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Abstract 

Mostly known for its use in cancer care, radiotherapy is a treatment modality that uses ionizing 

radiation to kill malignant cells. This form of therapy requires careful planning that for nearly 

three decades has been based on computed tomography (CT) images, from which the position of 

tumours and healthy tissues can be determined. However, CT alone cannot always provide the 

contrast necessary to define targets. In these cases, the superior soft tissue contrast of magnetic 

resonance imaging (MRI) is used for more reliable contouring. Unfortunately, MRI alone is 

insufficient for treatment planning because CT images are also used to estimate a map of the 

electron density of patients, enabling accurate dose calculations. To eliminate the need for two 

different scans, CT images could be replaced by synthetic CT (sCT) images produced using 

MRI. 

 

CT synthesis from MRI is challenging because bone and air are typically indistinguishable in 

MR images. While air produces very little signal per volume, the signal produced by bone decays 

far too rapidly to be measured using conventional MRI pulse sequences. Bone visibility can be 

achieved with ultra-short echo time (UTE) imaging, but this information alone is insufficient to 

segment the different tissues relevant to CT and assign adequate pixel values in the sCT. Hence, 

CT synthesis algorithms often rely on multiple different MR images acquired over sometimes 

lengthy scan times and combined with elaborate algorithms that may rely on assumptions about 

the anatomy of patients. Other approaches based on artificial intelligence can exploit 

conventional MR images but must be trained on large datasets to perform well. This complicates 

their adaptation to different anatomical sites and can limit their accuracy on patients whose 

atypical anatomies were not well represented in training datasets. 
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This work presents a novel method based on UTE MR imaging that does not rely on assumptions 

about the anatomies of patients. Three rapidly acquired MR images with different contrasts are 

merged to create a colour image. Different tissues are then distinguished and identified based on 

their colour. Pixel values can then be assigned to the sCT based on tissue type. This algorithm 

was tested on images of a phantom and of the heads of human volunteers. The results suggest 

that our method can accurately differentiate between air and bone and subsequently generate sCT 

images with plausible appearance. However, errors in the segmentation of fat suggest that the 

algorithm or the acquisition could be further improved.  
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Résumé 

Principalement connue pour son utilisation dans les soins contre le cancer, la radiothérapie est 

une méthode de traitement qui utilise des rayons ionisants pour détruire les cellules malignes. 

Cette forme de thérapie nécessite une planification minutieuse qui, depuis près de trois 

décennies, est basée sur des images de tomodensitométrie (TDM), à partir desquelles la 

disposition des tumeurs et des tissus sains peut être déterminée. Cependant, la TDM seule ne 

peut pas toujours fournir le contraste nécessaire afin de bien définir les cibles. Dans ces cas, le 

contraste supérieur des tissus mous de l'imagerie par résonance magnétique (IRM) est utilisé 

pour une délimitation plus fiable. Malheureusement, l'IRM seule est insuffisante pour la 

planification du traitement car les images de TDM sont également utilisées pour générer une 

carte estimative de la densité électronique des patients, permettant des calculs de dose précis. 

Pour éliminer le besoin de deux scans différents, les images de TDM pourraient être remplacées 

par des images de TDM synthétiques (TDMs) produites à partir de l'IRM. 

 

La synthèse de TDM à partir de l'IRM est difficile car l’os et l'air sont généralement 

indiscernables sur les images d’IRM. Alors que l'air produit très peu de signal, le signal produit 

par l'os se dégrade trop rapidement pour être mesuré à l'aide des séquences d'impulsion d’IRM 

conventionnelles. L’imagerie à temps d’écho ultra-court (UTE, d’ultra-short echo time) peut 

rendre les os visibles, mais par elle-même cette information est insuffisante pour segmenter les 

différents tissus pertinents en TDM et attribuer des valeurs adéquates aux pixels du TDMs. Ainsi, 

les algorithmes de synthèse de TDM s'appuient souvent sur plusieurs images d’IRM différentes, 

acquises sur de longues durées et combinées avec des algorithmes élaborés qui peuvent se fier 

sur des suppositions concernant l'anatomie des patients. D'autres approches basées sur 
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l'intelligence artificielle peuvent exploiter des images d’IRM conventionnelles mais doivent être 

entraînées sur de grands ensembles de données pour bien fonctionner. Cela complique leur 

adaptation à différents sites anatomiques et peut limiter leur précision sur des patients dont les 

anatomies atypiques ne sont pas bien représentées dans les ensembles de données d'entraînement. 

 

Ce travail présente une méthode novatrice basée sur l'imagerie UTE qui ne repose sur aucune 

supposition concernant l’anatomie des patients. Trois images d’IRM acquises rapidement avec 

différents contrastes sont fusionnées pour créer une image en couleur. Les tissus sont ensuite 

différentiés et identifiés en fonction de leur couleur. Les valeurs des pixels peuvent ensuite être 

attribuées au sCT en fonction du type de tissu. Cet algorithme a été testé sur des images d'un 

fantôme et des têtes de volontaires humains. Les résultats suggèrent que notre méthode peut 

différencier correctement l'air et l'os pour ensuite générer des images sCT d'apparence plausible. 

Cependant, des erreurs dans la segmentation des tissus adipeux suggèrent que l'algorithme ou 

l'acquisition pourraient encore être améliorés. 
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Chapter 1: Introduction 

1.1 Motivation 

Radiotherapy (RT) is a family of treatments that use ionizing radiation to treat different ailments, 

typically cancer. Such treatments need to be planned to deliver the adequate amount of radiation 

to the lesion while avoiding the irradiation of normal tissues as much as possible1. Modern-day 

radiotherapy treatment planning (RTP) relies heavily on computed tomography (CT) to produce 

images that are used to define therapeutic targets and contour organs-at-risk (OAR). CT scanners 

acquire hundreds of X-ray projection images at kilovoltage energies to reconstruct cross-

sectional images of the subjects scanned2. Since CT images are created using X-rays, the pixel 

values, often referred to as CT numbers and given in Hounsfield units (HU), contain information 

on the attenuation of radiation through the patient3. CT numbers can be used to estimate the 

electron density of tissues, which is used to calculate the dose to the patient, allowing for the 

optimization of the treatment3. 

 

Unfortunately, CT has limited soft tissue contrast and magnetic resonance (MR) images may be 

necessary for proper target delineation in a number of applications4. MR imaging (MRI) offers a 

wide range of contrasts, but never directly depends on electron density. Hence, MRI alone cannot 

be used for dose calculations, and CT images are still needed for this task4. In many cases, 

patients undergo CT and MRI, which are then registered. The potential misalignment of these 

images can lead to errors in the treatment plan5. Furthermore, the need to simulate the treatment 

on both scanners requires a substantial amount of time, burdening the healthcare system6. 
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Synthesizing CT images using MRI has been considered a potential solution towards MR-only 

simulation by many researchers4. In addition to lowering the uncertainty in treatment plans and 

streamlining the clinical workflow, eliminating CT in favour of MRI would contribute to 

lowering the dose to healthy tissues. Several approaches have been developed for CT synthesis, 

without a clear consensus on the best method and a limited number of commercially available 

software products7-9. CT synthesis remains an open question. 

 

1.2 Objectives 

A previously proposed algorithm for sCT from our group relies on quantitative magnetic 

susceptibility (QSM) to differentiate bone from air, and fat-water separation to characterize the 

composition of soft tissues10. Information from both analyses were combined to compute CT 

numbers for each voxel of the MR images. While promising, this approach has a lengthy image 

acquisition, and the algorithm for sCT is complicated and relies on morphological operations that 

may be invalid in other sites than the head. To address these issues, a new approach was 

developed around ultra-short echo time (UTE) imaging, a family of specialized MRI pulse 

sequences that allows direct imaging of bone11. 

 

The first objective of this project was to develop an acquisition protocol using a spiral sequence 

for UTE imaging, with the benefit of higher sampling efficiency to achieve shorter scan times. 

 

The second goal was to achieve the segmentation of tissues relevant to CT synthesis on MR 

images. Red-green-blue (RGB) images were constructed from three MRI scans with different 

contrast by assigning these to the colour channels. On these multi-channel images, different 
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tissues have different colours. This allows the use of well-established deterministic colour image 

segmentation algorithms, which were primarily developed to segment so-called “natural images” 

(colour pictures obtained with the every-day camera) to potentially produce tissue segmentations. 

One combination of algorithms— simple linear iterative clustering12 paired with region 

adjacency graph thresholding13—was tested in this work. 

 

The final objective was to use the segmentation of the tissues present on these combined MR 

images to assign CT numbers to the sCT and to test this novel method both in a phantom and in 

vivo. Synthetic CT and X-ray CT images were compared quantitatively in a phantom featuring 

materials of interest, including water-based gel (as a proxy for water-based tissue), plastic, pieces 

of bovine femur, air cavities, and fatty bone marrow. Then, three volunteers were scanned for 

their sCT images to be evaluated qualitatively. 

 

1.3 Thesis Outline 

The second chapter of this work, “Background”, provides the reader with an overview of the 

physics of MRI, colour image segmentation, and treatment planning in radiation therapy. Chapter 

3, “Literature Review”, surveys recent publications on the topic of CT synthesis and dives into 

different successful approaches. Chapter 4 presents a manuscript which describes the methods 

and results of this research project, to be submitted for publication. Chapter 5 further discusses 

and generalizes the implications of our results, design decisions, and potential improvements to 

the acquisitions and segmentation. Chapter 6 concludes this thesis with a summary of our results 

and describes prospective research avenues that could improve the accuracy of our novel CT 

synthesis method. 
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Chapter 2: Background 

2.1 Principles of Magnetic Resonance 

MRI is an imaging modality that relies on the interaction between nuclear spins and magnetic 

fields to produce images. This is most accurately described by quantum mechanics, yet classical 

theory is sufficient to describe most principles of MRI. The theory presented in Sections 2.1 and 

2.2 are based on the textbook by McRobbie et al.14 

 

2.1.1 Nuclear Magnetic Resonance 

Nucleons exhibit an intrinsic magnetic moment and angular momentum (or spin). Within the 

nucleus, nucleon spins align anti-parallel to minimize energy. A nucleus with an even number of 

nucleons has no net spin, and an odd number of nucleons generates a half-integer spin.  

 

In a magnetic field (𝐵⃗ ), nuclei with half-integer spins align themselves with the field in the 

parallel or anti-parallel direction. For simplicity, this work only considers such nuclei, as net zero 

spin yields no interaction. Depending on the magnitude of 𝐵⃗  and on the temperature, more spins 

will align parallel to 𝐵⃗ , thus creating a net magnetization 𝑀⃗⃗ . MRI systems produce a strong main 

magnetic field (B0) to magnetize the tissues of patients. 

 

A misalignment between 𝑀⃗⃗  and 𝐵⃗  results in a torque on the net magnetization, causing 𝑀⃗⃗  to 

precess around 𝐵⃗ . The angular frequency of the precession 𝜔 is equal to the magnitude of the 

magnetic field 𝐵 scaled by the gyromagnetic ratio 𝛾, per the Larmor equation: 

𝜔 = 𝛾𝐵 2.1.1.1 
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The gyromagnetic ratio depends on the nuclei. It is equal to 2𝜋 ∙ 42.57 × 106 radians/s/T for 

hydrogen, the most common spin ½ nucleus in the human body, and therefore of interest in 

medical applications of MRI. The magnetization eventually realigns itself with 𝐵⃗  through a 

process of relaxation, covered in Section 2.1.2. 

