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ABSTR".CT

This thesis presents a new hyuoelasticity model which was implemented in nonlinear

finite fonnulation to analyze nonnal and high strength reinforced concrete stnlctures under both

monotonically increasing and reversed cyclic loadings. The model includes a new hypoelasticity

constitutive relationship utilizing the rotation of material a,is through subsequent iterations.

employment of both fixed and rotating crack models. compressive strength degradation in p0st­

cracking regime, new uniaxial stress-strain relationships for concrete under monotonically

increasing and reversed cyclic loadings, accounting for mesh sensitivity, and utilizing the tensile

strength degradation due to extensive internai microcracking of the concrete. The model can

account for high nonlinearity of the stress-strain behaviour of concrete in the pre-peak regime,

the softening behaviour of concrete in the post-peak regime, the stiffn~~$ ùegradation caused by

the extension of rnicrocracks during subsequent unloadings and reloadings and the irrecoverable

volume dilatation at high levels of compressive load.

The effect of element size on different behaviourial aspects of reinforced concrete

elements including the load-displacement and load-strain characteristics, crack pattern and ultimatc

load are discussed along \Vith a comparison with the experimental data where available. Various

analyses indicated that the length of the descending branch of the tensile stress-strain curve of

concrete defined by the value of the ultimate tensile strain, Eru, has a significant effect on the

computed results. If the value of E,u is adjusted appropriately according to the elemcnt size, it can

help eliminate the mesh sensitivity drawback. To adjust an appropriate value for E,U' two models

have been used: a) crack band model, as a function of the fracture energy, mesh size and tensile

strength of concrete, and b) a new proposed model as a function of only the clement size. The

analytical results obtained using the different models are compared with the experimental rcsults;

the proposed model gives good agreement. The proposed fonnula is very simple and can be used

for both square and non-square elements.

The effect of steel reinforcement details on the general behaviour of the structure and its

mode of failure, the criterion for using the rotating crack model versus the fixed crack model, and

the importance of compressive strength degradation in the post-crack regime are established using
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detailed analysis of live shear panels tested by Vecchio and Collins (1982). The effect of a

sudden drop of the stress after the tensile strength of concretc has been exceeded on the 10ad­

deflection response, the ductility ratio and the crack pattern for two high strength concrete beams

are also examined. Further analyses of a squat shear wall and a shear panel are carried out to

examine the reliability of the computer program HODA developed in this study for analysis of

concrete structures under both monotGnic and reversed cyclic loads.

Complete response of three structural walls in a low-rise building is studied under

monotonically increasing loads until failure using the nonlinear finite element program HODA.

The influence of the tension-stiffening, steel strain-hardening on the load-deflection response and

the ultimate lnad are studied for the case of the rectangular wall. The influence of smeared steel

idealization and bar element idealization on the wall response are also investigated. The ultimate

loads of walls are compared with the values calculated using the current CSA Standard CAN3­

A23.3-M84.

This research program demonstrates the feasibility of nonlinear finite element analysis as

an alternative 10 costly experimenlal work in the future, however, the reliability of using nonlinear

finile element analysis fOl a given structural system under a given loading system could be

established in each case by comparing the computed results with the experimental data, where

available.

ii
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SOMMAIRE

Cette thèse propose un nouveau modèle hypoélastique, incorporé dans une

formulation d'éléments finis non-linéaires, pour l'analyse des structures en béton (nomlal

ou haute performance) sous un chargement monotonique ou cyclique. La formulation fait

appel à la rotation des axes des éléments à chaque itération, à l'utilisation de modèles de

fissures fixes et de révolution, tient compte de la perte de résistance en compression dans

le régime fracturé, incorpore une nouvelle relation contraintes-déformations pour le béton

sous chargement monotonique et cyclique, et finalement tient compte de l'influence de

la discrétisation, et de la dégradation de la résistance en tension associée à la micro­

fissuration interne du béton. Le modèle peut représenter le caractère non-linéaire de la

relation contraintes-déformations du béton dans la régime post-fissuration, la perte de

rigidité associée au développement de micro-fissures lors du déchargement et de

chargements subséquents de l'élément, et les changements de volumes irréversibles

(expansion) associés avec des forces de compressions élevées.

L'effet du degré de discrétisation de l'élément par rapport à différents aspects du

comportement sont étudiées, entre autres, l'estimation de la courbe contraintes­

déformations ou forces-déplacements, le patron de fissuration, et la charge ultime. Les

résultats sont comparés à des observations expérimentales lorsque disponibles. Les

analyses indiquent que la déformation ultime en tension (e,J, contrôlant la partie

descendante de la courbe contraintes-déformations en tension, a un effet majeur sur les

résultats. Un ajustement approprié de ce paramètre en fonction de la dimension des

éléments minimise l'influence de la discrétisation sur les résultats. Deux méthodes sont

utilisées pour sélectionner e~ : (1) un modèle de fissuration continu en fonction de

l'énergie de fissuration, le niveau de discrétisation et la résistance en tension du béton, et

(2) un nouveau modèle qui n'est fonction que du niveau de discrétisation. Les résultats

analytiques pour les deux modèles sont comparés à des résultats expérimentaux et

démontrent que le modèle proposé reproduit les résultats expérimentaux. La formule

proposée est simple et applicable à des éléments de toute forme.

iii
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Une analyse délaillée des résultats expérimentaux de Vecchio et Collins (1982)

sur cinq panneaux de cisaillement permet d'établir l'influence des détails d'armature

d'a~ier sur le comportement général de la structure ainsi que sur le mode de rupture.

Ceux-ci sont aussi utilisés pour anllyser l'influence du modèle de fissuration de révolution

par rapport au modèle de fissuration fixe, ainsi que 1ïnfluence de la dégradation de la

résistance en compression sur le comportement post-fissuration. L'effet d'une baisse

soudaine des contraintes suite à un chargement jusqu'à la résistance en tension, le rapport

de ductilité, et le patron de fissuration sont également analysés pour deux poutres en

béton à haute résistance. Des analyses supplémentaires sont faites sur un mûr et un

panneau de cisaillement afin d'établir la fiabilité du logiciel d'analyse HODA développé

dans le cadre de ce projet pour les structures de béton sous chargement monotonique et

cyclique.

Le comportement complet de trois mûrs porteurs pour un édifice à faible hauteur

sont étudiés sous un chargement monotonique avec le logiciel HODAjusqu"à la rupture.

L'influence du raidissement sous tension, et de l'accroissement de la résistance de l'acier

avec les déformations sur la courbe forces-déplacements ainsi que sur la charge ultime

sont analysés pour le cas du mûr rectangulaire. L'influence de l'idéalisation de l'acier par

une zone homogénéisée et des barres d'armature sur la réponse sont aussi examinés. Les

charges ultimes sont comparées avec les valeurs calculées selon le code CSA CAN3­

A23.3-M84.

Ce programme de recherche démontre que les analyses numériques non-linéaires peuvent

être substituées à des programmes expérimentaux dispendieux. Par contre, la fiabilité des

analyses numériques devrait être établie pour chaque type de structure et de chargement

à l'aide de résultats expérimentaux.

iv
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

Reinforeed concrete is one ofthe most commonly used materials in civil engineering with

application in ail kinds of structures, such as high rise buildings, cooling towers and offshore

platforms. The design ofthese structures is usually based on linear elastic analysis to calculate the

internai forces in the structure which are then used to design and detail the section and

reinforcement for the structure using appropriate Code provisions. These Codes are usually based

on empirical approaches developed using experimental data, and provide design rules to satisfy

safety and serviceability requirements. Although the design of reinforced concrete structures is

based normally on a linear, elastic stress analysis is adequate and reliable in most cases, for

complex structures under complex loading conditions, nonlinear finite element analyses are often

required for design of these systems at the ultimate limit state. Reliable information on strength,

failure mode, ductility and energy absorption capacity is required for the design of important

reinforced concrete structures such as nuclear containments, and for the development ofnew types

of the building systems such as coupled frame-structural wall systems, especially for the seismic

loading conditions.

Prior to the development of powerful numerical methods and computers, investigation of

the behaviour of concrete structures required extensive experimental work, followed by

development ofbehavioural or empirical models for examination of responses at the serviceability

and the ultimate limit states. These experiments are usually expensive, time-consuming and
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required considerable human and physical resources.

The use of the finite clement method as a supplement ta the experiments, and in

situations where experiments are difficult ta perform and cumbersome. such as the detemlination

of complete response of a 20-storey, multiple core subjected ta monotonically increasing loads,

has been increasing ever since the pioneering work ofNgo and Scordelis (1967) on finite clement

analysis of reinforced concrete beams. Extensive research has resulted in significant advances in

the area of concrete constitutive relationships which have led to the development of a substantial

number of finite clement programs with nonlinear analysis capabilities. A partial listing of such

programs is available in the reports of the ASCE Committee on Finite Element Analysis of

Reinforced Concrete Structures (1982 and 1991). It is pertinent to mention that most of these

nonlinear programs are within the academic environment and only a few commercial programs

arc available for nonlinear analysis of concrete structures.

The versatility of the finite clement method as a tool for analysis of concrete structures

is enhanced significantly by the incorporation of nonlinear material models. Consequently, the

method is able to predict the response of a structure at ail stages of its loading history. accounting

for the various forms of material non-Iinearities and time-dependent effects.

The complexities involved in predicting the behaviour ofa reinforced eoncrete (R C) structure

up to the ultimate load, involving highly nonlinear nature of the response of the constituent

composite materials- concrete and steel. This highly nonlinear behaviour is caused by many

contributing factors such as nonlinear stress-strain relationships, tensile cracking, microcracking

resulting from compression in concrete, crushing of the concrete, aggregate interlock, bond slip,

dowel action, tension-stiffening phenomenon, shrinkage, creep, and yielding of the steel

reinforcement. The incorporation of ail of these nonlinear phenomena in the analysis of R C

structures is a difficult task. However, the computer·based fmite clement method using very

powerful computers now offers a strong computational tool through which the effect and

interaction of the different nonlinear characteristics of R C can be studied, and thus a better

understanding of the internai stress distribution can be obtained. To ascertain the reliability of the

results ofthese nonlinear analysis, it is essential that the composite behaviour of the conerete and

the steel reinforcement is modelled accurately, besides verifying the accuracy of the results of

analysis of sorne selected structures for which detailed experimental data is available.

As pointed out earlier, one of the earliest finite element (FE) models for the analysis of

R C beams was presented by Ngo and Scordelis (1967). This was followed by considerable works
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in lhe area of lhe FE analysis of R C slruelures under monolonically increasing load such as the

works by Nilson (1968), Rashid (1968), Cervenka (1970). Mufti, cl al. (1971), Scanlon (1971).

Hand et al. (1973). Argyris cl al. (1973), Mikkola and Schnobrich (1970), Lin (1973), Kabir

(1976), Gilbert and Warner (1978). Cope el al. (1980), Pelerson (1981). ASCE Task Commiltee

(1982), and Meyer and Okamura (1985), Barzegar Barzegar and Schnobrich (1986). Good reviews

oflhese works eould be found in ASCE Task Commiltee (1982), Bahlis (1986), Nagaraja (1987)

and ASCEI ACI Commiltee 447 (1991).

The FE analysis of R C members subjecled 10 cyclic loading dates to th,: early 1970'5.

Thereafter, significam conlributions in lhis area have been made by Muto and Masuda (1972),

Imoto and Takeda (1973), Cervenka and Gerstle (1971, 1972), Darwin and Pecknold (1974),

Agrawal, el al. (1976), Shipman and Gerstle (1979), Nomura, el al. (1978), Sorensen (1979),

Mochizuki and Kawabe (1980), Aktan and Hanson (1980), Noguchi (1985), Stevens, el al.

(1991), Rule and Rowlands (1992). An extensive overview of sorne of these research programs

can be found in ASCE Task Commiltee (1982), and Meyer and Okamura (1985).

Realization of the full potentia! of the finite element method will require an extensive

verification to determine the accuracy of the deformational response of different classes of

structural elements when compared \Vith the available experimental results. There is also a need

to determine the simplest material model that best represents the behaviour of the various classes

of structures.

In this research program, firstly it is atlempted to find appropriate analylical models to

represent the material characteristics of both concrete and steel accurately depending on the

loading conditions. Secondly, ail of these models are incorporated in a nonlinear finite element

formulation in order to model the majority of the aforementioned material nonlinearities and their

interactions. Thirdly, to evaluate the reliability of the analylical results, some well documented

experimental works on normal and high strength reinforced concrete members are modeled and

analyzed, and the analysis results are compared with the experimental findings. At the end, some

parametric studies on three structural walls constituting the lateral load resisting system of a 4·

storey building are undertaken to develop the basic data to understand the behaviour of such

complex structures.
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1.2 OBJECfIVES OF THE THESIS

The objectives of this thesis can be summarized as follows

1) To present a general state-of-the-art report of the constitutive relationships for

concrete.

2) To introduce the hypoelasticit)' models as suitable models for stress-strain

relationships ofconcrete, under both monotonically increasing and reversed cyclic

loadings.

3) To introduce new constitutive relationships and new analytical stress-strain CUrves

for normal and high strength concretes under both monotonic and reversed cyclic

loads accounting for rotation of material axis, rotation of crack direction afler

cracking and volume dilatancy of concrete at high compressive stresses.

•

•

4)

5)

6)

7)

8)

To verify the errect of finite element mesh size on the computed behaviour of

selected concrete structural elements subjected to monotonically increasing loads.

To derive formulations to eliminate the mesh dependency phenomenon permiuing

analysis of structural elements using relatively large size elements with an

adequate level of confidence and savings in the required computational time.

To incorporate the above model into a nonlinear finite element formulation to

carry out nonlinear analysis.

To examine the reliability of the proposed material models and the finite element

formulation by analyzing some specimens for which experimental results are

available.

To investigate the influence ofthe various tension-stirrening models on the ovcrall

behaviour of reinforced concretc structural elements.

4



• 9) To undertake sorne parametric studies on relatively complex structures to generate

the basic data which can be used for development ofappropriate practice.oriented

design procedures for structural wall systems.

•

•

1.3 ll1FSIS ORGANIZAnON

The thesis is presented in eight chapters and one appendix as follows

Cbapter l, "Introduction" explains the importance of nonlinear linite element analysis to

design complex structures such as nuelear power plants, offshore structures and others to ensure

ail safety and scrviccability requircments. Il also deals \Vith the objectives of the thesis and its

organization.

Cbapter 2, "Review ofConstitutive Models for Concrete", presents a general state·of-the­

art report of the constitutive relationships for concrete. Il starts with a review of the behaviour of

concrcte under uniaxial, biaxial and triaxialloadings at both micro- and macro-Ievels. Then a brief

description of live common types ofconstitutive relations is presented along with their advantages

and disadvantages. This includes elasticity-based models, plasticity-based models, plastic-fracturing

models, elastic-plastic-damage models, and endochronic models.

Cbapter3, "The Proposed Material Model", presents the proposed constitutive model for

concrete and the required material properties including, the stress-slrain curve, the instantaneous

modulus of clasticity, the Poisson's ratio, etc. The crack modelling techniques (discrete and

smeared crack models) and a brief description of the different smeared crack models (fixed,

rotating and multiple crack models) in connection with the proposed hypoelasticity model are also

presented. The compressive slrength-degradation of the concrete in the compression-tension state

after cracking is also included. The monotonie and cyclic stress-slrain curves which can be used

effectively for both normal and high-strength concretes, the Poisson's ratio, the failure criteria for

the concrete and the constitutive model for the steel reinforcement are presented in the last part

of this chapter.
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Chapter 4. "Nonlinear Finite Element FomlUlation". describes the key features of the

nonlinear finite clement program. HÜDA. developed during the course ofthis study. The various

program capabilities and limitations are outlined. followed by the finite clement displacement

formulation based on energy considerations. The clement library of the program. the layered

discretization technique. the transformation of strain. stress. constitutive matrix and eoordinates.

the assembly process, and the numerical algorithms in nonlinear analysis including the Solulion

process, the unbalanced forces, the convergence criteria and the divergence criteria are also

oullined in this chapter.

CbapterS, "Element Size Effect Phenomenon", presents the results ofan investigation into

the effect of finite clement size in nonlinear finite clement analysis of concrete structures. To

eliminate the dependence of the computed results on the finite clement size, two models have been

used: a) crack band model and b) a new proposed model. These models have been implemcnted

into the nonlinear finite element analysis program HüDA. The analytical results obtained using

the different models are compared with the experimental results.

Cbapter 6, "Analysis of Experimental Specimens", compares the computed and the

experimental responses of several specimens using the HüDA program. These are composed of

a total offive panels tested at the University of Toronto under monotonically increasing in-plane

loadings (Vecchio, 1981; Vecchio and Collins, 1982), a squat shear wall tested by Cardenas et al.

(1980) under monotonically increasing load up to the ultimate load carrying capacity of the

structure, IWo high strength concrete beams, LSI and HUCB, tested by Leslie et al. (1976) and

Abrishami et al. (1995), respectively, and a shear panel (W-4) tested by Cervenka (1970) under

reversed cyclic loading. Along with the analysis ofeach specimen, the effect ofdifferent nonlinear

characteristics of reinforced concrete (tension-stiffening, failure criteria, cracking model, ...) are

also examined.

Cbapter 7, "Analytical Study of Structural Walls", presents the computed responses of

three structural walls subjected to distributed lateral loads using the HüDA program. These

include a rectangular wall, an L-shaped wall and a C-shaped wall constituting the lateral load

resisting system of a 4-storey building (Manatakos, 1989). Sorne parametric studies are also

carried out on the three walls to show the effect of tension-stiffening of the concrete and strain-

6



•

•

hardening of the steel reinforcement along with the type of steel idealization on the analytical

response of these walls. In each case, the computed results are compared with the wall strength

calculated using the CSA standard A23.3-M84.

Chapter 8, "Conclusions",summarizes the results of the thesis, highlights the key results,

and makes recommendations for future work.

Appendix A presents a Iist of the input data file required for the HODA prograrn .
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CHAPTER 2

REVIEW OF CONSTITUTIVE MODELS FOR CONCRETE

This chapter presents a general state-of-the-art report of the constitutive relationships for

concrete. It starls with a review of the behaviour of concrete under uniaxial, bia.xial and tria.xial

loadings at both micro- and macro-levels. Then a brief description of five cornmon types of

constitutive relations is presented along with their advantages and disadvantages. This includes

elasticity-based models, plasticity-based models, plastic-fracturing models, elastic-plastic-damage

models, and endochronic models.

2.1 CONCRETE BEHAVIOUR

The response of concrete to uniaxial (compressive or tensile) and combined stresses is

nonlinear due to the progressive microcracking at the transition zone between the aggregates and

the bulk cement paste. According to the experimental observations at the micro-Ievel, concrete can

be treated to be composed ofthree basic phases: (1) mortar, (2) coarse aggregate, and (3) mortar­

coarse aggregate interface or transition zone (see Fig. 2.1). Mortar is defined as cement paste plus

sand or fine aggregate particles as illustrated in Fig. 2.I(b) and (c). In general, microcracks are

initiated at the aggregate-mortar interfaces due to externat loading and shrinkage of the concrete,

because they represent the weakest links or f1aws in the concrete.
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2.1.1 Uniaxial Bebavionr

The response of plain concrete in uniaxial compression is govemed by the microcracks

in the transition zone between the hydrated cement paste and the aggregate (Vonk, 1990). These

microcracks are relatively stable and do not propagate until an applied load equal to about 30%

of the concrete strength, 0.30f,; within this range, the response of concrete is basically linear­

elastic. With further loading up to the maximum load, these microcracks grow and propagate

resulting in a decrease in the material stiffness (nonlinear response). This crack propagation does

not lead to the immediate Joss of load-carrying capacity, because concrete at this stage behaves

as a highly redundant structure. In the pre-peak region (ascending branch of the stress-strain

curve), most of the microcracks are within the so called transition zone but beyond tha!, in the

post-peak region or the descending branch of the stress-strain curve, the extensive development

of mortar cracks (cracks through mortar) is observed. The onset of mortar cracking results in

increasing the Poisson's ratio of concrete (Kupfer et al., 1969) leading to the volume expansion

of concrete which is termed as dilatancy (refer to Fig. 2.2). Beyond the maximum load,

macrocracks localize in narrow bands and lead to a decrease in the applied load; This constitutes

the strain-softening response in uniaxial compression. Finally at failure (rupture), the interface

cracks and the mortar cracks interconnect leading to a discontinuous fracture surface.

The response of a concrete specimen loaded in uniaxial tension is normally Iinear up to

the maximum load, when the microcracks due to shrinkage and extemal load localize in a narrow

band to form macrocracks leading to a reduction in the load carrying capacity (Feenstra and de

Borst, 1993). It must be noted that a significant energy input is required for formation and

extension of cracks under compressive loads, while by contras!, much less energy is required for

propagation of cracks under tensile loads. This is why tensile strength of concrete is a fraction of

its compressive strength and it behaves linearly under tensile loads up to the maximum load

(ascending branch).

In repeated loading tests under compression (refer to Fig. 2.3), the envelope curve, the line

on which lie both the starting points of the unloading and the end points of the reloading cycles,

has been found to be coincide with the compression stress-strain curve under monotonicaily

increasing loads (Sinha, Gerstle and Tulin, 1964). The unloading curve is concave from the

unloading point and it is characterized by the high stiffness when the unloading starts. The slope

of the unloading curve decreases gradually when unloading is continued and becomes very fiat
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at a low stress le\'el. The rcsidual plastic strain has bccn found to be smaller for stronger concrctc

(Aoyama and Noguchi. 1979). Karsan and Jirsa (1969) considcrcd the plastic strain as a principal

parametcr to determine the unloading curve equation. The rcloading curve from zero stress

changes curvature. becomes rather flat. and it can be represented by a straight line (Sinha. ct al..

1964). or a second order parabola (Karsan and Jirsa. 1969). Unloading and reloading curyes

intcrsect each other at a locus called "common point limit" (sce Fig. 2.3). Cycling within a certain

common point until the first unloading curve is reached results in a lowered intersection point with

the un10ading curve. With an increasing number of cycles. the location of this intersection point

converges to a certain point defined as "stabilit)' limit" (Karsan and Jirsa. 1969).

In reinforced concrete. the response of concrete in compression and tension is basically

similar to that of plain conerete. exeept that because ofbond between the reinforeing steel and the

concrete. several cracks form instead of a single crack as is the casc for the plain concrcte. This

leads to a redistribution of stresses from the steel reinforcement to the concrete between the

cracks. resulting in the tension stiffening phenomenon. The nonlinear concrete response along with

the elastic-plastic-strain hardening behaviour of the slender stcel reinforcing bars and the complex

behaviour at the steel-concrete interface (pull-out and dowel action) and at the cracks (dggregate

interlock) causes the response of any structural reinforced concrete clement or structure to any

applied loads to be nonlinear. with a decrease in the stiffness immediately aficr cracking. followed

by a considerable stiffness reduction at higher load levels.

2.1.2 BiaxiaI Behaviour

Based on the experimental observation under biaxial compression, the compressive

strength of the concrete increases because of the internai friction and aggregate interlock. The

observed strains in both principal stress directions plotted versus a/f, are shown in Fig. 2.4. the

Stress-strain cUrve for the same Case ilIustrated in Fig. 2.5. At fairly high stresses, il is evident that

the effective stiffnesses are quite different in the !Wo directions. The difference is much greater

than can be explained by Poisson effect. This evidence points to "stress-induced orthotropic"

behaviour under biaxial stress conditions. The experimental investigation conducted by Liu, Nilson

and S\ate (1972) indicates that the effect ofmicrocracking confinement is the main cause for the

observed increased stiffness under biaxial compression.
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Conversely, a lateral compressive stress decreases the tensile strength ofconcrete because

the compressive stress introduces tensile stresses atthe micro-Ievel due to the heterogeneity of the

material which inereases the proeess of internai damage as reported by Vonk (1990). A lateral

tensile stress has no major influence on the tensile strength of concrete. To account for these

phenomena, a failure envelope curve should be employed to obtain the compressive and tensile

strength of concrete under the biaxial stress state. The lateraltensile stress beyond cracking can

also decrease the compressive strength of concrete, as noted by Vecchio and Collins (1986), and

Feenstra and de Borst (1993).

2.1.3 Triaxial Behaviour

If concrete is subjected to triaxial compression. both its strength and its ductility increase

significantly as the lateral stresses increase. In facL concrete may sustain a considerably high

hydrostatic pressure before fracture. This is because. under high confinement, bond cracking is

unlikely to occur and the damage is uniformly distribuled throughout the entire specimen. In this

case, the concrete behaves Iike a ductile material without collapse. However, if tensile stress is

applied, cracks develop fast in a direction perpendicular to this tensile stress, causing a remarkable

reduction in the compressive strength and failure ofconcrete. Another significant triaxial nonlinear

behaviour is the large volume expansion near fracture.

Compared to the uniaxial behaviour, the crack propagation process in the concrete under

multi-axial stress conditions has not been weil investigated, and not much systematic data is

available on this subjec!. Qualitatively the major difference arises in the post-peak behaviour,

where macroscopic observations show that IWO types of failure modes exis!. One is the tensile

splitting failure mode and the other is the shear failure mode produced under low to normal

confinement, by stepwise joining at the existing microcracks. Both failure modes exhibit strain

localization in the post-peak region.

2.2 CONCRETE CONSTITUTIVE RELATIONSBll'S

Extensive research over the past IWo der.ades has led to a few constitutive models for

concrete which are based on the principles ofcontinuum mechanics and neglect the microstructure

of the concrete. These include elasticity-based models, plasticity-based models, plastic-fracturing
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models, elastic-plastic-damage models. and the endochronic mode!. A revie", of these n",dels is

presented in the follo",ing sections: more infomlation can be found in t"'o reports published by

the ASCE (1982 and 1991).

A more basic approach for describing the general meehanical behaviour of concrete is

through the study of its microstructure, but this approach is presently limited to qualitative

predictions. Micro-plane model developed by Bazant and Ozbolt (1990) can be iutrodllced as one

of these models. The micro-plane model considers the structure at thc mierostrllctural Icvel and

determines the material stiffness matrix by integrating the elemental behaviour of the micro-planes

with various orientations. The micro-planes characterize the defomlation of weak planes \Vithin

the microstructure using the normal deviatoric and volumetrie strains, and the shear strain. The

model can account for cracking, softening and dilatancy. A drawback for this model is the

considerable computational efforts which is required. The relationship between the maeroscopic

features and the microscopie events for the simple cases of unia."ial tension and uniaxial

compression have been recently studied using the finite element method by Yamaguchi and Chen

(1991). More information is available in the paper by Chen and Cohen (1992).

2.2.1 ELASTICITY-BASED MODELS

Elasticity-based models are among the most popular constitutive relationships used in

conjunction with the finite element analysis of concrete structures. These models are simple and

can be easily formulated and implemented. Several elasticity-based constitutive models can be

found in the literature, but in general they can be grouped under the following approaches:

1) Linear elastic model; and

2) Non-linear elastic models

A brief review of each approach is outlined in the following sections. First, the generalized

Hooke's law for a solid material is introduced and the symmetric properties of elasticity constants

are presented irrespective of the type of material (isotropic, orthotropic, etc.). Then IWO cornmon

special cases of generalized Hooke's law for the materials whose elastic properties exhibit

symmetry with respect to IWO orthogonal planes (orthotropic material) or IWo orthogonal axes

(isotropic material) are discussed. If the orthotropic models are expressed in terms of increments

of stress and strain, they are called hypoelastic models, and these are presented later in this

section. This includes the models proposed by Liu et al. (1972), Darwin and Pecknold (1977),
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• Elwi and Murray (1979) and Bathe et al. (1989). The description of the hypoelastic model

developed in this study is presented in Chapter 3.

2.2.1.1 THE GENERALIZEDHOOKE'S LAW

For a large number of solids, the measured strain is proportionalto the applied stress over

a wide range of loads. This means that as the stress increases, the measured strain increases in the

same ratio. Also, when the stress is reduced to zero, the strain disappears. These experimental

results lead by inductive reasoning to the generalized Hooke's law of the proportionality of the

stress and strain. The general forro of the law is expressed by the statement: "Each of the

components of the state of stress at a point is a linear function of the components of the state of

strain at that point". Mathematically, this is expressed as

(2.1)

•
where, C"m. are elasticity constants; there are 81 such constants. The indices k and 1 are

identifying indices and m and n are summation indices, which can take values equal to 1, 2 and

3. For example, for k=1 and 1=2 the Eq. 2.1 can be expanded as

012 = Cm1 Eu + Cl222 E22 + Cl233E33 + C1212E12 + CI221 E21 +

C1213E13 + C123 ! E31 + C!m E23 + Cl232E32
(2.2)

Since the stress and slrain tensors are symmetric, it can be shown that the constants C"m. are

symmetric with respect to the first and second pairs of indices, i. e.,

and C/;/mn = CIdnm (2.3)

Based on energy considerations, it can also be shown that the first and second pairs of indices cao

be freely interchanged, namely,

CtImn = CmnIJ; (2.4)

•
Accordingly, the number of independent elastic coefficients for the general anisotropie

elastie material is redueed to 21. For example, Eq. 2.2 takes the following forro
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• 012 = C1211El1 + C122ZEZ2 + Cl1J3E33 +

2(C121ZE12 + C1213 E 13 + C1223E23)
(2.5)

•

In addition. if certain symmctries exist in the material (as will be discussed in the next section).

the number of material coefficients. ClIm•. will be reduced further. The generalized Hookc's law

can now be wrillen in a matrix notation as follows:

Ou Cil 11 Cll22 c1l33 2Clll2 2Cl113 2Cl123 Eu

°22 C22l1 C2222 C2233 2C2212 2C2213 2C2223 E22

°33 CJ3ll C3322 C3333 2C3312 2C3313 2C3323 E3]
(2.6)•

0 12 C1211 C1222 C1233 2C 1212 2C1213 2C 1223 EI2

°13 C1311 C1322 CI333 2C1312 2cI313 2C I323 E13

°23 C2311 C2322 C2333 2C2312 2C2313 2C2323 En

The coefficient matrix is symmetrie and is called the "stiffness" or the "constitutivc" matrix (or

the stiffness tensor).

Since the components of stress and strain tensors are functions of the orientation of the

system of reference axes, the elastic coefficients in Eq. 2.1 are also functions of this orientation.

In a new system of coordinates OX'" OX'" and OX' J (see Fig. 2.6), the new stiffness tensor

component is evaluated by

(2.7)

where n;; is the direction cosine ofnew axis i with respect to initial axisj (i,j= p, r, s, t, k,l, m,

and n). The summation on the repeated indices should be carried out in the above equation.

The stress -strain relations given by Eq. 2.1 can be expressed in the inverted form as,

(2.8)

•

where S..... are constants. It is evident that Slim. has the same symmetry properties as Clim• and

is called a component of the compliance matrix, (S), (or the compliance tensor).
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2.2.1.1.1 ORTHOTROPIC MATERIAL

A material which exhibits symmetry of its elastic properties with respect to two orthogonal

planes is called an orthotropic material. Let the two planes be the OX1, OX, plane and the OX 1,

OX, plane (see Fig. 2.7). The direction cosines of the new axes with respect to initial ones are

(1, 0, 0), (0, -l, 0) and (0, 0, -1). The Equation 2.7 gives:

which is correct. The expansion in Eq. 2.7 is simplified, since there are only three non-zero

direction cosines, namely:

nu = 1, lin = -1, n33 = -1

Similarly, this type of symmetry requires:

which is impossible since

Therefore, C"" must be equal to zero. A similar reasoning will show that the number of elements

of the constitutive matrix gets reduced to nine and it is written as follows:

ClIU ClI22 clI33 0 0 0

c22l1 c2222 c2233 0 0 0

c33l1 C3322 C3333 0 0 0
[C] = (2.9)

0 0 0 2Ct212 0 0

0 0 0 0 2C1313 0

0 0 0 0 0 2C2323

The above stiffness matrix shows that for ortbotropic materials, the application of normal

stresses results in normal strains alone, and the application of shearing stresses results in shearing

strains alone. This is only true, however, in the system of axes with respect to which the
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symmetries are defined.

By following the same procedure, as outlined above. the same panem can be obtained for

the compliance tensor, [S], in Eq. 2.8. The stress-strain relationship in multi-a"ial stress state for

an ortholropically anisolropic material (or for brevity. ortholropic) can be \Vrinen as

E -1 E -1 E -1 0 0 0
EU 1 -V 12 2 -V 13 3

aU

E -1 E
2

- t E -1 0 0 0E22 -V 21 1 -V 23 3
°22

E33
E -1 E -1 E -1 0 0 0-V 31 1 -V 32 2 3 0 33 (2,10);

Y 12 0 0 0 GI :!
-1 0 0 t 1'2

Y 13 0 0 0 0 Gl3
-1 0 ~13

Y23 0 0 0 0 0 G23
-1 t'23

in which the subscripts 1, 2, and 3 stands for the axes of orthotropy; E and y are normal and

engineering-shear strains, respectively; E; is the modulus of elasticity with respect to the

ortholropic direction i (i=l, 2, 3); V;j is the Poisson's ratio in direction i due to unia"ial SlreSS in

direction j (i, j=l, 2, 3); and Gu is the shear modulus of elasticity in plane i-j. A schematic

representations of positive directions for slresslstrain components, the Poisson's ratio, V;j' and the

shear modulus of elasticity, G;j' are shown in Fig. 2.8.

