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Abstract

This thesis describes the design, construction, and characterization of the Canadian Hy-

drogen Intensity Mapping Experiment (CHIME), a transit radio interferometer that will

measure the emission of 21 cm radiation from neutral hydrogen in order to study the

expansion history of the universe and probe the nature of dark energy. We discuss the

scientific motivation of CHIME, followed by a description of the telescope design and

characteristics. The CHIME pathfinder, which is a hardware, calibration, and data anal-

ysis proof-of-concept for CHIME is also presented. The CHIME correlator processes 2048

inputs across 400 MHz of bandwidth and it is the largest radio correlator that has been

built. We have developed a general purpose hardware, firmware, and software framework

-the ‘ICE’ system- that has been specialized to implement the data acquisition, F-engine,

and the networking engine of this correlator. We describe the design of the ICE system,

its use for the CHIME correlator, and demonstrate that the correlator complies with all

the requirements for the experiment.

A major challenge of CHIME comes from the calibration needed in order to detect

the 21 cm signal in the presence of astrophysical foregrounds that are many orders of

magnitude brighter. We have used the pathfinder as a test-bed to develop a number of

receiver-gain and digital calibration techniques in order to meet the stringent calibra-

tion requirements for full CHIME. We discuss the calibration requirements and present

the different calibration strategies, the instrumentation, the current performance on the

pathfinder, and the development towards the implementation for full CHIME.
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Abrégé

Cette thèse décrit la conception, construction et caractérisation de l’expérience CHIME

(Canadian Hydrogen Intensity Mapping Experiment), un radiotélescope interférométrique

qui mesurera l’émission des radiations à 21 cm provenant des atomes d’hydrogène neu-

tres afin d’étudier l’histoire de l’expansion de l’univers et la nature de l’énergie sombre.

Nous discutons premièrement de la motivation scientifique du télescope CHIME, sa con-

ception et caractérisation. Nous présentons ensuite le ‘CHIME pathfinder’ qui est un

prototype qui a servi de preuve de concept pour le développement du hardware et des

techniques d’étalonnage et d’analyse des données du CHIME. Nous décrivons également

le corrélateur du CHIME, qui est le plus grand corrélateur radio qui a été construit à ce

jour en permettant le calcul en temps réel des tous les produits entre les 2048 entrées

du télescope sur une bande passante de 400 MHz. Nous ensuite décrivons le système

‘ICE’, qui est le matériel et le logiciel spécialisé conçu pour effectuer l’acquisition de

données, la séparation des fréquences, la réorganisation des données et leur transmission

au corrélateur. Nous demontrons ensuite que le corrélateur satisfait tous les requis de

l’expérience CHIME.

L’un des défis les plus importants de CHIME vient de l’étalonnage précis qui est req-

uis pour détecter les signaux de 21 cm en présence des sources astrophysiques qui sont

plusieurs ordres de grandeur plus lumineuses. Nous avons utilisé le pathfinder comme

une plateforme d’essai pour développer plusieurs techniques d’étalonnage des récepteurs

et d’étalonnage numerique du corrélateur Afin de satisfaire les prérequis de CHIME.

Nous discutons les prérequis d’étalonnage de CHIME et présentons les différentes tech-

niques d’étalonnage, l’instrumentation, les performances actuelles avec pathfinder, et le

développement vers la mise en œuvre du système d’étalonnage de CHIME.
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Contribution of Authors

This thesis was written by me. It is organized into seven chapters including separate chap-

ters for the introduction and the conclusions. Some of the chapters have been adapted

from published papers. Since CHIME is a large collaboration, some of the subjects cov-

ered in this thesis in order to maintain its logical flow include contributions from other

members of CHIME. Therefore, in this section I will clarify my contributions to each

chapter, as well as places where work was done by others.

Chapter 1 is based on the introduction from my Master’s thesis [1]. The work in this

Master’s thesis, including the introduction and all the derivations and calculations, was

performed entirely by me under the supervision of Matt Dobbs.

In Chapter 2 I present important concepts of radio interferometry that I use through-

out this thesis. At the end of this chapter I introduce the m-mode formalism technique

for the analysis of transit radio telescopes like CHIME. This technique is very important

to understand how CHIME maps the radio sky and to determine the telescope calibra-

tion requirements that are presented in Chapter 5. The development of the m-mode

formalism was led by Richard Shaw and is not part of my work.

In Chapter 3 I present details of the CHIME instrument. My contributions to the

design, construction, and characterization of CHIME and the pathfinder are substantial.

I have played a major role in the design and deployment of the correlator (Chapter 4)

and also in the calibration of the telescope (Chapters 5-6). Furthermore, I have worked in

many other projects throughout my Ph.D. that are not covered thoroughly (or not even

mentioned) in this thesis, including the first measurements of the full CHIME beams,

the development of the CHIME data analysis pipeline and the analog receiving system.

In Figure 3.6 I include two plots that show the improvement in the performance of

the CHIME analog receiving system with respect to the pathfinder prototype. These

plots were made by Rick Smegal and, although I made contributions to this project,

Rick Smegal was the main person in charge of the design of the analog receiving system

for CHIME. Some of the information in this chapter is based on the work published

in [2], which I co-authored. The design and construction of the CHIME feeds and the

X-engine of the CHIME correlator were not part of my work, although I contributed

to their installation. These projects were led by Meiling Deng and Keith Vanderlinde,

respectively.

Chapter 4 presents the CHIME correlator. I was part of the team that developed the

ICE system that is used to implement the digitization, F-engine, and corner-turn network

of the correlator. My main contributions to the ICE system are the collaborative design

of the digitizer daughter board that specializes the system for CHIME and other radio
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interferometry applications, as well as the development of IceCore, the Python-based

control software that provides the tools necessary to automatically detect, configure,

operate, and monitor the system hardware in an application-specific manner. In addition,

I have been the main person responsible for the detailed characterization and quality

control of all the modules of the ICE framework. Finally, I performed the full end-

to-end characterization, validation, and commissioning of the CHIME and pathfinder

correlators.

ICE is a complex system and its design required the expertise of several members of

the McGill Cosmology lab. The implementation of CHIME FPGA firmware was done

entirely by Jean-François Cliche, the ARM software was developed by Adam Gilbert, and

the circuit board design was done by Adam Gilbert, Matt Dobbs, Kevin Bandura, and

Jean-François Cliche. These parts of the system were not my work, although I have a

acquired a comprehensive knowledge of them in order to expose all the functionalities of

the ICE hardware and firmware to the end user through IceCore. The description of the

ICE system in Chapter 4 is based on the work published in [3, 4], which I co-authored.

I was the person in charge of the preparation of [3]. My main contributions for this

paper were the description of the ICE software, the application of the ICE system for

CHIME, and its use in other interferometry applications like the Hydrogen Intensity and

Real-time Analysis eXperiment (HIRAX) and very-long-baseline interferometry (VLBI).

The preparation of the companion paper [4] was led by Kevin Bandura.

Chapter 5 presents some of the techniques developed to calibrate the CHIME telescope

for which I have played a leading role. I developed the hardware, analysis and software

for the Broadband Injection Signal (BIS) calibration system in collaboration with Kevin

Bandura and Seth Siegel. The analytic derivation of the BIS performance in Appendix E

was done by Richard Shaw. My measurements and analysis with the BIS system deployed

on the pathfinder contributed to the further refinement of this model and, in particular, to

the correct determination of the residual eigenvalue statistics and the BIS signal-to-noise

ratio in terms of measurable telescope parameters. The work published in [5] presents the

different calibration strategies for CHIME and I wrote the section that describes an early

version of the BIS system. The implementation of the digital calibration techniques on the

CHIME software was done with the aid of Jean-François Cliche and Kevin Bandura. In

this chapter I also present the temperature-based characterization of the analog receiving

chain, which is relevant for my work on BIS. Although my contributions to the thermal

characterization of the receivers has been limited, I have performed measurements of the

stability of the analog receivers on the pathfinder based on both BIS data and bright

point source transits. Figure 5.1 shows measurements receiver stability measurements
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based on early data from full CHIME. These measurements were performed by Seth

Siegel.

Finally, in Chapter 6 I investigate the biasing effect of the quantization in the mag-

nitude and phase of the visibilities measured by digital correlators. The new knowledge

derived in this chapter was submitted for publication in [6]. I carried out all the calcula-

tions, derivations, and simulations for this research. The paper was written entirely by

me with the advice and consultation of Kevin Bandura, Matt Dobbs, Richard Shaw, and

Seth Siegel.
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Chapter 1

Introduction

Dark energy is a property attributed to the large-scale universe in order to explain its

accelerated expansion. Understanding the nature of dark energy is one of the biggest

challenges of cosmology today, with profound implications for fundamental physics and

our understanding of the universe. The Canadian Hydrogen Intensity Mapping Experi-

ment (CHIME1) is a novel radio telescope designed to study the expansion history of the

universe and probe the nature of dark energy. CHIME will map the three-dimensional

distribution of neutral hydrogen gas in the universe by directly detecting its redshifted

21 cm radiation. By measuring the scale of the Baryon Acoustic Oscillations across the

redshift range z ≈ 0.8 to z ≈ 2.5, CHIME will study the epoch when dark energy gen-

erated the transition from decelerated to accelerated expansion of the universe. In this

chapter we discuss the science that motivated the construction of the CHIME telescope

and give context for the subsequent chapters of this thesis.

1.1 Dark Energy

Observations since 1998 have established that the expansion of the universe is acceler-

ating [7, 8]. Results from the Planck mission2 provide a precise inventory of the energy

constituents in the universe: assuming the standard model of cosmology, the total mass-

energy in the universe today contains approximately 5% ordinary matter, 26% dark mat-

ter, and 69% the mysterious dark energy which, unlike the other constituents, counters

the attractive force of gravity [9, 10].

One possibility is that dark energy is constant in time and uniform in space, taking

the form of Einstein’s cosmological constant Λ so its equation of state (the ratio of its

1https://chime-experiment.ca/
2http://www.esa.int/Our Activities/Space Science/Planck

1
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pressure to its energy density) is w = PΛ/ρΛ = −1 at all times. Another possibility is

that dark energy is a dynamical fluid. In this case its equation of state would not likely

be constant, but it would be a function of the scale factor of the universe, a = (1+ z)−1,

where z is redshift. Different theories have different predictions for the evolution of the

equation of state.

Whether dynamical or a constant, the equation of state of dark energy can be

parametrized with a first order approximation

w(a) =
PΛ(a)

ρΛ(a)
= w0 + (1− a)wa (1.1)

where w0 is the present value of w, and wa parametrizes the evolution of w(a). This

parametrization is useful if dark energy is important at late times but insignificant at

early times [11]. It also provides a framework to compare theory to experiments.

1.1.1 Cosmological Model

For a detailed review of the cosmological model see [12, 13]. On large scales the uni-

verse is extremely isotropic and homogeneous. The space-time metric that describes a

homogeneous, isotropic expanding universe is the Friedmann-Robertson-Walker (FRW)

metric given by (using units with c = 1)

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
(1.2)

with (r, θ, φ) as the comoving spatial coordinates, a is the scale factor (normalized to 1

today) and k is a constant representing the curvature of the space (k > 0 for a closed

universe, k < 0 for an open universe, and k = 0 for a flat universe). Applying the FRW

metric to Einstein’s field equations of general relativity gives the Friedmann equations

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
(1.3)(

ȧ

a

)2

= H2(t) =
8πGρ

3
− k

a2
+

Λ

3
(1.4)

where P and ρ are the mean pressure and density of the contents of the universe and

H(t) is the Hubble parameter. Λ is the cosmological constant, which can be interpreted
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as an additional component of the universe in the form of vacuum energy (dark energy)

ρΛ = Λ/(8πG) that is constant. From the last two equations it follows that

ρ̇ = −3H(ρ+ P ). (1.5)

Assuming that all the components of the energy density are perfect fluids that obey

the equation of state

Pi = wiρi (1.6)

where wi is constant, it follows that

ρi ∝ a−3(1+wi) (1.7)

with w = 0, 1/3,−1 for radiation, matter and the cosmological constant respectively. We

now introduce the critical density, defined as the density for which the spatial geometry

is flat,

ρc =
3H2

8πG
. (1.8)

We can define the density parameters of the different components of the universe

today as

Ωr =
ρr0
ρc0

, Ωm =
ρm0

ρc0
, ΩΛ =

ρΛ
ρc0

=
Λ

3H2
0

(1.9)

where ρc0 = 3H2
0/(8πG) is the critical density today, H0 is the value of the Hubble

parameter today and Ωr, Ωm, ΩΛ are, respectively, the densities of radiation, matter

and cosmological constant today relative to the critical density. Analogously, we define

the parameter

Ωk = − k

H2
0

(1.10)
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so equation 1.4 can be written as

H2

H2
0

= Ωra
−4 + Ωma

−3 + Ωka
−2 + ΩΛ. (1.11)

Ωk is the ‘spatial curvature density’ today. Ωk < 0 for a closed universe, Ωk > 0 for

an open universe and Ωk = 0 for a flat (Euclidean) universe. The spatial geometry of the

universe has been measured to be nearly flat. If the equation of state for dark energy has

w �= −1, or if w changes with the scale factor, equation 1.11 can be generalized with [11]

ΩΛ → ΩΛexp

{
3

∫ 1

a

da′

a′
[1 + w(a′)]

}
. (1.12)

1.2 Baryon Acoustic oscillations

Refer to [14] for a detailed review of Baryon Acoustic Oscillations (BAO) and their rel-

evance for 21 cm cosmology. A brief summary is provided here. The early universe

consisted of a hot plasma in which photons and baryons were tightly coupled via Thom-

son scattering. Quantum mechanical fluctuations that were present at the beginning of

the universe and that expanded to scales larger than the Hubble volume during inflation

caused the development of overdense regions consisting of baryons, dark matter, and pho-

tons. These fluctuations generate sound waves in the hot plasma (acoustic oscillations)

of the early universe due to the competing forces of radiation pressure and gravity in

the overdensity regions: when an overdensity gravitationally attracts baryons inwards,

the photon-baryon plasma is compressed, thus heated, increasing the outward radiation

pressure from the photons. After about 380000 years of expansion, the plasma cooled

to below ∼ 3000 K and the electrons and protons in the plasma could combine to form

neutral hydrogen atoms. This recombination happened at a redshift z ∼ 1100. Recombi-

nation removes the pressure from the baryons and effectively ends the wave propagation.

These baryon and dark matter perturbations are the seeds of the formation of large scale

structure in the universe at late times.

1.2.1 Cosmic Sound

The acoustic oscillations in the primordial plasma are also imprinted in the late-time

baryon power spectrum. A simple way to understand this is to consider a single spherical
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perturbation common to dark matter, baryons, and photons. The tightly coupled photon-

baryon plasma will propagate outwards as an acoustic wave with a speed

cs =
c√

3(1 +R)
, R = 3

ρb
ρr

∝ Ωb

1 + z
(1.13)

where ρb is the baryon density [15]. The dark matter perturbation is left at a small radius

from the origin of the overdensity since it only interacts gravitationally. At recombination,

electrons and protons in the plasma combine to form neutral hydrogen atoms, photons

interact to a much lesser degree with baryons and the pressure on the baryons is removed.

This stops the baryon wave propagation while the photons propagate freely, forming what

we now observe as the Cosmic Microwave Background (CMB), and leaving a shell of

baryonic matter at a fixed characteristic radius from the initial perturbation. This baryon

density excess will appear as a bump in the correlation function of the baryon density

field at the radius of the spherical shell (Figure 1.1). The BAO feature will also appear as

oscillations in the baryon power spectrum (Figure 1.2), since the correlation function and

power spectrum form a Fourier pair (see Section 1.3 below). The gravitational interaction

between baryons and dark matter implies that dark matter also preferentially clumps on

the BAO scale.

The comoving distance a sound wave could have travelled in the photon-baryon fluid

before recombination is [18]

rs =

∫ ∞

zrec

csdz

H(z)
=

1√
ΩmH2

0

2c√
3zeqReq

ln

[√
1 +Rrec +

√
Rrec +Req

1 +
√
Rrec

]
(1.14)

where ‘rec’ and ‘eq’ refer to the epochs of recombination and matter-radiation equality

respectively and 1 + zeq = Ωm/Ωr. The value of zrec is very insensitive to cosmology

since it is mainly determined by atomic physics (e.g. the theory of the ionization state

of a gas in thermal equilibrium, [18]). The additional parameters in rs are accurately

determined by measurements in the CMB power spectrum, fixing the comoving sound

horizon at rs ≈ 148 Mpc [10].

1.2.2 Standard Ruler

Since the scale of the comoving sound horizon is known, it can be used as a standard ruler

to learn about dark energy and the expansion history of the universe. We can observe
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Figure 1.1: Early detection of the BAO peak in the correlation function of galaxies from
the Sloan Digital Sky Survey (SDSS) of luminous red galaxies (LRG). Figure reproduced
from [16].

Figure 1.2: Ratio of the matter power spectrum with BAO to the power spectrum without
BAO, showing how the peak in the matter correlation function induces oscillations in the
matter power spectrum. The forecast uncertainties correspond to the statistical limit of
a two-year survey with a CHIME-like instrument at z = 1.61 (using redshift bins of size
Δz ≈ 0.11). Figure made by Michael Sitwell and adapted from [17].
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the preferred clustering scale set by the Baryon Acoustic Oscillations (BAO) at different

redshifts to constrain the Hubble parameter and the angular diameter distance.

For a review of distance measures in cosmology refer to [13]. The fundamental distance

measure, from which all other distances in the FRW metric are determined is the radial

comoving distance

χ(a) =

∫ t0

t(a)

cdt′

a(t′)
=

∫ 1

a

cda′

a′2H(a′)
→ χ(z) =

∫ z

0

cdz′

H(z′)
(1.15)

where we used dt = da/ȧ, H = ȧ/a and a = 1/(1 + z). Now we introduce the angular

diameter distance3

dA(z) =
1

1 + z

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c
H0

√
|Ωk|

sinh
[
H0
c
√
Ωkχ(z)

]
if Ωk > 0

χ(z) if Ωk = 0

c
H0

√
|Ωk|

sin
[
H0
c
√−Ωkχ(z)

]
if Ωk < 0.

(1.16)

In general, we need to know both Ωk and χ(z) to determine cosmological distances.

However, in the particular case of a flat universe cosmological distances are determined by

χ(z) only and dA(z) = χ(z)/(1+z). As shown in Figure 1.3, in this case the characteristic

BAO scale, rs‖(z), along the line of sight provides a measurement of the Hubble parameter

through

H(z) =
cΔz

rs‖(z)
(1.17)

while the tangential mode rs⊥ provides a measurement of the angular diameter distance

dA(z) =
rs⊥(z)

Δθ(1 + z)
. (1.18)

The BAO is a statistical standard ruler in the sense that the preferred scale in the

3The angular diameter distance is defined in the classic way, dA = s/Δθ, where s is the object’s
physical size and Δθ its angular size as viewed from earth. However, in an expanding universe, dA
depends on the assumed cosmology. For example, in a flat universe, the comoving size of the object is
s/a and the comoving distance out to the object is χ(a), so Δθ = (s/a)/χ(a). From this result it follows

that dflatA = aχ(a) = χ(z)/(1 + z).
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Figure 1.3: Since the BAO scale can be determined theoretically, we can determine both
the Hubble parameter and the angular diameter distance as function of redshift.

matter distribution cannot be directly observed. The matter density distribution is a

linear superposition of many acoustic waves like the one described in Section 1.2.1, making

it very difficult to visually detect the characteristic scale. However, the BAO signature

is still detectable statistically through the two-point correlation function of the matter

distribution, ξ(r), which quantifies the excess clustering in the spatial matter distribution

as function of relative distance. The BAO will appear as a peak in the correlation function

(Figure 1.1) and as oscillations in its power spectrum (Figure 1.2).

1.3 21 cm Radiation

In a neutral hydrogen atom (HI) the predominant interaction between the electron and

the proton is the Coulomb interaction V (r) ∝ e2/r, where e is the magnitude of elec-

tron charge and r is the electron-proton distance. For a Hamiltonian with this potential

energy, the energy levels are given by En = −13.6 eV/n2, where n is a positive integer.

In addition, there is a fine splitting (the fine structure) of these energy levels due elec-

tron spin and relativistic corrections to this Hamiltonian. There is yet an even weaker

interaction that involves the intrinsic spins of the electron and the proton: the electron

interacts with the magnetic field generated by the proton’s magnetic moment, generating

an interaction energy proportional to the intrinsic spin of the two particles.
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Figure 1.4: The hyperfine splitting of the ground state energy level of hydrogen. The
hyperfine interaction breaks the degeneracy of the 1s1/2 states.

When two spin 1/2 particles are combined in absence of orbital angular momentum

(which is the case of the ground state of hydrogen), the net state has either spin 1 or spin

0. In fact, there are three spin 1 states, known as triplet states, and a single spin 0 state,

known as the singlet state. From the analysis of the perturbation Hamiltonian, it follows

that this intrinsic spin coupling breaks the degeneracy of the 1s1/2 states in hydrogen,

raising the energy of the triplet, and decreasing the energy of the singlet (Figure 1.4). This

energy splitting is known as hyperfine structure. Using time independent perturbation

theory it can be found that the energy difference between the singlet and the triplet

states is

ΔE =
8

3
gp
me

mp

α2E0 = 5.88 · 10−6 eV (1.19)

where E0 = 13.6 eV is the (absolute value of the) ground-state energy, gp is the proton

gyromagnetic ratio and α is the fine-structure constant. This energy corresponds to a

wavelength λ0 ≈ 21.1 cm and a frequency ν0 ≈ 1420.4 MHz. For a detailed discussion on

the quantum mechanics behind the hyperfine splitting of the ground state of hydrogen

refer to [19, 20].

The probability of a spontaneous transition from a triplet state to the singlet is

extremely small (the spontaneous emission coefficient is A10 = 2.85 ·10−15 s−1). However,

as the total number of atoms of neutral hydrogen in the Intergalactic Medium (IGM)

is very large, this emission line is easily observed by radio telescopes. Also, the lifetime

can be considerably shortened by other mechanisms like collisions with other hydrogen

atoms and interaction with the CMB.
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1.3.1 21 cm optical depth and brightness temperature

In this section we show how 21 cm radiation can be used as a probe for cosmology. The

intensity of photons emitted through the 21 cm transition is determined by the spin

temperature, Ts, defined through the equation

n1

n0

=
g1
g0
e−T∗/Ts (1.20)

where n1 and n0 are the number densities of electrons in the triplet and singlet states

of the hyperfine level respectively, g1 = 3 and g0 = 1 are the respective statistical

weights, and T∗ = hν0/kB ≈ 0.068 K is the equivalent temperature of the hyperfine

transition energy. The spin temperature, whose name reflects the fact that the hyperfine

splitting of the ground state of hydrogen arises from the coupling between the electron

and proton spins, is just a shorthand for the ratio between the occupation number of

the two hyperfine levels. This ratio establishes the intensity of the radiation emerging

from a cloud of neutral hydrogen. Since all astrophysical applications have Ts � T∗,

approximately three of four atoms are found in the excited state [21].

Even though, at the redshifts relevant to CHIME, the 21 cm radiation is seen only

in emission, it is instructive to go through the full derivation of the 21 cm differential

brightness temperature including absorption. If we consider the 21 cm transition as a

two level system, then the absorption coefficient of a cloud of hydrogen can be found

from the Einstein coefficients (see [22] for details)

α(ν) =
c2A10

8πν2

g1
g0
n0

(
1− n1g0

n0g1

)
φ(ν) (1.21)

where φ(ν) is the line profile; it is sharply peaked at ν0 and describes the relative effec-

tiveness of frequencies in the neighbourhood of ν0 for causing transitions. The line profile

is defined so that
∫
dνφ(ν) = 1. From equations 1.20 and 1.21 and using Ts � T∗, α(ν)

becomes

α(ν) =
c2A10

8πν2

g1
g0
n0

(
1− e−T∗/Ts

)
φ(ν) ≈ 3�c2A10nHIν0

16kBTsν2
φ(ν). (1.22)

In the last expression, nHI is the neutral hydrogen density and there is an extra

factor of 1/4 in equation 1.22 to account for the fraction of HI atoms in the hyperfine
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singlet state (n0 ≈ nHI/4). In order to estimate the optical depth, τ(ν), as a function

of observed frequency, due to absorption by the IGM along the line of sight to a given

redshift, we must integrate α(ν) along the radiation path length, i.e. from the radiation

source at zem to z = 0.

If α(ν) is the absorption coefficient at frequency ν, then the increment of optical depth

for photons of this frequency which are redshifted to frequency νobs when they reach the

earth is dτ(νobs) = α(ν)dl, where dl = cdt is the element of proper distance at redshift z

and dt is the time interval that radiation takes to travel the path length dl. Then

τ(νobs) =

∫ l

0

dlα(ν) =

∫ zem

0

dzcα(ν)

H(z)(1 + z)
→ τ(z) =

∫ νobs(1+zem)

νobs

cα(ν)

νH[z(ν)]
dν (1.23)

where we used the fact that ν = νobs(1 + z) so dz = dν/νobs. A simple, yet conceptually

important model for φ(ν) is to ignore the broadening of the line profile and assume that

it can be approximated by a delta function, φ(ν) = δ(ν − ν0), so
4

τ(z) =
cα(ν0)

ν0H(z)
=

3�c3A10nHI(z)

16kBν2
0TsH(z)

≈ 6 · 10−3 (1 + δb)xHI

[
TCMB(z)

Ts

](
Ωbh

2

0.022

)[
Ωm(1 + z)3 + ΩΛ

5.5

]−1/2

(
1 + z

2.5

)2(
h

0.68

)−1

(1.24)

where ν0 = νobs(1 + z) and we have used TCMB(z) = 2.73(1 + z) K and H(z) ≈
H0 [Ωm(1 + z)3 + ΩΛ]

1/2
. The neutral hydrogen density was written as [23, 24] nHI =

xHInb(1 + δb), where nb = nb0(1 + z)3 is the mean number density of cosmic baryons,

with a local baryon overdensity δb, and xHI is the fraction of neutral hydrogen. For a more

exact calculation of τ(z) that considers both Hubble expansion and peculiar velocities

refer to [21, 25].

Now, in the Rayleigh-Jeans limit, the equation of transfer along the line of sight for

a background radiation field with brightness temperature Tbkg and a cloud with uniform

excitation temperature Ts is (see [22])

T ′
b(ν) = Tbkg(ν)e

−τ + Ts(1− e−τ ). (1.25)

4Used cosmological parameter values from [10].
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Assuming that the radiation background includes only the CMB, then Tbkg = TCMB

and the differential brightness temperature emergent from the cloud is

ΔT ′
b(ν) = T ′

b − TCMB = (Ts − TCMB)(1− e−τ ) ≈ (Ts − TCMB)τ (1.26)

so the observed differential brightness temperature is

ΔTb(ν) ≈ [Ts − TCMB(z)]

1 + z
τ(z)

≈ 16 (1 + δb)xHI

[
1− TCMB(z)

Ts

](
Ωbh

2

0.022

)[
Ωm(1 + z)3 + ΩΛ

5.5

]−1/2

(
1 + z

2.5

)2(
h

0.68

)−1

mK (1.27)

where in the second step we have used equation 1.24. Note that the 21 cm signal ΔTb

traces the density fluctuations δb, making its measurement an excellent probe of cosmol-

ogy.

Three processes determine the spin temperature [21, 26]: (1) absorption of CMB

photons (as well as stimulated emissions); (2) collisions with other hydrogen atoms,

electrons and protons; and (3) scattering of Lyman α photons through excitation and

de-excitation (Wouthuysen Field Effect). The rate of these processes is fast compared

to the de-excitation time of the line, so that to a very good approximation the spin

temperature is given by the equilibrium balance of these effects [27]. In this case Ts is a

weighted average of the CMB temperature, TCMB, the gas kinetic temperature, TK , and

the effective color temperature of the Lyα radiation field, TL

Ts =
TCMB + ycTK + yLTL

1 + yc + yL
(1.28)

where yc, yL are the efficiencies or coupling coefficients for gas collisions and Lyα scat-

tering (we note that TL = TK as long as the medium is optically thick to Lyα photons).

For a discussion and detailed calculation of the efficiencies see [21, 25, 26, 27].

The evolution of Ts depends on how different mechanisms influence the efficiencies.

When any of the efficiencies is very large Ts takes the corresponding temperature value.

As explained in [25], after reionization Ts is coupled to TK , Ts � TCMB so ΔTb is

independent of Ts and the 21 cm radiation is seen in emission. In this case the differential
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brightness temperature simplifies to

ΔTb ≈ ΔTb(1 + δb)(1 + δx) (1.29)

where ΔTb is the average differential brightness temperature that depends on redshift,

ΔTb ≈ 16 xHI(z)

(
Ωbh

2

0.022

)[
Ωm(1 + z)3 + ΩΛ

5.5

]−1/2

(
1 + z

2.5

)2(
h

0.68

)−1

mK (1.30)

and we have written xHI = xHI(1 + δx), with xHI as the average of the neutral fraction

of hydrogen and δx as the neutral fraction fluctuations.

1.3.2 Power spectrum

To first order in the fluctuations, we can write

ΔTb(r) ≈ ΔTb[1 + δb(r) + δx(r)] = ΔTb[1 + δ21(r)] (1.31)

where r = |r| is the radial distance corresponding to the observed frequency (redshift).

In general, the variations in the brightness temperature depend on additional parameters,

including variations in the Lyα coupling coefficient, kinetic temperature and line-of-sight

peculiar velocity gradient. However, if we ignore the velocity term then equation 1.31 is

a good approximation for sufficiently low redshifts (z � 10). See [21] for details.

ΔTb is the zeroth order approximation of the 21 cm signal, averaged over large angular

scales at fixed radial distance. In this section we are interested in the 21 cm fluctuations,

which are the ones that allow for the measurement of the BAO. The deviation from the

mean 21 cm brightness temperature is given by

δ21(r) =
ΔTb −ΔTb

ΔTb

(1.32)

which is a zero mean random field. Since each observed frequency corresponds to a

different radial shell of the universe, it is convenient to express δ21(r) in terms of its
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spherical harmonic expansion

δ21(r) = δ21(n̂, ν) =
∑
l,m

alm(ν)Ylm(n̂) alm(ν) =

∫
4π

dΩδ21(n̂, ν)Y
∗
lm(n̂) (1.33)

Note that, except for a00(ν), the spherical harmonic expansion of ΔTb(r) is the same

as that of δ21(r) with the additional prefactor ΔTb(ν). If we now write δ21(r) in equation

1.33 in terms of its Fourier Transform

δ21(r) =

∫ ∞

−∞

d3k

(2π)3
δ̃21(k)e

ik·r δ̃21(k) =

∫ ∞

−∞
d3rδ21(r)e

−ik·r. (1.34)

and use the Rayleigh expansion for the eik·r term [28], we obtain

alm(ν) = 4πil
∫ ∞

−∞

d3k

(2π)3
δ̃21(k)jl(kr)Y

∗
lm(k̂) (1.35)

where jl is the spherical Bessel function of order l.5

As shown in Appendix A, for the homogeneous and isotropic random field δ21(r) its

two point correlation function depends on r = |r1 − r2| only, that is, 〈δ21(r1)δ21(r2)〉 =
ξ21(r). Similarly, its power spectrum P21(k) (the Fourier Transform of ξ21(r)) is uniquely

defined through the equation

〈
δ̃21(k)δ̃

∗
21(k1)

〉
= (2π)3P21(k)δ(k − k1) (1.36)

where k = |k|.
In an analogous way as we defined the power spectrum of δ21(r) in terms of the

correlation of the δ̃21(k), we can define its angular power spectrum, Cl, in terms of the

correlation of the alm(ν). Using equations 1.35-1.36 and the orthogonality of the spherical

harmonics we obtain

〈
alm(ν)a

∗
l1m1

(ν1)
〉

= δll1δmm1Cl(ν, ν1) (1.37)

where we have defined (with r as the radial distance corresponding to the observed

5For details see http://mathworld.wolfram.com/SphericalBesselFunctionoftheFirstKind.html.
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frequency ν)

Cl(ν, ν1) = 4π

∫ ∞

0

k2dk

2π2
P21(k)jl(kr)jl(kr1). (1.38)

For a more detailed calculation that takes into account the finite bandwidth of the

experiment refer to [21, 23, 24].

In general, equation 1.38 forms the basis for the analysis that makes it possible to

relate the 21 cm fluctuations to cosmology. As explained in [29, 30], after reionization

the neutral fraction fluctuations δx are proportional to the matter density fluctuations up

to a weak (and simple) scale dependency. Since the 21 cm fluctuations allow the direct

observation of the matter density field δb, the power spectrum can be utilized to probe

the geometry of the universe, derive cosmological constraints, and test the equation of

state of dark energy by measuring the BAO. In particular, redshifts in the range z ≈ 1−3

are of great interest since they cover the regime in which dark energy begins to dominate

the energy budget of the universe [27].

CHIME will be a novel radio telescope that will study the nature of dark energy

by mapping the three-dimensional distribution of neutral hydrogen gas in the universe

detected from redshifted 21 cm radiation. By measuring the BAO scale across the redshift

range z ≈ 0.8 − 2.5 in both the angular and line-of-sight directions, CHIME will study

the epoch when dark energy generated the transition from decelerated to accelerated

expansion of the universe.

1.4 Outline

This thesis is structured as follows: Chapter 2 gives an introduction to radio inter-

ferometry and 21 cm cosmology with transit interferometers. Chapter 3 describes the

CHIME telescope design and characteristics. Chapter 4 describes the CHIME correlator.

Chapter 5 discusses the CHIME calibration requirements and presents the calibration

techniques that we have developed for CHIME. In Chapter 6 we investigate the biasing

effect of quantization in the magnitude and phase of the measured visibilities and give

details of the post-channelization digital calibration. Chapter 7 presents the conclusions.



