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ABSTRACT 

In this thesis we introduce Brauer's induction theorem and its application 
to Artin's £-functions. We also see several zeta functions, including Artin's 
£-functions, and their relations. 

"' "' RES'lJME 

Dans cette these nous introduisons le theoreme induction de Brauer et son 
application aux fonctions L d'Artin. Nous faisons aussi une etude de plusieur 
fonctions zeta, inclus les fonctions L d'Artin, et leurs relations. 
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1 Introduction 

Many special functions named zeta functions have been defined since the 
nineteenth century. We will state four key points about them. We will see 
some of them more precisely in chapter 3. 

I) The method of defining zeta-functions 
11) The properties of zeta-functions. 

Normally, a zeta-function has the following properties. 
(1) It is a single-valued meromorphic function. 
(2) It is expressed as Dirichlet series. 
(3) It has an Euler's infinite product representation. 
( 4) It satisfies a functional equation. Moreover, it is important to decide 
the poles, residues and zeros of a zeta-function. 

Ill) The applications of zeta-functions to Number Theory. 
IV) The relations between zeta-functions. 

Here as an introduction, we will classify the main zeta-functions which have 
been defined at present. 
1) The zeta-functions and the £-functions of algebraic number fields: 

Riemann zeta-function, Dirichlet zeta-function, Hecke .£-function, Hecke 
£-function with Grossenchaxacter x, Artin £-function, Weil £-function 

2) P -adic L-functions 
3) The zeta functions of quadratic forms: 

Epstein zeta function, the zeta functions of indefinite quadratic form 
by C. L. Siegel. 

4) The zeta functions and £-functions of algebras: 
Hey zeta function, The zeta functions and £-functions of R. Godement 
and Tsuneo Tamagawa. 

5) The zeta functions defined by Hecke operators: 
6) The zeta functions and £-functions of algebraic varieties defined over finite 

fields and the zeta functions and L functions of a scheme. 
7) Hasse zeta function 
8) The zeta functions attached to discontinuous groups: 

Selberg zeta function, Eisenstein series by A. Selberg, Godement, and 
I. M. Gel'fand. 

9) Ihaxa zeta function. 
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10) The zeta functions of prehomogeneous vector spaces. 

These zeta functions or L-functions are related to one another. 
In this paper, we will prove Brauer's induction theorem and see its applica­
tion to the Artin L-functions and lastly mention the Dedekind conjecture. 

5 



0 

c 

2 Brauer's Induction Theorem 

We will introduce a theorem proved by Brauer in 1947. This theorem has 
a lot of important applications. We will see one of the applications later. 
Before starting to state and prove the theorem, we need some preparations. 

2.1. Preliminaries 

Let /rr(G) denote the set of irreducible characters of a finite group G. 
Suppose that 

Irr(G) = {X1,X2, ... ,xh}, 

where his the number of the conjugacy classes of G. 
We call a linear combination with integer coefficients of x1, ... , Xh 

h 

L ~Xi ( ai E Z) a general character of G. 
i=l 
Let Clz(G) denote the set of general characters of G. 

h 

If ~ ~ 0 for i = 1, ... , h, then L aiXi is a character of a representation of 
i=l 

G. 
Since XiXj is also a character of G, we have 

XiXi E Clz(G). 

Therefore, we see Clz( G) is a ring with identity la, where la is a identity 
character. 
We call Clz(G) the character ring of G. 
Let Cl(G) denote the set of class functions of G, and let C(G) denote the 
set of complex valued functions on G. 

Definition 1 If a subgroup E of G can be expressed as E = P x C, where P 
is a p-group with a prime number p, and C is a cyclic group s.t. (ICI,p) = 1, 
then E is called an elementary subgroup of G. 

An elementary subgroup is a nilpotent group. 
Let ea denote the set of all elementary subgroups of G. 
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Let H be a subgroup of G. For x E G and f E C(H), put 

f(x) = { [(x) if X EH 
otherwise 

Let x be a character of a representation of Hover C. 
Then, we call 

the induced character of x. Put 

R(G,ea) = {f E Cl(G)I fiE E Clz(E) for VE E ea} 

and 

I(G,ea) = {f E Cl( G) If= l:aicpa, 'PiE lrr(Ei), Ei E ea} 
i 

i.e. the set of a linear combination with integer coefficients of the induced 
character 'PiG of an irreducible character 'Pi of an elementary subgroup Ei· 
Clearly, we have 

I(G,ea) ~ Clz(G) ~ R(G,ea). 

If we define, for f,g E R(G,ea) and x E G, 

(f + g)(x) = f(x) + g(x) 

(f g)(x) = f(x)g(x) , 

then R(G,ea) is a commutative ring with identity la. 

Lemma 1 If Hand K are subgroups of a finite group G, then 

(i) cpa'lj; = (cp'I/JH)G for cp E Cl(H) and 7/J E Cl(G). 

