Automatic Segmentation based on
the Registration of Inter-Patient
MRI Brain Volumes

The two previous chapters focused on challenging multi-modal registration contexts that
rely on a rigid spatial mapping between images. Such contexts involved a compactly char-
acterized and highly constrained transformation function with a small number of degrees
of freedom. The results obtained with the proposed technique in such contexts demon-
strated a robust and accurate registration performance while employing extremely reduced
sampling rates. Consequently, the proposed technique was shown to provide an impor-
tant solution for time-sensitive contexts (e.g. intra-operative applications) where reduced
processing times can lead to a more seamless and successful clinical integration.

There are many medical contexts that compel the use of a non-rigid deformation model
with significantly increased degrees of freedom. Such contexts are commonly addressed
with a gradient based optimization strategy (as opposed to an exhaustive non-gradient
based technique) so as to maintain the computational complexity within a practical range.
Furthermore, the large number of degrees of freedom may also lead to an increased sensi-
tivity to aggressive sampling rates. As such, the type of performance gains shown in the
previous chapters may not be obtained in such applications.

This chapter focuses on the application of brain mapping, where a diverse set of anatom-
ical structures are inferred from a patient’s medical image. In this context, the preferred
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approach for obtaining the anatomical labels is to rely on manual annotations from trained
neuroanatomists. However, manual labelling is a slow and costly process that is simply
impractical for time-sensitive applications or high-throughput scenarios. The widespread
alternative solution adopted by the research community [11, 38, 76, 146, 180] has been
to rely on non-rigid image registration techniques which identify the spatial mapping be-
tween a patient’s image and a reference image with known anatomical labels. The patient’s
anatomical labels can then be directly obtained by finding the spatially corresponding label
in the reference image.

This chapter presents the experimental results regarding the proposed diffeomorphic
registration strategy, described in Section 3.2, in the context of inter-patient MRI brain
registration. This constitutes a mono-modal scenario, as opposed to the multi-modal sce-
narios seen in the previous chapters. However, the increased number of degrees of freedom
can quickly lead to substantial processing times, and there is a strong interest in minimizing
computational complexity, while maintaining an accurate registration performance.

The chapter is structured as follows. Section 6.1 describes the publicly available dataset
used for the evaluation of inter-patient MRI brain volumes, which involves 12 subjects with
the manual labelling of 128 unique brain regions. Section 6.2 then presents a variety of
quantitative results obtained with the proposed technique. In particular, Section 6.2.1 first
presents a set of diverse results, which characterize the performance of the proposed tech-
nique with different parameterizations, and provides a quantitative analysis of how each pa-
rameter affects the trade-off between registration accuracy and computational complexity.
Section 6.2.2 then presents a direct comparison with 14 state-of-the-art algorithms based
on the statistical overlap of labelled brain regions obtained from the different registration
techniques. The quantitative comparison shows that the proposed registration technique
achieves a registration accuracy similar to the top state-of-the-art algorithms with highly
reduced processing times ranging between two and six minutes, and where competing algo-
rithms involve processing times of approximately half an hour. Section 6.2.2 also presents a
detailed analysis of segmentation overlap accuracy for each of the 128 unique brain regions.
Section 6.2.3 then evaluates the performance of the proposed technique with an alterna-
tive edge detection technique so as to illustrate the sensitivity with relation to inferred
boundary locations. Section 6.2.4 illustrates the performance of the proposed technique
with a varying number of selected voxel locations. Finally, Section 6.3 outlines a series of
conclusions synthesizing the results shown in this chapter.
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Fig. 6.1 Expert segmented brain regions from the first case of the CUMC12
dataset [90].

6.1 Clinical Data

The proposed approach is evaluated in the context of the non-linear registration of inter-
patient MRI brain volumes. In particular, registration performance is evaluated with a
public dataset, referred to as the CUMC12 dataset [90], composed of 12 subjects with
corresponding manual segmentations of 128 unique brain regions. Fig. 6.1 illustrates the
manually segmented brain regions found in the first case of the dataset. The dataset has
been used in previous publications [90, 127] for the evaluation of multiple state-of-the-art
non-linear registration techniques and thus allows for direct comparison with previously
reported results. The volumes found in the dataset were acquired at the Columbia Uni-
versity Medical Center on a 1.5 T GE scanner. For the purposes of manually segmenting
the volumes, the original images were resliced coronally to a slice thickness of 3 mm. The
resolution of the manual labels is thus slightly coarser than the resolution of the native MRI
volumes, which have a coronal slice thickness of 1.5 mm. The expert labellers followed the
Cardviews labeling protocol [27] with the use of the Cardviews software.

Registration performance is evaluated by applying the estimated non-linear transfor-
mation to the expert labels of the moving image, and then comparing the warped labels
with the expert labels of the fixed image. The statistical agreement between labels is then
evaluated with the target overlap measure and the union overlap measure [90].
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6.2 Experimental Results

This section presents a series of experimental results which illustrate the sensitivity of the
proposed technique to different parameterizations of the transformation model, compare
the performance of the proposed technique to multiple competing state-of-the-art methods,
evaluate the performance of the technique with a varying number of selected locations, and
demonstrate the performance of the technique when relying on an alternative edge detection
technique. Note that the approach was implemented in C++ and evaluated on a Linux
computer with an Intel i7-3770 CPU.

6.2.1 Sensitivity to Spatial and Temporal Discretization

The diffeomorphic registration framework outlined in Section 3.2 involves various trans-
formation model parameters, which ultimately define the degrees of freedom of the dif-
feomorphic transformation. This section presents a quantitative evaluation of registration
performance with relation to varying parameterizations of the transformation model. The
goal is to provide an assessment of the trade-off between computational complexity and
registration accuracy. It is important to note that the results shown in this section involve
only one third of the cases found in the CUMC12 dataset, given that the experiments are
focused on relative variations in performance of the proposed technique. In particular, the
first four brain volumes of the dataset are registered against all other brain volumes.

The first performance evaluation involves the use of a static (i.e. time-constant) velocity
field and compares the mean segmentation overlap with the average processing time across
registration cases. The transformation model is parameterized with varying voxel spacings
for the velocity field image and with varying number of time steps (i.e. time-discretization
of the diffeomorphism). Note that coarser voxel spacings for the velocity field image lead
to a reduction in the degrees of freedom of the transformation, and essentially restrict
the transformation variation within a voxel’s volume. Also note, that a small number of
time steps not only limits the flexibility of the transformation model, but may also lead to
significant inconsistencies between the forward and the backward transformation.

Fig. 6.2 illustrates the results obtained from such experimental setup with two different
visualizations represented as bubble charts. In the top figure, the bubble’s color reflects a
unique value of the voxel spacing, and the bubble’s size and value reflect the number of
time steps involved. In the bottom figure, the bubble’s color reflects a unique value of the
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number of time steps involved, and the bubble’s size and value reflect the voxel spacing.
Both visualizations allow for a simple analysis of the trade-off between registration accuracy
and processing time for different parameterizations, where bubbles farther up and left reflect
an improved trade-off. The results found in Fig. 6.2 show that the increase in temporal
resolution obtained by increasing the number of time steps leads to a comparable increase
in computational complexity, but seems to provide little gain in terms of segmentation
overlap. Alternatively, the increase in spatial resolution (i.e. decreased voxel spacing)
of the velocity field leads to significant gains in segmentation overlap while incurring in
slightly increased processing times.

The second performance evaluation follows the same pattern but adopts a dynamic
(i.e. time-dependent) velocity field. In particular, it also involves the comparison of the
mean segmentation overlap with the average processing time across registration cases with
varying voxel spacings and number of time steps.

Fig. 6.3 illustrates the results obtained from such experimental setup with two different
visualizations represented as bubble charts. Similar to the results found in Fig. 6.2, the
results in Fig. 6.3 show that the increase in temporal resolution, obtained by increasing
the number of time steps, leads to a comparable increase in computational complexity, but
seems to provide little gain in terms of segmentation overlap. Furthermore, an increase
in spatial resolution (i.e. decreased voxel spacing) of the velocity field leads to significant
gains in segmentation overlap while incurring in slightly increased processing times. It is
important to highlight that even the coarsest discretization of the transformation model
already provides a reasonable mean target overlap of 48.4% with an average processing
time of 75 seconds, whereas the finest discretization of the transformation model provides
an improved mean target overlap of 52.1% with an average processing time of 454 seconds.
In others words, a slight increase in mean target overlap comes with a six-fold increase in
computational complexity. The following section illustrates how the results obtained with
the proposed technique compare with alternative state-of-the-art methods.

6.2.2 Comparison to other methods

In this section, the performance of the proposed approach is compared against alternative
state-of-the-art methods. To allow a direct comparison with previously reported results,
the proposed technique is evaluated across all cases found in the CUMC12 dataset. The
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Fig. 6.2 Comparison of segmentation overlap and processing time for a
static velocity field with varying values of velocity voxel spacing and number
of time steps. The top and bottom figure evaluate the segmentation overlap
with varying values of the number of time steps used to temporally discretize
the diffeomorphism and with varying values of the voxel spacing of the ve-
locity field image. The y-axis corresponds to the mean target overlap across
all regions and across one third of the registration cases from the CUMC12
dataset. The x-axis corresponds to the mean processing time across cases.

proposed approach is parameterized with four coarse-to-fine registration stages, where at
each consequent stage the image resolution as well as the resolution of the velocity field is
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Fig. 6.3 Comparison of segmentation overlap and processing time for a dy-
namic velocity field with varying values of velocity voxel spacing and number
of time steps. The top and bottom figure evaluate the segmentation overlap
with varying values of the number of time steps used to temporally discretize
the diffeomorphism and with varying values of the voxel spacing of the ve-
locity field image. The y-axis corresponds to the mean target overlap across
all regions and across one third of the registration cases from the CUMC12
dataset. The x-axis corresponds to the mean processing time across cases.

increased. The finest registration stage involves a velocity field with a voxel spacing of 4 ×
4 × 4 mm, and all registration stages are parameterized with four time steps. Registration
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performance is evaluated across all stages and is summarized in Tables 6.1 and 6.2. The
results presented on Table 6.1 rely on a static (i.e. time-constant) velocity field, while the
results presented on Table 6.2 rely on a dynamic (i.e. time-dependent) velocity field. Note
that the processing time for each stage includes the processing time of the preceding stages.
Hence, the complete registration with all four stages takes 4 minutes and 30 seconds and
6 minutes and 30 seconds respectively. Also note that the gain in registration accuracy
between stage three and four is relatively small, and that a registration with only the
first three stages takes on average 1 minute and 12 seconds or 1 minute and 30 seconds,
depending on the type of velocity field used.

Stage Mean Target (%) Mean Union (%) Cumulative Run Time
1 41.26 26.30 7 secs
2 46.94 30.94 21 secs
3 50.32 33.88 1 min 12 secs
4 51.40 34.65 4 min 30 secs

Table 6.1 Registration performance and processing time for each registra-
tion stage with a static velocity field. Performance is evaluated with the mean
target and mean union (Jaccard) overlap measure across cases and regions.
Note that the processing time for each stage includes the processing time of
the preceding stages.

Stage Mean Target (%) Mean Union (%) Cumulative Run Time
1 41.19 26.24 6 secs
2 47.17 31.12 26 secs
3 50.69 34.18 1 min 30 secs
4 51.65 34.75 6 min and 30 secs

Table 6.2 Registration performance and processing time for each registra-
tion stage with a dynamic velocity field. Performance is evaluated with the
mean target and mean union (Jaccard) overlap measure across cases and re-
gions. Note that the processing time for each stage includes the processing
time of the preceding stages.

The results of the proposed approach, referred to as SymBA, can be directly compared
with the results reported on previous work [90], which focused on the exhaustive comparison
of 14 non-linear registration techniques. The proposed technique is configured with either
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Fig. 6.4 Compound mean target and union (Jaccard) overlap across regions
and across cases. The proposed approach (in red), SymBA, is within the top
five techniques, and is configured with either a static velocity field, referred to
as SymBA_S, or a with a dynamic velocity field, referred to as SymBA_D.

a static velocity field, referred to as SymBA_S, or with a dynamic velocity field, referred
to as SymBA_D. Fig. 6.4 shows the compound average of the target overlap and union
overlap (Jaccard) across regions and across registration cases. Note that the proposed ap-
proach has similar results to the top five techniques, and all such methods have comparable
performance. The union overlap results found in Fig. 6.4 also include the numbers reported
on a recently proposed registration technique [127], referred to as FEM, that involves an
average processing time of 15 minutes, as reported by the authors, which is approximately
3 times the average processing time of the proposed technique.

Segmentation Overlap per Anatomical Region

The compound means for each overlap measure are useful global metrics for comparing
performance across methods, yet they do not describe the variability in performance found
across regions. Fig. 6.5 illustrates the mean and standard deviation of the target overlap
measure for each region. To minimize visual clutter results from only three techniques are
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included: a top ranking method from the top five techniques, SyN [11]; the proposed ap-
proach, SymBA_S (with a static velocity field); and an alternative method, ROMEO [76],
which relies on a similarity term based on optical-flow and a regularization term based
on the quadratic difference of the deformation field computed between neighboring points.
Note that the performance of the proposed approach tends to tightly match the perfor-
mance of the top ranking method, SyN, and is consistently superior to ROMEO. However,
the average processing time of SyN was of 38 minutes when ran on the same computer
where the proposed technique was implemented, as compared to the proposed technique
which takes approximately 4 minutes and 30 seconds.

6.2.3 Comparison with Alternative Edge Detection

The proposed technique has an explicit dependency on an edge detection strategy and
hence any variability in edge detection performance will lead to a variability in registration
performance. The experimental results presented so far have relied on a Canny edge de-
tection technique. In order to illustrate the variability that is induced by different inferred
boundary locations, this section presents the registration performance obtained with an al-
ternative edge detection technique evaluated across all cases found in the CUMC12 dataset.
In particular, the alternative edge detection strategy first identifies all the zero crossings of
the Laplacian of a Gaussian-blurred image, and then discards all locations whose gradient
magnitude falls below a specified threshold.