Chapter 2

21 cm cosmology with transit

interferometers

CHIME is a transit interferometer, meaning that it has a fixed pointing and observes the

sky as the earth rotates. In this chapter we present a detailed analysis of interferometry

and introduce several important concepts that will be used throughout this thesis. We

also explain how transit interferometers like CHIME map the sky and the 21 cm universe.

2.1 Stationary random processes

The signals from radio astronomical sources are mostly generated by chaotic processes

that occur in the source regions: the synchrotron radiation in active galactic nuclei (AGN)

caused by the relativistic acceleration of electrons, the thermal radiation in planetary

nebulae generated by the thermal motion of charged particles, or 21 cm radiation from

clouds of neutral hydrogen due to the transition between the hyperfine energy levels

(this radiation is naturally narrow in frequency, but becomes broadband due to, for

example, the large scale motion of the gas clouds and the expansion of the universe). In

all these cases, the electromagnetic fields incident on an interferometric array as well as

the currents and voltages induced in the antennas and receiving systems will look like

random noise, so they are properly described as random (stochastic) processes. In almost

all cases this noise is Gaussian, i.e. it has a normal probability density function (PDF)

and the width of this distribution depends on the brightness of the source. The noise

produced in the receiving systems are also well modeled as Gaussian random processes.

Furthermore, when we observe the received voltages from radio astronomical sources,

say on an oscilloscope, we usually see that these voltages look like time series that fluc-

tuate around zero, and their time average is also zero, so the random processes are time

16
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invariant. In a radio interferometer, the correlator is a device that basically computes

time averaged products of pairs of these received voltages. When we check the outputs

of the correlator, we usually see that they are approximately constant in time, but that

they vary when we introduce relative delays between the received voltages.

All these observations lead us to assume that the signals received from radio astro-

nomical sources can be modeled as random processes that are stationary (in the wide

sense), meaning that their statistical properties (mean, variance, PDF) do not change

with time, and that the cross-correlations are functions of the time difference only, not

absolute time. Also from observations (for example, we see that the cross-correlation

estimates improve with averaging and that they tend to zero as we increase the relative

time delay between received voltages1), we know that these signals satisfy ergodicity,

meaning that the time averages (which is what we measure in the correlator) converge

to the respective ensemble averages.

For a detailed introduction to the theory of stationary random processes and ergod-

icity, which we will use intensively in this work, refer for example to [31]. Note that the

physical processes that generate the signals we observe in radio astronomy do not satisfy

strictly the conditions for stationarity and ergodicity. For example, radio sources can

vary significantly in the scale of several years or months (or even shorter time scales).

The statistical properties of the measured signals also vary in the scale of hours or min-

utes due to changes in the response of the receiving systems or due to the rotation of the

earth on transit telescopes like CHIME. However, in practice, the conditions for station-

arity and ergodicity are generally fulfilled on short observation intervals (at least several

seconds, which is the typical integration scale for telescopes like CHIME). This is enough

to estimate the statistical properties of the measured signals. Thus, we will assume that

the processes are at least quasi-stationary, meaning that the statistical properties may

vary over long time scales, while over short time scales these properties are constant.

2.2 The narrowband condition

The cosmic signals that CHIME will observe (e.g. the 21 cm signal and synchrotron

emission from our galaxy and other galaxies) are typically broadband in nature. As

explained in detail in Chapters 3 and 4, the analog receiving system determines the

total bandwidth of interest (400-800 MHz for CHIME) while the digital correlator digi-

1Loosely speaking, a random process with a correlation function that asymptotically decays to zero
satisfies mean ergodicity. Technically, an absolutely integrable autocovariance is a sufficient condition for
wide-sense stationary random process to be ergodic in the mean. Correlation ergodicity has additional
requirements and we will assume throughout this thesis that those requirements are also satisfied.



Chapter 2. 21 cm cosmology with transit interferometers 18

tizes the broadband signal at this full bandwidth and then divides it into narrow fre-

quency channels using digital filters. The CHIME polyphase filter bank (PFB) di-

vides the 400 MHz input bandwidth into 1024 contiguous frequency channels which are

Δν = 400 MHz/1024 = 390.625 kHz wide and that are re-sampled at the appropriate

lower rate before performing the correlations between all the antenna pairs. Since both

the analog receiver and the digital backend are linear systems (so frequencies are not

mixed) then, from the point of view of analysis, the output of each digital filter can be

considered as the output of a separate and independent receiving system of bandwidth

Δν. Furthermore, since we already know that each frequency corresponds to a different

radial slice of the universe when we map with the 21 cm signal, then the output of each

digital filter can be effectively considered as the output of a separate experiment that

observes a different time in the history of the universe.

It is often convenient for modeling and analysis to assume that the sky signals can be

described as a sum of narrowband or quasi-monochromatic signals (or equivalently, that

the output of each filter bank can be considered as quasi-monochromatic), so we must

determine the conditions under which that assumption is valid. If a real-valued signal

v(t) is band-limited to a frequency range Δν centered at a frequency νc with Δν � νc (as

is the case for CHIME), then it can be shown (see [32] for details) that v(t) can written

as

v(t) = 
{x(t)ei2πνct} (2.1)

where x(t) is basically the equivalent lowpass signal of v(t) and is called the complex

envelope. Sometimes it is easier to manipulate the complex envelope x(t) than v(t).

For example, when the bandwidth Δν is sufficiently narrow then time delays of v(t)

across the telescope array can be approximated by phase shifts of its complex envelope.

This approximation is used for beamforming, fringe-stopping, and image reconstruction

techniques. To determine this narrowband approximation, suppose that v(t) is delayed

in time by an amount τ . Then

v(t− τ) = 
{x(t− τ)ei2πνcte−i2πνcτ}. (2.2)

Let x̃(ν) be the Fourier transform of x(t). Then

x(t) =

∫ Δν/2

−Δν/2

x̃(ν)ei2πνtdν (2.3)
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while

x(t− τ) =

∫ Δν/2

−Δν/2

x̃(ν)ei2πνte−i2πντdν. (2.4)

If the condition

2πΔντ � 1 (2.5)

holds, then e−i2πντ ≈ 1 for ν in the interval [−Δν/2,Δν/2] and the integrals in equations

2.3 and 2.4 are approximately equal. Thus x(t − τ) ≈ x(t) and equation 2.2 can be

written as

v(t− τ) ≈ 
{xτ (t)e
i2πνct} (2.6)

where

xτ (t) = x(t)e−i2πνcτ (2.7)

which means that, when the narrowband condition in equation 2.5 holds, a delay of

v(t) can be expressed as a phase shift of the complex envelope x(t). This condition is

independent of νc.

As an example, the narrowband condition for CHIME means that the maximum

geometric delay allowed is τmax � 1/2πΔν ∼ 410 ns. The baselines (antenna separations)

for the CHIME telescope range from ∼ 0.3 m to ∼ 100 m, and therefore the maximum

possible geometric delay is τmax = bmax/c ≈ 333 ns. This means that, although it is safe to

use the narrowband approximation for most baselines, the width of the CHIME frequency

channels is not narrow enough to satisfy this condition. As shown in Section 2.3.2, a non-

zero bandwidth introduces a signal decorrelation and thus, a loss of signal in the visibility

data which for the longest baselines and maximum delays is about 3%. In practice, this

effect is smaller since the maximum delay corresponds to signals arriving from the horizon

which is not within the field of view of the telescope. Also, this decorrelation effect can

be corrected by implementing artificial delays, for example within the digital correlator,

that compensate for the geometric delay.

2.3 The two-element interferometer

The basic radio interferometer is the two-element interferometer shown in figure 2.1.

Larger and more complex interferometric arrays can be treated as collections of indepen-
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dent two-element interferometers.

A two-element interferometer consists of two antennas separated by a distance b. The

vector connecting the reference points of the two antennas is called the baseline vector b.

The antennas are observing a (far field) point source in the direction of the unit vector

n̂. From figure 2.1, the wavefront of the electromagnetic wave from the source reaches

antenna 2 first and then it reaches antenna 1 after a time

τg =
b · n̂
c

=
b sin θ

c
(2.8)

where c is the velocity of light and θ is the angle between n̂ and a straight line perpen-

dicular to b in the plane formed by n̂ and b. τg is called the geometric time delay.

The antennas have primary beams A1(n̂) and A2(n̂) respectively. Each antenna

has a receiver that conditions (amplifies and filters) the antenna signal before sending

it to the correlator which is the device that computes the correlation (multiplication

and averaging, see equations 2.9 and 2.10 below) between the received voltages. This

correlation provides the interferometric visibility which is the fundamental quantity in

radio interferometry.

For two inputs v1(t) and v2(t), the output of the correlator after averaging during a

period T is

r̂12 =
1

T

∫ T/2

−T/2

v1(t)v
∗
2(t)dt. (2.9)

In a digital correlator, the inputs are first digitized (sampled and quantized) before

multiplication and averaging. In this case, the output of the correlator after integrating

Ns samples is

r̂12 =
1

Ns

Ns∑
n=1

v1[n]v
∗
2[n]. (2.10)

In both cases, and in view of ergodicity (time averages being equal to ensemble aver-

ages), the estimate r̂12 becomes a more accurate measurement of the true correlation

r12 = 〈v1(t)v∗2(t)〉 (2.11)

as the averaging increases, i.e.

lim
Ns (or T )→∞

r̂12 = r12. (2.12)

We will often assume that the averaging is sufficiently long that we can safely ap-
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Figure 2.1: A basic two-element interferometer consists of two antennas separated by a
distance b. The vector connecting the reference points of the two antennas is called the
baseline vector b. The antennas are observing a (far field) point source in the direction
of the unit vector n̂. The wavefront of the radio source reaches antenna 2 first and
then it reaches antenna 1 after a time τg called the geometric delay. The antennas
have primary beams A1(n̂) and A2(n̂) respectively. Each antenna has a receiver that
conditions (amplifies and filters) the antenna signal before sending it to the correlator
which is the device that computes the correlation (multiplication and averaging) between
the received voltages.
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proximate the correlator output by r12, except in cases where we want to investigate the

effect of finite averaging (e.g. Section 2.3.4).

In some cases we will also assume that the receivers have narrow bandpass filters that

pass only frequency components very close to ν. As explained in Section 2.2, in modern

digital correlators, the broadband inputs are digitized at full bandwidth and then divided

into narrow frequency channels using digital filters, and each filter can be considered as

an independent receiver. The outputs of these filters are complex-valued in general.

2.3.1 The response of the receiving system

Let vE(t) be the voltage generated at the output of an antenna by the incident electric

field of single polarization of the radio wave from a point source. Both the electric field

and vE(t) are stationary random processes. Then, from Figure 2.2, the antenna voltages

of the two-element interferometer (assuming identical antennas) are vA1(t) = vE(t − τg)

and vA2(t) = vE(t), where τg is the geometric time delay (equation 2.8)2.

Let h1(t) and h2(t) be the impulse response of the receivers 1 and 2 respectively. Since

the receivers are linear (and time-invariant) systems, then the respective outputs for the

inputs vA1(t) and vA2(t), which are jointly stationary random processes, are

v1(t) = vA1(t) ∗ h1(t) = vE(t− τg) ∗ h1(t) and

v2(t) = vA2(t) ∗ h2(t) = vE(t) ∗ h2(t).
(2.13)

Note that the operator ∗ in the last equation denotes convolution (we use the same

symbol as a superscript to denote complex conjugate of a variable, but the meaning will

be clear from the context).

The cross-correlation function of the two receiver outputs v1(t) and v2(t) is (see [31]

for a detailed discussion of stationary random processes in linear systems)

rv1v2(τ) = 〈v1(t)v∗2(t− τ)〉 = rA1A2(τ) ∗ h1(τ) ∗ h∗
2(−τ) (2.14)

where rA1A2(τ) = 〈vA1(t)v
∗
A2(t − τ)〉 is the cross-correlation function of the antenna

outputs vA1(t) and vA2(t).

The frequency domain equivalent of equation 2.14 is

r̃v1v2(ν) = r̃A1A2(ν)h̃1(ν)h̃
∗
2(ν) (2.15)

2In this section we ignore the effects of receiver noise.
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Figure 2.2: Response of the receiving system of a two-element interferometer to the
voltage generated by the incident electric field from a point source. vA1(t) and vA2(t)
are the antenna output voltages. The receivers have impulse response h1(t) and h2(t)
and outputs v1(t) and v2(t) respectively. These are the inputs to the correlator which
computes the time averaged product of v1(t) and v2(t).
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where r̃A1A2(ν) and r̃v1v2(ν) are the Fourier transforms of rv1v2(τ) and rA1A2(τ) respec-

tively, while h̃1(ν) and h̃2(ν) are the Fourier transforms of h1(t) and h2(t) (i.e. the

frequency response of the receivers).

Assuming that the averaging is sufficiently long, the output of the correlator is

r12 = 〈v1(t)v∗2(t)〉 = rv1v2(0) =

∫ ∞

−∞
r̃A1A2(ν)h̃1(ν)h̃

∗
2(ν)dν. (2.16)

In the last step of equation 2.16 we used rv1v2(τ) =
∫∞
−∞ r̃v1v2(ν)e

i2πντdν.

Now we have to find the relation between r12, which is what the correlator measures,

and the power spectrum r̃EE(ν) of the voltage vE(t) generated by the common electric

field, which is what we want to measure, and that by the Wiener-Khinchin theorem3 is

just the Fourier transform of rEE(τ), that is

rEE(τ) = 〈vE(t)v∗E(t− τ)〉 =
∫ ∞

−∞
r̃EE(ν)e

i2πντdν. (2.17)

Note that since

rA1A2(τ) = 〈vA1(t)v
∗
A2(t− τ)〉 = 〈vE(t− τg)v

∗
E(t− τ)〉 = rEE(τ − τg) (2.18)

then, by taking Fourier transforms we have

r̃A1A2(ν) = r̃EE(ν)e
−i2πντg . (2.19)

Finally, using equation 2.19 in equation 2.16 we obtain

r12 =

∫ ∞

−∞
r̃EE(ν)h̃1(ν)h̃

∗
2(ν)e

−i2πντgdν. (2.20)

In the particular case of receivers with identical frequency response h̃(ν) then equation

2.21 simplifies to

r12 =

∫ ∞

−∞
r̃EE(ν)|h̃(ν)|2e−i2πντgdν. (2.21)

2.3.2 Interferometric fringes

The receiving system can be modeled as an amplification stage that increases the power of

the antenna output signal (which is typically very weak) followed by a filtering stage that

3For details see https://en.wikipedia.org/wiki/Wiener-Khinchin theorem.
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selects the bandwidth of interest. The simplest (but conceptually important) example is

to assume that the frequency response of the receiver, |h̃(ν)|2, is just that of a rectangular
bandpass filter with center frequency νc, bandwidth Δν, and unit in-band (power) gain,

that is

|h̃(ν)|2 =
⎧⎨
⎩1 if νc − Δν

2
≤ |ν| ≤ νc +

Δν
2

0 otherwise.
(2.22)

For a broadband radio source, and if the bandwidth Δν is sufficiently narrow, then it

is usually safe to assume that the source power spectrum r̃EE(ν) is approximately flat,

or white, in the filter passband. For simplicity, let r̃EE(ν) = Rc (only its value inside the

receiver passband is important). Then using equation 2.22 in equation 2.21 we obtain4

r12(τg) = 2Rc 

{∫ νc+

Δν
2

νc−Δν
2

e−i2πντgdν

}

= 2RcΔν
sin(πΔντg)

πΔντg
cos(2πνcτg).

(2.23)

An example of the geometric delay dependent response of the interferometer to a

band limited signal is shown in Figure 2.3. The bandwidth is Δν, the center frequency is

νc and we have chosen νc = 10.2Δν. The solid blue line shows the normalized response

r12(τg)/r12(0). This is the fringe pattern that is observed for example, when a point

source transits through the field of view of an east-west interferometer, with τg tracking

the change in geometric delay as the source moves across the sky.

From equation 2.23, the fringes are due to the term cos(2πνcτg), so the fringe spacing

is just

Δτg,F =
1

νc
. (2.24)

To find the angular spacing ΔθF corresponding to the fringe spacing Δτg,F note that,

since the primary beam of CHIME telescope is very narrow in the east-west direction

(θEW ∼ 2◦), then τg (and θ) is small, so equation 2.8 becomes

τg ≈ bθ

c
. (2.25)

4Note that we take the real part only and multiply by 2 to normalize for total power since both
r̃EE(ν) and |h̃(ν)|2 are even functions of ν
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Figure 2.3: Normalized response of the two-element interferometer to a band limited
signal with bandwidth Δν and center frequency νc, with νc = 10.2Δν. The geometric
delay is τg. While the rapid oscillation (blue) is determined by νc, the envelope of the
fringe pattern (red) is determined by Δν.

Thus, the angular spacing corresponding to the fringe spacing is

ΔθF ≈ 2
(c
b

)(Δτg,F
2

)
=

λc

b
. (2.26)

As explained in Appendix C, the resolution of an interferometer is also given by

equation 2.26. For CHIME the fringe spacing at 600 MHz (λc = 0.5 m) is ∼ 1.4◦ for the

shortest east-west baselines (20 m) and ∼ 0.5◦ for the longest east-west baselines (60 m).

The fringe pattern is enclosed by an envelope (dashed red line in figure 2.3) which is

a sinc function for a rectangular bandpass, but that can change for other band shapes.

However, in all cases the envelope is determined by the bandwidth Δν, so the envelope

is usually called the bandwidth pattern. The width of the main lobe of the bandwidth

pattern is called the coherence interval, and is given by Δτg,B = 2/Δν. The angular

extent ΔθB corresponding to the coherence interval is

ΔθB ≈ 2c

bΔν
(2.27)

If the telescopes were isotropic then the coherence interval would determine field of

view of the interferometer, basically because outside this interval the signal level is very

small. Although ΔθB > 180◦ for CHIME, in practice, the east-west field of view of

CHIME is much narrower and is determined by the antenna beam (see Chapter 3).
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The bandwidth pattern demonstrates the effect of a non-zero bandwidth on the mea-

sured signal (see Section 2.2). When the narrowband condition holds from equation 2.23,

we have r12(τg) → 2Rc cos(2πνcτg), which is the expression we would have obtained if we

had assumed monochromatic signals. A non-zero bandwidth introduces a decorrelation

term sinc(πΔντg) corresponding to a loss of signal. For CHIME, this decorrelation term

is of the order of one part in 107 for the shortest baselines, and about 3% for the longest

baselines and maximum delays.

2.3.3 The response of the interferometer: the complex visibility

In this section we will find the response of the interferometer to an arbitrary extended

source. Referring to figure 2.1, let e(n̂, t) be the electric field intensity received by antenna

2 from a source region of solid angle dΩ, in the direction of the unit vector n̂, and at

time t (see Appendix B). Let vA2(t) be the output voltage of antenna 2. The Fourier

transforms of e(n̂, t) and vA2(t) are given by5

ẽ(n̂, ν) =

∫ ∞

−∞
e(n̂, t)e−i2πνtdt, ṽA2(ν) =

∫ ∞

−∞
vA2(t)e

−i2πνtdt. (2.28)

At any given frequency ν, the antenna voltage is a weighted combination of the electric

field coming from each direction of the sky, with the weighting function being the antenna

beam A(n̂), so we can write6

ṽA2(ν) =

∫
4π

ẽ(n̂, ν)A2(n̂)dΩ. (2.29)

Note that we have extended the range of the integration to the whole sky since

ẽ(n̂, ν) = 0 beyond the edge of the source and also because A2(n̂) = 0 far from the

antenna beam.

The electric field received by antenna 1 from the same region is e(n̂, t− τg(n̂)), where

τg(n̂) = b · n̂/c is the geometric delay. In frequency domain this field is ẽ(n̂, ν)e−i2πντg(n̂),

5Note that ẽ(n̂, ν) and ṽA2(ν) are Fourier transforms of stationary random processes and, strictly
speaking, the integrals in equation 2.28 do not necessarily converge, and ensuring convergence may cause
problems when requiring stationarity of the random processes. Since our goal is to find a relation between
the stationary random process e(n̂, t) and the response of the interferometer, we will assume that these
integrals converge without getting heavily involved in the mathematical strictness. For a discussion of
this topic see for example [33].

6Note that the antenna beam is also frequency dependent, although we do not write that dependence
explicitly in the equations not only to keep the notation simple, but also because this seems to be the
common notation in radio astronomy textbooks.
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so

ṽA1(ν) =

∫
4π

ẽ(n̂, ν)A1(n̂)e
−i2πντg(n̂)dΩ. (2.30)

In Section 2.3.1 we introduced r̃A1A2(ν), which is the Fourier transform of the cross-

correlation function of the antenna outputs rA1A2(τ) = 〈vA1(t)v
∗
A2(t− τ)〉. Now we want

to express r̃A1A2(ν) in terms of the intensity (or brightness) distribution of the source,

Iν .

First, note that vA1(t) and vA2(t) are jointly stationary random processes which means

that their cross-correlation rA1A2(τ) is a function of the time difference only. This also

means that the cross-correlation function of their Fourier transforms ṽA1(ν) and ṽA2(ν)

are uniquely related to r̃A1A2(ν) by

〈ṽA1(ν)ṽ
∗
A2(ν

′)〉 = r̃A1A2(ν)δ(ν − ν ′). (2.31)

Equation 2.31 above can be easily obtained with the same procedure used in equation

A.2 from Appendix A.

On the other hand, from equations 2.29 and 2.30 we have

〈ṽA1(ν)ṽ
∗
A2(ν

′)〉 =
∫
4π

∫
4π

〈ẽ(n̂, ν)ẽ∗(n̂′, ν ′)〉A1(n̂)A
∗
2(n̂

′)e−i2πντg(n̂)dΩdΩ′. (2.32)

As explained in Appendix B, most radio sources are incoherent which implies that

signals from different parts of the source can be treated independently. In this case,

〈ẽ(n̂, ν)ẽ∗(n̂′, ν ′)〉 can be written as (equation B.14)

〈ẽ(n̂, ν)ẽ∗(n̂′, ν ′)〉 = Iν(n̂)δ(ν − ν ′)δ(n̂− n̂′). (2.33)

Using equation 2.33 above in equation 2.32 we obtain

〈ṽA1(ν)ṽ
∗
A2(ν

′)〉 =
[∫

4π

Iν(n̂)A1(n̂)A
∗
2(n̂)e

−i2πντg(n̂)dΩ

]
δ(ν − ν ′). (2.34)

Comparing equations 2.31 and 2.34 we obtain

r̃A1A2(ν) =

∫
4π

Iν(n̂)A1(n̂)A
∗
2(n̂)e

−i2πντg(n̂)dΩ. (2.35)

Equation 2.35 together with equation 2.16 give us the general response of the inter-
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ferometer to any radio source of intensity distribution Iν(n̂).

Assuming receivers with very narrow bandpass filters centered at ν then, up to an

overall constant (which is equal to G = h1(ν)h
∗
2(ν)) we can write the output of the

correlator r12 as

r12 = 〈v1(t)v∗2(t)〉 =
∫
4π

Iν(n̂)A1(n̂)A
∗
2(n̂)e

−i2πbλ·n̂dΩ (2.36)

where bλ = b/λ is the baseline vector normalized by the observed wavelength λ = c/ν.

Since in the Rayleigh-Jeans limit we can express the intensity Iν in terms of the

brightness temperature T as Iν = kbT/λ
2, then we can always re-normalize r12 (all the

constants can be made part of the overall gain G mentioned before) so it has temperature

units, which is convenient, for example, when we compare the observed signal to the noise

temperature of the receiving system, or to the 21 cm brightness temperature. We can

write

r12 = 〈v1(t)v∗2(t)〉 =
∫
4π

T (n̂)|A(n̂)|2e−i2πbλ·n̂dΩ (2.37)

where we assumed identical antennas so A1(n̂)A
∗
2(n̂) = |A(n̂)|2.

We call equation 2.37 the complex visibility equation. The visibility is arguably the

fundamental quantity in radio interferometry since it shows how the interferometer ob-

serves the radio sky.

Note that, with this temperature-like definition of the visibility, and normalizing the

beam such that
∫
4π
|A(n̂)|2 = 1, then we ensure that for a sky with uniform brightness

temperature T then the autocorrelation of each antenna is just r11 = r22 = T .

2.3.4 Sensitivity of a radio interferometer: the radiometer equa-

tion

As discussed in Section 2.3, the correlation between two complex-valued signals v1 and

v2 is r12 = 〈v1(t)v∗2(t)〉 (equation 6.12), while the output of a digital correlator after

integrating Ns samples is r̂12 = N−1
s

∑Ns

n=1 v1[n]v
∗
2[n] (equation 2.10).

In the case of CHIME, the signals v1 and v2 are the outputs of the respective narrow-

band digital filters centered at νc. The output of these filters have the frequency content

of the sky signals concentrated around νc, which are represented by their complex enve-

lope (see Section 2.2). Furthermore, if the inputs of these filters are stationary jointly

Gaussian random processes with zero mean (which is the typical case for radio astronomy

applications, see Section 2.1), then it can be shown that the output vector v = (v1, v2)
T
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(the superscript T denotes matrix transpose) is a stationary complex Gaussian process

that is circularly symmetric [34, 35]. This means that v has zero mean and zero relation

matrix, i.e.

〈v〉 =
(
〈v1〉
〈v2〉

)
= 0, 〈vvT 〉 =

(
〈v1v1〉 〈v1v2〉
〈v2v1〉 〈v2v2〉

)
= 0. (2.38)

Thus, the complex Gaussian process v is completely specified by its covariance matrix

〈vvH〉 (the superscript H denotes matrix conjugate transpose).

Since the vectors v[n] = (v1[n], v2[n])
T are samples from the stationary random pro-

cess v, then these vectors come from the same distribution. From equation 2.10, this

means that 〈r̂12〉 = r12, so the measured correlation r̂12 is an unbiased estimator of r12.

We also know from ergodicity that r̂12 → r12 as the averaging increases (equation 2.12).

Since the number of averaged samples Ns is finite, the estimates r̂12 will fluctuate

around the mean r12. The strength of this fluctuation is characterized by the variance of

the correlator output

var(r̂12) = 〈(r̂12 − 〈r̂12〉)(r̂12 − 〈r̂12〉)∗〉 = 〈r̂12r̂∗12〉 − 〈r̂12〉〈r̂12〉∗. (2.39)

The first term of equation 2.39 is

〈r̂12r̂∗12〉 =
1

N2
s

∑
m,n

〈v1[n]v2[n]∗v1[m]∗v2[m]〉. (2.40)

We can use Isserlis theorem [36] to expand the fourth-order moment above

〈r̂12r̂∗12〉 =
1

N2
s

∑
m,n

[〈v1[n]v2[n]∗〉〈v1[m]∗v2[m]〉+ 〈v1[n]v1[m]∗〉〈v2[n]∗v2[m]〉+

〈v1[n]v2[m]〉〈v2[n]∗v1[m]∗〉].
(2.41)

Since v[n] has zero relation matrix then the last term in equation 2.41 is zero. As

for the second term, it is non-zero only when m = n since, for Nyquist sampling of band
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limited signals (as is the case of CHIME), the samples are uncorrelated [33], so

〈r̂12r̂∗12〉 =
1

N2
s

∑
m,n

〈v1[n]v2[n]∗〉〈v1[m]∗v2[m]〉+ 1

N2
s

∑
n

〈v1[n]v1[n]∗〉〈v2[n]∗v2[n]〉

=

(
1

Ns

∑
n

〈v1[n]v2[n]∗〉
)(

1

Ns

∑
m

〈v1[m]∗v2[m]〉
)

+
1

Ns

〈r̂11〉〈r̂22〉

= 〈r̂12〉〈r̂12〉∗ + 1

Ns

〈r̂11〉〈r̂22〉.

(2.42)

From equations 2.39 and 2.42 we obtain

var(r̂12) =
1

Ns

〈r̂11〉〈r̂22〉. (2.43)

The result above is called the radiometer equation. It is useful, for example, to

determine the point source sensitivity of an interferometric array. To write it in a more

familiar version, assume that the telescopes (antennas and receivers) are identical so

r̂11 = r̂22. Also, the usual case in radio astronomy is that the sky signals are weak

and the correlator inputs are dominated by the system noise. This means that the

autocorrelations, which are just measures of the input power, are equal to the system

temperature7, Tsys, so we can write

σT,12 =
Tsys√
Ns

=
Tsys√
Δντ

(2.44)

where σT,12 is the size of the fluctuations (standard deviation) of r̂12, Δν is the (total,

including negative frequencies) receiver bandwidth, and τ is the integration time. In order

to detect the signal from a radio point source, its temperature Tsrc must raise the system

temperature (several times) above the output fluctuations σT,12, so the signal-to-noise

(SNR) of the observation becomes

SNR =
Tsrc

σT,12

=
Tsrc

Tsys

√
Δντ (2.45)

In general, for an interferometric array consisting of N identical telescopes (so there

are N(N − 1)/2 identical two-element interferometers), the size of the fluctuations for

any visibility pair is σT,ij = Tsys/
√
Δντ . Since for a point source, and up to a phase, all

7The system temperature is a measure of the power level when a radio telescope is pointed at ‘blank’
region of the sky (with no sources). It includes the contributions from the sky background, the noise in
antenna (e.g. ground spill-over), and the noise in the receiving system. The system temperature is the
mean power level of a radio telescope.
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the visibilities measure the same value (the temperature distribution of a point source is

a delta function so it has equal power in all spatial frequencies), then we have N(N−1)/2

independent measurements of this source so the SNR becomes

SNR =
Tsrc

Tsys

√
N(N − 1)Δντ

2
. (2.46)

2.4 Mapping the 21 cm universe with CHIME

In contrast to traditional radio interferometry applications that often involve telescopes

with a narrow field of view that track and observe small regions of the sky, mapping

the universe with the 21 cm line requires rapidly observing large volumes with wide-field

radio telescopes. This is because it involves mapping a faint and diffuse cosmic signal

that covers all of the sky and needs to be separated from foreground contamination

(dominated by synchrotron emission from both our own galaxy and high redshift radio

galaxies) that is many orders of magnitude brighter.

CHIME is a transit interferometer, meaning that it has a fixed pointing and observes

the sky as the earth rotates (as it transits through the telescope’s field of view, a strategy

also known as drift scan). Furthermore, since CHIME has a wide field of view in order to

map large portions of the sky at once, the conventional flat-sky approximation described

in Appendix C is not valid, and a different approach that incorporates the curvature of

the sky is required.

In this section we will briefly describe the m-mode formalism, a technique for the

analysis of transit radio telescopes in the spherical harmonic domain that is well-suited

for wide-field radio interferometers like CHIME. It allows a computationally efficient

representation of the data that facilitates map making and foreground subtraction. The

m-mode formalism is described in detail in [37].

2.4.1 The m-mode formalism

From Section 2.3.3, the visibility rij is the instantaneous correlation between antennas i

and j,

rij = 〈viv∗j 〉 =
∫
4π

T (n̂)Ai(n̂)A
∗
j(n̂)e

−i2πbλ,ij ·n̂dΩ (2.47)

where bλ,ij = bij/λ is the baseline vector for antennas i and j normalized by the observed

wavelength (bij starts on antenna i and ends on antenna j).
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Under the narrow-beam and flat-sky approximation, equation 2.47 becomes a Fourier

transform mapping between the sky and the uv-plane (see Appendix C). Instead, we

realize that as the earth rotates, both the primary beams and the baselines of a transit

interferometer rotate relative to the sky. This means that the visibilities are periodic

with period equal to one sidereal day. In order to exploit this property, we first write the

visibility at time t in terms of the beam transfer function Bij

rij(t) =

∫
4π

dΩ′Bij(θ
′, φ′, t)T (θ′, φ′) (2.48)

where8

Bij(θ
′, φ′, t) = Ai(θ

′, φ′, t)A∗
j(θ

′, φ′, t)e−i2πbλ,ij ·n̂. (2.49)

Note that the rotation of the earth creates a linear correspondence between time t

and the azimuthal angle φ. Also that the φ dependence simply rotates Bij about the

earth’s polar axis, so we can write

rij(φ) =

∫
4π

dΩ′Bij(θ
′, φ′ − φ)T (θ′, φ′). (2.50)

Since rij(φ) is periodic with period 2π, it can be decomposed into its Fourier series,

given by

r̃ijk =

∫
2π

dφ

2π
rij(φ)e

−ikφ. (2.51)

The next step is to write Bij and T in terms of their respective spherical harmonic

expansions (note that these alm coefficients will not be the same as in Section 1.3 since

T contains not only the 21 cm signal but also the foreground sources)

T (θ′, φ′) =
∑
l,m

almYlm(θ
′, φ′) Bij(θ

′, φ′) =
∑
lm

Bij
lmY

∗
lm(θ

′, φ′). (2.52)

Note that we chose to expand Bij in terms of the conjugate spherical harmonics since

this simplifies the calculations that follow.

From the definition of the spherical harmonics, Yl1m1(θ
′, φ′) ∝ eim1φ′

Pl1m1(cosθ
′), it is

clear that

8Note that the argument of the exponential in equation 2.49 is also a function of θ′, φ′, and t.
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Bij(θ
′, φ′ − φ) =

∑
l1,m1

Bij
l1m1

eim1φY ∗
l1m1

(θ′, φ′). (2.53)

Using equation 2.53 for Bij and equation 2.52 for T in equation 2.51 we have

r̃ijk =

∫
2π

dφ

2π

{∫
4π

dΩ′
[ ∑
l,m,l1,m1

almB
ij
l1m1
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In practice, the visibilities are also corrupted by instrumental noise, so an additional

noise term nij(φ) must be added to equation 2.50. Assuming that the noise is stationary

such that its statistics are independent of φ and repeating the procedure above leads to

r̃ijm =
∑
l

almB
ij
lm + nij

m (2.55)

or, using a more compact notation that also includes the additional degrees of freedom

(the frequencies ν and feed pairs ij), we can write (see [37] for details)

r̃ = Ba+ n ∀m. (2.56)

Equation 2.56 describes the way an interferometric array (determined by the beam

transfer matrices B and the noise vectors n) maps the sky (contained in vectors a) into

the observed data (the visibility vectors r̃). Note that different m modes do not mix
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(the stationarity assumption means that the noise m modes are uncorrelated) so we can

perform operations for each m independently. Also that the finite size of the instrument

ensures that the sums are finite.