(ii) cpKG = cpG if H ~ K and cp E Cl(H). 

7 



Proof) (i) 

(ii) PutT= tpK. Then, 

G 1 1 
f.PK (x) = TG(x) = ]K] 2:: To(y-lxy) = JKIIHI 2:: 2:: tpo(a-ly-lxya) 

yEC yECaEK 

Lemma 2 

0 I(G,ca) is an ideal of R(G,cc). 

Proof) Put 
f.P = Laif.PP E I(G, ea), 

i 

where Ui E Z, f.Pi E lrr(Ei) and Ei E cc. 

For(} E R(G,cc), by Lemma 1 (i) we have 

{}tp = LO-i(}l.piG = LO-i(tpi(}E,f· 

Since 

we have 

Then, 
Otp E I(G,ca). 

Therefore, I(G, cc) is an ideal of R(G, cc). 
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Let N be a normal subgroup of G. 

Definition 2 We say that f)X E C(N) is a conjugate of f) E C(N) with 
respect to G if fJx(y) = fJ(xyx- 1) for Vy EN. 

We define the inner product on C( G) by 

1 -
(f,g) 0 = -IGI L f(x)g(x) for f,g E C(G). 

xEG 

There is an important result about the decomposition of XN, where x is an 
irreducible character of G, namely Clifford's Theorem. 

Theorem 1 (Clifford's Theorem) Let N be a normal subgroup of G. Let 
x E Irr(G) and let fJ E Irr(N) s.t. fJ is a component ofXN· Let fJ1, ... ,Bt 
be conjugates of f) with respect to G. Then, we have 

t 

XN=eLfJi, e=(xN,fJ)N 
i=1 

We need the following Lemma to show Theorem 1. 

Lemma 3 Let G I> N, t.p, 1/J E Cl(N), x E G. Then, the following (i)-(iv) 
hold. 

(i) t.px E Cl(N) 
(ii) (~,1/Jx)N = (t.p,'l/J)N 
(iii) If X E Cl(N), then (XN, t.px) = (XN, 'P)N 
( iv) If t.p is a character of N, then ~ is a character of N 

Proof) 
(i) For y and z E N, putting z' = xzx- 1 EN, we have 

t.px(zyz- 1
) = t.p(xzy(xz)- 1

) = t.p(z'xyx- 1z'- 1
) = t.p(xyx- 1) = t.px(y) . 

Therefore, ~ E Cl(N). 
(ii) We have 
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If y runs over all elements of N, then xyx-1 runs over all elements of N. 
Therefore, 

1 -
(*) = ]NI L 4'(Y)'l/J(y) = (<p,'l/J)N. 

yEN 

(iii) If x E Cl( G), then XNx = XN· By (ii), we have 

(XN,4'x)N = (XNx,4'x)N = (XN,4')N · 

( iv) If 4' is the character of the matrix representation y ~------+ R(y) for y E N, 
then y ~------+ R(xyx-1) for y E N is also a representation of N, and the char­
acter is~-

The proof of Theorem 1) 
Put e = (XN,8). By (iii) of Lemma 3, 

e = (XN,8i)N for i = 1,2, . .. ,t. 

To show this theorem, it's sufficient to show that the irreducible characters 
of N whichi are included in XN are 81, 82, ... , 8 N only. 
By Frobenius reciprocity law, 

Then, 
8° = ex + . . . and 8° IN = exN + . . . ( *) . 

On the other hand, forgE C(H), by 

gG(x) = 1~1 ~ l(y-1xy) ' 

if nE N, then we have 

INI8°(n) = L 8°(xnx- 1
) = L 8(xnx-1) = L 8x(n) . 

xEG xEG xEG 

Therefore, the irreducible characters of N included in 8°IN are only the con­
jugates of e. By(*), the irreducible characters of N included in XN are only 
the conjugates of e. 
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Put 
Ia(O) = {x E G I ox= 0 }. 

Ia(O) is a subgroup of G s.t. N c Ia(O). 
We call it the inertial group of(} with respect to G. We know that the number 
of the conjugates of G is [G: Ia(O)J. We have the following theorem. 

Theorem 2 Let G I> N, Irr(N) ~ 0 and T =la( B). Put 

Sr = {-zP E Irr(T)I ('!j7,0T) # 0} 

and 
Sa= {x E Irr(G)I (x,Oa) # 0} 

Then, -zP ~ -zPa is a bijection map from Sr to Sa. If N = Ia(O), then 0° 
is an irreducible character or G. 

Proof) Let x be an irreducible component of 'lj7a, where -zP E Sr. By 
Frobenious reciprocity theorem, 'lj7 is an irreducible component of XT· 
Let Ot, 82, ... , Ot (t = [G : T]) be the set of all conjugates of 0 with respect 
to G. 
By Theorem 1, we have 

t 

XN = ei:Oi, e = (XN,O). 
i=l 

Since the conjugate of (} with respect to T is only (}, by Theorem 1, we have 

-zPN = JO, f = (-zPN, 0). 

