
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copY submitted. Broken or indistind print, colored or poor quality illustrations.

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

ln the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had ta be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings. charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left ta right in equal sections with small overtaps.

ProQuest Information and Leaming
300 North Zeeb Raad. Ann Arbor, MI 48106-1346 USA

800-521-0600

•

•

•

FormaI Verification of Peephole Optimization in

Asynchronous Circuits

Xiaohua Kong

Department of Electrical and Computer Engineering

McGill University, Montreal

March 2001

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the Degree of

Master of Engineering

© Xiaohua Kong, 2001

1.1
~ui8iIionsand Acquisitions et
Bibliographie services services bibliographiques

315~"i'" _.rueWllillgD"
a--ON K1AONot OIa.-ON K1A0N4
CInIda ~

The author bas granted a non­
exclusive licence aIlowiDg the
National Libraly ofCanada ta
reproduce, loan, distribute or sen
copies of this thesis in microfonn,
paper or electronic formats.

The author retains ownersbip ofthe
copyright in tbis thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive peDI1ettant à la
Bibliothèque nationale du Canada de
reproduire, prêter~ distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse Di des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-75272-0

Canadl

•

•

•

Abstract

This thesis proposes and applies novel techniques for formaI verification of peephole

optimizations in asynchronous circuits. Our task is to verify whether locally optimized

modules can replace parts of an existing circuit under certain assumptions regarding the

operation of the optimized modules in context. Two main difficulties in verifying

peephole optimizations are state explosion in the implementation models and increased

complexity of the interfaces of optimized modules. A novel technique is proposed for

constructing in a modular manner specifications and functional models of pulse-mode

circuits. A verification rule related to assume-guarantee and hierarchical verification is

presented, using relative timing constraints as optimization assumptions. We present two

case studies to illustrate the proposed techniques: verification of speed-optimizations in

an asynchronous arbiter, and verification of one step of communication refinement in a

globallyasynchronous, Iocally synchronous (GALS) architecture.

1

•

•

•

Résumé

Cette thèse propose et applique des techniques pour la vérification fonnelle des

optimisations locales dans des circuits asynchrones. Notre tâche est de vérifier si les

modules localement optimalisés peuvent remplacer des pièces d'un circuit existant dans

certaines conditions concernant le fonctionnement des modules optimalisés dans le

contexte. Deux difficultés principales en vérifiant des optimisations locales sont

l'explosion du nombre des états dans les modèles de dispositif et la complexité accrue des

interfaces des modules optimalisés. On propose une technique nouvelle pour construire de

façon modulaire des modèles fonctionnels des circuits mode impulsion. On présenle une

règle de vérification liée aux règles "assume-guarantee" et à la vérification hiérarchique,

en utilisant des contraintes relatives de synchronisation comme suppositions

d'optimisation. Nous présentons deux études de cas pour illustrer les techniques

proposées: vérification des optimisations dans un circuit arbitre asynchrone. et

vérification d'une étape de raffinement de transmission dans une architecture globalement

asynchrone et localement synchrone.

li

•

•

•

Acknowledgements

1 would like to start by expressing my gratitude to Prof. Radu Negulescu for his

continuous support, help, and patience. In fact, without his supervision and guidance, this

work would have never converged.

1also like to thank my external examiner, Mark Greenstreet, for his insightful comments;

lan Jones, from Sun Microsystems Laboratories, who brought to my attention the

asynchronous arbiter case study; my coUeague in the Microelectronics and Computer

Systems laboratory, Larry Ying, who worked together with myself on data

communication retinement and provided the implementation models of the GALS

wrapper in Chapter 6; and my friends, Weiwen Zhu, Mark De Clercq and Clarence Tarn,

who never ceased to show ail sorts of support and encouragement.

My gratitude always goes to my closest friend, Muhua Li, for her arrivaI bringing love

and care, and for her cooking skills preventing me from starvation through the critical

days of the Master' s program.

Finally, 1 would like to acknowledge the financial support for my Master's studies

provided by McGill University and NSERC (Natural Sciences and Engineering Couneil

of Canada).

III

•

•

•

Contents

ABST'RA.CT ••1

RESUME. •••.•••••••••••••••••••••••••••••••••••••• n
ACKNOWLEDGEMENTS•••.•••1lI

CONTENTS•••IV

FIG'URES••.••.• VI

C'HA.Pf'ER 1. IN'TRODUCTION •• 7

1.1. MOTIVATION••....•••.........•..••••••.....................••.......•................•......•..•...... 7
1.2. PREVIOUS WORK................••....••..............................•...................................•.•....... 8
1.3. ORGANIZATION OF THE THESIS•••..•.................•....... 9

C'HA.Pf'ER 2. PRE.L.rn-IN'AR.IES••••.•••.••••••••••••• 10

2.1. PROCESS SPACES 10
2.1.1. Basic definitions 10
2.1.2. Models ofCMOS CeUs Il
2.1.3. Salety and Finalization Processes 13
2.1.4. Relative Timing Constraints 13
2.1.5. Operations 15

2.1.5.1. Composition 15
2.1.5.2. Robustness 16
2.1.5.3. Refinement 16
2.1.5.4. Hiding 17
2.1.5.5. Reflection 19

2.2. AREMAPS 20
2.3. EXAMPLE: VERIFICATION OF A PULSE-MODE JOIN 21
2.4. MODULAR AND HIERARCHfCAL VERIRCAT10N 22
2.5. PEEPHOLE OPTIMlZATIONS IN ASYNCHRONOUS CIRCUiTS 23

CHAPTER 3. CONSTRUCTIN'G SPECIFICATIONS FROM HIGH·LEVEL
EVENTS 2S

3.1. Pur..sE-MODE HANDSHAKING•.•.•.•...........•..••.••..•............•.•.........• 26
3.2. PULSE EVENTS AND TRANSITION EVENTS 28
3.3. TRANSITION-EVENT SPECIFICATION CONSTRUcnON•...•........................ 29

C'HA.Pf'ER 4. A STRUCTURED APPROACH FOR PEEPHOLE
VERIFICATION ••.••••••••••..•••••..••••••••••••• 32

4.1. ASSUME-GUARANTEE VERIFICATION•............................•......................... 32
4.2. THE PEEPHOLE RULE 34
4.3. HEURISTICS FOR FINDING VERIFICAnON ASSUMPTIONS...•..........•.•.....................•• 38

IV

•

•

•

4.4. STRATEGY FOR AsSUME-GUARANTEE VERIRCATION 39

CHAPI'ER 5. CASE STUDY: A HIGH-SPEED ARBITER 41

5.1. VERIFICATION BEFORE OPTIMlZATIONS 41
5./.1. High-level Verification 43

5.1.1.1. Construction of asP* Arbiter Specification 43
5.1.1.2. Implementation Description 45
5.1.1.3. Verification Result 45

5./.2. Submodule Verification 49
5.1.2.1. r1atch implementation 49
5.1.2.2. Switch-Ievel Verification 50

5.2. VERIFICATION OF1lŒ PEEPHOLE-OPTIMIZED OF ASP* MalTER 52
5.2.1. Peephole Optimizations ofthe asP* Arbiter 53
5.2.2. Verification ofPeephoLe Optimizations 55

CHAPI'ER 6. CASE STUDY: COMMUNICATION REFINEMENT 59

6.1. DATA TRANSFER SPECIRCATION...•.. 59
6././. Communication Featllres 59
6./.2. Fllsion Processes 62

6.2. GALS WRAPPER VERIACATIaN 64
6.2./. GALS Wrapper 6.J
6.2.2. High Level Verification Result 65

CHA.PrER 7. CONCLUDING REMARKS•......••...••••.•.....•.....•......•....................... 68

REFERENCES .••••••••••.••.•..•.•.••...••.•.......••...........•••.....•...............•....••.......................... 69

v

•

•

•

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 4-1:
Figure 4-2:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:
Figure 5-10:
Figure 5-11:
Figure 5-12:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:

Figures

Exa.mple proces,ses: ••• Il
Relative timing constraint: ••• 14
Hiding an action in a pn»cess: 18
Dual-edge pulse-mode JOIN : •• 20
Single-rail data interface between sender and receiver 26
2-phase handshaking protocol 27
asP* handshaking protocol••••••••••••••••••••••••••••••••.••.••••••.••••••••••••••••.••• 27
Dual-edge pulse mode bandsbaking protocol 28
JOIN element and its specification: 29
Constnaction of the dual-edge pulse-mode JOIN specification: .•••• 30
Replacement under assomptions: •••••••••.••••••••••••••••••••••••.••••••••••••••••• 33
Usage of the peephole mie: •• 36
Block diagram of the asP* arbiter before optimizations•••••••••••••.••• 41
Constniction of the asP* arbiter specification: 43
Constmcting intennediate specification of rlatch: 44
High-Ievel verification result of the asP* arbiter 47
Witness execution analysis•••••.•••.•••••••••••••••••••••••••.••••••.••••••••••••••••.••• 48
Implementation of rlatch and dlatch: 49
Node models :•••••••••••••••••••.•.••••.•••.•••••••••••.••• 50
Model of Dode with Keeper•••••••.•••••••••••.•.•••.••••••••••••••••.•.••••••••••••••••• 51
Peephole Optimization of asP* arbiter: 53
asP* arbiter after optimization 54
Reducing verification complexity by using the peephole mIe 5S
Verification and result of optimizationl (balt) 56
General data communication diagram 60
Propagation of vatidity events 61
Exa.mples of Fusion Processes: 62
Specification constructed from fusions 63
Data cbannel between two independently clocked domains 64

VI

•

•

•

Chapter 1. Introduction

1.1. Motivation

The dramatic increase of integrated circuit sizes raises the need for guarantees of

correctness early in the design flow, instead of leaving such guarantees to testing after the

design is completed. Presently, simulation is widely used to provide guarantees of

correctness of designs. Unfortunately, simulation typically covers ooly a small subset of

system behaviors, especially for asynchronous circuits, where several interleavings of

signal transitions must he taken into account. As an alternative to simulation, formaI

verification is an approach that exhaustively checks the correctness of a system. In this

thesis, we verify whether an implementation meets the specification by checking a

refinement partial order on processes; we refer to this verification approach as refinement

checkillg.

One of our case studies involves verification of peephole optimizations in a high-speed

asP* arbiter design. There, we were confronted with two main difficulties: 1) how to

construct the specification properly and efficiently, and 2) how to avoid state explosion in

verification.

Correspondingly, we propose techniques to solve or alleviate the two difficulties above,

including: 1) construction of specifications for pulse-mode circuits from simpler high­

level models, and 2) adapting assume-guarantee and hierarchical verification rules to the

verification of peephole optimizations. Several asynchronous designs from [0099],

[MVK+99] and [PU98] are studied by applying our techniques. These circuits were found

7

•

•

•

to he correct according to our verification criteria, but only after including additional

relative timing constraints that were not fully documented in the respective papers. These

additional constraints are expressed in the form of chain constraints from [Ne98].

Although these additional constraints suffice to guarantee correctness, they are not

unique; other forms of relative timing constraints may achieve the same effect.

1.2. Previous work

The framework for formai verification used in this thesis is process spaces [Ne9g 1

[NeOO], in which most of the theory basis is developed. This thesis will apply process

spaces to peephole optimizations in general, and to the analysis of two previously

published circuits in particular. Metric free relative timing constraints were proposed in

[Ne97], [Ne98], [5t99], [CortOO] for verification and synthesis; a novelty of our approach

is to use such constraints as optimization assumptions to automatically verify peephole

optimizations. Our pulse-mode specification construction technique tumed out to he close

to the handshake expansion operation used, for instance, in [KCK+99] for constructing

specifications for synthesis, and il also relates to CSP-like channel specifications as in

[Be93]; a difference is that we use the same formalism for bath the simplified channel

representation and the full specification, and we construct full specifications by existing

parallel composition operation instead of specialized program translation mies.

Our hierarchical verification is related to the methods in (CLM89] and [Di89]. Assume­

guarantee rules are addressed in [Sta85], [CLM89], (GL94], [AL95], [Mc97], [HQR98],

[HQR+98]. In tbis thesis we adapt the assume-guarantee rules using relative timing

constraints, and we extend the application of such mies by introducing optimization

assumptions in verification. A distinctive point of our approach is that arbitrary processes

cao he used as optimization assumptions, regardless of connectivity; the choice of such

processes affects the result mainly through computation costs, as explained in Chapter 5.

