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ABSTRACT

This thesis presents a new hyooelasticity model which was implemented in nonlinear
finite formulation to analyze normal and high strength reinforced concrete structures under both
monotonically increasing and reversed cyclic loadings. The model includes a new hypocelasticity
constitutive relationship utilizing the rotation of material axis through subsequent iterations.
employment of both fixed and rotating crack models. compressive strength degradation in post-
cracking regime, new uniaxial stress-strain relationships for concrete under monotonically
increasing and reversed cyclic loadings, accounting for mesh sensitivity, and utilizing the tensile
strength degradation due to extensive internal microcracking of the concrete. The model can
account for high nonlinearity of the stress-strain behaviour of concrete in the pre-peak regime,
the softening behaviour of concrete in the post-peak regime, the stiffness degradation caused by
the extension of microcracks during subsequent unloadings and reloadings and the irrecoverable

volume dilatation at high levels of compressive load.

The effect of element size on different behaviourial aspects of reinforced concrete
elements including the load-displacement and load-strain characteristics, crack pattern and ultimate
load are discussed along with a comparison with the experimental data where available. Various
analyses indicated that the length of the descending branch of the tensile stress-strain curve of
concrete defined by the value of the ultimate tensile strain, €,, has a significant effect on the
computed results. If the value of £, is adjusted appropriately according to the element size, it can
help eliminate the mesh sensitivity drawback. To adjust an appropriate value for ¢, two modeis
have been used: a) crack band model, as a function of the fracture energy, mesh size and tensile
strength of concrete, and b) a new proposed model as a function of only the eclement size. The
analytical results obtained using the different models are compared with the experimental results;
the proposed model gives good agreement. The proposed formula is very simple and can be used

for both square and non-square elements.

The effect of steel reinforcement details on the general behaviour of the structure and its
mode of failure, the criterion for using the rotating crack model versus the fixed crack model, and

the importance of compressive strength degradation in the post-crack regime are established using



detailed analysis of five shear panels tested by Vecchio and Collins (1682). The effect of a
sudden drop of the stress after the tensile strength of concrete has been exceeded on the load-
deflection response, the ductility ratio and the crack pattern for two high strength concrete beams
are also examined. Further analyses of a squat shear wall and a shear panel are carried out to
examine the reliability of the computer program HODA developed in this study for analysis of

concrete structures under both monotcnic and reversed cyclic loads.

Complete response of three structural walls in a low-rise building is studied under
monotonically increasing loads until failure using the nonlinear finite element program HODA.
The influence of the tension-stiffening, steel strain-hardening on the load-deflection response and
the ultimate lnad are studied for the case of the rectangular wall. The influence of smeared steel
idealization and bar element idealization on the wall response are also investigated, The ultimate
loads of walls are compared with the values calculated using the current CSA Standard CAN3-
A23.3-M84.

This research program demonstrates the feasibility of nonlinear finite element analysis as
an alternative to costly experimental work in the future, however, the reliability of using nonlinear
finite element analysis for a given structural system under a given loading system could be
established in each case by comparing the computed results with the experimental data, where

available.
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SOMMAIRE

Cette thése propose un nouveau modéle hypoélastique, incorporé dans une
formulation d’éléments finis non-linéaires, pour 1’analyse des structures en béton (normal
ou haute performance) sous un chargement monotonique ou cyclique. La formulation fait
appel 4 la rotation des axes des éléments a chaque itération, A 'utilisation de modales de
fissures fixes et de révolution, tient compte de la perte de résistance en compression dans
le régime fracturé, incorpore une nouvelle relation contraintes-déformations pour le béton
sous chargement monotonique et cyclique, et finalement tient compte de 1'influence de
la discrétisation, et de la dégradation de la résistance en tension associée a la micro-
fissuration interne du béton. Le modele peut représenter le caractére non-linéaire de la
relation contraintes-déformations du béton dans la régime post-fissuration, la perte de
rigidité associée au développement de micro-fissures lors du déchargement et de
chargements subséquents de 1I'élément, et les changements de volumes irréversibles

(expansion) associés avec des forces de compressions élevées.

L’effet du degré de discrétisation de 1'élément par rapport A différents aspects du
comportement sont étudiées, entre autres, l'estimation de la coutbe contraintes-
déformations ou forces-déplacements, le patron de fissuration, et la charge ultime. Les
résultats sont comparés a des observations expérimentales lorsque disponibles. Les
analyses indiquent que la déformation ultime en tension (e,), contrdlant la partie
descendante de la courbe contraintes-déformations en tension, a un effet majeur sur les
résultats. Un ajustement approprié de ce paramétre en fonction de la dimension des
éléments minimise I’influence de la discrétisation sur les résultats. Deux méthodes sont
utilisées pour sélectionner e, : (1) un modéle de fissuration continu en fonction de
I'énergie de fissuration, le niveau de discrétisation et la résistance en tension du béton, et
(2) un nouveau modele qui n’est fonction que du niveau de discrétisation. Les résultats
analytiques pour les deux modeles sont comparés & des résultats expérimentaux et
démontrent que le modele proposé reproduit les résultats expérimentaux. La formule

proposée est simple et applicable a des éléments de toute forme.

i



Une analyse détaillée des résultats expérimentaux de Vecchio et Collins (1982)
sur cing panneaux de cisaillement permet d'établir 1'influence des détails d’armature
d'arier sur le comportement général de la structure ainsi que sur le mode de rupture,
Ceux-ci sont aussi utilisés pour anilyser I'influence du modéle de fissuration de révolution
par rapport au modele de fissuration fixe, ainsi que 1'influence de la dégradation de la
résistance en compression sur le comportement post-fissuration. L'effet d'une baisse
soudaine des contraintes suite 4 un chargement jusqu’ a la résistance en tension, le rapport
de ductilité, et le patron de fissuration sont également analysés pour deux pouires en
béton i haute résistance. Des analyses supplémentaires sont faites sur un mdr et un
panneau de cisaillement afin d'établir la fiabilité du logiciel d’analyse HODA développé
dans le cadre de ce projet pour les structures de béton sous chargement monotonique et

cyclique.

Le comportement complet de trois murs porteurs pour un édifice a faible hauteur
sont étudiés sous un chargement monotonique avec le logiciel HODA jusqu'’a l1a rupture.
E'influence du raidissement sous tension, et de 1'accroissement de la résistance de 1’acier
avec les déformations sur la courbe forces-déplacements ainsi que sur la charge ultime
sont analysés pour le cas du mir rectangulaire. L’influence de I'idéalisation de I’acier par
une zone homogénéisée et des barres d’armature sur la réponse sont aussi examinés. Les
charges ultimes sont comparées avec les valeurs calculées selon le code CSA CAN3-
A23.3-M84.

Ce programme de recherche démontre que les analyses numérigues non-linéaires peuvent
étre substituées 3 des programmes expérimentaux dispendieux. Par contre, la fiabilité des
analyses numériques devrait étre établie pour chaque type de structure et de chargement

A I'aide de résultats expérimentaux.

iv
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

Reinforced concrete is one of the most commonly used materials in civil engineering with
application in all kinds of structures, such as high rise buildings, cooling towers and offshore
platforms. The design of these structures is usually based on linear elastic analysis to calculate the
internal forces in the structure which are then used to design and detail the section and
reinforcement for the structure using appropriate Code provisions. These Codes are usually based
on empirical approaches developed using experimental data, and provide design rules to satisfy
safety and serviceability requirements. Although the design of reinforced concrete structures is
based normally on a linear, elastic stress analysis is adequate and reliable in most cases, for
complex structures under complex loading conditions, nonlinear finite element analyses are often
required for design of these systems at the ultimate limit state. Reliable information on strength,
failure mode, ductility and energy absorption capacity is required for the design of important
reinforced concrete structures such as nuclear containments, and for the development of new types
of the building systems such as coupled frame-structural wall systems, especially for the seismic
loading conditions.

Prior to the development of powerful numerical methods and computers, investigation of
the behaviour of concrete structures required extensive experimental work, followed by
development of behavioural or empirical models for examination of responses at the serviceability

and the ultimate limit states, These experiments are usually expensive, time-consuming and



required considerable human and physical resources.

The use of the finite clement method as a supplement to the experiments, and in
situations where experiments are difficult to perform and cumbersome, such as the determination
of complete response of a 20-storey, multipie core subjected 10 monotonically increasing loads,
has been increasing ever since the pioneering work of Ngo and Scordelis (1967) on finite element
analysis of reinforced concrete beams. Extensive rescarch has resulted in significant advances in
the area of concrete constitutive relationships which have led to the development of a substantial
number of finite clement programs with nonlinear analysis capabilities. A partial listing of such
programs is available in the reports of the ASCE Committee on Finite Element Analysis of
Reinforced Concrete Structures (1982 and 1991). It is pertinent to mention that most of these
nonlinear programs are within the academic environment and only a few commercial programs
are available for nonlinear analysis of concrete structures.

The versatility of the finite element method as a tool for analysis of concrete structures
is enhanced significantly by the incorporation of nonlinear material models. Consequently, the
method is able to predict the response of a structure at all stages of its loading history, accounting
for the various forms of material non-linearities and time-dependent effects.

The complexities involved in predicting the behaviour of a reinforced concrete (R C) structure
up to the ultimate load, involving highly nonlinear nature of the response of the constituent
composite materials- concrete and steel. This highly nonlincar behaviour is caused by many
contributing factors such as nonlinear stress-strain relationships, tensile cracking, microcracking
resulting from compression in concrete, crushing of the concrete, aggregate interlock, bond slip,
dowel action, tension-stiffening phenomenon, shrinkage, creep, and yielding of the steel
reinforcement. The incorporation of all of these nonlinear phenomena in the analysis of R C
structures is a difficult task. However, the computer-based finite element method using very
powerful computers now offers a strong computational tool through which the cffect and
interaction of the different nonlinear characteristics of R C can be studied, and thus a better
understanding of the internal stress distribution can be obtained. To ascertain the reliability of the
results of these nonlinear analysis, it is essential that the composite behaviour of the concrete and
the stee! reinforcement is modelled accurately, besides verifying the accuracy of the results of
analysis of some selected structures for which detailed experimental data is available,

As pointed out earlier, one of the earliest finite element (FE) models for the analysis of

R C beams was presented by Ngo and Scordelis (1967). This was followed by considerable works



in the area of the FE analysis of R C structures under monotonically increasing load such as the
works by Nilson (1968), Rashid (1968), Cervenka (1970), Mufti, et al. (1971), Scanlon (1971),
Hand et al. (1973), Argyris et al. (1973), Mikkola and Schnobrich (1970}, Lin (1973), Kabir
(1976), Gilbert and Wamner (1978), Cope et al. (1980), Peterson (1981}, ASCE Task Committee
(1982), and Meyer and Okamura (1985), Barzegar Barzegar and Schnobrich (1986). Good reviews
of these works could be found in ASCE Task Committee (1982), Bahlis (1986), Nagaraja (1987)
and ASCE/ ACI Committee 447 (1991).

The FE analysis of R C members subjected to cyclic loading dates to the early 1970's.
Thereafter, significant contributions in this area have been made by Muto and Masuda (1972),
Irnoto and Takeda (1973), Cervenka and Gerstle (1971, 1972), Darwin and Pecknold (1974),
Agrawal, et al. (1976), Shipman and Gerstle (1979), Nomura, et al. (1978), Sorensen (1979},
Mochizuki and Kawabe (1980), Aktan and Hanson (1980), Noguchi (1985), Stevens, et al.
(1991), Rule and Rowlands (1992). An extensive overview of some of these research programs
can be found in ASCE Task Committee (1982), and Meyer and Okamura (1985).

Realization of the full potential of the finite element method will require an extensive
verification to determine the accuracy of the deformational response of different classes of
structural elements when compared with the available experimental results. There is also a need
to determine the simplest material mode! that best represents the behaviour of the various classes
of structures,

In this research program, firstly it is attempted to find appropriate analytical models to
represent the material characteristics of both concrete and steel accurately depending on the
loading conditions. Secondly, all of these models are incorporated in a nonlinear finite element
formulation in order to model the majority of the aforementioned material nonlinearities and their
interactions. Thirdly, to evaluate the reliability of the analytical results, some well documented
experimental works on normal and high strength reinforced concrete members are modeled and
analyzed, and the analysis results are compared with the experimental findings. At the end, some
parametric studies on three structural walls constituting the lateral load resisting system of a 4-
storey building are undertaken to develop the basic data to understand the behaviour of such

complex structures,



1.2 OBJECTIVES OF THE THESIS

The objectives of this thesis can be summarized as follows

1)

2)

3)

4)

5)

6)

7

8)

To present a general state-of-the-art report of the constitutive relationships for

concrete.

To introduce the hypoelasticity models as suitable models for stress-strain
relationships of concrete, under both monotonically increasing and reversed cyclic

loadings.

To introduce new constitutive relationships and new analytical stress-strain curves
for normal and high strength concretes under both monotonic and reversed cyclic
loads accounting for rotation of material axis, rotation of crack direction afier

cracking and volume dilatancy of concrete at high compressive stresses,

To verify the effect of finite element mesh size on the computed behaviour of

selected concrete structural elements subjected to monoctonically increasing loads.

To derive formulations to eliminate the mesh dependency phenomenon permitting
analysis of structural elements using relatively large size clements with an

adequate level of confidence and savings in the required computational time.

To incorporate the above model into a nonlinear finite element formulation to

carry out nonlinear analysis.

To examine the reliability of the proposed material models and the finite element
formulation by analyzing some specimens for which experimental results are

available.

To investigate the influence of the various tension-stiffening models on the overall

behaviour of reinforced concrete structural elements.



9) To undertake some parametric studies on relatively complex structures to generate
the basic data which can be used for development of appropriate practice-oriented

design procedures for structural wall systems.

1.3 THESIS ORGANIZATION

The thesis is presented in eight chapters and one appendix as follows

Chapter 1, "Introduction” explains the importance of nonlinear finite element analysis to
design complex structures such as nuclear power plants, offshore structures and others to ensure
all safety and serviceability requirements. It also deals with the objectives of the thesis and its

organization.

Chapter 2, "Review of Constitutive Models for Concrete", presents a general state-of-the-
art report of the constitutive relationships for concrete. It starts with a review of the behaviour of
concrete under uniaxial, biaxial and triaxial loadings at both micro- and macro-levels. Then a brief
description of five common types of constitutive relations is presented along with their advantages
and disadvantages. This includes elasticity-based models, plasticity-based models, plastic-fracturing

models, elastic-plastic-damage models, and endochronic models.

Chapter 3, "The Proposed Material Model", presents the proposed constitutive model for
concrete and the required material properties including, the stress-strain curve, the instantaneous
modulus of elasticity, the Poisson's ratio, etc. The crack modelling techniques (discrete and
smeared crack models) and a brief description of the different smeared crack models (fixed,
rotating and multiple crack models) in connection with the proposed hypoelasticity model are also
presented. The compressive strength-degradation of the concrete in the compression-tension state
after cracking is also included. The monotonic and cyclic stress-strain curves which can be used
effectively for both normal and high-strength concretes, the Poisson's ratio, the failure criteria for
the concrete and the constitutive model for the steel reinforcement are presented in the last part

of this chapter.



Ckapter 4. "Nonlinear Finite Element Formulation", describes the key features of the
nonlinear finite clement program, HODA, developed during the course of this study. The various
program capabilities and limitations are outlined, followed by the finite element displacement
formulation based on energy considerations. The clement library of the program, the layered
discretization technique, the transformation of strain, stress, constitutive matrix and coordinates,
the assembly process, and the numerical algorithms in nonlinear analysis including the solution
process, the unbalanced forces, the convergence criteria and the divergence criteria are also

outlined in this chapter.

Chapter5, "Element Size Effect Phenomenon", presents the results of an investigation into
the effect of finite element size in nonlinear finite element analysis of concrete structures. To
eliminate the dependence of the computed results on the finite element size, two models have been
used: a) crack band model and b) a new proposed model. These models have been implemented
into the nonlinear finite element analysis program HODA. The analytical results obtained using

the different models are compared with the experimental results.

Chapter 6, "Analysis of Experimental Specimens”, compares the computed and the
experimental responses of several specimens using the HODA program. These are composed of
a total of five panels tested at the University of Toronto under monotonically increasing in-plane
loadings (Vecchio, 1981; Vecchio and Collins, 1982), a squat shear wall tested by Cardenas et al.
(1980) under monotonically increasing load up to the ultimate load carrying capacity of the
structure, two high strength concrete beams, LS1 and HUCB, tested by Leslie et al. (1976) and
Abrishami et al. (1995), respectively, and a shear panel (W-4) tested by Cervenka (1970) under
reversed cyclic loading. Along with the analysis of each specimen, the effect of diffcrent nonlinear
characteristics of reinforced concrete (tension-stiffening, failure criteria, cracking model, ...) are

also examined.

Chapter 7, "Analytical Study of Structural Walls", presents the computed responses of
three structural walls subjected to distributed lateral loads using the HODA program. These
include a rectangular wall, an L-shaped wall and a C-shaped wall constituting the lateral load
resisting system of a 4-storey building (Manatakos, 1989). Some parametric studies are also

carried out on the three walls to show the effect of tension-stiffening of the concrete and strain-



hardening of the steel reinforcement along with the type of steel idealization on the analyvtical

response of these walls. In each case, the computed results are compared with the wall strength

calculated using the CSA standard A23.3-M84.

Chapter 8, "Conclusions”, summarizes the results of the thesis, highlights the key results,

and makes recommendations for future work.

Appendix A presents 2 list of the input data file required for the HODA program,



CHAPTER 2

REVIEW OF CONSTITUTIVE MODELS FOR CONCRETE

This chapter presents a general state-of-the-art report of the constitutive relationships for
concrete. It starts with a review of the behaviour of concrete under uniaxial, biaxial and triaxial
loadings at both micro- and macro-levels. Then a brief description of five common types of
constitutive relations is presented along with their advantages and disadvantages. This includes
elasticity-based models, plasticity-based models, plastic-fracturing models, elastic-plastic-damage

models, and endochronic models.
2.1 CONCRETE BEHAVIOUR

The response of concrete to uniaxial (compressive or tensile) and combined stresses is
nonlinear due to the progressive microcracking at the transition zone between the aggregates and
the bulk cement paste. According to the experimental observations at the micro-level, concrete can
be treated to be composed of three basic phases: (1) mortar, (2) coarse aggregate, and (3) mortar-
coarse aggregate interface or transition zone (see Fig. 2.1), Mortar is defined as cement paste plus
sand or fine aggregate particles as illustrated in Fig. 2.1(b) and (c). In general, microcracks are
initiated at the aggregate-mortar interfaces due to external loading and shrinkage of the concrete,

because they represent the weakest links or flaws in the concrete.



2.1.1 Uniaxial Behaviour

The response of plain concrete in uniaxial compression is governed by the microcracks
in the transition zone between the hydrated cement paste and the aggregate {(Vonk, 1990). These
microcracks are relatively stable and do not propagate until an applied load equal to about 30%
of the concrete strength, 0.30f; within this range, the response of concrete is basically linear-
elastic. With further loading up to the maximum load, these microcracks grow and propagate
resulting in a decrease in the material stiffness (nonlinear response). This crack propagation does
not lead to the immediate loss of load-carrying capacity, because concrete at this stage behaves
as a highly redundant structure. In the pre-peak region (ascending branch of the stress-strain
curve), most of the microcracks are within the so called transition zone but beyond that, in the
post-peak region or the descending branch of the stress-strain curve, the extensive development
of mortar cracks (cracks through mortar) is observed. The onset of mortar cracking results in
increasing the Poisson’s ratio of concrete (Kupfer et al., 1969) leading to the volume expansion
of concrete which is termed as dilatancy (refer to Fig. 2.2). Beyond the maximum load,
macrocracks localize in narrow bands and lead to a decrease in the applied load; This constitutes
the strain-softening response in uniaxial compression. Finally at failure (rupture), the interface
cracks and the mortar cracks interconnect leading to a discontinuous fracture surface.

The response of a concrete specimen loaded in uniaxial tension is normally linear up to
the maximum load, when the microcracks due to shrinkage and external load localize in a narrow
band to form macrocracks leading to a reduction in the load carrying capacity (Feenstra and de
Borst, 1993). It must be noted that a significant energy input is required for formation and
extension of cracks under compressive loads, while by contrast, much less energy is required for
propagation of cracks under tensile loads. This is why tensile strength of concrete is a fraction of
its compressive strength and it behaves linearly under tensile loads up to the maximum load
(ascending branch).

In repeated loading tests under compression (refer to Fig. 2.3), the envelope curve, the line
on which lie both the starting points of the unloading and the end points of the reloading cycles,
has been found to be coincide with the compression stress-strain curve under monotonically
increasing loads (Sinha, Gerstle and Tulin, 1964). The unloading curve is concave from the
unloading point and it is characterized by the high stiffness when the unloading starts. The slope

of the unloading curve decreases gradually when unloading is continued and becomes very flat



at a low stress level. The residual plastic strain has been found 1o be smaller for stronger concrete
(Aoyama and Noguchi, 1979). Karsan and Jirsa (1969) considered the plastic strain as a principal
parameter to determine the unloading curve equation. The reloading curve from zero stress
changes curvature, becomes rather flat, and it can be represented by a straight line {(Sinha, ¢t al.,
1964), or a second order parabola (Karsan and Jirsa. 1969). Unloading and rcloading curves
intersect each other at a locus called "commen point limit" (see Fig. 2.3). Cycling within a certain
common point until the first unloading curve is reached results in a lowered intersection point with
the unloading curve. With an increasing number of cycles, the location of this intersection point
converges to a certain point defined as "stability limit" (Karsan and Jirsa, 1969).

In reinforced concrete, the response of concrete in compression and tension is basically
similar to that of plain concrete, except that because of bond between the reinforcing steel and the
concrete, several cracks form instead of a single crack as is the case for the plain concrete. This
leads to a redistribution of stresses from the steel reinforcement to the concrete between the
cracks, resulting in the tension stiffening phenomenon. The nonlinear concrete response along with
the elastic-plastic-strain hardening behaviour of the siender steel reinforcing bars and the complex
behaviour at the steel-concrete interface (pull-out and dowel action) and at the cracks (aggregate
interlock) causes the response of any structural reinforced concrete element or structure to any
applied loads to be nonlinear, with a decrease in the stiffness immediately after cracking, followed

by a considerable stiffness reduction at higher load levels.

2.1.2 Biaxial Behaviour

Based on the experimental observation under biaxial compression, the compressive
strength of the concrete increases because of the internal friction and aggregate interlock. The
observed strains in both principal stress directions plotted versus a,/f”, are shown in Fig. 2.4. the
Stress-strain curve for the same case illustrated in Fig. 2.5. At fairly high stresses, it is evident that
the effective stiffnesses are quite different in the two directions. The difference is much greater
than can be explained by Poisson effect. This evidence points to "stress-induced orthotropic
behaviour under biaxial stress conditions. The experimental investigation conducted by Liu, Nilson
and Slate (1972) indicates that the effect of microcracking confinement is the main cause for the

observed increased stiffness under biaxial compression.
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Conversely, a lateral compressive stress decreases the tensile strength of concrete because
the compressive stress introduces tensile stresses at the micro-level due to the heterogeneity of the
matcrial which increases the process of internal damage as reported by Vonk (1990). A lateral
tensile stress has no major influence on the tensile sirength of concrete. To accoum for these
phenomena, a failure envelope curve should be emploved to obtain the compressive and tensile
strength of concrete under the biaxial stress state. The lateral tensile stress beyond cracking can
also decrease the compressive strength of concrete, as noted by Vecchio and Cotlins (1986), and

Feenstra and de Borst (1993).
2.1.3 Triaxial Behaviour

If concrete is subjected to triaxial compression, both its strength and its ductility increase
significantly as the lateral stresses increase. In fact. concrete may sustain a considerably high
hydrostatic pressure before fracture. This is because. under high confinement, bond cracking is
unlikely to occur and the damage is uniformly distributed throughout the entire specimen. In this
case, the concrete behaves like a ductile material without collapse. However, if tensile stress is
applied, cracks develop fast in a direction perpendicular to this tensile stress, causing a remarkable
reduction in the compressive strength and failure of concrete. Another significant triaxial nonlinear
behaviour is the large volume expansion near fracture,

Compared to the uniaxial behaviour, the crack propagation process in the concrete under
multi-axial stress conditions has not been well investigated, and not much systematic data is
available on this subject. Qualitatively the major difference arises in the post-peak behaviour,
where macroscopic observations show that two types of failure modes exist. One is the tensile
splitting failure mode and the other is the shear failure mode produced under low to normal
confinement, by stepwise joining at the existing microcracks. Both fajlure modes exhibit strain

localization in the post-peak region.

2.2 CONCRETE CONSTITUTIVE RELATIONSHIPS

Extensive research over the past two decades has led to a few constitutive models for
concrete which are based on the principles of continuum mechanics and neglect the microstructure

of the concrete. These include elasticity-based models, plasticity-based models, plastic-fracturing
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models, elastic-plastic-damage models, and the endochronic model. A review of these models is
presented in the following sections: more information can be found in two reports published by
the ASCE (1982 and 1991).

A more basic approach for describing the general mechanical behaviour of conerete is
through the study of its microstructure, but this approach is presently limited to qualitative
predictions. Micro-plane model developed by Bazant and Ozbolt (1990) can be introduced as one
of these models. The micro-plane model considers the structure at the microstructural level and
determines the material stiffness matrix by integrating the elemental behaviour of the micro-planes
with various orientations. The micro-planes characterize the deformation of weak plancs within
the microstructure using the normal deviatoric and volumetric strains, and the shear strain. The
model can account for cracking, softening and dilatancy. A drawback for this model is the
considerable computational efforts which is required. The relationship between the macroscopic
features and the microscopic events for the simple cases of uniaxial tension and uniaxial
compression have been recently studied using the finite element method by Yamaguchi and Chen

(1991). More information is available in the paper by Chen and Cohen (1992).

2.2.1 ELASTICITY-BASED MODELS

Elasticity-based models are among the most popular constitutive relationships used in
conjunction with the finite element analysis of concrete structures. These models are simple and
can be easily formulated and implemented. Several elasticity-based constitutive models can be
found in the literature, but in general they can be grouped under the following approaches:

1) Linear elastic model; and

2) Non-linear elastic models
A brief review of each approach is outlined in the following sections. First, the generalized
Hooke’s law for a solid material is introduced and the symmetric properties of elasticity constants
are presented irrespective of the type of material (isotropic, orthotropic, etc.). Then two common
special cases of generalized Hooke’s law for the materials whose elastic properties exhibit
symmetry with respect to two orthogonal planes (orthotropic material) or two orthogonal axes
(isotropic material) are discussed. If the orthotropic models are expressed in terms of increments
of stress and strain, they are called hypoelastic models, and these are presented later in this

section. This includes the models proposed by Liu et al. (1972), Darwin and Pecknold (1977),
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Elwi and Murray (1979) and Bathe et al. (1989). The description of the hypoelastic model

developed in this study is presented in Chapter 3.
2.2.1.1 THE GENERALIZED HOOKE’S LAW

For a large number of solids, the measured strain is proportional to the applied stress over
a wide range of loads. This means that as the stress increases, the measured strain increases in the
same ratio. Also, when the stress is reduced to zero, the strain disappears. These experimental
results fead by inductive reasoning to the generalized Hooke’s law of the proportionality of the
stress and strain. The general form of the law is expressed by the statement: "Each of the
components of the state of stress at a point is a linear function of the components of the state of

strain at that point". Mathematically, this is expressed as

Okl = CHmn emn (2'1)

where, C,,,, are elasticity constants; there are 81 such constants. The indices k and 1 are
identifying indices and m and n are summation indices, which can take values equal to 1, 2 and

3. For example, for k=1 and |=2 the Eq. 2.1 can be expanded as

[+ +

12 ° Con€u t Crom€x:m Yt Cia33€33 Yt Cppa€yp t C1pp1 €y

2.
13813 * Cr231€31 T Cioms€a t Cpopn€a @2)

Since the stress and strain tensors are symmetric, it can be shown that the constants C,,,, are

symmetric with respcct to the first and second pairs of indices, i. e,
Ckbun = Cliarm and Cklmn = Cklnm 23)

Based on energy considerations, it can also be shown that the first and second pairs of indices can

be freely interchanged, namely,

2.4)

Accordingly, the number of independent elastic coefficients for the general anisotropic

elastic material is reduced to 21. For example, Eq. 2.2 takes the following form
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G2 ™ Cran€yy ¥ Cram€an * Cpoy3€ay 2.5)
9

2(cya12€12 * Cy213€13 * Cram€a)
In addition, if certain symmetries exist in the material (as will be discussed in the next section),

the number of material coefficients, C,,.,. will be reduced further. The gencralized Hooke's law

¢an now be written in a matrix notation as follows:

%u St Cuz Cuss 2oz 2043 204 | f €y
Ox Conn Cnp Cuzy 201 203 20 | | €n
O3 - Cun Cpz Oy 2632 2Cu3 20an “-33 | 2.6)
O Con Cpm Cizs3 2612 2€213 260 | | €2
Oy Can Cuz Gz 2632 26033 203 | | €4
(923§ [ o Can Cas 20ni 26313 26 | | € )

The coefficient matrix is symmetric and is called the "stiffness” or the "constitutive” matrix (or
the stiffness tensor).

Since the components of stress and strain tensors are functions of the orientation of the
system of reference axes, the elastic coefficients in Eq. 2.1 are also functions of this orientation,
In a new system of coordinates OX’,, OX’",, and OX", (see Fig. 2.6), the new stiffness tensor

component is evaluated by

Chrg = Rylyhy, Cp @7

where n;; is the direction cosine of new axis i with respect to initial axis j (i, j=p, r, s, t, k, |, m,
and n). The summation on the repeated indices should be carried out in the above equation.