Since -zP is an irreducible component, f ~e. 
Then, we have 

et0(1) = x(1)~'!j7°(1) = 'l,6(1)t = ft0(1)$et0(1) 

Therefore, these inequalities become equalities, namely, 

and 
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By ( *), x = 'lj;G i.e. 'lj;G is an irreducible character of G. Since 

we have 'lj;G E E>c. Then, 'lj; ~-----* 'lj;G is well defined. 
To show that this map is injective, let 

'PG= 'lj;G = x, where r.p, 'lj; E E>r. 

By(**), we have 

If r.p "1- 'lj;, then 
(XN,(}) ~ ((r.p+'lj;)N,(}) = 2e. 

This is a contradiction. Then, 'lj; ~-----* '1/JG ( 'lj; E E>r) is an injection. 
To show that this map is surjective, let X E E>G. 
Since (x, (JG) = (XN, 0) "1- 0, :3 an irreducible component 'lj; of XT s.t. 

We have 'lj; E E>r. By Frobenius reciprocity theorem, 

and since 'lj;G E E>c, we have 'lj;G =X· Therefore, 'lj; ~-----* 'lj;G ('lj; E E>r) is 
surjective. 

If p is an induced representation of 1-dimensional representation of a sub­
group of G, then we call p a monomial representation. If an irreducible 
character p is not an induced character of any proper subgroup of G, we call 
p primitive. 

Lemma 4 Let G I> N and let x be a primitive character of G. Then, the 
following hold: 

(i) :la E Z and :J'lj; E lrr(N) s.t. a> 0 and XN = a'ljJ 

(ii) If N is abelian and xis injedive, then N ~ Z(G). 
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Proof) 
(i) By Theorem 1 (Clifford's Theorem), we can assume that 

t 

XN = e Lei, where e = (XN,B)N and ei E Irr(N). 
i=l 

It is sufficient to show that t = 1. By Theorem 2, 

Since xis primitive, we have G = Ia(BI), namely, t = 1. 
(ii) By (i), we have XN =eO where e E Irr(N). Since N is an abelian group, 
0 is a character of degree 1. Moreover, since X is injective, we haveN~ Z(G). 

Now we will explain Mackey Decomposition Theorem. 
Let k be a field and k[G] a group ring of G. 
For a subgroup H of G and a left k[G]-module U, let UH denote U as a left 
k[H]-module. 
Let 

V0 = k[G] ®k[HJ V 

be an induced module of a left k[H]-module V, and let (V0 )K be the restric­
tion to K of V0 , where K is a subgroup of G. 
Then, Mackey Decomposition is the direct sum decomposition of (V0 ) K into 
k[K]-modules. 
What we need here is a special case of Mackey Decomposition and we will 
describe it. 
If G acts on an finite set n, then we have the permutation representation p. 

Let x be the character of p. Then, x(x) (x E G) is the number of the fixed 
point of n by x, namely 

x(x) = ~ {v E r!lxov = v} 

Let 0 1, 0 2 , .•. , f2t be all the orbits of n. 
Then, p is the sum of Pi ( i = 1, ... , t), where Pi are the permutation repre­
sentation from (G, ni) (i = 1, ... , t), and we have Xp = Xp1 + ... + Xpt· 
Let H be a subgroup of G and let 
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where n = [ G : H], be the left coset decomposition of G by H. 
If we let 1HG also denote the character of the permutation representation 
1HG, then we have 

Specially, if H = { 1}, then the character of the regular representation 1 G is 

if X= 1 
... (A) 

otherwise 

Now, let K be a subgroup of G and we consider the permutation represen­
taion of K by its acting on G /H. 
Let 

G = Kx1H + Kx2H + ... + KxtH 

be the double coset decomposition of G by K and H. 
For each i, the set of left cosets of H which are included in KxiH is an orbit 
of (K, G/ H), and the stabilizer of xiH is xiHxi-l n K. 
If we put 

A -1 
Ki = xiH xi n K , 

then K's action on this orbit is isomorphic to (K, K/ Ki)· We have 

t 

1HG(x) = L 1KiK(x) for x E K 
i=l 

If we let 1HGIK denote the of 1HG to K, we have 

t 

1HGIK = L lKiK ... (#) 
i=l 

This is a special case of Mackey Decomposition. 

Proposition 1 Any irreducible representation of a finite nilpotent group G 
is a monomial representation. 
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Proof) First of all, we know that if G is a non-commutative nilpotent group, 
then 3 a commutative normal subgroup N of G s.t. N is not included in 
Z(G). 
In fact, let 1 ~Z(G) ~Z2(G) ~ ... be a series and take 
a E Z2 (G) \ Z (G). Then < a, Z (G) > is a commutative normal subgroup of 
G and is not included in Z (G). 
Let x be an irreducible character of G and let K be a subgroup of G s.t. 
31/J E lrr(K) with X= 'lj!0 . 

