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Stresses in Beams with Circular Eccentrie Web Holes
by

Peter W. Chan®, A.M.ASCE and Richard G. RedwoodP

INTRODUCTIGN

The stress analyeis of beams containing web linles has received consi-
derable attention because of the frequency of occurrence of such holes in building
construction. Khile plastic desipn methods may be preferred because of their ra-
tionality, and their application to rectaﬁgular heles has been explored extensive-
ly, the allewable stress approach to design may bLe necessary in seome cases, In
particular, holes in non-compact sections require elastic analysis, and the treat-
ment of circular holes by plastic design methods is currently less satisfactory

than rectangular holes.®

The stress concentrations produced by circular holes are
much Iower than those produced near the corngrs of rectangular holes, and whereas
the latter will normally produce local yielding under working loads, the former may
be low enough that stresses under working leads can pe kept within permissible li-
mits.

Much of the previous work directed to the analysis of webs with circular
holes has been restricted to mid-depth holes, It is probable that designers are
more frequently concerned with the case of eccentric holes than with mid-depth
holes, since service ducts or piping may well be Jocated at different levels be-

tween floors to facilitate any crossing which may be necessary. Analysis of eccen-

trictric holes is therefore of considerable importance.
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The avoidance of fabricating reinforcement is desirable on the bhasis of
¢ost, and it is therefore of some importance to determine the stress levels aroumnd
unreinforced holes. While some specifications? permit unreinforced circuwlar holes,
subject to certain size and lecation limitations, without the need for analysis,
these are, of nccessity, quite restrictive, - In this paper, more peneral conditions
are considered, so that any practical sized circular web hole can be investipgated
in terms cof the maximum stresses it produces.

Much previous anzlytical work concerning such holces has made use of the
theory of elasticity in analysing the web as a larpge plate containing a small
hole,'*® and in addition, cmphasis has becn placed on mid-depth holes, although an
outline of an analytical procedure for cccentric holes has been given in Reference
6. The accuracy of the theory of elasticity solution has been investigated by

Boweri:?

and it is clear that the methed is seriously deficient under some circum-
stances, in particular for large holes and under high shear-to-moment ratios, both
of which' frequently arise in practise. Altcrnative approaches, for mid-depth
holes, have becen proposed in which parts of the beam around tlie hele have been
trFated as frame members, and analvsed by clementary beam theﬂ.::l'}f,"II with the inclu-
sion of stress concentration facters teo account for the curved edge.

The two approacheos, theory of clasticity and #urved bcam analysis, are
compared hervein for mid-depth heles, ard the conditions under which each is most
appropriate are determinced. The approximate approach is then extended to deal
with eccentric holes by considering the division of shear between the parts of the
beam above and below the hole. Experiwments on larpe mid-depth heles and gccentric
holes arc described, and rcsults compared with the analytical solutinﬁi Previous
experimental results obtaincd elscwherc® are also used for comparison. Finally,

design aids in the form of moment-shear interaction diagrams are presented which

relate specifically ro maximum stress conditions on the hele edges 2nd in the flanges.



ANALYS]S

The two approaches are outlined below for mid-depth heles and eccentric
holes. The relevant mecthod to use is discussed in a subsequent section, in the

light of cxptrimental results,

Mid-Depth Holes

Theory of Clasticity Solution

This theory is outlined in References (1) and {&). A useful

explicit relationship for the tangential normal stress on the ecdge of a



hole is piven by equation {6) in Reference 1, For the specific case of a ¢circular

hole, this reduces to:

o
Ty, (D (sin B - sin 3B) ¢ AT sin 28 (1)

where O¢ = the tangential normal stress on the hole edge, Fh = the allowable bend-
ing stress, M = the applied moment at the hole centreling, Majp = the allowazble be-
ing moment based on Fp and the gross scetion of the beam, B = the hole radius,

d = the overall beam depth, B = the angle measured from the horizeontal through the
hole centre, T = the nominal average shear stress based on the gross web area,

g = the neminal bending stress at the ocutside fibre of the beam, again based on
gross section, and T = the ratio of the maximum nominal shear stress to T.
Explicit relationships for stresses in other locations are not available, The
above cquation is valid for smull holes only, except that if the shear-to-moment
ratic is low, holes with diameter equal to or somewhat larger than ome half the
‘hole depth may be analysed with satisfactory results, For large holes especially

if thc shear-to-moment ratio is not low, the followihg analysis is proposed.

