
Concern-Oriented and Model-Driven Migration
of Legacy Java Applications to RESTful Web

Services

Bowen Li

A thesis submitted to McGill University in partial
fulfillment of the requirements of the degree of

Masters of Science

School of Computer Science
McGill University

Montréal, Québec, Canada

June 2022

© Bowen Li, 2022

Abstract

With modern advances in internet technologies, many existing native software systems have been
extended to web services to enable the querying and modification of data from anywhere in the
globe across the network. REpresentational State Transfer (REST) proposes a standard architec-
tural style for web services and defines a collection of constraints for their behaviour. Nowadays,
developers can integrate the REST interface in their software system by incorporating an appropri-
ate framework that implements REST. Popular REST implementation technologies include Spring
Boot, Eclipse Jersey, JBoss RESTEasy and Apache CXF.

There is significant technical complexity in the development process of RESTful web services.
The typical web service development first involves designing a REST resource tree consisting of
Uniform Resource Identifiers (URIs) and HTTP request methods for the designated controller op-
erations. Next, a compatible REST framework is selected to be integrated as a dependency to the
existing software system. Now in order to accommodate for the requirements of the selected REST
technology, the existing build pipeline is updated, and new source code files are implemented cor-
respondingly to the specification of the new dependency. Finally, the designated controller classes,
operations and applicable parameters are decorated with the defined REST annotations from the
framework technology.

In this thesis we propose an alternative approach to building REST applications based on
Model-Driven Engineering (MDE), Domain-Specific Modelling Languages (DSMLs) and Concern-
Oriented Reuse (CORE). We encapsulate the technical complexity of REST frameworks in a
reusable unit called the RESTify concern. With the RESTify concern, the interface to the exist-
ing software system is represented at a high level of abstraction with a Reusable Aspect Model
(RAM) composed of a UML Class Diagram design model. The design of the REST Resource
tree is accomplished with a domain-specific Resource Tree Language (ResTL). The connection

i

between the REST interface and the application functionality is done by providing mappings from
ResTL to RAM, avoiding the tedious placement of REST Java annotations across multiple Java
files. Finally, a functional and ready-to-deploy RESTful web service can be generated from the
models simply by selecting the concrete REST implementation framework to use.

To implement the RESTify pipeline, this thesis delivers several contributions: 1) an extension
of the CORE metamodel to support reuse and selection of features of the RESTify concern, 2) a
graphical user editor for the ResTL language as well as a 3) a split-view capable of displaying
ResTL and RAM design models simultaneously and establish coherent mappings between them,
4) a refactoring and modularization of the previously monolithic code generation transformations
in order to maximize transformation reuse among the different REST implementations, and finally
5) an algorithm for composing Maven build configuration files.

ii

Abrégé

En vertu des percées modernes dans les technologies internet, de nombreux systèmes logiciels
natifs existants ont été élargis aux services web afin de permettre la consultation et la modification
de données depuis n’importe où au monde via un réseau. REpresentational State Transfer (REST)
propose un style architectural standard pour les services web et définit un ensemble de contraintes
pour leur fonctionnement. De nos jours, les développeurs peuvent intégrer l’interface REST dans
leur système logiciel en incorporant un framework approprié permettant de l’implémenter. Les
technologies les plus populaires permettant l’implémentation de REST sont Spring Boot, Eclipse
Jersey, JBoss RESTEasy et Apache CXF.

Le processus de développement des services Web RESTful est d’une grande complexité tech-
nique. En effet, le développement classique d’un service web implique tout d’abord la conception
d’un arbre de ressources REST regroupant des identificateurs de ressources uniformes (URI) et
des méthodes de requête HTTP pour les opérations du contrôleur désigné. Ensuite, un framework
REST compatible est retenu pour être intégré en tant que dépendance au système logiciel existant.
Afin de répondre aux exigences de la technologie REST choisie, le pipeline de build existant est
mis à jour et de nouveaux fichiers de code source sont implémentés conformément à la spécifi-
cation de la nouvelle dépendance. Pour finir, les classes de contrôleur désignées, les opérations et
les paramètres applicables sont agrémentés des annotations REST définies de la technologie du
framework.

Dans le cadre de cette thèse, nous proposons une approche alternative au développement d’ap-
plications REST basée sur une ingénierie dirigée par modèles (MDE), des langages de modéli-
sation spécifiques au domaine (DSML) et une réutilisation axée sur les préoccupations (CORE).
Nous intégrons la complexité technique des frameworks REST dans une unité réutilisable appelée
RESTify préoccupation. Avec le RESTify préoccupation, l’interface du système logiciel existant

iii

est représentée à un haut niveau d’abstraction avec un Reusable Aspect Model (RAM) consti-
tué d’un modèle de conception de diagramme de classe UML. La conception de l’arbre de res-
sources REST est réalisée avec un langage d’arbre de ressources (ResTL) spécifique au domaine.
La connexion entre l’interface REST et la fonctionnalité de l’application se fait en prévoyant des
mappings entre ResTL et RAM, évitant ainsi le placement pénible des annotations Java REST dans
plusieurs fichiers Java. Pour finir, un service web RESTful fonctionnel et prêt à être déployé peut
être généré depuis les modèles en sélectionnant simplement le framework d’implémentation REST
spécifique à exploiter.

Afin d’implémenter le pipeline RESTify, cette thèse propose plusieurs contributions : 1) une
extension du métamodèle CORE afin de supporter la réutilisation et la sélection des caractéris-
tiques du RESTify préoccupation, 2) un éditeur graphique pour le langage ResTL ainsi qu’un 3)
une vue partagée permettant d’afficher simultanément les modèles de conception ResTL et RAM
ainsi que d’établir des mappings pertinents entre ces derniers, 4) un refactorisation et une modula-
risation des transformations de génération de code précédemment monolithiques afin de maximiser
la réutilisation des transformations au sein des différentes implémentations REST, et pour finir 5)
un algorithme pour la compilation des fichiers de configuration de construction Maven.

iv

Acknowledgements

I would like to thank my supervisor, Jörg, for the opportunity to work on such a fascinating project
and his tremendous support, guidance, and encouragement throughout the entire journey. This
thesis would not be possible without him. I would also like to thank my mentor, Max, for inviting
me to partake in his research, patiently answering my questions and constantly teaching me about
new technologies. He is the greatest mentor I could ever ask for. Throughout the years, I have
learned so much from you two, as a researcher, software developer and as a person. Thank you.

I express my deepest gratitude to my family for their unconditional love and encouragement.
To my parents, thank you for being here for me during every moment in my life. I will never
forget the times when we have celebrated my accomplishments and embraced my failures. To my
grandfather, Liangzheng Xia, and grandmother, Guifen Du, thank you for always being involved
in my education and career. I owe my success to your invaluable guidance. To my grandmother,
Xiulan Yang, thank you for always encouraging and supporting me throughout my life. I appreciate
your regular phone calls to check in on my well-being and ask about my current ventures. To my
uncle Hui, thank you for helping me look at my predicaments from a different perspective.

I thank my good friend, Suko, for assisting me with French for the Abrégé chapter. I thank my
friends and colleagues for their companionship and encouragement throughout my studies. These
years have been much more enjoyable with them around.

Thank you everyone.

v

Contents

List of Figures x

List of Tables xiii

List of Algorithms xiv

List of Acronyms 1

1 Introduction 1
1.1 Contributions . 3
1.2 Thesis Outline . 4

2 Background 6
2.1 Model-Driven Engineering . 6
2.2 Metamodelling . 7
2.3 CORE . 8

2.3.1 Concern Reuse Process . 9
2.3.2 Languages in CORE . 10
2.3.3 Perspectives in CORE . 10
2.3.4 Reusable Aspect Model . 11

2.4 FIDDLR . 11
2.5 REST . 13

2.5.1 Spring Boot . 16
2.5.2 JAX-RS . 17

vi

2.5.2.1 Eclipse Jersey . 17
2.5.2.2 JBoss RESTEasy . 17
2.5.2.3 Apache CXF . 19

3 Overview of RESTify 20
3.1 Step 1: Importation of Existing Software System with RAM 20
3.2 Step 2: Reuse of RESTify Concern . 21
3.3 Step 3: Design of a REST Resource Tree with ResTL 22
3.4 Step 4: Specifying Inter-Model Mappings Between RAM and ResTL 23
3.5 Step 5: Execution of RESTify Transformations 25
3.6 Step 6: Deployment of Generated RESTful Web Service Application 27

4 Concern Reuse With COREReuseArtefact 28
4.1 Extension of COREReuseArtefact in CORE Metamodel 28
4.2 Support for Concern Reuse with COREReuseArtefact in TouchCORE 30

5 ResTL 33
5.1 ResTL Metamodel . 33
5.2 Support for ResTL Models in TouchCORE . 34

6 Generic Split View 39
6.1 Abstract Generic Split View . 39
6.2 Abstract Generic Split View with Mappings Functionality 40
6.3 RAM-ResTL Split View with Mappings Functionality 42
6.4 Domain-Use Case Split View with Mappings Functionality 44

7 RESTify Transformation Pipeline 46
7.1 fpcdm RAM Model with Spring Annotations and COREModelExtension Mapping

Generation Transformation . 47
7.2 fpcdm RAM Model with JAX-RS Annotations and COREModelExtension Map-

ping Generation Transformation . 49
7.3 RAM Model Weaving Transformation . 50
7.4 RAM to Maven/Java Code Transformation . 51

vii

7.5 JAX-RS Application Class Generation Transformation 52
7.6 Apache CXF Launcher and pom.xml Generation Transformation 52
7.7 Eclipse Jersey pom.xml Generation Transformation 53
7.8 JBoss RESTEasy pom.xml Generation Transformation 54
7.9 Spring Boot Launcher and pom.xml Generation Transformation 54
7.10 pom.xml Weaving Transformation . 55
7.11 Generated Java/Maven Source Code . 55

8 Weaving pom.xml Files 57
8.1 pom.xml Schema File . 58
8.2 pom.xml Weaving Algorithm . 59
8.3 Example with Generated BookStore pom.xml Files 64

9 Related Work 70
9.1 Expressing REST with Modelling Languages . 70
9.2 Model-Driven Code Generation Transformations of RESTful Web Services 76

10 Conclusion & Future Work 80
10.1 Conclusion . 80
10.2 Future Work . 81

10.2.1 Extensions to Complete Modelling Approach of RESTify 81
10.2.2 Round-Trip Engineering with RESTify 82
10.2.3 ResTL Weaver . 83
10.2.4 Augmentation of Cacheable to ResTL . 83
10.2.5 New Modelling Language to Express Layered Systems 85
10.2.6 New Modelling Language for RESTful Web Service Security 85
10.2.7 New Implementations of the Generic Split View 86

Bibliography 87

A CORE Metamodel 92

B Acceleo Templates for Model-to-Code RESTify Transformations 94

viii

C Generated RESTified Java/Maven Source Code for Supported REST Frameworks for
BookStore Application 102

ix

List of Figures

2.1 Example of Metamodelling . 7
2.2 The FIDDLR Framework . 13

3.1 RAM Model Representation of BookStore Application in TouchCORE 21
3.2 RESTify Concern . 22
3.3 Reuse of RESTify Concern in BookStore Concern 23
3.4 BookStore REST Resource Tree with ResTL Model 24
3.5 RAM-ResTL Split View with Mappings for BookStore Concern 26

4.1 CORE Metamodel Extension with COREReuseArtefact 29
4.2 Concern Reuse with COREReuseArtefact Button 30
4.3 Selection of a Configuration for RESTify Concern 31
4.4 Reuse of RESTify Concern in BookStore Concern 32

5.1 ResTL Metamodel . 35
5.2 BookStore REST Resource Tree with ResTL Model 38

6.1 Generic Split View Event Flow . 41
6.2 RAM-ResTL Split View with Mappings for the BookStore Application 44
6.3 Domain-Use Case Split View with Mappings for the BookStore Application 45

7.1 Flowchart of the New RESTify Transformation Pipeline 47

8.1 Generic pom.xml for BookStore Concern . 67
8.2 Eclipse Jersey pom.xml for BookStore Concern 68

x

8.3 Woven pom.xml for BookStore Concern . 69

10.1 Feature Model of BookStore Concern . 84
10.2 ResTL Models of Each Feature in BookStore Concern 84

A.1 CORE Metamodel . 93

B.1 Generic pom.xml Acceleo Template . 95
B.2 Helper Maven Depedency Acceleo Template . 95
B.3 JAX-RS Application Class Acceleo Template . 96
B.4 Apache CXF Launcher Class Acceleo Template 96
B.5 Apache CXF pom.xml Acceleo Template . 97
B.6 Eclipse Jersey pom.xml Acceleo Template . 98
B.7 JBoss RESTEasy pom.xml Acceleo Template . 99
B.8 Spring Boot Launcher Class Acceleo Template 100
B.9 Spring Boot pom.xml Acceleo Template . 101

C.1 GenericPom.xml . 103
C.2 SpringBootPom.xml . 104
C.3 Woven pom.xml (Spring Boot) . 105
C.4 EclipseJerseyPom.xml . 106
C.5 Woven pom.xml (Eclipse Jersey) . 107
C.6 JBossRESTEasyPom.xml . 108
C.7 Woven pom.xml (JBoss RESTEasy) . 109
C.8 ApacheCXFPom.xml . 110
C.9 Woven pom.xml (Apache CXF) . 111
C.10 AssortmentImplController.java (Spring Annotations) 112
C.11 CommentsImplController.java (Spring Annotations) 113
C.12 GlobalStockImplController.java (Spring Annotations) 114
C.13 AssortmentImplController.java (JAX-RS Annotations) 115
C.14 CommentsImplController.java (JAX-RS Annotations) 116
C.15 GlobalStockImplController.java (JAX-RS Annotations) 117
C.16 SpringBootLauncher.java . 118

xi

C.17 ApplicationConfig.java (JAX-RS) . 118
C.18 ApacheCXFLauncher.java . 119

xii

List of Tables

2.1 Spring VS JAX-RS Annotations Table . 18

7.1 Executed RESTify Transformations for Selected REST Technology 48

xiii

List of Algorithms

8.1 pom.xml Weaving - Main Algorithm . 60
8.2 pom.xml Weaving - Merge Sort Algorithm . 62
8.3 pom.xml Weaving - Merge Element Nodes Algorithm 63
8.4 pom.xml Weaving - Find Common Merge Node Algorithm 63
8.5 pom.xml Weaving - Validate Common Merge Node with pom.xml Schema Algorithm 65

xiv

1
Introduction

Since the advent of the internet, web applications are rapidly growing in popularity. In particular,
e-commerce platforms have been overwhelming traditional brick and mortar businesses, due to
their accessibility and convenience. The coronavirus (COVID-19) pandemic continues to play a
significant influence on e-commerce and online consumer behaviour around the world [Cop22].
As millions of people stayed home in early 2020 to contain the spread of the virus, digital channels
have become the most popular alternative to crowded stores and in-person shopping [Cop22]. In
June 2020, global retail e-commerce traffic stood at a record 22 billion monthly visits, with demand
being exceptionally high for everyday items such as groceries, clothing, but also retail tech items
[Cop22].

Web applications require a web service to act as a server, listening and responding to requests
from clients over the network. The most dominant approaches for web services are SOAP and
REST. Simple Object Access Protocol (SOAP) is a messaging protocol specification for the ex-
change of structured information for web services. SOAP uses extensible markup language (XML)
as its messaging format and relies on application layer protocols. On the other hand, REpresenta-
tional State Transfer (REST) [Fie00] proves a standard software architectural style for web service
interfaces and defines a set of constraints for how they should behave. RESTful web services de-
fine a combination of uniform resource identifiers (URIs) and HTTP request methods (GET, PUT,
POST, DELETE) to expose the defined service endpoints to the internet. Throughout this thesis,
we will be highlighting the development process of RESTful web services, due to their simplicity,
flexible selection of message data formats, and superior performance.

The standard procedure of transforming an existing software system to a RESTful web service
involves defining a REST resource tree, choosing an implementation technology, updating build
files or scripts to accommodate for the selected framework, providing additional files as required
by the framework, and annotating controller classes and operations with appropriate URIs, HTTP
request methods, parameter-mappings, and payload format and encodings. When the above devel-

1

Introduction

opment procedures are complete, the resulting RESTful web service can be deployed by simply
running the build files or scripts. We elaborate on the technical complexity of each of the steps
illustrated above and illustrate some of the challenges of traditional RESTful web service develop-
ment.

The first and commonly overlooked step in the development process is the definition of the
underlying REST resource tree. Developers often devise REST resource endpoints spontaneously
and focus on the actual development of the RESTful web service system. This can result in a poorly
defined resource architecture, that does not follow the standard REST naming and behaviour con-
ventions. REST standardizes web service interfaces, and familiar users can infer the business logic
of an endpoint simply from the URI and HTTP verb. By properly following the REST conven-
tions and meticulously designing the endpoint architecture in the RESTful web service system,
developers can observe a significant improvement in the design, reusability, and extensibility of
the software.

REST is an established architectural style and there are numerous implementation technologies
that offer a framework to develop a RESTful web service. For the Java programming language, a
commonly used specification for supporting RESTful web services is Jakarta RESTful Web Ser-
vices (JAX-RS) [Gui]. Popular implementations of JAX-RS include Eclipse Jersey [Fou21], JBoss
RESTEasy [Hat], and Apache CXF [Fou]. Alternatively for Java, Spring Boot [Edu] provides a
framework for stand-alone, production grade Spring-applications that complies and implements
the REST architecture. There are plentiful REST implementations for other programming and
scripting languages as well, including Django REST for Python, Express.js for Node.js etc. It can
be difficult to select the most applicable technology for the software system, given the significant
options that exist and the various trade-offs each of them offers. After the selection of a REST
implementation framework, developers need to read the technical documentation extensively to
understand how to incorporate the framework into their system.

Software systems typically define build scripts or files to build and deploy the resulting appli-
cation. Developers need to update the existing build pipeline, typically using a build automation
tool, to incorporate the selected REST implementation framework by adding the dependencies and
reconfiguring the build lifecycle. Build automation tools can help simplify the complex devel-
opment of manual build scripts, and help teams work more efficiently and with more flexibility.
Popular build automation tools include Gradle and Apache Maven. Gradle introduces a Groovy
based Domain Specific Language (DSL) for project configuration and is widely used due to its
high performance. On the other hand, Apache Maven [PZL] focuses on standardizing the devel-
opment of software in a specific layout and uses XML for structuring the application. Developers
need to include a specific version of the selected framework that is compatible with the rest of the

2

1.1 Contributions

software system as a dependency to the project configuration files. In addition, they need to update
the deployment section of the project configuration files to deploy the software to an application
server. Commonly used Java application servers include Jetty and Tomcat. There are often dif-
ferent methods to define the build life-cycle, and it can be difficult to select the most applicable
approach and update the current build to accommodate for the new framework.

Most implementations of the REST architecture style require additional files to be defined. For
Java, this can include launcher classes or application configuration classes that specify the REST
controller classes. Developers are required to study the technical documentation thoroughly to
ensure that all of the required additional files are functional and present during deployment.

The most technically and conceptually challenging task is decorating the software system with
appropriate annotations. The annotations can specify the URI, HTTP verb, parameter-mappings,
and payload format and encodings. The conceptualization of the REST resource tree is a prerequi-
site for this step. A well-defined resource tree that complies with REST conventions can simplify
this procedure. The URI and HTTP request method annotations specify the resulting address of
the REST endpoint. Parameter-mappings can help define query parameters, which assigns values
from a part of the URI to specified parameters. REST supports a variety of payload formats, but
JavaScript Object Notation (JSON) and XML are the most common. Payload format and encoding
annotations are necessary to ensure that the exchange of payloads between the web service and
the users are in the proper format. Different REST implementations define the annotations dif-
ferently, developers need to ensure they are using the correct annotations for the selected REST
implementation.

The deployment step can be quite simple if the above development procedures have been com-
pleted correctly. A functional RESTful web service implementation can be run within a few simple
commands from the build configuration to compile and package the software system and deploy it
on the internet.

After the development transformation of an existing software system to a functional RESTful
web service, changing implementation technologies can be quite demanding and troublesome.
This can happen when a different implementation technology is required due to the evolution of
the software system and user specifications, in which the developers need to migrate to a different
technology. The entire development process illustrated above is required to be executed again with
a different framework, which can be technically challenging and vulnerable to software defects.

1.1 Contributions
This thesis incorporates Concern-Oriented Reuse (CORE) [AKM13] to streamline the develop-
ment of REST web services for software systems by providing a modelling language, Resource

3

1.2 Thesis Outline

Tree Language (ResTL) specifically designed for expressing REST interfaces. We establish a
reusable concern, namely RESTify, to encapsulate the technological implementation details of
REST frameworks. By defining clear modularization of design decisions, our approach offers de-
signs of well-structured architectures, encapsulations of technical complexity, and a simple trans-
formation pipeline. Concretely, this thesis makes the following contributions:

1. We extend the CORE metamodel to allow an application developer to reuse the RESTify
concern and select an implementation technology by means of the CORE-provided feature
model interface. The RESTify concern supports Spring Boot and implementations of JAX-
RS, including Eclipse Jersey, JBoss RESTEasy, and Apache CXF.

2. We develop an interactive graphical user interface for creating and modifying a ResTL
model. A ResTL model visualizes the REST architecture as a tree with endpoints defined
by its URI and HTTP request methods. This interface supports the ResTL model through
various gestures and buttons in CORE.

3. We implement a split view that can display a REST tree model and a class diagram model, as
defined in Unified Modeling Language (UML) simultaneously and create mappings between
the two models. Additional efforts are applied to make the split view generic in which it can
view, edit, and add or remove mappings of two arbitrary models concurrently. We also define
a mapping validator that ensures the validity of the mappings when a mapping is added or
removed, either model is edited, and when the transformation pipeline is executed.

4. We modularize the existing code generation transformation pipeline in CORE for Spring
Boot and provide support for annotation and code generation transformations with JAX-
RS technologies. We redesign the transformation pipeline for REST implementations such
that when the technologies share common implementation details, some of the transforma-
tions can be reused. Newly supported JAX-RS technologies include Eclipse Jersey, JBoss
RESTEasy, and Apache CXF.

5. We propose an algorithm for combining build configuration files for the Apache Maven
build automation tool in order to support the modularization of transformations for different
REST implementation technologies. Highlights of the algorithm include dynamic merging
of dependencies and build plugins from the input build configuration files.

1.2 Thesis Outline
In the subsequent chapters, we will introduce our RESTify approach which incorporates MDE
and CORE technologies to model and automate the development extension of an existing software

4

1.2 Thesis Outline

system to a RESTful web service with a sophisticated transformation pipeline. We illustrate the
new technologies developed in CORE to enable the accessibility, practicality and customizability
of the RESTify approach. We then present the implementation specifications for each individual
transformation in the RESTify transformation pipeline. Throughout the thesis, we illustrate the
example of a BookStore application [Sch20a] to demonstrate the advantages and effectiveness of
our method.