The stress -strain relations given by Eq. 2.1 can be expressed in the inverted form as,

4 = Suan O @3)

where S,,., are constants. It is evident that S, has the same symmetry properties as C,,,, and

is called a component of the compliance matrix, [S], (or the compliance tensor).
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2.2.1.1.1 ORTHOTROPFIC MATERIAL

A material which exhibits symmetry of its elastic properties with respect to two orthogonal
planes is called an orthotropic material. Let the two planes be the OX,, OX, plane and the OX,,
OX, plane (see Fig. 2.7). The direction cosines of the new axes with respect to initial ones are

(1, 0, 0), (0, -1, 0} and (0, 0, -1). The Equation 2.7 gives:
Cimn = Py, Clgm = Cuyy

which is correct. The expansion in Eq. 2.7 is simplified, since there are only three non-zero

direction cosines, namely:

Similarly, this type of symmetry requires:

Chn = uylon s, Cumn = Crizs
which is impossible since
Ryl 3, Cpinn = ~Chpns

Therefore, C,,,; must be equal to zero. A similar reasoning will show that the number of elements

of the constitutive matrix gets reduced to nine and it is written as follows:

[Cun €z Cnzz O 0 0
Con S Cpn O 0 0
R
1212
0 0 0 0 2,, O
[0 0 0 0 0 20,

The above stiffness matrix shows that for orthotropic materials, the application of normal
stresses results in normal strains alone, and the application of shearing stresses results in shearing

strains alone. This is only true, however, in the system of axes with respect to which the
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symmetries are defined.
By following the same procedure, as outlined above, the same pattern can be obtained for
the compliance tensor, [S], in Eq. 2.8. The stress-strain relationship in multi-axial stress state for

an orthotropically anisotropic material (or for brevity. orthotropic) can be written as

€ [ E' -v,ET -v,ETY 0 0 0 o,
€ vy B BT ovET 0 0 0 Gyr
1 €1 [ v BT VBT 0 0 0 | 93 L (2.10)
Yi2 0 0 0 G,' 0 0 T)a
Y13 0 0 0 0 G, 0 Ti3
(Y= ] | 0 0 0 0 0 G,'|i™s

in which the subscripts 1, 2, and 3 stands for the axes of orthotropy; € and ¥ are normal and
engineering-shear strains, respectively; E, is the modulus of elasticity with respect to the
orthotropic direction i (i=1, 2, 3); v; is the Poisson’s ratio in direction i due to uniaxial stress in
direction j (i, j=1, 2, 3); and G;; is the shear modulus of elasticity in plane i-j. A schematic
representations of positive directions for stress/strain components, the Poisson’s ratio, v

shear modulus of elasticity, G, are shown in Fig. 2.8.

and the

ij

If equation 2.10 is modified for an orthotropic material under biaxial stresses in the plane

consisting of coordinates 1 and 2 (i. e. 6,,=1,;=1,,=0), the following equation results:

€n ET -vpE 0 an
622 = -VZIEI-I Ez-l 0 022 (2.11)
Yi2 0 0 G! T

in which, G=G,, is the shear modulus of elasticity in the orthotropic plane. By inverting the above

equation, the stress-strain relationship for an orthotropic material in a biaxial stress condition can

be expressed as,
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9, E, v, E 0 €
0t = —— | vu,E, E, 0 €2 2.12)

2 1-v,. v
12V
T 0 0 (I-vpv)G || Y

2.2.1.1.2 ISOTROPIC MATERJAL

An isotropic material possesses elastic properties which are independent of the orientation
of the axes. In other words, these materials have no preferred directions with respect to their
clastic properties. In this case, for rotated axes (see Fig. 2.6) the stress-strain relationship can be

written as
Ok'l' = Ck.r‘rmfnrem:nf (2-13)

where k', I, m” and n’ are axes corresponding to the axes k, 1, m and n after transformation,
respectively; C,., ... is the elastic coefficient in the transformed coordinate system; o,, and £,
represent stress and strain components in the transformed coordinate system, respectively. For an

isotropic material the following equation must hold:
C*fllmlnl = Cﬂmn (2'14)

in which C,,,,, is the elastic coefficient in the reference coordinate system. C,.,.,.,- can be expressed
in terms of the reference elastic coefficients, C,,., using Eq. 2.7. By following the same procedure
as outlined in the previous section, it can be shown that the 21 elastic constants in Eq. 2.6 reduce
to two independent elastic constants for an isotropic solid (Saada, 1993). Finally, the resulting

stiffness matrix for an isotropic material takes the following form:

fun funm Cna 0
‘u22 “un Cun

Cuaz Snm Sun
1

(cyj=|¢ ©¢ 0 'i(clm - Chn) 0 0 (2.15)
1
¢ 0 0 [\ E(C"" - Cin) 0
1
0 0 0 0 0 E(Cu" - Cllﬁ)
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The clastic constants in Eq. 2.15 are usually written in the following notations:

Cim = 2 J Ciap = l(c

a: % 5 - G . Gy = A v 2p 216)

in which A and p are material constants which referred to as Lame's constants, The stress-strain
relationship for an isotropic material using Lamé's constants and index notation can be expressed

as:
o; = 24 €; + Leyd, @17

where o, and g, are current components of stress and strain tensors, respectively; 8, is Kronecker

delta and €, represents the summation on the repeated indices (i.c. g, = €,+€,*¢,).
2.2.1.2 Linear Elastic Models

In this model, the current state of stress depends on the current state of strain, and it is
independent of the strain history (path independent). This model can be characterized (as explained
in the previous section) with only two material properties which are either Lamé's constants ( A
and p) or the Young's modulus of elasticity (E) and the Poisson's ratio (v) or the bulk modulus
(K) and the shear modulus (G). The stress-strain relationship in terms of Lamé's constants has
been given in Eq. 2.17 and it can be described as a function of the Young's modulus of elasticity

{E) and the Poisson's ratio (v) as

vE
g, = €. + €, 0 (2.18)
¥ v T (Qew)@-2v) *Y
and in terms of G and K as
6. = 2Ge. + (K - 2G)e,. 8 (2.19)
i if 3 k™

The following empirical formula proposed by the ACI (1989) can be used to evaluate the modulus

of elasticity of concrete, E:
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E = 0'043w1.5‘ff—1c (2.20)

in which w is the unit weight of concrete in kilograms per cubic meter and f, is the uniaxial
compressive cylinder strength of concrete in kilograms per square millimetre. The Poisson's ratio
v has been identified to be around 0.2 for plain concrete.

The linear elastic model was adopted initially for the concrete in relation with the finite
element analysis of rcinforced concrete by Ngo and Scordelis (1967). This model results in
satisfactory response under z loading which causes tensile stresses and relatively small
compressive stresses (ASCE, 1991); however, it can not identify the nonlinear response and path

dependent behaviour of concrete at higher levels of compressive loading.
2.2.1.3 Non-linear Elastic Models
2.2.1.3.1 Cauchy Elastic Model

The performance of linear elastic model can be improved significantly by assuming a
nonlinear elastic behaviour in the concrete stress-strain relationships. The simplest way to
introduce the nonlinearity between the current state of stress and that of strain is the stress-strain
relationships for concrete subjected to a uniaxial compressive load. In this regard many models
have been proposed (for example, Smith and Young, 1955; Saenz, 1964; Popovics, 1973; Carreina
and Chu, 1985 and Tsai, 1988) in the form of

o = f(e) (2.21)

This class of constitutive model is called a Cauchy elastic model. They can be used for uniaxial
state of stress and can not be applied directly for the multi-axial state of stress. This Cauchy type

of model can be extended to multi-axial stress state (for example, Ahmad and Shah, 1982) as

= D% 2.22
oy = Dy e (2.22)

where Dy, represents the secant stiffness, which is a function of the stress state, This is also path-

independent, and the reversibility and path-independency of the strain energy function, ®(g;), and
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complementary energy-density function, £(o,) are not generally guaranteed (Chen, 1982).

2.2.1.3.2 Hyper-Elastic (Green Elastic) Model

The current state of stress depends on the current state of strain and mathematically, the
constitutive equation for hyper-elastic models takes a form similar to Eq. 2.1. To ensure the path-
independency of the strain energy and the complementary energy density functions, the following

equation must be satisfied (Chen, 1982)

dd
= £ 2.23
Oy aejj ( )
or,
Q
€ = -aa? (2.24)

where @ and € are the strain energy and complementary energy density functions, respectively.

In general, most of the hyper-elastic models for concrete have been formulated basically
as a simple extension of the linear elastic model, by simply replacing two of the elastic moduli
(the Young's modulus of elasticity, E, and the Poisson's ratio, v, or the bulk modulus, K, and the
shear modulus, G) with secant moduli (E, and v, or K, and G,) which are assumed 1o be a function
of stress and/or strain invariants,

Palaniswamy and Shah (1974) expressed the bulk modulus of elasticity as a function of
the first stress invariant and made the Poisson's ratio a function of the first two stress invariants.
Both relationships have been developed to fit the experimental data. Cedolin et al. (1977)
represented the bulk modulus as a function of the first strain invariant and the shear modulus as
a function of the second deviatoric strain invariant. Both models were able to provide a realistic
simulation of the response up to about seventy percent of the ultimate strength.

Kotsovos and Newman (1978) also developed a nonlinear elastic isotropic model for
concrete based on the bulk and the shear moduli. The volumetric strain that takes place even under
deviatoric stress was also included. Simulation of the test results showed that the entire stress-
strain curve could be modelled satisfactorily. Ottoson (1979) changed the modulus of elasticity,

E, and the Poisson's ratio, v, according to the prevailing stress and strain conditions. A parabolic
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stress-strain refationship was modified to account for muiti-axial stress conditions through the use
of a nonlinearity index, which relates the current stress state to the stress condition at failure.
The preceding discussion belongs to the general elastic bodies where anisotropy is the
result of the internal structure of the material. It also provides a one-to-one relationship between
the current state of the totai stress and that of the total strain, Thus, by definition this type of
formulation is independent of the deformation path in the sense that stresses are uniquely
determined from the current state of strain, or vice versa. Therefore, it has an inherent limitation
in application with respect to concrete, since the loading-path dependence of the deformation state

of concrete has been well recognized (Chen, 1982; ASCE, 1991).

2.2.1.3.3 Hypoelastic Models

An alternative approach to overcome the above deficiency is to describe the material
behaviour in terms of increments of stress and strain. The stress-strain relationships are then
expressed using the tangent stiffness which varies with the current stress state. Thus, this class of
model is generally dependent on the deformation history. The behaviour of this class of model is
infinitesimally (or incrementally) reversible (elastic behaviour). Literally, "hypo" means "in a
lower sense” or "to a lower degree”. Hence, hypoelastic can imply a material that is elastic to a
lower or incremental sense. A hypoelastic material can be interpreted to be capable of allowing
for inelastic or plastic behaviour. The incremental stress-strain relationship for an orthotropic

material takes the form:

do, E, v,E 0 de,,

do, ¢ = __l_._ v,E, E, 0 de,, (2.25)
1-vv

dt,, 0 0 (-v,v,)G dy,;

where E, and E, are the instantaneous tangent stiffness moduli with respect to directions 1 and
2, respectively; G is the instantaneous shear modulus of elasticity on that plane; and v; is the

instantaneous Poisson's ratio in direction i due to uniaxial stress in direction j (i, j= 1, 2).
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2.2.1.3.3.1 Liu, Nilson, and Slate Model

The first use of the incrementaily orthotropic constitutive matrix, Eq. 2.25, in conjunction
with the finite element analysis of reinforced concrete structures was reported by Liu, Nilson, and

Slate (1972). They introduced the stiffness matrix in Eq. 2.25, in an explicitly symmetric form as:

[ E, VvE 0
vE, E o
(S W R , 226
E-VE| E,(E, - vE,)
L E, +E,+2Ev

In the above equation, direction 1 coincides with the direction of the major principal stress
axis. The tangent moduli E, and E, are obtained from the unijaxial stress-strain curve of concrete,
The Poisson's ratio is assumed to be constant and the same in both principal directions, 1 and 2,

The uniaxial stress-strain curve is modified to account for the biaxial action of stresses as follows:

1

o(ea) = 1-va

a(e) 2.27)

where o(g, a) and o(€) are the stress-strain curves under biaxial and uniaxial loadings,
respectively. a is the ratio of the minor principal stress to the major principal stress, and v is the
Poisson's ratio in uniaxial loading. Using this formulation, the biaxial stress-strain relationship is
replaced by a uniaxial stress state which is quite simple to be handled. E, and E, are the tangent

moduli defined by Eq. 2.27 corresponding to the strains in directions 1 and 2, respectively.
2.2.1.3.3.2 Darwin and Pecknold Model

Another common application of the orthotropic stress-strain relation was developed by
Darwin and Pecknold (1974). Two modifications of Eq. 2.25 were carried out by Darwin and

Pecknold. First, they introduced an “equivalent Poisson's ratio”, v, which is defined as
v = vy,vy (2.28)

Secondly, since no information was available on the shear modulus G, they assumed that it is
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independent of the axis orientation. This leads to the following relationship:

(1-v))G = ‘—lt(El + E, -2v (EED) (2.29)

Then, Eq. 2.25 takes the form:

da, E, v‘/ElE2 ¢

de,
doy} = _.1_2* vWEE, E 0 de, (2.30)
-9 {
dt,, 0 0 Z(E1+E2-2v‘/El_Ez) dyp2

If the incremental equivalent uniaxial strains, dg,, and de,, are defined as:

de, = 1 de, + v (Ez-)de
1u l—vzl 1 E, 2. (2.31)

[

v (El)de +d
2. \ Ez 1 eZJ

then Eq. 2.30 becomes:

do, = E,de,,
do, = E,de,, (2.32)
dt, = Gdy,,

These equations have the same form as for the uniaxial stress conditions, which led to the

nomenclature "equivalent uniaxial strain" for deg,, and de,, The definition of the equivalent
uniaxial strain can be restated, using Eq. 2.32 as:

€, = % 2.33)
«~JE

i

or its discrete equivalent:

&, E (2.39)



where Ao, is the incremental change in the principal stress o,

This suggests that once the stress-strain relationship has been formulated in a form similar
to the uniaxial stress case, similar stress-strain relationships can be used for biaxial action in cach
principal direction.

The values of E| and E, for a given principal stress ratio, «, are found as the slopes of
the o, versus €, and o, versus g,, curves. The assumed stress-strain curve for the concrete in
each principal direction is shown Fig. 2.9. The ascending branch of the envelope curve under

compressive load is governed by the Saenz equation (Saenz 1964) as:

g. = eiu EO
i
(B (2] @39
Es Eic E:’c

where E, is the tangent modulus of elasticity at zero stress, E, =g, /g, is the secant modulus at the
point of maximum compressive stress, and €, is the equivalent uniaxial strain at the maximum

compressive stress. The descending branch is linear starting at the peak point (g,,5, ) and ending

i
at point (4¢_, 0.2f"), where g, is the strain corresponding to maximum uniaxial compressive
stress. This simple branch has been adopted for simplicity and it represents a rcasonable
approximation of the experimental results. Concrete under uniaxial tensile load was treated as a
perfect brittle material so that it behaves linearly up to its maximum tensile stress, f°, and in the
post-peak region, it has no load carrying capacity (tension-cut off behaviour).

To account for behaviour of concrete under cyclic loading, at low values of equivalent
uniaxial strain unloading and reloading take place on a single line with slope E,. At higher values
of equivalent uniaxial strain, the unloading curve consists approximately three lines: the first with
slope E; the second parallel to the reloading line; and the third with zero slope, as shown in Fig.
29, '

The value of equivalent Poisson's ratio, v, is taken to be 0.2, both in biaxial tension and
biaxial compression. A stress dependent value is used in uniaxial compression and tension-

compression cases as:



4 4
v =02+ 0.6[%] . o.4(ﬂ] (2.36)

[4 Ulc

where, o, and o, are the current principal stresses in directions 1 and 2, respectively; {°_ is the
uniaxial compressive strength of the concrete; and &, is the tensile strength of concrete in major
direction 1. More detailed information for this model is presented in a report by Shayanfar and

Mirza (1994).
2.2.1.3.3.3 Elwi and Munmay Model

Elwi and Murray (1979) developed a three-dimensional stress-strain relationship for
concrete under axisymmetric stress conditions (i. e., 1,; = 1,;), which incorporates the equivalent
uniaxial strain concept of Darwin and Pecknold (1977), the nonlinear uniaxial stress-strain
relationship by Saenz (1964), and the Argyris failure surface (Willam and Wamke 1975). The
three-dimensional orthotropic constitutive matrix for axisymmetric condition can be obtained from
Eq. 2.10 by deleting the fifth and sixth columns and rows of its coefficient matrix. The resulting
coefficient matrix, (S}, for axisymmetric condition is a 4x4 matrix and the incremental stress-strain

relationship takes the form:
(de) = [S1(da} (2.37)
where [S] is the compliance tensor and {de} and {do} are the vector of strain and stress

increments, respectively. The following constraints must be fulfilled to ensure the symmetry of

the compliance tensor:

VRE = vy E
viE = vy E,
VnkE, = vy E

By inverting Eq. 2.37 and incorporating the above conditions, the following stress-strain

relationship is obtained:
{de} = [C)ide} (2.38)

in which [C] is the constitutive matrix and can be expressed as,
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2 ]
E\(1-pq5) VELE (B3ky * 1) yE (B gt hy) 0

TR 2
[C] - \.j"f‘:pE:z(l'l13|-"3‘:+ |-"1:'_) E:(l '1-113) szEl(IJ»nPn"Pn) 0 (2.39)

|-

— 2
VEIE (Biabya *1813) VEE (BB 3+ By) Ey(1-pi5) 0
0 0 0 G

.

in which g > =v, v and ¢ = 1 - p* - py® - ny -2 2 My 1y The shear modulus of elasticity
(G,,) is assumed to be invariant with respect to transformation to any non-orthotropic set of axes

which results in:

G,; = Z%[Ei+Ez—2}xl._,\/ElE2-(‘/E_,p23+\[E;u31)2] (2.40)

The uniaxial compressive stress-equivalent strain relationship, g-€,,, due to Sacnz (1964)
is generalized to three dimensions in terms of the equivalent uniaxial strain, €, strength of the
concrete under biaxial stress condition, o, and the strain corresponding to this strength, €
(Bashur and Darwin 1978). The modulus of elasticity in orthotropic direction "i" is ¢valuated as
the slope of the o-g, curve. The Poisson's ratio is assumed to be unique in cach orthotropic

direction (i. €., v, = v,y = v,; = v, ), which is defined as

eic eic elc

i € €)' (2.41)
v, = v511.0 + 1.3763| —| - 5.3600| —| - 8.5860| — '

in which v, is the initial Poisson's ratio, €, is the current equivalent uniaxial strain in direction
"i" and g is the strain corresponding to peak point at failure. The Argyris failure criterion

(Willam and Warnke 1975) is used to evaluate o and .
2.2.1.3.3.4 Bathe et al. Model

Bathe and Ramaswamy (1979) implemented a three-dimensional hypoclastic model for
concrete into the commercial finite element program ADINA, This model was later refined by
Bathe et al. (1989). In this later version, stresses and strains in the principal directions are related

by means of uniaxial stress-strain relationships based on the equation proposed by Kupfer et al.
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(1969). This uniaxial stress-strain relation was generalized to take biaxial and triaxial stress
conditions into account, Concrele was considered as an orthotropic material with the directions
of orthotropy defined as the principal stress directions. The constitutive matrix, [C], corresponding

to these directions in the three-dimensional stress state is presented as,

(1-v)E, VvE, VE, 0 0 0
vE,, (I-v)E, VE, 0
vE, vE, (l1-v)E 0
[ - l 0 0 0 %(1-2»)51, 0 0 (2.42)
(1+v)(1-2v)
0 0 0 0 -;(1 2E, 0
0 0 0 0 0 %(1-2»)52,

in which v is the Poisson's ratio, E, is the current tangent modulus of elasticity in the principal
direction i which is equal to the slope of the generalized uniaxial stress-strain curve at the current
strain, and E; is the weighted Young's modulus of elasticity corresponding 1o the plane i-j which
is defined as:

_19E, + 19 )E

- (2.43)
v l ofl + l Gjl

where, g, and g; are the current principal stresses in directions i and j, respectively. Accerding to

this weighted Young's modulus, the shear modulus of elasticity in the plane i-j is calculated as:

Gii = __E'f__ (2.49)
2(1 +wv)

This hypoelastic model uses a non-constant Poisson's ratio to account for dilation under
compressive loading. To characterize loading and unloading conditions, they defined a loading

function f
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[F1

-1 ' 2.45
f—(SSq.SU.] = J, (2.45)

-

8} is the deviatoric

m -y

where ], is the second invariant of the deviatoric stress tensor, (§,= ¢, -G
stress ensor, (G, = 1/3 6) is the hydrostatic or mean stress, and 8, is the Kronecker delta. The

malerial is being loaded except the following condition is met:
f<fin (2.46)

in which {,, is the maximum value of the leading function that has been reached during the
complete solution. During unloading, only the initial Young's modulus, E, is used to form the
incremental constitutive matrix, Eq. 2.42, both for stiffness and stress calculations. Tensile
cracking and compression crushing conditions are identified using failure surfaces. The strain
softening responses are included in the compression and the tensile regions. For more information,

refer to Bathe et al. (1939),

2.2.2 PLASTICITY-BASED MODELS

The theory of plasticity was initially developed and successfully used in the representation
of metal behaviour. In recent years, plasticity-based models have been used extensively to deseribe
the behaviour of concrete materials, and capture its essential characteristics such as nonlincarity,
irreversibility, path-dependency, dilatancy, ete. (Suidan and Schnobrich, 1973; Chen and Chen,
1975, Buyukozturk, 1977; Chen, 1982; Chen and Han, 1988). However, the application of the
plasticity-based models has been criticized because of their inability to describe the degradation
of the elastic moduli (decrease of the unloading stiffness resulting from extension of microcracks;
refer to Figure 2.10) and of strength (decrease of siress hecause of micro-fracturing leading to the
strain-softening branch) in the post-peak reginte. In the pre-peak regime, the plasticity-based
models do not also idealize the degradation of the elastic moduli, but it is not crucial. Thus, the

modelling based on the theory of plasticity can be successfully used in the pre-peak region.
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The following three basic assumptions are used in the development of the classical theory

of plasticity:

1) An initial yield surface,

2} A hardening rule, and

3) A flow rule
The first assumption states that a stress function, f, exists defining the limit of elasticity of the
material. It is called the initial-yield function before plastic deformations occur, and loading
function, beyond initial yielding. In fact, this function in stress space can define the stress states
at which plastic deformation does not exist {f<0), plastic deformation begins (f=0) and plastic fiow
occurs (>0). Before yielding (f<0), the elasticity-based constitutive laws, discussed in Section
2.2.1.2, are used to characterize the concrete response. A hardening rule regulates the evolution
of the subsequent loading surfaces during the course of plastic flow. A flow rule defines an
incremental plastic stress-strain relationship using a plastic potential function, g.

The models based on the theory of plasticity can be classified into two groups: (1) the
clastic-strain hardening models; and (2) the elastic-perfectly plastic models. If an elasto-plastic
model admits changes of permanent strain under constant stress, it is called an elastic-perfectly
plastic model, otherwise it is considered to be an elastic-strain hardening model. A brief

description of these models is presented in the following sections.
2.2.2.1 Elastic-Strain Hardening Model

When the state of stress reaches the yield surface, =0, concrete undergoes plastic
deformation. At this stage, the total strain increment, de;, is assumed to be composed of elastic
and plastic strain increments:

de

y = dej; +def (2.47)

y

where dej; and def; are elastic and plastic strain increments, respectively. In the theory of
plasticity, the direction of the plastic strain vector is defined through a flow rule by assuming the
existence of a plastic potential function, g, to which the plastic strain vectors are orthogonal

Mathematically, this can be expressed as:
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deP = 198 (2.48)

in which A20 is a scalar proportionality factor. For an associated flow rule, fis assumed to be
equal to g (f=g), while for a non-associated flow rule, f is not considered to be equal to g. In
practice, most of the materials are cousidered to follow non-associated flow rule of plasticity.
As mentioned earlier, before yicelding, elasticity-based constitutive laws are used 1o express
the stress-strain relationships. Beyond the initial yielding surface (see Figure 2.11), both initial
yield and subsequent stress states must satisfy the following yield function, in the plastic loading

range, (Chen and Chen, 1975; Chen, 1982)

f(c,'ja € gpw k) =0 and f + df ={ (2.49)

where k is the material constant, and a function of the plastic strain tensor, €} From the above

equation and using the variational calculus, the following consistency condition can be obtained

_ of of ,. P of ,, _
df = -a;doy + Pdeij + é_lzdk =0
ij Beg

(2.50)

From this equation, and equations 2.47, 2.48 and 2.49, the following stress-strain relationship in
the plastic region (the region enclosed by initial yielding surface and fracture surface in Fig. 2.11)
is obtained
=D%P = (D¢ p (2.51)
do; Dijkl dey (Dljkl + Dy’kl) de,,
where, D5y, D%, and D}, are the elastic, plastic and elasto-plastic tangential stiffnesses,
respectively. The plastic-stiffness tensor, D¥y, for an elastic-strain hardening material has the form
e dg O pe
D, —-_D
p Yt 3g,, da,, rskl

DL, = -
yd -, _of pe 28
do,, ™4 30,

(2.52)

in which the scalar function, A, and the hardening parameter, h, are being defined as
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E—Df de,
do, UK
A = i (2-53)
P af D¢ dg
da,, "M°Pq aom

and,

h..0f 38 _ O ok 38
geP 99; k5 pdoy,
ij ij

(2.54)

It is noticed that if non-associated flow rules are used, the tangent stiffness matrices, Df,,, become

undesirably asymmetric, i.e.

f*g then Df]?kl * Dﬂij (2.55)
Therefore, the finite element programs must have the capability of handling the unsymmetric
stiffness matrix to incorporate this kind of models. On the other hand, the associated flow rules
do not correctly capture the volumetric response of the concrete (Chen, 1982).

The isotropic-hardening model proposed by Chen and Chen (1975), the uniform hardening
model developed by Han and Chen (1985) and the multiple hardening model suggested by Murray
et al. (1979) are among the popular elastic-strain hardening plasticity models. None of these
models can account for strain softening and degradation of the elastic modulus in the post-peak

region.
2.2.2.2 Elastic-Perfectly Plastic Model

Under high levels of confinement, concrete is known to manifest significant ductile
behaviour before fracturing. To model this ductility, the perfect plasticity concept was introduced
as a reasonable first approximation. This model can be treated as a special case of the model
discussed in the preceding section, in which the hardening parameter vanishes to zero (h=0) and

the loading surface, f, is only a function of the state of stress and the plastic strain as:
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= Py . 2.56
J=flo; € ij) 0 (2.56)
Using this model, the incremental stress-strain relationship introduced in Eq. 2.51 is applicable
in the plastic region. The plastic-stiffness tensor, D%, for an elastic-perfectly plastic material with

an associated flow rule (f=g) can be introduced as

e 9o Of e
D:}'lu 3¢ do_ Dru
D E - - ] [ )
ik af pe of
da,, "P4 da,,

(2.57)

As pointed out earlier, the classical theory of plasticity is based on the assumption that plastic
deformation occurs without a corresponding change in the elastic moduli. But concrete is known
to experience a degradation of the elastic moduli due to microcracking, especially in the softening
regime (see Figure 2.10). The plastic-fracturing theory discussed in the next section, accounts for
this behaviour of concrete by including the strain in the definition of plastic flow.

For moderate strain, mild steel behaves approximately like an elastic-perfectly plastic
material in both compression and tension. For concrete, it is not realistic to treat it as an elastic-
perfectly plastic material; but this assumption in conjunction with the limit theorems of plastic
analysis and design reveals reasonable results in the response of reinforced concrete structures.
From the view point of constitutive modelling, the hypoelastic-perfectly plastic model proposed
by Ohtani and Chen (1987} can be considered as an elastic-perfectly plastic model. In this model,
concrete is idealized by a hypoelasticity model before yielding and an elastic-perfectly plastic
formulation in the post-yielding regime. This model suffers from its inability to describe the
degradation of the elastic moduli and degradation of the strength leading to the strain-softening

behaviour in the post-peak regime.
2.2.3 PLASTIC-FRACTURING MODELS
The plastic-fracturing theory appears to be an effective approach in modelling the

behaviour of concrete materials. In this theory, the nelastic behaviour of concrete is attributed to

microcracking in addition to plastic slip (Bazant and Kim, 1979). In other word, plastic
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deformation is defined by the flow theory of plasticity in the usual manner, while the stiffness
degradation is modeled by the fracturing theory of Dougill (1975). Thus, fracturing concepts are
combined with the plasticity theory to derive the constitutive relations. In these relations, the
plastic strain increments are obtained using the conventional plastic loading surfaces in the stress
space, whereas the fracturing stress decrements are defined by a postulated potential function in
the strain space:

floy, H,) =0 (2.58)

d(ey, HY) = 0
in which f and ¢ are the loading and the fracturing surfaces; and H, and H', are the hardening
parameters. The resulting constitutive equation from this theory is:

da, = Dfy dey = Dy - Dby - D gf’kl) de, (2.59)

where, Dj,, D%y, Dgu and D;ju are the elastic, plastic, fracturing and total tangential stiffnesses,
respectively, Through the use of tedious algebraic calculations and six inelastic material
parameters which are functions of stress and strain invariants, the above tensors can be evaluated.

It was mentioned earlier that this approach combines two loading surfaces, the yield
surface in the stress space and the fracturing surface in the strain space. This causes difficulties
in the definition of the loading criterion, which is specially serious for the softening regime in
which the strains continue to increase with the decrease of stresses. To avoid this problem, a
strain-space plasticity approach has been proposed by Han and Chen (1986) to formulate the
plastic fracturing surface. More information about the furmulation of this theory can be found in
the paper by Bazant and Kim (1979), and in the book by Chen and Han (1988).

The plastic-fracturing models have been criticized in that the stress-strain relationship in
the sofiening range is merely a nominal property, and not a material property as assumed by the
model. In the post-peak regime, strain localization usually occurs and the descending branch of
the load-deformation curve may not be interpreted as the strain-softening of the material.
However, if the geometrical and structural effects are lumped together and considered by some
means like the mode! of Frantziskonis and Desai (1987), the continuous description of the
softening stress-strain relation may be reasonable. The plastic-fracturing models generally require

a large number of functions and material parameters, and involve heavy computational iterations

33



in the finite element analysis. Therefore, the application of these models is very limited in

practice,
2.2.4 ELASTIC-PLASTIC-DAMAGE MODELS

As mentioned perviously, the failure of concrete is attributed to the progressive
propagation and concentration of microcracks in the material. This is defined as the damage of
the material. The continuum damage mechanics (Kachanov, 1986) based on thermodynamics can
be used to model this pher >menon. In this approach, the stiffness degradation behaviour is
assumed to be caused by material damage. There are two types of material damage variables
usually employed to represent the damage. One is the isotropic or scalar damage which is related
to the collapse of micro-porous structure of the materizl. The other is the anisotropic or tensorial
damage which is related to the creation of surfaces in the material due to de-cohesion. If a
material is virgin isotropic elastic, the scalar damage preserves its property, while the tensorial
damage induces anisotropy for the elastic behaviour of the material. This is called deformation-
induced-anisotropy. The damage growth in the material can be described by either prescribing a
damage evolution law (Mazars, 1986), or by using the concept of damage surface (Krajcinovic
and Fonseka, 1981).

Two types of damage models, elastic-damage model and elastic-plastic-damage model for
the concrete have been suggested, In the elastic-damage models, the inelastic behaviour of
concrete materials is reflected only in the stiffness degradation, and there is no permanent
deformation in the material after a complete unloading. Dougill's work belongs to this category.
To describe the coupling between the plasticity of the concrete and its elastic stiffness degradation,
the elastic-plastic-damage models have been suggested (Ortiz and Popov, 1982; Frantziskonis and
Desai, 1987; Simo and Ju,1987; Lubliner et al., 1989; Oliver et al., 1990; Chen 1992). To prevent
mesh-sensitiveness associated with the strain-softening in the finite element analysis, Bazant et al,
{1988) adopted a modified nonlocal continuum approach in which the nonlocal averaging only is
applied to the variables that control strain-softening or damage.

In summary, the elastic-plastic-damage model that combines the conventional plasticity
theory with the continuum damage theory is very promising and should provide a reasonable
modelling technique for describing the behaviour of concrete materials. Presently, it is under

active development.
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2.2.5 ENDOCHRONIC MODELS

The endochronic theory seems to be an attractive and comprehensive approach for
modelling of concrete material behaviour such as nonlinear response, inclastic volume dilatancy,
hydrostatic pressure sensitivity, damage accumulation, creep and cyclic behaviour. This theory was
iitially proposed by Valanis (1971) as a generalization of the theory of visco-elasticity for the
description of metal behaviour. It attempts to improve the numerical efficiency by employing an
inelastic continuous model without recourse to yield condition and hardening rules. Bazant et al.
{1976, 1978, 1980) extended this theory to describe the behaviour of concrete materials. The basic
concept of the endochronic theory is the introduction of an intrinsic time as a non-decreasing
scalar variable used to measure the evolution of irreversible damage.

Although it appears that the endochronic models may become a potentially useful
approach in the numerical analysis of concrete structures, a clear understanding of the theory is
necessary because of its limitations in satisfying the principles of continuum mechanics, A
thorough investigation of the accuracy , shortcomings and advantages of the endochronic theory
was undertaken by Hanna (1983) at McGill University. One of the shortcomings reported by
Hanna is the incrementally nonlinear naiure of the model which makes it quite expensive in terms
of computing costs. Moreover, a large number of material parameters are required to be defined

which, in turmn, require more intensive computations.
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Figure 2.1: Details of concrete mass and magnification of its mortar portion for:
(A) concrete, (B) mortar portion of concrete, and (C) further magnification of mortar
(Chen and Cohen, 1992)
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CHAPTER 3

THE PROPOSED MATERIAL MODEL

This chapter presents the proposed constitutive model for concrete and the required
material properties including, the stress-strain curve, the instantaneous modulus of elasticity, the
Poisson’s ratio, etc, The constitutive model for concrete is introduced for two distinct cases: the
uncracked concrete and the cracked concrete. The uncracked concrete is modeled using a new
hypoelasticity model which allows for the evaluation of the equivalent uniaxial strains in terms
of the "real" strains in both pre- and post-compressive peak regions. With regard to the uncracked
concrete two common types of crack modelling techniques (discrete and smeared crack models)
are discussed and a brief discription of the different smeared crack models (fixed, rotating and
multiple crack models) in connection with the proposed hypoelasticity model are presented (see
Shayanfar and Mirza, 1994). The compressive strength-degradation of the concrete in the
compression-tension state after cracking is also included as reported by Vecchio and Collins
(1986). The monotonic and cyclic stress-strain curves which can be used effectively for both
normal and high-strength concretes, the Poisson’s ratio, the failure criteria for concrete and the

constitutive model for steel reinforcement are presented in the last part of this chapter.