Table 6.3 illustrates the registration performance obtained over the four registration
stages with the two edge detection technique and with a static velocity field. Note that
the performance obtained with the alternative edge detection tends to be slightly infe-
rior than the one obtained with the Canny edge detector, but generally achieves a very
similar accuracy. The difference in performance may be explained by the fact that the
Canny edge detector can identify more subtle boundaries based on the hysteresis thresh-
olding mechanism it employs. Nonetheless, it is important to highlight that the variability
in registration performance appears to be relatively minor, which suggests a significant
robustness to varying performance in edge detection.
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Fig. 6.5 Mean target overlap and standard deviation per region. Regis-
tration performance of the proposed method, SymBA (with a static velocity
field), is compared against three techniques: a top performing method, SyN,
and ROMEO. Note how the registration performance of the top performing
method, SyN, closely resembles the performance of the proposed method, and
is consistently superior to the low ranking method. SyN had an average pro-
cessing time of 38 minutes, while SymBA had an average processing times of
4 minutes and 30 seconds when evaluated on the same machine.
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Zero-Crossing of Laplacian
Stage Mean Target (%) Mean Union (%) Cumulative Run Time

1 41.48 26.45 6 secs
2 46.56 30.61 22 secs
3 49.75 33.38 1 min and 11 secs
4 50.78 34.07 4 min and 25 secs

Canny Edge Detection
Stage Mean Target (%) Mean Union (%) Cumulative Run Time

1 41.26 26.30 7 secs
2 46.94 30.94 21 secs
3 50.32 33.88 1 min 12 secs
4 51.40 34.65 4 min 30 secs

Table 6.3 Registration performance and processing time for each regis-
tration stage with a static velocity field and two alternative edge detection
techniques: one based on the zero-crossings of the Laplacian, and the Canny
edge detection technique that was used for all other experiments. Performance
is evaluated with the mean target and mean union (Jaccard) overlap measure
across cases and regions. Note that the processing time for each stage includes
the processing time of the preceding stages.

6.2.4 Sensitivity to Sampling Rate

The proposed technique relies on a sparse selection of voxel locations, which substantially
reduces the number of voxels that will be evaluated throughout the optimization and leads
to a reduction in computational complexity. This section evaluates the performance of the
proposed technique when randomly selecting a further reduced number of voxel locations
from the set of boundary locations, which can provide even further reduced processing
times at the expense of a degradation in registration accuracy.

Figures 6.6 and 6.7 illustrate the mean target overlap of the proposed technique across
all cases in the CUMC12 dataset with either a static or dynamic velocity field and with
a varying number of evaluated voxel locations. For reference, the figures also include the
mean target overlap of five competing methods. It is important to note that the number
of evaluated voxel locations specified corresponds only to the final stage of the proposed
technique, and all other previous stages have a common parameterization. Note that the
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Mean Target Overlap vs Mean Processing Time:
Sensitivity to Number of Locations Evaluated
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Fig. 6.6 Registration performance and processing time with different sam-
pling rates evaluated with a static velocity field. The white labels in the center
of each bubble correspond to the number of voxel locations evaluated at each
image, and the black labels below each bubble reflect the corresponding per-
centage of voxels selected (with relation to the total number of voxels in the
image). The bottom figure includes the mean target overlap obtained with five
competing methods that serve as a reference for state-of-the-art registration
accuracy.
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Mean Target Overlap vs Mean Processing Time:
Sensitivity to Number of Locations Evaluated
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Fig. 6.7 Registration performance and processing time with different sam-
pling rates evaluated with a dynamic velocity field. The white labels in the
center of each bubble correspond to the number of voxel locations evaluated at
each image, and the black labels below each bubble reflect the corresponding
percentage of voxels selected (with relation to the total number of voxels in the
image). The bottom figure includes the mean target overlap obtained with five
competing methods that serve as a reference for state-of-the-art registration
accuracy.
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gain in registration accuracy obtained in terms of the increase in the number of voxel
locations (and thus processing time) exhibits diminishing returns. In other words, the
degradation in registration accuracy with reduced sampling rates is relatively small. In
particular, with only 64,000 voxel locations (which corresponds to approximately 0.7%
of the voxels in the entire volume) and a dynamic velocity field, the proposed technique
achieves a mean target overlap of 50.2%, which places it within the top five methods
evaluated in [90] (illustrated in Fig. 6.4). Such performance provides a valuable tool for
time-sensitive contexts where a small loss of registration accuracy can be justified for highly
reduced processing times.

6.3 Conclusions

In this chapter, I have presented a quantitative evaluation and comparison of the proposed
diffeomorphic registration technique in the context of inter-patient brain MRI registration.
The experiments were performed with the use of a publicly available used dataset which
has been previously used for the evaluation of non-linear registration techniques. Hence, it
allows for a non-biased direct comparison with related methods.

One set of experiments was performed so as to characterize the trade-off between com-
putational complexity and registration accuracy based on different parameterizations. The
results demonstrate that the proposed method can provide extremely reduced processing
times with a minor penalty in registration accuracy. In particular, the evaluation in terms
of varying sampling rates showed that even with only 0.7% of the voxels in the image do-
main, the proposed technique can obtain a mean target overlap of 49.3%, which is already
within the accuracy of top 5 methods evaluated in [90].

Additionally, the evaluation in terms of varying number of time steps also showed that
increasing the number of time steps only provided minor gains in registration accuracy
while substantially increasing processing times. Nonetheless, it is important to highlight
that while registration accuracy remains relatively similar for a different number of time
steps, a small number of time steps involves a coarse discretization of time that can lead to
inconsistencies between the forward and backward transformation. The focus of this thesis
is largely on the similarity term of the image registration technique and how it can be com-
puted efficiently, and has not devoted an effort to explicitly ensuring that the transformation
model yields an accurately consistent diffeomorphism. In order to ensure consistency of the



6 Segmentation based on the Registration of Inter-Patient MRI 143

diffeomorphic transformation and enforce smoothness in the spatial mapping, further work
should consider increasing the number of time steps until the diffeomorphic transformation
is consistent (up to a predefined accuracy), as well as incorporating a regularization term,
such as the one found in the LDDMM [17] framework, which is typically computed as the
L2-norm of a differential operator on the velocity field.

A second set of experiments compared the performance of the proposed technique
against 14 state-of-the-art approaches and demonstrated that the registration accuracy
very closely approaches that of the top performing methods. However, such registration
accuracy was obtained with a drastic reduction in processing times. In particular, the aver-
age processing time of the proposed technique ranged between 1 and 6 minutes (depending
on the configuration), while the average processing time of a top performing method was
of 38 minutes.

Such substantial reductions in processing times with a minor penalty in registration
accuracy can be fundamental for time-sensitive or high-throughout applications. For ex-
ample, consider the context of multi-atlas label fusion (MALF) where each scan is regis-
tered against a series of references atlases with expert anatomical labels, and the spatially
corresponding anatomically labels are then fused in a smart fashion so as to identify the
anatomical label of the patient’s scan. MALF approaches are very popular automatic seg-
mentation strategies that have shown improved accuracy in multiple contexts. However,
they are characterized by a very high computational cost, which corresponds directly to
the series of registrations against each atlas. In such contexts, the proposed technique can
provide a highly valuable tool for either substantially reducing the overall processing time
or alternatively increasing the number of reference atlases that can be considered in a fixed
amount of time.

The inter-patient registration of healthy MRI brain volumes for automatic anatomical
labelling constitutes an important and popular application where the proposed technique
has shown to provide important gains. A somewhat related context involves the generation
of healthy soft tissue probabilities for each voxel of a patient’s MRI volume via the non-
rigid registration of a patient’s brain MRI to template brain MRI (which includes predefined
healthy tissue probabilities for each voxel). This application can be found as a fundamental
preliminary stage for the automatic detection and segmentation of brain pathologies. The
next chapter focuses on the specific context of the automatic segmentation of brain lesions
brought forward by multiple sclerosis (MS) and illustrates the improvements in overall
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segmentation performance and processing times that can be obtained with the use of the
proposed registration technique.
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Chapter 7

Tissue Priors via the Registration of
Patient to Template MRI Brain
Volumes in the Presence of Pathology

The previous chapter provided experimental results relating to the inter-patient non-rigid
registration of brain volumes so as to map anatomicaTl labels. A main conclusion from the
quantitative comparison with alternative state-of-the-art methods was that the proposed
technique achieves highly reduced processing times with a registration accuracy that closely
approaches that of the top performing techniques. As such, the proposed technique con-
stitutes an important improvement towards time-sensitive or high-throughout applications
where processing times represent a critical operational bottleneck.

This chapter focuses on a closely related context involving the non-rigid registration of
patient MRI brain volumes to a standard MRI brain atlas so as to obtain healthy tissue
probabilities for each voxel in the patient’s volume. In particular, the obtained healthy
tissue probabilities are considered in the specific context of brain lesion detection and
segmentation, where the probability maps serve as inputs for automatic segmentation algo-
rithms. It is important to note that this context involves brains with pathologies whereas
the context in the previous chapter was restricted to healthy brains. This constitutes an
important challenge to any registration algorithm since the pathological tissue may easily
be misinterpreted as a tissue displacement. Such a challenge is one manifestation of the
general limitation of relying on the spatial mapping to a healthy brain atlas for inferring
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soft tissue priors. In reality, there is simply no one-to-one spatial mapping between the
anatomy of the healthy brain atlas and the unique anatomy of the pathological brain vol-
ume, and the healthy soft tissue probabilities derived from such process can only provide
a coarse, yet critically valuable, indication of what the underlying tissue truly is.

The evaluation of registration performance presented in this chapter is fundamentally
different from the typical evaluation of performance which tries to characterize geometric
accuracy directly or through some surrogate measure. In particular, the experimental
setup in this chapter focuses on the bottom-line performance for this context, which is the
brain lesion detection and segmentation performance. Such “down-stream” performance
evaluation constitutes an important analysis for modern medical image analysis pipelines
that are commonly composed of a series of image processing algorithms. Since each of these
processing stages can be performed by one of many competing state-of-the-art techniques,
it is of critical interest to characterize the variation in bottom-line performance which can
be brought forward by alternative choices for each stage.

The chapter is structured as follows. Section 7.1 briefly describes the clinical context
of multiple sclerosis (MS) and the particular benefit brought forward by automatic MS
lesion detection and segmentation algorithms. Section 7.2 provides an overview of the
set of real clinical data used for evaluation of lesion segmentation performance, which
involves ground truth obtained from a meticulous manual labelling process. Section 7.3.1
provides a description of the results referring to Gad lesion detection, which involves lesions
associated with active inflammations in the brain that are highlighted by a gadolinium
MRI contrast agent. Sections 7.3.2 present the results obtained in the context of T2 lesion
detection, which involves chronic lesions that are commonly exposed by hyper-intensities
in T1-weighted MRI volumes in white matter regions. In each context, the bottom-line
performance obtained with the proposed technique is compared against the one obtained
with two competing state-of-the-art registration algorithms. Similar to the results obtained
in the previous chapter, the proposed technique is shown to achieve a slightly improved
bottom-line performance with significantly reduced processing times.

7.1 Multiple Sclerosis Brain Lesion Detection And Segmentation

Multiple sclerosis (MS) is one of the most common disorders affecting the central nervous
systems, and it is estimated to affect over 2 million patients throughout the world [178].
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The disease is characterized by localized damage to myelin, the insulation around nerve
fibers (axons), and typically results in focal lesions that are sparsely distributed in time
and space.

There is no known cure for MS, but a number of treatments have been developed over the
last decade. Clinical trials for such treatments generally include the number of newly formed
MS lesions as a key disease biomarker for assessing the efficacy of the treatment [158]. Con-
ventional MRI and contrast-enhanced MRI are commonly employed to expose both chronic
lesions and acute lesions, respectively. These trials typically involve thousands of scans at
multiple timepoints from hundreds of patients, and as a consequence there is substantial
effort devoted to detecting MS lesions in MRI scans. Current procedures rely on raters
to manually detect and segment all lesions. Unfortunately, the manual segmentation of
lesions leads to a significant inconsistency either between raters (i.e. inter-rater variability)
or even with the same rater at different time-points (i.e. intra-rater variability). Hence,
manual segmentation is not only time consuming and costly, but it also involves a signifi-
cant degree of variability. The benefit of relying on an automatic detection algorithm over
expert manual labelling clearly involves reduced costs and reduced turnaround times. Fur-
thermore, any significant improvement in the computational efficiency of such automatic
methods provides an increased ability towards quickly processing such large-scale trials.

Algorithms for the automatic detection and segmentation of brain lesions and tu-
mours [54, 88, 163] commonly rely on healthy tissue prior probabilities for facilitating
the task of detecting pathologies. Such healthy tissue priors typically include tissue types
such as grey matter (GM), cerebrospinal fluid (CSF), and white matter (WM). Patient spe-
cific priors are commonly obtained by registering a standard brain template, whose tissue
probabilities are known, to the patient’s T1-weighted MRI volume. The work presented
in this section relies on a brain atlas (i.e. template) known as the ICBM 2009a non-linear
symmetric atlas [59], which was generated by the McConnell Brain Imaging Centre in
McGill University. Fig. 7.1 illustrates the multiple MRI modalities included in such atlas,
along with critically valuable anatomical information. In particular, the ICBM 2009a atlas
includes MRI volumes from T1-weighted, T2-weighted, PD-weighted modalities, and T2
relaxometry, as well as tissue probability maps for GM, CSF and WM, and anatomical
masks for the brain, eyes, face and distinct brain lobes.

The tissue probabilities are particularly valuable for detecting and segmenting patholo-
gies that arise in specific tissue types. For example, brain lesions brought forward by MS
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have a strong predilection for periventricular WM and a slight predilection for cortical
WM. Hence, any segmentation strategy will typically characterize voxels with high WM
probability as having a higher probability of corresponding to a lesion than voxels with a
low WM probability.

Fig. 7.1 ICBM 2009a brain atlas from McConnell Brain Imaging Centre
in McGill University. The atlas includes MRI volumes from T1-weighted,
T2-weighted, PD-weighted modalities, and T2 relaxometry, as well as tissue
probability maps for GM, CSF and WM, and anatomical masks for the brain,
eyes, face and distinct brain lobes. Image obtained from http://www.bic.mni.
mcgill.ca/ServicesAtlases.

