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Abstract

The exponential growth of wireless devices has led to increased demand for high-speed data

transmission, exacerbating bandwidth shortages and creating challenges in managing

connections between base stations and densely deployed users. Massive multiple-input

multiple-output (mMIMO) technology addresses these challenges by utilizing large-scale

phased antenna arrays to serve multiple users simultaneously. However, unintended

radiation in non-target directions leads to Multi-User Interference (MUI) and degrades

overall system performance. Current Nulling Control Beamforming (NCB) methods, such

as Linear Constraint Minimum Variance (LCMV), attempt to mitigate interference by

steering nulls toward interfering users to improve the Signal-to-Interference-plus-Noise

Ratio (SINR). However, these methods assume uniform element radiation patterns (ERPs),

an assumption rarely met in real-world systems, resulting in reduced accuracy and

effectiveness.

This thesis explores array processing theory to analyze the factors affecting beam

radiation patterns. It investigates the performance of LCMV beamforming with

non-uniform antenna ERPs using measured ERP data from an 8x8 antenna array in

simulations. The results clearly link increased ERP variation and reduced LCMV

performance, particularly in achieving deep and precise nulls toward interference sources.

Furthermore, LCMV struggles to maintain beam shape and high SINR in the presence of

multiple interfering users, highlighting its limitations in practical deployments.

To overcome these limitations, this thesis presents a Perturbation-based Nulling

Control Beamforming (PNCB) method, which integrates the LCMV framework with

Particle Swarm Optimization (PSO) to iteratively refine beamforming weights. The PNCB

approach takes into account non-uniform ERPs and incorporates quantization to address

practical hardware limitations. Starting with LCMV-generated weights, PSO performs a
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global optimization within defined magnitude and phase boundaries to achieve optimal

beamforming. Simulation results illustrate that the proposed PNCB method achieves

significantly deeper nulls compared to LCMV in multi-user scenarios while maintaining a

consistent power level toward the target user. Additionally, experimental validation using a

20 MHz modulated signal in an anechoic chamber confirmed the practical advantages of

PNCB. Overall, PNCB consistently delivers superior SINR, even in challenging scenarios

involving non-uniform ERPs and multiple interfering users.
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Abrégé

La croissance exponentielle des appareils sans fil a conduit à une demande accrue de

transmission de données à haut débit, exacerbant les pénuries de bande passante et créant

des défis dans la gestion des connexions entre les stations de base et les utilisateurs

déployés de manière dense. La technologie massive à entrées multiples et sorties multiples

(mMIMO) répond à ces défis en utilisant des réseaux d’antennes phasées à grande échelle

pour servir simultanément plusieurs utilisateurs. Cependant, le rayonnement non

intentionnel dans des directions non ciblées entrâıne des interférences multi-utilisateurs

(MUI) et dégrade les performances globales du système. Les méthodes actuelles de contrôle

de formation de faisceaux avec annulation (NCB), telles que la méthode de variance

minimale à contrainte linéaire (LCMV), tentent de réduire les interférences en orientant des

nuls vers les utilisateurs interférents afin d’améliorer le rapport signal sur interférence plus

bruit (SINR). Cependant, ces méthodes supposent des schémas de rayonnement uniformes

des éléments d’antenne (ERP), une hypothèse rarement vérifiée dans les systèmes réels, ce

qui entrâıne une réduction de la précision et de l’efficacité.

Cette thèse explore la théorie du traitement de réseau pour analyser les facteurs affectant

les schémas de rayonnement de faisceau. Elle étudie les performances de la formation de

faisceaux LCMV avec des ERPs d’antennes non uniformes en utilisant des données mesurées

d’un réseau d’antennes 8x8 dans des simulations. Les résultats montrent clairement un lien

entre l’augmentation de la variation des ERPs et la diminution des performances du LCMV,

notamment dans la capacité à atteindre des nuls profonds et précis en direction des sources

d’interférence. De plus, LCMV éprouve des difficultés à maintenir la forme du faisceau et

un SINR élevé en présence de plusieurs utilisateurs interférents, soulignant ses limites dans

les déploiements pratiques.

Pour surmonter ces limitations, cette thèse présente une méthode de formation de
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faisceaux de contrôle d’annulation basée sur la perturbation (PNCB), qui intègre le cadre

LCMV avec l’optimisation par essaims particulaires (PSO) pour affiner itérativement les

poids de formation de faisceaux. L’approche PNCB prend en compte les ERPs non

uniformes et intègre la quantification pour répondre aux contraintes matérielles pratiques.

En partant des poids générés par LCMV, PSO effectue une optimisation globale dans des

limites de magnitude et de phase définies pour atteindre la formation de faisceaux

optimale. Les résultats de simulation illustrent que la méthode PNCB proposée atteint des

nuls significativement plus profonds par rapport au LCMV dans des scénarios

multi-utilisateurs tout en maintenant un niveau de puissance constant vers l’utilisateur

cible. En outre, une validation expérimentale utilisant un signal modulé de 20 MHz dans

une chambre anéchöıque a confirmé les avantages pratiques de PNCB. Dans l’ensemble,

PNCB fournit constamment un SINR supérieur, même dans des scénarios complexes

impliquant des ERPs non uniformes et de multiples utilisateurs interférents.
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Chapter 1

Introduction

The use of a large number of antenna elements in mMIMO systems significantly enhances

the spatial degrees of freedom, enabling the formation of highly directional and narrow

beams. These narrow beams help minimize interference between users and improve signal

focus, allowing mMIMO to efficiently serve multiple target users in a dense user

environment. Additionally, large-scale mMIMO systems can operate as multi-user mMIMO

(MU-mMIMO), where the array is divided into multiple subarrays that simultaneously

transmit and receive distinct data streams over the same frequency band in a full-duplex

manner. This capability greatly enhances spectral efficiency and increases the system’s

multi-user capacity, making mMIMO suitable for modern wireless networks requiring high

throughput and user density [3, 4].

In MU-mMIMO systems, the fully digital beamformer (FDB) offers the advantage of

providing maximum flexibility by requiring one distinct radio frequency (RF) chain per

antenna element. This setup allows precise control over the phase and amplitude of each

antenna, enabling optimal beamforming, improved interference mitigation, and support for

advanced signal processing techniques like multi-user beamforming. However, the main

disadvantage of FDB in large-scale mMIMO systems is the significant power consumption

and high operational costs due to the need for a large number of RF chains, analog-to-digital

converters (ADCs) and other hardware components to match a large number of antennas [5].

Real-world implementations of FDB often face issues with thermal management due to the

increased heat dissipation in systems with many RF chains. Additionally, the complexity

of synchronizing a large number of chains without introducing latency becomes a significant
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challenge, especially in environments requiring ultra-reliable low-latency communications

(URLLC). This makes FDB less practical for large-scale antenna arrays, especially in cost-

sensitive or power-limited applications.

Since the number of required beams is equal to the much smaller number of multiple

users to be served simultaneously, the required number of RF chains can be reduced, which

suggests the Hybrid Beamforming (HBF) architectures. HBF architectures combine analog

RF beamforming (AR-BF) with digital baseband beamforming (DB-BF), in which the

number of RF chains (NRF ) is determined by the number of data streams (Ns) rather than

the number of antennas (M), making this approach more cost-effective for large-scale

mMIMO [6,7].

Figure 1.1: Hybrid Beamformer

Hybrid beamforming utilizes digital precoding for the initial signal processing at the

baseband and then employs an analog beam-forming network at RF to establish the beam’s

shape and direction mostly based on phased array processing as shown in Fig 1.1. Phased

arrays are capable of directing beams dynamically without moving the antennas physically,

simply by adjusting the phase of signals across the antenna elements [8]. This adjustment

leads to patterns of constructive and destructive interference, focusing energy in desired

directions and improving power efficiency, signal quality, and communication range. This

type of beamforming can be referred to as Maximum Directivity Beamforming (MDBF) as
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it aims at only providing maximum power to the target user.

Figure 1.2: MUI challenge in HBF with target user UE1

In HBF for MU-mMIMO systems, the main objective is to create highly directional

and agile beams that serve multiple users simultaneously, while minimizing interference and

maximizing intended signal quality. Ideally, beamforming should produce a narrow, precise

beam that can be steered towards each target user, as illustrated in Fig. 1.2(a). This targeted

beam effectively focuses energy, enhancing the signal-to-noise ratio (SNR) and improving

system throughput. In an ideal case, there would be no radiation outside the main beam,

meaning zero sidelobes and backlobes, allowing complete rejection of out-of-beam interferers

and minimizing the interference between users. However, in practice, achieving such an ideal

beam is impossible due to inherent limitations in the radiation characteristics of the array.

The presence of non-zero sidelobes and backlobes in the radiation pattern causes energy

leakage beyond the main beam, resulting in Multi-User Interference (MUI). This interference

occurs when signals intended for one user overlap and interfere with those for other users, as

illustrated in Fig. 1.2(b). Such overlap reduces the SINR, thereby degrading overall system
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performance. MUI becomes particularly problematic when multiple beams are formed using

different sub-arrays at the same base station (BS). The close spatial proximity of these beams

increases the risk of cross-talk between users leading to a degradation in communication

quality.

Another significant challenge in practical implementations is the non-uniformity of the

ERPs across the antenna array. Variations in ERPs arise from differences in physical

characteristics, mutual coupling between elements, and environmental factors, resulting in

beam distortion. This makes precise control over beam radiation and effective interference

suppression more challenging. Such non-uniform radiation patterns exacerbate MUI, as

sidelobes from each sub-array may inadvertently direct energy toward unintended users.

To mitigate MUI, it is essential to generate a beam radiation pattern that directs minimal

energy towards unintended users, as shown in Fig. 1.2(c). Techniques that allow this are

known as NCB methods, which aim to steer nulls (areas of very low or zero radiation) toward

the interfering users, thereby reducing signal overlap and improving the SINR. NCB methods

rely on knowledge of the target and interfering users’ locations to strategically adjust the

magnitudes and phase shifts of the signals fed to the antenna array. Essentially, NCB acts

as a spatial filter, maximizing beam gain in the desired user directions while minimizing

radiation power in directions where interference is likely. However, NCB methods still face

the challenges posed by non-identical ERPs, which can make them less effective in practice,

especially in dynamic environments involving many users.

This thesis aims to investigate a method to generate more effective beamforming radiation

patterns in the presence of varying ERP. By examining the key role of Array Factor (AF) in

array processing and the principles of the widely used NCB method, particularly the LCMV

technique, the thesis identifies the limitations of the LCMV method when applied to real-

world scenarios with heterogeneous antenna elements. Using measured antenna ERPs to

represent the realistic antenna ERPs, the study highlights the drawbacks of applying LCMV

under practical scenarios with non-uniform ERP.

A perturbation-based NCB method is then proposed, integrating the measured ERPs

into the LCMV approach to generate the initial beamforming vector. This method employs

a metaheuristic exploratory algorithm PSO, to further enhance the nulling performance. The

approach effectively optimizes beamforming coefficients in MU-mMIMO systems, addressing

the challenges of non-ideal and varying radiation patterns. The proposed solution provides
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near-optimal results in both simulation and experimental testing, successfully minimizing

interference while maximizing beamforming efficiency and overall system capacity.

The rest of the thesis is organized as follows: Chapter 2 provides the background on

array processing and presents a detailed literature review of the current state-of-the-art

NCB techniques, along with an explanation of the working principles of LCMV and related

methods. Chapter 3 explores the challenges faced by LCMV in scenarios involving

heterogeneous ERPs and evaluates its performance under different ERP conditions.

Chapter 4 introduces the perturbation-based NCB method, explaining its core principles

and presenting a comparative performance analysis against LCMV through both

simulations and experimental testing. Additionally, it examines the impact of quantization

on beamforming radiation patterns due to the limited resolution of practical phase shifters

and attenuators. Finally, Chapter 5 provides the conclusion and outlines potential future

research directions.
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Chapter 2

Phased Array and Rx Beamforming

This chapter investigates Rx beamforming in phased array systems, focusing on conventional

array processing techniques. It covers MDBF and examines the role of AF in beam shaping.

Additionally, the chapter provides a literature review of existing NCB methods, with a

detailed analysis of LCMV and related techniques.

2.1 Uniform Linear Antenna Array and Rx

Beamforming

Beamforming involves the synthesis of radiation beams through the combination of outputs

from multiple antenna elements, arranged according to a specific geometry. This technique

allows dynamic adjustment of the beam direction to meet varying operational requirements.

By applying calculated beamforming coefficients to these elements, an antenna array can

achieve precise control over its beamforming characteristics. Each antenna element in the

array has its own unique ERP that can influence the focusing and directing of the radiated

power. By focusing this radiated power towards a specified target direction, the efficiency

and effectiveness of communication in both transmit (Tx) and receive (Rx) modes can be

improved.

As the beamforming capability of an antenna array is mainly determined by the number

of antenna elements in that direction, this chapter will consider a 1 ×M Rx Uniform Linear

Array (ULA) positioned along the x-axis, with elements uniformly spaced by a distance d.



2. Phased Array and Rx Beamforming 11

The array is designed to receive signals from a Tx user located at a distance D from the

array origin at the position of the first antenna element. In this thesis, the focus is on the

far-field operation region, where D exceeds the Rayleigh Distance Dr. The Dr represents

the boundary between the near field and far field regions and can be expressed as [8]:

Dr =
2((M − 1)d)2

¼0

, (2.1)

where ¼0 is the wavelength of the signal.

When the condition D > Dr is met, the incoming wavefront can be approximated as

planar by the time it reaches the array. This approximation holds because, at such

distances, the curvature of the spherical wavefront originating from the source becomes

negligible compared to the array’s dimensions. As a result, the signals arriving on different

elements of the array will appear to have nearly parallel paths. This allows us to treat the

angle of arrival of the incoming signal as uniform across the array.

Figure 2.1(a) illustrates the position of a Tx User located in the far-field. The shaded

area represents the plane of the Tx user, which can be defined by the line source of length

D, azimuth angle ¹ on xy-plane and elevation angle ϕ between z-axis and line source.

Fig. 2.1(b) illustrates the propagation of the incoming signal in the xy plane. The pink

dashed lines represent the projection of incoming rays from the target Tx user to the array

antenna elements. The unit vector representing the direction of this dashed line is given

by sin(ϕ). The longest ray, originating from a distance D, reaches antenna element 0 and

intersects the xy plane at the origin. Therefore, the length of this projected incoming ray is

D sin(ϕ).