Chapter 2 highlights the relevant background knowledge for our proposed method. Chapter 3
summarizes the foundation of RESTify, including the user workflow with CORE, and the under-
lying transformations. Chapter 4 presents a new method of concern reuse to reuse a concern in
directly in another concern via a dummy artefact. Chapter 5 presents a domain-specific language
for the REST architecture and its graphical interface in CORE. Chapter 6 presents a new view
in CORE to visualize two arbitrary models at the same time and create inter-model mappings.
Chapter 7 elaborates on the redesign of the existing transformation pipeline with Spring Boot and
addition of new transformations to accommodate for different JAX-RS implementations. Chap-
ter 8 presents a new algorithm for parsing, weaving, and outputting Maven build configuration
files, namely pom.xml files, that validates with the Maven pom schema file. Chapter 9 elaborates
on alternative approaches for modelling languages for REST and code generation transformations
of RESTful web service implementations. Chapter 10 concludes the thesis by summarizing the
contributions of our approach, and discussing the potential future extensions of our method.

5

2
Background

2.1 Model-Driven Engineering
Model-Driven Engineering (MDE) is a software engineering methodology that addresses the in-
creasing complexity of modern software systems by the use of technology agnostic models. Re-
cent advances in software languages and platforms during the decent decades have raised the level
of software abstractions available to developers with expressive object-oriented languages, and
reusable class libraries and application framework platforms to minimize the need to reinvent com-
mon and domain-specific middleware services [Sch06]. However, despite these advances, several
problems remain, including the growth of platform complexity, and complication of key integration
activities, such as system deployment, configuration, and quality assurance. Platform complexity
has evolved much faster than the ability of general-purpose languages to mask it, resulting in con-
voluted platforms with intricate dependencies and subtle side effects. Furthermore, new platforms
are regularly introduced where developers need to spend considerable effort manually porting ap-
plication code to different platforms or newer versions of the same platform. The complication of
key integration activities stems from the semantic gap between the design intent and the expression
of this intent in the actual implementation. The lack of an integrated view often leads developers
to implement suboptimal solutions [Sch06].

MDE technologies address platform complexities and the inability of programming languages
to alleviate this complexity and express domain concepts effectively by introducing Domain-
Specific Modelling Languages (DSMLs) and transformation engines and generators. DSMLs
formalize the application structure, behaviour, and requirements within particular domains with
metamodels, which defines the relationships among concepts in a domain and precisely specify
the key semantics and constraints associated with these domain concepts. Transformation engines
and generators analyze aspects of models and synthesize various types of artifacts including source
code, simulation inputs, XML deployment descriptions, or alternative model representations. This

6

2.2 Metamodelling

Figure 2.1: Example of Metamodelling

transformation process automates the conventional software development process, which is tedious
and often error prone. By combining DSMLs and transformation engines, MDE tools impose
domain-specific constraints and perform model checking that can detect and prevent many errors
early in the life cycle.

In summary, MDE provides an abstraction layer higher than the implementation level and
can be incorporated in the software development lifecycle by enabling developers to focus on
the behavioural and structural aspects of the software system, as opposed to the implementation
concerns.

2.2 Metamodelling
Model-driven engineering introduces the concept of a metamodel as a model for describing mod-
els, or simply a model of models [K0̈6]. A metamodel elaborates the accepted individual model
elements and the relationships between them, such that model instances instantiate upon them. The
practice of designing a metamodel is called metamodelling.

Figure 2.1 provides an example of metamodelling and illustrates the distinctions from meta-
models and their model instances. The Figure depicts a simple class diagram metamodel, and an
instance model that conforms to the metamodel. Within the instance model, the Video Game ele-
ment is an instance of the Class model element. The title identifier is an instance of the Attribute
model element with the identifier name containing the value “title”, and the identifier visibility
containing the value “Public”. The title identifier is also attached to a Type model element with the
identifier name as “String”.

It is possible to design a model at an even higher modelling level with a metametamodel.

7

2.3 CORE

A metametamodel is a modelling language for expressing metamodels. Ecore from the Eclipse
Modelling Framework (EMF) provides an example of a metametamodel in which metamodels can
be realized from its various model elements and relationships.

2.3 CORE
Concern-Oriented REuse (CORE) is a new software development paradigm inspired by the ideas
of multi-dimensional separation of concerns and builds on the disciplines of MDE, Software
Product Lines (SPL), goal modelling, and advanced modularization techniques offered by aspect-
orientation to define flexible software modules that enable broad-scale model-based software reuse
[SAKM16].

In CORE, the primary unit of modularization, abstraction, construction, and reasoning is a
concern [SAKM16]. A concern can include multiple realization models to address a specific do-
main of interest during software development. In order to exploit the maximum reuse potential,
a concern typically provides multiple variations to address a particular domain of interest during
software development. Additionally, the realization models within a concern can encompass var-
ious phases of software development and levels of abstraction. A concern can be constructed by
specifying its three interfaces, namely the variation interface, customization interface, and usage
interface. We elaborate on the specifications of each of the interfaces below.

• The variation interface describes the available variations of the concern and the impact of
different variants on high-level stakeholder goals, qualities, and non-functional requirements
[AKM13]. The default visualization for a concern and its variation interface is with a fea-
ture model that specifies individual features that the concern offers. The feature model en-
ables the idea of modularization along features which decomposes the creation of large and
monolithic models of each possible configuration of a concern into various smaller models
named realization models and links them to features. The variation interface also provides
an impact model to establish the impact of selecting a feature on non-functional goals and
qualities. This is achieved by assigning a numerical value to features for the relevant goals
and qualities.

• The customization interface increases the potential reusability of concerns by describing re-
alization models as abstract as possible. To elaborate, some model elements in a concern can
be partially specified and require additional complementation with concrete model elements
from the reusing concern during concern reuse. These model elements can be specified in
CORE with a partiality identifier. The customization interface of a concern thus consists of
all of the model elements in the realization models that have the value public for the partiality

8

2.3 CORE

identifier and have to be adapted to the context of the reusing concern to be functional.

• The usage interface specifies which model elements from the concern are accessible when
it is reused. In particular, each model element in CORE has a visibility identifier and by
setting it to public, the concern designer can expose model elements of the realization model
to the outside world. Thus, the usage interface of a reused concern can include a subset of
the model elements contained in the concern.

For the RESTify approach, we incorporate CORE to package our different REST implementation
strategies in a straightforward and reusable way. We propose a concern to encapsulate the tech-
nical complexity of REST frameworks with only the variation interface. The RESTify concern
is visualized with a feature model in Figure 3.2. Each terminal feature specifies a singular REST
implementation technology. Intermediary features can define an additional layer of specification
for implemented REST frameworks to inherit. A valid reuse of the RESTify concern includes a
selection of only a singular terminal feature and the applicable intermediary features. The RESTify
concern is different from traditional CORE concerns in which it only defines the variation interface
with a feature model, and does not include any realization models, thus eliminating the need for
the customization and usage interfaces.

2.3.1 Concern Reuse Process
After the construction of a concern by a concern designer, concern users and software engineers
can import the functionality from that concern by reuse. The reuse process of an existing concern
is simple and consists of the following steps [SAKM16]:

1. The concern user selects the relevant features from the variation interface of the reused con-
cern with consideration of the impact on important stakeholder goals and system qualities.
Based on the selected configuration, the modelling tool merges the realization models from
the selected features to yield new models.

2. The concern user adapts the newly generated models to the application context by mapping
abstract model elements from the customization interface to concrete application-specific
model elements in the reusing concern.

3. A software engineer incorporates the functionality provided by the selected concern features
and exposed in the usage interface of the concern within their own application models.

The traditional concern reuse process as articulated above stores the reuse information with a
COREExternalArtefact, which encapsulates an instance of a metamodel and its modelling lan-
guage. The envisioned reuse process for the RESTify concern enables concern reuse directly from

9

2.3 CORE

a concern, thus eliminating the requirement of the COREExternalArtefact. To support this partic-
ular concern reuse process, we introduce a COREReuseArtefact to serve as a dummy artefact for
storing the reuse information. Chapter 4 elaborates on the implementation of the proposed concern
reuse process with a COREReuseArtefact.

2.3.2 Languages in CORE
In CORE, languages provide modelling languages as metamodels for realization models. Previ-
ous releases of TouchCORE, the modelling software realization of CORE, support languages by
encoding them in a single metamodel. The limitation of this approach is that the evolution of a sin-
gular integrated metamodel can yield an overly complex metamodel. Subsequently, TouchCORE
now supports various modelling languages as plug-in languages.

A plug-in language can be integrated in TouchCORE by providing a metamodel, language
actions, graphical user interface, and a weaver. The metamodel defines the modelling language
using ECore from the Eclipse Modelling Framework (EMF). In order to integrate the metamodel
for the plug-in language, a separate instance of the CORE metamodel is also required to provide
additional information for the concern-oriented reuse of models. The language actions are imple-
mented as Java controller classes to execute EMF commands for creating and updating models of
the plug-in language. The graphical user interface provides an editor in for visualizing models of
the plug-in language and executing language actions from the supported controls. The weaver is
an implementation of a model-to-model transformation that takes as input a source model and a
target model of the plug-in language, as a composition specification consisting of a set of map-
pings that relate model elements from the source model with model elements of the target model
[SLL�21]. The weaver produces a single model that combines the source model with the target
models accordingly to the composition specification.

2.3.3 Perspectives in CORE
In MDE, a system under development is typically modelled at multiple levels of abstraction and
from different points of view [SLL�21]. Each realization model is expressed with a modelling
language, as articulated above, to provide the appropriate language concepts for expressing the
desired properties. Although the concept of languages promotes modularity and separation of
concerns, there can be inconsistencies between the numerous realization models for the software
system. In order to maintain coherence between the realization models that describe the system,
perspectives are introduced in CORE.

A perspective groups different languages for a modelling purpose and defines the role of each
participating language [AMK22]. Furthermore, a perspective defines composite actions for con-
structing a coherent multi-model system and maintaining the links between different model el-

10

2.4 FIDDLR

ements. These actions are specified by re-exposing, combining, or redefining existing language
actions offered by the language as language actions.

Perspectives can be realized with Perspectives for Multi-Language systems (PML), a frame-
work for assembling multi-language systems based on existing, independent languages [AMK22].
PML supports a proactive approach for preventing the occurrence of inconsistencies by monitoring
and augmenting the language actions to create and update a model. PML maintains consistency
conditions including equivalency, equality, and multiplicity constraints across different model el-
ements of different languages. PML promotes modular combination of languages and facilitates
consistency and reuse of existing languages across other languages and software systems.

2.3.4 Reusable Aspect Model
Reusable Aspect Models (RAMs) provides an example of a language and perspective in CORE.
RAM is an aspect-oriented multi-view modelling language for describing a software system from
the structural and behaviour points of view [KAAK09]. RAM supports the structural point of
view of a software system with UML class diagrams and behaviour point of view with UML state
and sequence diagrams. A RAM model can consist of a structural view (UML class diagram),
various state views, and various message views (UML state and sequence diagrams respectively)
and maintain consistency across the different views and models with the RAM metamodel. With
the concern reuse process, RAM supports aspect dependency chains, which enables an aspect
providing complex functionality to reuse the functionality provided by the other aspects. RAM
provides a weaver to create weaved views of composed RAM models for debugging, simulation,
or code generation purposes, as well as perform consistency checks during the weaving process
and on the weaved model to detect inconsistencies of the composition. The Design Modelling with
RAM perspective enables the creation and modification of RAM models in TouchCORE.

For the RESTify approach, we represent the existing software system with a RAM model
and import its structure with ImplementationClass model elements. We also define the Maven
coordinates of the generated RESTful web service and dependency to existing software system
with the ArtifactSignature model elements, which specifies the groupId, artifactId, and version.

2.4 FIDDLR
For the RESTify approach, we construct a RESTify concern to encapsulate REST frameworks,
design a ResTL modelling language for expressing REST endpoints, realize inter-model mappings
to decorate REST annotations, and implement a transformation pipeline for the code generation of
the RESTful web service. It can be extremely difficult to devise the exact technologies required
for the RESTify methodology. Furthermore, the design and implementation of each of the steps

11

2.4 FIDDLR

is nontrivial and significantly complex. In order to facilitate the design and construction of the
technologies required for the RESTify approach, the Framework for the Integration of Domain
specific moDelling Languages with concern-oriented Reuse (FIDDLR) [SKK21] is introduced
concurrently with this thesis to structure the modularization of our approach.

FIDDLR integrates the ideas of domain-specific modelling language, concern-oriented reuse,
and model-driven engineering to modularize concerns that cross-cut multiple levels of abstractions
of the software development process and streamline the reuse process [SKK21]. The FIDDLR
framework is illustrated in Figure 2.2. The FIDDLR procedure can be separated into three steps,
namely Concern Design, Concern Use and Concern Composition.

The Concern Design step emphasizes the step of designing a concern that encapsulates multiple
MDE disciplines such as DSML design, and model transformations. The complex task of design-
ing a concern can be further simplified in FIDDLR to four smaller and independent steps, namely
Concern Realization, CSML Design, CSML to GPML Transformation, and CSML to Composition
Specification.

The first step Concern Realization illustrates the process of realizing the most appropriate
General Purpose Modelling Language (GPML) at the correct levels of abstraction. This step is
illustrated in Figure 2.2 as Step 1. The specific type of models that are needed are dependent on
the MDE process, and the nature of the concern.

The second step CSML Design is applied when the nature of a concern and its properties do
not align or can not easily be expressed with GPMLs, or when a concern covers several MDE
abstraction layers. Concern-Specific Modelling Language (CSML) is targeted at exposing the
concepts of a concern, similar to how a Domain-Specific Modelling Language (DSML) exposes
the concepts of a domain. This step is illustrated in Figure 2.2 as Step 2.

The third step CSML to GPML Transformations, defines a series of model transformations that
when given an input CSML, can generate the appropriate GPML models or code that can customize
and make use of the developed GPML realization models or code of the concern for each relevant
level of abstraction. This step is illustrated in Figure 2.2 as Step 3.

The last step CSML to Composition Specification involves deciding the appropriate level of
abstraction the concern-specific model is best composed with the application’s realization models
and designing a transformation that given a CSML model and mappings as input, produces a com-
position specification for the customized GPML models in the third step. This step is illustrated in
Figure 2.2 as Step 4.

Concern Use illustrates the reuse process of a model packaged with its own CSML that de-
scribes the concern-related properties in the context of the application in which it is reused. This
is shown in blue in Figure 2.2. Customization and usage of the concern-specific model requires

12

2.5 REST

Figure 2.2: The FIDDLR Framework

Application Concern

Requirement
Models

GPML

Architecture /
Design Models

GPML

Code

GPPL

Concern
Requirements

Models

GPML

Concern
Architecture /

Design Models

GPML

Concern Code

GPPL

Concern-Specific
Modelling Language

(CSML)

Generated Customi-
zation and Usage

Requirements Models

GPML

Generated
Customization and

Usage Design Models

GPML

Generated
Concern Customization

and Usage Code

GPPL

Generated
Composition
Specification

Generated
Composition
Specification

Concernified Application

Requirement
Models

GPML

Architecture /
Design Models

GPML

Code

GPPL

Concern-
Specific Model

CSML Generated
Composition
Specification

= Specified by the Concern User

= Specified by the Concern Designer
= Automated Model Generation
= Weaving / Composition

= Consistency Constraints
 and Dependencies
= User-Defined Mappings

= Refinement

Step 1

Step 2 Step 3
Step 4

only linking the appropriate model elements from the created CSML model to model elements in
the GPML models of the application as illustrated with the blue arrows.

Concern Composition specifies the automatically generated GPML models that contain application-
specific customization mappings and usage of the concern API (Step 3) with the CSML models
and model transformations, as well as the composition specifications that connect the generated
models with the application models at each relevant level of abstraction (Step 4). The automat-
ically generated models and composition specifications are highlighted in Figure 2.2 in specked
blue and red. The composition specifications and models are then provided as input to the CORE
model weavers, which generate the “concernified” application, i.e., the GPML models in which the
concern-specific and application-specific structure and behaviour have been combined [SKK21].

2.5 REST
REpresentational State Transfer (REST) [Fie00] is a software architectural style for distributed
hypermedia systems initially proposed by Roy Fielding in his Doctor of Philosophy thesis in 2000.
In the following decades, REST has become a standard interface for web services, and numerous
organizations have developed their own implementation frameworks based on the architectural
style. REST defines six guiding constraints, namely uniform interface, client-server, stateless,
cacheable, layered system, and code on demand.

The most fundamental constraint of REST is uniform interface, it simplifies and decouples
the architecture, allowing each component to evolve independently. The uniform interface defines

13

2.5 REST

four additional constraints to be satisfied, namely resource identification in requests, resource ma-
nipulation through representations, self-descriptive messages, and hypermedia as the engine of
application state. Resource identification in requests illustrates that individual resources can be
identified in requests, including resource URI, HTTP request method, and payloads. Resource ma-
nipulation through representations indicate that when a client holds a representation of a resource,
it already has sufficient information to manipulate or delete the resource’s state. Self-descriptive
messages specifies that each exchanged message between the client and server includes enough
information to describe how the message can be processed. An example can be a specific payload
media type, such as JSON, XML etc. Hypermedia as the engine of application state (HATEOAS)
allows users to dynamically navigate to appropriate resources by traversing hypermedia links de-
fined in a server response. Through this approach, clients do not need any prior knowledge regard-
ing the structure of the underlying architecture of the application. The uniform interface constraint
defines a standardized approach for designing RESTful web services.

The client-server distributed systems design pattern enforces the principle of separation of
concerns by decoupling the user interface concerns from the data storage concerns. This property
can allow both the client and server to evolve independently, provided that the interface between
them is not altered [Gup22b].

The statelessness property of RESTful web services mandates that each request from the client
to the server must contain all of the information necessary to understand and complete the request
[Gup22b]. Clients are required to maintain the session state as opposed to the server. A stateless
server can service any client at any time without the session affinity issue. A key advantage of
stateless servers is that it can be scaled for significantly more clients as opposed to stateful servers,
since the server does not maintain any of its client session information.

The cacheable constraint in REST enables the capability of storing copies of frequently re-
quested server responses in the client itself, to minimize the traffic to the server. A server response
should provide information in the HTTP headers for whether the response can be cached, the com-
ponents that are permitted to cache the response, and the maximum duration for a cache to persist.
An effective cache can minimize the number of client-server interactions, and directly optimizes
the server network, resulting in an improvement in the performance of the system.

The layered system constraint in REST can encapsulate the underlying server architecture, in
which the client cannot distinguish whether it is connected to the end server or an intermediary
server. Intermediary servers are typically used to improve system scalability by enabling load
balancing between servers through shared caches. Another application of an intermediary server
can be for security purposes, to separate the business logic from the security logic in a web service
and enforce security policies. Intermediary servers can call each other to generate an appropriate

14

2.5 REST

response to a client.
Code on demand is an optional constraint for RESTful webservices. It states that the server can

provide extensions to the client’s functionality by directly sending executable code to the client.
For example, in the context of the web, the server can send JavaScript code to a client interacting
with the server with a browser. The code that the client receives can now be executed to achieve
new functionality, such as animations. Code on demand is optional because it can reduce the
visibility of the client system and most web applications do not require this form of flexibility.

In addition to the above constraints for REST, there are also naming and behavioural conven-
tions for endpoints. A RESTful web service defines an endpoint with a resource URI and a HTTP
request method. The best practice for resource URI naming is using nouns to represent resources
as opposed to verbs, as the action performed should be interpreted by the HTTP request method.
Resource URI paths should be structured hierarchically, increasing in specificity from left to right.
The commonly used HTTP request methods include POST, GET, PUT, and DELETE, in which
they correspond to the Create, Read, Update, and Delete (CRUD) operations respectively. POST
operations submit an entity to the specified resource, often resulting in a change of state in the
server. GET operations request a representation of the specified resource and should only retrieve
data. PUT operations replace all the current representations of the target resource with the request
payload. DELETE operations delete the specified resource. It is essential for the behaviour of a
REST endpoint to be defined as indicated by its HTTP request method.

There are numerous REST implementation frameworks designed for different platforms. With
the RESTify approach, we provide code generation of RESTful web services in the Java pro-
gramming language. Consequently, we provide a selection of popular REST frameworks for Java,
including Spring Boot, Eclipse Jersey, JBoss RESTEasy, and Apache CXF. The following subsec-
tions elaborate on the technical details of these REST frameworks.

REST frameworks designed for Java generally integrate Java annotations to provide a sim-
ple procedure for incorporating the framework and signify elements of the REST architectural
style. Java annotations have three uses, including information for the compiler, compile-time and
deployment-time processing, and runtime processing [Cor]. Table 2.1 illustrates common REST
annotations and the implementation differences of these annotations from Spring and JAX-RS.

Instead of implementing extensive build scripts for the build life-cycle of the generated REST-
ful web service, we incorporate Apache Maven [PZL], a build automation tool primarily used for
Java projects. Maven streamlines the build life-cycle of a software system by configuring a Project
Object Model (POM) which is stored as a singular file, namely pom.xml. POM defines the required
build configuration for the entire software project.

15

2.5 REST

2.5.1 Spring Boot
Java Spring Boot (Spring Boot) [Edu] is a popular implementation of REST for the Java pro-
gramming language based on the Java Spring Framework (Spring Framework) for developing web
applications and microservices. The Spring Framework, initially developed by Rod Johnson, is
an open source, enterprise-level framework for creating standalone, production-grade applications
that run on the Java Virtual Machine (JVM). Spring Boot offers three core capabilities, including
autoconfiguration, an opinionated approach to configuration, and the ability to create standalone
applications. These features provide a tool that allows developers to set up a Spring-based appli-
cation with minimal configuration and setup.

Autoconfiguration allows Spring Boot applications to be initialized with pre-set dependencies,
such that users do not have to manually configure them [Edu]. In particular, it automatically
configures the underlying Spring Framework and other required third-party packages. The auto-
configuration feature allows developers to focus on the development of Spring-based applications,
rather than the configuration of various required dependencies.

Spring Boot uses an opinionated approach to add and configure starter dependencies, based
on the needs of the project [Edu]. Spring Boot offers a simple web form at https://start.
spring.io/ in which users can define the needs of the project, and Spring Boot selects the
appropriate dependencies according to the provided requirements. After selection of the required
functionality and dependencies, users can simply generate the project directory as a template from
the web form and begin development.

One of Spring Boot’s key features is its capability of creating standalone applications that can
run on its own, without relying on external web servers, such as Tomcat or Jetty [Edu]. Spring Boot
achieves this by embedding a web server, typically Tomcat, directory in its build configuration, thus
eliminating the requirement to package and deploy Web Application Resource (WAR) files. As a
result, users can deploy the application on any platform with a simple Java execution command.

With support from the Maven build automation tool, Spring Boot applications can be packaged
and deployed as a Java ARchive (JAR). Within the Maven build configuration file, Spring Boot re-
quires the appropriate parent, dependencies, and build plugins to be specified. Additionally, Spring
Boot requires the definition of a launcher class which bootstraps and initializes the framework.