 

2.1.2 Excitation, Signal Detection, and Relaxation 

Circularly polarized magnetic fields (B1) oscillating at a frequency 𝜔 can be used to exert a 

torque on 𝑀⃗⃗  and break its alignment from the main field. By adjusting the magnitude and 

duration of B1 pulses, 𝑀⃗⃗  can be tipped by a desired angle, called the flip angle (FA). B1 pulses 

are achieved in MRI scanners by using transmit coils.  

 

Following the B1 excitation pulse, 𝑀⃗⃗  undergoes gyroscopic precession. The resulting rotating 

dipole generates a time-varying magnetic field oscillating at the Larmor frequency. MRI 

scanners detect oscillations in 𝑀⃗⃗  through magnetic induction in receiver coils, which may or may 

not be the same as the transmit coil depending on the scanner design and exam setup. Hence, the 

component of 𝑀⃗⃗  transverse to B0 generates the MRI signal. 

 

While undergoing precession, the particles making up 𝑀⃗⃗  dissipate their energy to their 

environment and realign themselves to B0 through a process of relaxation. At the macroscopic 

scale, relaxation is described by longitudinal and transverse components best described by 

exponential recovery and decay functions, respectively. 
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Longitudinal relaxation is often referred to as T1 relaxation in reference to the name of the 

variable that describes the time required for the longitudinal magnetization to recover 63% 

(1 − 𝑒−1) of its equilibrium value. T1 relaxation is promoted by spin-lattice coupling, where 

spins transfer energy to their environment. 

 

Transverse relaxation is known as T2 relaxation, which is the variable describing the time 

required for post-excitation transverse magnetization to decay by 63%. It is caused by the 

gradual dephasing of neighboring spins caused by spin-spin coupling occurring between the 

magnetic fields of nearby nuclei.  

 

Other static effects can cause transverse relaxation to be faster than described by T2. These 

effects are generally related to main field inhomogeneities that can be caused by patient-induced 

magnetic susceptibility inhomogeneities or machine specific imperfections. This faster decay is 

described by T2*. Certain MRI techniques can be used to reverse these static effects and recover 

pure T2 decay. 

 

2.2 Gradients and Spatial Encoding 

MRI systems can use a magnetic field varying linearly with space to create spatial variations in 

𝜔, thus encoding the position of spins along the gradient field in their Larmor frequency. 

Applying multiple perpendicular gradients at the same time results in a single gradient with an 

arbitrary direction. This implies that spatial encoding in more than one dimension must be 

executed in multiple steps, through time varying gradient fields. 
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The time domain interpretation of spatial encoding considers the effect of successive gradient 

pulses. For example, in 2D imaging, simultaneous excitation and gradient pulses excite a single 

cross-sectional slice of the patient. Then, prior to acquisition, a second short gradient field pulse 

is applied perpendicular to the first to encode one spatial dimension into the signal phase. 

Finally, a third gradient field, perpendicular to other two, is used to encode the final spatial 

dimension into the frequency of the signal. This process is repeated for different phase 

encodings, with identical excitations and frequency encodings. The series of magnetic field 

pulses is called a pulse sequence. The encoded signals are used to reconstruct the image. The 

interpretation of spatial decoding is straightforward using the Fourier transform (section 2.2.1). 

 

2.2.1 k-Space Interpretation 

It is easier to understand how gradient fields affect the spins of a sample by visualizing a point 

moving along a trajectory in the Fourier domain of the image, otherwise known as k-space. The 

demodulated signal as a function of time 𝑆(𝑡) for a spoiled gradient echo (GRE) sequence is 

given by Equation 2.2.1.1, 

𝑆(𝑡) = ∫ 𝑃𝐷(𝑟 ) ∙ (
1 − 𝑒

−
TR
𝑇1(𝑟 )

1 − 𝑒
−
TR
𝑇1(𝑟 ) cos(FA)

) sin(FA)
 

𝒱

𝑒
−

𝑡
𝑇2
∗(𝑟 )𝑒𝑖𝛾 ∫ 𝐺 

𝑡
0
(𝑠)∙𝑟  𝑑𝑠𝑑𝑟 2.2.1.1 

where 𝑃𝐷(𝑟 ) is the proton density as a function of space, 𝐺 (𝑠) are the gradient pulses over time, 

and TR is the time elapsed between successive excitations. Trajectories in k-space can be defined 

as a function of the gradients using the substitution presented in Equation 2.2.1.2 to derive 

Equation 2.2.1.3. 

𝑘⃗ (𝑡) =
𝛾

2𝜋
∫ 𝐺 (𝑠)𝑑𝑠
𝑡

0

 2.2.1.2 
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This substitution reveals that the signal exists in k-space, implying that the image is obtained by 

applying an inverse Fourier transform on the k-space data. 

𝑆(𝑡) = ∫ 𝑃𝐷(𝑟 ) ∙ (
1 − 𝑒

−
TR
𝑇1(𝑟 )

1 − 𝑒
−
TR
𝑇1(𝑟 ) cos(FA)

) sin(FA)
 

𝒱

𝑒
−

𝑡
𝑇2
∗(𝑟 )𝑒𝑖2𝜋𝑘⃗ (𝑡)∙𝑟 𝑑𝑟  2.2.1.3 

Because MRI scanners use digital data, the discrete Fourier transformation is used, and k-space 

is best represented by an array of numbers the same size as the final image. The data collection 

must satisfy the Nyquist criterion (i.e. the grid must be fully sampled) to ensure the successful 

reconstruction of the image. In cartesian sampling, the grid is typically filled row by row (Figure 

1). In this illustration, each row is filled by sampling the radio frequency signal received over 

different repetitions. 

 
Figure 1: Common sampling scheme of k-space. Each 

color represents a different repetition. The dotted lines 

represent the phase encoding steps while the dots 

represent the samples acquired while the readout 

gradients are on. 
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2.3 Contrast in MRI 

Contrast in MRI is mostly driven by proton density and relaxation rates. This section explains 

how three pulse sequence parameters – echo time (TE), repetition time (TR), and FA – are used 

to modify the signal intensity of tissues by manipulating relaxation, and subsequently control 

image contrast in MRI. 

 

2.3.1 Echo Time 

TE controls the time elapsed between excitation and the sampling of the center-most point in k-

space. Increasing TE allows tissues to undergo T2* relaxation in GRE sequences, and their signal 

to decay before sampling. In the final image, tissues with shorter T2* appear darker than tissues 

with longer T2*, an effect called T2*-weighting. Figure 2 illustrates the decay of signals produced 

by a multi-echo GRE sequence for two different T2*. 

 

Figure 2: Intensity of a multi-echo gradient echo (GRE) signal 

over three echoes. This is the simulated signal of three echoes with 5-

ms spacing (TE=5,10, and 15 ms, respectively). 
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2.3.2 Repetition Time 

The time elapsed between successive excitations is controlled by TR. As seen in Figure 4a, a 

short TR in relation to T1 causes an incomplete recovery of longitudinal magnetization before the 

next excitation. During a succession of 90° excitations converting all axial magnetization to 

transverse magnetization, longer T1 species have less transverse magnetization to produce signal 

(Figure 3b), leading to T1 contrast. Shortening TR further exacerbates this effect (Figure 3c). In 

summary, reducing TR darkens tissues with long T1 on MR images, a phenomenon referred to as 

T1-weighting. 

 

Figure 3: Effect of repetition time on the axial and transverse magnetization of 

materials with different axial relaxation rates. The transverse magnetization decays 

freely because there is no phase or frequency encoding in this example. 
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2.3.3 Flip Angle 

A shorter TR allows for a shorter scan duration, but the accompanying T1-weighting may be 

undesired. Reducing the FA leaves some longitudinal magnetization available for subsequent 

excitations and reduces T1 contrast (Figure 4, top row). However, smaller FAs tip less transverse 

magnetization, resulting in lower signal (Figure 4d). In other words, combinations of FA and TR 

can be selected to fine-tune the contrast, with the consequence of affecting the overall signal. 

 

Figure 4: Effects of flip angle on the longitudinal and transverse magnetization of 

materials with different T1. In this example, the transverse magnetization decays 

freely in the absence of phase or frequency encoding. A TR of one second is used in 

both scenarios. 

 

2.4 Ultra-Short Echo Time Imaging 

Ultra-short echo time (UTE) pulse sequences can produce images of tissues with very short 

transverse relaxation times, also called short T2 tissues15. The signal from short T2 tissues can 
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decay too rapidly for detection, making them invisible on images. This is the case for cortical 

bone which features a T2 of 0.39 ms in magnetic fields of 3 T16. For comparison, gray matter 

features a T2 of approximately 100 ms17. To make bone visible on MR images, TE should be 

minimized, and the following signal should be measured as fast as possible following the 

excitation. 

 

The minimum TE possible with sequences that use phase encoding pulses as described in section 

2.2 is limited to 1-2 ms18 because of limitations imposed on gradient fields for patient safety19. 

Sampling k-space from the centre out eliminates the need for phase encoding gradients. In this 

case, the limitation preventing a 0 ms TE is the time the scanner needs to switch from transmit to 

receive mode20. Most centric sampling schemes fall under one of two umbrellas: radial and spiral 

sampling.  

 

Imaging short T2 tissues is not just a matter of minimizing TE. Rapid acquisition of signals in the 

outer region of k-space (minimizing decay) is important to achieve good spatial resolution18. The 

time between the first measurement at the center of k-space and the last measurement at the edge 

is called the readout duration. Minimizing readout duration is important for both radial and spiral 

pulse sequences. 

 

2.4.1 Radial Acquisitions 

Radial trajectories are the simplest centric sampling methods. k-space is filled starting at the 

centre, moving radially outwards over the readout duration (Figure 5, centre)18. In 3D, radial 

acquisition can take the form of a stack-of-stars21 or a koosh-ball22. The stack-of-stars requires a 
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phase encoding gradient to encode the 3rd dimension, increasing the minimum echo time but 

offering flexible slice thickness. Koosh-ball sequences are constrained to isotropic voxels and 

matrix sizes but offer a shorter minimum TE than stack-of-stars sequences. 

 

The main challenge in radial acquisitions is to sample the high-frequency contents of the k-space 

while maintaining short scan times. Achieving the large grid sizes necessary for high resolution 

imaging or large field-of-views (FOV) necessitate a large number of spokes to satisfy the 

Nyquist criterion23. In koosh-ball sequences, the number of spokes needed to fully sample k-

space must be greater than 𝜋𝑁𝑔𝑟𝑖𝑑
2, where 𝑁𝑔𝑟𝑖𝑑 is the length of the sides of the array. For the 

stack-of-stars sequences, the Nyquist criterion is 𝜋𝑁𝑔𝑟𝑖𝑑𝑁𝑠𝑙𝑖𝑐𝑒𝑠, where 𝑁𝑠𝑙𝑖𝑐𝑒𝑠 is the number of 

slices in the volume. 