Curved Beam Analysis

In this analysis parts of the beam near the hole are treated as indivi-
dual structural members, and analysed accordingly by well established methods,
The resultant forces acting on a cross-section of the beam through the centre of
the hole, as shown in Figure 1, are first ¢stimated. Symmetry requires that half
of the total shear force be carried above the hele, and the vapnitude and line of

action of the neormal force N can be approximated by application of the simple fle-



xure formula. This can be based on the moment applied at the centreline of the
hole, and the properties of the net section at that location, Stresses are then
calculated for sceveral seetions radiating from the hole centre, as indicated.
The normal force acting through the centroid of such a section and the moment, N¢
and M¢, are then used to calculate the stresses.

The stresses due to bending may be calculuted on the assumption that the
scction defined by the angle & is the cross section of a curved beam with centrc
of curvature at the centre of the hele. Then using the Winkler-Bach curved beam

formula® the bending stress at the edpe of the hole is

.. c
Th m[l-ﬁ] (2)

where Z

1
" K drea W c% vy A (3}

A = area of the inclined tec-sectien defined by the angle ¢, ¢ = the distance from
the hole cdpe to the centroid of the inclined tee, and ¥y = a coordinate measured
from the centroid of the inclined tee-section.

The integration of cquation (3) muy be performed numerieally, or alter-
natively cxplicit formulue are given for a number of different section shapes in
Reference (8). In particular, for a tee section as ;hown in figure 2,

2+ .1 4 R% [b ¢r{Recruy) + (w-b} &nfRectuz) - w Ra(R)] (4}

It is convenient to calculate a stress concentration factor K for the
hole cdpe stress based on equation (2). Thus,

(1 - =)
_ A{Rec ZR
ko Hge * %)

I

where I 1s the poment of inertia of the inclined tee-section about its centroid.



The stress caused by Ny must be added to the bending component, and it
has been found sufficiently accurate to apply the same stress concentration factor
K to the nominal axial stress value as derived by consideration of the bending
strasses. Thus the tangential stress at the hole cdpe becones

N
_ K[ h M?c] (6)

Ot

This calculation is repeated for various values of # until o maximum valuc of g
is rcached. This process can be carried out up to 2 maximum ¢ of about 45°, and
it has been found that for practical hole and beam geomctrics, the maximum always

occurs with ¢ < 457,

Eccentric Hales

Theory of Elasticity Solution

The theory is ocutlined in Reference (&) and the following cxplicit rela-

tionship for the hole cdge stress for circular holes may be derived:

o
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(ZR
wherc ¢ = the eccentricity measured as the distance from the centre of the hole

to the bheam centreline, ¥ = the total shear, Va1 ° the allowable shear, Fy = the
allowable shear stress, Ay = the gross web area (= dw), and Ag = the area of one

flange,

Curved Beam Solution

This method fellows the identical procedure as for the mid-depth hele,

the only difference beiny that the shear force is no lonper distributed egually



above and below the hole. In order te calculate the division of slicar, the sec-
tions of the beam zbove and below the hole arc treated scparately, and conditions
of slope and deflection compatibility between their ends are employed.

Equilibrium requires that the sum of shear forces in the upper and lower
sections must be equal to the total shear force at hole centreline, V, that is,

"u’T-l-'u'B = ¥ (2}

shere ?T and ?E = the shear forces in the upper and lower sections respectively.
From slope and deflection compatibility, that is, equality of the changes in slope
and deflection of the upper and Jower scetions over the lenpth of the hole, the

fallowing shear force ratio is obtained:
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where E = Young's Modulus, IT’ I. = the moments of inertia of upper and lower

B
sections. rospectively ahout their centroids, © = an angle measurcd from The centre
of the hole from its wvertical centreline, G = shear modulus, and kT' kB = shear
stress parvamcters for the upper and lower sections respectively. A detailed ama-
lysis ef the derivation of equation 9 is given in Appendix L.