Unfortunately, the healthy tissue priors obtained via registration are not perfectly ac-
curate and even slight misregistrations of the MRI volume can lead to a degradation in
segmentation performance. Consider the example shown in Fig. 7.2 illustrating an expert
labelled MS lesion overlayed onto two alternative WM tissue priors. The middle column of
Fig. 7.2 shows an accurate registration where the high probability WM voxels have a strong
overlap with the expert labelled brain lesion. This constitutes a physiologically consistent
soft tissue prior that concurs with the principle that MS lesions are generally identified as
scars that affect WM tissue. Alternatively, the right column of Fig. 7.2 shows a slightly
inaccurate registration that leads to a low WM prior in the lesion region, which constitutes
a physiologically inconsistent soft tissue prior. Such inconsistency can negatively affect an
automatic lesion segmentation algorithm if it is present either in the training dataset or
the testing dataset. If it is present in the training dataset it can mistakenly lead to an
increased learned probability of MS lesions being found in non WM tissue. Hence, it can
consequently trigger an increase in the number of false detections in non WM tissue. Al-
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ternatively, if the misregistration is present in the testing dataset, the automatic algorithm
will have a reduced likelihood of detecting the lesion.

Fig. 7.2 Expert labelled brain lesion overlayed onto alternative WM priors.
Left column shows an axial slice of a T1-weighted MRI with an expert labelled
brain lesion (in blue). Middle column shows the same slice overlayed with the
WM priors obtained via registration with proposed approach (in green). Right
column shows the slice overlayed with the WM priors obtained via registration
with an alternative approach (in red). Voxels with intense prior coloring (red
or green) reflect locations with an increased WM tissue probability. Brain
lesions brought forward by MS are generally found in WM tissue. Note how
the proposed approach yields an improved overlap of the high WM probability
voxels with the lesion, which matches the pathophysiology of the disease. In
contrast, the alternative approach yields a weak overlap of high WM proba-
bility voxels with the expert labelled lesion, which constitutes a mistakenly
strong prior belief that the location cannot be a lesion.

This chapter evaluates the task of detecting MS lesions, referred to as T2 lesions, as
well as the task of detecting gad-enhancing MS lesions, referred to as Gad lesions, in brain
MRI. Furthermore, each task is evaluated with a unique state-of-the-art method [88, 163].

Gad lesions are associated with active inflammations in the brain. They are best visu-
alized in T1-weighted MRI volumes obtained after injection of a gadolimum-based contrast
agent, as illustrated in Fig. 7.3. Automatic segmentation of such lesions is challenging
since they involve a wide variation of shapes, sizes and locations. Gad lesions also involve a
broad voxel intensity range with significant overlap with healthy tissue types, making voxel
intensity values insufficient for accurately discerning between lesions and healthy tissue.
Such lesions can also be particularly small (as small as three voxels) and thus may involve
incredibly subtle image differences. Additionally, there are healthy anatomical structures,
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such blood vessels, which are also enhanced by the contrast agent and may be mistaken
for lesions. The spatial distribution of Gad lesions is typically concentrated on either deep
WM tissue (e.g. close to lateral ventricles) or near the cortex. Both regions constitute
sensitive areas for registration techniques. In particular, periventricular regions of patho-
logical brains may involve enlarged ventricles which involve complex local displacements
with respect to the brain atlas and can be challenging to register. Similarly, WM-GM tissue
boundaries found in the cortical brain regions are challenging for registration due to the
anatomical variability between individual patients and the brain atlas, as well as the subtle
intensity difference that characterizes the precise location of the healthy tissue boundary. In
short, the automatic detection of Gad lesions is challenged by a variety of factors and thus
compels the use of additional information such as the healthy tissue probabilities obtained
from registration of the patient’s brain MRI to a brain atlas.

T2 lesions are associated with chronic MS lesions and are commonly exposed by WM
hyper-intensities in T2-weighted MRI volumes in conjunction with WM hypo-intensities in
T1-weighted MRI volumes, as illustrated in Fig. 7.4. Note that the periventricular lesions
exposed in the T2-weighted MRI volume have a clear hyper-intense profile that provides a
clear contrast with GM. Unfortunately, the intensity profile is also very similar to the profile
of CSF. Such ambiguity justifies the use of a second MRI modality, such as T1-weighted
MRI, and healthy tissue probabilities obtained from registration to a brain atlas, which can
jointly provide increased discriminability between lesions and CSF. In particular, note how
the periventricular lesions exposed in the T1-weighted MRI volume have a slightly brighter
profile than CSF. Similar to Gad lesions, the critical regions where registration accuracy
is particularly challenging are the WM-GM tissue boundaries found in the cortical regions
and the lateral ventricle boundaries.

In short, the two MS lesion detection tasks evaluated in this chapter involve challenging
segmentation problems that justify the need for extended information sources, such as a
series of MRI sequences and the healthy tissue probability priors obtained via registration
to a brain atlas. The next section describes the clinical datasets used to evaluate each
method. It is important to note that each context involves a unique dataset, ground truth,
and automatic lesion segmentation algorithm. As such, the results obtained from both
contexts allow for a general comparison of the bottom-line performance of each registration
technique evaluated.

The next section describes the clinical dataset used in each context and the correspond-
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Fig. 7.3 Gad-enhanced lesions. Active MS lesions exposed as hyperintense
voxels in the T1-weighted MRI scan after injection of a contrast agent with
gadolinium, commonly referred to as Gad lesions. The left column shows axial
slices of the pre-contrast T1-weighted MRI scan. The middle column shows
the corresponding slices of the post-contrast T1-weighted MRI scan. The right
column illustrates the expert-labelled MS lesions (in green) overlayed on the
post-contrast T1-weighted MRI scan.
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Fig. 7.4 T2 lesions. Chronic MS lesions exposed as hyper-intense WM
voxels in the T2-weighted MR volume and hypo-intense WM voxels in the T1-
weighted MRI volume, commonly referred to as T2 lesions. The left column
shows axial slices of a T2-weighted MRI brain scan from a patient with MS.
The middle column shows the corresponding slices of a T1-weighted MRI
brain scan. The right column illustrates the expert-labelled MS lesions (in
red) overlayed on the T2-weighted MR.
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ing manual labelling protocol employed to generate the ground truth. The subsequent
sections illustrate the results obtained in each MS lesion detection contexts. An impor-
tant and general conclusion obtained from both results is that the proposed technique can
provide substantially reduced processing times while leading to slightly improved lesion
detection performance.

7.2 Clinical Data

The data used for training and testing each MS lesion detection algorithm was acquired from
multi-centre clinical trials with Relapsing Remitting MS (RRMS) patients with varying
numbers of lesions located in different areas of the brain. The full proprietary dataset
comprises 114 individuals scanned over multiple time points. Each segmentation algorithm
relies on healthy tissue priors obtained by registering the patient’s T1-weighted MRI volume
to the ICBM 2009a brain atlas [59] and associated tissue priors. Furthermore, each type of
MS lesion involved a strict protocol for establishing the expert ground truth. This section
details each of the two protocols involved in the generation of ground truth.

7.2.1 T2 Lesion Ground Truth

The ground truth used for the validation of the T2 lesion detection algorithm is obtained
with a semi-automatic process involving an automatic classification of lesions, which is
manually verified by removing falsely detected lesions. In particular, the initial automatic
procedure involves a Bayesian classification approach based on T1-weighted, T2-weighted
and PD-weighted MRI volumes, with a heuristic post-processing stage. The output ob-
tained from such automatic technique is consequently verified by experts so as to remove
any false positives.

7.2.2 Gad Lesion Ground Truth

The protocol for defining the ground truth used for validating the automatic detection of
Gad lesions involved the independent manual labelling by two trained experts following a
common convention, and consequently identifying the labels with a consensus agreement.
In particular, the manual labellers followed the convention that a Gad lesion should involve
at least a 20% increase in intensity (with reference to the non-contrasted T1-weighted MRI
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volume) and at least three connected voxels. It is important to note that the expert also
has access to all other MRI modalities acquired, which typically include non-contrasted
T1-weighted MRI, contrasted (gad-enhanced) T1-weighted MRI, T2-weighted MRI, PD-
weighted MRI, and Fluid attenuated inversion recovery (FLAIR) MRI. A silver standard
ground truth was then obtained based on the consensus agreement between both experts. If
the labellers could not reach an agreement, the case was reviewed by a third highly trained
expert.

7.2.3 Performance Metric

The detection and segmentation of MS lesions by an expert rater commonly involve a
significant degree of ambiguity regarding their precise location and extent. Such variability
in the extent of the segmented lesion has lead to the adoption of lesion-wise metrics (e.g.
number of new lesions), which are not sensitive to variations in lesion volume brought
forward by rater variability. In fact, counting the number of brain lesions (as opposed to
measuring the overall lesion volume) is one of the key indicators used by clinical trials to
assess if a treatment for MS is indeed working.

One should note that this segmentation task is significantly different from the one
presented in Chapter 6. In particular, Chapter 6 focused on the segmentation of healthy
anatomical brain regions, with the underlying assumption that all brains share the same
core anatomical regions (e.g. ventricles, caudate nucleus, thalamus, cerebellum, etc.) and
that such regions can be matched to a significant extent across two individuals with a
diffeomorphic mapping. As such, the context found in Chapter 6 was well-suited for voxel
overlap metrics (e.g. Kappa, Dice, Target overlap, etc.) that characterize the number of
voxels that agree with a ground-truth reference. Alternatively, this chapter addresses the
detection of sparse and relatively small brain lesions that may appear anywhere within gray
and white matter, and thus leads to the adoption of a different validation strategy.

Performance metric based on voxel overlap (e.g. Kappa, Dice, Target overlap, etc.)
have been used in previous work to evaluate the performance of MS lesion segmentation
algorithms [1, 5, 53]. Unfortunately, such measures have a strong bias towards large lesions
and small lesions have a limited contribution to the overall volumetric measure [54, 63].
In particular, the failure to detect a few voxels from a big lesion can lead to the same
volumetric overlap measure as the failure to detect a series of small lesions. In other words,
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volumetric metrics do not characterize well the number of false positives of small lesions.
Since the primary objective is to detect lesions (with a reduced interest in accurately

segmenting the extent of the lesion), lesion detection performance is evaluated in terms
of lesion-wise classification accuracy. In particular, a true positive (TP) is defined as a
detected lesion that has at least one voxel overlapping with a ground truth lesion, otherwise
it is counted as a false positive (FP). Furthermore, a ground truth lesion that is not captured
by the method is considered a false negative (FN). The overall metrics used for evaluating
performance are the sensitivity and the false detection rate, which are defined as,

sensitivity = TP

TP + FN
(7.1)

false detection rate = FP

TP + FP
. (7.2)

It is also critically important to highlight that, in this context, the output of each lesion
detection algorithm is not directly used for clinical diagnosis, but is instead consequently
corrected for false positives by expert raters. As such, the primary goal of the lesion
segmentation algorithms is to detect the majority of MS lesions, with the secondary goal of
having a reasonably low rate of false positives. Such type of performance allows the raters
to simply review the lesions by the algorithm and remove any false positives, instead of
scanning through the entire brain volume.

7.3 Results

This section presents a quantitative analysis of the performances of automatic T2 and
Gadolinium enhanced MS lesion detection and segmentation, using different patient to vol-
ume registration techniques to generate healthy tissue priors. It is important to highlight
that both methods represent state-of-the-art techniques which have been adopted in indus-
trial software pipelines for clinical trials for treatments for MS. In particular, the overall
high sensitivities reported for each method match, and even surpass, the performances
of individual manual raters. Additionally, each method involves a relatively low rate of
falsely detected lesions (established as low for this context) which allows for quick review
of the method’s results by expert neuroradiologists. This level of performance is critically
advantageous for substantially reducing the cost (i.e. time and monetary) associated with
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analysis of large clinical trial datasets.
The proposed non-linear registration method, SymBA, was compared against two al-

ternative state-of-the-art registration techniques, namely SyN [11]1 and ANIMAL [39]. To
that end, each segmentation method is re-trained and tested with the set of tissue priors
obtained from different registration techniques. The quantitative results are described in
the following section.

7.3.1 Gad Lesions

The Gad lesion detection method [88] was trained on a random subset of data containing
86 volumes and tested on 180 volumes. Note that this method relies on the intensities of
five MRI sequences (pre- and post-contrast T1-weighted, T2-weighted, PD-weighted and
FLAIR) in conjunction with two tissue priors: WM and Partial Volume (PV).
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Fig. 7.5 ROC-like curve illustrating the trade-off between sensitivity and
FDR for a Gad lesion detection method with varying healthy tissue priors.
The dashed lines illustrate working points based on a fixed sensitivity or a
fixed FDR.

Fig. 7.5 represents the results obtained in form of ROC-like curves. Each curve shows the
trade-off between sensitivity and false detection rates (FDR) for different working points
(i.e. thresholds) of the method. The FDR (not to be confused with the false positive
ratio) is defined as the ratio between the number of false positives and the total number

1The registration technique referred to as SyN is part of a general set of neuroimaging software tools
known as ANTs, and the two acronyms may be interchanged in the literature.
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Sensitivity per Lesion Size at False Detection Rate of ~0.25
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Fig. 7.6 Gad lesion detection performance across lesion size.2

of positives. The FDR is commonly used in the context of detection since it is more
informative. Note that for almost all working points the proposed registration approach
yields decreased FDR values and increased sensitivity values with relation to the other
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methods. This is likely due to the fact that SymBA has resulted in more accurate tissue
priors containing high WM probabilities at the location of the lesions. Consequently, the
corresponding segmentation model has learned to rely more on the priors which has lead
to a better detection rate.

The dashed lines in Fig. 7.5 show two operating points, one defined by a fixed sensitivity
of 0.9, and another defined by a fixed FDR of 0.25. Note that the working point defined
with a sensitivity of 0.9 corresponds to a false detection rate of 0.32. It is important to
highlight that such a high sensitivity assures that most of the brain lesions are captured
(i.e. 9 out of 10 lesions are captured), and the low number of false positives allows the rater
to quickly review the results from the method and focus on removing any falsely detected
lesions. Both operating points are used to perform a detailed analysis of the detection
performance across lesions of different size. Fig. 7.6 shows the distribution of lesions of
different size across the testing dataset. The top bar chart in Fig. 7.6 shows the variation
of sensitivity across lesion size for a fixed FDR of 0.25. Notice how the proposed approach
provides an increase in sensitivity for various lesion sizes leading to an overall increase in
sensitivity with relation to other approaches. There is a particularly prominent increase
in sensitivity for lesions of size between 3 and 5 voxels, which constitute the largest lesion
size category with 28% of the lesions encountered and also constitute the most challenging
category of lesions to detect. The bottom chart in Fig. 7.6 shows the variation of FDR for
a fixed sensitivity of 0.9. Notice how the proposed approach yields a significantly reduced
FDR for almost all lesion size ranges.