 

2.4.2 Spiral Acquisitions 

Using a spiral trajectory instead of radial spokes samples k-space more efficiently and can 

subsequently shortens the total scan time23. While a single spiral could sample the entirety of k-

space, limitations on the rate-of-change and amplitude of the gradient fields would result in a 

long readout duration. To shorten the readout, the sampling is distributed over several 

interleaves, each completed in different repetitions (Figure 5)24. 

 

In 3D, spirals can be arranged in a stack-of-spiral or in cones25. Like for a stack-of-stars, stack-

of-spirals sequences use a z-gradient to select a slice in the volume before x and y-gradients can 

be used to draw an interleaf26. Otherwise, spirals can be wrapped around cones of varying angle 

stacked into one-another27.  
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Figure 5: Different k-space trajectories. Points and dotted lines depict parts of 

trajectories described by readout and phase encoding gradients, respectively. Colours 

indicate the distinct interleaves, acquired over repetitions of these sequences. Center-out 

trajectories do not need phase encoding gradients. 

 

2.4.3 Zero Echo Time Imaging 

To further reduce the time elapsed from excitation to the sampling of an outmost point in k-space 

(TE + Readout duration), zero-echo time (ZTE) techniques can be used. While, our work does 

not rely on ZTE, many publications cited in this thesis do. This section, based on the review by 

Wiesinger et al.28, summarizes this alternative approach to imaging short-T2 tissues.  

 

ZTE sequences are based on koosh-ball trajectories to minimize readout durations, but the 

gradients are never turned off. After a readout, a non-selective RF pulse is used as the gradients 

are adjusted slightly to select another spoke in k-space. With this strategy, no time is lost while 

gradients are ramped up and the receive coils are switched from transmission to reception mode. 

However, no signal can be acquired during the receive coils mode switch, leaving an unsampled 

hole at the center of k-space. ZTE approaches vary on the filling of this void: some acquire 
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individual points using a UTE koosh-ball sequence that covers the hole, while others interpolate 

the center region of k-space if it is small enough. 

 

2.5 Colour Image Segmentation 

2.5.1 Colour Spaces 

Colours are represented by a minimum of three components. Just like a vector can be represented 

using different basis vectors in linear algebra, colours can be represented using different colour 

spaces. This section, providing information on the colour spaces relevant to this project, is based 

on the textbook by Fernandez-Maloigne et al.29  

 

The red-green-blue (RGB) colour space is used for digital media acquisition, storage, and 

display. The three channels store the intensity of red, green, and blue light detected by camera 

sensors or emitted by diodes in screen pixels. Although convenient for digital hardware, RGB 

space does not accurately represent how humans perceive colours. One of the biggest 

repercussions of this limitation in image segmentation is that Euclidean distances cannot be used 

to assess the similarity between pairs of colours. 

 

The CIELAB colour space proposes a numerical representation of colours that corresponds to 

human perception, from a simple formula. The Euclidean distances in this space can approximate 

the perceived differences between colors. To recreate human perception, the CIELAB colour 

space is based on Ewald Hering’s theory of opponent channels. According to this theory, the 

human brain interprets light based on three pairs of opposing colours: white and black, blue and 

yellow, and green and red. The CIELAB colour space uses lightness (L*), a*, and b* to represent 
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these opposing pairs, respectively. Figure 6 illustrates the channels of the RGB and CIELAB 

spaces. 

 

 

Figure 6: RGB (top row) and CIELAB (bottom row) channels of the image on the left. 

 

2.5.2 Clustering 

Clustering refers to the task of grouping data points with similar properties into different classes, 

called clusters. Similarity is defined differently depending on the clustering algorithm used30. 

 

K-means clustering is one of the simplest clustering algorithms31. The user defines the number of 

clusters, and the algorithm randomly assigns centroids in the domain of the data points. Each 

data point is assigned to the closest centroid using the type of distance the user wants, such as 

Euclidean or Manhattan for example. The positions of the centroids are recalculated as the 

centres of mass of each clusters. The point assignment and centroid calculations are iteratively 

repeated until the sum-of-squared distances within a cluster converges to a stable value. 
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Using centroids has the disadvantage of constraining the algorithm to be used on spheroidal 

clusters32. Figure 7 demonstrates the difference in performance of k-means clustering on globular 

and annular clusters. 

 

 
Figure 7: K-means clustering of globular and annular data. 

 

Clustering can be used for colour image segmentation by representing pixels as data points using 

their colour parameters as coordinates33. Figure 8 depicts the segmentation of a noisy colour 

image using k-means clustering in both RGB and CIELAB colour spaces. Figure 9 also 

illustrates how segmentation benefits from Euclidean distances to represent perceived colour 

differences in CIELAB colour space. 

 

 
Figure 8: Segmentation of Figure A using K-means clustering. Original colour image (a), 

ground truth segmentation, where the new colours are labels for the five clusters (b), 

segmentation resulting from clustering in RGB space (c) and CIELAB space (d). 
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Fuzzy-C-means (FCM) clustering is a modified version of k-means clustering that allows for 

probabilities to be assigned to each data point34. Data points situated between two clusters can be 

described as a mixture of classes instead of being assigned a label based on the closest centroid. 

 

2.5.3 Simple Linear Iterative Clustering 

Images can be segmented using clustering methods (subsection 2.5.2). To increase the accuracy 

and robustness of the segmentation, the coordinates (x, y) of each pixel can be added as extra 

dimensions to the data points, to consider for the spatial proximity of pixels (i.e. using L*, a*, 

b*, x, y). This method only performs well over short distances if spatial coordinates are heavily 

weighted, or over longer distances if colour is weighted preferentially. With the method 

exclusively working at long or short distances, segmenting entire images cannot be achieved 

reliably. This section describes the simple linear iterative clustering (SLIC), a solution to the 

spatial weighting problem proposed by Achanta et al.12 

 

The SLIC algorithm solves this problem by assessing the colour similarity of pixels in spatially 

restricted neighborhoods. SLIC begins by defining a user-specified number of regions which are 

used to constrain the k-means clustering of colours and spatial coordinates. The spatial 

components of the resulting clusters are then used as the centres of a new set of regions. The 

shapes of the new regions are also optimized to reduce their internal colour variance. The 

algorithm then iteratively repeats the process until the variance in colour within the regions is 

minimized (Figure 9). In the field of computer vision, the regions produced by SLIC and similar 

algorithms are called superpixels. They act as large irregularly shaped pixels in further 

segmentation steps.  
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Figure 9: 1st , 3rd, and 30th iteration of the SLIC algorithm on a noisy colour image. 

 

2.5.4 Region Adjacency Graphs 

Superpixel algorithms are not used for complete segmentations because they often assign 

different labels to neighbouring regions of similar colour that need to be merged (for example, 

the lighter orange shape in Figure 9 is divided into 13 superpixels). This merging process can be 

achieved using a region adjacency graph (RAG)35. In this graph, each superpixel is a node and 

neighboring superpixels are connected using lines. Figure 10a depicts a RAG over an image 

processed using SLIC.  

 

For every line, a dissimilarity metric can be computed, such as Euclidean distance in CIELAB 

colour space between the mean colour of the connected superpixels. Algorithms can then be used 

to determine which nodes can be merged. The simplest approach is to merge superpixels whose 

dissimilarity falls below a predefined threshold13. Figures 10b and 10c illustrate segmentation 

using an appropriate (b) and an overestimated (c) threshold, respectively. 
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Figure 10: RGA thresholding of Figure 9c. RAG (a), Superpixels merged using an 

appropriate threshold (b), and an excessive threshold (c).  
 

 
 

2.6 Computed Tomography in Radiotherapy Treatment Planning 

2.6.1 Computed Tomography 

Tomography describes the problem of reconstructing cross-sections of objects from multiple 

projection images acquired using penetrating waves. Computed Tomography (CT) refers to a 

medical imaging modality which uses kilovoltage X-ray projections of patients to produce 

images of their internal anatomy. For further information about CT image reconstruction 

techniques and hardware considerations, the reader is directed to the textbooks by Herman et al.2 

and Samei et al.36 respectively.  

 

Axial slices of the anatomy of patients are typically reconstructed with filtered back projections 

or iterative reconstruction methods. Reconstruction methods quantify the X-ray absorption 

properties of voxels and encodes them in the pixel values of the images, called CT numbers. 

These numbers are given in terms of Hounsfield units (HU), defined in equation 2.6.1.1, where 𝜇 

and 𝜇water are the linear attenuation coefficients1 of a given voxel and of water respectively. 

CT number = 1000 ×
𝜇 − 𝜇water
𝜇water

 HU 2.6.1.1 
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CT scanners are calibrated for air and water to have CT numbers of -1000 HU and 0 HU 

respectively. Section 2.6.2 will expand on the use of CT numbers in radiotherapy. 

 

2.6.2 Radiotherapy Treatment Planning and CT simulation 

Radiotherapy aims at killing cancer cells using radiation while minimizing the dose to healthy 

tissues to reduce the severity of adverse effects. This section outlines the careful process of 

radiotherapy treatment planning (RTP) in external beam radiotherapy (EBRT), which is 

thoroughly discussed in the book by Barrett et al.37  

 

In EBRT, beams of X-rays at megavoltage (MV) energies are produced by linear accelerators 

(linacs) and directed at the target from multiple angles to spread the entry dose and avoid organs 

at risk (OAR). The total dose of radiation is also delivered over multiple days (fractions). 

Determining the positioning of beams, and the quantity of radiation delivered at each position 

requires careful planning based on CT images. 

 

The acquisition of CT images for the purpose of RTP is called CT-simulation because the 

positioning of the patient and the use of fixation devices and bolus are determined for the 

treatment during this phase of planning. The CT scanners dedicated to simulating treatments are 

often named CT-simulators. They usually feature external laser positioning systems reminiscent 

of the ones  found in treatment rooms, wider bores to accommodate fixation devices, and flat 

couch surfaces to replicate the ones found on treatment units38. 
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The images acquired on CT-simulators are first used to contour targets and OARs and to define 

the treatment isocentre. The visible lesion is defined as the gross tumour volume (GTV). To 

account for microscopic cancer cells that could surround the tumour, a margin around the GTV is 

added, resulting in the definition of the clinical target volume (CTV). To further account for 

treatment uncertainty, such as errors in position and patient motion, a second margin is added to 

the CTV, leading to the contouring of the planning target volume (PTV). RTP clinical coverage 

goals are usually defined for the PTV. 

 

CT images are also used to compute the dose delivered by different beam configurations to 

optimize the treatment. Many algorithms have been developed to compute the dose to patients 

accounting for tissue heterogeneities, and rely on maps of electron density estimated from CT 

numbers39. Linear relationships between relative electron density (RED) and CT numbers have 

been established in the past3. 

 

Moreover, the position of patients is ascertained with the planning CT images before the delivery 

of their daily fraction. Modern linacs are equipped with kilovoltage X-ray tubes and flat panel 

detectors to acquire projection images of patients, an apparatus called on-board imaging. On-

board imaging can be used to produce cone-beam CT (CBCT) images of the patients lying on the 

treatment couch. By comparing CBCT and planning CT, patient alignment can be validated40. 

