INFORMATION TO USERS

This manuscript has been reproduced from the microfim master. UMiI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize matenals (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overiaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Formal Verification of Peephole Optimization in

Asynchronous Circuits

Xiaohua Kong

Department of Electrical and Computer Engineering
McGill University, Montreal

March 200!

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the Degree of

Master of Engineering

© Xiaohua Kong, 2001

.*I National Library Biblicthéque nationale

of Canada du Canada
. rapm:asngmces services bibli:‘waphiques
Otawa ON K1A ONG Ouwe ON K1 04
Canade Canada Your s Vowe néddvence
Our fie Nowe séldeance

The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant 3 la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou

copies of this thesis in microform, vendre des copies de cette thése sous

paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-75272-0

Canada

Abstract

This thesis proposes and applies novel techniques for formal verification of peephole
optimizations in asynchronous circuits. Our task is to verify whether locally optimized
modules can replace parts of an existing circuit under certain assumptions regarding the
operation of the optimized modules in context. Two main difficulties in verifying
peephole optimizations are state explosion in the implementation models and increased
complexity of the interfaces of optimized modules. A novel technique is proposed for
constructing in a modular manner specifications and functional models of pulse-mode
circuits. A verification rule related to assume-guarantee and hierarchical verification is
presented, using relative timing constraints as optimization assumptions. We present two
case studies to illustrate the proposed techniques: verification of speed-optimizations in
an asynchronous arbiter, and verification of one step of communication refinement in a

globally asynchronous, locally synchronous (GALS) architecture.

Résumé

Cette thése propose et applique des techniques pour la vérification formelle des
optimisations locales dans des circuits asynchrones. Notre tiche est de vérifier si les
modules localement optimalisés peuvent remplacer des piéces d'un circuit existant dans
certaines conditions concernant le fonctionnement des modules optimalisés dans le
contexte. Deux difficultés principales en vérifiant des optimisations locales sont
I'explosion du nombre des états dans les modeles de dispositif et la complexité accrue des
interfaces des modules optimalisés. On propose une technique nouvelle pour construire de
fagcon modulaire des modeéles fonctionnels des circuits mode impulsion. On présente une
regle de vérification liée aux régles "assume-guarantee” et a la vérification hiérarchique,
en utilisant des contraintes relatives de synchronisation comme suppositions
d'optimisation. Nous présentons deux études de cas pour illustrer les techniques
proposées: vérification des optimisations dans un circuit arbitre asynchrone, et
vérification d'une étape de raffinement de transmission dans une architecture globalement

asynchrone et localement synchrone.

[

Acknowledgements

I would like to start by expressing my gratitude to Prof. Radu Negulescu for his
continuous support, help, and patience. In fact, without his supervision and guidance, this

work would have never converged.

I also like to thank my external examiner, Mark Greenstreet, for his insightful comments;
Ian Jones, from Sun Microsystems Laboratories, who brought to my attention the
asynchronous arbiter case study; my colleague in the Microelectronics and Computer
Systems laboratory, Larry Ying, who worked together with myself on data
communication refinement and provided the implementation models of the GALS
wrapper in Chapter 6; and my friends, Weiwen Zhu, Mark De Clercq and Clarence Tam,

who never ceased to show all sorts of support and encouragement.

My gratitude always goes to my closest friend, Muhua Li, for her arrival bringing love
and care, and for her cooking skills preventing me from starvation through the critical

days of the Master’s program.

Finally, I would like to acknowledge the financial support for my Master’s studies
provided by McGill University and NSERC (Natural Sciences and Engineering Council
of Canada).

1

Contents
ABSTRACT I
RESUME I
ACKNOWLEDGEMENTS I
CONTENTS v
FIGURES ..cccoccecncosstcacccscssaacsessocssssasssssessessnssssssessesassesssassssessassassssssssssssssssaanassssssssaseses VI
CHAPTER 1. INTRODUCTION 7
L1, MOTIVATION ... eeeeeeeeeeiiceeneerieceeseeeresseesesesssnssssssassssesseessssssssessssressssssssssssnssssssnnnes 7
1.2. PREVIOUS WORK ... otttetittieeerirnseseransssssssessssssssssmensessssssssnsssssessnsssnssssessanssesnsessosssssns 8
1.3. ORGANIZATION OF THE THESIS....cuuuuurtereerirerereeereineerseeeeesessssssensessssesssssssssasnssessesaes 9
CHAPTER 2. PRELIMINARIES 10
2.1. PROCESS SPACESucuuuereeieiiecererseseseeeenreeeessssesssesmsessessessosssssssssnsesssseesssssssnnnsses 10
2.1.1. Basic definitions...............uuueeeeeeeeeeeeeeereesreeeeeeeceenerraeeseesseeesssrsreeseserresses 10
2.1.2. Models Of CMOS Cellsuueeeeeeeeeeeeeeeeeeeeevreeeeessreeeseseessesnnnees 11
2.1.3. Safety and Finalization Processescueeeeereeceveeveneveereraene 13
2.1.4. Relative Timing Constrainlsoueeeveeeveeeveereerseesencerseseseenes 13
2.1.5. OPErationseeeeeeeeeeeeeeneeeeeeeeeeiveeessesesesseseessssesssnsssssesensssnens 15
2.1.5.1. COMPOSILIONeeeeernreeerneeecieiireneetesie et eae e e s e e sessne e e seesseesanes 15
2.1.5.2. RODUSENESS.....uvvreeeeneeeeeeeeteeeserresseasessessssseeaesesasssssssassssssssssnssossess 16
2.1.5.3. 2] 1112321 =1 1 L TS OURR 16
2.1.54. HIAING oottt e e ree e s e e e e 17
2.1.5.5. REFIECHION ..o eeeeeteereete e e e e eeetanaeeeaessammanerreaaereeenssassns 19
2. 2. FIREMARPSooooeeeteeeeeeeetetttteeeettsisesesessessssesssssessessanersssssessnnnnnssssnsnnssssnsssnrenssnnnns 20
2.3. EXAMPLE: VERIFICATION OF A PULSE-MODE JOINcooovrivereeeeeeeeceerree e 21
2.4. MODULAR AND HIERARCHICAL VERIFICATIONccoveveuieeenereeenrnennesssssssssrreeesnnnsnees 22
2.5. PEEPHOLE OPTIMIZATIONS IN ASYNCHRONOUS CIRCUITS ...ccuvvrueeeerrierrnenrrrennneseenes 23

CHAPTER 3. CONSTRUCTING SPECIFICATIONS FROM HIGH-LEVEL
EVENTS 25

3.1. PULSE-MODE HANDSHAKINGo.ccitteueieurnnreensssreersnsereesemsssssssesssessseessssssarssssrens 26
3.2. PULSEEVENTS AND TRANSITION EVENTS ...utieetceereeneeieseeeeenemnsseseaeemssssasnsssensssseeses 28
3.3. TRANSITION-EVENT SPECIFICATION CONSTRUCTIONcoeeeeeeeiieteeeeeeeneemenessssnseresens 29
CHAPTER 4. A STRUCTURED APPROACH FOR PEEPHOLE
VERIFICATION 32
4.1. ASSUME-GUARANTEE VERIFICATION ...oeuiiitiiieieitneeeeeereresaeessnnnseseensnnasasssssassssess 32
4.2, THE PEEPHOLE RULE ...ttt eeeeeeeeteeeeeeeiessesssssaessessesssssosesssessrsennsnrnannsnssens 34
4.3, HEURISTICS FOR FINDING VERIFICATION ASSUMPTIONS......ceuuvveeeeerrrrrrereenseeesseeses 38

4.4. STRATEGY FOR ASSUME-GUARANTEE VERIFICATIONcoovcueeeenrireniercnnicinenes 39

CHAPTER S. CASE STUDY: A HIGH-SPEED ARBITER - |
5.1. VERIFICATION BEFORE OPTIMIZATIONSorerermrrerreesrctesserassesessonssnenesneesssnneeses 4]
5.1.1 High-level Verificationeeeeeemeeeeeaeeeeeeeeeeeeerieeeeeeeseeseesaeanes 43
5.1.1.1. Construction of asP* Arbiter Specification...........cccccoeeeeeiencannnnn. 43
5.1.1.2. Implementation Description..........c.cccovveriervcceveieiiioneniciceceeenees 45
5.1.1.3. Verification Resull...........c.coeeeeeeeieeeeriienieereererceeererceeveaees 43

5.1.2. Submodule Verification......................cocovecvmvcnenersncorvevvirissineaeennns 49
5.1.2.1. rlatch implementationccccceevirerrrneeeeeecreceereceeeecenen 49
5.1.2.2. Switch-level Verificationcoeeoeieeiiiieieeeeeceeerreereeceieennnes 50

5.2. VERIFICATION OF THE PEEPHOLE-OPTIMIZED OF ASP* ARBITERcccccocvermccuinnen. 52
521 Peephole Optimizations of the asP* Arbiter..............cccooeeeeeeeeercnnreacnnnn. 53
5.2.2. Verification of Peephole Optimizations......................ccccevevueereecrnnnnnns 55
CHAPTER 6. CASE STUDY: COMMUNICATION REFINEMENT........cccceeueee 59
6.1. DATA TRANSFER SPECIFICATIONccoutiiirrmecriirrineiirenrercecerresesesessnennesseseenasnes 59
6.1.1. CoOMMUNICALION FEAIUIES.oueeneeeeeeeeeeeceieeaiienreeeveeeeeeeeeeetessaessanees 59
6.1.2. FUSION PTOCESSES........eveveeeeeiiieeieeeneteeee e e e e e ae e e e e e e erveenee e 62

6.2. GALS WRAPPER VERIFICATIONcc.coiimienetieiimtiniintinieeieeonnrecssmaeeaeeaa s sssenneens 64
6.2.1. GALS WEGPPET ...ttt e 64
6.2.2. High Level Verification Resull..............ccccooeeminicinieeineriiiiiiiiiccireeneen. 65
CHAPTER 7. CONCLUDING REMARKS.......ccoccienrreicanssnsssissssnsressssoessessnsanssnsens 68
REFERENCESccccecrnniencrannsssnssascasesssssnssns cennsssersisnssnsssansssns 69

Figure 2-1:
Figure 2-2;
Figure 2-3:
Figure 2-4:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 4-1:
Figure 4-2:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:
Figure 5-10:
Figure 5-11:
Figure 5-12:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:

Figures

Example processes: 11
Relative timing constraint: 14
Hiding an action in a process: 18
Dual-edge pulse-mode JOIN : 20
Single-rail data interface between sender and receiver......cccecceveeee. 26
2-phase handshaking protocol 27
asP* handshaking protocol 27
Dual-edge pulse mode handshaking protocol.cceeseesssene 28
JOIN element and its specification:cc.ccceecnssncsenccasesennscesees 29
Construction of the dual-edge pulse-mode JOIN specification: 30
Replacement under assumptions: .33
Usage of the peephole rule: 36
Block diagram of the asP* arbiter before optimizations.........ccc..... 41
Construction of the asP* arbiter specification: 43
Constructing intermediate specification of rlatch: 44
High-level verification result of the asP* arbiter 47
Witness execution analysis. 48
Implementation of rlatch and dlatch: 49
Node models : 50
Model of node with Keeper. 51
Peephole Optimization of asP* arbiter: 53
asP* arbiter after optimization. 54
Reducing verification complexity by using the peephole rule......... 55
Verification and result of optimization1 (half). 56
General data communication diagram. 60
Propagation of validity events. 61
Examples of Fusion Processes:.....ccccccccoessresnnecas 62
Specification constructed from fusions. 63
Data channel between two independently clocked domains. 64

Vi

Chapter 1. Introduction

1.1. Motivation

The dramatic increase of integrated circuit sizes raises the need for guarantees of
correctness early in the design flow, instead of leaving such guarantees to testing after the
design is completed. Presently, simulation is widely used to provide guarantees of
correctness of designs. Unfortunately, simulation typically covers only a small subset of
system behaviors, especially for asynchronous circuits, where several interleavings of
signal transitions must be taken into account. As an alternative to simulation, formal
verification is an approach that exhaustively checks the correctness of a system. In this
thesis, we verify whether an implementation meets the specification by checking a
refinement partial order on processes; we refer to this verification approach as refinement

checking.