Since the distance D is significantly larger than the array’s aperture, the impact of the

individual element positions on the magnitude of the incoming signal is negligible, allowing

the assumption that all antenna elements receive the same signal power. However, due to

the high carrier frequency fc, even the smallest spacing between adjacent antenna elements

can introduce a substantial phase difference between the signals received at each position.

This phase difference, which depends on the Direction of Arrival (DoA) of the signal, must

be accounted for during array processing to accurately reconstruct the incoming signal.

As shown in Fig. 2.1, the wavefronts that reach the antenna array are planar, represented
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Figure 2.1: a) Location of Tx user relative to ULA. b) 2D xy-plane view

by blue dashed lines, resulting in identical signal delays between two consecutive antenna

elements due to their uniform spacing. It can be observed that the projected ray length to

the mth element is shorter than that to the first element (denoted as D sin(ϕ) for element 0)

by md cos(¹) for m = 1, 2, . . . , (M − 1) in the azimuth plane. This decrement in projected
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length implies a corresponding reduction in signal delay as the antenna index increases.

Considering the vector projection in three-dimensional space, the incoming signal’s

angular frequency Éc = 2Ãfc and propagation speed c in free space, the phase shift ·

resulting from the difference in signal delay can be written as

·(¹, ϕ) =
Écd sin(ϕ) cos(¹)

c

= ´d sin(ϕ) cos(¹),

(2.2)

where ´ = ωc

c
is the phase constant of our signal representing phase change per unit distance.

Under the far-field assumption, each element in the antenna array receives a signal with

uniform amplitude. However, the antenna element gains are heterogeneous and respond

differently to the incoming wavefronts. This response is influenced by the ERP of each

element and the spatial phase delays associated with their positions. As illustrated in

Fig 2.1b, the actual modulated signal, s′(t), is received by the phased array. This signal

can be expressed as:

s′(t) = a(t) cos(Éct+ Φ(t)) = 0.5
(

s(t)ejωct + s∗(t)e−jωct
)

, (2.3)

where a(t) represents the signal amplitude, Φ(t) is the phase shift and s(t) = a(t)ejΦ(t)

denotes the equivalent complex baseband signal of s′(t).

The incoming signal received by the ULA undergoes modifications due to each antenna

element’s ERP and the phase delay introduced by the spatial positioning of the elements

within the array. Consequently, the signal r′

m,2(t, ¹, ϕ) at the mth antenna element can be

modelled to account for these effects:

r′

m,2(t, ¹, ϕ) = Em(¹, ϕ)ejmζ(θ,φ)s′(t) + n′

m(t), (2.4)

where Em(¹, ϕ) denotes the normalized ERP for the mth element in direction (¹, ϕ), and

n′

m(t) ∼ CN (0, Ã2
n) represents the Gaussian thermal noise at the mth receiver.

In Rx beamforming, individual delays are adjusted to ensure the signal components are

in-phase before summing. The beamforming coefficients, wm(¹, ϕ), are complex numbers

that compensate for phase variations across the elements, enabling controlled constructive
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and destructive summation of the received signals. These coefficients can be defined as:

w(¹, ϕ) = [wm(¹, ϕ) = Wm(¹, ϕ)e−jmψ(θ,φ),m = 0, 1, 2, . . . , (M − 1)]T , (2.5)

where È(¹, ϕ) is the phase compensation added by the coefficient and Wm(¹, ϕ) adjusts the

amplitude, helping to control sidelobe levels and steer nulls for interference rejection. In

the case of constant-modulus, Wm(¹, ϕ) is set to unity, representing isotropic ERP for each

antenna element. The signal r′

m,1(t, ¹, ϕ), in Fig. 2.1, represents the signal in (2.4) once it

has been updated with the beamforming coefficient. It can be modelled as:

r′

m,1(t, ¹, ϕ) = w∗

m(¹, ϕ)Em(¹, ϕ)ejmζ(θ,φ)s′(t) + w∗

m(¹, ϕ)n′

m(t). (2.6)

The final modulated received signal, r′(t, ¹, ϕ), is the output of the summation of all

antenna responses:

r′(t, ¹, ϕ) =
M−1∑

m=0

[

w∗

m(¹, ϕ)Em(¹, ϕ)ejmζ(θ,φ)s′(t) + w∗

m(¹, ϕ)n′

m(t)
]

. (2.7)

For convenience, in the subsequent discussions of this thesis, the focus will be on the

equivalent baseband signal of the received signal, which can be expressed as follows based

on (2.3).

r(t, ¹, ϕ) =
M−1∑

m=0

[

w∗

m(¹, ϕ)(Em(¹, ϕ)ejmζ(θ,φ)s(t) + nm(t))
]

= wH(¹, ϕ)a(¹, ϕ)s(t) + wH(¹, ϕ)n(t, ¹, ϕ),

(2.8)

where a(¹, ϕ), known as the steering vector, encapsulates the configuration of the antenna

array, the ERPs, and the locations of the users:

a(¹, ϕ) =











1

E1(¹, ϕ)ejζ(θ,φ)

...

EM−1(¹, ϕ)ej(M−1)ζ(θ,φ)











. (2.9)

In (2.8), the first term represents the desired signal, while the second term accounts for
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the output noise, with n(t) = [nm(t),m = 0, 1, 2, . . . , (M − 1)]T as the complex-valued noise

vector.

In the case of homogeneous ERP, which means that all antenna elements in the array

exhibit identical ERPs such that Em(¹, ϕ) = E(¹, ϕ), the radiation pattern can be factored

out of steering and noise vectors in (2.8):

r(t, ¹, ϕ) = E(¹, ϕ)A(¹, ϕ)s(t) + E(¹, ϕ)wH(¹, ϕ)n(t, ¹, ϕ), (2.10)

where E(¹, ϕ) = 1 for isotropic antenna elements and A(¹, ϕ) is called the Array Factor

(AF), which can be represented as:

A(¹, ϕ) =
M−1∑

m=0

[

Wm(¹, ϕ)ejm[ζ(θ,φ)+ψ(θ,φ)]
]

. (2.11)

2.2 Importance of Array Factor under MU scenario

A MU scenario presents a more complex and realistic challenge compared to the single-

user case. In single-user scenarios, the system is focused solely on optimizing performance

for one user, which simplifies the beamforming and signal processing tasks. However, this

approach does not account for the need to manage multiple connections simultaneously

without interference, as required in modern communication systems such as cellular networks,

Wi-Fi, and satellite communications.

In a MU beamforming scenario, large-scale antenna arrays in mMIMO systems are

deployed to efficiently serve multiple users simultaneously within the same frequency band,

significantly enhancing network capacity and spectral efficiency. Through advanced signal

processing techniques, these large-scale antenna arrays generate multiple beams, each

directed toward a specific user, allowing for spatial multiplexing and optimal resource

utilization.

However, this scenario introduces the critical challenge of managing MUI. Unlike

single-user scenarios, where beamforming is solely focused on optimizing the signal to a

single target, MU scenarios involve multiple users sharing the same communication

resources, such as frequency bands, time slots, or spatial channels, leading to inevitable

inter-user interference. This interference occurs when signals intended for different users
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overlap and create cross-talk, which can significantly degrade communication quality.

Managing MUI becomes complex, as the beamforming process must achieve a dual

objective: it must direct the main lobe with high gain toward the intended user while

simultaneously minimizing side and back lobes that could interfere with other users. The

challenge lies in maintaining a high SINR for all users, ensuring that each beam is sharp

and precise enough to prevent energy leakage that contributes to MUI. Advanced

beamforming algorithms and interference suppression techniques are crucial to handle these

complexities and maintain high-quality communication in densely populated user

environments.

The AF of the antenna array describes how the geometry and configuration of the

antenna elements influence the radiation pattern. Acting as a spatial filter [8, 9], the AF is

directly influenced by the number of antenna elements, the inter-element spacing, and the

beamforming weights. In the MU scenario, these factors can be altered to change the

radiation pattern of the antenna array to enhance signals from desired directions while

suppressing those from undesired directions. This selective enhancement and suppression is

analogous to a filter that allows certain frequencies to pass while attenuating others.

For constant-modulus beamforming coefficients (i.e. Wm(¹, ϕ) = 1) the AF from (2.11)

simplifies to:

A(¹, ϕ) =
M−1∑

m=0

[

ejm(ζ(θ,φ)+ψ(θ,φ))
]

=
M−1∑

m=0

[

ejmΨ(θ,φ)
]

, (2.12)

where Ψ(¹, ϕ) = ·(¹, ϕ) + È(¹, ϕ). The right-hand-side of (2.12) represents the sum of a

finite geometric series with the common ratio ejΨ, which can also be written as:

A(¹, ϕ) =
(ejMΨ − 1)

(ejΨ − 1)

= ej[(M−1)/2]Ψ

[

ej(M/2)Ψ − e−j(M/2)Ψ

ej(1/2)Ψ − e−j(1/2)Ψ

]

= ej[(M−1)/2]Ψ

[

sin(M
2

Ψ)

sin(1
2
Ψ)

]

.

(2.13)

The closed form of AF in (2.13) shows its beam pattern would consist of a main lobe



2. Phased Array and Rx Beamforming 17

and multiple sidelobes with the maximum directivity at Ψ = 0. The conventional MDBF

technique operates on the principle of maximizing the power delivered to the target user

in the desired direction (¹i, ϕi). This can be accomplished by steering the beamforming

coefficient’s phase shift to counterbalance the spatial delay, i.e.,

È(¹i, ϕi) = −·(¹i, ϕi). (2.14)

Figure 2.2: Array Factor vs Number of Antenna Elements (M)

To understand the impact of adjustments in the AF on the overall beam pattern, AF

was plotted as a function of the number of elements in Fig. 2.2. This figure shows the 2D

azimuth cuts of radiation patterns in both rectangular and polar coordinate systems. It

illustrates the AF of phased arrays of varying sizes, maintaining consistent antenna spacing,

and directing the main beam towards ¹ = 90◦ under the assumption of constant modulus

beamforming coefficients (Wm(¹, ϕ) = 1).

The plots show that increasing the number of antenna elements results in narrower

First Null Beamwidth (FNBW) and slightly lower sidelobe levels. While larger arrays

generate more sidelobes, their power is reduced compared to smaller arrays. Thus, larger
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arrays provide improved beam focus and sidelobe suppression, but at the expense of higher

equipment and power costs.

These sidelobes, representing energy not directed toward the main lobe’s intended target,

can cause MUI. This phenomenon is particularly problematic when different users share the

same frequency, as the sidelobes of one receiving subarray may intercept signals intended for

another.

Figure 2.3: AF plots in Two-User Scenario

A visual representation of such a scenario is presented in Fig. 2.3. The setup features

two 8-element subarrays operating simultaneously on the same beamwidth, aimed at serving

users located in the directions of ¹i = 80◦ and ¹i = 100◦. The AF of both subarrays are

plotted in Fig. 2.3, revealing that the sidelobes from each array are directed towards the

unintended user, resulting in the reception of unwanted signals. Such overlapping leads to

MUI, which can corrupt the communicated signals and induce significant communication

challenges.

Minimizing the presence of high sidelobes in unintended directions is crucial for

designing effective beamforming strategies. To achieve this, it is essential to determine
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optimal beamforming coefficients that, unlike MDBF, not only maximize directivity but

also reduce the MUI by reducing the sidelobe levels.

Figure 2.4: AF plots vs steering angles for Two-User MUI with Non-Constant Modulus

beamforming coefficient

To examine how carefully selecting beamforming coefficients can affect the sidelobe levels,

the assumption of constant modulus for our coefficient magnitudes was relaxed. Using the

MATLAB Toolbox, simple tapering was applied to the beamforming coefficients and its

impact was analyzed in a two-user scenario. Tapering allows the application of a windowing

function to the beamforming coefficient magnitudes, resulting in non-uniform weights across
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the antenna elements. The tapering is performed using a Chebyshev window, and the results

are displayed in Fig. 2.4.

As can be observed, the non-constant modulus approach effectively reduces sidelobe

levels, which helps to minimize MUI. However, this improvement comes with a tradeoff:

an increase in the FNBW, leading to potential power wastage and additional interference

for nearby users. On the positive side, the increase in FNBW highlights that beamforming

coefficients can be adjusted to reposition the nulls as required. This flexibility is leveraged in

advanced NCB techniques, where radiation nulls are strategically directed toward interfering

users, further mitigating MUI.

The following sections will explore these techniques in detail to identify the most

effective methods for optimizing beamforming coefficients. By carefully managing sidelobe

levels and employing advanced beamforming strategies, system capacity can be significantly

improved through minimized interference. This optimization enables denser user and

channel packing, ensuring more reliable communications, particularly in environments

where multiple subarrays operate simultaneously without causing performance degradation.

2.3 Nulling Control Rx Beamforming

2.3.1 Rx Beamforming

For power-efficient Rx operation, it is essential to minimize the power required for reliable

communication. This involves designing the system to function effectively at low Rx signal

power levels, close to the noise level while maintaining good detection performance. In multi-

user environments, interference from other users can further complicate signal detection,

as high sidelobes from adjacent transmissions can overlap with the desired signal, causing

interference and reducing the effective SINR.

To overcome the challenges of maintaining high SINR while operating at low power levels,

beamforming becomes an effective solution. By focusing energy in the desired direction,

beamforming significantly improves SINR and reduces the impact of noise and interference.

The most effective techniques for improving SINR and suppressing MUI, as part of NCB,

direct the beam toward the desired user while simultaneously placing nulls in the radiation

pattern toward interfering users, thereby reducing MUI.
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Figure 2.5: MU Beamforming comparison using multiple subarrays. a) MDBF

Beamforming, b) Nulling Control Beamforming

Traditional beamforming techniques such as MDBF use a fixed set of pre-calculated

weights to direct the beam in a predefined direction. This could lead to high MUI when

signals from multiple subarrays operating at the same frequency overlap as shown by the

shaded region in Fig. 2.5(a). This could lead to receiving unintended signals causing signal

distortion or crosstalk during communication.

NCB techniques, which are part of Adaptive Beamforming (ABF), aim to enhance the

performance of multi-user communication by dynamically adjusting the beam’s radiation

pattern in real-time based on the user’s location. This trait allows the beamformer to focus

on a specific target user in a dynamic environment while suppressing interference to other

users by adjusting the beam radiation pattern. This adjustment maintains the main beam

toward the intended user while nulls are placed in the directions of the unintended user

(Fig. 2.5(b)).