As an implementation of REST, the Spring Framework provides annotations for decorating
controller endpoints. We highlight the most commonly used annotations in Table 2.1. The Re-
source URI annotation is not an annotation by itself; however, it is contained within the HTTP
request method annotation. Spring Boot defines individual annotations for each HTTP Request
Method. The URI Match Pattern with Parameter annotation can provide mappings from wildcard
URI patterns within the resource URI to a specific parameter in the controller operation. The

16

https://start.spring.io/
https://start.spring.io/

2.5 REST

HTTP Request Body and HTTP Response Body annotations define the input and output payloads
respectively. The Controller Class annotation specifies that the decorated Java class is a web con-
troller which contains REST endpoint operations. The @RestController annotation is used for both
the HTTP Response Body and Controller Class annotations as it conveniently combines the @Re-
sponseBody and @Controller annotations respectively. Since Spring Boot defines a launcher class,
a Launcher Class annotation is also required to mark the class and trigger the auto-configuration
and component scanning features.

2.5.2 JAX-RS
Jakarta RESTful Web Services (JAX-RS) [Gui], developed by the Eclipse Foundation, is a Jakarta
EE API specification that provides support for creating RESTful web services using Java. JAX-
RS provides a specification interface for REST implementations to follow, by defining its own
annotations and support class for configuring REST controllers. Popular implementations of JAX-
RS include Eclipse Jersey, JBoss RESTEasy, and Apache CXF, as documented below.

Table 2.1 illustrates the commonly used annotations that JAX-RS defines, and how they dif-
fer from Spring. JAX-RS defines a Resource URI annotation, as opposed to Spring, where it is
contained within the HTTP Request Method annotation. In JAX-RS, a HTTP Response Body an-
notation is placed on an endpoint operation, while in Spring, it placed on the controller class, as
it is contained with the @RestController annotation. JAX-RS does not define a launcher class, as
implementations of JAX-RS are typically deployed as a WAR file, and run on a Java application
server, such as Eclipse Jetty. Consequently, JAX-RS does not define an explicit annotation for
launcher classes. However, JAX-RS implementations define an Application class with the @Ap-
plicationPath annotation which specifies the components of a JAX-RS application and supplies
additional meta-data.

2.5.2.1 Eclipse Jersey

Eclipse Jersey [Fou21], developed by Oracle Corporation and Eclipse Foundation, is an open-
source framework that implements the JAX-RS specification for developing RESTful web services.
Eclipse Jersey applications are commonly deployed as a WAR file and run on a Java application
server. Jersey implements the same annotations and Application class as JAX-RS, and developers
need to add the appropriate dependencies and build plugins to the Maven configuration file.

2.5.2.2 JBoss RESTEasy

JBoss RESTEasy [Hat], developed by Red Hat Incorporated, is another open-source implemen-
tation of the JAX-RS specification. Similar to Eclipse Jersey, JBoss RESTEasy applications are
typically deployed as a WAR file, and executed on a Java application server. JBoss RESTEasy

17

2.5 REST

Table 2.1: Spring VS JAX-RS Annotations Table

Annotation Type Spring Annotation Spring Annotation

Location

JAX-RS

Annotation

JAX-RS

Annotation

Location

Resource URI path=”/” HTTP Request

Method Annotation

@Path Operation

GET HTTP Request Method @GetMapping Operation @GET Operation

PUT HTTP Request Method @PutMapping Operation @PUT Operation

POST HTTP Request Method @PostMapping Operation @POST Operation

DELETE HTTP Request Method @DeleteMapping Operation @DELETE Operation

URI Matching Pattern with Parameter @PathVariable Parameter @PathParam Parameter

HTTP Request Body @RequestBody Parameter @Consumes Operation

HTTP Response Body @RestController Class @Produces Operation

Controller Class @RestController Class @Path Class

Launcher Class @SpringBoot

Application

Class N/A N/A

Application Class N/A N/A @ApplicationPath Class

18

2.5 REST

incorporates the same annotations and Application class as JAX-RS. With Maven, RESTEasy can
be configured by injecting the necessary dependencies and build plugins in the configuration file.

2.5.2.3 Apache CXF

Apache CXF [Fou], developed by the Apache Software Foundation, is another open-source web
services framework that implements the JAX-RS specification. Apache CXF integrates the JAX-
RS annotations and Application class as well. Apache CXF applications generally implement a
launcher class that instantiates and executes the built-in application server to expose the speci-
fied endpoints in the Application class. Consequently, Apache CXF applications are commonly
deployed as a self-contained JAR. With Maven, CXF is configured by including the associated
dependencies and build plugins in the build configuration file.

19

3
Overview of RESTify

In this chapter, we present an overview of RESTify, a concern that incorporates MDE and CORE
techniques to automate the development process of RESTful web services with a series of model-
to-model, model-to-code, and code-to-code transformations. We currently view the underlying
transformations as black boxes, in which the implementation details will be elaborated in the fol-
lowing chapters.

Throughout the thesis, we illustrate the use of RESTify with a simple Java application of a
BookStore [Sch20a] from a user’s perspective. The BookStore application implements the fun-
damental functionality of a book store, e.g., managing the stock of books available at each of the
store locations. Each book stored in the BookStore application is indexed by an ISBN, and contains
information regarding its price, title, author, and description. The BookStore chain has agencies in
different cities in which there can be only one agency in the same city, and each city has a particular
stock for each of the indexed books. The BookStore chain also stores reader feedback for the in-
dexed books, in which each comment is anonymous and has no author, comments can be updated,
and comments must not be empty. In the current state of the BookStore application, users can
query and manipulate the database with its defined public methods. With the RESTify approach,
we transform the original BookStore application to a RESTful web service with the TouchCORE
modelling tool such that users can now consult or modify the database remotely. This process
involves 6 steps, outlined in the remaining sections of this chapter.

3.1 Step 1: Importation of Existing Software System with RAM
In TouchCORE, we can represent the RESTification of the BookStore application as a concern
and model the existing application with a Reusable Aspect Model (RAM). The existing Book-
Store application is modelled in Figure 3.1. On the left-hand side, interfaces, classes and methods
from the BookStore application are imported into the RAM model. In particular, the classes As-
sortmentImpl, GlobalStockImpl, and CommentsImpl are controller classes that contain methods

20

3.2 Step 2: Reuse of RESTify Concern

Figure 3.1: RAM Model Representation of BookStore Application in TouchCORE

to query and modify the underlying database. The business logic of the generated RESTful web
service is contained within the imported methods as defined in the source code of the controller
classes. The generated REST endpoints will delegate the client requests to these methods. On
the right-hand side, helper Java types and data structures are included to support their use in the
parameter and return types of operations in the imported classes from the BookStore application.
Now, to generate a functional Maven project, we need to define a dependency to the existing soft-
ware system by specifying its Maven coordinates with the ArtifactSignature model element, which
includes the groupId, artifactId and version identifiers. Additionally, we establish a new Maven
ArtifactSignature for the generated RESTful web service with Maven coordinates.

3.2 Step 2: Reuse of RESTify Concern
As part of this thesis, we have implemented a RESTify concern encapsulating a REST-specific
modelling language and several REST implementation platforms. The platforms are exposed as
features of the concern as illustrated in Figure 3.2. The feature model is part of the variation in-
terface of a concern and provides different possible variations of addressing the concern’s domain
of interest. In the case of RESTify, we provide different REST implementation technologies in-
cluding Spring Boot, and Jax-RS implementations - Eclipse Jersey, JBoss RESTEasy, and Apache

21

3.3 Step 3: Design of a REST Resource Tree with ResTL

Figure 3.2: RESTify Concern

CXF and encapsulate each technology within a feature in the feature model. With the use of the
XOR relationship, visualized by the white arc between features, we force users to select a single
implementation from either Spring Boot or one of the JAX-RS implementations.

In order to create a REST interface for the BookStore application as well as generate an imple-
mentation, and in line with the CORE reuse process explained in section 4.2, a user must reuse the
RESTify concern that we provide and select a valid configuration with the desired technology. In
Figure 3.3, we illustrate the reuse of the RESTify concern within the BookStore concern with the
selected Eclipse Jersey implementation.

3.3 Step 3: Design of a REST Resource Tree with ResTL
Thanks to the reuse of the RESTify concern, the user can then design the architecture of the Book-
Store RESTful web service’s endpoints with a REST-specific modelling language called Resource
Tree Language (ResTL). The ResTL model visually represents a resource layout for the REST
interface. Each node in the resource tree defines an individual fragment in the resulting URI. The

22

3.4 Step 4: Specifying Inter-Model Mappings Between RAM and ResTL

Figure 3.3: Reuse of RESTify Concern in BookStore Concern

four circular buttons within a resource tree node illustrated as G, PU, PO, and D, represent each of
the HTTP request methods - GET, PUT, POST, and DELETE respectively. With ResTL, a REST
endpoint is defined by a HTTP request method button, and its elaborated URI from the ancestors.

We illustrate a simple ResTL model for the BookStore application in Figure 3.4 that contains
the appropriate REST endpoints to decorate the BookStore application. For example, the REST
endpoint with /bookstore/isbns/{isbn} URI and GET HTTP request method is modelled in the /is-
bns node with the G button and will retrieve a list of the ISBNs of all of the books in the BookStore
application. The business logic of this endpoint will be provided by the original BookStore Java
implementation.

3.4 Step 4: Specifying Inter-Model Mappings Between RAM
and ResTL

After the import of the Java implementation into a RAM model, which encapsulates the Java
implementation of the business logic, and the construction of a ResTL model, which specifies
the BookStore REST interface, we need to specify a mapping between the implementation and
the interface. This is done by placing inter-model mappings between each REST endpoint and
the appropriate method in the BookStore application. If the behaviour requires parameters to

23

3.4 Step 4: Specifying Inter-Model Mappings Between RAM and ResTL

Figure 3.4: BookStore REST Resource Tree with ResTL Model

24

3.5 Step 5: Execution of RESTify Transformations

be passed, additional parameter mappings between, e.g., URI segments, and method parameters
also have to be specified. To support the creation of these inter-model mappings, we developed
a generic split view to view a RAM and ResTL model simultaneously and establish mappings
between them. We currently support two types of mappings for the RAM-ResTL split view -
HTTP request method to operation mappings, and URI matching pattern to parameter mappings.
A HTTP request method button in the ResTL model contains enough information to represent a
REST endpoint, by elaborating its URI with its ancestor nodes. The HTTP request method to
operation mapping maps a REST endpoint from the ResTL model to a controller operation in the
RAM model. Consequently, a REST endpoint is now correlated to a particular controller method
that contains the business logic to query and modify the BookStore application. The URI matching
pattern to parameter mappings map a dynamic node in the ResTL model as illustrated with the curly
brackets in the node name to a parameter of a controller operation in the RAM model. The purpose
of the parameter mapping is to capture the dynamic information stored in the dynamic section of
the URI in a parameter.

An instance of the generic split view that captures the RAM and ResTL models of the Book-
Store concern and their inter-model mappings is illustrated in Figure 3.5. The REST endpoint to
controller operation mappings is visualized in blue, while the URI matching pattern to parame-
ter mappings are visualized in green. In particular, we highlight an example with the mappings
that correspond to the void removeAllCommentsForBook(long arg0) method in the CommentsImpl
controller class from the RAM model. First, there is a REST endpoint to controller operation
mapping from the following REST endpoint - /bookstore/isbns/{isbn}/comments DELETE in the
ResTL model to the removeAllCommentsForBook operation. This mapping links the REST end-
point to the controller operation to delegate the business logic of a HTTP request to the original
BookStore application. In addition, there is a mapping from the dyanmic {isbn} node to the arg0
parameter in the removeAllCommentsForBook operation. This instructs the REST runtime to take
the string from the URI at the location {isbn}, transform it into a long value and use it as the arg0
parameter when invoking the removeAllCommentsForBook method. Chapter 6 elaborates on the
implementation details of the generic split view, and the mapping functionalities.

3.5 Step 5: Execution of RESTify Transformations
Finally, the BookStore concern now contains two models, namely RAM and ResTL, inter-model
mappings between them, and the reused RESTify concern, and is ready to execute the RESTify
transformations. The input to the RESTify transformation pipeline is the complete BookStore
concern as developed from the above steps, and the output is a functional, and ready to be de-
ployed RESTful web service that uses the selected REST framework in the RESTify concern.

25

3.5 Step 5: Execution of RESTify Transformations

Figure 3.5: RAM-ResTL Split View with Mappings for BookStore Concern

26

3.6 Step 6: Deployment of Generated RESTful Web Service Application

An intermediate artefact is generated during the RESTify transformation, which is a functionality
poor BookStore RAM model that clones the controller classes and operations, annotates them with
the appropriate REST annotations based on the selected implementation technology, and contain
sequence diagram models to delegate the business logic of each REST endpoint to the original
BookStore application. This intermediate RAM model also contains maven dependencies to the
selected REST implementation technology. Next, the original BookStore RAM model is weaved
with the intermediate functionality poor BookStore RAM model to generate a weaved RAM model
with the standard CORE weaver in TouchCORE. The weaved RAM model is now used to gener-
ate the source code files. These contain the Java files, and the Maven configuration file, namely
pom.xml. Chapter 7 expands upon the underlying transformations within the RESTify transforma-
tion pipeline. Chapter 8 elaborates an algorithm for the weaving operation of Maven configuration
files.

3.6 Step 6: Deployment of Generated RESTful Web Service
Application

After the execution of the RESTify transformations, the generated RESTful web service project is
located in the concern directory, in a new subdirectory named generated-maven-project/selected-
rest-implementation where selected-rest-implementation is the selected configuration of the RES-
Tify concern, i.e., spring-boot, eclipse-jersey, jboss-resteasy or apache-cxf. This directory contains
the pom.xml file and the Java source code in a set of subdirectories as specified by the Java pack-
ages.

Now, in order to deploy the generated RESTful web service application, users can simply ex-
ecute a series of Maven commands on the command line. The specific commands vary based on
the REST implementation technology. For Spring Boot, the user can execute mvn clean package
spring-boot:run. For Eclipse Jersey and JBoss RESTEasy, the user can execute mvn clean pack-
age jetty:run. And for Apache CXF, the user can execute mvn clean package and then java -jar
target/artifactId-version where artifactId and version are defined in the pom.xml file. By default,
the generated RESTful web service application can be accessed at localhost with port 8080.

27

4
Concern Reuse With COREReuseArtefact

In the vision outlined in chapter 3, when a user wants to create a REST interface for their applica-
tion, they are going to initiate this process by reusing the RESTify concern. Unfortunately, such a
reuse was not supported by the CORE metamodel and the TouchCORE tool.

The standard CORE concern reuse process is always initiated from within a realization model,
i.e., it enables a customized reuse of a model representing a specific configuration of a concern
from within some other model. For example, when modelling a design of an application with the
Reusable Aspect Models (RAM) language, a modeller can reuse a RAM model implementing a
specific variant of the Observer design pattern.

Because reuses were always initiated from within realization models, concern reuses are typi-
cally stored within a COREExternalArtefact in the CORE metamodel as shown in Figure A.1. A
COREExternalArtefact encapsulates a model (i.e., instance of a CORE modelling language meta-
model).

In this chapter, we update the CORE metamodel to support concerns reusing concerns directly.
To this aim, we introduce a COREReuseArtefact, to enable the concern reuse process without
a realization model in section 4.1. In section 4.2, we explain how we added support for direct
concern reuse with a COREReuseArtefact to TouchCORE.

4.1 Extension of COREReuseArtefact in CORE Metamodel
In order to augment the existing concern reuse lifecycle without an instance of an accepted meta-
model, namely a COREExternalArtefact, we extend the CORE metamodel with the COREReuse-
Artefact metaclass. We illustrate a snippet of the CORE metamodel that contains only the model
elements relevant for the concern reuse procedure along with our newly introduced COREReuse-
Artefact in Figure 4.1. Within the snippet, we only include the model elements and dependencies
that are relevant for our new concern reuse pipeline. In particular, we omitt the metaclasses that
illustrate the concept of an extended reuse, in which when we reuse a concern that already contains

28

4.1 Extension of COREReuseArtefact in CORE Metamodel

Figure 4.1: CORE Metamodel Extension with COREReuseArtefact

reused concerns recursively, all of the reused concerns are combined in the form of an extended
reuse concern. Details regarding the extended reuse can be seen in the complete CORE meta-
model in Figure A.1. The extended reuse functionality is not required in our new concern reuse
pipeline because when we reuse a concern with the COREReuseArtefact, the reused concern does
not contain any additional reused concerns.

As illustrated in Figure 4.1, the COREReuseArtefact inherits from the COREArtefact model
element, similar to the COREExternalArtefact. The purpose of a COREReuseArtefact is to act as
an artefact to simply store reused concerns without having an associated external model. Now,
the concern reuse with COREReuseArtefact pipeline starts by encapsulating the reused concern
within a COREConcern model element. Next, a COREReuse is realized and associated with the
reused concern. A reuse of a concern requires a specific configuration of the variation interface
of the reused concern. A COREConfiguration captures the specific features selected in the vari-
ation interface. Finally, the configuration and reuse of the reused concern is captured within a
COREModelReuse and stored within an implementation of the COREArtefact model element. The
COREReuseArtefact contains all of the reused concerns as a list of COREModelReuses and is
stored within a list of artefacts in the original concern.

29

4.2 Support for Concern Reuse with COREReuseArtefact in TouchCORE

Figure 4.2: Concern Reuse with COREReuseArtefact Button

4.2 Support for Concern Reuse with COREReuseArtefact in
TouchCORE

Previously in TouchCORE, a concern reuse is realized through the RAM modelling perspective and
can be visualized in both the RAM modelling perspective and feature modelling scene. This pro-
cess involves a COREExternalArtefact which contains the RAM model. We now provide support
for concern reuse with COREReuseArtefact by integrating a new concern reuse pipeline directly in
the feature modelling scene. We illustrate our new concern reuse pipeline below with an example
of the step-by-step process of the BookStore concern reusing the RESTify concern with a COR-
EReuseArtefact. From the feature modelling scene, we add a new button (button with a “+” sign)
next to the Concern Reuses panel as visualized with a red circle around it in the middle-left section
in Figure 4.2. Upon clicking on the concern reuse button, the user will be prompted a file directory
browser to select an appropriate concern to reuse, which is the RESTify concern in this example.

After the selection of a concern to be reused, the feature selection scene is presented to the
user to choose an appropriate configuration for the reused concern. We provide an illustration of
selecting the Eclipse Jersey configuration of the RESTify concern within the BookStore concern
in Figure 4.3. After clicking on the check mark button in the feature selection scene, our new
controller operation in the ReuseController will execute a collection of EMF commands to add the

30

4.2 Support for Concern Reuse with COREReuseArtefact in TouchCORE

Figure 4.3: Selection of a Configuration for RESTify Concern

reused concern in the COREReuseArtefact. In particular, a COREReuse model element is created
and associated with the RESTify concern. A COREModelReuse is instantiated and is associated
with the created COREReuse, and the given COREConfiguration of the feature selection. Next, we
check for the presence of the COREReuseArtefact, in which a new instance is created if it does not
already exist in the BookStore concern’s list of artefacts. The COREModelReuse is then appended
to the COREReuseArtefact’s list of model reuses. In the case that the COREReuseArtefact did not
exist previously, we also append it to the BookStore concern’s list of artefacts.

After the execution of the EMF commands, the user is navigated back to the feature modelling
scene in which the user can now visualize the newly added reused concern, RESTify. When click-
ing on the RESTify element in the Concern Reuses panel, users can visualize the current Eclipse
Jersey configuration of the reused concern in Figure 4.4. For concerns that are reused within the
COREReuseArtefact, we provide two additional functionalities as visualized by the two buttons on
the left of the RESTify element in the Concern Reuses panel, namely reconfiguration and deletion.
With the green button with cycle arrows, users can reopen the feature selection scene to change the
configuration of the reused concern if desired. In the context of RESTify, the user can change the
REST implementation technology. The reconfiguration process is executed by EMF commands
as well in the ReuseController. Since elements in the Concern Reuses panel are represented as
instances of COREReuse, we can update the configuration by locating its associated COREMod-

31

4.2 Support for Concern Reuse with COREReuseArtefact in TouchCORE

Figure 4.4: Reuse of RESTify Concern in BookStore Concern

elElements and setting the COREConfiguration to the new selection. With the red button with an X
symbol, users can remove a reused concern from the COREReuseArtefact. The implementation of
the deletion of reused concerns is also done by means of EMF commands in the ReuseController.
With the selected COREReuse to be deleted, we locate the associated COREModelElements and
delete them from the COREReuseArtefact. If there are no more COREModelReuses within the
COREReuseArtefact, the COREReuseArtefact is also deleted from the BookStore concern’s list of
artefacts.

32

5
ResTL

Resource Tree Language (ResTL) is a modelling language designed to uniquely describes REST
resource layouts. The ResTL model can help users visualize and design a well-structured REST
interface for their software applications. In this chapter, we elaborate on technical details in the
ResTL metamodel, and the various components that we developed as part of this thesis to support
the creation and modification of a RestTL model in TouchCORE.

5.1 ResTL Metamodel
The ResTL metamodel [Sch20b] is illustrated in Figure 5.1 and is realized using the Eclipse Mod-
eling Framework (EMF). A ResTL model is contained in an instance of the RestIF metaclass. The
RestIF model element always contains a root instance of PathFragment and a list of Resources. A
PathFragment describes a section of an endpoint URI as seperated by the forward slash character.
A DynamicFragment inherits the PathFragment model element and represents a URI matching
pattern section in the endpoint URI as expressed by the curly brackets. Similarly, a StaticFragment
also inherits from the PathFragment model element and specifies a static section in the endpoint
URI. A PathFragment reflexively contains children to form a tree data structure. A complete URI
is composed of a PathFragment and all of its ancestors. For example, consider a ResTL model
with a single endpoint URI /bookstore/isbns/{isbn}, the ResIF model element contains a root node
that is an instance of StaticFragment with an internalname of /bookstore, the root node has a single
child that is an instance of StaticFragment with an internalname of /isbns, and finally the /isbns
node has a single child that is an instance of DynamicFragment with a placeholder of /{isbn}.

Next, we introduce the Resource model element, which contains all of the HTTP request meth-
ods associated to a specific endpoint URI. In the ResTL metamodel in Figure 5.1, a RestIF model
element contains a list of Resources, in which each is associated to zero or one PathFragment
model element. A Resource contains a list of one to four AccessMethod model elements in which
each AccessMethod has a MethodType attribute that represents each of the HTTP request methods,

33

5.2 Support for ResTL Models in TouchCORE

namely GET, PUT, POST, and DELETE. Now, to expand upon our previous example, consider
a ResTL model with two REST endpoints enabled on the same URI of /bookstore/isbns/{isbn} :
the HTTP request methods of GET, and PUT. To support the HTTP request methods, we add a
Resource to the RestIF model element, and associate it with the /{isbn} DyanmicFragment node.
This Resource contains two AccessMethod instances with the GET and PUT MethodTypes.