One of our case studies involves verification of peephole optimizations in a high-speed
asP* arbiter design. There, we were confronted with two main difficulties: 1) how to
construct the specification properly and efficiently, and 2) how to avoid state explosion in

verification.

Correspondingly, we propose techniques to soive or alleviate the two difficulties above,
including: 1) construction of specifications for pulse-mode circuits from simpler high-
level models, and 2) adapting assume-guarantee and hierarchical verification rules to the
verification of peephole optimizations. Several asynchronous designs from [GO99],

[MVK+99] and [PU98] are studied by applying our techniques. These circuits were found

to be correct according to our verification criteria, but only after including additional
relative timing constraints that were not fully documented in the respective papers. These
additional constraints are expressed in the form of chain constraints from [Ne98].
Although these additional constraints suffice to guarantee correctness, they are not

unique; other forms of relative timing constraints may achieve the same effect.

1.2. Previous work

The framework for formal verification used in this thesis is process spaces [NeY8|
[Ne00], in which most of the theory basis is developed. This thesis will apply process
spaces to peephole optimizations in general, and to the analysis of two previously
published circuits in particular. Metric free relative timing constraints were proposed in
[Ne97], [Ne98], [St99], [Cort00] for verification and synthesis; a novelty of our approach
is to use such constraints as optimization assumptions to automatically verify peephole
optimizations. Our pulse-mode specification construction technique turned out to be close
to the handshake expansion operation used, for instance, in [KCK+99] for constructing
specifications for synthesis, and it also relates to CSP-like channel specifications as in
[Be93]; a difference is that we use the same formalism for both the simplified channel
representation and the full specification, and we construct full specifications by existing

parallel composition operation instead of specialized program translation rules.

Our hierarchical verification is related to the methods in [CLM89] and [Di89]. Assume-
guarantee rules are addressed in [Sta85], [CLM89], [GL94], [AL95], [Mc97], [HQR9I8],
(HQR+98]. In this thesis we adapt the assume-guarantee rules using relative timing
constraints, and we extend the application of such rules by introducing optimization
assumptions in verification. A distinctive point of our approach is that arbitrary processes
can be used as optimization assumptions, regardless of connectivity; the choice of such

processes affects the result mainly through computation costs, as explained in Chapter 5.

1.3. Organization of the Thesis and Contributions

The presentation of this work proceeds as follows: Chapter 2 presents an overview of the
models used and describes the preliminaries of peephole optimization in asynchronous
circuits. In Chapter 3, we present our procedure for constructing specifications from
simplified higher-level models; this procedure is illustrated by pulse-mode circuits. In
addition, we describe the implementation of these constructs in FIREMAPS. Chapter 4
addresses our peephole verification rules and their application by using relative timing
constraints. Chapter 5 presents the verification of an asP* arbiter as one of the case
studies in the application of two methods introduced in Chapter 3 and Chapter 4 in pulse-
mode circuit verification. As a more general case, communication refinement is studied in
Chapter 6, which is part of the co-work with Larry Ying. Finally, the conclusions of our

work and the possible future steps are presented in Chapter 7.

The pulse-mode circuit verification, which includes part of Chapter 3 and high-level
verification in Chapter 5, have been reported in [KNOla]; Chapter 4 and the verification
of peephole optimizations in Chapter 5 have been reported in [KNOlb]; part of the
verification work in Chapter 6 has been reported in [KNYO1].

The contributions reported in [KNYO1] are partitioned between this thesis and [YiOl] as
follows: Subsection 4.1 of [KNYO1] (Implementation Model Construction) is claimed in
[YiOl]; the overall data transfer verification part of Subsection 4.3 in [KNYOI] is split
equally between this thesis and [YiOl]; Sections I, 2, and 5, and Subsection 4.2 of
[KNYO1] are general remarks and background information; the rest of the [KNYOI] is

claimed in this thesis.

Chapter 2. Preliminaries

2.1. Process Spaces

Here we briefly overview the necessary notions and properties of process spaces,

following [Ne98] and [Ne00]; for more details, we refer the reader to the source

references.

2.1.1. Basic definitions

Process spaces are a general theory of concurrency, parameterized by the execution type.
Systems are represented in terms of their possible executions, which can be taken to be
sequences of events, functions of time, etc., depending on the level of detail desired in the

analysis.

Let E be the set of all possible executions. A process p is a pair (X, Y) of subsets of £
such that XUY = E. A process represents a contract between a device and its
environment, from the device viewpoint. Executions in XNY, called goals, denoted by g
p, are legal for both the device and the environment. Executions from outside X, called
escapes, denoted by e p, represent bad behavior on the part of the device. Finally,
executions from outside Y, called rejects, denoted by r p, represent bad behavior on the
part of the environment. We also use as p (accessible) and at p (acceptable) to denote X

and Y respectively. The process void, denoted by ®, is (E; E).

10

Figure 2-1: Example processes:

(a) C-element symbol; (b) Waveform;

(c) Hazard-intolerant model; (d) Inertial model; (e) Quickened model.

2.1.2. Models of CMOS Cells

Process spaces can be used to build models of circuit behavior in a manner similar to the
state machines of Fig. 2-1. For an example of the models used in this thesis, consider the
C-element in Fig. 2-1 (a). If the inputs a and b have the same logical value, the C-
element copies that value at the output c; otherwise, the output value is unchanged.
Waveforms are represented by finite sequences of actions corresponding to signal
transitions, such as abcbac for the waveform in Fig. 2-1 (b). In this thesis, we use term
trace to refer to such a sequence of actions. We sometimes indicate that a certain action

represents a rising or falling transition, as in a+ b+ ¢+ b- a- c-.

If all signals start low, the C-element can be represented by the process in Fig. 2-1 (c),
where r, g, and e stand for reject, goal, and escape. Illegal output events lead to an escape
state with self loops on all subsequent events, call it a permanent escape, and illegal input

events lead to a reject state that cannot be left either, call it a permanent reject. The state

11

where ab leads is also marked e, making it illegal for the device to complete its operation

by stopping there.

The model in Fig. 2-1 (c) is a hazard-intolerant model. There are variations of the CMOS
cell models, because, in the presence of hazards, the behavior of a CMOS cell is not fully
standardized. Following [Ne98], by hazard we mean a situation where an output
transition is enabled and then disabled without being completed. For example, execution
abb is a hazard for the C-element in Fig. 2-1. Hazard-intolerant models simply require the
environment to avoid hazards, in which any execution that causes a hazard to the system

is a reject execution.

The contract between the device and its environment can be adjusted by changing the
model of the device. The model in Fig. 2-1 (d) is an inertial model. Informally speaking,
a contract of inertial models implies that if the device believes there is a hazard from the
environment, it can simply ignore the hazard. For example, in Fig. 2-1 (d), when input a
is reset quickly and is considered as a hazard to the device, execution a+ b+ b- from
initial state returns to the state which is reached by execution a+ from initial state, as if
the hazard on input b had never occurred. Without any assumptions from the
environment, inverting CMOS cells can be modeled by inertial models, in which the input

is considered as hazard when the hold time of an input pulse is shorter than the cell delay.

The model in Fig. 2-1 (e) is a quickened model: it assumes the device will take the
responsibility to avoid hazards in the system by being quick to respond, instead of leaving
the hazard-avoidance problem to environment as in the hazard-intolerant model. In the
model in Fig.7 (e), the C-element should be “quick™ enough so that no hazards will ever
happen. Formally, the “slower” executions of device (such as abb for the C-element) are
escapes because they should be avoided by a quick device (in our case, by issuing a ¢
event before the second b event). In synchronous circuits, combinational logic between
two registers can be modeled as “quick™ enough with respect to clock events. After
promising that the device is “quick enough” to simplify verifications, the designers
should make good on that promise when choosing transistor sizes of the circuit later in

the design flow. As will be shown later, a quickened model can be replaced by a hazard-

intolerant model plus a list of relative timing constraints, which can be implemented by

sizing.

2.1.3. Safety and Finalization Processes

Informally speaking, safety properties represent that “something bad does not happen”
[LL90]; in our applications, this amounts to avoidance of illegal events. Finalization, on
the other hand, ensures that “something good does happen” (as it is both a liveness and a
progress property); in our applications, this amounts to avoidance of illegal stopping. The
safety and finalization properties can be expressed by means of sets of finite executions.
In process spaces, safety and finalization are expressed as processes (pairs of acceptable

and accessible sets of executions) over an execution set E equal to the set U* of finite

words where U is a universal set of actions.

Two different processes, one for safety and one for finalization, can be attached to the
same system s. The safety process, denoted o's, deals with partial executions and records

the occurrence of illegal inputs and outputs. The finalization process, denoted ¢ s, is
constructed for the total (complete) finite executions. In fact, the finalization process
considers every sequence of actions a total execution and records the violations it

contains. These violations include, in addition to illegal inputs and outputs, illegal

stopping.

2.1.4. Relative Timing Constraints

In process spaces, processes can be used to model not only gates or cells, but also relative

timing assumptions of the following form:

Db, b;...b,) > D(ayaz... an)

13

Figure 2-2: Relative timing constraint:

(a). Process of a chain constraint; (b) Hazard-intolerant model of C-element;

(c). Quickened model of C-element.

where ay, ..., am, by, ..., b, are events such that a, is the same as b, and the Ds are the
durations of the chains of events. Such a constraint, called a chain constraint [NP98],
imposes that the b chain of events will not be completed before the a chain (unless one of
the a or b actions involved occurs out of order). For example, the “quicken model” in Fig.

2-1(e) implies the chain constraints:

D@bb) > D(@bo), D®bab) > D(bac),
D(baa) > D(bac), Dbab) > Dbac)

Following [NP98], fig. 2-2 (a) shows the relative timing constraints represented in
process automaton. With relative timing constraints in Fig. 2-2(a), the A/ (Hazard-
Intolerant) model of the C-element can be implemented to satisfy quickened assumption.
Essentially, we obtain a chain constraint process by constructing a state machine that
recognizes the chains and avoids executions that violate the relationship between the
chain events. A device model under certain delay constraints can be constructed by the

composition operation that we will discuss in section 2.1.5.1.

Treating constraints as processes rather than linear inequalities permits us to deal with
cases of deadlock and non-determinism, where the inequalities might not apply. Chain
constraints can be implemented by transistor sizing. On the other hand, chain constraints
can model the sizing assumptions of a device; to satisfy the specification, the

implementation should follow these delay assumptions. Metric-free verification under

14

relative timing constraints was presented in [Ne98] and [Ne00]. Further, several
verification and synthesis methods based on relative timing constraints have been
introduced (see for instance [SGR99] and [PCKP00]).

We use metric-free models for relative timing constraints in verification. Only the relation
between two chains is of concern, while how much delay occurs between two chains is
not explicit. On the other hand, the method used here can model the delay that is
distributed along a circuit path, without considering whether the delay is caused by

components or wires.

2.1.5. Operations
2.1.5.1. Composition

Joint behavior (parallel composition) is expressed in process spaces by the product

operation [Ne98]. The product of two processes p and ¢ is a process p X g such that

as(p x q) = as(p) N as(q)
at(p x q) = (at(p) N at(q)) v (as(p) N as(q)),

or, equivalently, such that
rpxg) = (r(p) U K@) M e(p) N eq)

e(pxq)= e(p) Ue(q
g(p x q) =g(p) N gq).

This means that the product of two processes can avoid some of the reject traces by the
guarantee of executions from each other. Note that executions which are rejects to one

factor process and escapes for the other factor process are escapes for the product process.

Notice that any two processes in a process space can be involved in the product operation,

regardless of their connectivity.

Product is associative and commutative, and therefore can be applied to any number of

processes. In addition, product extends to uncountable sets of processes.

15

2.1.5.2. Robustness

Robustness expresses the property of a process that the device it represents imposes no
constraints on the environment it deals with. For safety processes, this means that the
device accepts all the inputs it receives from the environment. Therefore, a process p is

robust when it has an empty reject set r(p).