If equation 2.10 is modified for an orthotropic material under biaxial stresses in the plane

consisting of coordinates 1 and 2 (i. e. cr33~13=~23=O), the following equation results:

E -1
1

E -1
-V21 1

o o

o
o l :~\~12

(2.11)

•

in which, G=G 12 is the shear modulus of elasticity in the ortholropic plane. By inverting the above

equation, the Slress·strain relationship for an orthotropic material in a biaxial stress condition can

be expressed as,
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• j"'1
El v~lEl 0

j"'1v 12 E2 E2 0 (2.12)
°22 =

I-V 12 v 21

En

~12 0 0 (1- V l2 V21)G y12

2.2.1.1.2 ISOTROPIC MATERIAL

An isotropic material possesses elastie properties which are independent ofthe orientation

of the axes. In other words, these materials have no preferred directions with respect to their

elastic properties, ln this case, for rotated axes (sec Fig. 2.6) the stress-strain relationship Can be

wrillen as

(2.13)

•
where k', ... m' and n' are axes corresponding to the axes k, l, m and n afier transformation,

respecti\'ely; C'''m·'' is the elastic coefficient in the transformed coordinate system; 0',., and Et,,·

represent stress and strain components in the transformed coordinate system. respectively. For an

isotropic material the fol1owing equation must ho1d:

(2,14)

in which CUm, is the elastic coefficient in the reference coordinate system. Ck'I'm'" can be expressed

in terms of the reference elastic coefficients, C"m.' using Eq, 2.7. By following the same procedure

as outlined in the previous section, it can be shown that the 21 elastic constants in Eq. 2.6 reduce

to !WO independent elastic constants for an isotropic solid (Saada, 1993). Final1y, the resuiting

stiffness matrix for an isotropic material takes the fol1owing fOrm:

Cuu clin Cun 0 0 0

CllU Cuu CIl22 0 0 0

Clin Clin Cun 0 0 0

0 0 0 1
0 0 (2.15)[Cl = ï(C1I1I - Clin)

0 0 0 0 1 0ï(CIIII - Clin)

0 0 0 0 0
1
ï(C1I1I - Clin)
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•
The elastic constants in Eq. 2.15 arc usually wrillen in the following notations:

Cuu ; À + 211 (2.16)

in whieh À and Il are material constants which refeITed to as Lamé's constants. The stress-strain

relationship for an isotropie material using Lamé's constants and index notation can be expressed

as:

(2.17)

•

where cr" and E" are CUITent components of stress and strain tensors, respectively; li" is Kroncckcr

delta and Eu represents the summation on the repcated indices (i.e. Eu ~ E,,+E,.,+E.J.

2.2.1.2 Linear Elastic Models

In this model, the CUITent state of stress dcpcnds on the CUITent statc of strain, and it is

independent ofthe strain history (path independent). This model can bc characterized (as explained

in the previous section) with only IWO material properties which arc cither Lamé's constants ( À

and Il) or the Young's modulus of elasticity (E) and the Poisson's ratio (v) or the bulk modulus

(K) and the shear modulus (G). The stress-strain relationship in terrns of Lamé's constants has

been given in Eq. 2.17 and it can be described as a function of the Young's modulus of elasticity

(E) and the Poisson's ratio (v) as

and in terrns of Gand K as

vE e Ô
(1+v)(l-2v) tk lj

(2.18)

(2.19)

•
The following empirical formula proposed by the ACI (1989) can be used to evaluate the modulus

of elasticity of concrete, E:
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• E = 0.043W1.5/ f'c (2.20)

•

in which w is the unit weight of concrete in kilograms per cubic meter and f, is the uniaxial

compressive cylinder strength of concrete in kilograms per square millimetre. The Poisson's ratio

v has been identified ta be around 0.2 for plain concrete.

The linear elastic model was adopted initially for the concrete in relation with the finite

clement analysis of rdnforced concrete by Ngo and Scordelis (1967). This mode1 results in

satisfactory response under a loading which causes tensile stresses and relatively smail

compressive stresses (ASCE. 1991); however. it can not identify the nonlinear response and path

dependent behaviour of concrete at higher levels of compressive loading.

2.2.1.3 Non-linear Elastic Models

2.2.1.3.1 Cauchy Elastic Madel

The performance of linear elastic model can be improved significantly by assuming a

nonlinear elastic behaviour in the concrete stress-strain relationships. The simplest way ta

introduce the nonlinearity between the current state of stress and that of strain is the stress-strain

relationships for concrete subjected ta a uniaxial compressive load. In this regard many models

have been proposed (for example. Smith and Young, 1955; Saenz, 1964; Popovics, 1973; Carreina

and Chu, 1985 and Tsai, 1988) in the form of

a = f(e) (2.21)

This class of constitutive model is called a Cauchy elastic mode\. They can be used for uniaxial

state of stress and can not be applied directly for the multi-axial state of stress. This Cauchy type

of model can be extended ta multi-axial stress state (for example, Ahmad and Shah, 1982) as

(2.22)

•
where D:j~ represents the secant stiffness, which is a fonction ofthe stress state. This is also path­

independent. and the reversibility and path-independency of the strain energy function, <!>(~), and
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complementary energy-density function. n(cr,,) are not generally guaranteed (Chen. 1982).

2.2.1.3.2 Hypcr-Elastie (Green Elastie) Model

The current state of stress depends on the current state of strain and mathematically. the

constitutive equation for hyper-elastic models takes a forrn similar to Eq. 2.1. To ensure the path­

independency of the strain energy and the complementary energy density funetions. the following

equation must be satisfied (Chen. 1982)

=
acl>

(2.23)0y ae,,i

or,

aa
(2.24)Eij =

aOij

where <Il and n are the strain energy and complementary energy density functions, respectively.

In general, most of the hyper-elastic models for concrete have been forrnulated basically

as a simple extension of the Iinear elastic model, by simply replacing two of lhe elastic moduli

(the Young's modu1us of elasticity, E, and the Poisson's ratio, v, or the bulk modulus, K, and the

shear modulus, G) with secant moduli (E. and v. or K. and GJ which are assumed 10 be a function

of stress and/or strain invariants.

Palaniswamy and Shah (1974) expressed the bulk modulus of elasticily as a funclion of

the firsl stress invariant and made the Poisson's ratio a function of the first IWO stress invariants.

Both relationships have been developed to fit the experimental data. Cedolin et al. (1977)

represented the bulk modulus as a function of lhe first strain invariant and the shear modulus as

a function of the second deviatoric slrain invariant. Both models were able to provide a realistic

simulation of the response up to about seventy percent of the ultimate strength.

Kotsovos and Newman (1978) also developed a nonlinear elastic isotropie model for

concrete based on the bulk and the shear moduli. The volumetrie strain that takes place even under

deviatoric stress was also included. Simulation of the test results showed that the entire stress­

strain curve could be modelled satisfactorily. Otloson (1979) changed the modulus of elasticity,

E, and the Poisson's ratio, v, according to the prevailing stress and strain conditions. A parabolic
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stress-strain relationship was modified to account for multi-axial stress conditions through the use

of a nonlinearity index, which relates the current stress state to the stress condition at failure.

The preceding discussion belongs to the general elastic bodies where anisotropy is the

result of the internai structure of the materia!. It also provides a one-to-one relationship between

the current state of the total stress and that of the total strain. Thus, by definition this type of

formulation is independent of the deforrnation path in the sense that stresses are uniquely

determined from the current state of strain, or vice versa. Therefore, it has an inherent limitation

in application with respect to conerete, since the loading-path dependence ofthe deforrnation state

of concrete has been weil recognized (Chen, 1982; ASCE, 1991).

2.2.1.3.3 Hypoelastic Models

An alternative approach to overcome the above deficiency is to describe the material

behaviour in terrns of increments of stress and strain. The stress-strain relationships are then

cxpressed using the tangent stiflhess which varies with the current stress state. Thus, this class of

model is generally dependent on the deforrnation history. The behaviour ofthis class ofmodel is

infinitesimally (or incrementally) reversible (elastic behaviour). Literally, "hypo" means "in a

lower sense" or "to a lower degree". Hence, hypoe!astic can imply a materia! that is elastic to a

lower or incremental sense. A hypoelastic materia! can be interpreted to be capable of allowing

for inelastic or plastic behaviour. The incremental stress-strain relationship for an orthotropic

material takes the forrn:

o

V21 Et 0

E2 0

o (1- VI2 v2t)O

(2.25)

•

where El and E, are the instantaneous tangent stiffuess moduli with respect to directions 1 and

2, respective1y; G is the instantaneous shear modulus of elasticity on that plane; and V;j is the

instantaneous Poisson's ratio in direction i due to uniaxial stress in direction j (i, j= 1, 2).
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2.2.1.3.3.1 Liu, Nilsou, and Slate Model

The first use of the incrementaHy orthotropic constitutive matrix. Eq. 2.25. in conjunction

with the finite element analysis ofreinforced concrete structures was reported by Liu. Nilson. and

S!ate (1972). They introduced the stiffness matrix in Eq. 2.25. in an explicitly symmetric form as:

El v~ 0

El vE2 E2 0
(2.26)[Cl =

El - v2E2 0 0
E, (El - v' E,)

El +E2 +2E,v

In the above equation, direction! coincides with the direction of the major principal stress

axis. The tangent moduli E, and E, are obtained from the uniaxial stress-slrain curve of eoncrete.

The Poisson's ratio is assumed to be constant and the same in both principal directions, 1 and 2.

The uniaxial stress-strain curve is modified to account for the biaxia! action ofstresses as foHows:

where al&, a) and ale) are the stress-strain curves under biaxial and uniaxial 10Bdings,

respective!y. a is the ratio of the minor principal stress to the major principal stress, and v is the

Poisson's ratio in uniaxialloading. Using this formulation, the biaxial stress-strain relationship is

replaced by a uniaxial stress state which is quite simple to be handled. El and E, are the tangent

moduli defined by Eq. 2.27 corresponding to the strains in directions 1 and 2, respectively.

•
. 1

o(e,«) = --ole)
1-v«

(2.27)

2,2.1.3.3.2 DamIn and Pecknold Mode1

Another common application of the orthotropic stress-strain relation was developed by

DalWin and Pecknold (1974). Two modifications of Eq. 2.25 were carried out by DalWin and

Pecknold. Firsl, they introduced an "equiva!ent Poisson's ratio", v, which is defined as

(2.28)

•
Secondly, since no information was available on the shear modulus G, they assumed that it is
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independent of the axis orientation. This leads to the following relationship:• (I-v')G = .!(E + E, -2v{(EIE,» (2.29)
4 1

Then. Eq. 2.25 takes the fonn:

!'"'l
El v {El E, 0

1"'1
1 v {ElE, E, 0

:~,
(2.30)do, =

(1- v') i (El + E, -2v {El E,)d1;I' 0 0

If the incremental equivalent uniaxial strains. dE" and dE". arc defined as:

• then Eq. 2.30 becomes:

dOl = Elde lo

do, = E,de,.

d1; 12 = Gdy 12

(2.31)

(2.32)

These equations have the same fonn as for the uniaxial stress conditions, which led to the

nomenclature "equivalent uniaxial strain" for dE" and dE". The definition of the equivalent

uniaxial strain can be restated. using Eq. 2.32 as:

•

or its discrete equivalent:

e = Ida;
10 E.

1

e =
Ùl
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•
where ~a, is the ineremental change in the principal stress a,.

This suggests that once the stress-strain relationship has been fomlulated in a forro similar

to the uniaxial stress case. similar stress-strain rclationships can be used for biaxial action in each

principal direction.

The values of El and E, for a given principal stress ratio. a. are found as the slopes of

the cri versus Elu and cr:! versus E:!u curves. The assumed stress-strain curve for the concrctc in

each principal direction is shown Fig. 2.9. The ascending branch of the envelope curve under

compressive load is govemed by the Saenz equation (Saenz 1964) as:

(2.35)

•

•

where E. is the tangent modulus of elasticity at zero stress. E,=a,/E" is the secant modulus at the

point of maximum compressive stress, and E;, is the equivalent uniaxial strain at the maximum

compressive stress. The descending branch is Iinear starting at the peak point (E;"a,,) and ending

at point (4E", 0.2r,l, where E" is the strain corresponding to maximum uniaxial compressive

stress. This simple branch has been adopted for simplicity and it represents a rcasonable

approximation of the experimental results. Concrete under uniaxial tensile load was treated as a

perfect brittle material 50 that it behaves Iinearly up to its maximum tensile stress, ri' and in the

post-peak region, it has no load carrying capacity (tension-eut off behaviour).

To account for behaviour of concrete under cyclic loading, at low values of equivalent

uniaxial strain unloading and reloading take place on a single line with slope E•. At higher values

of equivalent uniaxial strain, the unloading curve consists approximately three lines: the first with

slope E.; the second parallel to the reloading line; and the third with zero slope, as shown in Fig.

2.9.

The value of equivalent Poisson's ratio, v, is taken to be 0.2, both in biaxial tension and

biaxial compression. A stress dependent value is used in uniaxial compression and tension­

compression cases as:
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• v ; 0.2 + 0.6( (2
)· + 0.4(~)·

/, ale
(2.36)

•

where, a, and a, arc the current principal stresses in directions 1 and 2, respectively; f, is the

uniaxial compressive strength of the concrete; and a" is the tensile strength of concrete in major

direction 1. More detailed information for this model is presentee! in a report by 5hayanfar and

Mirza (1994).

2,2.1.3.3.3 Elwi and MumlY Model

Elwi and Murray (1979) developed a three-dimensional stress-strain relationship for

concrete under axisymmetric stress conditions (i. e., '" = ,,,), which incorporates the equivalent

uniaxial strain concept of Darwin and Pecknold (1977), the nonlinear uniaxial stress-strain

relationship by 5aenz (1964), and the Argyris failure surface (Willam and Wamke 1975). The

three-dimensional orthotropic constitutive matrix for axisymmetric condition can be obtained from

Eq. 2.10 by deleting the fifth and sixth columns and rows ofits coefficient matrix. The resulting

coefficient matrix, (5), for axisymmetric condition is a 4x4 matrix and the incremental stress-strain

relationship takes the form:

(de) = [Sllda) (2,37)

where (5) is the compliance tensor and {dE} and {da} are the vector of strain and stress

increments, respectively. The following constraints must be fulfilled to ensure the symmetry of

the compliance tensor:

V12 EI = v21 E2
v13Et = v31 E3
v23 E2 = v32 E3

By inverting Eq. 2.37 and incorporating the above conditions, the following stress-strain

relationship is obtained:

•
(dal = [Cl (deI

in which [C) is the constitutive matrix and can be expressed as,
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JEIE,(I"JI'J' + l',,) JEIEJ(I'"I'l2 + l'Il) 0El (1 -1'32)

v'E,E,(I'IlI'J' + l',,)
2

JE,EJ(I',,1'1l + l'J,) 01 E,(l-I'13) (2.39)[Cl =
<!>

yi El EJ(1'"1')2 + l'Il) JE,EJ(I',,1'1l + l'J,)
2

EJ(1 -1'12) 0

0 0 0 GI ,<!>

in which l',,' ; v" v" and <!> ; 1 - l',,' - l',,' - l'Il' -2 l'" l'" l'Il' The shear modulus of e1asticity

(G,,) is assumed to be invariant with respectto transformation to any non-orthotropic set of axes

which results in:

(UO)

•

The uniaxial compressive stress-equiva1ent strain relationship, cr.-&", due to Saenz (1964)

is generalized to three dimensions in terms of the equivalent uniaxial strain, &", strength of the

concrete under biaxial stress condition, cr'o' and the strain corresponding to this strcngth, &"

(Bashur and Darwin 1978). The modulus of elasticity in orthotropic direction "i" is evaluated as

the slope of the cr.-&,. curve. The Poisson's ratio is assumed to be unique in each orthotropic

direction (i. e., v" = v" = vol = v,). which is delined as

VI = Vo [1.0 + 1.3763(E1.) - 5.3600(EI.)2 - 8.5860(EI.)3]
E", E,,, Etc

(2.41)

•

in which v. is the initial Poisson's ratio. &" is the current equivalent uniaxial strain in direction

"i" and &'0 is the strain corresponding 10 peak point at failure. The Argyris failure criterion

(Willam and Wamke 1975) is used to evaluate cr'o and &'0'

2.2.1.3.3.4 Bathe et al. Model

Bathe and Ramaswamy (1979) implemented a three-dimensional hypoelastic model for

concrete into the commercial fmite element program ADINA. This model was later relined by

Bathe et al. (1989). ln Ihis later version. stresses and strains in the principal directions are related

by means of uniaxial slress-strain relalionships based on Ihe equalion proposed by Kupfer el al.
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(1969). This uniaxial stress-strain relation was generalized to take biaxial and triaxial stress

conditions into account. Concrete was considered as an orthotropic material with the directions

of orthotropy defined as the principal stress directions. The constitutive matrix, [C], corresponding

to these directions in the three-dimensional stress state is presented as,

(1-v)E, vE12 vEil

vE,1 (l-v)E, vEn

vEll vEn (l-v)El

o
o
o

o
o
o

o
o
o

[Cl • 1
(1 +v)(I-2v)

o

o

o

o

o

o

o

o

o

1-(l-2v)E122

o

o

o

1
-(1-2v)E'l
2

o

o

o

1-(1-2v)EiJ
2

(2,42)

in which v is the Poisson's ratio, E; is the current tangent modulus of elasticity in the principal

direction i which is equal to the slope of the generalized uniaxial stress-strain curve at the current

strain, and E;j is the weighted Young's modulus of elasticity corresponding to the plane i-j which

is defined as:

• E.. = 10iiEi + 10jiEj
Q 10il + 10jl

(2.43)

•

where, ai and aj are the current principal stresses in directions i and j, respectively. According to

this weighted Young's modulus, the shear modulus of elasticity in the plane i-j is calculated as:

(2.44)
2(1 + v)

This hypoelastic model uses a non-constant Poisson's ratio to account for dilation under

compressive loading. To characterize loading and unloading conditions, they defined a loading

function f:
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• (2.45)

where J, is the second invariant of the deviatoric stress tensor. (S" = 0" - crm 1;") is the deviatorie

stres~ (ensor. (crm = 1/3 cr,,) is the hydrostatic or mean stress. and 0" is the Kronecker delta. The

matdal is being loaded except the following condition is met:

f<fmu, (2.46)

•

•

in which fmu is the maximum value of the loading function that has been reached during the

complete solution. During unloading. only the initial Young's modu1us. Eo• is used to form the

incremental constitutive matrix. Eq. 2.42. both for stiffness and stress calculations. Tensile

cracking and compression crushing conditions are identified using failure surfaces. The strain

softening responses are included in the compression and the tensile regions. For more information.

refer to Bathe et al. (1989).

2.2.2 PlASnCfIY-BASED MODELS

The theory ofplasticity was initially developed and successfully used in the representation

ofmetal behaviour. In recent years, plasticity-based models have been used extensively to describe

the behaviour ofconcrete materials, and capture its essential characteristics such as nonlinearity,

irreversibility, path-dependency, dilatancy, etc. (Suidan and Schnobrich, 1973; Chen and Chen,

1975; Buyukozturk, 1977; Chen, 1982; Chen and Han, 1988). However, the application of the

plasticity-based models has becn criticized because of their inability to describe the degradation

of the elastic moduli (decrease of the unloading stiffness resulting from extension ofmicrocracks;

refer to Figure 2.10) and of strength (decrease of ,mess hecause of micro-fracturing leading to the

strain-softening branch) in the post-peak regime. In the pre-peak regime, the plasticity-based

models do not a1so idealize the degradati;:'11 of the elastic moduli, but it is not crucial. Thus, the

modelling based on the theory of plasticity can be successfully used in the pre-peak region.
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The following three basic assumptions are used in the development of the c1assiealtheory

of plasticity:

1) An initial yield surface,

2) A hardening rule, and

3) A flow rule

The lirst assumption states that a stress function, f, exists delining the limit of elasticity of the

material. Il is calied the initial-yield function before plastic deformations occur, and loading

function, beyond initial yielding. ln fact, this function in stress space can deline the stress states

at which plastic deformation does not exist (f<O), plastic deformation begins (f=0) and plastic flow

occurs (1'>0). Before yielding (f<O), the elasticity-based constitutive laws, discussed in Section

2.2.1.2, arc used to characterize the concrete response. A hardening rule regulates the evolution

of the subsequent loading surfaces during the course of plastic flow. A flow rule delines an

incremental plastic stress-strain relationship using a plastic potential function, g.

The models based on the theory of plasticity can be classilied into IWO groups: (1) the

elastic-strain hardening models; and (2) the elastic-perfectly plastic models. If an elasto-plastic

model admits changes of permanent strain u.'1der constant stress, it is called an elastic-perfectly

plastic model, otherwise it is considered to be an elastic-strain hardening mode\. A brief

description of these models is presented in the following sections.

2.2,2.1 Elastie-Strain HanleDing Model

When the state of stress reaches the yield surface, f=0, concrete undergoes plastic

deformation. At this stage, the total strain increment, dEij' is assumed to be composed of elastic

and plastic strain increments:

(2.47)

•

where dE:; and dEr; are elastic and plastic strain increments, respectively. In the theory of

plastieity, the direction of the plastic strain veetor is defined through a flow rule by assuming the

existence of a plastic potential function, g, to which the plastic strain vectors are orthogonal

Mathematically, this can be expressed as:
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in which ~O is a scalar propartianality factor. For an assaciated flaw rule. fis assumed ta be

equal ta g (f~g). while for a nan-assaciated flaw rule. f is nal cansidered la be equalta g. In

practice. mast of the materials are ca:lsidered ta fallaw nan-assaciated flaw rule of plaslicity.

As mentianed earlier. befare yielding. elastieity-based constitutive laws arc used ta express

the stress-strain relatianships. Beyand the initial yielding surface (see Figure 2.11). bath initial

yield and subsequent stress states must satisfy the fallawing yield functian. in the plastic laading

range, (Chen and Chen. 1975; Chen, 1982)

and f + df = 0 (2.49)

where k is the material constant, and a functian of Ihe plastic strain tcnsar, &1,. From the abave

equatian and using the variatianal calculus, the fallawing cansistency condition can be abtained

•
afdk = 0
ak (2.50)

From this equatian, and equatians 2.47, 2.48 and 2.49, the fallawing stress-strain relatianship in

the plastic regian (the regian enclased by initial yielding surface and fracture surface in Fig. 2.11)

is abtained

(2.51)

where, Di;",. D~j'" and Di~", are the elastic, plastic and elasta-plastic tangential stiffnesscs,

respectively. The plastic-stiffncss tensar, D~j"" for an elastic-strain hardening matcrial has the farm

D.f
kl

=
!J h + af De ...È!...aa mnpq aa

mn pq

(2.52)

•
in which the scalar functian, À, and the hardening parameter, h, are bcing defined as
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and.

h +

al e
-D"kJdEtJao lJ

'J (2.53)

h ; _ al ag _

a pao.
E .. Il

lJ

(2.54)

It is noticed that ifnon-associated flow rules are used, the tangent stiffuess matrices, D:jU' become

undesirably asymmetric, i.e.

I~g then (2.55)

•

•

Therefore, the finite element programs must have the capability of handling the unsymmetric

stiffuess matrix to incorporate this kind of models. On the other hand, the associated flow rules

do not correctly capture the volumetric response of the concrete (Chen, 1982).

The isolropic-hardening model proposed by Chen and Chen (1975), the uniforrn hardening

model developed by Han and Chen (1985) and the multiple hardening model suggested by Murray

et al. (1979) are among the popular elastic-strain hardening plasticity models. None of these

models can accnunt for strain softening and degradation of the elastic modulus in the post-peak

region.

2.2.2,2 Elastic-PeJfecdy Plastic Model

Under high levels of confinement, concrete is known to manifest significant ductile

behaviour before fracturing. To model this ductility, the peJfect plasticity concept was introduced

as a reasonable first approximation. This model can be treated as a special case of the model

discussed in the preceding section, in which the hardening parameter vanishes to zero (h=O) and

the loading surface, f, is only a function of the state of stress and the plastic strain as:
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• (2.56)

Using this model. the ineremental stress-strain relationship introdueed in Eq. 2.51 is applicable

in the plastic region. The plastic-stiffness tensor. 0:,,,. for an elastie-perfectly plastic material with

an associated fiow rule (f=g) can be introduecd as

Dp ­ijkl - aj De ai
ao mnpq ao

"ln pq

(2.57)

•

•

As pointed out earlier, the elassieal theory of plasticity is based on the assumption that plastic

deformation oeeurs without a eorresponding change in the elastie moduli. But eoncrete is known

to experienee a degradation of the elastic moduli due to mierocracking, espeeially in the softening

regime (see Figure 2.10). The plastie-fracturing theory diseussed in the next section, aceounts for

this behaviour of eonerete by including the strain in the definition of plastic flow.

For moderate strain, mild steel behaves approximately Iike an ela.tie-perfectly plastic

material in both compression and tension. For eonerete, it is not realistie to treat it as an elastie­

perfectly plastic material; but this assumption in eonjunetion with the limit theorems of plastic

analysis and design reveals reasonable results in the response of reinforeed eonerete structures.

From the view point of constitutive modelling, the hypoelastie-perfeetly plastic model proposed

by Ohtani and Chen (1987) ean be eonsidered as an elastie-perfectly plastic model. In this model,

eonerete is idealized by a hypoelastieity model before yielding and an elastie-perfeetly plastic

formulation in the post-yielding regime. This model suffers from its inability ta deseribe the

degradation of the elastie moduli and degradation of the strength leading to the strain-softening

behaviour in the post-peak regime.

2.2.3 PLASTIC-FRAcruRING MODELS

The plastie-fraeturing theory appears to be an effective approaeh in modelling the

behaviour of eonerete materials. In this theory, the :nelastie behaviour of eonerete is attributed to

mieroeraeking in addition to plastic slip (Bazant and Kim, 1979). In other word, plastic
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deformation is defined by the flow theory of plaslieily in Ihe usual manner, while the sliffness

degradalion is modeled by the fraeluring theory of Oougill (1975). Thus. fracluring concepls arc

combined wilh the plaslicity Iheory 10 derive Ihe conslilutive relalions. In these relations, the

plastic slrain increments arc obtained using the conventional plastic loading surfaces in the stress

space, whereas the fracturing stress decrements arc defined by a postulated pOlenlial function in

the strain space:

f( aij' Ht ) = 0
cjl( Eij' H't) = 0

(2.58)

in whieh f and <jl are the loading and the fracluring surfaces; and H, and H', are the hardening

parameters. The resulting constitutive equation from this theory is:

(2.59)

•

•

where, 0:,,,, Or;", 0[;1<1 and 0:,1<1 are the elastic, plastic, fracturing and total tangential stiffnesses,

respectively. Through the use of tedious algebraic calculations and six inelastic material

parameters which are functions of stress and strain invariants, the above tensors can be evaluated.

It was mentioned earlier that this approach combines IWO loading surfaces, the yield

surface in the stress space and the fracturing surface in the strain space. This causes difficulties

in the definition of the loading criterion, which is specially serious for the softening regime in

which the strains continue to increase with the decrease of stresses. To avoid this problem, a

strain-space plasticity approach has been proposed by Han and Chen (1986) to formulate the

plastic Iracturing surface. More information about the fvrmulation of this theory can be found in

the paper by Bazant and Kim (1979), and in the book by Chen and Han (1988).

The plastic-fracturing models have been criticized in that the stress-strain relationship in

the softening range is merely a nominal property, and not a material property as assumed by the

mode!. In the post-peak regime, strain localization usually occurs and the descending branch of

the load-deformation curve may not be interpreted as the strain-softening of the materia!.

However, if the geometrical and structural effects are lumped together and considered by sorne

means like the model of Frantziskonis and Oesai (1987), the continuous description of the

softening stress-strain relation may be reasonable. The plastic.fracturing models generally require

a large number of functions and material parameters, and involve heavy computational iterations
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in the finite element analysis. Therefore. the application of these models is very limiled in

practice.

2.2.4 ELASnC-PLASnC-DAMAGE MODELS

As mentioned perviously. the failure of concrete is allributed to the progressive

propagation and concentration of microcracks in the material. This is defined as the damage of

the material. The continuum damage mechanics (Kachanov. 1986) based on thermodynamics can

be used to model this pheNmenon. In this approach. the stiffness degradation behaviour is

assumed to be eaused by material damage. There are two types of material damage variables

usually employed to represent the damage. One is the isotropie or scalar damage which is related

to the collapse ofmicro-porous structure of the material. The other is the anisotropic or tcnsorial

damage which is related to the creation of surfaces in the material due to dc-cohesion. If a

material is virgin isotropic elastic. the scalar damage preserves its property, while the tensorial

damage induces anisotropy for the elastic behaviour of the material. This is called deformation­

induced-anisotropy. The damage growth in the material can be described by either prescribing a

damage evolution law (Maznrs, 1986), or by using the concept of damage surface (Krajcinovic

and Fonseka, 1981).

Two types ofdamage models, elastic-damage model and elastic-plastic-damage model for

the concrete have been suggested. ln the elastic-damage models, the inelastic behaviour of

concrete materials is reflected only in the stiflhess degradation, and there is no permanent

deformation in the material after a complete unloading. Dougill's work belongs to this category.

To describe the coupling between the plasticity ofthe concrete and its elastic stiffness degradation,

the elastic-plastic-damage models have been suggested (Ortiz and Popov, 1982; Frantziskonis and

Desai, 1987; Simo and JU,1987; Lubliner et al., 1989; Oliver et al., 1990; Chen 1992). To prevent

mesh-sensitiveness associated with the strain-softening in the finite element analysis, Bazant et a\.

(1988) adopted a modified nonlocal continuum approach in which the nonlocal averaging only is

applied to the variables that control strain-softening or damage.

In summary, the elastic-plastic-damage model that combines the conventional plasticity

theory with the continuum damage theory is very promising and should provide a reasonable

modelling technique for describing the behaviour of concrete materials. Presently, it is under

active development.
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2.2.S ENDOCHRONIC MODELS

The endochronic theory seems to be an attractive and comprehensive approach for

modelling of concrete material behaviour such as nonlinear response. inelastic volume dilatancy,

hydrostatic pressure sensitivity, damage accumulation, creep and cyclic behaviour. This theory was

iuitially proposed by Valanis (1971) as a generalization of the theory of visco-elasticit)" for the

description ofmetal behaviour. It attempts to improve the numerical efficiency by employing an

inelastic continuous model without recourse to yield condition and hardening rules. Bazant et al.

(1976, 1978, 1980) extended this theory to describe the behaviour ofconcrete materials. The basic

concept of the endochronic theory is the introduction of an intrinsic time as a non-decreasing

scalar variable used to measure the evolution of irreversible damage.

Although it appears that the endochronic models may become a potentially useful

approach in the numerical analysis of concrete structures, a clear understanding of the theory is

necessary because of ils limitations in satisfying the principles of continuum mechanics. A

thorough investigation of the accuracy , shortcomings and advantages of the endochronic theory

was undertaken by Hanna (1983) at McGiII University. One of the shortcomings reported by

Hanna is the incrementally nonlinesr nature "f the model which makes it quite expensive in terrns

of compllting costs. Moreover, a large number of material parameters are required to be defined

which, in tum, require more intensive computations.
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Figure 2.1: Details of concrete mass and magnification of its mortar portion for:

(A) concrete, (B) mortar portion of concrete, and (C) further magnification of mortar

(Chen and Cohen, 1992)
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Figure 2.2: Volumetrie strain versus uniaxial compressive stress (Kupfer et al., 1969)
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Figure 2.3: Variation of common and stability points under uniaxial compressive repeated

loading (Karsan and Jirsa, 1969)
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Figure 2.11: Loading surfaces of concrete in the bia.xial stress plane (Chen. 1982)
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CHAPTER3

THE PROPOSED MATERIAL MODEL

This chapter presents the proposed constitutive model for concrete and the required

material properties including, the stress-strain curve, the instantaneous modulus of elasticity, the

Poisson's ratio, etc. The constitutive model for concrete is introduced for IWo distinct cases: the

uncracked concrete and the cracked concrete. The uncracked concrete is modeled using a new

hypoelasticity model which allows for the evaluation of the equivalent uniaxial strains in terms

of the "resl" strains in both pre- and post-compressive peak regions. With regard to the uncracked

concrete IWo common types of crack modelling techniques (discrete and smeared crack models)

are discussed and a brief discription of the different smeared crack models (fixed, rotating and

multiple crack models) in connection with the proposed hypoelasticity model are presented (see

Shayanfar and Mirza, 1994). The compressive strength-degradation of the concrete in the

compression-tension state after cracking is also included as reported by Vecchio and Collins

(1986). The monotonie and cyclic stress-straïn curves which cao be used effectively for both

normal and high-strength concretes, the Poisson's ratio, the failure criteria for concrete and the

constitutive model for steel reinforcement are presented in the last part of this chapter.