The Parameter model element groups different kinds of HTTP parameters under an abstract
type [Inc22]. A HTTP parameter consists of a type, name and value and can appear in the header
or body of a HTTP request. The subclasses of Parameter are Body, HeaderParameter, RequestPa-
rameter and DynamicFragment. A Body signifies that the HTTP parameters are provided within
a HTTP Request Body. A HeaderParameter defines HTTP Header parameters and consists of
name/value pairs that appear in the HTTP header. The HeaderParameter contains a HeaderField
attribute which illustrates the HTTP header type and currently supports ENCODING, AUTHO-
RIZATION, and USERAGENT. Consider the previous example of the following endpoint: GET
/bookstore/isbns/{isbn}, we can integrate HTTP Header parameters such as Content-Encoding to
list any encodings that have been applied to the message payload. We can model this HTTP Header
parameter with an instance of HeaderParameter with the HeaderField attribute set as ENCODING
and associate it with the corresponding AccessMethod. Similarly, a RequestParameter specifies a
HTTP Request parameter that can be used to match fields in the HTTP header. The RequestParam-
eter contains defaultValue, name and mandatory attributes where name and defaultValue illustrate
the name/value pair respectively and mandatory determines whether the HTTP Request parameter
is mandatory. The DynamicFragment model element inherits from Parameter and PathFragment
as it is a HTTP parameter that defines a name with the placeholder attribute and contains a value in
the URI segment implementation. The AccessMethod model element contains Parameters, Head-
erParameters and RequestParameters as lists linked to a particular REST endpoint.

5.2 Support for ResTL Models in TouchCORE
TouchCORE has a well-defined process that needs to be followed to integrate new modelling lan-
guages into the tool. To provide support for interpreting and visualizing ResTL models in Touch-
CORE, we need to define a new CORELanguage and COREPerspective. As a reminder, realization
models expressed in some modelling language in CORE are stored in their own file and integrated
into a concern using an instance of COREExternalArtefact. The COREExternalArtefact instance
has an attribute rootModelElement that points to the root model element of the realization model in
the model file. As can be seen in Figure A.1, COREExternalArtefacts have an attribute language-
Name that must refer to an instance of CORELanguage that points to the .ecore file containing the
metamodel of the modelling language. Hence, for the ResTL metamodel, we define a new CORE-

34

5.2 Support for ResTL Models in TouchCORE

Figure 5.1: ResTL Metamodel

Language named Resource Tree Language to interpret ResTL models and link it to the ResTL
metamodel shown in Figure 5.1.

Again, as a reminder, COREPerspectives are used in CORE to encapsulate one or several lan-
guages intended to be used for a specific modelling purpose [SLL�21]. To visualize the modelling
of a ResTL model, we define a new perspective named Resource Tree Interface Perspective to
incorporate the Resource Tree Language for the creation and visualization of ResTL models.

To build the GUI editor, we develop a set of scenes, views, handlers, and controllers that
support the creation, modification, saving and loading functionalities of ResTL models in Touch-
CORE. The graphical user interface of TouchCORE is realized with Multi-Touch for Java (MT4J)
[LRZ10], in which we implement abstract GUI elements from MT4J to provide support for ResTL
models. First, we develop a scene and scene handler named DisplayRestTreeScene and Dis-
playRestTreeSceneHandler respectively. In MT4J, a scene is the highest-level component that
contains all of the views and other graphical elements within the application display. DisplayRest-
TreeScene constructs all of the required views for the Rest Interface Perspective, adds an EMF
listener for updates from the represented ResTL model, and initializes an EMF command stack to
support the undo and redo operations with the ResTL model. DisplayRestTreeSceneHandler han-
dles the events related to the DisplayRestTreeScene including switching to other scenes, exiting the
application and the basic undo, redo, and save operations using the EMF command stack.

In TouchCORE, views contain the graphical elements used to represent special model ele-

35

5.2 Support for ResTL Models in TouchCORE

ments. We implement a series of views - RestTreeView, PathFragmentView, and ResourceView,
their respective view handlers (ResourceView does not have a handler) - RestTreeViewHandler and
PathFragmentViewHandler, to illustrate the represented model elements, namely RestIF, Path-
Fragment, and Resource/AccessMethod respectively. The RestTreeView is the highest-level view,
which contains and formats the other views. RestTreeView incorporates an auto-format system in
which it will always ensure that the visualized tree has a balanced structure vertically and hori-
zontally between PathFragmentViews. Additionally, RestTreeView registers its own MT4J gesture
processors to support the following gestures for the visualization, addition, modification, and dele-
tion of model elements - single tap, double tap, tap and hold, pinch, wheel events, right click drag
and Unistroke gestures. A Unistroke gesture visualizes a yellow line as the user holds left click
on the mouse and drags it through the application. The gesture events are then handled by the
RestTreeViewHandler, to delegate the appropriate operation to the controller. The RestTreeView
has an EMF listener for changes to the ResTL model and handles each of the operations to visu-
ally maintain consistency with the underlying model. The PathFragmentView visually represents a
PathFragment model element as the upper half rectangle of a tree node with a text field. The text
field encloses its internal text with curly brackets when the represented node is a DyanmicFragment
and does not enclose its text with curly brackets when the represented node is a StaticFragment.
Events related to a PathFragment are notified to the PathFragmentView, who then redirects the
events to the RestTreeView to be properly handled. The PathFragmentViewHandler provides a
menu when users tap and hold on a PathFragmentView, and delegate the appropriate behaviour to
the controller from the clicked button on the menu.

A ResourceView visually represents a Resource and its associated AccessMethod model ele-
ments as the lower half rectangle of a tree node with four buttons. Each of the four buttons rep-
resent each of the MethodType model elements encapsulated by an AccessMethod, namely GET,
PUT, POST, and DELETE with a G, PU, PO, and D icon respectively. The buttons can be pressed
to toggle the presence of the AccessMethod and call the controller to edit the ResTL model accord-
ingly. Hierarchically, a PathFragmentView contains a ResourceView to achieve the functionality of
adding and removing Resource and AccessMethod model elements that are associated to a specific
PathFragment.

We implement the language actions for ResTL with a single controller class, namely Rest-
TreeController, which contains operations for the creation, modification, and deletion of current
ResTL model elements through EMF commands. These controller operations are called through
the supported gestures and helper menus in the RestTreeView and its handlers. Currently, we sup-
port various operations regarding a PathFragment, Resource, or AccessMethod model element. We
support the creation of child StaticFragment and DynamicFragment nodes by a UnistrokeGesture

36

5.2 Support for ResTL Models in TouchCORE

that occurs from a parent PathFragment. The placeholder or internalname attribute of a Dynam-
icFragment or StaticFragment respectively can be modified by a simple double tap gesture on the
text field of a specific PathFragment. The ordering of children PathFragments can be modified by
a right click drag gesture on a specific PathFragment to the desired position in the children list.
Similarly, the direct parent of a PathFragment can be modified by a right click drag gesture on a
specific PathFragment to another PathFragment that will become its new parent. We support con-
venient switching between a PathFragment’s implementation type between DyanmicFragment and
StaticFragment by a button on the pop-up menu from a specific PathFragment. A PathFragment
can also be deleted by a button on the pop-up menu, in which the deleted PathFragment’s children
are re-appended to the parent of the deleted PathFragment. When a PathFragment is deleted, all
of its associated model elements such as Resource and AccessMethod are deleted as well to main-
tain consistency in the model. A Resource is added automatically when a MethodType button is
pressed, to contain the AccessMethod model elements. The added Resource is then associated with
the PathFragment that contains the MethodType button in its view. In addition, when a MethodType
button is pressed, it will add or remove an AccessMethod within the associated Resource depend-
ing on whether it was present already. Each of the operations elaborated above is stored as EMF
commands within the EMF command stack to support the undo and redo operations. In particular,
when the EMF command stack is nonempty, the user can save the model.

A visualization of the BookStore REST Resource Tree can be seen in Figure 5.2. Since there
is an extensive amount of REST endpoints illustrated, we elaborate on their behaviour by combin-
ing multiple endpoints with URIs. The /bookstore/isbns and /bookstore/isbns/{isbn} URIs provide
endpoints for retrieving and modifying information regarding books in the BookStore application.
The /bookstore/isbns/{isbn}/comments and /bookstore/isbns/{isbn}/comments/{commentId} URIs
provide endpoints for getting, updating, appending and deleting comment information that corre-
spond to books in the BookStore application. Finally, the /bookstore/stocklocations, /bookstore/-
stocklocations/{location} and /bookstore/stocklocations/{location}/{isbn} URIs provide endpoints
for getting and adding agency information and their stock of books in the BookStore application.
The BookStore ResTL model provides an endpoint for each of the controller operations that al-
ready exist in the BookStore application, to conveniently map them together as elaborated in the
next chapter.

37

5.2 Support for ResTL Models in TouchCORE

Figure 5.2: BookStore REST Resource Tree with ResTL Model

38

6
Generic Split View

In order to apply the RESTify code generation pipeline, we must establish mappings between the
RAM model and the ResTL model. These mappings serve two functions - linking business logic
of controller methods to specific REST endpoints and parameters to URI matching patterns within
the URI of the corresponding REST endpoint. The most intuitive method of illustrating mappings
is to simply draw lines between the two models, and hence we develop a split view to support these
operations in TouchCORE.

The generic split view enables the visualization and modification of two arbitrary models si-
multaneously. In addition, we implement an optional mapping functionality to allow the creation
and removal of inter-model mappings. The mappings can be validated to ensure the correctness
and consistency of the mappings to the underlying models. We provide two implementations of
the generic split view below, namely the RAM-ResTL Split View and the Domain-Use Case Split
View to demonstrate the flexibility of the generic split view.

Now, with the RAM-ResTL Split View, we can view the RAM and ResTL models of the Book-
Store concern simultaneously and realize the required inter-model mappings for code generation
transformations.

6.1 Abstract Generic Split View
The generic split view is implemented with Java abstract and generic classes, as a new view and
view handler in TouchCORE, namely GenericSplitView and GenericSplitViewHandler. Generic-
SplitView takes the scene of the currently displayed model and the view of any arbitrary model
as input and visualizes them by extracting the top-level view from the scene and displaying both
views side-by-side simultaneously. Users can navigate to the GenericSplitView from the scene of
an arbitrary model with the enter split view button. The enter split view button visualizes addi-
tional realization models that are contained within the current COREScene model element to be
selected as the secondary view to be displayed in the GenericSplitView. Therefore, after the navi-

39

6.2 Abstract Generic Split View with Mappings Functionality

gation process to the GenericSplitView, the view is now updated but the scene remains the same.1

The inner- and outer-level views of the GenericSplitView are separated by a split line to clearly
distinguish the views from each other. There is a button in the generic split view to toggle between
the display configuration of the two views, between a vertical or horizontal layout, the default of
which is vertical. The GenericSplitView registers its own MT4J gesture processors in an overlay
layer to support the following gestures - single tap, double tap, tap and hold, pinch, wheel events,
right click drag and Unistroke gestures.

The event flow of gestures is illustrated in Figure 6.1 in which the MT4J gesture processor
instantiates the gesture event and delegates the event to the GenericSplitView overlay, in which it
is processed by either the inner-level view, outer-level view, or the GenericSplitView. The Gener-
icSplitViewHandler receives the gesture events from the overlay and determines whether to handle
the event itself or delegate it to either the inner- or outer-level views. The GenericSplitViewHan-
dler supports the drag gesture if it is sufficiently close to the split line, in which it will drag the
split line to adjust the designated space for the inner- and outer-level views. There is an additional
button in the generic split view to enable the delegation of gestures to the inner- and outer-level
views. When enabled, gestures captured by the overlay that are not processed by the generic split
view will be delegated to the associated inner- or outer-level view. When a gesture modifies one
of the underlying views, the individual view handles the EMF notification to maintain the visual
consistency with the represented model.

6.2 Abstract Generic Split View with Mappings Functionality
In some cases, we might simply want to display two models side by side in TouchCORE. For
example, during software design, it makes sense to display the design class diagram together with
a sequence diagram that specifies the behaviour of an operation defined in one of the classes. This
functionality is covered by the GenericSplitView presented in the previous section.

When applying the RESTify concern, step 4 (see section on page 23) requires the user to
specify mappings between the RAM class diagram and the ResTL model. Hence, we extend
the functionality of the generic split view by incorporating mapping functionality with Gener-
icSplitViewWithMappings and GenericSplitViewWithMappingsHandler. Similar to the Generic-
SplitView and GenericSplitViewHandler, GenericSplitViewWithMappings and GenericSplitViewWithMap-
pingsHandler are abstract and generic Java classes and extend the original view and view handler
respectively. Inter-model mappings are realized with a COREModelElementMapping model ele-
ment and consists of a list of typically two arbitrary model elements, represented as EObjects from

1We chose to not use two scenes as input to the generic split view because the complexity of initializing a secondary
scene can decrease the performance of TouchCORE.

40

6.2 Abstract Generic Split View with Mappings Functionality

Figure 6.1: Generic Split View Event Flow

the EMF plug-in, and a unique id. GenericSplitViewWithMappings visualizes the mappings by
placing a line directly between the illustrated model elements and listens for notifications regard-
ing the addition and removal of mappings to maintain consistency with the underlying models.
Since individual views in the generic split view can be dragged and zoomed as a whole, some
individual model elements can be outside of the scope in the displayed view. When one of the
mapped model elements is not visible in the underlying view, a short, stippled line is visualized by
the other visible mapped model element. When neither of the mapped model elements are visible,
the mapping is not visualized.

GenericSplitViewWithMappingsHandler extends GenericSplitViewHandler to capture the cre-
ation of inter-model mappings with a Unistroke gesture from a model element from the inner-level
view to a model element from the outer-level view. GenericSplitViewWithMappingsHandler con-
tains an instance of the interface, COREModelElementMappingsValidator provides several func-
tionalities: 1) validating new mappings given the current mappings, 2) maintaining the correctness
of the current mappings, and 3) verifying whether the current mappings are valid for transforma-
tion. In particular, functionality 2) is called in several situations, including before the navigation
to the split view, when either one of the underlying models are modified, and when mappings are
removed to verify if there are any additional mappings to remove to maintain consistency with
the underlying models and current mappings. The business logic of the COREModelElementMap-
pingsValidator is to be defined by implementations of the generic split view with mappings module

41

6.3 RAM-ResTL Split View with Mappings Functionality

since the validation of inter-model mappings depends on the semantics of the two models that are
being displayed as well as the semantics of the perspective that connects them, if any. If the
mapping contains a valid model element from both views, and is validated by the COREModelEle-
mentMappingsValidator, the mapping is then constructed with an EMF command using the Per-
spectiveController. Similar to the creation of inter-model mappings, mappings can also be removed
by a Unistroke gesture, which checks for intersections with any of the current mapping lines. The
removal of mappings is also executed by an EMF command with the PerspectiveController. After
the removal of mappings, COREModelElementMappingsValidatoris called to ensure the validity
of the remaining mappings, and identify any additional inconsistent mappings, in which they are
removed again with EMF commands. With multi-language perspectives, transformations can be
designed for the purposes of code generation or model combination. Thus, before the execution of
such transformations, the mappings are validated with the COREModelElementMappingsValidator
to ensure that the underlying models and mappings are ready.

6.3 RAM-ResTL Split View with Mappings Functionality
In order to create mappings between the RAM and ResTL model elements from the BookStore
concern, we introduce the RAM-ResTL perspective [Sch21b] that can interpret both the RAM and
ResTL modelling languages. Now, we inherit and implement the generic split view with mappings
functionality with RamResTLSplitViewWithMappings and RamResTLSplitViewWithMappingsHan-
dler. In addition, we implement COREModelElementMappingValidator with RamResTLMap-
pingsValidator to verify the validity of RAM-ResTL mappings. A visualization of the RAM-
ResTL split view with mappings for the BookStore concern is shown in Figure 6.2. In the RAM-
ResTL split view, REST endpoint to controller operation mappings and URI matching pattern
to parameter mappings can be visualized as blue and green lines respectively. The REST end-
point to controller operation mapping connects a specific REST endpoint to the business logic of
a controller operation in the RAM model representation of the original application. It therefore
always must connect an AccessMethod model element in the ResTL model to an Operation model
element in the RAM model. Similarly, URI matching pattern to parameter mappings connect a
DynamicFragment model element in the ResTL model with a Parameter in the RAM model. The
URI matching pattern to parameter mapping enables the application to capture the dynamic infor-
mation stored within a specific section of the endpoint URI and use its value as a parameter of the
method invocation in the controller operation.

The RamResTLMappingsValidator provides validation for new mappings, current mappings,
and whether the mappings are valid for transformations. For a new RAM-ResTL mapping, we first
classify that the mapping is either an AccessMethod to Operation mapping or a DynamicFragment

42

6.3 RAM-ResTL Split View with Mappings Functionality

to Paramter mapping. In the case that the new RAM-ResTL mapping is an AccessMethod to
Operation mapping, we ensure that the mapped AccessMethod or Operation is not already present
in a different mapping. Otherwise, in the case of a new DynamicFragment to Parameter mapping,
we first ensure that the Parameter is of “primitive” type since the dynamic URI section can only
capture values that can be determined by a sequence of characters. The accepted types for a
Parameter include String, int, Integer, long, Long, boolean, Boolean, float, Float, double, Double,
char and Character Java data types. Next, we validate that the Parameter does not already exist
in a DynamicFragment to Parameter mapping. Additionally, we verify that the Operation of the
newly mapped Parameter is already mapped in an Operation to AccessMethod mapping. This is
to ensure that the Operation of the Parameter is associated with a REST endpoint which should
contain the URI matching pattern. Finally, we verify that the newly mapped DynamicFragment
is present on the URI path of the associated Operation. We validate this by recursively iterating
through the newly mapped DynamicFragment and its children and verifying that the PathFragment
of the corresponding AccessMethod exists as a child. This is to ensure that the URI matching
pattern is present in the REST endpoint URI. For example, consider that a mapping exists from the
/{commentId} DELETE AccessMethod to the void deleteComment(long arg0, long arg1) Operation
in the CommentsImpl controller class. A new mapping from /{location} DynamicFragment to the
long arg0 Parameter of the above Operation will not be validated since /{location} is not a part of
the /bookstore/isbns/{isbn}/comments/{commentId} URI.

RamResTLMappingsValidator also provides validation for all the current RAM-ResTL map-
pings to identify inconsistent and incorrect mappings to be removed before the navigation to the
split view, when either of the underlying models are modified, and when a mapping is removed
from an Unistroke gesture. RamResTLMappingsValidator first ensures that the model elements
are still present in the underlying views. Next, it validates the DynamicFragment to Parameter
mappings by verifying that the corresponding Operation exists in an AccessMethod to Operation
mapping, and that the DynamicFragment exists in the associated REST endpoint URI, similar to
the verification process for a new RAM-ResTL mapping articulated above. Since DynamicFrag-
ment to Parameter mappings have a dependency to AccessMethod to Operation mappings, we
need to constantly verify that the AccessMethod to Operation mappings exist and are valid.

Additionally, RamResTLMappingsValidator validates the RAM-ResTL mappings before the
execution of RESTify transformations to ensure the validity and consistency of the mappings with
the underlying models. This validation procedure incorporates all of the verification steps in the
previous mappings validation, and additionally checks for the amount of unmapped Parameters
in mapped Operations. In a RESTful web service, there can only exist at most one parameter
in a controller operation with the appropriate HTTP Request Body annotation. During the RES-

43

6.4 Domain-Use Case Split View with Mappings Functionality

Figure 6.2: RAM-ResTL Split View with Mappings for the BookStore Application

Tify transformation pipeline, we place HTTP Request Body annotations for the first unmapped
Parameter in all mapped Operations. Therefore, it is incorrect to have more than one unmapped
Parameters in mapped Operations, in which case we prevent the execution of the RESTify trans-
formations.

6.4 Domain-Use Case Split View with Mappings Functionality
In this section, we present another implementation of the generic split view with mappings func-
tionality to demonstrate the generic nature of the generic split view. We introduce a Domain-
Use Case perspective [Ali21] that can interpret both the Class Diagram and Use Case modelling
languages. In the Domain-Use case split view, implemented in the classes DomainUseCaseS-
plitViewWithMappings and DomainUseCaseSplitViewWithMappingsHandler, a Class model ele-
ment from the Class Diagram model can be mapped to an Actor model element from the Use

44

6.4 Domain-Use Case Split View with Mappings Functionality

Figure 6.3: Domain-Use Case Split View with Mappings for the BookStore Application

Case model and visualized as a green line. This Domain-Use Case mapping can serve as a consis-
tency link between the two model elements. Additionally, we provide an empty implementation of
COREModelElementMappingsValidator as DomainUseCaseMappingsValidator to avoid runtime
errors.

Figure 6.3 illustrates the BookStore application in the Domain-Use Case perspective. The
Domain model illustrates the relevant classes, attributes, relationships, and enumerations for a
BookStore application. On the other side, the Use Case model highlights the potential actors who
interact with the BookStore system and the various operations they can perform. Domain-Use Case
mappings illustrate the consistency between the Class and Actor model elements. For example, in
Figure 6.3, the Customer Class is linked to the corresponding Customer Actor.

45

7
RESTify Transformation Pipeline

After the reuse of the RESTify concern, construction of the RAM and ResTL models in the RAM-
ResTL perspective [Sch21b] and establishment of the RAM-ResTL mappings between the two
models, the concern is now ready to execute a set of model-to-model, model-to-code and code-
to-code transformations in order to generate a functional RESTful web service. The model-to-
code transformations are implemented with the Acceleo Eclipse plugin to provide code generation
functionality from EMF models. The inputs to the RESTify transformation pipeline are the RAM
and ResTL models and the RAM-ResTL mappings between the models, whereas the output of the
transformations include the Java source code and Maven configuration file, i.e., the pom.xml file.

Before the start of this thesis, there was already a monolithic model transformation that would
take the RAM and ResTL models and the RAM-ResTL mappings between the models as input and
generate a Java REST implementation based on Spring Boot. In this thesis, in order to support ad-
ditional REST frameworks, we have decomposed the original monolithic transformation into sev-
eral individual transformations that are executed by a model transformation pipeline. Furthermore,
we added support for generating implementations based on three additional REST technologies,
namely Eclipse Jersey, JBoss RESTEasy and Apache CXF. Thanks to the modularity provided
by the new transformation pipeline, whenever the implementations exhibit commonalities among
them, the individual transformations generating the common artefacts can now be reused effec-
tively.

Figure 7.1 show the complete flowchart of the new transformation pipeline. Each arrow repre-
sents a model-to-model, model-to-code or code-to-code transformation executed during the RES-
Tify transformation process. All transformations, except the blue one entitled RAM Model Weav-
ing Transformation, have been implemented and tested as part of this thesis. The exact transfor-
mations to be executed when the RESTify user requests the code to be generated depend on the
selected features, i.e., REST implementation technology, in the reused RESTify concern as illus-
trated in Table 7.1. We elaborate on the implementation details of each of the transformations in

46

7.1 fpcdm RAM Model with Spring Annotations and COREModelExtension Mapping
Generation Transformation

Figure 7.1: Flowchart of the New RESTify Transformation Pipeline

the sections below.

