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Abstract

We consider various properties of the general three-way layout in experimental design, and
begin with the information or C-matrices that play a key role, particularly with row-column and
two-way elimination of heterogeneity designs. We introduce a new class of three-way layouts
that satisfy a certain “generalized” decomposability property and obtain several new results for
such layouts. Four different types of canonical correlations and associated canonical efficiency
factors are considered and their connection with connectedness and orthogonality examined. We
obtain a new inequality involving the average efficiency factors of a two-way elimination of
heterogeneity design and of its two subdesigns. The concepts of variance and efficiency balance
are characterized, while that of general balance is studied in the context of row-column designs;
we point out the correspondence between general balance and commutativity of the efficiency

matrices in two-way elimination of heterogeneity designs.
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Résumé

Nous considérons un nombre de propriétés des plans a classification triple. En
premier lieu, nous décrivons les matrices soi-disant d’information ou C qui jouent un role
clé, particulierement chez les plans “row-column” et les plans a classification double avec
élimination de I’hétérogenéité. Nous présentons une nouvelle classe de plans A classification
triple qui satisfont une certaine propriété de décomposabilité “généralisée” et nous obtenons
plusieurs nouveaux résultats pour de tels plans a classification triple. Nous considérons
quatre genres différents de corrélations canoniques et facteurs d’efficacité canoniques asso-
ciés et examinons leur rapport avec les propriiiés de connectivité et d’orthogonalité. Nous
obtenons une inégalité nouvelle, impliquant les facteurs d’efficacité moyens d’un plan a
classification double avec €limination de I’hétérogenéité et de ses deux sous-plans. Nous
caractérisons les concepts d’équilibre-variance et d’équilibre-efficacité tandis que le concept
d’équilibre general est étudié dans le contexte des plans “row-column”; nous indiquons la
correspondance entre équilibre general et la commutativité des matrices d’efficacité pour les

plans a classification double avec élimination de 1’hétérogenéité.
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CHAPTER 1. INTRODUCTION

SECTION 1.1: SUMMARY

The three-way layout, in one form or another, has been used and studied for many years.
In experimental design comparing several treatments the three-way layout has often been
employed to remove two non-interacting sources of variation, e.g., the treatments may be
arranged in the form of a grid or two sets of non-interacting treatments may be applied to a
block design. The simp'est form of such designs, the “Latin Squares”, has been discussed
for over two hundred years while mos= elaborate designs have been studied for at least the
last sixty years.

In Chapter 2, we introduce the general three-way layout as a fixed-effects model with
no interaction; a number of more specific models are also mentioned, €.g., row-clumn
designs, two-way elimination of heterogeneity. In solving the normal equations for the
factor estimates of interest, a very important role is played by the so-called inforrnation or
C-matrices; we give a description of the different information matrices in Section 2.2. We
stress the significance of the relationships between the information matrix for the factor of
interest (usually treatments) in the whole layout and the information matrices for the subde-
signs obtained by ignoring factors which are considered nuisance parameters (usually rows
and cc'umns). More specifically, we look at a class of designs, apparently new, for which
the information matrix for the whole design decomposes into a linear function of the infor-
mation matrices for the subdesigns. We compare our decomposition with the less general
one introduced by Baksalary and Shah (1990) and the alternate decomposition introduced
by Baksalary and Siatkowski (1990). These decompositions are of interest because they
simplify the analysis of the design and make the relationships between properties of the full
design and of its subaesigns easier to identify. We provide several examples of designs il-
lustrating the different decomposability properties.

In Chapter 3, we first present four different types of canonical correlations in the

context of the general three-way layout. These are obtained according as we ignore, include,
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adjust for or adjust only partially for some or all of the other factors. In Section 3.2 we give
special attention, for all four types of canonical correlations, to the number that are equal to
one, and the number that are nonzero and strictly less than one; these numbers are seen to
be very useful in assessing different properties of the three-way layout. The concept of con-
nectedness is then introduced in Section 3.3 and we show its importance in terms of
estimability of the factors. In the three-way layout, several different types of connectedness
may be defined which are not independent. We point out a number of relationships which
exist between them. Similarly, there are different concepts of orthogonality in the three-way
layout. In Section 3.4, we introduce two versions of orthogonality: weak orthogonality [cf.
Chakrabarti (1962)] and strict orthogonality [cf. Eccleston and Russell (1975, 1977)]. We
look at these two concepts of orthogonality in the different situations where the third factor
is either ignored, included, adjusted for or only partially adjusted for. Some results
involving these different concepts of orthogonality are then presented. We also look at a
relationship between connectedness and orthogonality. In Section 3.5, we introduce
canonical efficiency factors associated with the three-way design and we point out their
relationship to canonical correlations. An average efficiency factor is then defined as the
harmonic mean of the canonical efficiency factors; we present a sharp upper bound for the
average efficiency factor of a two-way elimination of heterogeneity design in terms of the
average efficiency factors for the subdesigns.

In Chapter 4, we first characterize the two concepts of variance balance and efficiency
balance in the two-way elimination of heterogeneity design. We then present some results
relating these two concepts of balance to equireplication and the corresponding balance
properties in the subdesigns. We then introduce general balance in the mixed-model setting
[cf. Nelder (1965a, b)] and develop this concept further in the context of row-column de-
signs. We point out the correspondence between general balance and commutativity of the
efficiency matrices in two-way elimination of heterogeneity designs. The importance of this
commutativity property in terms of a common spectral decomposition for the efficiency
matrices is stressed and a number of theorems making use of this are presented. In
particular, stricter bounds for the average efficiency factor of a two-way elimination of

heterogeneity are obtained.



CHAPTER 1 INTRODUCTION 3

Appendix 1 contains a series of what we call mutz E-tables, one associated with every
three-way layout example presented in this thesis; these tables give the numbers m, u, and
t, respectively, of nonzero, unit and nonunit nonzero canonical correlations, as well as the
associated numbers z and E related to the canonical efficiency factors. In Appendix 2, we
give the computer programs {written in Mathematica 1.2) that we prepared in order to com-
pute these murzE-tables and to assess the associated decomposability and commutativity
properties. Finally, in Appendix 3 we present several matrix and linear algebra results,

mostly with proofs, that we used in this thesis.

SECTION 1.2: NOTATION AND TERMINOLOGY

All scalars, vectors and matrices considered in this thesis are real, unless stated otherwise.
Vectors. denoted by bold-face Roman lower case letters, are always taken to be column
vectors—for example the n x 1 vectcr y. Matrices are denoted by bold-face Roman upper
case letters—for example A, B, X, H. Scalars are denoted by light-face letters in italics.
For a given matrix A, the corresponding lower case letter with the subscript ij refers
to the (i, j)*4 element, and we write A = {ajj}. The symbols T(A) and N(A) represent, re-
spectively, the column space or range of A (the space spanned by the columns of A), and
the null space of A (the set of all vectors x which transform A into the zero vector, i.c.,
which satisfy Ax =0). The rank and the nullity (number of columns minus the rank) of the
matrix A are denoted by r(A) and yAA), respectively. Transposition is denoted by a prime,
e.g., A' is the transpose of A and so A' = {a,;}. We denote by dim the dimension of a
subspace, i.e., the unique number of vectors in any basis of the subspace-—for example
dimC(A) is the dimension of the column space of A. The vector space V' is said to be the
direct sum of V'; and Vi, ie., V =V ® V', if V| and V', are subspaces of V' satisfying
VinVa={0}and V'; U V2= "V. Weuse &L to denote the direct sum of two orthogonal

vector spaces.
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Given an m x n matrix A and an m x p matrix B, we write (A : B) for the m ~ (n +p)
partitioned matrix with A placed next to B. For a square matrix B, we use IBI, tr(B),
{ch(B)} and chx(B) to denote, respectively, the determinant, trace, set of characteristic
roots or eigenvalues of B and the hth largest (real) characteristic root or eigenvalue of B.
For an m x n matrix A, sgp(A) denotes the hth largest singular value of A, 1e., the
(positive) sruare root of the hth largest nonzero (positive) characteristic root of A'A or
AA'.

The n x 1 vector of ones is denoted by e{™ or just by e when the dimension is clear
from the context. Similarly, the n x n identity matrix is denoted by I,, or justby I. The n « n
matrix with all elements equal to 1/n is denoted by J,, i.e., J, = e(Me(™'/n_and the n ~ n
centering matrix by Cp, i.e., Cp = I, — J4. Again the subscript n may be dropped.

If A is square and nonsingular (Al # 0), its inverse is denoted by A”'. We define a
generalized inverse [see, e.g., Rao and Mitra (1971)] of an m x n matrix A asann - m
matrix A, where A™ is any solution to AATA = A. The unique generalized inverse, de-
noted by A*, which satisfies the four equations AA*A = A, ATAAY = A%, (AAY) =
AAY and (A*A)' = A*A is called the Moore-Penrose inverse; then the “hat matrix” Hyp =
AA™ and the “residual matrix” My = I, - AA* are the orthogonal projectors, respectively,
on C(A) and on its orthocomplement C(A) = N{A").

We represent a Kronecker (or Zehfuss) product by the symbol 3, 1.e., givenanm ~ n

matrix A and a p x ¢ matrix B, the Kronecker product of A and B is the mp x ng matrix

anB o de
A®B=

am]B « s amnB

and the direct sum of A and B is the (m + p) x (n + ¢) matrix

A0
Aen=( )
0 B
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For real square matrices A and B we denote the Lowner or nonnegative definite
partial ordering by <. Thus A < B &< B - A is symmctric nonnegative definite, i.e.,
there exists a real matrix C such that B — A = CC' [cf. e.g., Hartwig and Styan (1987)].

We denote the expectation of a random vector x by €(x) ar ! its dispersion or covari-
ance matrix by D(x). The (not necessarily unique) least squares estimate of & is denoted by
&. When summing over an index we replace the index of summation by a dot (or period),

\4
e.g., ny, =k§‘,ln,-jk . The end of a proof is indicated by the halmos symbol O.
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CHAPTER 2. INFORMATION MATRICES AND DECOMPOSABILITY

SECTION 2.1: THE THREE-WAY LAYOUT

(t is usually necessary to use a three-way layout when three factors are needed to explain
the variations in a set of the observations. Often, two of the factors are used to block the
experimental units in two directions while the levels of the third {actor represent the treat-
ment (or variety) effects. Frequently, one of the two blocking factors represents rows while
the other represents columns (sometimes called blocks). Each intersection of a row and a
column constitutes a plot or experimental unit to which we apply one or more treatments,
The first type of three-way layout ever to be studied is probably the Latin square, in
which the numbers of treatments, rows and columns are all the same and each treatment is
applied only once in each row and in each column. According to Dénes and Keedwell
(1974, p. 138), the enumeration of Latin squares was first discussed in 1779 by Leonhard
Euler, and according to Freeman (1988), the first experiment using a Latin-square design
was performed in 1788 by Cretté de Palluzl. The requirements for a Latin square are, how-
ever, very restrictive and so a more general form of design is often needed. Yates (1936)
introduced the first design with unequal numbers of rows, columns and treatments, but stili
with equally replicated treatments; he called it an incomplete Latin square—the design being
a Latin square from which a row is missing. This concept was extended by Youden
(1937), who developed the designs now called Youden squares, in which the number of
treatments is greater than the column size. The Youden squares are obtained by rearranging
the plots of certain balanced incomplete block (BIB) designs |for more on balanced incom-
plete block designs see, e.g., Boothroyd (1988)]. Since then, a large number of different
types of three-way layouts have been introduced and studied; we now describe the most

general form that they may take.
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Let Yjjk) TEpresent the yield corresponding to treatment & being applied to the I'h ex-

perimental unit in the j*# column and i row. The model can then be written as
y,-jk1= 01‘-+ﬂj+ Tk+ Cl:ikl Ji=1,.., ",j =1..c, k=1,..,vil=1,.., nl:"k ’ (2.1.1)

where the o;, B J and 7, are fixed parameters representing the effects due to the ithrow, jth
column and & treatment, respectively, and Rk is the number of times that the £ treat-
ment is applied to the (i, /)4 plot. The numbers n;; need not all be equal, and some may be
0. We will assume, however, thatforalli=1,...,r,forallj=1,...,¢c,and forall k =1,
ooy Vy

v

v
Zn,jk>0, nj = 2 Ynp>0 and n = E }:nuk> 0, (2.1.2)
1 k=1 =1 k=1 J.—.

Mh

n. =

j

i.e., every row and every column contains at ieast one treatment and every treatment is
applied at least once.

It is often assumed that at most one treatment is applied to each experimental unit. An
important special case occurs when the n,-j.’s are equal to one for all i and j; such a design is
called a “row-(and-)column design” [cf. e.g., Pearce (1975), Freeman (1988)]. Another in-
stance where the model in (2.1.1) may be used with the n;; _equal to one for all i and j is
when a set of treatments is applied to a block design, and then a further set of treatments is
applied, the assumption being made that there is no interaction between the current effects
of the second set of treatments and the residual effects of the first [cf. Freeman (1959)].

We will assume that the model contains fixed effects and that the error terms £, are
uncorrelated random variables, each with mean 0, and are homoscedastic with unknown

common variance ¢ (white noise). The expectation of Yijkl is given, therefore, by

B ) =&+ Bj+ G . (2.1.3)
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Let Yijk = (yijkl’ cees y"fk"ijk )! be the Pijk ¥ 1 vector of observations in row i and column j

for treatment £, provided Rijg > 0; otherwise Yi =2 and hence absent. We then write

Y=o Y1ze -eo0 Y2110 +ees y;cv)'

r 4 \4

as the n x 1 vector of all the observations, wheren=y, ¥ Y njjk. Thus, in matrix nota-
i=l j=1 k=1
tion, equation (2.1.3) may be written as
o
EW)=X10+XB+X3T1=X: X2: X5) | B =XV, (2.1.4)
T

whzre the vectors & = (a, ..., &), B = (By, ..., B¢)', and T = (7, ..., 7))’ consist of the

row, column and treatment effects, respectively. The matrices X, X;, Xsare nxr,n x ¢
and n x v “design matrices” identifying the correspondence between the elements of y and,
respectively, the rows, columns and treatments of the three-way layout. Thus the par-
titioned matrix X = (X, : X, : X3) is the n x (r + ¢ + v) design matrix for the whole
layout. Since exactly one treatment is applied to each observation which appears in precisely
one row and one column, we have X,e(") = X,e(¢) = X4e(") = (™, In the special case of
row-colnmn designs, the design matrices X; and X, can be expressed as X; = ¢(©® I, and
X, =1, ® e(", where ® denotes the Kronecker product.

We will write N, = X}X, for the incidence matrix whose (i, j)* element, n;,, is the
number of units treated in the i’ row and j*# column. We then denote its transpose by intcr-
changing the two subscripts, i.e., N}, = Ny, = X;X,. Similarly we let N;; = XX be the
incidence matrix whose (i, k)** element, n; ;, is the number of units in the i row to which
the k*# treatment has been applied, and we let N,; = X;X; be the incidence matrix whose
(j, k) element, n y, is the number of units in the j* column to which the k% treatment has

been applied. Their transposes are respectively, N;; = X3X, and N3, = X3X,.
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We will letk, =X e(M = (n, , ..., n, )" denote the vector of row sizes where, as we
assumed above, n; >0 foralli=1, ..., r. The vector of column sizes is denoted by k, =
XyeM=(ny,...n.) wheren; >0forallj=1,...,c, and the vector of treatment sizes
or replications is k; = X3e™ = (n_4, ...,n )", where n_, >0forall k=1, ..., v.The
three matrices D, = X}X,, D, = XX, and D, = X;X are all diagonal and positive
definite, with the successive elements of kj, k; and ks, respectively, as their diagonal ele-
ments. When D, and D, are both scalar matrices, i.e., multiples of the identity matrix, and
so all row sizes and column sizes are equal, Raghavarao and Federer (1975) call the design

“ordinary”. Since for a row-column design, the row sizes are all equal to the number of

columns, i.e., n; =... = n, =, and the column sizes are all equal to the number of rows,
i.e, n; =... =n, =r, arow-column design is ordinary and also satisfies Nj; = e(7e(¢)",
If each treatment is applied in k plots sothat n , = ... = n_,, = k, then we call the design

“equireplicate”’; otlierwise it may be called “unequireplicate’.
With this notation, the normal equations X'Xy = X'y for the least squares esti-

mates of the row, column and treatment effects can be written as

D, Niz Np & Y
Ny D2 Np 6 =| ¥ | (2.1.5)
Ns; N3z D; i Yvt

where y, = Xjy =(y, , ..., y,.)" is the vector of row totals, Yo, =X3¥ = (¥ 1, ..., ¥ c)'
is the vector of column totals, and y,, =Xy = (¥ 1, ..., ¥_ )" is the vector of treatment
totals. Since e € U(X;) n C(X3) N T(X,), it follows that the rank r(X'X) =r(X) <r+c¢
+ v —2 and so the normal equations do not have a unique solution; the normal equations
are, however, consistent since r(X'X : X'y) = r(X'X). [To see this, write r(X'X : X'y)

=r[X'X : )] srX") = r(X'X) < r(X'X : X'y)].
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SECTION 2.2: INFORMATION OR C-MATRICES

Let us now consider rows and columns as sets of nuisance parameters in the model (2.1.4)
(we could similarly consider rows and treatments, or columns and treatments, as the sets of
nuisance parameters, but in most experiments the interest is in comparing effects of dirfer-
ent treatments after having removed the row and column effects). In this situation, we call
the three-way layout a “two-way elimination of heterogeneity design” [cf. e.g., Agrawal
(1966Db)]. A very important role is then played by the matrix S5 |,, obtained by eliminating

the matrix of row and column effects, i.e.,

X XKy Xy = [ N”) @21
10 X)X : Xp) = 2.
( Ny D;
from the fi:)l normr al equations (2.1.5). The matrix Sy, is then given by
S3.12= XiX; — X3H , X, = XiM Xy, (2.2.2)

where H, is the hat matrix for the augmented matrix (X; : X3), and M3 =1 -H,,. Be-
cause of the relation T(X; : X;) = C(X,) 1 C(M,X;) = C(X;,) &1 C(M,X,), where @'
denotes the direct sum of the two orthogonal subspaces, the hat matrix for or orthogonal
projector Hy onto T(X; : X5) can be expressed as

H12 = Hl +H2|1=H1 +LIIX2(X;M|X2)_X5M1 (2.2.3)

= H2+Hl'2=H2+ szl(x ;szl)_x;Mz, (2.2.4)

where H; ;and H;,,are the orthogonal projectors onto C(M;X;) and T(M X)), respec-
tively. From (2.2.3) and (2.2.4) it follows directly that

Mpi=M; -Hy;;=M;-Hjs. (2.2.5)
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Substituting M;; = M; — Hyy in (2.2.2) we get a further representation for the matrix Ss 12,

S1.12 = Dy =Ny D7'Ny; — (N33 — Ny DT'N )0, — Ny, DTN, ) (N3 - Ny DTN ).
(2.2.6)

The dual of the representation (2.2.6) is obtained by substituting My, = M, — H;; into
(2.2.2),

S3.12 = D3 — N3D3'Nyy — (N3, —N3D5'Ny YD, = N, D3'Nyy ) (N3 - Ny, D3'N,5)
2.2.7)

The matrix S5, is often called the “information matrix” [John (1987), pp. 8, 95], the “C-
matrix” [Raghavarao and Federer (1975)] or the “coefficient matrix” [Pearce (1983), p.59]
from which both row and column effects have been eliminated. We also note that the matrix
Ss.1, is the (unique) Schur complement of (? 2.1) in X'X; for more on Schur comple-
ments, see Ouellette (1981) and Styan (1985).

The reduced normal equations for estimating treatment effects are given by
83.12% =255 (2.2.8)

we will call z; , = X3y — X3H,,y = XM,y the vector of “adjusted treatment totals”. We
note that the adjectival position of the word *“adjusted” here seems to imply that the vector
X3y of treatment totals in thc original data vector y is being adjusted for rows and
columns; the “adjustment”, however, actually occurs first yielding the vector M,,y of the
original data adjusted for rows and columns and then its components corresponding to
treatments are summed to form the vector X3M,,y, which really contains “treatment totals
of the data which have first been adjusted for rows and columns”. In this thesis, as it seems
in all of the literature, the vector XM,y is refeired to as the “vector of adjusted treatment

totals”; we will adopt this convention also for zll other vectors of adjusted totals.
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Other information matrices of importance are those obtained by ignoring one of the
two sets of nuisance parameters. When we ignore the column effects, we call the resulting
design the “treatment-row subdesign”. Here, the treatment effects are estimated after elimi-

nating the row effects, and the information matrix is given by
S3.| = X?;M 1X3. (2.2.9)

For the treatment-column subdesign (where the row effects are ignored), the treatment ef-
fects are estimated after eliminating the column effects, and the information matrix is given
by

83_2 = X;szS. (2.2.10)

The information matrix for the model in which both rows and columns are ignored will be
denoted by S;,, where

K. k>
Ss.o = X;X3 -2

=X;C,X,, (2.2.11)
and C, =1, - J, =1, — (1/n)e(Me() is the n x n centering matrix.

In the context of row-column designs, we also have information matrices for the
model where the treatment effects are estimatec! from an orthonormal set of row contrasts

and from an orthonormal set of column contrasts, i.e.,
S, = X;(H, -J)X,; and S,.=X :',(H2 -J)X,, (2.2.12)

respectively [cf. Shah and Eccleston (1986)].

None of the information matrices above has full rank since the rows and columns of
Sg, g =3.12,3.1,3.2, 3.0, 3.r or 3.c, all sum to 0, implying that r(Sg) <v - 1. Solutions
to the reduced normal equations in (2.2.8) can be written as T = 83 1,25 1, = S5, X3M 2y
for some choice of generalized inverse S, |,; there is no unique solution, however, as the

generalized inverse S ,,, and hence S;,,X3M,,, may be chosen in many different ways.
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SECTION 2.3: DECOMPOSABILITY

An apparently new, and we helieve important, subclass of two-way elimination of hetero-
geneity designs is specified by the information matrix S, being decomposable in the

following vy,

S3.12 = &1S3.1 + £832 — &S30, &, &2and &> 0, (2.3.1)

cf. Bérubé and Styan (1990b). This subclass comprises designs for which the study of re-
lationships between properties of the three-way design itself, and corresponding properties
of its treatment-row and treatment-column subdesigns, is simplified. As the study of block
designs is more straightforward than that of three-way designs, we can see that when
(2.3.1) is satisfied, the level of difficulty in analyzing the design would be reduced from
one three-way level to two two-way level designs. As we will see later in this thesis, our
decomposability property (2.3.1) seems to be, up to now, probably the most general form
of designs for which certain results on connectedness, orthogonality and balance hold.