8

• 1.3. Organization of the Thesis and Contributions

•

•

The presentation of this work proceeds as follows: Chapter 2 presents an overview of the

models used and describes the preliminaries of peephole optimization in asynchronous

circuits. In Chapter 3, we present our procedure for constructing specifications from

simplified higher-Ievel models; this procedure is illustrated by pulse-mode circuits. In

addition, we describe the implementation of these constructs in FIREMAPS. Chapter 4

addresses our peephole verification rules and their application by using relative timing

constraints. Chapter 5 presents the verification of an asP* arbiter as one of the case

studies in the application of two methods introduced in Chapter 3 and Chapter 4 in pulse­

mode circuit verification. As a more general case, communication refinement is studied in

Chapter 6, which is part of the co-work with Larry Ying. Finally, the conclusions of our

work and the possible future steps are presented in Chapter 7.

The pulse-mode circuit verification, which includes part of Chapter 3 and high-level

verification in Chapter 5, have been reported in [KNOla]; Chapter 4 and the verification

of peephole optimizations in Chapter 5 have been reported in [KNOlb]; part of the

verification work in Chapter 6 has been reported in [KNYO 1).

The contributions reported in [KNYO l] are partitioned between this thesis and [YiO 1] as

follows: Subsection 4.1 of [KNYOl] (Implementation Model Construction) is claimed in

[YiOl]; the overall data transfer verification part of Subsection 4.3 in [KNYOl] is split

equally between this thesis and [ViOl]; Sections l, 2, and 5, and Subsection 4.2 of

[KNYOll are general remarks and background information; the rest of the [KNYOll is

claimed in this thesis.

9

•

•

•

Chapter 2. Preliminaries

2.1. Process Spaces

Here we briefly overview the necessary notions and properties of process spaces,

following [Ne98] and [NeOO]; for more details, we refer the reader to the source

references.

2.1.1. Basic definitions

Process spaces are a general theory of concurrency, parameterized by the execution type.

Systems are represented in terms of their possible executions, which can he taken to he

sequences of events, functions of time, etc., depending on the level of detail desired in the

analysis.

Let E he the set of ail possible executions. A process p is a pair (X, Y) of subsets of E

such that Ku Y = E. A process represents a contract between a device and its

environment, from the device viewpoint. Executions in XnY, called goals, denoted by g

p, are legal for bath the device and the environment. Executions from outside X, called

escapes, denoted by e p, represent bad hehavior on the part of the device. Finally,

executions from outside Y, called rejects, denoted by r p, represent bad behavior on the

part of the environment. We also use as p (accessible) and al p (acceptable) to denote X

and Y respectively. The process void, denoted by <Il, is (E; E).

LO

• :=@-.
(a) (b)

a =r~ C

b~

c-_m_~

•

•

Figure 2-1: Example processes:

(a) C-element symbol; (b) Waveform;

(c) Hazard-intolerant model; (d) Inertial model; (e) Quickened model.

2.1.2. Models ofCMOS Cells

Process spaces can be used to build models of circuit behavior in a manner similar to the

state machines of Fig. 2-1. For an example of the models used in this thesis, consider the

C-element in Fig. 2-1 (a). If the inputs a and b have the same logical value, the C­

element copies that value at the output c; otherwise, the output value is unchanged.

Waveforms are represented by finite sequences of actions corresponding to signal

transitions, such as abcbac for the waveform in Fig. 2-1 (b). [n tbis thesis, we use term

trace to refer to such a sequence of actions. We sometimes indicate that a certain action

represents a rising or falling transition, as in a+ b+ c+ b- a- c-.

If ail signaIs start low, the C-element can he represented by the process in Fig. 2-1 (c),

where r, g, and e stand for reject, goal, and escape. Illegal output events lead to an escape

state with self loops on aU subsequent events, caU it a pennallellt escape, and illegal input

events lead to a reject state that cannot be left either, cali it a pennanent reject. The state

Il

•

•

•

where ab leads is also marked e, making it illegal for the device to complete its operation

by stopping there.

The model in Fig. 2-1 (c) is a hazard-inlolerant model. There are variations of the CMOS

cell models, because, in the presence of hazards, the behavior of a CMOS cell is not fully

standardized. FoUowing [Ne98], by hazard we mean a situation where an autput

transition is enabled and then disabled without being completed. For example, executian

abb is a hazard for the C-element in Fig. 2-1. Hazard-intolerant madels simply require the

environment ta avoid hazards, in which any execution that causes a hazard to the system

is a reject execution.

The contract between the device and its environment cao be adjusted by changing the

model of the device. The model in Fig. 2-1 (d) is an inenial madel. Inforrnally speakiog,

a contract of inertial models implies that if the device helieves there is a hazard from the

environment, it cao simply ignore the hazard. For example, in Fig. 2-1 (d), when input a

is reset quickly and is considered as a hazard to the device, executian a+ b+ b- from

initial state returns to the state which is reached by execution a+ from initial state, as if

the hazard on input b had never occurred. Without any assumptions from the

enviranment, inverting CMOS ceUs can be modeled by inertial madels, in which the input

is considered as hazard when the hold time of an input pulse is shorter than the cell delay.

The mode1 in Fig. 2-1 (e) is a quickened model: it assumes the device will take the

responsibility ta avoid hazards in the system by being quick ta respond. inslead of leaving

the hazard-avoidance problem to environment as in the hazard-intoleram mode!. ln the

model in Fig.7 (e), the C-element should be '''quick'' enough 50 (hat no hazards will c:ver

happen. Formally, the uslower" executions of device (such as abb for the C-element) are

escapes because they should he avoided by a quick device (in our case, by issuing a c

event before the second b event). In synchronous circuits, combinatianal logie between

two registers can he modeled as ··quick" enaugh with respect ta dock events. After

promising that the device is "'quick enough" to simplify verifications, the designers

should make good on that promise when choosing transistor sizes of the circuit later in

the design flaw. As will he shown later, a quickened model cao he replaced by a hazard-

L2

•

•

•

intolerant model plus a list of relative timing constraints, which cao he implemented by

sizing.

2.1.3. Safety and Finalization Processes

Informally speaking, safety properties represent that "something bad does not happen"

[LL90]; in our applications, this amounts to avoidance of illegal events. FinaUzation, on

the other hand, ensures that "something good does happen" (as it is both a liveness and a

progress property); in our applications, this amounts to avoidance of illegal stopping. The

safetyand finalization properties can he expressed by means of sets of finite executions.

In process spaces, safetyand finalization are expressed as processes (pairs of acceptable

and accessible sets of executions) over an execution set E equal to the set U* of finite

words where U is a universal set of actions.

Two different processes, one for safety and one for finalization, can he attached to the

same system s. The safety process, denoted (1 s, deals with partial executions and records

the occurrence of illegal inputs and outputs. The finalization process, denoted qJ s, is

constructed for the total (complete) finite executions. In fact, the finalization process

considers every sequence of actions a total execution and records the violations it

contains. These violations include, in addition to illegal inputs and outputs, illegal

stopping.

2.1.4. Relative Timing Constraints

In process spaces, processes can he used to model not ooly gates or ceUs, but also relative

timing assumptions of the following forro:

13

•

Figure 2-2: Relative timing constraint:

(a). Process of a chain constraint; (b) Hazard-intolerant model of C-element;

(c). Quickened model ofC-clement.

where ait ..., am, bl, ..., bn are events such that al is the same as bl, and the Ds are the

durations of the chains of events. Such a constraint, called a chaÎn constraint [NP98],

imposes that the b chain of events will not he completed before the a chain (unless one of

the a or b actions involved occurs out of order). For example, the uquicken mode)" in Fig.

2-1(e) implies the chain constraints:

• D (a b b) > D (a b cl;

D (b a a) > D (h a cl;

D (b a h) > D (h a c);

D (h a h) > D Ch a c);

•

Following [NP98], fig. 2-2 (a) shows the relative timing constraints represented in

process automaton. With relative timing constraints in Fig. 2-2(a), the Hl (Hazard­

Intolerant) model of the C-element can he implemented to satisfy quickened assumption.

Essentially, we obtain a chain constraint process by constructing a state machine that

recognizes the chains and avoids executions that violate the relationship between the

chain events. A device model under certain delay constraints cao he coostructed by the

composition operation that we will discuss in section 2.1.5.1.

Treating constraints as processes rather than linear inequalities permits us to deal with

cases of deadlock and non-determinism, where the inequalities might not apply. Chain

constraints can he implemented by transistor sizing. On the other hand, chain constraints

can model the sizing assumptions of a device; to satisfy the specification, the

implementation should foUow these delay assumptions. Metric-free verification under

14

•

•

•

relative timing constraints was presented in [Ne98] and (NeOO). Further. severa1

verification and synthesis rnethods based on relative timing constraints have been

introduced (see for instance [SGR99] and [PCKPOO)).

We use metric-free models for relative timing constraints in verification. Only the relation

between two chains is ofconcem, while how much delay occurs between two chains is

not explicit. On the other hand, the rnethod used here cao model the delay that is

distributed along a circuit path, without considering whether the delay is caused by

components or wïres.

2.1.5. Operations

2.1.5.1. Composition

Joint behavior (parallel composition) is expressed in process spaces by the produc(

operation [Ne98]. The product of two processes p and q is a process p x q such that

as(p x q) = as(p) é'\ as(q)

at(p x q) = (at(p) é'\ at(q» u (as(p) é'\ as(q»,

or, equivalently, such that

r(p x q) = (r(p) u r(q» é'\ e(p) (\ e(q)

e(p x q) = e(p) u e(q)

g(p x q) = g(p) é'\ g(q).

This means that the product of two processes cao avoid sorne of the reject traces by the

guarantee of executions from each other. Note that executions which are rejects to one

factor process and escapes for the other factor process are escapes for the product process.

Notice that any two processes in a process space can he involved in the product operation.

regardless of their connectivity.

Product is associative and commutative, and therefore can be applied to any number of

processes. In addition, product extends to uncountable sets of processes.

15

•

•

•

2.1.5.2. Robustness

Robustness expresses the property of a process that the device it represents imposes no

conslraints on the environmenl il deals with. For safety processes, this means that the

device accepts all the inputs it receives from the environmenl. Therefore, a process p is

robust when it bas an empty reject set r(p).

Consider, for example, the C-element models represented by the automata in Fig. 2-1.

The hazard-intolerant model in Fig. 2-1 (c) is not a robust process, since the reject set is

not empty. Execution aba, for instance, is a reject since it includes an illegal input (the

second a transition cannot occur before the output changes). On the contrary, the process

automata in Fig. 2-1 (d) and (e) represent robust processes that allow ail inputs to happen

at any state. (Inputs a and b are accepted in every state.) In in Fig. 2-7 (e), because it is

the responsibility of the device to avoid the execution aba, the process is still considered

as robust.

2.1.5.3. Retinement

Refinement is a relation between two processes that aUows for one process p to fully

replace a second process q. A process pis said to refine a process q, written p~ q, if

(at(p) ::J at(q» 1\ (as(p) c as(q)),

or, equivalently, if

r(p) c r(q) 1\ e(p) ::J e(q).

Refinement is reflexive, transitive, and antisymmetric. In the case when refinement exists

in both directions between two processes, i.e., p~ q and q~ p, we say that the two

processes are equal since they have equal accessible and acceptable sets.

Example•

16

•

•

•

To illustrate how to check the refinement relation between two processes, consider again

the C-element models in Fig. 2-1. Name process models in Fig. 2-1 (c), (d), (e) pc, pd,

and pe respectively. By comparing the states in the figures, one verifies that:

(e(pd) = e(pc» /\ (r(pc) :::> r(pd) = 0)

Thus pd ::J pc, or process pd cao replace process pc.

Also, we have a refinement relation between (d) and (e):

(e(pe) :J e(pd» /\ (r(pe) = r(pd) = 0)

Thus pe ~ pd, or process pe cao replace process pd.

From the transitivity property ofrefinement, we have pe~ pc.