In order to verify the above theories, andtto determine which is the

more appropriatc te usc in a given case, some experiments were performed, and are

described in the next section.



TEST PROGRAM AND RESULTS

Two heams cach containing two holes were tested to determine elastic
stress Jdistributions und deflections. Details of the beams, holes and test
arrangements are shown in Figure 3. The two holes in Beam A were chosen to be
large enough that the theory of elasticity selution would almost certainly be in-
adequate fer their analysis, and the results therefore represent a test of the
curved beam method of apalysis. The smaller heles of Beam B were chesen in an
attempt to explore the limitations in applicatien of the two analytical approaches.
A1l holes were tested wnder two different shear-to-moment ratiss, since the ade-
gquacy of the analytical approaches is known to be very dependent on this ratie,

The holes were machined with a fly cutter, and thus had clean, notch
free edges. While in practice most heles would be flame cut, the resulting
stross raisers would in fact be ipnored by the designer, unless fatigue was a con-
sideration. It was therefore preferred to climinate the effects of 2 rough edge
and so pfovide a clegrer plicture of the relevance of the analyses. The webs and
flanges of the beams in the vicinity of cach hole were strazin gauscd, and gauge
locations are shown on Fipgure 4,

The beams were simply supported 2t each end, and because of the low
magnitudes of load, no lateral support was provided, Load was applied by means
of an Amsler hydraulic jack and readings of paupes and deflections tecorded 2t a
minimum of % increments of lead. A maximum load of 13 Kips was applied to Feam A,
and 21 kip to Beam B, and no non-linearity was observed in any of the readings.
The beams were tested with the holes in the positions shown in Figurelz, and then
with the reversed position with the koles eccentric below the mid-depth. Much of

the dato was automatically recorded znd stoved on disk for later analysis,



Tangential normal stresses around the hole edge are shown on Figures S
to . Also plotted arc selutions given by the theory of elasticity and by the
curved beam methed; for the latter, stresses are plotted only for the sector
45* from the vertical centre-line of the hole, because of the limitation of the
method. Stresses arocund tho large holes of Beam A arce shown on Figures 5 and &
for M/Y = 24 in. In both cascs, the theory of elasticity solution is quite inade-
quate, and the curved beam selution accuratcly predicts the measured stresses,
Similar results were also obtained for these holes under a MV ratic of 48 in,
Resalts for Hole 3 of Beam R are shown in Figure 7 for the two M/Y ratios. Under
the lower M/V ratio, the two analyses give very close results, and both predict
the measured stresses well, At the higher MY ratio, the theory of elasticity
solution provides a good estimate of the measured stresses while the accuracy of
the curved beam results is diminished. Similar conclusions can be drawn from the
results for Hole 4, shown on Figure 8. These results are consistent with the
known dependence of both metheds on the MY ratio,

| Shear stresses were measured by rosette geuges placed on the hole cen-
treline.  Experimental results are shown for two M/Y ratios on Figures % and 10,
and are comparted with the theoretical stress distributions based on the shecar
force valucs given by cquations (8) and (9) with the-distribution according to
standard elastic theory., Satisfactory agreement was found in all cases.

Longitudinal normal stresscs were measured on the centreline of the
flanges at variocus pesitions over the lenpgth of the hele. Typical values are
shown in Figures 11 and 12, and arc compared with values obtained in the follow-
ing two ways: flexural stresses calculated {rom the applied bending moment, and
based on the pgross {i.e¢. unperforated) beam section medulus, and values of
flange stresses obtained from the curved beam analysis. The latter were caleu-
lated on planes :_45“ from the hole centrcline, and it can be expected that the

accuracy will diminish as the angle increases. The results in goneral do net
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show great deviations from the nominal stress values, except in cases where the
hole is very large or the eccentricity is large. In either case, it can be ex-
pected that the maximum hole edge stress will be larpe, and might in any case
govern, The curved beam estimates of the longitudinal flange stresses generally
indicate the stress distributions, and predict the maximum values quite well al-
though the location is generully not predicted accurately.