7.1 fpcdm RAM Model with Spring Annotations and CORE-
ModelExtension Mapping Generation Transformation

The Functionality Poor Class Diagram Model (fpcdm) RAM Model with Spring Annotations and
COREModelExtension Mappings Generation Transformation is a model-to-model transformation
that takes as inputs the RAM and ResTL models and the RAM-ResTL mappings and produces
an intermediary fpcdm RAM model with Spring annotations [Sch21a]. This transformation is
illustrated in yellow in Figure 7.1 and is executed for Spring Boot implementations. First, we
create an empty RAM model named fpcdm and clone the classes, operations, signature and Maven
artifact dependencies of the input RAM model. Next, we create empty controller classes and
operations for each ImplementationClass and their operations from the input RAM Model that
is referenced by a RAM-ResTL mapping in the provided mappings. Additionally, we create a

47

7.1 fpcdm RAM Model with Spring Annotations and COREModelExtension Mapping
Generation Transformation

Table 7.1: Executed RESTify Transformations for Selected REST Technology

RESTify Transformation Spring Boot Eclipse

Jersey

JBoss

RESTEasy

Apache CXF

fpcdm RAM Model with Spring Annotations and

COREModelExtension Mappings Generation Transformation

Y N N N

fpcdm RAM Model with JAX-RS Annotations and

COREModelExtension Mappings Generation Transformation

N Y Y Y

RAM Model Weaving Transformation Y Y Y Y

RAM to Maven/Java Code Transformation Y Y Y Y

JAX-RS Application Class Generation Transformation N Y Y Y

Apache CXF Launcher and pom.xml Generation Transformation N N N Y

Eclipse Jersey pom.xml Generation Transformation N Y N N

JBoss RESTEasy pom.xml Generation Transformation N N Y N

Spring Boot Launcher and pom.xml Generation Transformation Y N N N

pom.xml Weaving Transformation Y Y Y Y

48

7.2 fpcdm RAM Model with JAX-RS Annotations and COREModelExtension Mapping
Generation Transformation

COREModelExtension to provide a mapping from the generated fpcdm RAM model to the input
RAM model. The COREModelExtension mapping is required as an input for the RAM Model
Weaving Transformation that is executed next in the pipeline.

After the creation of the fpcdm RAM model, initialization of its model elements, and defini-
tion of mappings between the fpcdm and input RAM models with a COREModelExtension, we
proceed to the decoration step with Spring-specific annotations. For annotations, we also specify
the import identifier for the RAM to Maven/Java Transformation to generate the required import
statements. We begin by decorating the controller classes with @RestController and @CrossOri-
gin annotations. The @CrossOrigin annotation enables cross origin requests for a RESTful web
service. Next, we place Spring endpoint annotations on the mapped operations from the input
RAM-ResTL mappings. To elaborate, we place a @GetMapping, @PutMapping, @PostMap-
ping or @DeleteMapping annotation on the controller operation based on the MethodType of the
mapped AccessMethod model element and specify the URI path inside the annotation as the com-
plete path of the associated PathFragment. Now, we extend the existing decoration procedure by
implementing parameter annotations, namely @PathVariable and @RequestBody. We decorate a
@PathVariable annotation on each mapped parameter in the input RAM-ResTL mappings, where
the value of the annotation is the placeholder of the DynamicFragment of the mapping. For each
parameter in controller operations, if there is an unannotated parameter, we decorate them with
the @RequestBody annotation.

After the decoration of annotations in the fpcdm RAM model, we define the business logic
in the controller operations with the message model elements. The first message retrieves the
singleton instance of the underlying class from the input RAM model and stores it as a variable
named instance. The second message delegates the business logic to the same operation in the
instance variable. If the return type of the operation is not void, we store the result of the delegating
operation as a variable and return it in the third message. Otherwise, we do not store the return of
the delegated operation and there is no third message.

7.2 fpcdm RAM Model with JAX-RS Annotations and CORE-
ModelExtension Mapping Generation Transformation

The fpcdm RAM Model with JAX-RS Annotations and COREModelExtension Mapping Genera-
tion Transformation is a model-to-model transformation that inputs the RAM and ResTL models
and the RAM-ResTL mappings and outputs an intermediary fpcdm RAM model with JAX-RS
annotations. This transformation is illustrated in dark green in Figure 7.1 and is executed for all
JAX-RS implementations. Similarly with the previous fpcdm RAM Model generation transfor-
mation, we create an empty fpcdm RAM model and clone the classes, operations, signature and

49

7.3 RAM Model Weaving Transformation

Maven artifact dependencies of the input RAM model. We create additional controller classes and
operations for each ImplementationClass and their operations that are contained by a RAM-ResTL
mapping from the input mappings. We establish a COREModelExtension to define a mapping from
the newly created fpcdm RAM model and the input RAM model so that it can be processed later
by the RAM model weaver.

The decoration of annotations step varies from the previous transformation in which we now
incorporate JAX-RS annotations as opposed to Spring. We begin by decorating the controller
classes with @Path annotations. Next, we create the appropriate JAX-RS endpoint annotations
based on the input RAM-ResTL mappings. In particular, we place a @GET, @PUT, @POST
or @DELETE annotation on the controller operation based on the MethodType of the mapped
AccessMethod. Additionally, we decorate the controller operation with a @Path annotation with
the complete path of the associated PathFragment of the mapped AccessMethod. We define a
@PathParam annotation for each mapped parameter in the input RAM-ResTL mappings, where
the value is the placeholder of the DynamicFragment. Now, for each controller operation, if there
exists an unannotated parameter, we decorate the operation with a @Consumes annotation. We
also verify the return type of each controller operation, if it is not void, we place a @Produces
annotation for JSON payload encoding.

After the annotation decoration procedure, we link the controller operations to business logic
with message model elements. Similar to the previous fpcdm generation transformation, the first
message retrieves the singleton instance of the associated class in the input RAM model and store
it as an instance variable. Next, the second message delegates the business logic to the identical
operation from the instance variable. Now, we store the result of the delegated operation with a
variable and return it in the third message if the return type of the controller operation is not void.

7.3 RAM Model Weaving Transformation
The RAM Model Weaving Transformation is a model-to-model transformation that takes as in-
puts the original RAM model, the intermediary fpcdm RAM model and the COREModelExtension
mapping and outputs a woven RAM model that combines the model elements and properties of the
two input models. This transformation is illustrated in dark blue in Figure 7.1 and is executed for
all supported REST implementations. We name the original input RAM model as the functionality
rich class diagram model (frcdm) as it represents the original application with Implementation-
Class model elements and contains the business logic as specified by the original software sys-
tem. The intermediary fpcdm RAM model contains empty clones for the classes and operations
from the frcdm RAM model and additionally provides annotated controller classes with business
logic defined by message model elements. Now, we input the fpcdm and frcdm RAM models to

50

7.4 RAM to Maven/Java Code Transformation

the COREWeaver to produce a woven RAM model used for subsequent code generation trans-
formations. The COREWeaver is an existing transformation for all CORE-related composition
algorithms and is reused for the RAM Model Weaving Transformation.

7.4 RAM to Maven/Java Code Transformation
The RAM to Maven/Java Code Transformation is a model-to-code transformation that takes as
input a RAM model (in our case the woven RAM model produced by the weaver) and outputs the
corresponding Java source code and a pom.xml file for use with Maven. The transformation is
illustrated in red in Figure 7.1 and is executed for all supported REST technologies. This generation
transformation consists of two separate model-to-code transformations, but they are combined as
a singular transformation since the Maven configuration and Java code transformations are used
in all REST implementations. For the RAM to Maven Transformation, the output file name is
GenericPom.xml to avoid being executed by Maven by accident. This also emphasizes that the
generated GenericPom.xml is only a partial Maven specification. It consists of the modelVersion,
groupId, artifactId, version, packaging, properties, and dependencies Maven tags. We specify the
modelVersion as 4.0.0 to be compatible with Maven 3. For the groupId, artifactId and version,
we extract the information dynamically from the signature of the structureView of the input RAM
model. The groupId, artifactId and version are required fields to define the Maven coordinates
of the underlying Maven project. For packaging, we use the default configuration with jar. The
packaging format can in a later step of the transformation pipeline be overridden by the technology-
specific pom.xml during the pom.xml Weaving Transformation if the selected REST technology
requires a specific format. For properties, we specify the project build encoding to be UTF-8 and
set the source and target Java version of the Maven compiler as 1.8. Now for the dependencies
section, we dynamically append the dependencies contained in the structuralView of the input
RAM model. In particular, there is a dependency to the original application as defined in the input
RAM model. For the interested reader, the implementation of the RAM to Maven Transformation
is presented in detail in the Appendix, in Figure B.1 as an Acceleo module.

The RAM to Java Code Transformation generates Java source code given the enumeration of
the classes and types in the structureView of the input RAM model using the original RAM-to-Java
generator provided by TouchCORE since 2012. It is important to note that the Java generator does
not generate ImplementationClass model elements. For the class model elements in RAM models,
we generate the package identifier, import statements, class definition, attributes and operations
in a Java class file. Additionally, we decorate the class, operations, and operation parameters with
the appropriate REST annotations from the model. For operations, we generate business logic
with the enumerated messages in an operation model element. Now, for type model elements, we

51

7.5 JAX-RS Application Class Generation Transformation

generate the package identifier, enumeration type and individual literal values.

7.5 JAX-RS Application Class Generation Transformation
The JAX-RS Application class generation transformation is a model-to-code transformation that
takes as an input the woven RAM model and outputs an implementation of the JAX-RS Applica-
tion class. The transformation is illustrated in purple in Figure 7.1 and is executed for all JAX-RS
implementations, including Eclipse Jersey, JBoss RESTEasy and Apache CXF. Specifically, we
generate the ApplicationConfig class that extends Application and is decorated with the @Appli-
cationPath annotation. A majority of the elements in the Acceleo module are static, except for the
package statement and enumeration of controller classes. We obtain the package identifier from
the groupId and artifactId from the signature of the structureView of the woven RAM model. Sim-
ilarly, we identify the controller classes by verifying the controller keyword from the list of classes
in the structureView of the woven RAM model. The implementation of the JAX-RS Application
Class Generation Transformation is shown in the Appendix, in Figure B.3.

7.6 Apache CXF Launcher and pom.xml Generation Transfor-
mation

The Apache CXF Launcher and pom.xml Generation Transformation is a model-to-code trans-
formation that takes as input the woven RAM model and outputs the Apache CXF launcher and
Apache CXF-specific pom.xml file. The transformation is illustrated in light green in Figure 7.1
and is executed for only Apache CXF implementations. This generation transformation actually
consists of two separate model-to-code transformations, but they are combined as a singular trans-
formation since the launcher and pom.xml are required for all Apache CXF implementations.
In the Apache CXF launcher class, namely ApacheCXFLauncher, we define a main method to
create the required endpoints as specified by the generated ApplicationConfig class from the previ-
ous transformation with a JAXRSServerFactoryBean, set its address to http://localhost:8080/ and
add a JacksonJaxbJsonProvider to provide encoding and decoding from JSON payload formats.
Now, to run the Apache CXF application, we delegate the created JAXRSServerFactoryBean to the
Apache CXF provided Server for deployment. The package name of the Apache CXF launcher
Acceleo module is dynamic in which it retrieves the groupId and artifactId from the signature of
the structureView of the input RAM model. The rest of the module is static to invoke the default
Apache CXF launcher specifications. The implementation of the Apache CXF Launcher Genera-
tion Transformation is illustrated in the Appendix, in Figure B.4.

The Apache CXF pom.xml Generation Transformation outputs a file named ApacheCXF-
Pom.xml. It includes the packaging, properties, dependencies and build Maven components. For

52

7.7 Eclipse Jersey pom.xml Generation Transformation

packaging, we specify the default jar format to execute the resulting jar with a simple Java com-
mand. Apache CXF applications generally define a launcher class and deploy the controller end-
points directly on the internal Apache CXF server. Thus, we do not need to package the source
code as a war file and deploy to a Jetty web server, contrary to what needs to be done for the
other JAX-RS implementations, such as Eclipse Jersey and JBoss RESTEasy (see the following
subsections). For properties, we define the apache cxf version as 3.3.0 to maintain consistency
with the various Apache CXF dependencies. The dependencies section includes the Apache CXF
Runtime JAX-RS Frontend, Apache CXF Runtime HTTP Transport, Apache CXF Runtime HTTP
Jetty Transport and Jackson JAX-RS JSON for handling JSON input and output for JAX-RS im-
plementations using the standard Jackson data binding. The build section specifies the required
plugins during the Maven build lifecycle, which includes the Apache Maven Dependency Plugin
and Apache Maven JAR Plugin. The Apache Maven Dependency Plugin utility goals to work with
dependencies in which we define the copy dependencies goal to be executed during the packaging
step to ensure the output jar file contains the enumerated dependencies. The JAR Plugin provides
the capability of building jars, and we specify the complete location of the main class to be the gen-
erated Apache CXF launcher in its configuration. Note that the complete location of the Apache
CXF launcher class includes the dynamic package name, which includes the groupId and artifactId
retrieved from the RAM input model as explained above. The implementation of the Apache CXF
pom.xml Generation Transformation is illustrated in the Appendix, in Figure B.5 as an Acceleo
module.

7.7 Eclipse Jersey pom.xml Generation Transformation
The Eclipse Jersey pom.xml Generation Transformation is a model-to-code transformation that
takes as input the woven RAM model and outputs an Eclipse Jersey-specific pom.xml file. The
transformation is illustrated in orange in Figure 7.1 and is executed only when the Eclipse Jersey
feature of the RESTify concern is chosen. The output file name is EclipseJerseyPom.xml in order
to prevent Maven from using this particular pom.xml file during deployment as it is incomplete
and contains only Eclipse Jersey-specific configurations. The Eclipse Jersey pom.xml contains
the packaging, properties, dependencies and build Maven tags. We specify the packaging format
as war because Eclipse Jersey applications are generally packaged in the war format and deployed
to a web server. We establish the jersey version to be 2.35 in properties to maintain consistency
and avoid repetition in the dependency version elements in the dependencies tag. The dependen-
cies tag includes the required Maven artifacts for Eclipse Jersey applications. To elaborate, the
dependencies include the Jersey core server implementation, Jersey core servlet implementation,
HK2 InjectionManager implementation and Jersey JSON Jackson entity providers support mod-

53

7.8 JBoss RESTEasy pom.xml Generation Transformation

ule. Now the build section defines the required plugins for the build lifecycle including the Apache
Maven WAR plugin and the Jetty web server. The Apache Maven WAR plugin is responsible for
collecting all artifact dependencies, classes and resources of the web application and packaging
them into a web application archive [Kin19]. In particular, we indicate that our generated source
code does not include a web.xml by setting failOnMissingWebXml to false. Now, the packaged war
file can be reliably deployed on the Jetty web server to run the Eclipse Jersey application. The im-
plementation of the Eclipse Jersey pom.xml Generation Transformation is shown in the Appendix,
in Figure B.6. The Acceleo module does not contain any dynamic aspects, but by the Acceleo
specification, an EMF model must be provided as input.

7.8 JBoss RESTEasy pom.xml Generation Transformation
The JBoss RESTEasy pom.xml Generation Transformation is a model-to-code transformation
that takes as input the woven RAM model and outputs a JBoss RESTEasy specific pom.xml

file. The transformation is illustrated in light blue in Figure 7.1 and is executed only when the
JBoss RESTEasy feature of RESTify is chosen. The output file name is JBossRESTEasyPom.xml
to avoid being executed by Maven as it does not provide a complete Maven definition. The
JBoss RESTEasy pom.xml contains the packaging, properties, dependencies and build speci-
fications. We declare the packaging format as war since similar to Eclipse Jersey applications,
JBoss RESTEasy applications are also typically packaged as a war file and deployed to a web
server. For properties, we specify the resteasy version as 3.15.Final to include up-to-date and sta-
ble releases for the dependency artififacts. For dependencies, we include the RESTEasy servlet
container initializer and RESTEasy Jackson provider. Now, the build component is identical to
the build in the Eclipse Jersey pom.xml file, with the Apache Maven WAR plugin and the Jetty
web server. The implementation of the JBoss RESTEasy pom.xml Generation Transformation is
illustrated in the Appendix, in Figure B.7. The implemented Acceleo module is completely static
as well and does not contain any dynamic segments.

7.9 Spring Boot Launcher and pom.xml Generation Transfor-
mation

The Spring Boot Launcher and pom.xml Generation Transformation is a model-to-code transfor-
mation that takes as input the woven RAM model and outputs the Spring Boot launcher class and
Spring Boot-specific pom.xml file. The transformation is illustrated in pink in Figure 7.1 and
is executed when the Spring Boot feature of RESTify is chosen. This generation transformation
consists of two separate model-to-code-transformations; however, they are combined as a singular
transformation since the launcher and pom.xml are required for all Spring Boot implementations.

54

7.10 pom.xml Weaving Transformation

Before the start of this thesis, the Spring Boot launcher was generated as a mandatory class in the
intermediary fpcdm RAM model and its code then generated by the monolithic transformation.
With the new transformation pipeline introduced by this thesis, we generate the launcher code di-
rectly using an Acceleo module. The generated Spring Boot launcher class is decorated with the
@SpringBootApplication annotation and contains a main method to execute the launcher class as
a Spring application. Additionally, the launcher class includes a package identifier which includes
the groupId and artifactId from the signature of the structureView of the RAM input model. The
implementation details of the Spring Boot Launcher Generation Transformation are illustrated in
the Appendix, in Figure B.8.

Before the start of this thesis, the monolithic model-to-code transformation for Spring gener-
ated a pom.xml file with everything included. Now, with our new transformation pipeline, we
have modularized the Spring Boot pom.xml Generation Transformation to output a StringBoot-
Pom.xml file which only contains the Spring Boot-specific sections, including parent, dependen-
cies and build. We declare the parent as the Spring Boot Starter Parent artifact which is a parent
POM for providing dependency and plugin management for Maven applications. The parent tag
enables inheritance to the parent POM contents. For dependencies, we include the Spring Boot
Starter Web Maven artifact, which is a starter for building web applications, including RESTful
with Spring MVC and uses Tomcat web server as the default embedded container. For the build
section, we include the Spring Boot Maven Plugin artifact as a plugin and explicitly specify the
full path to the Spring Boot launcher class in the configuration. The Spring Boot launcher class
path includes the dynamic groupId and artifactId retrieved from the RAM input model. The im-
plementation of the Spring Boot pom.xml is shown in the Appendix, in Figure B.9.

7.10 pom.xml Weaving Transformation
The pom.xml Weaving Transformation is a code-to-code transformation that takes as input the gen-
erated generic and technology-specific pom.xml files from the previous steps and outputs a woven
pom.xml file to be used for Maven build configurations. The technology-specific pom.xml files
include Spring Boot, Eclipse Jersey, JBoss RESTEasy and Apache CXF. The generated output
has the key file name of pom.xml so that it can be executed during the Maven build lifecycle.
Chapter 8 elaborates on the implementation and transformation details of the pom.xml weaving
algorithm.

7.11 Generated Java/Maven Source Code
The complete generated Java/Maven source code for the supported REST frameworks: Spring
Boot, Eclipse Jersey, JBoss RESTEasy, and Apache CXF for the BookStore application can be

55

7.11 Generated Java/Maven Source Code

seen in the Appendix. It is important to note that in order to compile the generated source code,
the user must install the BookStore application in their local Maven repository with the following
command, mvn clean install.

For Spring Boot, the woven pom.xml file is seen in Figure C.3. The Java source code an-
notated with Spring annotations for the REST controllers include AssortmentImplController.java,
CommentsImplController.java, and GlobalStockImplController.java and they can be seen in Fig-
ures C.10, C.11, and C.12 respectively. Additionally, the Spring Boot launcher class named Spring-
BootLauncher.java can be seen in Figure C.16.

For the remaining JAX-RS implementations, the Java source code annotated with JAX-RS
annotations for the REST controllers include again AssortmentImplController.java, CommentsIm-
plController.java, and GlobalStockImplController.java and they can be seen in Figures C.13, C.14,
and C.15 respectively. JAX-RS defines an application configuration class, and it can be seen in
Figure C.17 named ApplicationConfig.java.

For Eclipse Jersey, the woven pom.xml file is seen in Figure C.5. There is no additional Java
source code from the generated source code for JAX-RS implementations as specified above.

For JBoss RESTEasy, the woven pom.xml file is seen in Figure C.7. Similarly, the generated
Java source code for JBoss RESTEasy does not contain any additional files from the generated
source code for all JAX-RS implementations as specified above.

For Apache CXF, the woven pom.xml file is seen in Figure C.9. Apache CXF requires a
launcher class, and it can be seen in Figure C.18 named ApacheCXFLauncher.java.

56

8
Weaving pom.xml Files

During the RESTify transformation pipeline, two Maven project configuration files, i.e., pom.xml
files, are generated. POM stands for Project Open Model and is an XML representation of a
Maven project held in a file named pom.xml [Red19]. In particular, we generate a generic and a
technology-specific pom.xml file. The generic pom.xml file contains the POM model version,
Maven coordinates with group ID, artifact ID and version, project packaging, Maven properties
and a dependency to the original application. The technology-specific pom.xml file includes the
project packaging, technology specific dependencies and build configurations. The project packag-
ing is duplicated in the technology-specific pom.xml file since some implementation technologies
require specific packaging formats for deployment. Each individual file is partial, i.e., it is missing
some important information so that Maven can successfully compile and generate an executable.

This chapter describes a pom.xml weaving algorithm that takes as input two pom.xml files and
produces as an output a woven pom.xml file that contains the union of the information provided
in the two input files. For those elements where it is impossible to create a union, the element from
the second file will take precedence. In summary, the weaving algorithm first sorts each XML
element of the input pom.xml files and creates a merged XML element list in which the XML
elements that exist only in one file are simply included, and the XML elements that exist in both
of the input pom.xml files are woven together to be integrated as a singular XML element. The
merged XML element list is then output as a new pom.xml file.

The weaving algorithm is based on the pom.xml schema file which defines the comprehensive
structure and rules for pom.xml files to follow. Validation with the schema file is incorporated
to verify the correctness of each XML element, sort the input pom.xml files for the purposes of
weaving the XML elements, and merging XML elements at the correct level based on the schema
guidelines.