Consider, for example, the C-element models represented by the automata in Fig. 2-1.
The hazard-intolerant model in Fig. 2-1 (c) is not a robust process, since the reject set is
not empty. Execution aba, for instance, is a reject since it includes an illegal input (the
second a transition cannot occur before the output changes). On the contrary, the process
automata in Fig. 2-1 (d) and (e) represent robust processes that allow all inputs to happen
at any state. (Inputs a and b are accepted in every state.) In in Fig. 2-7 (e), because it is
the responsibility of the device to avoid the execution aba, the process is still considered

as robust.

2.1.5.3. Refinement

Refinement is a relation between two processes that allows for one process p to fully

replace a second process q. A process p is said to refine a process q, written p= q, if

(at(p) 2 at(q)) A (as(p) c as(q)),

or, equivalently, if

r(p) C r(g) A e(p) 2 e(g).

Refinement is reflexive, transitive, and antisymmetric. In the case when refinement exists

in both directions between two processes, i.e., p2 q and q= p, we say that the two

processes are equal since they have equal accessible and acceptable sets.

Example.

16

To illustrate how to check the refinement relation between two processes, consider again
the C-element models in Fig. 2-1. Name process models in Fig. 2-1 (c), (d), (e) pc, pd,

and pe respectively. By comparing the states in the figures, one verifies that:

(e(pd) = e(pc)) A (r(pc) 2 r(pd) = D)

Thus pd 2 pc, or process pd can replace process pc.

Also, we have a refinement relation between (d) and (e):
(e(pe) 2 e(pd)) A (r(pe) = r(pd) = D)
Thus pe 2 pd, or process pe can replace process pd.

From the transitivity property of refinement, we have pe3 pc.

2.1.5.4. Hiding

As a particular case of the generic process abstractions in [Ne98] (Chapter 8), we define
the hiding operation performed on processes. It follows from the general treatment in

[Ne98] that hiding preserves refinement.

We start by defining the usual hiding operation for finite words. This operation eliminates

occurrences of certain actions from a finite word.

Definition For alphabet U and a subset B C U, let < B> U* x U* be a binary relation

on finite words over U such that:

a) (56 € <iB>

b) (u,v) € <IB>Arae B= (ua,v)e <{B>
c) (u,v)€ <iB>Abg B = (ub, vb) € <{B>
d) each pair from <{B> satisfies a), b), or c).

Let <\ B>’ be the inverse of the relation <\ B>.

17

(b)

Figure 2-3: Hiding an action in a process:
(a) A system of two inertial buffers; (b) Product of the buffer processes:
(c) Result of hiding action x.
In words, <! B> eliminates from an execution all actions from B, while <lB>" inserts in

an execution actions from B in arbitrary numbers and at arbitrary places. For example,

we have the following:
abcba <l {b}> aca, aca <l{b}>'abcba, and aca <\ {b}>’ bbacbbbab.

The hiding operation on processes is then constructed using the generic construction for

process abstractions in [Ne98].

For a subset X of U*, let X = {<{B> u | ue X}.

For a process p, let hides(p) (read hiding of p over B) be defined such that:
as(hides(p)) = </ B>’ <l B> as(p), and
r(hides(p)) = <\ B>’ <l B> r(p).

As an illustration, we use the example of the two buffers Fig. 2-3 (a), and their
composition. The product process P needs not to observe the intermediate signal x.

Therefore, we apply hiding to eliminate x from the alphabet of P. The resulting process of

18

product is shown in Fig. 2-3 (b) where the process still has action x. (The construction in
Fig. 2-3 (b) was obtained by taking the Cartesian product of the state sets of the two
buffer processes; the state machine can be simplified by collapsing the permanent escape
states.) Subsequently, we eliminate action x from Fig. 2-3 (b) and we apply a standard
determinization procedure. The result is shown in Fig. 2-3 (c), and it represents the

behavior of a 2-bounded buffer.

Note that hiding followed by converse-hiding may produce more reject and accessible
executions than the original process had. This amounts to saying that hiding and
converse-hiding produce a pessimistic (conservative) approximation of a process by a

hiding-independent process [Ne98].
2.1.5.5. Reflection

The reflection of a process p is a process q = —p represented by

as(q) = at(p) and
at(q) = as(p).

Again, we can define reflection in terms of r, g, and e:

r(q) = e(p)
e(q) =r(p), and
g(q) = g().

Reflection represents an exchange of roles between device and environment.

Reflection reveals a link between robustness and refinement. For processes p and g:
paq & px(-q)isrobust & px(-q) 2 b,
where @, called void, is the identity element of product. Process ¢ has only goal

executions; its reject and escape sets are empty.

Thus, one can detect violations of refinement as counter-examples to the robustness of

px(- g), i.e., as executions that are rejects for px(- g). Such counter-example executions

19

can be regarded as ‘witnesses to failure’ in the verification. Any execution that leads to

failure is called a witness execution.

2.2. FIREMAPS

FIREMAPS was developed by R. Negulescu at the University of Waterioo. The name
stands for finitary and regular manipulation of processes and systems. This tool
automates the operations and manipulation of processes whose execution sets are regular

languages of finite words.

All operations on processes discussed above are implemented in FIREMAPS.
Composition, reflection, and hiding are examples of these operations. In addition, if
robustness or refinement fail, FIREMAPS can produce a witness execution that provides

a counter-example to the set relationships involved. Such witness executions serve for

diagnosis by pinpointing faults.

......

Figure 2-4: Dual-edge pulse-mode JOIN :

(a) Implementation; (b) Specification.

20

2.3. Example: Verification of a Pulse-mode JOIN

As an example of the verification method and gate models used. consider the
specification in Fig 2-4 (b) and the implementation in Fig.2-4 (b). representing a pulse-
mode JOIN element from [PU98]. The pulse-mode JOIN behaves like a C-element.
except that: 1) it does not allow retraction of input events, and 2) the pulse-mode
convention uses pulses rather than signal transitions to represent events. Thus, a pulse on
output signal c is issued after pulses on input signals a and . The implementation in
Fig.2-4 (a) follows [PU98]. In Chapter 3, we discuss how we have arrived at the

specification shown in Fig 2-4 (b), and we give more details about pulse-mode operation.

To avoid clutter in the figure, the specification in Fig 2-4 (b) does not indicate illegal
transitions. We adopt the drawing convention that omitted illegal inputs lead to a
permanent reject state and omitted illegal outputs lead to a permanent escape state. Also,

omitted actions that are not visible at the interface of a module produce self-loops at

every state of the corresponding process automaton.

The pulse-mode JOIN relies on timing constraints for correct operation. The result of our
verification is that the refinement relationship does not hold without additional timing
assumptions. A witness execution is as follows: a+b+b-a-. This witness execution is an
escape for the specification, but a goal for the implementation. This witness execution
represents a mismatch between the specification and implementation: two input pulses,
after which the implementation stops without delivering an output pulse. This mismatch
occurs if the C-elements used in the implementation are not quick enough to react to the

input pulses.

On the other hand, we find that refinement holds if we use quickened models for the C-
elements instead of inertial models. This change amounts to adding several relative
timing assumptions, in the form of chain constraints that guarantee that the next input

transition will give enough time for the C-elements to stabilize:

D (a+ a-) > D (a+ x-);D (b+ b-) > D (b+ y-);....

21

In other words, the implementation will work correctly if some minimal pulse widths are

guaranteed. There is no need for upper bounds on the pulse widths.

24. Modular and Hierarchical Verification

Refinement checking can successfully find subtle errors in finite state systems, but it
suffers from an inevitable problem, state explosion. Typical verification problems for

multi-component systems are PSPACE-complete (see e.g. [Ne98]).

Several structured verification approaches can be used to alleviate state explosion in
refinement checking. We can break the verification of a large system into several sub-
tasks, and establish refinement individually for each subtask. Then, we infer by algebraic

properties of the operations involved that refinement holds for the large system as well.

One structured verification approach is hierarchical verification, where circuit
descriptions are provided at several different levels of abstraction. At each level, the
circuit is treated as an interconnection of modules. Refinement is checked only between
successive levels: the behavior of the higher level is treated as specification and the lower
level description is treated as implementation. The description of circuit at a level
between the top and bottom levels is called an intermediate specificarion. Hierarchical
verification can reduce computational costs if the verification tasks at successive levels

are simpler (involve fewer components) than the overall verification task.

In process spaces, refinement is reflexive, transitive, and antisymmetric: product is
commutative, associative, and idempotent. Furthermore, for processes p. g, and r,
P32qg = pXr2qgXxr.

These properties suffice to break a verification problem into several layers of partial
specifications, and each layer into several modules, and to verify only one module at a

time instead of verifying the overall problem in one piece.

22

Since arbitrary processes can be involved in product and refinement, hierarchical
verification can also involve processes that are at different abstraction levels. For
example, a mixed gate-level and switch-level representation is often useful in our
applications, where peephole optimizations might be applied only in critical parts of a

circuit, while other parts might use standard gates.

2.5. Peephole Optimizations in Asynchronous Circuits

Peephole optimization is an approach to obtaining global optimizations of an integrated
circuit design by successive local optimizations. Specifically, by peephole optimizations
we mean local changes in circuit sub-modules that do not affect the rest of the circuit or
the operation of the circuit as a whole. This sometimes involves changes in the interface
of the respective sub-module to take advantage of signals available in other modules. As a
particular case, in which replacement happens between different abstraction levels, the
implementation of a component in a circuit can be considered as peephole optimization as

well.

Peephole optimizations are often performed after high-level synthesis with significant
gains. For example, two main high-level synthesis flows in asynchronous design translate
concurrent program-like descriptions to asynchronous circuit composed of macro
modules or handshake components (see e.g. [Pe96], [HBP+93], and [G099]). In [G099], a
peephole optimization step after synthesis by the methods in [AG92] and [BS98] is
shown to produce gate count improvements up to a factor of five, and speed (cycle time)

improvements up to a factor of two.

Due to their heuristic nature and limited scope, peephole optimizations can greatly benefit
from cross-checking by automated methods. It is important that such optimizations be
proven correct, which means that the observable behavior of the circuit after optimization

meets the specification of the original circuit.

Hierarchical verification is particularly well-suited for post-synthesis peephole

optimizations in asynchronous designs. First, as a result of high-level synthesis, the

23

macromodule networks usually have good modularity (although some modularity may be
lost by altering the module interfaces for optimization purposes). Second, models for the

behaviors of macromodules in the network are usually readily available.

On the other hand, the flat verification of peephole optimizations against module
specifications poses special problems. First, such verifications must usually take into
account intricacies of switch-level and relative-time behaviors. Second, changes in the
module interfaces need special techniques for modeling and incorporating the
assumptions that justified the optimizations so that the overall circuit specifications are

met.

24

Chapter 3. Constructing Specifications from

High-level Events

Specifications are usually assigned different interpretations at different stages in the
design flow. Early in the design flow, specification is usually abstract and minimal, which
is useful for analysis and reasoning by humans. When design details are settled, a
specification explicitly comparable to the implementation is needed. In this sense. a
specfication that only specifies high-level events would be inadequate for low-level
verification. For example, in a case study of a arbiter verification, specification with high-

level events only has 12 states, while the complete low-level specification has 768 states.

In order to bridge the gap between high-level and low-level specifications, a construction
method of complete low-level specifications from smaller high-level specifications is
introduced in this chapter. First, a specification using high-level events is represented as
a process. Then, constraints that enforce correct occurrence of low-level transition events
are modeled as processes. Finally, the low-level specification is built by computing a

product of constraint processes and the high-level specification process.

25

3.1. Pulse-mode Handshaking

Unlike synchronous systems, in which a single control signal clock is used to synchronize
the behaviors of each module, several asynchronous design styles use handshaking
protocols to guarantee the correct data transfer between modules. The data transfer and its

handshake control signals are shown in Fig. 3-1.

In the 2-phase handshaking protocol, a request and an acknowledge wire are used to
implement the handshaking between the active and passive partners. Assuming that both
signals start low initially, the sequence of events that can be observed on such a channel
is depicted in Fig. 3-2. Although rising and falling transitions on the handshake control
signals can be distinguished in other handshake protocols, they represent the same

meaning in 2-phase handshaking.

Pulse-mode protocols, in which control signals are represented by puises, are a family of
protocols used in asynchronous circuit design. There are two types of pulse-mode

protocols: single-edge and dual-edge.