The special case of condition (2.3.1) when &, = & = &= 1 was introduced very re-
cently in Baksalary and Shah (1989), where the two-way elimination of heterogeneity

design is then said to satisfy the “decomposability property,” i.e.,

S312 =831+ S32-S30. (2.3.2)

We will say that the set of designs for which (2.3.1) holds, but for which (2.3.2) does not
hold, satisfy the *“generalized decomposability property,” while those for which (2.3.2)
holds, and hence also (2.3.1), we will say satisfy the “reduced decomposability property.”

Agrawal (1966¢) constructed designs for which each of S35, S3.1, S3.2 and Ss
has the form al + b], i.e., all diagonal elements equal and all off-diagonal elements equal.
Although this kind of design does not necessarily satisfy the reduced decomposability

property (2.3.2), it very often satisfies our generalized decomposability property (2.3.1).
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Since in our generalized decomposability property, the matrices 832, S3.1, S32 and S3
need have no particular form, the class of designs satisfying our generalized decomposabil-
ity property is more general than this special class of designs considered by Agrawal
(1966¢).

If the two-way elimination of heterogeneity design is ordinary (equal row sizes k, =
kie(n and equal column sizes k, = k,e(¢) for some positive integers k, and k; such that kyr =
kac = n), then the reduced decomposability property (2.3.2) is equivalent to

]

(2.3.3)

Any row-column design, i.e., any three-way layout with incidence matrix N, =
e(Nelc), provides a simple example of a design satisfying the reduced decomposability
property. Since now the row sizes k; = ¢, the column sizes k; = r, and the total number of

observations n = rc, the equation (2.3.3) becomes

NaiNis  N3oNo, . kqK;

S312 =Dy -— . e

A somewhat different decomposition of the information matrix S; ;; was introduced
in Baksalary and Siatkowski (1990) with designs for which the information matrix takes

the form
83.12 = D’\ - U1N31N13 - U2N32N23 + pkgkg' ’ U], vz, p > O, (2.3.4)

of which clearly (2.3.3) is the special case with vy = 1/k;, U= 1/k;, and p = 1/n. We will

say that designs for which (2.3.4) holds satisfy the “extended decomposability property.”
Our generalized decomposability property (2.3.1), the extended decomposability

property (2.3.4) and the reduced decomposability property (2.3.2) are not equivalent, as

we will show in the following two examples.
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EXAMPLE 2.3.1: As an example of a three-way layout that satisfies both (2.3.4) and
(2.3.1) but not (2.3.2), we consider the following design with seven rows, seven columns

and seven treatments, taken from Agrawal (1966¢), see also Table A.1.1 in Appendix A,

* * 6 * 3 *
* * %* 5 7 * 4
5 % % * 6 - (2.3.5)
* 6 L] * * 7 2
3 * % * 1
2 4 * 1 * * *

where * denotes an empty cell. For this design (2.3.5), 83,1 = S32 = (7/3)C+, S50 = 3C
and S; 2 =C,, and 50 (2.3.4) holds with p = 2/21 and any v; andv, such that v; + U, = 1,
vy, U, > 0. Baksalary and Siatkowski (1990) use (2.3.5) as an example of a design satisfy-
ing (2.3.4) but not (2.3.2), since obviously here S32 # S3.; + 832 — S3.0. We can,
however, express Ss3; as in (2.3.1), i.e., this design satisfies our generalized decompos-

ability property (2.3.1) with, for example, &+ &= 1, &, £&,> 0 and &= 4/9.

The following example exhibits a design which is not ordinary, and which satisfies
our generalized decomposabilitv property (2.3.1) but not the extended decomposability
property (2.3.4). We have, however, not yet found a design which satisfies the extended
decomposability property (2.3.4) but not our generalized decomposability property (2.3.1),

nor have we been able to show whether or not there exists such a design.

EXAMPLE 1.3.2: Consider the following design with three rows, three columns, and three

treatments, see alsc Table A.1.2 in Appendix A,

- N

(2.3.6)

W % e
- N W

*

2 5 A e s e T T AT T sl A

e s s b R

e AL e’ et B ATt gl ot LU I A mh e o e el

i

“RINE
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where again * denotes an empty cell. It is straightforward to show that the associated in-

formation matrix for the full design

24 -12 -12
S;p=(1/15y -12 16 -4 |,
12 -4 16

while the information matrices for the treatment-row and treatment-column subdesigns are

equal and are given by
10 -5 -5
S31=8S:2=(1/6)) -5 7 -2 (2.3.7)
-5 2 7

and the information matrix ignoring both rows and columns is given by

12 -6 -6
Sg.o =(1ﬂ -6 10 -4 . (238)
-6 -4 10

Hence,

S312 = &83.0 + &S32 — (7/30)S30,

for any positive &), & such that &+ & = 6/5.
However, there exist no v;,¥;, p > 0 such that S;;, could satisfy the extended de-

composability property, for

N N O
& b
& b

3 2 2
N3Nj3=NypNy=| 2 2 1 and kjk3 =
2 1 2
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trying to solve for the unknowns in (2.3.4) gives rise to the following inconsistent system

of equations,

-V+3p=-1/15,

-V+3p=-2/.

There are, however, special cases when our generalized decomposability property

(2.3.1) and the extended decomposability property (2.3.4) are equivalent. For examgile, the

case of ordinary two-way elimination of heterogeneity designs, i.e., designs which have

row sizes all equai to k; and column sizes all equal to k5. For such designs, as Baksalary

and Siatkowski (1990) point out, if we postmultiply (2.3.4) by ("), we obtain the equality

0 = (1 - vik; — vk + pn)ks,

implying that

1 = Yk + Vsk;— pn.

The extended decomposability property can then be rewritten as

N,;N N3N kik3
S3.12= Viky(Dy == —2) + vyky(D3 -—p—2) - pn(D; - F),  (23.11)

ky ky

(2.3.9)

(2.3.10)

which is equivalent to (2.3.1) with & = vk, &= Uzk;and & = pn. Substituting into

(2.3.10), yields

§o= &1 + €2— 1.

(2.3.12)
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Our generalized decomposability property (2.3.1) can then be rewritten as

S312=&6S3.1 + &850 — (& + & — 1)S;,. (2.3.13)

For example, if we look again at the design (2.3.5) in Example 2.3.1, where k) = k=3
and n =21, we see that the extended decomposability property is satisfied with v; + v, =1,
Uy, V2> 0 and p=2/21. This implies that we can have &, + &=3, &, &,>0and & =2; in
this case, it is obvious that our generalized decomposability property is equivalent to
(2.3.13), i.e., 22C7 = —(2/3)§,C7— (2/3)&,C7, with &+ £,=3, &, &> 0.

For designs where our generalized decomposability property (2.3.1) holds irrespec-

tive of the application of treatments, i.e., designs for which

Hy; = §H, + EH, - En, (2.3.14)

then (2.3.13) also holds since, again, if we postmultiply (2.3.14) by e(™, we obtain 1 = &,
+ & - &and hence &y = &+ &,— 1 asin (2.3.12).

Later on in this thesis we will use our generalized decomposability property (2.3.1)
to generalize theorems that previously assumed either the reduced or the extended decom-

posability property.
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CHAPTER 3. CANONICAL CORRELATIONS AND
EFFICIENCY FACTORS

SECTION 3.1: INTRODUCTION

Let us consider the following four different types of canonical correlations:

) pff'ﬁ between X}y and X}y,

i p%  between Xy and (X; : Xp)'y,
o (1) ' '

(iii) p, between X;y and X;M;y,

@) p1'"Y between X}Myy and XMy,

where i# j,i#k, j=k i, j,k=1,2,3; h=1, ..., m. The upper limits m of the index A
denote the numbers of positive canonical correlations; we write m = 0 when the associated
vectors are uncorrelated. There are fifteen kinds of canonical correlations py, in all, three

each of types (i), (ii) and (iv), plus six of type (iii).

Canonical correlations of type
@) pﬁ") where we ignore factor k,
(ii) pff‘jk) where we include factor k, and
(iv) pfli‘j ') where we adjust for factor £,

were studied in some detail in Styan (1986); those of type

(ijlk)

(i) p, where we adjust only partially for factor k,

were introduced in Worsley, Styan and Bérubé (1990).



.

CHAPTER 3 CANONICAL CORRELATIONS AND EFFICIENCY FACTORS 20

Canonical correlations of type (i), since the third factor is ignored, apply directly to
two-way layouts or subdesigns; cf. e.g., Latour and Styan (1985). Then, because of the

white noise assumption, the hth largest nonzero canonical correlation between X;y and

Xy is given by
() _ 2oy nelag \ 12 _ -1 Y
py” =chy (D;'N,D;'N ) = chy"(HH ) = sg,(D; "N, D;"", (3.1.1)

where chy(.) and sgp(.) denote the hth largest (real) char:cteristic root (eigenvalue) and

singular value, respectively; cf. Khatri (1976), Seshadri and Styan (1980), Rao (1981) and
Styan (1985).

For canonical correlations of type (i), augmenting the jt# factor with the k* factor,

we write (2.1.4) as
Y.
E(y) = X,¥; + (Xj : Xp) (Y:J , (3.1.2)

where ¥;, Y; and ¥, are any permutation of the vectors @, p and T of row, column and
treatment effects. We can consider (3.1.2) as a two-way layout and apply (3.1.1) to obtain

the At largest nonzero canonical currelation between Xiy and (X 7 X'y,
A = ch*(DXI(X;  XI(X, 1 Xp'(X, + X1 7(X, 1 Xp)'X;)

= ch,”(H;H,p). (3.1.3)

For canonical correlations of type (iii), we consider the joint dispersion matrix of

Xy and X;Myy, given by:

X}y D; X;kaj'
D X'M = X'MoX:  X'MuX . (3.1.4)
JRLT A VKA gk
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The A4 largest nonzero canonical correlation is then given by:
(k) _ 12l - R
P, = ch, (D; X;kaj(X}Mka) X}kai} = ch, (“iHjlk)’ (3.1.5)

where Hj |, is the orthogonal projector onto C(MX)).
Finally, for canonical correlations of type (iv), if we premultiply (3.1.2) by M, for k

# i, j, we obtain,
EM,y) =M Xy, + kajy-, (3.1.6)

which we may consider as the “two-way layout” corresponding to the design for factors i
and j after adjusting (both) for, or eliminating, factor &. We again apply (3.1.1) to obtain

the hth largest nonzero canonical correlation between XMy and XiMyy,
(ijlk) _ 172 ' A=t . ' el 'd) .
o) =ch, "{(XiMeX) XMeX)XMiX)) (X;MiX)))
1”2
= chy, “(H;uHj10). (3.1.7)
Several efficient numerical methods for computing canonical correlations are given in
Bjorck and Golub (1973); cf. also Golub and Van Loan (1989, pp. 584-585).

As in Latour and Styan (1985) and Styan (1986) we define, for each of the fifteen

kinds of canonical correlatiors,

t = the number of nonzero canonical correlations strictly less than 1

u = the number of canonical correlations equal to 1.

The number of nonzero canonical correlations is then obviously

m=u+t. (3.1.8)
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We will say that the corresponding layout is “orthogonal” whenever ¢ =0, and
“connected” whenever u = 1 for canonical correlations of types (i) and (ii) and u = 0O for
canonical correlations of types (iii) and (iv). We may thus interpret ¢ as the “degree of
nonorthogonality” and u as the “degree of disconnectedness”. Whenever we need to be
more specific, we add subscripts to m, u and ¢, corresponding to the superscripts in (i), (ii),
(iii) and (iv), e.g., for type (i), withi =1, j = 2, we would write m, , = u, , + t, , The fifteen
m, u, and ¢ values for the canonical correlations of types (i) to (iv) may then be collected in
what we refer to from now on as a “mut-" or “mutzE-table”, cf. Styan (1986), Bérubé and
Styan (1990a), Worsley, Styan and Bérubé (1990); the numbers z and E will be defined in
Section 3.5. In Appendix 1, we present several such tables, corresponding to designs given

as examples throughout this thesis.

SECTION 3.2: SOME RESULTS FOR THE NUMBERS m, u AND ¢.

The numbers m of nonzero canonical correlations, # of unit canonical correlations, and ¢ of

nonzero canonical correlations strictly less than one, are closely related to the following

rank formula:

r(X;X)) = r(X;) + r(X)) - 1(X; : X)) + rf(X;M;M;X)), (3.2.1)

where the matrices are all real. A short proof of this formula for arbitrary complex matrices
X;and X; (and with prime denoting conjugate transpose) is given in Baksalary and Styan
(1990). Since we are only interested in matrices that are real, we consider only these in the

following lemma.
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Lemma 3.2.1 (Baksalary and Styan, 1990). For any real matrices Apxq and Bpy; the
rank of the product A'B admits the representation

r(A'B) =1(A) + 1(B) — r(A : B) + ((A'MgM, B), (3.2.2)
where the matrices M, and My are the orthogonal projectors on the orthocomplements of

the column spaces, respectively, of A and B.

Proof. Using (A.3.2) and (A.3.8), we have
1(A'MgM4B) = (A'MgHB) = MgH,B) = (B : H,B) - r(B). (3.2.3)
Since elementary column operations do not change the rank, it follows that
rB:HyB)=r(M,B : HyB) =r(M,B) + r(H,B) =r(A : B) —r(A) + r(A'B).(3.2.4)
Combining (3.2.4) with (3.2.3) yields (3.2.2). a
As was observed in Seshadri and Styan (1980), the number of positive canonical
correlations, m; Jj» €quals the rank r(X;X ) of the cross-covariance matrix between the
vectors X}y and Xj'-y assuming that the dispersion matrix D(y) = ¢’I. Moreover, ny; j also
satisfies the following equation (3.2.5), stated but not proven in Styan (1986), but which
follows at once from a more general matrix result in Baksalary and Styan (1990, Corollary

2).

Lemma 3.2.2: The rank of the cross-covariance matrix between the vectors of centered

row and column totals in a two-way layout equals

r(X}X)) = ((X|C,X)) + 1. (3.2.5)
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Proof: Since eM e T(X;) N T(X;), we obtain from (A.3.8), r(C,X;) = r(X;) - 1, r(C,X))
=r(X;) ~ 1, and 1(C,X; : C,X)) = r(X; : X;) — 1. Moreover, M(x, .y = M, and M, .o =
M;. Replacing A and B in (3.2.1) with C,X; and C,X, respectively, yields

r(X}C,,Xj) =r(Xj) — 1 + (X)) - r(X; : X)) + r(X,'-MjM,-Xj). (3.2.6)
Equation (3.2.5) is then obtained by combining (3.2.1) and (3.2.6). 0

Similarly, we get the number of nonzero canonical correlations of type (ii) from the

rank of the cross-covariance matrix between Xly and (X i Xp'y, ie.,
m,-‘jk = r[X}(Xj M Xk)]. (3.2.7)

Since My is symmetric and idempotent, the cross-covariance matrix o”X}M;X j between

Xy and XjM,y is the same as the cross-covariance matrix between X;M,y and X;jM;y,

and so
mjjik = tXiMEX)) = mj.j . (3.2.8)

We see, therefore, that the numbers of nonzero canonical correlations of types (iii) and (iv)
are the same; as we will see below, the numbers of unit and positive nonunit canonical
correlations of type (iii) and (iv), however, are not necessarily equal.

The number u;j of unit canonical correlations of type (i), i.e., when factor & is

ignored and we are in a two-way layout or block design setting, is given by the nullity of

the information matrix S;

w(Sij) = uij =Xy + (X)) - r(X; : Xj), (3.2.9)
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cf. Seshadri and Styan (1980), Latour and Styan (1985). We notice that u; j is equal to the

first three terms on the right-hand side of equation (3.2.1). Moreover
ujj= dim[C(X;) n T(X;)) 2 1, (3.2.10)

since eM e T(X;) N T(X)).

We may also express 4;;in terms of the hat matrices H; and H; as follows:
uij = r(H;H)) — r(H;M;M;H;) = r(d;) + r(H)) - r(H; + H)).

To prove this it suffices to show that r(H; + H;) = r(X; : X;) = r(H; : H)), since r(H;) =
r(Xy, r(H;) =r(X;), r((H;H)) = r(X}Xj), and r(H;MM;H)) = r(X;M ,M;X)). However,

H!
rH;:H)=r [(H,- : Hj) (Hi] ] = r(H; + Hj).
J

Similarly, we obtain the number of unit canonical correlations of type (ii), i.e., where

the third factor is included,
uijk = W(SijK) = 1(X;) + r(X; : Xpp) — r(X; : Xj 2 Xp)
= dim[C(X;) N T(Xj : Xp)] = r(Hy) + r(Hjx) — r(H; + Hjp) 2 1, (3.2.11)
since ™ e T(Xy) n T(X; : Xp).
For canonical correlations of type (iii), where there is partial adjustment only of factor
Jj for factor k, we have

Uijlk = W(X;Mjlkxi) = r(X,-) + r(Mka) - r(X,- : Mka)

= dim[C(X)) n C(Mka)] =r(H;) + r(Hjy) - r(H; + H;jjk)20; (3.2.12)
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we note that u;.j | may equal 0 since the vector e(™ does not belong to T(X;) N T(MX)),
and that u;;j ¢ = 0 if and only if r(H; + H; ) = r(H;) + r(H;1¢).
For the adjusted canonical correlations of type (iv), where there is partial adjustment

of both factors i and j for factor £,
Uijlk = V/[X;ka, - X;MkXJ(XJ'Mka)_XJ'MkX,]
= r(MgX;) + r(MX;) — r(MgX; : MiX))

= dim[C(MEX)NT(MX)] =r(H; 1) + r(Hj ) —r(H; e + Hj i 2 05
(3.2.13)

again u; j|, may equal O since the vector e does not belong to T(MgX;) n C(M;X)), and
uijik=0if and only if r(H; )k + Hj1x) = r(H; 1) + r(Hj 1 p). As r(MX;) < r(X;) and
r{M(X; : MiX))] < r(X; : MgX;) with the differences not necessarily equal, we see from
(3.2.12) and (3.2.13) that u;;j|x and u; 1 need not be equal.

Furthermore, we can determine the numbers ¢ of canonical correlations which are
strictly less than one. In the block design setting, Latour and Styan (1985) prove that 1;; is

the rank of the cross-covariance matrix between the vectors of adjusted totals:
lij= r(X}MjMin). (3.2.14)

Comparing (3.2.14) with (3.2.1) we see that (3.2.14) is the last term on the right-hand side
of (3.2.1).

Similarly we get numbers ¢ for canonical correlations of types (ii), (iii) and (iv):
tijke = XM pM(X; 2 X)), (3.2.15)

tijie = r{X{I - kaj(X}Mka)_Xj'Mk]M,-Mka} = r(X}Mj kMM X))
(3.2.16)
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and
lijlk= r[X}Mij M IkMka] = r(X}-MjkM,-ka). (3.2.17)

This last equality holds since the column space T(X; : Xg) = T(X;) L T(M;X}), as noted

earlier, and hence

My Xj= [(I- Hy — HipMeX;] = M; e M X (3.2.18)
We can see from equations (3.2.16) and (3.2.17) that the numbers of canonical correlations
of types (iii) and (iv) which are strictly less than one need not be equal since the ranks

r(X;M; MM X ;) and r(X;M;M;;X) are not necessarily equal.

Theorem 3.2.3: The number t; j of nonzero canonical correlations between factor i and

factor j that are strictly less than 1 satisfies
ti.j = rank[(H,-Hj)z - H,H]] = rank(H,-Hj— H,HJHI) = (1/2)rank(H,Hj— HJH,). (3.2 19)

Moreover, t; j= 0 if and only if HH; = H;H;,
Proof: From (3.2.14),

tij = rXMMX)) =1X;(-H; + HH)X]]
= r[X}(HH, - DX;] = r[HHH; - DH,] = ff(HH)* - HH], (3.2.20)

since H; = X;(X;X;) X and r(H;) = r(X}); this proves the first equality in (3.2.19). We

may, however, rewrite (3.2.20) as
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ti.j = r(H,-HjM,-Hj) = l'(H,'HjM,') = r(H,-Hj— H,‘Hj“,'), (3.2.21)

since r(H jM,-H j) =r(H jM,-). This establishes the second equality in (3.2.19).
To prove* the third equality in (3.2.19), we write

T;j=HH;~ HHH; = HHM,
and observe that T} = 0. From (3.2.2) it follows that
r(T,-j . T:J) = I'(T,'j) + r(T:j) = ZI'(T,'j) = 2ti.j

and so

2ti.j = r[(TU H T;j)(TU . T:j)'] = I'(Tu :} + T;JTU) = l'[(TU - T:,)(T,j - T:])']
= I'(T,'j —T:'j) = r(H,-Hj-— HJH,').
which completes the proof. a

EXAMPLE 3.2.1: For the layout

(3.2.22)

considered by Baksalary (1990) we have ¢, , = 2 (cf. Table A.1.3), while r(H,H, - H,H,)
= 4. More generally, in the layout

* My thanks go to Dr. Robert E. Hartwig for help with this proof.
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1 2 b
* *
* 9 *
x » b
it is straightforward to show directly thatt,; = b — 1, while rf(HH, - H,H,) =2(b -1) =

21y 5.

We note that equation (3.2.1) is very useful to summarize, for all four types of
canonical correlations listed at the beginning of Section 3.1, the relationship between the
associated numbers m, u and t. We have the following four equations, obtained according

as we ignore, include, adjust partially or adjust totally for factor k.

@ rX;X 7 = r(X;) + 1(X;) - r(X; : X;) + r(X;MjM,'Xj)

m,-_j = u,-_j + ti.j

(i) r(X}(X; = Xp)]

X)) +r(Xj: Xp) -r(X; : Xj: Xp)  + r[X;MjkMi(Xj : Xpl

m; ik = Uijk + Ui jk
(iii) r(X;M X ) = 1(X;) + r(MX)) - r(X; : MgX;) + r(X;M; MM X))
Mii 1k = Uirjlk + lijik

GV) IXMEX)) = i(MEX) + r(MEX)) - r(MEX; iMgX)) + r(X MM X )

mij\k = Uijlk + tijlk

We note again that while m;.j\, =m; ;) = r(XiM X)) it is not necessary that u;.;|x = u; jlk

or that f.\, = 1; j .
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SECTION 3.3: CONNECTEDNESS

In the context of two-way layouts or block designs, Bose (1947) introduced the

concept of connectedness, which has subsequently been widely studied.