2.1.5.4. Hiding

As a particular case of the generic process abstractions in [Ne98] (Chapter 8), we define

the hiding operation performed on processes. It follows from the general treatment in

[Ne98] that hiding preserves refinement.

We start by defining the usual hiding operation for finite words. This operation eliminates

occurrences of certain actions from a finite ward.

Definition For alphabet U and a subset B c U, let <..LB> c U* x U* he a binary relation

on finite words over U such that:

a) (E,e) E <iB>

b) (u, v) E <iB> /\ a E B~ (ua, v) E <iB>

c) (u, v) E <..LB>/\ b e B~ (ub, vb) E <-1,B>

d) each pair from <-1,B> satisfies a), b), or cl.

Let <J..B>' he the inverse of the relation <LB>.

17

•
~

(a)

b a b

(b)

a.x. b

a.x, b

•

•

Figure 2-3: Hiding an action in a process:

(a) A system of two inertial buffers; (b) Product of the buffer processes:

(c) Result of hiding action x.

In words, <-1.8> eliminates from an execution ail actions from 8. while <-1.8>' inserts in

an execution actions from B in arbitrary numbers and at arbitrary places. For example.

we have the following:

abeba <-1.{b}> aea, aea <J.(b}>'abeba, and aea <J..(b}>' bbacbbbab.

The hiding operation on processes is then constructed using the generic construction for

process abstractions in [Ne98].

For a subset X of U*, let <-1.B>X =«-1.B> Il 1 uE X}.

For a process p, let hideB(P) (read hiding ofp over B) he defined such that:

as(hideB(P» =<-1.8>' <-1.B> as(p), and

r(hideB(P» =<-1.8>' <-1.8> r(p).

As an illustration, we use the example of the two buffers Fig. 2-3 (a), and their

composition. The product process P needs not to observe the intermediate signal x.

Therefore, we apply hiding to eliminate x from the alphabet of P. The resulting process of

18

•

•

•

product is shown in Fig. 2-3 (b) where the process still has action x. (The construction in

Fig. 2-3 (b) was obtained by taking the Cartesian product of the state sets of the two

buffer processes; the state machine cao he simplified by coUapsing the permanent escape

states.) Subsequently, we eliminate action x from Fig. 2-3 (h) and we apply a standard

determinization procedure. The result is shown in Fig. 2-3 (c), and it represents the

behavior of a 2-bounded buffer.

Note that hiding foUowed by converse-hiding may produce more reject and accessible

executions than the original process had. This amounts to saying that hiding and

converse-hiding produce a pessimistic (conservative) approximation of a process by a

hiding-independent process [Ne98].

2.1.S.S. ReOection

The reflection of a process p is a process q =-p represented by

as(q) =at(p) and

at(q) =as(p).

Agam, we can define reflection in tenns of r, g, and e:

r(q) =e(p)

e(q) =r(p), and

g(q) = g(p).

Reflection represents an exchange of raIes between device and environment.

Reflection reveals a link between robustness and retinement. For processes p and q:

p;J q ~ px(- q) is robust (::) px(- q) ;J ct>,

where <1>, called void, is the identity element of product. Process cl> has only goal

executions; ilS reject and escape sets are empty.

Thus, one can detect violations of retinement as counter-examples to the robustness of

px(- q), i.e., as executions that are rejects for px(- q). Such counter-example executions

19

•

•

•

can he regarded as 'witnesses to failure' in the verification. Any execution that leads 10

failure is called a witness execution.

2.2. FIREMAPS

FlREMAPS was developed by R. Negulescu al the University of Waterloo. The name

stands for finitary and regular gnipulation of nrocesses and D'stems. This tool

automates the operations and manipulation of processes whose execution sets are regular

languages of finite words.

Ali operations on processes discussed above are implemented in RREMAPS.

Composition, reflection, and hiding are examples of these operations. In addition, if

robustness or refinement fail, FIREMAPS can produce a witness execution that provides

a counter-example to the set relationships involved. Such witness executions serve for

diagnosis by pinpointing faults .

IJL

t. .* •••_._ ._•••• • • ."

(a)

Figure 2-4: Dual-edge pulse-mode lOIN:

(a) Implementation; (b) Specification.

20

•

•

•

2.3. Example: Verification of a Pulse-mode JOIN

As an example of the verification method and gate models used. consider the

specification in Fig 2-4 (b) and the implementation in Fig.2-4 (b). representing a pulse­

mode lOIN element from [PU98]. The pulse-mode lOIN behaves like a C·dement.

except that: 1) it does not allow retraction of input events, and 2) the pulse-mode

convention uses pulses rather than signal transitions to represent events. Thus, a pulse on

output signal c is issued after pulses on input signais a and b. The implementation in

Fig.2-4 (a) follows [PU98]. In Chapter 3, we discuss how we have arrived at the

specification shown in Fig 2-4 (b), and we give more details about pulse-mode operation.

To avoid clutter in the figure, the specification in Fig 2-4 Cb) does not indicale ilIegal

transitions. We adopt the drawing convention that omitted illegal inputs lead to a

permanent reject state and omitted illegal outputs lead to a permanent escape state. Also.

omitted actions that are not visible at the interface of a module produce self-Ioops at

every state of the corresponding process automaton.

The pulse-mode IaIN relies on timing constraints for correct operation. The result of our

verification is that the refinement relationship does not hold without additional timing

assumptions. A witness execution is as follows: a+b+b-a-. This witness execution is an

escape for the specification, but a goal for the implementation. This witness execution

represents a mismatch between the specification and implementation: two input pulses,

after which the implementation stops without delivering an output pulse. This mismatch

occurs if the C-elements used in the implementation are not quick enough to react to the

input pulses.

On the other hand, we find that retinement holds if we use quickened models for the C­

elements instead of inertial models. This change amounts to adding several relative

timing assumptions, in the form of chain constraints that guarantee that the next input

transition will give enough time for the C-elements to stabilize:

D (a+ a-) > D (a+ x-);D (b+ b-) > D (b+ y-);

21

•

•

•

In other words, the implementation will work correctly if sorne minimal pulse widths are

guaranteed. There is no need for upPer hounds on the pulse widths.

2.4. Modular and Hierarchical Verification

Refinement checking can successfully find subtle errors in finite state systems, but it

suffers from an inevitable problem, state explosion. Typical verification problems for

multi-component systems are PSPACE-complete (see e.g. [Ne98]).

Several structured verification approaches can be used to alleviate state explosion ln

retinement checking. We can break the verification of a large system into several sub­

tasks, and establish refinement individually for each subtask. Then, we infer by algebraic

properties of the operations involved that refinement holds for the large system as weil.

One structured verification approach is hierarchical verification, where circuit

descriptions are provided at several different levels of abstraction. At each level, the

circuit is treated as an interconnection of modules. Retinement is checked only between

successive levels: the behavior of the higher level is treated as specification and the lower

level description is treated as implementation. The description of circuit at a lever

between the top and bottom levels is called an intemlediate specification. Hierarchical

verification can reduce computational costs if the verification tasks at successive levels

are simpler (involve fewer components) than the overall verification task.

In process spaces, refinement is reflexive, transitive, and antisymmetric: prodw;(IS

commutative, associative, and idempotent. Furthermore, for processes p. q, and r.

p ;J q => p x r ;l q x r.

These properties suffice to break a verification problem into several layers of partial

specifications, and each layer into several modules, and to verify only one module at a

time instead of verifying the overall problem in one piece.

22

•

•

•

Since arbitrary processes can he involved in product and refinement, hierarchical

verification can also involve processes that are at different abstraction levels. For

example, a mixed gate-Ievel and switch-Ievel representation is ofteo useful in our

applications, where peephole optimizations might he applied ooly in critical parts of a

circuit, while other parts might use standard gates.

2.S. Peephole OptimizatiODS in Asynchronous Circuits

Peephole optimization is an approach to obtaining global optimizations of an integrated

circuit design by successive local optimizations. Specifically, by peephole optimizations

we mean local changes in circuit sub-modules that do not affect the rest of the circuit or

the operation of the circuit as a whole. This sometimes involves changes in the interface

of the respective sub-module ta take advantage of signais available in other modules. As a

particular case, in which replacement happens between different abstraction levels, the

implementation of a component in a circuit can he considered as peephole optimization as

weU.

Peephole optimizations are often performed after high-Ievel synthesis with significant

gains. For example, two main high-Ievel synthesis tlows in asynchronous design translate

concurrent prograrn-like descriptions to asynchronous circuit composed of macro

modules or handshake components (see e.g. [Pe96], [HBP+93], and [Go99]). In [Go99], a

peephole optimization step after synthesis by the methods in [AG92] and [BS98] is

shown to produce gate count improvements up to a factor of five, and speed (cycle time)

improvements up to a factor of two.

Due to their heuristic nature and limited scope, peephole optimizations can greatly benefit

from cross-checking by automated methods. It is important that such optimizations he

proven correct, which means that the observable behavior of the circuit after optimization

meets the specification of the original circuit.

Hierarchical verification is particularly well-suited for post-synthesis peephole

optimizations in asynchronous designs. First, as a result of high-level synthesis, the

23

•

•

•

macromodule networks usually have good modularity (although sorne rnodularity may be

lost by altering the module interfaces for optimization purposes). Second, models for the

behaviors of macromodules in the network are usually readily available.

On the other hand, the tlat verification of peephole optimizations against module

specifications poses special problems. First, such verifications must usually take into

account intricacies of switch-Ievel and relative-time behaviors. Second, changes in the

module interfaces need special techniques for rnodeling and incorporating the

assumptions that justified the optimizations 50 that the overall circuit specifications are

met.

24

•

•

•

Chapter 3. Constructing Specifications from

ffigh-Ievel Events

Specifications are usually assigned different interpretations at different stages in the

design flow. Early in the design flow, specification is usually abstract and minimal, which

is useful for analysis and reasoning by humans. When design details are settled, a

specification explicitly comparable to the implementation is needed. [n this sense. a

specfication that only specifies high-Ievel events would be inadequate for low-Ievel

verification. For example, in a case study of a arbiter verification. specification \\ jTh high­

level events only has L2 states, while the complete low-level specification has 76g states.

In arder to bridge the gap between high-Ievel and low-Ievel specifications, a construction

method of complete low-Ievel specifications from smaller high-level specifications is

introduced in this chapter. First, a specification using high-level events is represented as

a process. Then, constraints that enforce correct occurrence of low-level transition events

are modeled as processes. Finally, the low-Ievel specification is built by computing a

product of constraint processes and the high-Ievel specification process.

25

Unlike synchronous systems, in which a single control signal clock is used to synchronize

the behaviors of each module, several asynchronous design styles use handshaking

protocols to guarantee the correct data transfer between modules. The data transfer and its

handshake control signais are shown in Fig. 3-1.

• 3.1. Pulse...mode Handshaking

•

•

In the 2-phase handshaking protocol, a request and an acknowledge wire are used to

implement the handshaking between the active and passive partners. Assuming that both

signais start low initially, the sequence of events that can be observed on such a channel

is depicted in Fig. 3-2. A1though rising and falling transitions on the handshake control

signais can be distinguished in other handshake protocols, they represent the same

meaning in 2-phase handshaking.

Pulse-mode protocols, in which control signais are represented by pulses, are a family of

protocols used in asynchronous circuit design. There are two types of pulse-mode

protocols: single-edge and dllal-edge.

The pulse mode protocol combines the advantage of the 2-phase protocol and 4-phase

protocol. From the view of pulse event, the pulse mode protocol can work with the

simplicity of 2-phase handshaking. At the same lime, it starts the handshaking operation

cycle always from the same state, thus keep the simplicity of implementation.

The single-edge mode, shown in Fig. 3-3, is named asP* in [MJCL97] and [G099]. In the

Reqllest --
Sender Data :> Receiver

Ackn0wledge

Figure 3-1: Single-rail data interface between sender and receiver.

26

•
R

A

D

, Qperating cycle: ~rating cycle ,Operating c~e.

14 ·4 ~:~ :
~\ Ït'--" ;f.---T----.--.;Jt----,.....;'=r,-----
• \. Il'' l' , ',,' \

, , 1 , l ... - '! '--S<'! '--..\-/; '~,): . =-~"_____

Figure 3-2: 2-phase handshaking protocol.