The pulse mode protocol combines the advantage of the 2-phase protocol and 4-phase
protocol. From the view of pulse event, the pulse mode protocol can work with the
simplicity of 2-phase handshaking. At the same time, it starts the handshaking operation

cycle always from the same state, thus keep the simplicity of implementation.

The single-edge mode, shown in Fig. 3-3, is named asP* in [MJCL97] and [GO99]. In the

Request
\
Sender Data > Receiver
Acknowledge
ad

Figure 3-1: Single-rail data interface between sender and receiver.

26

rating cycle! i i
Opcl g cy! : gperatmg cycle :.Spe’a““g ‘ﬂei

— !
A-—s\L ’-~~\ A-~s\
\ N \ It N
\

|

I AR TN W
1
!

s S N
0 X XX XRC

Figure 3-2: 2-phase handshaking protocol.

e

T > x

single-edge mode, only one edge of the pulse is used to transmit control information
between modules, and the other edge is ignored. In the asP* protocol, the handshaking
begins when the active edge of request (rising edge of R in Fig. 3-3) is issued, and it
finishes when active edge of acknowledge (rising edge of A in Fig. 3-3) is received by the

sender. The request and acknowledge signals may return to zero at arbitrary times.

Essentially, the asP* protocol is related to 4-phase handshaking (see e.g. [Pe96] for a
description of 4-phase handshaking) by allowing more concurrency and thus more
freedom in the implementation. In particular, the asP* protocol potentially achieves
higher speeds, by removing the dependency of resetting, which simplifies the
implementation. In our case study, we will use a high-speed arbiter from [GO99] that

communicates with its environment via the asP* protocol.

In the dual-edge pulse mode, handshake events are represented by puises rather than

transitions on the control signals. Unlike asP* protocol, however, the falling edges of the

x 4
S s ' ~ /

B 2 L \
D X XOOO00000O0000000K. —— XCOOOCOOOCO00C000

Figure 3-3: asP* handshaking protocol.

27

]
I |
4.
! Py ——T — e
R ‘ N A
: N D lo-=" l"\ Val \
~ x ya
e A R~ S\
-

S QD 00000 G 4. XY 0N

Figure 3-4: Dual-edge pulse mode handshaking protocol.

dual-edge pulse mode copy the sequence of the rising edges. The waveform of dual-edge

handshaking protocol is shown in Fig. 3-4.

An example of a dual-edge pulse-mode component, JOIN element, was already
introduced in Chapter 2, Fig. 2-4. The JOIN issues an output pulse only after it has
received a pulse from each input. Notice that the falling edge of the output pulse can be

produced only after the falling edges of the input puises.

3.2. Pulse Events and Transition Events

The symbol and behavior of the pulse-mode JOIN element are defined as in Fig. 3-5 The
actions in the automaton have an abstract meaning, and they represent high-level
handshaking events. Each of the edges labeled a, b, or c stands for a pulse on the
respective voltage signal. We call this kind of specification, in which each event
represents a pulse, pulse-event specification. On the other hand, the behavior of the same
JOIN element can also be described by events that represent individual signal transitions,

as in Fig. 2-4 (b); we call such specifications transition-event specifications.

Although the arbiter in [GO99] was designed to a pulse-mode specification, its
aggressively optimized implementation contains a mixture of pulse-mode, two-phase and
level signaling. On the other hand, for comparison and verification it is necessary to

assume that all processes give the same interpretation to executions. As transition-event

28

(a)

Figure 3-5: JOIN element and its specification:
(a) Symbol of JOIN element; (b) High-level (pulse-event) specification of pulse-mode JOIN.

specifications are more versatile than pulse-event specifications, we use transition-event

specifications as the common denominator for verification purposes.

3.3. Transition-event Specification Construction

Building transition-event specifications by hand is tedious and error-prone for single-edge
pulse-mode circuits, because of keeping track of many irrelevant interlzavings of falling
edges. For instance, the pulse-event specification of the RGD arbiter is a 12-state
automaton, while its transition-event specification (with falling edges) has 768 states

(after collapsing equivalent states).

To simplify the specification of pulse-mode and various mixed mode circuits, we

decompose pulse-mode specifications into the following parts:

e For the single-edge mode, construct the pulse-event specification by describing
only the rising edges of each pulse. This specification is similar to the transition-

event specification of a two-phase circuit.

e For the dual-edge mode, construct two separate specifications, involving the rising
edges only and falling edges only.
e Construct explicit constraints that the falling and rising edges of each signal

should alternate.

These parts can be considered as distinct properties and we compose them to create a full

transition-event specification.

In FIREMAPS, we use uniform models for all the specification parts mentioned above.
We can construct full transition-event specifications by the following procedure, using

process space operations:

e If single-edge, create automata that only consider rising edges (Fig. 3-6(a) is the
rising edge automaton of pulse-mode JOIN). If dual-edge, create automata that
consider only rising edges and separate automata that consider only falling edges

(Fig. 3-6(b) is the falling edge automaton in dual-edge mode). These automata are

Qan (©) ban d)

Cup

e‘e (e) (a) x(b) x{c) x(d) x(e) = (D

Cdn

Figure 3-6: Construction of the dual-edge pulse-mode JOIN specification:

(a) Specification of rising edges; (b) Specification of falling edges;
(c)—(d) Pulse automata of signals a, b, c;
(f) Transition-event specification of dual-edge pulse-mode JOIN.

30

incomplete, in the sense that illegal events are disabled. For example, in Fig. 3-
6(a), cyp (the rising transition on signal c) is disabled at state 0.

e Create automata that specify alternation of rising and falling edges of each pulse
signal; call them pulse automata. In pulse automata, rising and falling edges have
different symbols. (See Fig. 3-6(b), (c), and (d).) Pulse automata have a standard
form and can be obtained by relabeling.

e Represent constraints between pulses (e.g. mutual exclusion). by automata.

e Compute the product of the process automata above. (In Fig. 3-6 produce (a), (c),
(d) and (e) for single-edge mode specification and produce from (a) to (e) for
dual-edge mode specification.) Missing edges in the component automata
correspond to missing edges in the product automaton.

e Relabel the falling edges of each signal by the same symbol as the rising edges of
that signal. (The automaton in Fig. 3-6(f) is an incomplete dual-edge JOIN
specification, resulting from relabeling after product.)

e Complete the resuiting automaton to obtain a process automaton so that each

action is enabled at each state.

Except for the first step, which defines the specification in terms of pulses, and the third
step, which introduces additional user-defined constraints, the procedure above is
automatic and can be performed by standard FIREMAPS operations. This allows users to
describe pulse-mode specifications by smaller automata that ignore the interleaving of
falling edges; the full transition-event specifications are then built by FIREMAPS. It is
possible to add a front-end from some sort of HDL type description to facilitate the

verification work, since essentially, the verification is based on state machine and netlist.

Notice that the basic idea of the method is not limited to pulse-mode specification
construction, but applies in many situations where one high-level abstract event can
represent several low-level signal transitions. We will introduce other such applications in

our case studies.

31

Chapter 4. A Structured Approach for Peephole

Verification

4.1. Assume-Guarantee Verification

Using hierarchical verification, a verification task p; X p» J g can be split into three

separate tasks that might have lower computational costs overall:
qiXq2dq, pidq; p2lq. (4-1)

Here, p) and p» represent two submodules in the implementation, ¢; and g2 represent the
intermediate specifications of the respective submodules, and g represents the overall

specification implemented by p, and p-.

A frequently encountered difficuity, however, is that the refinement between submodules
and their lower level implementations, p; 3 ¢, and p2 3 g2, does not always hold. p, and
p2 only “work correctly” in the presence of each other, thus the refinement relations p; =
g\ and p> 3 g» only hold under certain assumptions. In Fig. 4-1, the OR gate cannot
directly refine the specification of Merge. Nevertheless, if the environment guarantees
that the inputs are mutually exclusive pulses, the OR gate implements the Merge

specification.

" Mutex " b) Merge
c
i —t—————)
1}]
> \Environment : | | y 9
\\‘—‘--__I (a) ab ! <)
,° “t=al o
iy
! | Mutex | ¢) Or ‘
\ t
.
> \Environment ': | | e
/

(c)

\

‘_"'--—

Figure 4-1: Replacement under assumptions:
(a) Merge in a certain environment; (b) Inertial XOR;;

(c) Implementation of Merge by OR under a certain environment.

Verification rules that address this difficulty are presented in [CLM89], [McM97],
[HQR98], and [HQR+98]. Such verification rules are called assume-guarantee. In
verification methods based on assume-guarantee rules, the correctness of the
implementation relies on assumptions from the environment. According to assume-

guarantee rules, a verification of the form p, X p> 1 g can be decomposed as follows:

P1Xq2gXq; (4-2)
P2Xq11qXq. (4-3)

More precisely, it suffices to verify (4-2) and (4-3) for some g, and g2 of a certain
restricted form in order to establish p, x p» J g. However, note that ¢, and ¢g» cannot be
arbitrary. For instance, empty accessible sets of g; and ¢ trivially satisfy the decomposed
verification tasks. Special conditions must be satisfied by g, and g> to break the
circularity of reasoning and establish validity of p; X p» 13 gq. Usually, q, and g2 are
selected to have non-empty prefix-closed accessible sets to justify a structural induction
argument, but other selections are also possible. In the following, we adapt the assume-

guarantee rule to our applications.

33

4.2. The Peephole Rule
Suppose that, in the original verification task, the refinement relation

L X...riX...Xp,3d q

is checked. Here p; (i=1..n) and q are arbitrary processes, representing the implementation
components and specification, respectively; r; is an arbitrary process, call it peephole
replacement, which replaces p; in a peephole optimization. Now, let d be an arbitrary
process, call it optimization assumption, which formalizes the designer’s hypothesis that
makes the replacement possible; and, let M be an arbitrary set of processes, call it support
model, representing modules in the system consisting of the implementation and the

environment that will guarantee the validity of the optimization assumption.

Theorem 1. For processes p, ..., pr,q, 1i, d and process set M

if PLX...piX..Xp,1q
and (Ade Sg, Mc {pj|j=i}U {-q}:
riXxddpi A (Xmem m) 3 (Xmemym) xd)

then p\X...riX..Xp,21gq.

We can phrase Theorem | informally as follows: if r; refines p; under constraint 4, and d
imposes no additional confinement over the system, then r;can replace p; in a refinement

relation.

Proof:

rixd 3 p;
=> (by monotonicity w.r.t. product by (X; pj) X (-q))
O%Gei p) X (-q) X ri X d 3 (Xpsi pj) X (-q) X i

= {by commutativity of product)

34

(Xjei pj) X (-q) X ri X d 3 (Xe pr) X (-q) N

(Xmemm) 3 (Xmew m) xd and M C { p;|j#i)U {-q}

= (by montonicity of product w.r.t. components from outside M)
(i pj) X (-q) 2 (Xpi pj) X (-q) x d

= (by montonicity of product w.r.t. r;)

Kiei P X (-q@) X ri D (i p) X (-q) Xd X 1; (2)

(1) and (2)

= (by transitivity of refinement, since (X, pr) 3 ¢ < (X pi) X (-@)X p; 1 D)
K p) X (@) Xxr: I P

o

pLX..nX...Xp,q

Since Theorem 1 is specifically developed for verifying peephole optimizations. we refer

to Theorem 1 as the peephole rule.

35

ab,c
c Drawing conventions:
[- Missing outputs lead to
J— 9 permanent escapes.
! - Missing inputs lead to
ab < permanent rejects.
©) @

Figure 4-2: Usage of the peephole rule:
(a) Process of inertial OR gate; (b) Relative timing constraints d;

(c) Process of OR gate under constraints; (d) Process of merge.

Example:' The example in Fig. 4-1 illustrates a peephole optimization that replaces a
Merge macromodule [OSC67][SS86]{Su89] (essentially, an XOR gate) by an OR gate.
In this example, the peephole implementation is an inertial XOR gate; the peephole
replacement is an inertial OR gate; the optimization assumption is “‘Pulses on a and b

never overlap”; and, the support model is a Mutex component existing in the system.

In verification of Fig.4-1, assume refinement relation

Pmerge X... Pmutex xX... _:‘_ q
holds, in which pn.g represents the implementation of Merge, XOR gate, and puue:

represents an existing Mutex component which physically enforces arbitration between

the pulses.