Definition 3.3.1: A two-way layout or block design is connected for treatments whenever
all elementary treatment contrasts ¢'T, for any v x 1 vector satisfying ¢'e() = 0, are

unbiasedly estimable.

This means that unless the two-way layout is connected for treatments, certain
contrasts in the treatments are not unbiasedly estimable. There is also a combinatorial
definition of connectedness, cf. e.g., Raghavarao (1971, p.49), which says that the two-
way layout is connected whenever, given any two treatments 7 and 7', we can construct a
chain of treatments numbered 1= 1,, 7, ..., 7, = 7', say, such that every consecutive pair
of treatments in the chain occurs together in at least one block. Bose (1947) gave both the
statistical and combinatorial formulations for connectedness.

For the three-way layout, however, additional definitions are required since the
properties and characteristics of connectedness in a (single) block design are not necessarily
equivalent to those in a three-way layout, though we can easily extend the above Definition
3.3.1 to a similar one for connectedness of the treatments in a two-way elimination of

heterogeneity design.

Definition 3.3.2: A two-way elimination of heterogeneity design is connected for treatments
whenever all elementary treatment contrasts ¢'t, for any v x 1 vector satisfying ¢'e(V) = (),

are unbiasedly estimable in the design.

Raghavarao and Federer (1975) call such a two-way elimination of heterogeneity
design “doubly connected”, while Styan (1986) says that then “treatments are connected

with both rows and columns”.



CHAPTER 3 CANONICAL CORRELATIONS AND EFFICIENCY FACTORS 31

Even when the condition in Definition 3.3.2 is satisfied, however, not all the
elementary row and column contrasts are necessarily estimable. To guarantee that they are
estimable, we also need to have connectedness for rows and for columns, the definition of
which is similar to that of connectedness for treatments. Therefore, when we are interested
in all three factors—rows, columns and treatments—the overall connectedness of the

design is required. Eccleston and Russell (1975) give the following definition.

Definition 3.3.3: A three-way layout is completely connected if it is connected for rows, for

columns and for treatments.

This means that if the design is completely connected, every row, column and
treatment contrast is estimable.

It is well known [cf. Chakrabarti (1962)] that a two- way layout or block design is
connected for factor 1 (of size ) if and only if r(S; ;) = r — 1 or only one canonical correla-
tion p;:'z) = 1, which we denote by u; 5= 1. In the case of a block design, this corresponds
to the design itself being connected, i.e., connected for both factors 1 and 2, as u; 3 =1us,.
Since the treatment-row and treatment-column subdesigns are essentially block designs,
they are each connected if and only if #)3= 1 and u;3 = 1, respectively. Similarly, a two-
way elimination of heterogeneity design is connected for treatments if and only if r(S; ) =
v — 1 or only one p,(,a'm = 1, which we denote by u;3 5, = 1.

If the design is connected for treatments then S; ;5 + J is nonsingular (cf. Lemma
A.3.6). In this situation, the reduced normal equations for studying treatment effects have a
simple solution since the matrix (S3,; + Jy)~! is then a generalized inverse of Ss ;5. This
can be shown by first noticing that J, = (S3,2 + Jy )Jy , which implies that J, = (85,2 +
Jv)~1J,. From this we then get the following equality because of the nonsingularity of S 5

+JV’

S3.2+I) 18312 =Ga.2 + 1) Sz + I =Rl =L, -J,=Cy.  (33.1)



¢

CHAPTER 3 CANONICAL CORRELATIONS AND EFFICIENCY FACTORS 32

Premultiplying (3.3.1) by S5, shows that indeed S312(S3 12 + JV) 18312 = S3 2. We

can, therefore, write a solution to the reduced normal equations in (2.2.8) as

T =G+ ) "2zy40 (3.3.2)

More generally, John (1965) has shown that provided r(8,,,) =v - 1, then the
matrix S, ;, + ahh' is positive definite, where a >0 and h is any v x 1 vector such that h
does not belong to T(X3M,,) or equivalently, the columns of S, ,, together with h, span a
space of dimension v. For example, one such positive definite matrix is the Q-matrix

introduced by Tocher (1952),

koK)
Q= [X)My, + Xl = (S +——2) 7 (3.3.3)

This matrix is now often called Tocher’s 1-matrix and is frequently used both in block de-
signs {in the form Q = [X{(M; + J4)X,]-! if interest resides in factor 1} and in two-way
elimination of heterogeneity designs [cf. for example, Calinski (1971), Pearce (1975) and
Singh and Dey (1978)].

Another type of connectedness is that found between rows and columns adjusted for
treatments. This is characterized by ;313 = 0, i.e., all the nonzero canonical correlations
p;ll.2|3)

(1986) call u; i, the degree of disconnectedness of classification (factor) i with respect to j

being less than 1 (the common vector e(™ having been eiiminated). Khatri and Shah

after adjusting for k.

An important consideration in three-way layouts is to know how connectedness for
one factor (or all three) is related to connectedness in the subdesigns and connectedness
between two factors adjusted for the third. These three different properties are not indepen-
dent of each other. Our next theorem, due to Styan (1986), gives a relationship between the
numbers u of unit canonical correlations in these three situations. From this, we can see
how different types of connectedness might follow from one and another [cf. also Khatri
and Shah (1986)].
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Theorem 3.3.1 (Styan, 1986): For i #j, i # k and j # k, the following equalities hold
Uijlk = Ui jk — Uik = Wj.ik — Ujk- (3.3.4)
Proof: From equation (3.2.11) we have
uijk =1(X;) +r(X;j : Xp) - r(X; : Xj s Xg)
= ujk — r(Xp) + r(X; s Xp) + (X 2 Xg) — 1(X; s Xj ¢ Xp).
Similarly, we get
uijik=r(MeX;) + r(MgX;) — r(MiX; : MiX)) 3.3.5)

from equation (3.2.13). Since Mg =1- ka*k', we can use result (A.3.8) three times in
(3.3.5) to get

uijik = [r(X; 2 Xp) - r(Xp)] + [r(Xj : Xp) — r(Xp)] - [1(X; 2 X2 Xp) — r(Xp)]
= Uj jk — Wi ks

which proves the first equality in (3.3.4). The proof for the second equality in (3.3.4) is

similar. )

From equation (3.3.4) we see that the number u; ;| gives the difference between the
number of linearly independent linear contrasts in factor i which are estimable in the whole
two-way elimination of heterogeneity design, and the number which are estimable in the
subdesign obtained by ignoring the j*h factor. If u; 41k = 0, then the first equality in (3.3.4)
means that the design is connected for factor i if it is connected for factor i in the subdesign
obtained by ignoring factor j, while the second equality in (3.3.4) means that the design is

connected for factor j if it is connected for {actor j when factor i is ignored.
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-~
- To assess the overall connectedness of the design, we define
uy23 = 1(Xy) + r(X3) + r(X3) - r(X; : X3 : Xj). (3.3.6)
Since e e T(X;) n T(X3) N C(X;) it follows that u; 532 2 . Using Corollary 3.3.2, it is
easy to see that a design is completely connected if and only if u; ;3 = 2. In our mutzE-
tables in Appendix 1, we have included a bottom line for the value of u, ; 3so that we can
immediately iaentify the inherent connectedness or degree of disconnectedness.
'The number u, 5 1 is related to the other numbers u of unit canonical correlations in the
following ways.
Corollary 3.3.2 (Styan, 1986). For alli#j,i#kandj#k; i, j k=1,2,3
U1.23= Ui jk + Ujk = Uik + Uik + Ui jlk (3.3.7)
Proof: The first equality follows at once from
U jr + Uik = [r(Xp) + r(Xj: Xp) —r(X; 2 Xj: Xp)l + [r(X)) + r(Xpg) ~ (X : Xp)]
= 1(X;) + 1(Xj) + r(Xg) - r(X; : Xj: Xp) = ur23.
The second equality is obtained directly by combining (3.3.4) and the first equality in
3.3.7). a
Eccleston and Russell (1975) show in their Theorem 2 that a two-way elimination of
heterogeneity design is completely connected, i.e., uy23= 2, if and only if it is connected
for factor i and has its subdesign ignoring factor i connected, i.e.,

uijk=landujr=1,i#j,i#k,j#k foranyi,j, k=123 uz3=2 (3.3.8)
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(cf. also Raghavarao and Federer, 1975). Result (3.3.8) follows directly from the first
equality in Corollary 3.3.2. In particular, we see from both (3.3.7) and (3.3.8) that a row-
column design is completely connected if and only if it is connected for treatments. It also
follows from (3.3.7) and (3.3.8) that if a two-way elimination of heterogeneity design is
completely connected, then Uy 2 = uy3=tp3 =3 =Uz13=Us2 =l and uy213=u1312=
uz3n=0.

If our interest lies anly in the treatment effects (two-way elimination of heterogeneity
designs), then we are only concerned with connectedness for treatments. A problem which
seems not yet to have been completely solved, however, concerns the relationship between
connectedness for treatments (43 ;2 = 1) in a two-way elimination of heterogeneity design
and connectedness in its treatment-row (4, 3 = 1) and treatment-column subdesigns (43 =
1). Raghavarao and Federer (1975) showed that if a two-way elimination of heterogeneity
design is connected for treatments, then the treatment-row and treatment-column subde-
signs are also connected (the row-column subdesign need not, however, be connected, i.c.,
u 2 need not be equal to 1). However, the converse of this sta‘ement is not generally true as

was shown by Shah and Khatri (1973).

EXAMPLE 3.3.1 (Shah and Khatri, 1973): For the following design

~] 00 W
(Y T~ W -
N = 3
A~ W 00 O

both the treatment-row and treatment-column subdesigns are connected, i.e., both ;3= 1
and u;3 = 1, but the overall design itself is not connected for treatments, i.e., us # 1.
Associated with this design is Table A.1.4, given in part in Styan (1986, Table 2.1). We
can see that although u; 3= u; 3 = 1, the design is not connected for treatments since us 3, =

2. We can also verify that the vectora = (0 1 -10 1 0 0-1)'is orthogonal to each row of
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S,2 16, S35, =0, implying that r(S;,2) < v -2, since a is not a scalar multiple of e.

Thus, the treatment contrast

@)-3)+)-®) (3.3.9)

is not estimable, We can show this by noting that r(X' : a) = 14 while r(X) = 13, i.e.,
r(X': a) # r(X), where X is the full design matrix and a'y gives the linear function of

treatments in (3.3.9). This inequality between the ranks implies that a'y is not estimable
[cf. e.g., Alalouf and Styan (1979)].

Furthermore, from (3.3.7) and (3.3.8), we have the equality u3 12 = U3+ U213~y +
u; 213, which implies that indeed u; 3= 1 and u, 3= 1 together are not sufficient for u; |, = 1
to hold unless u; ;= u;23+ 1 also holds. In particular, Raghavarao and Federer (1975)
show that for equireplicate row-column designs satisfying the condition N3N j; =
ke(men)' (which implies u;;(3= 0 as we will see in the next Section 3.4 on orthogonality),
connectedness of the treatment-row and treatment-column subdesigns does lead to
treatment-connectedness. This result was first strengthened by Sia (1977) who showed that
when 83, and S3; commute in an equireplicate row-column design (or equivalently when
N3;Ny3 and Nj;N;3 commute, and Ny, = e(Me(€)'), then u; 3= U3 = 1 implies uz 1 = 1 if
and only if the sums of the eigenvalues of S;,; and S;; corresponding to the same
eigenvectors are different from k, the number of replications of each treatment. The
commutativity of S;; and S;; by itself is not sufficient for this result to still hold,
however, as was again shown by the design in Shah and Khatri (1973), cf. our Example
3.3.1 and Table A.1.4, where S3_; and S3 2 do commute.

The equireplicate condition was relaxed in Baksalary and Kala (1980), where the

more general commutativity condition

Sa_,D;'Sm = 53.205153.1 (3.3.10)
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was considered. Introducing the efficiency matrices
Ay =D5'%8, \D;'?  and Ay, =D5'%S, D512 (3.3.11)
(cf. Section 3.5), we may express (3.3.10) as
A31A3;=A32 A3,

which from now on we will refer to as the “commutativity property” (for more about this
commutativity property see Section 4.4).

If the commutativity property holds then the efficiency matrices A3, A3 and Ajp
are all spanned by the same set of eigenvectors, i.e., there exists an orthogonal matrix U

such that U'AgU, g =3.1, 3.2, 3.0, are all diagonal matrices; the efficiency matrix

Asp = D;'IZS“,D;”Z.

Furthermore, if our generalized decomposability property (2.3.1) is also satisfied, then the
matrix U'A; 12U will be diagonal. In the following theorem, we give an extension for
two-way elimination of heterogeneity designs with equal row sizes and equal column sizes,
satisfying our generalized decomposability property (2.3.1). Our proof follows that of
Baksalary and Kala (1980).

Theorem 3.3.3: Consider a two-way elimination of heterogeneity design which is

ordinary, i.e., with equal row and column sizes: k, = ke andk, = kze(c), which satisfies

both the generalized decomposability property

8112 = &850 + &832 — &S30, &, E2and £> 0,

and the commutativity property
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A31As2 = Aj30A,.

If the treatment-row and treatment-column subdesigns are connected, then the design itself

is connected for treatments if and only if
¢1¢§3'1)+§2¢§3-2)$§0 s= 19 ey ¥V — 1, (3.3.12)

where ¢S")and ¢§3'2) are eigenvalues of, respectively, Asy and A3, corresponding to the

same eigenvector.

Furthermore, (3.3.12) is also equivalent to

Eikopts + Sk 2 kky (6 + & — &0, s=1,..,v-1, (3.3.13)

where U is an eigenvalue of N:,,N,:,,Dgl not equal to k,, and @ is that eigenvalue of
N32N23D§1 not equal to k, and which corresponds to the same eigenvector as does the
eigenvalue |1,

Proof: We have a two-way elimination of heterogeneity design with efficiency matrices

satisfying the following relation:

A = &A1 + £A32 - EoAs 0, &, &2and &> 0 (3.3.14)

in view of our generalized decomposability property (2.3.1). Since we assume that the
design satisfies the commutativity property (3.3.10), the three matrices Aj;, A3 and A;,
have a common set of eigenvectors. The zero eigenvalue for each matrix corresponds to the
same eigenvector D}%e(". The other v — 1 eigenvalues of Az o = I - (1/n)D; 2eVeM' D'
are all equal to 1. If the treatment-row and treatment-column subdesigns are connected, then

the remaining eigenvalues of A;; and Aj, are all nonzero, and eyual, respectively, to

6015 md of7=1-F5 s=1v-1 (3.3.15)
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From (3.3.14) we find that the design itself is connected for treatments if and only if the v —

1 eigenvalues of A3 12
§1¢_(,3]) 52 (32) fo*eo’ s=1,...,v-1, (3.3.16)

or equivalently (3.3.12) holds, Furthermore, substituting (3.3.15) in (3.3.16) yields the
inequality

g1(1 - )+§2(l- T )aego, s=1,.,v-1,
which implies (3.3.13). a
We illustrate the result in Theorem 3.3.3 with the following example.

EXAMPLE 3.3.2: The design

3 % % & k 4 *k x §
*x 2 4 * ¥ 1 * § & x
* k3 * k2 ok 1 ok
x k% 4 1 * *x 3 x 2

given by Worsley (1990) is ordinary with equal row sizes k; = 4 and equal column sizes k;
= 2, and satisfies the conditions in Theorem 3.3.3, i.e., S5 ,D;‘83 2 =9, 2D3183 1 W13 =
Uz3=1and Sy, = Sy + S32 — (25/16)S3 0. From Table A.1.5, we see that ¢ = 15/16
and ¢f = 5/8 and so, since ¢§3 Dy ¢§3 2

connected for treatments—indeed u3 13 = 5.

= 25/16, we conclude that this design is not
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The design considered in our Example 2.3.1 also satisfies the conditions in Theorem
3.3.4, where S; 13 can be written as Si33 = (1/2)S3,; + (1/2)85 2 — (4/9)S3 9. From Table

3.1 3.2 L
A.1.1 we have that ¢§ )= ; ) = 7/9 # 4/9, and so the design is connected for treatments.

Baksalary and Kala (1980) obtained the special case of our Theorem 3.3.4 for row-
column designs, i.e., with &= &= &= 1,k =cand k,=r.
Russell (1976) also proved a similar result but only for the class of equireplicated

row-column designs characterized by a treatment-column subdesign being pairwise

balanced, i.e.,

N32N23 = pI + geMe™, p.q>0 (3.3.17)

(cf. e.g., Hedayat and Federer, 1974). Any design of this type satisfies u;3 = 1 since every

treatment is applied together in the columns with every other treatment.

Theorem 3.3.4 (Russell, 1976): An equireplicated row-column design such that N33Nj3
= pl + geMe™, p, g > 0, is completely connected (uy 23 = 2) if and only if c(kr — p)/r is
not an eigenvalue of N3 N3.

Proof: Because we are dealing with an equireplicated row-column design, the information

matrix has the form
S3.12 = kI = (1/c)N3;Ny3 = (1//)N3;N23 + (k3/cr)eMe)!
= [(kr — p)/r}I - (1/c)N3; N3 — [(cq — k2)/crieMe™), (3.3.18)

since N3;Na3 = pl + geMe!, It is straightforward to show that the matrices N3;, N3 and
eMe™" commute. The eigenvalues of e(Me()' are v with multiplicity 1 and zero with

multiplicity v — 1; the distinct eigenvalue v is associated with the eigenvector e*) which is
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also the eigenvector corresponding to a zero eigenvalue of S3 2. The design is connected

for treatments, therefore, if and only if the other v — 1 eigenvalues of S, satisfy

ch(Ss.12) = [(kr —p)/r] — (1/c)ch(N3 Ny3) # 0

<> ch(N3;Ni3) #ckr — p)/r. O

EXAMPLE 3.3.3: Theorem 3.3.4 can be applied to the row-column design

- Q) W
NN W
.

which is equireplicated. Here N3; Nj3 = N33Nas = 31 + 2¢(Me™" and so c(kr — p)/r = 6 is
not an eigenvalue of N3;N3. This design is completely connected, i.e., #;33 = 2, as

Theorem 3.3.4 implies.

If the treatment-row subdesign is connected, then Theorem 3.3.4 is comparable to the
special case of Theorem 3.3.3 for row-column designs. From the condition that N;3;Nj3 =
pl+ geMe™, p, g > 0, it follows that S = [k — (p/E)]L - (qv/c)] and so §° 2 = (1/k)[k
- (p/n], ie., og=plk,s =1, ..., v — 1, where @is as in Theorem 3.3.3. It then follows

that since the eigenvalues of N3; N3 are &z,

ridg+ : @ # rc < kyg# c(kr - p)ir, s=1,..,v-1

A more specific subclass of equireplicated row-column designs considered by Russell
(1976, 1980) is characterized by a treatment-column subdesign being a balanced incomplete
block design (BIBD) with parameters (c, v, k, r, A = k(r — 1)/(v — 1)}. This means that the

v treatments are replicated k times in ¢ columns of size r (< v) in such a fashion that no
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treatment appears more than once in a column but appears in A columns with each other
treatment. Roy and Shah (1961) call such a design a two-way design with column balance.
Here, the incidence matrix Ns; satisfies (3.3.17) with p =k — A and ¢ = A and Russell
(1976) shows that this design’s treatment-row subdesign is connected. We then have the

following corollary.

Corollary 3.3.5 (Russell, 1976): An equireplicated row-column design with a BIBD{c,
v, k, r, A =k(r — 1)/(v — 1)} as a treatment-column subdesign is completely connected if
and only if cvAjr is not an eigenvalue of N3; N ;.

Proof: Follows at once by replacing p with k — A and ¢ with A in Theorem 3.3.4. a

Russell (1980) then extended this result by looking at BIBDs with specific parameter
sets for which connectedness can be determined without having to find the eigenvalues of
N3 Nis.

Theorem 3.3.6 (Russell, 1980): If the parameter set of an equireplicated row-column
design with a BIBD(c, v, k, r, A =k(r — 1)/(v - 1)} as a treatment-column subdesign is
such that cvAjr is not an integer or is unreduced, i.e., the parameters are given by c = (‘;) ,

k= (‘; ~ ll)and A= (‘; ~ %), then the design is connected for treatments.

Proof: Since the elements of N3; N5 are integers, the characteristic polynomial INJ N3 —
All is a monic polynomial in the set of integers 2[x], i.e., a polynomial in x with integer
coefficients and leading coefficient equal to 1. The only possible roots, therefore, are inte-
gers and irrational numbers. This means that if the parameters of the equireplicated
row-column design are such that cvA/r is not an integer, then cvA/r cannot be an eigenvalue
of N3 Nj3 and the design is connected. Now, if the parameter set of the design is
unreduced, then ¢ = (‘;) , i.e., the columns consist of all the different ways of choosing r
treatments out of v. From every such design we can obtain, by removing a certain number
of columns, a sub row-column design with also a BIBD as its treatment-column subdesign

and with parameters {v=c=(@ + 1),k =r, A=(r - 1)}). The columns of this design
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consist of the r + 1 different ways of choosing r out of r + 1 treatments. For this sub row-
column design, cvA/r = (r — 1)(r + 1)?/r is not an integer and so the sub row-column design
is completely connected. In particular, it is connected for rows and this implies that the
whole design is connected for rows. Now since both treatment-row and treatment-column
subdesigns are connected (cf. Russell, 1976), the connectedness for rows implies from

equation (3.3.8) that the design is completely connected. m

Fisher and Yates (1963, Table X VIII) list 63 parameter sets for BIBDs with treatment
replication kK < 10. Applying Theorem 3.3.6, we find that the equireplicated row-column
designs with treatment-column subdesign a BIBD corresponding to 44 out of these 63 sets
are connected for treatments. Russell (1980) lists the 19 parameter sets to which Theorem

3.3.6 does not apply and for which no general results appear to be known.