This ability to generate deep and accurate nulls is crucial in multi-user operations, leading

to improved SINR and overall system performance. The dual characteristic of NCB not only

improves signal quality for the target user but also effectively mitigates MUI from other



2. Phased Array and Rx Beamforming 22

users, as represented by the reduced shaded regions in Fig. 2.5(b). Additionally, placing

nulls in the radiation pattern increases the system capacity, enabling communication with a

higher number of users simultaneously using the same frequency through different subarrays.

Various NCB techniques have been studied and implemented which can be broadly

divided into two categories: Non-iterative and Iterative. Non-iterative beamforming

optimizes the beamforming weights based on direct calculations, leveraging the knowledge

of both desired and interference signals, e.g., the covariance matrix of desired and

interference signals. The beamforming weights are then directly computed by inverting the

covariance matrix, which decorrelates the interference from the desired signal. A key

advantage of non-iterative techniques lies in their speed, as the beamforming weights can

be determined in a single step.

A non-iterative ABF algorithm, introduced in [10], uses real-valued coefficients with a

ULA framework, employing a preprocessing transformation matrix. This algorithm,

designed to either minimize mean square error (MSE) or maximize SINR, significantly

reduces computational complexity and accelerates convergence. The technique presented

in [11] treats null steering as a sparse recovery problem, using compressed sensing (CS) to

perturb minimal elements and generate wide nulls, improving interference suppression by

10 to 20 dB while reducing hardware complexity.

The work in [12] presents the least mean square - least mean square (LLMS) algorithm,

featuring dual LMS components, outperforming traditional LMS algorithms and others in

terms of convergence efficiency and robustness against the additive white Gaussian noise

(AWGN). In [13], authors introduce the RLS-CMA, a modified constant-modulus algorithm

(CMA) utilizing Recursive Least Squares (RLS) for blind adaptive signal separation,

achieving quicker convergence and superior tracking compared to existing methods.

Accurate performance of these non-iterative beamformers relies on the precise

estimation of the steering vector a(¹, ϕ) and the noise covariance matrix R. Algorithms

such as LMS, Minimum Variance Distortionless Response (MVDR) [14–19], eigenvector

decomposition (EVD) beamformer [20], diagonal loading beamformer [21–23], and

LCMV [24–27] also depend on accurate channel statistics estimation.

While the deterministic beamforming approach facilitates the swift computation of

beamforming vectors, it often yields suboptimal beamformers that exhibit insufficiently

deep radiation nulls and inaccuracies in nulling angles under practical conditions. Factors
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such as inter-element mutual coupling, non-uniformities among adjacent antenna elements,

and asymmetries in the dielectric substrate and ground plane contribute to these

variations. These discrepancies compromise the accuracy of the estimated array

response [17], leading to a potential misalignment between the anticipated and actual

spatial signal characteristics, thus degrading the precision of beam formation.

Moreover, non-uniform ERPs cause the beamforming vector to have varying effects on

different array elements depending on the direction, leading to distortions in the beam

radiation patterns. The simulations presented in [10–16, 24–26, 28, 29] typically assume

isotropic or uniform ERPs, which do not accurately represent the diversity of ERPs in

large antenna arrays. Factors such as element positioning, variations in element

construction, asymmetries in the ground plane, and environmental conditions, as discussed

in [1], significantly impact ERPs, thereby affecting the overall beamforming performance.

Iterative NCB techniques, unlike deterministic methods, use multiple iterations to

refine beamforming weights based on specific optimization criteria. These methods offer

higher precision and improved SINR by incrementally enhancing beamforming coefficients,

effectively creating deeper nulls to mitigate MUI.

An iterative technique where beamforming coefficients are derived from the AF using

Fourier Transforms is presented in [30]. This method significantly improves performance,

speed, and flexibility by continually updating the coefficients until the desired pattern is

achieved. The work presented in [31] employs Fast-Fourier Transformation (FFT) to generate

wide nulls while minimizing sidelobe levels, demonstrating significant computational speed

advantages.

In [32], the author presents a Bees Algorithm (BA) that searches for optimal amplitude

values to place the null in the desired direction. The results presented show that BA is

capable of forming single-, multiple-, and broad-band nulls to any prescribed directions by

controlling the amplitude of each array element while also managing the maximum sidelobe

levels.

Optimization algorithms like PSO and Genetic Algorithm (GA) are commonly used in

iterative beamforming. For example, [33] details a PSO-based algorithm for sidelobe

suppression and null placement by optimizing the array geometry and the magnitude and

phase of the elements’ feedings. Whereas, [34] introduces Comprehensive Learning Particle

Swarm Optimizer (CLPSO) for synthesizing unequally spaced linear arrays with sidelobe
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suppression, constrained beamwidth, and nulling control.

Similarly, the technique presented in [35] integrates GA with the Schelkunoff nulling

technique for efficient beam steering and null placement in circular antenna arrays with

fewer elements. Another GA-based method in [36] optimizes element positions to reduce

power at null locations while stabilizing the main beam, demonstrating improved accuracy

in null placement and depth. Simulation results confirm its effectiveness in suppressing

interference in wireless systems.

In the literature on optimization techniques for wireless communications, PSO has been

extensively compared to the GA in various studies. For example, [37] evaluates the

performance of PSO and GA in phased array synthesis under three different configurations

of steering weights: amplitude-only, phase-only, and complex. The results show that PSO

explores the problem’s hyperspace more effectively than GA, often yielding better solutions

with lower computational complexity. Similarly, [38] compares GA and PSO in the context

of horn antenna design, concluding that PSO outperforms GA, and that a hybrid PSO-GA

algorithm delivers the best optimization performance in these scenarios.

Relevant studies have also demonstrated the superior capability of PSO in optimizing

ABF weights. In [39], the PSO algorithm is applied to optimize phase-only weights in a

linear antenna array for NCB under a two-user scenario, assuming isotropic antenna elements.

When compared with GA, results from 1000 experimental runs show that PSO consistently

produces more stable and superior radiation patterns. Furthermore, PSO required fewer

evaluations of the fitness function, which is typically computationally expensive, indicating

a clear performance advantage. Similarly, [40] compares PSO with the Dynamic Mutated

Artificial Immune System (DM-AIS) and the Gravitational Search Algorithm (GSA) for

optimizing NCB coefficients. The study concludes that PSO not only matches but frequently

surpasses these more complex optimization techniques, significantly boosting SINR while

making only minor adjustments to the beam shape. This further underscores the suitability

of PSO for beamforming optimization in wireless communications, as it balances performance

improvements with manageable computational overhead.

Additionally, [41] provides a comparative analysis between the Bacteria-Foraging

Algorithm (BFA) and PSO for optimizing antenna arrays. The study examines the

performance of both algorithms in tasks such as null steering and sidelobe suppression.

The findings indicate that PSO outperforms BFA in null-steering tasks, while BFA exhibits
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better performance in sidelobe suppression. This highlights the versatility of PSO in

addressing critical beamforming challenges, especially in managing interference suppression

through precise null placement.

In conclusion, the body of literature presents PSO as a highly effective optimization

method for beamforming tasks, consistently demonstrating superior performance compared

to GA, BFA, and other advanced algorithms. Its ability to optimize with fewer iterations

and lower computational complexity, while achieving robust nulling and improved SINR,

makes it the leading candidate to implement in our work.

Iterative methods do also face challenges such as convergence speed, computational

complexity, and robustness against measurement inaccuracies. Ensuring quick adaptation

to dynamic environments, manageable computational demands, and resilience to DoA

estimation errors is crucial for effective performance. Integrating measured ERPs and

validating these approaches experimentally is essential to bridge the gap between

theoretical models and practical applications, optimizing NCB for real-world use. Further

research is needed to explore realistic ERP variations and experimentally validate NCB

techniques in practical scenarios, particularly in networks with quantized phase shifters and

attenuators, to ensure robust interference mitigation.

Challenges for NCB

In practical scenarios, the DoA of the desired signal (¹i, ϕi) or interference signals can change

dynamically. Consequently, the feeding weights must be recalculated whenever such changes

occur. As a result, NCB algorithms may not be efficient if the time to achieve an optimal

solution exceeds the coherence time of the system.

The coherence time, in the context of NCB algorithms, refers to the duration over which

the wireless channel remains relatively static. During this period, channel characteristics

such as path loss, fading, and phase shift do not vary significantly, allowing the beamforming

weights to remain effective. If the channel changes faster than the algorithm can adapt (i.e.,

if the coherence time is shorter than the adaptation time), beamformer performance can

degrade.

For non-iterative NCB techniques, the design of pilot signals for channel estimation must

consider coherence time to ensure accuracy. In iterative NCB techniques, it is crucial that the

system converges to an optimal solution within the coherence time; otherwise, the solution
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will be ineffective due to changing system conditions.

2.3.2 LCMV Nulling Control Beamforming

The LCMV algorithm is a traditional non-iterative NCB technique that minimizes noise

power (variance) while adhering to multiple linear constraints. This flexibility allows it to

adapt to various scenarios by preserving signal quality in specific directions and attenuating

undesired signals, making it suitable for our MU system assumptions.

The LCMV beamformer for the Rx ULA is formulated by defining the noise covariance

matrix, specifying the linear constraints, and setting the objective function to minimize noise

power. In this thesis, it is assumed that the system’s coherence time exceeds the adaptation

time required by the LCMV algorithm, the perturbation-based optimization method, and

the supervised learning method.

LCMV Beamformer

The incoming signal vector on the isotropic M -element ULA from the main user direction

(¹, ϕ) is given by (2.8). This can be rewritten as the following equation:

r(t, ¹, ϕ) = wH(¹, ϕ) [a(¹, ϕ)s(t) + n(t, ¹, ϕ)]

= wH(¹, ϕ)a(¹, ϕ)s(t)
︸ ︷︷ ︸

Desired Response

+ wH(¹, ϕ)n(t, ¹, ϕ)
︸ ︷︷ ︸

Noise Response

(2.15)

where s(t) is the incoming baseband signal, wH(¹, ϕ) ∈ C
1×M is the Hermitian of the

complex beamforming vector, a(¹, ϕ) is the steering vector and n(t, ¹, ϕ) ∈ C
M×1 is a

complex-valued noise vector.

It’s important to note that in subsequent sections, the discrete-time model will be

considered with its sampling time equal to the modulation symbol interval. Under the

assumptions of coherent and synchronous detection/operation, the time index t can be

omitted for simplicity. The complex-valued modulation symbol is denoted as s, which

adheres to the power constraint E{ssH} = 1, and the sampled discrete complex noise

vector as n(¹, ϕ).

When discussing the Rx beamformer, it is important to note that the operating Rx signal
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power is often close to the noise power. Therefore, the interference from other users and the

noise have comparative power levels and can be combined into a single n(¹, ϕ) ∼ CN (0,R)

complex-valued noise vector having covariance matrix R. This combined term simplifies the

analysis and design of the beamforming algorithm. The combined noise power Pn can be

expressed as:

Pn = E{|wH(¹, ϕ)n(¹, ϕ)|2} = E{wH(¹, ϕ)n(¹, ϕ)nH(¹, ϕ)w(¹, ϕ)}
= wH(¹, ϕ)E{n(¹, ϕ)nH(¹, ϕ)}w(¹, ϕ)

= wHRw.

(2.16)

The LCMV algorithm finds the optimal beamforming coefficients (wlcmv) that minimize

the output power of the noise (Pn) subject to linear constraints. To define the constraints, let

us assume that our subarray is transmitting in Kc directions (¹j, ϕj) where j = 1, 2, 3, . . . , Kc.

Our desired direction is set as (¹i, ϕi) and the rest of the directions as undesired, i.e., (¹j, ϕj)

where j ̸= i. To ensure maximum SINR, the goal is to find the set of coefficients (w(¹i, ϕi))

that satisfy the constraint of maximum gain in the desired direction, i.e., wH(¹i, ϕi)a(¹i, ϕi),

and the constraint of no gain in all other directions, i.e., wH(¹i, ϕi)a(¹j, ϕj) = 0 where j ̸= i.

This leads to Kc linear constraints, which can then be written in a matrix form as

CHw = g, (2.17)

where C is M × Kc matrix containing all the steering vectors towards all Kc users and

g is the constraint gain column vector of size Kc. Then the optimization problem is written

as

min
w

wHRw subject to CHw = g. (2.18)

Each column of the constraint matrix C defines the steering vector a(¹, ϕ) in the specific

direction of the constraint. For clarity, the steering vector for the desired direction is typically

placed in the first column and the steering vectors for the other constraints in the subsequent

columns. This can be represented as:

C =
[

a(¹i, ϕi) a(¹2, ϕ2) ... a(¹Kc
, ϕKc

)
]

.
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The corresponding gain vector is designed to put the constraint of maximum gain (unity)

in the desired direction and no gain (e.g., 0) in the other directions, i.e.,

g =
[

1 0 ... 0
]T
.

To solve this optimization problem, the Lagrange multipliers method is employed as

shown in [42,43]. The Lagrangian equation for this problem can be formulated as:

L(w, ¼) = wHRw − ¼(wHC − gT ), (2.19)

where ¼ is the Lagrange multiplier. To get the optimal coefficients, derivative of (2.19)

is taken with respect to wH :

∂L
∂w

= Rw − ¼C.

The derivative is equated to zero to find the optimal weight w:

Rw − ¼C = 0

w = ¼R−1C.
(2.20)

Inserting this value of w into constraint in (2.18) to find value of the Lagrange multiplier:

CHw = g,

¼CHR−1C = g,

¼ =
g

CHR−1C
.

Finally substituting the value of ¼ in (2.20) to get optimized LCMV weights

wlcmv =
R−1C

CHR−1C
g (2.21)

In the case of uniform ERPs, the signal covariance matrix R accurately reflects the

statistical properties of the signals received by the antenna array and is well-conditioned,

with a smaller spread of eigenvalues. This results in a more symmetric and balanced matrix,
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which is crucial for minimizing numerical errors and enhancing the stability of computations

during matrix inversion, which is a critical step in the LCMV beamforming method as shown

in (2.21). Uniform ERPs also lead to consistent and predictable beam patterns, allowing

the LCMV algorithm to generate near-optimal beamforming weights that achieve deep nulls

with high precision.

In contrast, non-uniform ERPs introduce significant variations in element responses,

leading to a poorly conditioned covariance matrix. This poor conditioning makes matrix

inversion more challenging and can result in suboptimal beamforming weights, inadequate

interference suppression, and inaccuracies in nulling angles. Consequently, it is important

to consider the impact of non-uniform ERPs on the overall performance of the LCMV

beamformer, to be discussed in the following chapter.

