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Abstract

Biodiversity loss is occurring at an unprecedented rate, threatening ecosystem services

critical to food, water, and human health and well-being. Understanding species distri-

butions is crucial for conservation policy. However, traditional species distribution mod-

eling (SDM) methods focus on limited species or regions, leaving major knowledge gaps.

A key barrier is the extensive effort needed for traditional monitoring. Remote sensing

and citizen science offer opportunities to transform biodiversity monitoring and enable

modeling complex ecosystems.

This thesis introduces the task of mapping bird species to habitats by predicting en-

counter rates from satellite images and crowd-sourced citizen science data. We create a

dataset with satellite images from the US and Kenya with labels derived from presence-

absence observation data from citizen science database eBird. We train baseline models

and show that we can learn specific distribution patterns from these data. We also show

that we can utilize the trained models to improve predictions in areas where data may be

limited, specifically, where eBird checklists are limited. The released dataset - SatBird and

pre-trained models enable scalable ecosystem modeling worldwide.
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Abrégé

La perte de biodiversité se produit à un rythme sans précédent, menaçant les services

écosystémiques essentiels à la nourriture, à l’eau et à la santé et au bien-être humains.

Comprendre la distribution des espèces est crucial pour la politique de conservation.

Cependant, les méthodes traditionnelles de modélisation de la distribution des espèces

(MDS) se concentrent sur des espèces ou des régions limitées, engendrant d’importants

lacunes de connaissance. Un obstacle majeur est l’effort considérable nécessaire pour une

surveillance traditionnelle. La télé-détection et la science citoyenne offrent des oppor-

tunités de transformer la surveillance de la biodiversité et de permettre la modélisation

d’écosystèmes complexes.

Cette thèse introduit une technique afin de cartographer les espèces d’oiseaux selon les

habitats en prédisant les taux de rencontres, et ce à partir d’images satellite et de données

de science citoyenne. Nous créons un ensemble de données avec des images satellites

des États-Unis et du Kenya avec des étiquettes dérivées des données d’observation de

présence-absence de la base de données de science citoyenne eBird. Nous entraı̂nons des

modèles de base et montrons que nous pouvons apprendre des schémas de distribution

spécifiques à partir de ces données. Nous montrons également que nous pouvons utiliser

les modèles formés pour améliorer les prédictions dans les zones où les données peuvent

être limitées, en particulier, là où les listes de contrôle d’eBird sont restreintes. L’ensemble

de données publié - SatBird et les modèles pré-entraı̂nés permettent une modélisation

écosystémique à grande échelle dans le monde entier.
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1
Introduction

1.1 Motivation

The signs of climate change are more apparent than ever. We see more powerful and

frequent storms, droughts, fires, and floods worldwide. These changes are reshaping the

composition and distribution of global ecosystems which include the natural resources

and farming systems we rely on and biodiversity. Biodiversity refers to the variety of

life on Earth, including all species, genes, and ecosystems that comprise our natural

world [9]. Biodiversity is critical for human well-being, as it provides essential ecosys-

tem services such as food, water, medicine, climate regulation, and cultural value [87].

However, biodiversity faces threats from human activities including habitat loss, over-

exploitation, invasive species, pollution, and climate change [87]. Biodiversity change

describes alterations in the composition, structure, and function of biological communi-

ties over time and space [42]. Biodiversity change can positively or negatively impact
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ecosystems and human societies, contingent on context and scale [87]. As climate change

continues to threaten global biodiversity, understanding its effects on species distribu-

tion becomes paramount. This threat extends to bird biodiversity, a crucial component

of healthy ecosystems, thus underscoring the need to close significant knowledge gaps

regarding species distribution and habitat suitability. However, the challenge lies in the

inadequacies of traditional species distribution models (SDMs), which often focus on a

narrow set of species or geographical areas due to computational costs, limited data avail-

ability, and an inability to account for complex inter-variable relationships. Furthermore,

the task is complicated by the varying scales of species habitats, such as the broad-ranging

song sparrows compared to the specific pine forest habitats of Kirtland’s warblers. To ef-

fectively inform policy decisions, including those related to land use and conservation,

a more comprehensive approach to SDMs is necessary—one that considers the extensive

and interactive nature of global ecosystems. Machine Learning methods pose a solution

to capture these patterns in global ecosystems. Machine learning has seen wide applica-

bility across various solutions to tackle climate change, and more specifically in biodiver-

sity.

In this study, we utilize remote sensing data and citizen science observations to analyze

the joint distribution of bird species across various geographical locations. Our approach

is grounded in the established principle that a species’ presence is influenced by the char-

acteristics of its local ecosystem, leading to dependencies among different species’ abun-

dances. We present end-to-end machine learning pipelines to build predictive models

of biodiversity. Specifically, we create a comprehensive dataset and develop methods to

estimate encounter rates for 684 and 1054 bird species at sites across the continental USA

and Kenya respectively. By integrating publicly available remote sensing imagery and

citizen science data, we provide a foundation for multimodal species distribution mod-

elling. This is a crucial tool for understanding changing species ranges globally, informing

policies on land use and conservation choices.
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1.2 Related work

1.2.1 Tackling climate change with Machine Learning

Machine learning’s utility in addressing climate change is well-established, extending

across multiple domains to aid both in mitigation and adaptation. Mitigation strategies

involve human-led efforts aimed at minimizing or preventing greenhouse gas emissions,

a primary driver of climate change. Machine learning aids these initiatives, for example,

by optimizing electrical systems through precise forecasting of supply and demand [81],

enhancing scheduling for flexible electricity demand [52], or streamlining transportation

via reduced activity, improved vehicle efficiency, and alternative fuel sources exploration

[104].

Machine learning is being applied to increase resilience and enable adaptive mea-

sures in preparation for expected climate-related changes. For example, in climate sci-

ence, different models often use varying parameterizations for the same processes, in-

troducing uncertainty in predictions, especially for rainfall [22]. To address this issue,

uncertain climate predictions can be improved by refining them with machine learning.

Bretherton et al. (2022) demonstrated this by using Machine Learning to analyze climatic

data, reducing errors in precipitation forecasts compared to the raw model outputs [22].

They demonstrated that machine learning can correct errors from traditional modeling

methods that rely on parameterizations to approximate small or complex features like

cumulus cloud convection. The approach showed promising results in improving pre-

cipitation and land surface temperature estimates across various climates by learning

complex parameterization processes directly from data. This highlights the potential of

machine learning to reduce uncertainty in climate models by bypassing manual param-

eterization. Studies have also shown machine learning can improve forecasts of extreme

weather events [88]. In ecology, machine learning has shown potential to enable effective

ecosystem monitoring, for example through using deep learning to monitor animal pop-

ulations from satellite data and conduct biodiversity surveillance [99]. This helps guide
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societal adaptations by providing actionable insights into ecological changes. Further ap-

plications include using machine learning to assist the development and maintenance of

resilient infrastructure [61]. By and large, we can see that machine learning is facilitating

adaptive and mitigation strategies for resilience across domains from climate modeling to

infrastructure. By leveraging large datasets and computational power, machine learning

provides key tools to strengthen preparation and response capabilities for climate change

impacts.

In Africa particularly, machine learning has in many ways been adopted as a tool to help

tackle climate change. From efficient mapping of croplands in Togo where little to no

ground data is available [64] [73] to floods inundation mapping in the Baro River Basin

of Ethiopia [90]. While promising applications have emerged, there remains substantial

scope for further development of Machine Learning solutions tailored to the African con-

text. In sub-saharan Africa, for example, previous studies on the effects of climate change

on terrestrial biodiversity have predominantly focused on Southern Africa [57,66,80,102]

or Madagascar [23, 24]. In contrast, there’s a noticeable gap in research regarding the

impacts of climate change on terrestrial biodiversity in East African nations, particularly

Kenya and Uganda, despite their rich biodiversity. This could be attributed to the large

data requirements required to perform effective machine learning. Additionally, there is a

significant gap in incorporating citizen science observations, notably from platforms like

eBird [63], when studying the ramifications of climate change. This type of data can play

a crucial role in formulating detailed species distribution models. Presently, Kenya’s di-

verse biodiversity is facing a myriad of threats, including ecosystem degradation, water

scarcity, and habitat fragmentation [13]. These existing challenges, when coupled with

climate change, can intensify the adversities the regional ecosystems face, underscoring

the urgency for relevant research. Moreover, with the Kenyan government’s proactive

measures to protect its wildlife ecosystems [13] and its Vision 2030 [48] striving to secure

wildlife corridors, understanding the conjoined impacts of land-use changes and climate

change on the country’s biodiversity is essential to augment these conservation initiatives.
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1.2.2 Species Distribution Modeling from citizen science data

There have been an increasing number of citizen science initiatives to collect species ob-

servation data for a variety of taxa in the past decade, from butterflies, to plants, to

sharks [49, 82, 94]. Indeed, by crowdsourcing data collection efforts, it is possible to

gather data not only over a larger temporal and geographic extent but also at a fine reso-

lution [31]. As a result, the number of papers using citizen science for SDMs has increased

at approximately double the rate of the overall number of SDM papers [40]. eBird data

has been increasingly used for scientific research on birds, from assessing climate change-

driven vulnerability of species, to modelling population change to predicting virus trans-

mission [28,60,96]. The eBird status and trends project [41] from the eBird team combines

satellite images with raw eBird data and uses statistical models and machine learning

to build visualizations and tools to better understand migration, abundance patterns,

range boundaries, and other patterns around the world. Other large scale citizen sci-

ence databases used for SDM include iNaturalist [58] in which users record observations

of species by taking geolocated pictures. In total, it has 113 million species observations.

However, because it is limited to observations with pictures, it is more prone to sam-

pling biases, both geographically and towards certain species (e.g. larger, more brightly

coloured species [20, 25]). It is also presence-only – that is, while there is data on the pres-

ence of certain species at a given location, it is assumed that other species may also be

present.

1.2.3 Remote sensing for biodiversity monitoring

Remote sensing 1 data has been used for a variety of biodiversity monitoring applications,

including predicting land cover classes for downstream ecological modeling [8], measur-

ing the size of groups of animals [100], identifying tree species from crowns [97], and

localizing bird nesting sites [55]. Bioacoustics has been used for bird monitoring [7] but

1Remote sensing used here and across this thesis refers to data collected about the earth’s surface from
aerial or satellite platforms, allowing observations of large regions difficult to survey on the ground.
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one of the main limitations relates to the detectability of species, for example in densely

populated areas with many anthropogenic sound sources [44]. Therefore, we will focus

on discussing related work with remotely sensed imagery. In the GeoLifeCLEF 2020 chal-

lenge [29], they proposed a task combining remote sensing and citizen science data, where

the goal is to predict the localization of plant and animal species using 1.6M geo-localized

observations from France and the USA of 17,000 plant and animal species from aerial im-

ages and environmental features. The labels are derived from citizen science databases of

presence-only species observations and each location is associated with only one species,

limiting the ability to accurately model multiple species at a time. A newer version (2023

edition) of this classification challenge proposes to focus only on plant species and to use

Sentinel-2 satellite images rather than aerial images. While each location is still associated

with one species, a validation set with presence-absence labels is provided, highlighting

the importance of presence-absence data, at least for the evaluation of such species model-

ing tasks. Methods deriving information from satellite images have also been developed

in the context of avian studies but they usually use a suite of carefully selected measures

calculated from the imagery rather than leveraging its full potential [11, 39].

A particular field of application that saw the development of large remote sensing im-

ages datasets is agriculture, with an emphasis on the temporal resolution for crop mon-

itoring [54, 70, 98]. Recently, a number of methods have been introduced to learn robust

representations of remote sensing data, with the goal of using them for a variety of down-

stream tasks [70, 83, 85]. In particular, MOSAIKS [86] proposes to use a single encoding

of satellite imagery for diverse prediction tasks, and Satlas [16] and SatMAE [30] provide

pre-trained models on a large number of remote sensing images, arguing that they can be

useful feature extractors for remote sensing tasks.

1.2.4 Advances Over Prior Work

Our proposed approach makes several key advances over existing species distribution

modeling methods:

6



• We fully leverage presence-absence data from a large citizen science database and

compute encounter rates such that biases due to the different number of observers

visiting locations are mitigated.

• We enable modelling of a wide range of species at a time across large geographical

areas. To our knowledge, this is the first attempt at predicting encounter rates for

many species jointly, building on recent advances in machine learning for remote

sensing.