3.1 GENERAL

In recent years, a large number of constitutive models for concrete materials have been
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developed, as presented in Chapter 2, but the models that are rational, reliable. practical and
simple to implement in a general purpose finite element analysis program are very limited. A
rational concrete model should be able to describe adequately the main characteristics of the
complete stress-strain behaviour of concrete materials, ranging from a tension with a low
confining pressure to a compressive state with very high confining pressure, besides dealing with
both the pre-peak and the post-peak regimes. Furthermore, the reliability of an applicable model
is closely related to its nurnerical stability, which in tum depends on its formulation and the
numerical techniques adopted for its computer impiementation. This practical application requires
that the model should be as simple as possible, as long as the main characteristics of the
constitutive behaviour of the concrete materials are "captured”. The main characteristics of a
proper modei for concrete materials, as discussed in Chapter 2, can be summarized as follows:

1) The high nonlinearity of the stress-strain behaviour of concrete in the pre-peak regime,
i. e. growing and propagation of microcracks resulting in a decrease in the material stiffness.

2) The softening behaviour of concrete in the post-peak regime resulting from the
localization of macrocracks in narrow bands.

3) The elastic stiffness degradation caused by the extension of microcracks during
subsequent unloadings and reloadings. (refer to Fig. 2.6).

4) The irrecoverable volume dilatation at high level of compressive load resulting in an
increase in the Poisson’s ratio.

All of the above features for concrete are included in the material model developed during
this course of study. This model can be treated as a hypoelastic model which is very simple to
implement in a nonlinear finite element analysis program. The incremental nature of the
hypoelastic models along with the nonlinear stress-strain relationship utilized in the proposed
model (see Section 3.4.1), capture the nonlinear stress-strain behaviour of concrete. The proposed
constitutive model is applicable for the entire stress or strain history including the post-peak
regions and can model the strain softening behaviour of concrete through the assumed nonlinear
stress-strain curve. The proposed analytical stress-strain relationship for concrete, under cyclic
loading, can account for the stiffness degradation during subsequent unloadings and reloadings
(see Section 3.4.2). A variable Poisson’s ratio is used to account for volume dilatation at high

stress levels (see Section 3.5).
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3.2 CONSTITUTIVE MODEL FOR UNCRACKED CONCRETE

Once again the generalized incremental Hooke's law for an orthotropic material under
biaxial actions, Eq. 2.25. is modified according to the following assumptions:
1) To satisfy the energy conservation principle, the elastic material stiffness matrix should

be symmetric, giving:
vy E = v, E 3.1

2) To define the Poisson's ratios (v,,, v4,)., the following equation is imposed:
Yo Vv (3.2)

where E_ is the initial stiffness moduli and v is the equivalent Poisson's ratio as described in
Section 3.5.

3) Because of lack of information related to the shear modulus of elasticity of the
concrete, G, it is also assumed to be independent of the axis orientation. This assumption

accompanied with Eqgs. (3.1) and (3.2) results in the following equation:

EE 1 E,E,
1-v212YG = =(E, + E, -2v—2 3.3
(-6 = g (B By -2y (33)

With these assumptions, the incremental stress-strain relationship in Eq. 2.25 takes the following

form:
E EE, |E 0
do,, | ! vEE IE, de,,
EE, |E 0
doy b e L JVEEE B dey § (3.4)
1- 25152 1 E\E,
do,, v —E_’_ 0 0 Z(E:*'E:'z"' E, Yildy,

The above constitutive matrix contains four material constants which are the instantaneous tangent
stiffness moduli in the principal directions 1 and 2, i. e. E, and E,, the equivalent Poisson's ratio,

v, and the initial modulus of elasticity, E,. The evaluation of these parameters at each load stage
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is presented in Sections 3.4 and 3.5.
3.2.1 Equivalent Uniaxial Stmins

For an incremen: of stress or strain, the material can be assumed to behave as a lincar
elastic material and the principle of superposition can be considered to be applicable. Thus, the
state of "real" siress at any point of the element in its principal plane is composed of two distinet
cases (see Fig. 3.1):

(1) Stress is applied only along the axis 1 (do, # 0 and do, = 0), and the resulting
incremental strains in the principal directions 1 and 2 are g,, and &,,,, respectively (see Fig.
3.1b);

(2) Stress is applied only along the axis 2 (do, = 0 and do, # 0), and the resulting

incremental strains in principal directions 1 and 2 are €, ,, and ¢,

—ur

respectively (see Fig. 3.1c).

The condition for equivalence of the systems {a) and (b+c) is (sce Fig. 3.1):

de, = de, + de,, (3.5)
de, = de,, + de,

Applying Eq. 3.4 for each stress state (b) and (c) separately, the following equations are obtained

corresponding to the directions with no stress:

EE
v—de, + Ede,,, = 0 (Case b)
f) {3.6)
EIEZ
E,de,, + v de,, =0 (Case o)

°

The strains €, , and €, ,, can be expressed in terms of €,, and &,, as follows:

vE
dey,, = __E—l'delu
0 3.7
sz
dep,, = - E de,,

Combining Eqs. (3.5) and (3.7) gives:

46



1
de, ) E, | |de, 3.5)
de, vE, ) de,,

1 sz
Idem}z 1 E, {del} 59
|dea, 2 BE [ YE | lde
E?} | E

Equation (3.9) is a general equation which can be used to evaluate the incremental equivalent
uniaxial strains, dg,,, based on the current incremental "real" strains, de, (i = 1,2).
By following a similar procedure, Eq. 3.9 takes the following form based on Darwin’s

constitutive matrix (see Eq. 2.30):

de,, _ 1 de, 3.10)
dey, 1-v? de,

E,
v | — 1
E,

—

It is obvious that the use of Eq. 3.10 is limited to the case where the moduli of elasticity
(E, and E,) have positive non-zero values. This condition (non-zero value for the modulus of
elasticity) occurs when the state of stress in two principal directions is located on the ascending
branch of the stress-strain curves. Based on several analyses, it was noticed that when the
tangential stiffness, E,, becomes nearly zero, the error of the incremental equivalent uniaxial strain,
Ag,,, resulting from Darwin’s method (Ag,, = A, / E;) becomes larger, and compression failure of
the concrete occurs suddenly with a rapid increase of the equivalent uniaxial strain. On the other
hand, the equivalent uniaxial strains evaluated using Eq. 3.9 do not suffer from the difficulty
arising from the division by zero, or a very small value. Therefore, the incremental stress-strain

relationship in Eq. 3.9 is applicable for the entire stress or strain history (in both pre- and post-
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peak regions). while Eq. 3.10 can only be used for the pre-peak regime.
With the crucial assumption of concrele being an isotropic material, i.e., E,=E.=E,, Eq.

3.9 takes the following form as proposed by Noguchi (Meyer and Okamura, 1985):
de,, o1 1 v de, 3.11)
d€2u 1-v? v 1 d€2

3.2.2 Rotation of Material Axis

During the subsequent iterations/ load steps, because of the presence of shear stresses the
principal and material aXes rotate. The material axes are assumed to coincide with the prinzipai
axes. A schematic representation of the material principal axes during two subscquent iterations/
load steps is shown in Fig. 3.2, The orientation of each principal coordinate system is measured
with reference to the local coordinate system of the element.

In each iteration/ load step, the angle between the current principal coordinate system and

the previous coordinate system, 46,=6,,-8

olg?

is obtained and then the previous equivalent uniaxial
strain vector, {€; 4}, is transformed by the angle a0, to obtain its projection in the new principal

coordinate system, {€",, 4} which results in:

{ R } e'lu old COSZ(AGE) Sinz(Ael') €1u otd (3.12)
€, 1 = , = . *
“e €uod ) | Si?(A8) cos?(A8) | | €20
The incremental strain vector in the local coordinate system, {a€}, is obtained as:
Ae_
3.13
(86} = {8yt = e} = (€} G139
A €y

where {¢,,} and {e,_,} are the previous and the current strain vectors in the local coordinate
system, respectively. Then the incremental principal strain in the new coordinate system, {a€’ },

can be evaluated as follows:
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Ae'
(8€i) - {A } " (i) (€] -

ar,

cos’(A0) sin®(A6,) cos(AB)sin(AB,) (.15)
A L - .
(4l sin(A6,) cos’(A6) -cos(A8)sin(A8)| | 7

Aen,

where {€", ,,} and {g, ..} are the transformed old and the new principal strain vectors in the new
coordinate system, respectively, From the above incremental transformed principal strain vector,

{A€" )}, the incremental equivalent uniaxial strain vector, {ag,}, is obtained using Eq. 3.9 as

5
(Ae,) = {Ae'“} N S E, {M‘} (3.16)
" Ae,, E.E, | vE A€
1"\?2 142 1 1 2
E? _ E,

Finally, the new equivalent uniaxial strain vector is calculated as

{€u} = {:l“] = (€ o) * {Aeu) (3.17)

[t is obvious that based on the above formulation, the equivalent uniaxial strain is obtained
from the "real” principal strains and the material parameters (E,, E,, and v) corresponding to the
previous load stage. In Darwin's model, the matzrial axes are not transformed if the principal axis
rotates within £45 degrees from their original position; beyond this limit, the material axes are
transformed. This method introduces a discontinuity in the computed equivalent uniaxial strains
and causes more errors in the computation process (Meyer and Okamura, 1985). The method
adopted in this study as outlined earlier, ensures the continuity of the computed equivalent

uniaxial strains and gives more reliable results.
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3.3 CONSTITUTIVE MODEL FOR CRACKED CONCRETE

Cracking of concrete is one of the important aspects of material nonlinear behaviour of
concrete. Intensive research effort has resulted in a large number of cracking models, which can
be divided broadly into two categories, namely, discrete cracking models and smeared cracking
models. Furthermore, within each category, these models can be applied cither with a strength-

based, or fracture mechanics based crack propagation criterion (See Fig. 3.3).

3.3.1 The Discrete Cracking Model

The discrete cracking model is based on the concept of displacement discontinuity across
a crack, In a finite element analysis program, this can be achieved by disconnecting elements at
the nodal points along their boundaries as shown in Fig. 3.4. The main problem with this approach
is the difficulty resuiting from the introduction of the additional nodal points required by the
altered topology of the analytical model.These additional degrees of freedom have the effect of
destroying the small band width of the global structural stiffness matrix, resulting in a much
greater computational effort to solve the equilibrium equations.

The discrete cracking model was first used for the analysis of reinforced concrete beams
by Ngo and Scordelis (1967). For problem involving a few dominant cracks, such as the diagonal-
tension crack in a reinforced concrete beam, the discrete cracking model offers a more realistic
representation, i. e., a crack represents a strain discontinuity. Moreover, the aggregate interlock
and the dowel action can be modelled in the discrete-cracking representation by using special
linkage elements that cross the crack and control its behaviour as it opens and slides. The stiffness
of this linkage can be decreased as the crack opens, thereby decreasing the interlock forces with
wider cracks. In practice, the discrete cracking model is not popular and the majority of the
available computer programs in nonlinear finite element analysis of reinforced concrete are
employing the smeared cracking model which is easier to implement and much less

computationally demanding than the discrete model.

3.3.2 The Smeared Cracking Model

The smeared crack model developed by Rashid (1968) has been adopted by the majority
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investigators in the area of nonlinear finite element analysis of reinforced concrete structures. This
model offers automatic generation of cracks, without a redefinition of the finite element topology
and complete generality in possible crack direction. Based on this procedure, the cracked concrete
is represented as an orthotropic material with an infinite number of parallel fissures across that
part of the finite element (see Fig. 3.5). After cracking has occurred (usually defined when the
principal tensile stress or strain exceeds a predefined limiting value), the constitutive matrix is

defined as:

da, E, 0 0] |dey
do,} =|0 E, 0 |{de, (3.18)
dty, 0 0 BG| [dyp

in which E, (E, = 0) and E, are the tangential stiffnesses perpendicular and parallel to the crack
direction, respectively. Once the second crack is detected in the direction perpendicular to the first
crack, the tangential stiffnesses E, is also set to zero, The factor B (0<f <1.0) is the multiplier of
the uncracked concrete shear stiffness, G, which accounts for the reduced shear stiffness after
cracking has resulted from dowel action and aggregate interlock, and is called the shear retention
factor. If the term BG is ignored in the above equation, it can cause numerical difficulties in some
cases, and also cause distortion of the crack patterns obtained from the finite element analyses
{Schnabrich, 1972; Hand et al., 1973; Lin and Scordelis, 1975). To model the tension-stiffening
effect using the descending branch of the tensile stress-strain curve, E, may be set equal to zero,
or determined as the secant modulus of elasticity as shown in Fig. 3.12. Tabie 3.1 summarises the
key features of both discrete and smeared cracking models.

The cracking models employed in conjunction with the smeared crack procedure can be
categorized into the following three groups:

1) Fixed crack models

2} Rotating crack models

3) Multiple non-orthogonal crack models
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Table 3.1: Cracking Models (Bello, 1992)

Model

Base

Approach

Advantages

Disadvantages

Discrete Cracking

Fracture Mechanics

Based on enerpy
release rate

Bond efTects are more
accurately represented.

Crack width
computation is more
accurate

Problems of non-
objectivity do not arise.

Additional conctete
properties. €. energy
release rate, G,
Iracture toughness, K,

Redefinition of
structure topology aller
crack formation.

Extensive remeshing is
required where crack
direction s not hnown
a priori.

Strength based

Based on limiting
tensile stress/ strain

Mote realistic when few

cracks dominate
behaviour,

Can realistically
represent aggrepale
interlock by use of
linkage ¢lement.

Useful in investigating
stresses when crack
location is predefined.

Sume a5 nbove; but no
additional conerele
property is required.

Ofien the predicled
response is sensitive to
the refinement of finite
clement mesh,

Smeared Cracking

Fracture Mechanics

Based on energy
relense rate

Problems of non-
objectivity do not arise,
Can handle problems
involving few dominant
cracks.

In addition, it has the
three advantages listed
below for strength-
based model.

Additional concrete

propenties required, cp.
energy relense rate, G,
fracture toughness, K,

Strength based

Based on limiting
tensile stress/ strain

Computationally
efficient; no need 1o
redefine structure
topology after cracking.

Crack direction is not
restricted to element
boundarics.

Adequate in problems
in which precise crack
location is not
important.

Inadeqguate when
precise erack
location/gecomelry is
important.

Prone to non-
objectivity; dependence
of solution on grid
size,

Inadequate in problems
involving few

dominant cracks.



3.3.2.1 Fixed Crack Models

In the fixed crack models, once one crack is formed, the principal directions are not
allowed to rotate and a sccond crack can form only when the stress perpendicular to the first crack
direction exceeds the tensile strength of concrete (¢ > 7). In this model, the principal tensile
stresses can be built up at angles that differ from those of the original two fixed-orthogonal
directions. These stresses can eventually exceed the cracking stress; however, no corrective action
can be taken with this model and as a consequence, the numerical sclutions can be "too stiff” and
can lead to collapse loads that are significantly too high (Cope et al., 1980; Milford and
Schnobrich, 1984; Crisfield and Wills, 1987 and 1989; Kolleger and Melhom, 1987). This model
is adequate for elements reinforced in only one direction, or in two directions with almost the

same amounts of reinforcement.

3.3.2.2 Rotating Crack Models

In rotating crack medels (Cope et al., 1980; Gupta and Akbar, 1984; Vecchio, 1989), the
shortcomings associated with the fixed crack models are eliminated by permitting the principal
directions to rotate after one or two cracks are formed. The cracking direction is taken to be
perpendicular to the current major principal strain at any stage of loading.

The stiff response resulting from fixing the principal directions is eliminated by using this
model, This approach has been criticized by Bazant (1983) for not reflecting the physical natre
of cracking. However, it has been argued by Crisfield and Wills (1989) that when a tangential

shear modulus is chosen such that:

(o, - 9;)
G =1 2 (3.19)
P 2(€; - €,)

then the orthotropic rotating crack models become tensorially invariant and hence consistent.

3.3.2.3 Multiple Non-Orthogonal Crack Models

The multiple non-orthogonal crack models have the ability to duplicate more than two

non-orthogonal crack at one point of the structure. These models are not popular and only a few
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researchers have used them (Barzgar and Schnobrich, 1986: Rots, 1988: Barzgar and Ramaswamy,
1990). The detailed discussion of this model is beyond the scope of this thesis. In this study, both
the fixed and rotating crack models have been formulated and used in conjunction with the R C

nonlinear finite element formulation.
3.3.3 Compressive Strength Degradation After Cracking

While cracking takes place, the concrete parallel to the crack direction is still capable of
resisting tensile or compressive stresses. If it is subjected to tension, a linear clastic behaviour
for concrete is assumed up to a tensile stress level equal to the tensile strength of concrete, {7,
which represents the onset of the linear softening branch of tensile stress-strain curve of concrete,
as proposed by Kabir (1976).

However, when concrete is subjected to compression, experimental results reported by
Vecchio and Collins (1986), and Feenstra and de Borst (1993) show that the damages caused to
the concrete with the transverse post-cracking tensile strains, have a degrading effect not only on
the compressive strength of the concrete, but also on its compressive stiffness. Based on the
experimental results of the reinforced concrete panels tested at University of Toronto by Vecchio
and Collins (1986), the following formulas are used to determine the degraded compressive

strength of the concrete, o,,, and the associated compressive strain, €,,

0 - :f_..‘.s
*0p (3.20)

ch

€y = T

where, B =08 + 034 (&] x 1.0

£

Here, €,, is the current tensile strain in principal direction 1 and €, is the uniaxial concrete strain

at the peak stress.
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3.4 STRESS-STRAIN CURVE FOR CONCRETE

3.4.1 Monotonically Increasing Compressive Uniaxial Stress-Strain Curve

Based on the experimental findings of Sinha, Gerstle and Tulin (1964), and Karsan and
Jirsa (1969) [see Figs. 2.3 and 2.10], the stress-strain curve for concrete under cyclic loading has
an envelope curve identical with the curve for monotonically increasing compressive loads.
Therefore, for the envelope curve of the compressive stress-strain curve under cyclic loading. an
analytical expression which represents the stress-strain curve of a cylinder of concrete subjected
to monotonically increasing compressive loads up to failure, can be employed. Generalization of
the expression given by Popovics (1973) which has been found by Thorenfeldt et al. (1987) to
accurately represent the family of stress-strain curves for different strength concretes including the
high strength concrete (refer to Figures 3.6 and 3.7) is adopted. This expression relating the stress,

o, and the equivalent uniaxial strain caused by this stress, g, , is introduced as:

i

o, €,
i ic (3.21)
O, e. ik
A
€ic
where, o, = current compressive principal stress in principal direction i,
Ew = gquivalent uniaxial strain resulted from o,
O = compressive strength of biaxially loaded concrete resulting from
the failure envelope curve,
Eic = equivalent uniaxial strain when o, reaches o,
n, = curve fitting factor in principal direction i, and
[ = factor to increase the post peak decay in stress

Here, k; is equal to 1 when (g, /g;;) is less than 1, and it is a number greater than 1 when (g, / €,)

exceeds 1. Collins and Porasz (1989) suggested the value of k; for (g, / €,.) > 1 as

k = 067 + —& (in psi Units)

Oor,



i =

(o]
k. = 0.67 + E:’i (in MPa Units) (3.22)

-

The paramcter n, takes a value greater than 1 and is evaluated using the equation:

n =08 + =% in psi Units
i 2500 {in p )
or,
n =08 + % (in MPa Units) (3.23)

In the computer program if the calculated value for n, is less than or cqual to 1, it is assigned a
value of 1.1.

Equation (3.21) makes the relationship between o, and €, a function of four constants:
G. £, 0, and k. These four constants can all be obtained from the compressive strength of the
concrete, ., which is evaluated from the failure envelope curve suggested by Kupfer and Gerstle
(1973) depending on the biaxial loading ratio (a=6,/c,). For normal weight concrete, n, can be
estimated from Eq. 3.23 and k, can be calculated using Eq. 3.22. If the initial slope E, of the

stress-strain curve (initial medulus of elasticity) is known, or it can be estimated, the strain at peak

stress €, can be found from the following equation:

e = S M (3.29)
© E, n -1

The initial tangent stiffness of the concrete, E, lies between the stiffness of the aggregate
and the stiffness of the paste. Its value can be estimated using the composiv.t material modelling

laws (Mills and Ono, 1972). One suggestion for E, is (Carrasquillo et ai.. .981):

E, = 40000 ,/f", + 1,000,000 (in psi Units)
( for 3000 < f', < 12000 )

or,
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E, = 3320 [f, - 6900 (in MPa Units)
( for 21 < f'_ < 83)

(3.25)

The values of E, and E, required in Eq. 3.4 for a given stress ratio (@ = ¢, / @,) are found
as the slopes of the ,-g,, and ©,-€,, curves, respectively. The tangent to the ascending branch

of the stress-strain curve, Eq. 3.21. is given by:

nk . )
(o e
do, € €ic (el.c)"'t‘ €5

' de,

or,

i

e

From the above equation, the initial modulus of elasticity can be evaluated as a function

ei “tkl
no-1 + (1 -n.k,.)(e—"]

(3.26)

of o, and g, at g, = 0.0, namely,

dg; I [ W
E =|— = —— (3.27)
de,, -0 €.\ -1

On the other hand, this equation can be used to evaluate the strain at the peak point, €., as a

-
function of o, and E,, as introduced in Eq. 3.24.

For the elastic tension region (ascending branch of tensile stress-strain curve), E,; is
assumed to be equal to E, and for the descending branch of both the compression and the tension
zones, E, is set equal to zero to avoid computational difficulties associated with a negative value

for E.. in the computer program developed in this study. The value of E; in these regions is given
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by the user and the unbalanced stresses are released in a step-wise fashion.

3.4.7 Cyelic Upiaxial Compressive Stress-Strain Curve

Concrete under compression is assumed to behave clastically up to a certain stress level
(0.30 5,)). A new analytical representation of the focal point model (Yankelevsky and Reinhardt,
1987) is used to construct the unloading and reloading curves under cyclic loading. In this
formulation. it is assumed that in the uniaxial stress-strain plane, there exist five geometrical loci,
which are called as "focal poinis". These focal points allow the construction of the unloading-
reloading cycles using piece-wise linear curves (see Fig. 3.8). Four focal points (E, F, G and H)
are located on the tangent to the ascending branch of the envelope curve at the origin, and the
fifth focal potnt (I} rests on the strain axis as shown in Fig. 3.8,

To construct the unloading and reloading curves corresponding to point A(g,, . ©..)
located on the envelope curve presented in the previous section, the following graphical procedure
is followed (see Fig. 3.8):

(1) Define a stress-strain coordinate system.

(2) Plot the envelope curve in this coordinate system.

(3) Specify the focal points E, F, G, and H, which lie on the tangent at the origin to the envelope
curve,with the following coordinates: oy = -3.0 o, 6= -6,, 6= -0.75 6., and 5, = 0.2 o,
and the focal point I (-g, 0) on the strain axis.

(4) Connect the starting point A with focal point F to intersect the € axis at point B(g,, 0), where
€p is the residual strain which is termed the "plastic strain".

(5) Intersect the line connecting the focal point G and the point B with a vertical line passing
through the starting point A to obtain point C, which is called the "common point".

{6) The line that connects the focal point E and the point C intersects with the line connecting the
focal point H and the point B giving point D which is called "tuning point”,

(7) Connect the focal point I and the common point C and find the intersection of this line with
the envelope curve which is point J.

At this stage the unloading branch AC-CD-DB and the reloading branch BC-CJ are completed.
While partial unloading is occurring at point R which is below the common point (refer to Fig.
3.8), the partial reloading consists of three parts: (1) the line RT, which connects the reloading
starting point, R, with point T, located on the global reloading curve BC (the slope of this line
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is equal to the initial tangent, OE), (2) the line TC which is part of the line BC, and (3) the line
CJ. If partial unloading occurs above the common point C, say at the point R’, then R’ is
projected on the envelope curve at A” and a new unloading-reloading curve corresponding to point
A’ will be constructed. This curve is shown by dashed line in Fig. 3.8.

A mathematical representation of this model is used to implement it into the nonlinear
finite element formulation. According to the following representation, the unloading and reloading
for each starting point A(g,,,o,,) is generated automatically.

The point B is given by:

e = B¢, a,
B B, (3.28)
gy =0
where €. = o/E,, and B, = (6,-0p)/{(€,-E5).
The point C is given by:
€~ = €
€4 (3.29)

Oc =B, (e, ~ €5 + 05

where g¢ = g /E,, and B, = -c/(eg-£¢).
The point D is given by:
‘ ¢ _ Byep - Biey + 0y -0
b B, - B, (3.30)

0, = By(ep - € *+ o

where €, = o/E;, & = o/E,, By = (0c-0p)/(Ec-Ep),and B, = -6, /(g5-€)).

Severel uniaxial repeated test have been compared with the model predictions (see
Shayanfar and Mirza, 1994), including the work of Sinha et al. (1964) as shown in Fig. 3.9, It is
obvious that the proposed analytical model compares well with the test results and represents
basic features of the concrete behaviour in cyclic compression, It can be seen that with an increase
in the number of cycles, the stiffness of the concrete decreases, and the plastic strain increases.

In general, as the residual strain increases, the concrete becomes increasingly softer. It should be
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noted that high strength concretes normally exhibit lower residual strains.

3.4.3 Upiaxial Tensile Stress-Strain Curve

The formation of cracks, their propagation and widening have a major influence on the
nonlinear behaviour of a concrete structure. It has effects on both the local behaviour, such as
bond between reinforcement and concrete, and the global behaviour, such as flexural stress
distribution. Therefore, the cracking process in concrete nceds to be well understood and
appropriately formulated for computational implementation.

Unconfined concrete under monotonic uniaxial tension exhibits linear elastic behaviour
up to about 80% of its ultimate strength, and has a tangent modulus of elasticity which is
comparable to that in compression (Gopalaratnam and Shah, 1985). When the stress is increased
further, the behaviour is highly nonlinear. Concrete softens considerably as the peak stress is
attained and then, as a result of increasing microcracks in the cement matrix and at the matrix-
aggregate interface, a descending branch of the stress-strain curve is obtained.

A large part of the energy is absorbed in the descending zone and complete failure occurs
sometimes at a strain 40 times the strain corresponding to the peak tensile stress (Gopalaratnam
and Shah, 1985). In this study, concrete in tension is assumed to bchave as a linearly clastic
material up to a tensile stress level 2qual to the tensile strength of concrete. £, which represents
onset of the sofiening branch (see Fig. 3.11).

Detailed analyses of concrete beams and shear panels (Shayanfar et al., 1993) show that
the size of finite elements has a significant effect on the computed results including the failure
load. This phenomenon is called "finite element size effect”. It was shown that if the value of €,
is adjusted appropriately according to the element size, it can help sliminate the mesh sensitivity
drawback. In the present study, two models have been used to determine an appropriate value of
g, for a given finite element size: (a) crack band model, based on the fracture mechanics
concepts, as a function of the fracture energy, mesh size and tensile strength of concrete, and (b)
a new proposed model as a function of only the element size. More information is provided in this
regard in Chapter 5 and in a report by Shayanfar et al. (1993).

In this investigation, it is assumed that the compressive stress can cause some damage in
the concrete which affects its subsequent tensile strength. if the compressive strain, in the principal

direction under consideration, egnals or exceeds the equivalent uniaxial strain corresponding to

60



the maximum compressive strength of concrete, €., then the material is assumed to have no
subsequent tenstle capacity due to the extensive internal microcracking of the concrete. If the
compressive stress has not exceeded this value, a linear variation for the tensile strength of
concrete is adopted. The values 0 and £ have been set for the tensile strengths corresponding to

the compressive strength, o, and the compressive elastic limit, respectively. The reduced tensile

!

strength, o, and its associated parameters are calculaied as follows:

_  tane.tanfl
g, = m(ep + EPP)

o]

€. = _”. 3.31

¢ mp (331)
€

€y = ?m(eil)

'

where a and 3 have been defined in Fig. 3.11. For concrete in the elastic range, a full iensile
strength capacity, o,=f",, is assumed.

Tn study the influence of various "tension-stiffening” n:odels on the response of reinforced
concrete structures, different descending branch shapes, as shown in Fig. 3.12, have been studied.

While cyclic loading in tension part, the unloading and reloading started from the
ascending branch will follow the ascending branch (linear elastic behaviour). The unloading from
the descending branch follows a straight line passing through the unloading point and the origin
of the stress-strain coordinate system. In other word, in this case the secant modulus to the

unloading point will be taken as the modulus of elasticity of concrete.

3.4.3.1 Tensile Strength of Concrete

It is difficult to test concrete in pure axial tension, therefore the tensile strength of
concrete is usually evaluated by an indirect test. The different test procedures along with the
equations used for determining the tensile strength are listed below (ACI, 1989). Depending on
the type of the structure, one can follow the results of the following procedures to estimate an
appropriate value for the tensile strength of concrete. For example, for structures failing in a
flexural mode, the results of rupture test are recommended, while for the shear mode of failure,

the strength values obtained from the direct tension test.

61



Direct Tension Test:

fo=4ar (in psi Units)
or,
f,=0332 /. {in MPa Units)
Maodulus of Rupture Test:
f, =154 ‘/f’c (in psi Units)
or.
S =064 ‘/ I {in MPa Units)
Split Cylinder Test:
f'l = 0.65 f,p
2P
and, T e—_—
S zLD

where
A = a factor which accounts for the density of the concrete
= 1.00, for normal weight concrete
= 0.85, for sand-light weight concrete
= 0.75, for all light weight concrete
P = the applied compressive load to cause failure
L = the length of the cylinder

D = the diameter of the cylinder
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3.5 EQUIVALENT POISSON’S RATIO

As mentioned earlier in Section 2.1, concrete under uniaxial and biaxial compression first
compacts and then dilatates due to the intemnal niicrocracking. To take this dilatancy of concrete
into account the value of the equivalent Poisson’s ratio is assumed to be of the following form

(Ottoson, 1979):

v =, Jor y,=xv,

2 (3.33)

- - 1 - Y2 - Ya >

v, (vf v,) ﬁ Jor y,>y,
a

<
n

in which, v, is the initial Poisson’s ratio; v, is the nonlinear index which represents the ratio of
the actual compressive stress, G,, to the corresponding value of that stress at failure (ultimate
strength), 6., (Y, = 0,/ 0,.); V, is the Poisson’s ratio at failure and set equal to 0.36; and v, is the
nonlinear index corresponding to the onset of dilatancy which is set to be 0.80. Because the
Poisson’s ratio starts to increase at the stress level corresponding to y, = 0.80 (Kupfer et al,,
1969). In the model, an upper bound v < 0.45 is set to eliminate problems associated with the
Poisson’s ratio approaching 0.5. For the tension-tension stress condition, v = v,, is applicable.
The initial Poisson’s ratio, v,, is assumed to be equal to 0.20. An examination of the
available information shows that the initial Poisson’s ratio of high-strength concrete is comparable
with the expected range of values for the lower strength concretes. Shideler (1957) and Carrasquil
et al. (1981) reported values for Poisson’s ratio of light-weight, high-strength concrete having
uniaxial compressive strength up to 10,570 psi (73 MPa) at 28 days to be 0.20 regardless of the

compressive strength, age and the moisture content.

3.6 FAILURE CRITERIA FOR CONCRETE

Behaviour of concrete under biaxial stress states, as reported by a number of investigators
is ren lv different from that under uniaxial conditions. Based on the experimental observation
under biaxial compression, the compressive strength of the concrete increases because of the
intemal friction and aggregate interlock. Conversely, a lateral compressive stress decreases the

tensile strength of the concrete because the compressive stress introduces tensile stresses at the
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micro-level due to the heterogeneity of the material which increases the process of internal
damage as reported by Vonk (1990). A lateral tensile stress has no major influences on the tensile
strength of concrete. To account for these phenomena, the failure envelope proposed by Kupfer
and Gerstle (1973), is employed to obtain the compressive and tensile strength of concrete under
the biaxial stress state. The lateral tensile stress beyond cracking can also dezrease the compressive
strength of concrete as obtained by Vecchio and Collins (1986}, and Fe:nstra and de Borst (1993).
To account for this, the model proposed by Vecchio and Collins (1986) is used in the proposed
formulation as discussed in Section 3.3.3. A slightly modified form of the biaxial strength

envelope curve developed by Kupfer et al. (1969) is used in the program built up in the present

-

study as shown in Fig. 3.13.
3.7 CONSTITUTIVE RELATIONSHIP FOR STEEL REINFORCEMENT

The behaviour of steel reinforcement is basically uniaxial and consequently modelling of
its behaviour is relatively simple compared to that of the concrete. Two aspects of steel models
are relevant here; the representation of steel in the finite element model and the constitutive
relationship. The three most common methods used to represent reinforcing steel in finite element
models (ASCE, 1982) are:

1. Distributed (smeared) model,
2. Embedded model, and
3. Discrete model

In a distributed representation, th . steel is smeared over the concrete and a perfect bond
is assumed between the concrete and the steel. An embedded representation treats steel as a
uniaxial member built into the concrete, such that its nodal displacements are constrained by those
of the "host” concrete element. A discrete representation is similar to an embedded representation,
but in this case the nodal displacement of the steel bar are not constrained by those of the "host"
element. Figure 3.14 illustrates the three common representations of steel bars in finite eiement
models.