(For example, we can take G = K and '1/J = x.) We let H denote a subgroup 
with the minimum order among the above K's. Then, His primitive by 
Lemma 1 (ii). 
Put fl = Hj Ker'lj!. Since '1/J is an injective primitive character of fl, by 
Lemma 4 (ii), a commutative normal subgroup of fl is included in Z(fl). 
Therefore, fl is an abelian group and 7/J is a !-dimensional character of H. 

Lemma 5 Suppose that a p-group acts on a finite set n with (lf!l,p) = 1. 
Then, there exists a fi:ted point a E 0 s. t. g o a = a for 'V g E G. 

Proof) 
Let the orbits of the action be Ot, ... , f!t. Then, 

Since the order of each orbit is a divisor of IGI and G is a p-group, lf!il is a 
multiple of p or 1. 
If IOil #- 1 fori= 1, ... , t, then (IOI,p) ~ p. This is a contradiction. 
Therefore, 3io E {1, ... , t} s.t. lf!io I = 1. Namely, 

3a E f! s. t. g o a = a for V g E G. 

2.2. Brauer's Induction Theorem 
Now we will introduce the Theorem. 

Theorem 3 (Brauer) (i) Clz(G) = R(G,ca) 
(ii) Any character of G can be expressed by a linear combination with in­
teger coefficients of 1-dimensional induced characters of some elementary 
subgroups. 
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To prove Theorem 3, we need to prove Theorem 4 first. Theorem 4 is as 
follows. 

Theorem 4 

I(G,ca) 3 la 

We claim that Theorem 4 implies Theorem 3. AB for (i) in Theorem 3, it's 
clear by Lemma 2. We will show that (ii) is also true under Theorem 4. 
Since I(G,ca) ~ Clz(G) ~ R(G,ca) and I(G,ca) = R(G,ca), 
we have 

Clz(G) = R(G,ca). 

Therefore we can express any character X of G by 'Eair.pp ( ai E Z) for 
'Pi E Irr(Ei), where Ei E ea. 
Since Ei is nilpotent, by Proposition 1, 'Pi is an induced character of a 1-
dimensional character Ai of a subgroup Fi of Ei i.e. 'Pi = AiEi. 

Then, 

by Lemma 1. 
Therefore, Theorem 4 implies Theorem 3. 

Now we will prove Theorem 4. At first, Theorem 4 was proved by Brauer 
in 1947, but it was complicated. Later, it was differently proved by Brauer 
and Tate in [BT], and usually this proof has been introduced in many books. 
Here we will introduce other proof by Issacs in [I]. 
First, we need some preparations and a theorem. 

Let F be a subgroup of G. 

Definition 3 We say that F is a p-quasi-elementary subgroup for the prime 
p if 

F = PC 1> C and P n C = 1, 

where P is a p-group and C is an cyclic group such that (IGI,p) = 1. 

A subgroup of a p-quasi-elementary subgroup is also a p-quasi-elementary 
subgroup. Clearly, an elementary subgroup is also quasi-elementary. 
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Let cG' denote the set of quasi-elementary subgroups of G. We put 

P(G) = {~=~1H,a[ai E Z, Hi is a subgroup of G} 
i 

P(G,ca') = {~=ai1F,a[ai E Z,Fi E cG'} 
i 

Theorem 5 (L.Solomon) P(G) = P(G,cG') 

Proof) 
We will prove this theorem with three steps (a), (/3) and ( 1). 

(a) P(G) is a ring and P(G,ca') is an ideal of P(G). 
(Proof) Let Hand K be subgroups of G and put 1KG = 0. 
By Lemma 1, we have 

1 G 1 G_(J 1 G_()G 
H"K- "H-H· 

On the other hand, by ( #), 

Then, by Lemma 3, we have 

()HG = 2::(1J(,H)G = L1K,G E P(G). 
i i 

Therefore P(G) is a ring. 
If we take an element of cG' as H, since f<i E ea', then P( G, ea') is an ideal 
of P(G). 

(/3) Let G 3 x and let p be a prime. Then, 3F E cG' s. t. p does not di­
vide 1pG(x). 

(Proof) 
Put< x >= P x C, where Pis a p-group and p does not divide [Cj. 
Putting N = Na(C), we have x EN. 
We take a Sylow p-subgroup F/C of N /C such that x E F. F is a p-quasi­
elementary subgroup. We will show that p doesn~t divide 1pG(x). We know 
that 

1pa(x) =(the number of the left cosets yF s.t. xyF = yF). 
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Then, if xyF = yF, since y- 1xy E F, we have y- 1Cy ~F. 
Since F is a p-quasi-elementary subgroup, y-1Cy = C, namely, yE N. This 
implies that 

lpa(x) = the number of the fixed points of the action of x on NI F. 