3.1 GENERAL

ln recent years, a large number of constitutive models for concrete materials have been
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developed, as presented in Chapter :!, but the models that arc rational. reliable. practical and

simple to implement in a general purpose finite element analysis program arc very limitcd. A

rational concrete model should be able to describe adequately the main charactcristics of thc

complete stress-strain behaviour of concrcte materials. ranging from a tension with a low

confining pressure to a compressive state with very high confining pressure. besides dealing with

both the pre-peak and the post-peak regimes. Furthermore. the reliability of an applicable model

is closely re!ated to its numerical stability, which in tum depends on its formulation and the

numerical techniques adopted for ils computer implementation. This practica! application requires

that the model should be as simple as possible, as long as the main characteristics of the

constitutive behaviour of the concrete materials are "captured". The main characteristics of a

proper mode; for concrete materials, as discussed in Chapter 2, can be summarized as follows:

1) The high nonlinearity of the stress-strain behaviour of concrete in the pre-peak regime,

i. e. growing and propagation of microcracks resulting in a decrease in thc material stiffuess.

2) The softening behaviour of concrete in the post-peak regime rcsulting from the

localization of macrocracks in narrow bands.

3) The elastic stiffuess degradation caused by the extension of microcracks during

subsequent unloadings and reloadings. (refer to Fig. 2.6).

4) The irrecoverable volume dilatation at high I~vel of compressive load resulting in an

increase in the Poisson's ratio.

Ali of the above features for concrete are included in the material model developed during

this course of study. This model can be treated as a hypoelastic model which is very simple to

implement in a nonlinear finite element analysis program. The incremental nature of the

hypoelastic models along with the nonlinear stress-strain relationship utilized in the proposed

model (see Section 3.4.1), capture the nonlinear stress-strain behaviour of concrete. The proposed

constitutive model is applicable for the entire stress or strain history including the post-peak

regions and CM model the strain softening behaviour of concrete through the assumed nonlinear

stress-strain curve. The proposed analytical stress-strain relationship for concrete, under cyclic

loading, can account for the stiffuess degradation during subsequent unloadings and reloadings

(see Section 3.4.2). A variable Poisson's ratio is used to account for volume dilatation at high

stress levels (see Section 3.5).
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• 3.2 CONSTITUTIVE MODEL FOR UNCRACKED CONCRETE

Once again the gcneralized incremcntal Hooke's law for an orthotropic material under

biaxial actions. Eq. 2.25. is modified according to the following assumptions:

1) To satis!)' the cncrgy conservation principlc. the elastic material stiffness matrix should

be symmetric. giving:

(3.1)

2) To deline the Poisson's ratios (v"' v,,). the following equation i~ impc>sed:

(3.2)

•
where E. is the initial stiffness moduli and v is the equivalent Poisson's ratio as described in

Section 3.5.

3) Because of lack of information re!ated to the shear modulus of elasticity of the

concrele, G, it is also assumed to be independent of the axis orientation. This assumption

accompanied with Eqs. (3.1) and (3.2) resu!ts in the following equation:

.!.(E + E24 t
(3.3)

With these assumptions, the incremental stress-strain relationship in Eq. 2.25 takes the following

form:

j
d0tl l

d0'22 t =
dO t2

El VEl E., lE.

V El E., lE. E.,

o 0

o
o

1 El E.,-(E1+E.,-2v--)
4 E. 1

detl 1
dezz (3.4)

dY12

•
The above constitutive matrix contains four matenal constants which are the instantaneous tangent

stiffness moduli in the principal directions 1 and 2, i. e. E, and E" the equivalent Poisson's ratio,

v, and the initial modulus of elasticity, E•. The evaluation ofthese parameters at each load stage
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• is presented in Sections 3.4 and 3.5.

3.2.1 Equivalent Uniaxial Strnins

For an incremen: of stress or strain. the material can be assumed to behave as a lincar

elastic material and the principle of superposition can be considered to be applicable. Thus. the

state of "real" stress at any l'oint of the clcment in its principal plane is composcd of two di~tinct

cases (see Fig. 3.1):

(1) Stress is applied only along the axis 1 (da, " 0 and da, ~ 0). and the resulting

incremental strains in the principal directions 1 and 2 arc El' and E,.". respectively (sec Fig.

3.lb):

(2) Stress is applied only along the axis 2 (da, ~ 0 and da, " 0). and the resulting

incremental strains in principal dirertions 1 and 2 are E,." and 1:". respectively (see Fig. 3.lc).

The condition for equivalence of the systems (a) and (b+c) is (see Fig. 3.1):

Applying Eq. 3.4 for each stress state (b) and (c) separately. the following equations arc obtained

corresponding to the directions with no stress:•
dei = delv + del)v
de2 = de2v + de2,lv

(3.5)

EE
y ----!...2de + E2de, Iv = 0E Iv ..

o
EE

+ y_I_2 de
E 2v

o
=0

(Case b)

(Case c)

(3.6)

•

The strains E,.l. and E,.,. can be expressed in terms of El. and 1:,. as follows:

de21v
yEI= --dEI

• E v
0

del)v
YE2= --deE Iv

0

Combining Eqs. (3.5) and (3.7) gives:
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1

(3.8)

Solution of this equation for dgl• and dg,. gives the following results:

1
vE,

JdE tu } 1 Eo rEl} (3.9)=ldE,. , EIE, vEI 1
dE,

l-v --
E' Eo0

Equation (3.9) is a general equation which can be used to evaluate the incremental equivalent

un:a.xial strains, d&;., based on the current incremental "real" strains, dg;, (i = 1,2).

By following a similar procedure, Eq. 3.9 takes the following forro based on Darwin's

constitutive matrix (see Eq. 2.30):

•
= _l_

I-v'

1 v~ {dEI}

~
de,

V _1 1
E,

(3.10)

•

lt is obvious that the use ofEq. 3.10 is limited to the case where the moduli of elasticity

(El and E,) have positive non-zero values. This condition (non-zero value for the modulus of

elasticity) occurs when the state of stress in two principal directions is located on the ascending

branch of the stress-strain curves. Based on several analyses, it was noticed that when the

tangential stiffness, Ei, becomes nearly zero, the error ofthe incremental equivalent uniaxial strain,

Ô&I., resulting from Darwin's method (Ô&I. =ÔO"i 1El) becomes larger, and compression failure of

the concrete occurs suddenly with a rapid increase of the equivalent uniaxial strain. On the other

hand, the equivalent uniaxial strains evaluated using Eq. 3.9 do not suffer from the difficulty

arising from the division by zero, or a very small value. Therefore, the incremental stress-strain

relationship in Eq. 3.9 is applicable for the entire stress or strain history (in both pre- and post-
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peak regions). while Eq. 3.10 can only be uscd for the pre-pcak r~gime.

\Vith the crucial assumption of concrete being an isotropic material. i.e.. E,=E,=Eo• Eq.

3.9 takes the following fonn as proposed by Noguchi (Meyer and Okamura. 1985):

3.2.2 Romtion of Materia1 Axis

[
Iv ] {dC' }
v 1 dc,

(3.11)

•

During the subsequent iterations/load steps. because of the presence of shear stresses the

principal and material axes rotate. The material axes are assumed to coincide with the prin~ipai

axes. A sehematic representation of the material principal axes during two subsequent iterationsl

load steps is shown in Fig. 3.2. The orientation of each principal coordinate system is measured

with reference to the local coordinate system of the element.

ln each iteration/ load step. the angle between the current principal coordinate system and

the previous coordinate system. "9,=9.",.9,,,. is obtained and then the previous equivalent uniaxial

strain vector. {t,,,,,}, is transfonned by the angle ,,9, to obtain its projection in the new principal

coordinate system. {t',u,"} which results in:

(3.12)

The incremental strain vector in the local coordinate system, {"t}, is obtained as:

(3.13)

•

where {t,,,} and {t"w} are the previous and the current strain vectors in the local coordinate

system, respectively. Then the incremental principal strain in the new coordinate system. {"t',}.

can be evaluated as follows:
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• (3.14)

or.

(3.15)

where {&'",,} and {&".w} are the transformed old and the new principal strain vectors in the new

coordinate system, respectively. From the above incrementaltransformed principal strain vector,

{à&',}. the incremental equivalent uniaxial strain vector, {l>&,.}, is obtained using Eq. 3.9 as

1
vE,

tEl.} 1 E. tE't} (3.16){d El.} = =dE,. ,EtE, vEI dE'I-v -- 1
,

• E' E.•

Finally, the new equivalent uniaxial strain vector is calculated as

(3.17)

•

It is obvious that based on the above formulation, the equivalent uniaxial strain is obtained

from the "real" principal strains and the material parameters (E,. E" and v) corresponding ta the

previous load stage. In Darwin's model, the material axes are nottransformed if the principal axis

rotates within :l:45 degrees from their original position; beyoud this limit. the material axes are

transformed, This method introduces a discontinuity in the computed equivalent uniaxial strains

and causes more errors in the computation process (Meyer and Okamura. 1985). The method

adopted in this study as outlined earlier, ensures the continuity of the computed equivalent

uniaxial strains and gives more reliable results.
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3.3 CONSTITUTIVE MODEL FOR CRACKED CONCRETE

Cracking of concrcte is one of the important aspects of material nonlinear behaviour of

conerete. Intensive research effort has resuhed in a large numbcr of cracking models, whieh con

be divided broadly into two categories. namely, discrete cracking models and smeared cracking

models. Furthermore, within each category. these models can be applied either \Vith a strength­

based, or fracture meehanies based crack propagation criterion (See Fig. 3.3).

3.3.1 The Discretc Cmeking Madel

The diserete cracking model is based on the concept of displacemcnt discontinuity aeross

a crack. In a finite element analysis program, this ean be achieved by diseonnecting clements at

the nodal points along their boundaries as shown in Fig. 3.4. The main problcm \Vith this approaeh

is the difficulty resulting from the introduction of the additional nodal points required by the

altered topology of the analytical model.These additional degrees of freedom have the effecl of

deslroying the small band width of the global structural stiffness matrix, resulting in a mueh

greater computational effort to solve the equilibrium equations.

The discrete cracking model was first used for the analysis of reinforced concretc beams

by Ngo and Scordelis (1967). For problem involving a few dominant cracks, sueh as the diagonal­

tension crack in a reinforced conerete beam, the diserete cracking model offers a more realistie

representation, i. e., a crack represents a strain discontinuity. Moreover, the aggregate interlock

and the dowel action ean be modelied in the discrete-cracking representation by using special

linkage elements that cross the crack and control its behaviour as il opens and slides. The stiffncss

of this linkage can be deereased as the crack opens, thereby deereasing the interlock forces with

wider cracks. ln practice, the discrete cracking model is not popular and the majority of the

avaHable computer programs in nonlinear finite element analysis of reinforced concrete arc

employing the smeared cracking mo,jel whieh is easier to implement and much less

computationally demanding than the discrete model.

3.3.2 The Smeared Craclàng Madel

The smeared crack model developed by Rashid (1968) has been adopted by the majority
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• investigators in the area of nonlinear finite element analysis of reinforced concrete structures. This

mode! offers automatic generation of cracks, without a redefinition of the finite element topology

and complete generality in possible crack direction. Based on this procedure, the cracked concr"-te

is rcpresented as an orthotropic material with an infinite number of parallel fissures across that

part of the finite element (see Fig. 3.5). After cracking has occurred (usually defined when the

principal tensile stress or strain exceeds a predefined Iimiting value), the constitutive matrix is

defined as:

(3.18)

•

in which E, (E, = 0) and E, are the tangential stiffnesses perpendicular and parallel to the crack

direction, respectively. Once the second crack is detected in the direction perpendicular ta the first

crack. the tangential stiffnesses E, is also set ta zero. The factor 13 (0<13 <1.0) is the multiplier of

the uncracked concrete shear stiffness, G, which accounts for the reduced shear stiffness after

cracking has resulted tTom dowel action and aggregate interlock, and is called the shear retention

factor. If the terrn j3G is ignored in the above equation, it can cause numerical difficulties in sorne

cases, and also cause distortion of the crack patterns obtained from the finite element analyses

(Schnobrich, 1972; Hand et al., 1973; Lin and Scordelis, 1975). To model the tension-stiffening

effect using the descending brancll of the tensile stress-strain curve, E, may be set equal to zero,

or deterrnined as the secant modulus of elasticity as shown in Fig. 3.12. Table 3.1 summarises the

key features of both discrete and smeared cracking models.

The cracking models employed in conjunction with the smeared crack procedure can be

categorized into the following three ~oups:

1) Fixed crack models

2) Rotating crack models

3) Multiple non-orthogonal crack models
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Table 3.1: Cracking Models (Bello. 1992)

Model Base Approach Ad\'antagcs Disnd"nntn~es

Additional Cnllctl:lc

Bond ctfects arc more: properties. q;. cncrb~

accuralc:1y represcmcd rdeuse ralc, G l •

fracture Il'ug,hncss. K..

Crack width
Redclinition ofBased On encrg)' computation is moreFracture t\.1cchanics

n:1C'asc raie accurale struCture IOflohlgy ;\I\cr
crack fomlation.

ll rohlcms of non·
Extensive rcmcshing isobjcctivit)' do nm arise.
rcquircd whcn: crilck
direction is Ilot 1.1\\1\\1\

'J prion
Discrcte Crocking

More rcnlislic whcn fc"
cracks dominalc
bchnviour. Samc as nbovc: but 110

:\dditionnl concrelc
Com rcalislically propcrty is rcqllircd.

Suength bascd B:JScd on Iimiting rcprcscnt aggrcgnlc
tensile suess! str3in interlock by use of Onen the prcdiclcd

linkage clement. response is sensitive 10

the relinement of linite
Use fui in investig:lling clement mesh.
stresses wlten crack
localion is predefined.

Problems of non-
objectivity do not arise.
Can handle problems
involving few dominant Addhional concrete

Bnscd on energy cracks. propel1ies rcquired. cg.
Frac1Ure Mechanics

relense nue energy relense nUe, GI'.
ln addition, it has the frocture 10ughness, i\..
thrce advMmges Iisted
below for suength-
bnsed mode!.

Smeared Cracking Computlllionally I~ndcquute wllen
efficient; no necd to precise crack
redelinc structure locationlgcomelry is
topology uncr crocking. important.

Bnsed on Iimiting Crock direction is not Prone 10 non-
Strength based restricted to clement objectivity; depcndencctensile stress! strain

boundarics. of solution on grid
sizc.

Adequate in problems
in which precise c;Uck Inadequate in problems
location is not involving fcw
important dominant cracks.
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3.3.2.1 Fixcd Crnck Modcls

In the fixed crack models. once one crack is formed, the principal directions are not

allowed ta rotate and a second crack can fonn only when the stress perpendicular to the first crack

direction exceeds the tensile strength of concrete (a > f',). ln this model, the principal tensile

stresses "an be buiIt up at angles that differ from those of the original two fixed-orthogonal

directions. These stresses can eventually exceed the cracking stress; howevcr, no corrective action

can be taken with this model and as a consequence. the numerical solutions can be "too stiff' and

can lead to collapse loads that are significanlly too high (Cope et al., 1980; Milford and

Schnobrich. 1984; Crisfield and Wills. 1987 and 1989; Kolleger and Melhom, 1987). This mo~el

is adequate for elements reinforced in only one direction, or in two directions with almost the

same amounts of reinforcement.

3.3.2.2 Rotallng Cmck Models

ln rotating crack models (Cope et al.• 1980; Gupta and Akbar. 1984; Vecchio. 1989). the

shorlcomings associated with the fixed crack models are elinùnated by permitting the principal

directions to rotale after one or two cracks are formed. The cracking direction is taken to be

perpendicular to the current major principal strain at any stage of loading.

The stiff respl'nse resulting from fixing the principal directions is eliminated by using this

model. This approach has becn criticized by Bazant (1983) for not reflecting the physical narure

of cracking. However, it has been argued by Crisfield and Wills (1989) that when a tangential

shear modulus is chosen such that:

~G = (3.19)

•

then the orthotropic rotating crack models become tensorially invariant and hence consistent.

3.3.2.3 Multiple Non-Orthogonal Cmck Models

The multiple non-orthogonal crack models have the ability to duplicate more than IWO

non-orthogonal crack at one point of the strucrure. These models are not popular and only a few
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researchers have used them (Barzgar and Schnobrich, 1986; Rots, 1988; Barzgar and Rnmas\Vamy,

1990). The detailed discussion of this model is beyond the scope of this thesis. In this sludy, both

the fixed and rolating crack models have been fonnulated and used in conjunction \Vith the R C

nonlinear finite element fonnulation.

3.3.3 Compressive Strength Degradation After Cracking

While cracking takes place. the concrete parallel to the crack direction is still capable of

resisting tensile or compressive stresses. If it is subjected to tension. a Iinear clastic behaviour

for concrete is assumed up to a tensile stress level equal to the tensile strength of concrete, f ,.

which represents the onset of the !inear softening branch of tensile stress-strain curve of concrete.

as proposed by Kabir (1976).

However, when concrete is subjected to compression, experimental results reported by

Vecchio and Collins (1986), and Feenstra and de Borst (1993) show that the damages caused to

the concrete with the transve.rse post-cracking tensile strains, have a degrading elfect not only on

the compressive strength of the concrete, but also on its compressive stiffuess. Based on the

experimental results of the reinforced concrete panels tested at University of Toronto by Vecchio

and Collins (1986), the following fonnulas are used to detennine thc degraded compressive

strength of the concrete, G", and the associated compressive strain, &"

(3.20)

•

(E'.)where, P = 0.8 + 0.34 E", • 1.0 .

Here, &,. is the current tensile strain in principal direction 1 and &" is the uniaxial concrete strain

at the peak stress,
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3.4 STRESS-STRALN CURVE FOR COl'"CRETE

3.4.1 Monotonically Increasing Compressive Uniaxial Stress-Strain Curve

Based on the experimentaI findings of Sinha, Gerstle and Tulin (1964), and Karsan and

Jirsa (1969) [see Figs. 2.3 and 2.10], the stress-straÎn curve for concretc under cyclic loading has

an envelope curve identical with the curve for monotonically increasing compressive loads.

Thercfore, for the envelope curve of the compressive stress-strain curve under cyclic loading, an

analytical expression which rcprescnts the stress-suain curve of a cylinder of concrete subjected

10 monotonically increasing compressive loads up to failure, can be employed. Generalization of

the cxpression given by Popovics (1973) which has been found by Thorenfeldt et al. (1987) to

accurately represent the family ofstress-suain curves for different strength concretes including the

high strength concrete (refer to Figures 3.6 and 3.7) is adopted. This expression relating the stress,

cri' and thc equivalent uniaxial suain caused by this stress, Ei., is introduced as:

°i
ni (E~u)

=
E.e (3.21)

aie (Ei·r:li -1 + -
Eic

where, = current compressive principal stress in principal direction i,

=cquivalent uniaxial strain resulted from cri'

cri, = compressive strength of biaxially loaded concrete resulting from

the failure envelope curve,

Ei, = equivalent uniaxial strain when cr; reaches cri"

ni =curve fitting factor in principal direction i, and

k, = factor to increase the post peak deca~' in stress

Here, ki is equal to 1 when (Ei/Ei,) is Jess than 1, and it is a number greater than 1 when (Ei• 1Ei,)

exceeds 1. ColIins and Porasz (1989) suggested the value of ki for (Ei• 1Ei,) > 1 as

•
or,

O,
k. = 0.67 + _.c_

1 9000

S5

(in psi Units)



• o
k = 0.67 • ---'ô

1 62
(in MPa Unirs) (3.22)

The parameter n, takes a value greater than 1 and is evaluated using the equation:

or,

0"ni = 0.8 •
2500

o,
n. = 0.8 • ---'ô

, 17

(in psi Unirs)

(in MPa Unirs) (3.23)

•

ln the computer program if the calculated value for n, is less than or equal to l, it is assigned a

value of 1.1.

Equation (3.21) makes the relationship between a, and c,. a function of four constants:

a", co<' n, and ki • These four constants can ail be obtained from the compressive strength of the

concrete, ai" which is evaluated from the failure envelope curve suggested by Kupfer and Gerstle

(1973) depending on the biaxialloading ratio (a~a.ta,). For normal weight concrete, n, can be

estimated from Eq. 3.23 and k, can be calculated using Eq. 3.22. If the initial slope E. of the

stress-strain curve (initial modulus of elasticity) is known, or it can be estimated, the strain at peak

stress Ci. can be found from the fo1lowing equation:

n,
n. -1,

(3.24)

The initial tangent stiffness of the concrete, E., lies between the stiffness of the aggregatc

and the stiffness of the paste. \ts value can be estimated using the compo'li'" material mode1ling

laws (Mi1ls and Ono, 1972). One suggestion for E. is (Carrasquillo et ai.. ~ 981):

1,000,000 (in psi Units)

3000 < f'e < 12000 )

•
or,

56



• E. = 3320 rr; + 6900 (in MPa UnilS)

(for 21 < F c < 83 )
(3.25)

The values of E, and E, required in Eq. 3.4 for a given stress ratio (a; a, la,) arc found

as the slopes of the O,-E" and O,-E" curves, respeeti\'ely. The tangent ta the ascending branch

of the stress-strain curve, Eq. 3.21. is given by:

or,

• (3,26)

From the above equation, the initial modulus of elasticity can be evaluated as a function

of (J'IC and tIC nt Eiu := 0.0, namely,

E = (da;)
o dE

tu t:,..-O

°lc ( "; )=- ---
E;c "; - 1

(3,27)

•

On the othcr hand, this equation can be used to evaluate the strain at the peak point, E;" as a

function of a" and E., as introduced in Eq. 3.24.

For the elastic tension region (ascending branch of tensile stress-strain curve), E; is

assumed to be equal to E. and for the descending branch of both the compression and the tension

zones, E; is set equal ta zero ta avoid computational difficulties associated with a negative value

for E;. in the computer program developed in this study. The value ofE; in these regions is given
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by the user and the unbalanced stresses arc released in a step-wise fashion .

3A.i. Cyclic Uniaxial ComprcssÎ\'c Stn:ss-Slrdin Cun'c

Concrete under compression is assumed to behave elastically up to a eenain strcss level

(0.30 cr,,). A new analy!ical rcpresentation of the focal point model (Yankelevsky and Reinhardt.

1987) is used 10 construct the unloading and reloading cl\l"Yes under cyclic loading. ln this

formulation. it is assumed that in the uniaxial stress-stroin plane. there exist five geometricalloci.

which arc called as "focal points". These focal points allow the construction of the unloading­

reloading cycles using piece-wise Iinear curves (sec Fig. 3.8). F""r focal points (E. F. Gand H)

are 10cated on the tangent to the ascending branch of the envelope curve at the origin. and the

fifth focal point (1) reSlS on the strain axis as shown in Fig. 3.8.

To construct the unloading and reloading curves corresponding to point A(c" ' cr,,)

located on the envelope curve presented in the previous section, the following graphical procedure

is followed (see Fig. 3.8):

(1) Definc a stress-strain coordinate system.

(2) Plot the envelope curve in this coordinate system.

(3) Specify the focal points E, F. G. and H. whieh lie on the tangent atthe origin to the envclope

curve.with the following coordinates: crE = -3.0 cr•• cr. = -cr,<. cre = -0.75 cr•• and cr" = -0.2 cr.;

and the focal point 1 (-El<:' 0) on the strain axis.

(4) Connect the starting point A with focal point F to intersect the E axis at point B(E•• 0), where

E. is the residual strain which is termed the "plastic strain".

(5) Intersect the line connecting the focal point G and the point B with a vertical line passing

through the starting point A to obtain point C. which is called the "common point".

(6) The line that connects the focal point E and the point C intersects with the line connecling the

focal point H and the point B giving point 0 which is called "turning point",

(7) Connect the focal point 1 and the common point C and find the intersection of this line with

the envelope curve which is point J.

At this stage the unloading branch AC-CO-DB and the reloading branch BC-CJ arc eompleted.

While partial unloading is occurring at point R which is below the common point (refer to Fig.

3.8), the partial reloading consists of three parts: (1) the line RT, which connects the reloading

starting point, R, with point T, located on the global reloading curve BC (the slope of this line
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is equal ta the initial langent. DE). (2) the line TC which is part of the line BC, and (3) the line

CJ. If partial unloading oeeurs above the common point C. sayat the point R'. then R' is

projected on the envelope curve at A' and a new unloading-reloading curve corresponding ta point

A' will be constructed. This curve is shawn by dashed line in Fig. 3.8.

A mathematical representation of this model is used ta implement it into the nonlinear

finite clement formulation. According ta the following representation. the unloading and reloading

for each starting point A(E••,cr.J is generated automatically.

The point B is given by:

(3.28)

a = 0B

where E.= cr,lE", and B, = (cr.-cr.)/(E.-E.).

The point C is given by:

• EC = tA

Oc = B2 (EA - Ea> + 0G

where Ec = crdE.. and B, = -crc!(E.-Ec)'

The point D is given by:

B 3EE - B.EH + OH - 0E
ED =

B3 - B.

aD = B3 (ED - EE) + a E

(3.29)

(3.30)

•

where EH = cr,lE.. E. =crrfEo, B, =(crc-crJ/(Ec-EJ,and B, = -erJ(&.-&U>.
Severlll uniaxial repeated test have been compared with the model predictions (see

Shayanfar and Mirza, 1994), including the work of Sinha et al. (1964) as shown in Fig. 3.9. Il is

obvious that the proposed analytica1 model compares weil with the test results and represents

basic features of the concrete behaviour in cyclic compression.lt can be seen that with an increase

in the number of cyeles. the stiflhess of the concrete decreases, and the plastic strain increases.

ln general, as the residual strain increases, the concrete becomes increasingly softer. lt should be

59



•

•

•

noted that high strength concretes normally e"hibit lower residual strains.

3.4.3 Uniaxial Tensile Stress-Strnin CUlVe

The formation of cracks. their propagation and widening have a major intluence on the

nonlinear behaviour of a concrete structure. It has effects on both the local behaviour, sueh as

bond between reinforcement and concrete, and the global behaviour, such as tlexural stress

distribution. Therefore, the cracking process in concrete needs to be weil understood and

appropriately formulated for computational implementation.

Unconfined concrete under monotonie uniaxial tension e"hibits linear elastic behllViour

up to about 80% of its ultimate strength, and has a tangent modulus of elasticity whieh is

comparable to that in compression (Gopalaratnam and Shah, 1985). When the stress is increased

further, the behaviour is highly nonlinear. Concrete softens considerably as the peak stress is

auained and then, as a result of increasing microcracks in the cement matrix and at the matrix­

aggregate interface, a descending branch of the stress-strain curve is obtained.

A large part of the energy is absorbed in the descending zone and complete failure occurs

sometimes at a strain 40 times the strain corresponding to the peak tensile stress (Gopalaratnam

and Shah, 1985). In this study, concrete in tension is assumed to bchave as a linearly clastic

material up to a tensile stress level ~qualto the tensile strength of concrete. f" which represents

onset of the softening branch (see Fig. 3.11).

Detailed analyses of con~rete beams and shear panels (Shayanfar et al., 1993) show that

the size of finite elements has a significant effect on the computed results including the failure

load. This phenomenon is called "finite clement size effect". It was shown that if the value ofe"

is adjusted appropriately according to the element size, it can help eliminate the mesh scnsitivity

drawback. In the present study, IWo models have been used to determine an appropriate value of

eN for a given finite element size: (a) crack band model, based on the fracture mechanics

concepts, as a function of the fracture energy, mesh size and tensile strength of concrete, and (b)

a new proposed model as a function of only the element size. More information is provided in this

regard in Chapter 5 and in a report by Shayanfar et al. (\993).

In this investigation, it is assumed that the compressive stress can cause some damage in

the concrete which affects its subsequent tensile strength. Ifthe compressive strain, in the principal

direction under consideration, eq'la\s or exceeds the equivalent uniaxial strain corresponding to
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the maximum compressive strength of concrete. E". then the material is assumed ta have no

subsequent tensile capacity due ta the extensive internai mierocracking of the concrete. If the

compressive stress has nol exceeded this value. a linear variation for the tensile strength of

concrete is adopted. The values 0 and r, have been sel for the tensile strengths corresponding ta

the compressive strength. Cf", and the compressive elastic limit. respectively. The redueed tensile

strength. Cf". and its associated paramelers are calcula:ed as follows:

ail = tana.tanp (E
+ Ep)

tanP - tana p

= °il (3.31)Eil tanp

ElU
Eim = -(EU>

Er

where a and 13 have been deflned in Fig. 3.1 I. For concrete in the elastic range, a full lensile

strength capacity, Cf,,:r,. is assumed.

T" study the influence ofvarious "tension-stiffening" n:odels on the response ofreinforced

concrete structures, different dcscending branch shapes, as shawn in Fig. 3.12, have been studied.

While cyclic loading in tension part. the unloading and reloading started from the

asccnding branch will follow the ascending branch (linear elastic behaviour). The unloading from

the descending brimch follows a slraight line passing through the unloading point and the ori~in

of the stress-strain coordinate system. In other word, in this case the secant modulus to the

unloading point will be takcn as the modulus of elasticity of concrete.

3.4.3.1 Teosile Streogth of Concrete

If is difficult to test concrete in pure axial tension, therefore the tensile strength of

concrete is usually eva!uated by an indirect test. The different tesl procedures along with the

equations used for deterrnining the tensile strength are listed below (ACI, 1989). Depending on

the type of the structure, one can follow the results of the following procedures to estimate an

appropriate value for the tensile strength of concrete. For example, for structures failing in a

flexural mode, the results of rupture test are recommended, while for the shear mode of faHure,

the strcngth values obtained from the direct lension test.
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Direct Tension Test:

or.

f ' = 4), 7"
r v' (in psi Units)

l', = 0.33), JI', (in MPa Units) (3.32)

Modulus of Rupture Test:

f r = 7.5). JI', (in psi Units)

or.

f, = 0.6), JI', (in MPa Units) (3.33)

•
Split Cylinder Test:

and,

where

l', = 0.65 hp
(3.34)

•

À = a factor which accounts for the density of the concrete

= 1.00, for normal weight concrete

= 0.85, for sand-light weight concrete

= 0.75, for ail light weight concrcte

P = the applied compressive load to cause failure

L = the length of the cylinder

o = the diameter of the cylinder
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• 3.5 EQUIVALENT POISSON'S RATIO

As mentioned earlier in Section 2.1, concrete under uniaxial and biaxial compression first

compacts and then dilatates due to the internai I:!licrocracking. To take this dilatancy of conorete

into accountthe value of the equivalent Poisson's ratio is assumed to be of the fol1owing form

(Onoson, 1979):

v = v.,

1 _ (Y2 - y")2
1 -Ya

(3.35)

•

in which, Vi i. the initial Poisson's ratio; y, is the nonlinear index which represents the ratio of

the actual compressive stress, cr" to the corresponding value of that stress at failure (ultimate

strength), cr", (y, = cr, / cr,,); v, is the Poisson's ratio at failure and set equal to 0.36; and y, is the

nonlinear index corresponding to the onset of dilatancy which is set to be 0.80. Because the

Poisson's ratio starts to increase at the stress level corresponding to y, = 0.80 (Kupfer et al.,

1969). In the model, an upper bound v ~ 0.45 is set to eliminate problems associated with the

Poisson's ratio approaching 0.5. For the tension-tension stress condition, v = Vi' is applicable.

The initial Poisson's ratio, Vi' is assumed to be equal to 0.20. An examination of the

available information shows that the initial Poisson's ratio ofhigh-strength concrete is comparable

with the expected range of values for the lower strength concretes. Shideler (1957) and Carrasquil

et al. (1981) reported values for Poisson's ratio of Iight-weight, high-strength concrete having

uniaxial compressive strength up to 10,570 psi (73 MPa) at 28 days to be 0.20 regardless of the

compressive strength, age and the moisture content.

3.6 FAILURE CRITERIA FOR CONCRETE

Behaviour of concrete under biaxial stress states, as reported by a number of investigators

is rell Iy different from that under uniaxial conditions. Based on the experimental observation

under biaxial compression, the compressive strength of the concrete increases because of the

internai friction and aggregate interlock. Conversely, a lateral compressive stress decreases the

tensile strength of the concrete because the compressive stress introduces tensile stresses at the
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micro-Ievel due to the heterogeneity of the material which increases the process of internai

damage as reporled by Vonk (1990). A lateraltensile stress has no major intluences on thc tensilc

strcngth of concrete. To account for thcse phenomena. the fai!ure cn"clOpe proposcd by Kupfcr

and Gerstle (1973), is employed to obtain the compressive and tensile strength of concrete under

the bia\:ial stress state. The latera! tensile stress beyond cracking can also de~rease the cùmpressi"c

strength of concrete as obtained by Vecchio and Collins (1986), and Feenstra and de Borst (1993).