2.4.2 Power spectrum from m-modes

With the m-mode formalism the measurement process has been reduced to a linear map

with finite degrees of freedom, so operations like map-making, foreground subtraction,

and power spectrum estimation become conceptually simple. In particular, the angular

power spectrum of the sky signal can be recovered from equation 2.56 directly.

The covariance of the visibilities, C(ijνm);(i′j′ν′m′) =
〈
r̃ m
ijν · r̃ m′∗

i′j′ν′
〉
, is a prohibitively

large matrix (dimension of the order of 108 for an experiment like CHIME) since it

is the covariance between all possible degrees of freedom: baselines, frequencies and

m modes. However, under the assumption that the sky signal is a homogeneous and

isotropic random field (see Section 1.3.2), then both the amount of computation and

data storage are significantly reduced since this covariance is block diagonal and the

statistics can be calculated in an m by m basis. In this case there is a simple linear

relationship between the covariance of the data and that of the sky signal that can be

written in matrix notation as

C = BCskyB
H +N ∀m (2.57)

where Csky and N are the covariance matrices of the sky signal and the instrumental

noise, respectively.

As explained in Chapter 1, the covariance of the 21 cm signal encodes the cosmological

information that we are interested in (the BAO signal). In practice, Csky contains both

the 21 cm signal (C21), which we are ultimately trying to recover, and foreground sources

(Cf ) like diffuse synchrotron emission from the galaxy and emission from extragalactic

point sources. To efficiently extract C21 we also need to understand the two-point statis-

tics of the foregrounds. However, the m-mode formalism allows a powerful foreground

removal technique in the form of the Karhunen-Loève transformation to be used, which

allows us to identify a basis in which the astrophysical foregrounds and 21 cm signal

are maximally separated. For details on foreground removal with the Karhunen-Loève

transform refer to [37].
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2.5 Conclusions

In this chapter we presented in detail important concepts of radio astronomy and radio

interferometry that we use intensively in this thesis. We discussed the use of random

processes to model the signals received from radio astronomical sources and introduced

the concepts of stationarity and ergodicity. We also discussed the representation of band-

limited signals and derived the narrowband approximation that allows us to represent

time delays of the sky signals as phase shifts of their equivalent baseband representation.

This approximation is commonly used in interferometric techniques including beamform-

ing, fringe-stopping, and image reconstruction. We also determined the limitations of

this approximation and its application for CHIME.

We presented a detailed analysis of the two-element interferometer which forms the

basis for larger and more complex interferometric arrays. We studied the response of the

two-element interferometer and derived the complex visibility equation which shows how

the interferometer observes the radio sky. We also presented the radiometer equation

that measures the sensitivity of the interferometer.

Finally, we introduced the m-mode formalism technique for the analysis of transit

radio telescopes in the spherical harmonic domain that is well-suited for wide-field radio

interferometers like CHIME.



Chapter 3

The CHIME instrument

The CHIME telescope consists of an array of four cylindrical reflectors that are instru-

mented with a total of 1024 dual-polarization feeds. CHIME operates as a transit in-

terferometer that surveys the northern half of the sky every day with an instantaneous

field of view of 90 degrees by 1.3-2.6 degrees and a synthesized beam resolution of 12-24

arcminutes. The signals from each feed are amplified using receivers with noise perfor-

mance below 50 K, filtered to 400-800 MHz, and sampled at 800 MSPS1. A hybrid FX

digital correlator processes the signals from all the feeds and computes the complex-

valued correlations which provide the interferometric visibilities. In this chapter we

describe the design and characteristics of CHIME and the CHIME pathfinder, which is

an early prototype of CHIME consisting of two cylindrical reflectors with a total of 128

dual-polarization feeds.

3.1 Science requirements

The choice of the CHIME design parameters is driven by its science goals in terms of

redshift coverage to constrain dark energy parameters, angular and line-of-sight resolution

to measure the BAO scale, and sensitivity to detect the 21 cm signal. These science

goals determine the frequency coverage, angular resolution, frequency resolution, and

integration time of the experiment.

3.1.1 Frequency coverage

The ability of an experiment to measure the properties of dark energy can be quantified

by the Dark Energy Task Force (DETF, [11]) Figure of Merit (FOM), defined as the

1MSPS is mega samples per second.

37
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reciprocal of the error ellipse enclosing the 95% confidence limit of the w0 − wa plane,

where w0 and wa are the dark energy equation of state parameters defined in equation 1.1.

A larger FOM indicates a greater accuracy in constraining these parameters.

As demonstrated in [17], the sensitivity of a BAO survey, and thus the improvement

of the FOM, depends on measuring the expansion history of the universe before and after

dark energy starts to dominate this expansion. This inflection point corresponds to a

redshift slightly above z = 1, or an observed frequency of 710 MHz. The improvement

factor can be increased by reaching lower redshifts, corresponding to operating at higher

frequencies. The upper edge of the operating frequency range of CHIME is practically

limited by the radio-frequency (RF) interference (RFI) from the cell phone band begin-

ning above 800 MHz (even in the radio quiet zone where CHIME operates this RFI is still

present). Note that probing redshifts below ∼ 0.8 (790 MHz) provides little improvement

to the FOM since these redshifts have already been probed by past and current surveys.

As for the CHIME lowest frequency, note that the improvement of the FOM is limited

above ∼ 2.5 (405 MHz). This is because if dark energy approximates a cosmological

constant then it is expected to be sub-dominant to matter density for 1 � z � 3 and

its effect is negligible at higher redshifts. However, if dark energy is more important

(wa �= 0) at high redshifts than in the standard model of cosmology (see Chapter 1),

then z � 1 measurements become more useful for dark energy constraints.

3.1.2 Angular resolution

The BAO scale is rs ≈148 Mpc and appears as oscillations in the baryon power spectrum

(see Section 1.2.1). On small scales, this BAO structure is attenuated by nonlinearities

such as those induced from nonlinear gravitational clustering. These nonlinearities be-

come significant for spatial scales smaller than ∼ 44 Mpc [14], making the reconstruction

of the position of the BAO peak less accurate (they shift and broaden the peak). Thus,

this is the smallest spatial scale we shall consider, and a Nyquist sampled map up to this

scale would require pixels of size rpix ∼ 22 Mpc.

The angular resolution of an interferometric array with maximum baseline bmax is

Δθ = λ/bmax (See Appendix C and equation C.9). The longest baseline for the CHIME

telescope is bmax ∼ 100 m, so its angular resolution is ∼ 0.2◦ at redshift 0.8 (800 MHz)

and ∼ 0.4◦ at redshift 2.5 (400 MHz). From equation 1.18 this angular resolution Δθ

corresponds to a comoving distance r⊥ = ΔθdA(1 + z) perpendicular to the line of sight,

so ∼ 11 Mpc at redshift 0.8 and ∼ 45 Mpc at redshift 2.5 for CHIME. This comoving

distance resolution is appropriate to measure the BAO structure since at the lowest
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redshifts we can safely oversample the BAO scale and at the highest redshifts we can

reach well below the smallest linear scales2.

The CHIME pathfinder has bmax ∼ 30 m, corresponding to an angular resolution

∼ 0.7◦ − 1.4◦. The pathfinder resolution should be appropriate to Nyquist sample the

BAO scale up to z ∼ 1.4 (600 MHz) perpendicular to the line of sight.

3.1.3 Frequency resolution

From equation 1.17, the spatial scale rpix in the line-of-sight direction corresponds to

a redshift change Δz = Hrpix/c. Using ν = ν0/(1 + z), where ν0 ≈ 1420 MHz is the

rest-frame frequency for the hyperfine transition of hydrogen (Section 1.3), we find that

the spatial scale rpix ∼ 22 Mpc corresponds to a frequency separation

Δνs =
H(z)rpix

c

ν0
(1 + z)2

. (3.1)

This frequency separation is ∼ 3.5 MHz at redshift 0.8 (800 MHz) and ∼ 2.2 MHz

at redshift 2.5 (400 MHz). The CHIME correlator splits the 400-800 MHz bandwidth

uniformly into 1024 frequency channels ∼ 0.4 MHz wide. This frequency resolution is

well above the requirements to measure the BAO structure along the line of sight, but

necessary for RFI removal as well as for maintaining coherence and avoiding loss of signal

for the longest baselines (see Section 2.3.2).

3.1.4 Sensitivity and integration time

Using observations of damped Lyα systems, it is found that the cosmic density of neutral

hydrogen gas is ΩHI ∼ 10−3 in the redshift range 0.8 � z � 2.5 with a weak dependence

on redshift [38]. This sets the average neutral fraction of hydrogen at xHI ∼ ΩHI/Ωb ∼
0.02. Using equation 1.30 we find that the average sky brightness temperature due to

21 cm radiation is ΔTb ∼ 320 μK at z = 1.5.

Measuring the 21 cm power spectrum requires detecting variations of the 21 cm sky

brightness temperature ΔTb = ΔTbδ21 (equation 1.32), which on ∼ 22 Mpc scales are

expected to be of order 100 μK [39].

If we require a telescope sensitivity ΔT ∼ 100 μK per sky pixel then, from the

radiometer equation 2.44, the observation time per pixel is tpix = T 2
sys/(Δν · ΔT 2) ∼

2Note that measuring the BAO scale at high redshifts is very challenging, not only beacuse its
size decreases with redshift, but also because the angular resolution of the telescope degrades at low
frequencies. This means the size (and cost) of CHIME is dominated by how high a redshift we expect
to reach.
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35 hours, where we used Δν ∼ 2 MHz and Tsys ∼ 50 K, which are typical values for

CHIME. For a single telescope with the same angular resolution as CHIME (∼ 0.2◦

at 800 MHz) surveying the northern half of the sky this would require ∼ 2000 years

of observation time. On the other hand, CHIME can form 1024 (dual polarization)

independent beams by taking linear combinations of the ∼ N2/2 visibilities (equivalent to

beamforming) with roughly the same noise (up to a factor of
√
2), reducing the integration

time to approximately 2 years.

3.2 The CHIME telescope

CHIME is a hybrid cylindrical transit interferometer located at the Dominion Radio

Astrophysical Observatory (DRAO3) near Penticton, Canada (Figure 3.1). It is an array

of four adjacent cylindrical paraboloidal reflectors 20 m wide by 100 m long oriented

north-south for a total collecting area of 8000 m2. The cylinders are fixed with no

moving parts, forming a transit instrument that surveys the northern half of the sky

every day with an instantaneous field of view of ∼ 90◦ by ∼ 1◦ − 2◦ and a synthesized

beam resolution of ∼ 0.2◦ − 0.4◦.

The cylinder structures are steel, and the reflecting surface is a 19-mm-spacing mesh

made of galvanized-steel and bolted to the structure. The mesh spacing achieves a good

trade-off between reflecting effectively the sky radio signals and allowing snow to fall

through. The measured surface RMS deformation is ∼ 9 mm.

The focal line of each cylinder is instrumented with 256 dual polarization feeds placed

every ∼ 30 cm, giving a total of 2048 sky signals. This spacing is enough to Nyquist

sample the north-south field-of-view over almost all the CHIME band.

A summary of the CHIME design parameters is in Table 3.1. A photograph of the

CHIME telescope at DRAO is shown in Figure 3.2. The construction of the CHIME

telescope is complete and its first light was late 2017. The telescope is now operational

and collecting commissioning and early science data.

3.2.1 The CHIME pathfinder

The CHIME pathfinder is presented in detail in [2]. It is a proof-of-concept instrument

for CHIME consisting of two cylinders 20 m wide by 37 m long oriented north-south

for a total collecting area of ∼ 1500 m2. Each cylinder is instrumented with 64 dual-

polarization feeds for a total of 256 sky signals. The pathfinder maps the northern sky

3https://www.nrc-cnrc.gc.ca/eng/solutions/facilities/drao.html.
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Figure 3.1: The Dominion Radio Astrophysical Observatory (DRAO) is a facility for
science and technology research related to radio astronomy. It currently operates five
instruments: CHIME, the CHIME pathfinder, a 26-m fully steerable dish (the John
A. Galt telescope), a 7-element east-west interferometric radio telescope (the synthesis
telescope) and a solar flux monitor. It also features development laboratories for radio-
frequency instrumentation. The observatory is located near Penticton, British Columbia,
in a region regulated by the federal government to ensure a radio-quiet environment.

Table 3.1: Design parameters for CHIME and the CHIME pathfinder

Parameter Pathfinder Full CHIME
Structure Two 20 × 37 m cylinders Four 20 × 100 m cylinders
Focal ratio f/D 0.25 0.25
Number of feeds per cylinder 64 256
Feed spacing 30 cm 30 cm
Frequency range 400 MHz - 800 MHz 400 MHz - 800 MHz
Redshift range 2.5 - 0.8 2.5 - 0.8
Frequency resolution 390 kHz, 1024 bins 390 kHz, 1024 bins
E-W Field of View 2.6◦ − 1.3◦ 2.6◦ − 1.3◦

N-S Field of View 90◦ 90◦

Synthesized beam size 1.4◦ − 0.7◦ 0.4◦ − 0.2◦

Number of beams 128 dual polarization 1024 dual polarization
Receiver noise temperature � 50 K � 50 K
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Figure 3.2: Top: the CHIME telescope, a hybrid cylindrical transit interferometer of four
20 × 100 m cylindrical dishes instrumented with a total of 1024 dual-polarization feeds.
CHIME is currently being commissioned and it observed the first fringes from a point
source transit late 2017 (photograph taken by Nolan Denman). Bottom: the CHIME
pathfinder, a hardware, calibration, and data analysis proof of concept for CHIME. The
pathfinder’s first light was late 2013 and its commissioning finished early 2015.
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every day with the same field of view of CHIME and a synthesized beam resolution of

∼ 0.7◦ − 1.4◦ in the 400-800 MHz band.

A summary of the pathfinder design parameters is in Table 3.1 and a photograph of

the telescope at DRAO is shown in Figure 3.2. The pathfinder’s first light was late 2013

and its commissioning finished early 2015, overlapping with the start of the construction

of the full CHIME structure.

The pathfinder has served as a test-bed to

• Develop instrumentation and test the performance of different CHIME subsystems

(e.g. feeds, analog receiver, correlator).

• Demonstrate instrument calibration techniques (e.g. beam calibration, receiver

noise calibration, digital calibration).

• Test RFI and foreground subtraction techniques.

• Develop the CHIME data analysis pipeline.

The valuable experience and lessons learned during the commissioning of the pathfinder

have been used to improve the final CHIME design. However, the pathfinder has been

designed to operate as an independent telescope with the sensitivity to measure the BAO

at low redshifts.

Its drift-scan strategy, together with its large field of view, also makes the pathfinder

(and full CHIME) an excellent instrument to pursue additional science goals, including

pulsar monitoring and detection of radio transients and Fast Radio Bursts (FRBs). In

2016 we performed a 52.85 day incoherent-beam FRB search with the pathfinder, corre-

sponding to one of the largest FRB survey exposures to date, with ∼ 2.4×105 deg2 hours.

An incoherent beam was formed by adding the square of the voltages from all the

pathfinder feeds. This beam is less sensitive than a beam formed by the coherent com-

bination of the voltages from all the feeds (a tied-array beam), but it has a much larger

size, favoring the rapid detection of ultra-bright FRBs if these events were common. This

allowed constraining the slope of the FRB distribution, α = −∂logN/∂logS, where S is

the flux density and N is the number of events. By not detecting any FRBs, it was pos-

sible to rule out α < 0.9 with 95% confidence, constraining the number of events brighter

than ∼ 220
√
(τ/ms) Jy ms for τ in the range 1.3-100 ms to fewer than ∼ 13 sky−1 day−1.

The details of this wide-field FRB survey and the incoherent beamformer are presented

in [40].
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3.2.2 Signal path

A schematic diagram of the CHIME signal path is shown in Figure 3.3 and further ex-

plained in the sections that follow. The signals from the broad-band dual-polarization

feeds are amplified (each polarization separately) using room temperature receivers with

a noise performance below 50 K that amplify and filter the signals to 400-800 MHz. The

correlator is an FX design (temporal Fourier transform before spatial cross-multiplication

of data), where the F-engine digitizes (samples at 800 MSPS and with 8 bits) and chan-

nelizes (i.e., divide the 400 MHz input bandwidth into thousands of frequency channels)

the signals from the 2048 analog receivers4. The F-engine also performs the corner-turn

network that rearranges the channelized data before sending it to the X-engine that

performs the cross-multiplications and averaging to compute the N2 correlation matrix.

These data are sent to the CHIME cosmology pipeline for storage and further processing.

Figure 3.3: Schematic diagram of the CHIME signal path. The signals from each of the
dual-polarization feeds are independently amplified and filtered to 400-800 MHz. The
F-engine digitizes and channelizes the signals from the 2048 analog receivers. It also
re-arranges the data before sending it to the X-engine that computes the N2 correlation
matrix. These data are sent to the CHIME cosmology pipeline for storage and further
processing. The X-engine also performs separate beamfoming and upchannelization op-
erations on the high-cadence data for two specialized backends for real-time FRB search
and pulsar monitoring.

4Technically speaking, the F-engine module of the CHIME correlator only performs the frequency
channelization. However, in this chapter we use the term F-engine loosely to refer to the system that
implements the digitization, channelization, and corner-turn network of the CHIME correlator. The
details of this system are presented in Chapter 4.
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The X-engine has been upgraded to independently perform additional real-time data

processing operations for pulsar timing and FRB science. It forms 10 dual-polarization

tied-array beams that allow simultaneous tracking of up to 10 pulsars at different lo-

cations. The high-cadence data from these beams are fed into a specialized backend

that monitors the dispersion measure, timing, and scintillation of pulsars. A detailed

description of the pulsar backend is found in [41]. Separately, the X-engine also im-

plements a Fast Fourier Transform (FFT) beamformer and an additional frequency up-

channelization. The high-cadence data from the resulting 1024 dual-polarization and

high-frequency-resolution formed beams are fed into a specialized backend that triggers

on high-dispersion radio transients to search for FRBs. The CHIME FRB backend is pre-

sented in [42], and a detailed description of the FFT beamforming and up-channelization

modules of the X-engine is found in [43].

3.3 Analog chain

A schematic diagram of the CHIME analog receiver is shown in Figure 3.4. At the focus

of the cylinder, the sky signal received by each feed is amplified by a low noise amplifier

(LNA) with a noise temperature below 30 K across the band. Each polarization is

amplified separately. The signals are then transmitted 50 m on low-attenuation coaxial

cables to nearby receiver huts with RF-shielded rooms, where they are amplified, band-

pass filtered to 400-800 MHz, and directly sampled at 800 MSPS with 8 bits. The

overall receiver temperature is designed to be below 50 K. This includes ground effects

(e.g. ground-spill over the dish edge and through the mesh), but does not include sky

contribution. The nominal signal level at the input of the analog-to-digital converters

(ADCs) is about −23 dBm, corresponding to a voltage standard deviation of ∼ 3.5

bits RMS. As demonstrated in Section 5.3, this level causes a negligible penalty due to

quantization errors, while allowing headroom for receiver gain fluctuations and external

RFI (see Section 5.3).

3.3.1 Feeds

CHIME uses cloverleaf antennas [44] which are compact and broadband dual-polarization

feeds made of conventional low loss printed circuit boards. Photographs of the cloverleaf

antenna are shown in Figure 3.5. The broad bandwidth is achieved by having petals

with smooth curved outer edges. The geometry of the petals was optimized to achieve a

return loss better than 10 dB across the CHIME band. For each polarization, differential
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Figure 3.4: Schematic diagram of the CHIME analog receiver. At the focus of the
cylinder, the sky signal received by the feed is amplified by an LNA with ∼44-38 dB gain
in the 400-800 MHz band and ∼30 K noise. After that, the signal is sent through 50 m
of low-attenuation (-4 to -6 dB) coaxial cable to the receiver hut, where it is amplified
again by ∼ 30 − 36 dB and filtered to 400-800 MHz. The signal is about −23 dBm at
the input of the ADC. This level causes a negligible penalty due to quantization errors,
while allowing headroom for receiver gain fluctuations and external RFI.

signals from pairs of adjacent petals are combined through tuned baluns (the ‘stem’) to

form one single-ended output. Thus, each polarization involves currents from the four

petals. For details on the feed design and optimization refer to [44].

3.3.2 Low Noise Amplifier

The LNA is attached directly to the feed output. It achieves a noise temperature below

30 K across the CHIME band and its gain decreases smoothly from ∼44 dB at 400 MHz

to ∼38 dB at 800 MHz. The input matching, output matching, and feedback of the LNA

were designed to achieve a low noise temperature. A photograph of the LNA is shown in

Figure 3.6.

The CHIME LNA design is an optimized version of the prototype described in [2] that

is used for the pathfinder. The main differences with respect to the pathfinder prototype

are:

• The CHIME LNA design improves the noise performance by ∼5 K at the top half

of the CHIME band.

• The in-band gain response of the CHIME LNA is very similar to that of the

pathfinder. However, the CHIME LNA includes an impedance matching network

to produce lower reflection coefficients at the input and output of the LNA and to

reduce the out of band gain response, especially at high frequencies.
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Figure 3.5: Left: Photograph of the CHIME cloverleaf feed. Right: Photograph of an
array of cloverleaf feeds installed at the focal line of the pathfinder.

• The pathfinder has power supplies installed on the focal line to provide power for

the LNAs. The CHIME LNA includes an output bias-tee that allows it to receive

power from the filter amplifier over the coaxial cable, removing the necessity for

power supplies or power cabling on the focal line and allowing LNA power control

from the RF room.

3.3.3 Filter amplifier

The output of each LNA is transmitted 50 m on LMR-400 coaxial cables to the RF

room where it is connected to a highly linear filter amplifier (FLA). The FLA consists

of a custom-made 400-800 MHz anti-aliasing band-pass filter, three amplification stages,

and a gain shaping network that flattens the overall gain response of the analog receiver

by compensating for the negative slope of the LNA and coaxial cable gain response. A

photograph of the FLA is shown in Figure 3.6.

The CHIME FLA design is an optimized version of the prototype described in [2] that

is used for the pathfinder. The main differences with respect to the pathfinder prototype

are:

• Since the pathfinder FLA has a flat gain response, the overall response of the

pathfinder analog receiving system has lower gain at high frequencies due to the

LNA and coax contributions, resulting in a non-negligible contribution of the dig-

itization noise at these frequencies. The CHIME design includes a gain shaping
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network to flatten the overall gain response of the analog receiver. A comparison

between the gain response of the CHIME and pathfinder analog receivers is shown

in Figure 3.6.

• The CHIME FLA has a lower noise temperature (∼ 300 K) compared to the

pathfinder version, especially near the band edges.

• During the pathfinder operation it was found that the FLAs were only conditionally

stable at high frequencies, and some FLAs would occasionally oscillate at 4.5 GHz

when coupled to the ADCs. This problem has been fixed in the new design, and

the CHIME FLAs are now unconditionally stable.

• The pathfinder receiving system operates with an external attenuator at the input

of the FLA to adjust the signal level at the input of the ADC and improve the

input impedance matching. This attenuation is now integrated in the new CHIME

FLA design.

• The input network of the FLA now includes a bias tee that provides power to the

LNA through the coaxial cable.

Overall, the CHIME analog receiver has a better dynamic performance compared

to the pathfinder analog receiver, achieving lower noise temperature, flatter response

over the CHIME band, higher rejection out of band, and unconditional stability. The

construction of the pathfinder has proven to be very valuable in allowing the iterative

optimization that makes the CHIME analog receiving system close to optimal.

3.4 The CHIME correlator

A schematic diagram of the CHIME correlator is shown in Figure 3.7. It has the struc-

ture of an FX correlator, where the data acquisition, Fourier transform channelization

and corner-turn networking are performed in field-programmable gate arrays (FPGAs),

which are interfaced to a set of graphics processing units (GPUs) that computes the

interferometric visibilities.

3.4.1 F-engine

The F-engine is presented in detail in Chapter 4; we describe it briefly here. The F-

engine is built around ‘ICE’ motherboards (also known as iceboards), which are custom



Chapter 3. The CHIME instrument 49

Figure 3.6: Top: Photographs of the CHIME LNA (left) and FLA (right) Bottom:
Comparison between the insertion gain of CHIME (blue) and pathfinder (cyan) analog
receiving chains (from the input of the LNA to the output of the FLA). The new analog
receiver for CHIME has a flatter response over the CHIME band and higher rejection
out of band. These measurements and figures were made by Rick Smegal.
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Figure 3.7: The CHIME correlator. See Section 3.4 for a detailed description.
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FPGA-based processing circuit boards that have been specialized for the CHIME ap-

plication through custom software, firmware, and digitizer daughter boards. Each ICE

motherboard digitizes 16 analog inputs at 800 MSPS with 8 bits, so the 400-800 MHz

sky signals are directly sampled using the second Nyquist zone. Each input is then fed

to a custom PFB that splits the 400 MHz bandwidth into 1024 frequency bins 390 kHz

wide. The output of the F-engine for each frequency bin is a 4-bit real + 4-bit imaginary

complex value per frame.

At this point each ICE motherboard has the data from 16 inputs for all the frequency

channels. However, computing the correlation matrix requires, in a single place, the data

from all the inputs and a subset of frequency channels. This operation is performed in

a four-stage corner-turn network. The first stage occurs within each ICE motherboard,

where the data are split into 16 subsets, each containing 1/16 of the frequency channels

for the 16 inputs. In Figure 3.7 this stage is represented by a red block inside each

iceboard module.

Groups of 16 ICE motherboards are packaged in crates (icecrates), and all the boards

within a crate are interconnected through a high-bandwidth backplane. The second

corner-turn stage is a data exchange between the boards in the crate, after which each

board has all the data from 256 inputs for 64 frequency channels. In Figure 3.7 this stage

is represented by a green block inside each icecrate module.

The third stage is a data exchange between pairs of crates, after which the data from

512 inputs is split into 256 subsets distributed through the ICE motherboards, and each

subset contains 4 unique frequency channels. Each crate pair contains all the data for

one quarter of the CHIME array, or one cylinder. In Figure 3.7 this stage is represented

by a magenta block inside each crate pair module.

3.4.2 X-engine

The cross-multiplication and averaging for all the CHIME inputs takes place in a dedi-

cated GPU-based computing cluster consisting 256 independent and identical processing

nodes. A computer acting as a control system is housed in the same cluster, which serves

the software and operating system used by the nodes. This same system aggregates and

buffers the data prior to archiving on a data server.

The fourth stage of the corner-turn network is completed within the GPU nodes.

Each node receives one frequency subset from each crate pair and recombines the data to

compute the correlation matrix for the 2048 inputs and 4 frequency bins. In Figure 3.7

this stage is represented by the blue lines that connect the F-engine and the X-engine.
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Table 3.2: Design parameters for the CHIME and pathfinder corelator.

Parameter Pathfinder Full CHIME
Number of analog inputs 256 2048
Analog sampling 800 MSPS, 8 bits 800 MSPS, 8 bits
Channelizer type 2048 sample PFB/FFT 2048 sample PFB/FFT
Frequency channels 1024 bins, ∼390 kHz/bin 1024 bins, ∼390 kHz/bin
F-engine Input 8 bits 8 bits
data path Internal 18+18 bits complex 18+18 bits complex

Output 4+4 bits complex 4+4 bits complex
Power F-engine 1.3 kW 10.4 kW
consumption X-engine 10 kW 260 kW
Internal Raw F-engine input 1.6 Tbit/s 13.1 Tbit/s
data rates∗ F-engine output 0.8 Tbit/s 6.6 Tbit/s

X-engine operations 13 TcMAC/s 839 TcMAC/s
Output rate (10 s integration)∗,� 0.2 Gbit/s 13.8 Gbit/s
Baselines 32896 2098176
∗Data rates are for visibility data only and do not include flags and overhead.
�Each component of the output correlation matrix is 4+4 bytes complex.

Each component of the output correlation matrix is a 4-byte real + 4-byte imaginary

complex value. The nominal integration time for CHIME is 10 s, corresponding to an

X-engine output data rate of ∼ 150 TB/day. These data are further compressed over

redundant baselines by the CHIME cosmology pipeline prior to long-term archiving.

After compression, the output data rate is ∼ 1 TB/day.

The design and implementation of the X-engine is presented in [45] and details of the

GPU kernels that implement efficiently the correlation operation are presented in [46, 47].

The correlator for the pathfinder consists of a single icecrate for the F-engine and a GPU-

cluster with 16 nodes for the X-engine (see [2] for details). The design parameters of the

correlator for CHIME and the pathfinder are summarized in Table 3.2.

3.5 Conclusions

The CHIME hybrid cylindrical transit interferometer is operational and collecting early

science data. Its design parameters (frequency coverage, angular and spectral resolu-

tion, and integration time) are driven by its cosmology science goals of detecting the

21 cm signal, measure the BAO scale, and constraining dark energy parameters. CHIME

features 1024 broadband dual-polarization feeds, room temperature receivers with noise

performance below 50 K, and a powerful hybrid FX correlator where the data acquisition,
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Fourier transform channelization and corner-turn networking are performed in FPGAs.

These are are interfaced to a GPU cluster that computes the interferometric visibilities.

With its drift-scan strategy and large field of view, CHIME is also an excellent plat-

form to pursue additional science goals, including pulsar monitoring and detection of radio

transients and FRBs. The CHIME correlator has been upgraded to perform real-time

beamforming and up-channelization operations for two separate specialized backends:

An FRB backend that triggers on high-dispersion radio transients to search for FRBs,

and a pulsar backend that monitors the dispersion measure, timing, and scintillation of

pulsars.

The CHIME pathfinder is an proof-of-concept instrument for CHIME with ∼ 10%

of its collecting area that has served as a test-bed for developing instrumentation and

testing calibration and analysis techniques. Although the pathfinder has proven to be

very valuable to optimize the different CHIME subsystems, its design and operating

parameters allow its use as an independent telescope with the sensitivity to measure the

BAO at low redshifts and probe the time-variable radio sky.



Chapter 4

The ICE system and the CHIME

correlator

The CHIME correlator processes 2048 digitizer inputs with 400 MHz of bandwidth and,

measured in number of baselines times bandwidth, it is the largest radio correlator that

has been built. We have developed the ICE system, an FPGA-based hardware, firmware,

and software framework that has been specialized to implement the digitization, F-engine,

and the networking engine of the CHIME correlator. In this chapter we describe the

design of the ICE system and its use for the CHIME correlator. We also describe the full

end-to-end characterization and validation of the pathfinder correlator demonstrating

that the system complies with all the requirements for full CHIME. Finally, we give

details of the installation of the pathfinder and full CHIME correlators.

4.1 The ICE system

ICE1 is a hardware, firmware, and software framework developed at the McGill Cosmol-

ogy Instrumentation Laboratory for next-generation scientific instruments that require

large-scale electronics backends for data acquisition, signal processing, and networking.

The design of the ICE system was mainly based on the specifications for two applica-

tions: the digitization, F-engine, and corner-turn network for the CHIME radio correlator

and the digital frequency multiplexing (DfMux) bolometer readout system for the South

Pole Telescope (SPT) and Simons Array ([48]). However, the flexibility of the ICE system

has also allowed it to be used in other applications including the correlator for the Real-

time Analysis eXperiment (HIRAX2, [49]) and very-long-baseline interferometry (VLBI)

1ICE is the name of the system, and is not an acronym.
2HIRAX is a transit radio interferometer consisting of 1024 six-meter parabolic dishes in a compact

54
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between the CHIME pathfinder and the Algonquin Radio Observatory (ARO) in On-

tario. Details on the use of the ICE system for DfMux and other applications are found

in [3].

Figure 4.1: Photograph showing two ICE crates mounted in a standard rack. Each crate
is populated with 16 motherboards. The motherboards have daughter boards designed
for the CHIME application. The two crates process 512 analog inputs in total.

The ICE system consists of FPGAmotherboards and their respective daughter boards,

crates with custom backplanes for high-density applications, system software, and FPGA

firmware. The daughter boards and firmware are mostly application specific.

and highly redundant configuration that is currently under development for deployment in South Africa.
HIRAX has the same science goals of CHIME, and will complement it by observing the southern radio
sky in the same redshift range.
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Figure 4.1 shows part of the ICE system assembled for CHIME, where two fully

populated ICE crates are are mounted in a standard rack. Each crate is populated with

16 motherboards. Each motherboard has two digitizer daughter boards that specialize

the system for the CHIME application. The system in this example can perform the

digitization, frequency channelization, and corner-turn operations for 512 inputs (or one

CHIME cylinder).

4.1.1 ICE Hardware

FPGA Motherboard

Figure 4.2 shows a photograph and a block diagram of the ICE motherboard which is

the basic processing unit of the ICE system and features

• Two connectors to attach application-specific daughter boards.

• An FPGA for real-time signal processing and networking.

• A co-processor running Linux for remote access and high-level interface to the

motherboard.

• A control and monitoring network accessible to both the FPGA and the co-processor.

FPGA: The ICE motherboard hosts a Xilinx Kintex-7 420T FPGA that provides

the appropriate amount signal processing and networking resources to meet the require-

ments of the target applications. It provides twenty-eight 10 Gbit/s high-speed serial

transceivers that are used to:

• Communicate with other boards within a crate through an ICE backplane (15

transceivers).