Since N 1:> C and C fixes each element of NI F, 
C ~ the kernel of the action of N on NI F . 
Since < x > I C is a p-group, we have 

[N: F] = lpa(x)( mod p) 

by considering the decomposition to the orbits of the action of x on NI F. 
Since p does not divide [N: F], p does not divide lpa(x). 

(r) 
la E P(G,cG') 

(Proof) We put 

f:x = {f(x)lf E P(G,cG')} for x E G. 

lx is a subgroup of Z. 
We will prove that 

lx = Z for \;/x E G (*). 

If, for some x E G, lx =<m>, where 1 #mE Z, then we take a prime p 

such that plm and we have 

Pif(x) for \;/fEP(G,ca,). 

But if we take F E cG' as in (/3), then 

p does not divide lpa(x) and lpa E P(G,cG' ). 

This is a contradiction. 
Therefore, ( *) holds. Then, there exists 

fx E P(G, cG') s.t. fx(x) = 1 for \;/x E G. 
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By expanding 
IT Ux- la) = 0 , 
xEG 

we have la E P(G, ea'). 
Then, by (a) and (I), we have P(G, cG') = P(G). 

Now we will prove Theorem 4. 
Proof of Theorem 4) 

It's obvious that if G is an elementary subgroup then Theorem 4 holds. 
(I) Suppose that G is quasi-elementary subgroup. 
Put G = PC 1> C, where P is a p-group and C is a cyclic group with 
(ICI,p) = L 
We aJso put Z = Cc(P) and E = ZP. We have 

G 1> Z and E E ea. 

Since we assume that G is not an elementary subgroup, we have G =J E. 
Let X be an irreducible component of i.p, where lEG = la + 'P· H we prove 
that 

X E J(G,ca), 

then 
la= lEG- 'PE J(G,ca), 

which is the conclusion. 
Now we need to show that X E J(G,ca). 
Let ). be an irreducible components of 'Plc. 
First we will show that 

>. =J le and Z ~ Ker>.. (*) 

Since G = C E and C n E = Z, by the special case ( #) of Mackey decompo­
sition, we have 

le+ 'Pc= (1E0 )c = lzc . 

1 z c is a regular representation of C / Z and, by (A) in p.l2, 

(lzc(x), le)= lc(l) = 1, 
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and lzc includes le with multiplicity 1. 
Therefore, <.pc doesn't include le and A=/:- le. 
Since E;;;;;? Z <l G, we have 

Next, we will show that 
G=f:.Ia(A) (**). 

PutT= Ia(A) and K = KerA. Suppose that G = T. 
Then, we claim that xK(x E C) is ?-invariant i.e. 

y-1(xK)y = xK for Vy E P. 

The reason is as follows. 
A is a character of degree 1 and 

Since G = T, 

Ay =A for Vy E P, i.e., A(y-1xKy) = A(xK). 

Therefore, 

i.e., xK is ?-invariant. 
Consider the action of P by conjugation on xK. Then, P has a fixed point 
on xK by Lemma 5, and 

Z n xK = Ce(P) n xK =f:. cj>. 

Since Z ~ K, we have x E K. 
Since xis an arbitrary element of C, we have K = C and A= le. This is a 
contradiction to ( * ). Then, ( **) holds. 
By Theorem 2, 

3'/,b E Irr(T) s.t. x = 1/P. 

By(**), ITI < IG\. 
Then, we may assume that 
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by the mathematical induction with respect to the order of G. 
By Lemma 1 (ii), we have 

X= 7/Ja E I(G,ea). 

(11) In the case that G is not p-quasi elementary subgroup, we will prove 
the desired result by the mathematical induction with respect to the order 
of G. 
If H is a proper subgroup of G, we may asssume that 

In particular, 
lp E J(F,cp) for VF E cG' (* * *). 

By Theorem 5, we have 

la= EailF,a, for FiE eG' and ai E Z. 

By(***) and Lemma 1, we have 

Therefore, 
la E J(G,ca). 

Theorem 3 has very important applications. The following are two of the 
most important applications. 

(i) Every Artin's L function extends to a meromorphic function on the whole 
complex plane. 
(ii)For every representation of a finite group G on C, there exist a matrix 
representation such that the components of the matrix can be included in 
Q((n), where n = IGI and (n is the n-th root of unity. 

In the next chapter, we will see (i). 
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3 Artin's £-function and Artin's conjecture 

3.1 The Riemann zeta function and Hecke £-functions 

As we see in chapter 1, we have a lot of zeta functions, which are related to one 
another. In this chapter, we will introduce three of them, namely Riemann 
zeta function, Hecke £-function and Artin's £-function. Moreover, in the 
next chapter, we will introduce one more zeta function, which is Dedekind's 
zeta function. 