 

2.7 Magnetic Resonance in Treatment Planning 

MRI is routinely used alongside CT for treatment planning. Because soft tissues have similar 

atomic compositions and electron densities, CT provides limited soft-tissue contrast. In certain 
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sites, like the brain, head and neck, and pelvis41, MRI is necessary to adequately contour targets 

and organs at risk. Unfortunately, MR images cannot be used directly to estimate relative 

electron densities, so CT is still needed for dose calculations.  To simultaneously use MR images 

for contouring and CT for dose calculation, both series of images need to be aligned in a process 

called registration.  

 

2.7.1 Registration of MR with CT 

The anatomy visible in MR images needs to share the same coordinates as in CT images to be 

used for contouring. In clinics, rigid registration is the most commonly used technique according 

to surveys42. In this method, MR images are aligned using translations and rotations in 3D, 

assuming that the anatomy is rigid. This process introduces errors in the treatment plan because 

MR-specific artifacts, geometrical distortions, and variations in patient anatomy between the two 

scans violates this assumption of rigidity. In brain plans, the spatial error on the targets position 

was reported to be 1.8 ± 2.2 mm5. A similar error of 1.9 mm was observed in prostate cases43. To 

ensure the adequate coverage of the CTV, greater margins must be included in the PTV, which 

implies that a greater volume of healthy tissue is irradiated. 

 

2.7.2 MR-only Radiotherapy 

Ending the use of CT-simulation in favor of an MR-only RTP workflow would eliminate the 

registration process and its accompanying error. Moreover, reducing the number of scans needed 

per patient lowers the workload and costs associated with treatment planning44.  
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To enable dose calculations, great efforts have been made to generate synthetic CT (sCT) images 

using MRI45,46. Besides approximating RED, synthetic CT images can also be used to validate 

patient positioning on on-board imaging47. Outside of RTP, sCT could be used to compute 

photon attenuation maps for positron emission tomography (PET) to enable attenuation 

corrections in PET/MR systems48-53. 
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Chapter 3: Review of CT Synthesis Algorithms 

This chapter is dedicated to the review of numerous CT synthesis techniques that have been 

proposed in the past decade, including atlas-based methods, machine learning approaches, 

generative adversarial networks, commercially available neural networks, and deterministic 

methods. An overview of the importance of accurate bone segmentation will precede the review 

to inform the reader about the challenges of sCT. The state of the field of CT synthesis has also 

been assessed in multiple recent reviews4,45,46,54,55.  

 

In this chapter, the inner workings of some of these algorithms will be described in short 

summaries and their performance will be outlined, primarily by using the mean absolute error 

(MAE) between sCT and X-ray CT numbers and the scan time necessary to acquire input data 

that is not part of the normally acquired planning images. Groups researching sCT usually 

recompute the dose from existing treatment plans on sCT images and compare it to the dose 

initially obtained on X-ray CT using Gamma analysis, which is explained elsewhere56. While the 

work in this thesis did not reach this step of validation, dose accuracy of select methods will be 

highlighted in Table 1, which summarizes the selected methods discussed in this chapter. Recent 

publications usually report Gamma pass rates of above 99% for the 3% / 3 mm criterion46,54. 

 

3.1 On the Importance of Bone in CT Synthesis 

Due to its rapid transverse relaxation and low proton density, cortical bone is generally invisible 

on MR images, and is indistinguishable from air57. Except for metal implants, bone absorbs the 

most radiation in the human body whereas air has negligible effect on the transmission of 

radiation58. Thus, on CT, air and bone exhibit the greatest naturally-occuring contrast difference. 
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From an RTP perspective, the correct representation of air and bone has significant impact on the 

accuracy of the dose prediction59,60. 

 

Moreover, contrary to other tissues, bone (cortical and trabecular) has a wide range of CT 

numbers, usually between 200 HU61 to 2000 HU62. Given that errors of 100 HU result in a 

deviation of 2% on calculated PTV dose63, we can infer that assigning uniform sCT numbers to 

all bone structures would result in significant errors on RTP dose calculations. For accurate CT 

synthesis, bone density information should be extracted from the MR images for sCT numbers to 

be estimated in bones.  

 

3.2 Atlas-based Techniques 

In atlas-based methods, the CT and MR images of previous patients are registered and saved in 

pairs in a database referred to as an atlas. For a new patient for whom an sCT image must be 

produced, the MR images of the atlas are transformed using deformable registration to match the 

new MRI scan. The transformation applied to the MR images of atlas are also used on the paired 

CT images64. In most atlas-based approaches, registration errors in a given voxel are calculated 

for the corresponding voxels in each MR image of the atlas64-69. The sCT number of this voxel is 

computed using a weighted average of CT numbers of corresponding voxels in the CT images of 

the atlas, where the weighting is the registration error. This approach has been explored in the 

pelvis70, brain71, and head and neck72.  

 

Generally, better results were obtained with atlas methods in the pelvis (MAE of around 40 

HU)66,72,73 than in the head (MAE over 150 HU)69,71. Dowling et al. developed an atlas-based 
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sCT algorithm from 39 prostate cases and reported an average Dice similarity coefficient (DSC) 

of 0.79 for bone70. Using an improved version of the same algorithm, Wyatt et al. reported an 

improved DSC of 0.95 for bone across two main magnetic field strengths (1.5 T and 3 T)74. No 

mean absolute errors (MAE) where reported in these publications. However, in another atlas-

based sCT algorithm tailored for prostate cancer,  Farjam et al. used the images of 23 patients to 

obtain an average MAE of 47 ± 5 HU for entire images and 116 ± 12 HU for bony anatomy75. 

 

To increase the accuracy of atlas-based methods for brain cases, Demol et al. proposed a 

modified atlas-based method that assigned sCT numbers on voxels based on a search of 

neighboring voxels with similar MR signal instead of using spatially corresponding voxels. 

Although this method produced sCT images with more plausible appearances, it introduced a 

significant amount of blurring. Demol et al. reported an average MAE of 150 HU for the whole 

volume, and 650 HU for bone specifically. 

 

3.3 Machine Learning 

In parallel to developments in atlas-based methods, other groups focused on early machine 

learning approaches, such as Gaussian mixture regressions76 and random forests77,78. Instead of 

averaging images from a database, machine learning approaches are built on the hypothesis that 

such databases can be used to determine relationships between MRI signal intensity and CT 

numbers. This way, the relationship between the voxel intensities of the two modalities could be 

used to directly calculate an sCT image from MRI. Machine learning approaches predating the 

widespread use of neural networks are scarce but have been investigated for brain79,80 and 

prostate80,81 cases. 



 

28 

 

 

Johansson et al. acquired five MR images from five patients with brain cancer: two dual-echo 

UTE sequences with different flip angles, and a T2-weighted (T2w) spin echo sequence. For each 

of these five images, two additional images were constructed from the mean and standard 

deviation (STD) of the 27-voxel neighbourhood of every voxel. Hence, every voxel was 

represented by 16 signals: five MR signals, five MRI local means, five MRI local STD, and a CT 

number. A Gaussian mixture regression model was trained on the combination of MR and CT 

images to effectively fit 20 multivariate Gaussians to a 16-variable function79. This method was 

tested using a leave-one-out scheme82, training the model on four patients and testing on the last 

subject. The process was repeated such that data from all patients were used for testing. The 

MAE of sCT images computed from the fit parameters averaged 137 HU, ranging from 117 HU 

to 176 HU79. 

 

As for atlas-based methods, early machine learning methods performed better in images of the 

pelvis. Largent et al. used a random forest model trained on 96 manually chosen features such as 

edge information and texture metrics. Their method achieved an MAE of 45.79 ± 10.02 HU 

across their cohort of 10 patients diagnosed with prostate cancer, using a leave-one-out scheme 

for testing. They noted that this result was worse than what would be obtained with an atlas-

based method on the same cohort81. 

 

3.4 Generative Adversarial Networks 

Advancements in machine learning – more specifically deep learning – led to the development of 

neural networks which can define features without human intervention, eliminating the need to 
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manually determine which features in the data should be fitted by the model55,83. Generative 

adversarial networks (GAN) are a particular type of neural network which has been popular for 

CT synthesis in recent years45,46,55. GANs use two different neural networks: a generator and a 

discriminator84. During training, the generator produces sCT images from MRI while the 

discriminator assesses if they are X-ray or synthetic CT images given the input MRI data. Over 

multiple iterations of training, the generator improves the quality of the sCT to trick the 

discriminator while the latter improves its authentication of the output images. 

 

Most newly proposed methods rely on variations of GAN and numerous literature reviews 

focusing entirely on these networks have been written in different medical fields46,49,85,86. The use 

of GAN was explored in the brain87,88, breast89,90, head and neck91,92, liver93, pelvis94,95, 

abdomen96,97, thorax98, and rectum99. Across these different sites, average MAEs reported since 

2022 ranged from 26 HU to 93 HU, with the best performances observed in prostate cases, and 

the worst in the head and neck. Head-and-neck is a difficult area to scan due to breathing and 

swallowing motion, variations in cross-sectional diameter which introduce magnetic field 

inhomogeneities, and various challenges in coil design100. 

 

A typical use of GAN for CT synthesis consists in training a network on pairs of registered CT 

and MR images from cancer patients. For example, Tang et al. trained a GAN to translate T1-

weighted (T1w) turbo inversion recovery dark fluid spin echo images to sCT on a cohort of 27 

patients with brain cancer. They obtained a MAE 60.52 ± 13.32 HU on a testing dataset of 10 

patients101.  
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To obtain a more generalized algorithm, Jabbarpour et al. trained their GAN with a variety of T1 

and T2w images, from spin echo or gradient echo sequences, even featuring non-cartesian 

acquisitions like periodically rotated overlapping parallel lines with enhanced reconstruction 

(PROPELLER). When trained on a cohort of 150 patients and tested on 39 other patients, the 

resulting sCT images achieved a MAE of 80.11 ± 29.10 HU for T1w inputs, and 75.00 ± 20.00 

HU for T2w102. 

 

So far, all methods presented in sections 3.1 to 3.4 required MR images to be registered to their 

counterpart X-ray CT images. Even conventional GANs cannot be trained on unpaired images84, 

thus limiting the practical size of the training dataset. Sun et al. investigated cycle-consistent 

GANs103 (cycleGAN) to overcome this limitation. In this architecture, two GANs sharing the 

same generators and discriminators are arranged in a ring-shaped pipeline and constrained by a 

cyclic loss function enabling them to efficiently learn the non-linear mapping between two 

different image domains84. Training a cycleGAN model on unpaired T1w MR and CT images of 

80 cervical cancer patients (increased to 120 through translations and rotations) yielded sCT 

images with an average MAE of 46.79 ± 2.76 HU104. 