The stress-strain behaviour of steel is usually represented by a bilinear or a trilinear
idealization identical in tension and compression. An elastic-perfectly plastic, or an elastic-strain
hardening model utilizes a bilinear curve, while an elastic-plastic-strain hardening model is

represented by a trilinear curve. Figure 3.15 shows these idealizations.
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The steel reinforcement is treated in HODA program as an elasto-plastic-strain-hrdening
material as shown in the figure. The Bauchinger effect or reduction of the steel yielding stress due
to load reversal is also considered [see Fig. 3.15(c)]. The constitutive relationship for steel before

yiclding is given by:

E, 00
Ao} =| 0 0 0 ]{A€} (3.36)
000

where E, is the uniaxial elastic modulus of elasticity.
Afler the steel yiclds, the constitutive relationship is modified to reflect the change in the

modulus. For example, in an elastic-strain hardening model, the modification is as:

E; 00O
{do} =| 0 0 o |{de€}
0 00

(337

where E°, is the strain-hardening modulus (see Fig. 3.15).

It should be noted that perfect bond has been assumed between reinforcing steel and the
concrete; this assumption holds for all the structural elements analyzed. The effect of dowel action
is incorporated into the computer formulation through the parameter 6, the shear retention factor
with values between zero and 1.0, which accounts for both dowel action a the steel-concrete
interface and the aggregate interlock at the cracks. For the three models used to idealize steel,
buckling of reinforcing bar hus not been considered explicitly, however, these bars are embedded

in concrete which provides the support to prevent any lateral instability of the reinforcing bars.
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Figure 3.1:

Schematic representation of real strains and equivalent uniaxial strains
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Figure 3.2: Schematic representation of different coordinate systems at any point of an element
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CRACKING MODELS
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Figure 3.3: Classification of cracking models
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Figure 3.4: Nodal separating using two or four coincident nodes: (a) one-directional and
(b) two-directional cracking

Figure 3.5: Idealization of a single crack
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Figure 3.6(a): Comparison of different analytical stress-strain curves with the experimental
results for normal concrete
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Figure 3.6(b): Comparison of different analytical stress-strain curves with the experimental
results for normal concrete
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Figure 3.7(a): Comparison of different analytical stress-strain curves with the experimental
results for high strength concrete
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Figure 3.7(b): Comparison of different analytical stress-strain curves with the experimental
results for high strength concrete
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Figure 3.8: Scheme of the focal point model for uniaxial cyclic compression load
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Figure 3.9: Comparison of the present model with the experimental cyclic
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Figure 3.10: Analytical uniaxial stress-strain curve of plain concrete
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Figure 3.13: Typical biaxial failure envelope for concrete (Ghoneim, 1978)
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CHAPTER 4

NONLINEAR FINITE ELEMENT FORMULATION

This chapter describes the key features of the nonlinear finite element program, HODA.,
developed during this course of study. The various program capabilities and its limitations are
outlined, followed by the finite element displacement formulation based on energy considerations.
The element library of the program including membrane, plate bending, facet shell , one
dimensional bar, and boundary elements is discussed next, with a brief introduction to the finite
element formulation of a special bar embedded within the shell element. The layer discretization
technique which can provide very efficient tools in modelling the concrete and the steel as a
composite material, and which can also facilitate the numerical integration within the body of the
shell element, is also discussed in this chapter. The transformation of strain, stress, constitutive
matrix and coordinates, the assembly process, and the numerical algorithms in nonlinear analysis
including the solution process, the unbalanced forces, the convergence criteria and the divergence

criteria are outlined thereafier.

4.1 GENERAL

Like most of the other nonlinear finite element analysis programs, the HODA program
was developed within the university environment. The origin of the HODA program can be traced
back to the earlier programs: NARCS, NOTACS, FELARC and NONLACS developed by Lin
(1973), Kabir {(1976), Ghoneim (1978) and Nofal (1988), respectively. The HODA program was
developed using the existing version of the NONLACS program and differs from the previous
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programs in terms of its ability to analyze both normal and high strength concretes, to utilize
different cracking models including the fixed and the rotating crack models, to handie the
elimination of mesh size depundency using the strength-based or fracture mechanics approaches,
and to carry out structural analysis under reversed cyclic, as well as for monotonically increasing
loads based on the model proposed in Chapter 3.

This program can capture the static response of any plain, reinforced and/ or prestressed
three-dimensional concrete structure that is composed of thin plate members which are in plane
stress condition subjected to monotonically increasing or cyclic loadings. This includes beams,
slabs (plates), shells, folded plates, box girders, shear walls, or any combination of these structural
elements. Time-dependent effects like creep and shrinkage can also be considered. The program,
however, has its limitations; it cannot account for transverse shear deformations in the plate
bending problem, fatigue type effects, geometric non-linearities, dynamic loads, and the slip
between the concrete and the reinforcing steel. In the following sections some aspects of the finite
element formulation used in the development of the HODA program are outlined. While the
required mathematical model for this program can have a three-dimensional geometry, it must be

ensured that each element is subjected to a plane stress condition.

4.2 FINITE ELEMENT DISPLACEMENT FORMULATION

In the classical theory of structural analysis two basic approaches exist: force (flexibility)
and displacement (stiffness) methods. In the former the initial unknowns are forces but in the
latter they are displacements. In the computer analysis of structural systems, the force method
requires more manual input data than the displacement method and it is more user-dependent. On
the other hand, the displacement method is fully capable of being automated and quite well suited
for computer implementation. Most of the computer programs available in the practice for
structural analysis, take advantage of the displacement based formulation for linear/ nonlinear
finite element method (see Shayanfar, 1994).

In the finite element method, the structure is discretized into an assemblage of finite
elements. The displacements at any point of the element, {u}, can be evaluated in terms of the
displacements of the specific points within, or on the boundary of element cailed "nodes” or

"joints" as,
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tu} = [N (U}, 1)

in which [N] is the matrix of shape functions and {U}, is the element nodal displacement vector
in element local coordinate system. The vector of strains at any point of the element, {g), is

related to the element nodal displacements, {U},. using the following equation

{e} = [B] {U}, (+2)
where [B] is the strain-displacement matrix and can be obtained as:

[B] = [L] IN] (4.3)
in which [L] is the differential operator matrix and defined such that

{e} = [L] {u} (4.4)

then the stresses at any point of the element, {c}, can be found using the constitutive matrix, [C].

as:
{o} = [C] ({e} - {€}) + {0} (4.5)

where { & } and {G} are the vectors of initial strains and stresses, respectively.

Suppose a structure in equilibrium condition having noda! displacements {D}, external
applied loads {R}, body forces {P} and surface tractions {T}. Now, impose a system of virtual
nodal displacement {8D} on this structure. This system of virtual nodal displacement results in
elemental virtual displacements which are denoted by {3U},. The resulted virtual displacements,

{du}, and virtual strains, {d&}, at any point of the element can be expressed as:

{du}

[N] {80}, (4.6)

{de}

[B) {8V}, @7

The principle of virtual displacement for static analysis of a conservative system requires that the
total internal work resulting from real stresses through the virtual strains is equal to the total
external work due to the real external applied loads moving through the virtual displacements.

This can be expressed mathematically as:
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Y [(eetT{alave = (6D}7(R} - ), [(8u)T(P}dve s

all e all e
alements elements (4_3)
Y. [tsuiT(r}dac
all 3°
elements

where V¢ and A® are volume and surface area of any element, respectively. Substituting Egs. (4.2),

(4.5), (4.6) and (4.7) into Eq. 4.8 results in:

(K] {D} = {F} 4.9
with
K| = K
[ K] §1 (K], 4.10)
elements
and
{F} = {R} + {F},+ {F},.+ {Fl; + {Fl; (4.11)

where [K] is the structure stiffness matrix, {D} is the structure nodal displacement vector and {F}
is the equivalent nodal force vector of the structure, all in the global coordinate system. [K, 1, is
the element stiffness matrix, {R} is the applied nodal external load vector; and {F};, {F}.,, {F} s,
and {F}; are equivalent nodal force vectors due to body forces, surface tractions, initial strains
and initial stresses, respectively. The following relations are obtained for (K 1., {F}p {F}m»
{F} -, and {F};, respectively:

[K,1, = [[BIT(C] (B] dve (4.12)
Ve
{F}, = ;I f,{N}T{P} dve (4.13)
f.’l.vsmem:s"r
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ail e
elements

(Fle= Y [(BIT[C](E)av®

& (4.15)
elemencsv
= Tia e
{F}; azu L[B] (g} dv “.16)
elemencsv

Equation (4.7) can be derived from Eq. 4.2, if the matrix [B] is independent of (U},
otherwise the problem would be geometrically nonlinear. In the above discussion, it is also
assumed that in Eg. 4.5, [C] is independent of {€} and consequently Eq. 4.9 represents a system
of linear equations for equilibrium of the structure. If the [C] is dependent on {€}, the problem

involves material nonlinearities. In the present study, only the material nonlinearity is considercd.

4.3 ELEMENT LIBRARY

The element library includes membrane, plate bending, facet shell , one dimensional bar,
and boundary elements. Figure 4.1 shows some of the elements and their associated degrees of
freedom. The two node, three degrees of freedom per node, one dimensional bar element [sce Fig,
4.1(c)] is used to model uniaxial truss members (steel or concrete), unbonded prestressing tendons
and shear connectors. The shear connector element is a specialized form of the standard bar
element. This element is used to model the steel-concrete connection in composite construction
(Razagpur and Nofal, 1990).

There are two four node quadrilateral membrane elements RQUAD4 (Razaqpur and
Nofal, 1987) and QLC3 (Sisodiya et al., 1972) [see Fig. 4.1(a)]. Both elements have three degrees
of freedom per node (two in-plane translational, u and v, and one rotational, ®, degrees of
freedom), but differ with respect to the assumed displacement fields (shape functions). The full
development of the element RQUADA4, together with extensive performance tests, is given by Aziz
(1988) and McNeal et al, (1988), The detailed derivation of QLC3 has been presented by
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Ghoneim (1978). The element RQUAD4 is superior in its performance to the constant strain
¢lement and is comparable to the linear strain triangular element, but has fewer degrees of
freedom than the latter. It also has the advantage of being easily connected to the standard beam
clements when analyzing coupled shear walls, or shear wall and frame interaction problems. The

strain-displacement relationship for a membrane element takes the following form:

le} = [B) {0}, “.17)

in which {g)} = {Bwdx, ov/dy, dwdy + avidx)" = {g, &, 7“}7, [B], is strain-in-plane
displacement matrix and {U}, is the vector of nodal inplane displacements of the element.
The library also contains two four node plate bending elements: the rectangular plate
bending element, RBE (Zienkiewicz, 1983), and the improved discrete Kirchhoff quadrilateral
plate bending element, IDKQ (Chinniah, 1985) [see Fig. 4.1(b)]. Both elements have three degrees
of freedom per node (normal rotations,8, and 6, and lateral displacement w). The strain-

displacement relationship for a plate bending element is written as:

{(x} = [B,] {U,} (4.18)

in which {y} = {&*w/dx®, FwIdy*, 20°widxdy}" is the vector of curvatures and twists, [B], is
strain-bending displacement matrix and {U,}, is the vector of nodal bending displacements of the
¢lement.

Two four node, six degree of freedoms per node, anisotropic facet shell elements are also
available in the library [see Fig. 4.1(d)]. These elements are obtained by combining the plate
bending elements with the guadrilateral membrane elements using Kirchhoff's assumptions.
According to these assumptions, the straight fibers of the plate, which are perpendicular to a
chosen reference surface before deformation, remain plane after deformation, and also the normal
stresses acting on planes parallel to the reference surface are negligible, i. e. v, = y,=0a,=0.

The strain-displacement relationship for a quadrilateral shell element is introduced as:

{U,}
{e} = [(B) -ziB,) 4, F.t=18B]{Ul, (4.19)
{Up}

where z is the distance of the point within the shell element from the reference surface and [B]

is the strain-displacement matrix of the element. Since these elements are applied in problems
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involving material nonlinearities, the coupling between the membrane and bending actions is
considered. In other words, the stiffness matrix [K_], of the shell element, with six degree of

freedoms per node shown in Fig, 4.1(d). is given by

(k,), = f[B]T[CJ (B] dve

VG

(4.20)

- (k) ,p [k,

[kl [kl

in which,

Lkppl = ff[Bp]T[Cpp] [B,) dxdy (4.21)
(kppl = ff[Bp]T[Cp,,] (B,] dxdy = (k] (4.22)
Lkppl = ff[Bb]’"[cbb] (B,] dxdy (4.23)
[Cpp] = f[C] dz (4.29)
[Cpb] = -fz {Cc]ldz (4.25)
[Cb.b] = fzz [C] dz (4.26)

z

where [K,], is 2 24x24 element stiffness matrix and the subscripts "pp" and "bb" denote the
membrane and bending elements, respectively. The subscripts "pb"” and "bp" signify the coupling
effects between the membrane and bending actions. The coupling matrices become null if the
middle surface of the shell is an axis of material symmetry. The above integrations are carried out
using the Gauss quadrature procedure at each layer and then the contributions of the various layers

at each Gauss quadrature point are added by means of layer discretization technique as outlined
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in the next section.

Shell element type 1 is obtained by combining the quadrilateral membrane element, QLC3,
with the rectangular plate bending element, RBE. Shell element II is obtained by combining the
quadrilateral membrane element, RQUAD4, with the discrete Kirchhoff quadrilateral plate bending
element, IDKQ. The type of element to be employed during an analysis normally depends on
the behaviour of the structure under consideration. The type [ shell element is suitable for beam

behaviour problems while the type II shell element is a more general element.

4,3.1 Bar Element

The bar elements are special one dimensional elements embedded within the shell
elements that can be used for modelling the heavy/ concentrated reinforcements and bonded
prestressing bars. Figure 4.2 indicates a typical bar element in local and natural coordinate systems
of a shell element. The natural coordinates of the two ends of the bar element, i. e. (§,, 1,) and
(€ M,), are given as data in the input file of the computer program [see Fig. 4.2(b)] and
accordingly the length, L and the coordinates of the two ends of the clement with respect to the
local coordinate system is calculated [see Fig. 4.2(a)]. This element bar is assumed to lie on the
reference surface of the shell element, therefore it contributes only to the inplane stiffness matrix
of the shell element, [K_), and with the assumption of perfect bond, its strain-inplane

displacement relationship can be defined as,

e, = [£] [B,] {U,}, (4.27)

in which €, is the uniaxial strain at any point within the bar element and the strain transformation

matrix, [t], is defined as,
[t] = [cos®® sin®® cosH.sinf] (4.28)

where 0 is the angle between the bar element and the x-axis in the local coordinate system [see

Fig. 4.2(a)). The stress at any point of the bar, o, is obtained by:

0, = Ey. €, (4.29)

where E, is the tangent modulus of the bar element which can be equal to E, or E°, depending

on the strain, €, and the loading condition, monotonically increasing or cyclic, {see Fig. 3.15(c)).
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The contribution of the bar elements within a typical shell element, [K,]. to the inplane stiffaess

matrix, [K_]. can be found using the Eq. 4.12 as:

m 1s
[kgpl = ElfAi (BT [t)1]E, [B,) ds (4.30)
1=17

where m indicates the number of bars in the element. i refers to the ith bar, and A, L, and E
are the cross-sectional area, the length and the tangent modulus of the ith bar, respectively. The

above integration is evaluated using the Gauss quadrature procedure with three integration points.
4.4 LAYERED DISCRETIZATION TECHNIQUE

The program employs a layered finite element approach; the structure is idealized as an
assemblage of thin constant thickness plate elements with each element subdivided into a number
of imaginary layers as shown in Fig. 4.3. The number of layers depends on the behaviour of the
structure being analyzed; for shell and plate bending problems, five to eight layers might be
needed to capture the stress variation across the thickness, while for plane stress problems using
more than one layer is not necessary. A layer can be either of concrete, smeared reinforcing steel
and/ or a continuous steel plate. Each layer is assumed to be in a state of plane stress, and can
assume any state - uncracked, partially cracked, fully cracked, non-yielded, yielded, crushed,
loaded and unloaded - depending on the stress/ strain level. These are indicated by indices KC =
1 to 6 for monotonically increasing loads and indices LRC = 1 to 10 for reversed cyclic loads,
as shown in Fig, 4.4. Each of these indices designates a specific part of the stress-strain curve for
loading condition in both figures 4.4(a) and (b) and unloading condition in Fig. 4.4(b). These
indices have been appropriately implemented in the HODA program.

Steel can be idealized as a smeared layer or as a bar element embedded in concrete at the
reference surface. Smeared steel representation is suitable for representing distributed
reinforcement as in slabs and structural walls, while the bar representation is appropriate for
isolated large reinforcing bars or tendons such as beams with heavy longitudinal reinforcement.
The stiffness matrix of a shell element is obtained using Eq. 4.20 in which the integration of Eqgs.
4.21 to 4.23 is evaluated using the Gauss quadrature procedure and that of Eqs. 4.24 10 4.26 is

performed by means of layered discretization technique as (see Fig. 4.3):
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[Cpl = [[Cldz

a2

=Y (z;,-z) (€] + ), (C) 8, + (4.31)
inl

is]
n,,

E (2;0,-2,) [Cgpl

e}

[Cp,,]=-fz[r.‘] dz

n. " "
“%E (zf-z3 (e, - 2 (€] ;2,t5, - (4.32)

1 2 2
32 (25727 G)s
11

[c,,,,]:-fzz[c] dz

n

2l -z 6); + Y ledzlie, (4.33)

L)

=
A
5 o
1=l
15% (23, -2 1)
"5?:_1 Zi41°%3 spl i

in which [C,];, [C,]; and [C,); are constitutive matrices for concrete, smeared steel ard steel plate
at each Gauss quadrature point in layer i for the respective materials. Using the layered
discretization as outlined above, the integrations in Eqs. 4.21 to 4.23 involve functions of x and
y only and the integrands are evaluated at the Gauss quadrature points and are added to obtain the
element stiffness matrix in local coordinate system. The procedure similar to that for Eq. 4.20,
as outlined above, can be employed to perform the numerical integrations in Eqs. (4.15) and

(4.16). The detailed information has been presented by Ghoneim (1978).

4.5 TRANSFORMATIONS

In any finite element formulation, it is necessary to have references to describe the
magnitude and/ or direction of the structural quantities including displacements, forces, stresses,
strains, constitutive relations, etc., so that the required numerical calculations can be handled as

conveniently as possible. The most common coordinate systems in computer structural analysis
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are: local, global, natural, and principal (referred to as "material axis” in some models) coordinate
systems. The transformation of the quantities from one system to the other is of vital importance
and it must be well understood. Transformation from the natural coordinate system to any other
system and vice versa can be implemented using the mapping technique as discussed in any
standard finite clement text book. Transformations from the local, global and principal coordinate
systems to each other are discussed in this section. In this regard, the transformation of the stress
and the strain vectors, constitutive matrix and coordinates (nodal displacements, nodal forces,
element stiffnesses) are discussed separately.

The global coordinate system consists of a set of right-hand orthogonal axes: X, Y, and
Z, which are oricnted as shown in Fig. 4.5(a). The orientation of the global coordinate system is
arbitrary, but the relative directions of the axes are conveniently represented by orienting the
thumbs and the fingers of the right hand as shown in Fig. 4.5(b). The nodal forces, nodal
displacements and the stiffness components of the structure are referenced to the global coordinate
system.

The local coordinate system for a quadrilateral ¢lement is shown in Fig. 4.6 and denoted
by: X"Y'Z' system. The X" axis passes through the mid-points of the two sides: 1-4 and 2-3, and
is directed as shown in Fig. 4.6(b). The Z' axis is obtained by the cross product of the two vectors
composed of the diagonals 1-3 and 2-4 as shown by dashed lines in Fig. 4.6(b). The Y" axis is
then obtained as the cross product of X' and Z°'. The nodal forces, nodal displacements and the
stiffness components of the elements are referenced to this local coordinate system {see Shayanfar,
1994). The principal coordinate system is a system of right-hand orthogonal, X"Y'Z’, whose axes
are parallel to the principal stresses/ strains. The constitutive matrix at any point within the
element, is first developed in this coordinate system and then transformed to the local coordinate
system.

In the following discussion, the transformation is between a new system which is denoted
with superscript """ and an old coordinate system with no superscript. The new or old coordinate
system can consist of any of the local, global or material coordinate systems. The discussion starts
with a two dimensional state of stress/ strain, and finally, it is expanded to a genera! form of the

three dimensional state.



4.5.1 Transformation of the Strain Vector

Consider the plane strain condition shown in Fig. 4.7. By geometric considerations, as
stated in any classical text book for strength of materials, the following equation can be used to

transform the strain vector in the old coordinate system, {€} = {g,, &, y,y}T, to the strain vector

in the new coordinate system, {€'} = {€., €, Y., }:

fe’} = [T.] {e] 4.34)
where
cos’@ sin®@ sin@cosl
(7] = s5in8 cos?8 -sinfcos6 (4.35)

-2sinBcos@ 2sinBcosB cos’B-sin?8

where {T,] is the strain transformation matrix. For a general three-dimensional strain state, if the

direction cosines of the new coordinate system, x"y’z’, with respect to the old coordinate system,

xyz, are defined as (see Fig. 4.8),

l, =cos(x’,x) m =cos(x”,y) n,=cos(x’,z)
1, =cos(y’.x) m,=costy’.y) n,=cos(y’, z) {(4.36)
1, =cos(z’,x) m;=cos(z’,y) n,=cos(z’, z)

It can be shown that the strain transformation matrix, [T ], for engineering strains, {&} = {g,,

€, € Yoy Yar Yz} » takes the following form:

[ I,z m,z n,z lim, In, mn,
2 2 2
b m m Lm, Ln, myn,
2 2 2
b my Ry Lymy Ly myhy 4.37)

[T,] =
2L 2mmy 2mpn, (my+bmy) (il +nl) (myny +myn))

20 2mymy 2mny (hmy+lgm) (ndy+nyd)) (myng +myny)
2Lt 2mymy 2nyny (Lmy+lymy) (nly+ngl) (myny +mqn,) |
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4.5.2 Transformation of the Stress Vector

Consider the plane stress condition shown in Fig. 4.9, By satisfying the equation of
cquilibrium, the following equation can be used to transform the stress vector in the old coordinate
system, {c} = {c.. G, ‘t‘y}T. to the stress vector in the new coordinate system, {¢"} = {o,, 0.

T,

(o'} = [T,]1a} (4.38)

cos* 0 sin*@  2sinBcos?
and [T,] =} sin*8 cos’8  -2sinfcos@ (4.39)

-sin@cos @ sinBcosB cos®@-sin* 0

where [T,] is called stress transformation matrix. By comparing Eq. 439 and Eq. 4.35, it is

obvious that if the strain transformation matrix is partitioned as:

T, T
ry=42° " (4.40)
I Tr
then the stress transformation matrix in Eq. 4.39 can be defined as:
T, 2T,
(r,] =1 (4.41)
[}
-Z-Ts T,

For a general three-dimensional stress state, the strain matrix introduced in Eq. 4.37 can be
partitioned into 3x3 matrices (Tq, Ty, Ts, Ty) and the stress transformation matrix, [T,), is
obtained using Eq. 4.41.

4.5.3 Transformation of the Constitutive Matrix

The preceding discussions shows that the strains and stresses in the new coordinate
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system, X'Y", can be expressed in terms of the old coordinate system, XY, using Eqs. (4.34) and
{4.38), respectively. Also the strains and stresses in the old coordinate system, XY, can also be
expressed in the new coordinate system, XY °, by simply replacing the (8) by (-8) in Eqgs. (4.35)
and (4.39). The results take the following forms:

{e) = [T,) {e’) 4.42)
(o} = [T]) (o'} (d.43)

The stress-strain relationships in old and new coordinate systems can be written, respectively, as:

(a} = [Clle} (4.44)

and

{o7) = [Cle) (4.45)

By considering Eq. 4.44 and substituting the vectors {€} and {c} by their equivalents obtained

from Eqs. (4.42) and (4.43), the following equation results:

[TI{a’} = [CUT, e} (4.46)

Per-multiplication of the two sides of the above equation with [T,], knowing that [T,][T,]" is

equal to the identity matrix, results in:

{0’} = [TIICUT, e’} (4.47)
= [C"1{e’)
where,
{C1 = [T(CUT, T (4.48)

The above equation represents the transformation of constitutive matrix from the old coordinate
system to the new coordinate system. By following the same procedure using Egs. (4.34), (4.38)
and (4.45), the transformation of constitutive matrix from new coordinate system to the old

coordinate system can be carried out using:

[c] = [TY(CUT] (4.49)
For example, the proposed constitutive matrix in principal (or material) coordinate system is
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represented by Eq. 3.4. If the angle between the local coordinate system (old system) and the
principal coordinate system (new system) is denoted by (8), the constitutive matrix in local

coordinate system can be obtained using Eq. 4.49 as:

Ecos0+Eysin®®  VEE, [E,  (E,-Esin6cosd

(cl - ___IE__E_X E,sin + E,cos'6 %(El—Ez)sinBcosB (4.50)
o2 5152
o E? i EE
o sym Z(E‘+E2 -2v )

e )

4.5.4 Transformation of the Coordinates

This includes the transformation of the element nodal displacements, clement nodal forces
and element stiffness matrices from the local to the global axes, or vice versa. If the direction
cosines of the new (local) coordinate system, x°y z’, with respect to the old (global) coordinate
system, xyz, are as defined in Eq. 4.36, the transformation matrix from global to local can be

defined as:

I, m n
(n=|L mn
Iy my n,

4.51)

where each row consists of the direction cosines of the local (new) coordinate system axis with
respect to the global (old) coordinate system. The relations between the element nodal
displacements and the element nodal forces from the global to the local coordinate systems can

be written, respectively as;

{uvl, = [Ti(D}, (4.52)

(8}, = [TI{F}, (4.53)

and the transformation of the element stiffness matrix from the local to the global axes is
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performed by:
(%], = [T)[K,),(T] (4.59)

in which {U},, {S},, and [K_], are the element nodal displacement, element nodal force and
clement stiffness matrices in local coordinate system, respectively; and {D},, {F},, and [K], are

the element nodal displacement, element nodal force and element stiffness matrices in global

coordinate system, respectively.
4.6 THE ASSEMBLY PROCESS

The transformed element stiffness matrices, [K],, which were just generated (refer to Eq.
4.54), can now be used to generate the global stiffness matrix of the structure, [K]. The elements
in [K] are the global load components at the joints which are required to produce unit global
displacement components at the joints. The elements in [K], are the global load components at
the joints of element n which are required to produce unit global displacement components of the
joints of that individual element. Since the total load required at any joint, to produce a
displacement of the joint, is the sum of the loads required to displace the joints of all of the
clements connected to that joint, it should be possible to generate the elements in the global
stiffness matrix, [K], for any joint by simply summing the loads required to produce global unit
joint displacements in each clement connected to the joint. This merely corresponds to summing
the elements in the individual transformed element stiffness matrices. This operation can be

represented symbolically by

(X1 = ¥ (K], (4.55)

where N is the number of elements in the structure, Care must be exercised in summing the
elements of each [K], into the correct rows and columns in [K], since [K] and [K], are not the
same size matrices. This becomes a book-keeping problem which is dependent upon the
numbering scheme in {F} and {D}. This total operation is known as "the assembly process” or

“the direct stiffness method" (sec Shayanfar, 1994).
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4.7 NUMERICAL ALGORITHMS FOR NONLINEAR ANALYSIS
4.7.1 Solution Procedure

In the nonlinear finite element method, the change in the material stiffness matrix during
loading, necessitates an incremental solution procedure. Techniques have been developed (Desai
and Abel, 1972} for solution of nonlincar problems by the finite element method using picce-wise
linearization. Three basic techniques are in use: (1) Incremental or Stepwise procedures, (2)
Iterative or Newtonian methods, and (3) Incremental-Iterative or Mixed procedures. The latter
combines the advantages of both the incremental and iterative methods and tends to minimize their
disadvantages (for more information on the advantages and disadvantages of these methods, see
Desai and Abel, 1972).

The incremental-iterative procedure with a tangent stiffness scheme (see Fig. 4.10) has
been adopted in the HODA program. In this method the total load is divided into some load
increments and during each load increment the analysis is carried out through subsequent itcrations
until the required force/ displacement convergence criteria (see Section 4.7.3), or the maximum
number of iterations allowed within each load increment are achieved. At the beginning of each
load increment, the total load increment is applied and the stiffness matrix of the structure, [K ]},
is evaluated according to the tangent constitutive matrices computed at the end of the previous
iteration, [C,,], and the unbalanced nodal forces are obtained using the initial stress method
introduced in Section 4.7.2. Therefore, the equilibrium equation (Eq. 4.9) takes the following form
(see Fig. 4.10):

[K.,J{AD,) = (F}) (4.56)

and the total displacement after the ith iteration is given by:

i
(D} =Y (AD}} 4.57)
f=1

where [K,,] is the stiffness matrix of the structure at the end of iteration number (i-1}, {Fi-} is the
unbalanced force vectors during the iteration i and {D,} is the total nodal displacement vector of

the structure within the iteration i.
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4.7.2 Unbalanced Forces

The unbalanced forces after each iteration are calculated using the initial stress method
duc to Zienkicwicz et al. (1969). The method is based on the fact that a unique increment of stress

corresponding to an increment of strain is available. After the iteration i, the unbalanced stress

vector, {0,}, is given by:
{El] = [AO‘.] - [C;-J{Ae.'} (4.58)

where [C,,] is the tangent constitutive matrix at the beginning of the iteration i, {Ag,} is the strain
increment vector during iteration i, and {Ag,} is the "true" stress increment obtained from the
stress -strain relationship. The equivalent unbalanced forces, {Fi_,,}, to be applied in the next
iteration are then given by
F)b=-Y [18BT{o)ave
[ l‘l} E [ ] { ‘l (4.59)
Vl‘

all
elements

4.7.3 Convergence Criteria

Convergence criteria are utilized to stop the iterations in each load step as soon as a
required degree of accuracy has been attained. In the HODA program, two convergence criteria
developed by Lin (1973) and Kabir (1976) are adopted. Lin used absolute values of input
convergence/ divergence data, but Kabir added convergence/ divergence criteria that uses input
percentage factors to be muitiplied by the solutions computed in the first iteration of each load
step. For any of these procedures, two possible convergence criteria are used:

(1) How small are the unbalanced forces after the ith iteration {F;,}? or

(2) How small are the displacement increments {A$,}?

The method based on criterion (1) is called "the force convergence criterion" and the one based
on (2) is termed "the displacement convergence criterion”,

In the HODA program, the convergence in iteration i, for example, is checked as follows:

(1) Evaluate the maximum absolute value of unbalanced force/ displacement components

in the six global directions at all nodes and establishes the norm vector {F,}., .
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(2) If all components of the norm vector {F,}' are less than the permissible convergence
values, convergence is assumed to have occurred and no more iterations are performed. Otherwise
another iteration is executed unless i is greater than n where n is the maximum number of
iterations allowed per load step specified in the input data file. At the end of cach load step
(where either convergence criteria are satisfied, or i > n), the remaining unbalanced forces are

added to the next joad increment 1o avoid the accumulation of error over the load steps.

4.7.4 Divergence Criteria

As for the convergence criteria, two possible divergence critetia are available in the
HODA program:

(1) Displacement divergence criterion or,
(2) Force divergence criterion.

If any of the norm vector components {F,}' exceeds the corresponding maximum force/
displacement values input as the divergence values, the solution will be terminated because of the
excessive unbalanced forces or displacements.