Minimum Variance Distortionless Response (MVDR)

The MVDR beamformer, also known as the Capon beamformer [44, 45], is a specialized

adaptation of the LCMV beamforming technique. It aims to minimize the noise power

(or variance) at the beamformer output while ensuring that the signal from the desired

direction achieves the maximum gain, hence maintaining a distortionless response (DR). In

relation to LCMV, MVDR can be seen as a special case in which the constraint matrix C

has only one column that defines the steering vector a(¹i, ϕi) in the desired direction for

maximum response. Consequently, the gain constraint vector g contains a single value of

unity, underscoring the ’distortionless’ nature of this approach.

The MVDR algorithm utilizes a similar strategy to LCMV for determining the optimal

weight vector, wmvdr, with the objective of minimizing the output noise power Pn. The

solution to this optimization process can be found by adapting the LCMV weight equation

(2.21) with the specific constraints imposed by the MVDR framework: the constraint matrix

is replaced with the steering vector and the constraint gain vector with unity, i.e.,

wmvdr(¹i, ϕi) =
R−1a(¹i, ϕi)

aH(¹i, ϕi)R−1a(¹i, ϕi)
(2.22)

If the channel noise is considered to be AWGN, its covariance matrix is:

R = Ã2I
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where Ã2 is the noise power and I is the identity matrix. In this context, the MVDR

beamformer aims to minimize the variance of the output while maintaining a distortionless

response in the desired direction. Substituting R−1 = 1
σ2 I into (2.22) to get:

wmvdr =
1
σ2 a(¹i, ϕi)

aH(¹i, ϕi)
1
σ2 a(¹i, ϕi)

=
a(¹i, ϕi)

aH(¹i, ϕi)a(¹i, ϕi)

(2.23)

This shows that if the channel noise is AWGN, the MVDR beamformer weights are simply

the steering vector normalized by the inner product of the steering vector with itself (i.e. its

power)

2.4 Concluding Remarks

In this chapter, a case of Rx beamforming was presented, introducing the NCB techniques

of LCMV and MVDR under the assumption of an isotropic ULA. The goal was to provide

a comprehensive understanding of the theoretical foundations, existing research, and the

challenges these algorithms face in multi-user scenarios.

In the next chapter, the focus will shift to examining the performance of the LCMV

algorithm in a more realistic scenario involving heterogeneous antenna elements. This

investigation aims to identify the limitations LCMV may face in practical implementations,

particularly in terms of precision and nulling levels. By uncovering these challenges, the

potential performance degradation caused by non-uniform radiation patterns in a

multi-user environment can be better understood.

The studies in the next chapter will serve as a baseline for further optimization efforts. In

the subsequent chapters, a novel perturbation-based approach will be introduced to enhance

the system’s SINR. This method aims to address the identified limitations and improve the

overall effectiveness of NCB techniques in real-world applications.
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Chapter 3

LCMV-Based Tx beamforming with

Heterogeneous Antenna Elements

In Tx beamforming for multiple users, each user is served by a distinct sub-array of the

antenna array. However, the beam intended for one user can still cause interference to

others due to out-of-target radiation. Unlike Rx beamforming, Tx beamforming does not

need to account for thermal noise, as the noise generated within the transmitter is negligible

compared to the transmitted signal. As a result, for Tx beamforming, the focus can be

entirely on efficiently directing signal power to the target user while minimizing interference

to other users by controlling sidelobe radiation, ensuring optimal performance across multiple

users.

In LCMV beamformer derivation, variations in ERP magnitude responses can result in a

poorly conditioned signal covariance matrix with a wide eigenvalue distribution, undermining

the numerical stability of matrix inversion during optimization. Computational errors in

matrix inversion can cause significant numerical inaccuracies. This degrades the steering

coefficients, impairing interference suppression and leading to discrepancies in nulling angles.

As demonstrated in [1], larger ERP variations increase the degradation of nulling depth and

angle accuracy. This chapter investigates the impact of non-uniform ERPs on the LCMV

performance.
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3.1 System Model

For our ABF approach, as shown in Fig. 3.1, consider the ith M -element sub-array operating

in an environment with K users, where K < M . The objective is to transmit the signal si to

the desired user (UE1) in the direction (¹i, ϕi) while placing radiation nulls in the directions

of the remaining K − 1 unintended users (¹j, ϕj) for j ̸= i.

Figure 3.1: Tx Beamforming in desired user UE1 direction, while mitigating interference

to in other users’ directions

The radiation pattern produced by the Tx beamforming phased sub-array, as shown

in Fig. 3.1, consists of the desired signal transmitted to the target user and unintended

signals causing interference to other users. The signal transmitted by the ith subarray can

be mathematically expressed as the sum of these components:
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ti(¹i, ϕi,θN ,φN) = wH
i ai(¹i, ϕi)si

︸ ︷︷ ︸

Desired Signal

+ wH
i Ai(θN ,φN)si

︸ ︷︷ ︸

Interference

(3.1)

The first term denotes the ith sub-array transmitting the intended signal towards the

target user i, located in the direction (¹i, ϕi). The symbol si represents the transmitted

signal symbol from this subarray. The beamforming vector for ith subarray, denoted by wi ∈
C
M×1, controls the constructive and destructive summation of the transmitted signal at each

antenna element giving shape and direction to the transmitted beam pattern. The vector

ai(¹i, ϕi) ∈ C
M×1 represents the steering vector of the ith subarray towards the intended user

in direction (¹i, ϕi) and is composed of antenna element positions, propagation directions,

and antenna ERPs, as given in (2.9).

The second term in (3.1) represents the K − 1 signals transmitted from the subarray

to users other than the intended user i. The interference steering matrix Ai(θN ,φN) ∈
C
M×(K−1) maps the steering vectors towards the K− 1 users from the ith transmitter, which

has M antenna elements. The 1 × (K − 1) angle vectors θN = [¹1, ..., ¹(i−1), ¹(i+1), ..., ¹K ]

and φN = [ϕ1, ..., ϕ(i−1), ϕ(i+1), ..., ϕK ] represent the interference directions. Each column of

Ai(θN ,φN) corresponds to a steering vector ai(¹j, ϕj), where j ranges from 1 to K, excluding

i, i.e.,

Ai(θN ,φN) = [ai(¹1, ϕ1), ..., ai(¹i−1, ϕi−1), ai(¹i+1, ϕi+1), ..., ai(¹K , ϕK)]. (3.2)

Unlike regular LCMV implementation which aims to minimize the output noise power,

the modified optimization problem aims at properly designing the beamforming coefficient

vector wi, to minimize the total output power towards unindented user directions, i.e.,

wH
i Ai(θN ,φN)si ≈ 0, while maintaining the strength of the desired signal in the intended

user direction.
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The power transmitted in the interference direction by the ith transmitter is

E{|wH
i Ai(θN ,φN)si|2} = E{|si|2}E{|wH

i Ai(θN ,φN)|2}
= E{wH

i Ai(θN ,φN)AH
i (θN ,φN)wi}

= wH
i E{Ai(θN ,φN)AH

i (θN ,φN)}wi

= wH
i Ri(θN ,φN)wi,

(3.3)

where Ri(θN ,φN) is the covariance matrix of Ai(θN ,φN). The diagonal elements of the

matrix Ri(θN ,φN) quantify the power of each undesired signal component from the

corresponding antenna elements. The off-diagonal elements describe the correlations

between these components across different elements.

Updating the LCMV optimization objective, defined in (2.18), the optimum coefficients

can be achieved by minimizing the total transmitted interference power in (3.3) while

maintaining the high power gain (g) in the intended user direction (¹i, ϕi), i.e,

min
wi

{wH
i Ri(θN ,φN)wi} conditional on wH

i a(¹i, ϕi) =
√
g.

The solution to the updated objective function is derived using the Lagrange Multiplier

method given in (2.19) to get:

wlcmv(¹i, ϕi,θN ,φN) =
√
g

R−1
i (θN ,φN)a(¹i, ϕi)

aH(¹i, ϕi)R
−1
i (θN ,φN)a(¹i, ϕi)

. (3.4)

While the LCMV algorithm uses spatial filtering to preserve the intensity of the intended

signal and reduce interference, its effectiveness critically depends on accurately aligning the

array’s response with the spatial characteristics of both desired and interfering signals. As

outlined in (2.9) and (3.2), the desired signal steering vector ai(¹i, ϕi) and the interference

steering matrix Ai(θN ,φN) are shaped by the ERPs of individual elements. As mentioned

in Section 2.3.2, under the assumption of uniform ERP, it is easier to capture and predict

the statistical properties of the desired and interfering signals, leading to a well-conditioned

covariance matrix.
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In the next section, multiple simulations will be used to observe the effects of non-uniform

ERPs and how variations in ERPs impact the performance of LCMV. As horizontal linear

phased arrays are used for beamforming, the beam’s steerability will be confined to the

azimuth plane. Therefore, for simplicity, all simulations and measurements will assume that

users are located on the azimuth plane with a fixed elevation angle of ϕ = 90◦.

3.2 Illustrative Results

3.2.1 Element Pattern Measurement Setup

Figure 3.2: 8x8 antenna array prototype and element/sub-array indices.

In our experimental measurements of ERPs, we utilized an 8×8 dual-layer

electromagnetic bandgap (EBG) array featuring circularly polarized (CP) patch antennas,

designed for mMIMO systems and operating within the 3.35 GHz to 3.6 GHz frequency

range, as shown in Fig. 3.2. To mitigate spatial aliasing in the beamforming process, the

spacing between adjacent radiating patch elements was set to 2.78 cm (0.32¼0 at 3.5 GHz)
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edge-to-edge or 4.00 cm (0.47¼0) center-to-center. This configuration achieved an isolation

level better than 14.3 dB between neighbouring elements [46].

Measurements were performed in an anechoic chamber measuring 6.1 m × 2.4 m × 2.4 m

(length × width × height) and fitted with C-RAM SFC-48 absorbers to minimize reflections

and external interference. To streamline the measurement process, calibrated 1-to-16 RF

switches, controlled by a custom Serial Peripheral Interface (SPI) module, were employed to

enable sequential switching and measurement of each of the 16 elements in a set, with only

one antenna element active during each measurement.

The NSI2000 platform, integrated with a vector network analyzer (VNA), was used to

collect data. The ERPs were scanned with a resolution of 1◦ for both the ¹ and ϕ angles,

with ¹ ranging from −180◦ to 180◦ and ϕ from −90◦ to 90◦. Measurements covered the

operational frequency range from 3.35 GHz to 3.6 GHz, with a step size of 0.05 GHz. The

normalized 3D radiation pattern for the mth element at each frequency was stored in a matrix

Em ∈ R
361×181, where each entry Em(¹, ϕ) represents the normalized radiation value at angle

(¹, ϕ).

(a) Tx-1x8A

(b) Tx-1x8B

Figure 3.3: Tx-1x8 Element 3D-Radiation Patterns

The measurements reveal an average directivity of 6.95 dB across all elements. The

measured ERPs, including directivity values for 16 key elements from two horizontal

subarrays, highlighted in Fig. 3.2, are presented in Fig. 3.3. Edge elements in subarray

Tx-1 × 8A, particularly those subject to strong inter-element mutual coupling along the

x-axis, exhibited a slight reduction in directivity and increased distortion, as shown in
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Fig. 3.3(a). In contrast, elements nearer the array’s center, such as those in subarray

Tx-1 × 8B, demonstrated more consistent radiation patterns, as illustrated in Fig. 3.3(b).

3.2.2 LCMV performance for Two-User case

To present the challenges caused by the varied ERPs on the LCMV beamforming process, we

simulate its performance on a Tx sub-array using four distinct element pattern assumptions:

1. Isotropic: All elements are assumed to be isotropic.

2. Homogeneous: All elements are assumed to have the same radiation pattern,

represented by the central element B4 of the Tx board, as shown in Fig. 3.2.

3. Tx-1×8B: Represents the center 1x8 sub-array with minimal radiation pattern

variation, as shown in Fig. 3.3b.

4. Tx-1×8A: Represents the edge 1x8 sub-array with significant radiation pattern

variation, as shown in Fig. 3.3a.

The simulation was conducted using MATLAB Phased Array Toolbox and built-in

functions to calculate the LCMV and MDBF coefficients. The two-user scenario was

considered, with the intended user located at ¹i and the unintended user at ¹N . The

16-sample simulation proceeded in two phases. In the first phase, 8 simulations were

performed by varying the interference user angle (¹N) within the range of −30◦ to 30◦,

while keeping ¹i fixed at 5◦. This allowed for the observation of how changes in the null

location affected performance while the main user direction remained constant. The

performance of LCMV was compared to the MDBF benchmark to evaluate SINR

improvements, with the results presented in Table 3.1.

For isotropic and homogeneous radiation pattern configurations, the LCMV results for

nulling depth surpass the MDBF condition by an average of -47 dB. The performance of

both cases is identical, showing that LCMV generates optimal results if all antenna elements

exhibit the same radiation pattern.

For the Tx-1×8B sub-array, LCMV’s efficiency drops noticeably, with average null depths

of -29.7 dB (37 dB worse than with isotropic sources) and showing an average improvement

of only -9 dB over the MDBF scenario.
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Normalized Null Depth (dB)
Isotropic Homogeneous Tx-1×8B Tx-1×8A

¹N MDBF LCMV MDBF LCMV MDBF LCMV MDBF LCMV
−30◦ -20.6 -65.0 -21.0 -65.4 -18.7 -23.3 -18.0 -18.4
−25◦ -25.2 -64.0 -25.1 -64.0 -38.4 -25.6 -25.1 -20.8
−20◦ -13.9 -71.4 -14.6 -72.1 -17.1 -29.3 -18.5 -29.6
−15◦ -13.8 -71.2 -15.8 -73.2 -17.2 -28.1 -25.8 -22.4
−10◦ -31.2 -66.0 -33.6 -68.4 -22.2 -27.0 -10.2 -19.3
20◦ -25.7 -60.2 -27.2 -61.7 -21.7 -34.7 -11.6 -27.8
25◦ -14.5 -66.1 -16.3 -68.0 -16.3 -37.7 -27.7 -27.9
30◦ -13.2 -70.0 -15.3 -72.0 -14.1 -32.0 -20.3 -27.5
Average -19.8 -66.7 -21.1 -68.1 -20.7 -29.7 -19.6 -24.2

Table 3.1: Achieved Null Depths with Fixed ¹i = 5◦

For the Tx-1×8A sub-array, which presents higher radiation pattern variation, the average

null depths achieved with LCMV are 5.5 dB lower than the Tx-1×8B case and 42 dB lower

than in the isotropic scenario. This case shows less than -5 dB improvement in null depth

through LCMV over MDBF. Notably, in 2 out of the 8 cases, LCMV performed worse than

the MDBF benchmark.