SECTION 3.4: ORTHOGONALITY

The following two types of orthogonality for a multi-way design with f factors have
been considered in the literature [cf. Chakrabarti (1962), Eccleston and Russell (1975,
1977), Khatri and Shah (1986)].

Definition 3.4.1: Factors i and j are weakly orthogonal if all the covariances (or the cross-
covariance matrix) between the two factor totals, each adjusted for the other f — 1 factors,

are zero.

Definition 3.4.2: Factors i and j are strictly orthogonal if the covariance between the two
factor totals, each adjusted for the remaining f — 2 factors (when f 2 3) or for the mean

(when f=2) is zero.
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In a three-way layout, Definition 3.4.1 is equivalent to

cov(X;M iy : XMiry) =0 (3.4.1)
or
X,'-MjkM,'ka =0, (3.4.2)

while Definition 3.4.2 is equivalent to

cov(X;Myy : XMiy)=0 (3.4.3)

or
X{M;X; = 0. (3.4.4)

However, equations (3.4.1) to (3.4.4) do not cover the only kind of orthogonality
that might be of interest in a three-way layout. For example, there might also be some
questions concerning orthogonality in the subdesigns. For each pair of factors, it is
possible to define four different kinds of strict and weak orthogonality [cf. Styan (1986),
Worsley, Styan and Bérubé (1990)] according as we ignore, include, adjust or adjust only
partially for the third factor.

When the third factor, say &, is ignored or included (i.e., we are now dealing with
two-way designs), characterizations of weak orthogonality, according to Definition 3.4.1,

are given, respectively, by
X M;MX; = 0, (3.4.5)
and

X]MjcM (X : Xp) = 0. (3.4.6)



CHAPTER 3 CANONICAL CORRELATIONS AND EFFICIENCY FACTORS 45

It is easy to see from (3.2.14) and (3.2.15) that (3.4.5) and (3.4.6) are equivalentto;j=0
and t; jx = O respectively. Again, if factor k, say, is ignored or included, Definition 3.4.2
for strict orthogonality requires that the cross-covariance matrix between the two sets of

factor totals, each adjusted for the mean, be zero, i.e.,
X,'C,,Xj =0 and X;Cn(Xj H Xk) =0,

respectively. Comparing these two equations with the result in Lemma 3.2.2, we see that
equivalent characterizations for those two types of strict orthogonality are given by m; j = 1
and m; jx = 1, respectively.

When there is adjustment for the third factor, then the characterizations for weak and
strict orthogonality are (3.4.1) and (3.4.3), respectively, or equivalently # jjx = 0 and m; j| &
=0, cf. (3.2.17) and (3.2.8).

We can summarize these different kinds of orthogonality as follows. Respectively

() t;j=0andm;;= 1, weak and strict “pairwise orthogonality,”

(i) 4 jk =0 and m; i = 1, weak and strict “augmented orthogonality”

(iii) fj1£ = 0 and m;;j ¢ = 0, weak and strict “partially adjusted orthogonality.”
(v) tijik =0and m; |, =0, weak and strict “completely adjusted orthogonality.”

Since m;;j ik = mj j |, cf. (3.2.8), it follows that strict completely adjusted orthogonal-
ity is equivalent to strict partially adjusted orthogonality, and we will then refer to this
situation as just strict adjusted orthogonality; this was originally introduced as just “adjusted
orthogonality” in Eccleston and Russell (1975, 1977), who also pointed out that our strict
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pairwise orthogonality, characterized by m; j = 1, is a particular case of their adjusted
orthogonality. To see this, we note that if we ignore the third factor &, then strict pairwise
orthogonality requires that the covariance between the two other factor totals, each adjusted
for the mean, be zero, i.e., cov(X;C,y : X;C,y)=0. Eccleston and Russell (1975,
1977) refer to this as traditional or pairwise orthogonality between two factors, and this has
been studied by many authors including Yates (1933), Pearce (1970) and John (1971). The
necessary and sufficient condition for strict pairwise orthogonality, i.e., X}C ,X j=01is
often written as N,-j = k,-kj'/n or equivalently, npg =(np.n q)/n for all p and ¢, where Npg is
the (p, ¢)th element of Njj. In the case where the factor & is included, strict augmented
orthogonality, i.e., m; ji = 1, is also a special case of adjusted orthogonality which requires
both m;;= 1 and m; ¢ = 1. For more on adjusted orthogonality see Baksalary and
Pukelsheim (1990).

Because of the identity m = u + , it is clear that strict orthogonality implies weak
orthogonality, and that both weak orthogonality and connectedness together are equivalent
to strict orthogonality.

The condition for weak pairwise orthogonality, i.e., #;j = 0, is given among a list of
45 algebraic characterizations established in Baksalary (1987) for the commutativity of two
orthogonal pro;ectors, i.e., HijH; = HjH; [cf. Theorem 3.2.3]. Any one of the other 44
equivalent conditions can, therefore, be used to express weak pairwise orthogonality. We

will need the following condition, due originally to Rao and Yanai (1979).

Lemma 3.4.1: Factor i and factor j are weakly orthogonal, i.e., 1; ;= 0, if and only if
H;j=H;+H;-HH,.

Proof: First, we assume that f; j = 0 and write out the following equation,

H;,(1-H) = MX{(X;M X)) X;M(I - H)). (3.4.7)
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We then look only at XM (I - H;) and use the commutativity of the two orthogonal

projectors H; and H; to yield
XiMM; = X,!Hj—x,!HjH,-=X}Hj—X}H,-Hj= 0. (3.4.8)
The left hand side of (3.4.7) can therefore be written as
H;-Hpd-H)=H;;-H;-H; -HH;=0.
The converse follows at once since H,-j = Hy;, cf. (2.2.3) and (2.2.4). a
Whenever weak pairwise orthogonality holds, certain equalities among the canonical
correlations follow. This next theorem lists some of these equalities. Parts (i) and (ii) are

stated, but not proven, in Styan (1986), while part (iii) is new.

Theorem 3.4.2: Let factor i and factor j be weakly pairwise orthogonal, i.e., t; j=0, and
let k be a third factor. Then

(i) {pCIRY = (pCED} 4 (g jones},
(i) {pU0) = (p4k1D} + (u; ; ones),
(iii) (p@kWD) = (pU-M)} and (UKD} = {pUKID) Y

Proof: (i) Let the matrix Xjk denote the augmented matrix (Xj : X;). The se. of canonical

correlations between factor i and the other two factors j and & is denoted by (@A)}
(PR} = (ch!2[X}X ;5 (X )X 1) X X (XX ) 1)

= (ch'2(H;H;)). (3.4.9)
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Using the decomposition of the projectors as given in (2.2.3), we can rewrite (3.4.9) as
(P60} = (ch!2[H (H+ Hy)]).
We now consider the characteristic polynomial of H,(H; + Hy)
IAT - H;(H; + Hy)l = IAT- H;H I - AT - HH)"HH | (5.4.10)

forall A # ch(H,-Hj) = p;:"j); h=1,...,m; J We can simplify the last term in (3.4.10) using

the commutativity of the projectors H; and H; (since £;, = 0) and so
AI-HH)HHy =AHH,; - H;HHH,, = AHH,, - HHH,;
= AHHy;.
The characteristic polynomial (3.4.10) is, therefore, equivalent to
IAL - HH M- (/AHH )| = A — DG4I AT - HH) | (3.4.11)

forA=0and A # pg'j); h=1, ..., m;; We recall that the nonzero eigenvalues of HH, are
the squares of the nonzero canonical correlations between X}y and X]'y and are all equal to
1 since H;H; is idempotent whenever ¢; ;= 0.

We may use Lemma 3.4.1 in order to rewrite the right hand side of (3.4.11), i.e,,
Hi“klj =H;- HiHj)Hldj = (Hij - Hj)Hk[j = Hi'JHkU' (34.12)

The right hand side of (3.4.11) equals

1
(&_X_l) YIAL - HyHy,
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( and so we obtain the required result.
The proof is similar for (ii), and result (iii) follows at once from the equality in

(3.4.12) and the fact that ¢; ;= 1¢; ;. )

Now, if one factor, say j, is pairwise crthogonal to both of the other two factors, a

further set of equalities between canonical correlations can be obtained.
Corollary 3.4.3: Let t; j=tj ;= 0. Then

@) (04 = (p*NY + (u;j~ujpones) i u;j2 ujp

= {pWkN) + (i jones)

(b) (VD) = (plji0 ) + {uj 4 ones) = {pUikl) ) + {u; j ones}.
If in addition u; ; = u;, then

©) (pEi0) = (plkiD)

(d) (Pl ) = {pliklD) ) = (plijIk) ) = (plikld )
Proof: To prove the second equality in (a), we start with (3.4.11), i.e.,

(5%1—)“”&1 — HHy.

This characteristic polynomial is equivalent to

- Ui s Ui+
(l— l—l ) "jlll - Hi(“k - HJHk)l = (/\ T 1 ) l'j|ll + Hij - HinkI’ (3.4.13)

t"'ﬂ{ﬂ
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since f; ;= 0 is equivalent to H;H; = H; + H; - H;; (cf. Lemma 3.4.1). We may rewrite
(3.4.13) as

_ Ui i
(}_7\_1') ljlll - HlekIIl + (AI - Hlj“k)-l Hj“kl' (34 14)

The last term in (3.4.14) can be simplified since (A1 - H;Hp)H H, = (A — DHH,, using

the commurativity of H ¥ and H;. Therefore, we rewrite (3.4.14) as

— 1\Mij - | \Wj— U

(ATI) Ik = DI+ HHIAL - HHl = (l—k—l) SR SRS )
The equalities in (b) can be obtained directly from Theorem 3.4.2, while the equalities in (c)
and (d) follow at once from (a) and (b). 0

The 45 equivalent conditions given by Baksalary (1987) can also be used to
characterize weak adjusted orthogonality, i.e., fjj| x = 0. Here, the commuting orthogonal
projectors are Hj;, and Hj,. It follows that weak orthogonality implies the following

equality
XIMX; = XM X (XM X) XM XXM X ) XM X (3.4.15)

In the following theorem we show the equivalence of four characterizations to the
property of strict adjusted orthogonality, i.e., m;,|¢ = 0. The three characterizations (ii),

(iii) and (iv) are due to Eccleston and Russell (1977); characterization (v) is due to

Siatkowski (1990).
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Theorem 3.4.4: The following nine characterizations are equivalent.

M XMX,=0

() Sixk=Sijk

@) (X;MX;) XMy = XiMX;)" XMy

(v) (XMpy)' (XiMX) (XiMgy) = M y)" (XM X)) 7 (XM jy)
V) XM;-= X;Mjk

(vi) Sjk=S8jik

(i) (X;MX)) XMy = XM X)) XMy

(Vi) (XJM )" XIMEX) (X IMy) = (XIMy)" (XM X)) (XIM )

(ix) XM, =X;M;

Proof: Condition (ii) is equivalent to X'H jwXi =0, since Mjr = Mg — Hj,. Now, using
rank cancellation rule (A.3.5), XjH;;X; = 0 is equivalent to X;Hx = 0. We can expand
XiHji = 0 as X;M;X;(X;M;X ;) XM, =0, and postmultiplying by X; we obtain the
equivalent condition (i).

Postmultiplying both sides of (v) by X yields condition (ii). To go the other way
we premultiply Mjr = My - Hji¢ by X, noting that X;H jix = 0 whenever S;x = S; ;.
Conditions (ii) and (v) are therefore equivalent.

It is easy to see that condition (v) is sufficient for both conditions (iii) and (iv) to
hold. Finally, we want to show that (iii) and (iv) are both sufficient for (i). If we

postmultiply
XiMiX) XM = (X;Mjkx,')‘x,!Mjk (3.4.16)
and

MXi(XiM X)X Mg = MpXi(XiM e X)X M i (3.4.17)
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by X, the right-hand sides of both equations (3.4.16) and (3.4.17) become 0. We can

then use

XiMEX) XiMiX = 0 < MEX(XIMEX ) XIMX; = 0
where the last equality is equivalent to X;-kaj = 0 and so conditions (iii) and (iv) are
sufficient for (i).

We note that (vi) through (ix) are just (ii) through (v) with i and j interchanged.We

can interchange i and j since from (i) by transposition
X}kaj =0 X}ka,: 0,

i.e., i is orthogonal to j after adjusting for k whenever j is orthogonal to i after adjusting for

k. m)
We may interpret the characterizations (ii), (iii) and (iv) in the following way:

(ii) The information matrices of the reduced normal equations for & [B ] are the same

whether or not B [@] is included in the model, i.e.,

Sik=Sijt [Sjk=Sjirl

(iii) A least squares solution a [ﬁ] is the same whether or not p [@] is included in

the model, i.e.,

(XIMX) X My = (XM ;X)X My

[(XJ'M kxj)"x,'- My = (xj'M ikxj)_xj' M.yl
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(iv) The regression sum of squares for factor i is the same whether or not B [a] is in-

cluded in the model, i.e.,

(XiMy) (XM X)) (X iMy) = XM y) ' (XiMpX ) (X IMy)

[(x}M ky)'(X;MkX,)—(XJ'Mky) = (x;M ,-ky)' (X]'M,ka)_(X]'M,ky)]

For example, if the treatment-row subdesign of a row-column design is a complete
block design and the treatment-column subdesign is a binary incomplete block design, then
Si12 =83, and 23 3 = 234, i.e., treatments and rows adjusted for columns are strictly
orthogonal (my3; = 1). In this situation, the least squares estimates of the treatment
parameters are the same as those obtained from a model where the rows are removed. John
(1987) calls such row-column designs, row-orthogonal designs.

In a row-column design, where factors i, j and k are rows, columns and treatments

respectively, condition (i) in Theorem 3.4.4 is equivalent to
N,,D;'N,, = e(re(c)", (3.4.18)

If the treatments are equireplicated, strict adjusted orthogonality in a row-column

design reduces to
N,;N;, = ke(nee), (3.4.19)

i.e., each row has & treatments in common with each column, Equireplicate row-column
designs satisfying (3.4.19) have been studied by many authors including Agrawal (1966a),
Raghavarao and Federer (1975), Shah (1977), John and Eccleston (1986) and Lewis and
Dean (1989).
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If all three factors are strictly pairwise orthogonal, i.e., m; = my3=my3 = 1, then
Eccleston and Russell (1977) showed that this implies m, 53 = m; 32 = my3; = 0 and the
design is said to be orthogonal. Here the incidence matrices reduce to

kki kik;

N31 =—-rc_ ’ N32 P —;c— and le = e(r) e(C)' (3.4.20)

and we can write the information matrix for the design eliminating rows and columns as

S3.12 =Dy ———=83,. (3.4.21)
We can easily see that D;' is then a generalized inverse of S;;; and so a solution to the

normal equations given in (2.2.5) can be written as
1=D3'z,,, (3.4.22)

where z, ., = yyt—Yk3 andy = (I/n)ély,-jk. This means that in an orthogonal design, esti-
mates of the treatment parameters are the same as those obtained if both the rows and
columns are ignored. Examples of orthogonal row-column designs are Latin squares and
F-squares, i.e., designs for which each treatment is applied the same number of times in
each row and each column [see Hedayat and Seiden (1970)].

The next theorem given in Siatkowski (1990) and Baksalary and Styan (1990) is

concerned with relationships between the properties of orthogonality and connectedness.
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Theorem 3.4.5: A three-way layout has factors i and j adjusted for factor k strictly
orthogonal and its subdesign ignoring factor j (factor i) connected if and only if the factors i
and j adjusted for factor k are weakly orthogonal and the layout is connected for factor i

(factor j), i.e.,

r(XiMeX)) =0 and ujg =1 (ujx = N r(X,'-MjkMika) =0and u;j =1 (ujix = 1).
(3.4.23)

Proof: When the left hand side of (3.4.23) holds, i.e., mj jix = 0, then the equality

mijik = Wijlk+tj\k (3.4.24)

forces u; j 1k =t j i = 0, and so the right hand side of (3.4.23) holds using the first equality
in (3.3.4). Now suppose that the right-hand side of (3.4.23) holds, then again using the

first equality in (3.3.4) forces u; jix = 0 and u; ¢ = 1, therefore m; j 1, = 0 from (3.4.24). O

Our Theorem 3.4.5 is an extension of Theorem 1 in Eccleston and Russell (1975),
where the condition of strict adjusted orthogonality is used on both sides of (3.4.23), while
here we use only the condition of weak adjusted orthogonality on the right hand side of
(3.4.23). It is easy to see that if we replace connectedness for factor i, i.e., u; jk=1,0n the
right-hand side of (3.4.23) by complete connectedness, i.e., 4, , ; = 1, then the left-hand

side holds with both u;¢=1and uj;=1.
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SECTION 3.5: CANONICAL EFFICIENCY FACTORS
AND AVERAGE EFFICIENCY FACTORS

In a two-way layout, we define the “efficiency matrix™ as

-172 -172 -172 -1 -1/2
Ai.j= Di leDl = I_Di NUD NJEDI ’ (351)
cf. (3.3.11). The nonzero eigenvalues ¢(si‘j), s=1,..., m;, of the matrix A; ; are called
“canonical efficiency factors” [cf. James and Wilkinson (1971), John (1987, p. 35)].
Clearly m; ; =r(A; j) =1(S; ).

For canonical correlations of type (i), equation (3.1.1) implies that the following

relationship holds between the canonical correlations and the canonical efficiency factors

¢§i-ﬁ =1 s=1,..
=1—[(i'j) ]2~ =2::+1 .. .. 3.5.2
pd.+l—s ’ s zl.j+ ""’z[_j+t‘_js ( . )

where z; ; = d; —m; ;, the number d; being the dimensionality of factor i. The z;; unit
canonical efficiency factors correspond to zero canonical correlations.

In a three-way layout, we can define efficiency matrices as in (3.5.1) for subdesigns
and similarly obtain further efficiency matrices for designs eliminating two factors. For
example, the two efficiency matrices for the treatment-row and treatment-column

subdesigns in the two-way elimination of heterogeneity are given by, cf. (3.3.11),
Ayy=D5'78, D7 and  Ag, = D5'8, D5 (3.5.3)

respectively, while the efficiency matrix for the full design, after eliminating rows and

columns, is given by
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Ayp= D;lIZSS.lZD;”z . (3.54)

From the efficiency matrix for the design eliminating two factors, say j and k, we get the

following canonical efficiency factors associated with canonical correlations of type (ii),

i.jk . _
o =1, s=1, 0z

(i.jk) ]2 .

=1-—[pdi+l_s s=z,-.jk+l,...,z,-_jk-i»t,-_jk, (3.5.5)

where z; j; = d; — m; j;. Canonical efficiency factors associated with canonical correlations
of types (iii) and (iv) can similarly be defined as

(i.jlk .
¢sl ) =1, s=1,..., Zijlk

i.j 2
=l—[p€4‘-jblk-)—s] H s=zij|k+l,..., zi.j|k+ti.jlk’ (3.5.6)

and

i jk
¢lvn =1 s=1, o Zisjlk

i5jlky 42
=1—[pf;'ills] H S=Zi;,'|k+1,..., Zijlkt bk (3.5.7)

where z; |, =d; + mj j and z;. e = di + my .
The nonzero canonical correlations of types (i), (ii) and (iv) are symmetric in their

arguments, e.g.,

£ = g (3.5.8)
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sothat ¢; ; =1;; and u; j = u;; and hence the nonunit canonical efficiency factors are also

symmetric in this way, e.g.,

OP=d0" s=zivl Lz vy (3.5.9)

However, the numbers z;j = d; —m; j and zj; =d; —m;; = dj — m;; cf unit canonical
efficiency factors are not necessarily equal as the dimensions of the factors i and j need not
be the same. Obviously, di=dj < z;;=z,; . In view of this, we write z; ; = z,; .

We define the “average efficiency factor” of the design eliminating two factors, say j
and k, as the harmonic mean of the corresponding canonical efficiency factors [cf. ¢.g.,

John (1987, p. 27)]:

Eij = v — Ui jk _ IS (3.5.10)
' VU j + e
ik tr(A])

(v —mjk) +

s=v-m; jk+l ¢(;"’k)

where the superscript * denotes the Moore-Penrose inverse and the efficiency matrix A; ji

is defined analogously to (3.5.4). We will assume that S; jx # 0 and so v > u; j and hence
0<E; kS 1,
with
Eijg=1¢ tijk=0 mju=uju.
When u; ¢ = 1 we say that the design is “connected for treatments” and then E; ji is the ratio

of the average variance of the elementary contrasts for factor i, compared to those of an

equivalent Latin square design [cf. e.g., Anderson and Eccleston (1985)].
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Similarly, we define the average efficiency factors

V- Ujj _IGSi))

Ejj= — 4 (3.5.11)
"ij 1 tr(Ai.j)
(V - ml_]) + (lj)
s=u; +1 ¢s'
and
-Uu S;
Eii= oLk O (3.5.12)

respectively, for the two subdesigns corresponding to either factor j or & being ignored. We
can see that if v—u = ¢ or v = m, and if the non-unit canonical correlations pj are all equal
to p, then the average efficiency factor simplifiesto E=1 — pz. We also note that E; jneed
not be equal to Ej;; clearly E; j = Ej; < d;=dj. And so we will write E,f_j =E,
(following z;, = zj.;).

When u; j= 1 and the row-column subdesign is connected then E; is the ratio of the
average variance of the elementary contrasts for factor i with those of an equivalent
complete block design.

Our next result provides an upper bound for this average efficiency factor E; . A
first version of the result was obtained by Roy and Shah (1961) for equireplicated row-
column designs; Shah and Eccleston (1986) showed that equal replication was not needed.
Our version is an extension to two-way elimination of heterogeneity designs which need
not be connected; we require only that the degree of nonorthogonality #; j; in the full design
be no less than the degrees #;j and t;  of nonorthogonality in the two corresponding

subdesigns.
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Theorem 3.5.1 (Bérubé and Styan, 1990a): For any three-way design satisfying t, ;2
tig. 8 =jork,i#ji#k, j=kij k=1,2,3, the average efficiency factors E; ;. E; j
and E; i satisfy

E;jx S min(E; j, E; x). (3.5.13)

Moreover, equality holds in (3.5.13) if and only if u; jk = uj g, 8 jk = ti.g, mi jk = mi g, and
¢(si.jk) = ¢(:‘g), s=1,..,tig whereg = jork.