 

3.5 Commercially Available Neural Networks 

Three commercially available CT synthesis software solutions were identified in this literature 

review, sold by Spectronic Medical AB, Siemens Healthineers, and Philips Healthcare, 

respectively. These proprietary algorithms rely on neural networks and have been validated for 

brain cases by a handful of research groups as follows. 
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MRI Planner (Spectronic Medical AB, Helsingborg, Sweden) uses a convolutional neural 

network which requires 3D IDEAL Dixon images105 that can be acquired in 4.5 minutes. Using 

the brain scans of 20 patients, Lerner et al. reported an MAE of 62.2 ± 4.1 HU using MRI 

Planner, ranging from 56.2 HU to 70.4 HU when fixation devices were excluded from the CT 

number comparison. The authors also noted that the algorithm performed marginally worse in 

patients with resected bone, following surgery. In their cohort, the images of 14 patients who 

underwent craniotomy had an MAE of 176.5 ± 18.8 HU for bones of the skull, compared to an 

MAE of 164.1 ± 14.4 HU for the 6 patients that were not operated106. 

 

Syngo.via VB60 RT pro edition (Siemens Healthineers, Erlangen, Germany) can synthesize CT 

images from pre-contrast T1w in-phase and opposed-phase images using two neural networks 

instead of relying on a GAN or a cycleGAN. The first network segments images while the 

second assigns continuous sCT numbers to the different tissues. Using data from 25 patients with 

brain cancer, Masitho et al. concluded that the sCT images had an MAE of 135.8 ± 12.9 HU, 

excluding fixation devices, and that craniotomy observed in nine of the 25 patients had a 

negligible effect on the accuracy of the algorithm47. 

 

The convolutional neural network of MRCAT (Philips, Vantaa, Finland) can be used to produce 

sCT scans from T1w multi-point Dixon (mDixon) images normally acquired in 2 minutes and 56 

seconds. In a study by Ranta et al., sCT images derived from brain scans of patients had an MAE 

of 63 HU, ranging from 50 HU – 82 HU in 50 patients with gliomas or metastases107. 
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3.6 Deterministic Methods 

Closer to the method proposed in this thesis, deterministic algorithms (or voxel-based methods) 

do not rely on any databases, but rather on voxel intensities of one or more MR images to assign 

sCT numbers4. Since these methods do not require any training, they are believed to be easier to 

adapt to different parts of the body or to patients with atypical anatomy4,108. These algorithms 

can rely on UTE or ZTE imaging for bone visualization50,53, fat-water separation for soft tissue 

characterization108,109, and FCM clustering for segmentation110,111. Deterministic algorithms have 

been developed for the brain48,50,51, the head10,52,53, the head and neck10,110, the liver111, the 

thorax108,109, and the pelvis112, showing good performance with average MAE ranging from 50 

HU to 150 HU. 

 

In one method based on a single proton density-weighted (PDw) ZTE image acquired in 2 

minutes 51 seconds, Wiesinger et al. segmented air, soft tissue and bone using thresholds53. 

While homogeneous sCT numbers were assigned to air and soft tissue, bone regions were 

assigned sCT numbers based on a known negative linear relationship between PDw MR signal 

and CT numbers113. In the algorithm proposed by Wiesinger et al., partial volume voxels mixing 

air and soft tissue, which can have the same intensity as bone, were segmented based on the 

intensity of neighboring voxels and assigned values based on the PDw signal. This algorithm 

produced sCT images with an average MAE of 123 ± 25 HU over scans of whole heads 

including the upper neck53. 

 

Some deterministic methods require multiple MR images of different contrast as inputs. For 

instance, Su et al. developed a CT synthesis method for imaging lungs based on the clustering of 
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fat and water images acquired with a free breathing UTE mDixon protocol usually lasting 4 

minutes 44 seconds108. To validate this method, 25 healthy volunteers were scanned. Their 

anatomies were used to create numerical 4D phantoms using the XCAT toolbox114 to simulate 

CT scans. The bones in the simulated CT images of the phantoms were replaced with bones from 

acquired CT images of patients through deformable registration to recreate the greater variability 

of CT numbers present in bony anatomy. The sCT images generated from the real MR images of 

the volunteers were quantitatively compared with the simulated CT scans. This group reported an 

MAE of 50 HU for whole volumes and 100 HU for bone alone108. 

 

Approaching the bone-air differentiation problem from another angle, Fortier et al. proposed an 

algorithm relying on magnetic susceptibility to identify bone10. In their method, a single multi-

echo acquisition was used to obtain a quantitative susceptibility map, fat and water images, and 

quantitative fat and water maps. These images were used for segmentation and to calculate sCT 

numbers based on probabilities derived from FCM clustering. They tested their method in a 

cohort of patients treated for cancers of the brain and of the head and neck, reporting MAEs of 

105 HU and 112 HU, respectively. 
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Table 1:  Summary of selected methods discussed in this review of synthetic CT, 

comparing the type of method, the site of application, the reported mean absolute error 

(MAE), and the gamma pass rate in cases where dosimetric calculations were 

performed. 
 



 

35 

 

Chapter 4: Synthetic Computed Tomography from Colour 

Segmentation of Magnetic Resonance Images 
 

Preface: 

This chapter presents a manuscript that will be submitted to Physica Medica: European Journal 

of Medical Physics. This work describes our novel approach to CT synthesis, beginning with a 

justification of the work. Then, the methods by which images were acquired on MRI are 

described followed by a description of the sCT algorithm. Afterwards, the experimental protocol 

used to quantify the accuracy of this method in a phantom and qualitatively evaluate it in images 

of human heads are explained. Subsequently, the results of these tests are presented. Finally, 

these results are discussed as well as some limitations of the algorithm. 
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Abstract 

Purpose 

To produce synthetic CT (sCT) images by using well-established colour-image segmentation 

techniques on red-green-blue (RGB) images created from multiple magnetic resonance (MR) 

scans. 

Methods 

In this technique, three spiral MR scans are acquired: ultra-short echo time (UTE) proton 

density-weighted (PDw) images, a UTE acquisition using the Ernst angle of bone for maximum 

bone signal, and a second echo of this bone-optimized sequence. These three sets of images are 

used as colour channels in an RGB volume. Voxels are merged into supervoxels using the simple 

linear iterative clustering algorithm, which are then classified based on their colour. Air, fat and 

soft tissue voxels are assigned bulk CT numbers, while bone voxels are assigned CT numbers 

calculated from the pixel values in the PDw images using a linear model (scale + shift). This 

method was tested quantitatively in a phantom featuring pieces of bovine femur, and 

qualitatively in human heads in vivo. 

Results 

Overall, the algorithm produced images with plausible appearance and differentiated between 

bone and air, with exceptions arising in voxels that were mixtures of air and soft tissue. In the 

phantom, the algorithm produced sCT images with a mean absolute error of 46 HU, and 222 HU 

specifically in bone regions. In vivo, details such as the mastoid air cells and turbinates were well 

represented. Some fat voxels were misidentified as bone.  
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Conclusion 

The algorithm can synthesize CT images of phantoms and head images, with other anatomical 

sites still requiring investigation. Further optimization of the contrast of the input images could 

improve fat segmentation.  

 

1. Introduction 

In standard radiotherapy treatment planning (RTP), computed tomography (CT) images are 

needed for dose calculations but sometimes lack the soft-tissue contrast necessary for the 

accurate contouring of targets and organs-at-risk1. In these cases, additional magnetic resonance 

imaging (MRI) is needed for its superior soft-tissue contrast, and the images are registered to the 

CT images2, still used for dose calculations since electron densities can be approximated from 

them3. Unfortunately, registration can introduce errors in the treatment plan4,5. Moreover, 

simulating the treatment on two different scanners takes a substantial amount of time, thus 

burdening the healthcare system6. For these reasons, there has been increasing interest in 

generating synthetic CT (sCT) images from MR images, allowing the patient to be scanned only 

using MRI for both contouring and dose calculation, thus simplifying the clinical workflow in 

RTP1,7. 

 

Multiple approaches for CT synthesis have been developed to address this need based on 

deterministic classification of tissues8-10, atlas registration11-13, or the training of an artificial 

intelligence (AI) model14-16. Regardless of the method used, the differentiation of air and bone 

remains the greatest priority, and challenge. Ignoring the potential presence of metal implants, 

cortical bone is the highest absorber of radiation in the human body17. Thus, bony anatomy has 
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the greatest influence in the dose distribution in RTP. However, on typical clinical MR images, 

bone is invisible like air18. Hence, sCT methods need the capacity to differentiate bone from air 

on MRI. Deterministic algorithms typically need to acquire more data via extra sequences to 

gather information about bone structures, be it by detecting bone signal directly using ultra-short 

echo time (UTE) 19 or zero echo time imaging (ZTE) 8, or by detecting the effect bone has on the 

surrounding magnetic field with quantitative susceptibility mapping with iterative phase 

replacement10. Atlas-based methods eliminate the need for air-bone differentiation by relying on 

large databases of pre-registered MR and CT images of multiple of patients11. For a given 

patient’s clinical images, the algorithm applies a deformable registration to the database images 

so that it matches the input, applies the same registration to the CT images in the database, and 

returns the transformed CTs as a weighted sum. AI-based methods also rely on large databases to 

train models that can compute sCT images from the input clinical MR images7. 

 

While sCT algorithms based on neural networks have been shown to accurately generate sCT 

images across multiple sites, deterministic methods are believed to be more robust in cases 

where patients have undergone extensive surgery or have atypical anatomies1,9,20. Unfortunately, 

deterministic methods that do not use any assumptions about the geometry of patients typically 

necessitate multiple MR acquisitions in addition to the clinical images, leading to substantial 

scan times9,10,21. Hence, there is still a need for a deterministic method that can operate with no 

geometrical assumptions and that exploits images acquired in a handful of minutes.    

 

This work presents a new method for CT synthesis which does not exploit a priori knowledge or 

assumptions, and only needs an additional 4 minutes 14 seconds of scan time in the head to 
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acquire the necessary input images. This novel technique is based on the segmentation of colours 

in RGB images created from three MR images to differentiate between the tissue types of 

importance in CT, those being water-based soft tissues, fat, bone, and air. This segmentation is 

used to assign Hounsfield units (HU) to the sCT.  The following sections will describe our CT 

synthesis algorithm, from the MR acquisitions to the assignment of CT numbers, and the 

methods used to evaluate its performance both in a phantom and in the heads of volunteers. 

Finally, following a presentation of the results, the performance of the method will be discussed. 

 

2. Methods and Materials 

In the proposed method, three MR images with different contrasts are used as the colour 

channels of an RGB image. By using UTE imaging for some colour channels, this composite 

image contains information about bony structures. In the RGB image, each tissue class relevant 

to CT number assignment is depicted with different colours. Hence, tissues can be segmented 

based on their colour through well established colour image segmentation methods. The 

segmentation results are used to assign sCT numbers. Our methods were tested and optimized in 

a phantom and three volunteers. 