• Our proposed pipeline makes it easily extendable to other regions in the world as

all data sources are open; eBird [63] data is available in all countries in the world

and satellite Sentinel-2 data is publicly available.

1.3 Purpose and Research Questions

In this thesis, a machine learning technique will be used in a knowledge discovery pro-

cess to infer the joint distribution of many species for a given location, using publicly

available citizen science observation records as ground truth. This work uses techniques

from remote sensing, computer vision, and citizen science. This approach leverages the

hypothesis that a species’ presence or absence at a location depends on the ecosystem

present there. Therefore, an abundance of different species is highly correlated.

Through this work, we will address the following main research questions;

1. How can remote sensing and computer vision methods be used in predicting en-

counter rates of different bird species at specific geographical locations using pub-

licly available bird observation and satellite data sources?

2. How well do these models transfer to low data regimes especially when we do not

have reliable data sources?
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1.4 Scope and Limitation

• Geographical Focus: The primary focus of this work is on species distribution pat-

terns within the continental USA and Kenya. We acknowledge that there are other

regions with unique characteristics but these two countries offer a solid foundation

for our analysis. We chose these two regions due to their distinct geography, diverse

species populations and amount of remote sensing and eBird data available.

• Encounter Rate: In this work, we adopt the encounter rate as the main measure of

species presence. This approach aligns with the established ebird best practices and

allows us to assess the distribution and relative abundance of different species ef-

fectively. While we recognize that there may be additional techniques and measures

to explore species distribution [17] we are only focusing on Encounter Rate.

1.5 Target Group

This work and the research findings presented are relevant across multiple fields, as they

demonstrate novel techniques and applications for biodiversity monitoring and conserva-

tion. Machine learning researchers, especially those specializing in computer vision and

remote sensing, will find interest in the methods for integrating machine learning into

species distribution modelling using techniques from computer vision. These methods

can enhance the accuracy and efficiency of predicting and mapping species habitats from

satellite imagery. Similarly, biodiversity and ecology researchers can utilize the compu-

tational methods herein to further study species conservation, especially in areas where

field surveys are difficult. Climate scientists and activists can leverage the biodiversity

data used in this research to understand the ecological impacts of climate change, such as

how species distributions may shift or decline under different scenarios. Remote sensing

experts can apply satellite image analysis for biodiversity monitoring, as well as other en-

vironmental applications that require high-resolution and large-scale data. Researchers in
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computational sustainability can build upon the methods presented to address environ-

mental challenges, such as optimizing conservation planning and management.

Additionally, this work may appeal to data scientists and engineers for the large-scale

modelling approaches; conservation organizations who can employ the predictive mod-

els and pipelines for wildlife tracking; citizen science communities as the research builds

on citizen science data for model development; industry professionals to demonstrate

business and technology applications; Policymakers, to guide biodiversity conservation

efforts and climate adaptation; and curious individuals for an overview of how data sci-

ence aids ecological research.
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2
Background

2.1 Data Sources for Biodiversity Monitoring

Effective machine-learning models rely on high-quality data. Biodiversity data can be

sourced from a variety of ecosystems and taxa. In this chapter, we describe some of the

data sources that have been successfully used with machine learning methods to improve

biodiversity monitoring. This data is useful for monitoring the state of biodiversity, iden-

tifying pressures and threats in a location, and developing conservation responses, espe-

cially in the face of climate change. By analyzing diverse biodiversity data, these tech-

niques facilitate species monitoring, population modeling, and conservation insights.

In this chapter, we provide a detailed overview of key machine-learning applications

across a variety of taxa and data modalities. To navigate the extensive array of biodiver-

sity datasets and data sources, we will adopt the classifications provided by the Essential

Biodiversity Variables (EBVs). Developed by the Group on Earth Observations Biodiver-
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sity Observation Network (GEO BON) [78], these EBVs help evaluate of the geographical

distribution of various aspects of biodiversity and their temporal changes.

We begin by exploring different datasets generated from various taxa and highlight

how machine learning contributes to biodiversity monitoring within these domains.

2.1.1 Raw Species Occurrence Data

Raw species occurrence data 1 is useful for understanding the presence or absence of

a species in a particular habitat or location. It is useful for understanding the general

populations of a species, their movement and patterns that provide critical insight into

biodiversity. Useful resources include the Global Biodiversity Information Facility (GBIF)

[45] aggregates species occurrence data from across the world. eBird [63] does the same

specifically for bird sightings and observations from citizen scientists, describing their

ranges, abundances and trends. Similarly, iNaturalist [58] crowdsources sightings and

observations of different plant and animal species worldwide.

2.1.2 Genetic Data

Genetic data is crucial for understanding key species traits that lie at the heart of bio-

diversity. Over the years, genetic data has been collected from different taxonomies to

understand these vital traits. This data is particularly important for understanding evo-

lutionary processes and predicting future changes at the DNA level. Notable examples in-

clude GenBank [18], European Nucleotide Archive [67] and the Barcode of Life Data Sys-

tems [84]. These data sources are useful for understanding patterns of natural selection

is useful for understanding ways in which species can adapt to changes in their habitats,

especially due to climate change. Many studies already utilize this data for biodiversity

monitoring for example to understand how human land use and climate change will have

a significant impact on animal genetic diversity [91]. More recent work is also being done

with multimodal taxonomic data, including genetic data, to accelerate insect biodiversity

monitoring using machine learning. One example is the BIOSCAN-1M dataset, which

1Note: Every other one of the other data modalities may also include raw species occurrence data
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contains hand-labeled insect images along with associated genetic information such as

raw nucleotide barcode sequences and assigned barcode index numbers [46]. Datasets

like BIOSCAN-1M that integrate visual and genomic insect data enable new machine-

learning capabilities for automated species identification and biodiversity assessment.

This multimodal approach combining computer vision and genomics holds promise for

scaling up and improving the accuracy of biodiversity monitoring.

In addition, the emerging field of environmental DNA (eDNA) [92] sequencing allows

estimation of biodiversity by sampling organisms’ DNA from environmental samples

like water or soil, rather than directly observing individuals. By detecting tissue or cells

shed into the environment, eDNA enables broader taxonomic evaluation than possible

through visual surveys or specimen collection alone.

2.1.3 Camera Traps

Camera traps have also been employed in more specific habitats such as national parks

to collect imagery for population monitoring and species occurrence, in particular, have

emerged as an inexpensive and easy way to collect ecological data through high-resolution,

motion-triggered photography [89]. Deployed in the field, camera traps can capture

images of wildlife to provide insights into behaviours and interactions. Sites like the

Serengeti have used camera traps effectively to enable accurate models of dynamic species

populations [89].

2.1.4 Species Traits Data

Species traits data offers another dimension for biodiversity monitoring. Species traits

are measurable characteristics of organisms that can affect their ecological performance.

Understanding the traits and characteristics of individual species is vital for modeling

biodiversity. Key trait data resources include TraitBank [75] by the Encyclopedia of Life,

a public database compiling species traits; the TRY Plant Trait Database [62], an initia-

tive aggregating plant trait data from diverse sources and the coral trait database [69] – a

research initiative that aims at making all observations and measurements of corals acces-
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sible for coral reef conservation research. Combining trait data from specialized databases

like these allows researchers to better analyze interspecific variation and model species

roles within ecological communities. With machine learning, trait data can be used to

assess the risk of extinction, design and prioritize conservation actions, evaluate their

effectiveness, and monitor how species respond to global change.

2.1.5 Time series Data

Time series data capturing changes over time provides valuable insights for biodiversity

conservation research and monitoring. BioTIME is an open-access global database con-

taining time series assemblage data to quantify and analyze biodiversity change [33]. It

includes species abundance, biomass, and diversity information across ecosystems. Re-

searchers can utilize BioTIME to identify complex biodiversity trends and gain insights

into species growth and reproduction strategies. Other sources like satellite remote sens-

ing provide consistent time series measurements of environmental and vegetation vari-

ables (e.g. temperature, precipitation, canopy height) to assess habitat change.

Time series data enables identification of meaningful biodiversity trends and changes.

Field observations and remote sensing provide complementary perspectives for a com-

prehensive understanding of biodiversity dynamics. Open access resources like BioTIME

accelerate biodiversity research and conservation efforts. Established machine learning

methods for time series analysis have been extended to biodiversity applications.

2.1.6 Ecosystem Function Data

One of the key aspects of understanding ecosystem function is to measure and analyze

various data variables that reflect the interactions and exchanges of matter and energy

within and across ecosystems. Some sources of such data variables are; Fluxnet [14] –

a network of micro-meteorological tower sites that measure ecosystem gas exchanges of

carbon dioxide, water vapor, and energy. These data can help monitor how ecosystems

respond to climate change and human disturbances, Global Carbon Project [4] – A project

that provides information on global carbon budgets, which are essential for assessing the
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sources and sinks of greenhouse gases and their impacts on biodiversity and the World

Ocean Database [5], a portal which provides access to oceanographic datasets and infor-

mation, such as temperature, salinity, oxygen, nutrients, and plankton. These data can

help monitor the health and productivity of marine ecosystems and their biodiversity.

2.1.7 Remote Sensing Data

Advancements in satellite and remote sensor technologies have opened innovative av-

enues for ecological data collection through consistent, widespread monitoring at multi-

ple spatial and temporal scales. Space agencies including NASA [74] and ESA [37] pro-

vide near-daily satellite imagery, offering insights into species populations, climate and

weather patterns, crop yields, and ecosystem changes over time. Remote sensing proves

invaluable for observing phenomena like glacier melting [15] as well as detecting habi-

tat degradation and encroachment of invasive species by comparing images longitudi-

nally [47]. The integration of data across multiple satellite channels, including RGB, near-

infrared and elevation facilitates bioclimatic modelling. When incorporated into ecolog-

ical models, these multimodal remote sensing datasets shed light on the complex mech-

anisms driving shifts in biodiversity patterns, in turn informing conservation strategies.

Remote sensing via satellite imagery has become a very useful tool for ecological research

and management by enabling consistent, scalable data collection that reveals biodiversity

changes that would otherwise be difficult to observe.

2.1.8 BioAcoustics Data

Bioacoustic sensors offer a promising alternative to visual data collection for biodiversity

monitoring. Unlike cameras, which can be obstructed by vegetation or weather, micro-

phones can capture sounds over large spatial and temporal scales. For instance, [95] used

audio recordings from the Mt. Kenya ecosystem to identify bird species using machine

learning techniques. They collected and annotated hundreds of recordings from different

habitats and seasons, and trained various models to automatically recognize the vocal-
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izations of the birds. Their work demonstrates the potential of bioacoustic sensors for

assessing the diversity and distribution of wildlife in tropical regions.

With low technical barriers, microphones have been deployed in diverse environ-

ments from deep seas to tropical forests. As a complement to other methods like re-

mote sensing, ecoacoustics generates datasets on vocalizing species like birds, whales,

dolphins, and elephants. These datasets enable machine learning techniques to extract

valuable insights into population structures, migration patterns, and effective species

monitoring. By leveraging the sounds that animals naturally produce, passive acoustic

monitoring offers an innovative data stream for biodiversity studies.

2.2 Species Distribution Modelling

A primary challenge in studying biodiversity change involves measuring and predicting

species distribution across landscapes and regions.

Species Distribution Models (SDMs) 2 are numerical tools that combine observations of

species occurrence or abundance with environmental data to estimate species’ geograph-

ical range. These models can provide an understanding of or predict species distribution

across a landscape [17]. Intuitively, [17] defines an SDM as a function that uses the char-

acteristics of a location to predict whether or not a species is present at that location. It

therefore can be understood as a supervised learning problem. The input is a vector of

environmental characteristics for a location and the output is species’ presence or absence.

A simple species distribution modeling pipeline consists of three key components [17]:

1. Species observation data - Records of where species have been observed and col-

lected. This serves as the target data for modelling.

2. Location encoding- A method to encode geographic locations into numerical values

that can be used as inputs to a model. This allows generalizing to new locations.

2Names for such models vary. These models are also called bioclimatic models, Ecological Niche Models
(ENMs)
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3. Prediction function - A function that maps from the encoded location inputs to

predicted species occurrence values. This is the model that is trained on observation

data.