To account for this, the mode! proposed by Vecchio and Collins (1986) is used in the proposed

formulation as discussed in Section 3.3.3. A slightly modified form of thc bia\:ial strength

envelope eurve developed by Kupfer et al. (1969) is used in the program built up in the present

studyas shown in Fig. 3.13.

3.7 CONSTITUTIVE RELATIONSHIP FOR STEEL REINFûRCEMENT

The behaviour of steel reinforeement is basically uniaxial and consequently modelling of

its behaviour is relatively simple eompared to that of the eonerete. Two aspects of steel models

are relevant here; the representation of steel in the finite element model and the constitutive

relationship. The three most common methods used to represent reinforcing steel in finite element

models (ASCE, 1982) are:

1. Distributed (smeared) model,

2. Embedded model, and

3. Discrete model

In a distributed representation, Ù, . steel is smeared over the concrete and ft perfee! bond

is assumed between the eoncrete and the steel. An embedded representation treats steel as a

uniaxial member built into the concrete, such that its nodal displacements are constrained by those

of the "host" concrete element. A discrete representation is similar to an embedded representation,

but in this case the nodal displacement of the steel bar are not constrained by those of the "host"

element. Figure 3.14 illustrates the three common representations of steel bars in finite eiement

models.

The stress-strain behaviour of steel is usually represented by a bilinear or a trilinear

idealization identieal in tension and compression. An elastic-perfectly plastic, or an elastic-strain

hardeniug model utilizes a bilinear eurve, while an elastic-plastic-strain hardening model is

represented by a trilinear eurve. Figure 3.15 shows these idealizations.
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The sleel rein forcement is treated in HODA program as an elaslo-plastic-strain-hrdening

malerial as shawn in the figure. The Bauchinger effect or reduction of the steel yielding stress due

la load reversai is also considered [sce Fig. 3.15(c)]. The constitutive relationship for steel before

yielding is given by:

Es 0 0

{Ac} = 0 0 0 {Ae}

o 0 0

(3.36)

where E, is the uniaxial elastic modulus of elasticity.

After the steel yields, the constitutive relationship is modified to reOect the change in the

modulus. For example, in an elastic-strain hardening model, the modification is as:

E' 0 0
$

{Ac} = 0 0 0 {Ae}

o 0 0

(3.37)

•

•

where E', is the strain-hardening modulus (see Fig. 3.15).

It should be noted that perfect bond has been assumed between reinforcing steel and the

concrete; this assumption holds for ail the structural elements analyzed. The effect ofdowel action

is incorporatcd into the computer formulation through the parameter 6, the shear retention factor

with values between zero and 1.0, which accounts for bath dowel action al th,- .teel-concrete

interface and the aggregate interlock at the cracks. For the three models used to idealize steel,

buckling ofreinforcing bar has not been considered explicitly, however, these bars are embedded

in concrete which provides the support to prevent any lateral instability of the reinforcing bars.
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Figure 3.1: Schematic representation of real strains and equivalent uniaxial strains
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Figure 3.2: Schematic representation of different coordinate systems at any point of an element
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• CRACKING MODELS

DISCRETE CRACKING MODELS SMEARED CRACKING MODELS

Fracture
mechanics

based

1

Strength
based

1

Fracture
mechanics

based

1
Strength
based

•

Figure 3.3: Classification of cracking models

"

(0) (b)

•

Figure 3.4: Nodal separating using two or four coincident nodes: (a) one-directional and
(b) two-directional cracking

\

Figure 3.5: Idealization of a single crack
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Fïgll11! 3.6(a): Comparison of different analytical stress-strain curves with the cxpcrimental
results for normal concrete
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Figure 3.6(b): Comparison of different analytical stress-strain curves with the experimental
results for nonnal concrete
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Figure 3.7(a): Comparison of different analytical stress-strain curves with the experimental
results for high strength concrete
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Figure 3.7(b): Comparison of different analytical stress-strain curves with the experimcntal
resulls for high strength concrete
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Figure 3.10: Ana!y1ical uniaxial stress-strain curve of plain concrete
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Figure 3.11: Proposed equivalent uniaxial stress-strain curve in ith direction.
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Figure 3.14: Typical steel representations in finite element models:of concrete structures,
(a) distribuled (b) embedded, and (c) discrete (ASCE, 1982)

fs ~

D

f, • ( • (- f,

fanB. r. 'ton e. r,
1 • •

• 1
E, 1.. • l, '"(d) • lb)

--J----;;---{--f------J~. '"

(c)

Figure 3.15: Idea1ized steel stress-strain curves: (a) elastic-perfectly plastic idea\ization,
(b) elastic-strain hardening idea\ization, and (c) elastic-plastic-strain hardening idea\ization
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CHAPTER 4

NONLINEAR FINITE ELEMENT FORMULATION

This chapter describes the key features of the nonlinear finite element prograrn, HODA.

developed during this course of study. The various prograrn capabilities and ils limitations are

outlined, followed by the finite element disp1acement formulation based on energy considerations.

The element Iibrary of the prograrn including membrane, plate bending, facet shell, one

dimensional bar, and boundary elements is discussed next, with a brief introduction to the finite

element formulation of a special bar embedded within the shell elemenl. The layer discretization

technique which can provide very efficient tools in modelling the concrete and the steel as a

composite material, and which can also facilitate the numerical integration within the body of the

shell element, is also discussed in this chapter. The transformation of strain, stress, constitutive

matrix and coordinates, the assembly process, and the numerical algorithms in nonlinear analysis

including the solution process, the unbalanced forces, the convergence criteria and the divergence

criteria are outlined thereafter.

4.1 GENERAL

Like ·most of the other nonlinear finite element analysis prograrns, the HODA prograrn

was developed within the university environment. The origin of the HODA prograrn can be traced

back to the earlier programs: NARCS, NOTACS, FELARC and NONLACS developed by Lin

(1973), Kabir (1976), Ghoneim (1978) and Nofal (1988), respectively. The HODA prograrn was

developed using the existing version of the NONLACS prograrn and differs from the previous
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programs in terms of its ability to analyze bath normal and high strength concretes. to utilize

different cracking models inciuding the fixed and the rotating crack models. to handle the

c1imination of mesh size dep"ndency using the strength-based or fracture mechanics approaches,

and to carry out structural analysis under reversed cyciic, as weil as for monotonically increasing

laads based on the model propased in Chapter 3.

This program can capture the static response of any plain, reinforced and! (Ir prestressed

three-dimensional concrete structure that is composed of thin plate members which are in plane

stress cor.:Iition subjected to monotonically increasing or cyclic loadings. This inciudes beams,

slabs (plates), shells, folded plates, box girders, shear walls, or any combination ofthese structural

elements. Time-dependent effects like creep and shrinkage can also be considered. The program,

however, has its limitations; it cannot account for transverse shear deformations in the plate

bending problem, fatigue type effeclS, geometric non-linearities, dynamic loads, and the slip

between the concrete and the reinforcing steel. In the following sections sorne aspects of the finite

element formulation used in the development of the HODA program are outlined. While the

required mathematical model for this program can have a three-dimensional geometry, it must be

ensured that each element is subjected to a plane stress condition.

4.2 FINITE ELEMENT DISPLACEMENT FORMULATION

In the classical theory of structural analysis two basic approaches exist: force (flexibility)

and displacement (stiffness) methods. In the former the initial unknowns are forces but in the

latter they are displacements. In the computer analysis of structural systems, the force method

requires more manual input data than the displacement method and it is more user-dependent. On

the other hand, the displacement method is fully capable of being automated and quite well suited

for computer implementation. Most of the computer programs available in the practice for

structural analysis, take advantage of the displacement based formulation for linear! nonlinear

finite element method (see Shayanfar, 1994).

ln the finite element method, the structure is ciiscretized into an assemblage of finite

elements. The displacements at any point of the element, {u}, can be evaluated in terms of the

displacements of the specific points within, or on the boundary of element called "nodes" or

"joints" as,
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• ( u J = [NJ {u}" (.1.1)

in which [N] is the matri" of shape functions and lU}, is the e\ement nodal displacement "cetor

in element local coordinate system. The "ector of strains at any point of thc c1emcnt. (E). is

related to the element nodal displacements. {U},. using the following equation

then the stresses at any point of the element, {cr}, can be found using the constitutive matri". [C].

as:

where {"&} and fcr} are the vectors of initial strains and stresses, respectively.

Suppose a structure in equilibrium condition having nodal displacements {Dl, e"ternal

applied loads {R}, body forces {Pl and surface tractions {T}. Now, impose a system of virtual

nodal displacement {ôD} on this structure. This system of virtual nodal displacement results in

elemental virtual displacements which are denoted by {ÔU},. The resulted virtual displacements,

{ôu}, and virtual strains, {ôe}, at any point of the element can be expressed as:

•

{ e} = [B ] {uJ n

where [B] is the strain-displa~ement matri" and can be obtained as:

[B] = [L] [N]

in which [L] is the differential operator matri" and defined such that

le} = [L] lu}

{ cr} = [C] ( {e} - (Ë}) + ("a}

{ Ôu} = [N] (ô U) n

{ôe} = [B] {ÔU}n

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

The principle ofvirtual displacement for static analysis of a conservative system requires that the

total internaI work resulting from real stresses through the virtual strains is equal to the total

external work due to the real external applied loads moving through the virtual displacement•.

This cao be expressed mathematically as:
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ail At'

elements

(4.8)

where V' and A' are volume and surface area ofany element, respectively. Substituting Eqs. (4.2),

(4.5), (4.6) and (4.7) into Eq. 4.8 results in:

•

with

and

[K] {D} = {F}

[K] = L [Km] n
all

elements

{F} = {R} + {F} p + {F} T + {F} ë + {F} 0

(4.9)

(4.10)

(4.11)

where [Kl is the structure stiffuess matrix, {D} is the structure nodal displacement vector and {F}

is the equivalent nodal force vector of the structure, ail in the global coordinate system. [I<", ln is

the element stiffness matrix, {R} is the applied nodal extemalload vector; and {F}" {FJr" {F}."

and {F}a are equivalent nodal force vectors due to body forces, surface tractions, initial strains

and initial stresses, respectively. The following relations are obtained for [I<", ln' {F}" {F}T"

{F}" and {Fla, respectively:

•

[Km] n = l [Bl T [C] [B] dVe

v·

{F} p = :L J{N)T{P} dVe

all v('
elemencs
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L
011• {Fl T = f{NlT{TldA e

A·
~lemellCs

(4.14)

(F),= L f[BjT[C]{ËJdV e

all VII
elernents

{Fl.= L f[B]T{oldV e

(l11 VelO
elemencs

(4.15)

(4.16)

•

•

Equation (4.7) can be derived from Eq. 4.2, if the matrix [B] is independent of (U).

otherwise the problcm would be geometrically nonlinear. ln the above discussion, it is also

assumed that in Eq. 4.5, [C] is independent of {&} and conscqucntly Eq. 4.9 represents a system

of linear equations for equilibrium of the structure. If the [Cl is dependent on {&}, the problem

involves material nonlinearities. ln the present study, only the material nonlinearity is considered.

4.3 ELEMENT LffiRARY

The element library includes membrane, plate bending, faeet shell, one dimensional bar,

and boundary elements. Figure 4.1 shows sorne of the elements and their associated degrees of

freedom. The two node, three degrees of freedom per node, one dimensional bar element [sec Fig.

4.1(c)] is used ta model uniaxialtruss members (steel or concrete), unbonded prestressing tendons

and shear connectors. The shear connector clement is a specialized form of the standard bar

element. This element is used ta mode1 the steel-concrete connection in composite construction

IRazaqpur and Nofal, 1990).

There are!Wo four node quadrilateral membrane elements RQUAD4 (Razaqpur and

Nofal, 1987) and QLC3 (Sisodiya et al., 1972) [see Fig. 4.1(a)]. Bath elements have three degrees

of freedom per node (two in-plane translational, u and v, and one rotational, 01, degrees of

freedom), but differ with respect ta the assumed displacement fields (shape functions). The full

development ofthe element RQUAD4,together with extensive performance tests, is given by Aziz

(1988) and McNeal et al. (1988). The detailed derivation of QLC3 has been presented by
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Ghoneim (1978). The clement RQUAD4 is superior in its performance to the constant strain

clement and is comparable ta the Iinear strain triangular clement. but has fewer degrees of

freedom than the latter. Il also has the advantage of being easil)' eonneeted to the standard beam

clements when analyzing coupled shear walls. or shear wall and frame intcraction problems. The

strain-displacement relationship for a membrane clement takes the following form:

(4.17)

•

in which {E} = {àuIû.<. àvlèy, àulày + àvlê:x}T = {E,. E,. y,,}T, [B], is strain-in-plane

displacement matrix and {U,}, is the vector of nodal inplane displacements of the element.

The Iibrary also contains two four node plate bending elements: the rectangular plate

bending clement, RBE (Zienkiewicz. 1983), and the improved discrete Kirchhoff quadrilateral

plate bending clement, IDKQ (Chinniah, 1985) [see Fig. 4, I(b)]. Both elements have three degrees

of freedom per node (normal rotations,a, and a" and lateral displacement w). The strain­

displacement relationship for a plate bending e1ement is wrinen as:

in which {X} = {ifw/û.<', ifwlèy', 2ifwlû.<ày}T is the vector of curvatures and twists, [B]b is

strain-bending displacement matrix and tUb}, is the vector of nodal bending displacements ofthe

clement.

Two four node, six degree of freedoms per node, anisotropie facet shell elements are also

available in the Iibrary [see Fig. 4.I(d)]. These elements are obtained by eombining the plate

bending elements with the quadrilateral membrane elements using Kirchhoffs assumptions.

Aecording to these assumptions. the straight libers of the plate, which are perpendicular to a

ehosen reference surface before deformation, remain plane after deformation, and also the normal

stresses acting on planes parallel to the reference surface are negligible. i. e. Yu = Y" = <J, = O.

The strain-displacement relationship for a quadrilateral shell element is introduced as:

(4.19)

•
where z is the distance of the point within the shell element from the reference surface and [B]

is the strain-displacement matrix of the element. Since these elements are applied in problems
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• involving material noniinearities. the eoupling between the membrane and bending actions is

considered. In other words. the stilTness matrix [Km]. of the sheU clement. with six degree of

frcedoms pcr node shown in Fig. 4.1(d). is givcn by

•

in which,

[km] n = J[B]T [Cl [B] dV'

v'

= [ [ k] pp [k] Pb]

[k] bp [k] bb

[Cpb ] = - Jz [Cl dz
z

[Cbb ] = fZ2 [C] dz
z

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

•

where [Kml. is a 24x24 element stiffness matrix and the subscripts "pp" and "bb" denote the

membrane and bending elements, respeclively. The subscripls "pb" and "bp" signify the coupling

effects belWeen the membrane and bending actions. The coupling matrices become null if the

middle surface ofthe shell is an axis ofmalerial symmetry. The above integrations are carried out

using the Gauss quadrature procedure al each layer and then the contributions of the various layers

al each Gauss quadrature point are added by means of layer discretization technique as outlined
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•

in the next section .

Shell clement type 1 is obtained by combining the quadrilateral membrane clement, QLC3,

with the rectangular plate bending clement. RBE. Shell clement II is obtained by combining the

quadrilateral membrane clement. RQUAD4, with the discrete KirchhofTquadrilateral plate bending

clement. IDKQ. The type of clement to be employed during an analysis normally depends on

the behaviour of the structure under consideration. The type 1 shell clement is suitable for beam

behaviour problems while the type II shell clement is a more general clement.

4.3.1 Bar Element

The bar clements arc special one dimensional clements embedded within the shell

elements that can be used for modelling the heavy/ coneentrated reinforcements and bonded

preslressing bars. Figure 4.2 indicates a lypical bar element in local and natural coordinate systems

of a shell element. The natural coordinates of the two ends of the bar element. i. e. (1;" 11,) and

(1;,. 11,), are given as data in the input file of the computer program [see Fig. 4.2(b)] and

accordingly the length. Li.and the coordinates of the two ends of the element with respect to the

local coordinate system is calculated [see Fig. 4.2(a)]. This element bar is assumed to lie on the

reference surface of the sheU element, therefore it contributes only to the inplane stiffuess matrix

of the sheU element, [K,,], and with the assumption of perfect bond, its strain-inplane

displacement relationship can be defined as,

(4.27)

in which E, is the uniaxial strain at any point within the bar element and the strain transformation

matrix, [t], is defined as,

cose.sine] (4,28)

where 9 is the angle between the bar element and the x-axis in the local coordinate system [see

Fig. 4.2(a)]. The stress at any point of the bar, cr"is obtained by:

(4,29)

•
where E. is the tangent modulus of the bar element which can be equal to E, or E', depending

on the strain, E" and the loading condition, monotonicaUy increasing or cyclic, [see Fig. 3.15(c)].
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The contribution of the bar clements \Vithin a typica! shell clement. [Kurl. ta the inplane stitTness

matrix. lK",l. can be found using the Eq. -l.12 as;

m 1:

[kBp ] = 'EJA;lBp]T[tlIEB,[Bp]dS
1" l 0

(4.30)

•

•

where m indicates the number of bars in the clement. i refers ta the ith bar. and A,. L, and ED,

arc the cross-sectional area, the length and the tangent modulus of the ith bar. respeetively. The

above integration is evaluated using the Gauss quadrature procedure with three integration points.

4.4 LAYERED DISCRETIZAnON TECHNIQUE

The program employs a layered finite clement approach; the structure is idealized as an

assemblage ofthin constant thickness plate clements with each clement subdivided into a number

of imaginary layers as shawn in Fig. 4.3. The number of layers depends on the behaviour of the

structure being analyzed; for shell and plate bending problems, five ta eight layers might be

needed ta capture the stress variation across the thiekness, while for plane stress problems using

more than one layer is not neeessary. A layer ean be either of concrete, smeared reinforcing steel

and! or a eontinuous steel plate. Each layer is assumed ta be in a state of plane stress, and ean

assume any state - uncraeked, partially eraeked, fully eracked, non-yielded, yielded, erushed,

loaded and unloaded - depending on the stressl strain leve!. These are indicated by indices KC =

1 to 6 for monotonically increasing loads and indices LRC = 1 to 10 for reversed cyelic loads,

as shown in Fig. 4.4. Each ofthese indices designates a specifie part of the stress-strain eurve for

loading condition in bath figures 4.4(a) and (b) and unloading condition in Fig. 4.4(b). These

indices have been appropriately implemented in the HûDA program.

Steel can be idealized as a smeared layer or as a bar element embedded in concrete at the

reference surface. Smeared steel representation is suitable for representing distributed

reinforcement as in slabs and structural walls, while the bar representation is appropriate for

isolated large reinforcing bars or tendons such as beams with heavy longitudinal reinforccment.

The stiffuess matrix of a shell element is obtained using Eq. 4.20 in which the integration of Eqs.

4.21 to 4.23 is evaluated using the Gauss quadrature procedure and that of Eqs. 4.24 to 4.26 is

performed by means of layered discretization technique as (see Fig. 4.3):
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• [ Cpp ] ; J[cl dz

n.

; E (Zj,,-Z,) [Ccli + E ICslits , +
.i -1 .i-l
n.p

E (Zj" -Z) [C.pl i
.i -1

ICpbl;- Jz [Cl dz
=

n.

[Ccl i - l: ICs ] iZs,ts, -
,"1

(4.31)

(4.32)

•

•

(4.33)

in which [Col"~ [CJ; and [C..], are constitutive matrices for concrete, smeared steel ar.d steel plate

at each Gauss quadrature point in layer i for the respective materials. Using the layered

discretization as outlined above, the integrations in Eqs. 4.21 to 4.23 involve functions ofl( and

y only and the integrands are evaluated at the Gauss quadrature points and are added to obtain the

element stiffness matril( in local coordinate system. The procedure similar to that for Eq. 4.20,

as outlined above, can be employed to perform the numerical integrations in Eqs. (4.15) and

(4.16). The detailed information has been presented by Ghoneim (1978).

4.5 mANSFORMATIONS

ln any finite element formulation, it is necessary to have references to describe the

magnitude and! or direction of the structural quantities including displacements, forces, stresses,

strains, constitutive relations, etc., so that the required numerical calculations can be handled as

conveniently as possible. The most common coordinate systems in computer structural analysis
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•

•

are; local, global, natural. and principal (referred to as "material axis" in sorne models) eoordinate

systems. The transformation of the quantities from one system to the other is of vital importance

and it must be weil understood. Transformation from the natural coordinate system ta any other

system and vice versa ean be implemented using the mapping technique as discussed in any

standard finite clement text book. Transformations from the local, global and principal eoordinate

systems ta eaeh other are discussed in this section. In this regard, the transformation of the stress

and the strain vectors, constitutive matrix and coordinatcs (nodal displacements. nodal forces,

element stiffnesses) arc discussed separately.

The global coordinate system consists of a set of right-hand orthogonal axes; X. Y. and

Z, which are oriented as shawn in Fig. 4.5(a). The orientation of the global coordinate system is

arbitrary, but the relative directions of the axes are conveniently represented by orienting the

thumbs and the fingers of the right hand as shawn in Fig. 4.5(b). The nodal forces, nodal

displacements and the stiffness components of the structure are referenced ta the global coordinate

system.

The local coordinate system for a quadrilateral element is shawn in Fig. 4.6 and denoted

by: X'Y'Z' system. The X· axis passes through the mid-points of the IWo sides: 1-4 and 2-3, and

is directed as shawn in Fig. 4.6(b). The Z· axis is obtained by the cross product of the two vectors

composed of the diagonals 1-3 and 2-4 as shawn by dashed lines in Fig, 4.6(b), The y' axis is

then obtained as the cross product of X' and Z', The nodal forces, nodal displacements and the

stiffness components ofthe elements are referenced to this local coordinate system (sec Shayanfar,

1994). The principal coordinate system is a system ofright-hand orthogonal, X'Y'Z', whose axes

are parallel to the principal stresses! strains, The constitutive matrix at any point within the

element. is first developed in this coordinate system and then transformed to the local coordinate

system.

In the following discussion, the transformation is between a new system which is denoted

with superscript "." and an old coordinate system with no superscript. The new or old coordinate

system can consist ofany ofthe local, global or material coordinate systems, The discussion starts

with a two dimensional state of stress! strain, and finally, il is expanded to a general forro of the

three dimensional state.
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4.5.1 Transformation of the Slrain Veetor

Consider lhe plane slrain condition shown in Fig. 4.7. By geometric considerations. as

stalcd in any c1assical lcXl book for slrenglh of malerials. the following equalion can be used 10

transform lhe main veclor in the old coordinate syslem. {&} = {&" &" Y,y}T, to the strain vector

in lhe new coordinale system, {&'} = {&,., &" Y"y}T:

(4.34)

where

[

COS2(J sin2(J sin(Jcos(J 1
[T.l = sin2(J cos2(J -sin (Jcos(J (4.35)

-2sin(Jcos(J 2sin(Jcos(J cos2(J-sin2(J

where [TJ is the strain transformation matrix. For a genera! three-dimensiona! strain state, if the

direction cosines of the new coordinate system, x'y'z', with respect to the o!d coordinate system,

xyz, are defined as (sec Fig. 4.8).

• l, = cos (x', x)

12 = cos(y',x)

1J = cos (z ' , x)

m, = cos (x' , y)

m2 = cos (y , , y)

mJ = cos ( z ' , y)

n, = cos (x', z)

n2 = cos (y', z)

nJ = cos (z', z)

(4.36)

•

Il can be shown thal the strain transformation matrix. [TJ. for engineering strains. {&} = {&,..

&,. &•• Y". Yu' Y,,} T. takes the following form:

, 2 2 2
I.m. Ilnl mInI1 m. n.

li mi 2
~~ ~~~ m2~

1
2 2 2 13m3 13n3[T.] = 3 m3 n3 m3~ (4.37)

211~ 2m.m2 2n.~ (l.~+~ml) (n.~ +~II) (ml~+~nl)

2l.~ 2ml~ 2nl~ (II~ +~m.) (nl~ +~I.) (m.~+~n.)

2~~ 2~m3 2~n3 (~m3 +~~) (~~ +n3~) (~~+m3~)
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4.5.2 Transfonnation of the Stress Vector

Consider the plane stress condition shown in Fig. 4.9. By satisfying the cquation of

equilibrium. the following equation can be used to transform the stress vcctor in the old coordinate

system. {cr} = {cr,. cr,. 't,,}T. to the stress vector in the new coordinate system. {cr'} = {cr,. cr,.

't, ,.}T:

and

{o'} = [To][o}

co~O 2sinOcos0

-2sinOcosO

(4.38)

(4.39)

•

-sin Ocos 0 sin Ocos 0 co~ 0 -sin2 0

where [ToI is called stress transformation matrix. By comparing Eq. 4.39 and Eq. 4.35, il is

obvious that if the strain transformation matrix is partitioned as:

(4.40)

then the stress transformation matrix in Eq. 4.39 can be defined as:

(4.41)

•

For a general three-dimensional stress state, the strain matrix introduced in Eq. 4.37 can be

partitioned into 3x3 matrices (TQ• T•• Ts• TT) and the stress transformation matrix. [ToI, is

obtained using Eq. 4.41.

4.5.3 Transformation of the Constitutive Matrix

The preceding discussions shows that the strains and stresses in the ncw coordinatc
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• system, X'V', can be expressed in terms of the old coordinate system. XY. using Eqs. (4.34) and

(4.38), respcctively. Also the strains and stresses in the old coordinate system. XY. can also be

expressed in the new coordinate system, X·Y·. by simply replacing the (8) by (-8) in Eqs. (4.35)

and (4.39). The rcsults take the following forms:

[el ; [T.f[e')

[al; [T,f[o')

(4.42)

(4.43)

The stress-strain relationships in old and new coordinate systems can be written. respectively. as:

and

(a) ; [CJle)

(a') ; [CllE')

(4.44)

(4.45)

•
By eonsidering Eq. 4.44 and substituting the vectors {e) and {cr} by their equivalents obtained

from Eqs. (4.42) and (4.43). the following equation results:

(4.46)

Per-multiplication of the two sides of the above equation with [T.l. knowing that [T.)[TJT is

equal to the identity matrix. results in:

wherc,

(a') ; [T.)[C)[T.fIE')
; [C'llE')

(4.47)

(4.48)

The above equation represents the transformation of constitutive matrix from the old coordinate

system to the new coordinate system. By following the same procedure using Eqs. (4.34), (4,38)

and (4.45), the transformation of constitutive matrix from new coordinate system to the old

eoordinate system can be carried out using:

For example. the proposed constitutive matrix in principal (or material) coordinate system is

90•
[C] ; [T,f[c')[T,l (4.49)



•
represented by Eq. 3,4. If the angle between the local coordinate system (old system) and the

principal coordinate system (new system) is denoted by (6). the constitutive matrix in local

coordinate system can be obtained using Eq. 4,49 as:

.!.(E, - E,)sin 6 cos 62 •

1
[ Cl = -----=:_=_ x

• E,E.
I-v -­

E·o sym

(4.50)

•

4.5.4 Trnnsformation of the Coonlioates

This includes the transfonnation of the clement nodal displacements, element nodal forces

and element stiffness matrices from the local to the global axes, or vice versa. If the direction

cosines of the new (local) coordinate system. x'y'z', with respect to the old (global) coordinate

system, xyz, are as defined in Eq. 4.36, the transfonnation matrix from globalto local can be

defined as:

(4.51)

where each row consists of the direction cosines of the local (new) coordinate system axis with

respect to the global (old) coordinate system. The relations between the element nodal

displacements and the element nodal forces from the global to the local coordinate systems can

be wrinen, respectively as:

(UI. = [T]ID).

{SI. = [T]{FI.

(4.52)

(4.53)

•
and the trnnsfonnation of the element stiffness matrix from the local to the global axes is
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•

perforrncd by:

(4.54)

in which {UI., {SI., and [Km]. are the elemcnt nodal displaccment, element nodal force and

clement stiffness matrices in local coordinatc systcm, respcctivcly; and {D}" {F}.. and [K]. are

the elemcnt nodal displacemcnt. elcment nodal force and element stiffuess matriccs in global

coordinate system, respectively.

4.6 THE ASSEMBLY PROCESS

The transformed element stiffuess matrices, [K]., which were just generated (refer to Eq.

4.54), can now be used to generate the global stiffuess matrix of the structure, (K). The elements

in [K) are the global load components at the joints which are required to produce unit global

displacement components at the joints. The elements in [K). are the global load components at

the joints of element n which are required to produce unit global displacement components of the

joints of that individual element. Since the total load required at any joint, to produce a

displacement of the joint, is the sum of the loads required to displace the joints of aU of the

elements connected to that joint, it should be possible to generate the elements in the global

stiffuess matrix, (K), for any joint by simply summing the loads required to produce global unit

joint displacements in each element connected to the joint. This merely corresponds to summing

the elements in the individual transformed element stiffuess matrices. This operation cao be

represented symbolicaUy by

N

[K) = E [K)•
• -t

(4.55)

•

where N is the number of elements in the structure. Care must be exercised in summing the

elements of each (K). into the correct rows and columns in (K). since (K) and (K). are not the

same size matrices. This becomes a book·keeping problem which is dependent upon the

numbering scheme in {F} and {D}. This total operation is known as "the assembly process" or

"the direct stiffuess method" (see Shaj'anfar, 1994).
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4.7 NUMERICAL ALGORlTIIl\tS FOR NONLINEAR ANALYSIS

4.7.1 Solution Procedlln'

In the nonlinear finite element method. the change in the material stiffness matnx during

loading, necessilales an incremental Solulion procedure. Techniques have been dcveloped (Desai

and Abel. 1972) for solUlion ofnonlinear problems by the finite elemenl method using piece.wise

linearization. Three basic techniques are in use: (1) Incrementai or Stepwise procedures, (2)

Iterative or Ne\\10nian methods, and (3) Incremental·Iterative or Mixed procedures. The latter

combines the advantages ofboth the incremental and iterative methods and tends to minimize their

disadvantages (for more information on the advantages and disadvantages of these methods. sec

Desai and Abel, 1972).

The incremental-iterative procedure with a langent stiffuess scheme (sec Fig. 4.10) has

been adopted in the HODA program. ln this method the total load is divided into sorne load

increments and during each load increment the analysis is camed out through subsequent iterations

until the required forcel displacement convergence criteria (sec Section 4.7.3), or the maximum

number of iterations allowed within each load increment are achieved. At the beginning of each

load increment, the total load increment is applied and the stiffness matrix of the structure, [KJ.
is evaluated according to the tangent constitutive matrices computed at the end of the previons

iteration, [Ci.•l. and the unbalanced nodal forces are obtained using the initial stress method

introduced in Section 4.7.2. Therefore, the equilibrium equation (Eq. 4.9) takes the following fonn

(see Fig. 4.10):

[KI_llIàD,1 = [1",1

and the total displacement after the ith iteration is given by:

1

[D,I = E 1àD,1
1-\

(4.56)

(4.57)

•
where [Ki.,l is the stiffness matrix of the structure at the end of iteration number (i·I). {F,} is the

unbalanced force vectors during the iteration i and {DI} is the total nodal displacement vector of

the structure within the iteration i.
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4.7.2 Unbalanccd Fon:es

The unbalaneed forces after each iteration are ealeulated using the initial stress method

due 10 Zienkiewicz et al. (1969). The method is based on the faetthat a unique increment of stress

eorresponding to an inerement of strain is available. After the itcration i. the unbalaneed stress

veetor. {a.l. is givcn by:

(4.58)

where [C,.,l is Ihe tangent eonstilulive matrix al the beginning of the ileralion i. {6E,} is the slrain

ineremenl veelor during ileralion i, and {6a,1 is Ihe "Irue" slress incremenl oblained from the

slress -slrain relalionship. The equivalenl unbalaneed forces. {F;.,}. 10 be applied in the nexl

ileration are Ihen given by

• 4.7.3 Convergence Criteria

[FHI = - E f[Bf(OjldY'
aU v'

,ltmtnlS

(4.59)

•

Convergence crileria are ulilized to slOp the ilerations in each load step as SDOn as a

required degree of accuracy has been attained. In the HODA program, \WO convergence criteria

developed by Lin (1973) and Kabir (1976) are adopted. Lin used absolute values of input

convergence! divergence dala, but Kabir added convergence! divergence criteria that uses input

percenlage factors to be multiplied by the solutions computed in the first iteration of each load

step. For any of these procedures, \WO possible convergence criteria are used:

(1) How small are the unbalanced forces after the ith iteration {F:,}? or

(2) How small are the displacement increments {6Sj }?

The method based on criterion (1) is called "the force convergence criterion" and the one based

on (2) is terrned "the displacement convergence criterion".

In the HODA program, the convergence in iteration i, for example, is checked as follows:

(1) Evaluate the maximum absolute value ofunbalpllced force! displacement components

in the six global directions at ail nodes and establishes the norrn vector {F.};••, .
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(2) If ail componcnts oflhc nonn vcclor {Fol' arc less Ihan Ihc pcnnissible convergence

valucs, convergence is assumed 10 havc occurred and no more ilcralions are pcrformed. Olhcrwise

another ileration is executcd unlcss i is grcaler than n where n is the maximum number of

iterations allowed per load step spccificd in the inpul data file. At lhe end of each load stcp

(where either convergence crileria arc salisfied. or i > n), the remaining unbalanced forces llfe

added 10 the nexl load increment to avoid Ihe accumulation of error over Ihe load sleps.