 

2.1 UTE Acquisition 

The MR images were acquired on a 3T system (Prisma, Siemens Healthineers, software version 

E11) using a non-selective stack-of-spirals UTE protocol (Siemens WIP992) and reconstructed 

using SPIRiT reconstruction22 with a spiral iPAT factor of 2. 
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Three series of images were acquired. The first was a PDw UTE image to be used in both the 

RGB image and for CT number assignment of bone. Second, a “bone-optimized” image was 

acquired using the same parameters as for the PDw image but using an excitation pulse 

generating the Ernst flip angle of bone to maximize its signal. Finally, a second echo was 

collected with the bone-optimized sequence to act has a general T1-weighted image with 

negligible bone signal. The scan parameters for the UTE sequences are presented in Table 1. 

Sample images obtained with these parameters are shown in Figure 1. 

 

In the initial experiments using the phantom, a clinically available magnetization prepared rapid 

gradient echo (MPRAGE) sequence was used to acquire a conventional T1-weighted image. This 

was used in the place of the second echo of the bone optimized image, as input to the 

segmentation. In this case the default acquisition parameters, optimized for brain imaging, were 

used: TR = 2300 ms, TE = 2.28 ms, TI = 900 ms, and FA = 8 degrees. 

 

Through trial-and-error experimentation, the protocols were optimized, and parameters were 

modified. The TR was increased from 6 ms in the phantom experiment to 10 ms in vivo to 

increase the PD weighting of the PDw image. To compensate for the longer TR, the flip angle of 

the bone-optimized sequence was increased to 17 degrees. To shorten the scan time, the readout 

of the spirals was increased to 1.240 ms to reduce the number of spiral interleaves required to 

fulfill the Nyquist criterion, thus reducing the number of phase encoding steps needed. 

 

Following the acquisition, an N4ITK bias-field correction23 was applied to all MR images to 

improve their uniformity. 
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11Figure 1: Input images acquired using the spiral ultra-short echo time (UTE) 

sequence. This figure displays examples of a) a proton density-weighted (PDw) 

image, b) the UTE-echo of a bone-optimized image and c) the second echo of the 

bone-optimized image, in an axial slice of a brain. 

 

 

2.2 Image Segmentation and CT Synthesis 

The CT synthesis algorithm was implemented in Python to follow the steps illustrated in Figure 

2. The PDw UTE, bone-optimized UTE image, and the second echo of the bone-optimized 

acquisition were assigned to the green, blue, and red channel of an RGB image respectively. This 

order was chosen to reduce eye strain. The segmentation of the colour MRI image, to generate 

masks of the materials in the phantom or tissues in the human head, was performed in three 

steps: first, using the simple linear clustering (SLIC) algorithm24, second, merging neighbouring 

SLIC labels of similar colours, and third, applying fuzzy C-means (FCM) clustering25 to the 

merged labels. 

 

In the first segmentation step, the SLIC algorithm divides the image into regions of spatially 

close pixels of similar colour which are refer to as superpixels, or supervoxels in 3D. SLIC first 
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converts the RGB image into the CIELAB colour space since it better represents human  

perception of colour26, thus yielding more accurate segmentations27. The various segmentation 

labels returned by SLIC were then assigned the mean value of the voxels contained within the 

label in the original RGB image to create a new, simplified image. A region adjacency graph 

(RAG) was then created to represent the colour similarity between neighboring supervoxels28. 

This similarity was defined as the Euclidean distance between the colours in CIELAB space. 

Neighbouring supervoxels whose colour similarity fell below the median of all similarities were 

merged to further reduce the number of regions in the image. 

 

Following the application of SLIC, the colours in the superpixel image were clustered into six 

groups using the FCM algorithm, with initial guesses representing the colours expected from the 

six main materials observed in the head. These materials were air, fat, cerebrospinal fluid (CSF), 

water-based soft tissues (referred to as soft tissue in the rest of this work), mixtures of air and 

soft tissue (partial volume voxels), and bone. 

 

After segmentation, the resulting binary masks representing each material were used to assign 

CT numbers, yielding the sCT. For air, fat, CSF, and soft tissue, bulk values of -1000 HU, -70 

HU, 0 HU, and 40 HU were assigned, respectively. Partial volume voxels and bone voxels were 

assigned CT numbers based on their pixel values in the PDw image. For partial volume voxels, 

CT numbers were assumed to scale linearly with proton density, and thus with the PDw UTE 

signal intensity. For bone, there exists a negative linear relationship between PDw UTE signal 

and CT numbers in bone measurements8,29. A similar equation, calibrated using our phantom 

measurements, was used to compute bone CT numbers. 
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12Figure 2: Flowchart representation of the CT synthesis algorithm. This figure illustrates how 

the three input images are combined into an RGB image to be segmented into different masks in 

a two-step process using SLIC and FCM (top). The masks are then used for CT number 

assignment to generate the final sCT (bottom). 

 

To achieve sCT of the head instead of the phantom, the number of clusters used in the FCM was 

increased by one to segment CSF. The sCT numbers assigned to soft tissue (agar in the case of 

the phantom) was also increased from 13 HU to 40 HU.  

 

 

2.3 Phantom Experiments 

The phantom consisted of water-based gel in which various objects of interest were placed. The 

gel was a solution 1% agar (by weight) in of distilled water, with the addition of 0.5% table salt 

by weight to increase the conductivity of the phantom to ensure adequate B1 homogeneity30 and 
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0.05% sodium benzoate by weight, a common food preservative used to increase the lifespan of 

the gel. The solution was prepared in a beaker heated at 80 °C31. 

 

A first layer of gel was poured into a plastic container (Rubbermaid®) and cooled down in a 

refrigerator. Once the gel had set, the objects were placed on this layer: a fresh piece of bovine 

femur, a ping pong ball, a processed piece of bovine femur, and a piece of polyoxymethylene 

(Delrin®). Prior to placement, the fresh piece of bovine femur was kept frozen at -80 °C to 

prevent marrow from warming up and melting when the second layer of agar would be poured. 

The ping pong ball was added to create an air cavity. The second (processed) piece of bovine 

femur was manually emptied of marrow, cleaned with a brush and a caustic soda-based cleaning 

product, then soaked in distilled water for 10 days for rehydration32. Before being placed in the 

phantom, the second piece of femur was sealed at both ends using epoxy resin to create an air 

cavity adjacent to bone, mimicking the human sinuses. Finally, the piece of Delrin® was 

included to assess if plastic was visible with our UTE sequence. Delrin® in particular was 

selected for the small size of the magnetic susceptibility artifacts it generates33. The objects were 

covered in a second layer of agar, and the phantom was left in the refrigerator to solidify until it 

was scanned the next day. 

 

X-ray CT images of the phantom were acquired on a CT-simulator (Brilliance Big Bore, Philips 

Healthcare) at a tube potential of 120 kVp. The highest dose allowed by the thermal limits of the 

X-ray tube was used (284 mA, 1002 mAs, CTDIvol = 119 mGy), to achieve the maximum signal-

to-noise ratio and the most accurate CT number measurements for this reference scan. The 
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images were reconstructed using a bone kernel and registered to the MR images acquired later. 

MR images were then produced the same day as described in the “phantom” column of Table 1. 

 

Quantitative metrics were computed to compare the sCT to the X-ray CT in terms of CT number 

assignment and the underlying segmentation. To do so, the DICOM-format X-ray CT and MR 

images were imported into Python, where sCT images were generated. To quantify the accuracy 

into different materials, the CT images were segmented into masks representing bone, air, and 

the combination of agar and fat using thresholds. The bone mask was defined as pixels above 

200 HU. The piece of plastic was included in the bone mask using this threshold, and it was 

manually removed. The air mask was defined as every pixel below -950 HU. The agar and fat 

mask were defined as all pixels between -950 HU and 200 HU. Partial volume voxels between 

air and bone regions had CT numbers in the same range as agar and fat, so they were manually 

excluded from the agar and fat mask. Using the X-ray CT images as ground truth, the mean error 

(ME), mean absolute error (MAE), and the intraclass correlation coefficient (ICC) were 

computed for the entire 3D volume, for bony structures, regions of air, agar, and fat. 

 

To assess the quality of the segmentation, the masks used in the sCT algorithm were compared 

with CT-based segmentation described above to calculate the sensitivity, the specificity, and 

Dice’s similarity coefficient (DSC) for bone, air, and agar and fat. 

 

2.4 In Vivo Experiments 

Following the approval of the research ethics board of the McGill University Health Centre 

Research Institute, the heads of three healthy volunteers were scanned in the same MRI system 
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as mentioned in section 2.1. CT scans of the volunteers were not obtained to avoid unnecessarily 

exposing them to radiation. The sCT images were qualitatively compared to the original MR 

images to verify that the anatomy of the subjects was correctly depicted.  

 

Subject/sequence: Phantom/PDw UTE Volunteers 
Voxel Size [mm3] 1.1  1.1  1.5 1.1  1.1  1.5 
FOV [cm3] 24  24  19.2 25.6  25.6  19.2 
TE1, TE2 [ms] 0.05 0.05, 4.54 
TR [ms] 6 10 
FA1, FA2 [°] 3, 13 3, 17 
RO [ms] 0.840 1.240 
Interleaves 500 200 
Scan Time [min:sec] 3:40 2:07 

2Table 1: Pulse sequence parameters. Only the UTE sequence parameters are shown. 

 

3. Results 

3.1 Phantom Experiments 

Qualitatively, the synthetic and X-ray CT images look very similar. In Figure 3a and 3b, the agar 

phantom has the same shape, and the air cavity in the empty piece of bone has the same shape in 

both scans. The same blood vessel can be observed in the piece of bone containing marrow. In 

Figure 3d and 3e, CT numbers of fat were correctly assigned inside the fresh piece of femur on 

the sCT, and bumps can be seen inside the empty piece of bone at the same position as on X-ray 

CT.  

 

Most differences between the synthetic and X-ray CT were found at the interfaces between 

different materials, as shown in Figure 3c and 3f, which compares synthetic and X-ray CT 

images and shows the difference in HU between the two volumes. Plastic components such as 

the piece of polyoxymethylene and the phantom container, as well as the scanner couch, are 
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invisible on MRI, and thus are not represented on the sCT. The foam pads used to immobilize the 

phantom in the head coil produced some signal on MR, which was interpreted as partial volume 

voxels by the sCT algorithm, resulting in CT numbers slightly higher than air (average of -959 

HU, maximum of -890 HU) on one side of the phantom. In Figure 3a through c, we can see how 

the fat shift at the interface between bone and bone marrow in the fresh piece of bone leads to a 

misidentification of bone as fat, and thus an increase in the bone’s inner radius. 