If during an incremental i~.crease of load, the resulting displacement increments or
unbalanced forces do not decrease during the iterations, divergence is said to have occurred
indicating structural collapse. If this happens, zero values will appear on the main diagonal of the
structural stiffness matrix which becomes singular and the equilibrium equations can not be
solved, stopping the execution of the program. A message stating " Zero on Diagonal of Stiffness

Matrix, Solution is Stopped.” will appear on the output file.
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CHAPTER 5

ELEMENT SIZE EFFECT PHENOMENON

This chapter presents the results of an investigation into the effect of finite element size
in nonlinear finite element analysis of concrete structures. The influence of element size on
different behavioural aspects of reinforced concrete structures including the load-displacement and
load-strain characteristics, crack pattern and ultimate load are discussed along with a comparison
with the experimental data where available. To eliminate the dependence of the computed results
on the finite element size, two models have been used: a) crack band model, based on the fracture
mechanics concepts, as a function of fracture energy, mesh size and tensile strength of concrete,
and b) a new proposed model as a function of only the element size. These models have been
implemented into the nonlinear finite element analysis program HODA. The analytical results
obtained using the different models are compared; the proposed model gives good agreement with
the experimental results and can be used effectively with relatively large finite element mesh sizes

with reasonable accuracy.

5.1 GENERAL

Realization of the full potential of the finite element method to study the nonlinear
behaviour of structural concrete elements requires an extensive verification to establish the
accuracy of the responses of a variety of structural members, by comparing their computed
responses under a variety of loadings with the available experimental results, including load-

displacement, load-strain characteristics, cracking patterns and ultimate loads. In this respect, the
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influence of the "numerical” effects, such as the clement size, load steps, integration order, cte.,
on the various classes of structures needs to be studied. Despite the extensive research effort, there
exists a need to determine a simple material model that best represents the behaviour of the
various classes of structural elements and their assemblages. Such an extensive verification wil
result in improving the level of confidence in the nonlinear finite element analysis of structural
concrete, while at the same time pointing out areas that need further research and develtopment.

According to the smeared crack model (as introduced in Section 3.3.2), the tensile stress
in a finite element is limited by the tensile strength of the material, [, and afier reaching this
strength limit, the stress in the finite element decreases. As practised initially, the stress was
assumed to decrease suddenly to zero, with a vertical drop in the stress-strain curve at the
maximum stress [see Fig 5.1(a)}, however it was realized that improved and more realistic results
are usually obtained if the stress is reduced gradually, i.e., the material is assumed to exhibit
strain-softening (Lin and Scordelis, 1975) [see Fig. 5.1{b)]). However, the concept of strain-
softening proved to be a mixed blessing. After strain-softening had been implemented in large
finite element analysis programs and widely applied, it was discovered that the computed results
are not the same with regard to the element size used, i.e., the results change significantly if the
mesh is refined (Bazant, 1976; Gilbert and Warner, 1978; Bazant and Cedolin, 1979, 1980 ,and
1983; Bazant and Oh, 1983a; Darwin, 1985; Rots et al,, 1985; Balakrishnan et al., 1988). Similar
problems are encountered when cracking is idealized using the discrete cracking model, based on
the strength concept (Bazant, 1992).

The responses of selected reinforced concrete members were studied using the HODA
finite element analysis program, and it was found to be strongly dependent on the size of the finite
element in the mesh. This is termed the "element size dependency phenomenon®. This chapter is
aimed at finding and properly evaluating the key parameters that can help to remedy this

drawback (for more detailed information, refer to Shayanfawet al.,, 1993).

5.2 INFLUENCE OF FINITE ELEMENT SIZE ON COMPUTED RESPONSES

Two beams {an under-reinforced beam and an over-reinforced beam) and a shear panel
are analyzed using different finite element meshes to study the influence of the element size.
These specimens were analyzed using the HODA program with "no mesh size dependency

analysis" option (or for brevity "no mesh dependency"). The experimental results for load-
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displacement and load-strain characteristics, cracking patterns and the ultimate loads are compared

with the corresponding computed values.

Table 5.1: Gaston’s beams, T2LA & T5L and Cervenka’s shear panel W-2

(material properties)

Material Beam Beam Shear
property T2ZLA T5L panel
f_ (psi) 2120 2500 3650

E, (psi} | 2624500 | 2880000 | 2900000

£, 0.0027 | 0.0027 | 00025
g, (*) | 0.004 0.004 | 0.0033
I, (psi) 345 500 530

v (" 0.17 0.17 0.17

F, (psi) | 44000 | 40200 | 51200

E, (psi) | 2750000 | 2880000 [ 2730000

E,’(psi) | 1060000 | 822000 | 251160
E, 0036 | 0036 | 0036 |

(*) Assumed values

5.2.1 Example 1: Reinforced concrete beams

Two simply supported reinforced concrete beams tested by Gaston et al. (1952), with two
concentrated third-point loads, are investigated. The details of reinforcement and the geometry of
the beams are shown in Fig. 5.2. The properties of materials for the beams are given in Table 5.1.
The beam T2LA is under-reinforced, while the beam T5L is over-reinforced. The reinforcement
is symmetrical with respect to the mid-span section for both beams.

To study the influence of the element size on the response of the beams. six types of mesh
configurations with 4, 20, 30, 80, 120, and 320 elements were used for idealizing beams T2LA
and T5L. The element size varied from 1.5 in to 18 in. Due to the symmetric configuration of the
beam and the loading, only one-half of the beam was modeled for the finite element analyses and

half of the total load was applied to the structure in 30 load steps varying from large to very small
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Table 5.2: Effect of mesh size on the ultimate failure load for the beam T2LA (g,=0.0007)

Finite element
Number of Size of clement i Failure load P/ Penp
aspect ratio
elements (in x in) {1b)
4 18x12 1.50 19.500 1.24
10 6x 12 2.0 16,500 1.05
30 6x4 1.50 16,000 1.02
80 3Ix3 1.0 15,000 0.96
120 Ix2 1.50 14,500 0.93
320 1.5x 1.5 1.0 14,000 0.89
Experimental result - - 15,666 .

increments as the ultimate load was approached. Figure 5.3 shows a typical finite clement model
of the beams with 20 elements.

The load-deflection curves for the under-reinforced beam T2LA are shown in Fig. 5.4,
which presents the results for the models with five different meshes. The concrete ultimate tensile
strain, €,,, was assumed to be constant for all mesh sizes and was arbitrarily selected to be 0.0007.
As can be seen from Fig. 5.4, in the case of the coarsest mesh with 4 elements, the ultimate load
is overestimated (19,500 1b), compared with the experimental ultimate load of 15,666 1b. When
a coarse mesh is used, the structure is a little stiffer and behaves in a relatively more ductile
manner. With a decrease in the size of the elements, the ultimate load decreases and the load-
deflection response is less ductile.

Variation of the computed ultimate load with the number of elements for beam T2LA is
presented in Table 5.2 and in Fig. 5.5, which shows that the ultimate load for the beam is
dependent on the mesh size used in the analysis. It can be noted that for the same ultimate tensile
strain, the ultimate load for this under-reinforced beam decreases with an increase in the number

of elements. To show the effect of element size on the prediction of the concrete strain, for three
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mesh confizurations with 4, 80, and 320 elements. the computed load-concrete compressive strain
curve at the beam mid-span top is presented in Fig. 5.6, Once again, the results are influenced by
the clement size and it emphasizes the sensitivity of the computed responses to the mesh
characterisltics.

For the beam T5L, which is over-reinforced, a similar analysis procedure was followed.
The results show that the effect of the element size on the ultimate load is not significant, i. e.,
the beam response is not dependent on the mesh characteristics. Because of the high ratio of
tensile reinforcement. cracking of the concrete does not have a significant effect on the material
nonlinearity of the concrete. Also, as the value of g, was varied with all other parameters
maintained constant, the ultimate load remained approximately constant and relatively close to the

experimental ultimate load, (see Table 5.3).

5.2.2 Example 2: Reinforced concrete shear panel W-2

The shear panel W-2, tested by Cervenka (1970) under monotonically increasing load, is
investigated in this example. The panel consists of orthogonally reinforced square plates, 30 in
X 30 in in size, and 3 in in thickness. Two panels are combined to form one beam, like the
specimen shown in Fig, 5.7. The material properties of the shear panel are summarized in Table
5.1. Because of symmetry, only one-half of the specimen is idealized for the finite element

analysis. The total load is applied at the two points on the outer rib as shown in Fig. 5.8.

Table 5.3: Effect of element size on the ultimate load of bea T35L

N;Ié;:?:tlrts? f ??éfie% Eer Eu Ul]té%a[e Puoas/Pecp
4 18x12 0.00013 0.001 17000 0.96
20 6x6 0.00013 0.001 17000 0.96
80 3x3 0.00013 0.001 16500 0.94
80 3x3 0.00013 0.0021 16500 0.94
80 3x3 0.00013 0.0031 16500 0.94
320 15x 1.3 0.00015 0.001 16500 0.94

Exp:g;rlll'l[t:mal . . . 17666 _
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To study the influence of the mesh size, three different meshes with 35, 120, and 460
elements are examined. The ultimate tensile strain, €., is assumed to be constant and arbitrarily
selected to be 0.002. Figure 5.8 illustrates a typical mesh layout for the shear panel with 35
¢lements.

The load-deflection curves for this panel for the difterent meshes are plotted in Fig. 5.9.
As in Example 1, it can be observed that the element size has a significant effect on the
load-deflection curve. Once again, it was noted that with an increase in the number of tinite
elements idealizing the system, the ultimate load decreases. In each case, the deflection response
before cracking is identical, however, afler cracking there are deviations from the experimental
response and the deflection at the ultimate load decreases with a decrease in the element size.

The effect of different mesh configurations on the analytical crack pattern at Gauss
quadrature points at a selected load level (P=24000 Ib) for the shear panel is shown in Fig. 5.10,
Here, thick lines represent fully opened cracks (€ > g,)), while thin lines indicate partially opened
cracks (g, < € < g,). It can be noted from Fig. 5.10 that the crack patterns are different and are
influenced considerably by the element size. With a decrease in the element size, the progress of
fully opened cracks increases, resulting in wider crack patterns. It is also evident that the
penetration of the fully opened cracks in a finer mesh configuration is greater than that for the

coarse mesh, and consequently it leads to a lower ultimate load for the finer mesh,

5.2.3 QUALITATIVE REPRESENTATION OF MESH SIZE DEPENDENCY

The problem of spurious mesh sensitivity can be also illustrated, for cxample, by
qualitative consideration of the rectangular panel in Figures. 5.11(a) and (b}, which is subjected
to a uniform vertical displacement at the top boundary. A smali region near the centre of the left
side is assumed to have a slightly smaller strength than the rest of the panel, and consequently
a smeared crack band starts growing from the left to the right. The solution is obtained by
incremental loading with two finite element meshes of very different mesh sizes as shown. By
stability checks, it is found that the cracking must always localize into a band of single element
width at the cracking front [see Fig. 5.11(a) and (b)]. Typical qualitative results for this, and other
responses such as load-deflection, load-crack length and energy released versus the number of
elements are illustrated in Fig. 5.11(¢), (d) and (¢). In the load-deflection diagram [Fig. 5.11(c)},

it is seen that the peak load as well as the post-peak softening is strongly dependent on the
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clement size. In other words, with an increase in the element size [Fig. 5.11(a)], the ultimate load
increases and the structure behaves in a stiffer manner compared with a model with smalier size
clement. Plotting the load (reaction) versus the length of the crack band, again large differences
are found {Fig. 5.11{d)]. This implics that if a very fine mesh is used (case B) to obtain a specific,
it requires lower load than that for the coarse mesh (Case A).

The energy which is dissipated due to cracking decreases with the refinement of the finite
¢lement mesh [solid line in Fig. 5.11(¢)] and converges to 0 as h tends to 0. This gives unreliable
results. With accommeodation of the fracture mechanics concepts or the proposed model presented
in Scction 5.3.2, the energy release rate can be ensured to be constant [dashed line in Fig.

5.11(e)].

5.3 ELIMINATION OF ELEMENT SIZE DEPENDENCY

Cracking of concrete is one of the important aspects of the material nonlinear behaviour.
Intensive research effort has resulted in a large number of cracking models, which can be divided
broadly into two categories, namely, discrete cracking models and smeared cracking models.
Furthermore, within each category, these models can be applied either with a strength-based, or
fracture mechanics-based crack propagation criterion. The problem of mesh sensitivity is
encountered when cracking is idealized using the smeared or discrete cracking models based on
the strength concept (Bazant and Cedolin, 1979; Bazant, 1992). The main objective of this chapter
is to develop a solution to eliminate this drawback from the strength-based criterion with an
appropriate adjustment of the value of the ultimate tensile strain, €,, as a function of only the
element size, h,

Fracture mechanics concepts can be used to deal with propagation of cracks, and are based
on the concept of energy dissipation in the structure undergoing the fracture process. It should be
noted that if the computed response is to correlate with the experimental response, then the energy
dissipated in the process should be independent of the type of mesh. This implies that irrespective
of the finite element size selected, the area under the experimental and the computed load-
deflection curves should be equal. Therefore, the energy release rate should be constant in both
the experimental and the computer model irrespective of the finite element size used. For the sake
of comparison, the "crack band model" proposed by Bazant (1976) is also implemented in the

computer program HODA and some key features of this model are presented in the following
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section,
3.3.1 Crack Band Model

The basic characteristics of this model are (Bazant, 1992):

(1) to characterize the material behaviour in the fracture process zone in a smeared manner
through a strain-softening constitutive relationship, and

(2) to impose a fixed width w_ of the front of the strain-sofiening zone (crack band).
representing a material property.

The imposition of constant w_ is required to avoid spurious mesh sensitivity and
objectivity, assuming that the energy dissipation due to fracture per unit length (and unit width)
is constant, and equal to the fracture energy of the material. G=0.5¢ " w.. The width of the crack
band front, w,, can be assumed to be approximately three times the maximum aggregate size, d,
(i. e., w=3d,) (Bazant and Oh, 1983). However. w_-values ranging from d_ to 6d, gave almost
equally good results (Bazant, 1992). Once the shape of the softening branch of the stress-strain
relationship is fixed, the crack band mode! is fully characterized by three material parameters: .
G, and w,.

The finite element size, h=w,, required by the crack band model, may be too small in the
case of very large structures. In this case, it is possible to enlarge the element size, provided that
the softening branch of the stress-strain relationship is adjusted to obtain the same encrgy
dissipation, G;. The given stress-strain curve OPA in Fig. 5.12 for the strain-softening crack band
needs to be replaced for increasing element size, h, by curves OPB, OPC, OPD, etc., such that
when the areas under any of these curves is multiplied by h, the same fracture energy value, G,
is obtained.

One can also use elements with h < w_, provided that the post-peak slope is decrcased
such that a constant fracture energy, G, is obtained, as shown in curve OPF.

As the element size is increased, the slope of the strain-softening branch gets steeper, until
for a certain element size, h,, a vertical stress drop, as represented by the curve OPC is obtained.
For a still larger element size, the diagram OPD would exhibit snapback, which would cause
computational difficulties. The point of vertical drop is determined again from the condition that
the area under the curve OGE must be the same as the area under the curve OPD (PC and GE

in Fig. 5.12 represent f'| and f, respectively). This consideration indicates that the equivalent
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tensile strength, f_, of the large finite element of size h > hy is given by

.| R 5.1
fu =8\ 5-1)

N

in which h, = (REG/f"?) is the element size for which a vertical stress drop is obtained.
5.3.2 The Proposed Model

Different structural elements, including the under-reinforced beam T2LA and the shear
panel W-2, were analyzed using the HODA program with different mesh sizes. Various analyses
using the program indicated that the shape and the length of the descending branch of the tensile
stress-strain curve of concrete have significant effects on the computed responses. These

characteristic parameters are controlled by the values of the ultimate tensile strain, g, and the

tw
tenstie strength of concrete, f,". It was shown (see Shayanfar et al., 1993) that the value of f’
does not have a considerable influence on the value of the ultimate load, as compared with the
value of ¢,

For each mesh configuration, the value of ¢, was adjusted so that the computed ultimate
load was close to the experimental ultimate load. The results of analyses for beam T2LA and
shear panel W-2 are presented in Tables 5.4 and 5.5, respectively. The best values of g, for the
beam and the shear panel for different mesh sizes are presented in Table 5.6. The results confirm
that there is a unique value of g, corresponding to each mesh size regardless of the type and
detailing of the structure. After determining the best value of g, for each mesh size (element

width), h, the variation of g, with respect to the element width is plotted in Fig. 5.13. A

regression analysis of the results leads to the following exponential equation:
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Table 5.4: Effect of g, on ultimate load. for under-reinforced beam T2LA

113

Pty ??r'fn\e% € G, | Vimaclead | op by,
4 18 x 12 0.00013 0.0007 19500 1.2:4
4 18x 12 0.00013 0.00018 16000 1.02
20 6x6 0.00013 0.0007 14000 0.90
20 6x6 0.00013 0.001 14500 0.93
20 6x0 0.00013 0.0013 15300 0.99
80 3x3 0.000153 0.0007 15000 0.96
80 5x3 0.00013 0.00013 13500 0.86
80 3x3 0.00013 0.0021 15500 0.99
80 3x3 0.00013 0.0028 16500 1.053
30 3x3 0.00013 0.005 17000 1.085
320 1.5 x 1.5 0.00013 0.0007 14000 0.90
320 15x15 0.00013 0.0031 15500 0.99
Experimental result - - - 15666 )
Table 5.5: Effect of €, on ultimate load of shear panel W-2
Mol | dememe | | e | Utigohsd | g,
35 6x6 0.00018 0.0002 26000 098
35 6x6 0.000138 0.0018 28500 1.08 |
35 6x6 0.00018 0.002 28700 1.083
35 6x6 0.00018 0.00125 26500 1.00
120 3x3 0.00018 0.0002 25500 0.96
120 3x3 0.00018 0.005 30300 1.15
120 3x3 0.00018 0.0006 25500 0.96
120 3x3 0.00018 0.0021 26250 0.991
460 1.5x 1.5 0.00018 0.0002 24000 091
460 1.5x 1.5 0.00018 0.002 24500 0.925
460 1.5 x 1.5 0.00018 0.0013 24500 0.925
460 1.5x 1.5 0.00018 0.0031 26700 1.008
| Experimental result - - - 26500 -




Table 5.6: Optimum value of g, for different mesh sizes
for beam T2LA and shear panel W-2

Size of element The optimum value of ultimate tensile strain (g;)
(in inches) Beam T2LA Shear panel
1.5x 1.5 0.0031 0.0031
Ix3 0.0021 0.0021
6x6 0.0013 0.00125
18 x 12 0.00018 -
€, =0004e02h (¢ 2¢) (5.2)

If €, is smaller than €, then
€ =€ (5.3)

where h is the width of the element in inches (for non-square elements: h = VA , in which A is
the element area), and €, is the concrete ultimate tensile strain.

This formula is empirical and is obtained by a trial and error procedure. Based on this
formula, the value of €, decreases with an increase in the value of h, and vice versa, so that the
energy dissipation capacity and the uitimate load of the structure remain constant irrespective of
the size of finite element used in the mathematical model. If the element size, h, is too large so
that the g, is less than g_,, then g, is considered to be equal to €, This is because of the
numerical difficulties in the snapback of the tensile stress-strain curve of concrete. It should be
pointed out that using this formula, a coarse mesh can be selected for finite element analysis with
an acceptable degree of confidence in the computed results and considerable saving in the
computational effort,

However, it should be noted that Eq. 5.2 was derived for the case of beams and shear

panels, and its validity for other systems need to be investigated.
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5.4 IMPLEMENTATION OF THE MODELS INTO THE HODA PROGRAM

The algorithms employed for implementation of the crack band theory and the new
proposed model are presented in this section. With the imposed modifications, the program can
handle the nonlincar finite ¢lement analysis of the structures based on "no mesh dependency

analysis", "the crack band theory" and "the proposed model".
5.4.1 Crack Band Model

The crack band theory aigorithm is summarized for implementation into the HODA
program as follows:
Case (1): If the size of the element is equal to the crack band width, i. ¢. h = w,, then the ultimate
tensile strain of concrete is evaluated as (see curve OPA of Fig. 5.12)

2G, _

e, - —2 = 0A (5.4)
W,

tu

where b is the element size, G, is the fracture energy, w_ is the crack band width which is
approximately equal to three times the maximum aggregate size (3d,), and f, is the direct tensile
strength of concrete evaluated using Eq. 3.32.

Case (2): If the size of the element is less than the crack band width, i. e. h < w,, then the

ultimate tensile strain is calculated using (see curve OPF of Fig. 5.12)

26, _.
=1 =0OF (5.5)
£k

€n

Case (3): If the size of the element is greater than the crack band width, i. e. h > w,, first the
mesh size, h,, is determined for the case for which a vertical drop in stress is encountered. From

curve OPB of Fig. 5.12 it can be found that: G, = 1/2 g, £, (h,) = 1/2 (f,/ E,) £, (h), and then,
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(5.6)

Now, if w, < h < h, then,

e, =—L =08 (5.7)

and if w_ < h > h; is govemed, an equivalent curve OGE is used by modifying the tensile strength

of concrete, f_, to avoid a snapback part (curve OPD). Thus, G= h, £*/2E,; =h ftq2 /2 E,, and

* teq®
o =f, h (5.8)

where f, is the equivalent tensile strength of concrete for large finite element size with h > h,.

Finally, the ultimate tensile strain of concrete, €, is obtained as,

€, == =0E (5.9)

5.4.2 The Proposed Model

As explained in Section 5.3.2, the following equation can be used to evaluate the concrete

ultimate tensile strain, g, corresponding to each element size, h:

€, = 0.004¢ 920k (€,z€,) (5.10)

where h is the element size in inches. If h is large so that the Eq. 5.10 gives a value less than the
cracking strain, €,, to avoid numerical difficuities associated with a snapback portion on the
tensile stress-strain curve, the value of ¢, is set equal to that of €_. For more information on how
this modet! and crack band model were implemented in the HODA program, refer to the flow chart

in Fig. 5.14.
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5.5 COMPARISON OF RESULTS AND DISCUSSIONS

The proposed model and the “"crack band model” proposed by Bazant (1976) are
implemented in the HODA computer program as discussed in the previous section. The detailed
analysis of the beam T2LA and the shear panel W-2 is presented in this section along with a

comparison of the results,

5.5.1 Beam T2LA

Beam T2LA is examined using 4 and 320 elements for the computer models. The value
of €, for the program with "no mesh dependency analysis” (MDEP=1) is assumed to be cqual to
0.0007 for all beam idealizations. For the beam idealized using 4 elements, the results arc shown
in Fig. 5.15. The ultimate load computed using the with "no mesh dependency analysis" is 19,500
1b which is 24% higher than experimental value of 15,666 1b. At load levels higher than 14,000
Ib, the beam response is stiffer than the other models with yielding of steel reinforcement
occurring at a load of 16,500 1b which is higher than the experimental yield load of 14,000 b,
The ultimate load obtained using the crack band model is 18,100 Ib, which overestimates the
uitimate load by 16%, while the value based on the proposed model is 16,100 b, which is quite
close to the experimental value with a discrepancy of only 2%. The yield load from both the crack
band and the proposed models are the same as the experimental result of 14,000 1b. The load-
deflection curve for these two models follow the same general pattern and are quite close to the
experimental response. It is obvious that the proposed formulation can be used effectively with
relatively large size finite elements. With this approach, the required computational times can be
reduced considerably.

As can be seen from Fig. 5.16, the ultimate loads for the beam idealized using 320
elements obtained from both the crack band model and the proposed model are the same, 15,500
Ib, and quite close to the experimental result. It shows that the application of these two models
gives similar results with reasonably accurate prediction of the ultimate load. Use of the HODA
program with "no mesh dependency analysis" underestimates the value for the ultimate load at
14,000 1b with an 11% discrepancy. A summary of the ultimate loads for the various mesh sizes

computed for the different models for beam T2LA is presented in Tables 5.6.
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5.5.2 Shear pane]l W-2

The shear panel W-2 is examined for the models with 35 and 120 elements to show the
effect of fineness of the mesh on the computed results, The values of g, for the analysis with the
program with "no mesh dependency analysis” (MDEP=1) are assumed to be equal to 0.002 and
0.005, respectively. The load-deflection curves for 35 ¢lement using the different models are
shown in Fig. 5.17. The ultimate load obtained from the model with no mesh dependency is equal
to 28,700 1b with a difference of +8.3% from the experimental result of 26,500 Ib. The load-
deflection curves computed for the different models are quite close to the experimental response
up to load level of 12,000 lb. Beyond this load level the program with "no mesh dependency
analysis" exhibits stiffer response compared with the experimental response (see Fig. 5.17). The
load-deflection curves resulting from both the crack band model and the proposed model agree
quite well with the experimental curve and predict the ultimate load quite accurately with a value
of 26,700 1b which represent a deviation of only +0.7% from the experimental result.

The results for the shear panel idealized using 120 elements are presented in Fig. 5.18.
The ultimate load resulting from the program with "no mesh dependency analysis" gives a value

of 30,500 ib, with a difference of 15% from the experimental value of 26,500 lb. The ultimate

Table 5.7: Ultimate load for the beam T2LA and the shear panel W-2 for different models

Ultimate Load (Ib)
Number of Size of Ultimate
Type of elements elements tensile No mesh t Crack

structure (in X in) strain dependency | band | Proposed | Experimental

() analysis model model values

B 4 18 x 12 0.0007 19500 18100 16100 15666

eant

T2LA 80 3Ix3 0.0007 15000 15000 15500 15666

320 1.5x 1.5 0.0007 14000 15500 15500 15666

35 6x6 0.002 28700 26700 26500 26500

Shear 120 3Ix3 0.002 26500 25700 26500 26500

iy 460 1.5x L5 0.002 24500 | 26700 | 26700 26500

120 3x3 0.00 30500 | 25700 | 26500 26500
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load for the crack band model is 25,700 Ib, representing a discrepancy of -3%, while the ultimate
load for the proposed model is 26,500 b which is exactly the same as the experimental result,
A summary of the ultimate loads for various mesh sizes computed for the different models for
shear panel W-2 is presented in Tables 5.7. Excellent agreement between the computed values
obtained using the proposed model and experimental values is obvious from a comparison of the

last two columns.

5.5.3 Crack patterns

One of the most significant factors involved in the prediction of the behaviour of
reinforced concrete structures is the formation and propagation of cracks with increasing load. The
cracks in the concrete are the major source of material nonlinearity. The ability of the different
models to predict the crack propagation in concrete is examined in this section. For this purpose,
the crack pattern for only one mesh configuration of the shear panel is presented with thick lines
representing fully opened cracks (¢ > g, } and thin lines showing partially opened cracks (g, <
€ <g,). The predicted crack patterns for beam T2LA using different models at diffcrent load
stages are presented in the report by Shayanfar et al. (1993).

The ability of the models to simulate the experimental cracking pattern for shear panel
is demonstrated in Figures 5.19 through 5.21. Figures 5.19 and 5.20 compare the crack pattems
for the program with "no mesh dependency analysis" (Case a), the crack band model (Case b) and
the proposed model (Case c) with the experimental cracking patierns (Case d) at two load levels:
24,000 1b and 25,500 Ib, respectively. In comparing the cracking patierns, the following
terminology has been used with reference to Fig. 4.4(a). The concrete is assumed to crack at the
end of tension stress-strain branch KC = 1. These cracks widen partially along the branch KC =
3 and become much wider or "fully opened" along the branch KC = 4. The comparison of the
different configurations show that the progress of fully opened cracks for both the crack band and
the proposed model is wider than for the no mesh dependency model and fits better the
experimental crack pattern. Figure 5.21 compares the crack patierns at ultimate load stage using
the different models. The patterns obtained for the crack band and the present models are the same
and considerably wider than those obtained using the program with "no mesh dependency

analysis". The experimental cracking pattern at failure stage was not available (Cervenka, 1970).
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Figure 5.1: Tensile stress-strain curve
Axis of Sym.
Scetion A-A Scection B-B P
i P 36" | 18"

¢ *TaNo2 RERY A B

= | [ Yy
RIE ?
12" —No.2 1065 No.2@4" }
i |
l L= it L

oz £ A L.

2 No. 5 2No.5

r

a) Beam T2LA
Axis of Sym,
Section A-A Scction B-B P
( 6" l_ 36“ J 18'1
- = 2No.2 R A B
P r Yy ™

ik
12 o No.2 1037 No.2 @ 4" TL
l' | A |. .

,/ 7 A N | !
2No.9 2No.9 A —B |

b) Beam T5L

Figure 5.2: Geometry and reinforcement details of the beams
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Figure 5.4: Load-deflection curve at mid-span for beam T2LA (g, = 0.0007)
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Figure 5.8: Typical mesh configuration for shear panel W-2

35000
Experiment 460 Elements 120 Flements 35 Elements
= - — -
30000
.
25000 -
_— p
E=
= 20090
§ J
=
= 15000 ~
= J
10000 -
5000 -
0 + : ) t ' o ' | N
0 0.1 0.2 0.3 0.4 0.5

Deflection (in)

Figure 5.9: Load-deflection curve for shear panel W-2 (g, = 0.002)
124



l, 1 1 1 L
' f '
! 1 ] 1 H L
T T
] , l‘t ll '
a) 35-Element Model 1) 120-Element Model
-
.
‘.’
M
el
annan
+ 143,017
t],:% 44214
LERENANANAN
AGEGYAYANAY]
AYANANARANRNAN
rpa Lt e e L
HRNDODNOGnT
BONDGOONOSaNT
ZROOOODNOnOn
L A AR RN AR ARRARNAAAN)
1 ooGononiinaanns

¢) 460-Element Model
Figure 5.10: Effect of mesh size on crack pattern of shear panel W-2

{P=24,000 b, £,=0.002)



™ 1
A B
|
|
d I
(@) ®
4 Load 4 Load
A
A
B B
Dcﬂecli; Crack len;th
© (d)
4 Encrgy

/— Mesh dependency analysis

No mesh dependency analysis

-

No. of elements

(e)

Figure 5.11: Qualitative influence of mesh size on the response of a tension member

126



= Q

M ‘
A
.¢|I|H‘!|!. lE !li!l }:WIHH Y > £

Figure 5.12: Effect of size on post-peak softening

0.004
0.003

0.002 -

Ultimate Tensile Strain

0.001

0 2 3 6 3 o 12 14 16
Width of Element (in)

Figure 5.13: Ultimate tensile strain of concrete, €, versus width of element, h

127



H=H/254

£~TVEs

£=0.33vFc

£.=0.004*exp(-0.2*h)

f=4F:

B

EVALUATE THE FOLLOWING PARAMETRES:
W=3*AMAGR(])
h=(2EG/f)
£=2G/f*h

CALCULATE:

Reguired input data:

MDEP= Mesh dependency analysis factor

MUNIT=

-1 No mesh dependency analysis
-2 Mesh dependency analysis based on the crack band theory
-3 Mesh dependency analysis based on the proposed model

Unit system option
-1 Imperial units
-2 SI Units

GF(l)= Fracture energy for concrete type number 1

--Recommended value of 0.5 Ib/in (0.1 N/mm)

AMAGR(!)= Maximum aggregate size for concrete sysiem type number |

-~-Recommended value of 1.0 in (25.4 mm)
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CHAPTER 6

ANALYSIS OF EXPERIMENTAL SPECIMENS

This chapter compares the computed and the experimental responses of several specimens
using the HODA program. These include a total of five panels tested at University of Toronto
under monotonically increasing inplane loadings (Vecchio, 1981; Vecchio and Collins, 1982), a
squat shear wall tested by Cardenas et al. (1980) under monotonically increasing load up to the
ultimate load carrying capacity of the structure, two high strength concrete beams, LS1 and
HUCSB, tested by Leslie et al. (1976) and Abrishami et al. (1995}, respectively, and a shear panel
(W-4) tested by Cervenka (1970) under reversed cyclic loading. Along with the analysis of each
specimen, the effect of different nonlinear characteristics of reinforced concrete (tension-stiffening,

failure criteria, cracking model, etc) are examined.