4.7.4 Divergence Criteria

As for the convergence crileria, 1"'0 possible divergence critctia arc available in Ihe

HODA program:

(1) Displacement divergence crilerion or,

(2) Force divergence criterion.

If any of the norm vector componenls {Fo}' exceeds the corresponding maximum forcel

displacement values input as the divergence values, the solution will be lerminaled because of the

excessive unba1anced forces or displacemenlS.

If during an incremental i",crease of load, the resu1ting displacement incremenls or

unbalanced forces do nol decrease during the ilerations, divergence is said to have occurred

indicating slructural collapse. Iflhis happens, zero values will appear on the main diagonal of the

structural sliffness malnx which becomes singular and the equilibrium equalions can nol be

solved, slopping the execulion of the program, A message slaling " Zero on Diagonal ofSliffness

Matrix, Solution is Slopped." will appear on the oulput file,
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Figure 4.1: Sorne typical finite elements in the HODA program and

the assoeiated degrees of freedom.
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CHAPTER 5

ELEMENT SIZE EFFECT PHENOMENON

This chapter presents the results of an investigation into the effect of finite element size

in non linear finite element analysis of concrete structures. The influence of element size on

different behavioural aspects ofreinforced concrete structures including the load-displacement and

load-strain characteristics. crack pattern and ultimate load are discussed along with a comparison

with the experimental data where available. To eliminate the dependence of the computed results

on the finite element size. two models have been used: a) crack band model, based on the fracture

mechanics concepts, as a function of fracture energy, mesh size and tensile strength of concrete.

and b) a new proposed model as a function of only the element size. These models have been

implemented into the nonlinear finite element analysis program HûDA. The analytical results

obtained using the different models are compared; the proposed model gives good agreement with

the experimental results and can be used effectively with relatively large finite element mesh sizes

with reasonable accuracy.

5.1 GENERAL

Realization of the ful1 potential of the finite element method to study the nonlinear

behaviour of structural concrete elements requires an extensive verification to establish the

accuracy of the responses of a variety of structural members. by comparing their computed

responses under a variety of loadings with the available experimental results, including load­

displacement. load-strain characteristics, cracking patterns and ultimate loads. In this respect, the
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influence of the "numerical" effects. such as the clement size. \oad steps. integration order. elc ..

on the various classes of structures needs to be studied. Despite the extensive research effort.there

exists a need to detennine a simple material model that best represents the behaviour of lhe

various classes of structural clements and their assemblages. Such an extensive verilication will

result in improving the level of conlidence in the nonlinear linite clement analysis of structural

concrete. while at the same time pointing out areas that need further researeh and developmenl.

According to the smeared crack model (as introduced in Section 3.3.2). the tensile stress

in a linite clement is Iimited by the tensile strength of the material. r .. and after reaching this

strength limit. the stress in the linite element decreases. As practised initially. the stress was

assumed to decrease suddenly to zero. with a vertical drop in the stress-strain curve at the

maximum stress [sec Fig 5.I(a)]. however it was realized that improved and more realistie rcsults

are usually obtained if the stress is reduced gradually. Le.• the material is assumed to exhibit

strain-softening (Lin and Scordelis. 1975) [see Fig. 5.I(b)]. However, the concept of slrain­

softening proved 10 be a mixed blessing. After strain-softening had been implemenled in large

finile clement analysis programs and widely applied. il was discovered that the computed results

are not the same with regard to the element size used. i.e.• the results change significantly if the

mesh is refined (Bazant, 1976; Gilbert and Wamer. 1978; Bazant and Cedolin, 1979. 1980 ,and

1983; Bazant and Oh, 1983a; Darwin. 1985; Rots el al.. 1985; Balakrishnan et al.. 1988). Similar

problems are encountered when cracking is idealized using the discrete cracking model. based on

the strength concept (Bazan!, 1992).

The responses of selected reinforced concrete members were studied using the HODA

finite element analysis program. and il was found to be strongly dependent on the size of the finite

element in the mesh. This is termed the "element size dependency phenomenon". This chapler is

aimed al finding and properly evaluating the key parameters that can help to remedy this

drawback (for more detailed information, refer to Shayanfa..et al.. 1993).

5.2 INFLUENCE OF F1NITE ELEMENT SUE ON COMPUTED RESPONSES

Two beams (an under-reinforced beam and an over-reinforced beam) and a shear panel

are analyzed using different finite element meshes to study the influence of the element sizc.

These specimens were analyzed using the HODA program with "no mesh size dependeney

analysis" option (or for brevity "no mesh dependency"). The experimental results for load-
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displacement and load-stmin characleristics. cracking patterns and the ultimale loads are compared

\Vith the corresponding computed values.

Table 5.1: Gaston's beams. T2LA & T5L and Cervenka's shear panel \V-2

(material properties)

Malerial Bearn Bearn Shear

propcrty TILA T5L panel

f, (psi) 2120 2500 3650

E" (psi) 2624500 2880000 2900000

E," 0.0027 0.0027 0.0025

E, (*) 0.004 0.004 0.0035

f, (psi) 345 500 530

v (*) 0.17 0.17 0.17

F,. (psi) 44000 40200 51200

E, (psi) 2750000 2880000 2730000

E:(psi) 1060000 822000 251160

E 0.036 0.036 0.036

(*) Assumed vailles

5.2.1 Examplc 1: Rcinforced concrete beams

Two sim ply supported reinforced concrete beams tested by Gaston et al. (1952), with two

concentrated third-point loads, are investigated. The details ofreinforcement and the geometry of

the beams are shown in Fig. 5.2. The properties of materials for the beams are given in Table 5.1.

The beam T2LA is under-reinforced, while the beam T5L is over-reinforced. The reinforcement

is symmetrical with respect to the mid-span section for both beams.

To study the influence of the element size on the response of the beams. six types ofmesh

configurations with 4, 20, 30, 80, 120, and 320 elements were used for idealizing beams T2LA

and T5L. The element size varied from 1.5 in to 18 in. Due to the symmetric configuration of the

beam and the loading, only one-half of the beam was modeled for the finite element analyses and

half of the total load was applied to the structure in 30 load steps varying from large to very small
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Table 5.2: ECfeet of mesh size on the ultimate failure load for the beam T1LA (c..~0.0007)

Finite clement
Number of Size of clement Failure load PII<>J/Pl'.,p

aspect ratio
clements (in x in) (lb)

4 18 x 12 1.50 19.500 1.24

10 6 x 12 2.0 16,500 1.05

30 6x4 1.50 16,000 1.02

80 3 x 3 \.0 15,000 0.96

120 3 x 2 1.50 14,500 0.93

320 1.5 X 1.5 \.0 14,000 0.89

Experimental result . - 15,666 .

increments as the ultimate load was approached. Figure 5.3 shows a typicallinite clement model

of the beams with 20 elements.

The load-deflection curves for the under-reinforced beam T2LA are shown in Fig. 5.4,

which presents the results for the models with live different meshes. The concrete ultimate tensile

strain, c.., was assumed to be constant for ail mesh sizes and was arbitrarily selected to be 0.0007.

As can be seen from Fig. 5.4, in the case of the coarsest mesh with 4 elements, the ultimate load

is overestimated (19,500 lb), compared with the experimental ultimate load of 15,666 lb. When

a coarse mesh is used, the structure is a little stiffer and behaves in a relatively more ductile

manner. With a decrease in the size of the elements, the ultimate load decreases and the load·

deflection response 15 less ductile.

Variation of the computed ultimate load with the number of elements for beam T2LA is

presented in Table 5.2 and in Fig. 5.5, which shows that the ultimate load for the beam is

dependent on the mesh size used in the analysis. It can be noted that for the same u1timate tensile

strain, the ultimate load for this under·reinforced beam decreases with an increase in the number

of elements. To show the effect ofelement size on the prediction of the concrete strain, for three
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mesh configurations with 4. 80. and 320 clements. the computed load~concrete compressive strain

curve at the beam mid-span top is presented in Fig. 5.6. Once again. the results are influenccd by

the clement size and it emphasizes the sensitivit)' of the computed responses to the mesh

characteristics.

For the beam T5L, which is over-reinforced. a similar analysis procedure was followed.

The results show that the effect of the element size on the ultimate load is not signiticant, i. e.,

the beam response is not dependent on the mesh characteristics. Because of the high ratio of

tensile reinforccment. cracking of the concrete does not have a signiticant effect on the material

nonlinearity of the concrete. Also, as the value of E" was varied with ail other parameters

maintained constant, the ultimate load remained approximately constant and relatively close to the

experimental ultimate load, (sec Table 5.3).

5,2.2 Example 2: Reinforced concrete shear panel W-2

The shear panel W-2. tested by Cervenka (1970) under monotonically increasing load, is

investigated in this example. The panel consists of orthogonally reinforced square plates, 30 in

x 30 in in size, and 3 in in thiekness. Two panels are eombined ta form one beam, Iike the

specimen shawn in Fig. 5,7. The material properties of the shear panel are summarized in Table

5.1. Beeause of symmetry, only one-half of the specimen is idealized for the finite element

analysis. The total load is applied at the IWo points on the outer rib as shawn in Fig. 5.8.

Table 5.3: Effeet of element size on the ultimate load of bea T5L

Nur..ber of Size of Ultimate

elements elements E" EN J?,ad PHod/P~p
(in x in) lb)

4 18 x 12 0.00013 0.001 17000 0.96

20 6x6 0.00013 0.001 17000 0.96

80 3x3 0.00013 0.001 '6500 0.94

80 3 x 3 0.00013 0,0021 16500 0.94

80 3 x 3 0.00013 0.0031 16500 0.94

320 1.5 x 1.5 0.0001.5 0.001 16500 0.94

Experimental - - - 17666 -result
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To sludy Ihe influence of Ihe mesh size. Ihree dinèrenl ll1eshes wilh 35. 1"O. and 460

elemenls arc examined. The ultimale lensi!e slrain. Eru• is assumed 10 be conslanl and arbilrari\)'

selecled 10 be 0.002. Figure 5.8 iIIuslrales a Iypical mesh \a)'oul for Ihe shear panel wilh 35

clements.

The !oad-deflection eurves for Ihis panel for Ihe dift'crcnt meshes are plolled in Fig. 5.9.

As in Example 1. it ean be observed that the clement size has a signilicanl effecl on Ihe

load-deflection curve. Once again. il was noted that \Vilh an inerease in Ihe number of linile

clements idealizing the system. the ultimate 10ad deereases. ln each case, Ihe defleetion response

before cracking is identieal, however, after cracking there are deviations from Ihe experimental

response and the defleetion at the ultimate load decreases with a decrease in the clement size.

The effect of different mesh configurations on the analytical crack pallem al Gauss

quadrature points at a selecled load level (P=24000 lb) for the shear panel is shown in Fig. 5.10.

Here, thick lines represent fully opened cracks (E > Eru), while thin lines indieate partially opened

cracks (Ea < E < Eru). lt can be noted from Fig. 5.10 that the crack patterns are different and are

influenced considerably by the element size. With a decrease in the elcment size, the progrcss of

fully opened cracks increases, resulting in wider crack pallerns. It is a1so evident that the

penetration of the fully opened cracks in a finer mesh configuration is greater than thal for the

coarse mesh, and consequently it leads to a lower ultimate load for the finer mesh.

5.2.3 QUAUfATIVE REPRESENTATION OF MFSH SIZE DEPENDENCY

The problem of spurious mesh sensitivity ean be also i\lustrated, for example, by

qualitative consideration of the rectangular panel in Figures. 5.II(a) and (b), which is subjected

to a uniform vertical displaeement at the top boundary. A smail region near the centre of the left

side is assumed to have a slightly smaller strength than the rest of the panel, and eonsequently

a smeared crack band starts growing from the left to the right. The solution is obtained by

incremental loading with IWO finite element meshes of very different mesh sizes as shown. By

stability checks, it is found that the cracking must always localize into a band of single element

width at the cracking front [see Fig. 5.1 I(a) and (b)]. Typical qualitative results for this, and other

responses such as load-deflection, load-crack length and energy released versus the number of

elements are i1\ustrated in Fig. 5.1 1(c), (d) and (e). In the load-deflection diagram [Fig. 5.1 1(c)],

it is seen that the peak load as weil as the post-peak softening is strongly dependent on the
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clement size. In other words. with an inerease in the element size [Fig. 5.11(a)]. the ultimate 10ad

increases and the structure behaves in a stiffer manner compared with a model with smaller size

elcment. Plotling the Joad (reaction) versus the length of the crack band. again large differences

are found [Fig. 5.II(d)]. This implies that if a very fine mesh is used (case B) 10 obtain a specific.

it requires lower load than that for the coarse mesh (Case A).

The energy which is dissipated duc to cracking deereases with the refinement of the finite

clement mesh [solid line in Fig. 5.11(e)] and converges to 0 as h tends to O. This gives unreliable

results. With accommodation of the fracture mechanics concepts or the proposed model presented

in Section 5.3.2. the energy release rate can be ensured to be constant [dashed line in Fig.

5.11(e)].

5.3 ELIMINATION OF ELEMENT SIZE DEPENDENCY

Cracking of concrete is one of the important aspects of the material nonlinear behaviour.

Intensive rcsearch effort has resulted in a large number of cracking models. which can be divided

broadly into two categories. namely, discrete cracking models and smeared cracking models.

Furthermore, within each category. these models can be applied either with a strength-based, or

fracture mechanics-based crack propagation criterion. The problem of mesh sensitivity is

encountered when cracking is idealized using the smeared or discrete cracking models based on

the strength concept (Bazant and Cedolin. 1979; Bazant, 1992). The main objective ofthis chapter

is to develop a solution to eliminate this drawback from the strength-based criterion with an

appropriate adjustment of the value of the ultimate tensile strain, t.., as a function of only the

element size, h.

Fracture mechanics concepts can be used to deal with propagation ofcracks, and are based

on the concept of energy dissipation in the structure undergoing the fracture process. It should be

noted that if the computed response is to correlate with the experimental response. then the energy

dissipated in the process should be independent of the l)'Jle ofmesh. This implies that irrespective

of the finite element size selected, the area under the experimental and the computed load­

dellection curves should be equal. Therefore, the energy release rate should be constant in both

the experimental and the computer model irrespective of the finite element size used. For the sake

of comparison, the "crack band model" proposed by Bazant (1976) is also implemented in the

computer program HODA and sorne key features of this model are presented in the following
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section.

5.3.1 Crack Band Model

The basic characteristics of this model are (Bazant. 1992):

(1) to characterize the material bchuviour in the fracture proccss zone in a smcarcd tnanncr

through a strain-softening constitutive relationship. and

(2) to impose a fixed width w, of the front of the strain-sotiening zone (crack band).

representing a material property.

The imposition of constant w, is required to avoid spurious mesh sensitivitv and

objectivity. assuming that the energy dissipation due to fracture per unit length (and unit width)

is constant, and equal to the fracture energy of the material. G,~O.5E,"r,W,. The width of the crack

band front, w,. can be assumed to be approximately three times the maximum aggregate size. d,

(i. e., w,=3d,) (Bazant and Oh, 1983). However. w,-values ranging from d, to 6d, gave alm"st

equally good results (Bazant, 1992). Once the shape of the softening branell of the stress-strain

relationship is fixed. the crack band model is fully characterized by three material parameters: r,.

Gr and w,.

The finite element size. h=w,. required by the crack band model. may be too small in the

case of very large structures. In this case, it is possible to enlarge the element size, provided that

the softening branch of the stress-strain relationship is adjusted to obtain the same energy

dissipation, Gr. The given stress-strain curve OPA in Fig. 5.12 for the strain-softening crack band

needs to be replaced for increasing element size. h. by curves OPB. OPC. OPD. etc.• such that

when the areas under any of these curves is multiplied by h. the same fracture energy value. G,.

is obtained.

One can also use elements with h < w,. provided that the post-peak slope is decreased

such that a constant fracture energy, Go is obtained. as shown in curve OPF.

As the element size is increased, the slope of the strain-softening branch gets steeper, until

for a certain element size. ho. a vertical stress drop, as represented by the curve ope is obtained.

For a still larger element size. the diagram OPD would exhibit snapback. which wou Id cause

computational difficulties. The point of vertical drop is determined again from the condition that

the area under the curve aGE must be the same as the area under the curve OPD (PC and GE

in Fig. 5.12 represent f, and f,q' respectivdy). This consideration indicates that the equivalent
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• tensile strength, f". of the I~rge finite element of size h > ho is given by

(5.1)

•

•

in which ho = (2EG/f,') is the clement size for which a vertical stress drop is obtained.

5.3.2 The Proposed Model

Different structural elements. including the under-reinforced beam TILA and the shear

panel W-2, were analyzed using the HODA program with dilferent mesh sizes. Various analyses

using the program indicated that the shape and the length of the descending branch of the tensile

stress-strain curve of concrete have significant elfects on the computed responses. These

characteristic parameters are controlled by the values of the ultimate tensile strain, E", and the

tensile strength of conerete, f,'. It was shown (see Shayanfar et al., 1993) that the value of f,'

does not have a considerable influence on the value of the ultimate load, as compared with the

value of E".

For each mesh configuration, the value of E" was adjusted so that the computed ultimate

load was close to the experimental ultimate load. The results of analyses for beam TILA and

shear panel W-2 are presented in Tables 5.4 and 5.5, respectively. The best values of E,u for the

beam and the shear panel for dilferent mesh sizes are presented in Table 5.6. The results confirm

that there is a unique value of E" corresponding to each mesh size regardless of the type and

detailing of the structure. After determining the best value of 8,. for each mesh size (element

width), h, the variation of E,u with respect to the element width is plotted in Fig. 5.13. A

regression analysis of the results leads to the following exponential equation:
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Table 504: Effeet of E" on ultimatc load. for undcr-rcinrorecd boam T2L\

NUl'1ber of Size of Ultimotc load
elements ~!eme~~~ E" c" (lb) PII."t/PE'l'

InXIO

4 18 x 12 0.00013 0.0007 lQ500 1.2·1

4 18 x 12 0.00013 0.00018 16000 1.02

20 6x6 0.00013 0.0007 14000 O.QO

20 6 x 6 0.00013 0.001 14500 0.9:;

20 6xG 0.00013 0.0013 15500 O.QQ

80 3 x 3 0.00013 0.0007 15000 0.%

80 3 x 3 0.00013 0.00013 13500 0.8"

80 3 x 3 0.00013 0.0021 15500 O.QQ

80 3 x 3 0.00013 0.0028 16500 1.053

80 3x3 0.00013 0.005 17000 1.085

320 1.5 x 1.5 0.00013 0.0007 14000 O.QO

320 1.5 x 1.5 0.00013 0.0031 15500 O.QQ

Experimental result 15666 -- - -

Table 5.5: Effeet of CIO on ultimate load of shear panel W-2

Number of Size of Ultimate load
elements 7!eme~~~ c" "', (lb) PllodiPE'rtnxm

35 6x6 0.00018 0.0002 26000 0.98

35 6x6 0.00018 0.0018 28500 1.08

35 6x6 0.00018 0.002 28700 1.083

35 6x6 0.00018 0.00125 26500 1.00

120 3 x 3 0.00018 0.0002 25500 0.96

120 3 x 3 0.00018 0.005 30500 1.15

120 3 x 3 0.00018 0.0006 25500 0.96

120 3x3 0.00018 0.0021 26250 0.991

460 1.5 x 1.5 0.00018 0.0002 24000 0.91

460 1.5 x 1.5 0.00018 0.002 24500 0.925

460 1.5 x 1.5 0.00018 0.0013 24500 0.925

460 1.5 x 1.5 0.00018 0.0031 26700 \.008

Experimental result - - - 26500 .
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• Table 5.6: Optimum value of EN for different mesh sizes
for beam T2LA and shear panel W-2

Sizc of clement The optimum value of ultimate tensile strain (~)

(in inchcs) Bearn T2LA Shear panel

1.5 x 1.5 0.0031 0.0031

3 x 3 0.0021 0.0021

6x6 0.0013 0.00125

18 x 12 0.00018 --

€", =0.004 e -(),2h (5.2)

•

•

If EN is smaHer than E". then

(5.3)

where h is the width of the element in inches (for non-square elements: h = -.lA , in which A is

the element area), and EN is the concrete ultimate tensile strain.

This formula is empirical and is obtained by a trial and error procedure. Based on this

formula, the value of EN decreases with an increase in the value of h, and vice versa, so that the

energy dissipation capacity and the ultimate load of the structure remain constant irrespective of

the size of finite element used in the mathematical mode!. If the element size, h, is too large so

that the ~ is less than E", then ~ is considered to be equal to E". This is because of the

numerical difficulties in the snapback of the tensile stress-strain curve of concrete. lt should be

pointed out that using this formula, a coarse mesh can be selected for finite element analysis with

an acceptable degree of confidence in the computed results and considerable saving in the

computational effort.

However, it should be noted that Eq. 5.2 was derived for the case of beams and shear

panels, and ils validity for other systems need to be investigated.
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SA IMPLEMENTAnON OF THE MODElS INTO THE HODA PROGRAM

The algorithms employed for implcmentation of the crack band thcory and the new

proposed model arc presented in this section. With the imposed modifications. the program can

handle the nonlinear finite element analysis of the structures based on "no mcsh dependcncy

analysis". "the crack band them)"" and "the proposcd model".

504.1 Crack Band Model

The crack band theory algorithm is summarized for implementation into the HODA

program as follows:

Case (1): If the size of the element is equalto the crack band width. i. e. h = w,. then the ultimate

tensile strain ofconcrete is evaluated as (see curve OPA of Fig. 5.12)

(5.4)

where h is the element size. Gr is the fracture energy. w, is the crack band width which is

approximately equal to three times the maximum aggregate size (3d,). and f, is the directtensile

strengili of concrete evaluated using Eq. 3.32.

Case (2): If the size of the element is less than the crack band width. i. e. h < w,. then the

ultimate tensile strain is calculated using (see cUrYe OPF of Fig. 5.12)

2G[ _
E = = OF/li •

J,h
(5.5)

•

Case (3): If the size of the element is greater than the crack band width. i. e. h > w,. lirst the

mesh size. ho. is determined for the case for which a vertical drop in stress is encountered. From

curve OPB of Fig. 5.12 it can be found that: Gr = 1/2 E" f, (ho) = 1/2 (f,l Eo) f, (ho). and then•
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• (5.6)

Now. if w, < h < ho then.

(5.7)

and ifw, < h > ho is govemed, an equivalent eurve OGE is used by modifying the tensile strength

of eoncrete, f,q, ta avoid a snapback part (curve OPO). Thus, Gr= ho f,'/2Eo =h f,q' /2 Eo, and

(5.8)

•
where f,q is the equivalent tensile strength of concrete for large finite element size with h > ho.
Finally, the ultimate tensile strain of concrete, ElU' is obtained as,

(5.9)

5.4.2 The Proposed Model

As eKplained in Section 5.3.2, the following equation can be used to evaluate the concrete

ultimate tensile strain, E,., corresponding ta each element size, h:

E
rv

= O.OO4e -o.20h (5.10)

•

where h is the element size in inches. Ifh is large sa that the Eq. 5.10 gives a value less than the

cracking strain, E", ta avoid numerical difficulties associated with a snapback portion on the

tensile stress-strain curve, the value of E,. is set equal ta that of E". For more information on how

this model and crack band model were implemented in the HOOA program, refer to the flow chart

in Fig. 5.14.
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5.5 COMPARlSON OF RESULTS AND DISCUSSIONS

The proposed model and the "crack band model" proposed by Bazant (1976) are

implemented in the HüDA computer program as discussed in the previous section. The detailed

analysis of the beam T2LA and the shear panel W-2 is presented in this section along with a

comparison of the results.

5.5.1 Bearn nLA

Beam T2LA is examined using 4 and 320 elements for the computer models. The value

of Elu for the program with "no mesh dependency analysis" (MDEP= 1) is assumed to be equalto

0.0007 for ail beam idealizations. For the beam idealized using 4 elements, the results arc shown

in Fig. 5.15. The ultimate load computed using the with "no mesh dependency analysis" is 19,500

lb which is 24% higher than experimental value of 15,666 lb. At load levels higher than 14,000

lb, the beam response is stiffer than the other models with yielding of steel reinforcement

occurring at a load of 16,500 lb which is higher than the experimental yield load of 14,000 lb.

The ultimate load obtained using the crack band model is 18,100 lb, which overestimates the

ultimate load by 16%, while the value based on the proposed model is 16,100 lb, which is quite

close to the experimental value with a discrepancy ofonly 2%. The yield load from both the crack

band and the proposed models are the same as the experimental result of 14,000 lb. The load­

deflection cUlVe for these two models follow the same general pattern and are quite close to the

experimental response. Il is obvious that the proposed formulation can be used effectively with

relatively large size finite elements. With this approach, the required computational times can be

reduced considerably.

As can be seen from Fig. 5.16, the ultimate loads for the beam idealized using 320

elements obtained from both the crack band model and the proposed model are the same, 15,500

lb, and quite close to the experimental result. It shows that the application of these two models

gives similar results with reasonably aceurate prediction of the ultimate load. Use of the HODA

program with "no mesh dependency analysis" underestimates the value for the ultimate load at

14,000 lb with an 11% discrepancy. A summary of the ultimate loads for the various mesh sizes

computed for the different models for beam T2LA is presented in Tables 5.6.
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5.5.2 Sbear panel W-2

The shear panel W-2 is examined for the models with 35 and 120 elements ta show the

effeet of fineness of the mesh on the eomputed resullS. The values of E~ for the analysis with the

program with "no mesh dependeney analysis" (MDEP= 1) are assumed to be equal to 0.002 and

0.005, respeetively. The load-defleetion eurves for 35 clement using the different models are

shown in Fig. 5.17. The ultimate load obtained from the model with no mesh dependeney is equal

ta 28,700 lb with a differenee of +8.3% from the experimental result of 26,500 lb. The load­

defleetion eurves eomputed for the different models are quite close ta the experimental response

up ta load level of 12,000 lb. Beyond this load level the program with "no mesh dependeney

analysis" exhibits stiffer response eompared with the experimental response (see Fig. 5.17). The

load-defleetion eurves resulting from bath the crack band model and the proposed model agree

quite weil with the experimental eurve and prediet the ultimate load quite aeeurately with a value

of 26,700 lb whieh represent a deviation of only +0.7% from the experimental result.

The results for the shear panel idealized using 120 clements are presented in Fig. 5.18.

The ultimate (oad resulting from the program with "no mesh dependeney analysis" gives a value

of 30,500 lb, with a differenee of 15% from the experimental value of 26,500 lb. The ultimate

Table 5.7: Ultimate load for the beam T2LA and the shear panel W-2 for different models

Ultimate Load (lb)

Number of Sïze of Ultimate
Type of clements e1ements tensile No mesh Crack
structure (in x in) strain dependeney band Proposed Experimental

(E",) analvsis model model values

4 18 x 12 0.0007 19500 18100 16100 15666
Oelll\l
nLA 80 3x3 0.0007 15000 15000 15500 15666

320 1.5 x 1.5 0.0007 14000 15500 15500 15666

35 6x6 0.002 28700 26700 26500 26500

Sbear 120 3x3 0.002 26500 25700 26500 26500
panel

460 1.5 x 1.5 0.002 24500 26700 26700 26500W-2

120 3x3 0.005 30500 25700 26500 26500
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load for the crack band model is 25.700 lb. representing a discrepancy of -3%. while the ultimate

!oad for the proposed model is 26.500 lb which is exactly the same as the experimental resull.

A summary of the u!timate loads for various mesh sizes computed for the dilTerent mode!s for

shear panel W-2 is presented in Tables 5.7. Excellent agreement between the computed values

obtained using the proposed model and experimental values is obvious from a comparison of the

lasl two columns.

5.5.3 Crack patterns

One of the most significant factors involved in the prediction of the bchaviour of

reinforced concrete structures is the formation and propagation ofcracks with increasing load. The

cracks in the concrete are the major source of material nonlinearity. The ability of the different

models to predict the crack propagation in concrete is examincd in this section. For this purpose,

the crack pattern for only one mesh configuration of the shear panel is presented with thick Iincs

representing Cully opened cracks (E > E", ) and thin Iines showing partially opened cracks (E" <

E < E",). The predicted crack patterns for beam T2LA using different models at different load

stages are presented in the report by Shayanfar et al. (1993).

The ability of the models to simulate the experimental cracking pattern for shear panel

is demonstrated in Figures 5.19 through 5.21. Figures 5.19 and 5.20 compare the crack patterns

for the program with "no mesh dependency analysis" (Case a), the crack band modcl (Case b) and

the proposed model (Case c) with the experimental cracking patterns (Case d) at two load levels:

24,000 lb and 25,500 lb, respectively. In comparing the cracking patterns, the following

terminology has been used with reference to Fig. 4.4(a). The concrete is assumed to crack at the

end of tension stress-strain branch KC = 1. These cracks widen partially along the branch KC =

3 and become rnuch wider or "fully opened" along the branch KC = 4. The comparison of the

different configurations show that the progress of fully opened cracks for both the crack band and

the proposed model is wider than for the no mesh dependency model and fits better the

experirnental crack pattern. Figure 5.21 compares the crack patterns at ultimate load stage using

the different models. The patterns obtained for the crack band and the present models are the same

and considerably wider than those obtained using the program with "no mesh dependency

analysis", The experimental cracking pattern at failure stage was not available (Cervenka, 1970).
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CHAPTER6

ANALYSIS OF EXPERIMENTAL SPECIMENS

This chapter compares the computed and the experimental responses of several specimens

using the HüDA program. These include a total of five panels tested at University of Toronto

under monotonically increasing inplane loadings (Vecchio, 1981; Vecchio and Collins, 1982), a

squat shear wall tested by Cardenas et al. (1980) under monotonically increasing load up to the

ultimate load carrying capacity of the structure, two high strength concrete beams, LS 1 and

HUCB, tcsted by Leslie et al. (1976) and Abrishami et al. (1995), respectively, and a shear panel

(W-4) tcstcd by Cervenka (1970) unde,' reversed cyclic loading. Along with the analysis of each

specimen, the effect ofdifferent nonlinear charactcristics ofreinforced concrcte (tension-stiffening,

failure criteria, cracking model, etc) are examined.

6.1 GENERAL

The computer program HüDA is an ideal research-oriented tool to study the behaviour

ofreinforced concrete structures using nonlinear finite element analysis and hypoelasticity models.

Il provides several options for the user as follows:

Mesh sizc dependency analysis,

--1 mesh size dependency not considered

--2 mesh size dependency analysis bascd on the crack band theory

--3 mesh size dependency analysis based on the proposed model
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Concrete stress-strain curve selection option

--1 Saenz and Smith's equations

--2 Popovics' equation

Constitutive matri" selection option

--1 DaT\\'in's constitutive matrix

--2 Proposed constitutive matri" utilizing the transformation of

equivalent unia"ial strains during the subsequent iteration

Tension-compression failure criteria option

--1 Kupfer and Gerstle

--2 Vecchio and Collins

Cracking model option

--1 Fi"ed crack modei

--2 Rotating crack model

Loading option

--1 Monotonically increasing loading

-on Cyclic loading with n cycles

Tensile loading-unloading option

--1 Horizontal unloading

--2 Secant unloading

Tensile-softening branch option

--\.O Continuous curve (no dropping at ail)

--0.0 Sudden drop to zero after cracking with no tension-stiffening capability

--\.0-0.0 Dropping after cracking with tension-stiifening capability

For more information on the various options in the HODA program. refer to Appendix A.

To veri!)' the reliability of the HODA program in predicting the nonlinear behaviour of

reinforced concrete structures, its corroboration with weil established experimental data is needed.

Some specimens including the beams T2LA and T5L and the shear panel W-2 were analyzcd

earlier in Chapter 5. and good agreement was noted with the experimental results. The following

sections deal with the analysis of the above structural elements in which the analytical results for

each specimen are compared with the experimental findings.
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6.2 PANELS TESTED AT THE UNIVERSITY OF TORONTO

ln an international competition to predict the load-deformation response of the R C

clements using the nonlinear linite clement method, four of the R C panels tested at the University

of Toronto by Vecchio and Collins (1932), were used by researchers from 13 different countries.

The results showed wide scatter (Collins and Vecchio, 1985) and for one of the panels the ratio

of the highest to the lowest prediction of strength was six to one. This was a c1ear indication that

the current models for analyzing R C clements need much improvement. In the following sections

the responses of live panels (from this set) are obtained using the HODA program and compared

with the experimental results.