Four W16 » 40 beams of A3S steel containing eccentric circular holes
werc tested by Frost.® The holes were 6.4 in. diameter, and eccentricities were
1.0 in. and 2.0 in, Btresses were measured on three cross sections of tha beam
corresponding to the centreline and the two ends of the hole. However, strains
were not recorded at the edges of the holes other than at these sections. Thus
only the stresses at the hole centreline can be compared with the theories here-
in, Shear stresses at this location agaln showed good agreement betweend the

theory and eXxperiment as shown on Figure 13
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DESIGH AIDS

For the experimental cases presented herein, it has Leen shown that,
depending upon the hole size and the M/Y ratio, either the curved bLeam method or
the theory of elasticity method gives a satisfactory solution for the maximum
hole edge stress. The appropriate solution is always the one predicting the
greater stress magnitude. It is therefore zpparent that for a given case, if
both solutions are obtaincd, the larger stress preodicted may be tuken as the
mare accuraty; however, it has not been demonstrated that such a result will be
sufficiently accurate for all practical values of M/V and 2R/d.

A study of the accuracy of the two methods in predicting the maximum
hole edge stress fﬁr mid-depth holes has been presented in Reference 4. [For a
number of reported results of experiments and finite element analyses of mid-
depth holes, the maximun stresses predicted by the two aznalyses have been com-
pared, and non-dimensionalised stfcsses plotted spgainst a non-dimensional para-
meter H{?d, representing the moment-to-shear ratic, Results for the smallest hole
(2R/d = .434) and the largest one (2R/d = 0.758) are shown on Figure 14. These
and other results showed that taking the largest of the two stressces could result
in unsafe prediction of the actual stress, with 4 maximum underestimate of about
14%, This however applies only over a limited range of M/Vd ratios, and only to
small holes, for which stress lovels elsewhere in the beam may well be critical,
Thus for most purposes, the largest value of stress given by the two methods may
be considered sufficiently accurate,

tn this basis, desipgn aids have been prepared and are givenlin Fipures
16 to 27, It has becn assumed that the above conclusions arrived at for mid-
depth holes hold equally for eccentric holes, and therefore the effects of eccen-

tricity are included in thesc diaprams,
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The diagrams take the furm uf interaction curves relating the shear
force ¥V and moment M which, acting together will just cause the maximum hole
edge stress to reach the sllowable value, Thus values of M and ¥V which just
cause the maximum stress to reach Fh are represented by points on the curve, and
peints on the concave side of the boundary represent lower values of the maximum
stress.  Points outside the curve represent unsafe load combinations, Shear and
poment have heen non-dimensionalised by dividing by Uall and Hnl] respectively,
these being the allowable valucs of shear and moment, based on the nominal pgross
beam secticn. [t has been assumed that F‘,‘r = 2Fb!3 vhere Fv and Fh are the allow-
ablce shear and bending stress respectively. In addition it has heen assumed that
t/d = 0.05 and ﬁ“fﬁf = 2.0; the results are not sensitive to these ratios, and the
assumed values both lead to slightly conservative results,

For all these diagrams, maximum flange stresses given by the curved beam
analysis have been calculated, and in a few cases, corresponding to small holes
with small or zero eccentricity, under low shear forces these were found to be
eritical. The interaction diggrams take these flange stresses into account, as
indicated on Figure 15. This diagram shows four rcgions of the diagram, one
corresponding to the case when flange stresses povern, and the other three te hole
cdpe stresses. A typical diagram will contain two or more of these zones,

Figures 16 te 27 provide design aids for most practical sitvations, aml
gccount for the effects of the hole on normal stresses in both flange and web.