6.1 GENERAL

The computer program HODA is an ideal research-oriented tool to study the behaviour
of reinforced concrete structures using nonlinear finite element analysis and hypoelasticity models.
It provides several options for the user as follows:

Mesh size dependency analysis,
-1 mesh size dependency not considered
-2 mesh size dependency analysis bascd on the crack band theory

-3 mesh size dependency analysis based on the proposed model



Concrele stress-strain curve selection option
-1 Saenz and Smith's equations
--2 Popovics' equation
Constitutive matrix selection option
--1 Darwin's constitutive matrix
--2 Proposed constitutive matrix utilizing the transformation of
equivalent uniaxial strains during the subsequent iteration
Tension-compression failure criteria option
-1 Kupfer and Gerstle
-2 Vecchio and Collins
Cracking model option
--1 Fixed crack modei
-2 Ratating crack model
Loading option
-1 Monotonically increasing loading
--n Cyclic loading with n cycles
Tensile loading-unloading option
--1 Horizontal unloading
-2 Secant unloading
Tensile-softening branch option

--1.0  Continuous curve (no dropping at all)

--0.0  Sudden drop to zero after cracking with no tension-stiffening capability

--1.0-0.0 Dropping after cracking with tension-stiifening capability

For more information on the various options in the HODA program, refer to Appendix A.

To verify the reliability of the HODA program in predicting the nonlinear behaviour of

reinforced concrete structures, its corroboration with well established experimental data is needed.

Some specimens including the beams T2LA and TSL and the shear panel W-2 were analyzed

earlier in Chapter 5, and good agreement was noted with the experimental results. The following

sections deal with the analysis of the above structural elements in which the analytical results for

each specimen are compared with the experimental findings.
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6.2 PANELS TESTED AT THE UNIVERSITY OF TORONTO

In an international competition to predict the load-deformation response of the R C
elements using the nonlinear finite element method, four of the R C panels tested at the University
of Toronto by Vecchio and Collins (1982}, were used by researchers from 13 different countries.
The results showed wide scatter (Collins and Vecchio, 1985) and for one of the panels the ratio
of the highest to the lowest prediction of strength was six to one. This was a clear indication that
the current models for analyzing R C elements need much improvement. In the following sections
the responses of five panels (from this set) are obtained using the HODA program and compared

with the experimental results.

6.2.1 Description of the Panels

Five panels PV11, PV16, PV17, PV19 and PV23 were selected from the 30 specimens
tested at the University of Toronto by Vecchio and Collins (1982). These five specimens were
selected because of the varying reinforcement contents and loadings. The dimensions of the panels
were 890%890x70 mm. They were reinforced with wires running parallel to the edges of the panel
referred to as longitudinal and transverse reinforcements. The wire meshes had a typical grid
spacing of 50 mm and were heat-treated to ensure a ductile response. The concrete and
reinforcement properties along with the load pattern of each specimen are summarized in Table
6.1,

These panels were loaded by forces applied to 20 steel "shear keys", which were anchored
into the perimeter edges of the specimens as shown in Fig. 6.1(a), Each shear key was attached
to two "links" oriented at 45° with respect to the normal to the edge of the panel as illustrated in
Fig 6.1(b). The links, in turn, were connected to a series of 22C kN double-acting hydraulic jacks.
Only three links were rigid to stabilize the panel within the test rig. By varying the magnitude and
the direction of the forces applied to the links, any combination of shear, tension and compression
stresses can be applied to the edges of the test specimen. For example, Fig. 6.1(b) shows the
required load arrangement to provide pure shear in which one link would apply a tensile force
while the other would apply an equal compressive force. The normal force components would

cancel, leaving only the shear force components.
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Table 6.1: Material properties and loading pattemns for the Panels’

Concrete Longitudinal steei | Transverse steel
Specimen Load Pattern
£, f. (MPa)[ [, (MPa) | p, (%) \F,, (MPa) | p, (%0) [F,, (MPa)
PV1T | 0.00200 18.6 1.4 0.740 255 0.740 255 Uniaxial compression
PV16 | 0.00200 217 1.0 0.740 255 0.740 255 Purc shear
PV 0.00260 15.6 1.3 1.785 235 1.306 235 Pure shear
PV19 | 0.00215 19.0 1.9 1.785 458 0.713 299 Pure shear

Shear and biaxial compression

(H/V=-.039

PV23 0.00200 30.5 2.6 1.785 518 1.785 518

E, = 200,000 MPa; E, = 5000Vf", MPa; p, = Percentage of longitudinal steel;

p, = Percentage of transverse steel; H = Applied normal force; V = Applied shear force

6.2.2 Finite Element Modelling

The panels are modeled using only one shell element type I (QLC3+RBE) in which one
layer of concrete and four smeared steel layers are used to represent concrete material and steel
reinforcement meshes, respectively. Figure 6.2(a) shows a panel under shear and biaxial tensile
forces. Any other loading type is a special case of this general loading condition. Since three rigid
links were provided to stabilize the panel within its plane, the panel is modeled by a simply
supported beam as shown in Fig. 6.2 (b). In the mathematical model, the load should be applicd
at the joints (nodal forces). From equilibrium considerations, the nodal forces corresponding to
this load pattern can be obtained as represented in Fig. 6.2(b). The use of only one shel! element
saves a lot of computational time and reveals the efficiency of the finite element formulation
employed in the HODA program.

The panels were analyzed using the HODA program and some of the computational and
experimental responses are summarized in Table 6.2. Additional information concerning the

behaviour of each panel is presented in the following sections.
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Table 6.2: Results for Vecchio-Collins specimens’

[Deseription PVII PV16 Pvi7 PVI19 Dy23

O, (Deg.) 45-45 45-45 - 46-38 45-45
B0o04 (Deg.) 45-46 45-45 - 43-39 42-48

T, (MFPa) 3.56 214 214 3.95 8.87

T, (MPa) 4.17 2.09 - 3.79 3.02

T, (MPa) 4.17 2.09 20.87 4.97 3.02

T, (MPa) 3.69 2.05 - 4.17 5.42

1, (MPa) 4.17 2.09 20.87 4.97 7.62

T/ Ty 1.17 0.98 - 137 0.90

T/ Tenp 17 0.98 0.98 1.26 0.90

T/ Tep 1.05 0.96 - 1.05 0.95

T/ Tep 1.17 0.98 0.98 1.26 0.85

Failure mode Yicelding lorg. & | Yielding long. & concrete vielding trans. and concrete crushing, and
{Experiment) trans. sieels trans. steel crushing concrete crushing bond failure
Failure mode Yielding long. & | Yiclding long. & concrete yvielding trans. and conerete crushing, and

(HODA)Y trans. steels trans. steel crushing concrete crushing bond failure
* 1.~ Experimental ultimate shear stress

1, = Ultimate shear stress evaiuated using the fixed crack model

1,, = Ultimate shear stress evaluated using the rotating crack model

criterion

1,, = Ultimate shear stress evaluated using the rotating crack model along with Vecchio-Collins failure

1,. = Ultimate shear stress evaluated using the rotating crack model ignoring tension-stiffening

clockwise from the transverse axis

6.2.3 Panel PV1i

average orientation of the principal strain/ stress directions for cracked concrete, measured counter-

This panel was heavily reinforced in both the longitudinal and the transverse directions
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and subjected to pure shear. This large percentage of steel reinforcement places heavy demands
or: the concrete and reveals the adequacy of the concrete constitutive model employed. The panel
was analyzed using the HODA program by utilizing 25 load steps and a maximum of 15 iterations
in each load step. Four different analyses were carried out to examine the effect of each niodel
on the response of the specimen. This includes: fixed crack model, rotating crack model, rotating
crack model along with Vecchio-Collirs failure criterion in the post cracking regime, and ignoring
the tension-stiffening.

1t should be noted that one of the assumptions made in developing the HODA program
is that perfect bond exists between the concrete and the reinforcing steel. Therefore, under plane
stress condition, the loc:i strains and deformations at any point common to both the concrete (in
one or more layers) and steel (smeared or idealized embeded bars) are identical. The tension-
stiffening phenomenon occuring in reinforced concrete after cracking is taken into consideration
using a strain-sofiening descending branch of the concrete stress-strain curve in tension.

The resuiting longitudinal, transverse and shear strains versus the applicd shear stress are
plotted in Figures 6.3(2), (b) and (c), respectively. The cracking of the specimen initiated at a
shear strength of 1 .6 MPa which is very close to the experimental result of 1.66 MPa, The first
three models are very close to each other and to the experimental results. Because of slightly
different steel reinforcement in longitudinal and transverse directions, the rotation of principal axis
after cracking of concrete has a very slight deviation from 45° (45°-46°), which is the same as
what was reported from the experiment. This is the main rcason why the results of the fixed and
rotating crack models are very close to each other. The model with no tension-stiffening capability
for concrete, exhibits more flexible response after the initiation of cracking and is far from the
experimental response. This shows that the bond between steel and concrete plays an important
role in the response of this panel.

Finally, the panel failed because of yielding of both the longitudinal and the transverse
reinforcements which is in complete agreement with the results reported by Vecchio and Collins
(1982). After yielding of the reinforcement at a shear stress of 3.42 MPa, the model with no
tension-stiffening exhibits the same response as the other models, because up to that stage of
loading for all models, concrete undergoes large strains and the specimen develops a considerable
number of cracks so that the bond between the concrete and the steel reinforcement is almost
completely lost and the response is governed by the steel reinforcement which is the same for all

of the models, The ultimate load resulting from the fixed, rotating and no tension-stiffening
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models are identical and show a deviation of +17% from the experimental ultimate load, while
the accommodation of the Vecchio-Collins failure criterion in the post-cracking region results in
a brittle failure with an ultimate load which is +3% different from the experimental value (see

Table 6.2).

6.2.4 Panel PV16

The panel PV16 is reinforced isotropically in the two directions with relatively small
amounts of reinforcement (p, = p, = 0.74 %). This specimen is also subjected to pure shear, It is
analyzed using the HODA program using 20 load steps and a maximum of 15 iterations in each
load steps to meet the convergence requirements. Four different analyses as outlined for panel
PV11 are carricd out and the corresponding load-strain curves are shown in Fig, 6.4(a), (b) and
{c).

The initial cracking is observed at a shear strength of 1.09 MPa which is quite close to
the experimental value of 1,07 MPa as shown in Fig. 6.4, The first three models (fixed, rotating,
and rotating & Vecchio-Collins) exhibit the same responses, but the model employing the
Vecchio-Collins failure criterion in the post-cracking regime failed earlier in a brittle manner. If
the tension-stiffening is ignored, a portion of strength of the structure resulting from bond action
between concrete and steel is destroyed and the structure behaves in a more flexible manner., This,
in turn, leads to yielding of the reinforcement at an early stage of loading as can be seen in Fig.
6.4 for the model with no tension-stiffening. The steel reinforcement in both directions yielded
at an applied shear stress of 2.01 MPa for the models with tension-stiffening, and at a shear stress
of 1.9 MPa for the model with no tension-stiffening.

Since the steel contents in both directions are the same, no rotation of principal axis after
cracking of concrete is seen, and the principal angle remains constant at a value of 45°. Therefore,
no difference between the results using the fixed and rotating crack models was noted (see Fig.
6.4). The panel failed by yielding of the steel reinforcements in both longitudinal and transverse
directions which is in perfect agreement with the experimental observation. Ths ar.zlytic .! ultimate
load resulting from all models are very close to the experimental value of 2.14 MPa. The altimate
loads predicted by the fixed, rotating and no tension-stiffening models are identical and deviate
by only -2% from the experimental value, while the use of the Vecchio-Collins failure criterion

gives an ultimate load which differs by -4% from the experimental value.
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6.2.5 Pancl PV17

The panel reinforcement pattern was identical to that of the panel PV16, but it was
subjected to the uniaxial compression in the longitudinal direction. The panel was analyzed using
20 load steps and a maximum of 15 iterations in each load step. Only two models were used for
the analysis, i. e., rotating crack and no tension-stiffening models. During the analysis, no tensile
cracking was observed, thus the use of other models would have exhibited no difference in the
results.

The variation of the longitudinal compressive strain is plotted against the applied normal
stress in Fig. 6.5. This figure clearly shows the capability of the HODA program to analyse this
specimen. Up to an applied normatl stress of 17.2 MPa, the analytical response follows exactiy the
experimental response and beyond that a small deviation from the experiment is observed. The
response is linear up to a compressive stress of 13 MPa.

Since no crack develops in the specimen, ignoring the tension stiffening has no effect on the
response of the structure as can be seen in Fig. 6.5. The panel failed by crushing of concrete in the
longitudinal direction which is the same as the experimental finding, The ultimaie compressive stress
is 20.87 MPa which is slightly different from the experimental value (21.4 MPa ), with the
discrepancy being -2%.

6.2.6 Panel PV19

Panel PV19 was reinforced heavily in the longitudinal direction {p,=1.78%) and lightly
in the transverse direction (p=0.713%) and it was subjected to pure shear. The pane!l was analyzed
using the HODA program using 25 load steps. The variation of transverse and shear strains versus
the applied shear stress are plotted using the four different models along with the corresponding
experimental results in Fig. 6.6(a) and (b), respectively.

Cracking in the panel initiated at an applied shear stress of 1.93 MPa which is reasonably
close to the corresponding experimental value of 2.07 MPa. After cracking of the concrete, no
noticeable change in the crack direction is observed up to a load of 3.2 MPa which is very close
to the experimental value of 3.11 MPa. At a load of 3.2 MPa, cracks begin to change direction
considerably and the responses resulting from the fixed and the rotating crack models deviate from

each other as can be seen in Fig. 6.6(a) and (b). The rotation of principal axis is located within
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the interval (45°-39°) which is very close to the experimental interval of (46°-38%).

In the fixed crack model, the principal tensile stresses can be developed at angles not
coincident with the original two fixed-orthogona! directions. These stresses can eventually exceed
the cracking stress, but no corvective action can be taken using this model and consequently, the
numerical solution is usually stiffer than the rotating crack model and the ultimate load is also
higher (sec Fig. 6.6). The analytical failure load obtained from the fixed crack model deviates by
+47% {rom the experimental value, while the rotating crack model predicts the ultimate load with
a discrepancy of +26% (sce Table 6.2). If the rotating crack model is combined with the Vecchio-
Collins failure criterion in the pust-cracking regime, the overall response, more and less, is the
same as the rotating crack model, except that the specimen fails earlier in a brittie manner and
gives an ultimate load of 4.17 MPa which deviates by only +5% from the experimental value of
3.95 MPa. The rotating crack model predicts the yielding of transverse reinforcement at a load of
3.5 MPa, correlating extremely well with the experimental value of 3.45 MPa. The crushing of
concrete is also observed at this stage of loading, followed by stiffening of the response resulting
from steel strain-hardening phenomenon. This specimen finally collapses by the crushing of the
concrete and the yielding of the transverse reinforcement.

The model with no tension-stiffening reveals more flexible results, but after yielding of
reinforcement at a load of 3.5 MPa, it follows generally the response pattern of the model which
considers tension-stiffening, because after yielding of the reinforcernent, the bond between the
corcrete and steel is almost compleiely destroyed, and the response is governed by the tension
{compression behaviour of steel reinforcement and/ or the compression behaviour of concrete. The
computed ultimate load for this model is the same as for the model which accounts for tension-

stiffening (see Fig. 6.6).

6.2.7 Panel PV23

This panel was heavily reinforced in both longitudinal and transverse directions
{(p=p:=1.785%) and subjected to a combination of shear and biaxial compression. Four models
were used in conjunction with the HODA program to analyze this specimen. The concrete
longitudinal, transverse and shear strains are plotted versus the applied shear stress in Figures
6.7(a), (b) and (c), respectively. Because of the high percentage of steel reinforcement in both

directions, great demand is placed on the concrete and the general behaviour of the specimen is
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govermned by the concrete as can be seen in Fig. 6.7.

The panel experiences relatively little tensile straining and the initial cracking occurs at
an applied shear stress of 3.2 MPa which 1s comparable with the experimental value of 3.73 MPa.
Since the longitudinal and transverse steel contents are identical, no change in the direction of the
principal strain axes and consequently, as expected no difference between the "fixed crack"”
response and the “rotating crack” response is observed (sce Fig. 6.7). The model employing the
Vecchio-Collins failure criterion, responds in the same manner as the above-mentioned models
up to a shear stress of 6.8 MPa and beyond that it gives a stiffer response which is closer to the
experimental response and provides a better prediction for the ultimate load of the structure.

The model with no tension-stiffening, differs significantly from the models which
incorporate tension-stiffening. This reveals the importance of the bond between the steel and the
concrete on the overall response of this specimen. As mentioned earlier, because of the
reinforcement arrangement, as expected, the steel is not dominant in the response of the panel, and
it undergoes very small tensile strains which are very far from the yielding strain of 0.0026 {sce
Fig. 6.7(a) and (b)].

The panel! failed by the failure of the concrete in compression which is very close 1o the
experimental observation. The ultimate load predicted by both the fixed and the rotating crack
models are under-estimated by -10% from the experimental value (Table 6.2). The use of the
Vecchio-Collins failure criterion results in an ultimate load of 8.42 MPa with a difference of only
-5% from the experimental value. Eliminating tension-stiffening under-estimates the ultimate load
by -15%.The computed longitudinal and transverse strain responses are softer than the
experimental response, while the shear strain response is stiffer.

In summary, analysis of the above five panels indicates the effect of the steel
reinforcement details in different directions and the type of external applied load on the general
behaviour of the structure and its mode of failure. If small amounts of reinforcement are provided
in the specimen, more demand is placed on the steel and it undergoes large strains and dominates
the final response of the structure. If the same amounts of reinforcement is placed in the two
orthogonal directions, the rotation of principal strain axis after cracking is negligible and the
results of fixed and rotating crack model are the same. On the other hand, if these two sets of
reinforcements are considerably different from each other, the responses of the two models are
quite different. The former exhibits a stiffer response and a higher ultimate load than the latter.

Generally, the rotating crack model is more realistic than the fixc. crack model in predicting the
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lead-strain relations and the ultimate load of the structure. Use of the Vecchio-Collins failure
criterion in the post-cracking regime for all of these panels provides the best response and
therefore it is important that it be incorporated in any finite element program to predict the post-

cracking response,

6.3 THE SQUAT WALL TESTED BY CARDENAS ET AL. (1980)

6.3.1 Description of the Squat Wall

The rectangular squat wall SW9 with a height-width ratio of one, was tested by Cardenas
¢t al. (1980) to investigate the basic behaviour of reinforced concrete walls under monotonically
increasing lateral forces. The overall wall dimensions were 1905mm x 1905mm x 76 mm as
shown in Fig. 6.8. The 457mm thick rigid concrete block at the base of the wall was post-
tensioned to the laboratory test floor to simulate a rigid foundation. Horizontal loads were applied
through an enlarged monolithic section, 305mm x 305mm, which acted as the rigid floor slab.
Vertical and horizontal reinforcements were uniformly distributed over the wall. The ratios of the
verticai and the horizontal reinforcements were 0.03 and 0.01, respectively. The bar sizes and their
spacings are indicated in Fig. 6.9. All reinforcing steel consisted of straight bars and no special

hoop reinforcement was provided,

6.3.2 Finite Element Modelling

The wall is divided into 100 rectangular finite elements for analysis using the HODA
program (see Fig. 6.10), The enlarged section is represented by 20 elements and the fixed base
is modelled by restraining the six degrees of freedom at the nodes along the wall base as shown
in Fig. 6.10(a). Plane stress conditions are assumed, and therefore, a finite element consisting of
onc layer of concrete is sufficient. The horizontal loads are applied at the centre of the enlarged
block as horizontal traction along the nodes as indicated in Fig. 6.10 (a). The horizontal and
vertical reinforcements are represented by smeared steel layers with thicknesses as indicated in
Fig. 6.10 (b) in which t, and t, are the thicknesses of smeared steel layers in the x and the y
directions, respectively. The material properties of the concrete and the reinforcing steel used are

the same as those used in the experiment and are presented in Table 6.3. However, no data was
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available for the concrete tensile strength, f, maxinum compressive strain, €, ultimate

cut
compressive strain, €,, stecl strain hardening modulus of clsticity. E,’, and steel ultimate strain,
£, The value of g for each mesh size is calculated by the program using the proposed model

discussed in Chapter 5 to eliminate the mesh size dependency draw back (Shayanfar ¢t al., 1993).

6.3.3 Response of the Squat Wall SW9

The analytical and experimental load-deflection curves for the squat wail SW9 are
presented in Fig. 6.11. The ultimate load predicted by the HODA program is 645 kN, which is
only 5% lower than the experimental ultimate load of 678 kN. The initiation of cracks predicted
by the analytical model occurs at a load of 140 kN. Unfortunately, the experimental ¢rackiug load
is not available for comparison.

The elastic response of the wall using the SAP90 program is also presented in Fig. 6,11.
It is obvious that the elastic analysis can only predict the load-deflection behaviour of the wall
before the initiation of cracks, After cracking, the elastic load-deflection curve deviates

significantly from the experimental results.

Table 6.3: Material properties for squat wall SW9

SW9 . e, | fe | e | ao |
(MPsz) (MPa) (MPa)
Concrete 43.02 30,000 2.17 0.002 0.003
S:eel f, (MPa) E, (MPa) E,’(*) (MPa) E,.(*)
Horizontal 448 200,000 4000 0.12
Vertical 413 200,000 4000 0.12

(*) assumed values
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Analytical results obtained by Lefas et al. (1990) using nonlinear finite element
analysis are also plotted in Fig. 6.11. Although their analysis yvields an ultimate load of 670 kN
which is very close to the experimental result. the overall response is much stiffer than the
experimental results. The initial response of the wall is, in fact, very close to the response
obtained by the HODA program. But after initiation of cracking at a load level of 190 kN. it
deviates considerably from the experimental results and the computed resulits using the HODA
program.

It can be observed from the load-deflection curves shown in Fig. 6.11 that the analytical
responses exhibit stiffer behaviour than the experimental response at load levels below 140 kN
which is the cracking toad. It is very difficult to attribute this increased stiffness to any single
parameter. but it is likely to be caused by the higher initial tangent modulus for the concrete
assumed in the analysis. Since the initial modulus of elasticity of the concrete was not reported
in the experiment, the initial tangent modulus is obtained from the empirical formula in the CSA
Standard A23.3-M84, which is an approximation to scattered experimental results, and the
accuracy of the values cannot be ascertained. However, upon the initiation of cracks, the stiffness
of the wall decreases significantly and the load-defiection curve follows the experimental response
closely until the failure of the wall.

The propagation of the cracks in the wall obtained from the HODA program is presented
in Fig. 6.12. The first set of cracks appear, with a slight inclination, at the outermost tension fibres
of the wall at a [oad level of 140 kN as shown in Fig. 6.12 (a). Unfortunately, the experimental
crack pattern is not available for this load stage. Further loading caused cracking to continue to
spread at a small inclination toward the compression zone near the base of wall. The crack pattern
at load level 610 kN, which is one load stage before the failure of the wall, is presented in Fig.
6.12(b). The compressive forces transmitted through the diagonal concrete struts can also be
visualized from the crack patterns. Local crushing of the concrete occurs eventually in the
compression zone under the diagonal compression struts at a load of 645 kN. The experimental
crack pattern at failure is also presented in Fig. 6.12(c). As can be observed, the anaiytical crack
pattern agrees quite well with the experimental crack pattern. Generally, the analytical response
of the squat wall analyzed using the HODA program, including the load-deflection characteristics,
the ultimate load carrying capacity and the crack pattern of the structure agree quite closely with

the experimental response.
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6.4 HIGH STRENGTH CONCRETE BEAMS
6.4.1 Description of the High Strength Concrete Beams

Twelve under-reinforced rectangular beams with {7, ranging between 64 10 81 MPa were
tested by Leslie et al. (1976) to examine the usc of a triangular stress block in preference w the
currently used rectangular stress block (from the ACI Building Code) for concrete strengths
exceeding 35 MPa. Among these beams, a simply supported high-strength reinforced conerete
beam. LS1 (designated as "9.0-1" in the paper in which the first number indicates the cement
contents in sacks/cu. yd. and the second number shows the nominal percentage of the longitudinal
reinforcement) is investigated in this study. The beam was 203 x 303 mun in cross-section and it
was supported over a clear span of 2134 mm (see Fig. 6.13). It was subjected 10 two concentrated
third-point loads. The details of the reinforcement layout and the geometry of the beam are shown
in Fig. 6.13. The material properties of the concrete and the steel reinforcement are given in Table
6.4,

In another research program conducted at McGill University, six normal and high strength
concrete beams were tested by Abrishami et al. (1995) to investigate the cffect of ¢poxy-coated
reinforcement on the flexural behaviour of the normal and high strength concrete beams. The high
strength reinforced concrete beam HUCB with no epoxy coating on the steel reinforcement is used
in this study to investigate the basic behaviour of high-strength reinforced concrete beams. it is
a simply supported beam subjected to two monotonically increasing applied concentrated loads
as shown in Fig. 6.14. Both beams were 400 mm deep, 200 mm wide and have a clear span of
4500 mm. The beams were simply supported, singly reinforced and without any shear
reinforcement. The details of reinforcement layout and the geometry of the beams are shown in

Fig. 6.14. The material properties of the concrete and the steels are given in Table 6.4.

6.4.2 Finite Element Modelling

Because of symmetry of load and geometry of the beam LSI, only one-half of the beam
is modelled in the finite element idealization. The beam LS1 is discretized into 14 shell elements
as illustrated in Fig. 6.15. The Quadrilateral shell element (QLC3), an inplane membrane element,

with 3 degrees of freedom per node (u, v, 8,), and the rectangular bending ¢lement (RBE) with
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3 degrees of freedom per node (8. 6,, w) are used. Plane stress conditions are assumed. and
therefore, only one layer of concrete is sufficient. The fongitudinal reinforcements are modelled
using discrete bar elements and are lumped in single bars at the reference surfaces. The shear
reinforcement in the shear spans is modelled as smeared steel layers.

The vertical loads are applied 1 30 load steps with smaller increments of loads being
applied just before the beam reaches its ultimate load stage. This would improve the rate of

convergence of the solution and the accuracy in predicting the fatlure load.

Table 6.4: Sectional Details and Material Properties

Dimt?nsion and Beam Beam
Material Property LS] HUCB

h (mm) 305 400

b (mm) 210 200

d (mm) 270 340

L (mm) 2280 4500

A, (mm?) 570 600

f. (MPa) 73.2 90.0
E, (MPa) 30,000 34,000
Eey __0.002 0.0031

g, () 0.004 0.0034

f, (MPa) 2,82 3.13

f, (MPa) 415 400
E, (MPa) 200,000 200,000
€,y 0.0021 0.002

£, 0.06 0.075

*  Assumed value
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Since both the load and geometry of the beam HUCB are symmetric, only one-haif of the
beam is modelled using 20 quadrilateral shell elements as shown in Fig. 6.16. Plane stress
conditions are assumed, and therefore, only one layer of concrete clement is sufficient. The
longitudinal reinforcement is lumped in a single discrete bar at the reference surface. The vertical
loads are applied in 30 load steps with smaller increments of toads being applied just before the
beam reaches its ultimate load stage. During the analyses in this section, the Popovics' cquation
is used to represent the uniaxial concrete stress-strain curve and the rotating crack model is also

used for crack modelling.

6.4.3 Computed Response of High Strength Beam LS1

The analytical and experimental load-deflection curves for the beam LS1 are plotted in
Fig. 6.17. The model, with no mesh dependency, in which the ultimate tensile strain of the
concrete, €, is set to a constant value of 0.003, exhibits very stiff response, however, it predicts
the ultimate load capacity of the specimen very accurately with a difference of only 0.1%. The
model incorporating the proposed model to eliminate the mesh dependency gives a relatively
softer response closer to the experimental results but it under-estimates the ultimate load carrying
capacity of the structure by 10% (see Fig. 6.17).

Incorporation of a sudden drop of the stress after the tensile strength of concrete has been
exceeded [see Fig. 3.12(t)], has a strong effect on the load-deflection response of the beam at
early stage of loading afier initial cracking of concrete. The various load-deflection, load-concrete
compressive strain and load-steel tensile strain curves for beam LS1 are given in Figures 6.18,
6.19 and 6.20, respectively. These curves reveal the effect of the change in the softening branch
parameter, ¥, on the analytical response of the beam. As can be secn from Fig. 6.18, the load-
deflection curves are closer to the experimental results when a smaller value of 1y is used.
Decreasing the value of the softening branch parameter, ¥, is acceptable up to a value of 0.4, but
further decrease of ¥ leads to a softer response than the experimental results at an early stage of
loading and under-estimates the ultimate load of the beam significantly, which is not acceptable.

A summary of the response of the beam LS1 at yielding and ultimate stages of loading
is given in Table 6.5, which shows the load and the corresponding mid-span deflections at
yielding and ultimate stages of loading as well as the ductility ratio and the predicted mode of

failure for each model. The displacement ductility ratio is defined as the maximum deflection at
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Table 6.5: Summary of the response of beam LS1 at yielding and ultimate stages of loading *

Yielding load Ultimate load Ductility Mode of
Model ratio _
KN | Acmm o | PN | Ammo | qeaay |

Experiment 152 6.2 200 27.1 4.36 F
MDEP=1, y=1.0 188 5.5 196 26.4 4.76 F
MDEP=3, y=1.0 168 5.8 180 30.0 5.17 F
MDEP=3, y=0.6 164 5.6 180 25.2 4.40 F
MDEP=3, y=0.4 172 5.7 176 23.1 4.04 F
MDEP=3, y=0.0 160 5.8 164 5.8 1.00 F-B

* MDEP= Mesh dependency option, y= Softening branch parameter, F= Flexural failure,

F-B=Flexural yielding followed by diagonal tension and bond failure

failure, A, divided by deflection at first yielding of reinforcement, A, {(r,=A/4,). It can be
obscrved that by decreasing the value of softening parameter, y, the ductility ratio, p,, decrease
and for values of y, less than 0.4, it does not match with the experimental findings.

In the experimental program, the shear or/ and bond failures were precluded by use of
heavy stirrups in the shear spans (Fig. 6.13). This reinforcement detailing led to a flexural failure
in which the steel reinforcement yielded first, followed by the crushing of the concrete. Variation
of the applied load versus the concrete compressive strain at the outermost compression fibre at
the mid-span section is plotted in Fig. 6.19, while the load-steel tensile strain curve at this section
is given in Fig. 6.20. These figures show clearly that in the first three models (y=1.0, 0.6 and
0.4), the yielding of the steel reinforcement is followed by the crushing of the concrete, leading
to final failure of the beam. This is a clear evidence of flexural failure of these three models,
which is in complete agreement with the experimental results. The model with no tension-
stiffening (y=0.0) exhibits a sudden brittle failure after a nearly linear response as soon as steel

reinforcement yields (Figures 6.18, 6.19 and 6.20).
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Figures 6.21, 6.22 and 6.23 show the crack patterns for the beam LS1 at the initiation of
flexural cracking at a load of 40 kN. at the viclding of the steel reinforcement and at the ultimate
load. corresponding to y values of 1.0, 0.6, 0.4 and 0.0 in the concrete tension stress-strain curve.
The values of yielding and ultimate loads are shown in Table 6.5 for different mesh dependency
options and different values of y, the strain softening parameter. For all values of v, as expected,
the cracks initiate at the outer-most tension fiber of the beam and these are oriented vertically.
While there are very minor differences in the crack patterns at the yiclding and the ultimate loads
except near the support region, there are considerable differences in the cracking patterns at the
initial cracking load (40 kN). It must be pointed out that the principal stresses are computed at
each of the nine Gauss quadrature points in cach finite clement and if the principal strain exceeds
the cracking strain, €_, the computer program output indicates cracking at the appropriate Gauss
quadrature point(s). Thus the formation of cracks occurs at the cracking strain- the peak point on
the tensile stress-strain curve. With the value of y = 1.0, the tensile strain continues to increase
with the value of the tensile stress decreasing linearly. For a tension stress-strain curve with
¥=0.0, the tensile stess drops suddenly to zero after cracking. Thercfore, there is a maximum
dissipation of energy with y = 1.0, while it is a minimum with y = 0.0, which explains why with
¥ = 1.0, the number of cracks at the initial cracking load (40 kN) is a minimum [Fig. 6.21(a)],
while with y = 0.0, this number is a maximum. [Fig. 6.21(d)]. For values of y = 0.6 and 0.4, the
number of cracks is between the two extremes (y = 1.0 and y = 0.0) [Figures 6.21(a), (b) and
(c)]. Unfortunately, the experimental cracking pattern was not available, and therefore s direct
comparison is not possible.