•

single-edge mode, only one edge of the pulse is used to transmit control information

between modules, and the other edge is ignored. In the asP* protocol, the handshaking

begins when the active edge of request (rising edge of R in Fig. 3-3) is issued, and it

finishes when active edge of acknowledge (rising edge of A in Fig. 3-3) is received by the

sender. The request and acknowledge signais may return to zero at arbitrary times.

EssentiaUy, the asP* protocol is related to 4-phase handshaking (see e.g. [Pe96] for a

description of 4-phase handshaking) by allowing more concurrency and thus more

freedom in the implementation. In particular, the asP* protocol potentially achieves

higher speeds, by removing the dependency of resetting, which simplifies the

implementation. In our case study, we will use a high-speed arbiter from (G099] that

communicates with its environment via the asP* protocol.

In the dual-edge pulse mode, handshake events are represented by pulses rather than

transitions on the control signaIs. Unlike asP* protocol, however, the falling edges of the

\

•

R

A

D

, Operating cycle:... .:
1

~, \ <-----------r-~----,----~\-----------=~~
l , " l ' ,e-
l ,...,' \' f'
! '---S"; \ '<aq_----r

YJJ1.. xxxxXX'ltIJJJ'xxX'fJ.'t1X XXXXXXXXXXXXXXXXX'/$

Figure 3-3: asP* handshaking protocol.

27

• R

A

D

: Operating cycle 1
... ~I

1

Figure 3-4: Dual-edge pulse mode handshaking protocol.

•

•

dual-edge pulse mode copy the sequence of the rising edges. The waveform of dual-edge

handshaking protocol is shown in Fig. 3-4.

An example of a dual-edge pulse-mode component, lOIN element, was already

introduced in Chapter 2, Fig. 2-4. The lOIN issues an output pulse only after it has

received a pulse from each input. Notice that the falling edge of the output pulse can be

produced only after the falling edges of the input pulses.

3.2. Pulse Events and Transition Events

The symbol and behavior of the pulse-mode lOIN element are defined as in Fig. 3-5 The

actions in the automaton have an abstract meaning, and they represent high-level

handshaking events. Each of the edges labeled a, b, or c stands for a pulse on the

respective voltage signal. We caH this kind of specification, in which each event

represents a pulse, pulse-event specification. On the other hand, the behavior of the same

lOIN element can also he described by events that represent individual signal transitions,

as in Fig. 2-4 (b); we caU such specifications transition-event specifications.

Although the arbiter in [0099] was designed to a pulse-mode specification, its

aggressively optimized implementation contains a mixture of pulse-mode, two-phase and

level signaling. On the other hand, for comparison and verification it is necessary to

assume that all processes give the same interpretation to executions. As transition-event

28

• a

b
(a)

•

•

Figure 3-5: lOIN element and its specification:

(a) Symbol of lOIN element; (b) High-Ievel (pulse-event) specification of pulse-mode lOIN.

specifications are more versatile than pulse-event specifications, we use transition-event

specifications as the common denominator for verification purposes.

3.3. TransitioD-event Specification Construction

Building transition-event specifications by hand is tedious and error-prone for single-edge

pulse-mode circuits, because of keeping track of many irrelevant interleavings of falling

edges. For instance, the pulse-event specification of the RGD arbiter is a 12-state

automaton, while its transition-event specification (with falling edges) has 768 states

(after coUapsing equivalent states).

To simplify the specification of pulse-mode and various mixed mode circuits, we

decompose pulse-mode specifications ioto the foUowing parts:

• For the single-edge mode, construct the pulse-event specification by describing

ooly the rising edges of each pulse. This specification is similar ta the transitioo­

event specification of a two-phase circuit.

2lJ

• • For the dual..edge mode, construct two separate specifications, involving the rising

edges only and falUng edges only.

• Construct explicit constraints that the falling and rising edges of each signal

should altemate.

These parts can he considered as distinct properties and we compose them to create a full

transition-event sPecification.

In FIREMAPS, we use uniform models for ail the specification parts mentioned above.

We can construct full transition-event specifications by the following procedure, using

process space operations:

•

• If single-edge, create automata that ooly consider rising edges (Fig. 3-6(a) is the

rising edge automaton of pulse-mode JOIN). If dual-edge, create automata that

consider only risiog edges and separate automata that consider only falling edges

(Fig. 3-6(b) is the falling edge automaton in dual-edge mode). These automata are

C""

~(e)
Ctht

(a) x(b) x(c) x(d) x(e) =) (0

a""

~
a.u. (c)

•
Figure 3-6: Construction of the dual-edge pulse-mode JOIN specification:

(a) Specification ofrising edges; Cb) Specification offalling edges;
Cc)-(d) Pulse automata of signaIs a, b, c;

(t) Transition-event specification of duaI-edge pulse-mode JOIN.

30

•

•

•

incompIete, in the sense that ilIegal events are disabled. For example. in Fig. 3­

6(a), cup (the rising transition on signal c) is disabled at state O.

• Create automata that specify aItemation of rising and falling edges of each pulse

signal; caU them pulse aulomala. In pulse automata, rising and falling edges have

different symboIs. (See Fig. 3-6(b), Cc), and (d).) Pulse automata have a standard

forro and cao be obtained by relabeling.

• Represent constraints between pulses (e.g. mutual exclusion). by automata.

• Compute the product of the process automata above. (In Fig. 3-6 produce (a). (c).

(d) and (e) for single-edge mode specification and produce from (a) to (e) for

dual-edge mode specification.) Missing edges in the component automata

correspond to missing edges in the product automaton.

• Relabel the falling edges of each signal by the same symbol as the rising edges of

that signal. (The automaton in Fig. 3-6({) is an incomplete dual-edge lOIN

specification, resulting from relabeling after product.)

• Complete the resulting automaton to obtain a process automaton so thar each

action is enabled at each state.

Except for the ftrst step, which defines the specification in terms of pulses. and the third

step, which introduces additional user-defined constraints. the procedure above is

automatic and can he performed by standard AREMAPS operations. This allows users to

describe pulse-mode specifications by smaller automata that ignore the interleaving of

falling edges; the full transition-event specifications are then built by FIREMAPS. It is

possible to add a front-end from sorne sort of HDL type description to facilitate the

verification work, since essentially, the verification is based on state machine and netlist.

Notice that the basic idea of the method is not limited to pulse-mode specification

construction, but applies in many situations where one high-IeveI abstract event can

represent severallow-level signal transitions. We will introduce other such applications in

our case studies.

31

•

•

Chapter 4. A Structured Approach for Peephole

Verification

4.1. Assume-Guarantee Verification

Using hierarchical verification, a verification task Pl x P2 :J q can he split ioto three

separate tasks that might have lower computational costs overall:

(4-1)

•

Here, Pl aod P2 represent two submodules in the implementation, ql and q'2 represent the

intermediate specifications of the respective submodules, and q represents the overall

specification implemented by Pl and P2.

A frequently encountered difficulty, however, is that the refinement between submodules

and their lower level implementations, Pl :J ql and P2 :J q2, does not always hold. Pl and

P2 only uwork correctly" in the presence of each other. thus the retinemem relations Pl =
ql and P2 :J q2 only hold under certain assumptions. In Fig. 4-1. the OR gate cannat

directly refine the specification of Merge. Nevertheless. if the environment guarantees

that the inputs are mutually exclusive pulses. the OR gate implements the Merge

specification.

32

(b)

a.h.c

c

(a)

,--, --.,
" \, ,,

: Mutex
1
\

, ,Envïronmenl
\

\ .. ----,--.-

•

•
Figure 4-1: Replacement under assumptions:

(a) Merge in a certain environment; (b) Inertial XOR;;

(c) Implementation of Merge by OR under a certain environment.

Verification rules that address tbis difficulty are presented in [CLM89], [McM97],

[HQR98], and [HQR+98]. Such verification rules are calied assume-guarantee. In

verification methods based on assume-guarantee mies, the correctness of the

implementation relies on assumptions from the environment. According to assume­

guarantee roles, a verification of the formpi x P2 :J q can he decomposed as follows:

PI X q2 :J q x q1;

P2 X ql :J q X q2.

(4-2)

(4-3)

•

More precisely, it suffices ta verify (4-2) and (4-3) for sorne ql and q2 of a certain

restricted form in arder ta establish Pl x P2 :J q. However, note that ql and q2 cannat he

arbitrary. For instance, empty accessible sets of ql and q2 trivially satisfy the decomposed

verification tasks. Special conditions must he satisfied by ql and q2 ta break the

circularity of reasoning and establish validity of PI x P2 :J q. Usually, ql and q2 are

selected ta have non-empty prefix-clased accessible sets ta justify a structural induction

argument, but other selections are alsa possible. In the following, we adapt the assume­

guarantee role to our applications.

33

•

•

4.2. The Peephole Rule

Suppose that, in the original verification task, the refinement relation

Pl X .•• ri x ... X pn:J q

is checked. Here Pi (i=l..n) and q are arbitrary processes, representing the implementation

components and specification, respectively; ri is an arbitrary process, cali it peephole

replacement, which replaces Pi in a peephole optimization. Now, let d he an arbitrary

process, caU it optimization asslimption, which formalizes the designer's hypothesis that

makes the replacement possible; and, let M he an arbitrary set of processes, calI it support

model, representing modules in the system consisting of the implementation and the

environment that will guarantee the validity of the optimization assumption.

Theorem 1. For processes Ph ..., pn, q, ri, d and process set M:

if PL X ••• Pi X ••• x pn :J q

and (3 d E SE, M Ç, (Pi 1i*il u (-q}:

ri x d:J Pi A

then Pl x ... ri x ... X pn :J q.

(XmeM m) :J (XmeM m) x d

•

We can phrase Theorem l informally as follows: if ri retines Pi under constraint d, and d

imposes no additional confinement over the system, then ri can replace Pi in a refinement

relation.

Proof:

ri x d :J Pi

=> (by monotonicity w.r.t. product by (X#i Pj) X (-q»

(X#i Pj) X (-q) X ri x d :J (X#i Pj) X (-q) X Pi

=> (by commutativity of product)

34

• (1)

•

•

(XmeM m) :J (XmeM m) x d and M C {pj li#i}U {-q}

=::) (by montonicity ofproduct w.r.t. components from outside M)

(X#i pj) X (-q) ::J (Xpi pj) X (-q) x d

=::) (by montonicity ofproduct w.r.t. ri)

(X#i pj) X (-q) x ri :J (X#i pj) X (-q) x d x ri (2)

(1) and (2)

=::) (by transitivity of refinement, since (Xk Pk) :J q Ç:> (Xk pd x (-q)x Pi :J <Il)

(X#i pj) X (-q) x ri :J <1>

<=>

ptx ... rix ... xPn:Jq

Since Theorem 1 is specifically developed for verifying peephole opLimizations. we reter

to Theorem 1 as the peephole rule.

35

•

(c)

(b)

a,b.c

•

•

Figure 4-2: Usage of the peephole mie:

(a) Process of inertial OR gate; (b) Relative timing constraints d;

(c) Process of OR gate under constraints; (d) Process of merge.

Example: 1 The example in Fig. 4-1 illustrates a peephole optimization that replaces a

Merge macromodule (OSC67][SS86][Su89] (essentially, an XOR gate) by an OR gate.

In this example, the peephole implementation is an inertial XOR gate; the peephole

replacement is an inertial OR gate; the optimization assumption is HPulses on a and b

never overlap"; and, the support model is a Mutex component existing in the system.

In verification of Fig.4-1, assume retinement relation

Pmerge X •.• pmure:c X .•• :J q

hoIds, in which pmerge represents the implementation of Merge, XOR gale, and pmllle.t

represents an existing Mutex component which physically enforces arbitration between

the pulses.

1 This example was inspired bya similar example brought to our attention by Mark Josephs.

36

•

•

•

Let M ={Pmutex}, and let d he the product of the relative timing constraints in Fig. 4-2 (b):

D(a+, a-) < D(a+, b+);

D(b+, b-) < D(b+, a+).

Because

pmut~x ~ pmut~x X d

and

POR X d ~ prœrge,

using the peephole role, we have:

par X ••• pmut~x X ••• :::J q.

Thus, the OR gate can replace the XOR gate in this system.