Proof: By the definition of canonical correlation

pg'.jk) > p(hi.g), h=1, ..., mjg,

where the subscript 4 indicates the ht# largest canonical correlation and g = j or k. If ¢; k2

ti.g> & = J or k, then the following two sets of inequalities hold,

1 1
j.jk .2)°
¢§U ) ¢;’ 8)

s=1, .. tig (3.5.14)

and

1
_‘;(-;'-.j_k-)'?' 1, S=lig+ 1, ..., b jk. (3.5.15)
s

Now, the inequality in (3.5.13) holds if and only if the following inequality is true for g = j

or k,

Eig = di - Mig 2 . = Eygk.
) m;.e m; ik |

1 1

(di-mig) + 2 —ip (Gi—miji)+ 2 sk
s=uigtl @ s=u; q+1 @
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The above inequality holds it and only if

mik l m,-_g i
di-uig) di-mijk + ) ) 2 di-uijp)|di—mig + _Z — i
s=u; ji+1 ¢s s=u; g+1 ¢s
&
m; ik
(i~ uig)(di—uijo) + (di-uigh 2. —q=0—tijk
s=ij jp+1 ¢s
mi.
1 (]
2 (d; - uj ji)(di — ui.g) + (di — uj jk) Z an i
s=uj g+1 ¢s'

mi. ik mi.g
1 1
< (di—uip) i — 1 2di-uip| 2 — 1\,
’ S=u; ji+1 (o ! seugrt | O0% )

This inequality holds since by the definition of canonical correlation u; ¢ < u; ji for g =j or

k, while from (3.5.14) and (3.5.15) we have

m; ik mi.g
1 1
2: o~ 1|2 ) ip !
s=upjt1| P s=uj t| P

Equality holds if and only if ujjk = u; g tijk = ti.g, mi jk = mj g, and ¢\70 = 68 s

=1,..,tig and g =jork. a
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When strict adjusted orthogonality holds in an equireplicated row-column design,
the information matrices satisfy S3 1 = (1/k)S; 1S3, and admit a common spectral decom-
position. We then see that the canonical efficiency factors of such a design satisfy the two

relationships

(3.12) _ (312) _ (1) (62

(3.1) (32
o ¢ "+¢; ~—1 and & =0, ¢

(3.1) (32).

i.e., at least one of ¢ " or ¢; " is always equal toone, forall s =1, ..., v 1. We can use

this to obtain the relationship

1
E3, +E3, -1

E3zpp=

between the average efficiency factors Ej3 13, E3, and E; 3, cf. Eccleston and McGilchrist
(1986).

The following theorem establishes relationships between canonical correlations of
types (iii} and (iv).
Theorem 3.5.2: The canonical correlations p}limk), p%;“k) and p(hi‘j ) satisfy the

Jollowing inequality strings:

(itk)
g h
Pg:"lk) < pfl"f”‘) < —, h=1,...my, (3.5.16)
A /1 - [plihy?
p(l;“k)

pg;ilk) sp’(:.llk) < h=1, ""mi.jlk’ (3.5.17)

h
i.k)

where p(l and p&”" are, respectively, the largest non-unit canonical correlations between

X}y and X}y, and between Xy and X}y .
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Proof: To prove the inequality on the left of (3.5.16), we first observe the Lowner partial

ordering
M HM, s, M,, (3.5.18)
since H; and M are symmetric idempotent matrices. Hence
XM HM.X; 5 XiMX; = XM X (XM X)) XMX; = X[ H; ;X;. (3.5.19)
Using Lemma A.3.5 with r(X;M;X;) = r(M;X;) = r(X{M;) we obtain
MHM; < H;
and hence

H; M HMH, < HpMEXGMEX) XGMH = B H  H g

(3.5.20)
since M{H; ;. = K it follows that
H; HH; < By Hy My g

proving the inequality on the left of (3.5.16). To establish the inequality on the right of

(3.5.16), we use a result in Styan (1985), who shows that

MH M,

Hip <L -
1 - ( p(lz.k))2

(3.5.21)
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Hence

H; HHj
H;  HiuHj e SLTZ_(;IE’I%)E, (3.5.22)
- 1

which establishes the inequality on the right of (3.5.16). The inequality string (3.5.17)
follows at once from (3.5.16) by interchanging i and j and noting that g4'®) = g4 o

A similar result to our Theorem 3.5.2 is given in Latour and Styan (1985) and Styan
*
(1985) for sums of squares S =y'H,,y and S, = y'M,H, M,y in a two-way layout;
*
they show that, with probability one, §; and S, satisfy the inequality string
*

Sh

%*
SpSSps————.
1 -( p(‘z.k))Z

(3.5.23)

cf. (3.5.16) and (3.5.17).

As shown in Baksalary (1987), we have equality in (3.5.19) if and only if the
matrices H; and H; commute or equivalently t;; = 0 and we then have equality on the left
of (3.5.16). Equality holds in (3.5.19) if and only if either p{‘ ©* = 0 (since then the left-
hand side and right-hand side of (3.5.16) are exactly the same), or the incidence matrix N,
has full row rank equaitom; ; = t;; + u, ; and p(]i'k) =..= pﬁf;k) . We then get equality on
the right of (3.5.16).

EXAMPLE 3.5.1: We illustrate these conditions for equality with the following design given
in Eccleston and Russell (1977),
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(1.312)

From Table A.1.7 we see that ;2 = 0 and indeed p} = p(,:;a ‘2 2 (1/3)V8. Also, this

design satisfies r(N3) =3 = u3+ 123 and p(,“) = p(22'3) = 1/2, and as expected, we have

that p1-23) = [1 — (1/4)]-12p@&113),
Since canonical correlations are nonnegative and cannot exceed 1, we have
0< p’('iu'lk) < p’(li.jlk) <1
and
0 Sp,?:ilk) Sp’(:'.jlk) <1,

or pii;ilk)

both pff‘im) =0 and p,?‘“k) = 0 whenever gfi'j'k)

(i.j1k)

which forces g, (iy1k)

= 1 whenever either g, is equal to 1, and furthermore

= 0. Then, we must have that

O<ujju<ujjie and O<ujj<uyjp (3.5.24)

We also know that the number of nonzero canonical correlations are the same, i.e., m;.; | =

my.;\k = mj ji and so it follows that

O<tiju<tijue and O0<t;k <t (3.5.25)

Combining equations (3.5.24) and (3.5.25), we obtain the results

Uij e = Wiyl < Lij 1k = Yij ks

and

Ui k= Wi j 1k < Ljsi 1k = i k-
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CHAPTER 4. BALANCE AND COMMUTATIVITY

SECTION 4.1: VARIANCE AND EFFICIENCY BALANCE

The term “balanced design” can have a number of different meanings [cf. Preece (1982)).
In this first section, we will restrict ourselves to only two types of balance. In th-. next

section, we will introduce another type of balance.

Definition 4.1.1: A two-way elimination of heterogeneity design is said to be variance
balanced or to have variance balance whenever the ordinary least squares estimators of all

normalized contrasts in the treatments have the same variance.

Following Jones (1959) we have a second type of balance where the concept of effi-

ciency replaces that of variance in Definition 4.1.1.

Definition 4.1.2: A two-way elimination of heterogeneity design is said to be efficiency bai-
anced or to have efficiency balance whenever the ordinary least squares estimators of all

normalized contrasts in the treatments have the same efficiency.

A well-known necessary and sufficient condition [cf. Kshirsagar (1957), Singh, Dey
and Nigam (1979)] for a two-way elimination of heterogeneity design, connected for
treatments, to be variance balanced is that the information matrix S; ; be a scalar multiple

of the centering matrix:
S3.12=4C, = A[I - (1/v)etVe)'], A>0, (4.1.1)
i.e., the matrix S5 ;, has all of its off-diagonal elements equal and all of its diagonal

elements equal. This form guarantees that all the v — 1 nonzero eigenvalues of S; |, are

equal.
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Similarly, a well-known characterization [cf. Jones (1959)] for an efficiency-

balanced, treatment-connected two-way elimination of heterogeneity design is

S3.12 = 9830 = 9[D; — (1/n)ksk3'], e (0,1, (4.12)
where 0 represents the efficiency with which each treatment contrast ¢'t is estimated. This
representation was apparently first given by Williams (1975) in the context of block
designs. Singh and Dey (1978) give an alternative representation of efficiency balance in

terms of a matrix we will denote as Q. This matrix Q, is also used outside of the context of

balance {cf. Calinski (1971) and Pearce (1975)], and is defined as
Q =1I- D;lsg 12 — (1/n)ek;
= D;' (N3 [X{M,X; + (1/m)kk 1INy + N3, (XM, X, + (1/m)kok 317N,y

- NazmlNzl [XIM X, +(1/mk,k{]IN;; - N3,D]1N,2[X§M,X2 + (1/mk;k 31Ny, ).

A further representation of efficiency balance is given in term of Tocher’s Q-matrix [cf.

(3.3.3)]. With respect to the matrices Qo and 0, efficiency balance is characterized by
Qo = (1 - O[I - (1/n)ek;], de (0 1), (4.1.3)

and

Q=[D;' -1 -0J.)/0, se O 1]. (4.1.4)
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We define variance balance and efficiency balance for the treatment-row and treat-
ment-column subdesigns in a similar fashion, i.e., the subdesigns are variance balanced
whenever all the ordinary least squares estimators of all the normalized contrasts in the
treatments have the same variance, and efficiency balanced whenever the ordinary least
squares estimators of all the normalized contrasts in the treatments have the same efficiency.

Whenever the subdesigns are connected we can say that they have

variance balance < Si5= 9;C,, h=1,2, (4.1.5)

efficiency balance <= Sy p= 94839, h=1,2. (4.1.6)

With the following theorem, Singh, Dey and Nigam (1979) obtained a result for two-
way elimination of heterogeneity designs that is equivalent to results established by Puri
and Nigam (1975) and Williams (1975) in a block-design setting. However, as pointed out
by Baksalary, Shah and Siatkowski (1990), the assumption that there be at least 3

treatments is es.ential—even though not stated in Singh, Dey and Nigam (1979).

Theorem 4.1.1 (Baksalary, Shah and Siatkowski, 1990): For a treatment-connected
two-way elimination of heterogeneity design with the number of treatments v 2 3, any two

of the following properties imply the third.

(i) The design is efficiency balanced,
(i) The design is variance balanced,

(iii) The design is equireplicated.

Proof: From (4.1.1) and (4.1.2) we see that :if v 2 3, then S; ¢ is proportional to C,, if and
only if the design is equireplicated. a
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For an equireplicated row-column design, we have both variance balance and

efficiency balance whenever

N3iNi3  NaaNay
c r

= mI + neMe(™' for some 1 # 0 and some 7.

The simplest design of this type is the “Youden square”, cf. Youden (1937), in which the
treatment-column subdesign is arranged as a symmetrical (c = v) balanced incomplete block
design (BIBD) and the treatment-row subdesign is a complete block design, i.e., N3;N;; =
re(Ve(V)',

With our next theorem, we present a relationship between efficiency balance in a two-

way elimination of heterogeneity design and efficiency balance in its subdesigns.

Theorem 4.1.2: For a treatment-connected two-way elimination of heterogeneity design
satisfying the generalized decomposability property 8312 = £1S3.1 + £S32 — &S3.0, &1, &
and &> 0, ¢f.(2.3.1), any two of the following properties imply the third.

(1) The design is efficiency balanced,
(ii) The treatment-row subdesign is efficiency balanced,

(iii) The treatment-column subdesign is efficiency balanced.
Proof: Follows at once from the characterizations in (4.1.2) and (4.1.6). a
A form of this theorem was first given ix the first part of Theorem 2 in Singh, Dey
and Nigam (1979). Our version is a slight extension of the version given in Baksalary,
Shah and Siatkowski (1990), since we have replaced the more restrictive reduced de-

composability property, cf. (2.3.2),

S312=83,1+832-830
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by our less restrictive generalized decomposability property (2.3.1), i.e.,
Sa12 = &831 + &832 — &S30, &1, E2and £9> 0.

Corollary 4.1.3 (Ceranka and Kozlowska, 1985): A treatment connected two-way
elimination of heterogeneity design with treatments and rows strictly orthogonal after
adjusting for columns (m, 3, = 0) is efficiency (or variance) balanced if and only if its
treatment-row subdesign is efficiency (or variance) balanced.

Proof: Follows directly from condition (ii) in Theorem 3.4.4. a

For an orthogonal row-column design (i.e., all three factors strictly pairwise
orthogonal), S; 12 = Sy pand the design is efficiency balanced (with full efficiency for all
contrasts). Nigam (1976) shows that if any one column is removed from an orthogonal
design, then the design is still efficiency balanced (but now with reduced efficiency). Since
removing this column does not affect the orthogonality in the treatment-column subdesign,
the new information matrix for the reduced design, S: 12 52, is equal to the new treatment-
row subdesign information matrix S: - Let N:‘ denote the new treatment-row incidence
matrix and let D: denote the new diagonal matrix with k: the new vector of treatment

replications on its diagonal. Then
& * * *
S, =Dy -[1/c-DIN; N, ,,

N o * . .

where the “new” incidence matrix N, , = [ck, eM'/r(c - 1] - W is obtained from the
incidence matrix of the original design by subtracting a matrix W which is equal to the
submatrix in X} corresponding to the deleted column, i.e., a v x r matrix W such that We(”

= k: /c — 1), W'e") = e(r) and WW' = D: /(c - 1). Therefore,

N* N* - ckiky 20k k3 D; D clc - 2)k K5
137 ric-D2 " r(c-1 + (c-1) " (c-1) " ric-1)2

31

and so
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S¥  =[c(c-2Mc-1)2S. 4.1.7)
3.12 3.0 i

EXAMPLE 4.1.1: To illustrate (4.1.7), we consider the following F-square design, cf.
Table A.1.8,

NN W A e
N W A == N
W A= NN
o= NN W
- NN W H

Here Ss ;3 = 830, i.€., the design has full efficiency. If the last column is deleted, then the

treatment-row incidence matrix becomes

/121 0
1 2 0 1
Ny=| 11 11
11 1 1
\0 2 1 1/

. N R ]
and the information matrix becomes Ss 12

balanced but with an efficiency, now, of 15/16.

= (15/16)8:.0, i.e., the design is still efficiency

Although orthogonal row-column designs from which an arbitrary column is
removed are still efficiency balanced, this does not hold true when at least two columns are
deleted, cf. Nigam (1976).

A theorem similar to Theorem 4.1.2, but with one further condition, holds for
designs that are variance balanced. We extend Theorem 3 in Baksalary, Shah and
Siatkowski (1990) [which is a corrected version of the second part of Theorem 2 in Singh,
Dey and Nigam (1979)] with our:
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Theorem 4.1.4: For a treatment-connected two-way elimination of heterogeneity design
with the number of trcatments v 2 3 and satisfying the generalized decomposability
property Sy1; = §.S31 + £83.2 — &83.0, &1, &2and &> 0, ¢f. (2.3.1), any three of the

following properties imply the fourth.
(i) The design is variance balanced,
(i) The treatment-row subdesign is variance balanced,
(iii) The treatment-column subdesign is variance balanced,
(iv) The design is equireplicated.

Proof: Follows from the characterizations in (4.1.1) and (4.1.5). a

EXAMPLE 4.1.2: The inter:sting equireplicated variance-balanced row-column design (cf.
Table A.1.9)

(4.1.8)

- N AW W N
0 =N O N W oo
N O = W N 00
& W o0 = N
O = W A~
A N o oo O W

given by Kshirsagar (1957), has both its subdesigns unbalanced. According to Baksalary,
Shah and Siatkowski (1990) it is the only such design that has so far appeared in the
literature. The eigenvalues of S, are 0, 7/2 repeated 4 times, and 4 repeated 4 times, those
of S3; are 0, 4 repeated 4 times, and 7/2 repeated 4 times. However, the 8 nonzero

eigenvalues of S35 are all 7/2.
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For an equireplicated row-column design to be variance-balanced it is necessary that
the off-diagonal elements of N3 N;3 + cN3;Ny3 all be equal and that the diagonal elements
all be equal (cf. Nigam, 1987).

Baksalary, Shah and Siatkowski (1990) point out that certain special cases of the
results given in our Theorems 4.1.2 and 4.1.4 hold for designs with equal row sizes and

equal column sizes satisfying the extended decomposability property (2.3.4), i.e.,
S3.12= D5 — UNy N3 — 1Ny Nos + pksks, vy, 03, 0> 0.

But as was pointed out in Section 2.3, since the row and column sizes are all equal, this is
only a special case of designs satisfying our generalized decomposability property (2.3.1),

i.e.,

S112 = &183) + 2832 - &S3.0, &1, E2and &> 0.

SECTION 4.2: GENERAL BALANCE

Commutativity of the efficiency matrices, cf. (3.3.10), is an important property for a design
to possess since it is a necessary and sufficient condition for A3;, A3 2 and A3 to admit a
common spectral decomposition. The commutativity property was first introduced under
the name of “general balance” by Nelder (1965a, b) in the context of equireplicated mixed
linear models. It was further developed by Nelder (1968), Houtman and Speed (1983) and
Payne and Tobias (1990) and is nicely summarized by Speed (1983).

In a mixed linear model setting, we have a vector of observations y for which the ex-
pected value is £(y) = Xt and the dispersion matrix is D(y) = V(0), where 8 = (6, ...,
65)', with s < n, i.e., the dispersion matrix depends on s unknown parameters. Before
considering general balance, we first consider the blocking structure of the design, i.e., the

part which does not depend on the application of treatments.
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Definition 4.2.1: The n x n dispersion matrix V is said to have orthogonal block structure if
it can be written as

S
V=36V,
i=1
a linear combination of s distinct, known, idempotent, symmetric, pairwise orthogonal

matrices V; of rank r;, which sum to the identity matrix I,

We note that the 6;’s are eigenvalues of V with multiplicities r; and associated
eigenvector sets that span the columns of V;. The range or column space T(V,) is said to be
the ith stratum with V; being the orthogonal projection onto this stratum. The projections of
the observations into these different strata are uncorrelated and each has a single unknown
variance parameter. In each stratum, an estimator T of T can be found which is the
generalized least squares estimator.

We may now define general balance as follows.

Definition 4.2.2: A design with orthogonal block structure is said to have general balance
whenever the matrices HV,H, ..., HV H commute.

Designs with orthogonal block structure are, therefore, those for which the matrices
HV,H, ..., HVH are spanned by a common set of eigenvectors. In more practical terms,
if the n x v design matrix X has full column rank v < n then the design has general balance
if the columns of X are linear transformations of a subset of v eigenvectors of V. In other
words, X can be transformed by a nonsingular matrix T to an orthonormal matrix X* =
XT with the property that X*'V X* = A;, a diagonal matrix, forall i =1, ..., 5. We can
see that since (X'X)'X'V,XT = (X'X)'X'X*A, = TA,, the columns of T are the
eigenvectors of (X'X)'X'V,X and the components of the diagonal matrix A, are the
eigenvalues of (X'X)'X'V;X or equivalently of HV;H. When we have general balance,
estimation of the treatment parameters T and the *ariance components 6, is simple and

direct.
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{ SECTION 4.3: GENERAL BALANCE IN ROW-COLUMN DESIGNS

In the context of row-column designs, the appropriate mixed model may be expressed as

y=X|a+X2b+th+u,

where the components a;, bj, ujjx of a, b and u are uncorrelated random variables with zero
means and, respectively, variances Var(a;) = 0;2,, Var(b)) = oi and Var(uji) = o”. The dis-
persion matrices are D(a) = Gzl, D(b) = oil and D(u) = O°L. The treatment parameters Tx

in T are (unknown) constant parameters and so

Var(y;) = o+ af,+ oﬁ, ,

r 2 PR .y

o, i=1i" j#j
Covyjyip) =9 o, Pt o=
\ 0 izi" j#j

This gives the following expected value and dispersion matrix for the observations,
E(y) = Xs1
and
V=9(@) = X,X}oz+ X2X50§,+ o1,

=cdJc 1) +rd 1. ®)) + L.

3
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The spectral form of this dispersion matrix can then be written as

76

X,X! X, X, X, X! X,X,
V=J,,0(2,+( 161_',")0%_*(_2_;_2__']")0%4_(]"_ lcl_ 2r2+‘l")0§

= Ju05+ (H, - 1) 0} + (Hy - J )05+ (I, - Hy —Hz + J )0}
=Jn0h+(Cr®J) + (J,@ C) b+ (C.® CpE

AR ARTARTAL

say, where 0 = 0} + G- & =cO.+rd, + 0, 0% = 0', O, = cO,+ O and G5 =ra, + 0.

The dispersion matrix V has orthogonal block structure since Vy, V,, V; and V; are idem-

potent, symmetric, pairwise orthogonal matrices which sum to I. In a row-column design,

we call the four strata: the mean stratum, the row-stratum, the column-stratum and the row-

by-column stratum. We note that X3V, X,, i =0, 1, 2, 3, is the information matrix in the ith

stratum and we therefore have S; ;, =X3V,X; =85 1+ 83, 83,,5;,=XjV, X5 and S,

=X3V,X; (cf. Section 2.2).

Since for row-column designs HyVoH;V;H3 = 0 holds for all i = 1, 2, 3, the condi-

tion of general balance is satisfied if and only if

H;HH3H,H, = H;H,H;H, Hj,
or equivalently, using the result in (A.3.4),

N31N13D51N32N23 = N32N23051N31N13-
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If the design is equireplicated and has general balance, then the matrices X3V (X,
X3V,X,, X3V,X, and X,;V;X; can be simultaneously diagonalized and so the strata in-
formation matrices can also be simultaneously diagonalized. This is the form introduced by
Nelder (19654, b). Speed (1983) claims that “all row-column designs ever used in practice
(involving random effects) satisfy the property of general balance”; designs that do not sat-

isfy this condition do, however, exist.