• Communicate with other crates through Quad Small Form-factor Pluggable Plus

(QSFP+) connectors on the backplane (4 transceivers).

• Offload data through a pair of QSFP+ connectors on the motherboard (8 transceivers).

• Communicate with the FPGA through a 1 GbE or 10 GbE link (1 transceivers).

The CHIME correlator uses these transceivers to perform the corner-turn network

operation that re-arranges the digitized and channelized data before sending it to the X-

engine for cross-multiplication and averaging. This application is described in Section 4.2.
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Figure 4.2: Top: Photograph of an ICE motherboard. The FPGA is located below the
black heat sink visible near the center of the photo. Application specific daughter boards
attach to the two slots labeled FMC A and FMC B. The board can be attached to an
ICE backplane through the two black connectors seen at the bottom right. Two QSFP+
connectors at the back of the board provide eight 10 GbE data offload links. Bottom:
Simplfied block diagram of the ICE motherboard.
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ARM Processor: The ICE motherboard includes an ARM3 co-processor (Texas

Instruments AM3874) to provide remote access to the motherboard resources. Operations

like remote programming of FPGAs, continuous system monitoring, and implementation

of high-level functions can be done through he ARM processor. These features not only

make the ARM processor particularly useful for managing large arrays of boards, but

also allow freeing valuable FPGA resources that can be used for simpler but real-time

operations.

FMC daughter boards

By installing different industry-standard FPGAMezzanine Card4 (FMC) daughter boards,

the ICE motherboards can be specialized for different applications. Details of the custom

daughter board designed for the CHIME application are presented in Section 4.2.1.

Backplane and Crate

For applications like CHIME that require large arrays of FPGA nodes, crates equipped

with custom ICE backplanes have been designed to package up to sixteen motherboards.

The backplane provides power, clock, timestamp, and synchronization signals to all its

motherboards. It also implements a full-mesh passive network that provides a direct 10

Gbit/s link between all the boards within a crate. Finally, the backplane has sixteen

QSFP+ connectors (each capable of 4×10 Gbit/s) for communications between mother-

boards in different crates. Photographs of the backplane are shown in Figure 4.3.

The use of ICE backplanes and crates reduces wiring and volume occupied by the

hardware, facilitating the cooling of the boards and simplifying the implementation of

the ICE system in high-density applications.

Other hardware features

Other hardware features of the ICE system are:

• Power system: To facilitate the implementation for the user, the ICE system

operates from a single power rail provided with a voltage in the range 13-20V DC.

Switching power supplies within the boards generate all the voltages required to

power the FPGA, ARM and peripherals. The voltage and current provided by each

power supply can be monitored by either the FPGA or the ARM.

3https://en.wikipedia.org/wiki/ARM architecture
4https://en.wikipedia.org/wiki/FPGA Mezzanine Card
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Figure 4.3: Left: Photograph showing the ICE backplane from the motherboard mating
side. Right: Photograph showing the back of the crate-mounted ICE backplane and
one motherboard attached. Eight dual-QSFP+ connectors at the back of the backplane
provide data links between crates. Connectors for clock, timestamp, and synchronization
signals are also at the back of the backplane.

• Cooling: The power consumption of a full crate of ICE motherboards operating

at capacity is approximately 1.3 kW. When used in an ICE crate, custom-made

fan trays circulate air through the system to keep the FPGAs below their specified

maximum temperature (85 C).

• Timing: The system operates with a single 10 MHz clock from which all its com-

ponents (FPGA, ARM co-processor, switching power supplies, peripherals, etc.)

derive their timing. The backplane distributes the clocking and synchronization

signals to all the boards in the crate through a high-precision sub-picosecond jitter

network.

• Automatic hardware identification system: The ICE system detects auto-

matically every major hardware component (motherboards, backplanes, daughter

boards, QSFP+ cables, etc.) available in the array. When the array is booted, the

ARM processors advertise the presence of the hardware on the network.

• Peripherals: The ICE motherboards and backplanes are equipped with serial net-

works that are accessible to both the FPGA and the ARM processor through the

I2C protocol5, and that allow the user to control peripherals, fans, and power sys-

tems. They also allow monitoring voltages, currents and temperatures of different

parts of the system.

5https://en.wikipedia.org/wiki/I2C
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4.1.2 ICE Firmware and Software

Three pieces of firmware and software compose the ICE framework: the Python-based

control software, the ARM processor software, and the FPGA firmware. Application-

specific firmware and software is built upon a core library included with the ICE system

that provides the basic structure of these three elements.

Python-based System Control Software

The control software provides the tools necessary to configure, operate, and monitor the

hardware across the array in an application-specific manner. It is built upon the IceCore

Python package which is part of the ICE framework library and provides a basic set of

services common to the ICE hardware.

Applications are created by defining Python objects that represent each hardware

element and its interface through their attributes and methods. Specific applications are

built by extending the core objects (e.g. an IceBoard object that represents the ICE

motherboard, an IceCrate object that represents the backplane, a Mezzanine object that

represents a generic daughter board) provided by the IceCore package. As an example,

the basic IceBoard object provides methods to program the FPGA, monitor control

peripherals, access power systems to monitor voltages and currents, and measure system

temperatures. Methods available on the ARM processor are also available and can be

run as if they were local methods. The user then extends this IceBoard object to add

the functions that are available in the specific FPGA firmware.

ARM Software

The ARM software provides network-based access to the ICE system’s resources, pro-

grams and communicates with the FPGA, and runs high-level non-real-time applications

locally.

The ARM runs a custom Linux kernel that contains all the drivers needed to access

the hardware in the ICE motherboard. Once Linux has booted, the ARM can obtain

an Internet Protocol (IP) address automatically using the Dynamic Host Configuration

Protocol (DHCP6), announcing its presence and its surrounding hardware on the network,

and starting the applications needed to access the system’s resources. Access to the

ARM functions is done through the IceCore package (see the control software sub-section

above).

6https://en.wikipedia.org/wiki/Dynamic Host Configuration Protocol
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FPGA Firmware

The FPGA firmware is the most powerful (and complicated) part of the ICE firmware and

software system since it is responsible of the real time signal-processing and associated

networking for a given application. Although the FPGA firmware is mostly application

specific, the ICE framework provides an FPGA library with core building blocks (e.g.

a serial interface with the ARM processor, a basic clock module, and a GPS time en-

coder/decoder) to help build specific applications. Details of the custom firmware for the

CHIME application are presented in Section 4.2.

4.2 The digitizer, F-engine, and networking engine

of the CHIME correlator

In this section we describe the specialization of the ICE system for the CHIME high-

bandwidth radio correlator, which is an FX design that uses the ICE system to implement

the data acquisition, Fourier transform channelization (F-Engine), and the majority of

the corner-turn networking.

4.2.1 Digitization

After the 2048 analog signals originating at the 1024 dual-polarization CHIME feeds are

amplified and band-pass filtered to 400-800 MHz, they are fed to custom digitizer daugh-

ter boards on the ICE motherboards. The daughter boards specialize the motherboards

for the radio interferometry application.

Figure 4.4: Photograph of two custom digitizer daughter boards (red) installed on a
motherboard (blue). Each daughter board includes eight inputs that can digitize at up
to 1.25 GSPS with 8 bits. For CHIME, these inputs sample at 800 MSPS in the second
Nyquist zone.
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As Figure 4.4 shows, each motherboard hosts two digitizer daughter boards. CHIME

requires a total of 128 motherboards to digitize the signals from the 2048 receivers. Each

digitizer daughter board has two EV8AQ160 ADCs and provides a total of eight inputs

that can digitize at up to 1.25 GSPS with 8 bits7. For CHIME, these inputs sample at

800 MSPS in the second Nyquist zone. Each input provides more than 15 dB return-loss

performance in the CHIME band. The insertion loss is approximately 2 dB. The ADCs

support analog inputs with 500 mV peak-to-peak and provide up to 7.5 Effective Number

of Bits (see Section 4.4.4).

The data from each of the 16 digitized inputs of a motherboard is processed by its

FPGA with custom firmware. The first signal processing module performs the data

acquisition from the ADC. The data from each input is acquired at 800 MSPS through

8 lines, one per bit. The module aligns the data acquisition of each line to compensate

for the board and FPGA routing delays. Finally, the data is passed to the channelizer

module as frames of 2048 8-bit samples.

4.2.2 Frequency channelization (F-engine)

A schematic diagram of the channelizer module for a single digitizer input is shown in

Figure 4.5. It receives a data stream from the data acquisition module and passes it

to the function generator sub-module. The function generator can pass the ADC data

down the pipeline or it can insert user-defined packets or other test waveforms. The

data stream is then passed to a custom PFB and FFT that uses the CASPER8 toolset.

The PFB/FFT applies a sinc-Hann window to 4 consecutive data frames, and outputs

a frame of 1024 complex values, one per frequency channel, in 18+18 bit format. The

following scaler sub-module applies a 16+16 bit complex gain to each frequency channel

and scales the result to 4+4 bit complex values. This complex gain can be configured by

software. The output data from the scaler sub-module includes ADC, FFT and scaling

saturation flags which is used to identify RFI. A separate prober sub-module within the

channelizer can be configured to capture and buffer a subset of the raw ADC or scaler

output data and send it back over the control channel for independent data monitoring.

7The EV8AQ160 converters have reduced channel modes which allow the sampling rate to be increased
to 2.5 GSPS (for two channels per ADC) and 5 GSPS (for a single channel per ADC)

8https://casper.berkeley.edu/
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Figure 4.5: Schematic diagram of the channelizer module. It receives a data stream from
the data acquisition module and passes it to the function generator sub-module which
can select its source stream from the ADC or from an integrated test pattern generator.
The data stream is then passed to a custom PFB/FFT that outputs a frame of 1024
complex frequency samples in a 18+18 bit format. The following scaler sub-module
applies a 16+16 bit complex gain to each frequency channel and scales the result to 4+4
bit complex values. A separate prober sub-module can be configured to capture and
buffer a subset of the raw ADC or scaler output data and send it back over the control
channel for independent data monitoring.

4.2.3 Corner-turn network

After the channelization, each ICE motherboard contains the information of 16 inputs

for the 1024 frequency channels. However, each X-engine node requires the data from

all the inputs and a subset of the frequency channels in order to compute all the cross-

multiplications and averaging required to form the visibilities. Each CHIME GPU node

can process four frequency channels. The corner-turn operation is the re-arrangement

of the data from a configuration where all the information of one input across all the

frequency channels is in one location at the F-engine (i.e. an ICE motherboard), to a

configuration where all the information from one frequency channel across all inputs is

in one location at the X-engine (i.e. a GPU node).

The total data rate, DR, of the corner-turn network is given by

DR = N ·Rbits ·BW (4.1)

where N is the number of inputs, Rbits is the number of bits per frequency channel, and

BW is the total frequency bandwidth. Note that DR is independent of the number

of frequency channels produced by the F-engine. This is the case for any F-engine

that implements Nyquist sampling of the input signals and a critically sampled PFB

structure (that is, that each frequency channel is also Nyquist sampled) since, for a

Nyquist sampling frequency νN = 2BW and an FFT of length L, there are L/2 (positive)

frequency channels per input and the output rate for each frequency channel is 2BW/L

in SPS, so the factor of L/2 cancels in DR. See [50, 32] for a detailed introduction to

critically sampled PFB structures.



Chapter 4. The ICE system and the CHIME correlator 64

With N = 2048 inputs, BW = 400 MHz of total bandwidth, and Rbits = 8 bits

per frequency channel (4 bits real + 4 bits imaginary), the CHIME corner-turn network

has to re-arrange 6.6 Tbit/s of data before sending to the X-engine that computes the

correlation matrix for each frequency channel. As a comparison, this data rate is greater

than all of North America’s mobile data traffic in 2017 (5.8 Tbit/s on average [51]).

On the other hand, since there are nb = N(N + 1)/2 baselines (including auto-

correlations and the two polarizations), then the X-engine has to compute nb complex

multiply-accumulate (cMAC) operations per frequency channel and per sample from the

F-engine, so the computational cost of the N -element correlation is

η = BW · nb. (4.2)

Table 4.1 shows the bandwidth-baseline product for large contemporary radio inter-

ferometers. CHIME is the largest correlator that has been built as measured by η.9,10

Table 4.1: Bandwidth-baseline products for large contemporary radio interferom-
eters.

Instrument Bandwidth (MHz) Inputs η (TcMAC/s)
CHIME 400 2048 839
ALMA∗, [52] 8000 128 66
CHIME pathfinder 400 256 13
JVLA�, [53] 8000 54 12
LEDA†, [54] 58 512 8
MWA	, [55] 31 256 1
∗Atacama Large Millimeter Array.
�Jansky Very Large Array.
†Large-Aperture Experiment to Detect the Dark Ages.
	Murchison Widefield Array.

Corner-turn architecture

Figure 3.7 shows the overall structure of the corner-turn architecture, while Figure 4.6

shows details of the hardware and FPGA firmware within each stage of the corner turn.

9The total computational cost for the CHIME correlator is dominated by the X-engine. The F-engine
performs (L/2)log2(L) cMAC operations every L/(2BW ) seconds (the time to obtain a frame) per input,
so the computational cost for the F-engine is BW ·N · log2(L) operations per second. For CHIME, this
value is about 9 TMAC/s, or about 1% of the total computational cost.

10Note that η alone does not necessarily reflect the total complexity or capability of each correlator.
See [33] for a detailed discussion.
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The data needs to be re-arranged such that at the end each of the 256 GPU nodes receives

1024/256 = 4 unique frequency channels from the 2048 inputs.

The corner-turn operation is performed by the ICE system in four stages. The first

stage is implemented within each FPGA, where each ICE motherboard digitizes and

channelizes 16 inputs, for a raw data rate of 51.2 Gbit/s after the channelization stage.

The FPGA creates 16 new data streams, each one having 1024/16 = 64 frequency chan-

nels from each of the 16 inputs.

In the second stage, each motherboard within a crate is assigned 1/16th of the spec-

trum. Thus, each board keeps one of its stage-1 data streams and sends the remaining 15

streams to the other boards within a crate through the backplane’s 10 Gbit/s mesh net-

work. After this data exchange each ICE motherboard within a crate contains the data

for a subset of 64 unique frequency channels, but all the 256 inputs of the crate. After

adding flags and headers, this results in about 4 Gbit/s of data sent by each backplane

link, resulting in about 1 Tbit/s of backplane full-mesh traffic, which is about 40% of

the theoretical capacity of the network. After receiving the data from the other boards

within a crate the FPGA re-orders the data into two streams, each one containing 32

frequency channels for the 256 crate inputs.

In the third stage of the corner turn, one of the two streams from stage two is sent to

a sister motherboard in the adjacent (same rack) crate through the four links provided

by one of the sixteen backplane QSFP+ connectors (see right photograph of Figure 4.3).

This results in about 7.4 Gbit/s of raw data and flags that are transmitted over each

link. The board from the other crate also sends one of its two data streams through the

same link. After this inter-crate data exchange, each board within a crate pair contains

the data for a subset of 32 unique frequency channels and 512 inputs. This corresponds

to the data from one quarter of the CHIME array, or one cylinder. The FPGA then

re-orders the data again into eight streams, each containing 4 frequency channels for 512

inputs. Although not used in CHIME, the ICE system also allows the formation of a

full-mesh network between motherboards in up to five crates using the backplane QSFP+

links. These configurations are discussed in detail in [4].

In the fourth stage, the motherboard uses the eight links from its two QSFP+ con-

nectors to send each of the eight stage-three streams to a different GPU node. Including

flags, this corresponds to about 7.5 Gbit/s of data rate per link. Since the F-engine and

the GPU X-engine are located in different buildings, the data of each board is sent over

two active 100 m multi-mode optical fiber QSFP+ cables, each terminated into four inde-

pendent SFP+ connectors. Each SFP+ connector is connected to a different GPU node,

and each GPU node receives data from a board in a different crate pair that handles a
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Figure 4.6: Schematic diagram of the corner turn. See Section 4.2.3 for a detailed
description.
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different cylinder, such that at the end it contains the data for a subset of four unique

frequencies and 2048 inputs (see Figure 3.7). In the last corner-turn stage the GPU node

recombines the data from its four 10 Gbit/s links to compute the correlation matrix for

the 2048 inputs and four frequency channels. For details on the final corner-turn step

refer to [45, 46, 47].

4.3 Installation of the ICE system for the pathfinder

correlator

The construction of the pathfinder cylinder structures started in January 2013 and took

approximately 9 months to complete. We installed the first set of 8 dual-polarization

feeds and their respective analog receivers in September 2013 (see Figure 4.7). During

that trip we also installed the first version of the pathfinder correlator, consisting of two

independent 8-input prototype correlators, each implemented on a Xilinx Kintex-7 FPGA

KC705 evaluation board that used one of our custom FMC digitizer daughter boards (see

Section 4.2.1). For these correlators the number of channels was low enough that both

the F-engine and X-engine could be implemented in the FPGA without the need of a

separate GPU. These FPGA correlators send the averaged input products directly to a

local control computer for further averaging and storage. Photographs of the two 8-input

correlators and the first set of measured autocorrelation spectra are shown in Figure 4.8.

In March 2014 we replaced the two 8-input correlators by a single 16-input correlator

consisting of a single ICE motherboard that implemented the digitization and F-engine,

and a GPU node that implemented the X-engine. A photograph of the ICE system for

this correlator is shown in Figure 4.9.

In September 2014 we finished the installation of pathfinder’s 256-input correlator,

consisting of a fully populated ICE crate and a cluster of 16 GPU nodes. Photographs

of the pathfinder ICE crate after the installation are shown in Figure 4.10. This system

initially operated as 16 independent 16-input correlators. By December 2014, the im-

plementation of the second-stage corner-turn within the FPGA firmware was completed.

The system operates as a 256-input correlator since then.

4.4 Validation of the ICE system on the pathfinder

After the installation of the pathfinder ICE crate we performed a full end-to-end charac-

terization and validation of the ICE system on the pathfinder correlator to demonstrate
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Figure 4.7: Installation of the first cassette on the west cylinder of the pathfinder in
September 2013. Each cassette hosts 4 dual-polarization feeds. The second cassette was
installed next to the first one.

that the system complies with all the requirements for CHIME and that the hardware was

mature enough to proceed with the production of all the motherboards, daughter boards

and backplanes for full CHIME and other experiments (e.g. HIRAX). The requirements

were grouped in the following broad categories:

• Manufacturability: The circuit boards must be demonstrated to be manufacturable

with a reasonable yield and cost.

• Uptime and reliability: The firmware and hardware that operate CHIME must be

reliable so that the system can continually run with minimal monitoring an main-

tenance once configured. It should run for extended periods without failure. The

circuit boards should not degrade with time in their normal operating environment.

• Data transport integrity: The system must have a low bit error rate (BER) and

packet loss during all the stages of the corner turn. Lost packets must be identified

and accounted for by the system.

• Analog performance and data acquisition integrity: The analog performance of the

digitizer boards must not be a limiting factor for science goals. The data acquisition

system must guarantee error-free acquisition of the ADC data.

• Timing: The system must provide accurate absolute time. The system clock jitter
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Figure 4.8: Top: Photograph of the two independent 8-input correlators installed on
the pathfinder in September 2013. The correlators use a Xilinx Kintex-7 FPGA KC705
evaluation board that used one of our custom FMC digitizer daughter boards. Both
the F-engine and the X-engine are implemented on the FPGA. Bottom: Photograph of
the first set of autocorrelation spectra obtained with the 8-input correlators. During the
installation we found a defective analog receiver (green line), which was fixed afterwards.
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Figure 4.9: Photograph of the ICE-based F-engine for the 16-input correlator installed
on the pathfinder in March 2014. The X-engine was implemented on a separate GPU
node.

Figure 4.10: Left: Side view of the ICE crate installed on the pathfinder for the 256-input
correlator. Only 32 analog receivers are connected. Right: Bottom view of the ICE crate
after connecting the 256 analog receivers.
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must meet the requirements for cosmology and additional science (e.g. FRBs,

pulsar timing) goals.

• Power consumption: The system must have power consumption that is commen-

surate with the power supplies we plan to use, and be able to operate within

component temperature tolerances with the convective cooling from the fans we

have selected.

4.4.1 Manufacturability

Requirements

The pathfinder correlator requires a fully populated ICE crate (one backplane, 16 mother-

boards and 32 digitizer boards) to implement the data acquisition, F-engine, and corner-

turn (up to second-stage) operations. For full CHIME, there will be 8 copies of this

hardware. The manufacturability requirements for full CHIME were:

1. Successful manufacture and operation of the pathfinder hardware.

2. Demonstration of manufacturability with adequate (>85%) yield.

Performance

The hardware quality control (QC) process consists of:

1. Assembly house QC: When the boards are manufactured, the assembly house

performs basic QC checks as part of the of their internal production process, includ-

ing visual inspection and X-ray checks of critical regions of the boards. In order to

further qualify the boards, we developed a suite of functional tests that the assem-

bly house performs on the boards before they are shipped to McGill. These tests

include impedance checks on the power rails, board power up, and ARM memory,

boot and networking tests.

2. McGill Cosmology lab QC: We have developed a Python-based custom QC

software that exercises all the functionalities of each board. The software runs on a

host computer that connects to the board under test, runs the tests automatically

(or directs the operators for manual tests like visual inspections), analyzes the

results, records, and archives the results. The tests include board identification

and configuration, ARM initialization, FPGA firmware programming, power and

temperature measurements, iceboard and backplane transceiver communications,

digital delay calculation for the ADC daughter boards, among others.
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3. Board tracking system: During the first test of every board, a data file is

automatically generated. This file is used to keep track of all the tests results, as

well as repairs and modifications made to the board. This file is automatically

pushed in a QC Git11 repository accessible to all board users.

After reaching final revision versions for each board, but before implementing the

assembly house QC software, we produced an initial batch of 40 ADC daughter boards

and 40 ICE motherboards for the manufacturability test and pathfinder correlator de-

ployment, of which 38 (95% yield) daughter boards and 36 (90% yield) motherboards

were operational. Problems with defective boards were mainly due to soldering issues

during assembly. These problems were easily identified using the McGill Cosmology lab

QC software and fixed by the assembly house. After the implementation of the assembly

house QC software we produced a second batch of 90 boards with 100% yield. By the

end of the test we had produced 10 backplanes with a 100 % yield.

By the time we finished the validation of the ICE system, the ICE crate installed

on the pathfinder (one backplane, 16 motherboards, and 32 daughter boards) had been

operating for more than 6 months with no faults, while the rest of the boards has been

used extensively in the McGill Cosmology lab and other experiments with no faults.

4.4.2 Uptime and reliability

Requirements

We quantify the uptime and reliability requirements as follows:

1. A fully populated ICE crate should run the 256-input F-engine and corner turn for

a test period of at least one week without needing to be restarted or significant

data corruption.

2. The entire system should be reliably configured and booted as desired without

additional checking and interaction from a user.

3. A fully populated ICE crate should operate in the pathfinder RF room environment

for many months without significant board failures or reliability issues that are not

understood.

11https://git-scm.com/
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Performance

During the week of December 20-27 2014 we tested the reliability of the ICE system by

running a fully populated ICE crate in 256-input mode inside the pathfinder RF room

uninterruptedly and without user interaction. At the end of the testing period the system

was still running to specifications.

Additionally, the pathfinder correlator has been routinely run for many days before

stopping it without incident, including several 3-week long run periods. The interruptions

are typically driven by testing needs, pathfinder hut cooling, and other external factors,

but not by ICE system failures or crashes. We operate (start, stop, configure) the ICE

system and the correlator remotely and reliably without issues.

The system meets reliability requirements. We have run the pathfinder correlator for

three years now without issues that can be attributed to the ICE system hardware and

software that are not understood.

4.4.3 Data transport integrity

Requirements

1. Packet loss must result in lower than 1% total data loss. Note that this requirement

is much more stringent than 1% packet loss, since losing data from one antenna

will result in losing correlations between that antenna and all others.

2. Malformed or lost packets must be identified and accounted for by the overall

system.

3. Data frames must be aligned in time to preserve correlation across the system. The

digital data transport must not degrade the correlation between inputs.

Performance

The corner-turn system that implements the data transport for CHIME is described in

Section 4.2.3. Each corner-turn stage is implemented using the same firmware module

that is configurable for each stage. Each stage starts with a frame alignment module that

ensures the frames are aligned when passed to the next processing stage. The module has

a nominal waiting time after which frames that are not received are considered missing

and the remaining data is forwarded with the respective flags.

Each packet contains a header that indicates its geometry (number of channels and

inputs), origin (stage, crate, slot and lane), and a GPS timestamp. The packet also has
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a trailer with flags indicating whether packets were lost or corrupted during the various

stages of the corner turn. Data transfers between motherboards use a custom-written

version of the 10 GbE Ethernet protocol that implements a cyclic redundancy check

(CRC) to validate the integrity of the packets. The data sent to the GPUs in the last

corner-turn stage use standard 10 GbE Ethernet and UDP packets.

The verification of the backplane full-mesh network signal integrity was performed by

transmitting a pseudorandom binary sequence (PRBS) between every motherboard in a

crate and performing an eye diagram for each link. The results for a particular backplane

test are shown in Figure 4.11. The diagram consists on varying the sampling point both

in time (x-axis of each mini-plot) and signal amplitude (y-axis of each mini-plot) by

discrete amounts and then measuring the BER relative to the optimal sampling point.

A good link has a large, well opened center region (blue region of each mini-plot, this is

the ‘eye’) were the BER is low. Figure 4.11 shows that, except for the link corresponding

to transmit slot 12 and receive slot 8 (indicated with a yellow rectangle), all the links

have well opened eyes. The figure also shows how a bad link can be identified. In this

case, the high-BER link was caused by a motherboard connector assembly issue that was

easily identified in this manner and fixed.

The inter-crate QSFP+ links (the ones used in the third stage of the corner turn) are

also tested by measuring their BER with a PRBS sequence. After measuring the BER

and adjusting the transmit power of each link to the optimal level we obtain error-free

transmission during many-second tests, which implies a BER lower than 10−11.

Finally, the communication between the ICE system and the X-engine was tested

with a fully-populated ICE crate pair (each pair can handle data from one quarter of the

CHIME array) configured to send data to the four 10G Ethernet ports of one GPU. The

channelizer of each input (see Figure 4.5) was configured to send digital test patterns

instead of analog samples from the ADC. The performance was measured by counting

the number of packets that were rejected due to CRC errors, flagged by the corner-turn

firmware, and also by verifying that the test pattern arrived to the right link in the right

order. We obtained error-free transmission during many-minute tests, implying that we

did not detect errors on the backplane, inter-crate, and GPU corner-turn stages (see

Figure 4.6).

These tests demonstrate that the system meets the data transport integrity require-

ments for CHIME.
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Figure 4.11: Example of an eye diagram of the backplane 10 Gbit/s links between all 16
motherboards in a crate. The diagonal has no data because the link between a board
and itself is done internally. The diagram is performed by varying the sampling point
both in time (x-axis of each mini-plot) and signal amplitude (y-axis of each mini-plot) by
discrete amounts and then measuring the BER relative to the optimal sampling point.
A good link has a large, well opened center region (blue region of each mini-plot, this
is the ‘eye’) were the BER is low. One defective link at transmit slot 12, receive slot 8
was revealed by this particular test. The poor performance of this link was caused by a
motherboard connector assembly issue that was identified in this manner and fixed.
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4.4.4 Analog performance and data acquisition integrity

The analog performance of the ICE system for the CHIME correlator is determined by the

ADC and its surrounding digitizer board and motherboard electronics. The performance

characteristics of the ADC chip are well defined by the manufacturer. Since the chip was

selected to meet our cosmology requirements, the requirements for the overall electronic

system is to not significantly degrade the ADC performance itself.

Crosstalk is another analog property that can be affected by ADC performance. For

CHIME, adjacent feeds can have cross-coupling at the ∼ −15 dB level, while feeds on

different cylinders have cross-coupling below ∼ −70 dB. The crosstalk contribution from

the digital backend electronics needs to be small in comparison to other contributors.

Once the analog waveforms are digitized by the ADCs, the digitized values are sent

to the FPGA at a very high speed (800 MSPS) through the mezzanine connectors using

an 8-bit wide differential bus. The timing of each bit is motherboard and daughter

board dependent and must be adjusted carefully to ensure proper acquisition of the

digitized values. We require that the FPGA data acquisition system guarantees error-

free acquisition of the ADC data.

Requirements

1. Digitizer-board dynamic performance: The dynamic performance of the dig-

itizer boards must be consistent with the datasheet for the EV8AQ160 8-bit ADC12,

(i.e. is not substantially degraded by the board design) and must not be a limiting

factor for the cosmology goals.

2. Digitizer-board Crosstalk: The crosstalk at the digitizer-board inputs must

not be a limiting factor for the crosstalk for the system. Since we are limited

by the crosstalk performance internal to the ADC devices, we require minimum

degradation of the crosstalk performance at the digitizer-board analog inputs with

respect to the ADC specification.

3. ADC Data acquisition Integrity: The system must ensure reliable data ac-

quisition from ADC to FPGA.

12The EV8AQ160 datasheet can be found on
https://www.e2v.com/products/semiconductors/adc/ev8aq160/
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Performance

Digitizer-board dynamic performance: This was determined by measuring stan-

dard ADC dynamic performance parameters and comparing to the ADC specification.

A summary of the digitizer-board performance is shown in table 4.2, with a comparison

to expected ADC performance from the datasheet (which in the CHIME band is given

at 620 MHz only).

Table 4.2: Dynamic performance of the digitizer board in the CHIME band (400-800
MHz) and comparison to the ADC specs (given at 620 MHz only).

Parameter Value ADC spec

Signal-to-Noise Ratio (SNR) 45.3 - 45.5 dBc 43-46.5 dBc

Total Harmonic Distortion (THD) 47 - 52 dBc 46-56 dBc

Effective Number of Bits (ENOB) 6.9 - 7.2 bits 6.9-7.5 bits

(Input) Third-order Intercept Point (IIP3) 13 dBm 11 dBm

For a tutorial on the specifications for quantifying the ADC dynamic performance

see [56]. An example of the method used to measure the Signal-to-Noise Ratio (SNR),

Total Harmonic Distortion (THD), and Effective Number of Bits (ENOB) at 581 MHz

is shown in Figure 4.12. A 1 dB below full scale (1 dBFS) tone is fed to one of the

digitizer-board inputs and the power spectrum is computed. The SNR is the ratio of the

input signal power (the largest peak at 581 MHz), S, to the integrated white noise power

within the sampled band (cyan line), N. The THD is the ratio of S to the total power

in the harmonics of the input signal that fold into the sampled band, T (smaller peaks

with red asterisks). For this measurement we use the first 25 harmonics. The ENOB is

calculated as

ENOB =
SINAD− 1.76

6.02
(4.3)

where SINAD = S/(N+T) is the signal-to-noise and distortion ratio in dBFS. As Table

4.2 shows, all these values are within the ADC specifications.

The (input) third-order intercept point (IIP3) is a figure of merit of the digitizer-board

linearity. A detailed explanation of this parameter and its measurement for the digitizer

board is presented in [1]. Briefly, we inject two tones at relatively close frequencies into

one of the digitizer-board inputs and measure the resulting third-order intermodulation

(IMD3) products, which increase 3 dB per every dB increase in the power of the funda-

mental tones. The intersection of the third-order line produced by the IMD3 products



Chapter 4. The ICE system and the CHIME correlator 78

Figure 4.12: Power spectrum for a digitizer-board input when feeding a −6 dBm (1
dBFS) 581 MHz tone. The largest peak in the figure is the input tone. Smaller peaks
with red asterisks denote spectral lines that are harmonics of this tone folded into the
400-800 MHz band. Other small peaks are mainly due to RFI, differential nonlinearity of
the ADC (deviations of the ADC transfer function from its ideal behavior) and sampling-
clock spurs from the on-board crystal used for this test. The cyan line denotes the white
noise floor.

with the line produced by the linear term determines the IIP3, which we measured to be

∼ 13 dBm. This measurement is shown in Figure 4.13. The 2 dB degradation in the IIP3

of the digitizer board with respect to the ADC specifications is due to the insertion loss

of the board’s single-ended-to-differential conversion that precedes the ADC chip and is

consistent with our design expectations.

Crosstalk: For the crosstalk tests, a -6 dBm tone (∼1dBFS) is applied to one of

the digitizer-board inputs and the power is measured for the remaining inputs of the

motherboard as the tone is swept in frequency. On the remaining inputs we also feed a

low amplitude tone (∼1 bit RMS at 100 MHz) at a fixed frequency to exercise a few least

significant bits (LSBs) and smooth the ADC spectrum. The crosstalk measurements with

respect to the input 6 of the motherboard are shown in Figure 4.14.

For inputs within the same ADC chip (second plot from left to right), the measured

crosstalk at 620 MHz (−51 dB, −54 dB, and −70 dB) is broadly consistent with the

−55 dB number provided in the datasheet. The circuit board is providing another path

for coupling, which degrades the performance by a few dB, as expected. Note that these
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Figure 4.13: Left: Measurements of the power of the IMD3 products (red dots) and
fundamental tones (blue dots) as function of the power of the input tones. The IMD3
products increase 3 dB per every dB increase in the power of the fundamental tones. The
intersection of the third-order line produced by the IMD3 products with the line produced
by the linear term determines the IIP3, which we measured to be ∼ 13 dBm. Right: ADC
spectra for two input tones 7 dBFS. The fundamental frequencies are ν1 =632.5 MHz
and ν2 =652 MHz. The IMD3 products appear at 2ν1 − ν2 = 613 MHz and 2ν2 − ν1 =
671.5 MHz. The other tones are mostly harmonics that fold into the sampled band (for
this particular test the sampling frequency was set to 850 MSPS).