2.2.1 Early SDMs

Predecessors of SDMs include prior research that highlighted the correlations between

species patterns and environmental or geographic factors. A notable example is Joseph

Grinnel’s 1904 analysis on the chestnut-backed chickadee’s distribution [50], Analysis of

population ecology of some warblers of northeastern coniferous forests [68] among oth-

ers.

Early SDM approaches relied on simple statistical methods like multiple linear regres-

sion and linear discriminant function analysis to relate species occurrences to environ-

mental variables [26]. These methods provided coherent error distribution treatments of

presence-absence and abundance data. While pioneering, however, these techniques had

limited flexibility to model complex ecological relationships. They assume a linear rela-

tionship between the predictor variables and the response variables which may not hold

true for complex ecological data. They also require a large number of observations com-

pared to the number of predictor variables which may not be feasible for rate or endemic

species. Additionally, they do not account for spatial autocorrelations or non-stationarity

in the data, which may affect the reliability of the models.

2.2.2 Generalized Linear Models (GLMs)

Generalized linear models (GLMs) represented a major advance, enabling the accommo-

dation of non-normal errors, additive components, and non-linear species-environment

correlations [71]. The advent of GLMs expanded the modelling capabilities of SDMs.

They enabled regression-based SDMs that had more sophistication than possible earlier.

They continue to be useful and are part of many current methods including MaxEnt [79].

GLMs overcame some of the limitations of Linear Discriminant Analysis which failed to

capture the complexity and variability of ecological data. However, GLMs also had some
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drawbacks, such as requiring the assumptions that errors are identically, independently,

and normally distributed [21], and being sensitive to the choice of predictor variables and

their interactions [10]. Moreover, GLMs based on climate alone may not be reliable, as

topographic variables may also influence species distributions [34].

2.2.3 Maximum Entropy Modeling (MaxEnt)

More recently, the growth of large presence-only species datasets has driven innovation in

species distribution modelling (SDM) methods that utilize presence-only data. A promi-

nent technique is Maximum Entropy Modeling (MaxEnt). MaxEnt leverages point pro-

cess theory to model species ranges using only presence data [79]. Its key advantages are

requiring just presence points, accounting for interactions between predictors, and gen-

erating smooth response curves. The MaxEnt algorithm works by finding the probability

distribution with maximum entropy (most spread out) while constrained by the environ-

mental conditions at known occurrence locations [2]. It iteratively tests different models,

selecting the one with the highest entropy [3]. While effective, MaxEnt has some limi-

tations. It produces only point estimates of occurrence probability, lacking measures of

uncertainty [43]. Results can also be sensitive to the choice of regularization parameters

and feature types, potentially affecting model performance and interpretation [72].

While MaxEnt provides a flexible and powerful framework for SDM using presence-only

data, users should be aware of its limitations when applying and interpreting the MaxEnt

model.

2.3 Summary

In this chapter, we have provided a background for various data sources crucial for bio-

diversity monitoring, ranging from raw species occurrence data to genetic data, camera

traps, species traits data, time series data, ecosystem function data, remote sensing data,

and bioacoustics data. These diverse sources collectively provide valuable insights into

the distribution, behaviour, and health of species and ecosystems. Furthermore, we have
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introduced the concept of Species Distribution Modeling (SDM) as a fundamental ap-

proach to predicting and understanding species distributions across landscapes. The next

sections will describe our data, methods and models utilized.
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3
Data and Methods

In this chapter, we outline the data sources and methodologies employed in our experi-

ments. We first describe the eBird dataset in section 3.1 – which is the main source of bird

occurrence data, and how we selected regions of interest for our study. Next, we describe

the environmental datasets we used, which include satellite image-based remote sensing

data and bioclimatic variables, and how we extracted and processed them to match the

eBird data. Section 3.2 explains the steps involved in this procedure. Then, in Section

3.4 we discuss the rationale and implementation of the techniques we used to split the

final dataset into training, validation, and test sets, and how we ensured that the splits

were representative and unbiased. Finally, we describe the methods we used to model

species distributions from the environmental data, including machine learning models

and evaluation metrics. Section 5.2 presents the details of these methods.
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3.1 eBird Dataset

eBird [63] is a crowdsourced database of bird observations collected and maintained by

the Cornell Lab of Ornithology. It contains millions of birds submitted by citizen scien-

tists around the world. eBird users submit complete checklists of all the birds they have

identified during an outing at a specific location and time. A complete checklist records

both the species detected and not detected hence providing data on presences as well as

absences. Hotspots on eBird refer to locations with high birding activity and usually con-

tain a high number of complete checklists. Encounter Rates on eBird refers to a measuring

of probability of an eBirder encountering a species on a standard eBird checklist, and is a

proxy for species abundance in that hotspot.

For our study, we analyzed complete checklists from eBird hotspots in the continental

US and Kenya.

3.1.1 USA eBird dataset

For the continental US, we extracted checklists recorded between 2010 − 2023, targeting

summer (June-July) and winter (December-January) seasons. Hotspots were filtered to

have at least 5 complete checklists, the minimum threshold set for calculating statistically

meaningful encounter rates. Additionally, marine locations were excluded using 5-meter

US geographic boundaries from the Census Bureau’s MAF/TIGER database [1].

In the USA species selection, we considered ABA (American Birding Association)

Codes1 1 and 2, representing regular breeders/visitors and less widespread but relatively

common species respectively [6]. We excluded species found exclusively in Hawaii and

Alaska, as well as a Code-2 seabird species with rare oceanic observations. The final

species dataset for the USA resulted in a total of 684 species.

1ABA Code 1 refers to widespread, common species. Code 2 refers to less widespread but relatively
common species.
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3.1.2 eBird Kenya dataset

For Kenya, we gathered all complete checklists recorded between 2010 and 2023, focus-

ing on the 1,054 species regularly found in the region according to Avibase [12]. Given

the scarcity of data in Kenya, we did not impose any criteria regarding the minimum

number of checklists per hotspot or specific observation months. Additionally, the Kenya

dataset comprises a larger number of non-migratory bird species, prompting our decision

to aggregate records across seasons.

3.1.3 eBird data preparation

As part of data preparation, we merged hotspots with identical latitudes and longitude

but different IDs in eBird, combining their checklists, except in cases where all checklists

originated from the same observer on the same day, in which case we retained only one

hotspot. Next, we computed the encounter rates for each hotspot as will be explained

in detail in section 4.1. To address vagrants (species observed in hotspots outside their

typical geographic range), we referred to eBird’s range maps. When available, we set the

target encounter rates to zero for such species in the respective hotspots. To maintain

consistency, we aggregated species observations over a span of 13 years, considering sea-

sonal changes in distributions for the USA dataset and leaving annual temporal changes

for future iterations of this research.

3.2 Environmental Data

For our analysis, we integrated essential environmental data, drawing inspiration from

the GeoLifeCLEF 2020 dataset [29]. Specifically, we extracted a total of 19 bioclimatic

variables in raster format, each with a size of 50 × 50 pixels and a spatial resolution

of approximately 1 km, centered on each hotspot. These variables were sourced from

WorldClim 1.4 for both the USA and Kenya datasets. Bioclimatic variables are commonly

used to model species distributions as they provide valuable insights into climate-related

factors [59]. They encompass annual trends related to temperature, precipitation, solar
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radiation, wind speed, and water vapour pressure, all of which play crucial roles in influ-

encing species habitats.

Additionally, for the USA dataset, we extracted an additional 8 pedologic (soil) vari-

ables, each with a resolution of 250 meters, from SoilGrids [56]. SoilGrids offers global

soil properties maps, including pH levels, soil organic carbon content, and stocks. These

detailed soil property maps are derived using machine learning techniques trained on ex-

tensive soil profile observations and environmental covariates derived from remote sens-

ing data.

The selection of environmental variables serves as a good foundation for understand-

ing the ecological context in which species are distributed and how they respond to vari-

ous climatic and soil conditions. More comprehensive details regarding the environmen-

tal variables can be found in the Appendix.

3.3 Remote Sensing data

To acquire remote sensing data for each hotspot, we extracted RGB and NIR reflectance

data at a resolution of 10 meters from Sentinel-2 satellite tiles. The extracted data covered

a square region of approximately 5 km2, centered around each hotspot. Additionally, we

obtained true color image RGB bands.

To ensure the quality of the data, we selected images with cloud coverage of at most

10%. For the USA-summer dataset, we considered the time window between June 1 and

July 31, 2022, while for the USA-winter dataset, we chose the time window between De-

cember 1, 2022, and January 31, 2023. For the Kenya dataset, we utilized images from the

time window between January 1, 2022, and January 1, 2023.

To minimize any temporal bias in our data, we associated a single image per hotspot.

This approach allowed us to represent species data with the most recent satellite image

available since recent years generally have more checklists compared to earlier years.

For images that covered the entire 5 km2 region, we directly used them. For images
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that covered a smaller area, we considered either composing a mosaic with the extracted

images or discarding them to minimize seams in our dataset.

3.4 Dataset Splits

To account for spatial autocorrelation that may arise from random splits of geospatial

data, we utilized the sklearn’s Density-Based Spatial Clustering of Applications with

Noise (DBSCAN) algorithm [77]. DBSCAN performs clustering from from vector array

or distance matrix. It finds core samples of high density and expands clusters from them.

It is good for data that contains clusters of similar density.

Table 3.1 describes the number of hotspots present in each split for each dataset of

SatBird. The splits were obtained by following the process described in Section 3.4.

Split USA summer USA winter Kenya

Train 76,590 12,102 6,537
Validation 22,395 3,197 1,932
Test 17,469 2,595 1,633

Table 3.1: Number of hotspots in each split for the three datasets of SatBird.

We specified that core samples must have at least 2 hotspots with a maximum allowed

distance of 5 km between them. After applying the DBSCAN algorithm, we obtained 217

clusters with a total of 12,650 hotspots. These clusters were then randomly assigned to

the train, validation, and test splits, with proportions of 65%, 20%, and 15% respectively

for the USA-summer dataset. For the USA-winter dataset, we maintained the same split

assignment as for the summer, resulting in a repartition of 70%, 15%, and 15% for the

train, validation, and test sets. A similar procedure was followed for the Kenya dataset,

leading to a split distribution of 65%, 20%, and 15%.
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(a) SatBird-USA-summer (b) SatBird-Kenya

Figure 3.1: Distribution of hotspots across the training, validation, and test sets.

Table 3.2: Summary of the data provided for each of the SatBird subsets: USA-summer, USA-
winter, and Kenya.

USA-summer USA-winter Kenya

Number of hotspots 122593 55497 9975

Number of species 670 670 1,054

Satellite RGBNIR reflectance ✓ ✓ ✓

Satellite true color image ✓ ✓ ✓

Bioclimatic rasters ✓ ✓ ✓

Pedologic rasters ✓ ✓

Range maps
✓

(586 species)

✓

(620 species)

The map in Figure 3.1 visually represents the data splits for reference.
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3.5 Methods

3.5.1 Machine Learning Methods for Biodiversity Monitoring

With the diversity of data types and modalities required for effective biodiversity moni-

toring and species distribution modelling, machine learning provides new opportunities

to fully utilize these datasets. In this work, we employ several machine learning tech-

niques to model species distributions across different stages of our pipeline.

Unsupervised clustering methods (detailed in Section 3.4) enabled informed splitting

of our datasets for training and evaluation. By clustering based on features of the data,

we obtained splits that better represent the full distribution of the data. For baseline mod-

elling, we utilized random forests, a versatile algorithm well-suited for ecological data.

Random forests model complex interactions through ensemble decision trees. They natu-

rally handle mixed data types and capture nonlinear relationships. Boosting methods like

XGBoost allowed us to model particularly complex and nonlinear species-environment

interactions. By combining many weak learners, boosting algorithms build up to highly

accurate predictions. To further improve on the baseline, we implemented neural net-

works and other deep learning architectures. These state-of-the-art techniques can learn

subtle features and patterns beyond simpler models, providing the top performance in

our experiments. With this multi-pronged approach utilizing diverse machine learning

methods, we aimed to effectively extract as much information as possible from the avail-

able data for enhanced biodiversity monitoring. The following sections provide further

details on the implementation and results for each technique

Random forests

A Random Forest is a classification and regression tree model. It is a combination of tree

predictors where every tree can depend on the values of a random vector sampled inde-

pendently with the same distribution for all trees in the forest. Random Forests consist

of an ensemble of decision trees trained on different subsets of the data. They can model
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complex interactions and have built-in ways to avoid overfitting. Random forests have

been shown to have high predictive performance for SDMs across diverse taxa and re-

gions. [27,93,101]. In our task, we particularly used them as a baseline model to relate the

bioclimatic variables and the encounter rates of all birds in our checklist.