6.2,1 Description of the Panels

Five panels PVll, PVI6, PVI7, PVI9 and PV23 were selected from the 30 specimens

tested at the University of Toronto by Vecchio and Collins (1982). These five specimens were

selected because ofthe varying reinforcement contents and loadings. The dimensions ofthe panels

were 890x890x70 mm. They were reinforced with wires ronning parallel to the edges of the panel

referred to as longitudinal and transverse reinforcements. The wire meshes had a typical grid

spacing of 50 mm and were heat-treated to ensure a ductile response. The concrete and

reinforcement properties along with the load pattern of each specimen are summarized in Table

6.1.

These panels were loaded by forces applied to 20 steel "shear keys", which were anchored

into the perimeter edges of the specimens as shown in Fig. 6.I(a). Each shear key was attached

to two "links" oriented at 45' with respect to the normal to the edge of the panel as iIIustrated in

Fig 6.I(b). The links, in tum, were connected to a series of220 kN double-acting hydraulicjacks.

Only three links were rigid to stabilize the panel within the test rig. By varying the magnitude and

the direction of the forces applied to the links, any combination ofshear, tension and compression

stresses can be applied to the edges of the test specimen. For example, Fig. 6.1(b) shows the

required load arrangement to provide pure shear in which one link would apply a tensile force

while the other would apply an equal compressive force. The normal force components would

cancel, leaving only the shear force components.
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Table 6.1: Material propenies and loading patterns for the Panels'

Concrete Longitudinal steel Transverse steel
Specimen Load Pattern

&~ r, (MPa) r, (MPa) P, (%) F" (MPa) P, (%) F" (MPa)

PV17 0.00200 18.6 lA 0.740 255 0.740 255 Unia..xiul c\lInpression

PV16 0.00200 21.7 1.0 0.740 255 0.740 255 Pure shear

PVII 0.00260 15.6 1.3 1.785 235 1.306 235 Pure shear

PVI9 0.00215 19.0 1.9 1.785 458 0.713 299 Pure shenr

PV23 0.00200 30.5 2.6 1.785 518 1.785 518
Shear and binxÎal compression

(H 1 V = -0.39)

E, = 200,000 MPa; E, = 5000.Jr, MPa; P, = Percentage of loogitudinal steel;

P, =Percentage of transverse steel; H =Applied nonnal force; V =Applied shear force

6.2.2 Finite Element Modelling

The panels are modeled using only one sheU element type 1(QLC3+RBE) in which one

layer of concrete and four smeared steel layers are used to represem concrete material and steel

reinforcement meshes, respectively. Figure 6.2(a) shows a panel under shear and biaxial tensile

forces. Any other loading type is a special case of this general loading condition. Since three rigid

links were provided to stabilize the panel within its plane, the panel is modeled by a simply

supported beam as shown in Fig. 6.2 (b). In the mathematical model, the load should be applied

at the joints (nodal forces). From equilibrium considerations, the nodal forces corresponding to

this load pattern can be obtained as represented in Fig. 6.2(b). The use of only one sheU element

saves a lot of computational time and reveals the emciency of the finite element formulation

employed in the HODA program.

The panels were analyzed using the HODA program and sorne of the computational and

experimental responses are summarized in Table 6.2. Additional information concerning the

behaviour of each panel is presented in the foUowing sections.
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Table 6.2: Results for Vecchio-Collins specimens

Description l'VII pVI6 1'\'17 PVI9 !'\·23

i\.p (Dcg.) 45-45 45-45 - 46-38 45-45

O"OD.\ (Deg.) 45-46 45-45 - 45-39 42-48

'''P (MPa) 3.56 2.14 2104 3.95 8.87

'" (MPa) 4.17 2.09 - 5.79 8.02

'" (MPa) 4.17 2.09 20.87 4.97 8.02

'" (MPa) 3.69 2.05 - 4.17 8042

'" (MPa) 4.17 2.09 20.87 4.97 7.62

'tul 1 t'C\(l 1.17 0.98 - 1047 0.90

tu:! 1 t'(':\p !.17 0.98 0.98 1.26 0.90

LU:; 1 tC\P 1.03 0.96 - 1.05 0.95

tu", l 'tC\P 1.17 0.98 0.98 1.26 0.85

Failurc mode Yic:lding lor.g. & Yir.:lding long. & concretc yiclding lrans. and concrclc crushing. and

(Expcriment) IronS. slcr.:ls trans. steel crushing concrctc crushing bond [ailure

Failurc mode Yiclding long. & Yiclding long. & concrctc yicldinr traIlS. and concrctc crushing. and

(1 IODA) lrans. stcds trans. steel crushing concretc crushing bond [ailure

• Tnp= Experimental ultimate sbear stress

'" = Ultimate shear stress evaluated using the fixed crack model

'" = Ultimate shear stress evaluated using the rotating crack model

T" = Ultimate shear stress evaluated using the rotating crack mode! along with Vecchio-Collins failure

criterian

tu~ = Ultimatc shear stress evaluated using the rotating crack model ignoring tension-stiffening

e = average orientation orthe principal strainl stress directions for cracked concrete, measured counter­

clockwise From the transverse a.xis

6.2.3 Panel PVll

This panel was heavily reinforced in both the longitudinal and the transverse directions
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and subjected ta pure shear. This large pereentage of steel rein forcement places heavy demands

or. the eonerete and reveals the adequae)' of the eonerete constitutive model emplo)'ed. The panel

was analyzed using the HODA program by utilizing 25 load steps and a maximum of 15 iterations

in eaeh load step. Four different analyses were earried out to examine the effeet of eaeh Illodcl

on the response of the specimen. This includes: fixed crack model. rotating crack modcl. rotating

crack model along with Vecchio-Colli"s failure criterion in the post cracking regime. and ignoring

the tension-stiffening.

Il should be noted that one of the assumptions made in developing the HODA program

is that perfect bond exists between the eoncrete and the reinforcing steel. Therefore. under plane

stress condition. the loc['; strains and deformations at any point cammon ta bath the concrete (in

one or more layers) and steel (smeared or idealized embeded bars) are identieal. The tension­

stiffening phenomenon oceuring in reinforced eoncrete after cracking is taken into con,irleration

using a strain-softening descending branch of the concrete str":;s-strain curve in tension.

The resuhing longitudinal. transverse and shear strains versus the applied shear stress arc

ploned in Figures 6.3(a). (b) and (c). respectively. The clacking of the specimen initiated at a

shear strength of 1 .6 MPa whieh is very close to the experimental result of 1.66 MPa. The first

three models are very close to eaeh other and to the experimental results. Beeause of slightly

different steel reinforeement in longitudinal and transverse directions, the rotation ofprincipal axis

after cracking of eonerete has a very slight deviation from 45° (45°-46°), whieh is the same as

what was reported from the experiment. This is the main reason why the results of the fixed and

rotating crack models are very close to each other. The model with no tension-stiffening eapability

for concrete, exhibits more flexible response after the initiation of cracking and is far from the

experimental response. This shows that the bond between steel and eoncrete plays an important

role in the response of this panel.

Finally, the panel failed because of yielding of both the longitudinal and the transverse

reinforcements which is in complete agreement with the results reported by Vecchio and Collins

(1982). After yielding of the reinforcement at a shear stress of 3.42 MPa, the modcl with no

tension-stiffening exhibits the same response as the other models, because up to that stage of

loading for ail models, concrete undergoes large strains and the specimen develops a considerable

number of cracks so that the bond between the concrete and the steel reinforcement is almost

completely lost and the response is govemed by the steel reinforcement which is the same for ail

of the models. The uhimate load resulting from the fixed, rotating and no tcnsion-stiffening
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modcls are identical and show a deviation of +17% from the experimental ultimate load, while

the aceommodation of the Vecchio-Collins failure criterion in the post-craeking region results in

a brittle failure with an ultimate load which is +3% different from the experimental value (see

Table 6.2).

6.2,4 Panel PVI6

The pancl PV 16 is reinforced isotropically in the two direetions with relativcly small

amounts of reinforcement (PI = Pt = 0.74 %). This specimen is also subjeeted to pure shear. It is

analyzed using the HODA program using 20 load steps and a maximum of 15 iterations in eaeh

load steps to meet the eonvergenee requirements. Four different analyses as outlined for panel

PV II are carried out and the corresponding load-strain curves arc shown in Fig. 6.4(a), (b) and

(c).

The initial cracking is observed at a shear strength of 1.09 MPa which is quite close to

the experimental value of 1.07 MPa as shown in Fig. 6.4. The firsttliree models (fixed, rotating,

and rotating & Vecchio-Collins) exhibit the same responses, but the model employing the

Veeehio-Collins failure eriterion in the post-cracking regime failed earlier in a brittle manner. If

the tcnsion-stiffening is ignored, a portion of strength of the structure resulting from bond action

bctwecn concrcte and steel is destroyed and the structure behaves in a more flexible manner. This,

in tum, leads to yielding of the reinforcement at an early stage of loading as can be seen in Fig.

6.4 for the model with no tension-stiffening. The steel reinforcement in both directions yielded

at an applied shear stress of 2.01 MPa for the models with tension-stiffening, and at a shear stress

of 1.9 MPa for the model with no tension-stiffening.

Since the steel contents in both directions are the same, no rotation of principal axis after

cracking ofconcrete is seen, and the principal angle remains constant at a value of45°. Therefore,

no differenee between the results using the fixed and rotating crack models was noted (see Fig.

6.4). The panel failed by yielding of the steel reinforcements in both longitudinal ami transverse

directions which is in perfect agreement with the experimental observation. Th: ar.~lytic ,1 ultimate

load resulting from ail models are very close to the experimental value of2.14 MPa. The 111timate

loads predicted by the flXed, rotating and no tension-stiffening models are identical and deviate

by only ·2% from the experimental value, while the use of the Vecchio-Collins failure criterion

gives an ultimate load which differs by ·4% from the expenmental value.

140



•

•

6.2.5 Panel PV 17

The panel reinforcement pallern was identical to that of the panel PYI6. but it was

subjectcd to the uniaxial compression in the longitudinal direction. The panel was analyzed using

20 load steps and a maximum of 15 iterations in each load step. Only two models were used for

the analysis. i. e.• rotating crack and no tcnsion.stiffening models. During the analysis. no tensile

cracking was observed. thus the use of other models would have exhibited no difference in the

results.

The variation of the longitudinal compressive strain is plolled against the applied DOrnlal

stress in Fig. 6.5. This figure clearly shows the capability of the HODA program to analyse this

specimen. Up to an applied normal stress of 17.2 MPa.the analytical response follows exactly the

experimental response and beyond that a small deviation from the experiment is observed. The

response is Iinear up to a compressive stress of 13 MPa.

Since no crack develops in the specimen. ignoring the tension stiffening has no effect on the

response of the structure as can be seen in Fig. 6.5. The panel failed by crushing of concrete in the

longitudinal direction which is the same as the experimental finding. The ultimate compressive stress

is 20.87 MPa which is slightly different from the experimental value (21.4 MPa ), wi!h the

discrepancy being ·2%.

6.2.6 Panel PVI9

Panel PVI9 was reinforced heavily in the longitudinal direction (p,=1.78%) and Iightly

in the transverse direction (p,=0.713%) and it was subjected to pure shear. The panel was analyzed

using the HODA program using 25 load steps. The variation of transverse and shear strains versUS

the applied shear stress are ploued using the four different models along with the corresponding

experimental results in Fig. 6.6(a) and (b), respectively.

Cracking in the panel initiated at an applied shear stress of 1.93 MPa which is reasonably

close to the corresponding experimental value of 2.07 MPa. After cracking of the concrete, no

noticeable change in the crack direction is observed up to a load of 3.2 MPa which is very close

to the experimental value of 3.11 MPa. At a load of 3.2 MPa, cracks begin to change direction

considerably and the responses resulting from the fixed and the rotating crack models deviate from

each other as can be seen in Fig. 6.6(a) and (b). The rotation of principal axis is located within
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the intel'\'al (45°-39°) which is very close to the experimental interval of (46°.38°).

ln the fixed crack model, the principal tensile stresses can be developed at angles not

coincident with the original two fixed-orthogonal directions. These stresses can eventually exceed

the cracking stress, but no corrective action can be taken using this model and consequently, the

numerical solution is usually stiffer than the rotating crack model and the ultimate load is also

higher (sec Fig. 6.6). The analytical failure load obtained from the fixed crack model deviates by

+47% [rom the experimental value, while the rotating crack model predicts the ultimate load with

a discrepaney of +26% (sec Table 6.2). If the rotating crack model is combined with the Veechio­

Collins failure crilerion in the post-cracking regime, the overall response, more and less, is the

same as the rotating crack model, except that the specimen fails earlier in a brittle manner and

gives an ultimate load of 1.17 MPa which deviates by only +5% from the experimental value of

3.95 MPa. The rotating crack model predicts the yielding of transverse reinforcement at a load of

3.5 MPa, correlating extremely weil with the experimental value of 3.45 MPa. The erushing of

concrete is also observed at this stage ofloading, followed by stitTening of the response resulting

from steel strain-hardening phenomenon. This specimen finally collapses by the crushing of the

concrete and the yielding of the transverse reinforcement.

The model with no tension-stitTening reveals more flexible results, but afier yielding of

reinforcement at a load of3.5 MPa, it follows generally the response pattern of the model which

considers tension-stitTening, because afier yielding of the reinforeement, the bond between the

cor.crete and steel is almost completely destroyed, and the response is governed by the tension

Icompression behaviour ofsteel reinforcement and! or the compression behaviour ofconcrete. The

computed ultimate load for this model is the same as for the model which accounls for tension­

stitTening (see Fig. 6.6).

6.2.7 Panel PV23

This panel was heavily reinforced in both longitudinal and transverse directions

(p,=p,=1.785%) and subjected to a combination of shear and biaxial compression. Four models

were used in conjunction with the HODA program ta analyze this specimen. The concrete

longitudinal, transverse and shear strains are plotted versus the applied shear stress in Figures

6.7(a), (b) and (e), respectiv~ly. Because of the high percentage of steel reinforcement in both

directions, great demand is placed on the concrete and the general behaviour of the specimen is
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govemed by the eoncrete as can be seen in Fig. 6.7 .

The panel experiences relatively little tensile straining and the initial cracking occurs at

an applied shear stress of3.2 MPa which lS comparable with the experimental value of3.73 MPa.

Since the longitudinal and transverse steel contents are identical. no change in the direction of the

principal strain axes and consequently. as expected no difference between the "fixed crack"

response and the "rotating crack" response is observed (sec Fig. 6.7). The model employing the

Vecchio-Collins failure eriterion, responds in the same manner as the above-memioned models

up to a shear stress of 6.8 MPa and beyond that it gives a stiffer response which is closer to the

el'perimental response and provides a better prediction for the ultimatc load of the structure.

The model with no tension-stiffening, differs significantly from the models which

incorporate tension-stiffening. This reveals the importance of the bond between the steel and the

conerete on the overall response of this specimen. As memioned earlier, because of the

rcinforcement arrangement, as cxpccted, the steel is not dominant in the response of the panel. and

it undergoes very small tensile strains which are very far from the yielding strain of 0.0026 [sec

Fig. 6.7(a) and (b)].

The panel failed by the failure of the concrete in compression which is very close to the

experimental observation. The ultimate load predicted by both the fixed and the rotating crack

models are undcr-estimated by -10% from the experimental value (Table 6.2). The use of the

Vecchio-Collins failure criterion results in an ultimate 10ùd of 8.42 MPa with a differenee of only

-S'llo from the eKperimenlnl value. Eliminating tension-stiffening under-estimates the ultimate load

by -15%.The computed longitudinal and transverse strain responses are softer than the

eKperimental response, while the shear strain response is stiffer.

In summary, analysis of the above five panels indieates the effeet of the steel

reinforcement details in different directions and the type of eKtemal applied load on the General

behaviour of the structure and its mode of failure. If small amounts ofreinforcement are provided

in the specimen, more demand is placed on the steel and it undergoes large strains and dominatcs

the final response of the structure. If the same amounts of reinforcement is placed in the two

orthogonal directions, the rotation of principal strain aKis after cracking is negligible and the

results of fiKed and rOlnting crack model are the same. On the other hand, if these two sets of

reinforcements are considerably different from each other, the responses of the two models are

quite different. The former eKhibits a stiffer response and a higher ultimate load than the latter.

Generelly, the rolnting crack model is more realistic than the fiK~. crack model in predicting the
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load-strain relations and the ultimate load of the structure. Use of the Vecchio-Collins failure

criterion in the post-cracking regime for ail of these panels provides the best rcsponse and

thercforc it is important that it be incorporated in any finitc element program to predict the post­

cracking rcsponsc.

6.3 TIIE SQUAT WALL TFSTED BY CARDENAS ET AL. (1980)

6.3.1 Description of the Squat Wall

The rectangular squat wall SW9 with a height-width ratio of one, was tested by Cardenas

ct al. (1980) to investigate the basic beheviour of reinforced concrete walls under monotonically

increasing lateral forces. The overall wall dimensions were 1905mm x 1905mm x 76 mm as

shown in Fig. 6.8. The 4S7mm thick rigid concrete block at the base of the wall was post­

tensioned to the laboratory test f100r to simulate a rigid foundation. Horizontal10ads were applied

through an enlarged monolithic section, 30Smm x 30Smm, which acted as the rigid f100r slab.

Vertical and horizontal reinforcements were uniformly distributed over the wall. The ratios of the

vertic~i and the horizontal reinforcements were 0.03 and 0.01, respectively. The bar sizes and their

spacings are indicated in Fig. 6.9. Ail reinforcing steel consisted of straight bars and no special

hoop reinforcement was provided.

6.3.2 Finite Element Modelling

The wall is divided into 100 rectangular finite elements for analysis using the HODA

program (see Fig. 6.10). The enlarged section is represented by 20 elements and the fixed base

is modelied by restraining the six degrees of freedom at the nodes along the wall base as shown

in Fig. 6.10(a). Plane stress conditions are assumed, and therefore, a finite element consisting of

one layer of concrete is sufficient. The horizontal loads are applied at the centre of the enlarged

block as horizontal traction along the nodes as indicated in Fig. 6.10 (a). The horizontal and

vertical reinforeements are represented by smeared steel layers with thieknesses as indicated in

Fig. 6.10 (b) in which t,. and t,. are the thicknesses of smeared steel layers in the x and the y

directions, respectively. The material properties of the concrete and the reinforcing steel used are

the same as those used in the experiment and are presented in Table 6.3. However, no data was
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available for the concrete tensile strength. f " m.:;;;num compressive strain. E,., ultimate

compressive strain. E., steel strain hardening modulus of dstieity, E:, and steel ultimate strain.

E~. The value of E", for each mesh size is ca1culated by the program using the proposed model

discussed in Chapter 5 to eliminate the mesh size dependcncy draw back (Shayanfar ct al.. 1993).

6.3.3 Response of the Squat Wall SW9

The analytical and experimental load-deflection curves for the squat wall SW9 are

presented in Fig. 6.11. The ultimate load predicted by the HÜDA program is 645 kN. whieh is

only 5% lower than the experimental ultimate load of 678 kN. The initiation of cracks predictcd

by the analytical model occurs at a load of 140 kN. Unfortunately, the experimental nackiug lo.d

is not avail.ble for comparison.

The elastic response of the wall using the SAP90 program is also presented in Fig. 6.11.

Il is obvious that the elastic analysis can only predict the 10ad-deOection beh.viour of the w.ll

before the initiation of cracks. After cracking, the elastic 10ad-deOection curve deviates

significantly from the experimental results.

Table 6.3: Material properties for squat wall SW9

SW9 f, E. f, (*) E,,(*' E.(*)
(MPa) (MPa) (MPa)

Concrete 43.02 30,000 2.17 0.002 0.003

Steel f,. (MPa) E. (MPa) E:(*) (MPa) E~(*)

Horizontal 448 200,000 4000 0.12

Vertical 413 200,000 4000 0.12

(*) assumed values
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Analytical results obtained by Lefas et al. (1990) using nonlinear finite element

analysis arc al 50 plotled in Fig. 6.11. Although their analysis yields an ultimate load of 670 kN

which is very close to the experimental result. the overall response is much stiffer than the

cxperimental results. The initial response of the wall is. in facto very close to the response

obtained by the HODA program. But after initiation of cracking at a Joad level of J90 kN. it

deviates eonsiderably from the experimental results and the computed results using the HODA

program.

Il can be observed from the load-deflection curves shown in Fig. 6.1 1 that the analytical

responses exhibit stiffer behaviour than the experimental response at load levels below 140 kN

which is the cracking load. Il is very diffieult to attribute this increased stiffness to any single

parameter, but it is Iikely to be caused by the higher initial tangent modulus for the concrete

assumed in the analysis. Since the initial modulus of elasticity of the concrete was not reported

in the experiment, the initial tangent modulus is obtained from the empirical formula in the CSA

Standard A23.3-M84, which is an approximation to scattered experimental results. and the

accuracy of the values cannot be ascertained. However. upon the initiation of cracks, the stiffness

of the wall deereases significantly and the load-deflection curve follows the experimental response

closely until the failure of the wall.

The propagation of the cracks in the wall obtained from the HODA program is presented

in Fig. 6.12. The first set of cracks appear. with a slight inclination, at the outermost tension fibres

of the wall at a load level of 140 kN as shown in Fig. 6.12 (a). Unfortunately, the experimental

crack pattern is not available for this load stage. Further loading caused cracking to continue to

spread at a small inclination toward the compression zone near the base of wall. The crack pattern

at load level 610 kN, which is one load stage before the failure of the wall, is presented in Fig.

6.12(b). The compressive forces transmitted through the diagonal concrete struts can also be

visualized from the crack patterns. Local crushing of the concrete occurs eventually in the

compression zone under the diagonal compression struts at a load of 645 kN. The experimental

crack pattern at failure is al50 presented in Fig. 6.12(c). As can be observed, the analytical crack

pattern agrees quite weil with the experimental crack pattern. Generally, the analytical response

of the squat wall analyzed using the HÛDA program, including the load-deflection characteristics,

the ultimate load carrying capacity and the crack pattern of the structure agree quite closely with

the experimental response.
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6.4 HIGH STRENGTH CONCRETE BEAi\lS

6.4.1 Description of the High Strength Concrete Beams

Twelve under-reinfofccd rcctangular b~~1Il1$ \Vith Co: ranging bet,,"ccn 64 10 ~ 1 ~tPa \Ven..'

tested by Leslie et al. (1976) to examine the use of a triangular stress block in preference Il' the

cUITently used rectangular stress black (from the ACI Building Code) for concretc strengths

exceeding 55 MPa. Among these beams. a simply supported high-strength rein!<)fccd ccmcrete

beam. LSI (designated as "9.0-1" in the paper in which the tirst number indicates the ccment

contents in sacks/cu. yd. and the second number shows the nominal percentage of the longitudinal

reinforcement) is investigated in this study. The beam was 203 x 305 mm in cross-section and it

was supported over a clear span of 2134 mm (see Fig. 6.13). lt was subjected to two coneentrated

third-point loads. The details of the reinforcement layout and the geometry of the bcam arc sho\\'n

in Fig. 6.13. The material properties of the concrete and the steel rein forcement are given in Table

6.4.

ln another research program conducted at McGill University. six nonllal and high strength

concrete beams were tested by Abrishami et al. (1995) to investigate the effcct of epoxy-co'lted

reinforcement on the flexural beh'lviour ofth~ normal und high strength conercte beams. The high

strength reinforced concrete beam HUCB with no epoxy coating on the steel reinforcement is used

in this study to investigate the basic behaviour of high-strength reinforced concretc bcams. lt is

a simply supported beam subjected to two monotonically increasing applied conccntrated loads

as shown in Fig. 6.14. Both beams were 400 mm deep, 200 mm wide and have a clear span of

4500 mm. The beams were simply supported, singly reinforced and without any shear

rein forcement. The details of reinforcement layout and the geometry of the beams arc shown in

Fig. 6.14. The material properties of the concrete and the steels arc given in Table 6.4.

6,4.2 Finite Element Modelling

Becauseof symmetry ofload and geometry of the beam LSI, only one-halfofthe beam

is modelled in the finite element idealization. The beam LS 1 is discretized into 14 shell elements

as illustrated in Fig. 6.15. The Quadrilateral shell element (QLC3), an inplane membrane clement,

with 3 degrees of freedom per node (u, v, e,), and the rectangular bending clement (RBE) with
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3 degrees of freedom per node (0,. 0" w) arc used. Plane stress conditions are assumed. and

therefore. onJy one layer of concrete is suffieient. The longitudinal rein forcements are modelied

lIsing discrete bar eJements and arc lllmped in single bars at the reference sllrfaces. ':he shear

rein forcement in the shear spans is modelled as smeared steel layers.

The venieaJ Joads are applied '" 30 Joad steps with smaller increments of Joads being

applied jusi before the beam reaches ilS ultimate load stage. This would improve the rate of

convergence of the solution and the accuracy in predicting the faiJure load.

Table 6.4: Sectional Details and Material Propenies

Dimension and
Bearn Bearn

Material Property
LSI HUes

h (mm) 305 400

b (mm) 210 200

d (mm) 270 340

L (mm) 2280 4500

A, (mm') 570 600

f, (MPa) 73.2 90.0

Eo (MPa) 30,000 34,000

E" __0.002 0.0031

Eo Cl 0.004 0.0034

f, (MPa) 2.82 3.13

f, (MPa) 415 400

E, (MPa) 200,000 200,000

EloY 0.0021 0.002

E" 0.06 0.ü75

* Assumed value
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Sinee both the load and geometry of the be.m HUCB are symmetrie. only one-halfofthe

boam is modelled using 20 quadrilateral shell clements as shown in Fig. 6.16. Plane stress

conditions are assumed. and thcrefore. only one layer of eonerete dement is suffieient. The

longitudinal reinforcement is lumped in a single diserete bar at the referenee surface. The venicol

loads are applied in 30 load steps with smaller increments of loads being applied just before the

beom reaches its ultimote load stage. Ouring the analyses in this section. the Popovics' equation

is used to represent the uniaxial concrete stress-stmin curve and the rotating crack model is also

used for crack modelling.

6.4.3 Computcd Rcsponse of High Strength Bcam LSl

The analytical and experimental load-deflection curves for the beam LS 1 are plolled in

Fig. 6.17. The model, with no mesh depcndency, in which the ultimate tensile strain of the

concrete, E~, is set to a constant value of 0.003, exhibits very stiff response, however, it predicts

the ultimate load capacity of the specimen very accurately with a difference of only 0.1%. The

model incorporating the proposed model to eliminate the mesh dependency gives a relatively

softer response closer to the experimental results but it under-estimates the ultimate load carrying

capacity of the structure by 10% (see Fig. 6.17).

Incorporation of a sudden drop of the stress after the tensile strength of concrete has been

exceeded [see Fig. 3.12(b)], has a strong effect on the load-deflection response of the beam at

early stage ofloading after initial cracking ofconcrete. The various load-deflection, load-concrete

compressive strain and load-steel tensile strain corves for beam LS 1 are given in Figures 6.18,

6.19 and 6.20, respectively. These curves reveal the effect of the change in the softening branch

parameter, y, on the analytical response of the beam. As can be seen from Fig. 6.18, the load­

deflection curves are closer to the experimental results when a smaller value of y is used.

Oecreasing the value of the softening branch parameter, y, is acceptable up to a value of 0.4, but

further decrease of y leads to a softer response than the e"perimental results at an early stage of

loading and under-estimates the ultimate load of the beam significantly, which is not acceptable.

A summary of the response of the beam LS 1 at yielding and ultimate stages ofloading

is given in Table 6.5, which shows the load and the corresponding mid-span deflections at

yielding and ultimate stages of loading as weil as the ductility ratio and the predicted mode of

failure for each mode!. The displacement ductility ratio is defined as the maximum deflection at
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Table 6.5: Summary of the response of beam LS 1 at yiclding and ultimate stages of loading •

Yielding load Ultimate load Ductility
Mode of

Model ratio

P,. kN D.,. mm p., kN Il",mm
failure

(J.l,=Il"/D.,)

Experiment 152 6.2 200 27.1 4.36 F

MDEP=I, y=l.0 188 5.5 196 2604 4.76 F

MDEP=3, y=l.0 168 5.8 180 30.0 5.17 F

MDEP=3, y=0.6 164 5.6 180 25.2 4040 F

MDEP=3, y=OA 172 5.7 176 23.1 4.04 F

MDEP=3, y=0.0 160 5.8 164
1

5.8 \.00 F-B

• MDEP= Mesh dependency option, y= Softening braneh pararneter, F= Flexural failure,

F·B=Flexural yielding followed by diagonal tension and bond failure

failure, Il", divided by dellection al first yielding of reinforeement, t:..., (J.l,=l1jt:...,). Il can be

observed thal by decreasing the value of softening parameler, y, the ductility ratio, J.l., decrease

and for values of y, less than 004, it does nol malch with the experimenlal findings.

In the experimenlal program, Ihe shear orl and bond failures were precluded by use of

heavy slirrups in the shear spans (Fig. 6.\3). This reinforcemenl delailing led to a llexural failure

in which Ihe sleel reinforcemenl yielded firs!, followed by the crushing of the concrele. Varialion

of the applied load versus the concrele compressive strain at the oulermost compression fibre al

the mid.span seclion is plotted in Fig. 6.19, while the load-steellensile strain curve at this seclion

is given in Fig. 6.20. These figures show clearly that in the first three models (y=1.0, 0.6 and

OA), the yielding of the steel reinforcement is followed by the crushing of the concrete, leading

10 final failurc of the beam. This is a clear evidence of llexural failure of these three models,

which is in complele agreemenl \Vith the experimenlal results. The model with no tension­

sliffening (y=0.0) exhibils a sudden brittle failure after a nearly linear response as soon as steel

reinforcemenl yields (Figures 6.18, 6.19 and 6.20).
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Figures 6.21. 6.22 and 6.23 show the crack patterns for the beam LS 1 allhe iniliation of

flexural cracking alaload of 40 kN. al the yielding of the steel reinforeemenl and al the ultimate

load. corresponding to y values of I.a. 0.6. 0.4 and 0.0 in the eonerele lension stress-slrain eur,e.

The values of yielding and ullimate loads are shown in Table 6.5 for different mesh dcpendeney

oplions and different values of y. Ihe slrain softening parameter. For ail values of y, as expected,

the cracks initiate al the outer-most len"ion liber of Ihe beam and these are oriented vertically.

While Ihere arc very minor differences in thc crack patterns allhe yielding and Ihe ultimate loads

excepl near Ihe support regioll. Ihere arc considerable differences in Ihe cracking patterns al the

inilial cracking load (40 kN). II musl be poinled ouI Ihat the principal stresses are eomputed at

each of the nine Gauss quadrature points in cach finite clement and if the principal strain exceeds

the cracking strain, En' the computer program output indicates cracking atthe appropriate Gauss

quadrature point(s). Thus the formation of cracks occurs atthe cracking strain- Ihe peak point on

the tensile stress-strain CUNeo With the value of y = 1.0. the tensile strain continues to increase

with the value of the tensile stress decreasing Iinearly. For a tension stress-strain CUNe with

y=0.0, the tensile stress drops suddenly to zero afier cracking. Therefore, there is a maximum

dissipation of energy with y = \.0, while it is a minimum with y =0.0, which explains why with

y = \.0, the number of cracks at the initial cracking load (40 kN) is a minimum [Fig. 6.21(a)),

while with y = 0.0, this number is a maximum. [Fig. 6.21(d)]. For values of y = 0.6 and 0.4, the

number of cracks is belWeen the two extremes (y = \.0 and y = 0.0) [Figures 6.21(a), (b) and

(c)]. Unfortunately, the experimental cracking pattern was not available, and therefore a dircct

comparison is not possible.

An examination of Table 6.5 and Figures 6.22 and 6.23, shows that consideration of

tension-stiffening \Vith increasing values ofy, results in a graduai increase in the energy dissipated

at the ultimate load. Consequently, the ultimate load and the maximum deflection at this stage are

considerably higher for y = \.0 than for y = 0.0 with intermediate values for y = 0.6 and y =
0.4. As diseussed earlier, the model with y = 0.0 exhibited a sudden brittle failure when the stecl

reinforcement just yielded, resulting in a ductility ratio of only 1.0.
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6.4.3 Computed Response of Higb Strength Bearn HUCB

The load-deflection curves for the beam HUCB arc plolled in Fig. 6.24. The proposed

model for mesh dependeney analysis is incorporated for ail of the analyses presented in this

section. The modcl with no stress drop after cracking (y = 1.0) exhibits a very stiff response but

predicts the ultimate load carrying capacity of the structure with a discrepancy of-7%. This figure

shows again that decreasing thc value of the softening branch parameter, y, introduces softer

responsc which is close to the experimental result and this decrease is acceptable up to a value

of Y= 0.4. Further decrease of Yleads to softer response than the experimental one at carly stage

of loading and also under-estimates thc ultimate load by 18% for the model with no tension­

stifTening (y = 0.0).

A summary of the responses of the beam HUCB is provided in Table 6.6. Based on the

results presented in this table, the loads and the ductility ratios for the first three models (y = 1.0,

0.6 and 0.4), are very close to the experimental observations. It can be concluded that as the value

of y is dccreased, the ductility ratio decreases, and at lower value of y (y < 0.4), it does not

correlate properly with the experimental findings.