Figure 4.14: Measurement of the digitizer-board crosstalk. A 1 dBFS tone is applied to
the input 6 of the motherboard the power is measured for the remaining inputs of the
motherboard as the tone is swept in frequency. On the remaining inputs we also feed a
low amplitude tone (∼1 bit RMS at 100 MHz, that folds into the 400-800 MHz band at
700 MHz) at a fixed frequency to exercise a few LSBs and smooth the ADC spectrum.
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measurements provide more detailed information than the datasheet about the crosstalk

performance across the CHIME band, which rises at high frequency up to −46 dB for

neighboring inputs at 800 MHz. This is within the crosstalk performance requirements

since inputs within the same ADC chip are connected to adjacent feeds which have a

crosstalk level which is three orders of magnitude higher.

Crosstalk was also measured across the CHIME band for other input-to-input cou-

plings (see Figure 4.14):

• Crosstalk between inputs arising from different ADC chips situated on the same

digitizer board (left plot): � −61 dB across the band, with maximum coupling at

475MHz. Across most of the band, the measurement of −70 dB is an upper limit

only.

• Crosstalk between inputs arising from different ADC chips on different digitizer

boards from the same motherboard (third and fourth plots from left to right):

� −70 dB. Across the band, this represents an upper limit.

• Crosstalk between inputs on different motherboards is expected to be lower yet,

and measurements indicate the same upper limit of � −70 dB.

Overall, the crosstalk performance is consistent with expectations from the ADC chip

and a slight expected degradation (4 dB max) from the circuit boards coupling. It is

consistent with our design expectations.

The cross talk levels become lower as the participating analog inputs are separated

by circuit boards. Since for full CHIME we use adjacent ADC inputs for feeds with close

spatial separation as we have done for the pathfinder, this crosstalk will not be a limiting

factor for the system.

ADC Data acquisition integrity: This requirement refers to sampling integrity

and digital transport from ADC to FPGA. The FPGA firmware/software provides all

the resources to configure the ADC acquisition. This includes

1. configuring the ADC’s digital output to consist of (a) samples of the analog input

or (b) internal test functions like ramps or pulse trains,

2. measuring the eye diagram of the ADC digital data lines and computing and pro-

gramming optimum delays for each line to ensure reliable data acquisition,

3. and testing the performance of each ADC bit (e.g. check for stuck or faulty bits).
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The data transport and integrity reliability from ADC to FPGA is demonstrated by

first measuring the eye diagram and then finding the optimal digital delay of each bit

that ensures that all the bits of a given sample are measured correctly and within the

same clock edge. This is done by configuring the ADC to generate and send pulses (set

all the bits to 1) at regular intervals instead of sending analog sampled data. After the

bit delays are set, the ADC is configured to generate full scale triangular ramp functions.

The output at the FPGA side (before the FFT) is checked to verify that all the ADC

bits are exercised and by the right amount (for a ramp input, the output histogram must

be flat, meaning all the LSBs occurred the same number of times) and in the right order

(meaning that the delays were set properly).

We have found working delays with this method for the 2048 bits operating in the

pathfinder (256 8-bit ADCs). The delay settings have proven to be quite stable over time

and operating temperature. We have not found a meaningful variation in the computed

delays over operating temperature or time. The delays only need to be calculated once.

4.4.5 Timing

Although the cosmology goals alone do not pose a very stringent requirement on the

accuracy of absolute time, our calibration strategy includes using known pulsars as they

transit through the CHIME beam to measure the primary beam of each antenna, which

requires sub-millisecond absolute timing. The FRB and pulsar science requires microsec-

ond level absolute timing, whereas measurements of arrival times for pulsar timing arrays

are typically at the 100 ns RMS level [57]. The latter motivates achieving absolute timing

at the 2− 20 ns level.

Jitter specifications are driven by two requirements: (a) the ADC requires a jitter

performance of ∼ 0.5 ps RMS (typically on millisecond time scales) to achieve its dynamic

range, and (b) jitter affects the sensitivity of the interferometer13. The ADC requirements

are more stringent than the interferometry ones.

13If the voltage signals from antennas 1 and 2 are represented by v1e
iφ1(t) and v2e

iφ2(t), where the φ

terms are phase errors due to jitter, then the measured correlation is r12 = 〈v1v∗2eiδφ(t)〉 = v1v
∗
2〈eiδφ(t)〉

where φ1(t) − φ2(t) = δφ(t) = 2πν · δτ(t) is the relative phase error due to jitter. If δτ(t) is Gaussian

with zero mean then

r12
v1v∗2

= e−(2πν·στ )
2/2

Where στ is the jitter RMS. At CHIME’s highest frequency (800 MHz), a 1 ps RMS timing jitter
results in a signal loss below ∼ 10−5.
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Requirements

1. Sync: After synchronizing the ICE system and starting the data acquisition, all

inputs must start sampling within a few 1.6 GHz clock edges from one another, and

this edge must be measurable through the calibration. We note that, although it is

not an absolute requirement, having each channel start on a reproducible relative

clock edge after each turn-on would simplify the phase calibration of the instrument.

2. Absolute time: In order to calibrate on second scale pulsars, the sync absolute

time must be accurate to milliseconds. For millisecond pulsar observations with

gating, absolute time to microseconds required.

3. Jitter: Clock jitter of the entire system must be less than ∼ 0.5 ps on millisecond

time scales to meet the CHIME calibration requirements. This jitter requirement

is system wide (backplane, motherboards, daughter boards, and ADCs). Since

directly measuring jitter at this level is very challenging and we do not have access

to equipment capable of measuring this directly, we use a simplified version of the

BIS calibration system described in Chapter 5 to infer the jitter performance.

4. Longterm timing: Timing accuracy must be maintained across multiple days of

observation. Phase shifts must be slow enough that they can be calibrated on the

integration cadence.

Performance

Sync: We have measured the quality of the ICE system synchronization by using the

Broadband Injection Signal (BIS) calibration system described in Chapter 5. First, the

system is calibrated and the relative phases between the 256 inputs are determined.

After that, the correlator is restarted (the correlator is stopped and the ICE system is

power-cycled and reconfigured) and the system is calibrated again. If all the inputs start

the sampling on the same clock edge then the relative phases are preserved up to the

measurement error. An input that starts on a different clock edge will have a jump in

its relative phase that appears as a linear phase offset in frequency, and the slope of

that phase determines the number of clock edges ‘missed’ by that input. Figure 4.15

shows the change in the relative phase as function of frequency for each of the pathfinder

inputs after a correlator restart as measured by the BIS system. Each color represents

the change in phase for a different input. For this particular restart, there are four inputs

that show a jump in their phase consistent with a one-sample delay.
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Figure 4.15: Change in the relative phase as function of frequency for each of the
pathfinder inputs after a correlator restart as measured by the BIS calibration system.
Each color represents the change in phase, in degrees, for a different input. Vertical
stripes represent frequencies contaminated with RFI for which the measurement is not
reliable. Points at ±360◦ correspond to either inputs flagged as ‘bad’ or frequency chan-
nels corresponding to GPU nodes which are down. For the vast majority of the inputs
the relative phase is preserved up to the measurement error (which is approximately 4◦

for feeds well illuminated by the BIS system). For this particular test there are four
inputs that have a jump in their relative phase that appears as a linear phase offset in
frequency consistent with a one-sample delay with respect to the rest.
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After repeatedly restarting the pathfinder, the vast majority of the 256 ADC inputs

did not see a jump in their relative phases. In 2 out of 4 repeated restarts, a single ADC

chip (4 inputs) out of the 64 in the pathfinder started one sample off relative to the

others. The ADC that was off by one sample was different in the two instances. Note

that we have not measured any jumps in the synchronization after the system has been

started and has been running. This means that the relative phases between inputs are

stable.

The phase of the sync edge that is distributed to each digitizer board is controlled

by the FPGA. Since there is just one sync signal for each digitizer board which itself

has two ADC chips, the phase needs to be optimized as a compromise for the best value

for the pair of ADCs on each digitizer board. The ICE system synchronization can be

optimized further and firmware/software work is ongoing to improve the quality of the

syncing.

Absolute time: Absolute time is provided by a GPS source and distributed to each

motherboard across the backplane. Each board within a crate measures absolute time

independently, and these measurements agree to 10 ns, which is the current accuracy of

the GPS timestamps set by the firmware. We intend to add extra digits to the timestamp

that is encoded with the data, since this may be useful for pulsar timing array data.

The absolute timing offset between the GPS timestamp of a sample and the time

when the sample was digitized has been measured by sending a pulsed signal from the

GPS source to the inputs of a motherboard. The board is synced to start collecting data

on an integer GPS second and each pulse of the input signal also coincides with an integer

GPS second. The absolute timing offset for a given input is determined by locating the

pulse in the raw ADC data and comparing the timestamp of the respective sample to

the nearest integer second. The absolute timing offset is in the range 133− 155 ns for all

the inputs, and the timing difference between two inputs is repeatable to within about

1.25 ns. This meets expectations and exceeds requirements. These offsets only need to

be calculated once.

Jitter: For a detailed review of jitter and phase noise refer to [56]. The first jitter

measurement on a fully populated ICE crate was performed in the pathfinder using a

simplified version of the BIS calibration system described in Chapter 5. The setup is

shown in Figure 4.16. A BIS source consisting of a terminated LNA connected to a FLA

is installed in the pathfinder RF room. The signal is split into 16 copies and sent to

the same ADC input on the 16 different FPGA motherboards of the crate. We then

collected ∼ 11 h of cross-correlation data overnight at 20 s cadence. After that, we used

the BIS calibration algorithm to determine the phase of each of the 16 ADC inputs (one
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per board) as function of time and frequency.

Figure 4.16: Setup for jitter measurement on the pathfinder ICE crate. A broadband
noise source consisting of a terminated LNA connected to a FLA is installed in the
pathfinder RF room. The signal is split into 16 copies and send to the same ADC input
on the 16 different FPGA motherboards of the crate.

The clock jitter and drift14 can be modeled as a time varying delay between the signals

input to different motherboards. For jitter, the phase fluctuations δφ are related to the

time-delay fluctuations δτ as

δφ(ν, t) = 2πν · δτ(t). (4.4)

Since the size of the phase fluctuations scale linearly with frequency, a simple linear

regression15 can be used to construct a delay template δτ̂(t) for each board by using all

the frequency information from the phase at time sample t. The jitter-induced phase

fluctuations are then corrected by subtracting the phase fluctuations δφ̂ estimated from

these delay templates from the visibility data. This is done in a frequency-by-frequency

basis.

The power spectral density (PSD) of the measured delay fluctuations for each moth-

erboard is shown in Figure 4.17. The thick white line is the PSD of the temperature

measured by a thermometer installed near the FPGA crate. The x-axis covers timescales

between 1 hour and 20 seconds. The dashed vertical lines denote timescales of 15, 6, and

3 minutes from left to right. Note that the features in the temperature PSD are repro-

14Here we call jitter the fast phase fluctuations and drift the slow ones.
15https://en.wikipedia.org/wiki/Simple linear regression
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duced in the delay PSD, in particular the two peaks at 5 and 8 minutes corresponding

to the RF-room air-conditioner cycle.

Figure 4.17: PSD of the delay fluctuations for each motherboard in the pathfinder ICE
crate. The thick white line is the PSD of the temperature measured by a thermometer
installed near the FPGA crate. The x-axis covers timescales between 1 hour and 20
seconds. The dashed vertical lines denote timescales of 15, 6, and 3 minutes from left
to right. Note that the features in the temperature PSD are reproduced in the delay
PSD, in particular the two peaks at 5 and 8 minutes corresponding to the RF-room
air-conditioner cycle. This analysis was a team effort and this figure was made by Seth
Siegel.

The jitter is the RMS of the delay fluctuations, which is obtained by integrating the

delay PSD from Figure 4.17. The RMS of the delay fluctuations on different time scales as

function of the position in the ICE crate is shown in Figure 4.18. Each color corresponds

to a different lower bound of the PSD integration (the upper bound is 20 s which is the

maximum temporal frequency probed). Note that the RMS is minimum towards the

center of the crate, and increases near the edges16. The jitter is also highly correlated

with the FPGA die temperature of each particular motherboard, which depends not only

on the slot-by-slot air flow variations in the crate that are caused by fan edges lining up

with boards slots, but also on the thermal coupling between the FPGA die and its heat

sink.

Note that RMS of the delay fluctuations on time scales below 3 minutes is below

∼ 0.6 ps. On millisecond time scales the RMS of the delay fluctuations is well within

16For this calculation all the phases were referenced to the mean value over the 16 motherboards.
Changing the reference will change the delay RMS profile in Figure 4.18.
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Figure 4.18: RMS of the delay fluctuations as a function of position in crate. Obtained
by integrating the delay PSD. Each color corresponds to a different lower bound of the
PSD integration (the upper bound is 20 s which is the maximum temporal frequency
probed). Note that RMS of the delay fluctuations on time scales below 3 minutes is
below ∼ 0.6 ps. On 1 minute time scales the RMS of the delay fluctuations is even lower,
well within the jitter requirements. This analysis was a team effort and this figure was
made by Seth Siegel.

the jitter requirements. However, on minute time scales this sub-picosecond jitter is still

an important source of phase fluctuations that must be corrected in order to meet the

CHIME calibration requirements (see Chapter 5). We are currently using this setup on

the pathfinder to measure and correct the intra-crate timing jitter. Also, an enhanced

system based on this design is currently installed on full CHIME to track and correct the

intra and inter-crate jitter of the ICE system.

Longterm timing: Long time-scale measurements of input-to-input phase have

been made with the pathfinder, using using both the BIS calibration system and the

jitter measurement setup described above. As explained in the jitter sub-section, the long

time-scale phase variations due to the clock drift are consistent temperature changes on

the FPGA dies. No large, sudden changes in phase (as might be expected from a digital

system if, for example, a clock edge was missed) that can be attributed to the ICE system

have been observed. The long term variation is at the sub-degree level. The CHIME

calibration system is designed to measure these variations.
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4.4.6 Power consumption

Requirements

1. The system is designed to be powered by one Agilent N5764A power supply per

crate, capable of delivering 1520 W at 20 V. The power consumption for one

crate fully populated ICE crate operating the 256-input channelizer and corner-

turn firmware must be commensurate with this power supply, � 1300 W typical.

2. The FPGA internal temperature of the warmest board must be < 85 C to meet

the recommended operating conditions of the FPGA17.

Performance

The power consumption of the ICE crate operating on the pathfinder with 20 V input

voltage draws approximately 1250 W after configuring the ICE system for 256-input

mode operation, meeting the power consumption specification.

The FPGA temperatures are continuously monitored. With the pathfinder air-

conditioning system fully operational, the temperature of most FPGA dies is within

the requirements. During the hottest days of the year, the coolest FPGAs are well below

∼ 80 C, while the warmest FPGA can reach ∼ 88 C. As explained before, the FPGA

temperature depends on both the particular airflow profile of the slot in which the moth-

erboard is located and the effective thermal coupling of the FPGA die to its heat sink.

Although the FPGA specification recommends operating conditions below 85 C, we have

not yet seen any degradation in the performance of the warmest FPGAs. However, con-

tinuous operation under these conditions can reduce their lifetime. With this in mind,

the chilling system of the full-CHIME FPGA rooms has been improved to further cool

the FPGAs and meet the temperature requirements.

4.5 Installation of the ICE system for the CHIME

correlator

A simplified schematic of the full CHIME site layout is shown in Figure 4.19. The ICE-

based F-engine is installed inside two separate receiver huts (RF-shielded rooms installed

within shipping containers). Each FPGA receiver hut serves two cylinders and is placed

17The Kintex-7 FPGA datasheet can be found on
https://www.xilinx.com/support/documentation/data sheets/ds182 Kintex 7 Data Sheet.pdf
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between them. This configuration minimizes the receiver coaxial-cable length. The GPU-

based X-engine is housed in two RF huts adjacent to the east-most cylinder. The 256

optical fibers that communicate the FPGA and GPU engines (each multifiber contains

four fiber strands that connect to four different GPU nodes) are carried within a cable

tray that goes underneath the cylinders and above the huts. Also within the cable tray

are the coaxial cables that distribute the clock and absolute time signals to the FPGA

huts. The FRB backend is housed in a separate RF hut next to the GPU huts, as is the

Power Distribution Center (PDC) that provides the power for the full experiment. The

cosmology pipeline backend and the pulsar timing backends (see Figure 3.3) are housed

in a shielded room in the DRAO building and are not shown in Figure 4.19.

Figure 4.19: Simplified schematic of the full CHIME site layout. The ICE-based F-engine
is installed inside two separate RF huts located between each pair of cylinders to minimize
the receiver coaxial-cable length. The GPU-based X-engine is housed in two RF huts
adjacent to the east-most cylinder. The FRB backend and the Power Distribution Center
(PDC) are housed in a separate RF huts next to the GPU huts.

The construction of the full CHIME cylinder structures started in January 2015 and

took approximately 9 months to complete. The installation of the FPGA and GPU RF-

rooms within the shipping containers was completed by May 2016 and the campaign to

install the full CHIME correlator started in September 2016. The installation of the ICE

hardware, cooling system and networking in the east receiver hut was completed in May

2017. We installed the FPGA-GPU fiber tray in December 2016, and we routed and
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connected all the data fibers and timing cables between April and July 2017. By August

2017 all the ICE hardware for CHIME had been deployed and the first on-site operational

tests with the full (east and west) ICE system had been performed. Photographs of the

ICE hardware within the FPGA huts at different stages of the installation are shown in

Figure 4.20. The installation of the GPU hardware ran in parallel with that of the ICE

system. We observed the first fringes from a CasA transit with the full correlator on

August 31st 2017. This is shown in Figure 4.21. At present, the correlator is operational

and collecting commissioning and early science data.

The installation of the feed cassettes, analog receivers, and the weatherproofing of

the focal line of the cylinders started in September 2015 and finished in September 2017.

The last cassette was installed during the ‘first light’ ceremony held on September 7th

2017 to inaugurate the operational phase of the CHIME telescope18.

4.6 Conclusions

In this chapter we presented the ICE system, a hardware, firmware, and software frame-

work that implements large arrays of FPGA-based data acquisition, signal processing

and networking for the next generation of radio to sub-millimeter telescopes. We also de-

scribed in detail the CHIME correlator which uses the ICE system to implement the data

acquisition, Fourier transform channelization, and corner-turn networking. The correla-

tor processes a massive amount of data: the F-engine raw input rate is ∼ 13.1 Tbit/s, the

corner-turn network has to rearrange ∼ 6.6 Tbit/s of data, and the X-engine performs

∼ 839 TcMAC/s. Measured in number of baselines times bandwidth, the correlation

operation for CHIME is larger than for any currently existing telescope array.

Finally, we described the installation of the CHIME correlator, and demonstrated that

it complies with all the requirements for CHIME by performing tests of manufacturability,

uptime and reliability, data transport integrity, analog performance and data acquisition

integrity, timing, and power consumption.

18To see ‘CHIME in the News’ go to https://chime-experiment.ca/news
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Figure 4.20: Photographs of the ICE hardware withing the FPGA huts at different stages
of the installation. Top left: First crate installed in the east hut (front view, September
2016). Top right: Four ICE crates mounted in two racks within the east hut (front
view, February 2017). Each crate pair processes one cylinder. Bottom left: West hut
after installing the ICE crates and routing the data fibers, but before the networking
was ready (rear view, May 2017). In addition to the two main racks, each hut has an
auxiliary (right-most) rack that contains a GPS and clock distribution unit, a network
switch that aggregates the data from the four crates (not shown), a control computer
(not shown), and a fully operational spare crate. Bottom right: East hut after installing
all the ICE hardware (rear view, May 2017).
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Figure 4.21: First CasA fringes from a single east-west CHIME baseline and a single
frequency channel. Top: real component (dotted blue), imaginary component (dotted
red), and magnitude of the visibility (green). Bottom: phase of the visibility.



Chapter 5

Calibration

A major challenge for CHIME comes from the calibration needed in order to detect the

21 cm signal in the presence of bright astrophysical foregrounds that are many orders of

magnitude brighter. The pathfinder has been used to develop techniques that allow us

to meet the stringent calibration requirements for full CHIME. Among these, we have

developed a Broadband Injection Signal (BIS) that allows us to measure and correct the

receiver gain fluctuations. We have also developed digital calibration techniques that

minimize the negative effects of the data compression that occurs at different stages

of the digital correlator. In this chapter, we discuss the calibration requirements for

CHIME and present in detail the BIS technique and the digital calibration techniques

including the theory, instrumentation, current performance on the pathfinder, and the

development towards the implementation for full CHIME. The information on digital

calibration presented in this chapter is complemented with the information in Chapter 6.

5.1 Calibration requirements

The m-mode formalism described in Section 2.4 allows a computationally efficient repre-

sentation of the data from transit telescopes like CHIME that enables a highly effective

method to separate the 21 cm signal from the contaminating foregrounds based on their

statistics. However, the level of success of this foreground filter depends on the level

of detail with which we understand our instrument, including the primary beams and

the fluctuations in the receiver gains. An imperfect knowledge of the telescope leads to

an imperfect foreground removal, and thus to a biasing in the estimated 21 cm power

spectrum.

The effects in the recovered power spectrum of both receiver gain fluctuations and an

inaccurate model for the primary beam are investigated in [58] where, based on end-to-

93
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end simulations of a pathfinder-like instrument, it is found that all the primary beams

must be known to ∼ 0.1% and the complex receiver gains to ∼ 1% on minute time scales

in order to recover an unbiased power spectrum. More recent simulations suggest that

for full CHIME we should aim for gain calibration requirements around 0.3%.

We have used the pathfinder as a test-bed to develop calibration strategies that allow

us to address these stringent requirements and understand the CHIME instrument. These

calibration techniques are classified into three main categories:

• Beam characterization.

• Receiver gain calibration.

• Digital calibration.

Beam characterization techniques include the observation of bright point sources,

pulsars, and holographic measurements using the DRAO John A. Galt 26 m telescope.

These techniques are presented in detail in [5, 59]. Receiver-gain and digital calibration

techniques are presented in the following sections.

5.2 Receiver gain calibration

The stability of the receiving system determines the time scales over which the receiver

gain calibration needs to be performed. This scale is typically several minutes, much

faster than the time scale for point-source transits (several hours). For the analog sys-

tem, phase variations are dominated by temperature effects on the coaxial cables, while

amplitude variations have contributions from the amplifiers and coaxial cables. For the

digital system, variations are mainly due to timing jitter and clock drift. In addition

to the correction of the visibility data based on a temperature model developed for the

analog receivers that we describe briefly as background information in Section 5.2.1, we

have implemented a BIS technique on the pathfinder to calibrate the receiver gains and

stabilize the telescope.1

5.2.1 Thermal characterization

The thermal susceptibility of samples of the different components in the CHIME analog

receiver chain (LNA, coaxial cables, FLAs) has been characterized in a temperature-

1There are other calibration methods currently under investigation for CHIME that take advantage
of the high redundancy of the CHIME array to determine both the receiver gains and the true-sky
visibilities. These methods are presented in detail in [17].
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controlled chamber. Currently, a subset of the receivers installed on CHIME and the

pathfinder is equipped with thermal sensors that allow us to monitor temperatures on

time scales faster than the gains typically vary.

On the pathfinder, the analog receivers have been found to be stable over time, with

typical gain variations below ∼ 5% over multiple days. Similar results have been obtained

for full CHIME from recent observations. The dominant source of variance is common to

all the receivers and is driven by temperature changes in the analog receiver components,

specially in the LNAs and the cables which are in an outdoor environment. Of these

two components, the variations of the cables dominate since the LNAs are enclosed

in the feed cassettes which provide some crude weather protection. The effect of the

FLAs is sub-dominant since these are located inside the temperature controlled RF-room.

The thermal susceptibility of the analog receiver chain inferred from the common-mode

variations is consistent with the lab measurements.

Figure 5.1 shows the amplitude fluctuations of the full CHIME receiver gains after

subtracting the common-mode variation. The data for these measurements consisted of

31 consecutive days between April and May 2018. The gains are obtained by eigenvalue

decomposition of the correlation matrix (see Section 5.2.2 and Appendix D) during daily

CygA transits. Note that the receivers are remarkably stable. After removing the com-

mon mode, most feeds show amplitude fluctuations below the ∼ 0.3% level and meet

the calibration requirements. This suggests that a simple common-mode measurement

from ambient temperature may be sufficient to meet our requirements. However, phase

calibration additionally requires the measurement of the timing jitter using a system like

the one described in Section 4.4.5.

5.2.2 Broadband Injection Signal calibration

Since the receiver gains might vary on time scales much faster than the transit of bright

point sources, we are developing a BIS calibration technique that allows us to track and

correct in real time for the variations in the complex receiver gains in a way that is similar

to the calibration with point sources. The technique consists of injecting a broadband

signal across the interferometric array. This signal is measured and correlated with all

the inputs of the array. The signal is switched on and off on time scales much faster

than the characteristic receiver fluctuation time scales to remove the sky contribution.

Finally, the receiver gains are recovered from the sky-subtracted correlation matrix for

every frequency in the CHIME band.

A diagram of the setup for the BIS calibration on the pathfinder is shown in Figure 5.2.
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Figure 5.1: Median absolute deviation (MAD) of fractional amplitude fluctuations of
the analog receiver gains in full CHIME from daily CygA transits after subtracting the
common-mode variation. The x-axis denotes the feed number (its location in the ar-
ray). The black dashed lines denote the separation between different cylinders (0-511 for
west-most cylinder, 1536-2047 for east-most cylinder). The red dots denote the median
value of the fractional amplitude fluctuations over all good frequencies. Shaded regions
span the 68-th and 95-th percentile of good frequencies. After removing common mode,
the most stable feeds show variations below the ∼ 0.3% level and meet the calibration
requirements. The large fluctuations for feeds in the approximate range 280-380 was due
to a cassette with defective receivers on the west-most cylinder. These receivers were
identified and fixed afterwards. This figure was made by Seth Siegel.
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A simple way to generate a bright broadband source is to amplify the noise produced

by an amplifier. The BIS source for the pathfinder consists of a terminated and band-

pass filtered LNA. This BIS source is installed inside the RF room. The output of this

source is connected to an RF switch that is controlled by one of the motherboards of the

pathfinder ICE crate. The switched signal is then passed through a signal conditioning

and distribution module that includes equalization, matching, signal level adjustment,

delay adjustment and signal splitting, such that at the output of this module we have

three copies of the injection signal. One copy of the signal is connected directly to

one of the inputs of the correlator. This is the reference input that is used to track

variations in the injected signal and to subtract the BIS signal from the visibility data

after calibration such that it does not contribute significantly to the system noise. Two

additional copies are sent to custom-made broadcasting helical antennas installed at the

base of each cylinder.

Figure 5.2: Schematic diagram of the BIS setup for the CHIME pathfinder. Inside the
RF room a switched noise source controlled by the ICE crate generates the injection
signal that is passed through a signal conditioning and distribution module and split into
three copies. One copy of this signal is sent directly to the correlator as reference. The
other two copies are sent to broadcasting antennas installed at the base of each cylinder.

Gain estimation

From Section 2.3.3, we can write the measured visibility between feeds i and j when the

BIS source is ‘off’ as

roffij = gig
∗
j rij + noff

ij (5.1)
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where rij is the ‘true-sky’ visibility given by equation 2.37, gi and gj are the receiver

gains for feeds i and j, and noff
ij is the system noise term2. When the BIS source is ‘on’,

it is seen by the array as an additional radio source uncorrelated with the sky, so the

measured visibility is

ronij = γiγ
∗
j + gig

∗
j rij + non

ij (5.2)

where the term γi = αigiσBIS includes the BIS source (voltage) level σBIS, the (time-

dependent) receiver gain term gi, which is the quantity we want to measure, and a term αi

that represents the static transfer function of the injected signal and defines the amount

of BIS signal ‘seen’ by each feed (it contains the effects of the distribution system and also

the direction-dependent coupling between the BIS transmitter and the CHIME feeds).

The αi terms are determined later in the cosmology pipeline by performing an absolute

calibration using sky point sources. The non
ij term is another realization of the system

noise (not to be confused with the noise from the BIS source).

By switching the BIS source on and off on time scales much faster than those over

which the sky changes, we can remove the effect of the sky completely by subtracting

roffij from ronij , obtaining

Rij = ronij − roffij = γiγ
∗
j +Nij (5.3)

where Nij = non
ij − noff

ij is the residual noise term from the subtraction. The noise term

is expected to be Gaussian with

〈Nij〉 = 0, 〈NijN
∗
kl〉 = N(ij),(kl) (5.4)

where N is the covariance matrix of the full set of noise correlation products.

In the case of telescopes like CHIME where the sky (and BIS) signals are weak and the

system temperature, Tsys, is dominated by the uncorrelated noise of the analog receiving

system (Tsys is basically the measured power in the autocorrelations), then the noise

covariance matrix N is diagonal with [60]

N(ij),(kl) = δikδjlσiiσjj (5.5)

where σii = Tsys,i/
√
Δντ , Δν is the width of the frequency channel under analysis, and

τ as the integration time. Note that this is equivalent to say that all the correlation

2Note that all these terms depend on frequency. We do not write that dependence explicitly to keep
the notation simple.
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products are uncorrelated and that the variance in the correlation product ij is given by

the radiometer equation 2.43

σ2
ij =

Tsys,iTsys,j

Δντ
= σiiσjj. (5.6)

By making the change of variables

R′
ij =

√
1

Tsys,iTsys,j

Rij γ′
i =

√
1

Tsys,i

γi (5.7)

we transform the problem in equations 5.3 and 5.4 into a problem with a noise covariance

that is just a scalar matrix

R′
ij = γ′

iγ
′∗
j +N ′

ij

〈
N ′

ijN
′∗
kl

〉
= δikδjlσ

2 (5.8)

where σ = 1/
√
Δντ . We call γ′

i the weighted gain. In practice, this change of variables is

done by normalizing correlation products by the geometric mean of the autocorrelations

in the ‘on’ sample3, so Tsys,i = T on
sys,i.

See [34, 61] for a detailed introduction to maximum likelihood estimation (MLE).

With this uncorrelated, uniform-variance noise weighting σ2, the gain vector γ̃′ that

maximizes the likelihood function L(R′|γ′) is the vector that minimizes the chi-squared,

χ2, given by

χ2 =
1

σ2

∑
ij

∣∣R′
ij − γ′

iγ
′∗
j

∣∣2 . (5.9)

As shown in Appendix D, the MLE solution is given by

γ̃′ = argmin
γ′

∑
ij

∣∣R′
ij − γ′

iγ
′∗
j

∣∣2 =√λ1 v̂1 (5.10)

where λ1 is the largest eigenvalue of the sky-subtracted and normalized correlation matrix

R′ and v̂1 is the corresponding (unit-norm) eigenvector4. This MLE solution is unbiased.

Finally note that, although the analysis above (and the one in Appendices D and E)

is done in the context of BIS calibration, the results are very general, and can also be

applied for other calibration methods including bright point-source and pulsar transits.

In these cases the analysis is identical but αi becomes the phase term due to the geometric

time delay and σ2
BIS becomes the temperature of the sky source. For bright point sources

3Note that we normalize by the autocorrelations before subtraction. In the regime where we are
dominated by Tsys we can use the autocorrelations from either the ‘on’ or the ‘off’ sample.

4The eigendecomposition exists because R′ is hermitian.
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the ‘on’ and ‘off’ samples correspond to measurements with the sky source in and out of

the CHIME primary beam respectively. For pulsars, the ‘on’ samples are synchronized

with the received pulses.

Performance requirements

A detailed analysis of the expected BIS performance from the eigenvalue decomposition

described above is presented in Appendix E. We present the main results in this section.

The accuracy in the estimation of the gain solutions with BIS calibration is determined

by the eigenvalue spectrum of the sky-subtracted and normalized correlation matrix R′.

As a metric of the BIS calibration performance we define the BIS signal-to-noise ratio,

SNRBIS, as

SNRBIS =
√
N − 1

〈λ1〉
〈σ̂2

r〉1/2
(5.11)

whereN is the number of feeds (including the BIS reference) and σ̂2
r is the sample variance

of the remaining eigenvalues (which in the absence of noise would all be zero). The

SNRBIS can be written in terms of known or measurable telescope and BIS parameters

as

SNRBIS =
√
Δντ

N∑
i=1

fi (5.12)

where

fi =
T on
sys − T off

sys

T on
sys

=
ronii − roffii

ronii
(5.13)

is the fraction of the total signal ‘seen’ by feed i that comes from the BIS signal, also

known as the illumination of feed i. Note that the illumination is a measurable quantity

that can be determined from the autocorrelations in the ‘on’ and ‘off’ samples.

In general, an accurate determination of the receiver gains requires achieving a high

SNRBIS. As shown in Appendix E, the errors on the estimated gains are approximately

uncorrelated and the expected fractional errors for the receiver gain solutions are given

by

δgi =

√
σ

SNRBIS · fi =
(
Δντ · fi

N∑
n=1

fn

)−1/2

. (5.14)
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Equation 5.14 gives the expected fractional error in the receiver gain solutions in

terms of telescope parameters like bandwidth and integration time, and BIS calibration

parameters like the illumination of the array. These parameters need to be adjusted

to obtain δgi � 0.3% which is the requirement to achieve the cosmology science goals

(see Section 5.1). Note that the gain error of feed i depends not only on how well the

feed ‘sees’ the injected signal, but also on the illumination of the full array. Also that

0 ≤ fi ≤ 1 and that including a reference input that measures the BIS source directly

means that this reference input has f = 1 so we can write

δgi =

[
Δντ · fi

(
1 +

N∑
n=2

fn

)]−1/2

(5.15)

where we chose input 1 as the BIS source reference.