Theorem 1 relates to the assume-guarantee rule over a particular case. IfPl from (4-2) is

substituted by ri from Theorem 1, ql from (4-2) is substituted by Pi from Theorem 1, and

q2 from (4-2) is substituted by the process (Xpi Pj), then the hypothesis of Theorem 1

implies inequation (4-2), which is part of the hypothesis of the assume-guarantee role.

ri x d ~ Pi :::) ri x (Xpi Pj) x d :::J Pi X (Xpi Pj)

ri x (Xpi Pj) ~ Pi X (Xpi Pj) = Pi X (Xpi Pi> X Pi ~ q X Pi

The remaining part of the hypothesis of the assume-guarantee role, inequation (4-3), aIso

follows from the hypothesis of Theorem 1 under the substitutions above, while P2 from

(4-2) can he substituted by any process P that refines (XJ~i pj).

Theorem 1 also relates to hierarchical verification over a particular case. If Pj is the

intermediate specification for ri, and M is the empty set, then (XmEM m) =et>. Since ct> is

the most transparent process in a process space (Definition 2.13 in [Ne98]) then d =<Il. In

this case, repeated application of Theorem 1 matches the hierarchical verification

procedure as described by inequation (4-1).

37

• 4.3. Heuristics for Finding Verification Assomptions

•

•

Not all the optimization assumptions are guaranteed by the environment of the peephole.

Since Theorem l has no restriction on the connectivity of the processes involved, an

optimization assumption may overlap both the peephole and the peephole environment. If

the optimization assumption overlaps the peephole, we cali the respective optimization

assumption a design assumption; otherwise, we cali the respective optimization

assumption an environment assumption. Design assumptions are derived from properties

of the circuit under verification which are known to the designer or verifier. For example,

certain delay assumptions inside a circuit can be ascertained during peephole

optimization.

Notice that the peephole mie has no restrictions on the choice of the support model or the

optimization constraint: system process subset M and process d in Theorem 1 are

arbitrary. On the other hand, a poor selection of the support model will not lead to

reductions of computational costs. For proper selection of the support model. one should

consider the context of the circuit under verification. For example. in Fig. 4-2 (c). the

process of "OR gate under environment assumption" is srnaller than Fig. 4-2 (a) "OR gale

in open system", because sorne of the possible behaviors are eliminated by an

optimization assumption based on a support model which involves not just circuit

elements, but also the environment of the circuit.

In our experiments, the costs of verification based on peephole rules was influenced

mainly by a tradeoff between the complexity and the determinism of the assumptions

used.

• Keep the assumptions simple, as the complexity of verification increases with

the number of assumption processes.

• Make the assumptions efficient by eliminating as many as possible of the

"don't-care behaviors" of the circuit under verification.

38

•

•

•

For instance, in the OR gate example above, a more effective assumption would only

allow the pulses of a and b to alternate with pulses on c. If such an assumption can be

guaranteed by the environment of the peephole, then not only we cao perform stronger

optimizations, but also we cao verify them with less costs.

Presently, we mostly use relative timing constraints as optimization assumptions. By

using relative timing constraints, verification does not need to start from a complete

environment model, because a few hints from an incomplete environment model may

suffice to guarantee the respective delay constraint as optimization assumption.

Under certain circumstances, there are no explicit assumptions available for use in

verification by our method. To reduce the verification task, we assume the relative delays

of various modules are flXed and strictly ordered, and we separate the verification into

several cases defmed by one delay assumption each. For example, let Dl and D2 he the

delays of two chains in the circuit. The verification can he separated into two cases: Dl>

D2 and Dl < D2. We calI this procedure case separation. In this example, the support

model M can he part of the system that relates Dl and D2 to each other. so that the

relation between them cannot alternate. (We have either Dl > D2 or Dl < D2 throughout

the operation of the circuit). Formally, the optimization assumption d is the meet

(alternative composition) of the chain constraint processes for Dl> D2 and Dl < D2.

Since case separation can produce false passes, il should be used as a last resort.

However, case separation is useful to detect flaws where other techniques fail because of

computational costs.

4.4. Strategy for Assume-guarantee Verification

In this section, we give our procedure of applying assume-guarantee rules in verification.

Although the following pseudo-code is developed for RREMAPS. it should also he

applicable to other tools that support refinement-based verification under relative timing

constraints.

3Y

• Notation:

Env_asm:

Des_asm:
Ver_res:
p:

q:
wit_exec:
wit_cc:

A set of timing constraints representing environment assumptions.

A set of timing constraints representing design assumptions.

A set of additional timing constraints detected in verifications.

Implementation mode!.

Specification model.

A witness execution found in refinement checking.

A relative timing constraint introduced to avoid the witness execution.

•

•

Ver_res=Q1;
Env_asm =Initial assumptions;
Loop {

If (p x Ver_res x Env_asm x Des_asm ::J q)
Return Ver_res, Env_asm and exit;

Eise {
wit_exec =refinement checking result;
Case (wit_exec) (
Cao be avoided by the environment of the peephole alone:

Create wÏl_cc upon wit_exec. satisfied by environment assumption;
Env_asm = Env_asm 1\ wit_cc;

Overlaps the peephole:
Create wit_cc upon wit_exec;
Ver_res =Ver_res 1\ wÏl_exec;

40

•
Chapter 5. Case Stndy: a High-Speed Arbiter

A high-speed arbiter using the asP* protocol is reported in [G099]~ with a non-optimized

version and a speed-optimized version. The non-optimized implementation has good

modularity, in the sense that the simple interfaces of the submodules achieve decoupling

of the submodule designs. The optimized implementation achieves higher speed at sorne

costs in modularity, by including more signais in the submodule interfaces.

• S.l. Verification before Optimizations

f_latchl

ME
81

YI
Y

1 ~W-ME 1

Set1
dl

rl d_latc
C/rl

f

r2
1 "aW-ME 1

C/r2

q2 Set2 d2

y
82

r_atc

• Figure 5-1: Block diagram of the asP* arbiter before optimizations.

41

•

•

•

The block diagram of the non-optimized version of the arbiter from (G099] is shown in

Fig. 5-1. The arbiter receives request events as input pulses and issues grant events as

output pulses, aCter arbitration. Signais q1 and q2 are initially high, and the other signaIs

are initially low. The rlatch comPOnent is a positive edge-triggered SR latch. When it

receives input pulses (ri or g1 for rlatchl), the rlatch converts them to output signallevels

(YI for rlatchl). The dlatch in Fig. 5-1 converts pulses on the inputs to levels on the

output. The two NOR gates generate grant pulses. The Mutex component ensures routual

exclusion between requests, and it is a four-phase component. For example, when request

pulses from two channels arrive, rlatchl and rlatch2 set Yl and Y2 high. The Mutex

arbitrates the input and gives grant to one, e.g. chaoneH, then ql is set to low and frre the

rising edge of grant!. Risiog edge of 81 is propagated to dlatch and set f high, thus reset

the gl low; at the same time, feedback of gl pulse withdraws the request Yl. Pending

request from channel2 gets grant from Mutex and grant g2 to channel2 will be issued after

acknowledge dl from channell is received. Notice that the grant pulse will he issued

without waiting for the falling edge on the request, because the arbiter operates in single­

edge mode produced ooly after the falling edges of the input pulses.

Notice that the events at the extemal interface of the arbiter are represented as pulses, but

the internaI signaIs use transition events. Moreover, cenain submodules in the arbiter

have different signalling conventions at their interfaces; for example, the rlatch

submodule uses pulse events at the inputs and transition events at the output. For each

submodule, switch level implementation is provided in [0099]. On this flattened lever.

transition event is the only convention for all signaIs.

To prove correctness of the arbiter, we aim to establish refinement between the high-level

specification and the switch-level implementation. We apply the hierarchical veriticalion

procedure described in Chapter 4, using the submodules in Fig. 5-1 as imermediate

specifications. In the following, PMutex, prlarcld, Prlcllch2 , pdla/ô" prIOri and pfl/Jr~ denole

processes for the switch-level implementation of submodules. q,"'[wex. qrhuclll. qrltl/cll~. qt/hl/dl'

qnorl and qnor2 denote processes for the submodule interfaces, and qurbua denotes the

process for the overall transition-event specification of the arbiter. The verification

proceeds on two levels, as follows:

42

•

•

On the tirst level, the refinement between the connection of intermediate specifications

and overall specification is checked:

Next, the refinements of submodule specifications against their switch level

implementations are checked under certain environment assumptions:

In tbis chapter, we caU the verification on the tirst level high-Ievel verification and the

second level submodule verification.

5.1.1. High-level Verification

5.1.1.1. Constnaction of asP· Arbiter Specification

The construction of the asP* specification is shawn in Fig. 5-2. The processes in Fig. 5-2

(a) specifies the behavior of the asP* arbiter by rising edges only. The processes in Fig. 5­

2(b)-(g) are the pulse automata for each signal, constructed as indicated in Chapter.3. The

product of aU processes in Fig. 5-2 is a process describing the behavior of the asP*

Figure 5-2: Construction of the asP* arbiter specification:

(a) Specification of asP* arbiter by rising edges only; (b)-(g) Pulse automata.•

• dl."
(a) ~

c:---:--~------,~
r.awingconvencions: dl (0
MiHing OUlpulS Ic:Id 10 pemllIlICIU e5ClIpes. dlr
MiHing inpulS laid ra pertI1ôlIICIU rejccu.

,
• r_

up

C!C::G)
r2dlr (c)

• g2""C!C::G)
g2dll (e)

• d2.,p

~
d2dtr (g)

43

•

•

•

arbiter; tbis automaton uses transition events, with rising edges and falling edges of the

same signal labeled differently. The complete transition event specification of the asP*

arbiter is achieved aCter relabeling rising and falling edges of the same signal to the same

label.

J

(d)
rowing conventions:
Missing outputs Ic:ad to permanent escapes.
Missing inputs lea&:! lo permanent rejccts.

Figure 5-3: Constructing intermediate specification of rlatch:

(a) Specification of rlatch with mixed events;

(h) , (c) Pulse automata of sand 1"; (d) Transition-event specification of rlatch.

44

•

•

•

5.1.1.2. Implementation Description

In high-Ievel verification, the implementation of the arbiter is described as the connection

of submodules. Boolean functions are used to represent two NOR gates; 4-phase mutual

exclusion model is used to describe behavior of the Mutex; and the intermediate

specifications of rlatch and dlatch are constructed using the techniques introduced in

Chapter 3.

Fig. 5-3 represents the construction of rlatch specification. The behavior of rlatch is

defined in Fig. 5-3 (a), in which signaIs rand s use pulse events, and signais of y use

transition events. Pulse automata are shown in Fig. 5-3 (b) and (c). Notice that only

signaIs S and r need pulse automata. The transition event specification of rlatch is attained

by, computing the product of (a), (b) and (c) together, relaheling Sdn and rdn to sand r

respectively, and filling illegal transitions of s, rand y. Fig. 5-3 (d) is the transition event

specification of the r1atch without filling illegal transitions. The dlatch specification is

constructed similarly.

5.1.1.3. Verification Result

A set of relative timing constraints are detected in high-Ievel verification.

Violation 1:

A witness execution is provided by FIREMAPS as foUow:

After the rising edge of g1 is issued, f is set to high by g1+. At the same time. g1+ resets

the rlatch1, then ql will he reset to high. The rising edge of ql orf will reset gl to low. If

the NOR gate in the implementation is not quick enough to stabilize its output before the

next request and done pulses reset ql andfta low, then a falling edge of gl is missing.

We change the NOR mode1 to a quickened model, correspanding ta the constraints

below:

45

• D (g,+ f+ d,+ f-) > D (g,+ f+ g,-)

D (g,+ q;+ r,+ q,-) > D (g,+ f+ g,-) Ci = L 2)

These constraints can he implemented by sizing the circuit: Make the NOR gale delay

less than internai Mutex delay or the delay from when grant is issued to when done

arrives.

Violation 2:

A witness execution is provided as below:

After g2+, d2+ resets the f to low before g2+ sets q2 to high. Another g pulse will be

generated byf -, which is not expected by the specification.