7.3.2 T2 Lesions

The T2 lesion detection method [163] was trained on a random subset of data containing
86 volumes and tested on 28 volumes. Since this method only has one working point, it is
not possible to present ROC-like curves. The performance across different ranges of lesions
size is shown in Fig. 7.7.

The comparison between registration methods follows a similar trend as the one found
for Gad lesions. In particular, the proposed registration approach yields increased overall
sensitivity with a reduced FDR. When analyzing the results per lesion size, one can note
that the most significant increase in detection performance is found in the smallest lesions
with size between 3 and 10 voxels, which constitute the largest lesion size category and the



7 Tissue Priors via Patient to Template Registration 159

S
en

si
tiv

ity

0.4

0.5

0.6

0.7

0.8

False Detection Rate

0.1 0.225 0.35 0.475 0.6

ANIMAL SyN SymBA

3-10 Voxels

Overall

11-50 Voxels

51+ Voxels

Lesion Size 
Distribution 
in Voxels

51+
14%

11-50
36%

3-10
50%

Fig. 7.7 T2 lesion detection performance for different lesion sizes.

most challenging category of lesions to detect.

7.4 Conclusions

In this chapter, I have presented a set of quantitative results evaluating the variability of
lesion detection algorithms with respect to tissue priors from different patient to template
registration methods. This constitutes a fundamentally different validation strategy that
focuses on the downstream performance of the registration technique, instead of trying to
capture the geometric accuracy itself. As such, it represents an indirect measure of the
performance of the registration method, yet it directly characterizes the effect of varying
registration performance on the specific task of interest.

The evaluation strategy employed in this chapter constitutes an important variation
in the philosophy for the validation of registration techniques. In particular, instead of
isolating the validation to the registration task and attempting to estimate the geometric
accuracy of the registration solution, this evaluation strategy focuses on the bottom-line
performance for the particular task at hand and how it is affected by different choices
of registration methods. The validation method is essentially characterizing the system-
wide application-specific performance with relation to the variation of one module in a
downstream chain of dependent modules. Such chain of processing modules is more and
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Fig. 7.8 Example of a medical image analysis processing pipeline. No-
tice how each module is dependent on the output of the previous (left-sided)
modules, and any fault from the previous modules can propagate to the final
result.

more common in modern medical image analysis processing pipelines. Fig. 7.8 shows an
example of an image processing pipeline whose goal is to segment an anatomical region from
a MRI volume. The processing modules in the pipeline include: 1) the rectification of the
raw MRI volume to correct for geometric distortions brought forward by inhomogeneities in
the magnetic field, 2) the correction of a low-frequency bias field that breaks the assumption
of a spatially constant intensity response, 3) the normalization of voxel intensity values
to a “standard” range and distribution, so that their absolute values can be evaluated
with a “standard” tissue-intensity model, 4) the registration of the pre-processed MRI
volume to a standard atlas which includes a set of tissue probability maps, and 5) the
segmentation of the anatomical region of interest based on the pre-processed MRI volume
and the deformed tissue probability maps obtained from the previous registration. It is
clear that the performance of any segmentation algorithm (found in the last module) will
be a function of the performance of all previous processing modules, as well as the quality
of the template and its tissue probability maps. Furthermore, since a majority of those
modules continue to be active research topics, it would be a critical mistake to automatically
assume that any off-the-shelf solution would be sufficiently good for the task at hand.

One can also consider the proposed evaluation strategy as an approach for charac-
terizing the robustness of the segmentation algorithm to performance variations from the
other modules. For example, in the context of brain lesion detection, one could measure
the sensitivity of the detection technique to induced variations on the patient to template
transformation. Such measure would roughly characterize the amount of performance that
is lost or gained as a function of registration accuracy and the information value obtained
from the tissue probability maps. This type of analysis is fundamentally important since
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it is not always clear what specific components of the registration performance are critical
to the bottom-line performance. As such, registration techniques that yield an improved
registration accuracy averaged over the spatial domain, may actually involve a poor per-
formance in a critical region for the task at hand and consequently lead to a decreased
bottom-line performance.

In summary, the validation strategy found in this chapter has been proposed so as to
emphasize the importance of characterizing the effect of a registration technique on subse-
quent modules. The experimental results shown demonstrate that the proposed technique
can lead to improved brain lesion detection performance with two different segmentation
approaches, while also involving significantly reduced processing times. This particular task
of brain lesions detection can be found in the context of clinical trials for treatments where
the MRI volumes are analyzed for relevant biomarkers to see if the treatment has a statis-
tically significant effect on the population. Such clinical trials generally involve thousands
of scans at different timepoints from hundreds of patients and involve multiple types of
analysis on the images. Hence, any significant improvement in computational efficiency is
highly valuable for both reducing the financial cost of extensive computations and reducing
the turnaround time necessary for evaluating results at the scale of the clinical trial.
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Chapter 8

Conclusions and Future Directions

Image registration is a fundamental problem encountered in a variety of medical image
analysis tasks. The diversity of medical imaging modalities encountered throughout all
kinds of clinical contexts has led to the development and proposal of many different tech-
niques with an increasing trend toward application-specific algorithms. Two of the most
recurrent limitations of current techniques involve the high processing times involved in
non-rigid contexts and the limited robustness towards multi-modal contexts with widely
different image formation models.

The work presented in this thesis describes a general registration framework which
addresses such limitations and aims to achieve a significant reduction in processing times,
as well as a significant improvement in robustness in challenging multi-modal scenarios.
In particular, the proposed framework focuses on the use of image gradient orientations
at sparsely selected voxel locations. A major motivation behind such approach lies in
using a primitive geometric descriptor for assessing the similarity of two mapped image
locations, so as to somewhat decouple the notion of image similarity from the particular
intensity profile which may include imaging artefacts from the particular imaging device.
Such decoupling of the image similarity metric from the voxel intensities is particularly
relevant in multi-modal contexts (e.g. MRI to US) where a global relationship between
corresponding voxel intensities simply does not hold. A second motivation lies in focusing
or restricting the evaluation of image similarity to regions of interest that correspond to
underlying boundaries in the scene. These are the major principles behind the development
of the two proposed and closely related techniques.
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The first proposed technique addresses the rigid registration of challenging multi-modal
contexts and is characterized as the maximization of image gradient orientation alignment
evaluated on prudently selected locations in the fixed image domain. For the purposes
of defining a consistent multi-scale voxel selection scheme, this work provided an analysis
of gradient orientation uncertainty brought forward by an additive Gaussian noise model.
In particular, the task of evaluating the gradient orientation of the underlying scene (i.e.
undegraded image) is defined as a Bayesian inference problem, where the computed image
gradient magnitude and orientation constitute “observations” which shape the posterior
distribution of the “true” underlying gradient orientation. Such analysis demonstrated that
the gradient magnitude is an indicator of the orientation variance and that normalizing the
gradient magnitude with respect to the corresponding derivative kernel leads to a “scale-
independent” indicator of gradient orientation uncertainty. Hence, the proposed technique
relies on the manual definition of a single gradient magnitude threshold for the finest image
scale which can be mapped to corresponding thresholds at coarser image scales.

The proposed rigid registration technique also involves multiple evaluations of the image
gradient of a transformed moving image, which can lead to a significant computational
overhead when evaluated directly from the transformed (i.e. resampled) moving image
intensities. In order to minimize such computational overhead, the work presented in this
thesis demonstrated that the pullback differential can be used to evaluate the gradient of
the transformed moving image with computational efficiency. Specifically, the transformed
image gradient is computed by simply multiplying the original image gradient found at
the transformed location by the transpose of the Jacobian of the transformation function,
which is already known and corresponds to the transpose of the rotation matrix.

The second proposed technique addresses non-rigid registration contexts and involves
the maximization of image gradient orientation alignment as well as the minimization of the
distance to the nearest inferred boundary in a symmetric fashion. As such, it relies on the
explicit inference of boundaries with the use of an edge detection technique, which defines
a reduced set of locations over which the local similarity metric is evaluated and allows the
evaluation of a distance map where each voxel’s value corresponds to the distance to the
nearest boundary location.

The proposed non-rigid registration technique also relies on a symmetric evaluation
of the local similarity metric at locations identified in the fixed image domain (using the
forward transform) as well as locations identified in the moving image domain (using the
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backward transform). In order to allow the evaluation of such an energy function, the
method adopted a diffeomorphic transformation model characterized as the integration of
a velocity field. Furthermore, in order to evaluate the gradient orientations of a trans-
formed image, the work presented in this thesis developed a pushforward technique which
reduces the computational operations necessary to evaluate it and also shares many of the
operations involved in the evaluation of the transformed location. Finally, this work also
presented the necessary derivations and expressions required to evaluate the gradient of
the proposed energy function with respect to the transformation parameters (i.e. the voxel
values of the velocity field image).

The proposed techniques were then shown to provide important advantages in multiple
challenging clinical contexts. In particular, the rigid registration technique led to substan-
tial improvements in registration performance in the context of IGNS with tracked iUS,
where the proposed technique can successfully register a pre-operative MRI to a iUS with
sub-second processing times. Such an accomplishment leads to a seamless integration in
the surgical procedure where the clinician can immediately obtain an updated MRI volume
after an US acquisition is performed. The advantages brought forward by the proposed
framework were then shown to generalize to multiple clinical scenarios. In particular, the
results presented in this thesis have demonstrated that the proposed technique can pro-
vide important advantages in the contexts of the rigid registration of CT and MRI brain
volumes, the rigid registration of pre-operative MRI to iUS for IGNS, the non-rigid reg-
istration inter-patient MRI brain volumes for the automatic anatomical labelling of brain
structures, and the non-rigid registration of patient to template MRI brain volumes for the
generation of healthy soft tissue probability maps. A brief summary of the advantages and
contributions provided in each context can be found below.

In the context of the rigid registration of CT and MRI brain volumes from a standard
dataset, the reported experiments exposed the importance of sub-voxel (i.e. off the voxel
grid) location sampling and of using a highly selective gradient orientation alignment metric
for obtaining a significant improvement in registration accuracy. More importantly, a
performance comparison with an alternative state-of-the-art voxel selection strategy (used
with a NMI similarity metric) demonstrated that the proposed technique can achieve sub-
millimeter registration accuracy with drastically reduced sampling rates. In particular,
using only 0.05% of the voxels from the fixed image already yielded a median registration
error inferior to one millimeter.
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In the context of IGNS, the results presented in this thesis illustrated an exceptional
performance in the rigid registration of pre-operative MRI to iUS, where the proposed
technique (as implemented in a GPU) was shown to successfully register 14 real clinical
cases with sub-second processing times. This constitutes an unprecedented functionality
which is now a part of a neurosurgical navigation platform employed in ongoing studies at
the Montreal Neurological Institute.

In the context of the non-rigid registration of inter-patient MRI brain volumes, the pro-
posed framework was evaluated on a publicly available and commonly used dataset against
multiple state-of-the-art techniques and was shown to provide closely similar accuracy to
the top ranking methods but with drastically reduced processing times. In particular, a
leading alternative state-of-the-art registration technique yielded a compound mean tar-
get overlap of 51.63% with an average processing time of 38 minutes, while the proposed
technique achieved a compound mean target overlap of 51.65% with an average processing
time of 6 minutes and 30 seconds, and a compound mean target overlap of 50.69% with an
average processing time of 1 minute and 30 seconds with an alternative parametrization.

Finally, the proposed framework was also evaluated in the context of patient to template
MRI brain volume registration for the purposes of generating healthy tissue probabilities for
each voxel in the patient’s volume. Such healthy tissue probability maps constitute a critical
input for automatic brain lesion detection algorithms. The results presented in this thesis
demonstrated that the proposed technique led to a slightly improved detection performance
in two distinct MS lesions detection tasks and with drastically reduced processing times in
comparison with alternative state-of-the-art registration algorithms. Such improvements
in performance constitute an important advantage for high data throughput pipelines such
as the analysis of large clinical trial datasets.

8.1 Discussion and Future Directions

The proposed registration techniques were characterized by a set of algorithmic parameters
and components that had to be suitably defined for the context at hand. Some of the
most critical components of the registration techniques are those related to the inference
of underlying boundaries (e.g. gradient magnitude threshold) as well as those related to
defining and shaping the space of plausible transformation functions. Furthermore, the
experimental results in this thesis adopted a particular set of validation strategies for the
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evaluation of registration performance with a unique set of advantages and disadvantages.
The following sections discusses these and other points and outlines some possible strategies
that can be pursued to as to overcome some of the related limitations.

8.1.1 Edge Detection

The two proposed techniques rely on a prudent, yet likely sub-optimal, inference of un-
derlying boundaries which consequently define the energy function to be optimized and
necessarily characterize the final performance of the registration methods. It is important
to note that the sensitivity of the registration performance to the accuracy of the inferred
boundaries is directly related to the degrees of freedom found in the transformation model.
For example, in the rigid registration context, the proposed technique relied on a gradient
magnitude threshold to essentially ignore a majority of locations that did not correspond
to an underlying anatomical boundary. Hence, even though the selected locations did not
provide a pixel-compact localization of an underlying boundary they were indeed more than
sufficient to jointly identify an accurate global maxima in the space of rigid transformation.
Alternatively, in the non-rigid registration context, the proposed technique adopted an ex-
plicit dependence to a pixel-compact edge detection technique, such as the Canny edge
detection method, which provided the increased local discriminability required to resolve
the diffeomorphic transformation model.

It is also important to note that the relevance of the performance of the edge detection
technique on the registration method cannot be strictly evaluated in terms of its robustness
and accuracy towards identifying anatomical boundary in a single given image. In particu-
lar, one should note that in multi-modal registration contexts the edge detection technique
should ideally identify the anatomical boundaries that are exposed in both modalities and
ignore all other exposed boundaries since they cannot serve to resolve the spatial mapping
between volumes. For example, the multi-modal registration scenarios evaluated in this
work relied on the assumption that the boundaries exposed in one modality (e.g. US, CT)
could be assumed to have a corresponding exposed boundary in a second modality (e.g.
MRI), and this allowed the definition of an asymmetric voxel selection scheme which focuses
on boundary locations identified in one modality. However, other multi-modal scenarios
surely involve a more complicated relationship between boundaries exposed in each modal-
ity. This immediately brings forward a challenge that goes well-beyond any state-of-the-art
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edge detection technique, since it presumes additional higher level prior knowledge, such as
knowledge of the image formation model of both modalities. An appealing strategy to iden-
tify the image boundaries that are expected to have a correspondence in a second modality
could aim to learn such relationship with a set of example cases with known ground truth.
One could then exploit such knowledge in a two-stage edge detection strategy, where the
first stage corresponds to a conventional edge detection technique that identifies all exposed
image boundaries and the second stage corresponds to a pruning technique that rejects all
boundary locations that are not likely to have a correspondence in the second modality.