These results show that increased variation in the radiation patterns among individual

array elements correlates with more degraded performance by the LCMV beamformer. It

aligns with our concern that it is harder to predict the statistical properties of incoming

signals and derive a well-conditioned covariance matrix, as in (3.3), under large variations

in antenna ERPs.

In the second phase, we modulated the primary beam angle (¹i) across the −30◦ to 30◦

range, with a static ¹N at 5◦. The results are represented in Table 3.2.

In isotropic and homogeneous pattern cases, LCMV improves nulling depth by -59.4 dB

over the MDBF case. The Tx-1×8B case showed a 45 dB drop in LCMV performance

compared to the uniform elements scenario, with an improvement of -15.7 dB over MDBF.

The Tx-1×8A sub-array exhibited an even further performance degradation, with LCMV

performing worse than MDBF by 0.9 dB on average and 59 dB lower than the isotropic

scenario, reinforcing the correlation between element pattern variation and LCMV

performance.
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(a) Beam pattern using Isotropic ERP (b) Beam pattern using Uniform ERP

(c) Beam pattern using Tx-1x8B ERP (d) Beam pattern using Tx-1x8A ERP

Figure 3.4: Tx 1x8 Beam Pattern comparison of LCMV Nulling in subarray with different

ERP scenarios

A snapshot of the LCMV’s performance across the four scenarios, assuming ¹i at 30◦

and ¹N fixed at 5◦, is provided in Fig. 3.4. The figures clearly show that the deeper nulls

are achieved in Isotropic and Homogeneous cases, however, in the rest of the two cases, the

performance significantly decreases due to variation in ERP.

In conclusion, the simulation results show that in practical scenarios where the

assumption of uniform ERP is no longer valid, LCMV may not accurately estimate the
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Normalized Null Depth (dB)
Isotropic Homogeneous Tx-1×8B Tx-1×8A

¹i MDBF LCMV MDBF LCMV MDBF LCMV MDBF LCMV
−30◦ -20.6 -81.3 -21.8 -82.6 -20.3 -34.7 -20.7 -20.2
−25◦ -25.2 -77.7 -26.7 -79.2 -22.3 -34.5 -27.9 -29.8
−20◦ -13.9 -81.4 -14.7 -82.3 -13.1 -32.9 -20.6 -24.6
−15◦ -13.8 -83.4 -13.5 -82.9 -13.7 -34.0 -27.4 -19.2
−10◦ -31.2 -72.5 -30.5 -71.9 -26.1 -38.1 -12.2 -17.5
20◦ -25.7 -71.9 -25.4 -71.6 -22.9 -33.9 -13.0 -16.5
25◦ -14.5 -79.1 -14.1 -78.7 -15.1 -32.8 -28.8 -16.2
30◦ -13.2 -86.1 -12.4 -85.3 -13.1 -31.0 -20.4 -20.1
Average -19.8 -79.2 -19.9 -79.3 -18.3 -34.0 -21.4 -20.5

Table 3.2: Achieved Null Depths with Fixed ¹N = 5◦

inverse covariance matrix and can converge to suboptimal beamforming coefficient

resulting in a significantly poor performance.

3.2.3 LCMV performance based on user proximity

In this simulation, our objective is to determine the minimum angular separation between

the desired user (¹i) and the interference user (¹N) that can be achieved by the LCMV

algorithm without significantly distorting the overall beam pattern. This analysis helps to

assess LCMV’s effectiveness in suppressing interference located in close proximity to the

intended user. For simplicity, we focused on a two-user scenario, utilizing the Tx-1 × 8B

sub-array for the simulation.

The main steering angle was set to ¹i = 5◦, while the nulling angle was varied from

¹N = −30◦ to ¹N = 30◦ in increments of 5◦ (except for ¹N = 5◦). This was done to

determine the closest possible proximity between the main beam and nulling directions before

it influences the overall beam shape, such as the sidelobe levels and beam peak direction.

The simulation results in Table 3.3 indicate that as long as the separation |¹i−¹N | remains

greater than 15◦ (or 0.5 × First Null Beamwidth (FNBW)), the beam remains unaffected

without any tilting or distortion. Additionally, sidelobe levels are kept below -12 dB, and

the beam main lobe is accurately directed in the desired direction.
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|¹N − ¹i| Directivity
(dBi)

Normalized
Null Depth (dB)

Normalized
Sidelobe Level (dB)

Beam Peak Deviation
from ¹i (degrees)

−35◦ 14.8 -23.3 -14.1 0
−30◦ 14.8 -25.6 -13.3 0
−25◦ 14.6 -29.3 -13.0 0
−20◦ 14.6 -28.1 -13.9 -1
−15◦ 14.8 -27.0 -13.3 0
−10◦ 14.1 -30.2 -7.8 3
−5◦ 9.9 -38.6 -4.0 7
5◦ 9.9 -30.6 -3.4 -6
10◦ 14.0 -29.6 -6.9 -3
15◦ 14.8 -34.7 -12.5 -1
20◦ 14.6 -37.7 -16.7 0
25◦ 14.6 -32.0 -15.5 0

Table 3.3: Directivity and Null Depth for Two-User Case ¹i = 5◦

On the other hand, if |¹i − ¹N | < 15◦, distortions in the beam shape emerge. The main

beam tilts in the direction opposite to the null direction by up to 7◦, resulting in a loss of

power in the main user direction. Sidelobe levels also rise to approximately -7 dB or higher.

Fig. 3.5 provides an azimuth cut at 0◦ elevation angle for beams created using LCMV

weights on the Tx-1×8B sub-array. The plots show the no-nulling (MDBF) scenario and 4

different nulling angle cases from the table. The plots confirm the increase in sidelobe levels

and deviation of beam peak once the distance between the users is less than 15◦.

To avoid beam distortion or tilting, it is essential to properly consider the nulling angle

and its distance from the main beam, especially when applying LCMV weights to the sub-

array. This can be achieved by taking into account the FNBW, which is influenced by

the number of antenna elements in the array as shown in Fig. 2.2. A general criterion is

established showing the correlation of separation distance to the average FNBW:

|¹i − ¹N | > 0.5 × FNBW (3.5)
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Figure 3.5: Beam patterns for Tx-1×8B, LCMV with ¹i = 5o and varied ¹N

3.2.4 Exhaustive search for LCMV 2-User Case

This simulation was conducted to assess the LCMV beamforming algorithm’s ability to

achieve sufficient nulling depths (better than -20 dB) across various (¹i, ¹N) pairings. The

Tx-1 × 8B sub-array was selected for this purpose, with beamforming coefficients generated

using the MATLAB LCMV toolbox.

An iterative approach was employed, where both ¹i and ¹N were varied from −50◦ to 50◦

in 1◦ increments, leveraging the characteristics of the Tx-1 × 8B sub-array. The separation

criterion defined in (3.5) was applied, which for this sub-array translated to a minimum

angular separation of 15◦ between all (¹i, ¹N) pairs.

The results of our extensive simulation are presented in Fig. 3.6, where pixel intensity

reflects the depth of the nulls achieved. Darker pixels correspond to steering and nulling

angle pairs that achieve normalized nulls deeper than the -20 dB threshold using the LCMV

scheme, while white pixels denote (¹i, ¹N) pairs where deep nulls could not be realized when
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Figure 3.6: Nulling depths at different (¹i,¹N) locations (simulation results with Tx-1×8B)

applying LCMV weights to practical antenna elements.

The presence of several white patches indicates that LCMV failed to achieve deep nulls

for certain angle pairs. In approximately 50% of the simulation cases, the normalized null

depth was less than -20 dB, suggesting the sub-optimal performance of LCMV when applied

to heterogeneous antenna elements in real-world scenarios. In areas where darker pixels

appear, the null depths typically range between -20 dB and -35 dB.

Additionally, the simulations revealed that the LCMV algorithm often demonstrates

inaccuracies in establishing precise nulls at the designated nulling angle ¹N , with deviations
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of 1 to 3 degrees observed in the simulations.

3.2.5 LCMV performance under multiple interferences

This simulation was conducted to evaluate the impact of introducing additional nulls into

the LCMV-generated beam pattern, aimed at testing the algorithm’s capability to handle

multiple interference sources. Given the degree of freedom constraint in a 1 ×M array, the

algorithm can control up to M − 1 arbitrary nulls. However, for this simulation, up to three

interference users were tested. The Tx-1 × 8B sub-array was chosen for the simulation and

beamforming coefficients were generated using the MATLAB LCMV toolbox.

The main steering angle was set at ¹i = 10◦, and three arbitrarily selected nulls were

introduced sequentially at angles ¹N1 = −30◦, ¹N2 = −10◦, and ¹N3 = 30◦. The results can

be visualized in Fig. 3.7.

In this simulation, each null was introduced sequentially to monitor how the addition

of nulls impacted the overall beam profile and the depth of previous nulls. It was observed

that adding a new null caused a noticeable shift in the beam peak away from its intended

direction by up to 3◦.

The achieved null depths ranged from -23 dB to -31 dB relative to the beam peak,

averaging -26 dB, which is 8 dB lower than the average nulling achieved for the Tx-1×8B

sub-array in single-user cases. This demonstrates that adding additional nulls or nullifying

multiple interferences under practical antenna element conditions can impact LCMV

performance in terms of precision and depth of nulls.

3.3 Concluding Remarks

This chapter has highlighted the impact of heterogeneous ERPs on the performance of the

LCMV algorithm. Simulations have shown that LCMV performs suboptimally when the

antenna elements of the array are non-uniform, resulting in shallower or less precise nulls,

which can degrade overall system performance. Addressing this issue necessitates a solution

that takes ERP variations into account when adjusting the LCMV coefficients.

In the next chapter, PNCB is introduced as a method to address the limitations of

LCMV in the presence of heterogeneous ERPs. PNCB provides a robust mechanism for
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Figure 3.7: Beam radiation patterns with 0, 1, 2, 3 added nulls (simulation results using

LCMV)

dynamically adjusting beamforming coefficients, ensuring optimal performance even with

non-uniform antenna elements. The principles and implementation of PNCB will be

discussed, demonstrating its effectiveness in overcoming the challenges faced by traditional

LCMV beamforming in real-world scenarios.
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Chapter 4

Perturbation Based Adaptive

Beamforming 1

As presented in the previous chapter, non-iterative ABF algorithms perform optimally with

uniform ERP, as the estimated covariance matrix accurately captures the spatial

characteristics of the incoming signal. However, in practical implementations, non-uniform

radiation patterns of antenna elements introduce variations to complicate the precise

estimation of the array response, leading to potential misalignment between the estimated

and the actual response for both ai(¹i, ϕi) and Ai(θN ,φN). Within the framework of the

LCMV algorithm, this misalignment often results in a poorly conditioned covariance

matrix Ri(θN) calculated in (3.3), which does not accurately estimate the spatial

properties of the incoming signal. As illustrated in the previous results, this limits the

performance of LCMV by generating sub-optimal beamforming weights that produce

shallow and imprecise nulls.

To address the limitations of LCMV beamforming in scenarios with heterogeneous

antenna element patterns, a PNCB technique is proposed. This method enhances nulling

performance by introducing fine perturbations to the LCMV-generated beamforming

vectors. These perturbations adjust the beamforming weights to improve interference

suppression by accommodating variations in ERPs. This technique traverses the search

1Parts of this chapter have been presented at the 2023 IEEE 98th Vehicular Technology Conference
(VTC2023-Fall), Hong Kong, Hong Kong [1] and in the IEEE Open Journal of Vehicular Technology, vol.
5, pp. 1273-1293, 2024 [2]



4. Perturbation Based Adaptive Beamforming 47

space in search of optimum magnitude and phase values to update the beamforming

vectors. The updated beamforming vectors are effective in NCB by adapting to ERP

variation making this technique more practical in real-life scenarios where the antenna

array has heterogeneous ERPs. However, as the number of antenna elements M increases,

the complexity of deriving an optimal beamformer grows exponentially. For example,

determining the optimal combination of ³-level quantized magnitudes and ´-level

quantized phases for an M -element array through exhaustive search would require ³M´M

iterations, leading to a significant increase in computational complexity.

To reduce computational complexity, PSO is integrated into the PNCB framework as

an efficient alternative to exhaustive search methods. The metaheuristic nature of PSO

allows for more efficient exploration of larger solution spaces with reduced computational

overhead. Its stochastic and parallel multi-agent search aspects make PSO particularly

well-suited for tackling complex, non-convex optimization problems. PSO excels in

navigating high-dimensional search spaces where traditional optimization techniques may

struggle, consistently delivering robust solutions even in challenging scenarios, such as

large-scale beamforming with multiple interference sources.

This chapter introduces the proposed PNCB scheme, explains the working principles of

PSO within our model, and presents comparative simulation and measurement results to

investigate the effectiveness of the method.

4.1 Proposed Particle Swarm Optimization for Nulling

Control Improvement

In the proposed model, PSO is employed to search for the optimal beamforming solution

while taking into consideration the individual ERPs of the antenna elements in the array.

PSO is a nature-inspired algorithm designed to solve optimization problems by mimicking

the social behaviour of swarms, such as flocks of birds or schools of fish. It operates by

initializing a population of particles, each representing a potential solution, which in our

case is a potential beamforming vector.

The algorithm operates by moving particles through the search space, confined within

defined boundaries, with their positions being adjusted based on both their individual
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experiences and the experiences of other particles in the swarm. Typically, the initial

positions of these particles are randomly selected. However, to enhance the search process,

we propose a PNCB strategy that integrates PSO with the LCMV beamformer for the

initial generation of search vectors. By using an LCMV-derived vector wlcmv(¹i,θN) as the

starting point, PSO can converge toward more optimal solutions, mitigating the risk of

premature convergence to local minima. This combined approach leverages the LCMV’s

strengths for rapid initial weight generation and the flexibility of PSO to refine the

beamforming vectors further.