In the eighteenth century, Euler had already known that the convergent 
series with a real variable s > 1 

1 1 1 1 
((s) = 1 + 2s + 3s + 4s + ... + ns + ... 

can be written as an infinite product 

IT (1- p-srl , where p runs over all primes. 
p 

This is called Euler's infinite product representation or just Euler product. 
About one hundred years after Euler, the foundation of function theory had 
been almost created by Cauchy and other mathematicians, and Riemman 
took this advantage and studied ((s) with s as a complex variable. 
We will state some properties of the Riemann zeta function ( ( s). 
(i) 

00 1 
((s) = 2:-

n=I ns 

has the abscissa of convergence 1. It converges uniformly and absolutely in 
Re(s) > 1 + 8 for every 8 > 0. 
(ii) For Re(s) > 1, we have 

1 
((s) =I} 

1 
_ p-s (Euler product) 

where p runs over all prime numbers. 
(iii) ((s) has a meromorphic continuation to the whole complex plane and 
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satisfies a functional equation, namely if r( s) is the gamma function, then 
the function 

$ s 
~(s) = 7r-2r(2)((s) 

is meromorphic in the entire s-plane, holomorphic except for simple poles at 
s = 0 and s = 1, and we have the functional equation 

~(s) = ~(1- s) . 

(iv) ((s) has no zero for Re(s) ~ 1, and ((s) has zeros with order 1 at 
s = -2, -4, ... , -2n, ... for Re(s)::; 0. 
For 0 < Re(s) < 1, ((s) has infinitely many zeros, which are called non­
trivial zeros. 
We have the famous hypothesis: 

(Riemann Hypothesis) Ifs is a non-trivial zero of ((s), then 

1 
Re(s) = 2. 

In the case of an algebraic number field, we obtain the generalization of the 
Riemann zeta function, namely Dedekind zeta function. We will see it in 
Chapter 4. 

Now we will go on to Hecke £-functions. 
Let m0 be an ideal of the ring () of integers of an algebraic number field 

k of finite degree. Let moo be a product of some real infinite primes. Then, 
for m = momoo, we put a = 1 (mod m) if a E k satisfies the two following 
conditions. 
(1) If m0 = pe1 •• • pet, then we have 

(a, Pi) = 1 and a- 1 E p/i for Vi = 1, ... , t . 

(2) If a is embedded into R by using p00 , which is a component of m00 , then 
Poo(a) > 0. 

Let /(m) be the set of the fractional ideals of k which is prime to m0. 

Put 
S(m) ={a E kia = 1 (mod m)} . 
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Then, S(m) ~ I(m) and IJ(m)/S(m)l < oo by a theorem of Minkowski. 
We call I(m)/S(m) an ideal group mod m. Let x be a group character of 
I(m)/S(m) and we extend x for any integral ideal a C Ik by defining 

x(a) = { ~(C) 

We call it a Hecke class character. 

a E C (C E J(m)/S(m)) 
(a, m) =1- Ik 

Definition 4 The Hecke L-series is defined as 

Lk(s,x) = ~ (~:~s (a runs all ideals of B) 

The Hecke L-series converges on Re(s) > 1 and has the Euler product 

Lk(s,x) = IJ 1 _ x(~~/N(~)s (~runs all prime ideals) 

Hecke showed Lk(s, x) extends to an entire function and satisfies a functional 
equation like ( ( s). 

3.2 Artin's £-function and Artin's conjecture 

We will define the Artin £-functions, which are associated to Galois ex­
tensions. 
Let L / K be a Galois extension with group G and let (p, V) be a represen­
tation of G. For every ideal a of the ring (JK of the intergers of K. We 
denote by N(a) = ijBK/a the absolute norm of a. We denote the action of 
CJ E G on v E V by CJV. Let ~ be a prime ideal of K and let /3 a prime ideal 
of L lying above ~- Let G13 be the decomposition group and T13 the inertia 
group of /3/~. Then the factor group G13 jT13 is generated by the Frobenius 
automorphism 'P/3· 'P/3 is an endomorphism of the fixed module vr.a. The 
characteristic polynomial 

depends only on the prime ~- The determinant depends only on the character 
X of p, since two representations with the same character are equivalent. 
Then, we have the following definition. 
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Definition 5 Let L I K be a Galois extension with group G and let (p, V) be 
a representation of G with character X· Then the Artin £-function of p or x 
is defined by 

1 
L(s, x, Ll K) = IJ det(1- <i'f3N(p)-s; vr.e) 

For every b > 0, the Artin £-.function converges absolutely and uniformly on 
the half plane Re 2:: 1 + b by comparison with the ordinary zeta function. 