In the interest of generality and of removing the dependency to a separate edge detection
stage, it would also be of interest to consider dynamically coupling the inference of under-
lying anatomical boundaries with the inference of the spatial mapping between images. In
other words, an extension of this work would be to consider a joint inference task where
underlying anatomical boundaries and spatial correspondence are jointly modelled. This
effectively constitutes a joint segmentation and registration problem with the distinction
that segmentation is focused on anatomical boundaries as opposed to anatomical regions
or tissue types.

8.1.2 Regularization and Parameterization of the Transformation Space

Section 6.2.1 presented empirical results showing how different spatial and temporal dis-
cretizations of the diffeomorphic transformation model affected the registration accuracy.
As such, it reflects the registration performance with varying “hard” restrictions on the
space of plausible transformation functions. A similar experiment based on a “soft” or
continuous restrictions on the space of plausible transformation functions could evaluate
the variation in registration performance with a varying weight assigned to a regularization
term (e.g. bending energy).

The main goal of such hard or soft restrictions on the space of transformation functions
is to overcome the ill-posedness of registration problems, particularly in contexts involving
non-rigid deformations where local displacements are independent between distant regions.
Yet, it remains unclear how to define what is the precise degree and type of regularization
that is best suited for a specific clinical context.

One way of viewing such issue is in terms of parameter tuning. In particular, the
proposed non-rigid registration techniques involved a series of configuration parameters
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that must be set to “reasonable” values so as to obtain the performance gains reported
in this work. This thesis has included a detailed quantitative analysis of performance in
terms of registration parameters. As such, it constitutes a valuable guide for choosing
suitable parameter values. Nonetheless, it would be of significant interest to pursue a fully
automated algorithm for identifying the optimal set of parameter values based on a training
set with known ground truth. One can think of this as an optimization problem where the
goal is to maximize registration accuracy across training cases while minimizing some notion
of deformation energy (e.g. bending energy). The benefit of such a strategy would be that
non-technical users could successfully use and evaluate a technique in their particular task
without having to understand the algorithmic functionality of the parameters.

8.1.3 Context Learning

The two fundamentally important components of an image registration technique that
must be defined for addressing a specific context are the image similarity term and the
space and plausibility of geometric transformations mapping one coordinate space to the
other. Typically, it is the “designer” (i.e. graduate student) that arbitrarily defines such
components by alluding to basic principles or his or her higher level intuition as to what
make a reasonable approach for the task at hand. However, as it has been pointed out
in the previous sections, it would be of interest to seek a higher level method which itself
resolves the best suited registration approach for a specific context by learning the specific
image and deformation properties from a set of example cases with known ground truth.

It is important to note that even a higher level learning method for registration in-
evitably involves an arbitrary space of plausible registration methods that can be learned
or deduced. In other words, it is rather unrealistic to envision a top level learning method
which evaluates the utility of all possible registration methods and identifies the optimal
approach. Instead, one can simply expect the resolution of more limited questions such as:

• Is the image similarity term location dependent (i.e. does the image similarity vary
significantly in different matched regions)?

• What is the maximal weight than can be assigned to a regularization term that main-
tains the global maxima of the energy term (involving the similarity and regularization
term) within an acceptable error?
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• Which image similarity measure (from a finite predefined set) has a global maxima
with best accuracy?

• Which image similarity provides the most consistent and wide aperture range?

Nonetheless, even if the scope of such questions and corresponding learning methods
can be considered somewhat limited they would still provide a valuable tool for facilitating
the generalization and parametrization of a set of registration techniques to a specific task
at hand.

8.1.4 Validation

Many medical image analysis problems face the complicated task of defining a suitable
validation strategy and the research community is continuously discussing the limitations
of the strategies in use. There are essentially two major options for validation in the context
of medical image registration: rely on synthetically generated (simulated) cases with known
ground truth deformations, or rely on an “expert” for defining a gold standard on a set of
real clinical cases.

The first approach (simulation of cases) provides a perfectly accurate ground truth that
is defined throughout the entire image domain. As such, it allows for the evaluation of
multiple types of geometrical measures regarding registration accuracy. However, one can
immediately put into question the ability of such simulated cases in reflecting all the subtle
variabilities found in real clinical cases. This concern can easily be exemplified in medical
image modalities, such as MRI and US, that are afflicted by complex image artefacts such
as: geometric distortion brought forward by non-linearities in the magnetic field, a bias field
that leads to a non-homogeneous image intensity response, motion artefacts, US speckle,
shadow and direction-dependent imaging characteristics, among many others.

The second approach (expert gold standard) provides an imperfect ground truth that
is typically limited to a relatively sparse set of annotations. Hence, even though it indeed
reflects all the challenges and subtle variabilities found in real clinical cases, it provides a
measure of performance that is ultimately bounded by the expert’s ability to consistently
and accurately define a gold standard.

This thesis adopted the second approach, and relied on validation approaches based
on real clinical cases and evaluated with an expert defined gold standard. As such, the
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challenges and subtleties embedded in a set of real clinical cases were considered to be more
relevant, in practical terms, than the pursuit of hyper accurate registration performance
(e.g. sub-voxel accuracy) on synthetic cases. Furthermore, the experimental setups relied
on publicly available and commonly used datasets, and thus allow the direct and fair
comparison of reported results with results presented in previous work.

Nonetheless, there are important limitations to such validation approaches. In partic-
ular, Section 4.5 illustrated that the use of expert defined homologous landmarks between
MRI and US volumes came with a significant degree of variability between experts, and
as such provided an imperfect measure of registration accuracy. Furthermore, the distri-
bution of such landmarks was arbitrarily established by each expert’s notion of visual and
anatomical correspondence, and such distribution does not necessarily characterize the reg-
istration accuracy consistently throughout the clinical region of interest. However, in that
particular context, the dataset used represents the sole publicly available dataset of real
clinical cases of brain tumour resection surgeries and likely constitutes the most relevant
validation strategy presently available for the registration between such modalities.

In short, the validation strategies adopted in this work were justified by the fact that
they directly characterize registration performance with relation to the concrete clinical
task of interest.

8.1.5 Other Extensions

The work presented in this thesis has led to highly efficient rigid and non-rigid image
registration algorithms with direct applications in medical contexts. Nonetheless, the pro-
posed framework can be further extended by either continuing the effort of further reducing
processing times or by extending it for suitable use in alternative contexts.

For the purposes of further reduction in processing times, a natural extension of the
proposed non-rigid registration technique would be to develop a GPU-based implementa-
tion. This particular exercise was developed with the proposed rigid registration technique
and led to substantial reductions in processing times. Since the proposed non-rigid regis-
tration technique largely follows a similar algorithmic structure, one should expect similar
reductions in processing times. In particular, a GPU-based implementation should achieve
the same accuracy but with processing times in the order of seconds or less.

Similarly, it would be of interest to pursue optimization variants with a fixed processing
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time constraint that allows for continuous feedback to an end-user at specific times intervals,
at the possible expense of a small degradation in registration accuracy. This functionality
may be particularly relevant in the context of active real-time imaging contexts, such as
US imaging, where the clinician/user can continuously adapt the position of the imaging
device (e.g. US probe) so as to optimally expose the anatomical region of interest. For
example, one can envision a near real-time image analysis process based on registration
that continuously provides an updated visualization of pre-segmented structures after an
inferred deformation, and where the clinician can adapt the image device in tandem with
this continuous image registration and analysis process.

The reduced processing times of the proposed non-rigid registration strategy may also
play a very important role in multi-atlas label fusion strategies, where the segmentation
labels of a given image are obtained by registering the image against a set of pre-segmented
templates and consequently fusing the spatially mapped template labels. It is clear that
the main computational cost of such approaches lies in the series of non-rigid registrations
from patient to template, and thus an accurate yet computationally efficient registration
technique can lead to drastically reduced processing times. In particular, it would be of
interest to characterize the trade-off in segmentation performance obtained with a given
budget of computational time per registration, where one setup adopts a highly accurate
but costly registration approach that allows the use of only a small number of templates,
and an alternative setup adopts a slightly less accurate but computationally inexpensive
registration approach that allows the use of a large number of reference atlases.

The work presented here focused on the use of image gradient orientations as features of
interest, where image gradient orientations are primitive geometric descriptors which relate
to the normal direction of an underlying boundary. Since the local feature is geometric and
decoupled from the specific image intensities, it can also be compared with purely synthetic
3D objects, such as surface meshes. As such, it would be of interest to adopt the proposed
registration techniques in registration contexts involving a mixture of 3D image volumes and
3D surfaces, such as the ones obtained from manually segmented data. Such an approach
can be highly relevant in the scenario when one relies on a patient to template registration
for segmenting an anatomical region of interest. Instead of relying on a purely volumetric
registration (between two 3D volumes), one could directly register a template 3D surface
of the anatomical region of interest to the patient’s volume.

Finally, the proposed diffeomorphic registration technique focused on a computationally
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efficient image similarity term, but did not devote an effort to ensure that the resulting
transformation accurately satisfies the diffeomorphic properties of smoothness and invert-
ibility. It would be of interest to explicitly enforce such properties by adopting a regu-
larization term that rewards smooth transformations (e.g. the L2 norm of a second-order
differential operator of the velocity field) and adjust the number of time steps such that
the forward and backward transformation are consistent within a predefined accuracy.

Automated medical image analysis holds the promise of providing consistent, unbiased,
and accurate diagnosis with sophisticated computational techniques which require no hu-
man supervision. As such, it is an exciting and highly active field which I believe will
eventually become a critical component of health care; where it may provide improvements
not only in patient prognosis but perhaps more importantly lead to significant reductions
in the financial cost associated with providing such care. The accuracy and computational
efficiency of medical image registration techniques are, without a doubt, an important part
of such promise and must therefore continue to be improved. I hope that the methods and
results shown in this thesis will provide a step forward in fulfilling such vision.
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Appendix A

Mathematical Glossary

Symbols

The following table summarizes the most commonly used mathematical symbols in this
thesis.

Ωf fixed image spatial domain Ωf = R
d where d ∈ {2, 3}

Ωm moving image spatial domain Ωm = R
d where d ∈ {2, 3}

xf location in fixed image domain xf ∈ Ωf

xf location in moving image domain xm ∈ Ωm

t time index t ∈ {1, . . . , τ}

τ number of time steps

Δt time step size Δt = 1
τ

If fixed image If : Ωf → R
n (e.g. n = 1 for a scalar image)

Im moving image Im : Ωm → ∗Rn (e.g. n = 1 for a scalar image)
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Tf forward mapping transformation function Tf : Ωf → Ωm

Tm backward mapping transformation function Tm : Ωm → Ωf

∇I image gradient ∇I = ( ∂I
∂x1

, . . . , ∂I
∂xD

)

vu velocity field at time index u v = dTf

dt

∣∣∣
t=u

φf,τ forward integrated velocity field φf,t(xf ) = xf +∑τ
t=1 vt(φf,t−1)Δt

Jf (x) Jacobian of f with respect to x Jf (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1

∂x1
· · · ∂f1

∂xD

... . . . ...
∂fD

∂x1
· · · ∂fD

∂xD

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

◦ composition operator



175

References

[1] A. Akselrod-Ballin, M. Galun, R. Basri, A. Brandt, M. Gomori, M. Filippi, and
P. Valsasina. An integrated segmentation and classification approach applied to mul-
tiple sclerosis analysis. In Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on, volume 1, pages 1122–1129, June 2006.

[2] P. Aljabar, R. A. Heckemann, A. Hammers, J. V. Hajnal, and D. Rueckert. Multi-
atlas based segmentation of brain images: Atlas selection and its effect on accuracy.
NeuroImage, 46(3):726–738, July 2009.

[3] R. Alterovitz, K. Goldberg, J. Pouliot, I.-C. J. Hsu, Y. Kim, S. M. Noworolski, and
J. Kurhanewicz. Registration of MR prostate images with biomechanical modeling
and nonlinear parameter estimation. Medical Physics, 33(2):446–454, Jan. 2006.

[4] N. A. Álvarez, J. M. Sanchiz, J. Badenas, F. Pla, and G. Casañ. Contour-Based
Image Registration Using Mutual Information. In Pattern Recognition and Image
Analysis, pages 227–234. Springer Berlin Heidelberg, Berlin, Heidelberg, Jan. 2005.

[5] P. Anbeek, K. L. Vincken, M. J. van Osch, R. H. Bisschops, and J. van der Grond.
Probabilistic segmentation of white matter lesions in mr imaging. NeuroImage,
21(3):1037 – 1044, 2004.

[6] T. Arbel, X. Morandi, R. M. Comeau, and D. L. Collins. Automatic Non-linear MRI-
Ultrasound Registration for the Correction of Intra-operative Brain Deformations.
In Medical Image Computing and Computer-Assisted Intervention - MICCAI 2001,
volume 2208, pages 913–922. Springer Berlin Heidelberg, 2001.

[7] V. I. Arnold and B. A. Khesin. Topological Methods in Hydrodynamics. Applied
Mathematical Sciences. Springer, 1998.

[8] J. Ashburner and K. J. Friston. Unified segmentation. NeuroImage, 26(3):839–851,
2005.



References 176

[9] B. Avants, C. Anderson, M. Grossman, and J. C. Gee. Spatiotemporal normalization
for longitudinal analysis of gray matter atrophy in frontotemporal dementia. In Med-
ical Image Computing and Computer-Assisted Intervention - MICCAI 2007, volume
4792, pages 303–310. Springer Berlin Heidelberg, 2007.

[10] B. Avants, P. A. Cook, C. McMillan, M. Grossman, N. J. Tustison, and Y. Zheng.
Sparse Unbiased Analysis of Anatomical Variance in Longitudinal Imaging. In Med-
ical Image Computing and Computer-Assisted Intervention – MICCAI 2010, volume
6361, pages 324–331. Springer Berlin Heidelberg, 2010.