The remaining check which a designer must make concerns the maximum shear stress.
As an aid to this, Tigurc 28 pgives the division of sheat force above and below
the hole. Because these values are dependent upon Awﬁnf, although noE VeTy son-
sitively, results are given for Awaf = 075 and 2.0, and intermediate wvalues may

be obtained by interpclation. This may be used to calculate the shecar stresses

in the top and bottom tee sections on the hole centreline.
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EXAMPLE

Given the beam dimcnsions and loading shown on Figure 29, it is required
to check the adequacy of the beam if a hole of 9 inch diameter and accemtricity
2 inch is placed & ft. from the left hand support. The beam is latcrally supported

along the span and has a yield stress of 50 ksi [A44l steel).

Since the beam is non-compact, F 0.60 F:’r = 30 ksi

b

F = 0,40 F = 20 ksi
v ¥
Maximum bending momgnt at mid-span = 48 x i? x 12 | 2400 k-in.
. . 2400 x 18.0 .
Maximum bending stress = = < B0z " 26,93 ksi < Th 0.¥.
. . 2R a
Hole diameter to beam-depth ratio (jri “iF ° 0,5
Eccentricity to beam-depth ratie (Eﬂ e T%'= 0.11

Moment at hole centreline M = 20 x 6 X 12 = 1440 k-in.

Shear at hole centreline ¥V = 20 kips

Allowable Moment M = 30 x 2 x 802 = 2673, 3% k-in.
all 18
Allowable Shear vall =20 x 18 x .358 = 128.8 kips
M 1440 v 20 )
= = .54 = = .16
Hall 2675.3 vall 128.8

This point is plotted on Figure 29 and is found to be in the safc region,

Shear stress at hale centreline

Interpolating from Figure 28,

“T = L26V = 3.2 kips
V., = 1Y = 14,8 kips

li

The lecations of the neutral axis for the top and bottom tce sections are given in

Figure 31,
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Moment of inertia of top tee scctionm, In = 1.26 in."
Moment of inertia of bottom teoe section, Iﬂ = 21.12 in."
Vol

1=

H

Maximum shear stress in top tec

5.2 x 1.93 (2.041 - 2%

Z
1.36

= H#.57 ksi < F 0.K.
v

Valp
T v

_ 14,8 x 5,137?
21,33 x ¢

1

Maximum shear stress in bottom tee

|l

9.16 ksi < F\.r 0.K.

Hence the stresses at the hole are within allowable limits,
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APPESDIX I - SHEAR FORCE DIVISION

The division of shear force ¥ between the unequal tep and bottom sect-
ions across the wWweb hole can be determined by assuming that the deflections and
slopes of the top and bottom sections are equal.® Using the Moment Arca Method,
the deflections and chanpe in slopes of the high moment end of the hole with res-
pect to the low moment end, or vice versa, can be calculated. The free-body dia-
gram, the bending moment diagram and the M/ETI diapram for a typical top section

are given in Figure 30.

Deflections and Slopces

With the coordinate system indicated in Figurc 30. the deflections and

slepes due to bending and shear for the top and bottom sections are given as

follows: .-
Defloction Slope
. - '-1.{ X = 1*.1.:(2 IR M{. o V¥
Bending (top section) [ ——dx - [ —— x 150 S dx - S —— dx
o El o El (1] Fl o EI
T T T T
Shear (top section) /2N Tomax 2R 77, max
R P o G o G
M x v ox? Ml V. x
. el - B 1 2R B 2R R 2R D
; - f _T_ _
Bending (bottom section) .n"ﬁ Bi dx ‘o El dx fo El dx _.I'O El dx
Ll 1] B 1]
2R TR, max 2R TR, max
Shear {bottom section) -.J'O —-'f— dx L —

Sectional Properties

It is convenient to cxpress the sectional properties, area and moment of
inertia, in pelar coordinmates (v,2) rather than the cartesian coordinates (x,¥}.