Boosted Regression Trees

Boosted Regression Trees (BRT) combine regression trees and a boosting technique that

iteratively fits tree models using binary splits of predictor variables [36]. This approach

incorporates key advantages of tree-based methods, including the ability to handle differ-

ent types of predictor variables, accommodate missing data, fit complex nonlinear rela-

tionships, and automatically capture interaction effects between predictors. BRT models

require no prior data transformation or elimination of outliers. By fitting an ensemble

of simple tree models, boosting allows BRT to model complex response surfaces effi-

ciently. BRTs have demonstrated high accuracy for biodiversity research across a variety

of taxa [51, 103]. Following the GeoLifeCLEF challenge [29], we propose an environmen-

tal baseline, using Gradient Boosted Regression Trees on the bioclimatic and pedological

variables extracted at each of the hotspots.

Neural Networks and Deep Learning

Neural Networks are machine learning algorithms that mimic the structure and function

of biological neural networks. They consist of layers of artificial neurons that perform

computations on the input data and pass the output to the next layer. Neural Networks

can model complex nonlinear relationships and have the universal approximation prop-

erty, which means they can approximate any continuous function with arbitrary accuracy.

Deep learning is a branch of machine learning that uses multi-layer neural networks to

learn high-level representations from large amounts of raw data. Convolutional neu-

ral networks (CNNs) are a specific type of neural network that are especially suited for

image-based data. They use convolutional filters to extract local features from the input

images and pool them to reduce the dimensionality. In our task, we leverage the power of
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deep learning to learn such complex features from the eBird presence-only data combined

with the environmental data and remote sensing data. Previous studies have shown that

deep learning SDMs can outperform other methods for presence-only data [32, 35, 38].

3.5.2 Bayesian Models

In scenarios where we have limited checklists, we utilize Bayesian approaches to improve

the predictions for locations where limited data exists. Bayesian models allow us to in-

corporate prior knowledge and update it with new evidence from the data. In our case,

we use the mean of the predictions of our base models as a prior distribution, which rep-

resents our initial belief about the species distribution. Then, we perform a sampling of

additional checklists in the region and use the ground truth to provide a likelihood func-

tion, which measures how well the data fits the prior. By applying Bayes’ theorem, we

obtain a posterior distribution, which represents our updated belief about the species dis-

tribution after observing the data. After successive sampling of checklists, the posterior

distribution converges to the true distribution, hence providing a better estimate than just

the predictions. We provide more details on this approach in chapter 5
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4
Experiment Design

In this chapter, we describe the experimental design of our study. We first define the task

and the objective of our work in Section 4.1. Then, we present the baseline models that we

compare our proposed methods with in Section 4.2. Next, we introduce the image-based

models that we use to leverage the remote sensing data such as ResNet, SATMAE, and

MOSAIKS, in Section 4.3. In Section 4.4, we explain how we incorporate geographical

splits to account for spatial autocorrelation and sampling bias. In Section 4.5, we discuss

the evaluation metrics that we use to measure the performance of our models. In Sec-

tion 4.6, we describe the experiments that we conduct to answer our research questions.

Finally, we report and analyze the results of our experiments in Section 4.7.
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4.1 Task Definition

The main objective of our research is to predict bird encounter rates using remote sens-

ing data, aiming to complete species distribution mapping in unexplored regions. To

accomplish this, we draw insights from the rich bird sighting records available in the

eBird citizen science database [63], which comprises an impressive collection of approxi-

mately 80 million records covering nearly 10, 000 bird species worldwide. Our focus lies

on leveraging the valuable observation reports known as complete checklists.

In the eBird database, a hotspot refers to a specific location where birdwatchers have

submitted checklists. Each hotspot is associated with a set of complete checklists, docu-

menting all species observed by birdwatchers on specific dates and times at that location.

These checklists serve as presence-absence data, providing information not only about the

presence of reported species but also the absence of non-reported species. Consequently,

they are highly informative and serve as a robust substitute for expert field surveys. This

modeling of the complete checklists associated with eBird hotspots make it possible for us

to predict species encounter rates for unexplored regions lacking in expert bird surveys.

Given a hotspot h and a list of species s1, . . . , sn of interest, our ultimate goal is to build a

machine learning model that takes a satellite image of the hotspot (and optionally other

relevant data) as input and outputs a vector:

yh = (yhs1 , ..., y
h
sn) (4.1)

where:

• yh represents a vector containing encounter rates for each species s1, . . . , sn at hotspot

h.

• yhs denotes the encounter rate of species s at hotspot h.
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• The encounter rate yhs is computed as the number of complete checklists reporting

species s at hotspot h divided by the total number of complete checklists recorded

at that location.

This ratio yhs represents an encounter rate, corresponding to the probability of a visitor

observing a particular species when visiting the same location (hotspot). The key focus of

our task is to jointly predict encounter rates for multiple relevant bird species, transform-

ing our problem into a supervised multi-output regression challenge.

We specifically chose to predict encounter rates due to their ecological significance

and widespread use in the eBird platform as “hotspot bar charts“. These bar charts serve

as summaries of species present in a specific location, aiding birdwatchers and ornitholo-

gists in understanding the expected bird species. However, they are limited to past data

and cannot be extended to unexplored regions. Furthermore, encounter rates from eBird

have not been previously modeled jointly to account for species interactions within the

same habitat, an essential aspect for accurate species presence estimates. We aim to bridge

this gap by simultaneously modeling encounter rates for multiple species and extending

predictions to locations with limited or no recorded observations

By predicting encounter rates and considering species interactions, we intend to pro-

vide more informative and comprehensive species distribution mapping. This advance-

ment can significantly contribute to biodiversity research, conservation planning, and

support efforts to understand and protect avian populations in uncharted regions. The

interaction between our data and models is illustrated in Figure 4.1. The satellite data in

figure 4.1 represent a single hotspot, we use patches corresponding to 640m2 of a location,

combined with pedologic and bioclimatic rasters. This area of interest is generated by us-

ing the center of the lat/lon of a hotspot, and then extending it to 640m2. In practice, this

results in a large raster. During training, we resize it to 64px to allow it fit into memory;

see Section 4.3
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Figure 4.1: An overview of data streams for SatBird, as well as inputs and outputs for

the task for predicting species encounter rates. The Sentinel-2 10m-resolution satellite

data, bioclimatic and peologic rasters cover a single hotspot (640m2) patches, and can be

used along low resolution environmental data as input to a model after matching their

resolutions. Labels are derived from eBird complete checklists. Observations of vagrants

(migrating birds) in the labels are corrected with range maps from eBird, which can also

be incorporated in the model to make it geography-aware.
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4.2 Baseline Models

• Mean Encounter Rates: The initial fundamental employed in this study is the mean

encounter rate. It is established by calculating the average encounter rates of each

species over the training set. This baseline gives us insight into the overall distribu-

tion and relative abundance of species,forming a reference for further analysis.

• Environmental Baseline: Building upon the GeolifeCLEF challenge methodology

[29], the second baseline leverages gradient-boosted regression trees to predict species

distribution based on bioclimatic and pedological variables. This approach allows

us to explore the influence of environmental factors on species presence.

4.3 Image Based Models

• Resnet18: In addition to the baseline models, we incorporate Convolutional Neural

Networks (CNNs) as feature extractors from the satellite images. Specifically, we

use the ResNet-18 model [53] and input both the RGB and NIR band’s reflectance

data. To initialize the network, we use pre-trained weights from the ImageNet pre-

trained model, finetuning the model for our specific task. For the first layer corre-

sponding to the NIR band, we adopt an initialization process, sampling from a nor-

mal distribution based on the mean and standard deviation of the layer’s weights

for the other bands. Additionally, we conduct experiments using RGB true-color

images as input and compare the results against the reflectance data approach. To

maintain consistency across the dataset, we define a region of interest of 640m2 and

apply center cropping to satellite patches, resulting in a size of 64 x 64 around the

hotspot. Augmentation techniques such as random vertical and horizontal flipping

are employed to enhance model robustness. The Resnet18 model is trained with a

cross-entropy loss function to optimize performance.

• Multi-Task Observation Using Satellites and Kitchen Sinks (MOSAIKS): The

MOSAIKS model, proposed by [86], is an accessible and versatile method with
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wide-ranging applicability across various tasks. Its adaptability allows us to trans-

form satellite imagery from diverse geographical locations on Earth into meaningful

summary information.It works by collecting satellite images on servers, extracting

color, texture, and spatial ”features”, and putting those features into a regression

model to predict the task of interest. For our specific research, we utilize MOSAIKS

to predict the encounter rate for each hotspot, leveraging its capability to handle a

broad spectrum of prediction outcomes.

• SatMAE: SatMAE [30] serves as a pre-training framework designed for temporal

or multispectral satellite imagery, relying on the Masked Autoencoder (MAE) ap-

proach. This framework incorporates spectral embedding and employs indepen-

dent masking of image patches across different time points [30]. The utilization of

SatMAE allows us to harness the potential of temporal and multispectral satellite

data for our analysis, contributing to a more comprehensive understanding of the

underlying patterns and dynamics within the hotspot regions.

4.4 Including geographical information

To enhance the accuracy of our vision-based models regarding the geographic ranges of

specific species, we integrate range maps sourced from Ebird. By incorporating these

maps into our models, we enable them to gain insights into species that inhabit simi-

lar habitats but may be distributed across different geographical regions, potentially not

coexisting together.

The range maps obtained from Ebird are created through the construction of binary

masks. These masks effectively zero out the predicted encounter rates for a particular

species when the model’s location falls outside the species’ known distribution range. By

incorporating this information, our models become better equipped to make informed

predictions based on species-specific geographic preferences, facilitating a more compre-

hensive understanding of their distribution patterns and potential presence in various

regions.
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4.5 Evaluation metrics

To analyze the quality of our species distribution predictions, we employ several quan-

titative evaluation metrics to compare our model outputs against the ground truth data.

These metrics provide numerical scores that give insight into different aspects of predic-

tive performance. These include;

• MSE (Mean Squared Error): This metric measures the average squared difference

between the predicted values and the actual ground truth values. It provides a

quantitative measure of how well our model’s predictions align with the true values.

• MAE (Mean Absolute Error): The MAE calculates the average absolute difference

between the predicted values and the true values. It gives us an indication of the

overall accuracy of our model’s predictions.

• Custom KL (Kullback-Leibler Divergence): This metric quantifies the difference

between two probability distributions – the predicted distribution and a reference

distribution. The KL divergence is particularly useful in comparing the similarities

or differences in probability distributions.

• Presence (K) Threshold Accuracy: This metric measures how accurately the model

predicts whether species are present or absent at a site. To do so, we convert the

model’s predicted probabilities to binary presence/absence values using different

probability thresholds (k values). For each species at each site, if the predicted prob-

ability exceeds the threshold k, we consider that a prediction of ”presence,” while

lower probabilities predict ”absence.” We can then compute the accuracy for these

binary predictions across all species and sites. Sweeping over different k threshold

values provides insights into species presence/absence prediction quality at differ-

ent probability cutoff points. This helps evaluate how well the model identifies

whether a species occurs at a given site based on the predicted probability.
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• Adaptive Top K Accuracy: This metric measures how accurately the model predicts

the top k species at each location, where k is based on what’s actually observed at

that location. Rather than fixing k across all sites, we adapt it on a per-site basis to

focus on the most dominant species expected locally. Specifically, we set k to be the

number of species actually observed at that same site in the ground truth data. This

provides insights into how well the model is capturing the most significant species

expected across different locations, not just the overall most common species. By

adapting k per-site, this metric evaluates the model’s performance relative to what

is actually seen at each specific location of interest.

• Top 10 Accuracy This metric evaluates the accuracy of the model’s top 10 highest

predicted probability species, regardless of how many actual observed species there

are at each location. For each site, we take the 10 species with the highest predicted

probabilities and compare to the actual species listed for that site in the ground

truth data. The accuracy is then calculated across all sites. Unlike the Adaptive Top

K metric which bases the value of k on observed species counts per site, this fixes

k=10 globally. By isolating consistent top-of rankings, this specifically examines

how precisely the model can predict the 10 most likely species overall, highlight-

ing any systematic tendencies to over or under predict the prevalence of common

species.