57

8.1 pom.xml Schema File

8.1 pom.xml Schema File
The pom.xml schema file is located at https://maven.apache.org/xsd/maven-4.0.
0.xsd and illustrates the configuration and specification for each XML element in pom.xml

files. XML Schema Definition (XSD) files provide a standard method of validation of whether a
given XML document conforms to it. Similar to a XML file, the schema file is also represented as
a tree data structure. The first child of the root node from the schema file has an attribute named
project and defines the root node of the pom.xml file. The project node has a type attribute of
Model and is a link to the second child of the root node in the schema file that has a name attribute
of Model. Now, the children of the Model node specify the accepted child nodes of the root node in
pom.xml files. Each child of the Model node may define a type attribute, which can be classified
into three categories - primitive type, link to other complex type and none. We can identify the
primitive nature of the type attribute by validating if it starts with xs:. The most common primitive
type in the schema file is xs:string. The primitive type attributes specify the data type of the
accepted children of the node, in which they must be represented as text of the appropriate data
format and not contain any additional children. When the type attribute exists and does not start
with xs: it is a link to other complex type. Similar to how we navigated to the Model node from
the project node, i.e., using the name of the type attribute, we can navigate from a link to other
complex type node to the associated complex type node by directly examining the children of the
root node of the schema document to find the child that has the same name as the type attribute of
the link to the other complex type node. Now, the children of the linked complex type node provide
in turn the specification of that XML element in the pom.xml file, and can further be navigated
with the type attributes. When the type attribute does not exist in the child node, it belongs to the
none category of type attributes. Nodes with type attributes belonging to the none category can
only have one possible child and define it in the schema file as a child complex type node. The
complex type node can define potential children, and their information can be found by navigating
recursively based on its type attribute categories as elaborated above.

There are two additional attributes in the schema file that are used in the pom.xml weaving al-
gorithm, namely maxOccurs and processContents. These attributes are used to find the appropriate
level within the XML tree to merge nodes belonging to the same XML element. The maxOccurs
attribute determines the multiplicity of a XML element in a pom.xml file, i.e., how many times
that XML element can occur in the file. The default value for maxOccurs is one, but it can also
be unbounded. For the purpose of merging two XML elements, we find the corresponding schema
node in which the maxOccurs attribute is unbounded to combine the nodes at this particular level.
In the schema file, similarly, the processContents attribute determines the validation process for a
particular XML element in the input pom.xml file. In particular, when the value of the process-

58

https://maven.apache.org/xsd/maven-4.0.0.xsd
https://maven.apache.org/xsd/maven-4.0.0.xsd

8.2 pom.xml Weaving Algorithm

Contents attribute is skip, the contents of this particular node and its children are arbitrary. Thus,
schema nodes that contain the processContents attribute of skip are also an appropriate level to
combine nodes.

Initially, the implementation of the pom.xml weaving algorithm retrieves the pom.xml schema
file online from the Apache server. However, in order to maintain the offline modelling features
in TouchCORE, the schema file, namely maven-4.0.0.xsd, is now downloaded and integrated as a
resource in order to support the offline functionalities.

8.2 pom.xml Weaving Algorithm
The main pom.xml weaving algorithm is illustrated in Algorithm 8.1. With the Java built-in Docu-
ment Object Model (DOM) Application Programming Interface (API), we can parse XML files as
a tree data structure which represents XML elements as tree nodes. Similarly, the DOM API can
be used to export a Document object to a file on the file system. For the main pom.xml weaving
algorithm, we extract the direct children of the root project nodes of the input pom.xml files as
a list and sort them with a variation of the classical merge sort algorithm as illustrated in Algo-
rithm 8.2. Next, the two sorted lists are woven together into one merged list during the merge step
of the algorithm by directly appending nodes that exist only in one of the lists, and by creating a
merged node for elements that occur in both lists. We construct an empty Document object with the
function createEmptyDocument and create the default root project node with createRootMavenN-
ode. The root project node defines the fundamental properties including xmlns, xmlns:xsi and
xsi:schemaLocation. We define xmlns as https://maven-apache.org/POM/4.0.0 to elaborate the de-
fault namespace declaration. Similarly, we initialize xmlns:xsi as http://www.w3.org/2001/XMLSchema-
instance to obtain the XML Schema Instance namespace and specify xsi:schemaLocation as http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd to provide a link from the namespace to the location
of the associated XML schema. Finally, each node in the woven list is appended to the newly
created project node and the new Document object is written to the disk as the output pom.xml
file.

Algorithm 8.2 presents the main XML weaving algorithm. It is based on the merge sort algo-
rithm, i.e., it sorts and merges the lists of the direct children of the root project node. The merge
function retrieves numerical priority values from the pom.xml schema file with getPriorityValue-
FromPomXmlSchema to compare element nodes. The function getPriorityValueFromPomXmlSchema
parses the schema file to locate the children of the Model complex type node, which specifies the
accepted children of the project root node in pom.xml files. The priority value is assigned by the
indices of each child of the Model complex type node that determines the ordering of the XML
elements with the XML schema. When the priority values are equal, we combine the two element

59

8.2 pom.xml Weaving Algorithm

Algorithm 8.1 pom.xml Weaving - Main Algorithm
1: function WEAVETWOXMLFILES(fileLocationOne, fileLocationTwo,wovenFileLocation)
2: documentOne Ð PARSEXMLFROMDISKTODOCUMENTpfileLocationOneq
3: documentTwo Ð PARSEXMLFROMDISKTODOCUMENTpfileLocationTwoq
4: rootNodeOne Ð documentOne.documentElement
5: rootNodeTwo Ð documentTwo.documentElement
6: elementNodesOne Ð empty array
7: elementNodesTwo Ð empty array
8: for childNode in rootNodeOne.children do
9: if childNode is ElementNode then

10: add childNode to elementNodesOne
11: end if
12: end for
13: for childNode in rootNodeTwo.children do
14: if childNode is ElementNode then
15: add childNode to elementNodesTwo
16: end if
17: end for
18: sortedElementNodesOne Ð MERGESORTpelementNodesOneq
19: sortedElementNodesTwo Ð MERGESORTpelementNodesTwoq
20: sortedAndMergedElementNodes Ð MERGEpsortedElementNodesOne, sortedElementNodesTwo)
21: wovenDocument Ð CREATEEMPTYDOCUMENT
22: wovenDocumentRootNode Ð CREATEROOTMAVENNODEpwovenDocumentq
23: for elementNode in sortedAndMergedElementNodes do
24: append child elementNode to wovenDocumentRootNode
25: end for
26: append child wovenDocumentRootNode to wovenDocument
27: WRITEDOCUMENTTODISKASXMLpwovenDocument, wovenFileLocationq
28: end function

60

8.2 pom.xml Weaving Algorithm

nodes into a singular node and use the resulting node in the sorting algorithm in the merge func-
tion. We implemented the merge sort algorithm in order to reuse the merge function after both
input pom.xml documents are sorted. This can be illustrated in Algorithm 8.1 in line 20.

Algorithm 8.3 provides the pseudocode for merging two XML elements with equal priority
values. It takes two element nodes as input. We first validate the first element node with the
schema document with isNodePrimitiveTypeAndMaxOccursIsOne. This function navigates to the
node definition of the input element node in the schema document and verifies the type and max-
Occurs attributes of the schema node definition. When the type attribute is of primtitive type, i.e.
it starts with xs:, and has a maxOccurs attribute of one, the schema node definition specifies that
the result can only contain one primitive type child, which itself can only contain text and no re-
cursive children. In this particular case, we keep the element node that was passed as the second
parameter (and hence discard the first element node) since the second parameter will always be
from the more specific pom.xml file. In our case this will be the technology-specific pom.xml
file, hence we prioritize its specifications over the generic pom.xml. In the case when the schema
node definition does not have a primitive type type attribute or maxOccurs of one, we determine
the appropriate tree level to merge the two input nodes with the function findCommonMergeNodes.
When commonMergeNodes exist, we can combine the input nodes by directly appending the chil-
dren of commonMergeNodeTwo to commonMergeNodeOne and return the merged node. On the
other hand, when commonMergeNodes does not exist, we simply return the second technology-
specific node as the default behaviour.

Algorithm 8.4 illustrates a recursive algorithm to find the appropriate tree level to merge two
XML element nodes based on the pom.xml schema file. We call the function validateMergeN-
odesWithSchema to verify if our current nodes can be used for the purposes of merging. In partic-
ular, validateMergeNodesWithSchema has three possible responses including ContinueRecursing,
FoundMergeNodes and MergeNodesDNE (Merge Nodes Do Not Exist). In the case of Contin-
ueRecursing, we ensure that both of the input nodes only have a singular element node as a child
with equal names, and recursively call the findCommonMergeNodes function with the child nodes.
The structure of XML elements in the pom.xml files is defined in which the top-level nodes
only contain a singular element node as a child, whereas one of the lower-level nodes includes
an unbounded amount of children. Correspondingly, we merge the input element nodes at the
unbounded level. When the response from the schema validator is FoundMergeNodes, we simply
return the current element node parameters as they are at the correct level for merging. Otherwise,
when the response is MergeNodesDNE, we cannot perform the merge operation and return null.

Algorithm 8.5 provides validation of the current iterated element nodes for merging with the
pom.xml schema file. In the schema document, we initialize the starting point for schema parsing

61

8.2 pom.xml Weaving Algorithm

Algorithm 8.2 pom.xml Weaving - Merge Sort Algorithm
1: function MERGESORT(elementNodes)
2: elementNodesOne Ð first half partition of elementNodes
3: elementNodesTwo Ð second half partition of elementNodes
4: elementNodesOne Ð MERGESORTpelementNodesOneq
5: elementNodesTwo Ð MERGESORTpelementNodesTwoq
6: return MERGEpelementNodesOne, elementNodesTwo)
7: end function

8: function MERGE(elementNodesOne, elementNodesTwo)
9: indexArrayOne, indexArrayTwo Ð 0

10: mergedElementNodes Ð empty array
11: while indexArrayOne < elementNodesOne.size and indexArrayTwo < elementNodesTwo.size do
12: elementNodeOne Ð elementNodesrindexArrayOnes
13: elementNodeTwo Ð elementNodesrindexArrayTwos
14: priorityOne Ð GETPRIORITYVALUEFROMPOMXMLSCHEMApelementNodeOneq
15: priorityTwo Ð GETPRIORITYVALUEFROMPOMXMLSCHEMApelementNodeTwoq
16: if priorityOne < priorityTwo then
17: add elementNodeOne to mergedElementNodes
18: indexArrayOne Ð indexArrayOne + 1
19: else if priorityOne > priorityTwo then
20: add elementNodeTwo to mergedElementNodes
21: indexArrayTwo Ð indexArrayTwo + 1
22: else
23: mergedElementNode Ð MERGEELEMENTNODESpelementNodeOne, elementNodeTwoq
24: add mergedElementNode to mergedElementNodes
25: indexArrayOne Ð indexArrayOne + 1
26: indexArrayTwo Ð indexArrayTwo + 1
27: end if
28: end while
29: while indexArrayOne < elementNodesOne.size do
30: add elementNodeOnerindexArrayOnes to mergedElementNodes
31: indexArrayOne Ð indexArrayOne + 1
32: end while
33: while indexArrayTwo < elementNodesTwo.size do
34: add elementNodeTworindexArrayTwos to mergedElementNodes
35: indexArrayTwo Ð indexArrayTwo + 1
36: end while
37: return mergedElementNodes
38: end function

62

8.2 pom.xml Weaving Algorithm

Algorithm 8.3 pom.xml Weaving - Merge Element Nodes Algorithm
1: function MERGEELEMENTNODES(elementNodeOne, elementNodeTwo)
2: if ISNODEPRIMITIVETYPEANDMAXOCCURSISONE(elementNodeOne) then
3: return elementNodeTwo
4: else
5: nodeNamesList Ð empty list
6: commonMergeNodes Ð FINDCOMMONMERGENODESpelementNodeOne, elementNodeTwo, nodeNamesListq
7: if commonMergeNodes is not null then
8: commonMergeNodeOne Ð commonMergeNode[0]
9: commonMergeNodeTwo Ð commonMergeNode[1]

10: mergedNode Ð elementNodeOne
11: for node in elementNodeTwo.children do
12: if node is ElementNode then
13: if commonMergeNodeOne not contains node then
14: append child node to commonMergeNodeOne
15: end if
16: end if
17: end for
18: return mergedNode
19: else
20: return elementNodeTwo
21: end if
22: end if
23: end function

Algorithm 8.4 pom.xml Weaving - Find Common Merge Node Algorithm
1: function FINDCOMMONMERGENODES(elementNodeOne, elementNodeTwo, nodeNamesList)
2: add elementNodeOne.nodeName to nodeNamesList
3: mergeNodesResponse Ð VALIDATEMERGENODESWITHSCHEMApelementNodeOne,

elementNodeTwo, nodeNamesListq
4: if mergeNodesResponse is ContinueRecursing then
5: if NUMOFELEMENTNODECHILDREN(elementNodeOne) is 1 and NUMOFELEMENTNODECHIL-

DREN(elementNodeTwo) is 1 and elementNodeOne.nodeName is elementNodeTwo.nodeName then
6: newElementNodeOne Ð GETFIRSTELEMENTNODECHILDpelementNodeOneq
7: newElementNodeTwo Ð GETFIRSTELEMENTNODECHILDpelementNodeTwoq
8: return FINDCOMMONMERGENODES(newElementNodeOne, newElementNodeTwo,

nodeNamesList)
9: end if

10: else if mergeNodesResponse is FoundMergeNodes then
11: nodeList Ð new array with elementNodeOne, elementNodeTwo
12: return nodeList
13: end if
14: return null
15: end function

63

8.3 Example with Generated BookStore pom.xml Files

at the Model complex type node with the function getSchemaAcceptedNodesChild. The follow-
ing for loop iterates through the nodeNamesList to streamline the navigation to the schema node
definition for the input element nodes. The navigation process is performed by first initializing
currentSchemaNode to the associated child of the Model complex type node as specified by the
first name in nodeNamesList and and then navigating by finding the link to other complex type
nodes with the type attribute. Now, we find the typeAttributeCategory of the currentSchemaNode
to verify if the schema node definition validates merging at this particular level. When the typeAt-
tributeCategory is None, the inner schema node provides the definition of the corresponding XML
element in pom.xml implementations. We can find the commonChildNodeName with the function
findCommonChildNodeName, which attempts to identify a unified name among all of the children
of the two input nodes. If the commonChildNodeName exists, we can verify if the maxOccurs
attribute of the inner node definition is unbounded, in which case, the input nodes are at the correct
level to merge and return FoundMergeNodes. On the other hand, if the commonChildNodeName
does not exist, the input nodes are at the correct level to merge, and we return FoundMergeNodes if
the processContents attribute of the only inner node definition is skip and the maxOccurs attribute
is unbounded. When the processContents attribute is skip, there are no rules in the schema node
definition for its children in pom.xml implementations, in which they can be any arbitrary ele-
ment node. Thus, we can merge the input nodes when the processContents attribute is skip and the
maxOccurs attribute is unbounded. When the typeAttributeCategory is LinkToOtherComplexType,
we return ContinueRecursing if the maxOccurs attribute of the currentSchemaNode is one, since
the current input nodes are not at the merging level, but their children can be. Finally, the default
behaviour for the function validateMergeNodesWithSchema returns MergeNodesDNE.

8.3 Example with Generated BookStore pom.xml Files
To illustrate our pom.xml weaving algorithm we present in this section an example where we
merge the generated BookStore pom.xml files when the Eclipse Jersey feature is selected in the
RESTify concern. The generic pom.xml file produced by the RAM to Maven/Java Code Trans-
formation presented in Section 7.4 is shown in Figure 8.1. The generic pom.xml defines the
following XML elements as children to the project root node: modelVersion, groupId, artifactId,
version, packaging, properties and dependencies. Similarly, the technology specific Eclipse Jersey
pom.xml file generated by the Eclipse Jersey pom.xml Generation Transformation presented in
Section 7.7 is shown in Figure 8.2 and defines the following XML elements as children to the
project root node - packaging, properties, dependencies and build. The two pom.xml files are al-
ready well-structured and in the correct order according to the pom.xml schema. During execution
of the pom.xml weaving algorithm, we merge the packaging, properties and dependencies nodes.

64

8.3 Example with Generated BookStore pom.xml Files

Algorithm 8.5 pom.xml Weaving - Validate Common Merge Node with pom.xml Schema Algo-
rithm

1: function VALIDATEMERGENODESWITHSCHEMA(elementNodeOne, elementNodeTwo, nodeNamesList)
2: currentSchemaNode Ð null
3: schemaAcceptedNodesChild Ð GETSCHEMAACCEPTEDNODESCHILD
4: for i Ð to 0,nodeNamesList.size do
5: nodeName Ð nodeNamesList[i]
6: if i is 0 then
7: currentSchemaNode Ð GETCHILDBYNAMEATTRIBUTEpschemaAcceptedNodesChild, nodeNameq
8: else
9: if currentSchemaNode Ð is not null then

10: typeAttribute Ð GETTYPEATTRIBUTEpcurrentSchemaNodeq
11: typeAttributeCategory Ð GETTYPEATTRIBUTECATEGORYptypeAttributeq
12: if typeAttributeCategory is LinkToOtherComplexType then
13: currentSchemaNode Ð GETCOMPLEXTYPENODEBYATTRIBUTENAMEptypeAttributeq
14: if currentSchemaNode is not null then
15: currentSchemaNode Ð GETCHILDBYNAMEATTRIBUTEpschemaAcceptedNodesChild, nodeNameq
16: end if
17: end if
18: end if
19: end if
20: end for
21: if currentSchemaNode is not null then
22: typeAttribute Ð GETTYPEATTRIBUTEpcurrentSchemaNodeq
23: typeAttributeCategory Ð GETTYPEATTRIBUTECATEGORYptypeAttributeq
24: if typeAttributeCategory is None then
25: commonChildNodeName Ð FINDCOMMONCHILDNODENAMEpelementNodeOne, elementNodeTwoq
26: if commonChildNodeName is not empty then
27: innerNodeDefinition Ð GETINNERNODEDEFINITIONOFpcurrentSchemaNode,

commonChildNodeNameq
28: if innerNodeDefinition is not null then
29: if GETMAXOCCURSATTRIBUTEpinnerNodeDefinitionq is "unbounded" then
30: return FoundMergeNodes
31: end if
32: end if
33: else
34: innerNodeDefinition Ð GETONLYINNERNODEDEFINITIONOFpcurrentSchemaNodeq
35: if innerNodeDefinition is not null then
36: if GETPROCESSCONTENTSATTRIBUTEpinnerNodeDefinitionq is "skip" and

GETMAXOCCURSATTRIBUTEpinnerNodeDefinitionq is "unbounded" then
37: return FoundMergeNodes
38: end if
39: end if
40: end if
41: else if typeAttributeCategory is LinkToOtherComplexType then
42: if GETMAXOCCURSATTRIBUTE(currentSchemaNode) is 1 then
43: return ContinueRecursing
44: end if
45: end if
46: end if
47: return MergeNodesDNE
48: end function

65

8.3 Example with Generated BookStore pom.xml Files

The Eclipse Jersey pom.xml file contains more specific information than the generic pom.xml
file. Because we want the algorithm to favour information from Eclipse Jersey over the generic
information, we pass the generic pom.xml as the first argument and the Eclipse Jersey pom.xml
as a second argument to the weaver. The resulting woven pom.xml file is visualized in Figure
8.3.

The packaging schema definition has a type attribute of xs:string and a maxOccurs attribute of
one. Since there can only exist a singular child of string type for packaging, the algorithm chooses
the one from the second file, in our case the Eclipse Jersey pom.xml, which has the value war.
Therefore, the packaging node from the Eclipse Jersey pom.xml file is prioritized and used in the
woven pom.xml output.

The properties schema definition does not define a type attribute, thus it has a type attribute
category of none. When the type atrribute category is none, the schema node provides its inner
node definition as a child. We can validate that the inner node definition has a processContents
attribute of skip and a maxOccurs attribute of unbounded. Thus, we can merge at the properties
node level in which the properties node in the woven pom.xml file contains properties nodes
from both the generic and Eclipse Jersey pom.xml files.

The dependencies schema definition does not define a type attribute and has a type attribute
category of none. In the case of the dependencies schema node, it contains an inner node definition
as a child with the name attribute dependency. Now, the maxOccurs attribute of the dependency
schema node is unbounded, thus we can merge at the dependencies node level. Therefore, the
dependencies node from the woven pom.xml output file contains dependency nodes from both
the generic and Eclipse Jersey pom.xml files.

The other nodes that only occur in one of the input pom.xml files are appended in the appro-
priate order, as shown in the woven pom.xml file in Figure 8.3. The woven pom.xml file has
the name pom.xml so that it can be used for the Maven build lifecycle for the generated RESTful
web service application.

The complete generic, technology-specific, and woven pom.xml files for all supported REST
frameworks: Spring Boot, Eclipse Jersey, JBoss RESTEasy, and Apache CXF can be seen in the
Appendix. The generic pom.xml is seen in Figure 8.1 and is reused as an input for the remaining
weaving transformations. For Spring Boot, the technology-specific pom.xml is in Figure C.2,
and the woven pom.xml is in Figure C.3. We have already illustrated the technology-specific,
and woven pom.xml files for Eclipse Jersey in the above example. For JBoss RESTEasy, the
technology-specific pom.xml is in Figure C.6, and the woven pom.xml is in Figure C.7. For
Apache CXF, the technology-specific pom.xml is in Figure C.8, and the woven pom.xml is in
Figure C.9.

66

8.3 Example with Generated BookStore pom.xml Files

Figure 8.1: Generic pom.xml for BookStore Concern

67

8.3 Example with Generated BookStore pom.xml Files

Figure 8.2: Eclipse Jersey pom.xml for BookStore Concern

68

8.3 Example with Generated BookStore pom.xml Files

Figure 8.3: Woven pom.xml for BookStore Concern

69

9
Related Work

In recent years, there has been an increasing interest for model-driven engineering solutions for
RESTful web services. To the best of our knowledge, there has not been a model-driven engineer-
ing approach that incorporates CORE to provide a modelling interface and transformation pipeline
to output a fully functional and ready-to-deploy RESTful web service based on one of the sup-
ported REST implementations, namely Spring Boot, Eclipse Jersey, JBoss RESTEasy, and Apache
CXF. However, there has been significant work in model-driven approaches to express REST with
modelling languages and generation of RESTful web services with transformation pipelines. In
this chapter, we elaborate these areas of research and explain the differences with our approach.

9.1 Expressing REST with Modelling Languages
Schreier [Sch11] presents the first version of a REST metamodel to enable modelling and offer a
vocabulary for REST in practice and the basis for model-driven development. Their REST meta-
model can be divided into structural and behavioural parts. Structural modelling describes the
possible resource types, their attributes, and relations as well as their interface and representations.
Representations specify the payload format of the data received and sent by the server. In their
proposed structural model, they define the root model element as ResourceElement which includes
a list of resources, uniquely identified by a complete resource URI with a single model element,
the enumerated HTTP request methods, their input and output payload formats, and the associated
attributes and parameters. Behavioural modelling offers the possibility to describe the behaviour of
the REST interface with deterministic finite-state machines. This offers the possibility to represent
the current resource state and to define how a resource reacts to a certain request. A limitation to
behavioural modelling is that it does not support modelling representation details, which is planned
for future versions.