Current pathfinder parameters have τ ∼ 20 s, Δν ∼ 0.4 MHz, and N ∼ 200. If all the

CHIME feeds could be illuminated such that the injected signal was ∼ 1% of the total

power absorbed by each feed (i.e. fi ∼ 0.01 for i > 1), then the SNRBIS would be about

39 dB and the expected gain errors would be δgi ∼ 0.2% which is about the minimum

level of accuracy we aim to achieve. If the injected signal was ∼ 10% (i.e. fi ∼ 0.1 for

i > 1), then SNRBIS ≈ 48 dB and the expected gain errors would be δgi ∼ 0.02%, well

below the minimum calibration requirements. As for full CHIME, typical parameters are

τ ∼ 10 s and N ∼ 2000, so a ∼ 5% illumination (fi = 0.05 for i > 1) would be enough

to achieve δgi ∼ 0.02%.

Note that although equation 5.15 suggests that the gain errors can be reduced by

increasing the injected signal level, this situation is not desirable since: 1) it would mean

that, for each feed, Tsys is dominated by the noise source (so equation 5.7 would not hold),

2) there is risk of saturating the analog receivers, and 3) there is risk of introducing a

significant bias in the magnitude and phase of the measured visibilities due to large

deviations of the correlator input signal levels from the nominal values (see Chapter 6).

Status and current development

Since the first tests in 2014 with 16 feeds on the pathfinder that was presented in [5]

the BIS system has been under constant improvement, progressively evolving towards a

system that is more robust and stable, synchronized with the data acquisition, and that

can be easily extended for full CHIME.

The main improvements in the BIS system with respect to the system presented in
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[5] are:

• In the early stages of the BIS system the RF switch was controlled by a separate

signal generator and the switching was independent of the data acquisition and

integration, which resulted in a considerable fraction of the correlated data needing

to be discarded due to on-off transitions in the middle of the integrations. For this

same reason we could only switch on time scales larger than the nominal visibility

integration time (∼20 s). For the current system the RF switch is controlled by one

of the motherboards in the pathfinder ICE crate. The ICE firmware and software

now allow the configuration of one of the board’s general purpose outputs as a Pulse

Width Modulation (PWM) control signal that can be connected directly to the

switch control driver. The PWM signal is synchronized with the data acquisition,

and both its period and duty cycle (in number of frames) can be configured through

software. Using this capability it is possible to switch at cadences faster than the

integration time, improving both the sky signal subtraction and the immunity to

RFI. The nominal switching time is ∼ 80 ms, and the X-engine accumulates and

saves separately the visibility data during the on- and off-periods of the BIS source.

• Each motherboard in the ICE system can be used to control different BIS sources

independently. On the pathfinder, we currently use the ICE crate to independently

operate two additional and much simpler BIS calibration systems: one that is used

to perform the dual-receiver and polarization calibration of the 26 m telescope, and

another that is used to measure and correct for the intra-crate timing jitter of the

ICE system. The pathfinder intra-crate jitter measurement system was described in

Section 4.4.5. An improved and more robust system based on the pathfinder design

is currently installed on full CHIME to track and correct the intra and inter-crate

jitter of the ICE system, including the hut-to-hut jitter.

• We have developed custom software along with the hardware for BIS configuration

and operation, as well as for data analysis and gain estimation. This software has

been integrated to the CHIME cosmology pipeline as part of the calibration.

We are currently using BIS calibration successfully to measure and correct the intra

and inter-crate timing jitter (see Section 4.4.5), which is the dominant source of phase

noise on full CHIME. This is a simplified version of the BIS system presented in this

section that does not require broadcasting the calibration signal accross the array. Since

the CHIME analog receivers have been found to be much more stable than anticipated by

the initial design (Section 5.2.1), with gain fluctuations that can be adequately corrected
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by tracking temperature variations, the implementation of the complete version of the

BIS system on full CHIME may not be necessary. Given this, the present strategy for

gain calibration on full CHIME is that the thermal model will be used to track the

common-mode variations of the analog receiving system and the BIS calibration will be

used for tracking the inter and intra-crate timing jitter of the ICE system, including

the determination of the relative phases between the inputs after each restart of the

correlator.

The full BIS system that includes the broadcasting antennas is currently implemented

in the pathfinder. If we were to deploy this system for full CHIME, we would first need

to handle two known issues before the system can efficiently calibrate the telescope. The

first one is related to the broadcasting antennas: we have found that our hand-built helix

antennas are susceptible to weather-induced variations (e.g. vibrations due to wind) that

cause fluctuations in the beam coupling between the helical antenna and the CHIME feeds

at a level that is comparable to the fluctuations that we are trying to measure (which are

sub-percent level fluctuations in the receiving system). The broadcasting antennas for

CHIME would require a compact and sturdy design that makes them more stable and

less susceptible to weather-induced variations5.

The second challenge of the full BIS system for full CHIME is related to the uniform

illumination of the CHIME feeds since we must ensure that the signal level seen by each

feed is enough to meet the calibration requirements. Figure 5.3 shows the typical illumi-

nation profile (in dB) of the pathfinder feeds using a single wide-beam helical antenna per

cylinder. The illumination as a function of feed position along the cylinder and frequency

is plotted for each cylinder and polarization separately. Note that achieving the required

illumination for the furthest feeds comes at the expense of a relatively high signal level

for the feeds closest to the broadcasting antenna. This high signal level regime for the

closest feeds is undesirable for the reasons explained in the performance requirements

sub-section above. If we were to deploy a BIS system for full CHIME, a more uniform

illumination of the CHIME feeds could be obtained by using several broadcasting anten-

nas along the cylinder reflectors and switching them on and off sequentially, effectively

time-multiplexing the calibration along the feed line. The switch control capability that

we have added to the ICE firmware and software is designed to allow for this sort of

time-multiplexing of the calibration signals.

5Note that solving the problem of stabilizing a single BIS broadcasting antenna is much simpler than
that of stabilizing hundreds of analog receivers.
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Figure 5.3: Illumination profile (in dB) of the pathfinder feeds using a single wide-
beam helical antenna per cylinder. The illumination as function of feed position (x-axis)
along the cylinder and frequency (y-axis) is plotted for each cylinder and polarization
separately. The horizontal stripes correspond to frequencies flagged as bad (either RFI
or bad GPU nodes) while the vertical stripes correspond to feeds flagged as bad (e.g.
faulty receiver).

5.3 Digital calibration

In CHIME, the analog signals from the dual-polarization feeds are digitized (sampled

and quantized) before they are fed into the digital correlator to compute the complex

visibilities. The CHIME correlator contains several quantization stages where the signal

amplitude is encoded with a finite set of discrete values. This quantization process

introduces errors in the measurement of brightness and position on the sky and must be

addressed before the calibration of the beams and receiver gains. The three correlator

stages where it is critical to address the effects of quantization are:

1. 8-bit digitization of the analog signals.

2. Computation of the FFT.

3. Data reduction to 4-bit real + 4-bit imaginary after the channelization stage.
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5.3.1 8-bit ADC calibration

The 8-bit ADC calibration refers to the adjustment of the analog input signal level to

minimize the effect of the quantization errors6 introduced by the 8-bit quantizer. If

the input signal level is too low, it does not use all the available dynamic range of the

quantizer and the output is dominated by the granular noise introduced by the spacing

between the possible quantizer outputs. On the other hand, if the signal level is so high

that it exceeds the maximum range of the quantizer, then the signal is clipped and the

output is dominated by this overload distortion. In these two regimes the quantization

error is also correlated with the input.

Figure 5.4 shows the behavior of an 8-bit quantizer for a real-valued Gaussian input

with zero-mean and variance σ2. The top plot shows the fractional increase in the vari-

ance of the signal, σ̂2/σ2, that results from quantization, as function of the unquantized

standard deviation σ in units of the quantization step Δ. The middle plot shows the

variance of the quantization error, σ2
e , relative to σ2, and the bottom plot is the magni-

tude of the correlation coefficient between the input and quantization error, |ρve|. For

each plot, the blue line corresponds to the quantization model developed in Chapter 6

while the red dashed line corresponds to the commonly used approximation where the

quantization noise is assumed to be uncorrelated with the input. The x-axis of the plots

is in base 2 logarithmic scale, so the exponents can be interpreted as the input level in

bits RMS.

Note that the ρve = 0 model that is traditionally used in radio astronomy (red dashed

line) deviates significantly from the model developed in Chapter 6 (blue line), where it

is also shown that this model provides a more accurate representation of the behavior of

a real-valued 8-bit quantizer in the very low and very high signal level regimes. Under

the ρve = 0 model, the output variance is σ̂2 = σ2 + σ2
e , and maximizing the quantizer’s

efficiency is equivalent to minimizing σ2
e/σ

2. As the middle plot shows, this occurs

when σ ≈ 25Δ, or 5 bits RMS. Under the more realistic model that takes into account

the input-error correlation, maximizing the quantizer’s efficiency requires keeping both

σ2
e/σ

2 and ρve at negligible levels. In CHIME, the gain of the analog receiving system

has been optimized so the nominal signal level at the input of the ADC is approximately

3.5 bits RMS7. As Figure 5.4 shows, at this level the quantization noise is negligible

compared to the input (the increase in variance is well below 0.1%) and the quantizer

is within the optimal region of operation where the input-error correlation is very weak

6The quantization error is the difference between the input value and its quantized value.
7The overall gain of the analog receiving system is fixed to this optimal value (∼ 70 dB, see Figure 3.6)

and, except for external attenuators that can be added to the analog chain, cannot be modified.
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(|ρve| � 10−14) so the model of additive uncorrelated quantization noise provides a very

accurate approximation. This signal level also allows headroom for changes in the signal

level due to bright point sources, receiver gain fluctuations, and RFI, while still keeping

the quantizer within the optimal region of operation.

5.3.2 Minimization of quantization errors in the computation

of the FFT

The FFT is an efficient algorithm for the evaluation of Discrete Fourier Transform (DFT)

of a signal that reduces the number of operations in the computation of DFT of length

L from O(L2) to O(L · log2L). This is effectively achieved by decomposing the L-point

DFT into successively smaller DFTs (see [32] for a detailed review of the DFT and its

efficient computation using FFT algorithms).

When L is a power of two (L = 2γ where γ is a natural number), as is the case

for CHIME, then the FFT is computed in γ = log2L stages. The use of registers with

finite length in the computation of the FFT introduces round-off errors at each stage

that result in an overall reduction of the signal-to-quantization-error ratio (SQR) at the

FFT output. As shown in [32, 62, 63] this effect can be minimized with an appropriate

scaling of the input sequence. Briefly: for an FFT computed with b-bit precision (18+18

bits for CHIME), and in order to guarantee that there are no overflows at any stage of

an L-point FFT, it is necessary and sufficient to divide the input sequence by L. In this

case the SQR in any value the FFT is

SQR ∝ 22b

L2
. (5.16)

The scaling is responsible for the 1/L2 decrease in the SQR, which is a rather severe

penalty. However, the scaling can be done in a more clever way to prevent overflow and

obtain an SQR that decreases as 1/L, instead of 1/L2. The CHIME FPGA firmware and

software allow the configuration of an optional division by 2 (right shift) at each stage of

the FFT. Thus, the same 1/L scaling can be introduced by dividing by 2 at each of the

γ stages. This scaling scheme not only prevents overflow at all the stages of the FFT,

but also improves its quantization performance since the SQR becomes

SQR ∝ 22b

L
. (5.17)

Intuitively, this stage-by-stage scaling scheme has a better SQR performance because

it keeps the signal level as high as possible at each stage compared to the quantization
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Figure 5.4: Behavior of an 8-bit quantizer for a real-valued Gaussian input. Top: variance
of the quantized output, σ̂2, normalized by the unquantized variance σ2, as function of
the unquantized standard deviation σ. Middle: variance of the quantization error, σ2

e ,
normalized by the unquantized variance. Bottom: magnitude of the correlation coefficient
between the input and quantization error, |ρve|. The lower bound of |ρve| is limited
by numerical precision. For each plot, the blue line corresponds to the quantization
model developed in Chapter 6 while the red dashed line corresponds to the uncorrelated
quantization noise model that is traditionally used in radio astronomy and assumes ρve =
0.
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errors.

Although this is a great improvement, it is still a worst case scenario, since division

at each stage is only necessary to prevent overflow for inputs with maximally peaked

spectra, i.e., for inputs where the power is contained within a few frequency channels (e.g.

a constant input, or a sinusoid). For inputs with smoother spectra, as is the nominal case

for CHIME, it is possible to reduce the number of divisions by 2 and thus improve the

SQR. The determination of the optimal scaling scheme for signals with smooth spectra is

investigated in [63], where the probability of occurrence of different scaling patterns and

their associated SQR is estimated by transforming many white sequences, and keeping

track of the stages at which divisions by 2 are required to avoid overflow. Based on this

result we find that, for an FFT with γ = 11 stages like the one for CHIME, the optimal

scaling pattern is SSSNSNSNSNS, meaning that divisions by 2 take place at stages 1, 2,

3, 5, 7, 9, 11, with no scalings at the remaining stages. This FFT scaling pattern is set

during the initialization of the correlator before each data acquisition.

5.3.3 Post-channelization digital calibration

As explained in Chapter 4, the complex-valued output stream from the FFT at each fre-

quency channel is truncated to 4+4 bit complex values before the data is re-arranged in

the corner-turn network. This truncation inevitably results in a loss of information which,

in the case of typical radio astronomy signals, is small and justified by other advantages

like the possibility of using a larger bandwidth with fewer bits. This complex-valued

quantization step also introduces a bias in the magnitude and phase of the measured

correlations which translates into errors in the measurement of source brightness and

position in the sky, affecting both the system calibration and image reconstruction. In

Chapter 6 we investigate in detail the biasing effect of the post-channelization quantiza-

tion and determine the optimal signal level that reduces this effect to negligible levels.

By setting the signal level to two quantization steps (σ = 21Δ, or 1 bit RMS) before the

complex quantization takes place, the correlation between the input and the quantiza-

tion error is very weak (|ρve| � 10−3), the quantization noise is kept relatively low (the

increase in output variance is about 4%), and the resulting bias in the measured corre-

lations due to quantization is negligible (below ∼ 10−6 for the magnitude and ∼ 10−11

degrees phase).

The post-channelization calibration module applies a digital gain to each frequency

channel in order to adjust the signal level before this 4-bit complex-valued quantization

takes place in the scaler module (see Section 4.2.2). An schematic diagram of this cal-
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ibration process is shown in Figure 5.5. Since the input to this module are 18 + 18 bit

samples from the PFB/FFT, the calibration not only has to set the signal level of each

frequency channel to the optimal value, but it also has to select the set of 4 + 4 bits

that contain the sky information. As an example, for a typical frequency channel the

most significant bits (MSBs) of the 18 + 18 FFT output are zeros, while for a channel

corrupted by strong RFI the MSBs may not be zero.

Figure 5.5: Schematic diagram of the post-channelization digital calibration. The dig-
itized from the ADC is passed to the PFB/FFT sub-module as frames of 2048 8-bit
samples. The FFT outputs a frame of 1024 complex values, one per frequency channel,
in 18+18 bit format. For each frequency channel, the FFT output is multiplied by a
16 + 16 bit complex gain. The resulting 35 + 35 bit complex number is then shifted to
the left a configurable amount of times. The amount of shifts to the left is the same for
all the frequency channels. Finally, the 35 + 35 bit complex number is scaled to a 4 + 4
bit complex value by selecting the 4 MSBs in both the real and imaginary component
and applying convergent rounding.

The calibration for each input and frequency channel is performed in two stages. First,

the 18 + 18 bit output of the PFB/FFT sub-module of the channelizer is multiplied in

the scaler sub-module by a 16 + 16 bit complex gain for each frequency channel. Then,

the resulting 35 + 35 bit complex number8 can be shifted to the left (multiplied by two)

a configurable amount of times before it is finally scaled to a 4 + 4 bit complex value by

selecting the 4 MSBs in both the real and imaginary component and applying convergent

rounding. The amount of shifts to the left is the same for all the frequency channels.

The pair formed by the 16 + 16 bit complex gain and the number of shifts to the left

is the digital gain that is applied in the post-channelization calibration. This gains can

8Note that the complex multiplication requires 35 bits in the real and imaginary components of the
result since the operation involves both multiplication and addition.
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be configured through software, and are adjusted so the signal level of the PFB/FFT

output is about 1 bit RMS before the 4-bit quantization takes place. This is done in

two stages: first, for each input the digital gain is calculated independently for each

frequency channel by measuring the RMS of the channelized data. After that, the gains

are smoothed in frequency using an iterative algorithm that combines polynomial fitting

and Fourier smoothing. RFI frequency channels are treated separately. The details of

this algorithm are presented in [64]. The final digital gains are applied to the channelized

data. They are also stored and passed to the cosmology pipeline so they can be accounted

for in the visibility data.

In principle the digital gains only need to be calculated once for each input and

frequency channel. In practice for CHIME, the digital gains are updated when there are

changes in the analog receiving system (e.g. an analog input that was down and has

been fixed) or in the RFI environment (e.g. a ‘clean’ frequency channel that is suddenly

contaminated by RFI or vice versa).

5.4 Conclusions

In this chapter we presented the calibration requirements for CHIME and the different

techniques that we have developed to calibrate the telescope. Although highly effective

at separating the 21 cm signal from foregrounds, the m-mode formalism described in

Chapter 2 requires a detailed knowledge of the instrument, including the complex receiver

gains and the primary beams. An imperfect calibration of the telescope leads to an

imperfect foreground removal, and thus to a biased estimate of the 21 cm power spectrum.

In order to avoid significant power spectrum biases, the complex receiver gains must be

known to ∼ 0.3% within each minute.

We have used the pathfinder as a test-bed to develop a number of receiver-gain and

digital calibration techniques in order to address these stringent requirements and un-

derstand the CHIME instrument.

For receiver gain calibration, the thermal susceptibility of the different components of

the analog receiver chain has been characterized. The dominant source of gain variation is

common to all the receivers and is driven by temperature changes in the analog receiver

components. After subtracting the common-mode drift most feeds show fluctuations

below the 0.3% level and meet the calibration requirements.

We developed and implemented a BIS system that injects broadband calibration

signals across the array to measure and correct for the receiver gain fluctuations. We

presented the theory of BIS calibration, which is very general and can also be applied to
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other calibration methods including bright point-source and pulsar transits. We also gave

details of the BIS instrumentation and its improvements with respect to the early system

presented in [5]. The new BIS system is synchronized with the data acquisition and

allows switching at cadences much faster than the integration time, improving the sky

background subtraction and the immunity to RFI. Each motherboard in the ICE system

can be used to control different BIS sources independently and we have developed a much

simpler BIS system that is currently used to track and correct the intra and inter-crate

jitter of the ICE system on the pathfinder and full CHIME.

Since the CHIME receivers have been found to be more stable than anticipated, the

implementation of the full version of the BIS system on full CHIME may not be necessary,

although the BIS system for timing jitter is still required. The present strategy for gain

calibration on full CHIME is that a thermal model will be used to track the common

mode and calibrate the analog receiving system and the BIS calibration will be used to

track the timing jitter of the ICE system.

For digital calibration, we have developed efficient calibration techniques that min-

imize the effects of quantization errors at the critical correlator stages. For the 8-bit

digitization of the analog signals, the gain of the analog receiving system has been opti-

mized so the nominal signal level at the input of the ADC is approximately 3.5 bits RMS,

reducing the effects of the quantization noise to negligible levels. For the computation

of the FFT, we have implemented a scaling scheme for the FFT stages that maximizes

the signal-to-quantization-error ratio at the FFT output. For the post-channelization

4-bit complex quantization we have implemented a calibration algorithm that adjusts

the signal level for each frequency channel before this 4-bit complex-valued quantization

takes place, effectively minimizing the quantization errors. This calibration is based on

the quantization model developed in Chapter 6.



Chapter 6

Quantization bias for digital

correlators

In this chapter we investigate the biasing effect of the post-channelization complex quan-

tization in the magnitude and phase of the measured visibilities for circularly symmetric

Gaussian inputs, which is the typical case for CHIME and other radio astronomy applica-

tions. Using the new knowledge derived in this chapter and submitted for publication in

[6], We determine the optimal interval for the input signal level for which the correlation

between the input and the quantization error is very weak and the model of additive

uncorrelated quantization noise provides a very accurate approximation. We also deter-

mine the quantization bias in the visibilities measured by a digital correlator and derive

the conditions under which the bias in the magnitude and phase of the measured cor-

relation is negligible with respect to the unquantized values. Finally, we show how the

post-channelization quantization reduces the point-source sensitivity of a CHIME-like

array and how this effect can be reduced to negligible levels with a proper calibration of

the system noise level at the input of the quantizer.

6.1 Post-channelization quantization in the CHIME

correlator

The CHIME correlator is an FX design, where the F-engine divides the 400 MHz input

bandwidth into thousands of frequency channels. The data from each frequency channel

is then quantized to 4 bits (4 bits real + 4 bits imaginary) before being reorganized by

the corner-turn network and fed into the X-engine that computes the full N2 correlation

matrix (see Chapter 4 for details on the CHIME correlator).

112



Chapter 6. Quantization bias for digital correlators 113

This post-channelization quantization process introduces a bias in the magnitude and

phase of the measured correlations which translates into errors in the measurement of

source brightness and position on the sky, affecting both the system calibration and image

reconstruction. This bias in the correlations will show up as an amplitude dependent (and

direction independent) gain term that must be addressed before beam and receiver gain

calibration. As we will show, this effect can be significant for large deviations from

optimal signal levels or large correlation coefficients, which means that it is critical to

understand the bias. This implies understanding the statistics of the quantization error

and its correlation with the quantizer input.

In most cases the quantization error is modeled as additive stationary white noise

that has a uniform bounded distribution and is uncorrelated with the input. In general,

this model provides a very good approximation when the quantization step size is small,

the input signal traverses many quantization steps between successive samples and the

effect of clipping (for input values outside the quantizer’s dynamic range) is small or

negligible. In this case [65] derives formulas for the fractional increase in the variance

of a white Gaussian real input signal that results from quantization with many levels

(eight or more) and provides tables with the optimal input signal levels that minimize

this effect. Although the uncorrelated quantization error model is still very accurate

even for significant deviations from the optimal signal level (the range depending on the

number of levels), the model breaks when the input signal level is too small or when it

is too high and the effect of clipping is important (i.e. when the fraction of samples that

lie outside the quantizer limits is significant). More important, it leads to the incorrect

conclusion that the magnitude and phase of the quantized correlation remain unbiased.

We will show that this is not the case in the signal regimes described above and when

the correlation coefficient is large.

The effect of quantization on correlators has been studied in the past for quantization

with few levels (e.g. [66] for two levels, [67] for three levels, [68] for four levels). For many

levels, [65] studies the loss in efficiency in a correlator resulting from quantization with

eight or more levels for real Gaussian inputs assuming that the quantization error is un-

correlated with the unquantized input, while [69] finds the component of the quantization

noise that is uncorrelated with the input and calculates the loss in efficiency due to this

component. [33] presents a detailed discussion on these methods. Recent work from [70]

generalizes the Van Vleck quantization correction for two-level correlators to correlators

with multilevel quantization and Gaussian inputs. Since it is not always computation-

ally feasible to implement this correction, in this chapter we investigate in detail the

biasing effect of quantization on the magnitude and phase of the measured correlations
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and determine the conditions under which this effect is negligible so the correction is not

necessary. In order to do that, we calculate the contribution of each quantization level

to the correlation between the input and the quantization error in the case of a single

quantizer, and in the case of two quantizers with different inputs we calculate the cor-

relation between quantization errors for every pair of quantization levels1. We then use

these results to calculate the effect of the quantization errors on the measured correlation

of a real and complex-valued correlator.

The results of this chapter are general and apply to any digital correlator. However, we

will focus our analysis and simulations on the 4-bit real + 4-bit imaginary complex-valued

quantization at the channelization stage of the CHIME correlator. We are particularly

interested in the effects of quantization in the high signal level and high correlation

regimes which are relevant for CHIME when the antenna temperature and thus the

correlator input signal can increase significantly relative to the optimal level (typically

determined at night hours or when observing a relatively quiet region of the sky), for

example during bright point source transits (e.g. the sun) and point-source calibration,

and during complex receiver gain calibration using the BIS technique (see Chapter 5).

6.2 Real-valued quantizer

We will assume a quantizer with uniformly spaced levels and an odd symmetric transfer

function (same number of levels above and below zero). This means that if the number of

levels N is odd then the quantizer has a level at zero (mid-tread) and if N is even it has

a threshold at zero (mid-riser). We do not consider non-uniform quantization steps for

optimization. The CHIME case, which we assume as an example, corresponds to N = 15

(levels at -7, -6, ..., 6, 7) for the complex channelization stage. In general, the quantizer

levels are (in units of the quantization step Δ)

ki = −N + 1

2
+ i, for i = 1, ..., N (6.1)

and the decision thresholds are

y0 = −∞, yN = ∞, yi = ki +
1

2
= −N

2
+ i, for i = 1, ..., N − 1. (6.2)

1This method differs from [33] and [70] since it does not use Price’s theorem [71], a very useful tool for
estimating the expectation of nonlinear functions of jointly Gaussian random variables. The approach
used in this chapter applies to generic probability density functions, and can be used for example, to
investigate the effect of quantization in the presence of RFI, although that analysis is left for future
work.
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Let v be the (real-valued) input of the quantizer. For the i-th quantization level, the

correlation between the input and the quantization error e is [72]

〈ve〉i =
∫ yi

yi−1

(ki − v)vf(v)dv (6.3)

where v is in quantization step units and has probability density function (PDF) f(v).

Each input sample can fall in only one quantization slot so events that take place in

the various slots are mutually exclusive. This means that we can write the correlation

between the input v and the quantization error e = v̂ − v as (v̂ is the quantizer output)

〈ve〉 =
N∑
i=1

∫ yi

yi−1

(ki − v)vf(v)dv. (6.4)

Similarly, the quantization error variance σ2
e = 〈e2〉 can be written as

σ2
e =

N∑
i=1

∫ yi

yi−1

(ki − v)2f(v)dv. (6.5)

As equation 6.4 shows, the calculation of 〈ve〉 depends on the input PDF. If v is

an independent and identically distributed (IID) Gaussian process with zero mean, then

equation 6.4 can be written in a more concrete form

〈ve〉 =
N∑
i=1

∫ yi

yi−1

(ki − v)vN (v|σ2)dv = σ2

[
−1 +

N−1∑
i=1

N
(
−N

2
+ i

∣∣∣∣ σ2

)]

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ2

⎡
⎣−1 + 2

N−3
2∑

i=0

N
(
1

2
+ i

∣∣∣∣ σ2

)⎤⎦ if N odd

σ2

⎡
⎣−1 +

1√
2πσ2

+ 2

N−4
2∑

i=0

N (
1 + i| σ2

)⎤⎦ if N even

(6.6)

where N (v|σ2) = (2πσ2)
−1/2

e−v2/(2σ2) is the Gaussian PDF, σ is in units of the quanti-

zation step Δ, and it is clear that the summation term is zero for N = 2. Appendix A

provides a derivation for equation 6.6.

It is also clear from the symmetry of the quantizer and the input PDF that both e

and v̂ have zero mean. Using the same procedure we find the variance of the quantization
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error σ2
e = 〈e2〉 as (see Appendix A for details)

σ2
e =

N∑
i=1

∫ yi

yi−1

(ki − v)2N (v|σ2)dv

= −2〈ve〉 − σ2 +

(
N − 1

2

)2

−
N−1∑
i=1

(
−N

2
+ i

)
erf

(−N/2 + i√
2σ2

)
.

(6.7)

where erf(v) is the error function. The quantized output variance σ̂2 follows from equa-

tions 6.6 and 6.7

σ̂2 = 〈(v + e)2〉 = σ2
e + σ2 + 2〈ve〉 =

(
N − 1

2

)2

−
N−1∑
i=1

(
−N

2
+ i

)
erf

(−N/2 + i√
2σ2

)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
N − 1

2

)2

− 2

N−3
2∑

i=0

(
1

2
+ i

)
erf

(
1/2 + i√

2σ2

)
if N odd

(
N − 1

2

)2

− 2

N−4
2∑

i=0

(1 + i) erf

(
1 + i√
2σ2

)
if N even.

(6.8)

Results from simulations where we verify equations 6.6 - 6.8 for the case of a real

quantizer with N = 15 levels (left column) and N = 16 levels (right column) and a

real Gaussian input are shown in Figure 6.1. From top to bottom row, the plots show

the variance of the quantized output, σ̂2, the quantization error, σ2
e , and the correlation

between the input and quantization error 〈ve〉 as function of the unquantized standard

deviation σ. All the values are normalized with respect to σ2. For easier visualization of

the results, especially in the low and high signal level regimes, the x-axis is in logarithmic

scale (base 2, so the exponents can be interpeted as bits RMS). For each plot, the red

line corresponds to equations 6.6 - 6.8 and the blue line (made thicker so it can be

distinguished from the red line) corresponds to the results from simulations where, for

each value of σ, 106 samples of a Gaussian input are quantized with N levels and then the

statistics of the input, output and quantization error are calculated. As reference, we also

include the green dashed line that shows the expected behavior from the uncorrelated

quantization noise model that assumes 〈ve〉 = 0 (see [33] for a detailed discussion). The

black solid vertical line corresponds to the highest level of the quantizer (7 for N = 15

and 7.5 for N = 16) above which clipping occurs.
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Figure 6.1: Behavior of a quantizer with N = 15 levels (left column) and N = 16
levels (right column) and a real-valued Gaussian input. From top to bottom row, the
plots show the variance of the quantized output, σ̂2, the quantization error, σ2

e , and the
correlation between the input and quantization error, 〈ve〉, as function of the unquantized
standard deviation σ. All the values are normalized with respect to σ2. For each plot,
the red line corresponds to equations 6.6 - 6.8, the thick blue line shows the results from
simulations, and the green dashed line corresponds to the uncorrelated quantization noise
model that assumes 〈ve〉 = 0. Note that equations 6.6 - 6.8 predict accurately the results
from simulations. When the input σ uses optimally the quantizer’s dynamic range the
quantization error is very weakly correlated with the input. In this case the uncorrelated
quantization noise model provides a very good approximation, introducing only a small
bias error.



Chapter 6. Quantization bias for digital correlators 118

The first thing to note from Figure 6.1 is that equations 6.6 - 6.8 predict accurately

the results from simulations regarding σ̂2, σ2
e , and 〈ve〉. Also that the uncorrelated quan-

tization noise model provides an excellent approximation in the interval where 〈ve〉 → 0.

For N = 15, the value of σ that minimizes the magnitude of the input-error correlation

coefficient, ρve = 〈ve〉/(σσe), is σ ≈ 20.14Δ. At this point |ρve| ≈ 5.5×10−10. For N = 16

we have ρve = 0 for σ ≈ 20.2Δ. In both cases the minimum of |ρve| is broad so there is

effectively a σ-interval, which we denote the interval of optimal quantization, for which

the correlation between the input and quantization error is very weak and the uncorre-

lated quantization error model provides a very accurate approximation (the error in the

calculated quantization parameters is negligible). The length of this interval depends on

N and on the tolerance required by each specific application. For example, if we require

that |ρve| � 10−3 for N = 15, then the interval of optimal quantization is, approximately,

[2−0.6, 20.9]. Within this interval the values of σ̂2 and σ2
e from the uncorrelated quanti-

zation error model agree with the values from equations 6.6 - 6.8 at the ∼ 0.07% level.

The performance of the N = 16 quantizer within this interval is similar2.

Also note that, even in the high-σ regime, where the quantization error resulting from

clipping dominates and is correlated with the input, the uncorrelated quantization noise

model also predicts with high accuracy the contribution of this overload error to σ2
e as

the middle plot shows. However, it cannot track the quantized standard deviation (top

plot) since in this regime 〈ve〉 < 0 which eventually makes σ̂2/σ2 < 1 for large inputs.

In the low-σ regime, when σ � 1/2, the uncorrelated quantization noise model deviates

from equations 6.6 - 6.8 for two reasons: first, it is no longer true that the quantization

error is uniformly distributed in the interval [−Δ/2,Δ/2], and second, the behavior is

now closer to that of a 3-bit (N odd) or 2-bit (N even) quantizer, so the quantization

error is again correlated with the input. As N increases, both the interval of optimal

quantization and the accuracy of the uncorrelated quantization error model increase.

Finally, note that 〈ve〉 is negative (it approaches zero assymptotically) for N = 15

while it becomes positive in the low signal level regime for N = 16. Since the sum

So =
∑(N−3)/2

i=0 N (1/2 + i| σ2) in equation 6.6 is positive and bounded above by 1/2

(So < 1/2, a proof is provided in Appendix G) then 〈ve〉 is always negative for N odd.

Furthermore, 〈ve〉 ∈ (−σ2, 0) in this case. On the other hand, for N even, the sum

Se =
∑(N−4)/2

i=0 N (1 + i| σ2) is also positive and bounded above by 1/2, but the term

2The CHIME correlator also has a quantizer with N = 255 levels at the digitization stage (see
Section 5.3.1). For this quantizer the interval of optimal quantization is much broader, spanning several
bits, and the correlation between the input and quantization error over this interval is even weaker(|ρve| � 10−14

)
. The effects of this correlation are negligible compared to the N = 15 complex-valued

quantizer at the channelization stage.
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1/(
√
2πσ2) becomes arbitrarily large as σ decreases. Thus, 〈ve〉 is always positive and

unbounded for N even in the low-σ regime.