• Top K=30 Accuracy Similar to Top 10 Accuracy, this metric evaluates the model’s

accuracy for the top 30 highest predicted probability species. In this case, the top

30 species predictions are compared to ground truth across all sites regardless of

actual observed counts. Fixing k=30 provides a broader perspective on accuracy for

near-top predictions compared to the Top 10 metric focused just on the very most

likely species.
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4.6 Experiments

In our experimental setup, we focus on a region of interest covering 640 m2 and center-

crop the satellite patches to a size of 64 × 64 around each hotspot. The bands of the

satellite images are normalized using statistics from our training set. When incorporating

environmental data, we ensure that their resolution matches that of the satellite images.

To augment our data, we randomly perform vertical and horizontal flipping. To train the

models, we use the cross-entropy loss function:

LCE =
1

Nh

∑
h

Lh =
1

Nh

∑
h

∑
s(species)

−ysh log(ŷ
s
h)− (1− ysh) log(1− ŷsh) (4.2)

where

• Nh represents the number of hotspots h

• y denotes the model predictions

• ŷ represents the ground truth encounter rates

The Satlas and SatMAE models utilize true color images as input and do not support

the use of environmental data. The input true color images are normalized to ensure

that their pixel values fall within the range of 0 to 1. On the other hand, the MOSAIKS

model involves extracting 1024 features from each true color image, combining them with

environmental data, and training an XGBoost regressor on the combined features.

For the ResNet-18-based models, we conduct experiments with different inputs, includ-

ing RGB true color images, RGBNIR reflectance values, and RGBNIR reflectance values

combined with bioclimatic and pedologic data. The bioclimatic and pedologic data are

normalized based on variable-wise statistics from the training set. We align these data to

the resolution of the satellite images and stack the corresponding patches to the images,

facilitating efficient training of the models.
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We employ these various input configurations and combine environmental data so that

our models leverage both visual and ecological information to accurately predict en-

counter rates and facilitate species distribution mapping in unexplored locations.

Weighted Loss: In addition to the aforementioned experiments, we attempted to im-

prove the training strategy for the regions with fewer complete checklists such as Kenya

and some regions of the US by taking into account the number of complete checklists

recorded at each hotspot. Our motivation for this approach stems from the observation

that Kenya exhibits a relatively smaller number of hotspots, and some of these hotspots

are disproportionately represented by the number of complete checklists reported. To ad-

dress this issue and promote a more balanced representation of encounter rates across the

entire dataset, we introduced a weighted loss function.

The weighted loss builds upon our original cross-entropy loss but incorporates an addi-

tional weight, which considers the number of complete checklists per hotspot. By apply-

ing this weight, we aim to balance the contribution of each hotspot to the overall loss,

thereby allowing the model to focus on hotspots with varying numbers of observations

more effectively.

The weighted loss function is defined as follows:

LWCE =
1

Nh

∑
h

whLh =
1

Nh

∑
h

wh

∑
s(species)

−ysh log(ŷ
s
h)− (1− ysh) log(1− ŷsh) (4.3)

where:

• Nh is the total number of hotspots.

• wh represents the weight associated with the number of complete checklists for

hotspot h.

• y denotes the model predictions for encounter rates.

• ŷ represents the ground truth encounter rates.
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• The summation over s indicates a sum across all species.

By incorporating the weighted loss into our training strategy, we aim to improve the

model’s ability to learn from hotspots with varying degrees of data availability. The

weight assigned to each hotspot dynamically adjusts the contribution of the hotspot to

the overall loss, providing a more refined learning process. We hypothesize that this

balanced approach will enable our model to generate more accurate and representative

predictions across the entire Kenya dataset, ultimately contributing to better species dis-

tribution mapping and encounter rate estimations

4.6.1 Experiment setup

The models presented in Section 4.6 establish baseline performance on the task of regress-

ing encounter rates using different model architectures and input features. Hyperparam-

eter tuning was not performed to focus on demonstrating feasibility rather than maxi-

mizing performance. All results should be considered preliminary baselines for future

work.

Compute Constraints

Experiments were run on a GPU compute cluster at McGill University and Mila 1 equipped

with Nvidia A100 GPUs. For the ResNet deep learning baselines, training took up to 54

minutes per epoch using a batch size of 128, 16GB RAM, and the ResNet-18(refl+env+RM)

model on a single A100 GPU. Other ResNet-18 variants required less time. Some experi-

ments utilized more powerful GPUs, reducing training times to under 1 day for 50 epochs.

Each baseline was trained for 3 random seeds. The Satlas and SatMAE baselines required

approximately 2 days of training per experiment using a single GPU and the PyTorch

framework [76].
1Mila Quebec AI Institute cluster
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4.6.2 Hyperparameters

In our experiments, we initially set the learning rate to 3 × 10−5. However, as part of a

detailed analysis, we conducted a hyperparameter search to fine-tune the learning rate

for the ResNet-18 (RGBNIR + env + RM) baseline model on the SatBird-USA-summer

dataset. This search involved exploring learning rates in the range of 10−4 to 5 × 10−3.

Interestingly, we found that a learning rate of 10−4 yielded slightly better results than the

initial 3× 10−5 setting. This suggests that further improvements in performance could be

achieved with more comprehensive hyperparameter tuning.

To provide a visual representation of this analysis, we present the loss curves for several

models resulting from our hyperparameter search in Figure 4.2 below.

All the models in our experiments were trained using a batch size of 128 and the Adam

optimizer [65]. We ran each experiment with three different random seeds and report the

average results on the test set across these seeds.

The data splitting strategy described in Section 3.4 was employed for training, validation,

and test sets. Specifically, all ResNet-18 models were trained for 50 epochs, while Satlas

and SatMAE models were trained for 100 epochs, with the pre-trained model’s layers

frozen and only the last layer being fine-tuned.
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(a) Train loss vs. learning rate (b) Validation loss vs. learning rate

Figure 4.2: Training and validation loss curves for different learning rates. Lower learn-

ing rates converge more slowly but achieve lower loss, indicating potential for further

optimization
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5
Integrating Prior Knowledge to Address

Data Scarcity

eBird data exhibits intrinsic sparsity similar to many other biodiversity datasets, follow-

ing a heavy-tailed distribution [84]. Consequently, our models do not achieve optimal

performance in regions with fewer complete checklists per hotspot, referred to as low

data regimes. In this chapter, we present approaches for developing more robust machine-

learning models that can overcome these data-scarce areas. We start by defining what con-

stitutes sparse hotspots and detailing our proposed solution for addressing data scarcity

in Section 5.1. Next, we discuss the primary factors that lead to sparse hotspots in eBird

in Section 5.1.1. Finally, in Section 6.1.2, we present results after applying a Bayesian

approach to handle sparse hotspots demonstrating improved model robustness.
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5.1 Addressing Data Sparsity in eBird Hotspots

eBird hotspots are critical data points for understanding bird species distribution and oc-

currence. However, the volume of data available for each hotspot varies significantly.

Some hotspots, enriched by years of birder observations, boast over 1000 complete check-

lists. Conversely, other hotspots remain relatively underexplored, with a mere 5 to 10

complete checklists submitted. This disparity in data distribution poses challenges in ac-

curately characterizing the full spectrum of avian species inhabiting underrepresented

hotspot locations. Hotspots with fewer submitted checklists are likely to exhibit substan-

tial gaps in species inventories, failing to capture the complete biodiversity present at the

site. Consequently, models that rely solely on raw observational data from these sparse

hotspots may generate biased predictions about species occurrence and distribution.

This chapter delves into Bayesian approaches to amalgamate limited ground truth data

from underrepresented hotspots with model-generated probability distributions. The ob-

jective is to derive more robust and reliable predictions of species occupancy, particularly

for hotspots with minimal observational data. By integrating these two sources of infor-

mation, we can enhance the accuracy of our models and provide a more comprehensive

understanding of avian biodiversity across all eBird hotspots. First, we begin by dis-

cussing some of the factors leading to data sparsity. Section 5.1.2 Introduces a Bayesian

approach we adapted for this problem.

5.1.1 Factors Contributing to eBird Sparsity

Several factors contribute to the sparsity and potential bias present in eBird data:

Taxonomic Bias

Birders may not uniformly detect or report all species. There is a tendency to prioritize

recording sightings of rare, exotic, or charismatic species, often at the expense of report-

ing more common birds. This selective recording can filter the data, leading to species

inventories that do not accurately reflect the full avian diversity at a hotspot.
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Temporal Bias

The activity and detectability of species fluctuate considerably throughout the day and

across different seasons. Sparse sampling during certain times of day or year may result

in failure to record species that are only present or vocal during limited periods. For

instance, nocturnal birds like owls and nightjars active after dusk are likely to be missed

by daytime birding. Similarly, transient migrants that are present only briefly during

spring or fall may be overlooked.

Spatial Bias

Birders often concentrate their efforts near trails, lookouts, parking areas, and other easily

accessible locations. As a result, species inhabiting remote or challenging-to-navigate

areas may receive less sampling and documentation.

Class Imbalance

Some species naturally occur in higher abundances and are easier to detect than rarer

species. With limited sampling, common species will be observed and reported fre-

quently, while rare birds are more likely to be overlooked.

5.1.2 Integrating Limited Ground Truth with Predictive Modeling

At data-sparse hotspots, we lack sufficient checklists to definitively characterize commu-

nity composition. However, we can still derive useful information from two approximate

probability distributions:

1. The ground truth 1 distribution based on limited observational data

2. The model-predicted probability distribution

The ground truth distribution represents the best available, yet limited, data on species

occurrence derived from birder observations. While prone to sampling bias, these records

1Throughout this section, we shall refer to the sparse observations as the ”ground truth”, as they reflect actual
on-the-ground conditions
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reflect on-the-ground conditions. In contrast, our model predictions estimate species

probability of occurrence based solely on environmental conditions captured in satel-

lite imagery. However, models can misrepresent fine-scale conditions not perceivable

through imagery alone. By integrating these two distributions using Bayesian methods,

we can leverage the strengths of both to generate more robust predictions, especially for

sparsely sampled sites. Bayesian approaches allow us to incorporate prior knowledge

(the ground truth data) to refine model-based probability estimates. The following sec-

tion details our proposed Bayesian integration methodology for combining ground truth

and model predictions.

To integrate ground truth with model predictions, we employ a Bayesian framework to

derive posterior probability distributions that incorporate both sources of information

through Bayes’ theorem:

P (S|G,M) =
P (G|S)P (S|M)

P (G|M)
(5.1)

Where:

• P (S|G,M) = Posterior probability of species S occurring given ground truth G and

model prediction M

• P (G|S) = Likelihood of observed ground truth G given species S is present

• P (S|M) = Model-predicted probability for species S

• P (G|M) = Normalizing constant
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Figure 5.1: Dependency Graph: Illustrates the influence of Model Predictions (M) on both

Species Occurrence (S) and Ground Truth (G), and the indirect dependency of P (G|M) in

the Bayesian framework for equation 5.1

The resulting P (S|G,M) posterior probability distribution integrates our model’s pre-

dicted probability for each species with the ground truth data observed at a site. This

allows limited ground truth records to refine and improve model-based predictions.

5.1.3 Factorization

The joint distribution P (S|G,M) can be factorized using the chain rule of probability

along with a conditional independence assumption that the model predictions M depend

only on the species S, not directly on the ground truth data G. This gives: P (S|G,M) =

P (G|S)P (S|M)P (M). Here P (S|M) follows from Bayes’ theorem and P (M) serves as

a normalization constant. This derived form aligns with the Bayesian update equation

structure used to integrate ground truth and model predictions. Specifically, it decom-
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poses the joint into the likelihood of G given S, model-based probabilities for S, and a

constant term—enabling formal information fusion under a Bayesian framework. While

simplifying assumptions are made for computational ease, this captures the core statisti-

cal relationships between data and models needed to generate posterior probability esti-

mates that combine both sources of knowledge about species distributions.

5.1.4 Benefits to Bayesian integration

Bayesian integration provides several benefits:

• Leverages strengths of both ground truth data and predictive modelling. The ground

truth provides real-world observations that capture on-the-ground conditions. Mean-

while, the model provides complete coverage and environmental context. Integrat-

ing them gives us the best of both worlds.