An examination of Table 6.5 and Figures 6.22 and 6.23, shows that consideration of
tension-stiffening with increasing values of'y, results in a gradual increase in the encrgy dissipated
at the ultimate load. Consequently, the ultimate load and the maximum deflection at this stage are
considerably higher for y = 1.0 than for y = 0.0 with intermediate values for y = 0.6 and y =
0.4. As discussed earlier, the model with y = 0.0 exhibited a sudden brittle failure when the steel

reinforcement just yielded, resulting in a ductility ratio of only 1.0.
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6.4.3 Computed Response of High Strength Beam HUCB

The load-deflection curves for the beam HUCB are plotted in Fig. 6.24. The proposed
mode| for mesh dependency analysis is incorporated for all of the analyses presented in this
section. The model with no stress drop afier cracking (v = 1.0} exhibits a very stiff response but
predicts the ultimate load carrying capacity of the structure with a discrepancy of -7%. This figure
shows apain that decreasing the value of the sofiening branch parameler, y, introduces softer
response which is close to the experimental result and this decrease is acceptable up to a value
of y = 0.4, Further decrease of y leads to softer response than the experimental one at early stage
of loading and also under-estimates the uitimate load by 18% for the meodel with no tension-
stiffening (y = 0.0).

A summary of the responses of the beam HUCB is provided in Table 6.6. Based on the
results presented in this table, the loads and the ductility ratios for the first three models (y= 1.0,
0.6 and 0.4), are very close to the experimental observations. It can be concluded that as the value
of y is dccreased, the ductility ratio decreases, and at lower value of y (y < 0.4), it does not
correlate properly with the experimental findings.

As pointed out in Section 6.4.1, no shear reinforcement (stirrups) was provided in this
specimen to prevent the formation of diagonal cracking in the shear spans (see Fig. 6.14).
Therefore, in the experiraent, this detailing led to the flexural yielding of reinforcement followed
by diagonal tension cracking and bond-splitting failure as reported by Abrishami et al. (1995).
Figures 6.25 and 6.26 show the load-concrete compressive strain and the load-steel tensile strain
curves for the beam HUCB for the model with y=0.4. The figures show that steel reinforcement
yields first and at failure the concrete compressive strain at outermost compression fibre does not
exceed the maximum compressive strain of concrete, €.,. This is a clear evidence that after the
yiclding of the steel reinforcement, the concrete does not crush and the failure of the specimen
can be attributed to the bond failure as observed in the vxperiment.

Figure 6.27 presents the crack patterns for the model with y=0.4 at initial
cracking,yielding of the steel reinforcement, and near the ultimate load stage. Almost all of the
cracks remain vertical and a few inclined cracks are observed. This is in close agreement with the
experimental crack pattern at failure as shown in Fig. 6.27 (d). If the crack patterns shown in Fig.
6.27 are vompared with their counter-parts in Figures 6.21(c), 6.22(c) and 6.23(c), it is observed

that the crack patterns corresponding to beam HUCB are much narrower than their corresponding
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crack pattemns for beam LS!. This shows that energy dissipation capacity of the beam L8] is

higher than of the beam HUCB. This conclusion is supported by the fact that no shear

reinforcement was provided in beam HUCB,

Table 6.6: Summary of the response of beam HUCB at viclding and
ultimate stages of loading *

Vodel Yielding load Ultimate load Dl:z:;:ly M‘n.dc of
P,, kN A, mm P,, kN A,, mm (1=AJA,) farture
Experiment 44.5 21.0 50.8 723 344 F-B
MDEP=3, y=1.0 46 16.1 47 60 3.73 F-B
MDEP=3, v=0.6 42 14.1 47 51.2 3.63 F-B
MDEP=3, v=0.4 42 14.8 45 44.5 3.01 F-B
MDEP=3, y=0.0 40 15.3 42 23.6 1.54 F-B

* MDEP= Mesh dependency option,

¥= Softening branch parameter,

F-B=Flexural yielding followed by diagonal tension and bond failure

6.5 SHEAR PANEL SUBJECTED TO CYCLIC LOADING

6.5.1 Description of the Shear Panel

The reliability of the proposed material model for cyclic load condition (see Chapter 3)

is examined in this section. For this purpose the shear panel W-4 tested by Cervenka (1970) under

reversed cyclic loading is undertaken. the panel consisted of of isotrcpi-ally and orthogonally

reinforced square plates 30 x 30 in (764 x 764 mm), and 3 inches (7% ~im) in thickness. This

shear panel is similar to the shear panel W-2 analyzed in Chapter 5. The details of the

reinforcement and the geometry of the panel are shown in Fig. 6.28. As can be scen, these two

panels were combined to form one deep beam like specimen. This arrangement enabled casy

testing of the beam specimen as a simply supported beam with a central concentrated load. Two

square panels were tested simultancously, although each pane) acted independently of the other

because of the statically determinate supports. The concentrated forces at the supports and at the
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Table 6.7: Material Properties for the Shear Panel W-4

Material Property Panel W-4 Panel W-4
{(Imperial Units) (S! Units)
f. 3,544(psi) 24.5(MPa)
f 512(psi) 3.5(MPa)
E, 2,900,000(psi) 20,000(MPa)
€. 0.0025 0.0025
g, (O 0.004 0.004
f, 51,200(psi) 353(MPa)
E, 27,300,000(ps1) 138,000(MPa)
g, 0.0019 0.0019
£.0) 0.10 0.10

*  Assumed value

load point were transmitted to the panels by three vertical ribs as shown in Fig. 6.28. These ribs
also helped to maintain the lateral stability of the specimens during the testing program. The
material properties of the concrete and the steel reinforcement are given in Table 6.7,

In the following discussion, a cycle consists of loading and then unloading in a single
direction. For vertical loading, if the direction of the load is up-ward, the corresponding cycle is
called "positive", and if it is down-ward, the cycle is referred to as "negative". During the test
program, for the positive cycles, the support at mid-rib was fixed and the load was applied by the
load cells at the the two end-ribs, while for the negative cycles the supports at the two end-ribs

were fixed and the load was applied by the load cell at mid-rib.

6.5.2 Finite Element Modelling

Because of symmetry of load and geomeury of the shear pane! W-4, only one-half of the
specimen is considered in the finite element idealization. The panel is discretized into 24 shell
clements as shown in Fig. 6.29. The shell element type I which is a combination of the inplane

membrane element RQUAD4 with 3 degree of freedoms per node (u, v, @,), and the rectangular
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bending element IDKQ with 3 degrees of freedom per node (©,, ©,. w) is used to idealize the
structure for analysis using the HODA program.

Plane stress conditions are assumed for the panel, therefore, only one layer of concrete
is sufficient. The concentrated reinforcement in the ribs is modelled as embeded bar elements and
the distributed reinforcement in the web is idealized as two smeared steel layers. The total load
is applied at the two points on the outer rib of the structure as shown in Fig. 6.29. The loads are
applied in four cycles and cach cycle is composed of 30 load steps with a maximum of 15
iterations in each load step. The first cycle is positive and it alternatively becomes positive and

negative,
6.4.3 Computed Responsc of the Shear Panel W-4

During the experimental program (Cervenka, 1970), the panel was initially cycled four
times at relatively low load levels. Then it was cycled between £23 kips (2102 kN) until failure.
The load of 23 kips (102 kN) is 90% of the estimated monotonic load carrying capacity of the
panel. Finally it failed at a load equal to 88% of the "monotonic” load limit (22.5 kips or 99.7
kN). The first two and a half cycles of the experimentally observed load-deflection response are
given in Fig. 6.30.

The load-deflection response of the panel using the proposed cyclic load model, is plotted
in Fig. 6.30. The model fails, if it is cycled at a peak load of 23 kips (102 kN) as was the case
in the experiment. Darwin and Pecknold (1975) and Rule and Rowlands (1992) also encountered
the same problem in their numerical model. This discrepancy could be due to the approximations
associated with the constitutive model, under-estimation of the compressive strength of the
concrete, {7, obtained from the uniaxial testing, and the different curing environments, etc.

For the sake of comparison with the experimental results, the load on the numerical model
was cycled between 22.7 kips (100.7 kN) and -18.5 kN (-82 kips). The numerical results for the
first two and a half cycles are given in Fig. 6.30. The numerical model exhibit stiffer response at
the beginning of the first cycle, but after the initial cracking at the load level of 12 kips (53.2 kN),
it softens and match better the experimental response. The displacement corresponding to the peak
point in this cycle is 0.14 in (3.6 mm) which is the same as the experimental value. The stiff
response at the beginning of the first cycle can be attributed to the initial cycling of the specimen

during the experiment as mentioned earlier. Because this initial cycling can dissipate some of the
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cnergy absorbing capacity of the specimen due to cracking and consequently make it softer. In
the unloading regime, the stiffness of the model is comparable with the experimental results and
it reveals less plastic deformation than the experimental results,

During the second cycle in which the peak point is -18.5 kips (-82 kN), the model traces
very closely the experimental response and the yielding of the reinforcement and excessive
cracking thercafter is observed at a load of -18.3 kips (81.2 kN). This situation prevented from
further increase of loading beyond a value of 82 kN (-18.5 kips) leading to the failure of the
specimen. The loading and unloading branches in the second cycle exhibit sofier response than
their counter-parts in the first cycle. The model shows softer response during the third cycle than
the first cycle and follows the experimental curve closely.

The analytical crack patterns of the panel at the peak point of the first three cycles are
shown in Figures 6.3 1{a), (b}, and (¢). The experimental crack pattern is also given in Fig. 6.31(d).
A comparison of the analytical crack patterns with the experimental crack pattern shows that the
direction and the position of the computed cracks at positive and negative cycles are very closely
correlating with the experimental cracks.

The results presented for the shear panel W-4 verify the reliability of the computer
program in handling the nonlinear finite element analysis under reversed cyclic loading. It is
obvious that the behaviour of RC structures under cyclic loading involves very complex situations
and the models accounting for this condition must be verified versus several specimens. This is
beyond the scope of this research program and as a future research program one can concentrate
on this aspect of the computer program HODA and examine the proposed cyclic model more

comprehensively, and improve its performance by some modifications.
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CHAPTER 7

ANALYTICAL STUDY OF STRUCTURAL WALLS

This chapter presents the computed responses of three structural walls subjected to
distributed lateral loads using the HODA program. These include a rectangular wall, an L-shaped
wall and a C-shaped wall constituting the lateral load resisting system of a 4-storey building
(Manatokas, 1989). Some parametric studies are also carried out on the three walls to show the
effect of tension-stiffening of the concrete and strain-hardening of the steel reinforcement along
with the type of steel idealization on the analytical response of these walls. No experimental
results are available for these walls, however in cach case the computed results are compared with
the wall strength calculated using the CSA standard A23.3-M84. This chapter establishes the
usefulness of the finite element analysis program HODA in the analysis of fairly complex
structures where the experimental demands are quite time-consuming, expensive and often

cumbersome,

7.1 DESCRIPTION OF THE STRUCTURAL WALLS

The 4-storey flat slab building (Fig. 7.1) with a structural wall system consisting of two
L-shaped walls, a C-shaped elevator core and a rectangular wall was analyzed by Manatakos
(1989). The storey heights for the first and the second storeys are 3.86m each, 3.56m for the third
storey and 3.96m for the fourth storey. The columns support the gravity loads and their
contributions to the lateral load resistance are assumed to be negligible; the entire lateral loads are

resisted by the wall system. The 216mm thick flat slab is assumed to be a rigid diaphragm that
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introduces the inertia forces at each floor level to the structural walls, The foundations of the
building arc considered to be fixed and transmit the forces to the ground withy -t allowing the
walls to rock. The building layout and the walls dimensions are illustrated in Fig. 7.1.

The lateral seismic forces are calculated based on the cquivalent static loads according to
the provisions of the Nationa! Building Code of Canada (1990). An approximate elastic analysis
of the wall forces is based on the assumptions that the floors act as rigid diaphragms and thus
walls deflect by the same magnitude at each floor. Torsional forces are also taken into account.
The distribution of the lateral forces acting on the individual walls at the various floor levels was
calculated by Lim (1994) and the results are summarized in Table 7.1.

The design of the walls is carried out based on the seismic design provisions of the CSA
Standard CAN3-A23.3-M84, Detailed design of these three walls is presented by Lim (1994). The
reinforcement details of the rectangular wall (with and without the concentrated reinforcement},
the L- and the C-shape walls are shown in Fig. 7.2. It should be noted that no experimental results
arc available for the response of these walls and only their computed responses are presented in

the following sections.

Table 7.1: Seismic lateral forces distributed to each wall (Lim, 1994)

Level Rectangular L-shaped C-shaped
wall (kN) wall (kN) wall (kN)

4 520 250 81

3 413 215 60

2 264 147 41

I 133 74 21

7.2 THE RECTANGULAR WALL

7.2.1 Finite Element Modelling

The rectangular wall is divided into 200 rectangular finite elements. Shell element I, which

combines the quadrilateral inplane element (QLC3) and the rectangular bending element RBE,
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is used. As the bending behaviour of the rectangular wall is essentially a plane stress problem, a
single layer of concrete is sufficient. In order to provide a realistic description of the fixed
foundation conditions at the wall base, all of the nodes along the lowest boundary of the wall are
restrained for all 6 degrees of freedom as illustrated in Fig. 7.3. The model is loaded with equally
divided horizontal loads at the nodes along the floor levels. This is to simulate the lateral forces
applied to the wall through the floor slab diaphragm actions. The wall is also subjected to constant
vertical loads due to the dead and live gravity loads from the structural system. The lateral loads
are applied in 20 or 30 load steps with smaller increments of loads being applied just before the
wall reaches its ultimate load stage. This improves the rate of convergence of the solution and the
accuracy in predicting the ultimate load. The entire vertical load is applicd in onc load step at the
beginning. The material properties of the wall are the same as those used in the design. Suitable

assumptions have been made for the modulus of elasticity and the ultimate concrete strain in

Table 7.2: Material Properties of the Walls

Material Rectangular L-shaped | C-shaped
properties wall wall wall
f. (MPa) 30 30 30
E; (MPa) 30120 30120 30120
', (MPa) 3.29 3.29 3.29
€., 0.002 0.002 0.002
E, 0.003 0.003 0.003
| £ (MPa) 400 400 400
E, (MPa) 200000 200000 200000
h E,' (MPa) 4800 4800 4800
I Eyy 0.002 0.002 0.002
\I €, 0.19 0.10 0.10
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compression based on empirical formulas. The properties of the concrete and the reinforcing steel
used in the analysis arc presented in Table 7.2.

Two types of reinforcing bar arrangements are studied, These are: a) uniformly distributed
reinforcement. the vertical and horizontal uniformly distributed reinforcement [see Fig. 7.2(a))
being represented by smeared steel layers as shown in Fig. 7.4, and b) concentrated reinforzement
by keeping the total reinforcement ratio almost the same as for the uniformly distributed case.
with concentrated vertical reinforcement being placed at the two ends of the wall with the
remaining steel uniformly distributed between the two ends [see Fig. 7.2(b)]. Two types of steel
idcalizations are investigated for the concentrated steel. The first idealization uses a smeared steel
model for the concentrated reinforcement, and the horizontal and vertical distributed
reinforcements as illustrated in Fig. 7.5(a). The second idealization uses discrete bar elements to
represent the concentrated reinforcement and smeared steel model for the distributed

reinforcements as given in Fig. 7.5(b).

7.2.2 Computed Versus Predicted Ultimate Load

The analytical load-deflection curve at the top of the wall with distributed reinforcement
detailing is presented in Fig. 7.6. A comparison of the computed ultimate load and the ultimate
capacity of the rectangular wall calculated using the CSA Standard CAN3-A23.3-M84 is shown
in Table 7.3. The result shows that the computed capacity for the distributed reinforcement
detailing with smeared steel model is 1.25 times the nominal capacity with ¢.=1.0 and $,=1.0,
while it is .58 times the design capacity calculated according the current CSA standard with
$.=0.6 and ¢,=0.85.

When the concrete tensile strength and strain hardening of steel are ignored, i. e. ', =0
and E’ = 0 (see Fig. 7.7), the computed ultimate load is reduced to 1850 kN which is only 10%
higher than the nominal capacity predicted using the CSA Standard CAN3-A23.3-M84 (see also
Table 7.4). It represents a mode! closest to the present design assumptions in the CSA Standard
CAN3-A23.3-M84 where the recommended equation for ultimate capacity does not take into
account the concrete tensile strength, tension stiffening and strain-hardening of the steel
reinforcement. Although the validity of the assumptions is questionable, it yields a conservative
value for the ultimate load which is quite acceptable for design purposes. As can be observed in

Fig. 7.7, the stiffness of the wall without the concrete tensile strength, deteriorates significantly
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upon the initiation of the cracks at a load level of 600 kKN. When the concrete tensile strength is
incorporated in the model, the computed ultimate load increases to 1950 kN despite ignoring the
tension-stiffening, which is 5.4% higher than for the case when the tensile strength is ignored
(1850 kN). The load-deflection curve also indicates that with consideration of the conercte tensile
strength, the wall exhibits a much stiffer behaviour after cracking. Although both curves in Fig.
7.7 deviate from each other immediately afier cracking, they gradually approach each other at load
levels close to the ultimate load. The difference in the displacements for the two models becomes
smaller after a load of 1600 kN. This observation is not surprising because as the wall approaches
failure, most of the tensile "fibres" in the concrete would have cracked. As a result, the behaviour
of the wall, with the concrete tensile strength considered, near failure is similar tn the case without
the tensile strength. This can also explain the reason for only a slight increase in the ultimate

strength for the two cases.

Table 7.3: Comparison of the computed and predicted ultimate load for the rectangular wall

Computed Design Nominal { Ratio

Detailing Steel model ultimate load' capacity’ capacity’ of

P, (kN) P, (kN) P (kN) pP/P

Distributed reinforcement Smeared model 2100 1330 1681 1.25
Concentrated reinforcement | Bar element model 2050 1470 1710 1.23
Concentrated reinforcement Smeared model 2550 1470 1710 1.52

! - Computed using the HODA program
? - Calculated using the CSA Standard CAN3-A23.3-M84 (.=0.6, $,=0.85)
? - Calculated using the CSA Standard CAN3-A23.3-M84 (¢.=1.0, $,=1.0)

7.2.3 Effect of Strain-Hardening of Steel

Figure 7.8 illustrates the influence of strain-hardening of steel on the load-deflection
curves of the rectangular wall with distributed reinforcement detailing. As can be observed, the
ultimate load increases only slightly from a value of 2025 kN for the case without strain-hardening
(E,’=0) to a load of 2100 kN when strain-hardening is considered (E,’=4800 MPa). The load-

deflection curves essentially coincide with each other until at load of 1500 KN where the curves
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start to deviate. Variation of the lateral load versus the concrete strain at the outermost tension
fibre for the two cases with and without steel strain-hardening is plotted in Fig, 7.9. Because of
the assumption of perfect bond between the steel and the concrete, the strain in the concrete and
the reinforcing steel at a given location are identical. An examination of the concrete strain reveals
that the deviation of curves occurs afier the yielding of steel reinforcement has taken place (at
which the strain in steel reinforcement reaches the yiclding strain of € as presented in Table 7.2).
The change of the strain-hardening modulus does not appear to affect the load-deflection curves
and the ultimate load significantly. This can be attributed to the fact that failure occurs due to the
crushing of the concrete before more of the uniformly distributed steel reinforcement is stressed
into the strain-hardening zone.

For the case of steel strain-hardening with E,"’=4800 MPa, Fig. 7.8 shows that the first
crack occurs at a load of 800 kN at the extreme tension "fibre" of the wall. Because of the
redistribution of forces, there is a sudden increase in the concrete strain at the outer most tension
clements as shown in Fig. 7.9. The neutral axis of the wall moves gradually towards the extreme
compression fibre, thereby reducing the area of concrete in compression leading to the failure of

the wall because of the crushing of the concrete.

Table 7.4: Comparison of the computed and predicted ultimate load for the walls

Type of Computed | Computed | Computed Design Nominal Ratio

wall Detailing uvltimate ultimate ultimate capacity' | capacity’ of

load' load? load® P, (kN) P (kN) P./P

P, (kN) P, (kN) P, (kN)

Rectangular Distributed 2100 2000 1850 1330 1681 1.10
reinforcement

L-Shaped Distributed 1500 1300 1200 726 950 1.26
reinforcement

C-Shaped Distributed 580 500 420 240 315 1.25
reinforcement

! - Computed using the HODA program (E,"=4800 kN, with concrete tension-stiffening)

? . Computed using the HODA program (E,’=4800 kN, without concrete tension-stiffening)
* - Computed using the HODA program (E,’=0.0 kN, with no concrete tensile strength)

* - Calculated using the CSA Standard CAN3-A23.3-M84 (,=0.6, $,=0.85)

% . Calculated using the CSA Standard CAN3-A23.3-M84 ($.=1.0, $,=1.0 )
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7.2.4 Effect of Steel Idealization for Concentmated Steel Reinforcement

The influence of idealizing the concentrated steel reinforcement using smeared steel and bar
clements to represent the concentrated reinforcing steel at the two wall ends is studied using E "= 4800
MPa. A comparison of the load-deflection curves for both smeared steel model and the bar element model
for the rectangular wall with concentrated reinforcement detailing is shown in Fig. 7.10. The ultimate load
obtained for the bar element model is 2050 kN, which is higher than the nominal capacity calculated using
the CSA Standard CAN3-A23.3-M84 by about 20%. The ultimate load obtained for the smeared steel
model is 2550 kN which is 49% higher than the nominal capacity calculated using the CSA Standard
A23.3-M84 (see Tablc 7.3). Thus, the ultimate load using the smeared stecl model is 24% higher than the
ultimate load computed using bar element model. It can be observed that both load-deflection curves
compare favourably until reaching a load of 2050 kN where both curves start 1o deviate (Fig. 7.10).
Failure occurs at a load of 2050 kN for the bar ¢lement model while the smeared steel model continues
to carry further load until a load of 2550 kN.

Comparison of the concrete strains at the outermost tensile fibre and the outermost compressive
fibre in Figures 7.11 and 7.12, respectively, gives a closer picture of the behaviour between the bar
clement model and the smeared steel model. Both curves in each of the figures, essentially coincide with
each other for load levels below 2000 kN. The steel reinforcement yields at a load of 1800 kN, and
thereafter for the case of bar element model, the wall becomes softer and a rapid increase of strain results
in the crushing of the concrete at the right-hand bottom of the structure, with the subsequent failure of the
wall at a load level of 2050 kN. For the smeared steel model, the structure becomes sofler after yielding
of the reinforcement at load level of 1800 kN, but it stiffens thereafler at load level of 2000 kN because
of strain hardening of the steel reinforcement. However, for this model the strains do not increase rapidly
until a load level of 2500 kN. Clearly, the resuits of the concrete strain for the smeared steel model after
a load of 2050 kN (with a sudden increase in load without any appreciable increase in strains) are contrary
to expectation, indicating that the smeared steel representation is not suitable to represent heavy
concentrated reinforcing stee! in a structural wall. A more realistic representation should be using the bar
element model.

Figures 7.13 and 7.14 illustrate the crack patterns of the rectangular wall at the various load levels
for both bar element and smeared steel models. The cracking is initiated for both models at a load of 1000
KN [see Figures 7.13(a) and 7.14(a)]. The crack patterns at load level of 1800 kN at which yiclding of

steel reinforcement occur, are given in Figures 7.13(b) and 7.14(b). The crack patterns for both models
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at one load step before failure are presented in Figures 7.13(c) and 7.14(c). These figures show that
cracking which initiates at a low load level, spreads progressively towards the compression zone with
increasing load. These cracks show a pattern of struts radiating from the compression zone at the right
corner in Figures 7.13(c) and 7.14(c). A typical flexural failure of the wall where the failure is caused by

yiclding of steel reinforcement followed by crushing of concrete, is observed.

7.3 THE L-SHAPED WALL

7.3.1 Finite Element Modelling

The L-shaped wall is divided into a mesh consisting of 240 rectangular elements. Shell element
I is used in the analysis, since the assumption of a plane stress condition is no longer vaiid for this
structure. Each concrete element is subdivided into 7 layers to provide a more realistic model. Fixed
foundation conditions arc modelled at the wall base by restraining the nodes along the base for all 6
degrees of freedom as illustrated in Fig. 7.15. The model is loaded with horizontal loads at the web in Fig.
7.15. The wall is also subjected to a constant vertical axial loads due to the dead and live gravity load
from the structural system. Horizontal loads are applied in 20 load steps, with smaller increments of loads
being applied just before the wall reaches its ultimate load stage. The entire vertical load is applied in one
toad step at the beginning. The finite efement idealization is shown in Fig. 7.15. The uniformly distributed

reinforcement is represented by smeared steel layers. The material properties are given in Table 7.2.

7.3.2 Computed Response of the L-Shaped Wall

Figure 7.16 illustrates the load-deflection curves for the L-shaped wall. It can be ncted that with
tension stiffening, the ultimate load is 1500 kN, which is 15% higher than that for the case where tension-
stiffening is ignored (1300 kN). The stiffness of the wall without tension-stiffening reduces significantly
after the initiation of cracking at a load of 800 kN when compared with the model which considers
tension-stiffening. As can be observed from Fig. 7.16, inclusion of the tension-stiffening increases the
ultimate load and the stiffness of the wall. To provide a mathematical model closer to the assumptions of
the current CSA standards for design of reinforced concrete structures, the concrete tensile strength and
the steel strain hardening were neglected and the corresponding load-deflection curve is also presented in

Fig 7.16. The cracking initiates at a much lower load level of 400 kN and the structure displays lower
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stiftness than in the previous cases, 1. ¢., with and without tension-stiffening, The ultimate load reduces
1o 1200 kN which is still 26% higher than the nominal capacity calculated using the CSA Standard CAN3-
A23.3-M84 (see Table 7.4).

Variation of the lateral load versus the concrete strain at the outermost web tension tibre at the
base of the wall is also plotted in Fig. 7.17. In the absence of tension-stiffening, at a given load level, the
concrete strain is larger than the model which considers tension-stiffening.

The crack patterns for the L-shape wall with tension-stiffening at the various load levels are shown
in Fig. 7.18. The cracking initiates at a load level of 800 kN with nearly horizontal cracks at the left-hand
of the wall base. The steel reinforcement yields at a load level of 1100 kN and the corresponding crack
pattern is shown in Fig. 7.18(b). At this load stage only onc crack appeared in the flange of the wall. With
further increase of the load, the cracks progress toward the compression zones in the wall, The crack
pattern of the wall at one load step before ultimate load is shown in Fig. 7.18(¢c). The cracks in the wall
web are similar to those for the rectangular wall except that they are more extensive for the L-shaped wall,
Because the distributed load is assumed to be applied along the web center line, it passes through the shear
center at the web-flange junction and therefore no twisting moment acts on the scction. The compressive
struts radiate into the web from the web-flange junction. The flexural cracks appear at the free end of the
flange. As can be noted from Fig. 7.18(c), these cracks which appear first near the flange base, increase

in number along the flange free edge and propagate towards the junction as the applied load is increased.

6.4 THE C-SHAPED WALL

7.4.1 Finite Element Modelling

The C-Shaped wall is divided into 80 rectangular finite elements. As for the L-shaped wall, each
concrete element is subdivided into 7 layers. The boundary and loading conditions are similar to those in
the L-shaped wall. The finite element idealization is shown in Fig. 7.19. The material properties are given
in Table 7.2.

7.4.2 Computed Response of the C-Shaped Wall

Figure 7,20 illustrates the load-deflection curves for the C-shaped wall. The ultimate load of the

model which considers tension-stiffening is 580 kN which is 16% higher than the value for the model
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without tension-stiffening (500 kN). This observation is again consistent with the earlicr findings for the
rectangular and L-shaped walls that consideration of tension-stiffening increases the ultimate load and
stiffens the load-deflection response of the structure. First cracking of the wall occurs at a [ateral load level
of 300 kN after which the stiffness of the model without tension-stiffening reduces significantly. The
computed ultimate load without considering the concrete tensile strength and the steel strain-hardening
decreases to 420 kN which is still 25% higher than the nominal capacity calculated using the CSA
Standard CAN3-A23.3-M84 (sce Table 7.4). In this case, the structure exhibits a response with a much
smaller stiffness after initial cracking at a load level of 100 kN (see Fig. 7.20).

Figure 7.21 shows the load-concrete strain curves at the outermost tension flange "fibre" at the
base of the wall. Again, the concrete strain after cracking for the case without tension-stiffening is larger
than the model which considers tension-stiffening. The steel reinforcement yields at load level of 410 kN
for the model considering concrete tension-stiffening, and at load level of 350 kN for the model without
tension-stiffening.

Figure 7.22(a) illustrates initiation of horizontal cracks at a load level of 300 kN at the left-hand
of the wall flange and wall web near the base. The crack pattem of the wall at yielding stage of the steel
reinforcement is also shown in Fig. 7.22(b). The crack pattern at a load step just before failure is shown
in Fig. 7.22(c). The cracks show the formation of a series of inclined struts radiating into the web from
the web-flange junction. As for the L-shaped wall, the lateral load is assumed to be applied along the web
center line at some eccentricity from the shear center of the C-shaped section, thereby causing a twisting
moment to act on the section. This, in turn, causes torsional cracks in both flanges of the section. These
cxpected torsional cracks are more dominant on the tension flange of the section than on the compression
flange.

The preceding discussions of the analytical responses of the various structural walls exhibits the
power of the nonlinear finite element program HODA in predicting the response of fairly complex
structural systems. This study clearly establishes that the HODA program can be used to carry out detailed
parametric studies to study the effect of different parameters on the behaviour of complex structural

concrete elements.
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Figure 7.14: Crack patterns for the rectangular wall using smeared steel model
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Figure 7.15: Idealization of the L-shaped wall:
(a) Finite element idealization, (b} Smeared steel idealization

202



1500
z
=

1000
b e 6 o asO KN
o
-
© e Pr=728 kN
-]
fPr )
@
-

500 -

p
Wt tonyron gitoning Wihout lpnaion sifigning o isasla uraeats
140 strin fyrgareg
a—— — ——
T | tomonaicopocny®r  posign copacey @0
0 :
0 100 200 300 400

Roof Horizontal Displacement (mm)

Figure 7.16: Load-deflection curves of the L-shaped wall
with and without tension-stiffening (E,” = 4800 MPa)
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Figure 7.17: Load-concrete strain curves of the L-shaped wall
with and without tension-stiffening (E,” = 4800 MPa)
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Figure 7.18: Crack patterns for the L-shaped wall using bar element model
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Figure 7.20: Load-deflection curves of the C-shaped wall
with and without tension-stiffening (E,” = 4800 MPa)
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with and without tension-stiffening (E,” = 4800 MPa)
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CHAPTER 8

CONCLUSIONS

This chapter summarizes the findings of the analytical studies undertaken on difterent
structural elements 1 ‘ng the HODA program developed in the course of this study. This includes
the validity of the proposed material model for normal and high strength concrete under both
monotonically increasing and reversed cyclic loadings, the mesh dependency phenomenon,
analytical responses of the normal concrete shear panels and the high strength concrete beams
under monotonically increasing loads, the numerical response of the normal concrete shear panel
W-4 (deep beam) under reversed cyclic foading, and finally the computed responses of threc
structural walls of a 4-storey building (a rectangular wall. an L-shaped wall and a C-shaped wall)
subjected to monotonically increasing distributed lateral loads. Some new topics relating to the

current study are also recommended to be investigated further.

8.1 MATERIAL MODEL

1) The main characteristics of a proper mode! for concrete materials, can be
summarized as follows:

i)} The high nonlinearity of the stress-strain behaviour of the concrete in
the pre-peak regime, i. e. growing and propagation of microcracks
resulting in a decrease in the material stiffness.
ii) The softening behaviour of the concrete in the post-pecak regime
resulting from the localization of macrocracks in narrow bands.
iii) The stiffness degradation caused by the extension of microcracks
during subsequent unloadings and reloadings.

iv) The irrecoverable volume dilatation at high level of compressive load
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resulting in an increase in the Poisson’s ratio.
All of the above features for concrete are included in e material model

developed during the course of this study.

The proposed analytical inodel for normal and high strength concrete under both
monotonically increasing and reversed cvelic loadings compares well with the
uniaxial compression test results and represents basic features of the concrete
behaviour in compression. For the cyclic loading model, it was observed that with
an increase in the number of cycles, the stiffness of the concrete decreases, and

the plastic strain increases as supported by experimental findings.