As pointed out in Section 6.4.1, no shear reinforcement (stirrups) was provided in this

specimen to prevent the formation of diagonal cracking in the shear spans (see Fig. 6.14).

Therefore, in the experiment, this detailing led ta the flexural yielding of reinforcement followed

by diagonal tension cracking and bond-splilling failure as reported by Abrishami et al. (1995).

Figures 6.25 and 6.26 show the load-concrete compressive strain and the load-steel tensile strain

curves for the beam .HUCB for the model with y=0.4. The figures show that steel reinlàrcement

yields first and at failure the concrete compressive strain at outermost compression fibre does not

exeeed the maximum compressive strain of concrete, &~. This is a clear evidence that after the

yielding of the steel reinforcement, the concrete does not crush and the failure of the specimen

can be allributed ta the bond failure as observed in the ,·xperiment.

Figure 6.27 presents the crack pallerns for the model with y=0.4 at initial

cracking,yielding of the steel reinforcement, and near the ultimate load stage. Almost a11 of the

cracks rernain vertical and a few inclined cracks are observed. This is in close agreement with the

experimental crack pallern at failure as shown in Fig. 6.27 (d). Ifthe crack pallerns shown in Fig.

6.27 are ~ompared with their counter-parts in Figures 6.21(c), 6.22(c) and 6.23(c), it is observed

that the crack pallerns corresponding to beam HUCB are much narrower than their corresponding
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crack pattcrns for bearn LS 1. This shows that cnergy dissipatioil capaeity of the beam \.51 is

higher than of the beam HUeB. This conclusion is supPorled by the fact that no shear

rcinforccment was provided in bcam HUeB.

Table 6.6: Summa')' of the rcsponsc of beam HUeB at yiclding and
uhimatc stagcs of loading •

Yielding load Ultimatc load Ductility
Mode ofMadel ratio

p,. kN A,. mm p•• kN 6.u' mm (fl.,=6JI\)
n.ilure

Experiment 44.5 21.0 50.8 72.3 3.44 F-B

MDEP=3. y=1.0 46 16.1 47 60 3.73 F-B

MDEP=3, y=O.6 42 14.1 47 51.2 3.63 F-B

MDEP=3, y=0.4 42 14.8 45 44.5 3.01 F-B

MDEP=3, y=0.0 40 15.3 42 23.6 1.54 F-B

• MDEP= Mesh dependency option. y= Softening branch parameter.
F-B=Flexural yielding followed by diagonal tension and bond failure

6.5 SHEAR PANEL SUBJEcrED 1'0 CYCllC WADING

6.5.1 Description of the Shear Panel

The reliability of the proposed material model for cyclic load condition (sec Chapter 3)

is examined in this section. For this purpose the shear panel W-4testrd by Cervenka (1970) undcr

reversed cyclic loading is undertaken. the panel consisted of of isotrq):oally and orthogonally

reinforced square plates 30 x 30 in (764 x 764 mm), and 3 inches (n "Im) in thickness. This

shear panel is similar to the shear panel W-2 analyzed in ehapter 5. The details of the

reinforcement and the geometry of the panel are shown in Fig. 6.28. As can be seen, these two

panels were combined to form one deep beam Iike specimen. This arrangement enabled easy

testing of the beam specimen as a simply supported beam with a central concentrated load. Two

square panels were tested simultaneously, although each panel aeted independently of the other

beeause of the staticany determinate supports. The concentrated forces at the supports and atthe
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Table 6.7: Material Properties for the Shear Panel W-4

Material Property Panel W-4 Panel W-4
(Imperial Units) (SI Units)

f, 3,544(psi) 24.5(MPa)

f, 512(psi) 3.5(MPa)

E. 2.900.000(psi) 20.000(MPa)

E" 0.0025 0.0025

E. () 0.004 0.004

f, 51,200(psi) 353(MPa)

E, 27.300.000(psi) 188,000(MPa)

E'Y 0.0019 0.0019

E..<'l 0.10 0.10

• Assumed value

load point were transmitted ta the panels by three vertical ribs as shawn in Fig. 6.28. These ribs

also helped ta maintain the lateral stability of the specimens during the testing program. The

material properties of the concrete and the steel reinforcement are given in Table 6.7.

ln the following discussion, a cycle consists of loading and then unloading in a single

direction. For verticalloading. if the direction of the load is up-ward, the corresponding cycle is

called "positive". and if it is down-ward, the cycle is referred to as "negative". During the test

program, for the positive cycles, the support at mid-rib was fixed and the load was applied by the

load cells at the the two end-ribs, while for the negative cycles the supports at the two end-ribs

were fixed and the load was applied by the load cell at mid-rib.

6.5.2 Flnite Element Modelliog

Because of symmetry of load and geomeuy of the shear panel W-4, only one·half of the

specimen is considered in the finite element idealization. The panel is discretized ioto 24 sheU

elements as shown in Fig. 6.29. The sheU element type il which is a combination of the inplane

membrane element RQUAD4 with 3 degree of freedoms per node (u, v, El,), and the rectangular
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bending clement IDKQ with 3 degrees of freedom per node (0,. 0,. w) is used to idealile lhe

structure for analysis using the HODA program.

Plane stress conditions arc assumed for the panel. therefore. only one layer of eonerele

is suffieienl. The concentrated rein forcement in the ribs is modelled as embeded bar clements and

the distributed rein forcement in the web is idealized as two smeared steel layers. The total load

is applied at the two points on the outer rib of the structure as shown in Fig. 6.29. The loads arc

applied in four cycles and eaeh cycle is eomposed of 30 load steps with a maximum of 15

iterations in eaeh load step. The first cycle is positive and it alternatively beeomes positive and

negative.

6.4.3 Computed Response of the Sbear Panel W-4

During the experimental program (Cervenka. 1970). the panel was inilially eyeled four

times at relatively low load levels. Then it was cycled between ±23 kips (±102 kN) until failure.

The load of 23 kips (102 kN) is 90% of the estimated monotonie load carrying capacity of the

panel. Finally it failed at a load equal to 88% of the "monotonic" load Iirnit (22.5 kips or 99.7

kN). The first two and a half cycles of the experirnentally observed load-deflection response arc

given in Fig. 6.30.

The load-deflection response ot'the panel using the proposed cyclic load model, is plotted

in Fig. 6.30. The model t'ails, if it is cycled at a peak load of 23 kips (102 kN) as was the case

in the experiment. Darwin and Pecknold (1975) and Rule and Rowlands (1992) also encountered

the same problem in their numerical model. This discrepancy could be due to the approximations

associated with the constitutive model, under-estimation of the compressive strength of the

concrete, f" obtained l'rom the uniaxial testing, and the different curing environrnents, etc.

Forthe sake ofcomparison with the experimental results, the load on the numerical model

was cycled be!Ween 22.7 kips (100.7 kN) and -18.5 kN (-82 kips). The numerical results for the

first !wo and a hall' cycles are given in Fig. 6.30. The numerical model exhibit stiffer response at

the beginning of the first cycle, but after the initial cracking at the Joad level of 12 kips (53.2 kN),

it softens and match better the experimental response. The dispJacement corresponding to the peak

point in this cycle is 0.14 in (3.6 mm) which is the same as the experimentaJ value. The stiff

response at the beginning of the first cycle can be attributed to the initial cycling of the specimen

during the experiment as mentioned earlier. Because this initial cycling can dissipate sorne of the
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energy absorbing eapacity of the specimen duc ta cracking and consequently make it softer. In

the unloading regime. the stiffness of the model is comparable with the experimental results and

il reveals less plastic deformation than the experimental results.

During the second cycle in which the peak point is -18.5 kips (-82 kN), the model traces

very c10sely the experimental response and the yielding of the reinforcement and excessive

cracking thereaftcr is observed at a load of -18.3 kips (81.2 kN). This situation prevented from

furthcr increase of loading beyond a value of 82 kN (-18.5 kips) leading ta the failure of the

specimen. The loading and unloading branches in the second cycle exhibit softer response than

their counter-parts in the first cycle. The model shows softer response during the third cycle than

the first cycle and follows the experimental curve closely.

The analytical crack patterns of the panel at the peak point of the first three cycles are

shawn in Figures 6.3I(a), (b), and (c). The experimental crack pattern is also given in Fig. 6.31(d).

A eomparison of the analytical crack patterns with the experimental crack pattern shows that the

direction and the position of the computed cracks at positive and negative cycles arc very closely

correlating with the experimental cracks.

The results presented for the shear panel W-4 veri!)' the reliability of the computer

program in handling the nonlinear finite element analysis under reversed cyclie loading. It is

obvious that the behaviour ofRe structures under cyclic loading involves very eomplex situations

and the models accounting for this condition must be verified versus several specimens. This is

beyond the seope of this research program and as a future research program one can concentrate

on this aspect of the computer program HODA and examine the proposed cyclic model more

comprehensively, and improve its performance by sorne modifications.
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CHAPTER 7

ANALYTICAL STUDY OF STRUCTURAL WALLS

This chapter presents the eomputed responses of thrce structural walls subjectcd to

distributed lateralloads using the HODA program. These include a rectangular wall, an L-shaped

wall and a C-shaped wall eonstituting the lateral load resisting system of a 4-storey building

(Manatokas, 1989). Sorne parametric studies arc also carried out on the three walls to show the

effect oftension-stiffening of the concrete and strain-hardening of the steel reinforcement along

with the type of steel idealization on the analytical response of these walls. No experimental

results are available for these walls, however in each case the computed results arc compared with

the wall strength calculated using the CSA standard A23.3-M84. This chapter establishes the

usefulness of the finite element analysis program HODA in the analysis of fairly complex

structures where the experimental demands are quite time-eonsuming, expensive and often

cumbersome.

7.1 DESCRIPTION OF THE STRUCfURAL WALIS

The 4-storey flat slab building (Fig. 7.1) with a structural wall system consisting of two

L-shaped walls, a C-shaped elevator core and a rectangular wall was analyzed by Manatakos

(1989). The storey heights for the first and the second storeys are 3.86m each, 3.56m for the third

storey and 3.96m for the fourth storey. The columns support the gravity loads and their

contributions to the lateralload resistance are assumed to be negligible; the entire lateralloads are

resisted by the wall system. The 216mm thick flat slab is assumed to be a rigid diaphragm that

182



•

•

•

inlroduccs the inertia forces at each floor level ta the structural walls. The foundations of the

building arc considered ta be fixed and transmit the forces ta the ground with,·t allowing the

walls ta rock. The building layout and the walls dimensions arc iIlustrated in Fig. 7.1.

The lateral seismic forces arc calculated based on the equivalent static loads according ta

the provisions of the National Building Code of Canada (1990). An approximale elastic analysis

of the wall forces is based on the assumptions that the floors act as rigid diaphragms and thus

walls deflect by the same magnitude at each flaor. Torsional forces are also taken into accounl.

The distribution of the lateral forces acting on the individual walls atthe various flaor levels was

calculated by Lim (1994) and the results are summarized in Table 7.1.

The design of the walls is carried out based on the seismic design provisions of the CSA

Standard CAN3-A23.3-M84. Detailed design ofthese three walls is presented by Lim (1994). The

rein forcement details of the rectangular wall (with and without the concentrated reinforcement),

thc L- and the C-shape walls are shawn in Fig. 7.2. Il should be noted that no experimental results

are available for the response of these walls and only their computed responses are presented in

the following sections.

Table 7.1: Seismic lateral forces distributed ta each wall (Lim, 1994)

Level Rectangular L-shaped C-shaped
wall (kN) wall (kN) wall (kN)

4 520 290 81

3 413 215 60

2 264 147 41

1 133 74 21

7.2 THE RECfANGULAR WALL

7.2.1 Finite Element Modelling

The rectangular wall is divided into 200 rectangular finite clements. Shell clement 1, which

combines the quadrilateral inplane clement (QLC3) and the rectangular bending clement RBE,
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is used. As the bending behaviour of the rectangular wall is essentially a plane stress problem. a

single layer of concrete is sufficient. In arder ta provide a realistic description of the fixed

foundation conditions atthe wall base. ail of the nodes along the lowest boundary of the wall arc

restrained for ail 6 degrees of freedom as illustrated in Fig. 7.3. The model is loaded \Vith equally

divided horizontal loads at the nodes along the 1100r levels. This is ta simulate the lateral forces

applied ta the wall through the 1100r slab diaphragm actions. The wall is also subjeeted ta constant

venical loads duc to the dead and live gravity loads from the structural system. The lateral loads

arc applied in 20 or 30 load steps with SOla11er increments of loads being applied just before the

wall reaches its ultimate load stage. This improves the rate of convergence of the solution and the

accuracy in predicting the ultimate load. The entire venieal load is applied in one load step atthe

beginning. The material prop~rties of the wall arc the same as those used in the design. Suitable

assumptions have been made for the modulus of elasticity and the ultimate concrete strain in

Table 7.2: Material Propenies of the Walls

Material Rectangular L-shaped C-shaped

properties wall wall wall

f, (MPa) 30 30 30

E. (MPa) 30120 30120 30120

fI (MPa) 3.29 3.29 3.29

E.. 0.002 0.002 0.002

E. 0.003 0.003 0.003

f, (MPa) 400 400 400

E. (MPa) 200000 200000 200000

E: (MPa) 4800 4800 4800

E'Y 0.002 0.002 0.002

E.. 0.10 0.10 0.10
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compression based on empirical formulas. The properties of the concrete and the rein forcing steel

used in the analysis arc prcsented in Table 7.2.

Two types of rein forcing bar arrangements arc studied. These are: a) uniformly distributed

rcinforccment. the vertical and horizontal uniformly distributed reinforcement [sec Fig. 7.2(a)]

bcing represented by smeared steellayers as shawn in Fig. 7.4. and b) concentrated rein forcement

by keeping the total rein forcement ratio almost the same as for the uniformly distributed case.

with concentrated vertical rein forcement being placed at the two ends of the wall with the

remaining steel uniformly distributed benveen the two ends [see Fig. 7.2(b)]. Two types of steel

idealizations are investigated for the coneentrated steel. The first idealization uses a smeared steel

model for the concentrated reinforcement, and the horizontal and vertical distributed

reinforcemcnts as illustrated in Fig. 7.5(a). The second idealization uses discrete bar elements to

reprcscnt the concentrated reinforcement and smeared steel model for the distributed

rein forcements as given in Fig. 7.5(b).

7.2.2 Computed Versus Predicted Ultimate Load

The analytical load-deflection curve at the top of the wall with distributed reinforcement

detailing is presented in Fig. 7.6. A comparison of the computed ultimate load and the ultimate

capacity of the rectangular wall calculated using the CSA Standard CAN3-A23.3-M84 is shown

in Table 7.3. The result shows that the computed capacity for the distributed reinforcement

detailing with smeared steel model is 125 times the nominal capacity with <1>,=1.0 and <1>.=1.0,

while it is 1.58 times the design capacity calculated according the current CSA standard with

<1>,=0.6 and <1>.=0.85.

When the concrete tensile strength and strain hardening of steel are ignored, i. e. f, = 0

and E: = 0 (see Fig. 7.7), the camputed ultimate load is reduced to 1850 kN which is only 10%

higher than the nominal capacity predicted using the CSA Standard CAN3-A23.3-M84 (see also

Table 7.4). It represents a model closest ta the present design assumptions in the CSA Standard

CAN3-A23.3-M84 where the recommended equation for ultimate capacity does not take into

account the concrete tensile strength, tension stiffening and strain-hardening of the steel

reinforcement. Although the validity of the assumptions is questionable, it yields a conservative

value for the ultimate load which is quite acceptable for design purposes. As can be observed in

Fig. 7.7. the stiffuess of the wall withaut the concrete tensile strength, deteriorates significantly
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upon thc initiation of the cracks at a load Icvcl of 600 kN. When the concrete tensile strength is

incorporated in the model. the computcd ultimate load increases to 1950 kN despite ignoring the

tension-stiffening. whieh is 5.4% higher than for the case when the tensile strength is ignorcd

(1850 kN). The load-deflection curve al50 indicates that with consideration of the conerete tensile

strength. the wall exhibits a much stiffer behaviour after cracking. Although both eurves in Fig.

7.7 deviate from each other immediately after cracking. they gradually approach each othcr at load

levels close to the ultimate load. The difference in the displacements for the two modcls becomes

smaller after a load of 1600 kN. This observation is not surprising because as the wall approaches

failure. most of the tensile "fibres" in the concrete would have cracked. As a result. the bchaviour

of the wall, with the concrete tensile strength considered, near failure is similar t0 the case without

the tensile strength. This can also explain the reason for only a slight increase in the ultimate

strength for the two cases.

Table 7.3: Comparison of the eomputed and predieted ultimate load for the reetangular wall

Computed Design Nominal Ratio
Detailing Steel model ultimate load' eapacity' capacity' of

p. (kN) P, (kN) P (kN) PjP

Distributed reinforcement Smeared model 2100 1330 1681 \.25

Concentrated reinforcement Bar element model 2050 1470 17\0 \.23

Concentrated reinforcement Smeared model 2550 1470 1710 1.52

, - Computed using the HODA program
, - Calculated using the CSA Standard CAN3-A23.3-M84 (~,=0.6, ~.=0.85)

, - Calculated using the CSA Standard CAN3-A23.3-M84 (~,=1.0, ~.=1.0 )

7.2.3 Effect of Strain-Hanlening of Steel

Figure 7.8 iIlustrates the influence of strain-hardening of steel on the load-deflection

curves of the rectangular wall with distributed reinforcement detailing. As can be observed, the

ultimate load increases only slightly from a value of2025 kN for the case without strain-hardening

(E:=O) to a load of 2100 kN when strain·hardening is considered (E:=4800 MPa). The load·

deflection curves essentially coincide with each other until at load of 1500 kN where the curves
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start ta deviate. Variation of the lateral load versus the eoncrete strain at the outennost tension

fibre for the two caseS with and without steel strain-hardening is ploned in Fig. 7.9. Because of

the assumption of perfect bond between the steel and the concrete, the strain in the concrete and

the reinforcing steel at a given location are identica!. An examination of the concrete strain reveals

that the deviation of curves occurs after the yielding of steel reinforcement has taken place (at

which the strain in steel reinforcement reaches the yielding strain of E" as presented in Table 7.2).

The change of the strain-hardening modulus does not appear ta affect the 10ad-deOection curves

and the ultimate load significantly. This can be attributed ta the fa ct that failure occurs due ta the

crushing of the concrete before more of the uniformly distributed steel reinforeement is stressed

into the strain-hardening zone.

For the caSe of steel strain-hardening with E:=4S00 MPa, Fig. 7.S shows that the first

crack occurs at a load of SOO kN at the extreme tension "fibre" of the wall. Because of the

redistribution of forces, there is a sudden increase in the concrete strain at the outer most tension

clements as shawn in Fig. 7.9. The neutral axis of the wall moves gradually towards the extreme

compression fibre, thereby reducing the area of concrete in compression leading ta the failure of

the wall because of the crushing of the concrete.

Table 7.4: Comparison of the computed and predicted ultimate load for the walls

Type of Computcd Computed Computcd Design Nominal Ratio
wall Detailing ultimatc ultimate ultimate capacity' capacil)" of

load' \oad' load' P, (kN) P (kN) P./p
p.1 (kN) p., (kN) P" (kN)

Rectangular Distributed 2100 2000 IS50 1330 1681 1.10
rcinforccrncnt

L-Shaped Distributed 1500 1300 1200 726 950 1.26
reinforcerncnt

C-Shaped Distributed 580 500 420 240 315 1.25
rcinforccmcnt

1 _ Computed using the HODA prograrn (E.'=4SOO kN, with concrete tension-stiffening)
, - Computcd using the HODA prograrn <E:=48oo kN, without concrele teosion-stiffening)
, - Computed using the HODA prograrn <E:=O.O kN, with no concrete tensile strength)
, - Calculatcd using the CSA Standard CAN3-A23.3-M84 (~,=0.6, ~.=o.85)

, - Calculatcd using the CSA Standard CAN3-A23.3-M84 (~,=1.0, ~.=1.0 )
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7.2.4 Effeet of Steel Idealization for Concentrnted Steel ReinforcemeDI

The influence of idcalizing the conccntratcd steel rcinforccmcnt using smcarcd steel and hilr

clements to represent the eoncentrated reinforcing steel at the two wall ends is studied using E:= 4800

MPa. A comparison of the 10ad-deOeetion curves for both smeared steel modcl and the bar clement modcl

for the reetangular wall with eoncentrated rein forcement detailing is shown in Fig. 7.10. The ultimate load

obtained for the bar clement model is 2050 kN. which is higher than the nominal capacity calculated \Ising

the CSA Slandard CAN3-A23.3-M84 by about 20%. The ultimate load obtained for the smeared stecl

model is 2550 kN which is 49% higher than the nominal eapacity calculated using the CSA Standard

A23.3-M84 (sec Tablc 7.3). Thus. the ultimate load using the smeared steel model is 24% higher than the

u!limale load computed using bar elemenl model. Il can be observed that both 10ad-deOeetion curves

compare favourably until reaching a load of 2050 kN where both curves start to deviale (Fig. 7.10).

Failure oeeurs at a load of 2050 kN for the bar clement model while the smeared steel model continues

to carry further load until a load of 2550 kN.

Comparison of the concrele strains al the oulermosltensile fibre and Ihe outermost compressive

fibre in Figures 7.11 and 7.12, respectively, gives a closer piclure of the behaviour between the bar

clement model and the smeared steel model. Both curves in each of the figures, essentially coincide with

eaeh other for load levels below 2000 kN. The steel reinforeement yields at a load of 1800 kN, and

Ihereafter for the case of bar element model, the wall becomes softer and a rapid increase of strain resu!ls

in the crushing of the concrete at the right-hand bottom of the structure, with the subsequent failure of the

wall at a load level of 2050 kN. For the smeared steel model, the structure beeomes softer after yielding

of the reinforeement at load level of 1800 kN, but it stiffens thereafter at load level of 2000 kN beeause

of slrain hardening of the steel reinforcement. However, for this model the strains do not increase rapidly

until a load level of 2500 kN. Clearly, the results of the concrete strain for the smeared steel model after

a load of2050 kN (with a sudden increase in load without any appreciable increase in strains) are contrary

to expectation, indicating that the smeared steel representation is not suitable to represent hcavy

concentrated reinforcing steel in a structural wall. A more realistic representation should be using the bar

element model.

Figures 7.13 and 7.14 ilIustrate the crack patterns ofthe rectangular wall at the various load levels

for both bar element and smeared steel models. The cracking is initiated for both models at a load of 1000

kN [see Figures 7.13(a) and 7.14(a)]. The crack patterns at load level of 1800 kN at which yielding of

steel reinforcement occur, are given in Figures 7.13(b) and 7.14(b). The crack patterns for both models
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at olle I""cl step before failure arc presented in Figures 7.13(e) and 7.14(e). Tbese figures sbow that

cracking v.'hich initiales at a ID\\' load Icvcl. spreads progressively towards the compression zone with

incn.:asing load. Thcsc cracks show a pattern of struts radiating from the compression zone at the right

eorner in Figures 7.13(c) and 7. 14(c). A typical tlexural failure of the wall where the failure is eaused by

yiclcling of steel reinforccment followed by erushing of concrete. is observed.

7.3 THE L-SHAPED WALL

7.3.1 Finite Element Modelling

The L-shaped wall is divided into a mesh eonsisting of 240 rectangular elements. Shell element

is used in the analysis. sinee the assumption of a plane stress condition is no longer va:id for this

structure. Each concrete element is subdivided into 7 layers to provide a more realistic model. Fixed

foundation conditions are modelled at the wall base by restraining the nodes along the base for ail 6

clegrees of freedom as illustrated in Fig. 7.15. The model is loaded with horizontalloads at the web in Fig.

7.15. The wall is also subjeeted to a constant vertical a"ia! loads due to the dead and live gravity load

from the structural system. Horizontal loads are applied in 20 load steps, with smaller increments of loads

being applied just before the wall reaches its ultimate load stage. The entire vertical load is applied in one

load step at the beginning. The finite element idealization is shown in Fig. 7.15. The uniformly distributed

rein forcement is represented by smeared steel layers. The material properties are given in Table 7.2.

7.3.2 Computed Response of the L-Shaped Wall

Figure 7.16 illustrates the load-detlection curves for the L-shaped wall. lt can be nded that with

tension stiITening. the ultimate load is 1500 kN, which is 15% higher than that for the case where tension­

stiITening is ignored (1300 kN). The stiffness of the wall without tension-stiffening reduces significantly

aCter the initiation of cracking at a load of 800 kN when compared with the model which considers

tension-stiITening. As can be observed from Fig. 7.16, inclusion of the tension-stiffening inereases the

ultimate load and the stiITness of the wall. To provide a mathematical mode! closer to the assumptions of

the current CSA standards for design of reinforced concrete structures, the concrete tensile strength and

the steel strain hardening were neglected and the torresponding load-deflection curve is also presented in

Fig 7.16. The cracking initiates at a much 10wer load level of 400 kN and the structure displays lower
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stitTncss than in the prcvious cases. i. c.. \Vith and without tcnsion-stiffcning. The: ultimatc load rcduccs

10 1200 kN which is slill26% highcr than thc nominal capacity calculated using the CSA Standard CA~3­

A23.3-M84 (sec Table 7.4).

Variation of the lateral laad versuS the eonerete slrain at the outermost wcb lcnsion librc atthc

base of the wall is also plolted in Fig. 7.17. In the absence oftension-stitTening. at a gi"cn load level.the

eoncrete strain is larger than the model which considers tcnsion-stiffcning.

The crack patterns for the L-shape wall with tension·stiffening at the various load lcvcls arc shawn

in Fig. 7.18. The cracking initiates at a laad level of 800 kN with nearly horizontal cracks at the Icft·hand

of the wall base. The steel reinforcement yields at a load level of 1100 kN and the corrcsponding crack

pattern is shawn in Fig. 7.18(b). Atthis load stage only one crack appcared in the flangc ofthc wall. \Vith

further increase of the load. the cracks progress toward thc comprcssion zones in the wall. The crack

pattern of the wall at one load step before ultimate load is shawn in Fig. 7.18(e). "lbe cracks in the wall

web are similar ta those for the rectangular wall exceptthatthey arc more extensive for the L-shaped wall.

Because the distributed load is assumed to be applied along the web center line. it passes through the shear

center at the web-flange junction and therefore no twisting moment acts on the section. The compressive

struts radiate ioto the web from the web-flange junction. The flexural cracks appear atthe free end of the

flange. As can be noted from Fig. 7.l8(c), these cracks which appear first near the flange base, increase

in number along the flange free edge and propagate towards the junction as the applied load is increased.

6.4 THE C-SHAPED WALL

7.4.1 Finite Element Modelling

The C-Shaped wall is divided into 80 rectangular finite elements. As for the L-shapeci wall, eaeh

eoncrete element is subdivided inlo 7 layers. The boundary and loading conditions are similar to those in

the L-shaped wall. The finite element idealization is shown in Fig. 7.19. The material properties are given

in Table 7.2.

7.4.2 Computed Response of the C-Shaped Wall

Figure 7.20 illustrates the load-deflection curves for the C-shaped wall. The ultimate load of the

model which considers tension-stiffening is 580 kN which is 16% higher than the value for the model

190



•

•

•

without tension-stiffening (500 kN). This observation is again consistent with the earlier findings for the

rectangular and L-shaped walls that consideration of tension-stiffening inereases the ultimate load and

stiffens the 10ad-deOection response of the structure. First cracking of the wall oceurs at a lateralload level

of 300 kN after whieh the stiffness of the modcl without tension-stiffening reduees signifieantly. The

computed ultimate load without eonsidering the eoncrete tensile strength and the steel strain-hardening

deereases to 420 kN whieh is still 25% higher than the nominal capacity ealculated using the CSA

Standard CAN3-A23.3-M84 (sec Table 7.4). In this case, the structure exhibits a response with a mueh

smaller stiffness afler initial cracking at a load level of 100 kN (sec Fig. 7.20).

Figure 7.21 shows the load-eonerete strain curves at the outermost tension flange "fibre" al the

base of the wall. Again, the concrete strain after cracking for the case withouttension-stiffening is larger

than the model which considers tension-stiffening. The steel reinforcement yields at load level of410 kN

for the model considering eoncrete tension-stiffening, and at load level of 350 kN for the model without

tension-stiffening.

Figure 7.22(8) iIIustrates initiation of horizontal cracks at a load level of300 kN at the lefl-hand

of the wall flange and wall web near the base. The crack pattern of the wall at yielding stage of the steel

rein forcement is also shown in Fig. 7.22(b). The crack pattern at a load step just before failure is shown

in Fig. 7.22(c). The cracks show the formation of a series of inclined struts radiating into the w~b from

the web-flange junction. As for the L-shaped wall, the lateralload is assumed ta be applied along the web

center line at sorne eccentricity from the shear center of the C-shaped section, thereby causing a twisting

moment ta act on the section. This, in turn, causes torsional cracks in bath flanges of the section. These

expected torsional cracks are more dominant on the tension flange of the section than on the compression

flange.

The preceding discussions of the analylical responses of the various structural walls exhibits the

power of the nonlinear finite element program HODA in predicting the response of fairly comple"

structural systems. This study clearly establishes that the HODA program can be used ta carry out detailed

parametric studies ta study the effect of different parameters on the behaviour of cample" structural

concrete elements.
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CHAPTER 8

CONCLUSIONS

This chapter summarizes the findings of the analytical slUdies undertaken on dill<:rent

structural elements 1 :ng the HüDA program developed in the course of this study. This includes

the validity of the proposed material model for nonual and high strength concrete under hoth

monotonically increasing and reversed cyclic loadings. the mcsh dependency phenomenon.

analytical responses of the nonual concrete shear panels and the high strength concrete beams

under monotonically increasing loads. the numerical response of the nonual concrete shear pancl

W-4 (deep beam) under reversed cyclic loading. and finally the computed responses of tluee

structural walls of a 4-storey building (a rectangular wall. an L-shaped wall and a C-shaped wall)

subjected to monotonically increasing distributed lateral loads. Sorne new topics rclating to the

current study are also recommended to be investigated further.

8.1 MATERIAL MODEL

1) The main characteristics of a proper model for concrete materials, can be

summarized as follows:

i) The high nonlinearity of the stress-strain behaviour of the concrete in

the pre-peak regime, i. e. growing and propagation of microcracks

resulting in a decrease in the material stiffness.

ii) The softening behaviour of the concrete in the post-peak regimc

resulting from the localization of macroeracks in narrow bands.

iii) The stifthess degradation caused by the extension of microcracks

during subsequent unloadings and reloadings.

iv) The irrecoverable volume dilatation at high level of compressive load
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2)

rcsulting in an increasc in the Poisson's ratio.

Ali of the above features for concrete arc included m .he material mode!

developcd during the course of this slUdy.

The proposed analytical model for normal and high strength concrete under bOlh

monotonically incrpasing and reversed cyclic loadings compares weil with the

uniaxial compression test results and represents basic features of the concrete

behaviour in compression. For the cyclic loading model, it was observed that with

an increase in the number of cycles, the stiffness of the concrete decreases, and

the plastic strain increases as supported by experimental findings.

8,2 MESH DEPENDENCY

•

•

1)

2)

If a fine mesh is used to idealize a reinforr.ed concrete element for nonlinear

finite element analysis, the ultimate load is under-estimated when the element size

dependency is ignored. AIso, from energy considerations, a decrease in the mesh

size increases the rate of crack propagation in the structure, and consequently its

cnergy dissipation capacity decreases. This leads to a lower value of the ultimate

load than the experimental one. In this case, it is also observed that the structure

exhibits a less ductile response. However, if a coarser mesh is used instead, the

ultimate load is over-estimated. In this case, the structure behaves in a mOre

ductile manner. From a physical point of view, with an increase in the mesh size,

the rate of crack progression will decrease and the capacity of the structure to

dissipate energy will increase. This possibly answers the question "Why does the

ultimate load increase with an increase in the element size?".

The results of the different analyses for over-reinforced beams show that the

element size does not have a significant effect on the value of the computed

ultimate load, because at higher load levels, the response of the concrete elements

in compression govems the overall behaviour, and the response of concrete and

steel in tension does not have as significant an effect, as in the under-reinfcrced

concrete beams.
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3) The value of the ultimate eonerete tensile strain. En.' has a considerable influence

on the eomputed values of the ultimate load. It \Vas shawn by Shayanfar ct al.

(1993) that the effect of eoncrete tcnsile strength. f,. is not as significant. An

emperical formula is proposcd \Vhich gives an appropriate value of En. as a

funetion of the clement size. h. Along \Vith the crack band model proposed by

Bazant and Oh (1983). this formulation is implemented in the nonlinear finite

element program HODA ta analyze different type of structures. The responses

computed using these modcls sho\Ved very good agreement \Vith the experimentnl

results for the ultimate load. load-deflection and load-concrete strain responses.

and the conerete cracking patterns. The proposed formula can be uscd effectivcly

and economieally for analysis of structural eonerete clements using rclatively

large finite clements \Vith reasonable accuracy and much smaller computational

effort.