Since beamforming vectors consist of M complex weights, containing both magnitude

and phase information, most approaches decompose these into real-value component vectors

before applying optimization [32]. In our work, we decompose the beamforming vectors into

a 2M real-value vector, which facilitates perturbations and allows separate search boundaries

for phase and magnitude. Consequently, during the PSO search, each beamforming search

vector is represented as:

Ωn
p = [mag(wn

p ), ang(wn
p )], (4.1)

where Ωn
p ∈ R

2M represents the search vector for the pth particle at the nth iteration,

mag(wn
p ) ∈ R

M denotes the magnitudes of the beamforming weights wn
p ∈ C

M , and

ang(wn
p ) ∈ R

M corresponds to the phases of wn
p .

The initial search vector, derived from the LCMV beamformer, is expressed as:

Ω1
p(¹i,θN) = Ωlcmv(¹i,θN) = [mag(wlcmv(¹i,θN)), ang(wlcmv(¹i,θN))]. (4.2)

For the proposed model, the scenario illustrated in Fig. 3.1 is considered, where an

M -element ith sub-array is operating in an environment with K active users. As shown

in Fig. 4.1(a), our proposed algorithm initializes by taking the measured ERPs of the M

elements, the target user’s location ¹i, and the positions of potential interference sources

θN , as inputs to the LCMV beamformer. For simplicity, the elevation angles of all users are

fixed at ϕ = 90◦ for both simulations and measurements. The inputs are processed by the

LCMV function to instantaneously generate the initial steering vector wlcmv, which serves

as the initialization point for the subsequent PSO optimization process.

In the PSO optimization phase, shown in Fig. 4.1(b) Np particles explore the solution
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Figure 4.1: a) Flow diagram illustrating the integration of PSO with LCMV in the proposed

PNCB; b) Iterative process of the PSO-based optimization block

space in parallel, updated iteratively over a maximum of Nn iterations. The computational

complexity of PSO is governed by three primary parameters: the number of particles (Np),

the number of iterations (Nn), and the number of antenna elements (M). In each iteration,

every particle evaluates the objective function, which has a complexity of O(t(2M)), where

t(2M) represents the time complexity of evaluating the cost function for the 2M -dimensional

input. Additionally, each particle updates its velocity and position, requiring basic arithmetic

operations with a O(2M) complexity. Therefore, the per-iteration complexity for all particles

is O(Nn[t(2M) + 2M)]. Over Nn iterations, the total complexity becomes O(NpNn[t(2M) +

2M)]. If the objective function is simply polynomial as in our case, t(2M) is typically O(2M),

leading to an overall complexity of O(2MNpNn). However, for more complex functions (e.g.,

involving matrix operations), t(2M) dominates the complexity.

The scalability of PSO makes it a viable approach for optimizing large-scale antenna

arrays, where the problem dimensionality is given by 2M . For large values of M , the

increased dimensionality introduces a greater challenge in finding optimal solutions within

a reasonable time frame. However, this challenge can be addressed through several

improvements. Adaptive PSO variants, such as dynamic inertia weight adjustment and
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constriction factor techniques, help improve convergence speed without compromising

solution quality. Furthermore, parallel implementations of PSO can leverage modern

computing architectures to efficiently distribute the computational workload, significantly

reducing optimization time. Additionally, PSO’s convergence behaviour can be controlled

by adjusting the number of particles (Np) and the number of iterations (Nn), allowing it to

scale dynamically with problem size. Increasing these parameters can improve the precision

of the solution but incurs a higher computational cost. Reducing them accelerates the

process at the potential cost of solution accuracy.

Furthermore, leveraging the inherent symmetry of antenna arrays, as discussed in [2],

can significantly reduce the dimensionality of the PSO optimization problem for large-scale

arrays. By exploiting this symmetry, the number of weights that need to be optimized is

reduced, leading to a lower computational cost without compromising performance. This

reduction in dimensionality enhances the efficiency of PSO, making it more scalable for

large-scale antenna array applications. Overall, PSO remains a powerful and adaptable

optimization technique, and by integrating advanced PSO strategies and computational

optimizations, it is possible to achieve high-performance solutions even as antenna array

sizes continue to grow.

The primary objective of this optimization is to suppress interference in the directions

specified by θN while maintaining high directivity toward the target angle ¹i. To prevent

the algorithm from converging on suboptimal beamforming vectors that degrade the SINR, a

heavy penalty factor Q is introduced. This penalty ensures that particles are directed toward

improving solutions during each iteration. The penalty factor evaluates the performance of

the current search vector Ωn
p relative to the initial vector Ωlcmv and assigns a high value

when the current search vector underperforms. Specifically, deviations in directivity beyond

an allowable tolerance ϵ at the target angle ¹i, or insufficient null depth compared to the

LCMV solution at the interference angles θN , trigger penalties. These penalty-incurring

cases can be defined as:

Case 1:D(Ωn
p ,θN) > D(Ωlcmv(¹i,θN),θN),

Case 2:D(Ωn
p , ¹i) f D(Ωlcmv(¹i,θN), ¹i) − ϵ,

(4.3)

where the function D(Ωn
p ,θ) represents the normalized directivity values evaluated at the
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angle θ for the search vector Ωn
p corresponding to the pth particle at the nth iteration. The

output of D(.) is dimensionally equivalent to the variable θ.

As shown in Fig. 4.1(b), during each nth iteration, all Np search vectors (Ωn
p (¹i,θN),∀p =

1, · · · , Np) are used to compute their corresponding radiation directivity toward both the

intended user and the interference users using the directivity function of MATLAB’s Phased

Array Toolbox. These results are then used to evaluate each particle’s penalty factor Q

based on defined cases in (4.3) as follows:

Q =







0, if neither of the two case is true,

Q1, if one of the two cases is true,

Q2, if both the cases are true,

(4.4)

where 0 < Q1 < Q2 to signify a higher penalty where both cases are true.

Once the penalties are calculated, particles evaluate their current position using the

following cost function, which determines how optimal or effective the solution is:

C(Ωn
p ) = γD(Ωn

p ,θN) − ÇD(Ωn
p , ¹i) +Q, (4.5)

vector γ ∈ R
1×(K−1) and the scalar Ç ∈ R are arbitrary positive constants, with γ > 0

and Ç > 0. The D(Ωlcmv, ¹i) ∈ R denotes the directivity at the target angle ¹i, while

D(Ωlcmv,θN) ∈ R
K−1 gives the directivity at the interference nulling angles when the LCMV

beamformer is applied. Therefore, in the cost function, any increase in target directivity or

decrease in radiation power in the interference directions reduces the overall cost function

value.

As the particles move through the solution space, each one keeps track of two important

points: its personal best position, Ωn
best,p for the pth particle, which represents the best

solution the particle has found so far, and the global best position, Ωn
best, which represents

the best solution found by any particle in the entire swarm. These two points guide the

movement of the particles as they explore the search space, helping them to converge toward

the optimal solution and can be written as:



4. Perturbation Based Adaptive Beamforming 52

Ωn
best,p = arg min

Ω
(n∗)
p ,∀n∗=0,1,··· ,Nn

C
(

Ω(n∗)
p

)

,

Ωn
best = arg min

Ω
n

best ,p
,∀p=1,··· ,Np

C
(

Ωn
best ,p

)

.

Once the cost value is computed, the stopping criterion is evaluated. Typically, the

stopping criterion can be defined by a maximum of Nn iterations, a maximum number of stall

iterations Ns (iterations without significant improvement in the cost function), a predefined

threshold for the cost function, or a combination of these. When the stopping criterion is

satisfied, the optimization process halts, and the current global best vector Ωn
best is output

as the final solution. If the stopping criterion is not met, the optimization continues with

the objective of minimizing the cost function, which can be formulated as:

min
Ω̂

C(Ω̂),

s.t. Constraint 1: ∀u ∈ mag(ŵ), 0 f u f 1,

Constraint 2: ang(ŵ) g ang(wlcmv(¹i,θN)) − ∆v,

and ang(ŵ) f ang(wlcmv(¹i,θN)) + ∆v, (4.6)

where Constraint 1 sets the search boundary for the magnitude of each element in the

beamforming vector, restricting it to the range [0, 1]. Constraint 2 defines the limits for

phase perturbations, with ∆v representing the maximum allowable phase variation from the

initial LCMV beamformer phase ang(wlcmv(¹i,θN)). The value of ∆v is chosen based on the

largest permissible phase shift that still ensures an acceptable steering angle change in the

main lobe.

The perturbation or velocity of each particle for the next (n + 1) iteration is governed

by three main factors: its current velocity (denoted as δnp ∈ R
2M), the distance between its

current position and its personal best Ωn
best,p, and the distance between its current position

and the global best Ωn
best. The current velocity component helps the particle maintain its

direction and speed of movement, while the distances to both the personal best and global

best enable the particle to adjust its trajectory. This mechanism ensures that particles

are directed toward their own best-known solutions and the best solution identified by the
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swarm, achieving a balance between the exploration of new regions and the exploitation of

known promising areas. The updated velocity for the pth particle is given by:

δn+1
p = Jδnp + K(Ωn

best,p − Ωn
p ) + L(Ωn

best − Ωn
p ), (4.7)

where K and L are positive, random diagonal matrices that control the self-adjustment and

social adjustment, respectively. These matrices regulate each particle’s tendency to move

toward its personal best (Ωn
best,p) and the global best (Ωn

best) positions. The diagonal weight

matrix J controls the inertia of the particle by scaling its current velocity.

Once the velocity vector is updated, it is critical to ensure that the new search vector

remains within the defined boundaries. If the updated velocity causes the search vector to

exceed these limits, it must be clipped to ensure that both the magnitudes and phases stay

within the feasible region. To this end, we define a clipping function, clip(.), that strictly

enforces these constraints by adjusting any component of the updated search vector that

exceeds the allowable range back to the nearest boundary value. Hence, the update for the

new beamforming search vector Ω(n+1)
p is expressed as:

Ω(n+1)
p = clip(δ(n+1)

p + Ωn
p ,ΩL,ΩU), (4.8)

where ΩL,ΩU ∈ R
2M represent the lower and upper bounds of the search space, respectively,

derived from the constraints stated in (4.6).

4.2 Simulation results for proposed PNCB method

In this section, we present the results of our simulations to assess the performance of our

proposed method. It is important to note that null levels and nulling values reported in this

section are expressed as normalized radiation power values in the target nulling directions,

relative to the power level of the main lobe in the desired user directions. The power towards

the desired user direction is taken as the reference point, corresponding to 0 dB. Moreover,

the elevation angle for all azimuth cut plots shown are the same and fixed at the angle normal
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to the subarray.

4.2.1 PNCB performance in two-user scenario

As discussed in the previous chapters, the ERP of array antenna elements plays a critical

role in determining the performance of NCB algorithms. With increased variation in ERP,

we observed that the LCMV algorithm’s performance degrades, resulting in suboptimal

beamforming precision and reduced efficacy. To further investigate how ERP variations

impact the PNCB process, we conducted simulations on a Tx-1×8 sub-array under four

distinct ERP scenarios:

i) Isotropic: All elements exhibit isotropic radiation patterns, providing an idealized

scenario.

ii) Homogeneous: All elements have identical radiation patterns, with the central

element (B4) representing the characteristics of the entire array.

iii) Tx-1×8B: Refers to the central 1×8 sub-array, where the radiation pattern variation

among the elements is minimal.

iv) Tx-1×8A: Refers to the 1×8 sub-array located at the edge of the array, where there

is significant variation in the radiation patterns of individual elements.

To evaluate the nulling performance of the proposed PNCB method in comparison to

both the MDBF and LCMV beamforming techniques, beam pattern plots were generated

for visual analysis. In these experiments, the primary beam was steered towards a target

angle of ¹i = 30◦, while the nulling angle was set at ¹N = 5◦.

This comparative analysis offers critical insights into how different ERP assumptions

affect beamforming accuracy, with a specific focus on nulling depth and the consistency of

the beam shapes across various scenarios. By analyzing the performance of each method

under the same conditions, the relative strengths and weaknesses in handling interference

and shaping the radiation pattern can be better understood.

The cases of isotropic and homogeneous ERPs are shown in Figs. 4.2(a) and (b). In

these scenarios, both assumptions enable the LCMV algorithm to compute optimal

steering coefficients effectively, yielding deep radiation nulls exceeding -80 dB, accurately

aligned with the target nulling angles. The beam patterns generated by the proposed

PNCB method closely follow those produced by the LCMV beamformer, indicating

comparable performance. The PNCB approach could not further optimize the weights, as
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Figure 4.2: Beam pattern comparison for a 1x8 sub-array, with ¹i = 30◦ and ¹N = 5◦

under different ERP assumptions: (a) isotropic element pattern; (b) homogeneous element

pattern; (c) Tx-1x8B; (d) Tx-1x8A.
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the null depth and accuracy across both methods remained consistent, demonstrating the

robustness of PNCB in environments with uniform element patterns.

When applied to measured heterogeneous element patterns, however, the performance of

the LCMV algorithm degrades significantly, as discussed in Section 3.2.2. Fig. 4.2(c) reveals

that for the central Tx-1×8B sub-array, LCMV achieves a null depth of approximately -

31 dB. However, for the edge sub-array Tx-1×8A, shown in Fig. 4.2(d), the null depth

deteriorates to -22 dB, with a deviation of around 3◦ from the intended nulling angle.

In contrast, the proposed PNCB method shows substantial improvement in both null

depth and angular accuracy. For the Tx-1×8B sub-array, the PNCB achieves a null depth

of -101.6 dB at the nulling angle ¹N = 5◦, representing a 70.6 dB improvement over the

LCMV-based result. Additionally, the null is precisely positioned at the target angle of 5◦,

as opposed to LCMV, which produced the null at 7◦. Regarding beam characteristics, PNCB

produces a 3 dB beamwidth of 17◦ and a normalized sidelobe level of -10.6 dB, resulting in

a slight beamwidth increase of 1◦ and a 2 dB rise in sidelobe level compared to LCMV.

For the Tx-1×8A sub-array, PNCB significantly enhances nulling performance, achieving

a null depth of -77.6 dB at ¹N = 5◦, marking a 55 dB improvement over the LCMV-derived

result. The PNCB also managed to correct the 3o deviation in the null position and generated

the null precisely at the desired ¹N .

These findings reconfirm the challenges faced by LCMV in maintaining deep nulls with

precise angular control in environments where significant variations exist in the ERPs. As the

discrepancies in ERP increase, the effectiveness of the LCMV algorithm in achieving accurate

nulling deteriorates. Conversely, the PNCB method proves to be far more robust and effective

in handling non-uniform ERPs, producing deeper and more accurately positioned nulls even

in complex array configurations.