6.3 Complex-valued quantizer

In the CHIME correlator, the (real-valued) analog signal of each input is first digitized and

then passed through the F-engine that implements a PFB which splits the 400 MHz-wide

input into 1024 frequency bins, each 390 kHz wide. The output of each frequency bin is a

complex-valued signal and its real and imaginary parts are separately quantized with 15

levels before the data is re-arranged and sent to the X-engine for cross-multiplication and

integration. In this section we extend the results of Section 6.2 to the case of an N -level

complex-valued quantizer, where the real and imaginary parts of the input are separately

quantized with N levels. In this case we assume that the input v = vr + jvi is a complex

and circularly-symmetric Gaussian process such that 〈vrvi〉 = 0 and 〈v2r〉 = 〈v2i 〉 =

〈|v|2〉/2 where 〈|v|2〉 = σ2 is the unquantized standard deviation (see Section 2.3.4).

As in Section 6.2 we are interested in the standard deviation of the quantization error,

e = er + jei, and its correlation with the input. In this case we have

〈ve∗〉 = 〈(vr + jvi)(er + jei)
∗〉

= 〈vrer〉+ 〈viei〉+ j (−〈vrei〉+ 〈vier〉) .
(6.9)

The circular symmetry of v (its real and imaginary part are uncorrelated and have

identical statistics) implies that 〈vrer〉 = 〈viei〉. As for 〈vrei〉, note that, for the m-th

imaginary quantization level we have

〈vrei〉m =

∫ ym

ym−1

∫ ∞

−∞
(km − vi)vrf(vr, vi)dvrdvi

=

∫ ym

ym−1

(km − vi)N
(
vi

∣∣∣∣σ2

2

)
dvi

∫ ∞

−∞
vrN

(
vr

∣∣∣∣σ2

2

)
dvr

= 0.

(6.10)

Thus 〈vrei〉 = 0 and, for the same reason, 〈vier〉 = 0. This means that 〈ve∗〉 is real

and, from equation 6.6

〈ve∗〉 = 2〈vrer〉 = σ2

[
−1 +

N−1∑
i=1

N
(
−N

2
+ i

∣∣∣∣ σ2

2

)]
. (6.11)
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From the circular symmetry of v it also follows that σ2
e = 2〈e2r〉 and σ̂2 = 2〈v̂2r〉, so sim-

ilar expressions for σ2
e/σ

2 and σ̂2/σ2 in the complex case are obtained from equations 6.6

- 6.8 by changing σ2 → σ2/2.

Results from simulations and comparison to our prediction for the complex-valued

quantizer with N = 15 levels (left column) and N = 16 levels (right column) are shown

in Figure 6.2. From top to bottom row, the plots show the normalized variance of

the quantized output (σ̂2/σ2), the quantization error (σ2
e/σ

2), and the magnitude and

phase (in degrees) of the normalized correlation between the input and quantization error

(〈ve∗〉/σ2). For each plot, the red line is our prediction and the blue line corresponds to

the results from simulations where, for each value of σ, 106 samples of a complex and

circularly-symmetric Gaussian input are quantized with N levels (real and imaginary

parts quantized separately) and then the statistics of the input, output and quantization

error are calculated.

There is again excellent agreement between the simulations and the predictions. The

correlation between the input and quantization error, 〈ve∗〉, is always real (in the simu-

lation the imaginary part is consistent with zero at the ∼ 0.15% level). Furthermore, it

is always negative (180◦ phase) for N odd, while it becomes positive (0◦ phase) in the

low σ regime for N even. In this case the optimal quantization interval corresponding to

|ρve| � 10−3 is approximately [2−0.1, 21.4] (the interval shifts by
√
2 with respect to the

real-valued case).

6.4 Real-valued correlator

The correlation between two real-valued quantized inputs v̂1 and v̂2, is

r̂12 = 〈v̂1v̂2〉. (6.12)

The output of a real-valued digital correlator after integrating Ns samples is

r̂12,Ns =
1

Ns

Ns∑
n=1

v̂1[n]v̂2[n]. (6.13)

Since the quantized sample vector (v̂1[n], v̂2[n]) comes from the IID joint Gaussian

process (v1, v2), then 〈r̂12,Ns〉 = r̂12 so the measured correlation r̂12,Ns is an unbiased

estimator of r̂12. Henceforth we will refer to r̂12 as the output of the digital correlator.

Note that we already investigated the behavior of r̂11 = σ̂2
1 and r̂22 = σ̂2

2 in Section

6.2 (the result in this case is the same because the marginal PDFs of v1 and v2 are
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Figure 6.2: Behavior of a complex-valued quantizer with N = 15 levels (left column) and
N = 16 levels (right column) and a circularly-symmetric Gaussian input. From top to
bottom row, the plots show the normalized variance of the quantized output (σ̂2/σ2), the
quantization error (σ2

e/σ
2), and the magnitude and phase (in degrees) of the normalized

correlation between the input and quantization error (〈ve∗〉/σ2). For each plot, the red
line is our prediction and the blue line is the result from simulations. There is again
excellent agreement between these. Note that 〈ve∗〉 is always real (in the simulation the
imaginary part is consistent with zero at the ∼ 0.15% level), and it is negative (180◦

phase) for N odd, while it becomes positive (0◦ phase) in the low σ regime for N even.
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independent of the correlation between inputs). Now we are interested in r̂12 and its

relation to r12 = 〈v1v2〉 which is the correlation between the unquantized inputs v1 and

v2 and what we ultimately want to measure. We can write r̂12 as

r̂12 = 〈(v1 + e1)(v2 + e2)〉
= r12 + 〈v1e2〉+ 〈e1v2〉+ 〈e1e2〉

(6.14)

where

〈v1e2〉 =
N∑
i=1

∫ yi

yi−1

∫ ∞

−∞
(ki − v2)v1f(v1, v2)dv1dv2 (6.15)

and

〈e1e2〉 =
N∑
j=1

N∑
i=1

∫ yj

yj−1

∫ yi

yi−1

(ki − v1)(kj − v2)f(v1, v2)dv1dv2. (6.16)

〈e1v2〉 is defined as in equation 6.15. If the samples from v1 and v2 come from a

zero-mean joint Gaussian PDF

N (
v1, v2

∣∣σ2
1, σ

2
2, ρ
)
=

1

2πσ1σ2

√
1− ρ2

e
− 1

2(1−ρ2)

[
v21
σ2
1
+

v22
σ2
2
− 2ρv1v2

σ1σ2

]
(6.17)

where ρ = 〈v1v2〉/(σ1σ2), then equation 6.15 can be simplified

〈v1e2〉 =
N∑
i=1

∫ yi

yi−1

∫ ∞

−∞
(ki − v2)v1N

(
v1, v2

∣∣σ2
1, σ

2
2, ρ
)
dv1dv2

= ρ
σ1

σ2

N∑
i=1

∫ yi

yi−1

(ki − v2)v2N
(
v2|σ2

2

)
dv2

= ρ
σ1

σ2

〈v2e2〉

= r12
〈v2e2〉
σ2
2

.

(6.18)

Similarly 〈e1v2〉 = r12〈v1e1〉/σ2
1. Note that with this result we can find both 〈v1e2〉

and 〈e1v2〉, which are correlations between mixed input-error terms, using equation 6.6
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for the correlation between an input and its respective quantization error.

As for 〈e1e2〉 in equation 6.16, it can be simplified in the case when ρ is small, since

in this regime we have

N (
v1, v2

∣∣σ2
1, σ

2
2, ρ
)∣∣

ρ
1
≈ N (v1|σ2

1)N (v2|σ2
2)

(
1 +

ρv1v2
σ1σ2

)
(6.19)

so

〈e1e2〉|ρ
1 ≈
N∑
i=1

∫ yi

yi−1

(ki − v1)N (v1|σ2
1)dv1

N∑
j=1

∫ yj

yj−1

(kj − v2)N (v2|σ2
2)dv2

+
ρ

σ1σ2

N∑
i=1

∫ yi

yi−1

(ki − v1)v1N (v1|σ2
1)dv1

N∑
j=1

∫ yj

yj−1

(kj − v2)v2N (v2|σ2
2)dv2

=〈e1〉〈e2〉+ ρ

σ1σ2

〈v1e1〉〈v2e2〉

=r12
〈v1e1〉
σ2
1

〈v2e2〉
σ2
2

.

(6.20)

Equation 6.20 will be useful when we analyze the phase behavior of the complex-

valued correlator.

From equations 6.14 and 6.18 we can write

r̂12 = r12

(
1 +

〈v1e1〉
σ2
1

+
〈v2e2〉
σ2
2

)
+ 〈e1e2〉 (6.21)

and, using equation 6.20

r̂12|ρ
1 ≈ r12

(
1 +

〈v1e1〉
σ2
1

+
〈v2e2〉
σ2
2

+
〈v1e1〉
σ2
1

〈v2e2〉
σ2
2

)

=r12

(
1 +

〈v1e1〉
σ2
1

)(
1 +

〈v2e2〉
σ2
2

)
.

(6.22)

The behavior from simulations of the normalized and quantized input correlation

r = r̂12/r12 and the contribution of the correlation between the quantization errors of the

two inputs, 〈e1e2〉 (also normalized by r12) are shown in Figures 6.3 and 6.4 respectively.

For each value of σ1, σ2 and ρ, 107 sample vectors (v1[n], v2[n]) from the joint Gaussian

distribution in equation 6.17 are quantized with N levels and then both r̂12 and 〈e1e2〉 are
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calculated and normalized by the (measured) unquantized input correlation r12. The axes

for each plot are the unquantized input signal levels and the green solid lines correspond

to the highest level of the quantizer (7 for N = 15 and 7.5 for N = 16) above which

clipping occurs.

Figure 6.3: Results from simulations of r = r̂12/r12 as function of σ1 and σ2 for different
values of ρ for a real correlator with N = 15 levels (top row) and N = 16 levels (bottom
row). The axes for each plot are the unquantized input signal levels and the green solid
lines correspond to the highest level of the quantizer above which clipping occurs. The
bias in r̂12 for moderate values of ρ (|ρ| � 0.85) is below ∼ 0.1% approximately within
the inner white square enclosed by the region σ1 × σ2 ≈ [2−0.6, 20.9] × [2−0.6, 20.9]. For
|ρ| � 0.85 the bias can increase up to ∼ 4%.

With 107 samples, the values in each pixel of Figure 6.3 agree with the values from

equation 6.21 with unbiased error fluctuations below ∼ 1%. The worst case corresponds

to low values of σ and ρ where r12 is very small. These results confirm that equation 6.21

accurately reproduces the relation between r̂12 and r12 for the real-valued correlator.

For moderate values of ρ (|ρ| � 0.85) the bias in r̂12 (Figure 6.3) is below ∼ 0.1%

(values from equation 6.21) approximately within the inner white square enclosed by the

region σ1 × σ2 ≈ [2−0.6, 20.9]× [2−0.6, 20.9], corresponding to the region where both inputs

are optimally quantized (see Section 6.2). For |ρ| � 0.85 the bias within this region can

increase up to ∼ 4%.

The most important feature from Figure 6.4 is that e1 and e2 are weakly correlated

as long as at least one of the two inputs is approximately uncorrelated with its respective

quantization error (either 〈v1e1〉 or 〈v2e2〉 is negligible). Another way to say this is that

e1 and e2 are weakly correlated as long as at least one of the two inputs is optimally quan-

tized, i.e., when the model of additive uncorrelated quantization noise is (approximately)

valid. Note that this is what one would intuitively assume using the nominal model of
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Figure 6.4: Correlation between the quantization errors of the two inputs, 〈e1e2〉 (nor-
malized by r12), as function of σ1, σ2 and ρ, from simulations. Note that e1 and e2 are
very weakly correlated as long as at least one of the two inputs is optimally quantized.

additive uncorrelated quantization error. We will use this result when we analyze the

phase of the measured correlation in a complex correlator.

6.5 Complex-valued correlator

Now we extend the results from Section 6.4 to the case when the correlator inputs are

complex-valued, such as for the complex channelization stage of the CHIME correlator,

where the digitized inputs are channelized using a PFB that splits the 400 MHz-wide

input into 1024 narrow frequency bins. The complex-valued output of each frequency

bin is quantized with N = 15 levels for both the real and imaginary parts. Finally,

the quantized signals are sent to the correlator that measures complex-valued correlation

between quantized inputs, r̂12 = 〈v̂1v̂∗2〉. We are ultimately interested in r12 = 〈v1v∗2〉 so
we need to find a relation between these.

As in Section 6.3, we assume that v = (v1, v2) is a complex and circularly-symmetric

Gaussian process. Then

r̂12 = 〈(v̂1r + jv̂1i)(v̂2r − jv̂2i)〉
= 〈v̂1rv̂2r〉+ 〈v̂1iv̂2i〉+ j (−〈v̂1rv̂2i〉+ 〈v̂1iv̂2r〉)

(6.23)

The circular symmetry of v implies that 〈v̂1rv̂2r〉 = 〈v̂1iv̂2i〉 and −〈v̂1rv̂2i〉 = 〈v̂1iv̂2r〉
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so

r̂12 = 2 [〈v̂1rv̂2r〉+ j〈v̂1iv̂2r〉]
= 2(r̂1r,2r + jr̂1i,2r).

(6.24)

For r̂1r,2r = 〈v̂1rv̂2r〉 and r̂1i,2r = 〈v̂1iv̂2r〉 which are real, we can use equation 6.21 so

r̂12 = 2

{[
r1r,2r

(
1 +

〈v1re1r〉
σ2
1r

+
〈v2re2r〉
σ2
2r

)
+ 〈e1re2r〉

]
+

j

[
r1i,2r

(
1 +

〈v1ie1i〉
σ2
1i

+
〈v2re2r〉
σ2
2r

)
+ 〈e1ie2r〉

]}

= 2 (r1r,2r + jr1i,2r)

(
1 +

〈v1re1r〉
σ2
1r

+
〈v2re2r〉
σ2
2r

)
+ 2 (〈e1re2r〉+ j〈e1ie2r〉)

= r12

(
1 +

〈v1re1r〉
σ2
1r

+
〈v2re2r〉
σ2
2r

)
+ 2 (〈e1re2r〉+ j〈e1ie2r〉)

(6.25)

where in the second step we used the fact that 〈v1re1r〉/σ2
1r = 〈v1ie1i〉/σ2

1i and in the

third step we used r12 = 2 (r1r,2r + jr1i,2r). All these follow from circular symmetry.

Note that all the terms in equation 6.25 can be obtained from equations 6.6 and 6.16

using σ2
1r = σ2

1i = σ2
1/2 and σ2

2r = σ2
2i = σ2

2/2.

We can use equation 6.25 to draw some important conclusions regarding how quan-

tization affects the magnitude and phase of r12. We can write

r̂12 = αr12 + β, α =

(
1 +

〈v1re1r〉
σ2
1r

+
〈v2re2r〉
σ2
2r

)
, β = 2 (〈e1re2r〉+ j〈e1ie2r〉)

(6.26)

Note that α is real, independent of ρ, and only contributes to the biasing of the

magnitude of r̂12. On the other hand, β is complex in general and affects both the

magnitude and phase of r̂12.

Quantization will bias the magnitude of r̂12 except when α = 1 and β = 0. This occurs

approximately when both inputs are optimally quantized since in this case 〈v1re1r〉 → 0,

〈v2re2r〉 → 0 (so α → 1, see Section 6.2 and Figure 6.1), and also 〈e1re2r〉 → 0, 〈e1ie2r〉 →
0 (so β → 0, see Section 6.4 and Figure 6.4).

Quantization will bias the phase of r̂12 except in two cases: the first case is when β = 0,

which occurs approximately when at least one of the inputs is optimally quantized (see

Section 6.4 and Figure 6.4). Note that this is a less stringent requirement than that for
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unbiased magnitude, which requires both inputs to be optimally quantized.

The second case for negligible bias in the phase of r̂12 occurs when ρ � 1 since using

equation 6.20 in equation 6.25 we have

r̂12|ρ
1 ≈ 2r1r,2r

(
1 +

〈v1re1r〉
σ2
1r

)(
1 +

〈v2re2r〉
σ2
2r

)
+ 2jr1i,2r

(
1 +

〈v1ie1i〉
σ2
1i

)(
1 +

〈v2re2r〉
σ2
2r

)

= r12

(
1 +

〈v1re1r〉
σ2
1r

)(
1 +

〈v2re2r〉
σ2
2r

)
.

(6.27)

Since the factors that multiply r12 are real then ∠ (r̂12) = ∠ (r12).

Figures 6.5 and 6.6 show results from simulations of r̂12/r12 (magnitude and phase

respectively. The phase is in degrees). The method is the same as in Section 6.2, but this

time the 107 sample vectors (v1[n], v2[n]) are drawn from a circularly symmetric Gaussian

distribution. We only vary the magnitude of ρ, keeping its phase fixed at 75 degrees.

Note that equations 6.25-6.27 predict accurately the behavior of the magnitude and

phase of r̂12. For moderate values of ρ (|ρ| � 0.85) the bias in the magnitude (Figure

6.5) is below ∼ 0.1% roughly within the inner square enclosed by the region σ1 × σ2 ≈
[2−0.1, 21.4]× [2−0.1, 21.4], corresponding to region where both inputs are optimally quan-

tized (see Section 6.3). For |ρ| � 0.85 the bias within this region can increase up to

∼ 4%.

As for the phase (Figure 6.6), the bias is below ∼ 0.1◦ within the cross-shaped region

where either σ1 or σ2 are optimally quantized. When |ρ| � 0.85 the bias within this

region can rise up to ∼ 1◦. When ρ � 0.1 (first two columns of Figure 6.6) the phase

bias is below ∼ 0.1◦ (values from equation 6.25) for all values of σ1 and σ2 as predicted

by equation 6.27, although there are still random fluctuations in the simulation at the

∼ sub-degree level for very low values of σ (bottom and left edges of the plots) for reasons

explained in Section 6.4.

6.6 Implications for radio interferometry

The results above have important implications for radio interferometry. Quantization

will have a significant biasing effect on the visibility magnitude unless both inputs are

optimally quantized, which can be a stringent requirement (both signal levels need to

be in the region where the uncorrelated quantization model is valid). However, we have

found that the bias in the visibility phase is negligible even in conditions as extreme as
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Figure 6.5: |r̂12/r12| from simulations as function of σ1 and σ2 for different values of |ρ|.
For moderate values of ρ the bias in the magnitude of |r̂12| is below ∼ 0.1% within the
inner square enclosed by the region σ1 × σ2 ≈ [2−0.1, 21.4]× [2−0.1, 21.4], corresponding to
region where both inputs are optimally quantized. For |ρ| � 0.85 this bias can increase
up to ∼ 4%.

Figure 6.6: ∠(r̂12/r12) (in degrees) from simulations as function of σ1 and σ2 for different
values of |ρ|. The bias in the phase of r̂12 is negligible when at least one of the inputs is
optimally quantized. This is a less stringent requirement than that for the magnitude,
which requires both inputs to be optimally quantized. The bias is below ∼ 0.1◦ within
the cross-shaped region where either σ1 or σ2 are in the approximate interval [2−0.1, 21.4].
When |ρ| is high (last two columns) the bias within this region can rise up to ∼ 1◦. When
|ρ| is small (first two columns) the phase bias is below ∼ 0.1◦ for all values of σ1 and σ2,
although there are still random fluctuations in the simulation at the ∼ sub-degree level
for very low values of σ (see text).
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when one of the inputs is suffering from severe clipping, or even when both inputs are

severely clipped in the case of weak sources (|ρ| � 1). The same conditions apply when

one or both input levels are very low (note that any of these extreme conditions will

affect the signal-to-noise ratio of the measured visibility even if the phase is unbiased,

but that analysis is left for future work). An accurate determination of the visibility

phase is critical for beamforming, fringe stopping, and image reconstruction techniques.

For the particular case of CHIME, in which the sky signals are weak and the corre-

lator inputs are dominated by the noise of the analog receiving system, the correlation

coefficient is typically low (|ρ| � 0.1) even for the brightest radio point sources such as

CasA, CygA, and TauA, but excluding the sun. This means that, except for the time

when the sun is in the primary beam of the CHIME telescope (∼ 14 minutes per day),

all the visibility phases will have negligible bias due to quantization.

The quantization bias also has an effect on the beamformed sensitivity of a radio

interferometric array. To illustrate this, consider a one-dimensional array consisting of

uniformly spaced feeds located at positions 0, 1, . . . , Nf − 1, in units of the normalized

feed spacing bλ = b/λ, where λ is the observed wavelength. This example corresponds to

one of the cylinders of the CHIME telescope, where the feeds are uniformly spaced along

the axis of the cylinder. The cylinder axis (and thus the linear array) is oriented North-

South (N-S), so the resolution in the N-S direction is provided by the correlations between

feeds. We will assume that all the feeds have identical beams that are N-S isotropic and

receivers with system noise σ2
sys, although the generalization is straightforward.

For a point source on the meridian with noise temperature σ2 such that the signal-

to-system-noise ratio is SNR = σ2/σ2
sys, the unquantized autocorrelations for each feed

are identical and equal to

rii = σ2
sys(1 + SNR), i = 0, 1, . . . , Nf − 1 (6.28)

while the unquantized visibility and correlation coefficient between feeds i and j are

rij = SNR · σ2
syse

−j2π(i−j)bλ sin θ, ρij =
e−j2π(i−j)bλ sin θ

1 + 1
SNR

(6.29)

where θ is the source zenith angle and we have assumed uncorrelated system noise between

feeds.

The bias due to quantization of the measured visibility as function of SNR and θ for

i = j + 1 (consecutive feeds) is shown in Figure 6.7. We use bλ = 0.4 which corresponds

to the CHIME normalized feed spacing at 400 MHz. These results are obtained directly

from equation 6.25.
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Figure 6.7: Bias due to quantization of the measured visibility as function of the source
position θ and the signal-to-system-noise ratio is SNR. The visibility baseline is bλ = 0.4
which corresponds to the CHIME normalized feed spacing at 400 MHz. When σsys = 21Δ
(left panels), well within the optimal quantization interval, the quantization bias for weak
sources (SNR � 0.1) is negligible. This is the regime for CHIME ∼ 99% of the time.
When σsys = 22Δ (right panels), which is the optimal input level according to the
uncorrelated quantization noise model, the amount of bias increases significantly.

To illustrate the difference between equation 6.25 and the uncorrelated quantization

noise model, and the importance of optimizing the input signal level of the quantizer,

Figure 6.7 shows the bias for two different values of σsys: 2
1Δ (left panels) and 22Δ (right

panels). For a system-noise dominated telescope like CHIME, the correlator inputs are

calibrated so σsys corresponds to the optimal input level of the quantizer in order to

minimize the effects of quantization. For N = 15, the optimal input level according

to the uncorrelated quantization noise model is σsys ≈ 22Δ, corresponding to the point

where σe is minimum (see second row of Figure 6.2). On the other hand, equation

6.25 suggests that a better choice for σsys should be more centered around the optimal

quantization interval [2−0.1Δ, 21.4Δ]. The CHIME post-channelization calibration module

uses σsys ≈ 21Δ, which is well within this interval while still keeping σe relatively low (see

second and third rows of Figure 6.2, if σsys is too close to the lower end of the interval

then the contribution of σe is significant).

Note that the SNR sets the overall amount of bias due to quantization since this

parameter defines both rii and |ρij| (equations 6.28 and 6.29). For σsys = 21Δ and

|ρij| � 0.1 (so SNR � 0.1) the magnitude bias is � 10−6 and the phase bias is � 10−11

degrees, too small to have any significant impact that requires the generalized Van Vleck
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correction from [70]. As mentioned before, this is the regime for CHIME ∼ 99% of the

time. However, when the sun is in the main beam (∼ 1% of the time), the SNR can be as

high as ∼ 6 (green line in Figure 6.7), corresponding to a magnitude bias of ∼ 11% and a

phase bias of up to ∼ 0.15◦. Although the CHIME cosmology data pipeline masks out the

sun time, this data is still very useful for beam mapping purposes. The quantization bias

is significant enough in this case to justify the implementation of either the generalized

Van Vleck correction or a digital calibration scheme that dynamically adjusts the input

signal level during strong-source transits such that the quantizer always operates in the

optimal quantization regime3.

When σsys = 22Δ (right side of Figure 6.7) the amount of bias increases significantly

even in the weak-source regime. For SNR ∼ 0.1 the magnitude bias is ∼ 3% and the

phase bias is ∼ 3×10−3 degrees, while for SNR ∼ 6 the magnitude bias is ∼ 56% and the

phase bias is ∼ 1◦, demonstrating that for this particular application the uncorrelated

quantization noise model must be used carefully since it can introduce important effects

in the measured visibilities.

The quantization bias also depends on the position of the source and the baseline.

These parameters determine ∠(ρij) which affects the measured visibility r̂ij through the

second term of equation 6.25. As Figure 6.7 shows, the position dependence manifests as

fringes as a function of l = sin θ, where the baseline determines the quantization fringe

rate.

We can use the Nf (Nf−1)/2 visibilities (excluding the autocorrelations) to beamform

in the direction of the source. Since for k = i−j fixed there are (Nf−k) identical baselines,

then we can write the quantized beamformed output as

R̂ =

Nf−1∑
i>j

r̂ije
j2π(i−j)bλ sin θ =

Nf−1∑
k=1

(Nf − k)r̂ke
j2πkbλ sin θ (6.30)

while the unquantized beamformed output is

R =

Nf−1∑
k=1

(Nf − k)rke
j2πkbλ sin θ =

Nf (Nf − 1)

2
SNRσ2

sys. (6.31)

3Note that we are assuming that the sun is a point source to simplify the analysis since we are
interested in studying the behavior of quantization for strong sources. Although, strictly speaking, the
sun is an extended source for CHIME, for observations with the CHIME pathfinder this is an adequate
approximation.
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We can define a complex quantization parameter

ηq =
R̂

R
(6.32)

as a measure of the beamforming efficiency due to quantization. Figure 6.8 shows the

magnitude and phase of ηq as function of the source position θ for SNR = 0.1 (approx-

imate upper limit of weak-source regime) and SNR = 6 (typical strong source like the

sun). We used Nf = 32 and kept bλ fixed at 0.4.

Figure 6.8: Complex quantization parameter ηq = R̂/R as function of the source position
θ for SNR = 0.1 (top row, this SNR is the approximate upper limit of weak-source
regime) and SNR = 6 (bottom row, this is the typical SNR of a strong source like the
sun). For each plot, the blue labels and dots correspond to the magnitude of ηq and the
red labels and dots correspond to its phase in degrees. Note that for σsys = 21Δ (left
column), which is well within the optimal quantization interval for N = 15 levels, and in
the weak-source regime (SNR � 0.1, top left plot), ηq is very close to being real-valued
and deviates from unity by less than ∼ 3 × 10−6 so the loss of beamforming efficiency
due to quantization is negligible. If we set σsys = 22Δ (right column), the beamforming
sensitivity reduces significantly even in the weak-source regime. This confirms that for
this application the uncorrelated quantization model leads to important deviations from
the expected performance of the interferometric array.

The most important feature from Figure 6.8 is that for σsys = 21Δ (left column) and in

the weak-source regime (SNR � 0.1, top left plot) the loss of beamforming efficiency due

to quantization is negligible (ηq is very close to being real-valued and deviates from unity

by less than ∼ 3 × 10−6). However, for a strong source like the sun the beamforming

efficiency decreases below ∼ 89% (bottom left plot). When σsys is set to 22Δ (right

column) the beamforming sensitivity reduces to ∼ 96% and ∼ 45% for SNR = 0.1
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and 6 respectively, confirming that the uncorrelated quantization noise model leads to

important deviations from the expected interferometer performance.

6.7 Conclusions

In this chapter we investigated the correlation between the input and the quantization

error of a digitizer with uniformly spaced levels and an odd symmetric transfer function,

which is the case for CHIME and other radio astronomy applications. We then used

these results to explore the biasing effect of quantization in the correlation measured by

a complex-valued digital correlator.

We showed that, for a complex-valued quantizer with a circularly symmetric Gaussian

input, the correlation between the input and the quantization error is always real. It is

always negative when the number of levels N of the quantizer is odd, while for N even

this correlation is positive in the low signal level regime. In both cases there is an interval

for the signal level σ (which we denote the interval of optimal quantization) for which

this input-error correlation is very weak and the uncorrelated quantization error model

provides a very accurate approximation. The length of the optimal quantization interval

depends on N and on the tolerance required by each specific application.

With these results we determined the quantization bias in the correlations measured

by a digital correlator and derived the conditions under which the bias in the magnitude

and phase of the measured correlation is negligible with respect to the unquantized values:

we demonstrated that the magnitude bias is negligible only if both unquantized inputs are

optimally quantized, while the phase bias is negligible when 1) at least one of the inputs

is optimally quantized, or when 2) the correlation coefficient ρ between the unquantized

inputs is small.

These results are important for radio interferometry where the correlations measured

by the digital correlator provide the interferometric visibilities. Although quantization

will bias significantly the visibility magnitude unless both inputs are optimally quantized,

which can be a stringent requirement, we showed that the bias in the visibility phase is

negligible even in extreme conditions such as when one of the inputs is in the high signal-

level regime with large amounts of clipping or when it is in the low signal-level regime

where the contribution of the quantization error to the quantized output is very high.

Even when both inputs are far from the optimal quantization regime (either because of

extreme clipping or very low signal level) the phase quantization bias is negligible for

weak sources (|ρ| � 1). This is the typical case for interferometers like CHIME where

the analog inputs are dominated by the receiver noise. In this regime all the visibility
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phases will be approximately unbiased regardless of the signal levels.

Finally, we demonstrated using a specific example corresponding to a CHIME-like

array of antennas that quantization reduces the point-source sensitivity of a radio inter-

ferometric array. For a system-noise dominated telescope like CHIME, this effect can

be reduced to negligible levels in the weak-source regime with a suitable scaling of the

system noise level at the input of the quantizer.

The CHIME post-channelization calibration module described in Section 5.3.3 adjusts

the signal level for each frequency channel so the nominal RMS at the input of the 4-bit

complex quantizer is approximately two quantization levels (σ = 21Δ). This level is well

within the optimal quantization interval where the input-error correlation is very weak

(|ρve| � 10−3) so the model of additive uncorrelated quantization noise provides a very

accurate approximation. At this level the quantization noise is kept relatively low, with

a fractional increase in the output variance of about 4% (see Figure 6.2). Furthermore,

the bias in the measured correlations due to quantization is negligible: the magnitude

bias is below ∼ 10−6 and the phase bias is below ∼ 10−11 degrees in the weak source

regime. This signal level also allows headroom for changes in the signal level due to bright

point sources and receiver gain fluctuations, while still keeping the quantizer within the

optimal region of operation.

We are currently developing the extension of this analysis to other probability density

functions beyond the nominal Gaussian case. In particular, we are investigating the effect

of quantization in the presence of RFI. We are also investigating how quantization affects

the signal-to-noise ratio of the measured visibilities when the unquantized inputs are far

from the optimal quantization regime, either because of extreme clipping or very low

signal level.



Chapter 7

Conclusions

In this thesis we presented important new hardware, analysis and software contributions

to the design, construction, and characterization of the Canadian Hydrogen Intensity

Mapping Experiment (CHIME). CHIME is a groundbreaking instrument designed to

map the large scale structure of neutral hydrogen in the universe by directly detecting

its redshifted 21 cm radiation. By measuring the BAO scale across the redshift range

z ≈ 0.8 − 2.5 in both the angular and line-of-sight directions, CHIME will study the

epoch where the expansion history of the universe transitions from one dominated by the

attractive force of ordinary gravity to one dominated by dark energy.

CHIME consists of four cylindrical reflectors populated with a total of 1024 dual-

polarization feeds. It operates as a transit interferometer that maps approximately half

of the sky each day with a synthesized beam resolution of 12-24 arcminutes. Its drift-

scan strategy, large field of view, and powerful correlator also make CHIME an excellent

instrument to study the time-variable sky, including pulsar monitoring and detection of

radio transients and FRBs.

The CHIME correlator processes 2048 digitizer inputs across 400 MHz of bandwidth

and, measured in number of baselines times bandwidth, it is the largest radio correlator

that has been built, performing 8.4×1014 complex operations per second. The correlator

is based on an FX design. The frequency channelization is performed in FPGAs, which

are interfaced to a GPU-based X-engine that computes the correlation matrix. We have

developed the ICE system, an FPGA-based general purpose hardware, firmware, and

software framework that has been specialized to implement the data acquisition, F-

engine, and the networking engine that re-arranges the data before being sent to the

X-engine for cross-multiplication and averaging. We presented details of the ICE-system

design and its use for the CHIME correlator. We gave details of the deployment of the

correlator and demonstrated that it complies with all the requirements for CHIME by

135



Chapter 7. Conclusions 136

performing tests of manufacturability, uptime and reliability, data transport integrity,

analog performance and data acquisition integrity, timing, and power consumption.

The most important challenge for CHIME is separating the 21 cm signal from as-

trophysical foregrounds that are many orders of magnitude brighter. Our ability to

reconstruct the 21 cm power spectrum in the presence of foregrounds requires detailed

knowledge of the instrument, including a precise measurement of the complex receiver

gains and a detailed calibration of the digital correlator. In order to address these strin-

gent requirements and understand the CHIME instrument, a number of receiver-gain and

digital calibration techniques have been developed using the CHIME pathfinder which

is a proof-of-concept instrument for full CHIME with 20% of its collecting area and 128

dual-polarization feeds.

For receiver gain calibration we implemented a Broadband Injection Signal (BIS)

system that injects broadband calibration signals across the array to measure and correct

for the receiver gain fluctuations. We presented the BIS formalism, which can be extended

to other calibration methods including bright point-source and pulsar transits. We also

presented the BIS instrumentation and its improvements with respect to the early system

presented in [5]. These improvements include a system that is synchronized with the

data acquisition, a faster switching cadence to improve the sky background and RFI

subtraction, and the possibility to control multiple BIS sources independently. We also

deployed a simpler version of the BIS system that is currently used to correct the intra

and inter-crate jitter of the ICE system on the pathfinder and full CHIME.