EXAMPLE 4.3.1: The equireplicated row-column design (cf. Table A.1.10)

2 1 1 1
1 3 3 2
2 2 4 3
4 4 4 3

is a row-coimn design which does not satisfy the property of general balance, cf. Speed
(1983). We can easily show that general balance does not hold by noting that the commuta-

tor

0 6 0 -6
-6 0 2 4

N3 NN Ny = Ny NNy Ny = 0 -2 0 2 *0.
6 4 2 0

If the condition of general balance is satisfied, the efficiency matrices Aj ,, A3 ¢, A3,
A3z, A3 and A ; are all spanned by the same set of eigenvectors, i.e., there exists an
orthogonal matrix U such that U'AgU, g =3.r, 3.¢, 3.1, 3.2, 3.0, 3.12, are diagonal ma-
trices. We then find that th: s*4 canonical efficiency factor df ' of the row-column design

which corresponds to the eigenvector u is given by
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(3.2)

612) LGN
QS = S + ¢S 1
=1-¢0"- 929, @.3.1)

where ¢§3 M= ch (A3 ,) and ¢§3‘C) =ch S(Ag_c). From the first equation in (4.3.1) we observe
that a row-column design with row-treatment and column-treatment subdesigns having high
canonical efficiency factors must itself be highly efficient. Also, since ¢" "y ¢ N+ 0\ 0
= }, any canonical contrast D,'mu'tis estimable in at least one stratum, cf. Shah and Ec-

s
cleston (1986).

SECTION 4.4: COMMUTATIVITY

When the specific case of row-column designs 1s replaced by the more general one of three-
way designs, the term general balance might not be applicable since three-way designs do
not necessarily have an orthogonal block structure. However, commutativity of the effi-
ciency matrices is still an important property for a design to possess. In the context of fixed
effect two-way elimination of heterogeneity designs, Baksalary and Shah (1990) simply
call this the “commutativity property”. The terms general balance and commutativity prop-
erty have both been used when row-column designs are considered as fixed-effect models
[cf. Shah and Eccleston (1986), Eccleston and McGilchrist (1985) and Lewis and Dean
(1990)].

Our Theorem 4.4.1 gives nine conditions, each of which is sufficient for a design to

satisfy the commutativity property.
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Theorem 4.4.1: Any one of the following nine conditions is sufficient for a two-way

elimination of heterogeneity design to fulfill the commutativity property:

@ n2=0 and m3 =0,
®) 12=0 and 4;=0,

© n2=0 and 1n;=0,

(d) mi23=0and m3; =0,
() my23=0and my3 =0,
(® 13=0 and myy =0,
(g ta3=0 and m32=0,
(h) 63=0 and m32=0,
@) ta=0 and my3 =0.

Proof: The sufficiency of each of the above conditions may be established using the result
that weak pairwise orthogonality, i.e., &, =0 for any i, j= 1, 2, 3; i # j, is equivalent to the
commutativity of the orthogonal projectors H; and Hj, cf. Theorem 3.2.3, and/or the result
that strict adjusted orthogonality, i.e., mj k=0 fori, j, k=1,2,3;i#j,i#k,j=k, is
equivalent to the equality HH;H; = H;H;, cf. (3.4.4).

We prove only the sufficiency of condition (a): The commutativity property can be

expressed as

H3H1H3H2H3 = H3H2H3H|H3 N (441)

since my 93 = 0 is equivalent to HiH3H; = H,H, the left hand side of (4.4.1) simplifies to
H3“|H2H3, which equals H;HH,H; when ¢, 2 = 0, since then H H, = H,H,.
Replacing H,H, = H,H;H, yields the right hand side of (4.4.1). a
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Baksalary and Shah (1990) point out that strict adjusted orthogonality implies
commutativity for all treatment-connected two-way elimination of heterogeneity designs
such that r(N)2) = 1. Siatkowski (1990) strengthens this result by allowing the design to be
disconnected for treatments. Our result with condition (a) in Theorem 4.4.1 is stronger than
both these results since the assumption that r(Ny;) = 1 is replaced by the weaker condition

L, =0.

EXAMPLE 4 .4.1: The design

1 2 * *

] * *
* X 4
* % 4 3

was considered by Eccleston and Russell (1975). Here, cf. Table A.1.11, £;; = 0 and

mya3 = 0 but r(N3) = 2. This design roes satisfy the commutativity property, 1.e.,
A3 1A32 = A3aAg,.

It was pointed out by Shah (1977) and Sia (1977) that equireplicate row-column
designs satisfying strict adjusted orthogonality form a subclass of designs satisfying the
commutativity property. The complementary subclass of designs satisfying the
commutativity property and not the strict adjusted orthogonality property is, however, not

empty.

EXAMPLE 4.4.2: The design

112
233

considered by Eccleston and Russell (1977) belongs to this complementary subclass of

designs, i.e., it satisfies the commutativity property but m, ;3 = 1 (cf. Table A.1.7).
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Shah and Eccleston (1986) observe that unequireplicate row-column designs satisfy-
ing strict adjusted orthogonality (m; 23 = 0) also form a subclass of designs satisfying the
commutativity property. This can be shown by recalling that if m, 53 = 0, then N, D;'N,,
= eNelc?, cf. (3.3.17). Pre- and post-multiplying by N,, and N,, respectively, we obtain
N4 N,3D;'N;,N, = k,k, which is symmetric. For row-column designs, Shah and
Eccleston (1986) present a result similar to that given by Shah (1977) for equireplicate row-
column designs only. It gives a characterization for designs which satisfy strict adjusted
orthogonality in the set of designs s~tisfying the commutativity property. Although Shah
and Eccleston (1990) present their result without the commutativity property being
satisfied, we believe the result only holds if this property is present. This result uses the

matrices defined in (2.2.11).
Theorem 4.4.2 (Shah and Eccleston, 1986): A row-column design satisfying the
commutativity property also satisfies strict adjusted orthogonality if and only if for s = 1,
eaVv=1,
¢ "= 0
s s ’
Proof: If the design satisfies strict adjusted orthogonality, then

Ny N3 D5'N3, Ny = sk, (4.4.2)

and so A3 A3 = 0. If we let ug be the eigenvector corresponding to both the eigenvalues

¢§3 " and ¢;3 9 then we can write

v-1
3.n,03
AsrAsc= 3.05°76] Suu,
=

and it follows that ¢*¢>9 =0 for s =1,...,v - 1.
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Conversely, if ¢;3.n¢§3.c) =0fors=1,...,v -1, then N:"N”D;‘stw23 = K,k /rc
and so r(N,,N,,D;'N,,N,,) = 1. We then have that

r(stngle1N13D;1N32N23051N31N13[’;le2)
= r(N23D;‘N31N”D;'N32) = r(NwD;lez) =1,

and so the expression N”D;'N32 must take the form pq' = {p,qj]. We can postmultiply
[

NwD;'N32 by e(" and obtain ce(" = pj?lq]. We thus find that p is proportional to the

vector e("). In a similar way, we can show that q is proportional to e©)and so N,D;'N, is

proportional to e(Ne(¢)', However, since N,,D;‘Nne“‘): ce" it follows that
N =
N3 Dy Ny, = e(ne)!
and so the design satisfies strict adjusted orthogonality. 0

In our next theorem, we extend a result given by Baksalary and Shah (1990) for de-
signs satisfying the reduced decomposatility property, i.e., S312=S3.1 + S32— S3,0, t0
designs satisfying our less restrictive generalized decomposability property, i.e., S3 2 =

€1S3.1 + £83.2 — £0S3.0, &1, E2and §o> 0.

Theorem 4.4.3:If a treatment-connected (u3 3 = 1) two-way elimination of
heterogeneity design satisfying the generalized decomposability property, i.e., Sy =
&183.1 + &S3.2 — €0S3.0, &1, E2and &> 0, is efficiency balanced or if its treatment-row or
treatment-column subdesign is efficiency-balanced, then the commutativity property holds.

Proof: We first suppose that the treatment-row subdesign is efficiency-balanced. Then we

can write

Az =0A;,
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and, postmultiplying by Aj;, yields
A3 A32=0A;0A32=0A;;,
which is symmetric and so the commutativity property holds. The proof for the column-
treatment subdesign is similar.
When the row-column design itself is efficiency-balanced, then we have

A3z = DAy,

which is equivalent to

Aj; =(§° * ﬂ)AE':_ LR . (4.4.3)

Therefore, if we now premultiply (4.4.3) by A;,, we obtain

(b + O)A11A30— 1AL, (Bo+ DA -8HA S,
A3 A3, = 5 = 5 ,

which is symmetric and so the commutativity property holds. O

Another relationship between efficiency balance and the commutativity property is

given in the following lemma.

Lemma 4.4.4. A treatment-connected two-way elimination of heterogeneity design,

which satisfies 8312 = £S3.1 + £,832 — €083 for some &y, & and &> 0, is efficiency

(32)

s IS the

balanced if and only if it satisfies the commutativity property and §l¢§3 Dy &9

G h h

oy h=12, are

same for alls = 1, ..., v— 1, where the nonzero eigenvalues ¢° P, ..., ¢

ordered correspondingly to a fixed set of common eigenvectors of As and Az ;.
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Proof: If Ay =0A;3 for some 9, then S5 = §,Sg_l + §2Sg.2 - 5083.0 implics that

E1As) + LA = (§o+ B)Asp
and so A3 A3, = A32A4,. This in tum implies that

§|¢.§3'1) +¢, ;3.2)=§0+ O fors=1,..v-1

. 3.1 32) .
Conversely, if A;;A; 3 = A3;A5, and §lé 4 £ T equal to a constant c, say, then

y
S13.12 = &183.1 + £83.2 — €083, implies that

(3.12) _

s & fv“) + €2¢§3-2) -§=c-§

and so S5, is a scalar multiple of Ss . m

EXAMPLE 4.4.3: We apply Lemma 4.4.4 to the design

The lemma’s conditions are satisfied, i.e., 4312 = 1, and we can write S313 =83, + 832 -

(4/5)S; 0. Also, the commutativity property holds and from Table A.1.12 we see that d)? K

(3.2)

+ ¢; ' = 4/5. This implies that the design is efficiency balanced and s0 8312 = (5/4)S; 9.
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Our Lemma 4.4.4 above is a slight modification of Theorem 4.2 in Baksalary and
Shah (1990) and the Lemma on page 7 in Baksalary and Siatkowski (1990). In their
Theorem 4.2, Baksalary and Shah (1990) assume the decomposability property only, and
in the Lemma on page 7, Baksalary and Siatkowski (1990) assume equal row and column
sizes with the information matrix satisfying 8312 = D, - N, N, - t,N, N, + p kak;,
U, U, p>0.

A number of results for bounds on the average efficiency factor can be obtained for
treatment-connected designs satisfying the commutativity property. In particular, for two-
way elimination of heterogeneity designs of that type, stronger bounds than those in
(3.5.13) can be obtained for the average efficiency factor. A first bound was given by Ec-
cleston and McGilchrist (1985) for equireplicate row-column designs satisfying the

commutativity property,
B2 B3y + 3y — 1. (4.4.4)

Shah and Eccleston (1986) showed that (4.4.4) also holds for unequireplicated row-column
designs; Baksalary and Shah (1990) extended this result to designs satisfying the reduced
decomposability property, i.e., S312 = S3,; + S3.2 — 830, while Baksalary and Siatkowski
(1990) showed that (4.4.4) holds for designs with equal row sizes and equal column sizes
and such that S5 1, = Dy — YyN3;Nj3 — U;N33Nys + p kgk;, Uj, Uz, p > 0. Here we prove

yet another extension following the proof of Theorem 4.2 in Baksalary and Shah (1990).

Theorem 4.4.5. If a treatment-connected two-way elimination of heterogeneity design
satisfies the commutativity property and Ss 3= &1S3.1 + £,83.2 — &8S3.0 for some &, &
and 0> 0, &2 & and &2 & or &< & and &< &, then the average efficiency factor of
the design and of the two subdesigns satisfy the inequality

E3h, 2 (41E3.1)7" + (&:E32)™ - 1/&, (4.4.5)
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with equality if and only if
(§0A3.0 — £1A3.1)(E0As0 - §2A32) = 0 (4.4.6)
or equivalently
N3, Di'N, 3 D3Ny, DNy = ~[(§1 = §0)(&2 — Eo/E1&alDy + [1 - (§0/82)IN, D {'N
+[1 = (Go/&)IN,, D3N, + (b &)k K., (4.4.7)
Proof: Becuuse of the commutativity property and connectedness, there exists av x (v— 1)

matrix U such that U'U =1, A3 =UU"' and A3, = UARU', h = |, 2, where Ay =
diag@® ®, ..., 2Py with ¢*P € (0,11, h=1,2and s = 1, ..., v - 1. Therefore
1 1 1 1

TN T AT S

&8 + £0°7 (8 - £6° - £,057)
TGl 5007 - 8608 Vel Ve,

20

foralls =1, ...,v— 1, because of the restrictions on the &’s. This implies that

v—1 v—1

1 1 i
tr(A},) = ‘ > + .
Ay, s§1 §1¢;3J)+ §2¢(:'2) s sgl [ §1¢§31) §2¢.(;3 2) &

= [tr(A] /&1 + (AT )/E) - [V — 1)/&ol,

which is equivalent to (4.4.5). Equality holds if and only if (¢, — &,6° )(&, — £,6- ) = 0

)

foralls =1, ..., v— 1, which is equivalent to (4.4.6). m)
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If o= & = &= 1, i.e,, the design satisfies the reduced decomposability property,
then the result in our Theorem 4.4.5 reduces to that of Baksalary and Shah (1990), with
(4.4.5) becoming

E3122 B3+ E3p—1; (4.4.8)
from (4.4.7) we see that equality holds in (4.4.8) if and only if
NsnnlemD;anD;lst = (1/”)1‘3";

or equivalently if and only if r(N;;D5'N,,) =1 or N, D;'N,, = (1/m)k k.

Now if the two-way elimination of heterogeneity design is ordinary (equal row sizes

k; and equal column sizes k), and satisfies the conditions of Theorem 4.4.5 (ignoring the

restrictions on the £'s), then as pointed out in Section 2.3, we can write
8,12 = Dy — (€ /k )Ny N s = (§/k )N, N + (£ /mK Kk,
or equivalently
S3.12 ~ 830= £1(S3.1 - S3.0) + £2(S3.2 — S30).
With this we obtain, cf. Baksalary and Siatkowski (1990),
Ey, S[8(Eqy - 1) + &(E5p—1) + 1]
with equality if and only if

(61— l)kﬁNstwD;leles + [§7/klk2]N31N13D;lN32N23 = (§/mk K,
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and
[€ukikaINy Ny D3Ny, Ny + [(8 - DGING Ny DTN N, s = (Eo/mk K.

If, furthermore, the two-way elimination of heterogeneity design has efficiency

balance, then a lower bound can also be found for the average efficiency factor.

Theorem 4.4.6. If a two-way elimination of heterogeneity design is connected for treat-
ments, satisfies 8313 = £,S3,1 + §:83.2 — &83.0 for some &, & and & > 0, and is

efficiency balanced, i.e., 8312 = 983 for some O, then

E1E3 1 + &iErg — &S Eapa S [(G1E31) " + (&E32)™ - (/€)1 (4.4.9)

where for the inequality on the right &2 & and &2 & or & < & and &y < &,. Equality
holds on the left if and only if both the treatment-row and treatment-column subdesigns are
efficiency balanced and equality on the right if and only if either £,S;, = £;S32 = &S3.0 or

the nonzero eigenvalues of As.y and A, 3 corresponding to the same eigenvector satisfy
0OV =081, 00 = o/ or D = bolb, 0P =0k s =1, ..., v— 1. (4.4.10)

Proof: If A3 12 = OA;p, then from Lemma 4.4.4,

(3.2)

Kb tors forsslvol @al

and so, applying the Minkowski inequality (cf. Theorem A.3.6 with p = 1), this implies
that

-1 -1

v-1 1 v-1 &+ 0

)) an | *| X an | Sy -1°
[ s=1 §, ) s=1 §2 2 v
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Then from the definition of the average efficiency factor and A; j; = A3, we have
E1E3y + &Esp < &+ Eaa, (4.4.12)

which is the inequality on the left of (4.4.9). Equality holds in (4.4.12) if and only if there

exist ¢; and ¢; not both zero such that

(31)
&c,0

+e, 6,000 =0, 5=1, ..., v-1.

Combining this with (4.4.11) shows that equality holds if and only if both designs have
efficiency balance.
The inequality on the right of (4.4.9) follows from Lemma 4.4.4 and Theorem 4.4.5.

As was shown in Theorem 4.4.5, a necessary and sufficient condition for equality to hold

is that
(&oAs.0 — §1A31)(E0As.0 — £A32) = 0.
We can transform this using §1As.1 + &A32 = (& + 9)A3 0 to yield
EhAS 1~ EhBo+ DAsh+ EoDAs =0, h=1,2,
which is equivalent to (4.4.10). a

Our Theorem 4.4.6 is an extension of Theorem 5.2 in Baksalary and Shah (1990)

where the reduced decomposability property is assumed; the result then simplifies to

E3y + E32~1<Es3)3S[(Eag)! + (Esp)? -117,
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with equality on the left, again, if and only if both treatment-row and treatment-column
subdesigns have efficiency balance and equality on the right if and only if either S3; = S35
= 83 ¢ or the non-zero eigenvalues of A3 and Aj; corresponding to the same eigenvector

satisfy

o0 =0and ¢®? =1 or ¢’V =1and ™ =0, s=1,..,v-1.

Baksalary and Siatkowski (1990) also give a result similar to that in our Theorem 4.4.6 for
designs with equal row sizes and equal column sizes and which satisfy the extended

decomposability property, ie., S, , =D, — /N, N ., — t,N, N, . + pkK;, v, ¥z, p > 0.
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APPENDIX 1, mutzE-TABLES

This appendix contains 11 tables, which we call murzE-tables, one associated with every
three-way layout example presented in this thesis. In the heading for each table, we give the
three-way layout to be analyzed, its source in the literature and to which example(s) in the
thesis it corresponds. We then give a summary of certain properties: commutativity,
generalized decomposability, reduced decomposability and extended decomposability. In
each table we present for each of the fifteen different kinds of canonical correlations the
aumbers m, u and ¢, respectively, of noazero, unit and nonunit nonzero canonical
correlations, as well as the associated numbers z and E related to the corresponding
canonical efficiency factors; also included arc the fifteen different kinds of canonical

efficiency factors ¢, and the degree of disconnectedness u, 23, ct. (3.3.6).

Table Example(s) Source

A.l1 23.1, 332 Agrawal (1966c)

A.1.2 23.2 —

A.l3 3.2.1 Baksalary (1990)

Al4 33.1 Shah and Khatri (1973)
A.l5 33.2 Worsley (1990)

A.1.6 33.3 —

A.1.7 3.5.1, 44.2 Eccleston and Russell (1977)
Al8 4.1.1 —

A.1.9 4.1.2 Kshirsagar (1957)

A.1.10 4.3.1 Speed (1983)

A l.11 44.1 Eccleston and Russell (1975)
A.l.12 44.3 —
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Table A.1.1 (Examples 2.3.1 and 3.3.2).
Source: Agrawal (1966c¢).

N W #h %

L - R I )
LIRS IR R W B 7}
- X 2 LNO\ #
* Ok ERAD XN
LR JEN BRI 3
*= N *Hh xR

4
Commutativity: yes. Decomposability—General yes; Extended yes; Reduced no.
S3.12 = &S50 + &832 — &83.0, &1, &2and & > O, such that & = 3/7 — & + (9/N)&o.
= D3 - U1N31N13 - va32N23 + (2/21) k3k:;, Y and U > 0, such that U +U= 1.

m u t (1} z z' E E’
1.2 7 1 6 {g, g, g, g, :?73’ g} 0 0 0.777778 0.777778
1.3 7 1 6 {g, g, g, g, g, -g} 0 0 0.777778 0.777778
2.3 7 1 6 {g—, -g, -;, g, g, :;-} 0 0 0.777778 0.777778
N oo
2.13 7 1 6 {%, :}3, :-13, %, %, %} 0 7 0.333333 0.52
3.12 7 1 6 {%, -lé, %, -]:;, :%, %} 0 7 0.333333 0.52
S 1 e
2;1|3 6 0 6 {g, g, g, g, g, g} 1 1 0.59322 0.59322
1;3]12 6 0 6 {g, g, g, g, g, g} 1 1 0.59322 0.59322
3:112 6 0 6 {g, g, -g, -g, g, g} 1 1 0.59322 0.59322
2:3|1 6 0 6 {g, -g, g, g, g, g} 1 1 0.59322 0.59322
3:2]1 6 0 6 {g, g, g, g, g, -g} 1 1 0.59322 0.59322
e s o e GLTIIE T S o
1.3]2 6 0 6 {g, %’ 31‘, 5;, -:72, g} 1 1 0.466667 0.466667
2.3|1 6 0 6 {g, ::]3, g, -3, g, -3} 1 1 0.466667 0.466667
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Table A.1.2 (Example 2.3.2).

Commutativity: yes.

mutzE-TABLES
2 3
1 2
* 1

Decomposability—General yes; Extended no; Reduced no.

83'12 = §1S“ + ;283.2 - (7/30)830, for any pOSitiVC §1, tz such that §'1 + &2 = 6/5.

m u t ¢ E E
1.2 3 1 2 {%, g%} - .846774 .846774
1.3 3 1 2 {%, -?;?6-} . 846774 .846774
2.3 3 1 2 {é, §§} . 846774 .846774
e e e
1.23 3 1 2 {%, %g} . 777778 .897436
2.13 3 1 2 {:%, -}95-} .777778 .897436
3.12 3 1 2 {g, %%} .777718 .897436
vas 2 o 2 G M) 1 1 o.ossoe 0.958047
2;1|13 2 0 2 ]}-gg, %% } . 958047 .958047
1;312 2 0 2 %gg, -}% } . 958047 . 958047
3:;1)2 2 0 2 {%gg, %% } . 958047 .958047
2:311 2 0 2 {%%g, %% } . 958047 .958047
3:211 2 0 2 {%gg, Ji% } . 958047 .958047
L2320 2 (L %) 1 1 o.owmss  0.97368
1.312 2 0 2 {gg, -g } . 947368 .947368
2.3]1 2 0 2 {gg, g} . 947368 .947368
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Table A.1.3 (Example 3.2.1).
Source: Baksalary (1990).

1 2 3
1 * *
« 9 *
* % 3

Commutativity: yes. Decomposability—General yes; Extended yes; Reduced no.