Performance of PSO for different ¹i, ¹N combinations

To assess the effectiveness of the perturbation-based method, we conducted eight test

simulations using the Tx-1×8B sub-array. The steering angle (¹i) was varied between −30◦

and 30◦, while the nulling angle (¹N) was fixed at 5◦. The simulation settings, including

the array configuration and ERP values, were consistent with those used in previous

LCMV simulations. These configurations ensure that the perturbation-based approach is

evaluated under the same conditions as the LCMV method, allowing for a fair performance
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Beam Directivity (dB) Normalized Null Depth (dB) Nulling Improvement
¹i ¹N MDBF LCMV LCMV+PSO MDBF LCMV LCMV+PSO NullLCMV - NullLCMV+PSO

−30o 5o 13.7 13.6 13.1 -20.3 -34.7 -57.1 22.6
−25o 5o 13.9 14.1 13 -22.3 -34.5 -48.1 13.5
−20o 5o 14.1 13.9 13.5 -13.1 -32.9 -62.2 29.3
−15o 5o 14.2 13.9 13.6 -13.7 -34 -184.7 150.7
−10o 5o 14.5 14.5 14.2 -26.1 -38.1 -160.2 122
20o 5o 14.6 14.6 13.5 -22.9 -33.9 -96 62
25o 5o 14.6 14.5 13.6 -15.1 -32.8 -76.2 43.3
30o 5o 14.5 14.4 13.5 -13.1 -31 -101.6 70.6
Average 14.3 14.2 13.5 -18.3 -34 -98.3 64.3

Table 4.1: Beamforming directivity and null depth at different locations (simulation results)

comparison. For the PSO configuration, the PSO weights were initialized with wLCMV ,

with a particle count of Np = 200 and the maximum number of stall iterations set to 5.

The maximum directivity trade-off was allowed to ϵ = 1dB and no early stopping criterion

was applied.

To ensure the nulling process did not significantly distort the main lobe, we enforced a

minimum separation of at least 15◦ (equivalent to half the FNBW) between the peak of the

main lobe and the target nulling position. This separation helps preserve the integrity of the

main lobe while achieving deep nulls at the desired interference angles.

The detailed simulation results for beam directivity and null depth are summarized in

Table 4.1, offering a comparative view of the PSO-based beamforming method and traditional

LCMV.

Using the PSO-based approach, all eight beams successfully achieved null depths

exceeding -48.1 dB in the desired interference direction. On average, the PSO-based

beamforming method produced nulls that were 64.3 dB deeper compared to those obtained

with the LCMV algorithm alone, with individual improvement of more than 13.5 dB in all

cases. In comparison to the MDBF method, the average power delivered to the undesired

user at 5◦ was reduced by more than 70 dB.

However, the introduction of perturbations led to a slight reduction in average directivity.

Specifically, there was a 0.8 dB decrease in directivity compared to MDBF and a 0.7 dB

decrease compared to the LCMV outcomes. This demonstrates a trade-off between achieving

deeper nulls and maintaining beam directivity. While the perturbation-based NCB method

offers a substantial average improvement of 22.9 dB in null depth, it comes at the cost of a
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modest 0.7 dB reduction in directivity when compared to the LCMV strategy. This trade-off

highlights the balance between interference suppression and maintaining the integrity of the

main lobe in beamforming applications.

4.2.2 Impact of starting search vector on the performance of

PNCB

The coefficients generated by the LCMV beamformer offer a highly accurate approximation

of the optimal beamforming solution, making them an excellent starting point for further

optimization. By applying slight perturbations to the LCMV-derived coefficients, the

optimization process can more efficiently converge toward the global optimum. This

approach reduces the likelihood of the PSO algorithm becoming trapped in local minima,

which is a common challenge in high-dimensional, non-convex optimization problems.

A second key advantage of this method is that PSO when initialized with LCMV-based

coefficients, has a higher probability of reaching the global optimum faster compared to

other methods. This is due to the fact that LCMV already provides a near-optimal solution,

requiring fewer adjustments during the optimization process. Therefore fewer iterations

are typically needed for PSO to converge to the optimal point, which results in reduced

computation time and lower resource consumption. This efficiency is particularly valuable

in real-time applications or scenarios involving complex beamforming tasks, where both time

and computational power are critical factors.

To validate this concept, we conducted PSO simulations across 14 distinct cases,

comparing results between initializing with MDBF generated search vector ΩMDBF (¹i, ¹N)

and LCMV-based search vector ΩLCMV (¹i, ¹N). These 14 cases were randomly selected

from a pool where PSO successfully achieved null depths beyond -100 dB, ensuring that

the scenarios presented sufficient complexity to challenge the optimization process and

increase the likelihood of encountering local optima.

For these simulations, we employed a swarm size of 800 particles (Np) to enhance

convergence, set the maximum number of stall iterations to 8 and the ϵ value was set to 1

dB. Additionally, we implemented a stopping criterion to halt the optimization process

once a normalized null depth threshold of -100 dB was reached. This prevented

unnecessary computations and ensured that the optimization focused only on achieving the
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Normalized Null Depth (dB) Optimization Time (sec)
Ω1
p(¹i, ¹N)

¹i ¹N ΩLCMV (¹i, ¹N) ΩMDBF (¹i, ¹N) ΩLCMV (¹i, ¹N) ΩMDBF (¹i, ¹N)
−20o 5o −100.1 -105.0 6510 7672
−20o 15o −100.5 -56.1 8500 2669
−15o 35o −106.7 -59.8 5993 2169
−10o −25o −104.0 -68.0 5715 4799
−5o 10o −112.9 -89.8 10144 7594
0o 35o -101.2 -102.2 7970 6757
0o −20o -101.3 -65.0 7290 3868
10o −5o -104.0 -105.9 5527 7184
15o 35o -105.9 -62.2 8379 2171
20o −35o -106.9 -59.2 6396 2832
20o −10o -100.8 -100.1 4848 7820
20o −35o -106.9 -59.2 6396 2839
20o −20o -103.6 -73.5 5083 4320
25o −30o -101.1 -102.7 7074 6277

Average -104.0 -79.2 6845 4927

Table 4.2: Achieved null depth and convergence time comparison with different

initialization weights

desired performance.

The results, as shown in Table 4.2, clearly demonstrate the effectiveness of using

LCMV-based initialization in guiding the PSO algorithm towards global optima more

efficiently than initializing with MDBF coefficients. In simulations initialized with the

MDBF search vector ΩMDBF (¹i, ¹N), 9 out of the 14 cases failed to achieve the global

optimum, resulting in an average null depth that was 24.8 dB shallower. In contrast, when

initialized with LCMV generated search vector ΩLCMV (¹i, ¹N), all 14 cases either reached

the global optimum. Furthermore, in the 5 instances where both methods successfully

reached the global optimum, the LCMV-based initialization led to a 10.5% reduction in

average optimization time, highlighting a faster and more efficient convergence process.

These findings underscore the strategic advantage of using LCMV-derived coefficients

as the initial starting point for PSO optimization. This approach not only accelerates the

convergence process but also significantly improves the likelihood of reaching the optimal
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solution, making it a more desirable approach.

4.2.3 PNCB performance in a multiple-user interference scenario

To evaluate the performance of the proposed PNCB technique in more complex MU

environments, simulations were performed with one desired user and three interference

users. The desired user was placed alternately at angles of −35◦, −10◦, 10◦, and 35◦, while

the interference users were placed at the remaining three positions. The angular separation

between the users was maintained at more than 20◦, exceeding half of the 1×8 array’s

FNBW (0.5 × FNBW = 15◦). This ensured that the nulling process did not distort the

main lobe of the beam pattern.

For the simulation, the Tx-1×8B ERPs were used while the configuration was kept

consistent with the previous section with Np = 200, max stall iterations set to 5, ϵ = 1 and

no early stopping criteria. Fig. 4.3 presents the simulation plots for the different steering

and nulling angle combinations.

In the absence of nulling (MDBF), the average normalized radiation power level in the

direction of the interference users was measured at -15.7 dB, with power levels fluctuating

between -12.1 dB and -26.1 dB. The corresponding beam patterns exhibited an average

directivity of 14.3 dB and an average 3dB-beamwidth of 15.4◦.

With the LCMV beamforming approach, a modest improvement in interference

mitigation was observed. The nulling depths ranged from -22.0 dB to -37.6 dB, with an

average nulling depth of -27.6 dB, representing an improvement of 11.9 dB compared to the

MDBF case. However, the achieved nulling angles deviated by an average of 2.5 degrees

from the intended angles, with a maximum deviation of 8 degrees, which indicates some

loss of precision in null placement.

In contrast, the proposed PNCB method exhibited substantial improvements in reducing

radiation toward the interference directions. Across all four evaluated angle combinations,

the nulling levels were consistently below -52.4 dB, with an average deviation of less than 0.5

degrees from the target nulling angles. The null depths ranged from -52.4 dB to -154.9 dB,

providing a significant buffer for practical implementation challenges, such as phase shifter

and attenuator quantization losses.

Compared to the MDBF and LCMV approaches, the PNCB method demonstrated

significant enhancements in interference suppression. On average, the PNCB scheme
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Figure 4.3: Beam radiation patterns for four-user cases (simulation results with Tx-1×8B

resulted in nulls that were 53.3 dB deeper than those achieved by MDBF and 41.4 dB

deeper than those achieved by LCMV. The worst-case improvements in nulling depth were

40.3 dB and 30.4 dB, compared to the MDBF and LCMV cases, respectively.

In terms of beam characteristics, the PNCB method achieved an average directivity

of 13.9 dB and a 3dB-beamwidth of 16.9◦. While the PNCB approach resulted in a slight

increase in beamwidth, ranging from 0.6 to 2.2 degrees compared to the MDBF, the impact on

the main lobe’s directivity was minimal. Across all test cases, the degradation in directivity

was less than 0.6 dB, highlighting the PNCB method’s ability to maintain robust main lobe

characteristics while significantly improving nulling performance.

These results show the effectiveness of the PNCB method in delivering superior nulling

performance with minimal impact on main lobe characteristics even in scenarios of multiple

interferences. This makes it a robust solution for MUI suppression in beamforming

applications.
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4.2.4 Effect of Quantization on the PNCB performance

In simulation results, the PSO algorithm operates on a continuous search space for attenuator

and phase shifter values, enabling thorough exploration and efficient convergence to the

global optimum. However, in practical implementations, phase shifters and attenuators have

finite resolution, resulting in a discrete search space. This discretization limits the precision

of the solution, complicating the PSO algorithm’s ability to converge to the global minimum.

To incorporate the discrete search space, quantization was applied by rounding the

perturbed values to the nearest possible discrete value. However, quantization effects from

the limited resolution of digital phase shifters and attenuators introduce errors,

constraining the precision of steering coefficient adjustments and affecting overall

beamforming performance. To evaluate this impact on PNCB’s performance, different

quantization scenarios were tested, providing insights into how resolution limitations

influence the algorithm’s ability to achieve optimal beamforming accuracy.

Simulations were conducted using the 1×8B sub-array, incorporating realistic

quantization levels. The effect of Qp-bit phase shifters and Qt-bit attenuators on the

achievable nulling depth was evaluated. A single nulling scenario, using 20 randomly

selected (¹i, ¹N) pairs where |¹i − ¹N | > 15◦ to avoid main lobe interference, was used for

meaningful comparison. Quantization levels for Qp and Qt were varied from 4 to 8 bits and

infinity level was added for comparison. The average nulling depth for each combination is

presented in Fig. 4.4, providing insights into how quantization affects beamforming

precision.

The results reveal a strong correlation between reduced quantization levels and

diminished nulling depth. As the resolution of the phase shifters (Qp) and attenuators (Qt)

decreases, a marked degradation in nulling performance is observed. Specifically, reducing

both Qp and Qt from infinite resolution to 4 bits results in an average nulling depth loss of

42.4 dB. The decline in performance is particularly steep in the lower quantization range,

but it stabilizes as Qp and Qt increase. For example, with 6-bit phase shifters and 7-bit

attenuators, the normalized average null depth drops from -70.7 dB (infinity resolution) to

-41.7 dB, representing a 29 dB reduction.

Notably, phase shifters have a more pronounced impact on nulling precision. They are

crucial for aligning the phases across antenna elements, enabling constructive and

destructive interference for optimal beamforming. Reduced phase shifter resolution causes
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Figure 4.4: Average achievable nulling level (dB) versus the number of phase shifter and

attenuator quantization bits (simulation results).

angular deviations in the beam pattern, leading to mismatches between the intended and

actual nulling angles. Each bit reduction in Qp results in a 4 to 7 dB decrease in null

depth, especially in the range where Qp g 5 and Qt g 8.

In contrast, attenuator resolution has a stronger influence on the achievable nulling depth.

Attenuators control the radiation power of each antenna element in specific directions, and

precise attenuation enhances destructive interference, resulting in deeper nulls. With infinite

Qp resolution, reducing each bit of quantization in Qt causes a significant drop of 3 to 7 dB

for Qt f 8.

These findings are crucial for beamforming system design, emphasizing the need for

careful consideration of phase shifter and attenuator resolutions to maintain effective nulling

performance. The trade-off between cost and performance is evident, as lower quantization

levels lead to significant nulling degradation. When comparing these simulation results to

practical measurements, the measured average null depth of -34.5 dB as compared to the
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expected -41.7 dB, accounting for external factors and quantization effects. This confirms

that higher quantization levels result in improved null depth performance in PSO-based

beamforming.

4.3 Experimental Measurement

4.3.1 Experiment Setup

To evaluate the practical effectiveness of the PNCB method, experiments were conducted

in an anechoic chamber, utilizing a Tx antenna board and two UE antennas as receivers.

An 8×8 antenna array, representing the BS, was paired with two monopole antenna probes

that simulated the UEs. The system implemented a partially connected hybrid beamforming

scheme, with each RF chain connected to a subset of antenna elements grouped into sub-

arrays. Each antenna sub-array is equipped with its own unique beam pattern, managed by a

dedicated beamforming network. This setup benefits from reduced power cost and hardware

complexity while maintaining the effectiveness of beamforming through each sub-array.