• Accounts for sampling bias and gaps in ground truth data. The model predictions

help fill in gaps where ground truth data is sparsely sampled or absent. This over-

comes the limitations of incomplete observational records.

• Constrains model predictions using on-the-ground conditions. Ground truth acts

as a check on model estimates, anchoring them to real observations that reflect fine-

scale environmental factors. This enhances reliability.

• Can emphasize ground truth data in sparsely sampled sites and model predictions

where data is abundant. The Bayesian approach allows the influence of ground

truth vs. model predictions to vary based on the amount of data available.

• Quantifies uncertainty in the integrated predictions. Bayesian methods provide un-

certainty estimates alongside the probability predictions. This allows us to assess

reliability and account for uncertainty in downstream analyses.

In the next section, we detail Bayesian methods to implement the integration and assess

resulting improvements in model accuracy. Bayesian methods allow us to effectively inte-

grate the model and ground truth data to improve model accuracy, even for hotspots with
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minimal ground truth. A key challenge is determining how to combine the model and

ground truth probability distributions when both have limitations. The model estimates

can be inaccurate, while the ground truth data is imprecise until sufficient observations

are made at a location. Finding an optimal way to merge these two probability distribu-

tions is critical, as it would yield a superior estimate compared to using either alone. This

issue warrants further investigation given its importance.

5.2 Bayesian Pipeline

We attempt to utilize Bayesian Evaluation Strategies, which consist of a prior distribution,

posterior distribution and a likelihood function. A prior distribution is a probability distribu-

tion used to represent an initial belief about the probability of a certain event or parameter

before any new evidence is taken into account. The likelihood function is a function that

describes the probability of observing a certain set of data given a particular set of param-

eters.

Here, Bayesian inference is used to estimate the probability that a certain bird species is

present in a certain location (hotspot) using data collected in the form of checklists. The

prior distribution represents our initial belief about the probability before any observa-

tions are made, while the likelihood function describes the probability of observing a cer-

tain checklist given a certain probability of the presence of the species in the hotspot. As

new observations are made, the likelihood function is used to update the prior distribu-

tion and our belief about the probability of the species presence in the hotspot converges

towards the true probability. Figure 5.2 gives an overview of the pipeline.
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Figure 5.2: The pipeline integrates predicted and observed encounter probabilities in a

Bayesian framework. Satellite imagery generates initial predictions ph,s for each species

s and hotspot h. These inform a beta prior distribution, which is updated by sampling

checklist data C ′h, s to a posterior distribution. The posterior mean p′h, s is compared

to the ground truth ph,s,true from full checklists to assess accuracy. This combines the

modeled priors and observational data to derive robust probability estimates.

5.2.1 Estimating Species Presence Probabilities with Bayes’ Theorem

eBird survey data is often collected from a set of sites or hotspots that are repeatedly sur-

veyed over time. Let’s assume we have a set of hotspots:

H = {h1, h2, ..., hn} (5.2)

where n is the number of hotspots.
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For each hotspot hi, there exists a set of checklists

Ci = {c1, c2, ..., cm} (5.3)

where m is the number of checklists for hotspot i.

For each checklist cj : A binary variable xi,j,k indicating whether species k is observed in

checklist j of hotspot i or not.

Our goal is to estimate the true probability θih that each species i is present at each

hotspot h. Specifically, θi represents the underlying geographic distribution or range map

for species i, indicating the probability of occurrence across all locations based on that

species’ habitat preferences and ranges. We aim to model each species’ complete range

map θi. We can model the observation process using a likelihood function:

We can write the likelihood function as:

P (Ci|θi) =
m∏
j=1

20∏
k=1

(θi)
xi,j,k(1− θi)

1−xi,j,k (5.4)

where θi is the probability that species k is present in hotspot i.

The prior probability distribution of the underlying rangemap of a species at a hotspot h

is given by:

P (θih) (5.5)

By combining the likelihood function and the prior distribution, we can update our beliefs

about the probability that a certain bird species is present in a certain location (hotspot)

using data collected in the form of checklists.
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We use the Bayes’ theorem to update our beliefs as follows:

P (θih|Ci) =
P (Ci|θih)P (θih)

P (Ci)
(5.6)

where P (θih|Ci) represents our updated knowledge about the species presence probabil-

ity θi after considering the survey data collected in that hotspot hi in the form of checklists

Ci. In this way, Bayes’ theorem provides a principled approach to estimating species pres-

ence from checklist data.

5.2.2 Conjugate Priors and Beta distribution theory

For the likelihood function defined in equation 5.4, the Beta distribution is a conjugate

prior for this binomial likelihood function. The Beta distribution is:

P (θi|α, β) =
Γ(α + β)

Γ(α)Γ(β)
θα−1
i (1− θi)

β−1 (5.7)

where: Γ() denotes the gamma function. α and β can be interpreted as prior observations

of ”successes” and ”failures” respectively, providing a natural way to incorporate

prior knowledge or beliefs.

If we use a beta prior for θi, then the posterior distribution is also a beta distribution:

P (θi|Ci, α, β) = Beta

(
α +

∑
j

∑
k

xi,j,k, β +mK −
∑
j

∑
k

xi,j,k

)
(5.8)

The posterior parameters are simply the prior parameters plus the number of ”successes”

and ”failures” observed in the data.

The beta-binomial model is simple to implement, fast to compute, and provides a natural

interpretation. The posterior means E[θi|Ci] can be used as the estimates of the species

presence probabilities at each hotspot. The posterior variances quantify the remaining

uncertainty.
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So by using a conjugate beta prior, we obtain a tractable Bayesian update for the

species presence probabilities that leverages both the prior information and observed

data.

5.3 Incorporating Conjugate Priors

We develop a Bayesian model to predict encounter rate probabilities for different species

at biodiversity hotspots, especially leveraging even the few checklists in some hotspots.

We model the probabilities using a beta distribution, which is suitable for proportions

ranging between [0,1]. The distribution is defined by two positive shape parameters: α

and β, which can be interpreted as ”presence” and ”absence” respectively of a species in

a checklist. (This is the equivalent of the successes or failures of a coin toss) [19]

Given the initial encounter probabilities, denoted by ph,s, derived from our preliminary

predictions, we can parameterize the beta prior. Here, we introduce a hyperparameter τ

to modulate the variance vh,s intrinsic to the binomial distribution as:

vh,s = τ × ph,s × (1− ph,s)

With the above variance, we compute the initial αh,s and βh,s utilizing both ph,s and vh,s as

follows:

αh,s = ph,s ×
(
ph,s(1− ph,s)

vh,s
− 1

)
(5.9)

βh,s = αh,s ×
(

1

ph,s
− 1

)
(5.10)

To infuse the checklist data Ch,s into our model, we select subsets C ′
h,s ⊆ Ch,s of sizes 2, 5,

or 10 checklists. The parameters αh,s and βh,s are updated by accumulating ”successes”
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and ”failures” from C ′
h,s:

α′
h,s = αh,s +

∑
c∈C′

h,s

c (5.11)

β′
h,s = βh,s + |C ′

h,s| −
∑

c∈C′
h,s

c (5.12)

Subsequently, the posterior mean p′h,s and variance v′h,s are computed:

p′h,s =
α′
h,s

α′
h,s + β′

h,s

(5.13)

v′h,s =
α′
h,sβ

′
h,s

(α′
h,s + β′

h,s)
2(α′

h,s + β′
h,s + 1)

(5.14)

In our concluding analysis, the model’s accuracy is ascertained by combining with the

ground truth mean ph,s,true obtained from all checklists. The accuracy metric, ah,s, is thus

the absolute difference between ph,s,true and p′h,s.

We incorporate these conjugate priors into our approach and show that we can improve

the confidence of the model even better by sampling more checklists from the ground

truth and updating the posterior alpha and Beta parameters with the predictions from

the satellite imagery. Section 6.1.2 shows an overview of these results.

We discuss these findings in detail in the next section.
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6
Results and Discussion

This chapter will address the evaluation and discussion of the achieved results, the chosen

methodology and the validity as well as reliability of the experiments. We begin in Sec-

tion 6.2.1 by discussing the different data modalities and how they influenced the model

performance. Then we give an overview of the architectures in section 6.2.2. In section

6.2.3, we discuss the effect of the different loss functions used, and finally in section 6.4 we

discuss the Bayesian approach to improve predictions for hotspots with fewer complete

checklists.
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6.1 Results

6.1.1 Baseline Model Results

In this section, we present the results obtained from our baseline models, using the USA-

summer as our primary dataset for experiments due to its extensive number of hotspots.

The evaluation of the models on the test set is summarized in Table 6.1, while the results.

Furthermore, we provide additional baseline results for USA-winter dataset in Table 6.2

and Kenya in Table 6.3.

In the tables below; img refers to using the RGB true color image. All ResNet-18 base-

lines use refl+env, which corresponds to using RGBNIR reflectance bands and the environ-

mental data (bioclimatic and pedologic variables), and WL refers to the weighted Loss.

scratch refers to training ResNet-18 model from scratch. finetune-USA refers to fine-tuning

a ResNet-18 model with weights transferred from USA-summer. freeze-USA refers to us-

ing ResNet-18 weights transferred from the USA-summer dataset while training the last

layer only.

Table 6.1 showcases the performance of our baseline models on the test set of USA-

summer. The baseline models establish a solid foundation for further investigations.

The test results serve as benchmarks for evaluating the effectiveness of our proposed

approach. Top-K refers to the Adaptive Top-K accuracy defined in 4.5 and the rest of the

metrics are defined in 4.5

Using USA-summer as our main dataset allows us to capture a diverse range of hotspots

and species, enabling comprehensive evaluations of our models’ capabilities.
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Model MAE[10−2] MSE[10−2] Top-10 Top-30 Top-k
Mean encounter rates 3.07± 0.0 0.9± 0.0 24.7± 0.0 34.9± 0.0 40.5± 0.0
Environmental baseline 2.5± 0.0 0.7± 0.0 38.4± 0.1 51.3± 0.1 56.6± 0.1

Satlas (img) 2.8± 0.0 0.8± 0.0 29.1± 0.01 44.7± 0.0 46.1± 0.0
SatMAE (img) 3.1± 0.0 0.9± 0.0 24.7± 0.0 38.0± 0.3 40.5± 0.0
MOSAIKS (img+env) 2.2± 0.0 0.6± 0.0 45.9± 0.0 59.4± 0.0 64.3± 0.0

ResNet-18 (img) 2.7± 0.0 1.0± 0.0 20.4± 2.2 35.7± 0.6 38.7± 0.7
ResNet-18 (refl) 3.2± 0.0 0.9± 0.0 23.8± 0.9 36.4± 0.2 39.1± 0.6
ResNet-18 (img+env) 2.0± 0.0 0.6± 0.0 45.0± 1.1 64.8± 1.2 65.2± 1.0
ResNet-18 (refl+env) 2.1 ± 0.0 0.6 ± 0.0 46.4 ± 0.8 65.9 ± 0.7 66.2 ± 0.6
ResNet-18 (refl+env+RM) 2.0 ± 0.0 0.6 ± 0.0 46.2 ± 0.4 65.9 ± 0.3 66.3 ± 0.2

Table 6.1: Test results on USA-Summer: Best results are shown in bold. img refers to

using the RGB true color image, refl refers to using RGBNIR reflectance bands, env refers

to using the environmental data (bioclimatic and pedologic variables). RM refers to the

use of range maps. Top-K refers to the Adaptive Top-K accuracy defined in 4.5

Model MAE[10−2] MSE[10−2] Top-10 Top-30 Top-k
Mean encounter rates 2.4± 0.0 0.7± 0.0 25.9± 0.0 44.5± 0.0 50.5± 0.0
Environmental baseline 1.7± 0.0 0.44± 0.0 51.2± 0.0 63.7± 0.0 67.7± 0.0

Satlas (img) 2.2± 0.01 0.7± 0.0 30.4± 0.3 49.2± 0.2 51.3± 0.2
SatMAE (img) 2.4± 0.01 0.7± 0.0 25.7± 0.4 45.5± 0.3 48.1± 0.1
MOSAIKS (img+env) 2.2± 0.0 0.6± 0.0 47.8± 0.0 62.3± 0.0 67.7± 0.0

ResNet-18 (img) 2.0± 0.22 1.1± 0.22 10.0± 3.3 25.5± 4.9 31.3± 3.8
ResNet-18 (refl) 2.3± 0.13 0.7 ± 0.01 27.2 ± 2.5 47.5 ± 1.7 49.7 ± 1.9
ResNet-18 (img+env) 1.6± 0.01 0.4± 0.0 52.3± 0.36 69.9 ± 0.25 69.9± 0.2
ResNet-18 (refl+env) 1.6 ± 0.0 0.4± 0.01 52.0 ± 0.16 69.5 ± 0.2 69.9 ± 0.2
ResNet-18 (refl+env+RM) 1.6 ± 0.01 0.4 ±0.01 52.3 ± 0.15 69.5 ± 0.14 70.1 ± 0.03

Table 6.2: Test results on the SatBird-USA-winter: Best results are shown in bold. img

refers to using the RGB true color image, refl refers to using RGBNIR reflectance bands,

env refers to using the environmental data (bioclimatic and pedologic variables). RM

refers to the use of range maps.