! This example was inspired by a similar example brought to our attention by Mark Josephs.

36

Let M = {pmuer}, and let 4 be the product of the relative timing constraints in Fig. 4-2 (b):
D(a+, a-) < D(a+, b+);
D(b+, b-) < D(b+, a+).

Because

DPmutex | Pmutex X d

and
porxXd Pmerge »

using the peephole rule, we have:

Por X ... Pmutex X ... ;q.

Thus, the OR gate can replace the XOR gate in this system.

Theorem | relates to the assume-guarantee rule over a particular case. If p, from (4-2) is
substituted by r; from Theorem 1, g, from (4-2) is substituted by p; from Theorem 1, and
q» from (4-2) is substituted by the process (X p;), then the hypothesis of Theorem 1

implies inequation (4-2), which is part of the hypothesis of the assume-guarantee rule.

rixd 2 pi = riX (Xpi p)) Xd 3 pi X (Xpi pj)

ri X (Xiei pj) D pi X (Xpei p)) = Pi X (X pj) X pi 2 g X pi

The remaining part of the hypothesis of the assume-guarantee rule, inequation (4-3), also

follows from the hypothesis of Theorem 1 under the substitutions above, while p» from

(4-2) can be substituted by any process p that refines (X« p;).

Theorem 1 also relates to hierarchical verification over a particular case. If p; is the
intermediate specification for r;, and M is the empty set, then (Xuem m) = ®. Since D is
the most transparent process in a process space (Definition 2.13 in [Ne98]) then d = ®. In
this case, repeated application of Theorem 1 matches the hierarchical verification

procedure as described by inequation (4-1).

37

4.3. Heuristics for Finding Verification Assumptions

Not all the optimization assumptions are guaranteed by the environment of the peephole.
Since Theorem | has no restriction on the connectivity of the processes involved, an
optimization assumption may overlap both the peephole and the peephole environment. If
the optimization assumption overlaps the peephole, we call the respective optimization
assumption a design assumption; otherwise, we call the respective optimization
assumption an environment assumption. Design assumptions are derived from properties
of the circuit under verification which are known to the designer or verifier. For example,
certain delay assumptions inside a circuit can be ascertained during peephole

optimization.

Notice that the peephole rule has no restrictions on the choice of the support mode! or the
optimization constraint: system process subset M and process 4 in Theorem | are
arbitrary. On the other hand, a poor selection of the support model will not lead to
reductions of computational costs. For proper selection of the support model, one should
consider the context of the circuit under verification. For example, in Fig. 4-2 (c). the
process of “OR gate under environment assumption” is smaller than Fig. 4-2 (a) "OR gate
in open system”, because some of the possible behaviors are eliminated by an
optimization assumption based on a support model which involves not just circuit

elements, but also the environment of the circuit.

In our experiments, the costs of verification based on peephole rules was influenced
mainly by a tradeoff between the complexity and the determinism of the assumptions

used.

e Keep the assumptions simple, as the complexity of verification increases with
the number of assumption processes.
e Make the assumptions efficient by eliminating as many as possible of the

“don’t-care behaviors” of the circuit under verification.

38

For instance, in the OR gate example above, a more effective assumption would only
allow the pulses of a and b to alternate with pulses on c. If such an assumption can be
guaranteed by the environment of the peephole, then not only we can perform stronger

optimizations, but also we can verify them with less costs.

Presently, we mostly use relative timing constraints as optimization assumptions. By
using relative timing constraints, verification does not need to start from a complete
environment model, because a few hints from an incomplete environment model may

suffice to guarantee the respective delay constraint as optimization assumption.

Under certain circumstances, there are no explicit assumptions available for use in
verification by our method. To reduce the verification task, we assume the relative delays
of various modules are fixed and strictly ordered, and we separate the verification into
several cases defined by one delay assumption each. For example, let D1 and D2 be the
delays of two chains in the circuit. The verification can be separated into two cases: D1 >
D2 and D1 < D2. We call this procedure case separation. In this example, the support
model M can be part of the system that relates D1 and D2 to each other, so that the
relation between them cannot alternate. (We have either D1 > D2 or D1 < D2 throughout
the operation of the circuit). Formally, the optimization assumption d is the meet
(alternative composition) of the chain constraint processes for DI > D2 and D1 < D2.
Since case separation can produce false passes, it should be used as a last resort.
However, case separation is useful to detect flaws where other techniques fail because of

computational costs.

44. Strategy for Assume-guarantee Verification

[n this section, we give our procedure of applying assume-guarantee rules in verification.
Although the following pseudo-code is developed for FIREMAPS, it should also be
applicable to other tools that support refinement-based verification under relative timing

constraints.

39

Notation:
Env_asm;

Des_asm:
Ver_res:
p:

q:
wit_exec:
wit_cc:

Ver_res=0;

A set of timing constraints representing environment assumptions.

A set of timing constraints representing design assumptions.

A set of additional timing constraints detected in verifications.
Implementation model.

Specification model.

A witness execution found in refinement checking.

A relative timing constraint introduced to avoid the witness execution.

Env_asm = Initial assumptions;

Loop |

If (p x Ver_res X Env_asm x Des_asm 1 q)

Else (

Return Ver_res, Env_asm and exit;

wit_exec = refinement checking resuit;
Case (wit_exec) {
Can be avoided by the environment of the peephole alone:
Create wit_cc upon wit_exec, satisfied by environment assumption;
Env_asm = Env_asm » wit_cc;
Overlaps the peephole:
Create wit_cc upon wit_exec;
Ver_res = Ver_res * wit_exec;

}

40

Chapter 5. Case Study: a High-Speed Arbiter

A high-speed arbiter using the asP* protocol is reported in [GO99], with a non-optimized
version and a speed-optimized version. The non-optimized implementation has good
modularity, in the sense that the simple interfaces of the submodules achieve decoupling
of the submodule designs. The optimized implementation achieves higher speed at some

costs in modularity, by including more signals in the submodule interfaces.

5.1. Verification before Optimizations

L r_latchl
n ME
dil
r Half-ME
,
2 HaltME |} Clry f——
_I- qa Selz d!
y L
p2 82
l_ T Tatch?

Figure 5-1: Block diagram of the asP* arbiter before optimizations.

41

The block diagram of the non-optimized version of the arbiter from [GO99] is shown in
Fig. 5-1. The arbiter receives request events as input pulses and issues grant events as
output pulses, after arbitration. Signals g, and g, are initially high, and the other signals
are initially low. The rlatch component is a positive edge-triggered SR latch. When it
receives input pulses (r; or g; for rlatchl), the rlatch converts them to output signal levels
(1 for rlatchl). The dlatch in Fig. 5-1 converts pulses on the inputs to levels on the
output. The two NOR gates generate grant pulses. The Mutex component ensures mutual
exclusion between requests, and it is a four-phase component. For example, when request
pulses from two channels arrive, rlatchl and rlatch2 set y; and y» high. The Mutex
arbitrates the input and gives grant to one, e.g. channell, then ¢q; is set to low and fire the
rising edge of grantl. Rising edge of g, is propagated to dlatch and set f high, thus reset
the g; low; at the same time, feedback of g, pulse withdraws the request y,. Pending
request from channel2 gets grant from Mutex and grant g, to channel2 will be issued after
acknowledge d; from channell is received. Notice that the grant puise will be issued
without waiting for the falling edge on the request, because the arbiter operates in single-

edge mode produced only after the falling edges of the input pulses.

Notice that the events at the external interface of the arbiter are represented as pulses, but
the internal signals use transition events. Moreover, certain submodules in the arbiter
have different signalling conventions at their interfaces; for example, the rlatch
submodule uses pulse events at the inputs and transition events at the output. For each
submodule, switch level implementation is provided in [G099]. On this flattened level,

transition event is the only convention for all signals.

To prove correctness of the arbiter, we aim to establish refinement between the high-level
specification and the switch-level implementation. We apply the hierarchical verification
procedure described in Chapter 4, using the submodules in Fig. 5-1 as intermediate
specifications. In the following, pauexs Priatchis Prtach? + Ptaichs Prort a0d puo2 denote
processes for the switch-level implementation of submodules, qnuer, Griarchts Grtaren2e Gattarcins
Gnor1 and @no» denote processes for the submodule interfaces, and qu.suer denotes the
process for the overall transition-event specification of the arbiter. The verification

proceeds on two levels, as follows:

On the first level, the refinement between the connection of intermediate specifications
and overall specification is checked:

qMutex X Griaicht X Qriaich2 X Qdlatch X Qnorl x qnor2 ; qarbiter

Next, the refinements of submodule specifications against their switch level
implementations are checked under certain environment assumptions:
DPMutex 23 QMuiexs Priarcht 2 Qriacchls Priatch? 3 Griarch2;

Pdlatch 3 Qdlaichs Prort 3 Gnorl; Pror2 1 Gnor2.

In this chapter, we call the verification on the first level high-level verification and the

second level submodule verification.

5.1.1. High-level Verification
5.1.1.1. Construction of asP* Arbiter Specification

The construction of the asP* specification is shown in Fig. 5-2. The processes in Fig. 5-2
(a) specifies the behavior of the asP* arbiter by rising edges only. The processes in Fig. 5-
2(b)-(g) are the pulse automata for each signal, constructed as indicated in Chapter.3. The

product of all processes in Fig. 5-2 is a process describing the behavior of the asP*

v rl,, r,
L_®
rly, (b) r24, (©)

gl v 824
1o L
gla (@) 82a (o)

Drawing conventions:
I Missing outputs lead 10 permmnent escapes.
L Missing inputs lead to permanent rejects.

v d1,, v d2,,
e (B P (@)

Figure 5-2: Construction of the asP* arbiter specification:

(a) Specification of asP* arbiter by rising edges only; (b)-(g) Pulse automata.

43

arbiter; this automaton uses transition events, with rising edges and falling edges of the
same signal labeled differently. The complete transition event specification of the asP*
arbiter is achieved after relabeling rising and falling edges of the same signal to the same
label.

Drawing conventions:
19 - Missing outputs lead to permanent escapes.
- Missing inputs lead to permanent rejects.

Figure 5-3: Constructing intermediate specification of rlatch:
(a) Specification of rlatch with mixed events;

(b) , (¢) Pulse automata of s and r; (d) Transition-event specification of rlatch.

44

5.1.1.2. Implementation Description

In high-level verification, the implementation of the arbiter is described as the connection
of submodules. Boolean functions are used to represent two NOR gates; 4-phase mutual
exclusion model is used to describe behavior of the Mutex; and the intermediate
specifications of rlatch and dlatch are constructed using the techniques introduced in

Chapter 3.

Fig. 5-3 represents the construction of rlatch specification. The behavior of rlatch is
defined in Fig. 5-3 (a), in which signals r and s use pulse events, and signals of y use
transition events. Pulse automata are shown in Fig. 5-3 (b) and (c). Notice that only
signals s and r need pulse automata. The transition event specification of rlatch is attained
by, computing the product of (a), (b) and (c) together, relabeling sy, and ry,to s and r
respectively, and filling illegal transitions of s, r and y. Fig. 5-3 (d) is the transition event
specification of the rlatch without filling illegal transitions. The dlatch specification is

constructed similarly.

5.1.1.3. Verification Result
A set of relative timing constraints are detected in high-level verification.

Violation 1:

A witness execution is provided by FIREMAPS as follow:
rn+y\+q- g[+f+ r-rn+ye-qt+yitqi- d1+f-

After the rising edge of g, is issued, fis set to high by g,+. At the same time, g+ resets
the rlatch,, then g, will be reset to high. The rising edge of ¢, or f will reset g to low. If
the NOR gate in the implementation is not quick enough to stabilize its output before the

next request and done pulses reset ¢, and f to low, then a falling edge of g, is missing.

We change the NOR model to a quickened model, corresponding to the constraints

below:

di: D(g+f+d+f)>D(g+f+gr)

d: D(gtqrtqr)>D@+frgr) (=12
These constraints can be implemented by sizing the circuit: Make the NOR gate delay
less than internal Mutex delay or the delay from when grant is issued to when done

arrives.

Violation 2:

A witness execution is provided as below:
rot yot qa- g+ f+ 8o dot f- g+ f+ g2

After g.+, da+ resets the f to low before g+ sets g2 to high. Another g pulse will be
generated by f -, which is not expected by the specification.