[11] B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee. Symmetric diffeomorphic
image registration with cross-correlation: evaluating automated labeling of elderly
and neurodegenerative brain. Medical Image Analysis, 12(1):26–41, 2008.

[12] B. B. Avants, N. J. Tustison, J. Wu, P. A. Cook, and J. C. Gee. An open source
multivariate framework for n-tissue segmentation with evaluation on public data.
Neuroinformatics, 9(4):381–400, Dec. 2011.

[13] B. B. Avants, P. Yushkevich, J. Pluta, and D. Minkoff. The optimal template effect
in hippocampus studies of diseased populations. NeuroImage, 49:2457–2466, 2010.

[14] R. Bajcsy, R. Lieberson, and M. Reivich. A Computerized System for the Elastic
Matching of Deformed Radiographic Images to Idealized Atlas Images. Journal of
Computer Assisted Tomography, 7(4):618, Aug. 1983.

[15] S. K. Balci, P. Golland, and W. M. Wells III. Non-rigid Groupwise Registration
using B-Spline Deformation Model. Insight Journal - 2007 MICCAI Open Science
Workshop, 2007.

[16] D. I. Barnea and H. F. Silverman. A Class of Algorithms for Fast Digital Image
Registration. IEEE Transactions on Computers, C-21(2):179–186, 1972.

[17] M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes. Computing large deformation
metric mappings via geodesic flows of diffeomorphisms. International Journal of
Computer Vision, 61(2):139–157, 2005.

[18] E. M. Berntsen, S. Gulati, O. Solheim, K. A. Kvistad, S. H. Torp, T. Selbekk, G. Un-
sgård, and A. K. Håberg. Functional Magnetic Resonance Imaging and Diffusion
Tensor Tractography Incorporated Into an Intraoperative 3-Dimensional Ultrasound-
Based Neuronavigation System: Impact on Therapeutic Strategies, Extent of Resec-
tion, and Clinical Outcome. Neurosurgery, 67(2):251–264, Aug. 2010.

[19] R. Bhagalia, J. A. Fessler, and B. Kim. Accelerated Nonrigid Intensity-Based Image
Registration Using Importance Sampling. IEEE Transactions on Medical Imaging,
28(8):1208–1216, 2009.



References 177

[20] F. L. Bookstein. Principal Warps: Thin-Plate Splines and the Decomposition of
Deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence,
11(6):567–585, 1989.

[21] R. Brooks. Efficient and Reliable Methods for Direct Parameterized Image Registra-
tion. PhD thesis, McGill University, 2008.

[22] R. Brooks and T. Arbel. The importance of scale when selecting pixels for image
registration. In Computer and Robot Vision, 2007. CRV ’07. Fourth Canadian Con-
ference on, pages 235–242. IEEE, 2007.

[23] R. Brooks, D. L. Collins, X. Morandi, and T. Arbel. Deformable Ultrasound Regis-
tration without Reconstruction. In Medical Image Computing and Computer-Assisted
Intervention - MICCAI 2008, volume 5242, pages 1023–1031. Springer Berlin Heidel-
berg, 2008.

[24] L. G. Brown. A survey of image registration techniques. ACM computing surveys
(CSUR), 24(4):325–376, Dec. 1992.

[25] M. Brown and D. G. Lowe. Automatic Panoramic Image Stitching using Invariant
Features. International Journal of Computer Vision, 74(1):59–73, 2007.

[26] Y. Cao, M. I. Miller, R. L. Winslow, and L. Younes. Large deformation diffeomorphic
metric mapping of vector fields. IEEE Transactions on Medical Imaging, 24(9):1216–
1230, 2005.

[27] V. S. Caviness Jr, J. Meyer, N. Makris, and D. N. Kennedy. MRI-based topographic
parcellation of human neocortex: an anatomically specified method with estimate of
reliability. Journal of Cognitive Neuroscience, 8(6):566–587, 1996.

[28] H. Chang and J. M. Fitzpatrick. A technique for accurate magnetic resonance imaging
in the presence of field inhomogeneities. IEEE Transactions on Medical Imaging,
11(3):319–329, Sept. 1992.

[29] S. D. Chang, W. Main, D. P. Martin, I. C. Gibbs, and M. P. Heilbrun. An Analysis
of the Accuracy of the CyberKnife: A Robotic Frameless Stereotactic Radiosurgical
System. Neurosurgery, 52(1):140, Jan. 2003.

[30] C. Chef d’Hotel, G. Hermosillo, and O. Faugeras. A variational approach to multi-
modal image matching. In IEEE Workshop on Variational and Level Set Methods in
Computer Vision, pages 21–28. IEEE Computer Soc, 2001.

[31] H.-M. Chen and P. K. Varshney. Mutual information-based CT-MR brain image reg-
istration using generalized partial volume joint histogram estimation. IEEE Trans-
actions on Medical Imaging, 22(9):1111–1119, 2003.



References 178

[32] T. K. Chen, A. D. Thurston, and R. E. Ellis. A real-time freehand ultrasound
calibration system with automatic accuracy feedback and control. Ultrasound in
medicine & biology, 35:79–93, 2009.

[33] G. E. Christensen and H. Johnson. Consistent Image Registration. IEEE Transac-
tions on Medical Imaging, 20(7):568–582, 2001.

[34] G. E. Christensen, R. D. Rabbitt, and M. I. Miller. Deformable templates using large
deformation kinematics. IEEE Transactions on Image Processing, 5(10):1435–1447,
1996.

[35] O. Clatz, H. Delingette, I. Talos, A. J. Golby, R. Kikinis, F. A. Jolesz, N. Ayache,
and S. K. Warfield. Robust Nonrigid Registration to Capture Brain Shift From
Intraoperative MRI. IEEE Transactions on Medical Imaging, 24(11):1417–1427, 2005.

[36] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Marchal. Au-
tomated multi-modality image registration based on information theory. In Y. Bizais,
C. Barillot, and R. Di Paola, editors, Information processing in medical imaging,
pages 263–274. Kluwer Academic Publishers, 1995.

[37] D. L. Collins and A. C. Evans. ANIMAL: Validation and applications of nonlinear
registration-based segmentation. International Journal of Pattern Recognition and
Artificial Intelligence, 11(8):1271–1294, 1997.

[38] D. L. Collins, C. J. Holmes, T. M. Peters, and A. C. Evans. Automatic 3-D model-
based neuroanatomical segmentation. Human Brain Mapping, 3(3):190–208, 1995.

[39] D. L. Collins, A. P. Zijdenbos, W. F. Baaré, and A. C. Evans. ANIMAL+ INSECT:
improved cortical structure segmentation. In Information processing in medical imag-
ing, pages 210–223. Springer, 1999.

[40] R. M. Comeau, A. F. Sadikot, A. Fenster, and T. M. Peters. Intraoperative ultra-
sound for guidance and tissue shift correction in image-guided neurosurgery. Medical
Physics, 27(4):787–800, 2000.

[41] M. M. Coselmon, J. M. Balter, D. L. McShan, and M. L. Kessler. Mutual information
based CT registration of the lung at exhale and inhale breathing states using thin-
plate splines. Medical Physics, 31(11):2942–2948, 2004.

[42] P. Coupé, P. Hellier, X. Morandi, and C. Barillot. 3D Rigid Registration of Intra-
operative Ultrasound and Preoperative MR Brain Images Based on Hyperechogenic
Structures. International Journal of Biomedical Imaging, 2012.



References 179

[43] Y. Dai, J. Tian, D. Dong, G. Yan, and H. Zheng. Real-Time Visualized Freehand
3D Ultrasound Reconstruction Based on GPU. IEEE Transactions on Information
Technology in Biomedicine, 14(6):1338–1345, 2010.

[44] M. H. Davis, A. Khotanzad, D. P. Flamig, and S. E. Harms. A Physics-Based Co-
ordinate Transformation for 3D Image Matching. IEEE Transactions on Medical
Imaging, 16(3):317–328, 1997.

[45] D. De Nigris, D. L. Collins, and T. Arbel. Deformable Registration of Chest CT Scans
with Adaptive Local Mutual Information. Medical Image Analysis for the Clinic: A
Grand Challenge, pages 175–184, 2010.

[46] D. De Nigris, D. L. Collins, and T. Arbel. Fast and Robust Registration Based
on Gradient Orientations: Case Study Matching Intra-operative Ultrasound to Pre-
operative MRI in Neurosurgery. In Information Processing in Computer-Assisted
Interventions, pages 125–134. Springer Berlin Heidelberg, 2012.

[47] D. De Nigris, D. L. Collins, and T. Arbel. Multi-Modal Image Registration based
on Gradient Orientations of Minimal Uncertainty. IEEE Transactions on Medical
Imaging, 31(12):2343–2354, 2012.

[48] D. De Nigris, D. L. Collins, and T. Arbel. Fast rigid registration of pre-operative
magnetic resonance images to intra-operative ultrasound for neurosurgery based on
high confidence gradient orientations. International Journal of Computer Assisted
Radiology and Surgery, 8(4):649–661, 2013.

[49] D. De Nigris, D. L. Collins, and T. Arbel. SymBA: Diffeomorphic Registration
Based on Gradient Orientation Alignment and Boundary Proximity of Sparsely Se-
lected Voxels. In Biomedical Image Registration, volume 8545, pages 21–30. Springer
International Publishing, 2014.

[50] D. De Nigris, L. Mercier, R. Del Maestro, D. L. Collins, and T. Arbel. Hierarchi-
cal Multimodal Image Registration Based on Adaptive Local Mutual Information.
In Medical Image Computing and Computer-Assisted Intervention - MICCAI 2010,
volume 6362, pages 643–651. Springer Berlin Heidelberg, 2010.

[51] F. Dellaert and R. Collins. Fast image-based tracking by selective pixel integration.
In ICCV 99 Workshop on Frame-Rate Vision, pages 1–22, 1999.

[52] S. Dieterich, J. Rodgers, and R. Chan. Radiosurgery. Image-Guided Interventions,
2008.



References 180

[53] G. Dugas-Phocion, M. Gonzalez, C. Lebrun, S. Chanalet, C. Bensa, G. Malandain,
and N. Ayache. Hierarchical segmentation of multiple sclerosis lesions in multi-
sequence mri. In IEEE International Symposium on Biomedical Imaging: Nano to
Macro, 2004., pages 157–160, April 2004.

[54] C. Elliott, D. L. Arnold, D. L. Collins, and T. Arbel. Temporally Consistent Proba-
bilistic Detection of New Multiple Sclerosis Lesions in Brain MRI. IEEE Transactions
on Medical Imaging, 32(8):1490–1503, 2013.

[55] A. C. Evans, W. Dai, D. L. Collins, P. Neelin, and S. Marrett. Warping of a com-
puterized 3D atlas to match brain image volumes for quantitative neuroanatomical
and functional analysis. In Proceedings of SPIE – Volume 1445 Medical Imaging V:
Image Processing, pages 236–246, 1991.

[56] B. Fischer and J. Modersitzki. A unified approach to fast image registration and
a new curvature based registration technique. Linear Algebra and its applications,
380:107–124, Mar. 2004.

[57] B. Fischer and J. Modersitzki. Ill-posed medicine—an introduction to image regis-
tration. Inverse problems, 24(3):034008, June 2008.

[58] J. M. Fitzpatrick and J. B. West. The distribution of target registration error in rigid-
body point-based registration. IEEE Transactions on Medical Imaging, 20(9):917–
927, 2001.

[59] V. Fonov, A. C. Evans, K. N. Botteron, C. R. Almli, R. C. McKinstry, and D. L.
Collins. Unbiased average age-appropriate atlases for pediatric studies. NeuroImage,
54(1):313–327, 2011.

[60] M. Freiman, M. Werman, and L. Joskowicz. A curvelet-based patient-specific prior
for accurate multi-modal brain image rigid registration. Medical Image Analysis,
15(1):125–132, 2011.

[61] K. J. Friston, S. Williams, R. Howard, R. S. J. Frackowiak, and R. Turner. Movement-
Related effects in fMRI time-series. Magnetic Resonance in Medicine, 35(3):346–355,
1996.

[62] K. A. Ganser, H. Dickhaus, R. Metzner, and C. R. Wirtz. A deformable digital
brain atlas system according to Talairach and Tournoux. Medical Image Analysis,
8(1):3–22, 2004.

[63] D. García-Lorenzo, S. Francis, S. Narayanan, D. L. Arnold, and D. L. Collins. Re-
view of automatic segmentation methods of multiple sclerosis white matter lesions
on conventional magnetic resonance imaging. Medical Image Analysis, 17(1):1 – 18,
2013.



References 181

[64] J. C. Gee, M. Reivich, and R. Bajcsy. Elastically Deforming 3D Atlas to Match
Anatomical Brain Images. Journal of Computer Assisted Tomography, 17(2):225,
1993.

[65] D. G. Gobbi, R. M. Comeau, and T. M. Peters. Ultrasound probe tracking for
real-time ultrasound/mri overlay and visualization of brain shift. In Medical Image
Computing and Computer-Assisted Intervention – MICCAI’99, volume 1679, pages
920–927. Springer Berlin Heidelberg, 1999.

[66] D. G. Gobbi, R. M. Comeau, and T. M. Peters. Ultrasound/mri overlay with image
warping for neurosurgery. In Medical Image Computing and Computer-Assisted In-
tervention – MICCAI 2000, volume 1935, pages 106–114. Springer Berlin Heidelberg,
2000.

[67] D. G. Gobbi and T. M. Peters. Interactive intra-operative 3D ultrasound reconstruc-
tion and visualization. In Medical Image Computing and Computer-Assisted Inter-
vention - MICCAI 2002, volume 2489, pages 156–163. Springer Berlin Heidelberg,
2002.

[68] A. A. Goshtasby. 2-D and 3-D Image Registration for Medical, Remote Sensing, and
Industrial Applications. John Wiley & Sons, Apr. 2005.

[69] A. Gronningsaeter, A. Kleven, S. Ommedal, T. E. Aarseth, T. Lie, F. Lindseth,
T. Langø, and G. Unsgård. SonoWand, an Ultrasound-based Neuronavigation Sys-
tem. Neurosurgery, 47(6):1373, Dec. 2000.