The work of Schreier [Sch11] introduces representations in the structural model to represent
the input and output payload formats, in our RESTify approach, we do not model payload formats

70

9.1 Expressing REST with Modelling Languages

in the ResTL metamodel. Instead, we assume that JSON is the desired data format and generate
JSON specifications in the resulting RESTful web service. Schreier models resource URIs with
a single model element to capture the entire URI, whereas we separate the entire URI into frag-
ments in the ResTL metamodel separated by the forward slash symbol with a tree data structure.
The advantage of our approach is that it provides a more intuitive method to visualize and design a
REST resource tree. Furthermore, it provides a concrete method to establish links between individ-
ual DynamicFragments and Parameters in the generic split view, as opposed to Schreier’s method
of directly associating the complete URI to multiple parameters. Finally, we do not model the
behaviour of REST resources in the REST metamodel as Schierer’s behavioural model with deter-
ministic finite-state machines. Instead, we delegate the behaviour to the UML sequence diagrams
defined in the RAM metamodel.

Porres and Rauf [PR11] incorporate UML class and protocol diagrams to model the structural
and behavioural interface of RESTful web services respectively. The UML class diagram illus-
trates a conceptual resource model to show different resources and how they can be addressed.
The class diagram describes the composition of the RESTful web service domain with classes,
attributes, and operations and defines the REST URI resource paths by enumerating the static
or dynamic fragments in the association (between classes) names. The UML protocol diagram
depicts a behavioural model to specify how the service should be used by showing the order of
method invocations and the conditions on these methods. The protocol diagram specifies the exact
HTTP request method for a given REST resource URI and elaborate its behaviour. The UML class
and protocol diagrams can be used together to generate a contract in the form of preconditions
and postconditions for methods of an interface. The generated contracts can be included in a Web
App Description Language (WADL) interface specification to enrich its behaviour. The resulting
service is RESTful by construction.

The work of Porres and Rauf [PR11] separates the resource URI in UML class diagrams, and
HTTP request methods in UML protocol diagrams. A limitation with this approach is that it can
confusing to contain REST resource URIs in a structural model (UML class diagram), similarly
with HTTP request methods in a behavioural model (UML protocol diagram). This violates the
principles of separation of concerns and loose coupling. Our approach differs from their approach
by defining our own domain-specific modelling language, namely ResTL, to describe the REST
resource interface (including both URI resource paths and HTTP request methods) with a tree data
structure. Furthermore, we incorporate the RAM model to describe only the structural aspects
of the original input software system and provide a method of connection between the RAM and
ResTL models with mappings in the generic split view.

Schroth [Sch13] proposes RESTModelling, which combines REST and Model-Driven Soft-

71

9.1 Expressing REST with Modelling Languages

ware Development (MDSD). The huge benefit from combining these two technologies is that con-
straints which have to be followed by the developers can now be fulfilled by correct and formal
model definitions as well as the predefined model-to-model translations. In case a model is valid
for a transformation, we can assume that the outcome is as RESTful as the transformation process
alters it. The platform independent and platform specific modelling languages introduced in his
thesis are realized with Ecore from Eclipse Eugenia. RESTModelling includes several metamod-
els, including domain, gen, resource, deployment, JAX-RS and HTML doc. The domain model
captures the objects of the domain of the RESTful web service. The gen model is a domain model
enhanced with user input which will be transformed into the resource model. Thus, there is no di-
rect transformation between domain and resource model. The resource model enumerates a list of
named resources in which each resource contains methods to define specific HTTP request method,
media type, and return type properties and parameters to specify HTTP parameters. The deploy-
ment model provides a generic basis for the URI structure of the application interface by mapping
resources to a single user specific link. The platform specific models including JAX-RS and HTML
doc models are required for transformations of the application abstraction models into a specific
desired piece of code. Schroth’s approach incorporates these models to execute transformations to
generate a complete HTML documentation and several JAX-RS stubs that can be incorporated as a
basis for a RESTful web service. Petersohn [Pet14] faces the conceptional issues when modelling
and generating a RESTful web service with the existing RESTModelling approach from Schroth
[Sch13]. Petersohn extends the platform independent models including domain, resource, and de-
ployment models and the platform specific models including JAX-RS and HTML doc models by
introducing new model elements to provide a more accurate method of modelling them.

The proposed RESTModelling models by Schroth [Sch13] separates different aspects of the
REST endpoint in two models, namely resource and deployment models. The resource model
contains the HTTP request methods, while the deployment model maps resources to specific URIs.
In our RESTify approach, we provide the ResTL modelling language to express REST resource
endpoints and contains model elements for both HTTP request methods and URI fragments. It is
important to note that we partition the REST resource URI paths into static and dynamic fragments
by the forward slash character, resulting in a tree data structure, as opposed to modelling resource
URIs as a single model element in RESTModelling. The benefit of partitioning URI paths is that
it provides a clear connection between DynamicFragments and Parameters in the generic split
view. RESTModelling specifies various input and output payload data formats in the resource
model, where in the RESTify approach, we always assume that the data format is in JSON and
generate encoding and decoding functionalities based on that assumption. The generated output of
RESTModelling include a complete HTML documentation of the RESTful web service and JAX-

72

9.1 Expressing REST with Modelling Languages

RS stubs that need to be integrated to execute correctly. On the other hand, RESTify generates
the complete source code of the RESTful web service that can simply just run. Furthermore , we
support the generation of three JAX-RS implementations as well, including Eclipse Jersey, JBoss
RESTEasy, and Apache CXF.

Kharisma and Mardiyanto [KM20] introduce a text-based modelling language, namely BeREST,
for application development with the REST architectural style. The grammar-based implementa-
tion of the BeREST language is based on the Xtext development environment https://www.
eclipse.org/Xtext/. The BeREST metamodel identifies a resource with complete URI
identifiers, HTTP request method types and various payload representation formats. Furthermore,
the authors illustrate the code generation functionality for BeREST, namely BeRESTDB, which
is essentially BeREST with a specialization for executing CRUD-based operations over a REST
interface on a relational database. The target language of the code generator is Sinatra, a domain
specific language implemented in Ruby that is used for writing web applications. Essentially, Sina-
tra provides pre-written methods that developers can include in their applications to turn them into
Ruby web applications. The challenge to this approach lies in the code generator in the behavioural
modelling aspect, especially the business logic since it is very difficult to generalize the various
business logic at a high level of abstraction.

The BeREST metamodel proposed by Kharisma and Mardiyanto [KM20] incorporates com-
plete URI identifiers for resource URIs. In our ResTL metamodel, we use fragments of the URI to
separate each segment by the forward slash character and distinguish the static and dynamic frag-
ments. A limitation to the BeREST metamodel is that it does not provide parameters associated
with the URI identifiers, thus the dynamic fragments are simply wildcards, and its contents are not
captured in the application. In our RESTify approach, we can establish mappings between Dy-
namicFragments and Parameters in the generic split view. The BeREST metamodel includes the
PATCH HTTP request method whereas the ResTL metamodel does not. A PATCH request speci-
fies a set of instructions on how to modify a resource. This is not included in the ResTL metamodel
because this behaviour is similar to the more commonly used PUT request method which simply
updates the current resource with the request payload. The BeREST metamodel payload represen-
tation formats, whereas the RESTify approach assumes that JSON is the most commonly used data
format and uses it in the generated RESTful web service. Another limitation with their approach
is that their modelling abstract level is too high, thus the code generation is difficult to implement.
With RESTify, we elaborate the business logic of the application to the UML sequence diagram
in RAM models, where a message corresponds to a single line of code, thus making it easier to
implement the Java code generator.

Laitkorpi et al. [LSS09] propose a model-driven process with a series of model transformations

73

https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/

9.1 Expressing REST with Modelling Languages

to design RESTful web services. The proposed process is partitioned into five phases, including
analysis, behavioural canonicalization, structural canonicalization, service translation, and code
generation. During analysis, a functional specification is elaborated between a client and the
service with top-level interactions expressed as UML sequence diagrams. The analysis models
additionally contain two inter-linked views on the problem domain, namely business state of the
service and the high-level classes representing the domain vocabulary. Behavioural canonical-
ization breaks down the functional specification, harvests relevant pieces of state information and
their relationships, and selects uniform operation primitives to manipulate the state information,
comprising an information model. Structural canonicalization transforms the information model
into a resource model by introducing externally accessible entities as a resource abstraction layer
based on the state information content harvested in the previous phase. Service translation gen-
erates the final resource hierarchy and other technical aspects by using the semantics of the target
architecture, resulting in a service specification. Code generation transforms the service specifi-
cation into various software artifacts for service providers and consumers. The authors currently
assume that the service specification is in a machine processable form and did not provide a code
generator.

Since Laitkorpi et al. [LSS09] do not provide the metamodel for their proposed resource model
to represent REST resource endpoints in their paper, we cannot compare our ResTL metamodel
with it. However, their proposed process to design RESTful web services with the five phases is
completely different from our RESTify approach. The objective of their method is to design the
architecture of a RESTful web service from scratch. On the contrary, the objective of RESTify is
to extend an existing software system with MDE and CORE techniques to a functional and ready-
to-deploy RESTful web service. In our RESTify approach, the design of the RESTful web service
is done by constructing a ResTL model, and inter-model mappings between the RAM and ResTL
models.

Kenzi and Yakine [KY21] propose a model-driven framework for the design and development
of highly adaptable RESTful services. The core building blocks of this framework is a Unified
Modelling Language profile called RESTVSoaML, and its associated tool support RESTVSoaML-
Tool. RESTVSoaML aims the modelling of adaptable Restful Web services regardless of standards
and implementation platforms. The RESTVSoaML metamodel specify a particular REST endpoint
with a single model element which encompasses both the complete path of the resource URI as a
String and a specific HTTP request method. Now the REST endpoint model element can be as-
sociated with numerous parameters. Furthermore, the metamodel specifies the accepted input and
output data formats for payloads. RESTVSoamLTool is an MDD tool that enables the generation
of code by using a model transformation language, from high level models defined with RESTV-

74

9.1 Expressing REST with Modelling Languages

SoaML. In particular, it permits the generation of the description of each RESTFUL service and
its implementation as WADL descriptions.

The RESTVSoaML metamodel proposed by Kenzi and Yakine [KY21] uses a single model ele-
ment to represent a REST endpoint. The limitations of this approach are that the same resource URI
path can be duplicated unnecessarily for REST endpoints with a different HTTP request method
and using the complete resource URI path as an identifier in the model element can make it diffi-
cult to match the associated parameters to the dynamic sections of the URI path. In our RESTify
approach, we provide a ResTL model to partition resource URI paths by the forward slash sym-
bol into static or dynamic fragments. With individual fragments of resource URI paths, we can
distinctly map DynamicFragments to Parameters in the generic split view. The RESTVSoaML
metamodel provides a model element to specify input and output payload formats separately, how-
ever, in our ResTL metamodel, we assume the payload format is JSON and generate source code
based on JSON encoding and decoding. Their approach generates WADL descriptions with the
RESTVSoamLTool, whereas in our RESTify approach, we can generate the source code for a
complete and ready-to-deploy RESTful web service.

Deljouyi and Ramsin [DR22] propose a model-driven methodology named MDD4REST, for
developing RESTful web services. Modelling levels and model transformation rules are precisely
defined in MDD4REST, and Domain-Driven Design (DDD) is applied for producing the domain
model. MDD4REST is comprehensive in which it provides a multi-level modelling framework
along with a process for applying it. MDD4REST provides an effective method for designing
RESTful web services using modelling languages and supports automatic code generation through
transformation of models. In addition, MDD4REST has the capability to support modern web
architectures and patterns, such as Microservice, Event-Driven, and CQRS. Transformation rules
are implemented to generate the models to ensure that the transitions between modelling levels are
smooth and trouble-free.

The paper by Deljouyi and Ramsin [DR22] does not illustrate the MDD4REST metamodels,
thus we cannot compare it with our proposed ResTL metamodel. However, MDD4REST aims to
use Model-Driven Development (MDD) and Domain-Driven Design (DDD) to provide automatic
code generation for repetitive and trivial tasks. The generated code is not complete and need to
be integrated as snippets during development. Our proposed RESTify approach incorporates MDE
and CORE to extend an existing software system to a fully functional and ready-to-deploy RESTful
web service.

Tavares and Vale [TV13] propose a model-driven approach for the development of seman-
tic RESTful web services, which provides semantic descriptions for these services rather than the
complete source code, by raising the development abstraction level, providing language-independent

75

9.2 Model-Driven Code Generation Transformations of RESTful Web Services

metamodels of services and semantic resources, and incorporating model transformations to de-
velop interoperable complex services. The proposed RESTful Semantic Web Service (WSSR)
metamodel abstracts platform-specific details and annotation formats by including only the impor-
tant features that describe RESTful web services. To elaborate, the WSSR metamodel specifies the
REST resource URIs with single model elements, describes their possible HTTP request method
endpoints, mapped variables, and HTTP response status codes. With mapping and transformation
rules, instances of the WSSR metamodel can generate semantic RESTful web services with WADL
and OWL files.

Our proposed REST domain-specific modelling language, ResTL, differs from the WSSR
metamodel proposed by Tavares and Value [TV13] by partitioning the REST resource URIs by
forward slash symbols in a tree data structure. Thus, our approach allows concrete mappings be-
tween DynamicFragments and Parameters with the generic split view as opposed to the WSSR
metamodel, which maps a complete resource URI to multiple parameters. The ResTL metamodel
does not specify HTTP response status codes as the WSSR metamodel does, however, the gener-
ated RESTful web service will return appropriate HTTP response codes based on the correctness
of the HTTP request. Finally, the RESTify approach incorporates CORE and MDE to generate
the complete source code of a functional and ready-to-deploy RESTful web service, while their
approach generates the semantic descriptions of these services.

9.2 Model-Driven Code Generation Transformations of REST-
ful Web Services

Gonçalves [Gon18] introduces a engineering solution, based on MDE techniques, specifically
DSLs, to take as input the structural and behavioural aspects of the business domain, and gen-
erate the associated RESTful web services, while being compliant with the most recent version of
the OpenAPI specification. To summarize all of the components developed in the context of this
work, two DSLs were developed, one focused on the resource definition and another in the Ope-
nAPI specification; a reference implementation was built to support the code generation process,
providing a code base from which the templates used in the Xtend were extracted; the generated
outcome is a combination between the generated code and a base application, where the main
methods are materialized and from which the generated code extends and overrides their imple-
mentations, assuring a better maintenance and promoting code reuse along the different layers.

Hernandez-Mendez et al. [HMSM18] presents a model-driven approach for the consump-
tion of RESTful web services in Single-Page Applications (SPAs) by introducing a Query Service
metamodel and providing a tool to semi-automatically generate a SPA based on their reference
architecture. SPAs support relevant processes in enterprises and are not limited to show static

76

9.2 Model-Driven Code Generation Transformations of RESTful Web Services

information to users. The architecture of SPAs has changed from a one-to-one communication
between client and server to a client querying information from multiple servers using RESTful
APIs in a microservice architecture. The generated web service handles the access to APIs and
reduces the complexity of the SPA due to the shift of responsibility away from the client.

Ed-douibi et al. [HCIG�16] proposes EMF-REST, an approach that leverages on MDE tech-
niques to generate RESTful Web API from EMF models, thus promoting model management in
distributed environments. The generated RESTful Web API relies on well-known libraries in-
cluding JAX-RS, Context and Dependency Injection (CDI), and Enterprise Java Bean (EJB) and
standards with the aim of facilitating its understanding and maintainability. EMF-REST provides
a direct mapping to access data models by means of web services following the REST principles.
Furthermore, EMF-REST takes advantage of model and web-specific features such as validation
and security respectively.

Fischer [Fis15] addresses the generation of source code for applications compliant to the con-
straints of REST by incorporating the formal model to fully describe a REST API by the work
of Haupt et al. [HKLS14]. The main contribution of the thesis is the development of a platform-
specific model to generate REST compliant code using the Dropwizard (8.1.3) framework. A
reference application is developed to identify programming patterns that could serve as a tem-
plate for the resulting Java classes and derive a platform-specific model covering all the aspects
that fully describe a Dropwizard application. The platform-specific model and generation of code
can be used independently from the existing modelling tool. The existing modelling tool is in-
tegrated by developing model transformations that use the resource and deployment models as
input and transforms them into platform-specific models. The modelling tool is implemented with
the Eclipse Modelling Framework, Eclipse Epsilon, and the Graphical Modelling Framework, the
model transformations are realized with the Eclipse Transformation Language, and the generator
is written with Xtend and added to the modelling tool as a plugin.

Hussein et al. [HZS20] presents a model-based approach with a framework named REST API
Auto-Generation (RAAG) that can automatically build REST APIs. The RAAG framework reuses
the following platforms and technologies in a unified and decouple way. The framework integrates
these packages as one infrastructure with plugins inside the STS Eclipse IDE, including Spring
Framework, Hibernate ORM, Jackson Object Mapper, Springsource Tool Suite (STS), Eclipse
Data Tools Platform (DTP), Apache Maven, and JBoss Hibernate Tools. RAAG significantly in-
creases work productivity while introducing an easier-to-use approach. Their contributions include
reducing development time for backbone services, reducing time to learn or understand the built
software, enabling customization without restrictions, avoiding limitations of auto code generators,
and utilizing particular frameworks in a loosely coupled manner.

77

9.2 Model-Driven Code Generation Transformations of RESTful Web Services

Taktak et al. [TBM�20] proposes an approach based on MDE and Model-to-Text (M2T) trans-
formations to automatically generate the source code templates and the semantically annotated
descriptions of RESTful services from heterogeneous environment data sources. Their approach
introduces a source metamodel to model data sources, a target metamodel to enable modelling
RESTful web services, and transformation rules to realize semantic mappings between the source
and target metamodels. To elaborate, the source metamodel represents the WADL descriptor of
the generated RESTful web service and the target metamodel complies with Hypermedia-Driven
APIs (Hydra) descriptors. Hypermedia-Driven APIs enables clients to dynamically navigate to the
appropriate resources by traversing hypermedia links in the API response contents. Furthermore,
the authors introduce a semantic annotation module to automatically generate and semantically
enhance descriptors of the RESTful web services with Hydra annotations. This module follows
two processes, including the Hydra template generation process based on M2T transformations
and the Semantic Annotation Process (SAP) of the Hydra descriptor, which is based on domain
concepts matching. The transformations automatically generate a Hydra template and enhance it
with semantic annotations.

Ed-douibi [Ed19] extends the work of Ed-douibi et al. [HCIG�16] by presenting a model-
driven approach to facilitate the design, implementation, composition, and consumption of REST
APIs. His work mainly targets 1) the OpenAPI specification which has become the preferred for-
mat to define REST APIs, and 2) OData which is focused on data-centric REST APIs and has
gained momentum because of the emergence of the Open Data initiatives. For OpenAI and OData,
he provides a metamodel and a UML profile to give users the flexibility to choose the representa-
tion that suits them best. By targeting the Eclipse platform, users can rely on a plethora of model-
based tools to perform tasks including model-to-model transformations (ATL, Eclipse QVT Op-
erational), code generation (Acceleo, EGL), model validation (Eclipse OCL, Episilon Validation
Language), model weaving (EMF Views), and model comparison (EMF Compare). Concretely, his
work presents EMF-REST, APIDISCOVERER, APITESTER, APIGENERATOR, and APICOM-
POSER. EMF-REST enables model management via REST APIs, thus unlocking modelling tasks
which currently rely on heavy desktop environments. APIDISCOVERER is an example-driven
approach to discover Web API specification, thus helping developers increase the exposure of their
APIs without fully writing API specifications and benefit from the OpenAPI tooling infrastructure
(e.g., generating documentation, SDKs). APITESTER automates specification-based REST API
testing by relying on OpenAPI. APIGENERATOR is a model-driven approach to generate OData
REST APIs from conceptual data models. APICOMPOSER proposes a lightweight model-driven
approach to compose and orchestrate data-centric REST APIs. Collectively, these contributions
constitute an ecosystem of solutions which automate different tasks related to REST APIs devel-

78

9.2 Model-Driven Code Generation Transformations of RESTful Web Services

opment and consumption.
In our RESTify approach, we take a collection of EMF models as input, and use a series of

model-to-model, model-to-code, and code-to-code transformations to generate a fully functional
and ready-to-deploy RESTful web service. In particular, we implement Acceleo modules for the
model-to-code transformations to generate the resulting source code and build configuration file.
Our approach differs from the work illustrated above by using CORE to encapsulate the technical
complexity of REST frameworks as a concern named RESTify and enable the reuse of the concern
as a method of selecting the desired REST framework to use. Our RESTify methodology currently
supports the Spring Boot, Eclipse Jersey, JBoss, RESTEasy, and Apache CXF frameworks. A key
feature in our approach is that users can at any time change the configuration of the reused RESTify
concern to generate a new implementation of the RESTful web service based on a different REST
implementation framework.

79

10
Conclusion & Future Work

10.1 Conclusion
The standard development procedure for extending an existing software system to a RESTful web
service involves first designing a REST resource tree architecture for the underlying resource end-
points. Next, an applicable REST framework is selected as a dependency to the software system.
The existing build module is updated and required additional files are implemented to accommo-
date for the selected REST implementation. Now, the existing software system is decorated with
REST annotations provided by the REST framework dependency.

We introduce the RESTify concern to provide an approach based on MDE and CORE for
modelling and automating the task of extending an existing software system with a RESTful web
service. Our approach begins by importing the existing software system as ImplementationClass
model elements in a RAM model. Next the developer reuses the RESTify concern and simply
selects an appropriate REST implementation technology, completely shielding them from the im-
plementation framework’s technical complexity. Now, the developer models a resource tree with
the visual ResTL modelling language to define the REST endpoints. They then specify inter-model
mappings between the operations in the implementation classes of the RAM model and the REST
endpoints in the ResTL model in the RAM-ResTL split view simply by drawing connecting lines
between the two models. This is all our approach needs to generate a functional and ready-to-
deploy RESTful web service with the RESTify transformation pipeline.

In comparison with the traditional ad hoc software development approach which converts
legacy software systems to RESTful web services incrementally by programming, the RESTify
approach incorporates modelling techniques to correlate the business logic of the software system
to specific REST endpoints progressively and a series of model transformations to automate the
conversion all-or-none. The process of extending a function with REST annotations is streamlined
with the specification of inter-model mappings in the RAM-ResTL split view. Additionally, the

80

10.2 Future Work

build configuration and additional required files are automatically generated during the RESTify
transformation pipeline. Inexperienced backend web developers can find the RESTify approach
to be a significantly more intuitive approach than traditional software development and achieve a
functional and ready to deploy RESTful web service without any software or design defects.

Our proposed RESTify approach automates the development lifecycle with model-to-model,
model-to-code, and code-to-code transformations, visualizes the REST resource tree architecture
to naturally ensure a correct tree structure and enforce REST constraints.

There is significant technical complexity in learning and developing with REST implementa-
tion technologies. Even with extensive review of technical documentation of the selected REST
framework, it can take substantial trial and error to build a functional RESTful web service without
any software defects. By encapsulating the technical details of REST frameworks within the RES-
Tify concern, users do not need any prerequisite technical knowledge about REST frameworks.

During the traditional development lifecycle, it can be challenging to comply the extensive
constraints that REST defines. We highlight the URI naming and HTTP request method behaviour
conventions. It can be difficult to abide these conventions without any visualization of the resulting
REST resource architecture. With the RESTify methodology, we provide the ResTL GUI editor
and generic split view for visualizing the REST resource tree architecture and RAM-ResTL map-
pings for annotation decoration. By strictly adhering to the REST constraints in a web service
system, there can be a considerable improvement in the design and reusability of the software
system.