To avoid this problem, we added several chain constraints of the following form:
dy: D(g+frd+f)>D(g+y-q+) (i=1,2)

To implement these constraints, the arbiter shouid be sized so that the delay of rlatch plus
the delay of Mutex is less than the delay of dlatch plus the delay from when grant is

issued to when done signal arrives.

Violation 3:

A witness execution is provided by FIREMAPS:
ra+ yr+ qa- ot f+ ra- rat+ ya- yot go-

This execution represents a violation as follows. The g+ resets y» to low. [f another
request pulse r» comes from the same channel after g2+, then y, will be set to high again.
If the Mutex in implementation is not quick enough, y» pulse will be considered as a

hazard.

46

dy d
- — iD(gﬁqﬁr,-@ -1>D(g+f+g) J- -—— l L D(g,+f+zl,+f-)>D(g,*f+g,-)-L|
Ml | | 1

I
M L
| '— r_latchl | |
: » MEL — — s
_L .)
I,— Half-ME =
! d_lat

Half-ME

]

T_TatchZ

L D(gf+di+f1>D(grtvigi+) —]d’ L Digrtyi-get)>Digrityit) Jd‘

Figure 5-4: High-level verification result of the asP* arbiter.

To avoid this problem, we made additional timing assumptions by changing the Mutex
from hazard intolerant model to quickened model. This change amounts to several chain

constraints, of the following form:
ds: D (g+ yi- git) > D (gi+ ri+ yit) (i=1, 2)

Notice that constraints 3 and 4 release the information that under what environment, can
the arbiter work properly. To implement these constraints, the circuit should be sized so
that the delay of resetting the Mutex is less than the delay from when a grant is issued to

when the next request arrives from the same channel.

Fig. 5-4 shows the high-level verification result of the asP* arbiter:

GMutex X Griatchl X Qriarch2 X Qdlaich < Gnorl X Qnor2 X dpn 3 Qarbiter

dp=diXdyXdyxd,

In Fig. 5-4, boxes d| — d; represent 4 relative timing constraints. These constraints are

modeled by processes. Product operation connects delay constraints to other submodules.

47

r;

yi

qi

8i

Figure 5-5: Witness execution analysis.

For example, dash lines in Fig. 5-4 connect d; to the corresponding signals in the circuit.
For simplicity, other connections between relative timing constraints and circuit are

omitted in Fig. 5-5.

Given a witness execution, we are interested to determine the corresponding circuit flaw
and a delay constraint to avoid it. Such witness execution analysis is based on the
waveform-like trace provided by FIREMAPS. Fig. 5-5 represents the waveform of
Violation 2. The shade in Fig. 5-5 highlights the occurrence of the violation. Event di+ at
fo triggers the violation; at ¢, the violation is observed. Waveform before f, can be
considered as “path sensitization” for the witness execution. Sometimes. the path
sensitization contains a large number of events, which are not very relevant for the actual
violation. In the rest of this thesis, we omit representing the path sensitization portion of a

witness execution, to focus on the actual violations.

Delay constrains are drawn from the witness execution analysis. The event that caused the
witness execution to exit the set of legal behaviors is a good candidate for the end of the
short chain or the long chain in a chain constraint: relative timing should ensure that event
occurs earlier or later, when it becomes safe. Presently, we still manually generate the
relative timing constraints, because the relative timing constraints are often ad hoc to the

design. Some heuristics for finding such constraints are indicated in [NP98].

48

set] seel_L| setl_2 serl_3 serl_4

—A D>
—DopDo—{>—{>>— FJ
-

set setl set2 setd serd

—o Do >—

ser2 ser2_Jl ser2_ 2 ser2_3 ser2_d4

res_elj

clr1_l clri 2

resetl reset2 reset3

(@) cr2 | Tetr2_l cr 2.2 clr23

Figure 5-6: Implementation of rlatch and dlatch:

(a) rlatch implementation; (b) dlatch implementation.

5.1.2. Submodule Verification

Submodule verification consists of refinement checks between switch level
implementation of submodules and their intermediate specifications. In this section, we

use rlatch as the example of refinement checking on this level.

5.1.2.1. rlatch implementation

The implementation of the rlatch from [GO99] is shown in the Fig. 5-6 (a). When a
rising edge of signal set comes, the inverter chain of set (contains 4 inverters) generates a
three-inverter delay pulse upon the PMOS network, thus set output y high. The same
mechanism is used for reset. The box labeled K is a “keeper” circuit consists of a weak
inverter and a feedback inverter that form a loop, so that the value of the rlatch output can

be kept when there are no set or reset paths enabled.

Fig. 5-6 (b) shows the implementation of dlatch. Essentially, it is the composition of two

rlatches that share the “keeper”.

49

5.1.2.2. Switch-level Verification

We follow the approach to switch level verification reported in [Ne98], in which MOS
transistor networks are decomposed into channel-connected subnetworks [Br87], which

are defined by the absence of gate-drain and gate-source connections.

Normally each channel-connected subnetwork contains an N-transistor network and a P-
transistor network, called the pull-down and the pull-up networks. Boolean variables are
used to indicate the presence of conducting paths. A NODE model [Ne98] is used to

connect the pull-down model and pull-up model together.

Figures in Fig. 5-7 show NODE symbol and models introduced in [NP98]. Fig. 5-7 (a) is
the symbol of the node. Signal up and dn represent the connection to the source and
ground respectively, with “1” standing for connected situation. Fig. 5-7 (b) describes the
behavior of a NODE model. For example, from initial state, the transition up pulls the
output y of the node to high. This model also implies that up and dn should not hold in the
same value. When both up and dn are high, the MOS network is in short status, and when
both up and dn are low, the MOS network is in float status. NODE model can be changed

to represent the different behavior of the node under different assumptions. For example,

up
-
Node —

dn

up.dny (c)

(a)
Figure 5-7: Node models :
(a) Symbol of Node; (b) Common node model; (c) Node with transient collisions illegal.

50

an alternative NODE model would be to make transient collision illegal by taking all

executions that pass through a collision state to be rejects, as in Fig. 5-7 (c).

We modified the model of NODE by adding Keeper. As it is shown in Fig. 5-8 (a), output
y will keep the previous value and will not dangle when none of pull-up and pull-dn
network is conducted. (In Fig, 5-8 (b), by modifying reject states, in which «p and dn are
both low, to goal states and removing edges between two states.) The representative of
pull-up and pull-down networks in the rlatch is shown in Fig. 5-8 (c). represented by

Boolean functions:

up = —setl A —setd

dn = reset A reset3
The verification of rlatch is to check the refinement relation as follow:

Priatch = P:et_inv_chain X Preset_inv_chain X pup X Ddn X PKnode ; Qriatch

In which Pier_inv_cain is the model of set inverter chain (4 inverters); Preser_inv_chain 1S the
model of reset inverter chain (3 inverters); p., and pu, are pull up and pull down functions

of the node; pknos. is the model of the node with keeper represented in Fig. 5-8 (b). and

setl_c |
—q

setd
— M Node with y
Keeper |
] -
reset__
—
reset3
(b)

Figure 5-8: Model of node with Keeper.
(a) Node with Keeper; (b) MOS network models of rlatch.

b))

specification g, is constructed in Section 5.1.1.2.

Some assumptions can be drawn from the environment of the rlatch in asP* arbiter
system. Interface signal set, reset and y of the rlatch are under constraints. For instance, in
the channel, of asP* arbiter, grant signal g, is used as reset signal of rlatch;. Notice that
for rlatch,;, g;+ will not be triggered until y,+ is propagated through Mutex and NOR gate.
As a result, we can make an environment assumption for rlatch. (This assumption is not
the only possible such assumption.) Represented by the relative timing constraint, this

environment assumption is shown as follow:
denv: D (set+ reset+) > D (set+ y+)
Correspondingly, the verification of the rlatch becomes:

denv X psel_inv_chain X DPreset_inv_chain X pup X Pdn X PKnode ; q riarch

The verification result shows that the refinement relationship holds when the input pulse
width is enough to be caught by the inverter chain. Since this can be easily satisfied in
design, rlatch implementation in Fig. 5-8 (a) refines rlatch specification when it is used in

asP* arbiter.

The same as rlatch, Mutex, dlatch and NOR gates refine their intermediate specification

when they are used in asP* arbiter.

5.2. Verification of the Peephole-Optimized of asP* Arbiter

To achieve higher performance, the designers optimized the asP* arbiter of Fig. 5-1. The
optimization weakens the modularity of asP* arbiter, thus increases difficulty of
verification by generating more complex submodule interfaces. In this section. we

introduce our experiment of applying peephole rules in peephole verification.

5.2.1. Peephole Optimizations of the asP* Arbiter

Fig. 5-9 (a) is the block diagram of asP* arbiter after optimization in [GO99]. Notice the

change of submodules at their interfaces. (For example, the new interface of Mutex has

12 signals.) In Fig. 5-9 (a), signal r; is connected to the internal node set, of rlatch; signal

8» is connected to the internal node ser_1 of dlatch.

Fig. 5-9 (b) shows the peephole optimizations over the half Mutex. Boxes in dark indicate

modifications during the optimizations. Signal r» and g, from the internal nodes of rlatch

L r_latchl T O
clr y Vi y g gb ab a g1
n -at
set set2 r2 qb l
serl o
r . -qb’ serl_
g d_latch
Mutex/2 > el d
ol L . |
Mutexi2[g f clr—d:
r -qb’
3
-l—se: 2 ; ,fel"'l
rl se!2 T -qo setl
y qb .
Clr y ya J' ﬁb 82
r_latch2] q2
(a)
g - 35
| RS
by o
|
|
" 95 i
; i
: (b)

Figure 5-9: Peephole Optimization of asP* arbiter:

(a) asP* arbiter block diagram after optimization; (b) Half-Mutex after optimization.

53

New Constraints

needed? f
d>

Constraints of original

L R I R RS I

Figure 5-10: asP* arbiter after optimization.

and dlatch are highlighted. For the detail and motivation of these optimizations, we refer

the reader to [GO99].

Notice that only Mutex’s low-level structure is changed by optimization. For the other

submodules, optimization only changes the topology between them.

To verify the arbiter after peephole optimization, we model the optimized arbiter, shown
in Fig. 5-10. Model rrl, rr2, gbl and gb2 are *“abstracted” from rlatchl, rlatch2 and

dlatch. Relations between models hold as follow:

Priatchl = Prr1X Priatchts Priatch2 = Drr2X Priaich? ; Pdiatch = Pgb1X Pgb2 X Pdlaich

In this way, we isolate unchanged modules (white blocks) in Fig. 5-10 from the models
changed by optimization (dark blocks). Verification task after peephole optimization

verification is described as follow:

Reusing the result from Section 5.1 we want to check refinement relation:

54

8ol &1

N4y 8 8
r r q D__ y—l :)‘—-ql
rrlir Q
nq 2d
? I Y2 ® q>
y y ngq
r. r
rr r PP q:
TL 8 & . .
Under: Design assumption
Environment concern.

Figure 5-11: Reducing verification complexity by using the peephole rule.

DPebt X Pgb2 X Pret X Prrz X PMutex’ X Qriarchi X Qriarch2 X Gdlatch X Qnorl X Gnor2 3 q arbiter

In which pa..- represents the replacement of pasu. in optimization.

5.2.2. Verification of Peephole Optimizations

Applying peephole rule in verification, the verification of arbiter can be reduced to

verifying the relation

PMutex’ Xd3 GMutex 7d

as it is shown in Fig. 5-11. If constraint d does not impose extra confinement to the
system, the replacement of Mutex is successful. Otherwise extra constraints in d should

be examined.

35

There are three optimizations addressed in [GO99]. The first optimization over the half-

Mutex is shown in Fig. 5-12. Changes involved in optimization! are highlighted.
To apply the peephole rule, the preparation work consists of three steps:

First, a model of optimization assumption is constructed. In Fig. 5-12 the highlighted part
indicates the optimization assumption of optimizationl, which *“adds an additional
‘bypass’ to allow the rising edge of a request to be applied directly to the arbiter without
incurring the delay of the rlatch.” [GO99]. Relative timing constraint

d: D(ri+,ng-)>D(r+,y+) (i=1,2)

in Fig. 5-12 comes from this statement.