The antenna array was mounted on a motorized positioner, allowing precise rotation

around the ¹-angle to enable fine adjustments in the array’s orientation relative to the

UEs. This configuration facilitated a thorough assessment of the PNCB method’s ability to

suppress interference across various angular combinations (¹i, ¹N), where ¹i and ¹N denote

the angular positions of the desired user and the interfering user, respectively.The antenna

configuration are shown in Figures 4.6, 4.7a, and 4.7b. The probe antennas that simulated

the two UEs were separated by an angular distance of 22◦ (|¹i − ¹N | = 22◦), to ensure that

both were equidistant from the center of the matrix. The Tx array and probe antennas were

located within an anechoic chamber measuring 6.1 m × 2.4 m × 2.4 m (length × width ×

height), which was equipped with C-RAM SFC-48 RF absorbers to minimize reflections and

external interference.

The experimental setup, shown in Fig. 4.5, utilizes the Tx-1×8B antenna sub-array at

the BS integrated with a Beamforming Network Controller (BFNC) for signal transmission.

The BFNC is programmed via a Raspberry Pi 4B (RPI-4B) to transfer control vectors to

the designated phase shifters and attenuators.

The RPI-4B was selected as the processing unit due to its onboard memory, standalone
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Figure 4.5: Measurement system connection using BFNC and RPi4B

Figure 4.6: Design for Measurement Setup inside the Anechoic Chamber
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(a) Two antenna probes as viewed from

the Base Station

(b) Close-up side view of the two

antenna probes

Figure 4.7: Positions of Two Rx Probe Antennas inside the Anechoic Chamber

processing capabilities, and ability to run Python on a Linux-based OS. It provides up to

four independent SPI connections, which communicate with the BFNC board. The system

interfaces with the RPI through the ”MATLAB Support Package for Raspberry Pi

Hardware” and an ethernet connection allowing data exchange and command execution.

MATLAB on the PC connects to and runs Python scripts on the RPI-4B to perform tasks

such as enabling Serial-to-Parallel Converter (SPC) and Digital-to-Analog Converter

(DAC) chips (connected to SPI-0 and SPI-6) located on the BFNC. The RPI-4B further

performs the tasks of configuring SPC registers, activating DAC registers and optionally

programming DAC registers for analog phase shifter and attenuator voltage control by

running the Python scripts. RPI-4B transfers the control signals through the SPI to set a

6-bit control vector for phase shifters and an 8-bit control vector for digital attenuators,

The BFNC, as shown in Fig. 4.8, includes three DACs for analog phase shifters and

attenuator control, three SPCs for 6-bit digital phase shifters, and two XRA1404 chips (SPI-

based 8-bit I/O expanders) for 7-bit digital attenuators. The BFNC is managed by a custom

controller utilizing the Raspberry Pi’s integrated SPI module. A single BFNC can control

up to 16 phase shifters and attenuators, supporting configurations for subarrays of up to 16

antenna elements. The phase shifters provide full 360◦ phase control in 5.625◦ increments,

while the attenuators allow up to 32 dB attenuation with 0.25 dB steps. All SPCs and

DACs operate in a daisy-chain configuration, with the BFNC communicating over four SPI
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Figure 4.8: DAC, SPC and XRA chips located on the BFNC

connections. The components were interconnected using short coaxial cables and compact

JSC connectors, strategically positioned behind the antenna array.

To compensate for system insertion loss, RF amplifiers were deployed prior to signal

transmission. The experiments used a modulated NR-FR1-TM3.1 test signal, covering a

20 MHz bandwidth from 3.49 GHz to 3.51 GHz, with a transmission power of 10 dBm through

the Tx sub-array.

The steering weights computed from the MDBF, LCMV, and PSO algorithms, using

MATLAB on a PC, were applied to adjust the phase shifters and attenuators via RPI-

4B and BFNC connections, allowing for dynamic control of the beam pattern within the

anechoic chamber. The MDBF and LCMV weights were pre-calculated offline and served

as benchmark comparisons for the PSO algorithm, with the LCMV weights also used as the

initial search point for the PSO optimization process.
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For the PSO algorithm, the beamforming coefficients were updated iteratively,

incorporating real-time feedback from spectrum analyzers connected to the two UEs. This

feedback was used by the PSO algorithm to compute the objective function within the

optimization loop, allowing fine-tuning of the quantized beamforming coefficients to

achieve optimal performance. The PSO was configured with 500 particles (Np = 500), and

the stall iteration limit was set to 5. No early stopping criteria were employed, and the

directivity trade-off threshold was set to ϵ = 3 dB.

4.3.2 Experiment Results

Figure 4.9: Measurement Results for LCMV and PSO Null Depth at different UE Angles

In the experiment, 10 angle combinations (totalling 20 measurements) that performed

best in simulations were tested. As presented in Fig. 4.9 and tabulated in Table 4.3, the

proposed NCB approach significantly improved the nulling depth in all 20 measurement

scenarios.
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The PSO algorithm demonstrates a clear advantage over the MDBF and LCMV methods,

both in terms of null depth and power retention at the desired user (UE1). On average, PSO

achieved a significantly deeper null depth of -34.5 dB, compared to -12.9 dB for MDBF and

-21.6 dB for LCMV, translating to average improvements of 21.5 dB over MDBF and 12.9

dB over LCMV. The most substantial improvement in null depth using PSO over MDBF

occurred in the scenario where ¹i = −34◦ and ¹N = −12◦, with a difference of 28.8 dB, while

the largest improvement over LCMV was 23.4 dB in the same scenario. Even in the least

improved case, for the angle pair (¹i = 12◦, ¹N = 34◦), PSO still surpassed LCMV by 0.9 dB

and MDBF by 23.4 dB. This consistent improvement across all scenarios highlights PSO’s

ability to deliver precise interference suppression under various conditions.

When analyzing the range of null levels achieved, PSO consistently outperformed the

other methods across all measurements. The range of normalized null depths for MDBF

varied from -7.7 dB to -19.3 dB, while LCMV achieved a range between -14.3 dB and -25.2

dB. In contrast, PSO exhibited significantly deeper nulls, with null depths ranging from

-26 dB to -39.3 dB. This vast range, with a maximum null depth of -39.3 dB, emphasizes

PSO’s capability to achieve more precise and significant interference reduction. Additionally,

the consistency of PSO’s deeper nulls across all angle pairs underscores its robustness in

mitigating interference effectively, regardless of the scenario.

PSO also maintained power at the desired user, with an average of -40.6 dB, slightly lower

than MDBF (-37.1 dB) by 2.5 dB and LCMV (-38.6 dB) by 2 dB. This indicates that PSO

not only performed better in suppressing interference but also preserves the desired signal

strength under the given threshold of ϵ = 3dB. Overall, PSO achieves a deeper range of nulls

while maintaining the desired signal’s integrity, making it a superior choice for beamforming

applications that require interference suppression.

4.4 Concluding Remarks

This chapter presented the proposed PNCB method within the practical context of

heterogeneous ERP. The PNCB approach incorporates measured element patterns and uses

LCMV-generated steering coefficients as the starting point for PSO-based optimization. In

simulations, PNCB significantly outperformed LCMV, achieving nulls that were 64 dB

deeper in two-user cases and 41 dB deeper in four-user cases in interference directions.
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Power @ UE1 (dB) Normalized Null Depth (dB)
UE1 ¹i UE2 ¹N MDBF LCMV PSO MDBF LCMV PSO PSO – MDBF PSO - LCMV
10 -12 -35.8 -37.7 -38.4 -17.9 -24.9 -38.7 -20.8 -13.7
-12 10 -37.6 -38.7 -40.4 -10 -23.5 -33.9 -23.9 -10.4
-18 -40 -35.6 -37.1 -39.8 -19.3 -23.8 -35.2 -15.9 -11.3
-40 -18 -40.6 -40.5 -42.3 -7.7 -19.1 -35.4 -27.7 -16.3
14 36 -38.2 -40 -41.7 -15.9 -22.1 -32.1 -16.1 -10
36 14 -37.5 -37.5 -40.3 -9.7 -14.3 -30.9 -21.2 -16.5
-34 -12 -39.4 -39.9 -42.4 -9 -14.4 -37.8 -28.8 -23.4
-12 -34 -35.7 -37 -39.2 -17.6 -21.9 -35.1 -17.6 -13.3
2 -20 -35.4 -41.6 -41.4 -16.8 -19.4 -35.6 -18.8 -16.2
-20 2 -37.7 -39.6 -41.5 -10.7 -19.5 -39 -28.3 -19.5
30 8 -36.3 -37.1 -39.8 -11.9 -18.2 -32.4 -20.5 -14.2
8 30 -38 -40.2 -42.8 -8.9 -16.3 -26 -17.1 -9.7
12 34 -38.3 -40 -42.9 -12.3 -34.8 -35.7 -23.4 -0.9
34 12 -37.1 -37.3 -40.3 -10.7 -14.8 -28 -17.3 -13.2
8 -14 -35.9 -37.3 -38.7 -17.1 -25.1 -36.1 -19 -11
-14 8 -37.7 -39 -41.1 -9.2 -22.2 -30.3 -21.1 -8
16 -6 -35.5 -36.8 -38.1 -16.1 -25.2 -38 -21.9 -12.7
-6 16 -37.4 -39 -40.3 -10.4 -25.2 -39.3 -28.8 -14.1
18 -4 -35.6 -36.4 -38.9 -15.7 -23.4 -34.9 -19.3 -11.6
-4 18 -37.5 -39.2 -42 -12 -23.2 -35.5 -23.4 -12.3

Average -37.1 -38.6 -40.6 -12.9 -21.6 -34.5 -21.5 -12.9

Table 4.3: Power and Null Depth (Measured Results in Anechoic Chamber)
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PNCB also achieved higher precision in null placement with an average deviation of less

than 0.6 dB compared to a 3 to 8 dB deviation in the case of LCMV.

Experimental validation in an anechoic chamber reinforced these findings, with PNCB

delivering 12.9 dB deeper nulls compared to LCMV in two-user scenarios, demonstrating

its superior capability for interference mitigation. Although there was a minor tradeoff in

directivity (0.6 dB in simulations and 2.5 dB in experiments), PNCB consistently provided

higher SINR across all tested cases. This balance between minimal directivity loss and

substantial interference suppression underscores PNCB’s effectiveness in beamforming

applications requiring precise interference control.
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Chapter 5

Conclusions

5.1 Concluding Remarks

With the increasing demand for wireless resources and densely packed user environments,

mitigating inter-user interference while maintaining signal strength for target users is crucial.

This thesis develops an optimized null steering method for MU-mMIMO hybrid beamformers

that outperforms existing techniques like LCMV under realistic ERP conditions.

The thesis begins by reviewing existing NCB methods, particularly LCMV, and

investigates how heterogeneous ERPs impact its performance. Measured ERP data from

an 8x8 dual-layer EBG array with a CP patch antenna array was used to represent real-life

variations. Simulations demonstrated that LCMV’s null depth declined by 37 to 59 dB as

ERP variations increased, and it failed to achieve a 20 dB null depth in 50% of the

scenarios, with inaccuracies up to 3 degrees in null positioning. In multi-user scenarios,

LCMV struggled to maintain high SINR and accurate beamforming, with up to a 3-degree

error in the main beam position when adding multiple nulls.

This thesis introduced a PNCB method to overcome these challenges, integrating

LCMV with PSO to iteratively refine beamforming weights. The PNCB method

dynamically adjusts LCMV-generated weights by adding perturbation and iteratively

calculating the defined cost function through PSO. The PNCB outputs weights that

provide optimal interference suppression while accounting for non-uniform ERPs and

quantization limitations. Simulations showed that PNCB achieved nulls that were 64 dB

deeper in two-user cases and 41 dB deeper in four-user cases compared to LCMV, with
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higher precision in null placement. Experimental validation in an anechoic chamber further

supported these findings, with PNCB delivering nulls 12.9 dB deeper than LCMV in

two-user scenarios. Despite a minor tradeoff in directivity, 0.6 dB in simulations and 2.5

dB in experiments, PNCB consistently achieved higher SINR, demonstrating its

effectiveness in interference mitigation.

In conclusion, PNCB provides a robust and practical solution for overcoming LCMV’s

limitations in environments with non-uniform ERPs and multiple interfering users. By

refining beamforming weights through PSO, PNCB enhances null depth, precision, and

overall system performance, making it an effective tool for advancing mMIMO systems in

real-world, multi-user environments.

5.2 Potential Future Works

Although the proposed PNCB method effectively addresses the challenges of heterogeneous

ERP in NCB methods, further improvements can be made to enhance its practical

applicability. Below are some potential areas for future work:

• This thesis employs PSO to determine global optimum weights for achieving the

deepest possible null at unintended users. However, the absence of an early stopping

criterion may lead to prolonged convergence times. Future work could involve

modifying the PSO setup to include early stopping criteria based on the maximum

number of iterations (Nn) and/or minimum required null depth, ensuring that the

PSO terminates once sufficient SINR is achieved.

• Currently, the PSO optimization process in this thesis uses two criteria, defined in

(4.3), to impose penalties on the cost function. Future modifications could include

additional criteria, such as sidelobe levels or 3dB beamwidth, to further constrain the

generated beam shape. This could help to achieve a more robust radiation pattern in

scenarios where sidelobe level and beamwidth can be important factors.

• The optimized weights generated by PNCB could serve as a training dataset for

supervised learning models, such as a Deep Neural Network or Convolutional Neural

Network. Leveraging these models would allow for the direct generation of optimized
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weights based on the input parameters, eliminating the need for iterative

optimization and reducing time and computational overhead.

Furthermore, PSO can also be integrated with other ABF algorithms to overcome their

inherent limitations. For instance, the MVDR beamformer effectively minimizes interference

while preserving the desired signal. However, its performance deteriorates in the presence

of array imperfections, mutual coupling, and steering vector mismatches , making it less

reliable in real-world applications. By incorporating PSO, the beamforming weight vectors

can be dynamically optimized to account for these uncertainties. The optimization typically

involves maximizing the SINR while penalizing deviations from the ideal steering vector,

resulting in a more robust and interference-resistant beamformer.

Similarly, a combined implementation of LMS-PSO and RLS-PSO can improve

performance in rapidly changing environments. The LMS and RLS algorithms update the

beamforming weights in a stepwise manner based on incoming signal statistics. While

effective in stable conditions, they suffer from slow convergence and instability in highly

dynamic or noisy environments. PSO can address these issues by optimizing key

parameters, such as the step size in LMS or the forgetting factor in RLS, allowing for faster

adaptation without compromising stability. In this combined approach, the cost function

typically minimizes the MSE between the desired output and the actual beamformer

output while limiting parameter variations to prevent instability.

By leveraging the global search capability of PSO, these combined techniques can achieve

faster convergence, improved robustness, and enhanced interference mitigation, making them

suited for real-world ABF applications.
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