Sia2 = &85 + 832 — §0S3.0, &1, §2and & > 0, &1=2&,.
= Dj - YN3;N;3 — UN3,N,; + pksks, vy, v and p>0, vy =4p, v, = 1/2-p,

m u t ¢ z 4 E E’
1.2 3 1 2 {%, %} 1 0 0.6 0.5
1.3 3 1 2 {%, %} 1 0 0.6 0.5
2.3 3 3 0 {} 0 0 - -
1.23 3 1 2 {%, %} 1 3 0.6 0.714286
2,13 3 3 0 {} 0 4 - 1
3.12 3 3 0 {} 0 4 - 1
;213 0 o o (y T4 T3 T
2:1]3 0 0 0 {} 3 4 1. 1,
1;3)2 0 0 0 {1} 4 3 1. 1.
3:;1]2 0 0 0 {1} 3 4 1. 1.
2;3]1 2 0 2 {%, %} 1 1 0.6 0.6
3;2]1 2 0 2 {}, }} 1 1 0.6 0.6
2" 2
1.213 0 o o  (y a3 TUTTAUTUTTTTOLUT
1.3)2 0 0 {} 4 3 1
2.3|1 2 {1} 1 1 1
1.2.3 4

94
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Table A.1.4 (Example 3.3.1).
Source: Khatri and Shah (1986).

00 W e

2
4
6

- =~ WU

6

8

3
7 5§ 2 4

Commutativity: yes. Decomposability—General yes; Extended yes; Reduced yes.

S3.12 =831 + 832-83,.
= D3 — (1/4)Ny;N, 5 — (1/4)N3,Nps + (1/16) kK3,

moou ot ¢ : z E E
1.2 1 1 0 {} 3 3 1. 1.
1 1
1.3 3 1 2 {-2', -2'} 1 5 0.6 0.777778
1 1
2.3 3 1 2 {-2-, 'é) 1 5 0.6 0.777778
1.23 3 2 1 {% } 1 9 0.666667 0.909091
2.13 3 2 1 {% } 1 9 0.666667 0.909091
1 1
3.12 A 2 2 {5, 5} 4 4 0.75 0.75
_____________________________ ; e e e . e ————————— e
1;2|3 1 0 1 {5} 3 3 0.8 0.8
1
2;1|3 1 0 1 {E} 3 3 0.8 0.8
1
1;3|2 2 1 1 {E} 2 6 0.75 0.875
1 1
3:1|2 2 0 2 {-2-, 5} 6 2 0.8 0.666667
1
2;311 2 1 1 {5} 2 6 0.75 0.875
1 1
3:2|1 2 0 2 {-2-, 5} 6 2 0.8 0.666667
1.213 1 1 o T(y T 3 3 1. 1.
1.3]2 2 1 1 {%} 2 6 0.75 0.875
1
2.311 2 1 1 {5} 2 6 0.75 0.875
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Table A.1.5 (Example 3.3.2).

Source: Worsley (1990).

# # & - N
* XN W

* W S # *

muatzE-TABLES
* 5 3 *
* * * 4
* L 1 *
5 %« *x 2
4 1 o+ »

W # L * #*

[SSTEEE JEEE BV, B

Commutativity: yes. Decomposability—General yes; Extended yes; Reduced no.

S312 = &S50 + &S5 - £0S3.0. &1, E2and &> 0, & = —(2/3)&; + (16/15)&,.

= D3 - U1N31N,3 - U2N32N23 + pk:;k:;, Uy, Uy and P> O,
4v, = -1/2 + 6p,v, = 3/2 - 2p.

m u t (] z 7 E E
5 5 5 5 -
15 15 15 15
T2 T —~r T ‘\’- .
1.3 5 1 4 18’ 3¢ 1e’ 1g! 0 0 {y.9375 0.9375
5 5 5 5
=, =, =, = Y .

2.3 5 1 4 {8, 5 B 8} 5 0 0.189474 0.625
1.23 5 0 () 0 10 "~ Y
2.13 5 5 0 {} 5 5 1 1.
3.12 5 0 {} 10 - 1.

1 1 1 1 T T e
1:213 4 -, So, ==, - ) k .
I 0 4 1&" 18 1e 18! 1 6 0.0769231  0.142857
3 3 3 3
2:1|3 4 0 4 {é' §, §, g } 6 1 0.6 0.428571
3 3 3 3
1;3|12 4 0 4 3 5 5 5! 1 1 0.428571 0.428571
3 3 3 3
3;112 4 b= == . .
| 0 4 (5 & & 5} 1 1 0.428571 0.428571
3 3 3 3
2;3]1 4 =, -, = = . )
3] 0 4 3 5 3 5} 6 1 0.6 0.428571
1 1 1 1
211 4 =, o, -, = : :
3;2 0 4 T 1o e IE) 1 6 0.0769231  0.142857
1.213 4 4 o {y A Te iU
1.3]12 4 4 0 {1} 1 1. 1.
2.3]1 4 4 0 {} 1 1, 1.
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Table A.1.6 (Example 3.3.3).

- W
NN W
bt DN e

Commutativity: yes. Decomposability-—General yes; Extended yes; Reduced yes.

S312 = &1930 + £2832 - &Sa.0, &1, &2and &> 0, & = (1/2) - & + (32)é,.

=Dj - U]NMN” - UzN32N23 +(1/9) k3k;, U, Vzand p>0, yy = 2/3 - U,,

m u t ¢ z z' E E'
1.2 1 1 0 {1 2 2 1. 1.
2 2
1.3 2 1 2 {3 3) 0 0 0.666667 . 666667
2 2
2.3 3 1 2 3 3! 0 0 0.666667 . 666667
e e e e e
1.23 3 1 2 5 51 0 3 0.5 . 714286
11
2.13 3 1 2 5 5} 0 3 0.5 . 714286
11
3.12 3 1 2 3 3! 0 3 0.333333 .555556
Tt Ty Ty T T e ,
1;213 2 0 2 g 2} 1 1 0.882353 .882353
5 5
2;113 2 0 2 z 2} 1 1 0.882353 .882353
1 1
1:;312 2 0 2 (=, =} 1 1 0.6 0.6
2' 2
2 2
3;112 2 0 2 3 3! 1 1 0.75 0.75
11
2;3|1 2 0 2 {(z, =y 1 1 0.6 0.6
2' 2
2 2
3;211 2 0 2 5 3 1 1 0.75 0.75
T T TTTTTTRTTTTTTTTT T T 0818182 0.818182
1.213 2 0 2 {3—, 3—} 1 0.8
4’ 4
1 1
1.312 2 0 2 {=, =) 1 1 0.6 0.6
2' 2
1 1
2.3]11 2 0 2 (5 31 1 1 0.6 0.6
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Table A.1.7 (Examples 3.5.1 and 4.4.2).
Source: Eccleston and Russell (1977).

[ (R ] b
W
W N

Commutativity: yes. Decomposability—General yes; Extended yes; Reduced yes.

S3.12 =831+ &832 - &S3.0, &2and & > 0, &= —(1/3) + (4/3)&0.
= Dy~ (1/3)Ny;Ny3 — (1/2)N;;Ny3 + (1/6) K kS

m u : ¢ z 4 E E
1.2 1 1 0 {1} 1 2 1. 1.
1.3 2 1 1 {%} 0 1 0.333333 0.5
2.3 3 1 2 {g, %} 0 0 .75 0.75
1.23 2 1 1 {%} 0 4 0.111111 0.384615
1 3
2.13 3 1 2 {?i' n } 0 2 0.375 0.545455
3.12 3 1 2 {}- §} 0 2 0.15 0.26087
12' 4 )
1;2|13 1 0 1 {g} 1 2 0.875 0.913043
1
2:1|3 1l 0 1 {5} 2 1 0.75 0.666667
1;3|2 1 0 1 {é} 1 2 0.2 0.272727
1
3;112 1 0 1 {3} 2 1 0.6 0.5
1 3
2: 311 2 0 2 {Z' Z} 1 1 0.473684 0.473684
3 3
3:2|1 2 0 2 {Zl’ 1 } 1 1 0.818182 0.818182
S e s e oons e
1.2)3 1 0 1 {3} 1 2 0.5 0.6
1
1.3|2 1 0 1 {-9-} 1 2 0.2 0.272727
1 3
2 3]1 2 0 2 {:1' Z} 1 1 0.473684 0.473684
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Table A.1.8 (Example 4.1.1).

1 2 2 3 4
4 1 2 2 3
3 4 1 2 2
2 3 4 1 2
2 2 3 4 1

Commutativity: yes. Decomposability—General yes; Extended yes; Reduced yes.

S3.12 = &S0 + E832- 60830, &, E2and §,>0, & + & - & = 1.
= D3 - U|N3|N13 - U2N32N23 + (1/9) k3k3', 'U], Uz and p > 0, U; = 1/5 - v2 + Sp.

m u t ¢ z z’ E E
1.2 1 1 0 {} 4 4 1. 1.
1.3 1 1 0 {} 4 3 1 1
2.3 1 0 {} 4 3 1 1
1.23 11 o - {I—- - T 1.
2.13 1 1 0 {} 4 8 1 1
3.12 0 {} 9 1 1
1213 0 o o ¢ s s Tl
2;1|3 0 0 0 9] 5 5 1 1
1;312 0 0 0 {1 5 4 1 1
3:1)2 0 0 0 {} 4 5 1 1
2:311 0 0 0 {1 5 4 1 1
3:2]1 0 0 {} 4 5 1 1
1213 0 o o (s s T
1.312 0 0 0 {} 5 4 1 1
2,31 0] 0 0 {} 5 4 1 1
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Table A.1.9 (Example 4.1.2).
Source: Kshirsagar (1957).

Commutativity: yes. Decomposability—General yes; Extended yes; Reduced yes.

-~ A DWW
00 =~ O N W p

muizE-TABLES

8 7 6 3
7 2 4 9
3 1 7 8
1 8 3 5§
9 5§ 1 2
2 4 9 6

S312 = &S50 + &S32 — &S30, &1, E2and &> 0, & = 7/15 + (8/15) &,

= D3 — (1/6)N;,N 5 — (1/6)N1,Nys + (1/36) k k3.

& =7/15 + (8/15)&

100

m u t [} 2’ E E’
1.2 1 1 0 {} 5 1. 1.
7 7 7 7
1.3 5 1 4 3 3 5 5! 4 0.897436 .933333
7 7 7 7
- =, =, = .897 .
2.3 5 1 4 {5 5 3 & } 4 0.897436 933333
e T e e 2
1.23 5 1 4 {5, -é, g, § } 10 0.897436 .960784
7 07 17 7
2.13 5 1 4 (3 R } 10 0.897436 .960784
77 7 77 7 1 1
'1 - - -, - - - - - . .
3.12 9 1 8 5 3 3 8 8 3 & B } 3 0.875 905882
1;213 0 0 0 {} 6 1. 1.
2:113 0 0 0 {} 6 1. 1.
7 7 17 7
1;3]2 - =, =, = . .
3] 4 0 4 {e' 5 8 B } 5  0.913043 940299
7 7 7 1
;12 L A . ‘ ]
3;1| 4 0 4 3 5 & 5 } 2 0.940299 913043
7 7 7 7
2:3|1 =, =, =, = ) .
3] 4 0 4 (3" 5 3 5 } 5  0.913043 940299
7 7 7 7
3;2]11 4 -, =, =, = . .
| 0 4 3" 3 3 5 } 2 0.940299 913043
1.213 0 o0 o0 Yy TTTTTTTeéTTTe . Ty
7 7 17T 1
1.312 4 4 - =, =, =
I 0 {8, & 8 B } 5 0.913043 .940299
7 7 7 7
2.311 4 0 4 L]
i {a' 5 & 8 } 5 0.913043 .940299
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Table A.1.10 (Example 4.3.1).
Source: Speed (1983).

rmut2E-TABLES
2 1 1 1
1 3 3 2
2 2 4 3
4 4 4 3

Commutativity: no. Decomposability—General yes; Extended yes; Reduced yes.

S312 =831+ 833-83,.
= D3 - (1/4)N31Nl3 - (1/4)N32N23 + (1/16) kak;.

¢
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{1}

{0.345, %; 0.904}

13 13
YRR

- Rt v ——— T —_—— A . W = A ————— o " T — e - . Am e e - e s R e o o - — — e o=

{0.285, 0.716, 0.883}

{0.644, 0.789)}

{0.255, 0.637, 0.732}

{0.285, 0.716, 0.383}
{0.644, 0.789}

{0.285, 0.716, 0.823)

{0.345, é; 0.904}

{0.644, 0.789}

13 13
1g 18!

. 946

.569

.632

. 946

.569

{0.793, 0.971}

{0.285, 0.71¢, 0.883}

{0.644, 0.789}
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Table A.1.11 (Example 4.4.1).
Source: Eccleston and Russell (1975).

Commutativity: yes.

Decomposability—General no; Extended no; Reduced no.

mutzE-TABLES

E!

NNI\)S

O O O

NN NS

O O O

QO O O ™

NN NN

NN N

S

N =

102
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Table A.1.12 (Example 4.4.3).

2 * * * * 3

* * 1 * * * *

* * * b) * * * *

* * * 3 * » *

* * » » * 4 ¥ *
4 » ¥ * * 2

4 * * * * )

Commutativity: yes. Decomposability—General yes; Extended yes; Reduced no.

Sz = &850+ ES32 - &S30, &1, E2and §>0,& =1 - &+ (5/4)&
=Dy — U)N; N3 = N5 Ny + (3/25) kik3, vy and 1, > 0, vy = 1- v,

m u t ¢ F z' E E
1.2 5 5 0 {} 3 3 1. 1.
4 4 4
1.3 4 1 3 {g, g, 3} 4 0 0.903226 0.8
4 4 4
2.3 4 1 3 {3, 3, g} 4 0 0.903226 0.8
1.23 s 5 0 {1 3 7 1 1
2.13 5 5 0 {} 3 7 1 1
4 4 4
. - =, = . 0.952381
3.12 4 1 3 {5 5 5} 0 12 0.8 95238
1 1 1
1:2|3 4 1 3 {g, 3, g} 4 4 0.368421 0.368421
1 1 1
2:1]3 4 1 3 {g, g, g} 4 4 0.368421 0.368421
1;3)2 0 0 0 {1} 8 4 1 1.
3:112 0 0 0 {} 4 8 1 1
2:3]1 0 0 0 {} 8 4 1 1.
3:2]1 0 0 0 {1} 4 8 1 1.
1.213 4 4 o Ty 7T TTaTTTa 1 1
1.312 0 0 0 {} 8 4 1 1
2.3]1 0 0o 0 {} 8 4 1 1
1.2.3 6
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APPENDIX 2. COMPUTER PROGRAMS

This appendix contains two computer programs written in Mathematica 1.2 [cf.
Wolfram (1988)]. With the first program we calculate the mutzE-tables proper (cf.
Appendix 1), while with the second we verify if a particular design satisfies the
commutativity property and the various decomposability properties. In each program, the
input consists of an array symbolizing the design under investigation. The output from the
first program consists of a table displaying the numbers m, u, ¢, z, z°, E, E' and the
canonical efficiency factors ¢s. The output from the second program contains the
commutator matrix H,H,HsH,H; — H3H,H;HH; and solutions (if they exist) to the
generalized and extended decomposability equations. The two programs are available on

diskette and may be obtained from the author upon request.

(* PROGRAM 1 %)

(* this program calculates a design's mutzE-table *)

(‘***‘#“t.#.#‘t‘.“.‘.‘.*.t..‘t‘.#####*###‘*#**#*#**#**)

<<matrixmut.m
TableForm[m]
QutputForm[TableForm[m]]>>mutzetable.m

{r,c}=Dimensions[m];
n=0;t=0;

(* get number n of plots and number t of treatments *)

Block[ {1,j},Do[Iflm[[ij])!=0,n=n+1];
IfIm[[i,j]]1>t,t=m[[i,j]1], (ir).(jc) ]}

count=0;

x1=Table[0, (n},{r}};x2=Table[0,{n},{c}};
x3=Table[0,{n},{t}]:

in=Table[1,(n},(n}];
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APPENDIX 2 COMPUTER PROGRAMS
(* design matrices for rows and columns *)

Block[{i,j},Do[lf[m[[i,j}]!=0,
count=count+1;
x1{[count,i]]=1;
x2{[count,j]}=1],

(.c).{ir}ll

(* design matrix for treatments *)

count=0;

Block[ {i,j,k},Do[MfIm{[1j]]==4,
count=count r1;
x3[[count k]]=1],

{i.c} {ir), (k)]
d[m_J:=length[m[[1]]]
rank[m_]:=d[m]-Length{NullSpace[m]}]

(* hat matrices for x1, x2 and x3 *)
hl=xl.Inverse{Transpose[x1].x1].Transpose(x1}

h2=x2.Inverse{Transpose[x2].x2].Transpose{x2)
h3=x3.Inverse{Transpose[x3].x3]. Transpose[x3];

(* singular value decomposition of the design matrices *)

{ul,s1,v1}=SingularValues{N[x1]]
{u2,54,v2)=SingularValues{N[x2]]
{u3,53,v3)=SingularValues[N[x3]];
ulh=Transpose[ul]
u2h=Transpose(u2]
u3h=Transpose[u3];

(* canonical efficiency factors for matrices Sar and S3.c %)

d3=Transpose([x3).x3;

s3r=Sqrt[Inverse[d3]]. Transpose[x3).(h1-jn).x3.
Sqrt[Inverse(d3]];

s3c=Sqrt{Inverse[d3]]. Transpose[x3].(h2-jn).x3.
Sqri[Inverse{d3]];

philr=Eigenvalues[s3r]//N

phi3c=Eigenvalues[s3c]/N

(* positive canonical correlations of type 1 *)
s12=Son[SingularValues[N[Transpose[ulh].u2h]][[2]]]

s13=Sort[SingularValues[N[Transpose[u1h].u3h]][[2]]]
s23=Sort[SingularValues[N[Transpose[u2h].u3h]][[2]]]

(* function which augments a matrix x by a matrix y *)

augment{x_.y_J:=Transpose[Join[Transpose{x],Transpose[yl]]
(* m, u, t and z values of type 1 *)

m12=rank[Transpose[x1].x2]
m13=rank[Transpose[x1].x3]
m23=rank[Transpose[x2].x3];
ul2=rank[x1]+rank[x2]-rank{augment[x1,x2]]
ul3=rank[x1]+rank[43]-rank[augment[x1,x3]]
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u23=rank[x2]+rank[x3]-rank[augment[x2,x3]];
t12=m12-ul2

t13=m13-ul3

123=m23-u23;

z12=d[x1}-m12

221=d[x2]-m12

213=d[x1]-m13

231=d[x3}-m13

223=d[x2}-m23

232=d[x3]-m23;

(* canonical efficiencies of type 1 *)

phil2=Chop{Rationalize[Sort[1-s1242]]]
phi13=Chop[Rationalize[Sort[1-s1342]]]
phi23=Chop[Rationalize[Sort[1-s23/2]]]
phil2=Take[phi12,{ul2+1,m12}]
phil3=Take[phi13,{ul3+1,m13}]
phi23=Take[phi23,{u23+1,m23}]

(* average canonical efficiencies of type 1 *)

Block({{i} JfTul2!=d{x1],
e12=(d[x1]-ul2)/(z12+Sum[1/phi12[[il},{i,1,112} 1),
elz="-"];

Iful2!=d[x2],
e21=(d[x2]-ul2)/(z21+Sum[1/phi12[[i]],{i,1,t12}]),
c21=n_"]]//N

Block[ (i} Ifful3!=d[x1],
e13=(d[x1]-ul3)/(z13+Sum[1/phi13[[i]},(i,1,t13}]),
el3="'"];

Ifful3!=d[x3],
¢31=(d[x3]-ul3)/(z31+Sum(t/phil13[[il],{i,1.t13}]),
e3l="'"]]//N

Block[ (i} ,Iflu23!=d[x2],
0-22;=(d[x2]-u23)/(223+5um{llphi23[[i]].[i.l.t23l]).
e =|'-"];

Ifju23!=d[x3],
€32=(d[x3]-u23)/(z32+Sum[1/phi23 [[i]],(i, 1,23} 1),
C32="-"]]//N

(* augmented matrices and their singular value decompositions *)

x4=augment[x1,x2]
x5=augment[x1,x3]
x6=augment[x2,x3];
{ud,s4,v4)=SingularValues[N[x4]]
{uS,s5,v5)=SingularValues(N[x5]]
{u6,s6,v6}=SingularValues[N[x6]};
wh=Transpose[u4]
uSh=Transpose[uS]
u6h=Transpose(u6];

(* positive canonical correlations of type 2 *)
s1a23=Sort[SingularValues[N[ Transpose[u1h].u6h]]([2]]]

s2al3=Son(SingularValucs[N[Transpose[u2h].uSh]][[2]]]
s3a12=Sort[SingularValues[N[ Transpose[u3h].u4h]]({2]]]
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(* m, u, t and z values of type 2 *)

mla23=rank[Transpose[x1].x6)
m2al3=rank({Transpose[x2].x5]
m3al2=rank{Transpose[x3].x4];
ula23=rank[x1]+rank[x6]-rank[augmcni{x1,x6]]
u2al 3=rank[x2}+rank{x5]-rank[augment[x2,x5]}
u3al2=rank([x3]+rank{x4]-rank {augment[x3x41};
ul23=rank[x1}+rank[x2]+rank[x3]-rank[augment[x1,x6]]  (* overall connectedness *)
tla23=m1a23-ula23

t2a13=m2al3-u2al3

t3al2=m3al2-u3al2;

z1a23=d{x1]-m1a23

223a1=d[x6)-m1a23

z2a13=d[x2]}-m2al3

z13a2=d[x5]-m2al3

23a12=d[x3}-m3al2

z12a3=d[x4]-m3al2;

(* canonical efficiencies of type 2 *)

phila23=Chop{Rationalize[Sort[ 1-s1a23/2}}]
phiZ2a13=Chop[Rationalize[Sort[1-s2a13/2]]]
phi3a12=Chop[Rationalize[Sort[1-s3a1242]])

(* average canonical efficiencies of type 1 *)

Block[ (i} Iffula23!=d[x1],
ela23=(d{x1]-ula23y
(z1a23+Sum{1/phi1a23([i]1,(i,uta23+1,m1a23})),
ela23="."];
IfTula23!=d[x6],
e23al=(d[x6}-ula23y/
(z23al+Sum([1/phila23([i]],{i,u1a23+1,m1a23}]),
e23al="-"]I/N

Block({ {i} Iffu2a13!=d[x2),
e2al3=(d[x2]-u2al3)y
(z2a13+Sum[1/phi2al3[[i]].{i,u2a13+1,m2a13}}),
e2ali="-"];
IfTu2a13!=d[x5],
el3a2=(d{x5]-u2al3)y/
(z13a2+Sum[1/phi2al13[[i]],{i,u2a13+1,m2a13})),
elB&vv-n]]/m