With reference to Figure 31, the transformation equations are:
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"
n

R(sin & + 1} (10}

and ¥ B cos B (11}

From Figure 31, it ¢can be shown that for any section n-n,

d
n = — . -
ET > t e,

ET = ﬁ; - Rcos B,

AT = bt + “IE'T .

wETz
- ¥
CT = Ibt{Efr + '2".} * 7 ]!P‘T ]
+ ] E'
bt? L =2 hgT - T, 2

and I F A 05 T S My v LS 1 CF i

where t = flange thickness, An = sectional area, b = flange width, w = web thick-
ness, E} = the distance ¢of the neutral axis from the hole edge, and IT = the no-
ment of inertia of the section,

For the location of the maximm shear stress, and its magnitude, TT,max
two cases need to be considered, namely, when the neutral axis lies in the web and

in the flange,

When neutral axis lies on the web:

2
] vl 2
“max © IL ¢
and when neutral axis lies on the flange:
T 1 - 7 13]
T,max I {
T
In general, TT,max can be expressed ms:
= k. V ~ (14)

TT,max TT
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Equating the Defluections and Slopes

By cguating the deflection and slope of the top and bottom section, the

following cquations arce obtained:

L
x T
2R BT 2R 'T,max
Lo b Em oL T &
Mix v x? 1
2R "B 2R VB 2R 'B,max
SR 5 et S - mall e My el (15)
B B
1
ARt or 3 pax
o EI o EI 1] G
T T
M! V. _x dt
2B B R B 2R B,mzx
.I; _EIB dx - ID ﬁ; dx - J"D — {16)

The sbove equations, (15) and (16), can be rewritten in polar coordinates
using equations (10}, (11) and [14) as:

m Ml n v nmv

£ g1~ R(sin 8 +'1) R cos odg - A L R¥(sin 8 + 1)? R cos 6dO - i T T g cos ads
1 E a0 E aTs
i
)| Hé M vg T vy
= f"‘ g7~ R(sin B + 1) R cos 8de - {2 E-i--Rz(sin B+ 1)? R cos 848 - th g— R cos 8de
“2 B =2 B ~2
(17}
T M I V_R(sin 8 + 1) mv
l-g—R cos 'E}a:iE!—.IiI2 L) i R cos Edﬁ-{.f?TdkT
=2 T 2 T T3
T ME I VyR(sin @ + 1) mv,
= —— R cos 848 - R cos 040 - — dk {18)
~a E B ﬁz[ EIB ﬁzl G B

On expansion, many of the integrals are found to be odd functions, and

therefore vanish, Rearrangement of these equations then leads to the "following

T T T

1 2 2
R Irﬁr cos 6dp T f];l sin6 cos 648 'T°_ ;]2I cos 848 T ,rg cos 648
E ‘o 1 C o 1 E o 1 G o kT
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1 ;I p? 2
MR T s ade "BR T sin? 6 cos 648 'BY ) cos 048 VB 4
i e i -5 % 1 % T -7 b kg cos 840
B B B
(19)
1 2 1 2
MR T os 8ds ViR f];[ cos 0a0 _ MB® T ocos aae  VBR ¥ cos ede
E % - TTE o Iy - TE JE; I T E J‘o Ip (20)

Equations (19) and (20) can thus be solved simultaneously to yield

equation (9), which can be integrated numerically to provide values of VT/VB,
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APPENDIX TI1 - HOTATIOHN

The following symbols are used in this paper:

=
1

area of inclined tee-section defined by angle $;

wn
-
|

area of one flange;
= area of vertical top tee-section:

area of web;

S

= width of {lange;

™
n

distance from the hole edge to the centroid of the inclined tee-sectiom;

distance from the hole edge to the centroid of the vertical top tee-

S

section;
d = overall depth ef beam,;
E = Young's Modulus;
e = eccentricity with respect to the beam centreline;
Fb = zallowable bending stress;
F_'r ; allowable shear stress;
F:"r = vyield stress of steel;
G = shear modulus;
1 = moment of inertia of the inclined tee-section;
1B = moment of inertia of the vertical bottom tee-section;
1T = moment of inertia of the vertical top tee-section;
K = stress concentration factor;
kB = shear stress parameter for vertical bottom tee-section;
kT = shear stress parameter for vertical top tee-section; ’
M = moment at hole centreline;
Mall = allewable bending mement based on Fb and the gross section of the beam:

H¢ = yesulting moment in inclined tee-section;
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bending mement at bottom tee-section [hiph moment e¢dge of hole);
bending moment at bottom tee-scction (low moment edge of hole);
bending moment at top tee-scction (high moment edge of hole);
bending moment at top tee-section {low moment edge of hole),;
normal force at hole ¢ontreling

resulting normal force at inclined tee-secotion;

first moment ¢f area about centroid of hottom tee-scction;

first moment of area about centreoid of top teec-section;

hole radius;

flange thickness;

distance of flange from the neutral axis of inelined tec-sectiong
distance of the web-flange interface from the neutral axis of inclined
tee-section;

shear force at hole centreline;

]
"

allowable shear based on *F\"r and the pross section of the beam;
web thickness;

property of area;

angle mensurcq from the horizontal through the hole centre;
angles measurcd from the vertical throvgh the hole centre;
nominal average shear stress basced on pross web arca;

maximuwm shear stress of vertical Lottom tee-soction;

maximum shear stress of vertical top toe-section;

ratio of maximum nominal shear stress to T

noeminal bending stress at outside fibre of the beam based on pross
section;

bending stress at hole edge:

the tangentisl stress at hole cdge;
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lenpth of web of any vertical top tee-scetion; and

length of web of vertical top tce-section at hole ends.



FIGURE CAPTIONS

FIG. 1 - CURVED BEAM IDEALTZATION
FIG. 2 - TYPICAL INCLINED TEE-SECTION

FIG. 3 - DETAILS OF TEST BEAMS

FIG. 4 - INSTRUMENTATION OF BEAMS

FIG. S - HOLE CDGE STRESSES (HOLE 1, BEAM A)

FIG. 6 - HOLE EDGE STRESSES (MOLE 2, BEAM A)

FIG, 7 - HOLE EDGE STRESSES (MOLE 3, BEAM B)

FIG. 8 - HOLE EDGE STRESSES (HOLE 4, BEAM B)

FIG. 9 - SHEAR STRESSES AT HOLE CENTRELINE (HOLE 3, BEAM B)
FIG. 10 - SHEAR STRESSES AT HOLE CENTRELINE (HOLE 4, BEAM B)
FIG, 11 - FLANGE STRESSES (HOLE 2, BEAM A)

FIG, 12 - FLANGE STRESSES (HOLE 3, BEAM E)

FIG. 13 - SHEAR STRESSES AT HOLE CENTRELINE (REF, 5)

FIG. 14 - COMPARISON OF ANALYTICAL METHODS

FIG. 15 - GOYERNING STRESSES ON INTERACTION DIAGRAM

PIG. 16 - DESIGN CURVE (2R7d = 0,20)

FIG. 17 - DESIGN CURVE (2R/d = 0.25)

FIG. 18 - DESIGN CURVE (2R/d = 0.30)

FIG. 19 - DESIGN CURYE (2R/d = £.35)

FIG. 20 - DESIGN CURVE (2R/d = 0.40)

FIG. 21 - DESIGN CURVE (2R/d = 0.45)

FIG. 22 - DESIGN CURVE (2%/d = 0.50)

FIG. 23 - DESIGh CURVE (2Rfd = 0.55)
FIG. 24 - DESIGN CURVE (2R/d = 0.60)
FIG. 25 - DESIGN CURVE (2Rfd = 0.65)

F1G. 26 - DESIGN CURVE (2R/d = 0.70)
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DESIGN CURVE (2R/d = 0.75)

DIVISION OF SHEAR FORCE

EXAMPLE

FREE-BODY DIAGRAM FOR SHCAR BIVISION

TYPICAL VERTICAL TEL-SECTION
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