Due to the constant evolution of new system and user specifications, software systems may
often require migration to different REST frameworks during its lifetime. After the development of
a RESTful web service, it can be technologically demanding and troublesome to change the REST
framework. REST implementation technologies define their annotations, required additional files,
and build configurations differently. The procedure of migrate an existing RESTful web service to
a different REST framework can be a steep learning curve and vulnerable to software defects. In the
RESTify approach, one of the key features is the capability to generate different implementations
of REST by updating the configuration of the reused RESTify concern. A new RESTful web
service with the newly selected REST technology can now be generated by simply re-executing
the RESTify transformation pipeline.

10.2 Future Work
10.2.1 Extensions to Complete Modelling Approach of RESTify
The RESTify approach currently supports extension transformations by incorporating MDE and
CORE techniques to generate a functional and ready-to-deploy RESTful web service based on an

81

10.2 Future Work

existing software system. However, a prerequisite to the RESTify transformations is a functional
software system that already provides controller classes and operations for business logic related
to querying and modification of the underlying data.

Instead of starting with an already implemented system, another approach would be to model
the entire software system in TouchCORE with RAM. With RAM, a complete software system can
be modelled with a UML Class Diagram and UML Sequence Diagrams for each operation. Addi-
tionally, we can specify the Maven coordinates with the groupId, artifactId and version identifiers
contained within the ArtifactSignature model element to integrate the Maven build automation
tool to the generated application. Now, the existing RESTify procedure can be reused to generate
a RESTful web service from a complete modelling approach. The new RESTification procedure
would remain mostly identical to the current process, by modelling a new RAM model represen-
tation of a software system, reusing the RESTify concern, designing the REST resource tree with
a ResTL model and realizing inter-model mappings between the RAM and ResTL models. In
particular, the fpcdm and COREModelExtension generation transformations in the RESTify trans-
formation pipeline need to be refactored to interpret Classes as opposed to ImplementationClasses
from the input RAM model. The generated RESTful web service from the modified RESTify trans-
formations will include the modelled software system in the input RAM model, the newly created
and annotated controller classes and operations and the Maven build configuration file, namely the
pom.xml.

By providing both ways to use RESTify, developers will have the choice of either following an
MDE approach and modelling the software under development which queries and modifies data
or use a more conventional approach and implement the software first and then use RESTify as
described in this thesis to generate a RESTful web service.

10.2.2 Round-Trip Engineering with RESTify
Round-Trip Engineering (RTE) is a functionality of software development tools that synchronizes
various related software artifacts, including source code, models, configuration files, and even
documentation. In our RESTify approach, we provide a model-to-code approach to realize models
and their inter-model mappings, in order to generate a functional and ready-to-deploy RESTful
web service. However, if the users augment the generated source code subsequently, the models
will be inconsistent with the code from then on. As a result, the users cannot rely on RESTify any
more to model and generate any new functionalities as the models don’t contain the recent source
code changes.

We propose that with RTE, we can perform code-to-model transformations to parse a RESTful
web service in the form of RAM and ResTL models, along with inter-model mappings between
them. The main benefit of RTE is that users have the flexibility to extend the generated RESTful

82

10.2 Future Work

web service directly in the source code, or in the models during the software development lifecycle
and still have the option to incorporate the RESTify methodology to generate new functionalities.

10.2.3 ResTL Weaver
Languages in CORE are required to provide a weaver in order to fully incorporate the concern
reuse process. Currently, the ResTL language does not provide a weaver implementation.

With a ResTL weaver, we can incorporate the variation interface of CORE to modularize the
complete resource tree of a concern with features. Consider the BookStore concern, it can have two
optional features including Comments and Locations as illustrated in Figure 10.1. The complete
ResTL model for the BookStore concern is highlighted in Figure 3.4. Now, we can modularize the
complete ResTL model by separating the relevant resources to the ResTL models of each feature.
A possible way of modularizing the ResTL models according to features is visualized in Figure
10.2. The BookStore feature contains only the REST endpoints relevant to the storage of books.
Since that feature is at the root of the feature model, those endpoints will always be part of the
REST interface of the bookstore. The Comments feature reuses the /{isbn} DynamicFragment from
the ResTL model of the BookStore feature as the root PathFragment, and contains the endpoints
relevant to comments from readers. The Locations feature reuses the /bookstore StaticFragment
from the ResTL model of the BookStore feature as the root PathFragment, and contains the end-
points relevant to the bookstore locations and their respective stock of books. We envision that the
ResTL models of child features must set the root PathFragment to a specific PathFragment from
the ResTL model of one of the parent features. Figure 10.2 illustrates the reuse of PathFragments
with a small yellow box from an external source, i.e. not from TouchCORE.

Now, with a modularized BookStore concern and its underlying ResTL models, users can reuse
the BookStore concern as specified by the concern reuse process. After a valid selection of the
variation interface of the BookStore concern, the envisioned ResTL weaver will create a woven
ResTL model based on the selected features. Users can now integrate their customized ResTL
model for the BookStore concern with their other modelling tasks.

10.2.4 Augmentation of Cacheable to ResTL
The ResTL metamodel [Sch20b] visualizes a resource tree and currently supports the uniform in-
terface constraint of the REST software architectural style by defining the endpoint URIs, HTTP
request methods and HTTP parameters with the PathFragment, AccessMethod and Parameter
model elements respectively. The current ResTL metamodel encompasses only a partial defini-
tion of the entire REST architectural style.

We can incorporate the cacheable constraint from REST in the ResTL metamodel with HTTP
response headers including Cache-Control, ETag etc. The Cache-Control HTTP response header

83

10.2 Future Work

Figure 10.1: Feature Model of BookStore Concern

Figure 10.2: ResTL Models of Each Feature in BookStore Concern

84

10.2 Future Work

specifies whether the response is cacheable, and if so, by whom, and for how long [Gup22a]. The
ETag HTTP response header is an opaque string token that a server associates with a resource
to uniquely identify the state of the resource over its lifetime [Gup22a]. These HTTP response
headers can be added to the ResTL metamodel and contained by a REST endpoint, namely an Ac-
cessMethod model element. Now, the RESTify transformation pipeline can integrate these HTTP
response headers with REST annotations, HTTP response builders etc. depending on the selected
REST framework.

Currently, the ResTL GUI editor and controller supports operations with the PathFragment,
Resource and AccessMethod model elements. Introducing new additions to the ResTL metamodel
would also require the corresponding accommodation in the ResTL GUI editor and controller.

10.2.5 New Modelling Language to Express Layered Systems
There are additional REST constraints that are not currently expressed in the ResTL modelling
language. In particular, we can introduce a new modelling language to express the layered system
constraint from the REST architectural style. We do not express layered systems in the ResTL
metamodel because the architecture of distributed systems is conceptually independent from the
REST resource tree architecture.

Similar to the ResTL modelling language, we can express the concept of layered systems in
a tree data structure by introducing servers. Intermediary servers can be used for the purposes of
security, caching, or load balancing. Terminal servers contain the business logic for querying and
modifying the database. Multiple terminal servers can enable a microservices architecture by only
exposing a subset of the complete REST endpoints illustrated in the ResTL model.

Similar to all plug-in languages in CORE, the implementation of the layered system modelling
language will need to provide a metamodel, language actions, graphical user interface, and a
weaver. To extend the RESTify approach, a RAM-LayeredSystem implementation of the generic
split view with mappings functionality can realize mappings between controller classes and termi-
nal servers. Furthermore, the RESTify transformation pipeline can then generate implementations
of multiple RESTful web service based on the intermediary and terminal servers that can commu-
nicate to each other as specified by the layered system architecture.

A well-designed layered system architecture can improve the scalability of the web application
by reducing the network traffic to each terminal server. Furthermore, it can improve the perfor-
mance of the web application by reducing server response time for clients.

10.2.6 New Modelling Language for RESTful Web Service Security
Currently with the RESTify approach, we generate a functional and ready-to-deploy RESTful web
service, however, the generated application does not provide a security layer for the validation

85

10.2 Future Work

of client requests. Security is indispensable in a web application to prevent HTTP attacks from
flooding the servers with relentless requests, stealing classified information etc. However, REST
defines the stateless constraint which specifies that the server does not retain any of the session
information. Consequently, requests to the server can contain the relevant session data to be un-
derstood in isolation, without the context information from previous requests in the same session.
Therefore, the RESTful Web Service Security modelling language must provide security concepts
while complying to the stateless constraint of the REST architectural style.

As a plug-in language in CORE, the implementation of the RESTful Web Service Security
modelling language will need to provide a metamodel, language actions, graphical user interface,
and a weaver. The generic split view with mappings functionality can be implemented to realize
mappings between a ResTL model and a RESTful Web Service Security model. These inter-model
mappings can provide customized levels of security to each resource endpoint. Furthermore, the
RESTify transformation pipeline can be augmented to provide the code generation of security
functionality.

By incorporating security in a RESTful web service, we can reduce the network traffic by
blocking HTTP flood attacks and validating the identity of incoming client requests to ensure that
only authorized clients can execute certain operations.

10.2.7 New Implementations of the Generic Split View
The generic split view is an abstract module that can be specialized for displaying, editing, and re-
alizing mappings between two arbitrary models. Currently, we provide a complete implementation
for the RAM-ResTL split view with mappings to facilitate the RESTify transformation pipeline.
Additionally, we demonstrate the generic nature of the generic split view by providing the Domain-
Use Case split view with mappings implementation. Although there is currently no transformation
pipeline for Domain-Use Case models, the Domain-Use Case split view with mappings ensures
the consistency between the Actor and Class model elements.

Future work in TouchCORE can provide additional implementations of the generic split view
module to realize inter-model mappings and facilitate new transformation pipelines for code gen-
eration or model transformations.

86

Bibliography

[AKM13] Omar Alam, Jörg Kienzle, and Gunter Mussbacher. Concern-oriented software de-
sign. In MoDELS, volume 8107 of Lecture Notes in Computer Science, pages 604–
621. Springer, 2013. 1.1, 2.3

[Ali21] Hyacinth Ali. Domain-use case perspective, 2021. 6.4

[AMK22] Hyacinth Ali, Gunter Mussbacher, and Jörg Kienzle. Perspectives to promote modu-
larity, reusability, and consistency in multi-language systems. Innovations in Systems
and Software Engineering, January 2022. 2.3.3

[Cop22] Daniela Coppola. E-commerce worldwide, February 2022.
https://www.statista.com/topics/871/online-shopping/#dossier-chapter6. 1

[Cor] Oracle Corporation. Lesson: Annotations.
https://docs.oracle.com/javase/tutorial/java/annotations/. 2.5

[DR22] Amirhossein Deljouyi and Raman Ramsin. Mdd4rest: Model-driven methodology
for developing restful web services. In Proceedings of the 10th International Confer-
ence on Model-Driven Engineering and Software Development - Volume 1: MODEL-
SWARD,, pages 93–104. INSTICC, SciTePress, 2022. 9.1

[Ed19] Hamza Ed-douibi. Model-driven round-trip engineering of REST APIs. PhD thesis,
Universitat Oberta de Catalunya, May 2019. 9.2

[Edu] IBM Cloud Education. What is java spring boot?
https://www.ibm.com/cloud/learn/java-spring-boot. 1, 2.5.1

[Fie00] Roy Thomas Fielding. Architectural styles and the design of network-based software
architectures. PhD thesis, University of California, Irvine, 2000. 1, 2.5

[Fis15] Markus Fischer. Model-driven code generation for rest apis. Master’s thesis, Univer-
sity of Stuttgart, 2015. 9.2

[Fou] Apache Software Foundation. Apache cxf: An open-source services framework.
https://cxf.apache.org/. 1, 2.5.2.3

87

BIBLIOGRAPHY

[Fou21] Eclipse Foundation. Eclipse jersey, July 2021.
https://projects.eclipse.org/projects/ee4j.jersey. 1, 2.5.2.1

[Gon18] Rafael Corveira da Cruz Gonçalves. Restful web services development with a model-
driven engineering approach. Master’s thesis, Mestrado em Engenharia Informática,
2018. 9.2

[Gui] Christopher Guindon. Jakarta restful web services: The eclipse foundation.
https://jakarta.ee/specifications/restful-ws/. 1, 2.5.2

[Gup22a] Lokesh Gupta. Caching rest api response, January 2022.
https://restfulapi.net/caching/. 10.2.4

[Gup22b] Lokesh Gupta. What is rest, February 2022. https://restfulapi.net/. 2.5

[Hat] Red Hat. Resteasy. https://resteasy.dev/. 1, 2.5.2.2

[HCIG�16] Ed-Douibi Hamza, Javier Luis Cánovas Izquierdo, Abel Gómez, Massimo Tisi, and
Jordi Cabot. Emf-rest: Generation of restful apis from models. In Symposium on
Applied Computing 2016, Pisa, Italy, 2016. 9.2

[HKLS14] Florian Haupt, Dimka Karastoyanova, Frank Leymann, and Benjamin Schroth. A
model-driven approach for rest compliant services. In 2014 IEEE International Con-
ference on Web Services, ICWS, 2014, Anchorage, AK, USA, June 27 - July 2, 2014,
pages 129–136. IEEE Computer Society, 2014. 9.2

[HMSM18] Adrian Hernandez-Mendez, Niklas Scholz, and Florian Matthes. A model-driven
approach for generating restful web services in single-page applications. In Pro-
ceedings of the 6th International Conference on Model-Driven Engineering and Soft-
ware Development, MODELSWARD 2018, pages 480–487, Setubal, PRT, 2018.
SCITEPRESS - Science and Technology Publications, Lda. 9.2

[HZS20] Salah Hussein, Samer Zein, and Norsaremah Salleh. Rest api auto generation: A
model-based approach. September 2020. 9.2

[Inc22] Broadcom Inc. Http request parameter types, March 2022.
https://techdocs.broadcom.com/us/en/ca-enterprise-software/it-operations-
management/application-performance-management/10-7/administrating/cem-
configuration/transaction-definition/about-transaction-identification/http-request-
parameter-types.html. 5.1

88

BIBLIOGRAPHY

[K0̈6] Thomas Kühne. Matters of (meta-) modeling. Software and Systems Modeling
(SoSyM), 5:369–385, December 2006. 2.2

[KAAK09] Jörg Kienzle, Wisam Al Abed, and Jacques Klein. Aspect-oriented multi-view mod-
eling. In Proceedings of the 8th ACM International Conference on Aspect-Oriented
Software Development, AOSD ’09, pages 87–98, New York, NY, USA, 2009. Asso-
ciation for Computing Machinery. 2.3.4

[Kin19] Pete Marvin King. Apache maven war plugin, September 2019.
https://maven.apache.org/plugins/maven-war-plugin/. 7.7

[KM20] Agi Putra Kharisma and Mochamad Sukrisno Mardiyanto. Towards text-based
domain-specific modeling language for representational state transfer compliant ser-
vices. In Proceedings of the 5th International Conference on Sustainable Information
Engineering and Technology, pages 74–78, New York, NY, USA, 2020. Association
for Computing Machinery. 9.1

[KY21] Adil Kenzi. and Fadoua Yakine. A model driven framework for the development
of adaptable rest services. In Proceedings of the 17th International Conference on
Web Information Systems and Technologies - WEBIST,, pages 544–552. INSTICC,
SciTePress, 2021. 9.1

[LRZ10] Uwe Laufs, Christopher Ruff, and Jan Zibuschka. Mt4j - a cross-platform multi-touch
development framework. CoRR, abs/1012.0467, 2010. 5.2

[LSS09] Markku Laitkorpi, Petri Selonen, and Tarja Systa. Towards a model-driven process for
designing restful web services. 2009 IEEE International Conference on Web Services,
2009. 9.1

[Pet14] J. Petersohn. A Multilayered Model for REST Applications. Universitätsbibliothek
der Universität Stuttgart, 2014. 9.1

[PR11] Ivan Porres and Irum Rauf. Modeling behavioral restful web service interfaces in uml.
In Proceedings of the 2011 ACM Symposium on Applied Computing, SAC ’11, pages
1598–1605, New York, NY, USA, 2011. Association for Computing Machinery. 9.1

[PZL] Brett Porter, Jason van Zyl, and Olivier Lamy. Welcome to apache maven.
https://maven.apache.org/. 1, 2.5

89

BIBLIOGRAPHY

[Red19] Eric Redmond. Pom reference, December 2019. https://maven.apache.org/pom.html.
8

[SAKM16] Matthias Schöttle, Omar Alam, Jörg Kienzle, and Gunter Mussbacher. On the modu-
larization provided by concern-oriented reuse. In Companion Proceedings of the 15th
International Conference on Modularity, pages 184–189, New York, NY, USA, 2016.
Association for Computing Machinery. 2.3, 2.3.1

[Sch06] Douglas C. Schmidt. Guest editor’s introduction: Model-driven engineering.
39(2):25–31, February 2006. 2.1

[Sch11] Silvia Schreier. Modeling restful applications. In Proceedings of the Second Inter-
national Workshop on RESTful Design, WS-REST ’11, pages 15–21, New York, NY,
USA, 2011. Association for Computing Machinery. 9.1

[Sch13] Benjamin Schroth. Entwurf und realisierung von rest- anwendungen nach prinzipien
der modellgetriebenen softwareentwicklung, 2013. 9.1

[Sch20a] Maximilian Schiedermeier. Book store internals, 2020.
https://github.com/kartoffelquadrat/BookStoreInternals. 1.2, 3

[Sch20b] Maximilian Schiedermeier. Restl metamodel, 2020. 5.1, 10.2.4

[Sch21a] Maximilian Schiedermeier. fpcdm ram model with spring annotations and coremod-
elextension mapping generation transformation, 2021. 7.1

[Sch21b] Maximilian Schiedermeier. Ram-restl perspective, 2021. 6.3, 7

[SKK21] Maximilian Schiedermeier, Jörg Kienzle, and Bettina Kemme. FIDDLR: streamlining
reuse with concern-specific modelling languages. In SLE, pages 164–176. ACM,
2021. 2.4

[SLL�21] Maximilian Schiedermeier, Bowen Li, Ryan Languay, Greta Freitag, Qiutan Wu, Jörg
Kienzle, Hyacinth Ali, Ian Gauthier, and Gunter Mussbacher. Multi-language support
in touchcore. In MoDELS (Companion), pages 625–629. IEEE, 2021. 2.3.2, 2.3.3,
5.2

[TBM�20] Hela Taktak, Khouloud Boukadi, Michael Mrissa, Chirine Ghedira Guegan, and Faïez
Gargouri. A model-driven approach for semantic data-as-a-service generation. In
WETICE, pages 245–250. IEEE, 2020. 9.2

90

BIBLIOGRAPHY

[TV13] Nírondes A. C. Tavares and Samyr Vale. A model driven approach for the develop-
ment of semantic restful web services. In Proceedings of International Conference
on Information Integration and Web-Based Applications & Services, IIWAS ’13,
pages 290–299, New York, NY, USA, 2013. Association for Computing Machinery.
9.1

91

A
CORE Metamodel

92

CORE Metamodel

Figure A.1: CORE Metamodel

93

B
Acceleo Templates for Model-to-Code

RESTify Transformations

94

Acceleo Templates for Model-to-Code RESTify Transformations

Figure B.1: Generic pom.xml Acceleo Template

Figure B.2: Helper Maven Depedency Acceleo Template

95

Acceleo Templates for Model-to-Code RESTify Transformations

Figure B.3: JAX-RS Application Class Acceleo Template

Figure B.4: Apache CXF Launcher Class Acceleo Template

96

Acceleo Templates for Model-to-Code RESTify Transformations

Figure B.5: Apache CXF pom.xml Acceleo Template

97

Acceleo Templates for Model-to-Code RESTify Transformations

Figure B.6: Eclipse Jersey pom.xml Acceleo Template

98

Acceleo Templates for Model-to-Code RESTify Transformations

Figure B.7: JBoss RESTEasy pom.xml Acceleo Template

99

Acceleo Templates for Model-to-Code RESTify Transformations

Figure B.8: Spring Boot Launcher Class Acceleo Template

100

Acceleo Templates for Model-to-Code RESTify Transformations

Figure B.9: Spring Boot pom.xml Acceleo Template

101

C
Generated RESTified Java/Maven Source

Code for Supported REST Frameworks for
BookStore Application

102

Generated RESTified Java/Maven Source Code for Supported REST Frameworks for
BookStore Application

Figure C.1: GenericPom.xml

103

Generated RESTified Java/Maven Source Code for Supported REST Frameworks for
BookStore Application

Figure C.2: SpringBootPom.xml

104

Generated RESTified Java/Maven Source Code for Supported REST Frameworks for
BookStore Application

Figure C.3: Woven pom.xml (Spring Boot)

105

Generated RESTified Java/Maven Source Code for Supported REST Frameworks for
BookStore Application

Figure C.4: EclipseJerseyPom.xml

106

Generated RESTified Java/Maven Source Code for Supported REST Frameworks for
BookStore Application

Figure C.5: Woven pom.xml (Eclipse Jersey)

107

Generated RESTified Java/Maven Source Code for Supported REST Frameworks for
BookStore Application

Figure C.6: JBossRESTEasyPom.xml

108

Generated RESTified Java/Maven Source Code for Supported REST Frameworks for
BookStore Application

Figure C.7: Woven pom.xml (JBoss RESTEasy)

109

Generated RESTified Java/Maven Source Code for Supported REST Frameworks for
BookStore Application

Figure C.8: ApacheCXFPom.xml

110

Generated RESTified Java/Maven Source Code for Supported REST Frameworks for
BookStore Application

Figure C.9: Woven pom.xml (Apache CXF)

111

Generated RESTified Java/Maven Source Code for Supported REST Frameworks for
BookStore Application

Figure C.10: AssortmentImplController.java (Spring Annotations)

112

Generated RESTified Java/Maven Source Code for Supported REST Frameworks for
BookStore Application

Figure C.11: CommentsImplController.java (Spring Annotations)

113

Generated RESTified Java/Maven Source Code for Supported REST Frameworks for
BookStore Application

Figure C.12: GlobalStockImplController.java (Spring Annotations)

114

Generated RESTified Java/Maven Source Code for Supported REST Frameworks for
BookStore Application

Figure C.13: AssortmentImplController.java (JAX-RS Annotations)

115

Generated RESTified Java/Maven Source Code for Supported REST Frameworks for
BookStore Application

Figure C.14: CommentsImplController.java (JAX-RS Annotations)

116

Generated RESTified Java/Maven Source Code for Supported REST Frameworks for
BookStore Application

Figure C.15: GlobalStockImplController.java (JAX-RS Annotations)

117

Generated RESTified Java/Maven Source Code for Supported REST Frameworks for
BookStore Application

Figure C.16: SpringBootLauncher.java

Figure C.17: ApplicationConfig.java (JAX-RS)

118

Generated RESTified Java/Maven Source Code for Supported REST Frameworks for
BookStore Application

Figure C.18: ApacheCXFLauncher.java

119