8.3 EXPERIMENTAL SPECIMENS

•

•

1)

2)

Analysis of the ftve panels tested at the University ofToronto indicates the effect

of the steel reinforcement details in different directions and the type of exlernal

applied load on the general behaviour of the structure and ils mode of failure. If

smail amounts of reinforcement arc provided in the specimen. more demand is

placed on the steel and it undergoes large strains and dominates the final response

of the structure.

If the same amounts ofreinforcement arc placed in the two orthogonal directions.

the rotation of principal strain axis after cracking is negligible and the results of

fixed and rotating crack model arc the same. On the other hand. if these Iwo sets

of reinforcements arc considcrably diffcrent l'rom each other, the rcsults of thesc

two models are quite different. The former exhibits a stiffer response and a higher

ultimate load than the latter. Generally, the rotating crack model is more rcalistic

than the fixed crack model in predicting the load-strain relations and the ultimate

Joad of the structure.
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• 3) The use of the Vecchio-Collins failure criterion in the post-cracking regime for

ail of these panels provides the best response. and and therefore. it is important

that it be incorporated in any finite element program to predictthe post-cracking

rcsponse.

4) The computer program HODA predicts the failure mode of allthese five panels

very close to the experimental findings and establishes the reliability of the

program.

5) Close agreement between the analytical and the experimental response in terms

of the load-dcflection. the failure load and the crack patterns have been obtained

for the squat shcar wall, SW9. Although several parameters which were not

reportcd in the experiments have been assumed. the failure load predicted by the

HODA program is only 5% lower than the experimental results.

•
6) For high strength concrete beams, the model, with no mesh dependency, in which

the ultimate tensile strain of concrete, EN' is set to a constant value, exhibits very

stiff responses, however, it predicts the ultimate Joad capacity of the specimen

very accurately with a very small discrepancy. The model incorporating the

proposed model to eliminate the mesh dependency phenomenon gives a relatively

softer response, which is c10ser to the experimental resuhs but it under-estimates

the ultimatc load carrying capacity of the structure a little.

•

7) Incorporation of a sudden drop of the stress after the tensile strength of concrete

has been exceeded, has a strong effect on the load-dellection response ofthe high

strength beams at early stage of loading after initial cracking of concrete. The

computed load-dellection curves are c10ser to the experimental results when a

smaller value of y is used. But it was discovered that, decreasing the value of

softening branch parameter, y, is acceptable on1y up to a value of y = 0.4, and

a further decrease in the value of y leads to a softer response than the

experimental resulls at an early stage of loading and under-estimates the ultimate

load of the beam significantly, which is not acceptable.
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• 8) By decreasing the value of sofiening parameter. y. the ductility ratio. Il.,,

decreases and for values of y less than 004. it does not match with the

experimental findings.

•

•

9) There is a maximum dissipation of energy with y = \.0. while it is a minimum

with y = 0.0. which explains why with y = 1.0. the number of cracks at the

initial cracking load is a minimum. while with y = 0.0, this nllmber is a

maximum. For values of y = 0.6 and O.-l. the nllmber of cracks is between the

two extremes (y = \.0 and y = 0.0).

10) The results presented for the shcar panel W-4 vcrify the reliability of the

computer program in handling the nonlinear finite clement analysis under reversed

cyclic loading. The load-deflection response, and computed crack patterns of the

panel using the proposed cyclic load model follows closely the experimental

results.

8.4 THE STRUCTURAL SHEAR WALLS

1) The current design method recommended by the CSA Standard CAN3-A23.3·

M84 for estimating the failure load appears to be rather conservative when

compared with the HODA program results. This is basically due to ignoring of

the tension-stifTening, the tensile strength of the concrete and the strain-hardening

of the reinforcing steel.

2) Tension-stifTening has a significant influence on the load·deflection response and

the ultimate load of the structural walls. If tension-stifTening is eliminated from

the model, the walls become more flexible and the ultimate load is smaller.

3) Using the smeared steel idealization to model the eoncentrated reinforcement in

the wall, results in a higher failure load than using the bar element idealization.

It would be more appropriate to use the bar element idealization for modelling the

concentrated reinforcing steel in the structural wall.
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• 8.S RECOMMENDATIONS FOR FURTHER SruDIES

The following areas relating ta the CUITent study arc needed ta be further investigated:

1) The proposed formula for mesh dependency is mainly concemed with sorne

structural clemems such as. beams and shear panels. The same investigation is

reeommended in eonjunction with other structural clements Iike slabs. structural

cores. etc., ta examine the validity of the proposed formula or developing new

formulas if needed.

2) Although the proposed model for mesh dependeney gave reasonable results for

high strength beams uscd in this study, however, more analytical work is needed

for structural elements built using high strength coneretes.

•

•

3)

4)

Sorne more parametric studies can be undertaken on the structural walls to

generate the basic data to be used for development of an appropriate praetiee­

oriented design procedure for structural wall systems.

The hysteretic response of the structural wall under cyelic loading ean also be

studied using the HODA program.
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STATEMENT OF ORIGINALITY

The analytical study undenaken in this rescarch program is aimcd at developing a simple

material model for bath normal and high-strength concrete structures under different static

loadings. The model is implemented into a nonlinear finite clement code ta be used for the

analysis of different concrete structural clements. Fifteen specimens arc analyzed using the

computer program HüDA developed in this study and extensive parametric studies arc undenaken

on each specimen ta examine the performance of the different modclling options available in the

program for computing the responses ofthese structures. The original contributions in this thesis

are:

4)

2)

3)

7)

6)

5)

214

1) A hypoelasticity model is developed based on the concept of equivalent uniaxial

strain utilizing the rotation of the material axis during subsequent iteration/load

step.

The Popovics' stress-strain curve is modified for application into the above

hypoelastic material mode!.

Based on the concept of focal point model, a fully automated algorithm is

developed ta produce automatically the loading and unloading branches of the

concrete stress-strain CUrve subjected ta reversed cyclic loading and corresponding

ta any point located on the envelope stress-strain curve using only the coordinates

of that point.

The effect of damage resulting from extensive compressive microeracking is

considered on the tensile strength of the concrete.

The effect of mesh size on the various behaviourial aspects of RC struclures

including load-deflection response, failure load, load-strain relationship, and

cracks pattern is investigated.

A new simple model is proposed ta remedy the mesh dependency drawback from

nonlinear FE analysis of RC structures.

Extensive analylical studies are carried out on three structural shear wall from a

medium-rise building, and the computed results are compared with the predicted

response using the CSA standard A23.3-M84.

•

•
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•
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APPENDIX A

INPUT DATA FOR THE HODA PROGRAM

MARCO 1994

csssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss

C MAIN PROGRAM

csssssssssssssssssssssssssssssssssssssssssssssssssssssSSSSSSSSSSSSSSSS
C READ INPUT CARO # 1 -- T1TLE HEADING lDENTIFICATlON CARD

read(55,10) 8[AIO]
C

hed ~ heading tille identification of 80 characters (max)
CRRRRlR.RlUUOO:.RRRRR.RlUUOO:.RR.RRRRR.RlUUOO:.RR.RIRRRRRRRRRRRRRRRRRRR
C READ INPUT CARO # 2 -- CONTROL CARO TYPE OF ANALYSIS

read(55,*) 11[15]
C

numnp ~ number of nodes

neltyp ~ number of element types (3 max)

quadrilateral facet shell element
boundary element
one-dimensional bar element

nquad ~ quadrilateral shell element type

-- 0 ~ QLC3 + RBE
-- plane stress + bending
-- linear n and cubic e
-- beam behaviour problems
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-- 1 = RQUAD4 + IDKQ4
-- membrane + IhickJlhin bending
-- cubic field both n and e
-- general behaviour

ntime = number of lime intervals for time-dependent

30 lime inlervals (max)
1 for instantaneous monotonically increasing load

icreep = creep analysis indicator

o = nol required
J = is rcquired

ishrink = shrinkage analysis indicator

o = nol required
! = is required

ilemp = lemperalure analysis indicalor

•• 0 = not required
•• 1 = is required

nonn = convergence and divergence criteria indicator

•• 0 = force norm -- maximum allowable forces
-- Fl,' Fy 1 Fil:' ~, My, M z

•• 1 = displacement nonn •• maximum allowab!e displacements

.- li" li,. li~ a" a,. a,

knonn = type of nonn values input

o = percentages of forces/displacement
1 = actual magnitude of nonn values of forces/disp!acements

kult = ultimate analysis indicator

•• 0 = linear/nonlinear elastic analysis
at one Joad interval

•• use 1 load step and 1 iteration

•• 1 = nonlinear ine!astic analysis
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kinteg = order of numerical intcgration
-- gauss intcgration grid clement points

1 integration point (min)
2 = 2 by 2 integration points
3 = 3 by 3 integration points (preferred)
-1 = 4 by 4 integration points (max special cases)

CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARD # 3 -- SELECTION OF NEW OPTIONS IMPLEMENTED

read(55") 7[15], 2F5.2
C

mdep= mesh dependency analysis factor
--1 no mesh dependcncy analysis
--2 mesh dependency analysis based on the crack band theory
--3 mesh dependency analysis based on the proposed model

munit= unit system option
--1 Imperial units (in, Psi)
--2 SI units (mm, N)

mcurve= curve selection option
--1 Saenz and Smith's equations
--2 Popovics' equation

iconst= constitutive matrix selection option
--1 Darwin's constitutive matrix
--2 Proposed Constitutive matrix utilizing also the transformation of equivalent

uniaxial strains during subsequent iteration

icolins= tension-compression failure option
--1 Kupfer and Gerstle
--2 Vecchio and Collins

icrack= cracking model option
--\ Fixed crack model
--2 Rotating crack model

icycle=loading type index
--1 monotonically increasing load
--N cyclic loading with n cycles (N<30)

iunload= tensile loading-unloading option
--1 Horizontal unloading
--2 Secant unloading
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esoft= softening stiffness factor
--0.0 Original version
--A very small value To avoid numerical difficulties

gslif= lensile softening branch option
--1.0 Original version (no dropping at ail)
--0.0 Sudden drop to zero after cracking with no tension-stiffening capability
--1.0-0.0 Dropping after cracking with tension-stiffening capability

CRRRRRRRRRRRRRRRRR.RRRR~~~~~UUUU~~R~C

READ INPUT CARD # 4 SELECTION OF REQUIRED OUTPUT
rcad(55,*) 6[15]

C
kout = output for every iteration or each load step

o = results for eaeh load step and last iteration
1 = results for every Joad iteration

kdis = output displaeements in element local coord system

o = not required
1 = is required

kcur = output eurvatures

o = not required
1 = is required

kstn = output strains

o = not required
1 = is required

kiter =output unbalanced forces

-. 0 = not required
-- printed for each load step only

-- 1 = is required
-- printed for every iteration

ksoln = solution required
o =solution

-- 1 = data check
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CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
C READ INPUT CARO # S -- OUTPUT STRESSES AT REQUIRED INTEGRATION

POINTS OF QUADRILATERAL FACET SHELL ELEMENT
C

read(SS,*) 16[12]

kOlg = clement stresses at gauss integration points required:

enter a total of 16 values of O's or l's
one value for each gauss integration point

o = not required
1 = is required

CRRRRRR~~UUUUUUUUUUUU~RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARD # 6 CONVERGENCE TOLERANCES -- LIMIT CRITERIA

C
C For convergence of load increments to proceed to next load step
C Select displacement type -- realistic values
C

read(SS,*) 6[Flo.o]

toler = six tolerable convergence components
(DELTA 2 - DELTA 1) = Difference for convergence

one = x- force/displacement = 0.001 mm

two = y- force/displacement = 0.001 mm

three = z- force/displacement = 0.001 mm

four = x- moment/rotation = O.OOS rad

live = y- moment/rotation = O.OOS rad

six = z- moment/rotation = O.OOS rad
C RRRRRRRRRRRRC
C READ INPUT CARD # 7 -- DIVERGENCE TOLERANCES -- LIMIT CRITERIA
e
e For divergence of load steps to indicate failure of structure
e Select displacement type -- reaHstic vdues

read(SS,*) 6[FlO.0]

vmax = six tolerable divergence components
maximum permissible values
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t\\'O

x- forcc/displacement = 10 limes eiastic results
(mm)

y- force/displacement

•

•

lhree = z- force/displacement

four x- moment/rolation = 15 limes elastic results
(rad)

live y- moment/rolation

six ::: Zw moment/rotation

CRRRRRRRRRRRRRRRRRRRRRRRRRRR RRRC
C READ INPUT CARD # 7-A _. LOAD STEPS AND TYPE 2 NODES LOADED
C

read(55,') 2[15]

nlstps = number of Joad steps for analysis (30 max)

njl2 = number of type 2 nodes loaded

-- Type 2 nodes = A different set of nodes loaded in
load steps j-steps

used for live loads, truck Joads, etc
different set of loads from Type 1 nodes loaded

CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRF C
nlslep=nlstps

CRRRRRRll.RRRRll.RRRRFlRRRRFl.RRRRltRR.RRlItRIl.RRlRRR.RRltRR.RRIRRRUŒ.RRFtRRRC
C READ INPUT CARD # 7-B -- OUTPUT RESULTS AT REQUIRED LOAD STEPS
C

read(SS,') 40[12]

(Istpop(i), i=l,nlstps)

= output results at Joad steps required:

-- cnter a number of O's or l's for every load step
for a total equal to NLSTPS

o not required
1 is required

CAUTION: Does not work correctly!!
Always cnter NLSTPS of l's
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CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARD # 8 -- REFERENCE TEMPERATURE For ZERO STRESSES

C
if(itemp .eq. 1) omit if ITEMP ~ 0
read(55.") 8[FlO.0]

contcmp = concrctc rcfcrcncc tcmpcraturc for zero stresses

csssssssssssssssssssssssssssssssssssssssssssssssssssssSSSSSSSSSSSSSSSS
C SUBROUTINE INPUTJ
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
C READ INPUT CARD # 9 -- NODAL POINT DATA

read(55.") 7(15] 3[FI0.0] [15]

n ~ node number

(id(i,n), i~I,6) ~ boundary conditions for degrees of freedom:

delta x ~O or

delta y ~O or

delta z ~O or

• theta x =0 or

theta y =0 or

lheta z =0 or

0 = unrestrained DüF
1 = restrained DüF

x(n) = x-coordinate global axes

yen) = y-coordinate global axes

zen) = z-coordinate global axes

lm = generation
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Input cards required for clement type(s) needed only

-- STIF 1-- SHELL ELEMENT

-- BOUNDARY ELEMENT -- STIF2)
-- BAR ELEMENT -- STIF3)

#10

(# 19
(# 22

CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
C SUBROUTINE ELEMK
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
C READ INPUT CARD -- ELEMENT TYPE IDENTIFICATION
C
C
C
C
C
C
C
C
CRRRRRRRRRRRRRRRRRRRRRRRRRRIU<.IU<.IU<.KKKKKK.KJ<.KJ<.KJ<..t<.KRRRRRRRRRRRC
READ INPUT CARD # 10 -- Quadrilateral Facet SheU Element

C

•

read(55,*) [15]

ntype(i) ; clement type identification

; 1 ; sheU clement

•
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
C SUBROUTINE STlF\
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
C READ INPUT CARD # II -- SHELL ELE~1ENT MATERIAL AND LAYER DATA
C

read(55,o) 8[15]

numsh ; number of shell elements

numen ; number of eonerete material types (4 max)

numst ; number of reinf steel material l)l'es (6 max)

numps ; number of prestressing steel material types (3 max)

numsps ; number of steel plate material types (4 max)

ntel ; number of eoncrete layers systems (\0 max)

ntsl ; number of smeared reinforcing steel layer systems (24 max)

ntspl ; number of steel plate layer systems (10 max)
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CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
C SUBROUTINE INDATA
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
C READ INPUT CAf,D # 12 (a) -- CONCRETE l\IATERIAL PROPERTIES
C -- NUMCN (4 max)
C
C Omit if NUMCN = 0
C

read(55.*) 4[15] 4[FIO.0]

= concrete materialt)"pe number (4 max)

jmt(i) = 1 input elastic concrete properlies
= 2 evaluate properlies using ACI fonnulae

jcr(i) = 0 creep analysis not required
= 1 input creep properlies
= 2 evaluate using ACI fonnulae

jsh(i) = 0 shrinkage analysis not required
= 1 input shrinkage properlies
= 2 evaluate using ACI fonnulae

fc28(i) = concrete strength at 28 days (stress)

cnu(i) = Poisson's ratio

rho(i) = unit weight density
(if jmt(i) = 2 -- must be input in ib/in3)

ctemp(i) = coefficient of thennal expansion

CRRJiUUOOCRR.RRRRRRJIŒ..lOOOOCRRRRRRJIŒ..lOOCRR.RRRRJIŒ..IWlRRR.RRRRRRRRRRC
READ INPUT CARO # 12 (b) CONCRETE STRESS-STRAIN CURVE

PARAMETERS
C

ifOmt(i).eq. 1)
C

read(55,*) 7[FIO.0)

ec(i) = initial tangent modulus

fcc(i) = compressive strength (stress)

ftc(i) = tensile strength (stress)

csc(i) = cracked shear constant/retention factor (max 1.0)
-- recommended value of 0.1 ta 0.5
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usc(i) ~ ultimate compressive strain

ust(i) ~ ultimate tensile s:rain

ccu(i) = maximum compressive strain

gf(i) = fracture energy for concrete type number i
··recommended value of 0.5 lb/in (0.1 N/mm)

amagr(i) = maximum aggregate size for concrete system type number i
··recommended value of 1.0 in (25.4 mm)

CRRRRRRRRRRRRRRRRRRRRlWlRR~.RRRRRRRRlWlRR.RRRRlUUlRR.RRRRRRllliC

READ INPUT CARDS # 12 (c) (i), (ii), (iii), (i,,), (v) •• CREEP DATA
C
C Omit creep input data if JCR(I) = 2 or = 0
C

if(jcr(i).eq.O) go ta 300
if(jcr(i).cq.2) go ta 200

c -· ·· · · ·- ·-..
read(55,") nage(i), nser(i)

C···--·············--···················--·
na=nage(i)
ob=nser(i)

C··········································
read(55,") (sage(ij), j=l, na)

C-·········································
jj=na·nb

C··········································
read(55,") (aci(ij), j=l, jj)

C··········································
read(55,") (wl(ij), j=l, nb)

C··················-·······················
read(55,") (w2(ij), j=I,4)

CRR.FlRRRR.F~RR.FRRlutR.RRRRRI~RR1~RR1~RR1lRRlRRR.RJUtRR:RR.F~RRRC

READ INPUT CARDS # 12 (d), (e) " SHRlNKAGE DATA
C
C Omit shrinkage input data if JSH(I) = 2 or = 0
C

if(jsh(i).eq. 0) go to 80
if(jsh(i).eq.2) go to 80

C·················--··--_·····---····--·--·
read(55") (tepss(i,n), n=I, ntime)

C········-·---···-·--·--·····----······----
continue

C···-·------··-·--·---_········--_··---···-
read(55,") slump(i}, size(i}, rh(i}
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CRRRRRRRR~~RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC

READ INPUT CARO # 13 •• REINFORCING STEEL MATERIAL PROPERTIES
C -. NUMST (6 max)
C
C Omit if NUMST = 0
C

rcad(55.*) [15] 5[FIO.O]

n = reinforcing stccl matcrial type number (6 max)

es(n) = eiastie modulus

fys(n) = yield strength (stress)

cstar(n) = strain hardening modulus

eus(n) = ultimate strain

cstemp(n) = coefficient of thermal expansion

CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARO # 14 .- PRESTRESSING STEEL MATER1AL PROPERTIES

C •• NUMPS (3 max)
C
C Omit if NUMPS = 0
C

read(55") [15] 4[FIO.O]

j = prestressing steel materialtype number (3 max)

espU) = elastic modulus

fpym = yield strength (stress)

estrpU) = strain hardening modulus

eupU) = ultimatc strain

:RRRRlR.RIW~RRRRlRRJR.RIWlRR~RRlR.RIWlRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARO # 14-A STEEL PLATE MATERIAL PROPERTIES

C •• NUMSPS (4 max)
C
C Omit if NUMSPS = 0
C

read(55") [15] 7[FIO.O]

•
j = steel plate material type number (4 max)
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cspsU> = c1astic modulus

fysp(j) = yicld strcngth (stress)

cstrspU> = strain hardcning moduJus

cusp(j) = ultimatc strain

spnu(j) = Poisson's ratio

cstcmsp(j) = coefficient of thermal expansion

unitwt(j) = unit weight ·jensity

CRRRRRRRRRRRRRRRRRRRRRRliUUlRRRRRRRRliUUtRFRRRRRRRRlutRRRRRRRRRC
READ INPUT CARDS # 15 (al, (bl •• CONCRETE LAYER SYSTEMS

C •• NTCL (10 max)
C
C Omit if NTCL = 0
C

if (ntcl .eq. 0) go ta III
C

do 110 i=I,ntcl
C ··.·..···..

read(55,') 2[15]

= concrete layer system number (10 max)

nclay(l) = number of concrete layers in system (20 max)

•• minimum layer thickness = minimum aggregate size

C··········································
ne = nclay(l)
ncl = nc+1

C··········································

read(55,') 8[F1O.0]

(zcü,ll, j=l, ncl)

= local z·coordinate of concrele layer surfaces
measured from reference plane surface
.- negative to positive extemal surfaces of layer
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CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARDS # 15-A (a). (b) -- STEEL PLATE LAYER SYSTEMS

C -- NTSPL (10 max)
C
C Omit if NTSPL = 0
C

if (ntspl .eq. 0 ) go to 141
C

do 140 i= I.ntspl
cefr(I)=O.O
cohsn(I)=O.O

<:----.--_...._...__.__...----_._-_....._--.
read(55,*) 3[15]

= steel plate layer ~ystem number (10 max)

nsplay(1) = number of steel plate layers in system (20 max)

ncrit(l) = Yield criteriû" code •• theory of plasticity

= 1 Von-Mises

= 2 -- Tresca

= 3 Mohr·Coulomb

= 4 .- Drucker·Prager
C
C··-··························-············
<: If NCRIT = 3 or 4 then input:
<:

if(ncril(1) .eq. 3 .or. ncrit(l) .eq. 4)
<:

read(55,*) 2[FlO.0]

cefr(l) = angle of friction in degress

cohsn(1) = cohesion value

<: .
nsp=nsplay(1)
nspl=nsp+l

<: _ .

read(55,*) 8[FlO.O]

(zspG,I), j=l, nspl)
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= local z·coordinate of steel plate layer surfaces

measured from referenee plane surface
•. negative to positive extemal surfaces of layer

CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARDS # 16 (a), (b) .. SMEARED RElNFORCING STEEL LAYER

SYSTEMS
C
C
C
C

C
if (ntsl .le. 0) retum

" NTSL (24 max)

Omit if NTSL = 0

•

•

do 130 i= l ,ntsl
C....····.··.····..····.·.-..···..····...··

read(SS.") 3[15)

= smeared reinforcing steel layer system number (24 max)

nslay(l) = number of smeared steel layers in system (7 max)

iang(l) = steel direction code

o angle alpha from local x·axis
1 angle alpha from global x·axis

c··········································
nsl = nslay(l)

C··········································
read(SS.") 2(15) 3[FIO.0)

( j = smeared reinforcing steel layer number (7 max)

mtnO.I) = material type number

zsO.I) = local z·coord of mid·surface of layer
measured from reference plane surface
" neglltive to positive mid·surfaces of layer

psO,I) = smeared layer thickness

alphO.I) = orientation angle alpha of steel

odegrees = along IJ (horizontal direction)
90 degrees = along JI( (vertical direction)

n=I, nsl )
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CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
C SUBROUTINE STIFI
CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR('
READ INPUT CARO # 17 -- GRAVITY LOAD MULTIPLIERS -- GLOBAL

DIRECTIONS
C

read(S5. *) 3[F 10.0)

(gm(i).i= 1.3)

= gravity load multipiers in global X Y Z directions
ta calculate dead load components
-- forces and moments for self weight

x-multipier = 0.00

y-multipier = 0.00

z-multipier = -1.25

-- can factor DL here, to multiply the concrete density value
CRRRRRRRRRRRRR RRRRRRRRRRRRRRRRC
READ INPUT CARO # 18 (a) -- QUADRILATERAL FACET SHELL ELEMENT DATA

C
read(55,*) 11 [15) 4[F6.0) 2[12)

mm = shell element number

(node(i), i=I,4) = nodes 1 J K L •• counterclockwise direction:

node 1 = i

node J = j

nodeK=k

nodeL=1

•

mc

msp

ncl

ns1

nspl

= concrete material type number

= steel plate material type number

= concrete layer system number

= smeared reinforcing steel layer system number

= steel plate layer system number
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kn = generation

• pn = normal distributed pressure on clement (MPa)
-- used for live loads (faetored here)

•

•

(pt(i), i=1,3) = intensity of eomponents of additional
uniformly distributed surface loads in the
direction of the global x y z directions
-- used for wind loads:

pt(x) x-direction component of pressure (MPa)

pt(y) = y-direction component of pressure (MPa)

pt(z) = z-direction component of pressure (MPa)

kopt = element option type
inplane and bending element

= 0 sheU element

nebar = number of bar elements within sheU clement (max 4)
-- input in next section below

CRRRRRRRRRRRRRRRRRRRRRRRRRRJWlRRRRRRJUUllRRRRJlUUlRRRRRRlOOlRRRC
READ INPUT CARO # 18 (b) -- BAR ELEMENTS DATA

C (located within a sheU clement)
C -- NEBAR (4 max)
C Omit if NEBAR = 0
C

read(55,*) 2[15] 7[FIO.O]

ktbOJ = bar clement type number

1 prestressing steel bar
2 reinforcing steel bar

ktyn(j) = material type number

xln(j) =natural eoordinate El ofend 1 ofbar

yI n(j) = natural coordinate NI of end 1 of bar

x2n(j) = natural eoordinate E2 of end 2 of bar

y2n(j) = natural coordinate N2 of end 2 of bar

bara(j) = bar cross-sectional area
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• sigmo(j) = initial stress

eoo(j) = initial strain

CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARD # 18 (e) -- TEMPERATURE VARIATION -- SHEll

ELEMENT
C Omit if lTEMP = 0

read(55,") 8[FIO.0]

(temp(i), i=I, nc)

Input cards required for element type(s) needed only

-- STIFI)
-. STIF3)

-- BOUNDARY ELEMENT -- STlF2

-- SHELL ELEMENT
-- BAR ELEMENT

# 19

(# \0
(# 22

= temperature in each layer at each integration point
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
C SUBROUTINE ELEMK
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
C READ INPUT CARO -- ELEMENT TYPE IDENTIFICATION
C
C
C
C
C
C
C
C
C~~UUUŒ~RR~~UUUŒ~~RRRRRRRRRRRRRRRRRRRRRRRRC

READ INPUT CARO # 19 -- Boundary Element
C

•
read(55.") [15]

ntype(i) = element type identification

= 2 = boundary element

csssssssssssssssssssssssssssssssssssssssssssssssssssssSSSSSSSSSSSSSSSS
C SUBROUTINE STIF2
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
C READ INPUT CARO # 20 -- NUMBER OF BOUNDARY ELEMENTS
C

read(55,") [15]

numbd = number of boundary elements
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CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC
READ INPUT CARD # 21 -- BOUNDARY ELEMENT DATA

C
read{SS.·) 8IIS] 2[FIO.O] [EIO.O]

np = node P -- loe1tion of boundary clement

ni = orientation node 1 oi Goundary clement

nj = orientation node J of boundary clement

nk = orientntion node K of boundary clement

ni = orientation node L of boundary clement

kd = displaeement code

o node P free ta translate
1 node P translation or spring specified

kr = rotation code

o node P free to twist
1 node P twist or spring specified

kn = generation

sd = specified displacement at node P

sr = specified twist at node P

trace = specified stiffuess of boundary clement
-- default value IOE06

C C
SUBROUTINE ELEMK

CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
C READ INPUT CARD •• ELEMENT TYPE IDENTIFlCATION
C
C # 22 BAR ELEMENT -- STIF3
C
C (# 10 SHELL ELEMENT STIFI)
C (# 19 BOUNDARY ELEMENT •• STIF2)
C
C Input cards required for element type(s) needed only
C
CRRR.RRI<lRR.l~.RRI<lRR.lŒR.lRRR.RRR.RRI<lRRlumRRR.RRI<lRR.lumRRRRRR:RRFtRRl!tR,C
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READ INPUT CARD # ~~ -- One-Dimensional Bar Element
C

readl55.') [15]

ntype(i) = clement type identification

= 3 = one-dimensional bar clement

CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
C SUBROUTINE STlF3
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
C READ INPUT CARD # 23 -- ONE-DIMENSIONAL BAR ELEMENTS
C

read(SS.*) 2(15)

nbar = number of one-dimensional bar elements

nbtyp = number of bar element types (3 max)

-- uniaxial concrete member
-- reinforcing steel member
-- prestressing steel member

C"""~~""",,,,,",~uuUY'"",,,~",,.RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRC

READ INPUT CARD # 24 BAR ELEMENT DATA
C

read(S5,*) 6[15) 3[FIO.O)

mm = bar number

nodi =node 1 of bar element

nodj = node J of bar element

nbt = bar type number

1 prestressing steel member
2 reinforcing steel member

mtyn = bar material type number

kn = generation

barea = bar cross-sectiona! area

sigo = initia! stress

•
eo = initial strain
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CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS~SSSSSSSSSSSSSSSSSSSSSS

C SUBROUTINE LOAD -- NONLINEAR ANALYSIS -- 1.0AD APPLICATIONS
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
C READ INPUT CARD # 25 (a) -- LOAD STEPS AND ITf:RATION INCREMENTS
C

read(55,') 3[15] 4[FIO,O] 3[15]

nlstep = number of load stcps to failurc = NLSTPS (30 max)

nitcr = numbcr of iterations allowed pcr load step (15 max)

nlj = number of Type 1 nodes loaded -- Coneentrated loads

pdl = uniformly distribuled dead load faelor
-- gravity load multipliers

pdsl = uniformly dislribuled live load factor
-- multiplier for PN

pspl = preseribed displaeement of springs
-- using boundary clements

pbrl = fraction of bar load for initial slrain/stress
-- one-dimensional bar clements

nstim = number of increments for time-dependent analysis

niterl = number of iterations for time-dependent analysis

itmpsh = temperature/shrinkage indicator

o temperature variation input
1 shinkage strains input

CRRRRRltRRRRltRRRRltRRRRltRR.RRJRRll.RRJRRll:.RR:RRlllRRRRltRRRRltRRRRltRRRR<C
READ INPUT CARD # 25 (b)

C
c TYPE 2 NüDES •• Input Forces and Fractions
c - ---========--=

C Additional Concentrated Loads
C

if(njl2 ,eq, 0) go to 1800

do 25 i=I,njl2 -- type 2 nodes

C------------------------.-----------------
read(55,') [15] 6[F10.0]

n = type 2 node number loaded
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(rb2li). j~ 1,6) = extemal applicd loads:

these nodal load values arc nonnalized fractions of the
ultimatc total failure load of the structure

Fx = x-direction force

Fy = y-direction force

Fz = z-direetion force

Fx = x-direction force

Mx = x-direction moment

My = y-direction moment

Mz = z-direction moment
<:------------------------------------------

read(55,*) 30[F 10.5J

(faetl(i), i=I,nl.,tps) = 30 max values for type 2 nodes

-- these values are actualtotal loads applied at every
load step in the analysis for a total of NLSTPS values

<:lU'J~~~~uuuuUU'~.lU'o.lU'o_"_RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR<:

READ INPUT CARD # 25 (b)
<:
c TYPE 1 NÛDES -- Input Forces and Fractions
e
<: Extcmal Coneentrated Loads
<:==~~================

1800 if(nlj.eq.O) go ta 900

do 21 i=I,nlj -- type 1 nodes
<:------------------------------------------

read(55,*) (15) 6[FIO.0)

n = type 1 node number loaded

(rbG), j=1,6) = extemal applied loads:

these nodal load values are normalized fractions of the
ultimate total failure load of the structure

Fx = x-direction force
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Fy = y-direction force

Fz = z-direction force

Fx = x-direction force

Mx = x-direction moment

My = y-direction moment

Mz = z-direction moment

c:------------------------------------------
read(55") 30[FIO.5]

(fact2(i), i=I,nlstps) = 30 max values for type 1 nodes

-- these values are actual total loads applied at every
load step in the analysis for a total of NLSTPS values

C:SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
c: SUBROUTINE TLODI
C:SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
c: READ INPUT CARD # 25 (c) -- LOAD TEMPERATURE DATA
c:
c: Omit if ITEMP = 0
c:

read(55") 8[FIO.0]

(deh(l), 1=I,nc)
•••

**•••*.*
••••••••••••••••

END OF INPUT DATA
••••••••••••*•••

*•••*••••
•••
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