Second, the refinement
Dgb1 X Pgb2 X Prr1 X Prr2 X GMutex X Grlatchl X Griatch2 X Gdiatch X Gnort X Gnar2 X d 3 arbiter

is checked and the relation holds.

In the last step, we choose M = {pgp1, Pgba , Prri s Prr2y di} as the initial support model of

D(ri+, nq\-) < D(ri+, y1+) | | D(nq:-, q1-) > D(ng-, y1+) 13

D(ri+, g1+) > D(ri+, y1+) =

Figure 5-12: Verification and result of optimization] (half).

56

peephole verification, and optimization assumption d = d| X p,ri X P2 .

The verification procedure follows the strategy in Chapter.4. Two constraints are
introduced in the procedure. One constraint:

ds: D(r+, gi-) > D(r+, yi+) (i=12)
can be supported by component model pracn1 and priach2. The result of peephole

verification is:

M= [Pgbl » Pgb2 s Prrl s Prr2s dl.‘]rlulchly quulchZ); d= dl X drrl X drrl X (12

PMutex’ X dxd; 3] GMutex

In which d; is an extra delay constraint:
dy: D(ngr,qr)>D(ngr,y-) (i=1,2)
needed for the holding of the refinement.

The result implies that: if the “short path” of r, does not change the order of y;+ and q,

after optimization|l, arbiter implementation still refines the specification.

Optimization2 and optimization3 are verified in the same way and the refinement only

holds under certain extra constraints.

To examine the validity of the extra constraints detected in the peephole verification, we

changed peephole in verification from Mutex to the whole arbiter.

Applying peephole rules, we verify the implementation in Fig. 5-10. The verification
terminated and the result reported that no extra relative timing constraints are needed for

arbiter optimization:

M = {dyes), daesa }; d = duest X dges2

PMutex’ X Griatcht X qriarch2 X Qdlatch X Qnorl X 4nor2 X dh xd .| q arbiter

daesi: D(ri+, ng-) < D(r+, yi+) from optimizationl
daesa: D(gi+, goi-)> D(gi+, yi+) from optimization2
(i=1,2)

So the optimized arbiter in Fig. 5-9 (a) can replace the arbiter in Fig. 5-1.

S8

Chapter 6. Case Study: Communication

Refinement

Communication refinement is an important technique for reducing the design effort for
system on chip architectures [RSV97]. The case study of this chapter is to verify one step
of communication refinement using modules that interface locally clocked domains to a
global (across-chip) handshake environment. The modules were proposed by [MVK+99,
MVF00], following the pausible clock idea of [YD96].

Just like in the pulse-mode specifications, we start with a simpler specification for data
transfer that uses high-ievel events, then we construct a full-detail specification by
product with constraint processes. A GALS wrapper implementation, as a particular
implementation of data communication, is regarded as a special kind of peephole

optimization, applying the peephole rule.

6.1. Data Transfer Specification

6.1.1. Communication Features.

Essentially, communication among blocks in a system is implemented by data lines

bundled with control signals. We expect the specification should:

¢ Include features of both control path and data path.

e Be sufficiently precise so that it can support automated verification.

59

e Be as simple as possible, so that it can be easily developed and understood by
designers.
e Be sufficiently general so that it can be easily mapped to communication

refinement.

We introduce a new technique to build data transfer specifications independently of the
synchronization scheme, and we apply this technique to our verification case study.
Although the example we use in this chapter focus on data transfer between two
independently clocked domains, the same data transfer specification modeling technique

can be applied in a more general asynchronous context.

Fig. 6-1 represents the data transfer implementation. A data channel should be
implemented to connect sender and receiver, so that data sent by the sending side (Datal)
can propagate to the receiving side (Dara2); control signals data_snd and data_rev
synchronize the behavior of sender, receiver and data channel. The main difference
between synchronous and asynchronous data transfer is how control signals synchronize

the sender, receiver and data channel in communication.

A robust data transfer scheme requires that, under any circumstance, data issued by
sender should be received correctly by receiver after a certain delay. The notion of

correctness used here can be decomposed into the following aspects:

Sender Receiver

f Data_snd Data_rcv f

Figure 6-1: General data communication diagram.

60

¢ Data integrity: received data preserves its original sending value.
e Stream integrity: no data items are lost or duplicated during data transmission,

and the order of data items is preserved through the transfer.

As modeling stream integrity would require numerous states to represent data and control
signal interleavings in a transition-event representation, we use instead a fictitious data
event called validity event in our high-level specifications. Our technique abstracts away
any irrelevant transition events and only considers data events triggered at active edges of
clocks. This model fits nicely into a communication refinement paradigm, by permitting

to isolate data validity events from the particulars of the synchronization signals used.
A validity-event data-transfer specification incorporates the following assumptions:

e After a control signal is fired on the sending side, there is a data validity event at
the input port of the data channel.

e After data is properly sampled by receiver, there is a data validity event at the
input port of the receiver.

e Data integrity is preserved in the data transmission, for instance, for each valid
input “‘0” (or *“1”) there is a valid output 0" (“1”). and vice versa.

e Stream integrity is preserved in the data transmission.

For the asynchronous wrapper, the high-level data-validity specification is the process
shown in Fig. 6-2. The “0” data validity event v0 is propagated as v0Q' to the end of data
channel. Same applies for the "1 data validity events. Notice that we use only one-
bounded models for the data propagation. An N-bounded model is easy to achieve

following the example of constructing a two-bounded buffer, which is introduced in

v0 vi Drawing conventions:
- The states shown are goals.
o o e - Missing v0 and v/ events lead Lo permanent rejects.

- Missing v0'and v!'events lead to permanent escapes.
. - Other actions are ignored and have self-loops at each
v0 2 state.

Figure 6-2: Propagation of validity events.

61

Drawing conventions:

- The states shown are goals.
- Missing transitions on the
actions of each process lead
to permanent cscapes.

- Other actions are ignored
and have self-loops at cach
state.

Figure 6-3: Examples of Fusion Processes:
(a). Fusion of Datal; (b) Fusion of Data?2;

(c) Invariant fusion of Datal; (d) Invariant fusion of Data?2.

Chapter 2.

6.1.2. Fusion Processes

In order to transform the high-level specification of Fig. 6-2 into a full-blown
transition-event specification, we introduce fusion processes to “glue” validity events,
transition events, and control events (e.g. clock) which trigger the validity events. Such
processes effectively force glued events to occur simultaneously by forbidding other
events from occurring in between. For instance, Fig. 6-3 (a) illustrates a fusion process
where the data transition event Datal is fused with its validity events v0 and v1 by control
event Data_snd, which is the active edge of a local clock. Note that signal Daral can
toggle arbitrary in a clock cycle, while the validity events are related to the logical level
that signal Datal has right before active-edge of Data_snd: If Data_snd comes when
Datal is low, validity event vO will be issued and there will be no another validity event
until the next active edge of Dara_snd, though Daral might keep changing between two
active clock events. Same as Fig. 6-3 (a), Fig. 6-3(b) fuses the transition events of Dara?2,
with the active edges of control signal event Dara_rcv and with corresponding validity

events. Fig. 6-3 (c) and (d) are fusion processes to glue the validity events with a higher-

62

Drawing conventions:

- The states shown are goals.

- Missing outputs lead to permanent escapes.

- Missing inputs lead to permanent rejects.

- Other actions are ignored and have sclf-loops at each state.

Figure 6-4: Specification constructed from fusions.

level data-invariant validity event, for the case that where one data-invariant validity

event is required to represent either of the lower-level validity events in analysis.

We present in Fig. 6-4 a state diagram for the process obtained by applying fusion process
to “glue” both datal and data2. To obtain the full-blown transition-event specification,
we first compute the product of the high-level specification in Fig. 6-2 with the fusion
events in Fig. 6-3 (a) and (b), then by hiding the high-level data-validity events, we get
the complete specification of data transfer, but denoted by abstract events. After applying
the technique introduced in Chapter 3, we get the transition event specification of the data

transfer, which can be directly used in verification.

63

6.2. GALS Wrapper Verification

6.2.1. GALS Wrapper

Globally-Asynchronous Locally-Synchronous architectures (GALS) show that a system
can be partitioned into several independently clocked domains (subsystems) that
communicate in a self-timed manner. To isolate each locally-synchronous domain from
its globally-asynchronous environment, (BC96], [MVF00] and [MVK+99] introduced an
elegant design, called asynchronous wrapper, used to equip each locally-synchronous
domain. Asynchronous wrappers serve as controllers for data transfer between individual

domains, and deliver a locally generated pausible clock for the synchronous part of

circuitry [MVFQ0].

The asynchronous wrapper circuits proposed in [BC96] and [MVK+99] attempted to
realize failure-free communication in presence of metastability by performing arbitration
between local clocks and handshaking control signals. Fig. 6-5 shows one configuration
from [MVK+99]. We refer readers to [MVK+99] and [MVFO00] for the detail of wrapper
implementation. The gray box in center contains the implementation of the GALS
wrapper. Compare with Fig. 6-1, signals Datal, Datal, Iclkl and Ts at the interface (the

boundary of gray box in Fig. 6-5) of GALS wrapper correspond to signal Datal, Data?2,

Clock Domain 1 PaIgi

I-{
%] ClockGenl

J. oo

b I A
-’ o -

ClockGen2 g

e, A

Figure 6-5: Data channel between two independently clocked domains.

Data_snd and Data_rcv. Signal Iclk2 is an “extra” signal. Two gray boxes next to GALS
wrapper are used to construct part of support model in verification. Support model M also
contains submodule Translator inside the wrapper, in which relation between signals Ts,
Ti and Iclk2 is specified. Therefore, constraint d can be abstracted from support model M.
The high-level verification is performed by selecting wrapper as the peephole in the

communication system.

6.2.2. High Level Verification Result

Here we verify a step of communication refinement by checking whether our data-
transfer specification in Fig. 6-4 is satisfied by the channel configuration in [MVK99].
We refer reader to [KNYO01] for intermediate specifications of submodules. At the present
stage, this part of our verification is based on safety models, which only detect the
presence of invalid events. Further investigation will be needed to verify absence of
deadlock and unfairness conditions by using stronger specifications. By applying our
verification techniques, we detect several relative timing constraints that were not
reported by the designers. To simplify our presentation of results, we only refer to the
validity events datal-valid and data2-valid below, instead of any data event. Only relative
timing constraints are represented as chain constraints, (Signal labels refer to Fig. 6-5.)

because the complexity of the witness executions.

L. D(Ti+ Ts+ lclk2+ (clk2- Ts-) < D(Ti+ Ti-). The Ts+ event, which should indicate to
the receiver block that data has been received, should be fired and become stable within
two consecutive Ti events. In other words, the delay from 7i+ to Ts+ should be less than
half the period of clock 2. Failing to satisfy this constraint might lead to data being
sampled twice at the receiver side, which leads to erroneous duplication of data items.
The worst-case scenario is where every data item is duplicated at the receiver side. In [9].
there is no mention of this danger for duplication. Even though the duplication of items

might be fixed inside the receiver block by another level of the communication protocol.

the duplication would still undesirable because the computation tasks for receiver would

be doubled.

2. D(Ai2+ Ti+ Ts+) < D(Ai2+ Ap+ Rp- Ai2- Iclk2+). The delay from Ai2+ (which is to
acknowledge the pausing of clock2) to Ts+ (which is to indicate the receiver the arrival of
data) should be less than the delay from Ai2+ to restart the clock2. Otherwise, the
receiver will not sample the available data at its data input, due to absence of a triggering
event Ai2+ , moreover, the data which was supposed to be sampled by the receiver will
be flushed away by the next incoming data by restarting of clock2. In this situation, the

data loss will be permanent and unrecoverable.

3. D(Den+ Rp+ Ap+) < D(Den+ data-valid). Data should be put at the input port of latch
before the latch switches from transparent to opaque; otherwise, before data getting
stable, improper data states will propagate through latch and be sampled by receiver. This

constraint sets up a delay time boundary for latch to switch its state.

4. D(Rp+ Ap-) < D(Rp+ Ts+ Iclk2+). A Ts+ event should be issued later than the Ap-
event to ensure a stable and valid data at the output of the latch, which was triggered by
Ap- and switched to opaque state already; otherwise, the Ts+ event will trigger the

receiver to sample a data item which is not guaranteed to be correct.