To avoid tms problem, we added several chain constraints of the foUowing form:

• D (g,+ f+ d,+ f-) > D (g,+ y,- q,+) (i= 1, 2)

•

To implement these constraints, the arbiter should he sized sa that the delay of r1atch plus

the delay of Mutex is less than the delay of dlatch plus the delay from when grant is

issued ta when done signal arrives.

Violation 3:

A witness execution is provided by AREMAPS:

This execution represents a violation as follows. The g2+ resets Y2 ta low. [f another

request pulse r2 cornes from the same channel after g2+, then Y2 will be set to high again.

If the Mutex in implementation is not quick enough, Y2 pulse will be considered as a

hazard.

46

d..

g2

D(g,+y,-q.+»D(g.+r.+y.+} Ida

1
MEL--

gl
YI

1 Hmr·~ 1

ql

d_lat

r

1 Hmr·~ 1
q2

DCg.+f+d.+f-}>DCg,+y.-q.+} 1dJ

~ - D(g,+f+d,+f-»O(g.+f+g,-) 1

I~--;-~__.a--_--+-__--+ --.

1
1
1

•

Figure 5-4: High-level verification result of the asP* arbiter.

• To avoid this problem, we made additional timing assumptions by changing the Mutex

from hazard intolerant model to quickened model. This change amounts to several chain

constraints, of the foUowing fonn:

(i= 1, 2)

Notice that constraints 3 and 4 release the information that under what environment. can

the arbiter work properly. To implement these constraints, the circuit should he sized so

that the delay of resetting the Mutex is less than the delay from when a grant is issued to

when the next request arrives from the same channel.

Fig. 5-4 shows the high-level verification result of the asP* arbiter:

•
In Fig. 5-4, boxes dl - d4 represent 4 relative timing constraints. These constraints are

modeled by processes. Product operation connects delay constraints to other submodules.

47

• ri

Yi

q;

Ki

f

di

Figure 5-5: Witness execution analysis.

•

•

For example, dash lines in Fig. 5-4 connect dl to the corresponding signais in the circuit.

For simplicity, other connections between relative timing constraints and circuit are

omitted in Fig. 5-5.

Given a witness execution, we are interested to determine the corresponding circuit naw

and a delay constraint to avoid it. Such witness execution analysis is based on the

waveform-like trace provided by FIREMAPS. Fig. 5-5 represents the waveform of

Violation 2. The shade in Fig. 5-5 highlights the occurrence of the violation. Event d,+ at

to triggers the violation; at tl the violation is observed. Waveform before to can be

considered as Hpath sensitization" for the witness execution. Sometimes. the path

sensitization contains a large number of events, which are not very relevant tor the actual

violation. In the rest of this thesis, we omit representing the path sensitization portion of a

witness execution, to focus on the actual violations.

Delay constrains are drawn from the witness execution analysis. The event that caused the

witness execution to exit the set of legal behaviors is a good candidate for the end of the

short chain or the long chain in a chain constraint: relative timing should ensure that event

oceurs earlier or Iater, when it becomes safe. Presently, we still manually generate the

relative timing constraints, because the relative timing constraints are often ad hoc to the

design. Sorne heuristics for finding such constraints are indicated in [NP98].

48

•
red ~

resell resel2 resel3

(a)

y

•

•

Figure 5-6: Implementation of rlatch and dlatch:

(a) rlatch implementation; (b) dlatch implementation.

5.1.2. Submodule Verification

Submodule verification consists of refinement checks between switch level

implementation of submodules and their intermediate specifications. In this section. we

use rlatch as the example of refinement checking on tbis level.

S.I.2.1. rlatch implementatioD

The implementation of the rJatch from [0099] is shown in the Fig. 5-6 (a). When a

rising edge of signal set cornes, the inverter chain of set (contains 4 inverters) generates a

three-inverter delay pulse upon the PMOS network. thus set output y high. The same

mechanism is used for reset. The box labeled K is a ukeeper" circuit consists of a weak

inverter and a feedhack inverter that form a Joop. sa that the value of the rlatch output can

he kept when there are no set or reset paths enabled.

Fig. 5-6 (h) shows the implementation of dlatch. Essentially, it is the composition of (wo

rlatches that share the ukeeper".

•

•

5.1.2.2. Switcb-Ievel Verification

We follow the approach to switch level verification reported in [Ne98], in which MOS

transistor networks are decomposed into channel-connected sllbnetworks [Br87], which

are defined by the absence of gate-drain and gate-source connections.

Normally each channel-connected subnetwork contains an N-transistor network and a P­

transistor network, called the plill-down and the plill-up networks. Boolean variables are

used to indicate the presence of conducting paths. A NODE model [Ne98] is used to

connect the puU-down model and puU-up model together.

Figures in Fig. 5-7 show NODE symbol and models introduced in [NP98]. Fig. 5-7 (a) is

the symbol of the node. Signal up and dn represent the connection ta the source and

ground respectively, with "1" standing for connected situation. Fig. 5-7 (b) describes the

behavior of a NODE model. For example, from initial state, the transition up pulls the

output y of the node ta high. This model also implies that up and dn should not hold in the

same value. When bath up and dn are high, the MaS network is in short status, and when

both up and dn are low, the MÛS network is in float status. NODE model can he changed

to represent the different behavior of the Dode under different assumptions. For example,

(a) up,dn,y (c)

•
Figure 5-7: Node models :

(a) Symbol of Node; (b) Common node model; (c) Node with transient collisions illegal.

50

•

•

an alternative NODE model would he to make transient collision illegal by taking ail

executions that pass through a collision state to he rejects, as in Fig. 5-7 (c).

We modified the model of NODE by adding Keeper. As it is shown in Fig. 5-8 (a)~ output

y will keep the previous value and will not dangle when none of pull-up and pull-dn

network is conducted. (In Fig, 5-8 (b), by modifying reject states, in which IIp and dn are

bath low, to goal states and removing edges between two states.) The represenlative of

pull-up and pull-down networks in the rlatch is shown in Fig. 5-8 (c). represenled by

Boolean functions:

up = -,set1 1\ -,set4

dn = reset 1\ reset3

The verification of rlatch is to check the refinement relation as foUow:

In which Psel_inv_c1rain is the model of set inverter chain (4 inverters)~ preseUtn'_c/lllin is the

model of reset inverter chain (3 inverters); pup and pdn are pull up and pull down funetions

of the node; PKnode is the model of the node with keeper represented in Fig. 5-8 (b). and

Figure 5-8: Model of node with Keeper.

(a) Node with Keeper; (b) MOS network models of rlatch.

y

•

Node with
Keeper t---

(b)

51

•

•

•

specification qrlarch is constructed in Section 5.1.1.2.

Sorne assumptions can he drawn from the environment of the rlatch in asP* arbiter

system. Interface signal set, reset and y of the rlatch are under constraints. For instance, in

the channell of asP* arbiter, grant signal KI is used as reset signal of rlatchl. Notice that

for r1atchl, gl+will not he triggered until YI+ is propagated through Mutex aod NOR gate.

As a result, we cao make an environment assumption for rlatch. (This assumption is not

the only possible such assumption.) Represented by the relative timing constraint, tbis

environment assumption is shown as foUow:

denv: D (set+ reset+) > D (set+ y+)

Correspondingly, the verification of the rlatch becomes:

denv x pserjnv_clJain X presecinv_chain X pup X pdn X pKnode ::J qrlarcll

The verification result shows that the retinement relationship holds when the input pulse

width is enough to he caught by the inverter chain. Since this can he easily satisfied in

design, rlatch implementation in Fig. 5-8 (a) retines rlatch specification when it is used in

asP* arbiter.

The same as rlatch, Mutex, dlatch and NOR gales retine their intermediate specification

when they are used in asP* arbiter.

5.2. Verification of the Peephole-Optimized of asP* Arbiter

Ta achieve higher performance, the designers optimized the asP* arbiter of Fig. 5-1. The

optimization weakens the modularity of asP* arbiter. thus increases difficulty of

verification by generaling more complex submodule interfaces. In this section. we

introduce our experiment of applying peephole rules in peephole verification.

52

• 5.2.1. Peephole Optimizations of the asP* Arbiter

Fig. 5-9 (a) is the block diagram of asP* arbiter aCter optimization in [G099]. Notice the

change of submodules al their interfaces. (For example, the new interface of Mutex has

12 signaIs.) In Fig. 5-9 (a), signal r2 is connected to the internai node sel2 of rlatch; signal

gb is connected to the internai node set_lofdlatch.

Fig. 5-9 (b) shows the peephole optimizations over the half Mutex. Boxes in dark indicate

modifications during the optimizations. Signal r2 and gb from the internai nodes of rlatch

VI g gb ql gl
Y Y qb

sel2 r2
setl

r setl_

Mutex/2 d_latc
dl

fMutex/2 dz.

set2_1• set2

qb
gz.

qz.

(a)

y

....~....-.....-.-~ ...

(b)

•
Figure 5-9: Peephole Optimization of asP* arbiter:

(a) asP* arbiter block diagram after optimization; Cb) Half-Mutex after optimization.

53

•

•

•

f

y1.,

'-·_----·_·-1
1 •

1 •
• 1 1--_·---·-""'2 !

Figure 5-10: asP* arbiter after optimization.

and dlatch are highlighted. For the detail and motivation of these optimizations. we refer

the reader to [0099].

Notice that only Mutex's low-Ievel structure is changed by optimization. For the other

submodules, optimization ooly changes the topology between them.

To verify the arbiter after peephole optimization, we model the optimized arbiter, shown

in Fig. 5-10. Model rrl, rr2, gbl and gb2 are "abstracted" from rlatchl, rlatch2 and

dlatch. Relations between models hold as follow:

prlalc/Ii = Prrl X Prlalchl; prlalch2 = prr2X prlalch2: pd/alch = Pgbl X Pgb2 X pdlalch

In this way, we isolate unchanged modules (white blocks) in Fig. 5-10 from the models

changed by optimization (dark blocks). Verification task after peephole optimization

verification is described as follow:

Reusing the result from Section 5.1 we want to check refinernent relation:

54

•
?d

~

YI

Under: Design assumption
Environment concern.

Figure 5-11: Reducing verification complexity by using the peephole mie.

Pgbl X Pgb2 X pr,l X prr2 XPMutex' X qrlalchl X qrlatcll2 X qdlatcll X qnorl X qnor2 .d q arbirer

In which PMutex' represents the replacement of pMUlex in optimization.

• 5.2.2. Verification of Peephole Optimizations

•

Applying peephole rule in verification, the verification of arbiter can he reduced to

verifying the relation

pMulex' X d..d qMltlex ? d

as il is shown in Fig. 5-11. If constraint d does not impose extra confinement ta the

system, the replacement of Mutex is successful. Otherwise extra constraints in cl shou Id

he examined.

55

•

•

•

There are three optimizations addressed in [G099]. The frrst optirnization over the half­

Mutex is shown in Fig. 5-12. Changes involved in optimization1 are highlighted.

To apply the peephole mie, the preparation work consists of three steps:

First, a model of optimization assumption is constructed. In Fig. 5-12 the highlighted part

indicates the optimization assumption of optimization l, which "adds an additional

~bypass' to allow the rising edge of a request to he applied directly to the arbiter without

incurring the delay of the rlatch." [G099]. Relative timing constraint

dl: D(r;+, nqr) > D(r,+, y,+) (i =1, 2)

in Fig. 5-12 cornes from this statement.

Second, the refinement

Pgbl X Pgb2 X prrl X prr2 X qMulex X qrlatchl X qrlalch2 X qdlalch X qnorl X qnor2 X dl :J qarbiler

is checked and the relation hoIds.

In the last step, we choose M = {Pgbl, Pgb2 , prrl , prr2, dl} as the initial support model of

~...,.. "_--, ...-_-..r-JwJ

.0

Figure 5-12: Verification and result of optimizationl (haIt) .

56

• peephole verification. and optimization assumption d = dl X prrl X prr2 •

The verification procedure follows the strategy in Chapter.4. Two constraints are

introduced in the procedure. One constraint:

d2: D(r,+, g,-) > D(r,+, y,+) (i =1,2)

cao he supported by component model pr/alchl and prlalcl,'!.- The result of peephole

verification is:

M = (Pgbl , Pgb2 , prrl , prr2, dl. qr/Cllc/rl, qrlalclr'1J; d =dl X drrl x drr2 x (h

pMulex' X d X d3 :J qMule:c

In which d3 is an extra delay constraint:

d3: D(nq,-, q,-) > D(nq,-, Yi-)

needed for the holding of the refinement.