6.1.2 Bayesian Model Results

We present the results of the Bayesian Sampling strategy in the table 6.4 below. We see

that as we sample more and more checklists, the overall Mean Absolute Error Reduces

significantly reduces.
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Model MAE[10−2] MSE[10−2] Top-10 Top-30 Top-k
Mean encounter rates 3.2± 0.0 1.4± 0.0 14.1± 0.0 18.1± 0.0 21.3± 0.0
Environmental Baseline 2.8± 0.0 1.3± 0.00 21.4± 0.0 29.5± 0.0 33.3± 0.0

Satlas (img) 2.9± 0.0 1.3± 0.0 23.8± 0.2 44.0± 0.2 24.5± 0.1
SatMAE (img) 3.1± 0.0 1.4± 0.0 21.6± 0.4 40.7± 0.0 22.4± 0.5
MOSAIKS (img+env) 3.4± 0.0 1.4± 0.0 12.8± 0.0 16.9± 0.0 19.8± 0.0

ResNet-18(scratch) 3.3± 0.2 1.4± 0.0 18.8± 0.2 33.0± 0.2 23.2± 0.2
ResNet-18(finetune-USA) 3.2± 0.0 1.4± 0.0 18.8± 0.0 32.6± 0.3 23.5± 0.1
ResNet-18(freeze-USA) 3.2± 0.0 1.4± 0.0 18.8± 0.0 32.8± 0.5 23.5± 0.0

WL-ResNet-18(scratch) 4.6± 0.1 1.5± 0.0 18.6± 0.2 32.7± 0.7 23.0± 0.7
WL-ResNet-18(finetune-USA) 4.3± 0.1 1.5± 0.0 18.8± 0.1 33.2± 0.1 23.5± 0.1
WL-ResNet-18(freeze-USA) 4.2± 0.0 1.4± 0.0 18.5± 0.0 32.8± 0.5 23.5± 0.0

Table 6.3: Test results on the Kenya dataset: img refers to using the RGB true color image.

All ResNet-18 baselines use refl+env, which corresponds to using RGBNIR reflectance

bands and the environmental data (bioclimatic and pedologic variables), and WL refers

to the Weighted Loss. scratch refers to training ResNet-18 model from scratch. finetune-

USA refers to fine-tuning a ResNet-18 model with weights transferred from USA-summer.

freeze-USA refers to using ResNet-18 weights transferred from the USA-summer dataset

while training the last layer only.

Model Test MAE Test MSE Test Top10 Test Top30
RGBNIR + ENV + RM 0.020188 0.005955 0.466101 0.662649

Beta updated
5 Checklists 0.011428 0.002287 0.675884 0.727243

10 Checklists 0.008104 0.001278 0.759780 0.787577
Beta updated, Var=1

5 Checklists 0.012230 0.003139 0.636751 0.664888
10 Checklists 0.008156 0.001518 0.744447 0.764256

Beta updated, Var=0.25
5 Checklists 0.011655 0.001874 0.679729 0.728702

10 Checklists 0.008592 0.001126 0.759885 0.787248

Table 6.4: Summary of Test Results for Different Model Configurations. Our results sug-

gest that providing more checklist information enhances the model’s performance. The

most effective configuration utilized 10 checklists and a variance parameter of 0.25. This

increase in checklist sampling boosts the model’s overall confidence, yielding predictions

superior to those of the basic model (RGBNIR, ENV + RM).
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6.2 Discussion of Results

6.2.1 Data Modalities

We observe that models trained with satellite images only, either true color images or

reflectance values do not outperform the environmental baseline. However, combining

the satellite images with environmental rasters results in significant improvement in all

metrics, with the highest improvement in the top-30 (14%) top-K (10%), and top-10 (8%)

metrics. This highlights the value of satellite data for our task, and also the importance

of using both environmental and remote sensing data. The best models utilize RGBNIR

reflectance images, along with environmental data. We suggest incorporating other in-

formation as input such as landcover and alitutude data which can be obtained from

publicly available sources for further improvements.

6.2.2 Architectures

The Resnet architecture excelled at the primary task. Resnet18 worked across all the data

modalities and showed it’s utility for the task at hand. The transformer based models,

both Satlas and SatMAE both outperformed the ResNet-18 model on the true colored

image, this suggests the potential of transformer-based models. We note that Satlas out-

performs SatMAE, likely because the former was pretrained on a very large dataset of

Sentinel-2 images which is the same source (and has the same resolution) as our images.

For SatMAE, the model was trained on the fMoW dataset with a higher resolution (0.5m)

than the images in our dataset. MOSAIKS also performs reasonably well compared to

other deep learning models. for the true color image and environmental rasters input

especially considering it is is lightweight model.

6.2.3 Comparison of different loss functions

Throughout this research, our experiments use cross entropy as the loss function as men-

tioned in Sec 5.2. in addition, we conducted further experiments using other regression
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loss functions such as L1 loss and L2 loss. We also extended our cross-entropy loss to

focal loss to address the class imbalance. Table 6.5 shows that cross entropy loss achieves

the best accuracies, and even the best MSE over the test set.

Model MAE[10−2] MSE[10−2] Top-10 Top-30 Top-k

Cross Entropy 2.1± 0.02 0.59 ± 0.0 45.68 ± 0.36 65.39 ± 0.5 65.85 ± 0.37

L1 Loss 1.78 ± 0.01 0.7± 0.0 41.87± 0.42 58.5± 0.16 57.28± 0.15

L2 Loss 2.59± 0.05 0.6± 0.0 43.79± 0.49 62.86± 0.5 63.12± 0.41

Focal Loss 3.2± 0.11 0.7± 0.0 36.23± 0.33 54.79± 0.3 56.54± 0.14

Table 6.5: Using different loss functions for Resnet-18 baseline: this table compares

the performance of Resnet-18 baseline when using different loss functions. Cross entropy

Loss outperforms all other losses.

6.2.4 Model inference

During inference, the best-performing models were the Resnet models, however, we

noticed a degradation in performance, especially in regions that do not have sufficient

complete checklists. Hence We employed Bayesian models for better inference and this

proved to perform better. The Bayesian inference strategy is discussed in section 6.4

6.3 Analysis of results

On the test set of SatBird-USA-summer, the top 50 species with lowest test-MSE are un-

surprisingly species with very low number of occurrences in the training set ( < 11) (so the

model can predict a zero encounter rate and have good MSE for these species). Among

those species we find species breeding in arctic regions (e.g. Bombycilla garrulus, Calcar-

ius lapponicus) and seabirds (e.g. Uria lomvia). By design of our dataset, we don’t have

many observations of seabirds since we excluded all hotspots outside the boundaries of

the continental US). Species with largest MSE have > 30k hotspots where they were ob-
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Species scientific name Training occurrences MSE ranking MSE
Uria lomvia 2 1 6.488607e-08

Calcarius lapponicus 2 1 7.974181e-08
Calidris maritima 6 3 8.040372e-08
Limosa lapponica 11 4 8.041987e-08
Geopelia striata 1 5 8.050395e-08

Zonotrichia querula 6 5 8.085927e-08
Acanthis flammea 2 7 8.093858e-08

Stercorarius pomarinus 4 8 8.108264e-08
Bombycilla garrulus 2 9 8.149682e-08

Sicalis flaveola 3 10 8.168477e-08

Table 6.6: Top 10 predicted species on the USA-summer test set according to MSE. Oc-

currences refers to the number of training hotspots for which the encounter rate (target

value) is non-zero.

Species scientific name Training occurrences MSE ranking MSE
Agelaius phoeniceus 45670 684 0.083132
Turdus migratorius 60637 683 0.078335
Melospiza melodia 46416 682 0.074919
Zenaida macroura 60914 681 0.072872

Haemorhous mexicanus 43441 680 0.062781
Passer domesticus 36534 679 0.062168

Hirundo rustica 42716 678 0.060854
Anas platyrhynchos 31729 677 0.056884

Corvus brachyrhynchos 53900 676 0.054558
Setophaga petechia 29713 675 0.053734

Table 6.7: Bottom 10 predicted species on SatBird-USA-summer test set according to MSE

in descending order. Occurrences refers to the number of training hotspots for which the

encounter rate (target value) is non-zero.

served in the training set. Tables 6.6 and 6.7 show the 10 best and worst predicted species

on the USA-summer test set according to MSE.

6.3.1 Top Predicted Species

We show the squared error distribution by target value (encounter rates) for the USA-

summer test set in Fig. 6.2. We binned the target values 19 bins and for each bin averaged

the squared errors. The squared error is higher on average for higher target values. In

59



Fig. 6.1, we show the predicted values against the target values. The target values were

binned in 19 bins. The model generally underestimates the target values.

Figure 6.1: Predicted vs target values (binned in 19 bins) for the USA-summer test set.

Figure 6.2: MSE value distribution by target value (binned in 19 bins) for the USA-

summer test set. The bars show the minimum and maximum squared error for targets

in a given bin.
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We show the geographic distribution of the top-k error in the predictions for the USA-

summer test set in Fig. 6.3

Figure 6.3: USA-summer test set hotspots colored by adaptive top-k performance for the

ResNet-18 (refl+env+RM) model.
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6.4 Improving Predictions with Bayesian Approaches

6.4.1 Single Hotspot Scenario

We first evaluated how well the posterior mean estimates match the ground truth mean

across all species in our test set. Figure 6.4a shows the results for the top 20 species

(out of 684 total). We see that the posterior means closely follow the ground truth, as

expected when sampling from the posterior. We also examined how additional checklists

improve the posterior estimates by performing successive Bayesian inference iterations,

each adding 1, 2, 3, 4, or 5 additional checklists. Figure 6.4b illustrates that with more

checklists, the posterior means converge towards the ground truth means, especially for

under-represented species. This demonstrates that the Bayesian approach successfully

leverages additional checklists to improve model confidence, particularly for species with

limited data in the initial few checklists for a given hotspot.

The results, for a single hotspot, show that the Bayesian methodology produces sen-

sible posteriors that align with ground truth and improve with more data, validating its

ability to enhance predictions from limited observational data. Next, we extend this to all

the hotspots in our test set and discuss the results.
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(a) Sampling from the Posterior for a single hotspot.

(b) Sampling from the Posterior for a single hotspot after 5 iterations

Figure 6.4: Sampling from the Posterior
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6.4.2 Multiple Hotspots scenario

We extend the analysis across all the hotspots in our test set. Assessing numerous hotspots,

rather than a single case, provides a robust test of the effect of additional complete check-

lists on the performance of our model. We note in 6.6 that the Average Mean squared Error

(MSE) significantly diminishes for each additional checklist added for all the hotspots.