S. D(Pen+ Ai2+) < D(Pen+ Iclk2+). The delay path from the P-input enabling signal
Pen+, to the clock pausing acknowledge signal, Ai2, should take less time than the
issuing of the next Iclk2 event; otherwise, the next P-input enabling signal will be ignored

as the result of a race condition.

6. D(Pen+ Rp- Ri2+ Iclk2+ lclk2- Pen-) < D(Pen+ Rp+ Ri2+ lclk2+ lclk2- Ai2+ Ti+
Ri2-). The relative timing interval between Rp+ and rclk2+ is arbitrary. If Rp+ is issued
close enough to Iclk2+, then, Ri2+, which was supposed to be triggered by both Rp+ and
a Pen event (Pen+/-) can not be win the arbitration over lclk2+. Therefore, [clk2 will not

be paused immediately after the arrival of Rp+, the next clock event /clk2- will be fired,

66

and, further, Pen’s state will be reset. Thus, Ti event would be canceled, before the Ts is
set to high. While the acknowledge Ai2 will still be sent to the D-port, though no data is
sampled by the receiver. Moreover, if the implementation of the translator is not totally
hazard-free, Ts will quickly return to low if Pen- is issued right after Ts+ event. If clock2
pause request (Ri2) can not withdraw before Pen- comes, Ti will be reset to low again and
still might affects event state of 7s. We add the above constraint, which implies that delay
from Iclk2- to Pen-, is longer than the delay from Ai2+ to Ri2-, so that no data will be

missed during transfer.

Result of GALS wrapper verification is represented as follow:

dver_res Xgc-gen1X qD-our X QP-in X 4C-gen2 X d3 Qdatar_com

in which d..,_.s is the product of all relative timing constraints detected in verification.

67

Chapter 7. Concluding Remarks

We introduce two techniques to solve difficulties encountered in formal verification:
specification construction and state explosion. The specifications construction technique
bridges the specifications on different levels: high-level analysis and low-level
verification. We provide a structured verification rule, called peephole rule, for reducing
verification complexity in peephole optimizations. Just like hierarchical verification and
assume-guarantee rules, the peephole rule alleviates state explosion by splitting an overall

proof obligation into several smaller verification tasks.

We demonstrate our techniques by applying them to different circuits from [GO99] and
[MVK+99]. The circuits in [GO99] were previously thought to be hard to verify case
studies, which are thought hard to verify; in fact, [GO99] mentions that verifications

using Mocha [AHM+98] were not successful to the date of publication.

We have established refinement between the switch-level implementation of the asP*
arbiter and a specification derived automatically from high-level handshake events. We
found the circuit to be generally in agreement to its specification, although the delay

constraints were only partly documented in [GO99].

For the GALS wrapper in [MVK+99] and [MVF00], we have found several race
conditions that could not be justified by the explanations of the delay constraints given in

their original papers.

68

References

[AG92]

[AHM+98]

[BC96]

[BCM92]

[Be93}

(Br87]

{(BRB90]

V. Akella and G. Gopalakrishnan, “SHILPA: A high-level synthesis system
for self-timed circuits,” in Int. Conf. Computer-Aided Design, ICCAD’92,

Nov. 1992, pp. 587-591.

R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran,
“MOCHA: modularity in model checking,” Computer-Aided Verification
(CAV 98), pp. 521-525, 1998.

D. Bormann, P. Cheung, “Asynchronous Wrapper for Heterogeneous
Systems.” Proceeding of International Conference on Computer Design

(ICCD), pp. 1996.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
“Symbolic model checking: 10% states and beyond.” Information and

Computation, 98(2), June 1992.

K. van Berkel. “Handshake Circuits: an Asynchronous Architecture for
VLSI Programming.” In volume 5 of International Series on Parallel

Computation. Cambridge University Press, 1993.

R.E. Bryant. “Boolean Analysis of MOS Circuits.” IEEE Transactions on
Computer-Aided Design, 4: pp. 634--649, July 1987.

K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation of a
BDD package,” Proceedings of the 27" ACM/IEEE Design Automation

Conference, pp. 40-45, 1990.

69

[BS89]

[CGL92]

[CES86]

[CLM89]

[Dig89]

[Go99]

[GO99]

(Ha95]

E. Brunvand and R. F. Sproull, “Translating concurrent programs into delay-

insensitive circuits,” in Int. Conf. Comput. Design, Nov. 1989, pp. 262-265.

E. M. Clarke, O. Grumberg, and D. E. Long. “Model checking and
abstraction.” Proceedings of the Symposium on Principles of Programming

Languages, pp. 343-354, 1992.

E.M. Clarke, E. A. Emerson, and A.P. Sistla. “Automatic verification of
finite state concurrent systems using temporal logic specifications.” ACM
transactions on Programming Languages and Systems, 8(2) pp:244-263
(April 1986)

E. M. Clarke, D. E. Long, K. L. McMillan. “Compositional Model
Checking.” Proceedings of Fourth Annual Symposium on Logic in Computer
Science.(LICS '89), pp. 353-362, 1989.

D. L. Dill. Trace teory for Automatic Hierarchical Verification of Speed-
Independent Circuits. An ACM Distinguished Dissertation. MIT press.
1989.

G. Gopalakrishnan. “Peephole Optimization of Asynchronous Macromodule
networks.” IEEFE transitions on very large scale integration (VLSI) system,

vol. 7, NO. 1, March 1999.

M.R. Greenstreet, T. Ono-Tesfaye. “A fast, asP* RGD arbiter.” Proceedings
of the Fifth International Symposium on Advanced Research on

Asynchronous Circuits and Systems, pp. 173-85, 1999.

S. Hauck. “Asynchronous design methodologies: an overview.” Proceedings

of the IEEE, Vol. 83, pp: 69-93, 1995.

70

[HBP+93]

[Ho85]

[HQR98]

[HQR+98]

[KCK+99]

[KNOla]

[KNO1b]

[KNYOI]

J. Haans, K. van Berkel, A. Peeters, and F. Schalij. *“Asynchronous
multipliers as combinational handshake circuits.” Proceedings of IFIP
Working Conf. Asynchronous Design Methods, Manchester, U.K., Mar. 31-
Apr. 2, 1993.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

T. Henzinger, S. Qadeer, S. Rajamani, “You assume, We Guarantee:
Methodology and Case Studies.” Proceeding of the International
Conference on Computer-aided Verification (CAV), pp. 440-451, 1998.

T. Henzinger, S. Qadeer, S. Rajamani, S. Tasiran, “An assume-Guarantee
Rule For Checking Simulation.” Proceeding of the second International
Conference on Formal Methods in Computer-aided Design (FMCAD), pp.
421-432, 1998.

A. Kondratyev, J. Cortadella, M. Kishinevsky, L. Lavagno, A. Yakolev.
“Automatic Synthesis and Optimization of Partially Specified Asynchronous
Systems.” Proceedings of the International Conference on Design

Automation Conference (DAC99), pp.110 -115, 1999.

X. Kong, R. Negulescu. “Formal Verification of Pulse-Mode Asynchronous
Circuits”. Proceedings of the International Conference on Asia South
Pacific Design Automation Conference. (ASP-DAC 20010) pp. 347-352.
2001.

X. Kong, R. Negulescu. “Formal Verification of Peephole Optimization™.
Proceedings of 2Ist IFIP WG 6.1 International Conference on Formal
Techniques for Networked and Distributed Systems (FORTEOI), pp 219-
234.

X. Kong, R. Negulescu, Larry Ying. “Refinement-based Formal Verification
of Asynchronous Wrappers for Independently Clocked Domains in Systems
on Chip”. The 11th Advanced Research Working Conference on Correct

71

[LGS+95]

[LL90]

[(Mc93]

[McM97]

[MICL97]

[MVF00]

[MVK+99]

Hardware Design and Verification Methods (CHARME 2001). (Paper to be
appear)

C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. “Property
preserving abstractions for the verification of concurrent systems.” Formal

Methods in System Design, (6):1-35, 1995.

L. Lamport and N. Lynch. “Distributed computing: Models and methods.”
In J. van Leeuwen, editor, Handbook of Theoretical Computer Science,
volume B, Formal Methods and Semantics, pages 1159-1196. The MIT
Press-Elsevier, 1990.

K. L. McMillan, Symbolic Model Checking, Kluwer Academic Publishers,
1993.

K.L. McMillan. “A compositional rule for hardware design refinement.”
Proceedings of Computer-Aided Verification(CAV97), Lecture Notes in
Computer Science 1254, pages 24-35. Springer-Verlag, 1997.

C. E. Molnar, I. W. Jones, B. Coates, and J. Lexau. “*A FIFO ring oscillator
performance experiment.” Proceedings of International Symposium on

Advanced Research in Asynchronous Circuits and Systems, 1997.

J. Muttersbach, T. Villiger, W. Fichtner. “Practical Design of Globally-
Asynchronous Locally-Synchronous Systems.” Proceedings of the
International Symposium on Advanced Research in Asynchronous Circuits

and Systems, 2000.

J. Muttersbach, T. Villiger, H. Kaeslin, N. Felber, W. Fichtner, “Globally-
Asynchronous Locally-Synchronous Architectures to Simplify the Design
of On-Chip Systems.” Proceedings of ASIC/SOC Conference, pp. 317 -321,
1999.

[Ne98]

[(Ne0O]

[NP98]

[OSC67]

(PCKPO0O]

[Pe96]

[PU98]

[Ra96]

[RSV9I7]

R. Negulescu. Process Spaces and Formal Verification of Asynchronous

Circuits. PhD thesis, University of Waterloo, 1998.

R. Negulescu. “Process spaces.” Proceedings of the 1Ith International
Conference on Concurrency Theory (CONCUR 2000), pp. 196-210, 2000.

R. Negulescu, A. Peeters. “Verification of speed-dependences in single-rail
handshake circuits.” Proceeding of the Fourth International Symposium on
Advanced Research in Asynchronous Circuits and Systems, pp.159-170,
1998.

S. M. Omnstein, M. J. Stucki, and W. A. Clark. “A functional description of
macromodules.” In Spring Joint Computer Conf., AFIPS, 1967.

M. A. Peiia, J. Cortadella, A. Kondratyev, and E. Pastor. “Formal
verification of safety properties in timed circuits.” Proceedings of.
International Symposium on Advanced Research in Asynchronous Circuits

and Systems ASYNC'2000, pp 2-11, 2000.

Ad M. G. Peeters. Single-rail handshake circuits. Ph. D. thesis, Eindhoven
University of Technology, June 1996.

L.A. Plana, S. H. Unger, “Pulse-mode macromodular systems,” Proceedings
of Computer Design: VLSI in Computers and Processors I[CCD 98, pp. 348
-353, 1998

Jan M. Rabaey. Digital Integrated Circuits. Prentice Hall, 1996

J.A. Rowson, A. Sangiovanni-Vincentelli. *“Interface-based design.”
Proceedings of the 34" Design Automation Conference, 1997. Pages: 178-
183.

73

[SGR99]

[Si83]

[SS86]

{Sug9]

[YD96]

[Yi]

K. Stevens, R. Ginosar, and S. Rotem. “Relative timing.” Proceedings of.
International Symposium on Advanced Research in Asynchronous Circuits
and Systems ASYNC’99, pp. 208-218, 1999.

J. Sifakis. “Property preserving homomorphisms of transition systems.” In
E. Clarke and D. Kozen, editors, Proceedings of the 4th Workshop on
Logics of Programs, Pittsburgh, U.S.A., June 1983.

R. F. Sproull and I. E. Sutherland. Asynchronous Systems. Sproull and
Associates, 1986.

I. E. Sutherland. “Micropipelines.” Communications of the ACM, 32(6)
pp:720-738, June 1989.

K.Y. Yun and R.P. Donohue. “Pausible clocking: a first step toward
heterogeneous systems,” Proceedings of Computer Design: VLSI in
Computers and Processors ICCD '96, pp. 118 -123, 1996.

L. W. Ying. Verification and Re-Design of Communication Interfaces with

Heterogeneous Timing. Mater thesis, McGill University. 2001

74