The Artin L-functions have the following formalism. 
(1) If Klk is an abelian extension and x is of degree 1, then by class field 
theory x(p) coincides with a class character of k modulo a conductor of Klk 
and the Artin's £-functions coincides with the Hecke's £-.functions. 
(2) If L'2L2K is a bigger Galois extension, and xis a character of G(LI K), 
also viewed as character of G ( L' I K), then 

L(s, x, Ll K) = L(s, x, L' I K) 

(3) If F is an intermediate field, and let x be a character of G(LI F). Let Xw 
be the induced character of G(LI K). Then 

L(s,'l/J,LIF) = L(s,xw,LIK) 

(4) We have L(s, 1, Ll K) = (K(S), which is the Dedekind zeta function. 
(5) If Xb X2 are characters of G, then 

L(s, X1 + X2, Ll K) = L(s, Xb Ll K)L(s, X2, Ll K) 

It is easy to prove (4) and (5). 
Let p be the trivial representation p : G ~------+ GL( C) defined by p(u) = 1. 
Then, we have 

Therefore 
L(s, 1, Ll K) = (K(s) . 

Next, let (p1, VI) and (p2, V2) are representations of G(LI K) with character 
X1 and X2· 
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Then, we have (PlEB p2, V1 EB l/2) is a representation with character X1 + X2 
and 

det(1 - 'Pf3t; V1 EB V2) = det(1 - 'Pf3t; Vi)· det(1 - 'Pf3t; V2) . 

Therefore, 

L(s, X1 + X2, Lj K) = L(s, Xl, Lj K) · L(s, X2, Lj K) . 

The brilliant thing about Artin's discovery is that it is not a generalization 
purely for the sake of generalization. 
Just as the Riemann zeta function is intimately connected to the distribution 
of prime numbers, the Artin £-functions are connected to subtler questions 
about prime numbers. For example, how often is 2 a primitive root (mod p)? 
Are there infinitely many such primes p? 
These questions can only be answered by looking at the Artin £-function of 
the Galois extension Q((m, V'2). 
In striking contrast to the work of Dirichlet and Hecke, Artin was not able 
to show his new £-functions extend to entire functions. It is still a major 
problem of number theory that the Artin £-function L(s, x, L/ K) attached 
to an irreducible character x =I 1 of the Galois group extends to an entire 
function. This is the famous Artin's conjecture. 

Artin's conjecture 
L( s, X, K j k) extends to an entire function if x is irreducible and X =j;l. 

Therefore, it was definitely a major breakthrough when Brauer showed using 
group theory that every Artin £-function extends to a meromorphic function. 
That is the application of Brauer's induction theorem that we mentioned in 
Chapter 2. 

Theorem 6 The Artin's £-function extends to a meromorphic function de­
fined on the whole complex plane. 

Proof) By Brauer's induction theorem, we have X = :EmiX'I/J; (mi E Z), 
where Wi (i = 1, 2, ... ) is !-dimensional character of subgroups C x P of G. 
Then, by (2),(4) of the formalism of the Artin's L-functions, L(s, x, K/k) is 
expressed by a product of Hecke £-functions Ln.(s, ?t·i), namely 

L(s, x, Kjk) =IT Ln;(s, 'l/Ji)m; (mi E Z). 
i 
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The theorem now follows since each Hecke £-function is entire. 

When x is 1-dimensional, Artin showed that his L-function extends to an 
entire function. He did this by showing that in fact in this case his £-function 
coincides with a Hecke L-function L ( s, 'ljJ) for some character 'ljJ of the ideal 
class group. This is called the Artin reciprocity law and we mentioned this 
as (1) in the formalism of the Artin's £-functions. 
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4 Dedekind's conjecture 

The starting point of Artin's analytical investigations was the question whether 
the Dedekind's conjecture is true or not. To state the Dedekind's conjecture, 
we will start this chapter by defining the Dedekind zeta function. 
As we mentioned in chapter 3, Dedekind zeta function is a generalization of 
Riemann zeta function. 

Definition 6 Let K be an algebraic number field. For every ideal a of the 
ring ()k of integers of K, we denote by N(a) = ~BK/a the absolute norm of 
a. Then, the Dedekind zeta function of K is defined by 

1 
(K(s) = ~ N(aY 

where a runs overall integral ideals of K. 

The Dedekind's zeta function has the following properties similar to the 
Riemann zeta function. 
(1) (K(s) converges uniformly and absolutely in Re(s) ~ 1 + 8 for every 
8 > 0. 
(2) (K(s) has an analytic continuation to Re(s) ~ 1- }:.,, N = [K: QJ except 
for a simple pole at s = 1 with residue 

where h is the class number of K, r 1 is the number of the real and r 2 the 
number of complex places of K, R is the regulator, m the number of roots 
of unity in K and D the discriminant. 
(3) For Re(s) > 1, we have the Euler product 

1 
(K(s) =I] 1- N(p)-s' 

where the product is taken over all prime ideals of K. 
( 4) (K ( s) has a meromorphic continuation to the whole complex plane and 
satisfies a functional equation, namely putting 
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the function 
(K(s) = Gl(sr1 G2(sr2 (K(s) 

is meromorphic in the entire s-plane, holomorphic except for simple poles at 
s = 0 and s = 1, and satisfies the functional equation 

Now we will introduce the Dedekind conjecture. 