(a) MSE vs number of complete checklists for

all hotspots

(b) MAE vs number of complete checklists for

all hotspots

Figure 6.5: Comparison of Mean Squared Error (MSE) and Mean Absolute Error (MAE)

versus the number of checklists (nchklists) for all hotspots. The plots demonstrate sig-

nificant model improvement with increased checklists. (Left:) The MSE plot reveals a

substantial decrease in error with the addition of each subsequent checklist, evident up

to 10 additional checklists. (Right:) A similar trend is observed for MAE, confirming the

model’s enhanced accuracy with more checklists.
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Top-K Errors

Next, we explore the effect of an additional checklist on the top 10, 20 and 30 accuracy

(a) Top 20 Accuracy vs number of complete

checklists for all hotspots

(b) Top 30 Accuracy vs number of complete

checklists for all hotspots

Figure 6.6: Examination of Top-K Error. (Right:) The plot illustrates the consistent im-

provement in top-20 accuracy with each additional checklist, advancing from 40% with

one checklist to a peak of 75% with ten additional checklists. A similar progressive en-

hancement is observed for top-30 accuracy, reaffirming the positive impact of additional

checklists on model performance.
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7
Conclusion

In this work, we present SatBird, a novel large-scale dataset for species distribution mod-

eling that integrates remote sensing and citizen science data. SatBird comprises seasonal

datasets for summer and winter in the USA, as well as Kenya. We outline the method-

ology for constructing SatBird and demonstrate its utility by training different models to

predict species encounter rates directly from satellite imagery and bioclimatic variables.

Our benchmark results validate the feasibility of this approach and highlight the poten-

tial of SatBird to advance ecological deep learning. By releasing this dataset, we aim to

provide a valuable resource that spurs new innovations in biodiversity monitoring and

conservation. The creation of SatBird also offers a template for assembling multimodal

species occurrence data that could be extended to other organisms and geographies. Two

limitations of the present work include using a single satellite image to represent a season,

while the landscape can change over time, and that satellite images are extracted from one
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recent year, while eBird data is aggregated across multiple recent years. We are planning

a next version of SatBird that will include multiple satellite images for each hotspot to

account for changes over time. We also aim to expand SatBird using citizen science data

for other organisms, not merely birds (this is more challenging since most such datasets

are presence-only).

As SatBird is intended to directly impact biodiversity monitoring, we look forward to

integrating the approaches we have introduced into existing tools for ecology and pol-

icy. We invite ecologists and researchers in AI for climate change and biodiversity to use

and build upon our dataset and experiments on SatBird-Kenya and SatBird-USA-winter

by transferring pretrained models from SatBird-USA-summer to test for the generaliza-

tion of models on different seasons and locations. One immediate application for models

trained on SatBird is eBird’s existing tool that lists the “likely species” in a given area, to

be available for poorly monitored locations. This tool currently relies on encounter rates

from past checklists and is therefore only available in well-monitored locations. Models

trained on SatBird could estimate such encounter rates for poorly monitored locations

via remote sensing. We hope such input will be valuable to researchers seeking to under-

stand biodiversity and climate change, as well as policymakers interested in evaluating

conservation priorities across different areas of land.

7.1 Applications

This work enables several important biodiversity monitoring applications, although it

also has some limitations on potential use cases.

• Species range shift detection - Models can identify changes in species distributions

over time, critical for tracking range shifts due to climate change or habitat loss.

Comparing predicted distribution maps over multiple years could reveal range ex-

pansions, contractions, or shifts.
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• Biodiversity hotspot mapping - Predicted species richness maps can highlight areas

of high biodiversity that should be priority targets for conservation. Hotspots with

many overlapping species ranges can be identified.

• Ecological forecasting - Models can make projections of future species distributions

under different climate change scenarios. These forecasts guide mitigation strate-

gies by revealing which species are likely to gain or lose suitable habitat.

• Revealing data gaps - Model uncertainty maps can identify regions that require

more sampling effort to improve predictions. Citizen science campaigns could then

target those high uncertainty areas for data collection.

• Optimizing wildlife surveys - By predicting habitat suitability and species occur-

rence probabilities, surveys can be made more efficient by focusing sampling effort

on high probability sites.

• Informing policy - Conservation decisions and land use planning can leverage

model predictions to better protect biodiversity and identify regions needing pro-

tection.

• Improving citizen science - Model predictions can help guide citizen scientists on

where and when to look for certain species and provide educational resources to

improve species identification abilities.

7.2 Future work

More research is needed to develop Bayesian neural networks that can directly predict

both the mean and variance of species distributions directly. As discussed in Section

5.3, our current approach estimates variance vh,s from the predicted mean ph,s. However,

enabling models to independently learn the variance could improve performance.

Additional modalities beyond those explored here may also enhance species distribution

predictions for birds and other taxa. Integrating data like land cover(urban areas, wa-
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terbodies etc), tree canopy metrics, bioacoustics, and butterfly occurrences could provide

useful ecological context alongside remote sensing and climate variables. Deep learning

methods are well-suited to fuse such multivariate data.

It would also be interesting to see how varying the input patch size described in 4.3 of

64px depending on the density of observations in that location affects the performance of

the model.

This work establishes a foundation for further advances in ecological deep learning and

multimodal species distribution modeling. There are tremendous opportunities to refine

model architectures, incorporate new data streams, and tailor methods to different organ-

isms and settings. We hope our study catalyzes future efforts to leverage deep learning

for biodiversity monitoring and conservation.

We provide the data, code, and other resources needed to reproduce our experiments in

Appendix A.
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A
Appendix A: Data and Code

A.1 Dataset

The dataset presented in this work is available for download at the following link:

Dataset Download

A.2 Code

Additionally, you can find the companion code for the dataset preparation pipeline and

benchmark here:

Companion Code Download
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B
Algorithms

B.1 Algorithm 1: Predicting Species Encounter Rate

In this algorithm, species encounter probabilities for each hotspot are predicted using a

Bayesian approach. The algorithm loops through each hotspot, collecting the initial pre-

dicted probabilities and observed encounter checklists for all species present. Hotspots

with insufficient checklists are skipped. For each species, the sample variance is com-

puted from the checklists. This variance is used along with the initial prediction to deter-

mine the parameters α and β of a Beta prior distribution.

The algorithm then samples multiple sets of 2, 5, and 10 checklists. For each checklist

sample, the 0s and 1s are added to the prior α and β to compute the posterior parameters.

The posterior mean and variance are then calculated. As the ground truth, the mean and

variance are also calculated from all available checklists.
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Algorithm 1 Predicting Species Encounter Probabilities

1: for each hotspot do
2: Collect initial predictions and all checklists for species in the hotspot
3: if there are less than 5 checklists or no checklists then
4: Continue to the next hotspot
5: end if
6: for each species do
7: if all checklist values are 0 then
8: Skip this species
9: end if

10: Compute sample variance v from all checklists
11: Compute prior parameters alpha and beta based on initial prediction p and sam-

ple variance v
12: for each of 2, 5, and 10 checklists do
13: Select checklists
14: Compute posterior alpha and beta by adding 0s and 1s from the checklists to

prior alpha and beta
15: if division by 0 error then
16: Handle the error
17: end if
18: Compute posterior mean ppost and variance vpost
19: Compute ground truth mean ptrue and variance vtrue from ALL checklists
20: Compute accuracy as 1− |ptrue − ppost|
21: Compute average accuracy for the hotspot
22: end for
23: end for
24: end for

The accuracy of the posterior mean compared to the ground truth is computed for

each sample. Finally, the accuracy is averaged across samples and species to quantify the

overall performance on that hotspot. This provides a data-driven framework for updat-

ing the initially predicted probabilities to posterior probabilities that reflect the observed

encounters, while properly quantifying the uncertainty. The performance on standard-

ized checklist samples evaluates the real-world applicability of the probabilistic species

distribution modelling.
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B.2 Predicting Species Encounter Probabilities with Hyper-

parameter

This algorithm extends the previous one by introducing a hyperparameter that controls

the variance calculation. The key difference is that instead of computing the variance

directly from the checklists, the variance is calculated as a function of the initial prediction

and the hyperparameter.

Specifically, for each species, a hyperparameter value is set or optimized. The variance

is then calculated as v = hyperparameter∗p∗ (1−p), where p is the initial prediction. This

links the variance to the prediction through the hyperparameter.

The calculated variance is then used along with the initial prediction to determine

the prior distribution parameters. The rest of the algorithm follows the same Bayesian

updating approach as before - sampling checklists, computing posteriors, determining

accuracy compared to ground truth, and averaging across species and samples.

The addition of the hyperparameter provides more control over the variance and un-

certainty quantification of the probabilistic model. It can be tuned as a form of regular-

ization to improve generalizability. The standardized checklist sampling evaluates how

robust the predictions are to limited observations, for different hyperparameter values.

B.2.1 More Detailed extension of Algortithm 1
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Algorithm 2 Predicting Species Encounter Probabilities with Hyperparameter

1: for each hotspot do
2: Collect initial predictions and all checklists for species in the hotspot
3: if there are less than 5 checklists or no checklists then
4: Continue to the next hotspot
5: end if
6: for each species do
7: if all checklist values are 0 then
8: Skip this species
9: end if

10: Set or optimize the hyperparameter value
11: Calculate variance v as v = hyperparameter × p× (1− p)
12: Compute prior parameters alpha and beta based on initial prediction p and cal-

culated variance v
13: for each of 2, 5, and 10 checklists do
14: Select checklists
15: Compute posterior alpha and beta by adding 0s and 1s from the checklists to

prior alpha and beta
16: if division by 0 error then
17: Handle the error
18: end if
19: Compute posterior mean ppost and variance vpost
20: Compute ground truth mean ptrue and variance vtrue from ALL checklists
21: Compute accuracy as 1− |ptrue − ppost|
22: Compute average accuracy for the hotspot
23: end for
24: end for
25: end for
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Algorithm 3 Predicting Species Encounter Probabilities with Hyperparameter

1: for each hotspot h do
2: Collect predictions Ph and all checklists Ch for species in h
3: if |Ch| < 5 then
4: Continue to the next hotspot
5: end if
6: for each species s do
7: if max(Ch,s) = 0 then
8: Skip this species
9: end if

10: Set or optimize hyperparameter τ
11: Calculate vh,s = τ × ph,s × (1− ph,s)
12: Compute αh,s and βh,s using ph,s and vh,s
13: for each n ∈ {2, 5, 10} do
14: Select n checklists C ′

h,s ⊆ Ch,s

15: Compute α′
h,s = αh,s +

∑
c∈C′

h,s
c

16: Compute β′
h,s = βh,s + n−

∑
c∈C′

h,s
c

17: Compute p′h,s =
α′
h,s

α′
h,s+β′

h,s

18: Compute v′h,s =
α′
h,sβ

′
h,s

(α′
h,s+β′

h,s)
2(α′

h,s+β′
h,s+1)

19: Compute ph,s,true =

∑
c∈Ch,s

c

|Ch,s|
20: Compute accuracy ah,s = 1− |ph,s,true − p′h,s|
21: end for
22: Compute average accuracy ah =

∑
s ah,s
|Sh|

23: end for
24: end for
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C
Appendix C: Hotspot Visualizations

C.0.1 Species distribution per hotspot

A well-known issue in species distribution modeling when looking at many species at a

time is the zero-inflated nature of the targets, which also appears in our dataset. Indeed,

all 684 considered species in the USA and 1054 species in Kenya are never found in the

same place together. Figure C.1 shows the distribution of the number of species with

non-zero encounter rates per hotspot in the SatBird-US-summer and the SatBird-Kenya

datasets.
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Figure C.1: Distribution of the number of species encountered per hotspot for the USA-

summer (left) and Kenya (right) training sets. On average a hotspot in these datasets has

resp. 48 and 30 different species were reported.

C.0.2 Predictions vs Groundtruths

We present the predictions from the model versus what the groundtruth data contained.

Essentially, we can see that the model learned some of the species present in the groundtruth

dataset as intended, showing the potential of the models to learn the underlying rangemaps.

We visualize three regions: Figure C.2 shows Lampson Reservoir in Ohio; Figure C.3

shows a hotspot in California; and Figure C.4 shows species in a hotspot in San Bernardino

County, California.
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Figure C.2: Hotspot and species in Lampson Reservoir,Ashtabula County, Ohio: Our

model predicts the presence of various species in this region, including the song sparrow,

red-winged blackbird and gray catbird. These species are consistent with the ground

truth and are highly reported on eBird for this location.

Figure C.3: comparison of predictions in California versus the groundtruths for top 10

species, we see that the white throated sparrow, Northern Parula, Black-capped chick-

adee, Blue Jay and American Robin were correctly predicted by the model, making it six

out of 10 correct predictions.

78



Figure C.4: Hotspot and species at Afton Canyon, San Bernardino County in California:

Our model correctly identified the Verdin in this region in the top-10 species predicted

list. It’s worth noting that the Verdin’s habitat is a fairly rare species whose habitat is

mainly restricted to shrublands.
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