[70] E. Haber and J. Modersitzki. Numerical methods for volume preserving image regis-
tration. Inverse problems, 20(5):1621–1638, Oct. 2004.

[71] E. Haber and J. Modersitzki. Beyond mutual information: A simple and robust
alternative. In H.-P. Meinzer, H. Handels, A. Horsch, and T. Tolxdorff, editors,
Bildverarbeitung für die Medizin 2005, Informatik aktuell, pages 350–354. Springer
Berlin Heidelberg, 2005.

[72] J. V. Hajnal, N. Saeed, E. J. Soar, A. Oatridge, I. R. Young, and G. M. Bydder. A
Registration and Interpolation Procedure for Subvoxel Matching of Serially Acquired
MR Images. Journal of Computer Assisted Tomography, 19(2):289, 1995.

[73] N. Hansen and A. Ostermeier. Completely Derandomized Self-Adaptation in Evolu-
tion Strategies. Evolutionary Computation, 9:159–195, June 2001.

[74] M. P. Heinrich, M. Jenkinson, M. Bhushan, T. N. Matin, F. Gleeson, J. M. Brady, and
J. A. Schnabel. Non-local Shape Descriptor: A New Similarity Metric for Deformable



References 182

Multi-modal Registration. In Medical Image Computing and Computer-Assisted In-
tervention - MICCAI 2011, volume 6892, pages 541–548. Springer Berlin Heidelberg,
2011.

[75] M. P. Heinrich, J. Schnabel, F. Gleeson, and M. Brady. Non-rigid multimodal medical
image registration using optical flow and gradient orientation. In Proceedings of
Medical Image Understanding and Analysis, pages 141–145, Warwick, 2010.

[76] P. Hellier, C. Barillot, E. Memin, and P. Perez. Hierarchical estimation of a dense
deformation field for 3-D robust registration. IEEE Transactions on Medical Imaging,
20(5):388–402, 2001.

[77] A. O. Hero, B. Ma, O. J. J. Michel, and J. Gorman. Applications of entropic spanning
graphs. Medical Image Analysis for the Clinic: A Grand Challenge, 19(5):85–95, 2002.

[78] D. L. G. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes. Medical image regis-
tration. Physics in Medicine and Biology, 46:R1–R45, 2001.

[79] P.-W. Hsu, R. W. Prager, A. H. Gee, and G. M. Treece. Freehand 3D Ultrasound
Calibration: A Review. In Advanced Imaging in Biology and Medicine, pages 47–84.
Springer Berlin Heidelberg, Berlin, Heidelberg, Jan. 2009.

[80] L. Ibanez, W. Schroeder, L. Ng, and J. Cates. The ITK Software Guide: ITK V2.0.
Kitware Inc, Clifton Park, NY, USA, 2005.

[81] I. Isgum, M. Staring, A. Rutten, M. Prokop, M. A. Viergever, and B. van Ginneken.
Multi-Atlas-Based Segmentation With Local Decision Fusion—Application to Car-
diac and Aortic Segmentation in CT Scans. IEEE Transactions on Medical Imaging,
28(7):1000–1010, 2009.

[82] D. Jaffray, P. Kupelian, T. Djemil, and R. M. Macklis. Review of image-guided
radiation therapy. Expert Review of Anticancer Therapy, 7(1):89–103, 2007.

[83] A. S. Jakola, K. S. Myrmel, R. Kloster, S. H. Torp, S. Lindal, G. Unsgård, and
O. Solheim. Comparison of a Strategy Favoring Early Surgical Resection vs a Strategy
Favoring Watchful Waiting in Low-Grade Gliomas. Jama, 308(18):1881–1888, Nov.
2012.

[84] A. S. Jakola, G. Unsgård, and O. Solheim. Quality of life in patients with intracranial
gliomas: the impact of modern image-guided surgery: Clinical article. Journal of
neurosurgery, 2011.

[85] S. Ji, Z. Wu, A. Hartov, D. W. Roberts, and K. D. Paulsen. Mutual-information-based
image to patient re-registration using intraoperative ultrasound in image-guided neu-
rosurgery. Medical Physics, 35(10):4612–4624, Oct. 2008.



References 183

[86] S. Joshi, B. Davis, M. Jomier, and G. Gerig. Unbiased diffeomorphic atlas con-
struction for computational anatomy. NeuroImage, 23, Supplement 1(0):S151–S160,
2004.

[87] B. Karaçali. Information Theoretic Deformable Registration Using Local Image In-
formation. International Journal of Computer Vision, 72(3):219–237, 2007.

[88] Z. Karimaghaloo, H. Rivaz, D. L. Arnold, D. L. Collins, and T. Arbel. Adaptive Voxel,
Texture and Temporal Conditional Random Fields for Detection of Gad-Enhancing
Multiple Sclerosis Lesions in Brain MRI. In Medical Image Computing and Computer-
Assisted Intervention - MICCAI 2013, volume 8151, pages 543–550. Springer Berlin
Heidelberg, 2013.

[89] Y. Keller and A. Averbuch. Fast motion estimation using bidirectional gradient
methods. IEEE Transactions on Image Processing, 13(8):1042–1054, 2004.

[90] A. Klein, J. Andersson, B. A. Ardekani, J. Ashburner, B. Avants, M.-C. Chiang, G. E.
Christensen, D. L. Collins, J. Gee, P. Hellier, J. H. Song, M. Jenkinson, C. Lepage,
D. Rueckert, P. Thompson, T. Vercauteren, R. P. Woods, J. J. Mann, and R. V.
Parsey. Evaluation of 14 nonlinear deformation algorithms applied to human brain
MRI registration. NeuroImage, 46(3):786–802, 2009.

[91] S. Klein, M. Staring, K. Murphy, M. A. Viergever, and J. P. W. Pluim. elastix: a
toolbox for intensity-based medical image registration. IEEE Transactions on Medical
Imaging, 29(1):196–205, 2010.

[92] R. K. S. Kwan, A. C. Evans, and G. B. Pike. MRI simulation-based evaluation of
image-processing and classification methods. IEEE Transactions on Medical Imaging,
18(11):1085–1097, 1999.

[93] M. M. J. Letteboer, P. W. A. Willems, M. A. Viergever, and W. J. Niessen. Brain shift
estimation in image-guided neurosurgery using 3-D ultrasound. IEEE Transactions
on Biomedical Engineering, 52(2):268–276, 2005.

[94] S. Liao and A. C. Chung. Non-rigid Image Registration with Uniform Gradient
Spherical Patterns. In Medical Image Computing and Computer-Assisted Intervention
– MICCAI 2009, volume 5761, pages 696–704. Springer Berlin Heidelberg, 2009.

[95] T. Lindeberg. Scale-Space Theory in Computer Vision. Springer, Dec. 1993.

[96] F. Lindseth, T. Langø, J. Bang, and T. A. Nagelhus Hernes. Accuracy evaluation of
a 3D ultrasound-based neuronavigation system. Computer Aided Surgery, 7(4):197–
222, 2002.



References 184

[97] F. Lindseth, T. Langø, T. Selbekk, R. Hansen, I. Reinertsen, C. Askeland, O. Solheim,
G. Unsgård, R. Mårvik, and T. A. N. Hernes. Ultrasound-Based Guidance and
Therapy. In Advancements and Breakthroughs in Ultrasound. InTech, 2013.

[98] F. Lindseth, G. A. Tangen, T. Langø, and J. Bang. Probe calibration for freehand
3-D ultrasound. Ultrasound in medicine & biology, 29(11):1607–1623, Nov. 2003.

[99] D. Loeckx, P. Slagmolen, F. Maes, D. Vandermeulen, and P. Suetens. Nonrigid Image
Registration Using Conditional Mutual Information. IEEE Transactions on Medical
Imaging, 29(1):19–29, 2010.

[100] D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. International
Journal of Computer Vision, 60(2):91–110, Nov. 2004.

[101] B. D. Lucas and T. Kanade. An Iterative Image Registration Technique with an
Application to Stereo Vision. In Proceedings of Image Understanding Workshop,
pages 121–130, 1981.

[102] F. Maes, D. Vandermeulen, and P. Suetens. Comparative evaluation of multiresolu-
tion optimization strategies for multimodality image registration by maximization of
mutual information. Medical Image Analysis, 3(4):373–386, 1999.

[103] J. B. A. Maintz and M. A. Viergever. A Survey of medical Image registration. Medical
Image Analysis, 2(1):1–36, 1998.

[104] D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, and W. Eubank. PET-CT
image registration in the chest using free-form deformations. IEEE Transactions on
Medical Imaging, 22(1):120–128, 2003.

[105] J. C. Mazziotta, A. W. Toga, A. Evans, P. Fox, and J. Lancaster. A Probabilistic
Atlas of the Human Brain: Theory and Rationale for Its Development. NeuroImage,
2(2):89–101, June 1995.

[106] M. Mellor and M. Brady. Non-rigid Multimodal Image Registration Using Local
Phase. In Medical Image Computing and Computer-Assisted Intervention - MICCAI
2004, volume 3216, pages 789–796. Springer Berlin Heidelberg, 2004.

[107] L. Mercier. Ultrasound-guided brain tumor resection. PhD thesis, McGill University,
Montreal.

[108] L. Mercier, R. F. Del Maestro, K. Petrecca, D. Araujo, C. Haegelen, and D. L.
Collins. Online database of clinical MR and ultrasound images of brain tumors.
Medical Physics, 39(6):3253–3261, May 2012.



References 185

[109] L. Mercier, R. F. Del Maestro, K. Petrecca, A. Kochanowska, S. Drouin, C. X. B.
Yan, A. L. Janke, S. J.-S. Chen, and D. L. Collins. New prototype neuronavigation
system based on preoperative imaging and intraoperative freehand ultrasound: sys-
tem description and validation. International Journal of Computer Assisted Radiology
and Surgery, 6(4):507–522, 2011.

[110] L. Mercier, V. Fonov, C. Haegelen, R. F. Del Maestro, K. Petrecca, and D. L. Collins.
Comparing two approaches to rigid registration of three-dimensional ultrasound and
magnetic resonance images for neurosurgery. International Journal of Computer
Assisted Radiology and Surgery, 7(1):125–136, Jan. 2012.

[111] L. Mercier, T. Langø, F. Lindseth, and L. D. Collins. A review of calibration
techniques for freehand 3-D ultrasound systems. Ultrasound in medicine & biology,
31(2):143–165, Feb. 2005.

[112] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 27(10):1615–1630, Oct.
2005.

[113] M. I. Miller, A. Trouvé, and L. Younes. On the metrics and Euler-Lagrange equations
of computational anatomy. Annual Review of Biomedical Engineering, 4(1):375–405,
Aug. 2002.

[114] K. Murphy, B. van Ginneken, S. Klein, M. Staring, B. de Hoop, M. A. Viergever, and
J. P. W. Pluim. Semi-automatic construction of reference standards for evaluation of
image registration. 15(1):71–84, 2011.

[115] K. Murphy, B. van Ginneken, J. M. Reinhardt, S. Kabus, K. Ding, X. Deng, K. Cao,
K. Du, G. E. Christensen, V. Garcia, T. Vercauteren, N. Ayache, O. Commow-
ick, G. Malandain, B. Glocker, N. Paragios, N. Navab, V. Gorbunova, J. Sporring,
M. de Bruijne, X. Han, M. P. Heinrich, J. A. Schnabel, M. Jenkinson, C. Lorenz,
M. Modat, J. R. McClelland, S. Ourselin, S. E. A. Muenzing, M. A. Viergever,
D. De Nigris, D. L. Collins, T. Arbel, M. Peroni, R. Li, G. C. Sharp, A. Schmidt-
Richberg, J. Ehrhardt, R. Werner, D. Smeets, D. Loeckx, G. Song, N. Tustison,
B. Avants, J. C. Gee, M. Staring, S. Klein, B. C. Stoel, M. Urschler, M. Werlberger,
J. Vandemeulebroucke, S. Rit, D. Sarrut, and J. P. W. Pluim. Evaluation of Reg-
istration Methods on Thoracic CT: The EMPIRE10 Challenge. IEEE Transactions
on Medical Imaging, 30(11):1901–1920, 2011.

[116] A. Nabavi, N. Hata, D. Gering, E. Chatzidakis, M. Leventon, N. Weisenfeld, R. Per-
golizzi, K. Oge, P. Black, F. Jolesz, and R. Kikinis. Image Guided Neurosurgery
Visualization of Brain Shift. pages 17–26, July 1999.



References 186

[117] R. N. Nagel and A. Rosenfeld. Ordered search techniques in template matching. In
Proceedings of the IEEE, pages 242–244, 1972.

[118] F. P. M. Oliveira and J. M. R. S. Tavares. Medical image registration: a review.
Computer methods in biomechanics and biomedical engineering, 17(2):73–93, 2014.

[119] B. N. Oreshkin and T. Arbel. Uncertainty Driven Probabilistic Voxel Selection for
Image Registration. IEEE Transactions on Medical Imaging, 32(10):1777–1790, 2013.

[120] R. P, S. DW, and A. JR. Image-guided radiosurgical ablation of intra- and extra-
cranial lesions. Technology in cancer research & treatment, 5(4):421–428, Aug. 2006.

[121] X. Pennec, P. Cachier, and N. Ayache. Understanding the "Demon’s Algorithm":
3D Non-rigid Registration by Gradient Descent. In Medical Image Computing and
Computer-Assisted Intervention – MICCAI’99, volume 1679, pages 597–605. Springer
Berlin Heidelberg, 1999.

[122] G. P. Penney, J. Weese, J. A. Little, P. Desmedt, D. L. G. Hill, and D. J. Hawkes.
A comparison of similarity measures for use in 2-D-3-D medical image registration.
IEEE Transactions on Medical Imaging, 17(4):586–595, 1998.

[123] J. P. W. Pluim and J. M. Fitzpatrick. Image registration. IEEE Transactions on
Medical Imaging, 22(11):1341–1343, 2003.

[124] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever. Image Registration by
Maximization of Combined Mutual Information and Gradient Information. IEEE
Transactions on Medical Imaging, 19(8):809–814, 2000.

[125] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever. Mutual-Information Based
Registration of Medical Images: A Survey. IEEE Transactions on Medical Imaging,
22(8):986–1004, 2003.