The Dedekind conjecture: 
Let K be an algebraic number field over k. Then, (K(s)/(k(s) is entire. 

The Dedekind conjecture follows from the Artin's conjecture in Chapter 3. 
We will see it. By the formalism of the Artin's £-functions, which we have 
mentioned Chapter 3, we will have the following theorem. 

Theorem 7 Let k / k be its normal closure with G = Gal ( k / k) and H = 
Gal(K/ K). Let x1 be the character of G(K/ K) induced by the principal 
character 1n of H, and let XI = Ea raXa(O ~ ra E Z) be its decomposition 
into the irreducible characters Xa· Then, 

(K(s) = (k(s) · IT L(s,xa,L/kr"' 
X<><#l 

Proof) By (3) in the formalism of Artin £-function in Chapter 3, we have 

L(s,'l/;,K/K) = L(s,xt,K/k). 

On the other hand, by (4) and (5) in the formalism of Artin £-function, 

L(s,?/J,K/K) = (K(s) 

and 
L(S,L!aXa,K/k) = (k(s) IT L(s,xa,K/kf"'. 

a Xa#l 

Therefore, we have 

(K(s) = (k(s) IT L(s, Xa, K /kf"' . 
Xa#l 

By this theorem, if the Artin's conjecture is true, then the Dedekind's con­
jecture is true. Moreover, we have a theorem which has been proved by 
Aramata in 1933 and by Brauer in 1947, that is 
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Theorem 8 Let K / k be a Galois extention. 
Then, the Dedekind's conjecture is true. 

Proof) 
By the formalism of Artin's L-functions described in Chapter 3, the theorem 
follows from the following proposition. 

Proposition 2 Let 1 G be the character of the regular representation of G. 
Then, there are subgroups {Hi} of G, 1-dimentional character '1/Ji of Hi and 
0 ::; mi E Z so that 

Proof) 
Since 1G = 1{e}G, by Frobenius reciprocity, 

For any cyclic subgroup A, define ()A : A 1------+ C by 

and 

Thus, 

if < u >=A 
otherwise 

if u = 1 
if (]' :j;l. 

This proposition will be proved in two steps. 

Step 1 
>.A= Emxx with mx > 0, mx E Z and x runs over the characters of A. 
(proof) It is enough to show that (>.A, x) ~ 0 for any irreducible character 
X of A. But, 

(>.A, X)= </>(IAI)- (OA,X) = </>(IAI)- L x(u) 
uEA,<u>=A 

L (1- x(u)) = Tr(1- x((Y)) E Z for any generator u of A. 
uEA,<u>=A 
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Now for X ::f:. 1, 

Re(l- x(er)) > 0 if er ::f:. e and Re(l- x(er)) = 0 if er= e. 

Then, if A ::f:. {1}, ().A, X) is positive for all X ::/:-1 and (AA, X)= 0 if X= 1. 
If A= {1}, then AA= 0. 

Step 2 

G 1 '"""' G 1 - la = IGI '7 AA , 

where the sum is over all cyclic subgroups A of G. 
(Proof) It is enough to show that for any irreducible character 7/J of G, both 
sides have the same inner product with 7/J. Now, 

(IGI(1° -la),7/J) = 2:(1° -la)(g)?jJ(g) = IGI7/J(l)- L 1/J(g). 
gEG 

Also, by Frobenius reciprocity, 

L(AA0 ,1/J) = L(AA,1/JIA) 
A A 

= 2:{ct>(IAI)7/J(l)- 2: 7/J(er)} = 7/J(l) :Ect>CIAI)- 2: 7/J(er). 
A uEA,<u>=A A uEG 

Now, 
:Ect>(IAI) = 2: L 1 = 2:1 = IGI. 
A A uEA,<u>=A uEG 

This completes step 2 and the proof of Proposition 2. 

Lastly, we will introduce the Langlands-Thnnell theorem because that is now 
the limit of our knowledge on Artin's conjecture at present. 
For certain classes of groups, like monomial groups, we can again by group 
theory establish the Artin's conjecture. But the decisive next step was taken 
by Langlands. He showed that if the Galois group is solvable and X is 2-
dimensional, then L(s, x, L/ K) extends to an entire function and in fact 
is the £-function attached to a modular form. This should be seen as a 
2-dimensional version of Artin's reciprocity law. 
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Theorem 9 A two-dimensional representation 

p: Gal(Q/Q) ~-----+ GL2(C) 

whose image in PGL2(C) is~ arises from a modular form of weight 1. 

We will stress that this theorem is the starting point of Wiles' proof of Fer­
mat's Last Theorem. Some experts believe that the work of Wiles contains 
some new ideas that may be perhaps used to show that every 2-dimensional 
Artin L-function extends to an entire function. 
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