 

Quantitative comparison of the synthetic and X-ray CT revealed a good correlation between CT 

and sCT numbers, with especially good sensitivity and specificity for bone voxels, and decent 

results for other materials. These results are reported in Table 2. For the whole volume shown in 

the images of Figure 3, the ICC indicates that there is a good correlation between the CT 

numbers of both images. The algorithm has both high sensitivity and specificity to bone. For air, 

the algorithm has lower specificity due to the greater number of false positives, which is 

unsurprising since the plastic container and the scanner table were both invisible on MRI, and 

because the inner surface of the empty piece of femur was eroded on the sCT images. The 

algorithm also appears to have lower sensitivity to agar and fat. However, this does not include 

the voxels segmented as mixtures of agar and air since these can also be found outside the 

phantom has explained earlier. Including these increases the sensitivity to agar and fat to 0.75 but 

lowers the specificity to 0.90 because of the greater number of false positives. This ambiguity 

results in a lower DSC than in bone and in air but does not necessarily imply worse performance 

in terms of CT number assignment as evidenced by the ICC of 0.82 and MAE of 123 HU. 
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Synthetic and X-ray CT numbers correlate well across air, fat, agar, and bone, as depicted in 

Figure 4. The most evident deviation from the ideal scenario, represented by the dotted blue line, 

is found for CT numbers smaller than 0 HU in both scans, presumably in voxels partially 

composed of air. The misassignment of CT numbers to the piece of Delrin can be found above 

this region, highlighted by a green box. There are two perfectly vertical lines observed at 0 HU 

and -70 HU due to the misassignment of bulk CT numbers to various materials in the phantom. A 

horizontal line can be observed around CT numbers of 0 HU because some fat and agar voxels 

were assigned air or bone sCT numbers. There is not enough variability in the density of the 

pieces of femur to ascertain the linearity between sCT and CT in bone alone. 
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13Figure 3: Comparison of synthetic CT and X-ray CT in a phantom. The sCT and CT of two 

different cross-sections of a home-made phantom are compared. The phantom features (from left 

to right, top to bottom, in e)) a fresh piece of bovine femur containing marrow, a ping pong ball 

acting as an air cavity, a piece of bovine femur which was emptied of marrow, cleaned, and 

rehydrated, and a piece of polyoxymethylene (Delrin®) to create an area of magnetic resonance 

signal void with less distortion than air due to susceptibility artifacts. The difference image 

between the sCT and the CT is shown in the last column of the figure. 

 

 

Metric Whole Volume Bone Air Agar and Fat 
ME [HU] -32 -147 3 -104 
MAE [HU] 46 222 7 123 
ICC 0.95 0.57 0.00 0.82 
Sensitivity NA 0.92 0.98 0.66 
Specificity NA 1.00 0.75 1.00 
DSC NA 0.93 0.94 0.79 

3Table 2: Quantitative evaluation of the CT numbers of the sCT and X-ray CT. The mean 

error (ME), mean absolute error (MAE), and the interclass correlation coefficient (ICC) were 

computed from the HU of the sCT and CT to evaluate the CT number assignment. The 

segmentation aspect of the algorithm was assessed by calculating the sensitivity, specificity, and 

Dice’s similarity coefficient for masks of bone, air, and agar and fat.  
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14Figure 4: Hounsfield units of each voxel in the X-ray CT and synthetic CT. This two-

dimensional histogram presents the voxel values of paired voxels in both scans, showing sCT 

numbers on the x-axis and X-ray CT numbers on the y-axis. A perfect correlation would follow 

the dotted blue line. The lower left quadrant of the graph (-1000 HU to 0 HU in both X-ray CT 

and sCT) suggest that the handling of partial volume voxels needs improvement. 

 

3.2 In Vivo Experiments 

In vivo, the anatomy visible on sCT corresponds well to the anatomy observed on the bone-

optimized images, as shown in Figure 5. The major bones of the head are visible in the sCT 

images. The algorithm can distinguish bone from air in the sinuses, the nasal cavity, and the 

mastoid air cells. Fat that appears bright on MRI is accurately segmented. However, fat voxels 

that appear darker on MRI are misidentified as bone, as observed in the subcutaneous fat on the 

back of the neck, under the chin, and on top of the cranium. 
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Partial volumes of air and soft tissue were handled adequately such that there are very few voxels 

with high CT numbers in the nasal cavity or the larynx and pharynx on the synthetic CT. 

Unfortunately, this was an issue at the back of the neck because a signal was detected from the 

foam pad used for immobilization (Figure 5c). As a result, voxels of air on CT were assigned 

sCT numbers of 1800 HU instead of -1000 HU. 

 

 

 

15Figure 5: Qualitative assessment of in vivo synthetic CT images. The sCT images of the head 

of a volunteer are shown below the bone-optimized images that were used in the algorithm. In 

general, the sCT images have a plausible appearance and the algorithm differentiated between air 

and bone in most cases. However, certain fat voxels were segmented as bone, as seen in all 

cross-sections. In the axial slice, mastoid air cells are visible, although with poor resolution. In 

the coronal cross-section, the bony wall of the sphenoid sinus is visible. In the sagittal sCT, 

details in the nasal cavity are preserved, with very few voxels appearing as cortical bone due to 

partial volume effects. 
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4. Discussion 

The algorithm proposed in this work can produce sCT images with plausible appearance in both 

simple phantoms and human heads. In the case of the phantom, apart from plastic components, 

the different materials were adequately segmented and assigned CT numbers. 

 

The MAE on sCT numbers suggests that the algorithm proposed here outperforms most methods 

proposed in literature covered by these recent systematic reviews7,34. However, these techniques 

were tested in patient cohorts, whose anatomies are much more complex than the phantom used 

in our study. A similar phantom study was conducted by Ghose et al., in which a CT synthesis 

algorithm based on a random forest regression was tested in two porcine legs35. Although better 

MAEs (91 HU for bone) were reported, their phantoms did not feature air cavities and plastic 

structures. Moreover, the algorithm proposed in this paper was not tested in human volunteers. 

 

In the phantom, most errors identified on the difference map between X-ray CT and sCT were 

found at the edges of different materials. This is likely caused by registration errors. The sCT 

images were difficult to register to X-ray CT potentially due to geometrical distortions occurring 

on MRI. The stack-of-spirals sequence used for this project does not feature distortion or off-

resonance corrections, which have been shown to impact the shape of objects in MRI36,37. 

 

To achieve a reasonable scan time, the number of phase encoding steps was kept low by setting 

the readout time to 1.240 ms. In pulse sequences with center-out k-space trajectories, longer 

readout times lead to lower spatial resolutions in short T2* objects38. Longer readout times also 

yield to increased fat-shifts39. 
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The ICC measures how closely sCT and X-ray CT numbers follow a one-to-one relationship. 

This was the case overall in our results, showing high ICC. However, for CT numbers between -

1000 HU and 10 HU, the sCT numbers were lower than the X-ray CT numbers. This suggests 

that the equation used to assign CT numbers to voxels partially composed of air and agar could 

be improved. However, the plastic container, which has CT numbers similar to agar, extends the 

visible width of the phantom on CT because it is invisible on MRI, leading to higher CT numbers 

on the outer edges of the phantom on X-ray CT compared to sCT. 

 

The ICC of bone voxel values was low due to the low variability in bone density in the bone 

sample (1500 HU to 2000 HU), when compared to the noise in both synthetic and X-ray CT. If 

any, further phantom studies should be carried out with a wider range of bone densities to assess 

the linearity of sCT and CT numbers in bone. 

 

The ICC of air was 0.00 because there was more variability in the CT numbers of air regions of 

the sCT than expected. This was partly caused by the signal detected from the immobilization 

foam pads on the sides of the phantom, which were segmented as air-agar mixtures and assigned 

CT numbers as high as -800 HU. Moreover, by the time the phantom was scanned using MRI, 

water had pooled at the surface of the phantom and inside the empty piece of femur. Hence, in 

the ICC calculation, the CT numbers of some voxels segmented as agar were compared to ones 

of air voxels on X-ray CT. 
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The high sensitivity for air and bone was possible thanks to the incorporation of the bone-

optimized images. In Figure 1b, the frontal sinus can be delineated with ease. The low specificity 

for air and low sensitivity for agar and fat are consequences of numerous false positives for air 

and false negatives for agar and fat, respectively. These are both consequences of the visibility of 

plastic on X-ray CT, which was classified as air on sCT. 

 

In vivo, most erroneous sCT number assignments were caused by the misidentification of fat 

voxels as bone, probably caused by the similarity in colour of the two species in the constructed 

RGB image. Optimizing the contrast of the input images could improve the output of the 

algorithm. So far, the pulse sequence parameters used have not been optimized to create the 

greatest colour differences between tissues. Simulations of MR signals could be performed with 

known T1, T2* and PD of various tissues to optimize the sequence parameters to obtain input 

images most likely to be correctly segmented. The current parameters were chosen based on the 

hypothesis, in addition to a PDw UTE image for CT number calculations for bone, the algorithm 

would need an image with as much bone signal as possible for good air-bone differentiation, and 

an image without bone signal to differentiate bone from other tissues. 

 

5. Conclusion 

This work demonstrated the use of deterministic colour image segmentation methods on RGB 

images composed of MRI acquisitions with different contrasts to differentiate between various 

types of tissues to create sCT images. The method proposed in this work can still be improved by 

optimizing the contrast of input images and by improving on the current use of the RAG. The 

algorithm’s capacity to generate images in both the phantom and heads of human volunteers 
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suggest that it should be easily adapted to different parts of the anatomy. The next step will be to 

use the algorithm in other parts of the anatomy and to recruit patients from whom X-ray CT 

images can be collected and compared against sCT. 
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Chapter 5: Discussion 

This chapter expands on the discussion of the manuscript presented in Chapter 5. First, certain 

parameter choices, pulse sequence limitations, and solutions to address these constraints will be 

covered. Second, the potential role of UTE in RTP beyond CT synthesis will be discussed. Third, 

potential refinements to the segmentation pipeline will be considered. Finally, the difficulties 

surrounding partial volume effects will be addressed. 

 

5.1 Considerations for Image Acquisition 

5.1.1 Readout duration and trajectory 

With the spiral sequence used in this work, using longer readout durations increased the 

sampling efficiency and greatly reduced scan time. Spiral imaging struggles with quick 

readouts23 because the rate of change of the gradient field is limited, either by the scanner’s 

capabilities, or by the likelihood of inducing eddy currents in the patient’s body, leading to 

unwanted peripheral nerve stimulation (PNS)19. This entails that the maximum curvature of a 

spiral interleave is limited by the speed at which the k-space is travelled in24,115, and thus by the 

readout duration. Shorter interleaves sample fewer points in k-space and thus more interleaves 

are necessary to fully sample the Fourier domain. For our sequence specifically, the number of 

interleaves needed to fully sample the Fourier domain increases exponentially with the inverse of 

the readout duration. Lowering the readout duration to 0.8 ms – the lowest value possible with 

our sequence – increased the acquisition time of the bone optimized sequence to 7 minutes 40 

seconds. By comparison, a scan with a readout duration of 1.24 ms lasts 2 minutes 7 seconds.  
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Unfortunately, longer readouts lower spatial resolution, which is especially noticeable for short 

T2* tissues because their signals can decay substantially before the high frequency contents of k-

space are sampled18. Blurry edges between bone and air can lead to the erroneous representation 

of the boney walls of sinuses. Resolution is also limited by the shape of the spirals used25. Our 

stack-of-spiral sequence uses a “dual-density” trajectory116. Using the definitions of Delattre et 

al.24, this approach uses spirals of unit density with a varying FOV. This is to sample twice as 

much data in the center of k-space compared to the outer region, thus enabling auto-calibration 

calculations in GRAPPA-based reconstructions117 that greatly reduce scan duration. The side-

effect of this trajectory is that more time is spent sampling the low-frequency contents of k-

space, instead of the mid and high-frequency contents.  A cones-based sequence with sub-unit 

density such as FLORET could allow us to read the higher-frequency content of k-space 

sooner25, improving the sharpness of the edges between bone and air found in sinuses. 