(i = 1, 2)

•
The result implies that: if the "short pathn of rI does not change the order of Yl+ and ql,

after optimization1, arbiter implementation still refines the specification.

Optimization2 and optimization3 are verified in the same way and the refinement only

holds under certain extra constraints.

To examine the validity of the extra constraints detected in the peephole verification, we

changed peephole in verification from Mutex to the whole arbiter.

Applying peephoIe mIes. we verify the implementation in Fig. 5-10. The verification

terminated and the resuIt reported that no extra relative timing constraints are needed for

arbiter optimization:

PMulex· X qr/alchl X qr/arcl,2 X qdlalc/I X qnorl X qnor2 X dh X d :J q arbiler

•
D(r,+, nq,-) < D(r,+, y,+)

D(g,+. gbi- » D(g,+, y,+)

(i=1,2)

from optimization1

from optimization2

57

•

•

•

So the optimized arbiter in Fig. 5-9 (a) caR replace the arbiter in Fig. 5-1 .

58

•

•

•

Chapter 6. Case Stndy: Communication

Refinement

Communication refinement is an important technique for reducing the design effort for

system on chip architectures [RSV97]. The case study of this chapter is to verify one step

of communication refinement using modules that interface locally cIocked domains to a

global (across-chip) handshake environment. The modules were proposed by [MVK+99,

MVFOO], following the pausible dock idea of [YD96].

Just like in the pulse-mode specifications, we start with a simpler specification for data

transfer that uses high-Ievel events, then we construct a full-detail specification by

product with constraint processes. A GALS wrapper implementation, as a particular

implementation of data communication, is regarded as a special kind of peephole

optimization, applying the peephole rule.

6.1. Data Transfer Specification

6.1.1. Communication Features.

Essentially, communication among blocks in a system is implemented by data lines

bundled with control signais. We expect the specification should:

• Include features of both control path and data path.

• Be sufficiently precise so that it can support automated verification.

59

•

•

• Be as simple as possible, so that it can he easily developed and understood by

designers.

• Be sufficiently general so that it can he easily mapped to communication

refinement.

We introduce a new technique to build data transfer specifications independently of the

synchronization scheme, and we apply tbis technique to our verification case study.

Although the example we use in tbis chapter focus on data transfer between two

independently clocked domains, the same data transfer specification modeling technique

can he applied in a more general asynchronous context.

Fig. 6-1 represents the data transfer implementation. A data channel should he

implemented to connect sender and receiver, 50 tbat data sent by the sending side (Data 1)

cao propagate to the receiving side (Data2); control signais data_snd and data_rev

synchronize the behavior of sender, receiver and data channel. The main difference

between sYDchronous and asynchronous data transfer is how control signais synchronize

the sender, receiver and data channel in communication.

A robust data transfer scheme requires that, under any circumstance, data issued by

sender should he received correctly by receiver after a certain delay. The notion of

correctness used here can he decomposed ioto the foUowing aspects:

DataI Data2
Sender .- ~

Receiver
î1 .miiiiiiê

t Data_snd Data_rcv t

•
Figure 6-1: General data communication diagram.

60

•

•

• Data integrity: received data preserves its original sending value.

• Stream integrity: no data items are lost or duplicated during data transmission,

and the order ofdata items is preserved through the transfer.

As modeling stream integrity would require numerous states to represent data and control

signal interleavings in a transition-event representation, we use instead a fictitious data

event called validity event in our high-Ievel specifications. Our technique abstracts away

any irrelevant transition events and only considers data events triggered at active edges of

clocks. This model fits nicely into a communication refinement paradigm, by permitting

to isolate data validity events from the particulars of the synchronization signais used.

A validity-event data-transfer specification incorporates the following assumptions:

• ACter a control signal is frred on the sending side. there is a data validity event al

the input port of the data channel.

• ACter data is properly sampled by receiver, there is a data validity event al the

input port of the receiver.

• Data integrity is preserved in the data transmission, for instance, for each valid

input uO" (or "'r') there is a valid output "0" ("1"). and vice versa.

• Stream integrity is preserved in the data transmission.

For the asynchronous wrapper, the high-Ievel data-validity specitication is the process

shown in Fig. 6-2. The uO" data validity event vO is propagated as \'0 ' 10 the end of daLa

channel. Same applies for the ""1" data validity events. Notice that we use only one­

bounded models for the data propagation. An N-bounded model is easy 10 al:hieve

following the example of constructing a two-bounded buffer. which is introduced in

Propagation of validity events.•
VO±I... .0: 0 n

-. - - 1
vO' vi'

Figure 6-2:

Drawing conventions:
- The states shown are goals.
- Missing vO and vI events lead to permanent rejects.
• Missing vO' and vI' events lead to permanent escapes.
• Other actions are ignored and have self·loops Olt each
state.

61

• Datai

vO·

Data2

Drawing conventions:
• The st:lles shown arc goals.
- Missing tr:msitions on the
actions of each process lead
to permanent escapes.
• Other actions are ignon:d
and have self·loops al cach
slale.

•

•

Figure 6-3: Examples of Fusion Processes:

(a). Fusion of Datai; (b) Fusion of Data2;

(c) Invariant fusion of DataI; (d) Invariant fusion of Data2.

Chapter 2.

6.1.2. Fusion Processes

In order to transform the high-level specification of Fig. 6-2 inta a full-blawn

transition-event specification, we introduce fusion processes to ~·gIue" validity events.

transition events, and control events (e.g. dock) which trigger the validity events. Such

processes effectively force glued events to occur simultaneously by forbidding other

events from occurring in between. For instance, Fig. 6-3 (a) illustrates a fusion process

where the data transition event Data 1 is fused with its validity events va and vI by control

event Data_snd, which is the active edge of a local dock. Note that signal Data 1 can

toggle arbitrary in a clock cycle, while the validity events are related to the logical level

that signal DataI has right before active-edge of Data_snd: If Data_snd cornes when

Data 1 is low, validity event vO will be issued and there will be no another validity event

until the next active edge of Data_slld, though Datai might keep changing between two

active clock events. Same as Fig. 6-3 (a), Fig. 6-3(b) fuses the transition events of Data2.

with the active edges of control signal event Data_rcv and with corresponding \'alidity

events. Fig. 6-3 (c) and (d) are fusion processes to glue the validity events with a higher-

62

•

Drawing conventions:
• The: states shown an: goals•
• Missing outpulS lead to permanent escapes.
- Missing inpUlS Ic:ad to permanent rejc:as.
- Othcr actions an: ignon:d and have self-Ioops al each state:.

Figure 6-4: Specification constructed from fusions.

•

•

level data-invariant validity event, for the case that where one data-invariant validity

event is required to represent either of the lower-Ievel validityevents in analysis.

We present in Fig. 6-4 astate diagram for the process obtained by applying fusion process

to "glue" both data 1 and data2. To obtain the full-blown transition-event specification,

we flfst compute the product of the high-Ievel specification in Fig. 6-2 with the fusion

events in Fig. 6-3 (a) and Cb), then by hiding the high-Ievel data-validity events, we get

the complete specification of data transfer, but denoted by abstract events. After applying

the technique introduced in Chapter 3, we gel the transition event specification of the data

transfer, which can he directly used in verification.

63

• 6.2. GALS Wrapper Verification

•

•

6.2.1. GALS Wrapper

Globally-Asynchronous Locally-Synchronous architectures (GALS) show that a system

can he partitioned into several independently clocked domains (subsystems) thal

communicate in a self-timed manner. To isolate each locally-synchronous damain from

its globally-asynchronous environment, [BC96), [MVFOü] and [MVK+99] introduced an

elegant design, caUed asynchronous wrapper, used 10 equip each lacally-synchronous

domaine Asynchronous wrappers serve as controllers for data transfer belween individual

domains, and deliver a locally generated pausible dock for the synchronous part of

circuitry [MVFOü).

The asynchronous wrapper circuits proposed in [BC96] and [MVK+99] anempted to

realize failure-free communication in presence of metastability by performing arbitration

between local clocks and handshaking control signais. Fig. 6-5 shows one configuration

from [MVK+99]. We refer readers to [MVK+99] and [MVFOO) for the detail of wrapper

implementation. The gray box in center contains the implementation of the GALS

wrapper. Compare with Fig. 6-1, signaIs DalaI, Dala2, le/kI and Ts at the interface (the

boundary of gray box in Fig. 6-5) of GALS wrapper correspond to signal DaIa l, Dala2,

Clock Domain l-r-~"';ji:;II

Icill

Figure 6-5: Data channel between two independently clocked domains.

64

•

•

•

Data_snd and Data_rcv. Signallclk2 is an "extra" signal. Two gray boxes next to GALS

wrapper are used to construct part of support model in verification. Support model M a1so

contains submodule Translator inside the wrapper, in which relation between signaIs Ts.

Ti and lclk2 is specified. Therefore, constraint d cao he abstracted from support model M.

The high-Ievel verification is performed by selecting wrapper as the peephole in the

communication system.

6.2.2. High Level Verification Result

Here we verify a step of communication refinement by checking whether our data­

transfer specification in Fig. 6-4 is satisfied by the channel configuration in [MVK99].

We refer reader to [KNYOl] for intermediate specifications of submodules. At the present

stage, this part of our verification is based on safety models, which only detect the

presence of invalid events. Further investigation will be needed to verify absence of

deadlock and unfairness conditions by using stronger specifications. By applying our

verification techniques, we detect several relative timing constraints that were not

reported by the designers. To simplify our presentation of results, we only refer ta the

validity events datal-valid and data2-valid below, instead of any data event. Only relative

timing constraints are represented as chain constraints. (Signal labels refer to Fig. 6-5.)

because the complexity of the witness executions.

1. D(Ti+ Ts+ Iclk2+ Iclk2- Ts-) < D(Ti+ Ti-). The Ts+ event. which should indicate to

the receiver black that data has been received, should he flfed and become stable within

two consecutive Ti events. In other words, the delay from Ti+ ta Ts+ should be less than

half the period of clock 2. Failing ta satisfy this constraint might lead to data being

sampled twice at the receiver side, which leads to erroneous duplication of data items.

The worst-case scenario is where every data item is duplicated at the receiver side. In [91.

there is no mention of this danger for duplication. Even though the duplication of items

might he fixed inside the receiver black by another level of the communication peotocol.

65

•

•

•

the duplication would still undesirable because the computation tasks for receiver would

hedoubled.

2. D(Ai2+ Ti+ Ts+) < D(Ai2+ Ap+ Rp- Ai2- Iclk2+). The delay from Ai2+ (which is to

acknowledge the pausing of clock2) to Ts+ (which is to indicate the receiver the arrivai of

data) should be less than the delay from Ai2+ to restart the clock2. Otherwise, the

receiver will not sample the available data at its data input, due to absence of a triggering

event Ai2+ , moreover, the data which was supposed to he sampled by the receiver will

he flushed away by the next incoming data by restarting of clock2. In this situation, the

data loss will he permanent and unrecoverable.

3. D(Den+ Rp+ Ap+) < D(Den+ data-valid). Data should he put at the input port of latch

before the latch switches from transparent to opaque; otherwise, before data getting

stable, improper data states will propagate through latch and he sampled by receiver. This

constraint sets up a delay time boundary for latch to switch its state.

4. D(Rp+ Ap-) < D(Rp+ Ts+ Iclk2+). A Ts+ event should be issued later than the Ap­

event to ensure a stable and valid data at the output of the latch, which was triggered by

Ap- and switched to opaque state already; otherwise, the Ts+ event will trigger the

receiver to sample a data item which is not guaranteed to be correct.

5. D(Pen+ Ai2+) < D{Pell+ Iclk2+). The delay path from the P-input enabling signal

Pen+. to the dock pausing acknowledge signal, Ai2. should take less time than the

issuing of the next Iclk2 event; otherwise, the next P-input enabling signal will be ignored

as the result of a race condition.