[126] T. C. Poon and R. N. Rohling. Comparison of calibration methods for spatial tracking
of a 3-D ultrasound probe. Ultrasound in medicine & biology, 31(8):1095–1108, Aug.
2005.

[127] K. Popuri, D. Cobzas, and M. Jägersand. A Variational Formulation for Discrete
Registration. In Medical Image Computing and Computer-Assisted Intervention -
MICCAI 2013, volume 8151, pages 187–194. Springer Berlin Heidelberg, 2013.

[128] S. J. Reeves and R. Hezar. Selection of observations in magnetic resonance spectro-
scopic imaging. In Image Processing, 1995. Proceedings., International Conference
on, pages 641–644. IEEE Comput. Soc. Press, 1995.



References 187

[129] I. Reinertsen, F. Lindseth, G. Unsgård, and D. L. Collins. Clinical validation of vessel-
based registration for correction of brain-shift. Medical Image Analysis, 11(6):673–
684, 2007.

[130] M. H. T. Reinges, H. H. Nguyen, T. Krings, B. O. Hütter, V. Rohde, and J. M. Gils-
bach. Course of brain shift during microsurgical resection of supratentorial cerebral
lesions: limits of conventional neuronavigation. Acta Neurochirurgica, 146(4):369–
377, Apr. 2004.

[131] M. Reuter, N. J. Schmansky, H. D. Rosas, and B. Fischl. Within-subject template
estimation for unbiased longitudinal image analysis. NeuroImage, 61(4):1402–1418,
July 2012.

[132] H. Rivaz, Z. Karimaghaloo, and D. L. Collins. Self-similarity weighted mutual
information: A new nonrigid image registration metric. Medical Image Analysis,
18(2):343–358, Feb. 2014.

[133] H. Rivaz, Z. Karimaghaloo, V. S. Fonov, and D. L. Collins. Nonrigid Registration
of Ultrasound and MRI Using Contextual Conditioned Mutual Information. IEEE
Transactions on Medical Imaging, 33(3):708–725, 2014.

[134] D. W. Roberts, A. Hartov, F. E. Kennedy, M. I. Miga, and K. D. Paulsen. Intraoper-
ative Brain Shift and Deformation: A Quantitative Analysis of Cortical Displacement
in 28 Cases. Neurosurgery, 43(4):749, Oct. 1998.

[135] A. Roche, G. Malandain, N. Ayache, and S. Prima. Towards a better comprehension
of similarity measures used in medical image registration. In Medical Image Comput-
ing and Computer-Assisted Intervention - MICCAI’99, volume 1679, pages 555–566.
Springer Berlin Heidelberg, 1999.

[136] A. Roche, X. Pennec, G. Malandain, and N. Ayache. Rigid Registration of 3D Ul-
trasound with MR Images: A New Approach Combining Intensity and Gradient
Information. IEEE Transactions on Medical Imaging, 20(10):1038–1049, 2001.

[137] T. Rohlfing. Image Similarity and Tissue Overlaps as Surrogates for Image Registra-
tion Accuracy: Widely Used but Unreliable. IEEE Transactions on Medical Imaging,
31(2):153–163, 2012.

[138] T. Rohlfing, C. R. Maurer Jr, D. A. Bluemke, and M. A. Jacobs. Volume-Preserving
Nonrigid Registration of MR Breast Images Using Free-Form Deformation With an
Incompressibility Constraint. IEEE Transactions on Medical Imaging, 22(6):730–741,
2003.



References 188

[139] T. Rohlfing, E. V. Sullivan, and A. Pfefferbaum. Subject-Matched Templates for
Spatial Normalization. In Medical Image Computing and Computer-Assisted Inter-
vention – MICCAI 2009, volume 5762, pages 224–231. Springer Berlin Heidelberg,
2009.

[140] R. Rohling, A. Gee, and L. Berman. A comparison of freehand three-dimensional
ultrasound reconstruction techniques. Medical Image Analysis, 3(4):339–359, Dec.
1999.

[141] R. N. Rohling. 3D freehand ultrasound: reconstruction and spatial compounding. PhD
thesis, Cambridge, 1998.

[142] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes.
Nonrigid Registration Using Free-Form Deformations: Application to Breast MR
Images. IEEE Transactions on Medical Imaging, 18(8):712–721, 1999.

[143] D. B. Russakoff, C. Tomasi, T. Rohlfing, and C. R. Maurer Jr. Image Similarity
Using Mutual Information of Regions. ECCV, pages 596–607, 2004.

[144] M. R. Sabuncu and P. J. Ramadge. Gradient based nonuniform subsampling for
information-theoretic alignment methods. In Engineering in Medicine and Biology
Society, 2004. IEMBS ’04. 26th Annual International Conference of the IEEE, pages
1683–1686. IEEE, 2004.

[145] M. R. Sabuncu, B. T. T. Yeo, K. Van Leemput, B. Fischl, and P. Golland. A
Generative Model for Image Segmentation Based on Label Fusion. IEEE Transactions
on Medical Imaging, 29(10):1714–1729, 2010.

[146] M. R. Sabuncu, B. T. T. Yeo, K. Van Leemput, T. Vercauteren, and P. Gol-
land. Asymmetric Image-Template Registration. In Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2009, volume 5761, pages 565–573.
Springer Berlin Heidelberg, 2009.

[147] C. A. Saether, M. Torsteinsen, S. H. Torp, S. Sundstrøm, G. Unsgård, and O. Sol-
heim. Did Survival Improve after the Implementation of Intraoperative Neuronav-
igation and 3D Ultrasound in Glioblastoma Surgery? A Retrospective Analysis of
192 Primary Operations. Journal of Neurological Surgery Part A: Central European
Neurosurgery, 73(02):073–078, Mar. 2012.

[148] N. Sanai and M. S. Berger. Operative techniques for gliomas and the value of extent
of resection. Neurotherapeutics, 6(3):478–486, July 2009.

[149] J. A. Schnabel, C. Tanner, A. D. Castellano-Smith, A. Degenhard, M. O. Leach,
D. R. Hose, D. L. G. Hill, and D. J. Hawkes. Validation of nonrigid image registration



References 189

using finite-element methods: application to breast MR images. IEEE Transactions
on Medical Imaging, 22(2):238–247, Feb. 2003.

[150] R. Shams, R. A. Kennedy, P. Sadeghi, and R. Hartley. Gradient Intensity-Based
Registration of Multi-Modal Images of the Brain. In Computer Vision, 2007. ICCV
2007. IEEE 11th International Conference on, pages 1–8. IEEE, 2007.

[151] R. Shams, P. Sadeghi, and R. A. Kennedy. Gradient Intensity: A New Mutual
Information-Based Registration Method. In Computer Vision and Pattern Recogni-
tion, 2007. CVPR ’07. IEEE Conference on, pages 1–8. IEEE, 2007.

[152] D. W. Shattuck, M. Mirza, V. Adisetiyo, C. Hojatkashani, G. Salamon, K. L. Narr,
R. A. Poldrack, R. M. Bilder, and A. W. Toga. Construction of a 3D probabilistic
atlas of human cortical structures. NeuroImage, 39(3):1064–1080, Feb. 2008.

[153] E. Shechtman and M. Irani. Matching Local Self-Similarities across Images and
Videos. In Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Con-
ference on. IEEE, 2007.

[154] R. Sibson. Studies in the Robustness of Multidimensional Scaling: Procrustes Statis-
tics. Journal of the Royal Statistical Society. Series B (Methodological), 40(2):pp.
234–238, 1978.

[155] P. J. Slomka and R. P. Baum. Multimodality image registration with software: state-
of-the-art. European Journal of Nuclear Medicine and Molecular Imaging, 36(1):44–
55, Mar. 2009.

[156] O. V. Solberg, F. Lindseth, H. Torp, R. E. Blake, and T. A. Nagelhus Hernes. Free-
hand 3D Ultrasound Reconstruction Algorithms—A Review. Ultrasound in medicine
& biology, 33(7):991–1009, July 2007.

[157] O. Solheim, T. Selbekk, A. S. Jakola, and G. Unsgård. Ultrasound-guided operations
in unselected high-grade gliomas—overall results, impact of image quality and patient
selection. Acta Neurochirurgica, 152(11):1873–1886, Nov. 2010.

[158] M. P. Sormani, L. Bonzano, L. Roccatagliata, G. R. Cutter, G. L. Mancardi, and
P. Bruzzi. Magnetic resonance imaging as a potential surrogate for relapses in multiple
sclerosis: A meta-analytic approach. Annals of Neurology, 65(3):268–275, Mar. 2009.

[159] R. Sprengel, K. Rohr, and H. S. Steihl. Thin-plate spline approximation for im-
age registration. In Proceedings of the 18th International Conference of the IEEE
Engineering in Medicine and Biology Society, 1996.

[160] M. Staring, S. Klein, and J. P. W. Pluim. A rigidity penalty term for nonrigid
registration. Medical Physics, 34(11):4098–4108, 2007.



References 190

[161] M. Staring, U. A. van der Heide, S. Klein, M. A. Viergever, and J. P. W. Pluim. Regis-
tration of Cervical MRI Using Multifeature Mutual Information. IEEE Transactions
on Medical Imaging, 28(9):1412–1421, 2009.

[162] L. H. Stieglitz, J. Fichtner, R. Andres, P. Schucht, A.-K. Krähenbühl, A. Raabe, and
J. Beck. The Silent Loss of Neuronavigation Accuracy: A Systematic Retrospective
Analysis of Factors Influencing the Mismatch of Frameless Stereotactic Systems in
Cranial Neurosurgery. Neurosurgery, 72(5):796–807, May 2013.

[163] N. K. Subbanna, D. Precup, D. L. Collins, and T. Arbel. Hierarchical probabilistic
Gabor and MRF segmentation of brain tumours in MRI volumes. In Medical Image
Computing and Computer-Assisted Intervention - MICCAI 2013, volume 8149, pages
751–758. Springer Berlin Heidelberg, 2013.

[164] R. Szeliski. Image alignment and stitching: A tutorial. Technical report, Dec. 2004.

[165] P. Thevenaz and M. Unser. An efficient mutual information optimizer for multires-
olution image registration. In Proceedings of the International Conference on Image
Processing (ICIP 98), 1998.

[166] P. Thevenaz and M. Unser. Optimization of mutual information for multiresolution
image registration. IEEE Transactions on Image Processing, 9(12):2083–2099, 2000.

[167] J. P. Thirion. Image matching as a diffusion process: an analogy with Maxwell’s
demons. Medical Image Analysis, 2(3):243–260, Sept. 1998.

[168] A. Trouvé. Diffeomorphisms groups and pattern matching in image analysis. Inter-
national Journal of Computer Vision, 28(3):213–221, 1998.

[169] M. Unser, A. Aldroubi, and M. Eden. B-Spline Signal Processing: Part I–Theory.
IEEE Transactions on Signal Processing, 41(2):821–833, 1993.

[170] G. Unsgaard, S. Ommedal, T. Muller, A. Gronningsaeter, and T. A. Nagelhus Hernes.
Neuronavigation by Intraoperative Three-dimensional Ultrasound: Initial Experience
during Brain Tumor Resection. Neurosurgery, 50(4):804, Apr. 2002.

[171] T. Vercauteren, X. Pennec, and A. Perchant. Non-parametric diffeomorphic image
registration with the demons algorithm. In Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2007, volume 4792, pages 319–326. Springer Berlin
Heidelberg, 2007.

[172] P. Viola and W. M. Wells III. Alignment by Maximization of Mutual Informa-
tion. In Proceedings of the 5th IEEE International Conference on Computer Vision
(ICCV1995), pages 16–23, Cambridge, MA, USA, June 1995. IEEE Computer Soci-
ety.



References 191

[173] G. Wahba. Spline Models for Observational Data. SIAM, Sept. 1990.

[174] H. Wang, L. Dong, J. O’Daniel, R. Mohan, A. S. Garden, K. K. Ang, D. A. Kuban,
M. Bonnen, J. Y. Chang, and R. Cheung. Validation of an accelerated ’demons’
algorithm for deformable image registration in radiation therapy. Physics in Medicine
and Biology, 50(12):2887–2905, June 2005.

[175] H. Wang, J. W. Suh, S. R. Das, J. B. Pluta, C. Craige, and P. A. Yushkevich. Multi-
Atlas Segmentation with Joint Label Fusion. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(3):611–623, 2013.

[176] W. M. Wells III, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis. Multi-modal
volume registration by maximization of mutual information. Medical Image Analysis,
1(1):35–51, Mar. 1996.

[177] J. West, J. M. Fitzpatrick, M. Y. Wang, B. M. Dawant, C. R. J. Maurer, R. M.
Kessler, R. J. Maciunas, C. Barillot, D. Lemoine, A. Collignon, F. Maes, P. Suetens,
D. Vandermeulen, P. A. van den Elsen, S. Napel, T. S. Sumanaweera, B. Hark-
ness, P. F. Hemler, D. L. Hill, D. J. Hawkes, C. Studholme, J. B. Maintz, M. A.
Viergever, G. Malandain, and R. P. Woods. Comparison and evaluation of retrospec-
tive intermodality brain image registration techniques. Journal of Computer Assisted
Tomography, 21(4):554–566, July 1997.

[178] World Health Organization and M. S. I. Federation. Atlas : multiple sclerosis re-
sources in the world 2008. Geneva : World Health Organization, 2008.

[179] C. Wu, P. E. Murtha, and B. Jaramaz. Femur statistical atlas construction based on
two-level 3D non-rigid registration. Computer Aided Surgery, 14(4-6):83–99, 2009.

[180] P. A. Yushkevich, B. B. Avants, S. R. Das, J. Pluta, M. Altinay, and C. Craige.
Bias in estimation of hippocampal atrophy using deformation-based morphometry
arises from asymmetric global normalization: An illustration in ADNI 3 T MRI
data. NeuroImage, 50(2):434–445, Apr. 2010.

[181] P. A. Yushkevich, B. B. Avants, J. Pluta, S. Das, D. Minkoff, D. Mechanic-Hamilton,
S. Glynn, S. Pickup, W. Liu, J. C. Gee, M. Grossman, and J. A. Detre. A high-
resolution computational atlas of the human hippocampus from postmortem magnetic
resonance imaging at 9.4 T. NeuroImage, 44(2):385–398, 2009.

[182] B. Zitova and J. Flusser. Image Registration Methods: A Survey. Image and Vision
Computing, 21(11):977–1000, 2003.