Since the CHIME analog receivers have been found to be more stable than initially

anticipated, a detailed thermal characterization of the analog receivers may be enough

to correct gain fluctuations at the level of the calibration requirements, in which case

the implementation of the complete version of the BIS system on full CHIME may not

be necessary. However, BIS will still be used to correct the timing jitter which is the

dominant source of phase noise on full CHIME.

For digital calibration, we have developed efficient calibration techniques that mini-

mize the effects of quantization errors at three critical correlator stages: the 8-bit digi-

tization of the analog signals, the computation of the FFT, and the post-channelization

4-bit complex quantization. For the digitization stage, the gain of the analog receiving

system has been optimized so the nominal signal level at the input of the ADC is ap-

proximately 3.5 bits RMS. At this level the quantization noise is negligible (the increase

in variance is well below 0.1%) and the 8-bit quantizer is within the optimal region of

operation where the input-error correlation is very weak (|ρve| � 10−14). For the FFT

computation, the FPGA firmware and software allow the configuration of different scal-
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ing schemes for the FFT stages. We have implemented an optimal scaling pattern that

maximizes the signal-to-quantization-error of the FFT output for signals with a smooth

spectra, as is the nominal case for CHIME. For the post-channelization quantization

stage we have implemented an efficient post-channelization calibration algorithm that

applies a digital gain to each frequency channel in order to minimize the effects of the

4-bit complex-valued quantization that takes place at the output of the FFT. By setting

the signal level of each frequency channel to 1 bit RMS, the correlation between the input

and the complex quantization error is very weak (|ρve| � 10−3), the quantization noise

is kept relatively low (the increase in output variance is about 4%), and the resulting

bias in the measured correlations due to quantization is negligible (below ∼ 10−6 for the

magnitude and ∼ 10−11 degrees phase).

The optimization and calibration algorithms developed for the digitization and post-

channelization quantization stages above are based on the results of the detailed analysis

that we have performed on the biasing effect of quantization in the correlations measured

by digital correlators. This analysis goes beyond the commonly used approximation where

the quantization noise is assumed to be uncorrelated with the input. We demonstrated

that, for real and complex-valued quantizers, there is an optimal interval for the input

signal level for which the correlation between the input and the quantization error is very

weak and the uncorrelated quantization error model provides a very accurate approxi-

mation. We also determined the conditions under which the magnitude and phase of

the measured correlation have negligible bias with respect to the unquantized values: we

demonstrated that the magnitude bias is negligible only if both unquantized inputs are

optimally quantized, while the phase bias is negligible when 1) at least one of the inputs

is optimally quantized, or when 2) the correlation coefficient between the unquantized

inputs is small. Finally, we demonstrated how, for a system-noise dominated telescope

like CHIME, this biasing effect can be reduced to negligible levels with a suitable scaling

of the signal level at the input of the quantizer. We are currently developing the extension

of this analysis to the case where the astronomical signal is contaminated by RFI. We

are also investigating how quantization affects the signal-to-noise ratio of the measured

visibilities when the unquantized inputs are far from the optimal quantization regime,

either because of extreme clipping or very low signal level.

The CHIME telescope is operational and collecting early science data. There is an

ongoing effort to characterize the instrument to the level required to detect the 21 cm

power spectrum. The detailed analysis and knowledge from this thesis will serve to

optimize this characterization and ensure that the experiment completes its science goals

of understanding the nature of dark energy and radio transients.



Appendix A

Power spectrum of δ21(r)

Let δ21(r) be the random field defined in equation 1.32. We say that δ21(r) is homoge-

neous if its mean (zero in this case) and covariance (equal to its correlation function since

it is a zero-mean random field) 〈δ21(r1)δ21(r2)〉 are invariant under translations. For the
covariance this means

〈δ21(r1)δ21(r2)〉 = 〈δ21(r1 + δr)δ21(r2 + δr)〉 . (A.1)

If δ21(r) is homogeneous it can be shown that its two-point correlation function de-

pends on r12 = r1 − r2 only, that is, 〈δ21(r1)δ21(r2)〉 = ξ21(r12). In this case the

correlation of δ̃21(k) becomes

〈
δ̃21(k1)δ̃

∗
21(k2)

〉
=

∫ ∞

−∞
d3r1

∫ ∞

−∞
d3r2 〈δ21(r1)δ21(r2)〉 e−i(k1·r1−k2·r2)

=

∫ ∞

−∞
d3r

∫ ∞

−∞
d3r2ξ21(r)e

−i(k1·r+k1·r2−k2·r2)

=

∫ ∞

−∞
d3rξ21(r)e

−ik1·r
∫ ∞

−∞
d3r2e

−i(k1−k2)·r2

= (2π)3P21(k1)δ(k1 − k2) (A.2)

where P21(k) =
∫∞
−∞ d3rξ21(r)e

−ik·r is the Fourier Transform of ξ21(r) (the power spec-

trum of δ21(r)).

We say that δ21(r) is isotropic if its mean and covariance 〈δ21(r1)δ21(r2)〉 are invariant
under rotations. For the covariance this means
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〈δ21(r1)δ21(r2)〉 = 〈δ21(gr1)δ21(gr2)〉 g ∈ SO(3). (A.3)

where SO(3) is the group of all rotations in a three-dimensional space.

If δ21(r) is both homogeneous and isotropic it can be shown that its two point cor-

relation function depends on r12 = |r1 − r2| only, that is, 〈δ21(r1)δ21(r2)〉 = ξ21(r12). In

this case P21(k) is a function of k = |k| only since

P21(k) =

∫ ∞

−∞
d3rξ21(r)e

−ik·r =

∫ ∞

0

r2drξ21(r)

∫
4π

dΩe−ik·r

= 4π

∫ ∞

0

r2drξ21(r)j0(kr) = P21(k) (A.4)

where in the second step we used the Rayleigh expansion for the e−ik·r term [28]. In this

case, equation A.2 becomes

〈
δ̃21(k1)δ̃

∗
21(k2)

〉
= (2π)3P21(k1)δ(k1 − k2). (A.5)



Appendix B

The source coherence function

When we study the response of an interferometer to an extended source, we need to

address the problem of how radio waves from different regions of the source correlate, and

how the incident electromagnetic field relates to the intensity (or brightness) distribution

of the source, Iν .

Figure B.1: When we study the response of an interferometer to an extended source we
will assume that the source is spatially incoherent, that is, that radio wavers coming from
different regions of the source are uncorrelated.

Let e(n̂, t)dΩ be the single polarization component of the electric field intensity re-

ceived by an antenna from a source region of solid angle dΩ, in the direction of the unit

vector n̂, and at time t (see Figure B.1). Then the total incident electric field from the
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source is

E(t) =

∫
Ωsrc

e(n̂, t)dΩ. (B.1)

Now consider electric field received by the antenna from two different regions dΩ and

dΩ′ of the source, in the directions of n̂ and n̂′. Assuming that these fields are jointly

stationary random processes, then the cross-correlation function of the two fields is called

the source coherence function γ(n̂, n̂′, τ), that is

γ(n̂, n̂′, τ) = 〈e(n̂, t)e∗(n̂′, t− τ)〉. (B.2)

The normalized source coherence function is defined as

γN(n̂, n̂
′, τ) =

γ(n̂, n̂′, τ)√
γ(n̂, n̂, 0)γ(n̂′, n̂′, 0)

. (B.3)

It is clear that 0 ≤ |γN(n̂, n̂′, τ)| ≤ 1. We say that the source is completely coherent

when |γN(n̂, n̂′, τ)| = 1 for all n̂, n̂′ and τ . When |γN(n̂, n̂′, τ)| = 0 for all n̂, n̂′ and

τ we say the source is incoherent. In all other cases we say that the source is partially

coherent.

For most astronomical sources, the fields from different regions are generated by

independent random microscopic processes occurring there, so radio waves from different

regions are essentially uncorrelated. This means that most radio sources are incoherent

and signals from different parts of the source can be treated independently. We will

assume that radio sources are incoherent, so the coherence function can be written as

γ(n̂, n̂′, τ) = γ(n̂, τ)δ(n̂− n̂′). (B.4)

The correlation function of the total incident electric field E(t) is

rEE(τ) = 〈E(t)E∗(t− τ)〉 =
∫
Ωsrc

∫
Ωsrc

〈e(n̂, t)e(n̂′, t− τ)〉dΩdΩ′

=

∫
Ωsrc

γ(n̂, τ)dΩ

(B.5)

where in the last step we used equations B.2 and B.4. Thus, the average energy (power)
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of E(t) is

〈|E(t)|2〉 = rEE(0) =

∫
Ωsrc

γ(n̂, 0)dΩ (B.6)

or, introducing the Fourier transform of the source coherence function, γ̃(n̂, ν)

〈|E(t)|2〉 =
∫
Ωsrc

∫ ∞

−∞
γ̃(n̂, ν)dνdΩ (B.7)

This means that we can write the incident power from a source region of solid angle

dΩ, in the direction n̂, and in the frequency range dν as (this is the value for single

polarization. For a randomly polarized electric field it is half the total power of the field)

〈|E(n̂)|2〉 = γ̃(n̂, ν)dνdΩ (B.8)

Since, up to a scale factor that we will ignore for simplicity (we can always rescale at

the end), 〈|E(n̂)|2〉 is also the magnitude of the average Poynting vector 〈Sν(n̂)〉 (average
power per unit area) coming from the small solid angle dΩ, in the direction n̂, and in

the frequency range dν (see for example [22] for details), then we can write

〈Sν(n̂)〉 = γ̃(n̂, ν)dνdΩ (B.9)

This means that the average power dW measured by a detector (e.g. a telescope) of

area dA in the direction of n̂, due to 〈Sν(n̂)〉 is

dW = γ̃(n̂, ν)dAdνdΩ (B.10)

From equation B.10 and since dA, dν, and dΩ are arbitrary, we conclude that γ̃(n̂, ν)

is just the intensity, or brightness, Iν(n̂), of the source, that is

Iν(n̂) = γ̃(n̂, ν). (B.11)

Equation B.11 relates Fourier transform of the source coherence function γ̃(n̂, ν) to
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the intensity distribution of the source, Iν(n̂), which is a quantity that we can measure

in radio astronomy (e.g. with a radio telescope).

Let ẽ(n̂, ν) be the Fourier transform of e(n̂, t)

ẽ(n̂, ν) =

∫ ∞

−∞
e(n̂, t)e−i2πνtdt. (B.12)

Note that since e(n̂, t) is a stationary random process then the its power spectrum is

uniquely defined through the equation

〈ẽ(n̂, ν)ẽ∗(n̂′, ν ′)〉 = γ̃(n̂, n̂′, ν)δ(ν − ν ′) (B.13)

where γ̃(n̂, n̂′, ν) is the Fourier transform of the source coherence function γ(n̂, n̂′, τ)

from equation B.2. Equation B.13 above can be easily obtained with the same procedure

used in equation A.2 from Appendix A.

Since for an incoherent source γ(n̂, n̂′, τ) satisfies equation B.4 then we have

〈ẽ(n̂, ν)ẽ∗(n̂′, ν ′)〉 = γ̃(n̂, ν)δ(ν − ν ′)δ(n̂− n̂′)

= Iν(n̂)δ(ν − ν ′)δ(n̂− n̂′)
(B.14)

where in the last step we used equation B.11.
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Flat-sky approximation

Traditional radio interferometry applications typically involve mapping objects that sub-

tend a small angle on the sky. In this cases it is reasonable to assume that the region of

the sky under observation is approximately flat, or equivalently, that we can project the

celestial sphere onto a plane that is a tangent to the field center. When the conditions for

this flat-sky approximation are met, equation 2.37 that relates the source temperature

distribution to the measured visibilities, and that is difficult to solve in general, becomes

a two-dimensional Fourier transform that, in principle, can be solved to recover T (n̂).

Even though we do not use the flat-sky approximation to map the sky with CHIME,

it is still instructive to study this mapping approach, not only due to its historical im-

portance, but also to understand key interferometry concepts like the uv -plane and the

angular resolution of an interferometer. We can also have a better understanding of the

limitations of this technique, which motivates the spherical harmonic transit telescope

mapping approach that we describe in Section 2.4, and that is better suited for wide-field

radio interferometers like CHIME.

Let us introduce a coordinate system where the first and second axes of the coordinate

system point in the east and north directions respectively. The third axis completes the

right handed coordinate system and point towards the source reference direction n̂0 (see

Figure C.1).

In this coordinate system the baseline vector b has components (u, v, w) or, normal-

izing by the observed wavelength

b =
(u
λ
,
v

λ
,
w

λ

)
= (uλ, vλ, wλ). (C.1)

For a given region of the source in the direction of n̂, the vector σ = n̂− n̂0 denotes

the offset vector from the reference direction to the direction of this region. Since σ is
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Figure C.1: Geometry to understand the flat-sky approximation. The first and second
axes of the coordinate system point in the east and north directions respectively. The
third axis completes the right handed coordinate system. In this system the normalized
baseline vector bλ has coordinates (u, v, w) and the brightness temperature distribution
of the source is T (l,m). The reference direction is n̂0.
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the vector difference of two unit vectors, its components in the new coordinate system

can be written as

σ = (l,m,
√
1− l2 −m2 − 1). (C.2)

The inner product in the argument of the exponential of equation 2.37 can be written

as

bλ · n̂ = bλ · n̂0 + bλ · σ. (C.3)

The first term in equation C.3 generates a term e−i2πbλ·n̂0 that can be taken out of

the integral in equation 2.37. For an interferometer that tracks the source as it moves

due to the rotation of the earth, this term will generate a fringe pattern in the measured

visibility. Since we can always stop this fringing (fringe stopping) in r12 by multiplying

r12 by ei2πbλ·n̂0 , then we will focus on the integral term that we can write as

V12 =

∫ ∞

−∞

∫ ∞

−∞
T (l,m)|A(l,m)|2e−i2π[uλl+vλm+wλ(

√
1−l2−m2−1)] dldm√

1− l2 −m2
(C.4)

where the solid angle element dΩ was written in terms of its tangent plane projection as

dldm/
√
1− l2 −m2.

If we are mapping a very narrow region of the sky, such that l,m � 1 then we can

safely approximate dΩ ≈ dldm. However, we must be careful when discarding terms of

order l2 and m2 in the argument of the exponential. We can write

2πwλ(
√
1− l2 −m2 − 1) ≈ πwλ(l

2 +m2). (C.5)

When neglecting the phase term in equation C.5, it is not enough to require that it is

much smaller than the other phase terms in the argument of the exponential in equation

C.4. We can safely neglect this term only if it is absolutely small as a phase. Let θF

be the field of view of the mapping. That means that the angle between n̂ and n̂0 does

not exceed θF/2. In that case we have l2 +m2 ≤ (θF/2)
2. Also, since wλ ≤ bλ, then the

phase error introduced by the l2 and m2 terms is

πwλ(l
2 +m2) ≤ π

b

λ

(
θF
2

)2

. (C.6)

If we require that the phase errors cannot exceed, say, 0.1 rad, then from equation
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C.6 we must have

θF � 0.36

√
λ

b
. (C.7)

If the flat-sky condition in equation C.7 is met then equation C.4 becomes

V12(uλ, vλ) ≈
∫ ∞

−∞

∫ ∞

−∞
T (l,m)|A(l,m)|2e−i2π(uλl+vλm)dldm. (C.8)

It is clear that under the flat-sky approximation V12 is just the two-dimensional

Fourier transform of the temperature distribution T (l,m), multiplied by the beam func-

tion |A(l,m)|2, at the spatial frequency pair (uλ, vλ). Thus, under this approximation the

interferometer is just a ”spatial filter” that selects the spatial frequency (uλ, vλ) from the

temperature distribution T (l,m) weighted by the interferometer beam.

To recover T (l,m) we must perform an inverse Fourier transform. However, that in-

version is possible only if we have a continuous function V12(uλ, vλ) over the uv-plane. For

example, the rotation of the earth changes the projection of the interferometer baseline

in the uv-plane, which help us to sample the visibilities at different (uλ, vλ) points (see

[33] and [73] for a detailed discussion). Or we can have a collection of two-element inter-

ferometers with different baselines (an interferometric array) to sample the uv-plane at

different points simultaneously. Or we can have a combination of the these two methods.

In any case, the best we can ever do with our array is to cover the area of the uv-plane

contained within a circle of radius bmax/λ, where bmax is the maximum baseline separation

of the array. This means that V12(uλ, vλ) cannot have spatial frequency components

higher than bmax/λ, so the inverse Fourier transform cannot restore spatial structures

smaller than λ/bmax. It is for this reason that the angular resolution of an interferometric

array is given by

ΔθR =
λ

bmax

. (C.9)

Note that, in general, satisfying the flat-sky conditions requires interferometers with

very narrow field of view. For experiments like CHIME that have large fields of view in

order to map large volumes of the sky quickly, the tangent plane approximation is not

applicable, so a different approach that takes into account the curvature of the sky must

be used. That approach, called the m-mode formalism, is described in Section 2.4.

Finally, note that if the region of the source is very narrow then the flat-sky conditions

are also satisfied, even for CHIME. It is for this reason that equation C.9 still applies for

the angular resolution of CHIME.
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BIS gain estimation

Here we want to solve the problem in equation 5.8

R′
ij = γ′

iγ
′∗
j +N ′

ij (D.1)

where the data matrix R′ is hermitian but not necessarily positive (semi-) definite since

it is the result of subtracting (and normalizing) the correlation matrices from the ‘on’

and ‘off’ BIS samples. The noise term N ′
ij is assumed to be Gaussian with

〈
N ′

ij

〉
= 0,

〈
N ′

ijN
′∗
kl

〉
= N ′

(ij),(kl) = δikδjlσ
2 (D.2)

where σ = 1/
√
Δντ . The weighted gain vector γ′ is defined as

γ′
i =

√
1

T on
sys,i

αigiσBIS (D.3)

where σBIS is the RMS of the BIS source, gi is the time-dependent receiver gain term of

feed i, which is the quantity we want to measure, αi is the static transfer function of the

injected signal, and T on
sys,i is the system temperature of feed i in the ‘on’ sample of the

BIS signal (see Section 5.2.2).

To find the MLE γ′ solution for equation D.1 we have to minimize the chi-squared

given by

χ2 =
∑
ijkl

(
R′

ij − γ′
iγ

′∗
j

)∗ N ′−1
(ij),(kl) (R

′
kl − γ′

kγ
′∗
l )

=
1

σ2

∑
ij

∣∣R′
ij − γ′

iγ
′∗
j

∣∣2 . (D.4)
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Minimizing χ2 with respect to γ′
k we have

∂χ2

∂γ′
k

= − 2

σ2

∑
j

γ′∗
j

(
R′

jk − γ′
jγ

′∗
k

)
= 0 →

∑
j

R′
kjγ

′
j = ‖γ′‖2γ′

k (D.5)

or, in matrix notation

R′γ′ = ‖γ′‖2γ′. (D.6)

The solutions to equation D.6 (the critical points of χ2) are either γ′ = 0 or γ′ is

an eigenvector of R′ with positive eigenvalue ‖γ′‖2. This means that if λ is a positive

eigenvalue with corresponding unit-norm eigenvector v̂, then γ′ = eiθ
√
λ v̂ is a solution

to equation D.6 (the arbitrary phase θ is irrelevant since it cancels out in equation D.4).

It is trivial to verify that these are local minima of χ2.

To find the global minimum it is convenient to write χ2 in terms of the Frobenius

norm1

χ2 =
∥∥∥R′ − γ′γ′H

∥∥∥2 = Tr

[(
R′ − γ′γ′H

)(
R′ − γ′γ′H

)H]
= ‖R′‖2 − 2 Tr

(
γ′HR′γ′

)
+ ‖γ′‖4 .

(D.7)

It is easy to verify that, as long as R′ has at least one positive eigenvalue (which

applies in this case since the noise term is only a small perturbation that prevents R′

from being rank one), then the global minimum of χ2 is given by

χ2
min = ‖R′‖2 − λ2

1 (D.8)

where λ1 is the largest (positive) eigenvalue of R′. Thus, the MLE solution to equa-

tion D.1 is

γ̃′ =
√
λ1 v̂1 (D.9)

where v̂1 is the (unit-norm) eigenvector corresponding to λ1.

1The Frobenius norm of a matrix is the square root of the sum of the squares of each element in the
matrix. See http://mathworld.wolfram.com/FrobeniusNorm.html



Appendix E

Details of expected BIS performance

E.1 Eigenvalue statistics

We can write equation 5.8 in matrix form as

R′ = γ′γ′H +N′ (E.1)

where N′ is the noise perturbation matrix which is a specific realization of the noise with

uniform diagonal covariance given by equation D.2.

From Appendix D, we know that this equation can be solved for the weighted gain

vector γ′ (which leads us to the receiver gain vector g) from the eigendecomposition of

the matrix R′. In this appendix we will investigate the statistics of the gain solution

that will allow us to quantify the performance of the BIS method and determine the

expected error in the gain solutions in terms of known or measurable telescope and BIS

parameters like bandwidth, integration time, and BIS illumination of the CHIME feeds.

This is an elegant derivation done by Richard Shaw that I include in this thesis with his

permission.

We will assume that N′ is a small perturbation that prevents R′ from being rank

one. In this case we can use (degenerate) eigenvalue perturbation theory to estimate the

effect of N′ on the accuracy with which we can recover γ′. See [20, 74] for a detailed

introduction to eigenvalue perturbation theory.

In the unperturbed case, i.e., in the absence of the residual noise N′, the only nonzero

eigenvalue of γ′γ′H is λ0
1 = ‖γ′‖2 and v̂0

1 = γ̂′ is the corresponding (normalized) eigen-

vector. The corrected nonzero eigenvalue λ1 is, to first order,

λ1 = λ0
1 + v̂0H

1 N′v̂0
1 = ‖γ′‖2 + γ̂′HN′γ̂′. (E.2)
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Since the other eigenvalues are degenerate in the unperturbed case, they are found

as the solutions to the eigenvalue problem of the projected noise perturbation

[
PN′PH

]
ui = λiui, i > 1 (E.3)

where the matrix P projects onto the null space of the unperturbed matrix or, equiva-

lently, projects onto the subspace orthogonal to γ̂′.

Now, the corrected eigenvector for λ1 is, to first order,

v̂1 = v̂0
1 +

N∑
i=2

v̂0
i

(
v̂0H
i N′v̂0

1

λ0
1 − λ0

i

)
= γ̂′ +

1

‖γ′‖2
N∑
i=2

v̂0
i

(
v̂0H
i N′γ̂′)

= γ̂′ +
1

‖γ′‖2
[

N∑
i=1

v̂0
i

(
v̂0H
i N′γ̂′)− γ̂′

(
γ̂′HN′γ̂′

)]

= γ̂′ +
1

‖γ′‖2
(
I− γ̂′γ̂′H

)
N′γ̂′

(E.4)

where in the last step we used the fact that
{
v̂0
i

}
i=1,2,··· ,N is an orthonormal basis of CN .

Now we can calculate the statistics of v̂1 and the λi’s. From equation E.2 and using

equation D.2 we find that the mean of the largest eigenvalue is

〈λ1〉 = ‖γ′‖2 (E.5)

and its variance is

〈
(λ1 − 〈λ1〉)2

〉
=
〈
γ̂′HN′γ̂′γ̂′HN′γ̂′

〉
=
∑
ijkl

γ̂′∗
i γ̂

′
j γ̂

′∗
kγ̂

′
l

〈
N ′

ijN
′
kl

〉
= σ2

∑
ijkl

γ̂′∗
i γ̂

′
j γ̂

′∗
kγ̂

′
lδilδjk

= σ2

(E.6)

For the remaining (residual) eigenvalues we calculate the expectation of the eigenvalue

sample statistics. Using matrix trace properties we find that the expectation of the sample
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mean is

〈
1

N − 1

N∑
i=2

λi

〉
=

1

N − 1

〈
Tr
[
PN′PH

]〉
=

1

N − 1

∑
ijk

PijPik 〈Njk〉

= 0

(E.7)

while for the sample variance we have

〈
σ̂2
r

〉
=

〈
1

N − 1

N∑
i=2

λ2
i

〉

=
1

N − 1

〈
Tr
[
PN′PHPN′PH

]〉
=

1

N − 1

〈
Tr
[
PHPN′PHPN′]〉 .

(E.8)

Nothing that PHP = I− γ̂′γ̂′H , we can simplify the equation above to obtain

〈
σ̂2
r

〉
=

1

N − 1

∑
ijkl

(δij − γ̂′
iγ̂

′∗
j)(δkl − γ̂′

kγ̂
′∗
l )
〈
N ′

jkN
′
li

〉
=

1

N − 1

∑
ijkl

(δij − γ̂′
iγ̂

′∗
j)(δkl − γ̂′

kγ̂
′∗
l )δijδkl

= (N − 1)σ2

(E.9)

Now we want to know the statistics of the gain vector γ̃′ inferred from the solution.

Plugging equations E.2 and E.4 in equation D.9 we find

γ̃′ = λ
1/2
1 v̂1

=
(
‖γ′‖2 + γ̂′HN′γ̂′

)1/2 [
γ̂′ +

1

‖γ′‖2
(
I− γ̂′γ̂′H

)
N′γ̂′

]

≈ γ′ +
1

‖γ′‖
(
I− 1

2
γ̂′γ̂′H

)
N′γ̂′

(E.10)

to first order in N′. From the last equation it is clear that

〈γ̃′〉 = γ′ (E.11)
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so the estimator γ̃′ is unbiased. Its covariance is

〈
(γ̃′ − 〈γ̃′〉) (γ̃′ − 〈γ̃′〉)H

〉
=

1

‖γ′‖2
(
I− 1

2
γ̂′γ̂′H

)〈
N′γ̂′γ̂′HN′

〉(
I− 1

2
γ̂′γ̂′H

)
.

(E.12)

Noting that the quantity

〈
N′γ̂′γ̂′HN′

〉
jk

=
∑
lm

γ̂′
lγ̂

′∗
m

〈
N ′

jlN
′
mk

〉
= σ2

∑
lm

γ̂′
lγ̂

′∗
mδjkδlm

= σ2δjk

(E.13)

we have that
〈
N′γ̂′γ̂′HN′

〉
= σ2I, so the covariance can be simplified to obtain

〈
(γ̃′ − 〈γ̃′〉) (γ̃′ − 〈γ̃′〉)H

〉
=

σ2

‖γ′‖2
(
I− 3

4
γ̂′γ̂′H

)
. (E.14)

E.2 Metrics for BIS performance

As a metric of the expected BIS performance we define the BIS signal-to-noise ratio,

SNRBIS, in terms of the ratio between the largest eigenvalue and the standard deviation

of the residual eigenvalues, which is effectively the ratio of the injected signal to the

instrumental noise term

SNRBIS =
√
N − 1

〈λ1〉
〈σ̂2

r〉1/2
=

‖γ′‖2
σ

. (E.15)

From equations D.3 and E.5 we have

〈λ1〉 = ‖γ′‖2 =
N∑
i=1

|αigiσBIS|2
T on
sys,i

. (E.16)

Note that the term TBIS,i = |αigiσBIS|2 is the temperature of the BIS signal seen feed

i, and is effectively TBIS,i = T on
sys,i − T off

sys,i. By defining the illumination of feed i, fi, as

the fraction of the total signal seen by feed i that comes from the BIS signal

fi =
TBIS,i

T on
sys,i

=
T on
sys,i − T off

sys,i

T on
sys,i

(E.17)
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we can write 〈λ1〉 in terms of the illumination of the CHIME feeds as

〈λ1〉 = ‖γ′‖2 =
N∑
i=1

fi. (E.18)

Note that the illumination is a measurable quantity that can be determined from the

autocorrelations in the ‘on’ and ‘off’ samples. Similarly, we can write SNRBIS in terms

of telescope and BIS parameters as

SNRBIS =
√
Δντ

N∑
i=1

fi. (E.19)

For the gain covariance in equation E.14, note that it contains a correlated term

proportional to γ̂′γ̂′H . However, for N � 1 and assuming a relatively uniform gain

vector (so the gain magnitudes are similar for all the receivers), this correlated term is

small so we can write

〈
(γ̃′ − 〈γ̃′〉) (γ̃′ − 〈γ̃′〉)H

〉
≈ σ

SNRBIS

I. (E.20)

This means that the expected error on the solution for the weighted gain γ′
i is

σγ′
i
=

√
σ

SNRBIS

=

(
Δντ

N∑
n=1

fn

)−1/2

(E.21)

As explained in Section 5.1, we are interested in the fractional receiver gain errors,

δgi = σgi/|gi|, since those determine how well we can recover the 21 cm power spectrum.

Using equations D.3, E.17, and E.21 we obtain

δgi =
σgi

|gi| =
σγ′

i

|gi|

√
T on
sys,i

|αi|2σ2
BIS

=

√
σ

SNRBIS · fi

=

(
Δντ · fi

N∑
n=1

fn

)−1/2

.

(E.22)

For a given bandwidth, integration time, and illumination profile for the CHIME

feeds, equation E.22 gives the expected fractional error in the receiver gain solutions.

See Section 5.2.2 for specific examples for CHIME and the pathfinder.
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〈ve〉 for a real quantizer

Here we derive equation 6.6

〈ve〉 =
N∑
i=1

∫ yi

yi−1

(ki − v)vN (v|σ2)dv. (F.1)

Evaluating the integral and re-arranging

〈ve〉 = σ2

N∑
i=1

{
(yi − ki)N (yi|σ2)− (yi−1 − ki)N (yi−1|σ2)

−1

2

[
erf

(
yi√
2σ2

)
− erf

(
yi−1√
2σ2

)]}
.

(F.2)

The summation of the erf terms in the square brackets gives 2. As for the first two

terms of equation F.2, note that yi − ki = 1/2 and yi−1 − ki = −1/2. Simplifying we

obtain

〈ve〉 = σ2

[
−1 +

N−1∑
i=1

N
(
−N

2
+ i

∣∣∣∣ σ2

)]
. (F.3)
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Since N (v|σ2) is an even function we can also write

〈ve〉 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ2

⎡
⎣−1 + 2

N−3
2∑

i=0

N
(
1

2
+ i

∣∣∣∣ σ2

)⎤⎦ if N odd

σ2

⎡
⎣−1 +

1√
2πσ2

+ 2

N−4
2∑

i=0

N (
1 + i| σ2

)⎤⎦ if N even

(F.4)

where it is clear that the summation term is zero for N = 2.

To find σ2
e = 〈e2〉 in equation 6.7 we follow the same procedure

σ2
e =

N∑
i=1

∫ yi

yi−1

(ki − v)2N (v|σ2)dv = −〈ve〉+
N∑
i=1

∫ yi

yi−1

ki(ki − v)N (v|σ2)dv. (F.5)

Evaluating the integral

σ2
e = −〈ve〉+

N∑
i=1

{
k2
i

2

[
erf

(
yi√
2σ2

)
− erf

(
yi−1√
2σ2

)]
+ kiσ

2
[N (yi|σ2)−N (yi−1|σ2)

]}
.

(F.6)

The summation of the second term inside the curly brackets gives−σ2
∑N−1

i=1 N (yi|σ2) =

−〈ve〉 − σ2. As for the erf terms, after re-arranging we obtain

σ2
e = −2〈ve〉 − σ2 +

(
N − 1

2

)2

−
N−1∑
i=1

1

2

(
k2
i+1 − k2

i

)
erf

(
yi√
2σ2

)
. (F.7)

Finally, using equation 6.1 we obtain

σ2
e = −2〈ve〉 − σ2 +

(
N − 1

2

)2

−
N−1∑
i=1

(
−N

2
+ i

)
erf

(−N/2 + i√
2σ2

)
. (F.8)

Equation 6.8 in Section 6.2 follows from the two results above.
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Sign of 〈ve〉

To show that 〈ve〉 in equation 6.6 is always negative for a quantizer with an odd number

of levels (N odd), it is enough to show that So =
∑M

i=0 N (1/2 + i| σ2) < 1/2 for all M

positive integer and σ > 0 real (it is clear that So > 0). Note that

So <
∞∑
i=0

1√
2πσ2

e−(1/2+i)2/(2σ2) =
ϑ2(q)

2
√
2πσ2

(G.1)

where ϑ2 is the Jacobi theta function1 and

q = e−1/(2σ2) = e−πK′/K (G.2)

where K(k) is the complete elliptic integral of the first kind2, k is the elliptic modulus,

and K ′(k) = K(
√
1− k2). The functions ϑ2(q) and K(k) are related through ϑ2

2(q) =

2kK(k)/π. Also, from equation G.2 we have σ2 = K/(2πK ′). Using these results in

equation G.1, we find that

So <
1

2

√
2kK ′

π
. (G.3)

The function f(k) = 2kK ′/π is a strictly increasing function of k and maps the k-

interval (0, 1) (corresponding to σ ∈ (0,∞)) to the interval (0, 1). Thus f(k) < 1 in this

interval and it follows that So < 1/2.

1For details see http://mathworld.wolfram.com/JacobiThetaFunctions.html
2For details see http://mathworld.wolfram.com/CompleteEllipticIntegraloftheFirstKind.html

157



Appendix G. Sign of 〈ve〉 158

For the quantizer with an even number of levels (N even), note that the sum Se =∑M
i=0 N (1 + i| σ2) is just the right Riemann sum of N (v| σ2) over the interval [0,M ].

Since N is a strictly decreasing function over this interval then it follows that

Se <

∫ M

0

1√
2πσ2

e−v2/(2σ2)dv =
1

2
erf

(
M√
2σ2

)
<

1

2
. (G.4)

Thus, the summation (last) term of equation 6.6 for N even is also positive and

bounded above by 1/2. Since the term 1/(
√
2πσ2) of this equation becomes arbitrarily

large as σ decreases, then 〈ve〉 eventually becomes positive for N even in the low-σ

regime.
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