Block[ {i} If[u3al2!=d(x3],
e3al12=(d[x3]-ulal2)/
(z3ai2+Sum[1/phi3al2([i]],{i,u3a12+1,m3a12}]),
e3al2="-"};
Iffu2al3!=d[x4],
e12a3=(d[x4]-u3al2y
(z12a3+Sum|[1/phi3a12[[i}],(i,u3al2+1,m3al12}]),
01233="'"]]//N

(* non unit canonical efficiencies of type 2 *)
phila23=Take[phila23,{ula23+1,m1a23}]

phi2al3=Take{phi2a13,{u2al3+1,m2al3}]
phi3al2=Take[phi3a12,{u3al2+1,m3al2}]
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(* M matrices *)

m1=IdentityMatrix[n]-h1
m2-=IdentityMatrix[n]-h2
m3=IdentityMatrix[n}-h3;

(* singular value decomposition of the adjusted design matrices *)

Iffm2.x1!=Table[O0,{n},{r}],
{u1lm2,s1m2,vim2}=SingularValues[N[m2.x1}];
ulm2h=Transpose[ulm2]];
Ifim3.x1!=Table[0,(n},{r}],
{ulm3,s1m3,vIm3}=SingularValues[N{m3.x1]];
ulm3h=Transpose[ulm3]];
Iffm1.x2!=Table[0,{n},(c}],
{u2m1,s2m1,v2m1)=SingularValues[N[m1i.x2]];
u2mlh=Transpose[n2m1]};
Ifim3.x2!=Table[0,{n},(c]}],
{u2m3.s2m3,v2m3}=SingularValues[N[m3.x2]];
u2msh=Transpose[u2m3]];
Ifim1.x3!=Table[0,(n},(t}],
{u3ml,s3m1,v3m1}=SingularValues[N[m1.x3]];
u3mlh=Transposc[u3m1]];
Ifim2.x3!=Table[0,{n},(t}],
{u3m2,s3m2,vIm2}=SingularValues[N[m2.x3]];
; u3m2h=Transpose[u3m2]]

(* check for adjusted orthogonality *)

adj3=Transpose[x1].m3.x2
adj2=Transpose[x1].m2.x3
adjl=Transpose[x2]).m1.x3;

(* positive canonical correlations of type 3 & 4 *)

Ifladj3==Table{0,{r},{c}],
sm3={0};512m3={0};s21m3=(0},
sm3=Sort[SingularValues{N[Transpose{ulm3h].u2m3h]]{{2])),
s12m3=Sort[SingularValues[N[Transpose[u2m3h].ulh]][{2]1];
s21m3=Sort[SingularValues{N[Transpose[ulm3h).u2h]]({2]]]

]

Ifladj2=Table[0,(r]},(1}),
sm2={0};s13m2={0};s31m2=({0},
sm2=Sort[SingularValues[N[Transpose[ulm2h).u3m2h]][[2]]);
s13m2=Sort[SingularValues{N[Transpose{u3m2h]}.ulh]][{2]]];
s31m2=Sort{SingularValues[NITranspose[ulm2h].u3h]][[2]]]

]

Ifladj1==Table[0,{r},{t}],
smi={0};s23m1={0};s?2ml=(0),
sml=Sort[SingularVaiues[N[Transpose[u2m1h].u3m1h]][[2]]];
$23m1=Sont{Singular Values[N[Transpose[u3m1h].u2h]}[[2]]];
§32m 1=Sort[SingulrValues[N[Transpose{u2m1h].u3h]]{(2]]]

(* m,u,t and z valves of type 3 and 4 *)

mm1=rank[adj1]
mm2=rank(adj2]
mm3=rank[ad;j3];
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uml=rank[m1.x2]+rank[m}.x3]-rank[augment[m1.x2,m1.x3]]
um2=rank[m2.x1}+rank[m2.x3]-rank[augment[m2.x1,m2.x3]]
um3=rank[m3.x1}+rank[m3.x2]-rank{augment[m3.x1,m3.x2]}
ul2m3=rank{x1]+rank[m3.x2]-rank[augment[x1,m3.x2]]
v21m3=rank[x2]+rank{m3.x1]-rank[augment{x2,m3.x1]]
u13m2=rank[x1]J+rank{m2.x3]-rank[augment[x1,m2.x3]]
u31m2=rank[x3]+rank(m2.x1]-ran:{augment{x3,m2.x1]]
u23m I=rank{x2]+rank{m1.x3]-rank{augment{x2,m1.x31}
u32ml=rank[x3]+rank[m1.x2]-rank[augment[x3,m1.x2]];
tm3=mm3-um3

tm2=mm?2-um?2

tml=mm1l-uml;

t12m3=mm3-ul2m3

121m3=mm3-u21m3

t13m2=mm2-ul3m2

t31m2=mm2-u31m2

123m1=mm1-u23ml

t32ml1=mml-u32mi;

z12m3=d[x1}-mm3

z2m31=d[m3.x2]-mm3 (* z2m31m3 *)
221m3=d[x2]-nm3

z1lm32=d[m3.x1}-mm3 (* zIm32m3 *)
z13m2=d[x1]-mm2

z23m21=d[m2.x3]-mm2 (* z3Im21m2 *)
231m2=d[x3]-mm?2

zIm23=d[m2.x1}-mm2 (* zIm23m2 *)
223m1=d[x2]-mm1

z3m12=d[m}1.x3]-mml (* z3m12ml *)
z32m1=d{x3]-mm1

z22m13=d[ml.x2]-mm1; (* z2m13ml *)

(* canonical efficiencies of type 3 and 4 *)

phim3=Take[Chop[Rationalize[Sort[1-sm3/2]1],{um3+1,mm3}]
phil2m3=Take[Chop[Rationalize[Sort[1-s12m3A2}]],(u12m3+1,mm3} ]
phiZ 1m3=Take[Chop[Rationalize[Sort[1-s21m3A2]]],{u21m3+1,mm3} ]
phim2=Take[Chop[Rationalize[Sort[1-sm2/2]]],{um2+1,mm2}]
phil 3m2=Take[Chop[Rationalize{Sort[1-s13m2A2]]],(u13m2+1,mm2}]
phi3 1m2=Take[Chop[Rationalize{ Sort[1-s31m2A2]]],{u3 Im2+1,mm2}]
phim 1=Take[Chop[Ratonalize{ Sort[1-sm142}]],{um1+1,mm1}]
phi23m 1=Take{Chop[Rationalize[Sort{1-s23m1/2]]].{u23m1+1,mm1}]
phi32m 1=Take[Chop([Rationalize[Sort[1-s32m142]]],(u32m1+1,mm1}]

(* average canonical efficiencies of type 3 and 4 *)

Block[{i},e2m31m3=(d[m3.x2]-um3)/
(z2m31+Sum[1/phim3{[i]],{1,1,tm3} D)/N
Block[{i},eIm32m3=(d[m3.x1]-um3)/
(z1m32+Sum([1/phim3[[1]],{i,1,tm3} D}//N
Block[(i},e12m3=(d[x1]-ul2m3)/
(z12m3+Sum([1/pm12m3[{1}],(i,1,412m3} D}//N
Block[{i},€2m31=(d[m3.x2}-ul2m3)/
(z2m31+Sum{1/pht12m3([i}],{i,1,t12m3}])I/N
Block[{i},e21m3=(d[x2}-u21m3)/
(z21m3+Sum(1/phi21lm3({[i]},{i,1 . 21m3} DY/N
Block((i},elm32=(d{m3.x1]-u21m3y
(z1m32+Sum([1/phi21m3{[i]],{i,1,21m3})I/N
Block{({i},eIm21m2=(d[m2.x3]-um2)/
(z3m21+Sum[1/phim2([i]],{i,1,tm2} DI//N
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Block{{i},e1m23m2=(d[m2.x1]-um2)/
(z1m23+Sum[1/phim2{[i]], (i,1,1m2}])]//N
Block[{1},e13m2=(d[x1}-ul3m2)/
(z13m2+Sum([1/ph113m2[[i]},{1,1,t13m2} DI/N
Block[{1} ,3m21=(d{m2.x3]-ul 3m2)/
(z3m21+Sum[1/phil3m2[[i]},{i,1,t13m2} D]/N
Block[ {1} ,¢31m2=(d[x3}-u31m2)/
(z31m2+Sum{1/phi3im2{[:], {3,1,31m2} DI/N
Block[{1}) ,¢1m23=(d[m2.x1}-u3 Im2)/
(z1m23+Sum[1/phi31m2[[i]],{i,1,,31m2}])}/N
Block[{i},e3m12m1=(d{m1.x3}-um1)/
(z3m12+Sum{1/phim1([il], {i,1,1m1))}//N
Block[{1},2m13m1=(d[m1.x2}-um1)/
(z2m13+Sum(1/phim1{[i]],(i,1,tm1}D)/N
Block[{i},c23m1=(d[x2]-u23m1)/
(z23m1+Sum(1/phi23m1({i1],{i,1,23m1}1)]I//N
Block{{1} .e3m12=(d[m1.x3]-u23m1)y/
(z3m12+Sum[1/phi23m1{[i]],{i,1,223m1}I/N
Block{{i},e32m1=(d[x3]-u32m1)/
(z32m1+Sum[1/phi32m1{{il], (1,1,832m1} DI//N
Block[{i},e2m13=(d[m1.x2]-u32m1)/
(z2m13+Sum[1/ph32m1[{i]},{i,1,32m1} DI/N

(* write out the results in the form of a mutzE-table *)

OutputForm([SequenceForm|[

Columnponn[[" ll'" ..... "'ll l"l.2’ll "’l' ll'l'3'ﬂ "'" l"2.3'l' ll'll _____ ll." l|'1-23.ll "‘" ll‘
2-13." ll," l|’3'12’" "’ll ----- ll’" ","1;2'3"'" "’" ""'2;1'3"," 'I," ","1;3'2"'" Il’" ll'
"3 32", 0 N2 ) 320 e 213, ) R3S
2.3 e 12,37,

Center],

ColumnForm[{"m","-----"," ",m12," "," ",m13," "," ",m23," ","-----"," ",;m1a23,
et m2all,” t)t " om3al2," e mm3 e mm3 W ",mm2
" " " "'mm2 "won " " mml "onon " mml " " ee " ll mm3 "o " 2 " omw
" ",mml," R — "],

Center],

ColumnForm{{"u","-----"" "u12," "," "ul3,” "," "u23," ","e=ee- "t "ala23," ",
" " u2al3,” "," "ulal2,” ", -----"" "u12m3," ",)" "u21lm3," "," ",ul3m?2,
et u3dim2,” U "au23ml,” ) "a32ml,t - um3," ) Y um2,
et tuml, - " ul23),

Center],

COlumnFO"n[["l" L n'u ",t12," "’n ",tl3," n’u ",'.23," ll’" _____ o on l1323 "Hunn
[2313 nenwn Galz," "’ll ----- "'" "’l12m3’" "’" ll’l21m3 " nn t13m2 ” ll " l'
l31m2 " ll LU L [23“\1 nmnn t32m1 nwn "o o lm3 "o " 1" lm2 "nnn " m]l,
"),

Center],

ColumnForm[{*phi®,"---~=r=eemzeeer-- " phil2," " phil3,phi23,"------eeeeene e "
phila23,phi2al3,phi3al2,"--------ee-s-eeue ",phl12m3,ph121m3,ph|13m2
ph131m2,ph123ml,phl32m1 - """ phim3," ",phim2,phim1,
Center],

Columnporm[[n we_ u’" 00’212:' n," "’213,11 "," n'223’u n’u _____ "’lr ",11323," "’

" " z2al3," "," ",z3al2," ", "eeeee S z12m3," ) "z21m3," " ",213m2,
" n'u ",231m2," n,n ",Z23m1," ll’l' ",232m1," u’n _____ n," ",Zlm32," u,u u’
z1m23," """ z22m13," " "----",

Center],
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ColumnForm([({"z"™,"-----"," ",221," "," ",231," "," ",232," ""----"" " 223a1," ",

""" z13a2," ", ",z12a3," """ " " 22m31," " " zIm32,)" ) " 23m21,
e zim23," " ",23ml2,) ) ",z22ml3, e "t 22m31, ),
23m21," "." ",z23m12," ","----"),

Center},

ColumnForm[{"E","-------- B 7/ AR Y K7/ TR 7K 7/ IR — “
""ela23/N," ") ",e2al3/N," ", ",e3a12/N," ", caaeeene "relZm3/N, 1,
"re21lm3/N," ") " el3m2/N," " e3Im2//N " " e23m /NS Y,
e32m1//N," ", ceeneene " telm32m3/N," " T.elm23m2/N,
e2m13mi/N," ", " -eemene- "1,

Center],
ColumnForm[({" ","---"" "o ooy rrannmui nuunm ey

’ 1) ) 13 ] v
[ A TR TR ) LCOCUE I L LI L L U O T LI T T O U L LN LI O L L I L T T TN VI O L T
’ »

) ’ L3 L] s ’ ’ 3 [} » * L] * [} » s ’ L]
nun nw CCBR T U TN LI U L T T U L T BT BT BT ) "]
—— —-——— .

Center],

COlumnFOﬂn[{"E'"," _______ "’“ "'621/ ’" 'I‘" ll‘e31//N‘ll II‘" "’032//N‘" "‘ll ------- ",
" ",62331//N'" I|’|l "’613312//N," I"" |"e1233//N’“ l"'l ....... "’" ",ezm3]//N’
" 'l'" "’e]m32//N’" "‘" ll,e3m21//N," ll,!l I|’elm23//N‘ll "’ll ll,c3m12//N’|l "’
”" l|'62m13//N’" ll‘" ------ "n p"2m3‘ltr‘3//N’" ll," ll,e3m21m2//N,ll "’II ll'
e3m12mi/N," ", eaneeen b
Centex]

JI>>>mutzetable.m

YmutzE-table.m
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(*PROGRAM 2¥%)

(* this program assesses a design's decomposability and commutativity *)

(*****i**tt*t#li#*#‘.t##.‘*#..‘t#t#***t*#***###**************)

<<matrixmut.m
TabvleForm[m]

{r.c}=Dimensions{m];
n=0;t=0;

(* number n of plots, number t of treatments *)

Block[ {i,j} ,Do[Iflm[{i,jl}!=0,n=n+1];
Iffml[i,jl)>tt=m([i,j11], (i.r},{j.c}]]
count=0;
x1=Table{0,(n},{r}];x2=Table[0,{n},{c}];
x3=Table[0,(n},(t}];

(* design matrices for rows and columns *)

Block( (i,j},DolIflm([i,j]}!=0,
count=count+l;
x1{[count,i]]=1;
x2[[count,j]]=1},

{ich{ir}N

(* design matrix for treatments *)

count=0;

Block( {i,j.k},Do[If[m[[i,j]}==k,
count=count+1;
x3[[count,k]]=1],

(). (ir}. (k)]
en=Table[1,{n}]

jn=Table[1,{n},{n}]

in=IdentityMatrix{n];

cn=in-jn/n;

d[m_J:=Length[m[[1]]]

rank{m_}:=d[m)-Length[NullSpace[m]]

(* residual matrices *)

ml=in-x1.Inversc[Transpose[x1].x1). Transpose[x1];
m2=in-x2.Inverse[ Transpose[x2].x2]. Transpose[x2);
m3=in-x3.Inversc[Transposc{x3).x3).Transpose[x3];

(* incidence matrices and treatment replication matrix *)

n12=Transpose[x1].x2
n13=Transpose[x1].x3
n23=Transposc{x2}.x3
d3=Transpose([x3].x3;
k3=Transpose[x3].en
k3k3p=d3.Table[k3,{t}];
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(* information matrices for the subdesigns *)

s31=Transpose[x3].m1.x3

$32=Transpos¢{x3].m2.x3

s30=Transpose(x3].cn.x3;

(* check for commutativity *)

comm=N{Inverse[Sqrt[d3]].s31.Inverse[Sqrd3]).
Inverse[Sqrt[d3}].s32.Inverse[Sqrt{d3]]-
Inverse[Sqn{d31).s32.Inverse[Sqri[d3]).
Inverse[Sqrt[d3]].s3 1.Inverse[Sqrt[d3]]]

(* function which augments a matrix x by a matrix y *)

augment{x_.y_l:=Transpose[Jomn[ Transpose[x], Transpose(y]1]

x4=augment[x1,x2];

{ud,s4,v4 )=SingularV alues{N{x41};

udh=Transposc(u4]

m4=in-u4h.Transposc[u4h};

(* information matrix for iae two-way elimination of heterogeneity design *)

$312=Chop[Rationalize[ Transpose[x3].m4.x3]];

(* solve for generalized decomposability *)

Solve[x s31+y §32-z s30 == §312,{x,y,z}]

(* solve for extended decomposability *)

Solve[d3-aa Transpose[n13].n13-bb Transpose[n23].n23
+cc k3k3p ==5212,{aabb,cc}]
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APPENDIX 3. SOME MATRIX AND LINEAR ALGEBRA RESULTS

We present here some matrix and linear algebra results that are used in this thesis (see also

Lemma 3.2.1).

Theorem A.3.1 (Marsaglia and Styan, 1974): Let the matrix C have a left inverse (full
column rank) and let the matrix R have a right inverse (full row rank). Then for any
conformable matrix A,

r(A) =r(CA) =r(AR). (A.3.15

Moreover, for conformable matrices A, Xand Y

r(XA) =r(A) = r(XAE) =r(AE) for every possible E  (A.3.2)
and

r(AY) =r(A) = r(KAY)=r(KA) for every possible K. (A.3.3)
In addition,

r(XA) = r(A) and XAF = XAG = AF = AG, (A3.4)
and

r(AY) =r(A) and KAY =LAY = KA = LA. (A.3.5)

Proof: To prove (A.3.1), let B be a left inverse of C and so BC =1. Then r(A) = r(BCA)
< r(CA) €1(A). We prove r(A) = r(AR) similarly. Now let r(XA) = r(A) and let A =PQ
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be a full rank decomposition. Then r(P) =r(A) = r(XA) = r(XPQ) = r(XP) and XP has
full column rank. Thus r(XAE) = (XPQE) = r(QE) = r(PQE) = r(AE), establishing
(A.3.2). IfE = F — G then (A.3.4) follows from r(XAE) = r(XAF - XAG) =0 = r(AE)
= r(AF - AG). Results (A.3.3) and (A.3.5) are obtained similarly. 3

The column space of the augmented matrix (A : B) is C(A : B) = C(A) + T(B).

Assuming that, for two vector spaces A and B, the dimension

dim(A + B) =dim(A) + dim(B) - dim(A N B),

then it follows that

dim(T(A)n T(B)) =r(A) + r(B) -r(A : B). (A.3.6)

Lemma A.3.2: Let A denote a matrix, not necessarily symmetric, with r(GA) = r(A).

Then, the Lowner partial ordering
GAXA'G' 5 GAYA'G’, (A.3.7)
where X and Y are symmetric matrices, implies that
AXA' < AYA' (A.3.8)
Proof: We need to show that GAYA'G' - GAXA'G' = GA(Y - X)A'G' 2| 0 implies
that A(Y - X)A' 2; ). Let A =PQ be a full rank decomposition. Then r(GA) = r(GPQ)
=r(GP) =1r(A) and GP has full column rank and hence a left inverse. Therefore GA(Y -

X)A'G' =GPQ(Y - X)Q'P'G' 2 0 implies that Q(Y — X)Q' 2| 0 and so pre- and

post-multiplying respectively by P and P' proves the result. a
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Theorem A.3.3 (Marsaglia and Styan, 1974): For any choice of generalized inverse A~
and every possible B and C,

1(AB : MAC) =r(AB) + r((MAC), (A.3.9)

where Ma =1-AA™.

Proof: Suppose there exist vectors a and b such that ABa = MACb £ 0; then premultiply-
ing by M yields MACDb = 0. Hence C(AB) n T(MAC) = {0}, and so the equality
(A.3.9) holds. 0

Theorem A.3.4 (Marsaglia and Styan, 1974): For conformable matrices A and B, and

for any choices of their generalized inverses A~ and B,
r(A : B) =r(A) + (M 4,B) = r(MpA) +r(B), (A.3.10)

where MA =I-AA " and Mgp=1-BB".
Proof: Using (A.3.1), we write

-A"B

r(A:B)=r[(A : B)( I
0 1

)] =1(A : MAB) =1(A) + r(MaB)

where the last equality follows from Theorem A.3.3. The second equality in (A.3.10) is

proved similarly. a
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Lemma A.3.5 (Brauer 1952; Paige, Styan and Wachter, 1975): Let the n x n marrix A
have characteristic roots oy =0, &, ..., @y and suppose that Ae™ = 0. Letu be an n x 1
column vector. Then A + €™’ has characteristic roots u'e™, oy, ..., 0y .

Proof: The characteristic polynomial of A + e(Mu' is

|21 — (A + e®u") = [(AI - A)I - (AL — A)-le™u']l =121 — Alll - (AL — A)-le™u'l
(A.3.1D)

for all A # ch(A). Since I — (A1 - A)-1e(™u’ has only one nonunit characteristic root equal

to 1 —u'(AI—- A)le™, (A.3.11) becomes
A1 - Al(1 - u'(AI - A)te(®), (A3.12)

Since Ae(® = 0, it follows that (AI — A)e(® = Re(), and so (Al — A)-1e = e/,
n n
provided A# 0. Now AL —Al =T (A - o) = A IT (A - o), and so (A.3.12) becomes

i=1 i=2

AT — (A + e®u)l = ATT (A - @)1 —u'e®/A) = (A - u'e®) [[ (A - a) (A.3.13)
=2 =2

for all but the finite number of values A =0, chy(A), ..., ch,(A). Hence, (A.3.12) holds

for ail real A and thus the characteristic roots of A + e™u' are u'e®, v, ..., oy. 0

Theorem A.3.6 (Minkowski’s Inequality): Ifx;, yi 20, p >1, then

n llp
[Z (x; + yi)”]

i=1

n n
S[Z x,'p} + [5_‘, y,p] . (A.3.14)
i i

=1

If0# p <1, then the inequality is reversed, (for p <0 the x,, y, > 0). Equality holds if and

only if the sets of xj and y, are proportional.

Proof: See, e.g., Beckenbach and Bellman (1965, Theorem 3, pp. 19-20).
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