8.2 MESH DEPENDENCY

1}

If a fine mesh is used to idealize a reinforced concrete element for nonlinear
finite element analysis, the ultimate load is under-estimated when the element size
dependency is ignored. Also, from energy considerations, a decrease in the mesh
size increases the rate of crack propagation in the structure, and consequently its
energy dissipation capacity decreases. This leads to a lower value of the ultimate
load than the experimental one. In this case, it is also observed that the structure
exhibits a less ductile response. However, if a coarser mesh is used instead, the
ultimate load is over-estimated. In this case, the structure behaves in a more
ductile manner. From a physical point of view, with an increase in the mesh size,
the rate of crack progression will decrease and the capacity of the structure to
dissipate energy will increase. This possibly answers the question "Why does the

ultimate load increase with an increase in the element size?".

The results of the different analyses for over-reinforced beams show that the
element size does not have a significant effect on the value of the computed
ultimate load, because at higher load levels, the response of the concrete elements
in compression governs the overall behaviour, and the response of concrete and
steel in tension does not have as significant an effect, as in the under-reinfcreed

concrete beams.



The value of the ultimate concrete tensile strain, €., has a considerable influence
on the computed values of the ultimate load. It was shown by Shayanfar et al.
(1993) that the effect of concrete tensile strength, £, is not as significant. An
emperical formula is proposed which gives an appropriate value of €, as a
function of the element size, h. Along with the crack band model proposed by
Bazant and Oh (1983), this formulation is implemented in the nonlinear finite
element program HODA to analyze different type of structures. The responses
computed using these models showed very good agreement with the experimentai
results for the ultimate load, load-deflection and load-concrete strain responses,
and the concrete cracking patterns. The proposed formula can be used effectively
and economically for analysis of structural concrete elements using relatively
large finite elements with reasonable accuracy and much smaller computational

effort.

8.3 EXPERIMENTAL SPECIMENS

1

2)

Analysis of the five panels tested at the University of Toronto indicates the effect
of the sieel reinforcement details in different directions and the type of external
applied load on the general behaviour of the structure and its mode of failure. If
small amounts of reinforcement are provided in the specimen, more demand is
placed on the steel and it undergoes large strains and dominates the final response

of the structure.

If the same amounts of reinforcement are placed in the two orthogonal directions,
the rotation of principal strain axis after cracking is negligible and the results of
fixed and rotating crack model are the same. On the other hand, if these two sets
of reinforcements are considerably different from each other, the results of these
two models are quite different. The former exhibits a stiffer response and a higher
ultimate load than the latter. Generally, the rotating crack model is more realistic
than the fixed crack model in predicting the load-strain relations and the ultimate

load of the structure.,
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3)

4)

5)

6)

7

The use of the Vecchio-Collins failure criterion in the post-cracking regime for
all of these panels provides the best response. and and therefore, it is important
that it be incorporated in any finite element program to predict the post-cracking

responsc.

The computer program HODA predicts the failure mode of all these five panels
very close to the experimental findings and establishes the reliability of the

program.

Close agrecment between the analytical and the experimental response in terms
of the load-deflection, the failure load and the crack patterns have been obtained
for the squat shear wall, SW9. Although several parameters which were not
reported in the experiments have been assumed, the failure load predicted by the

HODA program is only 5% lower than the experimental resuits.

For high strength concrete beams, the model, with no mesh dependency, in which
the ultimate tensile strain of concrete, €, is set to a constant value, exhibits very
stiff responses, however, it predicts the ultimate Joad capacity of the specimen
very accurately with a very small discrepancy. The model incorporating the
proposed model to eliminate the mesh dependency phenomenon gives a relatively
softer response, which is closer to the experimental results but it under-estimates

the ultimate load carrying capacity of the structure a little.

Incorporation of a sudden drop of the stress after the tensile strength of concrete
has been exceeded, has a strong effect on the load-deflection response of the high
strength beams at early stage of loading afier initial cracking of concrete. The
computed load-deflection curves are closer to the experimental results when a
smaller value of y is used. But it was discovered that, decreasing the value of
softening branch parameter, v, is acceptable only up to a value of y = 0.4, and
a further decrecase in the value of 7y leads to a softer response than the
experimental resuits at an early stage of loading and under-estimates the ultimate

load of the beam significantly, which is not acceptable.
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8)

9

10)

By decreasing the value of softening parameter, y, the ductility ratio, p,,
decreases and for values of y less than 0.4, it does not match with the

experimental findings.

There is a maximum dissipation of energy with y = 1.0, while it is a minimum
with ¥ = 0.0, which explains why with v = 1.0, the number of cracks at the
initial cracking load is a minimum, while with y = 0.0, this number is a
maximum. For values of y = 0.6 and 0.4, the number of cracks is between the

two extremes (y = 1.0 and y = 0.0).

The results presented for the shecar panel W-4 verify the reliability of the
computer program in handling the nonlinear finite ¢clement analysis under reversed
cyclic loading. The load-deflection response, and computed crack patterns of the
pane! using the proposed cyclic load model follows closely the experimental

results,

8.4 THE STRUCTURAL SHEAR WALLS

1}

2)

3)

The current design method recommended by the CSA Standard CAN3-A23.3-
M84 for estimating the failure load appears to be rather conservative when
compared with the HODA program results. This is basically due to ignoring of
the tension-stiffening, the tensile strength of the concrete and the strain-hardening

of the reinforcing steel.

Tension-stiffening has a significant influence on the load-deflection response and
the ultimate load of the structural walls. If tension-stiffening is eliminated from

the model, the walls become more flexible and the ultimate load is smaller.

Using the smeared steel idealization to model the concentrated reinforcement in
the wall, results in a higher failure load than using the bar element idcalization.
It would be mere appropriate to use the bar element idealization for modelling the

concentrated reinforcing steel in the structural wall,
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8.5 RECOMMENDATIONS FOR FURTHER STUDIES

The following areas relating to the current study are needed to be further investigated:

1)

2)

3)

4)

The proposed formula for mesh dependency is mainly concemed with some
structural elements such as. beams and shear panels. The same investigation is
recommended in conjunction with other structural elements like slabs, structural
cores, etc., to examine the validity of the proposed formula or developing new

formulas if needed.

Although the proposed model for mesh dependency gave reasonable results for
high strength beams used in this study, however, more analytical work is needed

for structural elements built using high strength concretes.
Some more parametric studies can be undertaken on the structural walls to
generate the basic data to be used for development of an appropriate practice-

oriented design procedure for structural wall systems,

The hysteretic response of the structural wall under cyclic loading can also be

studied using the HODA program.
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STATEMENT OF ORIGINALITY

The analytical study undertaken in this research program is aimed at developing a simple

material model for both normal and high-strength conerete structures under different static

loadings. The mode! is implemented into a nenlinear finite element code to be used for the

analysis of different concrete structural elements. Fifteen specimens are analyzed using the

computer program HODA developed in this study and extensive parametric studics are undertaken

on each specimen to examine the performance of the different modelling options available in the

program for computing the responses of these structures. The original contributions in this thesis

arc:

1)

2)

3

4)

5)

6)

7

A hypocelasticity model is developed based on the concept of cquivalent uniaxial
strain utilizing the rotation of the material axis during subsequent iteration/ load
step.

The Popovics' stress-strain curve is modified for application into the above
hypoelastic material model.

Based on the concept of focal point model, a fully automated algorithm is
developed to produce automatically the loading and unloading branches of the
concrete stress-strain curve subjected to reversed cyclic loading and corresponding
to any point located on the envelope stress-strain curve using only the coordinates
of that point.

The effect of damage resulting from extensive compressive microcracking is
considered on the tensile strength of the concrete.

The effect of mesh size on the various behaviourial aspects of RC structures
including load-deflection response, failure load, load-strain relationship, and
cracks pattern is investigated.

A new simple model is proposed to remedy the mesh dependency drawback from
nonlinear FE analysis of RC structures.

Extensive analytical studies are carried out on three structural shear wall from a
medium-rise building, and the computed results are compared with the predicted
response using the CSA standard A23.3-M84.
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APPENDIX A

INPUT DATA FOR THE HODA PROGRAM

MARCH 1994

CSS5S88855858858555555555558588555555885S58SS555558885555S558585SSS5S8888S

C MAIN PROGRAM

C5585885855555555S8885555S8855S85S588S555888 5555585585855 SSS58SS8S8SSSSSSS
C READ INPUT CARD # 1 -- TITLE HEADING IDENTIFICATION CARD
read(55,10) 8[A10]
C
hed = heading title identification of 80 characters (max)

CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
C READ INPUT CARD # 2 -- CONTROL CARD TYPE OF ANALYSIS

read(55,*) 11{15]
C
numnp = number of nodes

neltyp = number of element types (3 max)

-- quadrilateral facet shell element
-- boundary element
-- one-dimensional bar element

nquad = quadrilateral shell element type

-- 0 =QLC3 + RBE
-- plane stress + bending
-- linear n and cubic e
-« beam behaviour problems
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-- 1 =RQUAD4 + IDKQ4
-- membrane + thick/thin bending
-- cubic ficld both n and ¢
-- general behaviour

ntime = number of time intervals for time-dependent

-- 30 time intervals (max)
-- | for instantaneous monotonically increasing load

icrecp = creep analysis indicator

-- 0 = not required
-1 is required

il

ishrink = shrinkage analysis indicator

-- 0 = not required
-1 is required

itemp = temperature analysis indicator

-- 0 = not required
-1 is required
norm = convergence and divergence criteria indicator

Il

-~ 0 = force norm -- maximum allowable forces
- FlyFy IF;!M! M,’ M;

-- 1 = displacement norm -- maximum allowable displacements
-~8,3,9%, 6,60,86,

knorm = type of norm values input

-- 0 = percentages of forces/displacement
-- 1 = actual magnitude of norm values of forces/displacements

kuit ultimate analysis indicator

-- 0 = linear/nonlinear elastic analysis
at one load interval
-- use 1 load step and 1 iteration

-- 1 = nonlinear inelastic analysis

229



kinteg = order of numerical integration
-- gauss integration grid efement points

= | integration point {min)

2 by 2 integration points

= 3 by 3 integration points (preferred)

4 by 4 integration points (max special cases)

1)

:
b —
i

CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARD # 3 -- SELECTION OF NEW QPTIONS IMPLEMENTED
read(55,*) 7(15), 2F5.2

C
mdep= mesh dependency analysis factor
-1 no mesh dependency analysis
-2 mesh dependency analysis based on the crack band theory
-3 mesh dependency analysis based on the proposed model

munit= unit system option
--1 Imperial units (in, Psi)
-2 SI units (mm, N)

mcurve= curve selection option
-1 Saenz and Smith's equations
-2 Popovics' equation

iconst= constitutive matrix selection option
--1 Darwin's constitutive matrix
--2 Proposed Constitutive matrix utilizing also the transformation of equivalent
uniaxial strains during subsequent iteration

icolins= tension-compression failure option
--1 Kupfer and Gerstle
-2 Vecchio and Collins

icrack= cracking model option
-1 Fixed crack model
-2 Rotating crack model

icycle=loading type index
-1 monotonically increasing load
--N  c¢yclic loading with n cycles (N<30)

iunload= tensile loading-unloading option

-1 Horizontal unloading
-2 Secant unloading
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esofl= softening stiffness factor
--0.0  QOriginal version
--A very small value  To aveid numerical difficultics

gstif= tensile softening branch option
--1.0  Original version (no dropping at all)
--0.0  Sudden drop to zero after cracking with no tension-stiffening capability
--1.0-0.0 Dropping after cracking with tension-stiffening capability

CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARD # 4 -- SELECTION OF REQUIRED QUTPUT
read(55,*) 6{15}
C
kout = outpul for every iteration or each load step

-- 0 = results for each load step and last iteration
-- 1 = results for every load iteration

kdis = output displacements in element local coord system

-- 0 = not required
-- 1 = js required

kcur = output curvatures

-~ 0 = not required
-- 1 = is required

kstn = output strains

-- 0 =not required
- 1 = is required

kiter = output unbalanced forces

-~ 0 = not required
-- printed for each load step only

-~ 1 =is required
-- printed for every iteration

ksoln = selution required

« 0 = solution
-~ 1 = data check

23]



CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
C READ INPUT CARD # 5 -- OUTPUT STRESSES AT REQUIRED INTEGRATION
POINTS OF QUADRILATERAL FACET SHELL ELEMENT
C
read(55.*) 16[12]

kotg = element stresses at gauss integration points required:

enter a total of 16 values of 0's or 1's
one value for each gauss integration point

-- 0 = not required
-- 1 = is required

CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARD # 6 -- CONVERGENCE TOLERANCES -- LIMIT CRITERIA

C
C For convergence of load increments to proceed to next load step
C Select displacement type -- realistic values

C
read(55,*) 6[F10.0]

toler = six tolerable convergence components
(DELTA 2 - DELTA 1) = Difference for convergence

x- force/displacement = 0.00] mm

one =
two = y- force/displacement = 0.00]1 mm
three = z- force/displacement = 0.001 mm

four = x- moment/rotation = 0.005 rad

five y- moment/rotation = 0.005 rad

six = z- moment/rotation = 0.005 rad

CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
C READ INPUT CARD # 7 -- DIVERGENCE TOLERANCES -- LIMIT CRITERIA

c
C For divergence of load steps to indicate failure of structure
C Select displacement type -- realistic vulues

read(55,*) 6[F10.0]

vmax = six tolerable divergence components
maximum permissible values



one = x- force/displacement = 10 times elastic results

(mm}
two = y- force/displacement
three = z- force/displacement
four = x- moment/rotation = 15 times elastic results

(rad)
five = y- moment/rotation

six = z- moment/rotation

CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC

C READ INPUT CARD # 7-A -- LOAD STEPS AND TYPE 2 NODES LOADED

C
read(55,*) 2[15]

nistps = number of load steps for analysis (30 max)
njl2 = number of type 2 nodes loaded

-- Type 2 nodes = A different set of nodes loaded in
load steps j-steps

used for live loads, truck loads, etc
different set of loads from Type 1 nodes loaded

CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC

nlstep= nlstps

C READ INPUT CARD # 7-B -- QUTPUT RESULTS AT REQUIRED LOAD STEPS
C

read(55,*) 40[12]
(Istpop(i), i=1,nlstps)
= output results at load steps required:

-~ enter a number of 0's or 1's for every load step
for a total cqual to NLSTPS

-- 0 not required
-- 1 is required

CAUTION : Does not work correctly!!
Always enter NLSTPS of I's
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CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARD # 8 -- REFERENCE TEMPERATURE For ZERO STRESSES
C
if(itemp ¢g. 1) omit if ITEMP =0
read(55.*) 8[F10.0]
contemp = concrete reference temperature for zero stresses
CS55855555555558555558588558588858S8555555855588585555585855558555888588S
C SUBROUTINE INPUTI
CSS58555585855555585555555558555S555558555585555555558SS5558555885588888
C READ INPUT CARD # 9 -- NODAL POINT DATA
read(55.*) 7(15] 3{F10.0] [I5]
n = node number
(id(i,n), i=1.6) = boundary conditions for degrees of freedom:
deitax =0 or 1
deftay =0 or 1
deltaz =90 or |
thetax =0 or 1
thetay =0 or 1

thetaz =0 or 1

-- 0 = unrestrained DOF
-- I = restrained DOF

x(n) = x-coordinate -- global axes
y(n)} = y-coordinate -- global axes
z(n) = z-coordinate -- global axes
kn = generation
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CSSSSS5555555555S555885855555S5S555SS5555588S8555S55555S55S555SSS8S8S88SSS

C SUBROUTINE ELEMK
CSSS58558558555555555SS555555S555S55555555S85585S5555555555555555858888

C READ INPUT CARD .- ELEMENT TYPE IDENTIFICATION

Input cards required for element type(s) needed only

C

C #10 -- SHELL ELEMENT -- STIF1

C

C (# 19 -- BOUNDARY ELEMENT -- STIF2)
C {(# 22 -- BAR ELEMENT -- STIF3)

C

C

C

CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARD # 10 -- Quadrilateral Facet Shell Element
C
read(55,%) [15]
ntype(i) = element type identification
= 1 = shell element
CS88S588S88S55558558S555855S85S88S588S5S5585555888855SSSSS5SSS8SSSSSS88SSS
C SUBROUTINE STIF1

CSSS8S555855555555SSS5SS855558S58855555558SS888855558855S85S885858888S
C READ INPUT CARD # 11 -- SHELL ELEMENT MATERIAL AND LAYER DATA

c read(55,*) 8[15]
numsh = number of shell elements
numcn = number of concrete material types (4 max)
numst = number of reinf steel material types (6 max)
numps = number of prestressing steel material types (3 max)
numsps = number of steel plate material types (4 max)
ntel = number of concrete layers systems {10 max)

ntsl = number of smeared reinforcing steel layer systems (24 max)

ntspl = number of steel plate layer systems (10 max)

2
w
L]



CSS855585885555855555885555555S585555855555588SS855585S85SS55S88585558588888
C SUBROUTINE INDATA

CSSE5S 558G 5558855555885 S5555555S85555555S555S555555S585S55S855885858SS
C READ INPUT CARD # 12 (a) -- CONCRETE MATERIAL PROPERTIES

-- NUMCN (4 max)

Omit if NUMCN = 0

OO0

read(55.*%) 4[15] 4{F10.0
i = concrete material type number (4 max)

jmt{(i) = 1 input elastic concrete properties
= 2 evaluate propertics using ACI formulae

jer(i) = 0 creep analysis not required
input creep properties
= 2 evaluate using ACI formulag

[l
—

jsh(i) = O shrinkage analysis not required
input shrinkage properties
= 2 evaluate using ACI formulae

]
|

fc28(i) = concrete strength at 28 days (stress)
cnu(i) = Poisson's ratio

rho(i) = unit weight density
(if jmt(i) = 2 -- must be input in ib/in3)

ctemp(i) = coefficient of thermal expansion

RRRRRR R RRRRRRRRRRRC
READ INPUT CARD # 12 (b) -- CONCRETE STRESS-STRAIN CURVE
PARAMETERS
C

if(jmt(i).eq.1)
C
read(55,*) 7[F10.0]
ec{i) = initial tangent modulus
fee(i) = compressive strength (stress)

fic(i) = tensile strength (stress)

¢sc(i) = cracked shear constant/retention factor (max 1.0)
-- recommended value of 0.1 to 0.5

236



usc(i) = ultimate compressive strain
ust(i) = ultimate tensile sirain
ecu(i) = maximum compressive strain

gf(i) = fracture energy for concrete type number i
--recommended value of 0.5 ib/in (0.1 N/mm)

amagr(i) = maximum aggregate size for concrete system type number i
--recommended vaiue of 1.0 in (25.4 mm)

CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARDS # 12 (c) (1), (ii), (iii), (iv), (v) -- CREEP DATA
c
C Omit creep input data if JCR(I)=2 or=0
C
if(jer(i).cq.0) go to 300
if(jer(i).cq.2) go to 200

read(55,*) nage(i), nser(i)

na=nage(i)
nb=nser{i)

read(55,*) (sage(i,j), j=1, na)

ji=na*nb

read(55,%) (aci(ij), j=1, ji)

read(55,*) (wl(ij), j=!, nb)

read(55,*) (w2(ij), j=1.4)

READ INPUT CARDS # 12 (d), (e) -- SHRINKAGE DATA
C
C Omit shrinkage input data if JSH(I})=2 or=20
C
if{jsh(i).eq. 0) go to 80
if{jsh(i).eq.2) go to 80

read(55,*) (tepss(i,n), n=1, ntime)

continue

read(55,*) slump(i), size(i), rh(i)
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CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARD # 13 -- REINFORCING STEEL MATERIAL PROPERTIES

sNeESKe!

-- NUMST (6 max)

Omit if NUMST =0

read(55.*) (15} S5[F10.0]

n = reinforcing steel material type number (6 max)
es(n) = elastic modulus

fys(n) = yield strength (stress)

cstar(n) = strain hardening modulus

eus(n) = ultimate strain

cstemp(n) = coefficient of thermal expansion

CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARD # 14 -- PRESTRESSING STEEL MATERIAL PROPERTIES

sRoNoN@]

-- NUMPS (3 max)

Omit if NUMPS =0

read(55,*) [15] 4[F10.0]

i = prestressing steel material type number (3 max)
esp(j) = elastic modulus

fpy(j) = yield strength (stress)

estrp(j) = strain hardening modulus

eup(j) = ultimate strain

CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARD # 14-A -- STEEL PLATE MATERIAL PROPERTIES

OO0

-- NUMSPS (4 max)

Omit if NUMSPS = 0

read(55,%) [I5} 7[F10.0}]

] = steel plate material type number (4 max)
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esps(j) = elastic modulus

fysp(j} = yicld strength (stress)

estrsp(j) = strain hardening modulus

cusp(j) = ultimate strain

spnu(j) = Poisson's ratio

cstemsn(j) = coefficient of thermal expansion

unitwt(j) = unit weight Jensity
CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARDS # 15 (a), (b) -- CONCRETE LAYER SYSTEMS
-- NTCL (10 max)

Omit if NTCL =0

sNoReNe]

if (ntcl .eq. 0) go 1o 111

(@]

do 110 i=1,ntel

read(55,*) 2[15]
l = concrete layer system number (10 max)
nclay(l) = number of concrete layers in system (20 max)

-- minimum layer thickness = minimum aggregate size

nc = nclay(l)
ncl = ne+l

read(55,*) 8[F10.0]

(zc(j,1), j=1, ncl)

= local z-coordinate of concrete layer surfaces
measured from reference plane surface
-- negative to positive external surfaces of layer



CRRRRRRRRRRRRERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARDS # 15-A (a). (b) -- STEEL PLATE LAYER SYSTEMS
-- NTSPL (10 max)

Omit if NTSPL =0

aOO0OnN

if (ntspl .eq. 0 ) go 1o 141

O

do 140 i= l.ntspl
cefr(1)=0.0
cohsn(1)=0.0

read(55,*) 3[I5]
1 = steel plate layer system number (10 max)
nsplay(l) = number of steel plate layers in system (20 max)

nerit(l) = Yield criterica code -- theory of plasticity

i
—

'

[]

Von-Mises
=2 - Tresca

=3 -~ Mohr-Coulomb

]
s
:

Drucker-Prager

If NCRIT = 3 or 4 then input:

aOan

if(ncrit(l) .eq. 3 .or. ncrit{l) .eq. 4)

g

read(55,*) 2[F10.0]
cefr(l) = angle of friction in degress

cohsn(l) = cohesion value

nsp=nsplay(l)
nspl=nsp+1I

read(55,*) 8[F10.0]

(zsp(j.1), j=1, nspl)

240



= local z-coordinate of steel plate layer surfaces
measured from reference plane surface
-- negative to positive external surfaces of layer

CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARDS # 16 (a), (b) -- SMEARED REINFORCING STEEL LAYER

SYSTEMS
-- NTSL (24 max)

Omit if NTSL =0

oNe NN

if (ntsl .le. 0) return

0

do 130 i=1,ntsl

read(55,*) 3(15]

1 = smeared reinforcing steel layer system number (24 max)

nslay(l) = number of smeared steel layers in system (7 max)

iang(l) = steel direction code

-- 0 angle alpha from local x-axis
-- 1 angle alpha from global x-axis

C

nsl = nslay(l)
C---
read(55,*) 2[I5] 3[F10.0]

(i = smeared reinforcing steel layer number (7 max)
min(j,l) = material type number
zs(j,l) = local z-coord of mid-surface of layer
measured from reference plane surface
-- negative to positive mid-surfaces of layer

ps(i,]) = smeared layer thickness

alph(j,}) = orientation angle alpha of steel

11

- 0 degrees along 1J (horizontal direction)
-- 90 degrees = along JK (vertical direction)
n=1, nsl )
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C o555 55855888588 5855 585855555555 55555585585555555555855588588588858888
C SUBROUTINE STIF1

CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARD # 17 -- GRAVITY LOAD MULTIPLIERS -- GLOBAL
DIRECTIONS
C
read(35.*) 3{F10.0]

(gm(i).i=1.3)
= gravity load multipiers in global X Y Z dircctions
to calculate dead load components
-- forces and moments for self weight
x-multipier = (.00
y-multipier = (.00
z-multipier = -1.25
-- can factor DL here, to multiply the concrete density value

CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARD # 18 (a) -- QUADRILATERAL FACET SHELL ELEMENT DATA

C
read(55,*) 11[15] 4[F6.0] 2{I2]
mm = shell element number

(node(i), i=1,4) =nodes 1 J K L -- counterclockwise dircction:

node I =i

nodeJ =j

node K =k

node L =1

mc = concrete material type number

msp = steel plate material type number

ncl = concrete layer system number

ns! = smeared reinforcing steel layer system number
nspl = steel plate layer system number
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kn = generation

pn = normal distributed pressure on element (MPa)
-- used for live loads (factored here)

(pt(i}, i=1.3) = intensity of components of additional
uniformly distributed surface loads in the
direction of the global x y z directions
-- used for wind loads:

pt(x) = x-direction component of pressure (MPa)
piy) = y-direction component of pressure (MPa)
pt(z) = z-direction component of pressure (MPa)
kopt = element option type

-- inplane and bending element
= 0 shell element

nebar = number of bar elements within shell element (max 4)
-- input in next section below

CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARD # 18 (b) -- BAR ELEMENTS DATA

(located within a shell element)

-- NEBAR (4 max)

Omit if NEBAR =0

sNoNoNe!

read(55,*) 2[I5] 7[F10.0]
ktb(j) = bar element type number

-- 1 prestressing steel bar
-- 2 reinforcing steel bar

ktyn(j) = material type number

xIn(j) = natural coordinate E1 of end 1 of bar
yln(j) = natural coordinate N1 of end | of bar
x2n(j) = natural coordinate E2 of end 2 of bar
y2n(j) = natural coordinate N2 of end 2 of bar

bara(j) = bar cross-sectional area
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sigmo(j) = initial stress
eoo(j) = initial strain

CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARD # 18 (¢) -- TEMPERATURE VARIATION -- SHELL

ELEMENT
C Omit if ITEMP =0

read(55,*) §[F10.0]
(temp(i), i=1, nc)
= temperature in each layer at each integration point
CSS85 8588855555855 85855S585885558855855555585558SS585S555558855555858S
C SUBROUTINE ELEMK

CE 5SS 8 5855588555855 55 5885585555555 85585555555855SSSSS855585555S88588
C READ INPUT CARD -- ELEMENT TYPE IDENTIFICATION

Input cards required for element type(s) needed only

C

C #19 -- BOUNDARY ELEMENT -- STIF2
C

C (# 10 -- SHELL ELEMENT  -- STIFD
C (#22 -- BAR ELEMENT -- STIF3)

C

C

c

CRRRRRRRRRRRRRRRRRRRRRRRFPRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARD # 19 -- Boundary Element
C

read(55,*) [I5]

ntype(i) = element type identification
= 2 = boundary element
CSS8 8888588855585 558S58588585585S88SS855585585S58S5555558585S8558858SSS
C SUBROUTINE STIF2
CSSS8585555855558555S8SS55858S5558558555855555558555555555S5SS8S555888S
C READ INPUT CARD # 20 -- NUMBER OF BOUNDARY ELEMENTS
C
read(55,*) [I5)

numbd = number of boundary elements
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CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARD # 21 -- BOUNDARY ELEMENT DATA
C

read(55,*) 8[I5] 2[F10.0] [E10.0]

np = node P -- location of boundary element
ni = orientation node I of Goundary element
nj = orientation node J of boundary element
nk = orientation node K of boundary element
nl = oricntation node L of boundary clement
kd = displacement code

«= 0 node P frec to translate
-- 1 node P translation or spring specified

kr = rotation code

-- 0 node P free to twist
-~ 1 node P twist or spring specified

kn = generation
sd = specified displacement at node P
sr = specified twist at node P

trace = specified stiffness of boundary element
-- default value 10E06

SUBROUTINE ELEMK
C85555555858858858585855888555558585855555555588555885S8558S58555S5588S8

c
C
c
c
C
c
C
c
c
C

READ INPUT CARD -- ELEMENT TYPE IDENTIFICATION
#22 -- BAR ELEMENT -- STIF3
(# 10  -- SHELL ELEMENT -- STIF1)
(#19 - BOUNDARY ELEMENT .- STIF2)

Input cards required for element type(s) needed only




READ INPUT CARD # 22 -- One-Dimensional Bar Element
C
read(35.*) [I3]
ntype(i} = element type identification
= 3 = one-dimensional bar clement
CSSSS8S 5858888855555 85588858555588585885555558588S5555555558555585588588
C SUBROUTINE STIF3
CS8S 88888 S 585885885588 88S 885888855555 8558S55558855588558583588555585888S
C READ INPUT CARD # 23 -- ONE-DIMENSIONAL BAR ELEMENTS
C
read(55.*) 2[15]
nbar = number of one-dimensional bar elements
nbtyp = number of bar element types (3 max)
-- uniaxial concrete member
-- reinforcing steel member
-- prestressing steel member
CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARD # 24 -- BAR ELEMENT DATA
C
read(55,*) 6[15] 3[F10.0]
mm = bar number
nodi = node I of bar ¢lement
nodj = node J of bar element

nbt = bar type number

-~ 1 prestressing steel member
-- 2 reinforcing steel member

mtyn = bar material type number
kn = generation

barea = bar cross-sectional area
sigo = initial stress

€0 = initial strain
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£S5 5555558555558585855558S55555555858855S85558838S5558555555555558585885

O C SUBROUTINE LOAD -- NONLINEAR ANALYSIS -- LOAD APPLICATIONS
CSSE88 8885588555558 55 55555858585 8555555558S558858885555885558888555888S
C  READ INPUT CARD # 25 (a) -- LOAD STEPS AND ITERATION INCRENMENTS

C
read(55,*) 3[15] 4{F10.0] 3{I5]

nistep = number of load steps to failure = NLSTPS (30 max)
niter = number of iterations allowed per load step (15 max)
nij = number of Type | nodes loaded -- Concentrated loads

pdi = uniformly distributcd dead load factor
-- gravity load multipliers

pdsl = uniformly distributed live load factor
-- multiplier for PN

pspl = prescribed displacement of springs
-- using boundary elements

pbrl = fraction of bar load for initial strain/stress
-- one-dimensional bar elements

nstim = number of increments for time-dependent analysis
nitert = number of iterations for time-dependent analysis
itmpsh = temperature/shrinkage indicator

-- 0 temperature variation input
-- 1 shinkage strains input

READ INPUT CARD # 25 (b)

Cc
c
c
C
Cc

TYPE 2 NODES -- Input Forces and Fractions

Additional Concentrated Loads
if(nj!2 .eq. 0) go 10 1800

do 25 i=1,nj12 -- type 2 nodes

read(55,*) {IS] 6[F10.0}

n =type 2 node number loaded
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(rb2(j), j=1.6) = external applicd loads:

-- these nodal load values are normalized fractions of the
ultimate total failure load of the structure

Fx = x-direction force
Fy = y-direction force
Fz = z-direction force
Fx = x-direction force
Mx = x-direction moment
My = y-direction moment
Mz = z-direction moment

C -
read(55,*) 30[F10.5]

(factl(i), i=1,n131ps} = 30 max values for type 2 nodes

-- these values are actual total loads applied at every
load step in the analysis for a total of NLSTPS values

CREAD INPUT CARD # 25 (b)

S TYPE 1 NODES -- Input Forces and Fractions
((:: Extcmal Concentrated Loads

y 1800 if{nlj.eq.0) go to 900

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC

do 21 i=1,nlj -- type 1 nodes
C

read(55,*) [I5] 6[F10.0)
n =type 1 node number loaded
(rb(), =1,6) = external applied loads:

-~ these nodal load values are normatized fractions of the
ultimate total failure load of the structure

Fx = x-direction force
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Fy = y-direction force

z-direction force

Fz
Fx = x-direction force

Mx = x-direction moment
My = y-direction moment

Mz = z-direction moment

Conn -
read(55,*) 30[F10.5]

(fact2(i), i=1,nlstns) = 30 max values for type 1 nodes

-- these values are actual total loads applied at every
load step in the analysis for a total of NLSTPS values

CSSSS5555588S883558S8585855585SS8S88SS8SS8SSS85SSS8SSS8SSS8SSSSSSSS88SS
C SUBROUTINE TLODI

CSSS 8855888558585 5885588555585 858558S855888858SSSS8SSSSSSS8SSESSSS8S8SSS
C READ INPUT CARD # 25 (¢} -- LOAD TEMPERATURE DATA

C
C Omit if ITEMP =0
C

read(55,*) 8[F10.0]

(delt(1), I=1,nc)

wkk
e de e v ok ek
BEERRIERAEREER K
END OF INPUT DATA
sk ke ok ok ok e ok o ok
ek ok e ok ik ok
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