6. D{Pen+ Rp- Ri2+ Iclk2+ lclk2- Pen-) < D{Pen+ Rp+ Ri2+ lclk2+ Iclk2- Ai2+ Ti+

Ri2-). The relative timing interval between Rp+ and rclk2+ is arbitrary. If Rp+ is issued

close enough to Lclk2+, then, Ri2+, which was supposed to be triggered by bath Rp+ and

a Pen event (Pen+/-) can not he win the arbitration over lclk2+. Therefore, lclk2 will not

be paused immediately after the arrivaI of Rp+, the next clock event Iclk2- will he flfed.

66

•

•

•

and, further, Pen's state will be reset. Thus, Ti event would he canceled, before the Ts is

set to high. While the acknowledge Ai2 will still he sent to the D-port, though no data is

sampled by the receiver. Moreover, if the implementation of the translator is not totaHy

hazard-free, Ts will quickly return to low if Pen- is issued right after Ts+ event. [f clock2

pause request (Ri2) cao not withdraw hefore Pen- cornes, Ti will be reset to low again and

still might affects event state of Ts. We add the above constraint. which implies that delay

from Iclk2- to Pen-, is longer than the delay from Ai2+ to Ri2-, so that no data will be

missed during transfer.

Result of GALS wrapper verification is represented as foUow:

in which dverJes is the product of ail relative timing constraints detected in verification.

67

•
Chapter 7. Concluding Remarks

•

•

We introduce two techniques to solve difficulties encountered in formai verification:

specification construction and state explosion. The sPecifications construction technique

bridges the specifications on different levels: high-Ievel analysis and low-Ievel

verification. We provide a structured verification rule, called peephole rule, for reducing

verification complexity in peephole optimizations. Just like hierarchical verification and

assume-guarantee rules, the peephole rule alleviates state explosion by splitting an overall

proofobligation into severa! smaller verification tasks.

We demonstrate our techniques by applying them to different circuits from (G0991 and

(MVK+99]. The circuits in (G099] were previously thought to he hard to verify case

studies, which are thought hard to verify; in fact, (G099] mentions that verifications

using Mocha [AHM+98) were not successful to the date of publication.

We have established refinement between the switch-Ievel implementation of the asP*

arbiter and a specification derived automatically from high-Ievel handshake events. We

found the circuit to he generally in agreement to its specification, although the delay

constraints were only partly documented in [0099].

For the GALS wrapper in (MVK+99) and (MVFOO). we have found several race

conditions that could not he justified by the explanations of the delay constraints given in

their original papers.

68

•
References

[AHM+98] R. Alur9 T. Henzinger9 F. Mang9 S. Qadeer, S. Rajamani9 and S. Tasiran9

"MOCHA: modularity in mode1 checking9
99 Computer-Aided Verification

(CAV98)9 pp. 521-5259 1998.

•

[AG92]

[BC96]

V. AkeUa and G. Gopalakrishnan9~'SHILPA: A high-Ievel synthesis system

for self-timed circuits,99 in Int. Conf Computer-Aided Design, ICCAD '92~

Nov. 19929pp. 587-591.

D. Bormann, P. Cheung9 "Asynchronous Wrapper for Heterogeneous

Systems.99 Proceeding of International Conference on Computer Design

(lCCD), pp. 1996.

•

[BCM92] J. R. Burch, E. M. Clarke, K. L. McMillan9 D. L. Di1l9 and L. 1. Hwang.

"Symbolic model checking: 1020 states and beyond.u Infonnation and

Computation, 98(2)9 June 1992.

[Be93] K. van Berkel. "Handshake Circuits: an Asynchronous Architecture for

VLSI Programming." [n volume 5 of International Series on ParaUel

Computation. Cambridge University Press9 1993.

[Br87] R.E. Bryant. "Boolean Analysis of MOS Circuits.99 IEEE Transactions on

Computer-Aided Design9 4: pp. 634--6499July 1987.

[BRB90] K. S. Brace9R. L. RudeU9and R. E. Bryant, "Efficient implementation of a

BDD package," Proceedings of the 27'11 ACMIlEEE Design Automation

Conference, pp. 40-45, 1990.

69

• (BS89] E. Brunvand and R. F. Sproull, "Translating concurrent programs into delay­

insensitive circuits," in Int. Conf Comput. Design, Nov. 1989. pp. 262-265.

[CGL92] E. M. Clarke. O. Grumberg. and D. E. Long. '"Model checking and

abstraction." Proceedings of the Symposium on Princip/es of Programmillg

Languages, pp. 343-354. 1992.

(CES86] E.M. Clarke. E. A. Emerson, and A.P. Sistla. HAutomatic verification of

finite state concurrent systems using temporal logic specifications." ACM

transactions on Programming Languages and Systems, 8(2) pp:244-263

(April 1986)

(CLM89] E. M. Clarke, D. E. Long. K. L. McMillan. "Compositional Model

Checking." Proceedings ofFourth Annual Symposium on Logic in Computer

Science.(LICS '89), pp. 353-362, 1989.

•

•

[Di89]

[Go99]

[G099]

[Ha95]

D. L. DilI. Trace teory for Automatic Hierarchical Verification of Speed­

Independent Circuits. An ACM Distinguished Dissertation. MIT press.

1989.

G. Gopalakrishnan. "Peephole Optimization of Asynchronous Macromodule

networks." IEEE transitions on very large scale integration (VLSI) system,

vol. 7, NO. 1, March 1999.

M.R. Greenstreet, T. Ono-Tesfaye. UA fast, asP* RGD arbiter." Proceedings

of the Fiftlz International Symposium on Advanced Researclz 011

AsynchronOlls Circuits and Systems. pp. 173-85. 1999.

S. Hauck. "Asynchronous design methodologies: an overview." Proceedings

ofthe IEEE. Vol. 83. pp: 69-93. 1995.

70

•

•

•

[HBP+93] J. Haans, K. van Berkel, A. Peeters, and F. Schalij. UAsynchronous

multipliers as combinational handshake circuits." Proceedings of IFIP

Working Conf Asynchronous Design Methods, Manchester, U.K., Mar. 31­

Apr. 2, 1993.

[H085] C. A. R. Hoare. Communieating SequentiaL Processes. Prentice-Hall, 1985.

[HQR98] T. Henzinger, S. Qadeer, S. Rajamani, ~·You assume, We Guarantee:

Methodology and Case Studies." Proceeding of the International

Conference on Computer-aided Verification (CA V). pp. 440-451. 1998.

[HQR+98] T. Henzinger, S. Qadeer, S. Rajamani, S. Tasiran. '''An assume-Guarantee

Rule For Checking Simulation." Proceeding of tlze second Inler1l(ltiolla{

Conference on FonnaL Methods in Computer-aided Design (FMCAD). pp.

421-432, 1998.

[KCK+99] A. Kondratyev, 1. Cortadella, M. Kishinevsky, L. Lavagno, A. Yakolev.

"Automatic Synthesis and Optimization of Partially Specified Asynchronous

Systems." Proceedings of tlze Intenlational Conference on Desig1l

Automation Conference (DAC99), pp.IIO -115. 1999.

[KNOla] X. Kong, R. Negulescu. "Formai Verification of Pulse-Mode Asynchronolls

Circuits". Proceedings of the lntenzational Conference on Asia South

Pacifie Design Automation Conference. (ASP-DAC 1001) pp. 347-351.

2001.

[KNOlb] X. Kong, R. Negulescu. "FormaI Verification of Peephole Oplimizalion".

Proceedings of 21st lFIP WG 6. J InternationaL Conference on Formai

Techniques for Networked and Distributed Systems (FORTEOl), pp 219­

234.

[KNY01] X. Kong, R. Negulescu, Larry Ying. "Refinement-based FormaI Verification

of Asynchronous Wrappers for Independently Clocked Domains in Systems

on Chip". The iith Advanced Research Working Conference on Correct

71

•
[LGS+95]

[LL9ü)

[Mc93]

Hardware Design and Verification Methods (CHARME 2001). (Paper to be

appear)

C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. ·~Property

preserving abstractions for the verification of concurrent systems." Formai

Methods in System Design, (6):1-35, 1995.

L. Lamport and N. Lynch. "Distributed computing: Models and methods."

In 1. van Leeuwen, editor, Handbook of TheoreticaL Computer Science,

voLume B, FonnaL Methods and Semantics, pages 1159-1196. The MIT

Press-Elsevier, 1990.

K. L. McMillan, SymboLic ModeL Checking, Kluwer Academie Publishers,

1993.

•

•

[McM97] K.L. McMillan. 'f.A compositional mie for hardware design refinement."

Proceedings of Computer-Aided Verificalion(CAV97), Lecture Notes in

Computer Science 1254, pages 24-35. Springer-Verlag, 1997.

[MJCL97] C. E. Molnar, 1. W. Jones, B. Coates, and J. Lexau. ·"A FIFO ring oscillator

performance experiment." Proceedings of Intemational Symposium on

Advanced Research in Asynchronous Circuits and Systems, 1997.

[MVFOO) J. Muttersbach, T. Villiger, W. Fichtner. "Practical Design of Globally­

Asynchronous Locally-Synchronous Systems." Proceedings of the

International Symposium on Advanced Research in Asynclzronous Circuits

and Systems, 2000.

[MVK+99] J. Muttersbach, T. Villiger, H. Kaeslin, N. Felber, W. Fichtner,Globally­

Asynchronous Locally-Synchronous Architectures to Simplify the Design

of On-Chip Systems." Proceedings ofASIe/soc Conference, pp. 317 -321.

1999.

72

• [Ne98] R. Negulescu. Process Spaces and Fonnal Verification of Asynchronolls

Circuits. PhD thesisyUniversity of Waterlooy 1998.

•

•

[NeOO] R. Negulescu. "Process spaces.97 Proceedings of the Ilth International

Conference on Concurrency Theory (CONCUR 2ooo)y pp. 196-210y2000.

[NP98] R. Negulescuy A. Peeters. "Verification of speed-dependences in single-rail

handshake circuits." Proceeding of the Fourth International Symposium on

Advanced Research in Asynchronolls Circuits and Systems, pp. 159-170,

1998.

[OSC67] S. M. OmsteinyM. J. Stucki, and W. A. Clark. HA functional description of

macromodules." In Spring Joint Computer Conf., AFIPS, 1967.

[PCKPOO] M. A. Pefia, J. CortadeUa, A. Kondratyevy and E. Pastor. "Formai

verification of safety properties in timed circuits." Proceedings of

International Symposium on Advanced Research in Asynchronous Circuits

and Systems ASYNC'2000, pp 2-11 y2000.

[Pe96] Ad M. G. Peeters. Single-rail handslzake circuits. Ph. D. thesis, Eindhoven

University ofTechnology, June 1996.

[PU98] L.A. Planay S. H. Ungery"Pulse-mode macromodular systems," Proceedings

ofComputer Design: VLSI in Computers and Processors lCCD '98, pp. 348

-353, 1998

[Ra96] Jan M. Rabaey. Digital lntegrated Circuits. Prentice Hall, 1996

[RSV97] J.A. Rowson, A. Sangiovanni-Vincentelli. "Interface-based design."

Proceedings of the 341h Design Automation Conference, 1997. Pages: 178­

183.

73

• [SGR99] K. Stevens, R. Ginosar, and S. Rotem. "Relative timing." Proceedings of

International Symposium on Advanced Research in Asynchronolts Circuits

and Systems ASYNC'99, pp. 208-218, 1999.

•

[Si83]

[SS86]

[Su89]

[YD96]

J. Sifakis. "Property preserving homomorphisms of transition systems:' ln

E. Clarke and D. Kozen, editors, Proceedings of the 4th Workshop on

Logics of Programs, Pittsburgh, U.S.A., June 1983.

R. F. Sproull and I. E. Sutherland. Asynchronolts Systems. Sproull and

Associates, 1986.

I. E. Sutherland. ~~Micropipelines." Communications of the ACM. 32(6)

pp:720-738, June 1989.

K.Y. Yun and R.P. Donohue. '~Pausible clocking: a first step roward

heterogeneous systems," Proceedings of Computer Design: VLS/ ill

Computers and Processors /CCD '96. pp. 118 -123. 1996.

•

[Yi] L. W. Ying. Verification and Re-Design of Communication Illlerfaces \t'il!l

Heterogeneous Timing. Mater thesis. McGill University. 2001

74