 

Besides degrading spatial resolution, longer readout durations lead to a greater spiral fat-shift 

artifact. This phenomenon presents itself as a dark edge around the fat regions and has been 

documented for radial acquisitions in Engström et al.118. Fat-water separation could be 

considered to correct fat-shifts119, but this would necessitate the acquisition of three or more 

echoes at spacings that are not feasible in a single repetition, implying that more scans would be 

needed. Engström et al. proposed a method to correct for chemical shift interference in in-phase 

ZTE imaging which could be adapted to any center-out sequence, such as our stack-of-spirals, 

with no time penalty118. 
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5.1.2 Replacing MPRAGE Images with a Second Echo 

Earlier versions of the algorithm relied on an additional MPRAGE image instead of the second 

echo of the bone-optimized sequence. In the initial development of the method, we hypothesized 

that a T1w image that would be routinely acquired in the clinic for RTP could be reused in the 

CT synthesis algorithm to obtain a third, boneless image, without further increasing scan time. 

The MPRAGE acquisition acted as this clinical image. In reality, since the exact T1w sequence, 

and thus contrast, used for RTP varies from one hospital to another41, the performance of the 

algorithm could have varied across centers. Using a second echo with known contrast ensures the 

consistency of the algorithm without increasing the required scan time, allowing the center to use 

whichever T1w image they want for RTP.  

 

The second echo also acted as a temporary fix for geometrical distortions. Since the spiral 

sequence used in this work does not feature geometrical distortion corrections yet, large objects 

(relative to the FOV) seem stretched at the superior and inferior extremities on spiral images. 

This is not the case for MPRAGE images which feature distortion corrections. Since the 

algorithm requires the three input images to be aligned, the spiral images had to be manually 

registered to the MPRAGE, introducing errors in the final sCT image and defeating the purpose 

of MR-only RTP. 

 

Unfortunately, using a second echo in the spiral sequence also has disadvantages. The likelihood 

for PNS is increased by using a second echo such the usage of gradient fields is doubled per 

repetition120. In terms of the algorithm’s performance, the second echo provides a weaker fat 
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signal in the red channel of the colour image compared to the MPRAGE, making fat harder to 

segment from bone.  

 

5.1.3 A Role for UTE in RTP 

Using short echo times has the benefit of reducing the severity of susceptibility artifacts121. On 

many MR images, tissues surrounding air cavities , bones or implants are engulfed in a signal 

void which grows as the echo time is increased. With a TE of 50 µs, these signal voids are not 

noticeable, and therefore propagate to a lesser extent to the sCT images, insuring greater 

geometric fidelity. This suggests that using UTE imaging could be beneficial for RTP accuracy 

outside of CT synthesis. Since rigid registration is commonly used to align MR images to a 

planning CT42, distortions in targets on MRI are propagated as errors in contours to the treatment 

plan122. If T1w and T2w UTE123 images with adequate geometrical distortion corrections could 

be acquired instead of the standard clinical sequences used for RTP, contours on MRI would be 

more accurate to the true shapes of targets, thus lowering the geometrical error in the CT-based 

dose calculation.  

 

5.1.4 Imaging Non-tissue Materials 

On CT-simulator images, it is useful to visualize fixation devices for accurate dose calculations, 

either to directly compute the dose they absorb or to place a predefined device with accurate CT 

numbers124. While these objects with little to no free protons can easily be observed on CT, they 

do not appear on conventional MRI, or on the subsequent sCT images, as was the case for the 

plastic container around our phantom. For MR-only planning to be sustainable, non-tissue 

materials will have to be detected125. UTE and ZTE sequences with extremely short readout 
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durations (around 0.25 ms) are capable of imaging plastic20 (e.g. the outer shell of receive coils) 

and rubber. Foam can be imaged with longer readouts as demonstrated in our own images. This 

basic visualization could help dosimetrists to insert predefined models for fixation devices as it is 

currently done for treatment couches on CT images. Alternatively, markers visible on MRI could 

be used on rigid devices to allow dosimetrists to align predefined models, but soft bolus would 

be hard to define in the treatment plan based on a handful of markers. 

 

Since our algorithm can synthesize CT images of phantoms, we can imagine that it would be 

possible to carry phantom-based quality assurance testing (QA) to monitor the accuracy of the 

geometry and CT numbers of our synthetic CT images. Soliman et al. assembled a phantom 

using a rehydrated ex vivo skull with the purpose of validating synthetic CT algorithms126. 

However, they measured a T2* for cortical bone that was twice as long as in vivo at 3T, 

suggesting that cortical bone would be easier to image when ex vivo and cleaned. Chandramohan 

et al. tested alternatives for bone in multimodal phantoms, notably for PET/MR127. As discussed 

in that work, by doping plaster with Iodine, a gadolinium-based contrast agent and copper 

sulfate, objects with similar T1, T2* and radiation attenuation as in vivo bone could be built. This 

kind of phantom could be used for sCT/CT comparisons and sCT quality assurance testing. For 

our own work, this suggests that further phantom studies should be carried out using doped 

plaster rather than ex vivo bone segments to obtain accurate MR signals. 
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5.2 Potential Improvement of the Algorithm 

The quality of the sCT images depends mainly on the correct segmentation of the colour image. 

For this reason, focusing on improving the segmentation should be the first step towards accurate 

sCT images. 

 

5.2.1 Potential Improvements 

In its current form, our use of the RAG is underdeveloped. There are several graph-based 

methods known to perform better than thresholding, such as watersheds128, mean cuts129, ratio 

cuts130, and normalized cuts131. Bejar et al. proposed a technique based on optimum oriented cuts 

which is robust to illumination variations and inhomogeneity effects on superpixels obtained 

using a SLIC-based method132. This would make our segmentation more accurate in regions with 

variations in signal intensity that were not corrected by the N4ITK bias field correction, as seen 

in the subcutaneous fat depicted in Figure 5c of Chapter 4. In the case of the fat under the chin, 

better robustness to inhomogeneous intensity could have prevented fat voxels from being 

identified as bone. 

 

The primary purpose of the final segmentation step relying on FCM is to constrain the final 

number of masks to the number of tissues we expect to observe in CT. K-means and FCM 

clustering are methods that perform better with globular clusters of similar sizes32, as described 

in Section 2.5.2. However, we do not expect the clusters to have comparable sizes because there 

should be more soft-tissue voxels than bone. DBSCAN133, HDBSCAN134 and OPTICS135 are 

well-known examples of clustering algorithms that perform very well with clusters of different 

sizes and shapes. However, unlike K-means and FCM, none of these algorithms can use a 
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predefined number of clusters. Ward hierarchical clustering needs a user-specified number of 

clusters and can handle clusters of different sizes, but they still need to be globular136. Hence, 

Ward’s method has the potential to increase the performance of the last step of our segmentation 

technique. 

 

Since using a dual echo sequence does not extend the scan time, a second echo of the PDw UTE 

image could be acquired and used in the algorithm to increase the amount of information for the 

segmentation since SLIC, RAG thresholding, and FCM clustering can be extended to N-channel 

images. However, in our current usage of SLIC and FCM clustering, the RGB image is 

constructed from three MR images and converted to the CIELAB colour space, a space that 

better represents human perception of colour, before segmentation. This conversion increases the 

performance of the segmentation137. But the conversion from RGB to CIELAB, limited to three-

channel images, prohibits the use of four channel-images. Future work could explore ways to 

incorporate a fourth MR image instead of using the CIELAB colour space. 

 

5.2.3 Partial Volume Voxels 

The multi-channel approach presented in this work adequately handles partial volume voxels of 

air and water-based soft tissue inside the head in areas such as the nasal cavity. This is because 

these pixels are easily clustered in the FCM based on their dark green colour. This strategy 

cannot be used for partial volume voxel of fat and water-based soft tissue, and bone and soft-

tissue because the colours of these mixtures are similar. In these cases, SLIC sets a hard 

boundary between tissues. 
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Since numerous voxels are mixtures of tissues, describing them in terms of mixtures of materials 

could be beneficial to CT synthesis by improving the accuracy of sCT numbers assigned to 

partial volume voxels. Some research groups have attempted to use mixtures such as gaussian 

regressions79 or FCM10,110 to assign CT numbers. These techniques use clusters with centroids, 

and the mixtures are determined using the distance a point has from all centroids. So far, our 

usage of the FCM was restricted to the use of binary masks, similar to the output of k-means 

clustering. The fuzzy outputs of the FCM method could allow us to represent mixtures of tissues 

and obtain sCT numbers that are more representative of edges. 
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Chapter 6: Conclusion 

6.1 Summary 

In this work, a novel CT synthesis method based on UTE MRI and deterministic colour image 

segmentation techniques was proposed to address the need for a simple sCT algorithm relying on 

rapidly-acquired images and without assumptions about patient anatomy. 

 

First, a UTE sequence featuring interleaved spiral k-space trajectories was successfully deployed 

and optimized to be used in the sCT algorithm developed alongside. The MR images were 

merged into colour images from which tissues relevant to sCT in RTP could be segmented using 

well-established colour image segmentation methods. The masks generated by the segmentation 

and pixel values from a PDw image were used in the assignment of sCT numbers. This method 

proved to be quantitatively accurate in a phantom and easy to implement in imaging the human 

head, where qualitatively plausible sCT images were produced. The main limitation of the 

algorithm is the erroneous detection of bone voxels in fat regions, probably caused by fat shift 

artifacts. 

 

6.2 Future Study 

Further study should investigate the impact that potential improvements proposed in Chapter 5 

could have on the quality of the sCT images. The first idea to test would be to use more elaborate 

RAG methods such as optimum oriented cuts132. This could lead to fewer fat voxels being 

recognized as bone, without eliminating fat-shifts through increased scan times23 or 

implementing highly specialized reconstruction methods118. Fixing this issue in the segmentation 
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would reduce the volume of erroneously segmented bone, which is considered one of the main 

failure points of MR-only RTP60. 

 

The sCT algorithm should also be tested to confirm that it can easily be adapted to various other 

parts of the anatomy. Given the interest in MR-only RTP for prostate cancer104,138,139, the pelvis 

could be the next site of interest. Limbs could be targets for further testing because they are 

relatively easy to scan; motion is easily avoided and specialized receiver coils have been 

designed for ankles, knees, and shoulders. The head-and-neck, abdomen and thorax will 

probably be the most challenging sites to image because of breathing motion108,111. Special 

techniques like breath-hold imaging or navigators140 will have to be used to test the sCT 

algorithm in these regions. 

 

The technique should be prospectively tested on patients, for whom X-ray CT scans and 

treatment plans exist and could be used for quantitative assessment. CT images would be used 

for quantitative CT number comparisons between X-ray and synthetic CT much like ones carried 

out in phantom and presented in Chapter 4. With treatment plans, the dose could be calculated 

using the sCT images and compared against the dose obtained from X-ray CT. This comparison 

would better reflect how errors in sCT numbers could affect treatment. 
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